x86/efi: Remove unused efi_call* macros
[deliverable/linux.git] / arch / x86 / platform / efi / efi.c
1 /*
2 * Common EFI (Extensible Firmware Interface) support functions
3 * Based on Extensible Firmware Interface Specification version 1.0
4 *
5 * Copyright (C) 1999 VA Linux Systems
6 * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
7 * Copyright (C) 1999-2002 Hewlett-Packard Co.
8 * David Mosberger-Tang <davidm@hpl.hp.com>
9 * Stephane Eranian <eranian@hpl.hp.com>
10 * Copyright (C) 2005-2008 Intel Co.
11 * Fenghua Yu <fenghua.yu@intel.com>
12 * Bibo Mao <bibo.mao@intel.com>
13 * Chandramouli Narayanan <mouli@linux.intel.com>
14 * Huang Ying <ying.huang@intel.com>
15 * Copyright (C) 2013 SuSE Labs
16 * Borislav Petkov <bp@suse.de> - runtime services VA mapping
17 *
18 * Copied from efi_32.c to eliminate the duplicated code between EFI
19 * 32/64 support code. --ying 2007-10-26
20 *
21 * All EFI Runtime Services are not implemented yet as EFI only
22 * supports physical mode addressing on SoftSDV. This is to be fixed
23 * in a future version. --drummond 1999-07-20
24 *
25 * Implemented EFI runtime services and virtual mode calls. --davidm
26 *
27 * Goutham Rao: <goutham.rao@intel.com>
28 * Skip non-WB memory and ignore empty memory ranges.
29 */
30
31 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
32
33 #include <linux/kernel.h>
34 #include <linux/init.h>
35 #include <linux/efi.h>
36 #include <linux/efi-bgrt.h>
37 #include <linux/export.h>
38 #include <linux/bootmem.h>
39 #include <linux/slab.h>
40 #include <linux/memblock.h>
41 #include <linux/spinlock.h>
42 #include <linux/uaccess.h>
43 #include <linux/time.h>
44 #include <linux/io.h>
45 #include <linux/reboot.h>
46 #include <linux/bcd.h>
47
48 #include <asm/setup.h>
49 #include <asm/efi.h>
50 #include <asm/time.h>
51 #include <asm/cacheflush.h>
52 #include <asm/tlbflush.h>
53 #include <asm/x86_init.h>
54 #include <asm/rtc.h>
55 #include <asm/uv/uv.h>
56
57 #define EFI_DEBUG
58
59 struct efi_memory_map memmap;
60
61 static struct efi efi_phys __initdata;
62 static efi_system_table_t efi_systab __initdata;
63
64 static efi_config_table_type_t arch_tables[] __initdata = {
65 #ifdef CONFIG_X86_UV
66 {UV_SYSTEM_TABLE_GUID, "UVsystab", &efi.uv_systab},
67 #endif
68 {NULL_GUID, NULL, NULL},
69 };
70
71 u64 efi_setup; /* efi setup_data physical address */
72
73 int add_efi_memmap;
74 EXPORT_SYMBOL(add_efi_memmap);
75
76 static int __init setup_add_efi_memmap(char *arg)
77 {
78 add_efi_memmap = 1;
79 return 0;
80 }
81 early_param("add_efi_memmap", setup_add_efi_memmap);
82
83 static efi_status_t __init phys_efi_set_virtual_address_map(
84 unsigned long memory_map_size,
85 unsigned long descriptor_size,
86 u32 descriptor_version,
87 efi_memory_desc_t *virtual_map)
88 {
89 efi_status_t status;
90
91 efi_call_phys_prelog();
92 status = efi_call_phys(efi_phys.set_virtual_address_map,
93 memory_map_size, descriptor_size,
94 descriptor_version, virtual_map);
95 efi_call_phys_epilog();
96 return status;
97 }
98
99 void efi_get_time(struct timespec *now)
100 {
101 efi_status_t status;
102 efi_time_t eft;
103 efi_time_cap_t cap;
104
105 status = efi.get_time(&eft, &cap);
106 if (status != EFI_SUCCESS)
107 pr_err("Oops: efitime: can't read time!\n");
108
109 now->tv_sec = mktime(eft.year, eft.month, eft.day, eft.hour,
110 eft.minute, eft.second);
111 now->tv_nsec = 0;
112 }
113
114 /*
115 * Tell the kernel about the EFI memory map. This might include
116 * more than the max 128 entries that can fit in the e820 legacy
117 * (zeropage) memory map.
