Merge branch 'stable/vga.support' into stable/drivers
[deliverable/linux.git] / arch / x86 / xen / enlighten.c
1 /*
2 * Core of Xen paravirt_ops implementation.
3 *
4 * This file contains the xen_paravirt_ops structure itself, and the
5 * implementations for:
6 * - privileged instructions
7 * - interrupt flags
8 * - segment operations
9 * - booting and setup
10 *
11 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
12 */
13
14 #include <linux/cpu.h>
15 #include <linux/kernel.h>
16 #include <linux/init.h>
17 #include <linux/smp.h>
18 #include <linux/preempt.h>
19 #include <linux/hardirq.h>
20 #include <linux/percpu.h>
21 #include <linux/delay.h>
22 #include <linux/start_kernel.h>
23 #include <linux/sched.h>
24 #include <linux/kprobes.h>
25 #include <linux/bootmem.h>
26 #include <linux/module.h>
27 #include <linux/mm.h>
28 #include <linux/page-flags.h>
29 #include <linux/highmem.h>
30 #include <linux/console.h>
31 #include <linux/pci.h>
32 #include <linux/gfp.h>
33 #include <linux/memblock.h>
34
35 #include <xen/xen.h>
36 #include <xen/interface/xen.h>
37 #include <xen/interface/version.h>
38 #include <xen/interface/physdev.h>
39 #include <xen/interface/vcpu.h>
40 #include <xen/interface/memory.h>
41 #include <xen/features.h>
42 #include <xen/page.h>
43 #include <xen/hvm.h>
44 #include <xen/hvc-console.h>
45
46 #include <asm/paravirt.h>
47 #include <asm/apic.h>
48 #include <asm/page.h>
49 #include <asm/xen/pci.h>
50 #include <asm/xen/hypercall.h>
51 #include <asm/xen/hypervisor.h>
52 #include <asm/fixmap.h>
53 #include <asm/processor.h>
54 #include <asm/proto.h>
55 #include <asm/msr-index.h>
56 #include <asm/traps.h>
57 #include <asm/setup.h>
58 #include <asm/desc.h>
59 #include <asm/pgalloc.h>
60 #include <asm/pgtable.h>
61 #include <asm/tlbflush.h>
62 #include <asm/reboot.h>
63 #include <asm/stackprotector.h>
64 #include <asm/hypervisor.h>
65
66 #include "xen-ops.h"
67 #include "mmu.h"
68 #include "multicalls.h"
69
70 EXPORT_SYMBOL_GPL(hypercall_page);
71
72 DEFINE_PER_CPU(struct vcpu_info *, xen_vcpu);
73 DEFINE_PER_CPU(struct vcpu_info, xen_vcpu_info);
74
75 enum xen_domain_type xen_domain_type = XEN_NATIVE;
76 EXPORT_SYMBOL_GPL(xen_domain_type);
77
78 unsigned long *machine_to_phys_mapping = (void *)MACH2PHYS_VIRT_START;
79 EXPORT_SYMBOL(machine_to_phys_mapping);
80 unsigned int machine_to_phys_order;
81 EXPORT_SYMBOL(machine_to_phys_order);
82
83 struct start_info *xen_start_info;
84 EXPORT_SYMBOL_GPL(xen_start_info);
85
86 struct shared_info xen_dummy_shared_info;
87
88 void *xen_initial_gdt;
89
90 RESERVE_BRK(shared_info_page_brk, PAGE_SIZE);
91 __read_mostly int xen_have_vector_callback;
92 EXPORT_SYMBOL_GPL(xen_have_vector_callback);
93
94 /*
95 * Point at some empty memory to start with. We map the real shared_info
96 * page as soon as fixmap is up and running.
97 */
98 struct shared_info *HYPERVISOR_shared_info = (void *)&xen_dummy_shared_info;
99
100 /*
101 * Flag to determine whether vcpu info placement is available on all
102 * VCPUs. We assume it is to start with, and then set it to zero on
103 * the first failure. This is because it can succeed on some VCPUs
104 * and not others, since it can involve hypervisor memory allocation,
105 * or because the guest failed to guarantee all the appropriate
106 * constraints on all VCPUs (ie buffer can't cross a page boundary).
107 *
108 * Note that any particular CPU may be using a placed vcpu structure,
109 * but we can only optimise if the all are.
110 *
111 * 0: not available, 1: available
112 */
113 static int have_vcpu_info_placement = 1;
114
115 static void clamp_max_cpus(void)
116 {
117 #ifdef CONFIG_SMP
118 if (setup_max_cpus > MAX_VIRT_CPUS)
119 setup_max_cpus = MAX_VIRT_CPUS;
120 #endif
121 }
122
123 static void xen_vcpu_setup(int cpu)
124 {
125 struct vcpu_register_vcpu_info info;
126 int err;
127 struct vcpu_info *vcpup;
128
129 BUG_ON(HYPERVISOR_shared_info == &xen_dummy_shared_info);
130
131 if (cpu < MAX_VIRT_CPUS)
132 per_cpu(xen_vcpu,cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
133
134 if (!have_vcpu_info_placement) {
135 if (cpu >= MAX_VIRT_CPUS)
136 clamp_max_cpus();
137 return;
138 }
139
140 vcpup = &per_cpu(xen_vcpu_info, cpu);
141 info.mfn = arbitrary_virt_to_mfn(vcpup);
142 info.offset = offset_in_page(vcpup);
143
144 /* Check to see if the hypervisor will put the vcpu_info
145 structure where we want it, which allows direct access via
146 a percpu-variable. */
147 err = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_info, cpu, &info);
148
149 if (err) {
150 printk(KERN_DEBUG "register_vcpu_info failed: err=%d\n", err);
151 have_vcpu_info_placement = 0;
152 clamp_max_cpus();
153 } else {
154 /* This cpu is using the registered vcpu info, even if
155 later ones fail to. */
156 per_cpu(xen_vcpu, cpu) = vcpup;
157 }
158 }
159
160 /*
161 * On restore, set the vcpu placement up again.
