225ffdc3c4caaf7d1ef05d53012aaf6aa56d392d
[deliverable/linux.git] / arch / x86 / xen / enlighten.c
1 /*
2 * Core of Xen paravirt_ops implementation.
3 *
4 * This file contains the xen_paravirt_ops structure itself, and the
5 * implementations for:
6 * - privileged instructions
7 * - interrupt flags
8 * - segment operations
9 * - booting and setup
10 *
11 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
12 */
13
14 #include <linux/cpu.h>
15 #include <linux/kernel.h>
16 #include <linux/init.h>
17 #include <linux/smp.h>
18 #include <linux/preempt.h>
19 #include <linux/hardirq.h>
20 #include <linux/percpu.h>
21 #include <linux/delay.h>
22 #include <linux/start_kernel.h>
23 #include <linux/sched.h>
24 #include <linux/kprobes.h>
25 #include <linux/bootmem.h>
26 #include <linux/module.h>
27 #include <linux/mm.h>
28 #include <linux/page-flags.h>
29 #include <linux/highmem.h>
30 #include <linux/console.h>
31 #include <linux/pci.h>
32 #include <linux/gfp.h>
33 #include <linux/memblock.h>
34
35 #include <xen/xen.h>
36 #include <xen/interface/xen.h>
37 #include <xen/interface/version.h>
38 #include <xen/interface/physdev.h>
39 #include <xen/interface/vcpu.h>
40 #include <xen/interface/memory.h>
41 #include <xen/interface/xen-mca.h>
42 #include <xen/features.h>
43 #include <xen/page.h>
44 #include <xen/hvm.h>
45 #include <xen/hvc-console.h>
46 #include <xen/acpi.h>
47
48 #include <asm/paravirt.h>
49 #include <asm/apic.h>
50 #include <asm/page.h>
51 #include <asm/xen/pci.h>
52 #include <asm/xen/hypercall.h>
53 #include <asm/xen/hypervisor.h>
54 #include <asm/fixmap.h>
55 #include <asm/processor.h>
56 #include <asm/proto.h>
57 #include <asm/msr-index.h>
58 #include <asm/traps.h>
59 #include <asm/setup.h>
60 #include <asm/desc.h>
61 #include <asm/pgalloc.h>
62 #include <asm/pgtable.h>
63 #include <asm/tlbflush.h>
64 #include <asm/reboot.h>
65 #include <asm/stackprotector.h>
66 #include <asm/hypervisor.h>
67 #include <asm/mwait.h>
68 #include <asm/pci_x86.h>
69
70 #ifdef CONFIG_ACPI
71 #include <linux/acpi.h>
72 #include <asm/acpi.h>
73 #include <acpi/pdc_intel.h>
74 #include <acpi/processor.h>
75 #include <xen/interface/platform.h>
76 #endif
77
78 #include "xen-ops.h"
79 #include "mmu.h"
80 #include "smp.h"
81 #include "multicalls.h"
82
83 EXPORT_SYMBOL_GPL(hypercall_page);
84
85 DEFINE_PER_CPU(struct vcpu_info *, xen_vcpu);
86 DEFINE_PER_CPU(struct vcpu_info, xen_vcpu_info);
87
88 enum xen_domain_type xen_domain_type = XEN_NATIVE;
89 EXPORT_SYMBOL_GPL(xen_domain_type);
90
91 unsigned long *machine_to_phys_mapping = (void *)MACH2PHYS_VIRT_START;
92 EXPORT_SYMBOL(machine_to_phys_mapping);
93 unsigned long machine_to_phys_nr;
94 EXPORT_SYMBOL(machine_to_phys_nr);
95
96 struct start_info *xen_start_info;
97 EXPORT_SYMBOL_GPL(xen_start_info);
98
99 struct shared_info xen_dummy_shared_info;
100
101 void *xen_initial_gdt;
102
103 RESERVE_BRK(shared_info_page_brk, PAGE_SIZE);
104 __read_mostly int xen_have_vector_callback;
105 EXPORT_SYMBOL_GPL(xen_have_vector_callback);
106
107 /*
108 * Point at some empty memory to start with. We map the real shared_info
109 * page as soon as fixmap is up and running.
110 */
111 struct shared_info *HYPERVISOR_shared_info = (void *)&xen_dummy_shared_info;
112
113 /*
114 * Flag to determine whether vcpu info placement is available on all
115 * VCPUs. We assume it is to start with, and then set it to zero on
116 * the first failure. This is because it can succeed on some VCPUs
117 * and not others, since it can involve hypervisor memory allocation,
118 * or because the guest failed to guarantee all the appropriate
119 * constraints on all VCPUs (ie buffer can't cross a page boundary).
120 *
121 * Note that any particular CPU may be using a placed vcpu structure,
122 * but we can only optimise if the all are.
123 *
124 * 0: not available, 1: available
125 */
126 static int have_vcpu_info_placement = 1;
127
128 static void clamp_max_cpus(void)
129 {
130 #ifdef CONFIG_SMP
131 if (setup_max_cpus > MAX_VIRT_CPUS)
132 setup_max_cpus = MAX_VIRT_CPUS;
133 #endif
134 }
135
136 static void xen_vcpu_setup(int cpu)
137 {
138 struct vcpu_register_vcpu_info info;
139 int err;
140 struct vcpu_info *vcpup;
141
142 BUG_ON(HYPERVISOR_shared_info == &xen_dummy_shared_info);
143
144 if (cpu < MAX_VIRT_CPUS)
145 per_cpu(xen_vcpu,cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
146
147 if (!have_vcpu_info_placement) {
148 if (cpu >= MAX_VIRT_CPUS)
149 clamp_max_cpus();
150 return;
151 }
152
153 vcpup = &per_cpu(xen_vcpu_info, cpu);
154 info.mfn = arbitrary_virt_to_mfn(vcpup);
155 info.offset = offset_in_page(vcpup);
156
157 /* Check to see if the hypervisor will put the vcpu_info
158 structure where we want it, which allows direct access via
159 a percpu-variable. */
160 err = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_info, cpu, &info);
161
162 if (err) {
163 printk(KERN_DEBUG "register_vcpu_info failed: err=%d\n", err);
164 have_vcpu_info_placement = 0;
165 clamp_max_cpus();
166 } else {
167 /* This cpu is using the registered vcpu info, even if
168 later ones fail to. */
169 per_cpu(xen_vcpu, cpu) = vcpup;
170 }
171 }
172
173 /*
174 * On restore, set the vcpu placement up again.
175 * If it fails, then we're in a bad state, since
176 * we can't back out from using it...