118 */
119
120 static void __init do_add_efi_memmap(void)
121 {
122 void *p;
123
124 for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
125 efi_memory_desc_t *md = p;
126 unsigned long long start = md->phys_addr;
127 unsigned long long size = md->num_pages << EFI_PAGE_SHIFT;
128 int e820_type;
129
130 switch (md->type) {
131 case EFI_LOADER_CODE:
132 case EFI_LOADER_DATA:
133 case EFI_BOOT_SERVICES_CODE:
134 case EFI_BOOT_SERVICES_DATA:
135 case EFI_CONVENTIONAL_MEMORY:
136 if (md->attribute & EFI_MEMORY_WB)
137 e820_type = E820_RAM;
138 else
139 e820_type = E820_RESERVED;
140 break;
141 case EFI_ACPI_RECLAIM_MEMORY:
142 e820_type = E820_ACPI;
143 break;
144 case EFI_ACPI_MEMORY_NVS:
145 e820_type = E820_NVS;
146 break;
147 case EFI_UNUSABLE_MEMORY:
148 e820_type = E820_UNUSABLE;
149 break;
150 default:
151 /*
152 * EFI_RESERVED_TYPE EFI_RUNTIME_SERVICES_CODE
153 * EFI_RUNTIME_SERVICES_DATA EFI_MEMORY_MAPPED_IO
154 * EFI_MEMORY_MAPPED_IO_PORT_SPACE EFI_PAL_CODE
155 */
156 e820_type = E820_RESERVED;
157 break;
158 }
159 e820_add_region(start, size, e820_type);
160 }
161 sanitize_e820_map(e820.map, ARRAY_SIZE(e820.map), &e820.nr_map);
162 }
163
164 int __init efi_memblock_x86_reserve_range(void)
165 {
166 struct efi_info *e = &boot_params.efi_info;
167 unsigned long pmap;
168
169 if (efi_enabled(EFI_PARAVIRT))
170 return 0;
171
172 #ifdef CONFIG_X86_32
173 /* Can't handle data above 4GB at this time */
174 if (e->efi_memmap_hi) {
175 pr_err("Memory map is above 4GB, disabling EFI.\n");
176 return -EINVAL;
177 }
178 pmap = e->efi_memmap;
179 #else
180 pmap = (e->efi_memmap | ((__u64)e->efi_memmap_hi << 32));
181 #endif
182 memmap.phys_map = (void *)pmap;
183 memmap.nr_map = e->efi_memmap_size /
184 e->efi_memdesc_size;
185 memmap.desc_size = e->efi_memdesc_size;
186 memmap.desc_version = e->efi_memdesc_version;
187
188 memblock_reserve(pmap, memmap.nr_map * memmap.desc_size);
189
190 efi.memmap = &memmap;
191
192 return 0;
193 }
194
195 static void __init print_efi_memmap(void)
196 {
197 #ifdef EFI_DEBUG
198 efi_memory_desc_t *md;
199 void *p;
200 int i;
201
202 for (p = memmap.map, i = 0;
203 p < memmap.map_end;
204 p += memmap.desc_size, i++) {
205 char buf[64];
206
207 md = p;
208 pr_info("mem%02u: %s range=[0x%016llx-0x%016llx) (%lluMB)\n",
209 i, efi_md_typeattr_format(buf, sizeof(buf), md),
210 md->phys_addr,
211 md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT),
212 (md->num_pages >> (20 - EFI_PAGE_SHIFT)));
213 }
214 #endif /* EFI_DEBUG */
215 }
216
217 void __init efi_unmap_memmap(void)
218 {
219 clear_bit(EFI_MEMMAP, &efi.flags);
220 if (memmap.map) {
221 early_memunmap(memmap.map, memmap.nr_map * memmap.desc_size);
222 memmap.map = NULL;
223 }
224 }
225
226 static int __init efi_systab_init(void *phys)
227 {
228 if (efi_enabled(EFI_64BIT)) {
229 efi_system_table_64_t *systab64;
230 struct efi_setup_data *data = NULL;
231 u64 tmp = 0;
232
233 if (efi_setup) {
234 data = early_memremap(efi_setup, sizeof(*data));
235 if (!data)
236 return -ENOMEM;
237 }
238 systab64 = early_memremap((unsigned long)phys,
239 sizeof(*systab64));
240 if (systab64 == NULL) {
241 pr_err("Couldn't map the system table!\n");
242 if (data)
243 early_memunmap(data, sizeof(*data));
244 return -ENOMEM;
245 }
246
247 efi_systab.hdr = systab64->hdr;