162 * If it fails, then we're in a bad state, since
163 * we can't back out from using it...
164 */
165 void xen_vcpu_restore(void)
166 {
167 int cpu;
168
169 for_each_online_cpu(cpu) {
170 bool other_cpu = (cpu != smp_processor_id());
171
172 if (other_cpu &&
173 HYPERVISOR_vcpu_op(VCPUOP_down, cpu, NULL))
174 BUG();
175
176 xen_setup_runstate_info(cpu);
177
178 if (have_vcpu_info_placement)
179 xen_vcpu_setup(cpu);
180
181 if (other_cpu &&
182 HYPERVISOR_vcpu_op(VCPUOP_up, cpu, NULL))
183 BUG();
184 }
185 }
186
187 static void __init xen_banner(void)
188 {
189 unsigned version = HYPERVISOR_xen_version(XENVER_version, NULL);
190 struct xen_extraversion extra;
191 HYPERVISOR_xen_version(XENVER_extraversion, &extra);
192
193 printk(KERN_INFO "Booting paravirtualized kernel on %s\n",
194 pv_info.name);
195 printk(KERN_INFO "Xen version: %d.%d%s%s\n",
196 version >> 16, version & 0xffff, extra.extraversion,
197 xen_feature(XENFEAT_mmu_pt_update_preserve_ad) ? " (preserve-AD)" : "");
198 }
199
200 static __read_mostly unsigned int cpuid_leaf1_edx_mask = ~0;
201 static __read_mostly unsigned int cpuid_leaf1_ecx_mask = ~0;
202
203 static void xen_cpuid(unsigned int *ax, unsigned int *bx,
204 unsigned int *cx, unsigned int *dx)
205 {
206 unsigned maskebx = ~0;
207 unsigned maskecx = ~0;
208 unsigned maskedx = ~0;
209
210 /*
211 * Mask out inconvenient features, to try and disable as many
212 * unsupported kernel subsystems as possible.
213 */
214 switch (*ax) {
215 case 1:
216 maskecx = cpuid_leaf1_ecx_mask;
217 maskedx = cpuid_leaf1_edx_mask;
218 break;
219
220 case 0xb:
221 /* Suppress extended topology stuff */
222 maskebx = 0;
223 break;
224 }
225
226 asm(XEN_EMULATE_PREFIX "cpuid"
227 : "=a" (*ax),
228 "=b" (*bx),
229 "=c" (*cx),
230 "=d" (*dx)
231 : "0" (*ax), "2" (*cx));
232
233 *bx &= maskebx;
234 *cx &= maskecx;
235 *dx &= maskedx;
236 }
237
238 static void __init xen_init_cpuid_mask(void)
239 {
240 unsigned int ax, bx, cx, dx;
241 unsigned int xsave_mask;
242
243 cpuid_leaf1_edx_mask =
244 ~((1 << X86_FEATURE_MCE) | /* disable MCE */
245 (1 << X86_FEATURE_MCA) | /* disable MCA */
246 (1 << X86_FEATURE_MTRR) | /* disable MTRR */
247 (1 << X86_FEATURE_ACC)); /* thermal monitoring */
248
249 if (!xen_initial_domain())
250 cpuid_leaf1_edx_mask &=
251 ~((1 << X86_FEATURE_APIC) | /* disable local APIC */
252 (1 << X86_FEATURE_ACPI)); /* disable ACPI */
253 ax = 1;
254 xen_cpuid(&ax, &bx, &cx, &dx);
255
256 xsave_mask =
257 (1 << (X86_FEATURE_XSAVE % 32)) |
258 (1 << (X86_FEATURE_OSXSAVE % 32));
259
260 /* Xen will set CR4.OSXSAVE if supported and not disabled by force */
261 if ((cx & xsave_mask) != xsave_mask)
262 cpuid_leaf1_ecx_mask &= ~xsave_mask; /* disable XSAVE & OSXSAVE */
263 }
264
265 static void xen_set_debugreg(int reg, unsigned long val)
266 {
267 HYPERVISOR_set_debugreg(reg, val);
268 }
269
270 static unsigned long xen_get_debugreg(int reg)
271 {
272 return HYPERVISOR_get_debugreg(reg);
273 }
274
275 static void xen_end_context_switch(struct task_struct *next)
276 {
277 xen_mc_flush();
278 paravirt_end_context_switch(next);
279 }
280
281 static unsigned long xen_store_tr(void)
282 {
283 return 0;
284 }
285
286 /*
287 * Set the page permissions for a particular virtual address. If the
288 * address is a vmalloc mapping (or other non-linear mapping), then
289 * find the linear mapping of the page and also set its protections to
290 * match.
291 */
292 static void set_aliased_prot(void *v, pgprot_t prot)
293 {
294 int level;
295 pte_t *ptep;
296 pte_t pte;
297 unsigned long pfn;
298 struct page *page;
299
300 ptep = lookup_address((unsigned long)v, &level);
301 BUG_ON(ptep == NULL);
302
303 pfn = pte_pfn(*ptep);
304 page = pfn_to_page(pfn);
305
306 pte = pfn_pte(pfn, prot);
307
308 if (HYPERVISOR_update_va_mapping((unsigned long)v, pte, 0))
309 BUG();
310
311 if (!PageHighMem(page)) {
312 void *av = __va(PFN_PHYS(pfn));
313
314 if (av != v)
315 if (HYPERVISOR_update_va_mapping((unsigned long)av, pte, 0))
316 BUG();
317 } else
318 kmap_flush_unused();
319 }
320
321 static void xen_alloc_ldt(struct desc_struct *ldt, unsigned entries)
322 {
323 const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
324 int i;
325
326 for(i = 0; i < entries; i += entries_per_page)
327 set_aliased_prot(ldt + i, PAGE_KERNEL_RO);
328 }
329
330 static void xen_free_ldt(struct desc_struct *ldt, unsigned entries)
331 {
332 const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
333 int i;
334
335 for(i = 0; i < entries; i += entries_per_page)
336 set_aliased_prot(ldt + i, PAGE_KERNEL);
337 }
338
339 static void xen_set_ldt(const void *addr, unsigned entries)
340 {
341 struct mmuext_op *op;
342 struct multicall_space mcs = xen_mc_entry(sizeof(*op));
343
344 op = mcs.args;
345 op->cmd = MMUEXT_SET_LDT;
346 op->arg1.linear_addr = (unsigned long)addr;
347 op->arg2.nr_ents = entries;
348
349 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
350
351 xen_mc_issue(PARAVIRT_LAZY_CPU);
352 }
353
354 static void xen_load_gdt(const struct desc_ptr *dtr)
355 {
356 unsigned long va = dtr->address;
357 unsigned int size = dtr->size + 1;
358 unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
359 unsigned long frames[pages];
360 int f;
361
362 /*
363 * A GDT can be up to 64k in size, which corresponds to 8192
364 * 8-byte entries, or 16 4k pages..