177 */
178 void xen_vcpu_restore(void)
179 {
180 int cpu;
181
182 for_each_online_cpu(cpu) {
183 bool other_cpu = (cpu != smp_processor_id());
184
185 if (other_cpu &&
186 HYPERVISOR_vcpu_op(VCPUOP_down, cpu, NULL))
187 BUG();
188
189 xen_setup_runstate_info(cpu);
190
191 if (have_vcpu_info_placement)
192 xen_vcpu_setup(cpu);
193
194 if (other_cpu &&
195 HYPERVISOR_vcpu_op(VCPUOP_up, cpu, NULL))
196 BUG();
197 }
198 }
199
200 static void __init xen_banner(void)
201 {
202 unsigned version = HYPERVISOR_xen_version(XENVER_version, NULL);
203 struct xen_extraversion extra;
204 HYPERVISOR_xen_version(XENVER_extraversion, &extra);
205
206 printk(KERN_INFO "Booting paravirtualized kernel on %s\n",
207 pv_info.name);
208 printk(KERN_INFO "Xen version: %d.%d%s%s\n",
209 version >> 16, version & 0xffff, extra.extraversion,
210 xen_feature(XENFEAT_mmu_pt_update_preserve_ad) ? " (preserve-AD)" : "");
211 }
212
213 #define CPUID_THERM_POWER_LEAF 6
214 #define APERFMPERF_PRESENT 0
215
216 static __read_mostly unsigned int cpuid_leaf1_edx_mask = ~0;
217 static __read_mostly unsigned int cpuid_leaf1_ecx_mask = ~0;
218
219 static __read_mostly unsigned int cpuid_leaf1_ecx_set_mask;
220 static __read_mostly unsigned int cpuid_leaf5_ecx_val;
221 static __read_mostly unsigned int cpuid_leaf5_edx_val;
222
223 static void xen_cpuid(unsigned int *ax, unsigned int *bx,
224 unsigned int *cx, unsigned int *dx)
225 {
226 unsigned maskebx = ~0;
227 unsigned maskecx = ~0;
228 unsigned maskedx = ~0;
229 unsigned setecx = 0;
230 /*
231 * Mask out inconvenient features, to try and disable as many
232 * unsupported kernel subsystems as possible.
233 */
234 switch (*ax) {
235 case 1:
236 maskecx = cpuid_leaf1_ecx_mask;
237 setecx = cpuid_leaf1_ecx_set_mask;
238 maskedx = cpuid_leaf1_edx_mask;
239 break;
240
241 case CPUID_MWAIT_LEAF:
242 /* Synthesize the values.. */
243 *ax = 0;
244 *bx = 0;
245 *cx = cpuid_leaf5_ecx_val;
246 *dx = cpuid_leaf5_edx_val;
247 return;
248
249 case CPUID_THERM_POWER_LEAF:
250 /* Disabling APERFMPERF for kernel usage */
251 maskecx = ~(1 << APERFMPERF_PRESENT);
252 break;
253
254 case 0xb:
255 /* Suppress extended topology stuff */
256 maskebx = 0;
257 break;
258 }
259
260 asm(XEN_EMULATE_PREFIX "cpuid"
261 : "=a" (*ax),
262 "=b" (*bx),
263 "=c" (*cx),
264 "=d" (*dx)
265 : "0" (*ax), "2" (*cx));
266
267 *bx &= maskebx;
268 *cx &= maskecx;
269 *cx |= setecx;
270 *dx &= maskedx;
271
272 }
273
274 static bool __init xen_check_mwait(void)
275 {
276 #if defined(CONFIG_ACPI) && !defined(CONFIG_ACPI_PROCESSOR_AGGREGATOR) && \
277 !defined(CONFIG_ACPI_PROCESSOR_AGGREGATOR_MODULE)
278 struct xen_platform_op op = {
279 .cmd = XENPF_set_processor_pminfo,
280 .u.set_pminfo.id = -1,
281 .u.set_pminfo.type = XEN_PM_PDC,
282 };
283 uint32_t buf[3];
284 unsigned int ax, bx, cx, dx;
285 unsigned int mwait_mask;
286
287 /* We need to determine whether it is OK to expose the MWAIT
288 * capability to the kernel to harvest deeper than C3 states from ACPI
289 * _CST using the processor_harvest_xen.c module. For this to work, we
290 * need to gather the MWAIT_LEAF values (which the cstate.c code
291 * checks against). The hypervisor won't expose the MWAIT flag because
292 * it would break backwards compatibility; so we will find out directly
293 * from the hardware and hypercall.
294 */
295 if (!xen_initial_domain())
296 return false;
297
298 ax = 1;
299 cx = 0;
300
301 native_cpuid(&ax, &bx, &cx, &dx);
302
303 mwait_mask = (1 << (X86_FEATURE_EST % 32)) |
304 (1 << (X86_FEATURE_MWAIT % 32));
305
306 if ((cx & mwait_mask) != mwait_mask)
307 return false;
308
309 /* We need to emulate the MWAIT_LEAF and for that we need both
310 * ecx and edx. The hypercall provides only partial information.
311 */
312
313 ax = CPUID_MWAIT_LEAF;
314 bx = 0;
315 cx = 0;
316 dx = 0;
317
318 native_cpuid(&ax, &bx, &cx, &dx);
319
320 /* Ask the Hypervisor whether to clear ACPI_PDC_C_C2C3_FFH. If so,
321 * don't expose MWAIT_LEAF and let ACPI pick the IOPORT version of C3.
322 */
323 buf[0] = ACPI_PDC_REVISION_ID;
324 buf[1] = 1;
325 buf[2] = (ACPI_PDC_C_CAPABILITY_SMP | ACPI_PDC_EST_CAPABILITY_SWSMP);
326
327 set_xen_guest_handle(op.u.set_pminfo.pdc, buf);
328
329 if ((HYPERVISOR_dom0_op(&op) == 0) &&
330 (buf[2] & (ACPI_PDC_C_C1_FFH | ACPI_PDC_C_C2C3_FFH))) {
331 cpuid_leaf5_ecx_val = cx;
332 cpuid_leaf5_edx_val = dx;
333 }
334 return true;
335 #else
336 return false;
337 #endif
338 }
339 static void __init xen_init_cpuid_mask(void)
340 {
341 unsigned int ax, bx, cx, dx;
342 unsigned int xsave_mask;
343
344 cpuid_leaf1_edx_mask =
345 ~((1 << X86_FEATURE_MTRR) | /* disable MTRR */
346 (1 << X86_FEATURE_ACC)); /* thermal monitoring */
347
348 if (!xen_initial_domain())
349 cpuid_leaf1_edx_mask &=
350 ~((1 << X86_FEATURE_APIC) | /* disable local APIC */
351 (1 << X86_FEATURE_ACPI)); /* disable ACPI */
352 ax = 1;
353 cx = 0;
354 xen_cpuid(&ax, &bx, &cx, &dx);
355
356 xsave_mask =
357 (1 << (X86_FEATURE_XSAVE % 32)) |
358 (1 << (X86_FEATURE_OSXSAVE % 32));
359
360 /* Xen will set CR4.OSXSAVE if supported and not disabled by force */
361 if ((cx & xsave_mask) != xsave_mask)
362 cpuid_leaf1_ecx_mask &= ~xsave_mask; /* disable XSAVE & OSXSAVE */
363 if (xen_check_mwait())
364 cpuid_leaf1_ecx_set_mask = (1 << (X86_FEATURE_MWAIT % 32));
365 }
366
367 static void xen_set_debugreg(int reg, unsigned long val)
368 {
369 HYPERVISOR_set_debugreg(reg, val);
370 }
371
372 static unsigned long xen_get_debugreg(int reg)
373 {
374 return HYPERVISOR_get_debugreg(reg);
375 }
376
377 static void xen_end_context_switch(struct task_struct *next)
378 {
379 xen_mc_flush();
380 paravirt_end_context_switch(next);
381 }
382
383 static unsigned long xen_store_tr(void)
384 {
385 return 0;
386 }
387
388 /*
389 * Set the page permissions for a particular virtual address. If the
390 * address is a vmalloc mapping (or other non-linear mapping), then
391 * find the linear mapping of the page and also set its protections to
392 * match.