248 efi_systab.fw_vendor = data ? (unsigned long)data->fw_vendor :
249 systab64->fw_vendor;
250 tmp |= data ? data->fw_vendor : systab64->fw_vendor;
251 efi_systab.fw_revision = systab64->fw_revision;
252 efi_systab.con_in_handle = systab64->con_in_handle;
253 tmp |= systab64->con_in_handle;
254 efi_systab.con_in = systab64->con_in;
255 tmp |= systab64->con_in;
256 efi_systab.con_out_handle = systab64->con_out_handle;
257 tmp |= systab64->con_out_handle;
258 efi_systab.con_out = systab64->con_out;
259 tmp |= systab64->con_out;
260 efi_systab.stderr_handle = systab64->stderr_handle;
261 tmp |= systab64->stderr_handle;
262 efi_systab.stderr = systab64->stderr;
263 tmp |= systab64->stderr;
264 efi_systab.runtime = data ?
265 (void *)(unsigned long)data->runtime :
266 (void *)(unsigned long)systab64->runtime;
267 tmp |= data ? data->runtime : systab64->runtime;
268 efi_systab.boottime = (void *)(unsigned long)systab64->boottime;
269 tmp |= systab64->boottime;
270 efi_systab.nr_tables = systab64->nr_tables;
271 efi_systab.tables = data ? (unsigned long)data->tables :
272 systab64->tables;
273 tmp |= data ? data->tables : systab64->tables;
274
275 early_memunmap(systab64, sizeof(*systab64));
276 if (data)
277 early_memunmap(data, sizeof(*data));
278 #ifdef CONFIG_X86_32
279 if (tmp >> 32) {
280 pr_err("EFI data located above 4GB, disabling EFI.\n");
281 return -EINVAL;
282 }
283 #endif
284 } else {
285 efi_system_table_32_t *systab32;
286
287 systab32 = early_memremap((unsigned long)phys,
288 sizeof(*systab32));
289 if (systab32 == NULL) {
290 pr_err("Couldn't map the system table!\n");
291 return -ENOMEM;
292 }
293
294 efi_systab.hdr = systab32->hdr;
295 efi_systab.fw_vendor = systab32->fw_vendor;
296 efi_systab.fw_revision = systab32->fw_revision;
297 efi_systab.con_in_handle = systab32->con_in_handle;
298 efi_systab.con_in = systab32->con_in;
299 efi_systab.con_out_handle = systab32->con_out_handle;
300 efi_systab.con_out = systab32->con_out;
301 efi_systab.stderr_handle = systab32->stderr_handle;
302 efi_systab.stderr = systab32->stderr;
303 efi_systab.runtime = (void *)(unsigned long)systab32->runtime;
304 efi_systab.boottime = (void *)(unsigned long)systab32->boottime;
305 efi_systab.nr_tables = systab32->nr_tables;
306 efi_systab.tables = systab32->tables;
307
308 early_memunmap(systab32, sizeof(*systab32));
309 }
310
311 efi.systab = &efi_systab;
312
313 /*
314 * Verify the EFI Table
315 */
316 if (efi.systab->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE) {
317 pr_err("System table signature incorrect!\n");
318 return -EINVAL;
319 }
320 if ((efi.systab->hdr.revision >> 16) == 0)
321 pr_err("Warning: System table version %d.%02d, expected 1.00 or greater!\n",
322 efi.systab->hdr.revision >> 16,
323 efi.systab->hdr.revision & 0xffff);
324
325 set_bit(EFI_SYSTEM_TABLES, &efi.flags);
326
327 return 0;
328 }
329
330 static int __init efi_runtime_init32(void)
331 {
332 efi_runtime_services_32_t *runtime;
333
334 runtime = early_memremap((unsigned long)efi.systab->runtime,
335 sizeof(efi_runtime_services_32_t));
336 if (!runtime) {
337 pr_err("Could not map the runtime service table!\n");
338 return -ENOMEM;
339 }
340
341 /*
342 * We will only need *early* access to the following two
343 * EFI runtime services before set_virtual_address_map
344 * is invoked.