365 */
366
367 BUG_ON(size > 65536);
368 BUG_ON(va & ~PAGE_MASK);
369
370 for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
371 int level;
372 pte_t *ptep;
373 unsigned long pfn, mfn;
374 void *virt;
375
376 /*
377 * The GDT is per-cpu and is in the percpu data area.
378 * That can be virtually mapped, so we need to do a
379 * page-walk to get the underlying MFN for the
380 * hypercall. The page can also be in the kernel's
381 * linear range, so we need to RO that mapping too.
382 */
383 ptep = lookup_address(va, &level);
384 BUG_ON(ptep == NULL);
385
386 pfn = pte_pfn(*ptep);
387 mfn = pfn_to_mfn(pfn);
388 virt = __va(PFN_PHYS(pfn));
389
390 frames[f] = mfn;
391
392 make_lowmem_page_readonly((void *)va);
393 make_lowmem_page_readonly(virt);
394 }
395
396 if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
397 BUG();
398 }
399
400 /*
401 * load_gdt for early boot, when the gdt is only mapped once
402 */
403 static void __init xen_load_gdt_boot(const struct desc_ptr *dtr)
404 {
405 unsigned long va = dtr->address;
406 unsigned int size = dtr->size + 1;
407 unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
408 unsigned long frames[pages];
409 int f;
410
411 /*
412 * A GDT can be up to 64k in size, which corresponds to 8192
413 * 8-byte entries, or 16 4k pages..
414 */
415
416 BUG_ON(size > 65536);
417 BUG_ON(va & ~PAGE_MASK);
418
419 for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
420 pte_t pte;
421 unsigned long pfn, mfn;
422
423 pfn = virt_to_pfn(va);
424 mfn = pfn_to_mfn(pfn);
425
426 pte = pfn_pte(pfn, PAGE_KERNEL_RO);
427
428 if (HYPERVISOR_update_va_mapping((unsigned long)va, pte, 0))
429 BUG();
430
431 frames[f] = mfn;
432 }
433
434 if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
435 BUG();
436 }
437
438 static void load_TLS_descriptor(struct thread_struct *t,
439 unsigned int cpu, unsigned int i)
440 {
441 struct desc_struct *gdt = get_cpu_gdt_table(cpu);
442 xmaddr_t maddr = arbitrary_virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]);
443 struct multicall_space mc = __xen_mc_entry(0);
444
445 MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]);
446 }
447
448 static void xen_load_tls(struct thread_struct *t, unsigned int cpu)
449 {
450 /*
451 * XXX sleazy hack: If we're being called in a lazy-cpu zone
452 * and lazy gs handling is enabled, it means we're in a
453 * context switch, and %gs has just been saved. This means we
454 * can zero it out to prevent faults on exit from the
455 * hypervisor if the next process has no %gs. Either way, it
456 * has been saved, and the new value will get loaded properly.
457 * This will go away as soon as Xen has been modified to not
458 * save/restore %gs for normal hypercalls.
459 *
460 * On x86_64, this hack is not used for %gs, because gs points
461 * to KERNEL_GS_BASE (and uses it for PDA references), so we
462 * must not zero %gs on x86_64
463 *
464 * For x86_64, we need to zero %fs, otherwise we may get an
465 * exception between the new %fs descriptor being loaded and
466 * %fs being effectively cleared at __switch_to().
467 */
468 if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_CPU) {
469 #ifdef CONFIG_X86_32
470 lazy_load_gs(0);
471 #else
472 loadsegment(fs, 0);
473 #endif
474 }
475
476 xen_mc_batch();
477
478 load_TLS_descriptor(t, cpu, 0);
479 load_TLS_descriptor(t, cpu, 1);
480 load_TLS_descriptor(t, cpu, 2);
481
482 xen_mc_issue(PARAVIRT_LAZY_CPU);
483 }
484
485 #ifdef CONFIG_X86_64
486 static void xen_load_gs_index(unsigned int idx)
487 {
488 if (HYPERVISOR_set_segment_base(SEGBASE_GS_USER_SEL, idx))
489 BUG();
490 }
491 #endif
492
493 static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum,
494 const void *ptr)
495 {
496 xmaddr_t mach_lp = arbitrary_virt_to_machine(&dt[entrynum]);
497 u64 entry = *(u64 *)ptr;
498
499 preempt_disable();
500
501 xen_mc_flush();
502 if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry))
503 BUG();
504
505 preempt_enable();
506 }
507
508 static int cvt_gate_to_trap(int vector, const gate_desc *val,
509 struct trap_info *info)
510 {
511 unsigned long addr;
512
513 if (val->type != GATE_TRAP && val->type != GATE_INTERRUPT)
514 return 0;
515
516 info->vector = vector;
517
518 addr = gate_offset(*val);
519 #ifdef CONFIG_X86_64
520 /*
521 * Look for known traps using IST, and substitute them
522 * appropriately. The debugger ones are the only ones we care
523 * about. Xen will handle faults like double_fault and
524 * machine_check, so we should never see them. Warn if
525 * there's an unexpected IST-using fault handler.