393 */
394 static void set_aliased_prot(void *v, pgprot_t prot)
395 {
396 int level;
397 pte_t *ptep;
398 pte_t pte;
399 unsigned long pfn;
400 struct page *page;
401
402 ptep = lookup_address((unsigned long)v, &level);
403 BUG_ON(ptep == NULL);
404
405 pfn = pte_pfn(*ptep);
406 page = pfn_to_page(pfn);
407
408 pte = pfn_pte(pfn, prot);
409
410 if (HYPERVISOR_update_va_mapping((unsigned long)v, pte, 0))
411 BUG();
412
413 if (!PageHighMem(page)) {
414 void *av = __va(PFN_PHYS(pfn));
415
416 if (av != v)
417 if (HYPERVISOR_update_va_mapping((unsigned long)av, pte, 0))
418 BUG();
419 } else
420 kmap_flush_unused();
421 }
422
423 static void xen_alloc_ldt(struct desc_struct *ldt, unsigned entries)
424 {
425 const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
426 int i;
427
428 for(i = 0; i < entries; i += entries_per_page)
429 set_aliased_prot(ldt + i, PAGE_KERNEL_RO);
430 }
431
432 static void xen_free_ldt(struct desc_struct *ldt, unsigned entries)
433 {
434 const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
435 int i;
436
437 for(i = 0; i < entries; i += entries_per_page)
438 set_aliased_prot(ldt + i, PAGE_KERNEL);
439 }
440
441 static void xen_set_ldt(const void *addr, unsigned entries)
442 {
443 struct mmuext_op *op;
444 struct multicall_space mcs = xen_mc_entry(sizeof(*op));
445
446 trace_xen_cpu_set_ldt(addr, entries);
447
448 op = mcs.args;
449 op->cmd = MMUEXT_SET_LDT;
450 op->arg1.linear_addr = (unsigned long)addr;
451 op->arg2.nr_ents = entries;
452
453 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
454
455 xen_mc_issue(PARAVIRT_LAZY_CPU);
456 }
457
458 static void xen_load_gdt(const struct desc_ptr *dtr)
459 {
460 unsigned long va = dtr->address;
461 unsigned int size = dtr->size + 1;
462 unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
463 unsigned long frames[pages];
464 int f;
465
466 /*
467 * A GDT can be up to 64k in size, which corresponds to 8192
468 * 8-byte entries, or 16 4k pages..
469 */
470
471 BUG_ON(size > 65536);
472 BUG_ON(va & ~PAGE_MASK);
473
474 for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
475 int level;
476 pte_t *ptep;
477 unsigned long pfn, mfn;
478 void *virt;
479
480 /*
481 * The GDT is per-cpu and is in the percpu data area.
482 * That can be virtually mapped, so we need to do a
483 * page-walk to get the underlying MFN for the
484 * hypercall. The page can also be in the kernel's
485 * linear range, so we need to RO that mapping too.
486 */
487 ptep = lookup_address(va, &level);
488 BUG_ON(ptep == NULL);
489
490 pfn = pte_pfn(*ptep);
491 mfn = pfn_to_mfn(pfn);
492 virt = __va(PFN_PHYS(pfn));
493
494 frames[f] = mfn;
495
496 make_lowmem_page_readonly((void *)va);
497 make_lowmem_page_readonly(virt);
498 }
499
500 if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
501 BUG();
502 }
503
504 /*
505 * load_gdt for early boot, when the gdt is only mapped once
506 */
507 static void __init xen_load_gdt_boot(const struct desc_ptr *dtr)
508 {
509 unsigned long va = dtr->address;
510 unsigned int size = dtr->size + 1;
511 unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
512 unsigned long frames[pages];
513 int f;
514
515 /*
516 * A GDT can be up to 64k in size, which corresponds to 8192
517 * 8-byte entries, or 16 4k pages..
518 */
519
520 BUG_ON(size > 65536);
521 BUG_ON(va & ~PAGE_MASK);
522
523 for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
524 pte_t pte;
525 unsigned long pfn, mfn;
526
527 pfn = virt_to_pfn(va);
528 mfn = pfn_to_mfn(pfn);
529
530 pte = pfn_pte(pfn, PAGE_KERNEL_RO);
531
532 if (HYPERVISOR_update_va_mapping((unsigned long)va, pte, 0))
533 BUG();
534
535 frames[f] = mfn;
536 }
537
538 if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
539 BUG();
540 }
541
542 static inline bool desc_equal(const struct desc_struct *d1,
543 const struct desc_struct *d2)
544 {
545 return d1->a == d2->a && d1->b == d2->b;
546 }
547
548 static void load_TLS_descriptor(struct thread_struct *t,
549 unsigned int cpu, unsigned int i)
550 {
551 struct desc_struct *gdt = get_cpu_gdt_table(cpu);
552 xmaddr_t maddr = arbitrary_virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]);
553 struct multicall_space mc = __xen_mc_entry(0);
554
555 MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]);
556 }
557
558 static void xen_load_tls(struct thread_struct *t, unsigned int cpu)
559 {
560 /*
561 * XXX sleazy hack: If we're being called in a lazy-cpu zone
562 * and lazy gs handling is enabled, it means we're in a
563 * context switch, and %gs has just been saved. This means we
564 * can zero it out to prevent faults on exit from the
565 * hypervisor if the next process has no %gs. Either way, it
566 * has been saved, and the new value will get loaded properly.
567 * This will go away as soon as Xen has been modified to not
568 * save/restore %gs for normal hypercalls.
569 *
570 * On x86_64, this hack is not used for %gs, because gs points
571 * to KERNEL_GS_BASE (and uses it for PDA references), so we
572 * must not zero %gs on x86_64
573 *
574 * For x86_64, we need to zero %fs, otherwise we may get an
575 * exception between the new %fs descriptor being loaded and
576 * %fs being effectively cleared at __switch_to().