345 */
346 efi_phys.set_virtual_address_map =
347 (efi_set_virtual_address_map_t *)
348 (unsigned long)runtime->set_virtual_address_map;
349 early_memunmap(runtime, sizeof(efi_runtime_services_32_t));
350
351 return 0;
352 }
353
354 static int __init efi_runtime_init64(void)
355 {
356 efi_runtime_services_64_t *runtime;
357
358 runtime = early_memremap((unsigned long)efi.systab->runtime,
359 sizeof(efi_runtime_services_64_t));
360 if (!runtime) {
361 pr_err("Could not map the runtime service table!\n");
362 return -ENOMEM;
363 }
364
365 /*
366 * We will only need *early* access to the following two
367 * EFI runtime services before set_virtual_address_map
368 * is invoked.
369 */
370 efi_phys.set_virtual_address_map =
371 (efi_set_virtual_address_map_t *)
372 (unsigned long)runtime->set_virtual_address_map;
373 early_memunmap(runtime, sizeof(efi_runtime_services_64_t));
374
375 return 0;
376 }
377
378 static int __init efi_runtime_init(void)
379 {
380 int rv;
381
382 /*
383 * Check out the runtime services table. We need to map
384 * the runtime services table so that we can grab the physical
385 * address of several of the EFI runtime functions, needed to
386 * set the firmware into virtual mode.
387 *
388 * When EFI_PARAVIRT is in force then we could not map runtime
389 * service memory region because we do not have direct access to it.
390 * However, runtime services are available through proxy functions
391 * (e.g. in case of Xen dom0 EFI implementation they call special
392 * hypercall which executes relevant EFI functions) and that is why
393 * they are always enabled.
394 */
395
396 if (!efi_enabled(EFI_PARAVIRT)) {
397 if (efi_enabled(EFI_64BIT))
398 rv = efi_runtime_init64();
399 else
400 rv = efi_runtime_init32();
401
402 if (rv)
403 return rv;
404 }
405
406 set_bit(EFI_RUNTIME_SERVICES, &efi.flags);
407
408 return 0;
409 }
410
411 static int __init efi_memmap_init(void)
412 {
413 if (efi_enabled(EFI_PARAVIRT))
414 return 0;
415
416 /* Map the EFI memory map */
417 memmap.map = early_memremap((unsigned long)memmap.phys_map,
418 memmap.nr_map * memmap.desc_size);
419 if (memmap.map == NULL) {
420 pr_err("Could not map the memory map!\n");
421 return -ENOMEM;
422 }
423 memmap.map_end = memmap.map + (memmap.nr_map * memmap.desc_size);
424
425 if (add_efi_memmap)
426 do_add_efi_memmap();
427
428 set_bit(EFI_MEMMAP, &efi.flags);
429
430 return 0;
431 }
432
433 void __init efi_init(void)
434 {
435 efi_char16_t *c16;
436 char vendor[100] = "unknown";
437 int i = 0;
438 void *tmp;
439
440 #ifdef CONFIG_X86_32
441 if (boot_params.efi_info.efi_systab_hi ||
442 boot_params.efi_info.efi_memmap_hi) {
443 pr_info("Table located above 4GB, disabling EFI.\n");
444 return;
445 }
446 efi_phys.systab = (efi_system_table_t *)boot_params.efi_info.efi_systab;
447 #else