526 */
527 if (addr == (unsigned long)debug)
528 addr = (unsigned long)xen_debug;
529 else if (addr == (unsigned long)int3)
530 addr = (unsigned long)xen_int3;
531 else if (addr == (unsigned long)stack_segment)
532 addr = (unsigned long)xen_stack_segment;
533 else if (addr == (unsigned long)double_fault ||
534 addr == (unsigned long)nmi) {
535 /* Don't need to handle these */
536 return 0;
537 #ifdef CONFIG_X86_MCE
538 } else if (addr == (unsigned long)machine_check) {
539 return 0;
540 #endif
541 } else {
542 /* Some other trap using IST? */
543 if (WARN_ON(val->ist != 0))
544 return 0;
545 }
546 #endif /* CONFIG_X86_64 */
547 info->address = addr;
548
549 info->cs = gate_segment(*val);
550 info->flags = val->dpl;
551 /* interrupt gates clear IF */
552 if (val->type == GATE_INTERRUPT)
553 info->flags |= 1 << 2;
554
555 return 1;
556 }
557
558 /* Locations of each CPU's IDT */
559 static DEFINE_PER_CPU(struct desc_ptr, idt_desc);
560
561 /* Set an IDT entry. If the entry is part of the current IDT, then
562 also update Xen. */
563 static void xen_write_idt_entry(gate_desc *dt, int entrynum, const gate_desc *g)
564 {
565 unsigned long p = (unsigned long)&dt[entrynum];
566 unsigned long start, end;
567
568 preempt_disable();
569
570 start = __this_cpu_read(idt_desc.address);
571 end = start + __this_cpu_read(idt_desc.size) + 1;
572
573 xen_mc_flush();
574
575 native_write_idt_entry(dt, entrynum, g);
576
577 if (p >= start && (p + 8) <= end) {
578 struct trap_info info[2];
579
580 info[1].address = 0;
581
582 if (cvt_gate_to_trap(entrynum, g, &info[0]))
583 if (HYPERVISOR_set_trap_table(info))
584 BUG();
585 }
586
587 preempt_enable();
588 }
589
590 static void xen_convert_trap_info(const struct desc_ptr *desc,
591 struct trap_info *traps)
592 {
593 unsigned in, out, count;
594
595 count = (desc->size+1) / sizeof(gate_desc);
596 BUG_ON(count > 256);
597
598 for (in = out = 0; in < count; in++) {
599 gate_desc *entry = (gate_desc*)(desc->address) + in;
600
601 if (cvt_gate_to_trap(in, entry, &traps[out]))
602 out++;
603 }
604 traps[out].address = 0;
605 }
606
607 void xen_copy_trap_info(struct trap_info *traps)
608 {
609 const struct desc_ptr *desc = &__get_cpu_var(idt_desc);
610
611 xen_convert_trap_info(desc, traps);
612 }
613
614 /* Load a new IDT into Xen. In principle this can be per-CPU, so we
615 hold a spinlock to protect the static traps[] array (static because
616 it avoids allocation, and saves stack space). */
617 static void xen_load_idt(const struct desc_ptr *desc)
618 {
619 static DEFINE_SPINLOCK(lock);
620 static struct trap_info traps[257];
621
622 spin_lock(&lock);
623
624 __get_cpu_var(idt_desc) = *desc;
625
626 xen_convert_trap_info(desc, traps);
627
628 xen_mc_flush();
629 if (HYPERVISOR_set_trap_table(traps))
630 BUG();
631
632 spin_unlock(&lock);
633 }
634
635 /* Write a GDT descriptor entry. Ignore LDT descriptors, since
636 they're handled differently. */
637 static void xen_write_gdt_entry(struct desc_struct *dt, int entry,
638 const void *desc, int type)
639 {
640 preempt_disable();
641
642 switch (type) {
643 case DESC_LDT:
644 case DESC_TSS:
645 /* ignore */
646 break;
647
648 default: {
649 xmaddr_t maddr = arbitrary_virt_to_machine(&dt[entry]);
650
651 xen_mc_flush();
652 if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
653 BUG();
654 }
655
656 }
657
658 preempt_enable();
659 }
660
661 /*
662 * Version of write_gdt_entry for use at early boot-time needed to
663 * update an entry as simply as possible.
664 */
665 static void __init xen_write_gdt_entry_boot(struct desc_struct *dt, int entry,
666 const void *desc, int type)
667 {
668 switch (type) {
669 case DESC_LDT:
670 case DESC_TSS:
671 /* ignore */
672 break;
673
674 default: {
675 xmaddr_t maddr = virt_to_machine(&dt[entry]);
676
677 if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
678 dt[entry] = *(struct desc_struct *)desc;
679 }
680
681 }
682 }
683
684 static void xen_load_sp0(struct tss_struct *tss,
685 struct thread_struct *thread)
686 {
687 struct multicall_space mcs = xen_mc_entry(0);
688 MULTI_stack_switch(mcs.mc, __KERNEL_DS, thread->sp0);
689 xen_mc_issue(PARAVIRT_LAZY_CPU);
690 }
691
692 static void xen_set_iopl_mask(unsigned mask)
693 {
694 struct physdev_set_iopl set_iopl;
695
696 /* Force the change at ring 0. */
697 set_iopl.iopl = (mask == 0) ? 1 : (mask >> 12) & 3;
698 HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
699 }
700
701 static void xen_io_delay(void)
702 {
703 }
704
705 #ifdef CONFIG_X86_LOCAL_APIC
706 static u32 xen_apic_read(u32 reg)
707 {
