xen: setup percpu data pointers
[deliverable/linux.git] / arch / x86 / xen / enlighten.c
1 /*
2 * Core of Xen paravirt_ops implementation.
3 *
4 * This file contains the xen_paravirt_ops structure itself, and the
5 * implementations for:
6 * - privileged instructions
7 * - interrupt flags
8 * - segment operations
9 * - booting and setup
10 *
11 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
12 */
13
14 #include <linux/kernel.h>
15 #include <linux/init.h>
16 #include <linux/smp.h>
17 #include <linux/preempt.h>
18 #include <linux/hardirq.h>
19 #include <linux/percpu.h>
20 #include <linux/delay.h>
21 #include <linux/start_kernel.h>
22 #include <linux/sched.h>
23 #include <linux/bootmem.h>
24 #include <linux/module.h>
25 #include <linux/mm.h>
26 #include <linux/page-flags.h>
27 #include <linux/highmem.h>
28 #include <linux/console.h>
29
30 #include <xen/interface/xen.h>
31 #include <xen/interface/version.h>
32 #include <xen/interface/physdev.h>
33 #include <xen/interface/vcpu.h>
34 #include <xen/features.h>
35 #include <xen/page.h>
36 #include <xen/hvc-console.h>
37
38 #include <asm/paravirt.h>
39 #include <asm/apic.h>
40 #include <asm/page.h>
41 #include <asm/xen/hypercall.h>
42 #include <asm/xen/hypervisor.h>
43 #include <asm/fixmap.h>
44 #include <asm/processor.h>
45 #include <asm/msr-index.h>
46 #include <asm/setup.h>
47 #include <asm/desc.h>
48 #include <asm/pgtable.h>
49 #include <asm/tlbflush.h>
50 #include <asm/reboot.h>
51
52 #include "xen-ops.h"
53 #include "mmu.h"
54 #include "multicalls.h"
55
56 EXPORT_SYMBOL_GPL(hypercall_page);
57
58 DEFINE_PER_CPU(struct vcpu_info *, xen_vcpu);
59 DEFINE_PER_CPU(struct vcpu_info, xen_vcpu_info);
60
61 enum xen_domain_type xen_domain_type = XEN_NATIVE;
62 EXPORT_SYMBOL_GPL(xen_domain_type);
63
64 struct start_info *xen_start_info;
65 EXPORT_SYMBOL_GPL(xen_start_info);
66
67 struct shared_info xen_dummy_shared_info;
68
69 void *xen_initial_gdt;
70
71 /*
72 * Point at some empty memory to start with. We map the real shared_info
73 * page as soon as fixmap is up and running.
74 */
75 struct shared_info *HYPERVISOR_shared_info = (void *)&xen_dummy_shared_info;
76
77 /*
78 * Flag to determine whether vcpu info placement is available on all
79 * VCPUs. We assume it is to start with, and then set it to zero on
80 * the first failure. This is because it can succeed on some VCPUs
81 * and not others, since it can involve hypervisor memory allocation,
82 * or because the guest failed to guarantee all the appropriate
83 * constraints on all VCPUs (ie buffer can't cross a page boundary).
84 *
85 * Note that any particular CPU may be using a placed vcpu structure,
86 * but we can only optimise if the all are.