577 */
578 if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_CPU) {
579 #ifdef CONFIG_X86_32
580 lazy_load_gs(0);
581 #else
582 loadsegment(fs, 0);
583 #endif
584 }
585
586 xen_mc_batch();
587
588 load_TLS_descriptor(t, cpu, 0);
589 load_TLS_descriptor(t, cpu, 1);
590 load_TLS_descriptor(t, cpu, 2);
591
592 xen_mc_issue(PARAVIRT_LAZY_CPU);
593 }
594
595 #ifdef CONFIG_X86_64
596 static void xen_load_gs_index(unsigned int idx)
597 {
598 if (HYPERVISOR_set_segment_base(SEGBASE_GS_USER_SEL, idx))
599 BUG();
600 }
601 #endif
602
603 static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum,
604 const void *ptr)
605 {
606 xmaddr_t mach_lp = arbitrary_virt_to_machine(&dt[entrynum]);
607 u64 entry = *(u64 *)ptr;
608
609 trace_xen_cpu_write_ldt_entry(dt, entrynum, entry);
610
611 preempt_disable();
612
613 xen_mc_flush();
614 if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry))
615 BUG();
616
617 preempt_enable();
618 }
619
620 static int cvt_gate_to_trap(int vector, const gate_desc *val,
621 struct trap_info *info)
622 {
623 unsigned long addr;
624
625 if (val->type != GATE_TRAP && val->type != GATE_INTERRUPT)
626 return 0;
627
628 info->vector = vector;
629
630 addr = gate_offset(*val);
631 #ifdef CONFIG_X86_64
632 /*
633 * Look for known traps using IST, and substitute them
634 * appropriately. The debugger ones are the only ones we care
635 * about. Xen will handle faults like double_fault,
636 * so we should never see them. Warn if
637 * there's an unexpected IST-using fault handler.
638 */
639 if (addr == (unsigned long)debug)
640 addr = (unsigned long)xen_debug;
641 else if (addr == (unsigned long)int3)
642 addr = (unsigned long)xen_int3;
643 else if (addr == (unsigned long)stack_segment)
644 addr = (unsigned long)xen_stack_segment;
645 else if (addr == (unsigned long)double_fault ||
646 addr == (unsigned long)nmi) {
647 /* Don't need to handle these */
648 return 0;
649 #ifdef CONFIG_X86_MCE
650 } else if (addr == (unsigned long)machine_check) {
651 /*
652 * when xen hypervisor inject vMCE to guest,
653 * use native mce handler to handle it
654 */
655 ;
656 #endif
657 } else {
658 /* Some other trap using IST? */
659 if (WARN_ON(val->ist != 0))
660 return 0;
661 }
662 #endif /* CONFIG_X86_64 */
663 info->address = addr;
664
665 info->cs = gate_segment(*val);
666 info->flags = val->dpl;
667 /* interrupt gates clear IF */
668 if (val->type == GATE_INTERRUPT)
669 info->flags |= 1 << 2;
670
671 return 1;
672 }
673
674 /* Locations of each CPU's IDT */
675 static DEFINE_PER_CPU(struct desc_ptr, idt_desc);
676
677 /* Set an IDT entry. If the entry is part of the current IDT, then
678 also update Xen. */
679 static void xen_write_idt_entry(gate_desc *dt, int entrynum, const gate_desc *g)
680 {
681 unsigned long p = (unsigned long)&dt[entrynum];
682 unsigned long start, end;
683
684 trace_xen_cpu_write_idt_entry(dt, entrynum, g);
685
686 preempt_disable();
687
688 start = __this_cpu_read(idt_desc.address);
689 end = start + __this_cpu_read(idt_desc.size) + 1;
690
691 xen_mc_flush();
692
693 native_write_idt_entry(dt, entrynum, g);
694
695 if (p >= start && (p + 8) <= end) {
696 struct trap_info info[2];
697
698 info[1].address = 0;
699
700 if (cvt_gate_to_trap(entrynum, g, &info[0]))
701 if (HYPERVISOR_set_trap_table(info))
702 BUG();
703 }
704
705 preempt_enable();
706 }
707
708 static void xen_convert_trap_info(const struct desc_ptr *desc,
709 struct trap_info *traps)
710 {
711 unsigned in, out, count;
712
713 count = (desc->size+1) / sizeof(gate_desc);
714 BUG_ON(count > 256);
715
716 for (in = out = 0; in < count; in++) {
717 gate_desc *entry = (gate_desc*)(desc->address) + in;
718
719 if (cvt_gate_to_trap(in, entry, &traps[out]))
720 out++;
721 }
722 traps[out].address = 0;
723 }
724
725 void xen_copy_trap_info(struct trap_info *traps)
726 {
727 const struct desc_ptr *desc = &__get_cpu_var(idt_desc);
728
729 xen_convert_trap_info(desc, traps);
730 }
731
732 /* Load a new IDT into Xen. In principle this can be per-CPU, so we
733 hold a spinlock to protect the static traps[] array (static because
734 it avoids allocation, and saves stack space). */
735 static void xen_load_idt(const struct desc_ptr *desc)
736 {
737 static DEFINE_SPINLOCK(lock);
738 static struct trap_info traps[257];
739
740 trace_xen_cpu_load_idt(desc);
741
742 spin_lock(&lock);
743
744 __get_cpu_var(idt_desc) = *desc;
745
746 xen_convert_trap_info(desc, traps);
747
748 xen_mc_flush();
749 if (HYPERVISOR_set_trap_table(traps))
750 BUG();
751
752 spin_unlock(&lock);
753 }
754
755 /* Write a GDT descriptor entry. Ignore LDT descriptors, since
756 they're handled differently. */
757 static void xen_write_gdt_entry(struct desc_struct *dt, int entry,
758 const void *desc, int type)
759 {
760 trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
761
762 preempt_disable();
763
764 switch (type) {
765 case DESC_LDT:
766 case DESC_TSS:
767 /* ignore */
768 break;
769
770 default: {
771 xmaddr_t maddr = arbitrary_virt_to_machine(&dt[entry]);
772
773 xen_mc_flush();
774 if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
775 BUG();
776 }
777
778 }
779
780 preempt_enable();
781 }
782
783 /*
784 * Version of write_gdt_entry for use at early boot-time needed to
785 * update an entry as simply as possible.