708 return 0;
709 }
710
711 static void xen_apic_write(u32 reg, u32 val)
712 {
713 /* Warn to see if there's any stray references */
714 WARN_ON(1);
715 }
716
717 static u64 xen_apic_icr_read(void)
718 {
719 return 0;
720 }
721
722 static void xen_apic_icr_write(u32 low, u32 id)
723 {
724 /* Warn to see if there's any stray references */
725 WARN_ON(1);
726 }
727
728 static void xen_apic_wait_icr_idle(void)
729 {
730 return;
731 }
732
733 static u32 xen_safe_apic_wait_icr_idle(void)
734 {
735 return 0;
736 }
737
738 static void set_xen_basic_apic_ops(void)
739 {
740 apic->read = xen_apic_read;
741 apic->write = xen_apic_write;
742 apic->icr_read = xen_apic_icr_read;
743 apic->icr_write = xen_apic_icr_write;
744 apic->wait_icr_idle = xen_apic_wait_icr_idle;
745 apic->safe_wait_icr_idle = xen_safe_apic_wait_icr_idle;
746 }
747
748 #endif
749
750 static void xen_clts(void)
751 {
752 struct multicall_space mcs;
753
754 mcs = xen_mc_entry(0);
755
756 MULTI_fpu_taskswitch(mcs.mc, 0);
757
758 xen_mc_issue(PARAVIRT_LAZY_CPU);
759 }
760
761 static DEFINE_PER_CPU(unsigned long, xen_cr0_value);
762
763 static unsigned long xen_read_cr0(void)
764 {
765 unsigned long cr0 = percpu_read(xen_cr0_value);
766
767 if (unlikely(cr0 == 0)) {
768 cr0 = native_read_cr0();
769 percpu_write(xen_cr0_value, cr0);
770 }
771
772 return cr0;
773 }
774
775 static void xen_write_cr0(unsigned long cr0)
776 {
777 struct multicall_space mcs;
778
779 percpu_write(xen_cr0_value, cr0);
780
781 /* Only pay attention to cr0.TS; everything else is
782 ignored. */
783 mcs = xen_mc_entry(0);
784
785 MULTI_fpu_taskswitch(mcs.mc, (cr0 & X86_CR0_TS) != 0);
786
787 xen_mc_issue(PARAVIRT_LAZY_CPU);
788 }
789
790 static void xen_write_cr4(unsigned long cr4)
791 {
792 cr4 &= ~X86_CR4_PGE;
793 cr4 &= ~X86_CR4_PSE;
794
795 native_write_cr4(cr4);
796 }
797
798 static int xen_write_msr_safe(unsigned int msr, unsigned low, unsigned high)
799 {
800 int ret;
801
802 ret = 0;
803
804 switch (msr) {
805 #ifdef CONFIG_X86_64
806 unsigned which;
807 u64 base;
808
809 case MSR_FS_BASE: which = SEGBASE_FS; goto set;
810 case MSR_KERNEL_GS_BASE: which = SEGBASE_GS_USER; goto set;
811 case MSR_GS_BASE: which = SEGBASE_GS_KERNEL; goto set;
812
813 set:
814 base = ((u64)high << 32) | low;
815 if (HYPERVISOR_set_segment_base(which, base) != 0)
816 ret = -EIO;
817 break;
818 #endif
819
820 case MSR_STAR:
821 case MSR_CSTAR:
822 case MSR_LSTAR:
823 case MSR_SYSCALL_MASK:
824 case MSR_IA32_SYSENTER_CS:
825 case MSR_IA32_SYSENTER_ESP:
826 case MSR_IA32_SYSENTER_EIP:
827 /* Fast syscall setup is all done in hypercalls, so
828 these are all ignored. Stub them out here to stop
829 Xen console noise. */
830 break;
831
832 case MSR_IA32_CR_PAT:
833 if (smp_processor_id() == 0)
834 xen_set_pat(((u64)high << 32) | low);
835 break;
836
837 default:
838 ret = native_write_msr_safe(msr, low, high);
839 }
840
841 return ret;
842 }
843
844 void xen_setup_shared_info(void)
845 {
846 if (!xen_feature(XENFEAT_auto_translated_physmap)) {
847 set_fixmap(FIX_PARAVIRT_BOOTMAP,
848 xen_start_info->shared_info);
849
850 HYPERVISOR_shared_info =
851 (struct shared_info *)fix_to_virt(FIX_PARAVIRT_BOOTMAP);
852 } else
853 HYPERVISOR_shared_info =
854 (struct shared_info *)__va(xen_start_info->shared_info);
855
856 #ifndef CONFIG_SMP
857 /* In UP this is as good a place as any to set up shared info */
858 xen_setup_vcpu_info_placement();
859 #endif
860
861 xen_setup_mfn_list_list();
862 }
863
864 /* This is called once we have the cpu_possible_map */
865 void xen_setup_vcpu_info_placement(void)
866 {
867 int cpu;
868
869 for_each_possible_cpu(cpu)
870 xen_vcpu_setup(cpu);
871
872 /* xen_vcpu_setup managed to place the vcpu_info within the
873 percpu area for all cpus, so make use of it */
874 if (have_vcpu_info_placement) {
875 pv_irq_ops.save_fl = __PV_IS_CALLEE_SAVE(xen_save_fl_direct);
876 pv_irq_ops.restore_fl = __PV_IS_CALLEE_SAVE(xen_restore_fl_direct);
877 pv_irq_ops.irq_disable = __PV_IS_CALLEE_SAVE(xen_irq_disable_direct);
878 pv_irq_ops.irq_enable = __PV_IS_CALLEE_SAVE(xen_irq_enable_direct);
879 pv_mmu_ops.read_cr2 = xen_read_cr2_direct;
880 }
881 }
882
883 static unsigned xen_patch(u8 type, u16 clobbers, void *insnbuf,
884 unsigned long addr, unsigned len)
885 {
886 char *start, *end, *reloc;
887 unsigned ret;
888
889 start = end = reloc = NULL;
890
891 #define SITE(op, x) \
892 case PARAVIRT_PATCH(op.x): \
893 if (have_vcpu_info_placement) { \
894 start = (char *)xen_##x##_direct; \
895 end = xen_##x##_direct_end; \
896 reloc = xen_##x##_direct_reloc; \
897 } \