87 *
88 * 0: not available, 1: available
89 */
90 static int have_vcpu_info_placement =
91 #ifdef CONFIG_X86_32
92 1
93 #else
94 0
95 #endif
96 ;
97
98
99 static void xen_vcpu_setup(int cpu)
100 {
101 struct vcpu_register_vcpu_info info;
102 int err;
103 struct vcpu_info *vcpup;
104
105 BUG_ON(HYPERVISOR_shared_info == &xen_dummy_shared_info);
106 per_cpu(xen_vcpu, cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
107
108 if (!have_vcpu_info_placement)
109 return; /* already tested, not available */
110
111 vcpup = &per_cpu(xen_vcpu_info, cpu);
112
113 info.mfn = virt_to_mfn(vcpup);
114 info.offset = offset_in_page(vcpup);
115
116 printk(KERN_DEBUG "trying to map vcpu_info %d at %p, mfn %llx, offset %d\n",
117 cpu, vcpup, info.mfn, info.offset);
118
119 /* Check to see if the hypervisor will put the vcpu_info
120 structure where we want it, which allows direct access via
121 a percpu-variable. */
122 err = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_info, cpu, &info);
123
124 if (err) {
125 printk(KERN_DEBUG "register_vcpu_info failed: err=%d\n", err);
126 have_vcpu_info_placement = 0;
127 } else {
128 /* This cpu is using the registered vcpu info, even if
129 later ones fail to. */
130 per_cpu(xen_vcpu, cpu) = vcpup;
131
132 printk(KERN_DEBUG "cpu %d using vcpu_info at %p\n",
133 cpu, vcpup);
134 }
135 }
136
137 /*
138 * On restore, set the vcpu placement up again.
139 * If it fails, then we're in a bad state, since
140 * we can't back out from using it...
141 */
142 void xen_vcpu_restore(void)
143 {
144 if (have_vcpu_info_placement) {
145 int cpu;
146
147 for_each_online_cpu(cpu) {
148 bool other_cpu = (cpu != smp_processor_id());
149
150 if (other_cpu &&
151 HYPERVISOR_vcpu_op(VCPUOP_down, cpu, NULL))
152 BUG();
153
154 xen_vcpu_setup(cpu);
155
156 if (other_cpu &&
157 HYPERVISOR_vcpu_op(VCPUOP_up, cpu, NULL))
158 BUG();
159 }
160
161 BUG_ON(!have_vcpu_info_placement);
162 }
163 }
164
165 static void __init xen_banner(void)
166 {
167 unsigned version = HYPERVISOR_xen_version(XENVER_version, NULL);
168 struct xen_extraversion extra;
169 HYPERVISOR_xen_version(XENVER_extraversion, &extra);
170
171 printk(KERN_INFO "Booting paravirtualized kernel on %s\n",
172 pv_info.name);
173 printk(KERN_INFO "Xen version: %d.%d%s%s\n",
174 version >> 16, version & 0xffff, extra.extraversion,
175 xen_feature(XENFEAT_mmu_pt_update_preserve_ad) ? " (preserve-AD)" : "");
176 }
177
178 static void xen_cpuid(unsigned int *ax, unsigned int *bx,
179 unsigned int *cx, unsigned int *dx)
180 {
181 unsigned maskedx = ~0;
182
183 /*
184 * Mask out inconvenient features, to try and disable as many
185 * unsupported kernel subsystems as possible.
186 */
187 if (*ax == 1)
188 maskedx = ~((1 << X86_FEATURE_APIC) | /* disable APIC */
189 (1 << X86_FEATURE_ACPI) | /* disable ACPI */
190 (1 << X86_FEATURE_MCE) | /* disable MCE */
191 (1 << X86_FEATURE_MCA) | /* disable MCA */
192 (1 << X86_FEATURE_ACC)); /* thermal monitoring */
193
194 asm(XEN_EMULATE_PREFIX "cpuid"
195 : "=a" (*ax),
196 "=b" (*bx),
197 "=c" (*cx),
198 "=d" (*dx)
199 : "0" (*ax), "2" (*cx));
200 *dx &= maskedx;
201 }
202
203 static void xen_set_debugreg(int reg, unsigned long val)
204 {
205 HYPERVISOR_set_debugreg(reg, val);
206 }
207
208 static unsigned long xen_get_debugreg(int reg)
209 {
210 return HYPERVISOR_get_debugreg(reg);
211 }
212
213 void xen_leave_lazy(void)
214 {
215 paravirt_leave_lazy(paravirt_get_lazy_mode());
216 xen_mc_flush();
217 }
218
219 static unsigned long xen_store_tr(void)
220 {
221 return 0;
222 }
223
224 /*
225 * Set the page permissions for a particular virtual address. If the
226 * address is a vmalloc mapping (or other non-linear mapping), then
227 * find the linear mapping of the page and also set its protections to
228 * match.