448 efi_phys.systab = (efi_system_table_t *)
449 (boot_params.efi_info.efi_systab |
450 ((__u64)boot_params.efi_info.efi_systab_hi<<32));
451 #endif
452
453 if (efi_systab_init(efi_phys.systab))
454 return;
455
456 efi.config_table = (unsigned long)efi.systab->tables;
457 efi.fw_vendor = (unsigned long)efi.systab->fw_vendor;
458 efi.runtime = (unsigned long)efi.systab->runtime;
459
460 /*
461 * Show what we know for posterity
462 */
463 c16 = tmp = early_memremap(efi.systab->fw_vendor, 2);
464 if (c16) {
465 for (i = 0; i < sizeof(vendor) - 1 && *c16; ++i)
466 vendor[i] = *c16++;
467 vendor[i] = '\0';
468 } else
469 pr_err("Could not map the firmware vendor!\n");
470 early_memunmap(tmp, 2);
471
472 pr_info("EFI v%u.%.02u by %s\n",
473 efi.systab->hdr.revision >> 16,
474 efi.systab->hdr.revision & 0xffff, vendor);
475
476 if (efi_reuse_config(efi.systab->tables, efi.systab->nr_tables))
477 return;
478
479 if (efi_config_init(arch_tables))
480 return;
481
482 /*
483 * Note: We currently don't support runtime services on an EFI
484 * that doesn't match the kernel 32/64-bit mode.
485 */
486
487 if (!efi_runtime_supported())
488 pr_info("No EFI runtime due to 32/64-bit mismatch with kernel\n");
489 else {
490 if (efi_runtime_disabled() || efi_runtime_init())
491 return;
492 }
493 if (efi_memmap_init())
494 return;
495
496 print_efi_memmap();
497 }
498
499 void __init efi_late_init(void)
500 {
501 efi_bgrt_init();
502 }
503
504 void __init efi_set_executable(efi_memory_desc_t *md, bool executable)
505 {
506 u64 addr, npages;
507
508 addr = md->virt_addr;
509 npages = md->num_pages;
510
511 memrange_efi_to_native(&addr, &npages);
512
513 if (executable)
514 set_memory_x(addr, npages);
515 else
516 set_memory_nx(addr, npages);
517 }
518
519 void __init runtime_code_page_mkexec(void)
520 {
521 efi_memory_desc_t *md;
522 void *p;
523
524 /* Make EFI runtime service code area executable */
525 for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
526 md = p;
527
528 if (md->type != EFI_RUNTIME_SERVICES_CODE)
529 continue;
530
531 efi_set_executable(md, true);
532 }
533 }
534
535 void efi_memory_uc(u64 addr, unsigned long size)
536 {
537 unsigned long page_shift = 1UL << EFI_PAGE_SHIFT;
538 u64 npages;
539
540 npages = round_up(size, page_shift) / page_shift;
541 memrange_efi_to_native(&addr, &npages);
542 set_memory_uc(addr, npages);
543 }
544
545 void __init old_map_region(efi_memory_desc_t *md)
546 {
547 u64 start_pfn, end_pfn, end;
548 unsigned long size;
549 void *va;
550
551 start_pfn = PFN_DOWN(md->phys_addr);
552 size = md->num_pages << PAGE_SHIFT;
553 end = md->phys_addr + size;
554 end_pfn = PFN_UP(end);
555
556 if (pfn_range_is_mapped(start_pfn, end_pfn)) {
557 va = __va(md->phys_addr);
558
559 if (!(md->attribute & EFI_MEMORY_WB))