786 */
787 static void __init xen_write_gdt_entry_boot(struct desc_struct *dt, int entry,
788 const void *desc, int type)
789 {
790 trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
791
792 switch (type) {
793 case DESC_LDT:
794 case DESC_TSS:
795 /* ignore */
796 break;
797
798 default: {
799 xmaddr_t maddr = virt_to_machine(&dt[entry]);
800
801 if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
802 dt[entry] = *(struct desc_struct *)desc;
803 }
804
805 }
806 }
807
808 static void xen_load_sp0(struct tss_struct *tss,
809 struct thread_struct *thread)
810 {
811 struct multicall_space mcs;
812
813 mcs = xen_mc_entry(0);
814 MULTI_stack_switch(mcs.mc, __KERNEL_DS, thread->sp0);
815 xen_mc_issue(PARAVIRT_LAZY_CPU);
816 }
817
818 static void xen_set_iopl_mask(unsigned mask)
819 {
820 struct physdev_set_iopl set_iopl;
821
822 /* Force the change at ring 0. */
823 set_iopl.iopl = (mask == 0) ? 1 : (mask >> 12) & 3;
824 HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
825 }
826
827 static void xen_io_delay(void)
828 {
829 }
830
831 #ifdef CONFIG_X86_LOCAL_APIC
832 static unsigned long xen_set_apic_id(unsigned int x)
833 {
834 WARN_ON(1);
835 return x;
836 }
837 static unsigned int xen_get_apic_id(unsigned long x)
838 {
839 return ((x)>>24) & 0xFFu;
840 }
841 static u32 xen_apic_read(u32 reg)
842 {
843 struct xen_platform_op op = {
844 .cmd = XENPF_get_cpuinfo,
845 .interface_version = XENPF_INTERFACE_VERSION,
846 .u.pcpu_info.xen_cpuid = 0,
847 };
848 int ret = 0;
849
850 /* Shouldn't need this as APIC is turned off for PV, and we only
851 * get called on the bootup processor. But just in case. */
852 if (!xen_initial_domain() || smp_processor_id())
853 return 0;
854
855 if (reg == APIC_LVR)
856 return 0x10;
857
858 if (reg != APIC_ID)
859 return 0;
860
861 ret = HYPERVISOR_dom0_op(&op);
862 if (ret)
863 return 0;
864
865 return op.u.pcpu_info.apic_id << 24;
866 }
867
868 static void xen_apic_write(u32 reg, u32 val)
869 {
870 /* Warn to see if there's any stray references */
871 WARN_ON(1);
872 }
873
874 static u64 xen_apic_icr_read(void)
875 {
876 return 0;
877 }
878
879 static void xen_apic_icr_write(u32 low, u32 id)
880 {
881 /* Warn to see if there's any stray references */
882 WARN_ON(1);
883 }
884
885 static void xen_apic_wait_icr_idle(void)
886 {
887 return;
888 }
889
890 static u32 xen_safe_apic_wait_icr_idle(void)
891 {
892 return 0;
893 }
894
895 static void set_xen_basic_apic_ops(void)
896 {
897 apic->read = xen_apic_read;
898 apic->write = xen_apic_write;
899 apic->icr_read = xen_apic_icr_read;
900 apic->icr_write = xen_apic_icr_write;
901 apic->wait_icr_idle = xen_apic_wait_icr_idle;
902 apic->safe_wait_icr_idle = xen_safe_apic_wait_icr_idle;
903 apic->set_apic_id = xen_set_apic_id;
904 apic->get_apic_id = xen_get_apic_id;
905
906 #ifdef CONFIG_SMP
907 apic->send_IPI_allbutself = xen_send_IPI_allbutself;
908 apic->send_IPI_mask_allbutself = xen_send_IPI_mask_allbutself;
909 apic->send_IPI_mask = xen_send_IPI_mask;
910 apic->send_IPI_all = xen_send_IPI_all;
911 apic->send_IPI_self = xen_send_IPI_self;
912 #endif
913 }
914
915 #endif
916
917 static void xen_clts(void)
918 {
919 struct multicall_space mcs;
920
921 mcs = xen_mc_entry(0);
922
923 MULTI_fpu_taskswitch(mcs.mc, 0);
924
925 xen_mc_issue(PARAVIRT_LAZY_CPU);
926 }
927
928 static DEFINE_PER_CPU(unsigned long, xen_cr0_value);
929
930 static unsigned long xen_read_cr0(void)
931 {
932 unsigned long cr0 = this_cpu_read(xen_cr0_value);
933
934 if (unlikely(cr0 == 0)) {
935 cr0 = native_read_cr0();
936 this_cpu_write(xen_cr0_value, cr0);
937 }
938
939 return cr0;
940 }
941
942 static void xen_write_cr0(unsigned long cr0)
943 {
944 struct multicall_space mcs;
945
946 this_cpu_write(xen_cr0_value, cr0);
947
948 /* Only pay attention to cr0.TS; everything else is
949 ignored. */
950 mcs = xen_mc_entry(0);
951
952 MULTI_fpu_taskswitch(mcs.mc, (cr0 & X86_CR0_TS) != 0);
953
954 xen_mc_issue(PARAVIRT_LAZY_CPU);
955 }
956
957 static void xen_write_cr4(unsigned long cr4)
958 {
959 cr4 &= ~X86_CR4_PGE;
960 cr4 &= ~X86_CR4_PSE;
961
962 native_write_cr4(cr4);
963 }
964
965 static int xen_write_msr_safe(unsigned int msr, unsigned low, unsigned high)
966 {
967 int ret;
968
969 ret = 0;
970
971 switch (msr) {
972 #ifdef CONFIG_X86_64
973 unsigned which;
974 u64 base;
975
976 case MSR_FS_BASE: which = SEGBASE_FS; goto set;
977 case MSR_KERNEL_GS_BASE: which = SEGBASE_GS_USER; goto set;
978 case MSR_GS_BASE: which = SEGBASE_GS_KERNEL; goto set;
979
980 set:
981 base = ((u64)high << 32) | low;
982 if (HYPERVISOR_set_segment_base(which, base) != 0)
983 ret = -EIO;
984 break;
985 #endif
986
987 case MSR_STAR:
988 case MSR_CSTAR:
989 case MSR_LSTAR:
990 case MSR_SYSCALL_MASK:
991 case MSR_IA32_SYSENTER_CS:
992 case MSR_IA32_SYSENTER_ESP:
993 case MSR_IA32_SYSENTER_EIP:
994 /* Fast syscall setup is all done in hypercalls, so
995 these are all ignored. Stub them out here to stop
996 Xen console noise. */
997 break;
998
999 case MSR_IA32_CR_PAT:
1000 if (smp_processor_id() == 0)
1001 xen_set_pat(((u64)high << 32) | low);
1002 break;
1003
1004 default:
1005 ret = native_write_msr_safe(msr, low, high);
1006 }
1007
1008 return ret;
1009 }
1010
1011 void xen_setup_shared_info(void)
1012 {
1013 if (!xen_feature(XENFEAT_auto_translated_physmap)) {
1014 set_fixmap(FIX_PARAVIRT_BOOTMAP,
1015 xen_start_info->shared_info);
1016
1017 HYPERVISOR_shared_info =
1018 (struct shared_info *)fix_to_virt(FIX_PARAVIRT_BOOTMAP);
1019 } else
1020 HYPERVISOR_shared_info =
1021 (struct shared_info *)__va(xen_start_info->shared_info);
1022
1023 #ifndef CONFIG_SMP
1024 /* In UP this is as good a place as any to set up shared info */
1025 xen_setup_vcpu_info_placement();
1026 #endif
1027
1028 xen_setup_mfn_list_list();
1029 }
1030
1031 /* This is called once we have the cpu_possible_mask */
1032 void xen_setup_vcpu_info_placement(void)