898 goto patch_site
899
900 switch (type) {
901 SITE(pv_irq_ops, irq_enable);
902 SITE(pv_irq_ops, irq_disable);
903 SITE(pv_irq_ops, save_fl);
904 SITE(pv_irq_ops, restore_fl);
905 #undef SITE
906
907 patch_site:
908 if (start == NULL || (end-start) > len)
909 goto default_patch;
910
911 ret = paravirt_patch_insns(insnbuf, len, start, end);
912
913 /* Note: because reloc is assigned from something that
914 appears to be an array, gcc assumes it's non-null,
915 but doesn't know its relationship with start and
916 end. */
917 if (reloc > start && reloc < end) {
918 int reloc_off = reloc - start;
919 long *relocp = (long *)(insnbuf + reloc_off);
920 long delta = start - (char *)addr;
921
922 *relocp += delta;
923 }
924 break;
925
926 default_patch:
927 default:
928 ret = paravirt_patch_default(type, clobbers, insnbuf,
929 addr, len);
930 break;
931 }
932
933 return ret;
934 }
935
936 static const struct pv_info xen_info __initconst = {
937 .paravirt_enabled = 1,
938 .shared_kernel_pmd = 0,
939
940 .name = "Xen",
941 };
942
943 static const struct pv_init_ops xen_init_ops __initconst = {
944 .patch = xen_patch,
945 };
946
947 static const struct pv_cpu_ops xen_cpu_ops __initconst = {
948 .cpuid = xen_cpuid,
949
950 .set_debugreg = xen_set_debugreg,
951 .get_debugreg = xen_get_debugreg,
952
953 .clts = xen_clts,
954
955 .read_cr0 = xen_read_cr0,
956 .write_cr0 = xen_write_cr0,
957
958 .read_cr4 = native_read_cr4,
959 .read_cr4_safe = native_read_cr4_safe,
960 .write_cr4 = xen_write_cr4,
961
962 .wbinvd = native_wbinvd,
963
964 .read_msr = native_read_msr_safe,
965 .write_msr = xen_write_msr_safe,
966 .read_tsc = native_read_tsc,
967 .read_pmc = native_read_pmc,
968
969 .iret = xen_iret,
970 .irq_enable_sysexit = xen_sysexit,
971 #ifdef CONFIG_X86_64
972 .usergs_sysret32 = xen_sysret32,
973 .usergs_sysret64 = xen_sysret64,
974 #endif
975
976 .load_tr_desc = paravirt_nop,
977 .set_ldt = xen_set_ldt,
978 .load_gdt = xen_load_gdt,
979 .load_idt = xen_load_idt,
980 .load_tls = xen_load_tls,
981 #ifdef CONFIG_X86_64
982 .load_gs_index = xen_load_gs_index,
983 #endif
984
985 .alloc_ldt = xen_alloc_ldt,
986 .free_ldt = xen_free_ldt,
987
988 .store_gdt = native_store_gdt,
989 .store_idt = native_store_idt,
990 .store_tr = xen_store_tr,
991
992 .write_ldt_entry = xen_write_ldt_entry,
993 .write_gdt_entry = xen_write_gdt_entry,
994 .write_idt_entry = xen_write_idt_entry,
995 .load_sp0 = xen_load_sp0,
996
997 .set_iopl_mask = xen_set_iopl_mask,
998 .io_delay = xen_io_delay,
999
1000 /* Xen takes care of %gs when switching to usermode for us */
1001 .swapgs = paravirt_nop,
1002
1003 .start_context_switch = paravirt_start_context_switch,
1004 .end_context_switch = xen_end_context_switch,
1005 };
1006
1007 static const struct pv_apic_ops xen_apic_ops __initconst = {
1008 #ifdef CONFIG_X86_LOCAL_APIC
1009 .startup_ipi_hook = paravirt_nop,
1010 #endif
1011 };
1012
1013 static void xen_reboot(int reason)
1014 {
1015 struct sched_shutdown r = { .reason = reason };
1016
1017 if (HYPERVISOR_sched_op(SCHEDOP_shutdown, &r))
1018 BUG();
1019 }
1020
1021 static void xen_restart(char *msg)
1022 {
1023 xen_reboot(SHUTDOWN_reboot);
1024 }
1025
1026 static void xen_emergency_restart(void)
1027 {
1028 xen_reboot(SHUTDOWN_reboot);
1029 }
1030
1031 static void xen_machine_halt(void)
1032 {
1033 xen_reboot(SHUTDOWN_poweroff);
1034 }
1035
1036 static void xen_machine_power_off(void)
1037 {
1038 if (pm_power_off)
1039 pm_power_off();
1040 xen_reboot(SHUTDOWN_poweroff);
1041 }
1042
1043 static void xen_crash_shutdown(struct pt_regs *regs)
1044 {
1045 xen_reboot(SHUTDOWN_crash);
1046 }
1047
1048 static int
1049 xen_panic_event(struct notifier_block *this, unsigned long event, void *ptr)
1050 {
1051 xen_reboot(SHUTDOWN_crash);
1052 return NOTIFY_DONE;
1053 }
1054
1055 static struct notifier_block xen_panic_block = {
1056 .notifier_call= xen_panic_event,
1057 };
1058
1059 int xen_panic_handler_init(void)
1060 {
1061 atomic_notifier_chain_register(&panic_notifier_list, &xen_panic_block);
1062 return 0;
1063 }
1064
1065 static const struct machine_ops xen_machine_ops __initconst = {
1066 .restart = xen_restart,
1067 .halt = xen_machine_halt,
1068 .power_off = xen_machine_power_off,
1069 .shutdown = xen_machine_halt,
1070 .crash_shutdown = xen_crash_shutdown,
1071 .emergency_restart = xen_emergency_restart,
1072 };
1073
1074 /*
1075 * Set up the GDT and segment registers for -fstack-protector. Until
1076 * we do this, we have to be careful not to call any stack-protected
1077 * function, which is most of the kernel.