560 efi_memory_uc((u64)(unsigned long)va, size);
561 } else
562 va = efi_ioremap(md->phys_addr, size,
563 md->type, md->attribute);
564
565 md->virt_addr = (u64) (unsigned long) va;
566 if (!va)
567 pr_err("ioremap of 0x%llX failed!\n",
568 (unsigned long long)md->phys_addr);
569 }
570
571 /* Merge contiguous regions of the same type and attribute */
572 static void __init efi_merge_regions(void)
573 {
574 void *p;
575 efi_memory_desc_t *md, *prev_md = NULL;
576
577 for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
578 u64 prev_size;
579 md = p;
580
581 if (!prev_md) {
582 prev_md = md;
583 continue;
584 }
585
586 if (prev_md->type != md->type ||
587 prev_md->attribute != md->attribute) {
588 prev_md = md;
589 continue;
590 }
591
592 prev_size = prev_md->num_pages << EFI_PAGE_SHIFT;
593
594 if (md->phys_addr == (prev_md->phys_addr + prev_size)) {
595 prev_md->num_pages += md->num_pages;
596 md->type = EFI_RESERVED_TYPE;
597 md->attribute = 0;
598 continue;
599 }
600 prev_md = md;
601 }
602 }
603
604 static void __init get_systab_virt_addr(efi_memory_desc_t *md)
605 {
606 unsigned long size;
607 u64 end, systab;
608
609 size = md->num_pages << EFI_PAGE_SHIFT;
610 end = md->phys_addr + size;
611 systab = (u64)(unsigned long)efi_phys.systab;
612 if (md->phys_addr <= systab && systab < end) {
613 systab += md->virt_addr - md->phys_addr;
614 efi.systab = (efi_system_table_t *)(unsigned long)systab;
615 }
616 }
617
618 static void __init save_runtime_map(void)
619 {
620 #ifdef CONFIG_KEXEC
621 efi_memory_desc_t *md;
622 void *tmp, *p, *q = NULL;
623 int count = 0;
624
625 if (efi_enabled(EFI_OLD_MEMMAP))
626 return;
627
628 for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
629 md = p;
630
631 if (!(md->attribute & EFI_MEMORY_RUNTIME) ||
632 (md->type == EFI_BOOT_SERVICES_CODE) ||
633 (md->type == EFI_BOOT_SERVICES_DATA))
634 continue;
635 tmp = krealloc(q, (count + 1) * memmap.desc_size, GFP_KERNEL);
636 if (!tmp)
637 goto out;
638 q = tmp;
639
640 memcpy(q + count * memmap.desc_size, md, memmap.desc_size);
641 count++;
642 }
643
644 efi_runtime_map_setup(q, count, memmap.desc_size);
645 return;
646
647 out:
648 kfree(q);
649 pr_err("Error saving runtime map, efi runtime on kexec non-functional!!\n");
650 #endif
651 }
652
653 static void *realloc_pages(void *old_memmap, int old_shift)
654 {
655 void *ret;
656
657 ret = (void *)__get_free_pages(GFP_KERNEL, old_shift + 1);
658 if (!ret)
659 goto out;
660
661 /*
662 * A first-time allocation doesn't have anything to copy.
663 */
664 if (!old_memmap)
665 return ret;
666
667 memcpy(ret, old_memmap, PAGE_SIZE << old_shift);
668
669 out:
670 free_pages((unsigned long)old_memmap, old_shift);
671 return ret;
672 }
673
674 /*
675 * Map the efi memory ranges of the runtime services and update new_mmap with
676 * virtual addresses.