1033 {
1034 int cpu;
1035
1036 for_each_possible_cpu(cpu)
1037 xen_vcpu_setup(cpu);
1038
1039 /* xen_vcpu_setup managed to place the vcpu_info within the
1040 percpu area for all cpus, so make use of it */
1041 if (have_vcpu_info_placement) {
1042 pv_irq_ops.save_fl = __PV_IS_CALLEE_SAVE(xen_save_fl_direct);
1043 pv_irq_ops.restore_fl = __PV_IS_CALLEE_SAVE(xen_restore_fl_direct);
1044 pv_irq_ops.irq_disable = __PV_IS_CALLEE_SAVE(xen_irq_disable_direct);
1045 pv_irq_ops.irq_enable = __PV_IS_CALLEE_SAVE(xen_irq_enable_direct);
1046 pv_mmu_ops.read_cr2 = xen_read_cr2_direct;
1047 }
1048 }
1049
1050 static unsigned xen_patch(u8 type, u16 clobbers, void *insnbuf,
1051 unsigned long addr, unsigned len)
1052 {
1053 char *start, *end, *reloc;
1054 unsigned ret;
1055
1056 start = end = reloc = NULL;
1057
1058 #define SITE(op, x) \
1059 case PARAVIRT_PATCH(op.x): \
1060 if (have_vcpu_info_placement) { \
1061 start = (char *)xen_##x##_direct; \
1062 end = xen_##x##_direct_end; \
1063 reloc = xen_##x##_direct_reloc; \
1064 } \
1065 goto patch_site
1066
1067 switch (type) {
1068 SITE(pv_irq_ops, irq_enable);
1069 SITE(pv_irq_ops, irq_disable);
1070 SITE(pv_irq_ops, save_fl);
1071 SITE(pv_irq_ops, restore_fl);
1072 #undef SITE
1073
1074 patch_site:
1075 if (start == NULL || (end-start) > len)
1076 goto default_patch;
1077
1078 ret = paravirt_patch_insns(insnbuf, len, start, end);
1079
1080 /* Note: because reloc is assigned from something that
1081 appears to be an array, gcc assumes it's non-null,
1082 but doesn't know its relationship with start and
1083 end. */
1084 if (reloc > start && reloc < end) {
1085 int reloc_off = reloc - start;
1086 long *relocp = (long *)(insnbuf + reloc_off);
1087 long delta = start - (char *)addr;
1088
1089 *relocp += delta;
1090 }
1091 break;
1092
1093 default_patch:
1094 default:
1095 ret = paravirt_patch_default(type, clobbers, insnbuf,
1096 addr, len);
1097 break;
1098 }
1099
1100 return ret;
1101 }
1102
1103 static const struct pv_info xen_info __initconst = {
1104 .paravirt_enabled = 1,
1105 .shared_kernel_pmd = 0,
1106
1107 #ifdef CONFIG_X86_64
1108 .extra_user_64bit_cs = FLAT_USER_CS64,
1109 #endif
1110
1111 .name = "Xen",
1112 };
1113
1114 static const struct pv_init_ops xen_init_ops __initconst = {
1115 .patch = xen_patch,
1116 };
1117
1118 static const struct pv_cpu_ops xen_cpu_ops __initconst = {
1119 .cpuid = xen_cpuid,
1120
1121 .set_debugreg = xen_set_debugreg,
1122 .get_debugreg = xen_get_debugreg,
1123
1124 .clts = xen_clts,
1125
1126 .read_cr0 = xen_read_cr0,
1127 .write_cr0 = xen_write_cr0,
1128
1129 .read_cr4 = native_read_cr4,
1130 .read_cr4_safe = native_read_cr4_safe,
1131 .write_cr4 = xen_write_cr4,
1132
1133 .wbinvd = native_wbinvd,
1134
1135 .read_msr = native_read_msr_safe,
1136 .rdmsr_regs = native_rdmsr_safe_regs,
1137 .write_msr = xen_write_msr_safe,
1138 .wrmsr_regs = native_wrmsr_safe_regs,
1139
1140 .read_tsc = native_read_tsc,
1141 .read_pmc = native_read_pmc,
1142
1143 .iret = xen_iret,
1144 .irq_enable_sysexit = xen_sysexit,
1145 #ifdef CONFIG_X86_64
1146 .usergs_sysret32 = xen_sysret32,
1147 .usergs_sysret64 = xen_sysret64,
1148 #endif
1149
1150 .load_tr_desc = paravirt_nop,
1151 .set_ldt = xen_set_ldt,
1152 .load_gdt = xen_load_gdt,
1153 .load_idt = xen_load_idt,
1154 .load_tls = xen_load_tls,
1155 #ifdef CONFIG_X86_64
1156 .load_gs_index = xen_load_gs_index,
1157 #endif
1158
1159 .alloc_ldt = xen_alloc_ldt,
1160 .free_ldt = xen_free_ldt,
1161
1162 .store_gdt = native_store_gdt,
1163 .store_idt = native_store_idt,
1164 .store_tr = xen_store_tr,
1165
1166 .write_ldt_entry = xen_write_ldt_entry,
1167 .write_gdt_entry = xen_write_gdt_entry,
1168 .write_idt_entry = xen_write_idt_entry,
1169 .load_sp0 = xen_load_sp0,
1170
1171 .set_iopl_mask = xen_set_iopl_mask,
1172 .io_delay = xen_io_delay,
1173
1174 /* Xen takes care of %gs when switching to usermode for us */
1175 .swapgs = paravirt_nop,
1176
1177 .start_context_switch = paravirt_start_context_switch,
1178 .end_context_switch = xen_end_context_switch,
1179 };
1180
1181 static const struct pv_apic_ops xen_apic_ops __initconst = {
1182 #ifdef CONFIG_X86_LOCAL_APIC
1183 .startup_ipi_hook = paravirt_nop,
1184 #endif
1185 };
1186
1187 static void xen_reboot(int reason)
1188 {
1189 struct sched_shutdown r = { .reason = reason };
1190
1191 if (HYPERVISOR_sched_op(SCHEDOP_shutdown, &r))
1192 BUG();
1193 }
1194
1195 static void xen_restart(char *msg)
1196 {
1197 xen_reboot(SHUTDOWN_reboot);
1198 }
1199
1200 static void xen_emergency_restart(void)
1201 {
1202 xen_reboot(SHUTDOWN_reboot);
1203 }
1204
1205 static void xen_machine_halt(void)
1206 {
1207 xen_reboot(SHUTDOWN_poweroff);
1208 }
1209
1210 static void xen_machine_power_off(void)
1211 {
1212 if (pm_power_off)
1213 pm_power_off();
1214 xen_reboot(SHUTDOWN_poweroff);
1215 }
1216
1217 static void xen_crash_shutdown(struct pt_regs *regs)
1218 {
1219 xen_reboot(SHUTDOWN_crash);
1220 }
1221
1222 static int
1223 xen_panic_event(struct notifier_block *this, unsigned long event, void *ptr)
1224 {
1225 xen_reboot(SHUTDOWN_crash);
1226 return NOTIFY_DONE;
1227 }
1228
1229 static struct notifier_block xen_panic_block = {
1230 .notifier_call= xen_panic_event,
1231 };
1232
1233 int xen_panic_handler_init(void)
1234 {
1235 atomic_notifier_chain_register(&panic_notifier_list, &xen_panic_block);
1236 return 0;
1237 }
1238
1239 static const struct machine_ops xen_machine_ops __initconst = {
1240 .restart = xen_restart,
1241 .halt = xen_machine_halt,
1242 .power_off = xen_machine_power_off,
1243 .shutdown = xen_machine_halt,
1244 .crash_shutdown = xen_crash_shutdown,
1245 .emergency_restart = xen_emergency_restart,
1246 };
1247
1248 /*
1249 * Set up the GDT and segment registers for -fstack-protector. Until
1250 * we do this, we have to be careful not to call any stack-protected
1251 * function, which is most of the kernel.