1078 */
1079 static void __init xen_setup_stackprotector(void)
1080 {
1081 pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry_boot;
1082 pv_cpu_ops.load_gdt = xen_load_gdt_boot;
1083
1084 setup_stack_canary_segment(0);
1085 switch_to_new_gdt(0);
1086
1087 pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry;
1088 pv_cpu_ops.load_gdt = xen_load_gdt;
1089 }
1090
1091 /* First C function to be called on Xen boot */
1092 asmlinkage void __init xen_start_kernel(void)
1093 {
1094 struct physdev_set_iopl set_iopl;
1095 int rc;
1096 pgd_t *pgd;
1097
1098 if (!xen_start_info)
1099 return;
1100
1101 xen_domain_type = XEN_PV_DOMAIN;
1102
1103 xen_setup_machphys_mapping();
1104
1105 /* Install Xen paravirt ops */
1106 pv_info = xen_info;
1107 pv_init_ops = xen_init_ops;
1108 pv_cpu_ops = xen_cpu_ops;
1109 pv_apic_ops = xen_apic_ops;
1110
1111 x86_init.resources.memory_setup = xen_memory_setup;
1112 x86_init.oem.arch_setup = xen_arch_setup;
1113 x86_init.oem.banner = xen_banner;
1114
1115 xen_init_time_ops();
1116
1117 /*
1118 * Set up some pagetable state before starting to set any ptes.
1119 */
1120
1121 xen_init_mmu_ops();
1122
1123 /* Prevent unwanted bits from being set in PTEs. */
1124 __supported_pte_mask &= ~_PAGE_GLOBAL;
1125 if (!xen_initial_domain())
1126 __supported_pte_mask &= ~(_PAGE_PWT | _PAGE_PCD);
1127
1128 __supported_pte_mask |= _PAGE_IOMAP;
1129
1130 /*
1131 * Prevent page tables from being allocated in highmem, even
1132 * if CONFIG_HIGHPTE is enabled.
1133 */
1134 __userpte_alloc_gfp &= ~__GFP_HIGHMEM;
1135
1136 /* Work out if we support NX */
1137 x86_configure_nx();
1138
1139 xen_setup_features();
1140
1141 /* Get mfn list */
1142 if (!xen_feature(XENFEAT_auto_translated_physmap))
1143 xen_build_dynamic_phys_to_machine();
1144
1145 /*
1146 * Set up kernel GDT and segment registers, mainly so that
1147 * -fstack-protector code can be executed.
1148 */
1149 xen_setup_stackprotector();
1150
1151 xen_init_irq_ops();
1152 xen_init_cpuid_mask();
1153
1154 #ifdef CONFIG_X86_LOCAL_APIC
1155 /*
1156 * set up the basic apic ops.
1157 */
1158 set_xen_basic_apic_ops();
1159 #endif
1160
1161 if (xen_feature(XENFEAT_mmu_pt_update_preserve_ad)) {
1162 pv_mmu_ops.ptep_modify_prot_start = xen_ptep_modify_prot_start;
1163 pv_mmu_ops.ptep_modify_prot_commit = xen_ptep_modify_prot_commit;
1164 }
1165
1166 machine_ops = xen_machine_ops;
1167
1168 /*
1169 * The only reliable way to retain the initial address of the
1170 * percpu gdt_page is to remember it here, so we can go and
1171 * mark it RW later, when the initial percpu area is freed.
1172 */
1173 xen_initial_gdt = &per_cpu(gdt_page, 0);
1174
1175 xen_smp_init();
1176
1177 #ifdef CONFIG_ACPI_NUMA
1178 /*
1179 * The pages we from Xen are not related to machine pages, so
1180 * any NUMA information the kernel tries to get from ACPI will
1181 * be meaningless. Prevent it from trying.
1182 */
1183 acpi_numa = -1;
1184 #endif
1185
1186 pgd = (pgd_t *)xen_start_info->pt_base;
1187
1188 if (!xen_initial_domain())
1189 __supported_pte_mask &= ~(_PAGE_PWT | _PAGE_PCD);
1190
1191 __supported_pte_mask |= _PAGE_IOMAP;
1192 /* Don't do the full vcpu_info placement stuff until we have a
1193 possible map and a non-dummy shared_info. */
1194 per_cpu(xen_vcpu, 0) = &HYPERVISOR_shared_info->vcpu_info[0];
1195
1196 local_irq_disable();
1197 early_boot_irqs_disabled = true;
1198
1199 memblock_init();
1200
1201 xen_raw_console_write("mapping kernel into physical memory\n");
1202 pgd = xen_setup_kernel_pagetable(pgd, xen_start_info->nr_pages);
1203 xen_ident_map_ISA();
1204
1205 /* Allocate and initialize top and mid mfn levels for p2m structure */
1206 xen_build_mfn_list_list();
1207
1208 /* keep using Xen gdt for now; no urgent need to change it */
1209
1210 #ifdef CONFIG_X86_32
1211 pv_info.kernel_rpl = 1;
1212 if (xen_feature(XENFEAT_supervisor_mode_kernel))
1213 pv_info.kernel_rpl = 0;
1214 #else
1215 pv_info.kernel_rpl = 0;
1216 #endif
1217 /* set the limit of our address space */
1218 xen_reserve_top();
1219
1220 /* We used to do this in xen_arch_setup, but that is too late on AMD
1221 * were early_cpu_init (run before ->arch_setup()) calls early_amd_init
1222 * which pokes 0xcf8 port.