677 */
678 static void * __init efi_map_regions(int *count, int *pg_shift)
679 {
680 void *p, *new_memmap = NULL;
681 unsigned long left = 0;
682 efi_memory_desc_t *md;
683
684 for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
685 md = p;
686 if (!(md->attribute & EFI_MEMORY_RUNTIME)) {
687 #ifdef CONFIG_X86_64
688 if (md->type != EFI_BOOT_SERVICES_CODE &&
689 md->type != EFI_BOOT_SERVICES_DATA)
690 #endif
691 continue;
692 }
693
694 efi_map_region(md);
695 get_systab_virt_addr(md);
696
697 if (left < memmap.desc_size) {
698 new_memmap = realloc_pages(new_memmap, *pg_shift);
699 if (!new_memmap)
700 return NULL;
701
702 left += PAGE_SIZE << *pg_shift;
703 (*pg_shift)++;
704 }
705
706 memcpy(new_memmap + (*count * memmap.desc_size), md,
707 memmap.desc_size);
708
709 left -= memmap.desc_size;
710 (*count)++;
711 }
712
713 return new_memmap;
714 }
715
716 static void __init kexec_enter_virtual_mode(void)
717 {
718 #ifdef CONFIG_KEXEC
719 efi_memory_desc_t *md;
720 void *p;
721
722 efi.systab = NULL;
723
724 /*
725 * We don't do virtual mode, since we don't do runtime services, on
726 * non-native EFI
727 */
728 if (!efi_is_native()) {
729 efi_unmap_memmap();
730 clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
731 return;
732 }
733
734 /*
735 * Map efi regions which were passed via setup_data. The virt_addr is a
736 * fixed addr which was used in first kernel of a kexec boot.
737 */
738 for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
739 md = p;
740 efi_map_region_fixed(md); /* FIXME: add error handling */
741 get_systab_virt_addr(md);
742 }
743
744 save_runtime_map();
745
746 BUG_ON(!efi.systab);
747
748 efi_sync_low_kernel_mappings();
749
750 /*
751 * Now that EFI is in virtual mode, update the function
752 * pointers in the runtime service table to the new virtual addresses.
753 *
754 * Call EFI services through wrapper functions.
755 */
756 efi.runtime_version = efi_systab.hdr.revision;
757
758 efi_native_runtime_setup();
759
760 efi.set_virtual_address_map = NULL;
761
762 if (efi_enabled(EFI_OLD_MEMMAP) && (__supported_pte_mask & _PAGE_NX))
763 runtime_code_page_mkexec();
764
765 /* clean DUMMY object */
766 efi_delete_dummy_variable();
767 #endif
768 }
769
770 /*
771 * This function will switch the EFI runtime services to virtual mode.
772 * Essentially, we look through the EFI memmap and map every region that
773 * has the runtime attribute bit set in its memory descriptor into the
774 * ->trampoline_pgd page table using a top-down VA allocation scheme.
775 *
776 * The old method which used to update that memory descriptor with the
777 * virtual address obtained from ioremap() is still supported when the
778 * kernel is booted with efi=old_map on its command line. Same old
779 * method enabled the runtime services to be called without having to
780 * thunk back into physical mode for every invocation.
781 *
782 * The new method does a pagetable switch in a preemption-safe manner
783 * so that we're in a different address space when calling a runtime
784 * function. For function arguments passing we do copy the PGDs of the
785 * kernel page table into ->trampoline_pgd prior to each call.
786 *
787 * Specially for kexec boot, efi runtime maps in previous kernel should
788 * be passed in via setup_data. In that case runtime ranges will be mapped
789 * to the same virtual addresses as the first kernel, see
790 * kexec_enter_virtual_mode().
791 */
792 static void __init __efi_enter_virtual_mode(void)
793 {
794 int count = 0, pg_shift = 0;
795 void *new_memmap = NULL;
796 efi_status_t status;
797
798 efi.systab = NULL;
799
800 efi_merge_regions();
801 new_memmap = efi_map_regions(&count, &pg_shift);
802 if (!new_memmap) {
803 pr_err("Error reallocating memory, EFI runtime non-functional!\n");
804 clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
805 return;
806 }
807
808 save_runtime_map();
809
810 BUG_ON(!efi.systab);
811
812 if (efi_setup_page_tables(__pa(new_memmap), 1 << pg_shift)) {
813 clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
814 return;
815 }
816
817 efi_sync_low_kernel_mappings();
818 efi_dump_pagetable();
819
820 if (efi_is_native()) {
821 status = phys_efi_set_virtual_address_map(
822 memmap.desc_size * count,
823 memmap.desc_size,
824 memmap.desc_version,
825 (efi_memory_desc_t *)__pa(new_memmap));
826 } else {
827 status = efi_thunk_set_virtual_address_map(
828 efi_phys.set_virtual_address_map,
829 memmap.desc_size * count,
830 memmap.desc_size,
831 memmap.desc_version,
832 (efi_memory_desc_t *)__pa(new_memmap));
833 }
834
835 if (status != EFI_SUCCESS) {
836 pr_alert("Unable to switch EFI into virtual mode (status=%lx)!\n",
837 status);
838 panic("EFI call to SetVirtualAddressMap() failed!");
839 }
840
841 /*
842 * Now that EFI is in virtual mode, update the function
843 * pointers in the runtime service table to the new virtual addresses.