229 */
230 static void set_aliased_prot(void *v, pgprot_t prot)
231 {
232 int level;
233 pte_t *ptep;
234 pte_t pte;
235 unsigned long pfn;
236 struct page *page;
237
238 ptep = lookup_address((unsigned long)v, &level);
239 BUG_ON(ptep == NULL);
240
241 pfn = pte_pfn(*ptep);
242 page = pfn_to_page(pfn);
243
244 pte = pfn_pte(pfn, prot);
245
246 if (HYPERVISOR_update_va_mapping((unsigned long)v, pte, 0))
247 BUG();
248
249 if (!PageHighMem(page)) {
250 void *av = __va(PFN_PHYS(pfn));
251
252 if (av != v)
253 if (HYPERVISOR_update_va_mapping((unsigned long)av, pte, 0))
254 BUG();
255 } else
256 kmap_flush_unused();
257 }
258
259 static void xen_alloc_ldt(struct desc_struct *ldt, unsigned entries)
260 {
261 const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
262 int i;
263
264 for(i = 0; i < entries; i += entries_per_page)
265 set_aliased_prot(ldt + i, PAGE_KERNEL_RO);
266 }
267
268 static void xen_free_ldt(struct desc_struct *ldt, unsigned entries)
269 {
270 const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
271 int i;
272
273 for(i = 0; i < entries; i += entries_per_page)
274 set_aliased_prot(ldt + i, PAGE_KERNEL);
275 }
276
277 static void xen_set_ldt(const void *addr, unsigned entries)
278 {
279 struct mmuext_op *op;
280 struct multicall_space mcs = xen_mc_entry(sizeof(*op));
281
282 op = mcs.args;
283 op->cmd = MMUEXT_SET_LDT;
284 op->arg1.linear_addr = (unsigned long)addr;
285 op->arg2.nr_ents = entries;
286
287 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
288
289 xen_mc_issue(PARAVIRT_LAZY_CPU);
290 }
291
292 static void xen_load_gdt(const struct desc_ptr *dtr)
293 {
294 unsigned long *frames;
295 unsigned long va = dtr->address;
296 unsigned int size = dtr->size + 1;
297 unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
298 int f;
299 struct multicall_space mcs;
300
301 /* A GDT can be up to 64k in size, which corresponds to 8192
302 8-byte entries, or 16 4k pages.. */
303
304 BUG_ON(size > 65536);
305 BUG_ON(va & ~PAGE_MASK);
306
307 mcs = xen_mc_entry(sizeof(*frames) * pages);
308 frames = mcs.args;
309
310 for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
311 frames[f] = virt_to_mfn(va);
312 make_lowmem_page_readonly((void *)va);
313 }
314
315 MULTI_set_gdt(mcs.mc, frames, size / sizeof(struct desc_struct));
316
317 xen_mc_issue(PARAVIRT_LAZY_CPU);
318 }
319
320 static void load_TLS_descriptor(struct thread_struct *t,
321 unsigned int cpu, unsigned int i)
322 {
323 struct desc_struct *gdt = get_cpu_gdt_table(cpu);
324 xmaddr_t maddr = virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]);
325 struct multicall_space mc = __xen_mc_entry(0);
326
327 MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]);
328 }
329
330 static void xen_load_tls(struct thread_struct *t, unsigned int cpu)
331 {
332 /*
333 * XXX sleazy hack: If we're being called in a lazy-cpu zone,
334 * it means we're in a context switch, and %gs has just been
335 * saved. This means we can zero it out to prevent faults on
336 * exit from the hypervisor if the next process has no %gs.
337 * Either way, it has been saved, and the new value will get
338 * loaded properly. This will go away as soon as Xen has been
339 * modified to not save/restore %gs for normal hypercalls.