1223 */
1224 set_iopl.iopl = 1;
1225 rc = HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
1226 if (rc != 0)
1227 xen_raw_printk("physdev_op failed %d\n", rc);
1228
1229 #ifdef CONFIG_X86_32
1230 /* set up basic CPUID stuff */
1231 cpu_detect(&new_cpu_data);
1232 new_cpu_data.hard_math = 1;
1233 new_cpu_data.wp_works_ok = 1;
1234 new_cpu_data.x86_capability[0] = cpuid_edx(1);
1235 #endif
1236
1237 /* Poke various useful things into boot_params */
1238 boot_params.hdr.type_of_loader = (9 << 4) | 0;
1239 boot_params.hdr.ramdisk_image = xen_start_info->mod_start
1240 ? __pa(xen_start_info->mod_start) : 0;
1241 boot_params.hdr.ramdisk_size = xen_start_info->mod_len;
1242 boot_params.hdr.cmd_line_ptr = __pa(xen_start_info->cmd_line);
1243
1244 if (!xen_initial_domain()) {
1245 add_preferred_console("xenboot", 0, NULL);
1246 add_preferred_console("tty", 0, NULL);
1247 add_preferred_console("hvc", 0, NULL);
1248 if (pci_xen)
1249 x86_init.pci.arch_init = pci_xen_init;
1250 } else {
1251 const struct dom0_vga_console_info *info =
1252 (void *)((char *)xen_start_info +
1253 xen_start_info->console.dom0.info_off);
1254
1255 xen_init_vga(info, xen_start_info->console.dom0.info_size);
1256 xen_start_info->console.domU.mfn = 0;
1257 xen_start_info->console.domU.evtchn = 0;
1258
1259 /* Make sure ACS will be enabled */
1260 pci_request_acs();
1261 }
1262
1263
1264 xen_raw_console_write("about to get started...\n");
1265
1266 xen_setup_runstate_info(0);
1267
1268 /* Start the world */
1269 #ifdef CONFIG_X86_32
1270 i386_start_kernel();
1271 #else
1272 x86_64_start_reservations((char *)__pa_symbol(&boot_params));
1273 #endif
1274 }
1275
1276 static int init_hvm_pv_info(int *major, int *minor)
1277 {
1278 uint32_t eax, ebx, ecx, edx, pages, msr, base;
1279 u64 pfn;
1280
1281 base = xen_cpuid_base();
1282 cpuid(base + 1, &eax, &ebx, &ecx, &edx);
1283
1284 *major = eax >> 16;
1285 *minor = eax & 0xffff;
1286 printk(KERN_INFO "Xen version %d.%d.\n", *major, *minor);
1287
1288 cpuid(base + 2, &pages, &msr, &ecx, &edx);
1289
1290 pfn = __pa(hypercall_page);
1291 wrmsr_safe(msr, (u32)pfn, (u32)(pfn >> 32));
1292
1293 xen_setup_features();
1294
1295 pv_info.name = "Xen HVM";
1296
1297 xen_domain_type = XEN_HVM_DOMAIN;
1298
1299 return 0;
1300 }
1301
1302 void __ref xen_hvm_init_shared_info(void)
1303 {
1304 int cpu;
1305 struct xen_add_to_physmap xatp;
1306 static struct shared_info *shared_info_page = 0;
1307
1308 if (!shared_info_page)
1309 shared_info_page = (struct shared_info *)
1310 extend_brk(PAGE_SIZE, PAGE_SIZE);
1311 xatp.domid = DOMID_SELF;
1312 xatp.idx = 0;
1313 xatp.space = XENMAPSPACE_shared_info;
1314 xatp.gpfn = __pa(shared_info_page) >> PAGE_SHIFT;
1315 if (HYPERVISOR_memory_op(XENMEM_add_to_physmap, &xatp))
1316 BUG();
1317
1318 HYPERVISOR_shared_info = (struct shared_info *)shared_info_page;
1319
1320 /* xen_vcpu is a pointer to the vcpu_info struct in the shared_info
1321 * page, we use it in the event channel upcall and in some pvclock
1322 * related functions. We don't need the vcpu_info placement
1323 * optimizations because we don't use any pv_mmu or pv_irq op on
1324 * HVM.
1325 * When xen_hvm_init_shared_info is run at boot time only vcpu 0 is
1326 * online but xen_hvm_init_shared_info is run at resume time too and
1327 * in that case multiple vcpus might be online. */
1328 for_each_online_cpu(cpu) {
1329 per_cpu(xen_vcpu, cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
1330 }
1331 }
1332
1333 #ifdef CONFIG_XEN_PVHVM
1334 static int __cpuinit xen_hvm_cpu_notify(struct notifier_block *self,
1335 unsigned long action, void *hcpu)
1336 {
1337 int cpu = (long)hcpu;
1338 switch (action) {
1339 case CPU_UP_PREPARE:
1340 per_cpu(xen_vcpu, cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
1341 if (xen_have_vector_callback)
1342 xen_init_lock_cpu(cpu);
1343 break;
1344 default:
1345 break;
1346 }
1347 return NOTIFY_OK;
1348 }
1349
1350 static struct notifier_block xen_hvm_cpu_notifier __cpuinitdata = {
1351 .notifier_call = xen_hvm_cpu_notify,
1352 };
1353
1354 static void __init xen_hvm_guest_init(void)
1355 {
1356 int r;
1357 int major, minor;
1358
1359 r = init_hvm_pv_info(&major, &minor);
1360 if (r < 0)
1361 return;
1362
1363 xen_hvm_init_shared_info();
1364
1365 if (xen_feature(XENFEAT_hvm_callback_vector))
1366 xen_have_vector_callback = 1;
1367 xen_hvm_smp_init();
1368 register_cpu_notifier(&xen_hvm_cpu_notifier);
1369 xen_unplug_emulated_devices();
1370 have_vcpu_info_placement = 0;
1371 x86_init.irqs.intr_init = xen_init_IRQ;
1372 xen_hvm_init_time_ops();
1373 xen_hvm_init_mmu_ops();
1374 }
1375
1376 static bool __init xen_hvm_platform(void)
1377 {
1378 if (xen_pv_domain())
1379 return false;
1380
1381 if (!xen_cpuid_base())
1382 return false;
1383
1384 return true;
1385 }
1386
1387 bool xen_hvm_need_lapic(void)
1388 {
1389 if (xen_pv_domain())
1390 return false;
1391 if (!xen_hvm_domain())
1392 return false;
1393 if (xen_feature(XENFEAT_hvm_pirqs) && xen_have_vector_callback)
1394 return false;
1395 return true;
1396 }
1397 EXPORT_SYMBOL_GPL(xen_hvm_need_lapic);
1398
1399 const struct hypervisor_x86 x86_hyper_xen_hvm __refconst = {
1400 .name = "Xen HVM",
1401 .detect = xen_hvm_platform,
1402 .init_platform = xen_hvm_guest_init,
1403 };
1404 EXPORT_SYMBOL(x86_hyper_xen_hvm);
1405 #endif
This page took 0.071212 seconds and 5 git commands to generate.