844 *
845 * Call EFI services through wrapper functions.
846 */
847 efi.runtime_version = efi_systab.hdr.revision;
848
849 if (efi_is_native())
850 efi_native_runtime_setup();
851 else
852 efi_thunk_runtime_setup();
853
854 efi.set_virtual_address_map = NULL;
855
856 efi_runtime_mkexec();
857
858 /*
859 * We mapped the descriptor array into the EFI pagetable above but we're
860 * not unmapping it here. Here's why:
861 *
862 * We're copying select PGDs from the kernel page table to the EFI page
863 * table and when we do so and make changes to those PGDs like unmapping
864 * stuff from them, those changes appear in the kernel page table and we
865 * go boom.
866 *
867 * From setup_real_mode():
868 *
869 * ...
870 * trampoline_pgd[0] = init_level4_pgt[pgd_index(__PAGE_OFFSET)].pgd;
871 *
872 * In this particular case, our allocation is in PGD 0 of the EFI page
873 * table but we've copied that PGD from PGD[272] of the EFI page table:
874 *
875 * pgd_index(__PAGE_OFFSET = 0xffff880000000000) = 272
876 *
877 * where the direct memory mapping in kernel space is.
878 *
879 * new_memmap's VA comes from that direct mapping and thus clearing it,
880 * it would get cleared in the kernel page table too.
881 *
882 * efi_cleanup_page_tables(__pa(new_memmap), 1 << pg_shift);
883 */
884 free_pages((unsigned long)new_memmap, pg_shift);
885
886 /* clean DUMMY object */
887 efi_delete_dummy_variable();
888 }
889
890 void __init efi_enter_virtual_mode(void)
891 {
892 if (efi_enabled(EFI_PARAVIRT))
893 return;
894
895 if (efi_setup)
896 kexec_enter_virtual_mode();
897 else
898 __efi_enter_virtual_mode();
899 }
900
901 /*
902 * Convenience functions to obtain memory types and attributes
903 */
904 u32 efi_mem_type(unsigned long phys_addr)
905 {
906 efi_memory_desc_t *md;
907 void *p;
908
909 if (!efi_enabled(EFI_MEMMAP))
910 return 0;
911
912 for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
913 md = p;
914 if ((md->phys_addr <= phys_addr) &&
915 (phys_addr < (md->phys_addr +
916 (md->num_pages << EFI_PAGE_SHIFT))))
917 return md->type;
918 }
919 return 0;
920 }
921
922 u64 efi_mem_attributes(unsigned long phys_addr)
923 {
924 efi_memory_desc_t *md;
925 void *p;
926
927 if (!efi_enabled(EFI_MEMMAP))
928 return 0;
929
930 for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
931 md = p;
932 if ((md->phys_addr <= phys_addr) &&
933 (phys_addr < (md->phys_addr +
934 (md->num_pages << EFI_PAGE_SHIFT))))
935 return md->attribute;
936 }
937 return 0;
938 }
939
940 static int __init arch_parse_efi_cmdline(char *str)
941 {
942 if (parse_option_str(str, "old_map"))
943 set_bit(EFI_OLD_MEMMAP, &efi.flags);
944
945 return 0;
946 }
947 early_param("efi", arch_parse_efi_cmdline);
This page took 0.053908 seconds and 6 git commands to generate.