340 *
341 * On x86_64, this hack is not used for %gs, because gs points
342 * to KERNEL_GS_BASE (and uses it for PDA references), so we
343 * must not zero %gs on x86_64
344 *
345 * For x86_64, we need to zero %fs, otherwise we may get an
346 * exception between the new %fs descriptor being loaded and
347 * %fs being effectively cleared at __switch_to().
348 */
349 if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_CPU) {
350 #ifdef CONFIG_X86_32
351 loadsegment(gs, 0);
352 #else
353 loadsegment(fs, 0);
354 #endif
355 }
356
357 xen_mc_batch();
358
359 load_TLS_descriptor(t, cpu, 0);
360 load_TLS_descriptor(t, cpu, 1);
361 load_TLS_descriptor(t, cpu, 2);
362
363 xen_mc_issue(PARAVIRT_LAZY_CPU);
364 }
365
366 #ifdef CONFIG_X86_64
367 static void xen_load_gs_index(unsigned int idx)
368 {
369 if (HYPERVISOR_set_segment_base(SEGBASE_GS_USER_SEL, idx))
370 BUG();
371 }
372 #endif
373
374 static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum,
375 const void *ptr)
376 {
377 xmaddr_t mach_lp = arbitrary_virt_to_machine(&dt[entrynum]);
378 u64 entry = *(u64 *)ptr;
379
380 preempt_disable();
381
382 xen_mc_flush();
383 if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry))
384 BUG();
385
386 preempt_enable();
387 }
388
389 static int cvt_gate_to_trap(int vector, const gate_desc *val,
390 struct trap_info *info)
391 {
392 if (val->type != 0xf && val->type != 0xe)
393 return 0;
394
395 info->vector = vector;
396 info->address = gate_offset(*val);
397 info->cs = gate_segment(*val);
398 info->flags = val->dpl;
399 /* interrupt gates clear IF */
400 if (val->type == 0xe)
401 info->flags |= 4;
402
403 return 1;
404 }
405
406 /* Locations of each CPU's IDT */
407 static DEFINE_PER_CPU(struct desc_ptr, idt_desc);
408
409 /* Set an IDT entry. If the entry is part of the current IDT, then
410 also update Xen. */
411 static void xen_write_idt_entry(gate_desc *dt, int entrynum, const gate_desc *g)
412 {
413 unsigned long p = (unsigned long)&dt[entrynum];
414 unsigned long start, end;
415
416 preempt_disable();
417
418 start = __get_cpu_var(idt_desc).address;
419 end = start + __get_cpu_var(idt_desc).size + 1;
420
421 xen_mc_flush();
422
423 native_write_idt_entry(dt, entrynum, g);
424
425 if (p >= start && (p + 8) <= end) {
426 struct trap_info info[2];
427
428 info[1].address = 0;
429
430 if (cvt_gate_to_trap(entrynum, g, &info[0]))
431 if (HYPERVISOR_set_trap_table(info))
432 BUG();
433 }
434
435 preempt_enable();
436 }
437
438 static void xen_convert_trap_info(const struct desc_ptr *desc,
439 struct trap_info *traps)
440 {
441 unsigned in, out, count;
442
443 count = (desc->size+1) / sizeof(gate_desc);
444 BUG_ON(count > 256);
445
446 for (in = out = 0; in < count; in++) {
447 gate_desc *entry = (gate_desc*)(desc->address) + in;
448
449 if (cvt_gate_to_trap(in, entry, &traps[out]))
450 out++;
451 }
452 traps[out].address = 0;
453 }
454
455 void xen_copy_trap_info(struct trap_info *traps)
456 {
457 const struct desc_ptr *desc = &__get_cpu_var(idt_desc);
458