1252 */
1253 static void __init xen_setup_stackprotector(void)
1254 {
1255 pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry_boot;
1256 pv_cpu_ops.load_gdt = xen_load_gdt_boot;
1257
1258 setup_stack_canary_segment(0);
1259 switch_to_new_gdt(0);
1260
1261 pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry;
1262 pv_cpu_ops.load_gdt = xen_load_gdt;
1263 }
1264
1265 /* First C function to be called on Xen boot */
1266 asmlinkage void __init xen_start_kernel(void)
1267 {
1268 struct physdev_set_iopl set_iopl;
1269 int rc;
1270 pgd_t *pgd;
1271
1272 if (!xen_start_info)
1273 return;
1274
1275 xen_domain_type = XEN_PV_DOMAIN;
1276
1277 xen_setup_machphys_mapping();
1278
1279 /* Install Xen paravirt ops */
1280 pv_info = xen_info;
1281 pv_init_ops = xen_init_ops;
1282 pv_cpu_ops = xen_cpu_ops;
1283 pv_apic_ops = xen_apic_ops;
1284
1285 x86_init.resources.memory_setup = xen_memory_setup;
1286 x86_init.oem.arch_setup = xen_arch_setup;
1287 x86_init.oem.banner = xen_banner;
1288
1289 xen_init_time_ops();
1290
1291 /*
1292 * Set up some pagetable state before starting to set any ptes.
1293 */
1294
1295 xen_init_mmu_ops();
1296
1297 /* Prevent unwanted bits from being set in PTEs. */
1298 __supported_pte_mask &= ~_PAGE_GLOBAL;
1299 #if 0
1300 if (!xen_initial_domain())
1301 #endif
1302 __supported_pte_mask &= ~(_PAGE_PWT | _PAGE_PCD);
1303
1304 __supported_pte_mask |= _PAGE_IOMAP;
1305
1306 /*
1307 * Prevent page tables from being allocated in highmem, even
1308 * if CONFIG_HIGHPTE is enabled.
1309 */
1310 __userpte_alloc_gfp &= ~__GFP_HIGHMEM;
1311
1312 /* Work out if we support NX */
1313 x86_configure_nx();
1314
1315 xen_setup_features();
1316
1317 /* Get mfn list */
1318 if (!xen_feature(XENFEAT_auto_translated_physmap))
1319 xen_build_dynamic_phys_to_machine();
1320
1321 /*
1322 * Set up kernel GDT and segment registers, mainly so that
1323 * -fstack-protector code can be executed.
1324 */
1325 xen_setup_stackprotector();
1326
1327 xen_init_irq_ops();
1328 xen_init_cpuid_mask();
1329
1330 #ifdef CONFIG_X86_LOCAL_APIC
1331 /*
1332 * set up the basic apic ops.
1333 */
1334 set_xen_basic_apic_ops();
1335 #endif
1336
1337 if (xen_feature(XENFEAT_mmu_pt_update_preserve_ad)) {
1338 pv_mmu_ops.ptep_modify_prot_start = xen_ptep_modify_prot_start;
1339 pv_mmu_ops.ptep_modify_prot_commit = xen_ptep_modify_prot_commit;
1340 }
1341
1342 machine_ops = xen_machine_ops;
1343
1344 /*
1345 * The only reliable way to retain the initial address of the
1346 * percpu gdt_page is to remember it here, so we can go and
1347 * mark it RW later, when the initial percpu area is freed.
1348 */
1349 xen_initial_gdt = &per_cpu(gdt_page, 0);
1350
1351 xen_smp_init();
1352
1353 #ifdef CONFIG_ACPI_NUMA
1354 /*
1355 * The pages we from Xen are not related to machine pages, so
1356 * any NUMA information the kernel tries to get from ACPI will
1357 * be meaningless. Prevent it from trying.
1358 */
1359 acpi_numa = -1;
1360 #endif
1361
1362 pgd = (pgd_t *)xen_start_info->pt_base;
1363
1364 /* Don't do the full vcpu_info placement stuff until we have a
1365 possible map and a non-dummy shared_info. */
1366 per_cpu(xen_vcpu, 0) = &HYPERVISOR_shared_info->vcpu_info[0];
1367
1368 local_irq_disable();
1369 early_boot_irqs_disabled = true;
1370
1371 xen_raw_console_write("mapping kernel into physical memory\n");
1372 pgd = xen_setup_kernel_pagetable(pgd, xen_start_info->nr_pages);
1373
1374 /* Allocate and initialize top and mid mfn levels for p2m structure */
1375 xen_build_mfn_list_list();
1376
1377 /* keep using Xen gdt for now; no urgent need to change it */
1378
1379 #ifdef CONFIG_X86_32
1380 pv_info.kernel_rpl = 1;
1381 if (xen_feature(XENFEAT_supervisor_mode_kernel))
1382 pv_info.kernel_rpl = 0;
1383 #else
1384 pv_info.kernel_rpl = 0;
1385 #endif
1386 /* set the limit of our address space */
1387 xen_reserve_top();
1388
1389 /* We used to do this in xen_arch_setup, but that is too late on AMD
1390 * were early_cpu_init (run before ->arch_setup()) calls early_amd_init
1391 * which pokes 0xcf8 port.