459 xen_convert_trap_info(desc, traps);
460 }
461
462 /* Load a new IDT into Xen. In principle this can be per-CPU, so we
463 hold a spinlock to protect the static traps[] array (static because
464 it avoids allocation, and saves stack space). */
465 static void xen_load_idt(const struct desc_ptr *desc)
466 {
467 static DEFINE_SPINLOCK(lock);
468 static struct trap_info traps[257];
469
470 spin_lock(&lock);
471
472 __get_cpu_var(idt_desc) = *desc;
473
474 xen_convert_trap_info(desc, traps);
475
476 xen_mc_flush();
477 if (HYPERVISOR_set_trap_table(traps))
478 BUG();
479
480 spin_unlock(&lock);
481 }
482
483 /* Write a GDT descriptor entry. Ignore LDT descriptors, since
484 they're handled differently. */
485 static void xen_write_gdt_entry(struct desc_struct *dt, int entry,
486 const void *desc, int type)
487 {
488 preempt_disable();
489
490 switch (type) {
491 case DESC_LDT:
492 case DESC_TSS:
493 /* ignore */
494 break;
495
496 default: {
497 xmaddr_t maddr = virt_to_machine(&dt[entry]);
498
499 xen_mc_flush();
500 if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
501 BUG();
502 }
503
504 }
505
506 preempt_enable();
507 }
508
509 static void xen_load_sp0(struct tss_struct *tss,
510 struct thread_struct *thread)
511 {
512 struct multicall_space mcs = xen_mc_entry(0);
513 MULTI_stack_switch(mcs.mc, __KERNEL_DS, thread->sp0);
514 xen_mc_issue(PARAVIRT_LAZY_CPU);
515 }
516
517 static void xen_set_iopl_mask(unsigned mask)
518 {
519 struct physdev_set_iopl set_iopl;
520
521 /* Force the change at ring 0. */
522 set_iopl.iopl = (mask == 0) ? 1 : (mask >> 12) & 3;
523 HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
524 }
525
526 static void xen_io_delay(void)
527 {
528 }
529
530 #ifdef CONFIG_X86_LOCAL_APIC
531 static u32 xen_apic_read(u32 reg)
532 {
533 return 0;
534 }
535
536 static void xen_apic_write(u32 reg, u32 val)
537 {
538 /* Warn to see if there's any stray references */
539 WARN_ON(1);
540 }
541
542 static u64 xen_apic_icr_read(void)
543 {
544 return 0;
545 }
546
547 static void xen_apic_icr_write(u32 low, u32 id)
548 {
549 /* Warn to see if there's any stray references */
550 WARN_ON(1);
551 }
552
553 static void xen_apic_wait_icr_idle(void)
554 {
555 return;
556 }
557
558 static u32 xen_safe_apic_wait_icr_idle(void)
559 {
560 return 0;
561 }
562
563 static struct apic_ops xen_basic_apic_ops = {
564 .read = xen_apic_read,
565 .write = xen_apic_write,
566 .icr_read = xen_apic_icr_read,
567 .icr_write = xen_apic_icr_write,
568 .wait_icr_idle = xen_apic_wait_icr_idle,
569 .safe_wait_icr_idle = xen_safe_apic_wait_icr_idle,
570 };
571
572 #endif
573
574
575 static void xen_clts(void)
576 {
577 struct multicall_space mcs;
578
579 mcs = xen_mc_entry(0);
580
581 MULTI_fpu_taskswitch(mcs.mc, 0);
582
583 xen_mc_issue(PARAVIRT_LAZY_CPU);
584 }
585
586 static void xen_write_cr0(unsigned long cr0)
587 {
588 struct multicall_space mcs;
589
590 /* Only pay attention to cr0.TS; everything else is
591 ignored. */
592 mcs = xen_mc_entry(0);
593
594 MULTI_fpu_taskswitch(mcs.mc, (cr0 & X86_CR0_TS) != 0);