1392 */
1393 set_iopl.iopl = 1;
1394 rc = HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
1395 if (rc != 0)
1396 xen_raw_printk("physdev_op failed %d\n", rc);
1397
1398 #ifdef CONFIG_X86_32
1399 /* set up basic CPUID stuff */
1400 cpu_detect(&new_cpu_data);
1401 new_cpu_data.hard_math = 1;
1402 new_cpu_data.wp_works_ok = 1;
1403 new_cpu_data.x86_capability[0] = cpuid_edx(1);
1404 #endif
1405
1406 /* Poke various useful things into boot_params */
1407 boot_params.hdr.type_of_loader = (9 << 4) | 0;
1408 boot_params.hdr.ramdisk_image = xen_start_info->mod_start
1409 ? __pa(xen_start_info->mod_start) : 0;
1410 boot_params.hdr.ramdisk_size = xen_start_info->mod_len;
1411 boot_params.hdr.cmd_line_ptr = __pa(xen_start_info->cmd_line);
1412
1413 if (!xen_initial_domain()) {
1414 add_preferred_console("xenboot", 0, NULL);
1415 add_preferred_console("tty", 0, NULL);
1416 add_preferred_console("hvc", 0, NULL);
1417 if (pci_xen)
1418 x86_init.pci.arch_init = pci_xen_init;
1419 } else {
1420 const struct dom0_vga_console_info *info =
1421 (void *)((char *)xen_start_info +
1422 xen_start_info->console.dom0.info_off);
1423
1424 xen_init_vga(info, xen_start_info->console.dom0.info_size);
1425 xen_start_info->console.domU.mfn = 0;
1426 xen_start_info->console.domU.evtchn = 0;
1427
1428 xen_init_apic();
1429
1430 /* Make sure ACS will be enabled */
1431 pci_request_acs();
1432
1433 xen_acpi_sleep_register();
1434 }
1435 #ifdef CONFIG_PCI
1436 /* PCI BIOS service won't work from a PV guest. */
1437 pci_probe &= ~PCI_PROBE_BIOS;
1438 #endif
1439 xen_raw_console_write("about to get started...\n");
1440
1441 xen_setup_runstate_info(0);
1442
1443 /* Start the world */
1444 #ifdef CONFIG_X86_32
1445 i386_start_kernel();
1446 #else
1447 x86_64_start_reservations((char *)__pa_symbol(&boot_params));
1448 #endif
1449 }
1450
1451 static int init_hvm_pv_info(int *major, int *minor)
1452 {
1453 uint32_t eax, ebx, ecx, edx, pages, msr, base;
1454 u64 pfn;
1455
1456 base = xen_cpuid_base();
1457 cpuid(base + 1, &eax, &ebx, &ecx, &edx);
1458
1459 *major = eax >> 16;
1460 *minor = eax & 0xffff;
1461 printk(KERN_INFO "Xen version %d.%d.\n", *major, *minor);
1462
1463 cpuid(base + 2, &pages, &msr, &ecx, &edx);
1464
1465 pfn = __pa(hypercall_page);
1466 wrmsr_safe(msr, (u32)pfn, (u32)(pfn >> 32));
1467
1468 xen_setup_features();
1469
1470 pv_info.name = "Xen HVM";
1471
1472 xen_domain_type = XEN_HVM_DOMAIN;
1473
1474 return 0;
1475 }
1476
1477 void __ref xen_hvm_init_shared_info(void)
1478 {
1479 int cpu;
1480 struct xen_add_to_physmap xatp;
1481 static struct shared_info *shared_info_page = 0;
1482
1483 if (!shared_info_page)
1484 shared_info_page = (struct shared_info *)
1485 extend_brk(PAGE_SIZE, PAGE_SIZE);
1486 xatp.domid = DOMID_SELF;
1487 xatp.idx = 0;
1488 xatp.space = XENMAPSPACE_shared_info;
1489 xatp.gpfn = __pa(shared_info_page) >> PAGE_SHIFT;
1490 if (HYPERVISOR_memory_op(XENMEM_add_to_physmap, &xatp))
1491 BUG();
1492
1493 HYPERVISOR_shared_info = (struct shared_info *)shared_info_page;
1494
1495 /* xen_vcpu is a pointer to the vcpu_info struct in the shared_info
1496 * page, we use it in the event channel upcall and in some pvclock
1497 * related functions. We don't need the vcpu_info placement
1498 * optimizations because we don't use any pv_mmu or pv_irq op on
1499 * HVM.
1500 * When xen_hvm_init_shared_info is run at boot time only vcpu 0 is
1501 * online but xen_hvm_init_shared_info is run at resume time too and
1502 * in that case multiple vcpus might be online. */
1503 for_each_online_cpu(cpu) {
1504 per_cpu(xen_vcpu, cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
1505 }
1506 }
1507
1508 #ifdef CONFIG_XEN_PVHVM
1509 static int __cpuinit xen_hvm_cpu_notify(struct notifier_block *self,
1510 unsigned long action, void *hcpu)
1511 {
1512 int cpu = (long)hcpu;
1513 switch (action) {
1514 case CPU_UP_PREPARE:
1515 xen_vcpu_setup(cpu);
1516 if (xen_have_vector_callback)
1517 xen_init_lock_cpu(cpu);
1518 break;
1519 default:
1520 break;
1521 }
1522 return NOTIFY_OK;
1523 }
1524
1525 static struct notifier_block xen_hvm_cpu_notifier __cpuinitdata = {
1526 .notifier_call = xen_hvm_cpu_notify,
1527 };
1528
1529 static void __init xen_hvm_guest_init(void)
1530 {
1531 int r;
1532 int major, minor;
1533
1534 r = init_hvm_pv_info(&major, &minor);
1535 if (r < 0)
1536 return;
1537
1538 xen_hvm_init_shared_info();
1539
1540 if (xen_feature(XENFEAT_hvm_callback_vector))
1541 xen_have_vector_callback = 1;
1542 xen_hvm_smp_init();
1543 register_cpu_notifier(&xen_hvm_cpu_notifier);
1544 xen_unplug_emulated_devices();
1545 x86_init.irqs.intr_init = xen_init_IRQ;
1546 xen_hvm_init_time_ops();
1547 xen_hvm_init_mmu_ops();
1548 }
1549
1550 static bool __init xen_hvm_platform(void)
1551 {
1552 if (xen_pv_domain())
1553 return false;
1554
1555 if (!xen_cpuid_base())
1556 return false;
1557
1558 return true;
1559 }
1560
1561 bool xen_hvm_need_lapic(void)
1562 {
1563 if (xen_pv_domain())
1564 return false;
1565 if (!xen_hvm_domain())
1566 return false;
1567 if (xen_feature(XENFEAT_hvm_pirqs) && xen_have_vector_callback)
1568 return false;
1569 return true;
1570 }
1571 EXPORT_SYMBOL_GPL(xen_hvm_need_lapic);
1572
1573 const struct hypervisor_x86 x86_hyper_xen_hvm __refconst = {
1574 .name = "Xen HVM",
1575 .detect = xen_hvm_platform,
1576 .init_platform = xen_hvm_guest_init,
1577 };
1578 EXPORT_SYMBOL(x86_hyper_xen_hvm);
1579 #endif
This page took 0.060631 seconds and 4 git commands to generate.