595
596 xen_mc_issue(PARAVIRT_LAZY_CPU);
597 }
598
599 static void xen_write_cr4(unsigned long cr4)
600 {
601 cr4 &= ~X86_CR4_PGE;
602 cr4 &= ~X86_CR4_PSE;
603
604 native_write_cr4(cr4);
605 }
606
607 static int xen_write_msr_safe(unsigned int msr, unsigned low, unsigned high)
608 {
609 int ret;
610
611 ret = 0;
612
613 switch (msr) {
614 #ifdef CONFIG_X86_64
615 unsigned which;
616 u64 base;
617
618 case MSR_FS_BASE: which = SEGBASE_FS; goto set;
619 case MSR_KERNEL_GS_BASE: which = SEGBASE_GS_USER; goto set;
620 case MSR_GS_BASE: which = SEGBASE_GS_KERNEL; goto set;
621
622 set:
623 base = ((u64)high << 32) | low;
624 if (HYPERVISOR_set_segment_base(which, base) != 0)
625 ret = -EFAULT;
626 break;
627 #endif
628
629 case MSR_STAR:
630 case MSR_CSTAR:
631 case MSR_LSTAR:
632 case MSR_SYSCALL_MASK:
633 case MSR_IA32_SYSENTER_CS:
634 case MSR_IA32_SYSENTER_ESP:
635 case MSR_IA32_SYSENTER_EIP:
636 /* Fast syscall setup is all done in hypercalls, so
637 these are all ignored. Stub them out here to stop
638 Xen console noise. */
639 break;
640
641 default:
642 ret = native_write_msr_safe(msr, low, high);
643 }
644
645 return ret;
646 }
647
648 void xen_setup_shared_info(void)
649 {
650 if (!xen_feature(XENFEAT_auto_translated_physmap)) {
651 set_fixmap(FIX_PARAVIRT_BOOTMAP,
652 xen_start_info->shared_info);
653
654 HYPERVISOR_shared_info =
655 (struct shared_info *)fix_to_virt(FIX_PARAVIRT_BOOTMAP);
656 } else
657 HYPERVISOR_shared_info =
658 (struct shared_info *)__va(xen_start_info->shared_info);
659
660 #ifndef CONFIG_SMP
661 /* In UP this is as good a place as any to set up shared info */
662 xen_setup_vcpu_info_placement();
663 #endif
664
665 xen_setup_mfn_list_list();
666 }
667
668 /* This is called once we have the cpu_possible_map */
669 void xen_setup_vcpu_info_placement(void)
670 {
671 int cpu;
672
673 for_each_possible_cpu(cpu)
674 xen_vcpu_setup(cpu);
675
676 /* xen_vcpu_setup managed to place the vcpu_info within the
677 percpu area for all cpus, so make use of it */
678 if (have_vcpu_info_placement) {
679 printk(KERN_INFO "Xen: using vcpu_info placement\n");
680
681 pv_irq_ops.save_fl = __PV_IS_CALLEE_SAVE(xen_save_fl_direct);
682 pv_irq_ops.restore_fl = __PV_IS_CALLEE_SAVE(xen_restore_fl_direct);
683 pv_irq_ops.irq_disable = __PV_IS_CALLEE_SAVE(xen_irq_disable_direct);
684 pv_irq_ops.irq_enable = __PV_IS_CALLEE_SAVE(xen_irq_enable_direct);
685 pv_mmu_ops.read_cr2 = xen_read_cr2_direct;
686 }
687 }
688
689 static unsigned xen_patch(u8 type, u16 clobbers, void *insnbuf,
690 unsigned long addr, unsigned len)
691 {
692 char *start, *end, *reloc;
693 unsigned ret;
694
695 start = end = reloc = NULL;
696
697 #define SITE(op, x) \
698 case PARAVIRT_PATCH(op.x): \
699 if (have_vcpu_info_placement) { \
700 start = (char *)xen_##x##_direct; \
701 end = xen_##x##_direct_end; \
702 reloc = xen_##x##_direct_reloc; \
703 } \
704 goto patch_site
705
706 switch (type) {
707 SITE(pv_irq_ops, irq_enable);
708 SITE(pv_irq_ops, irq_disable);
709 SITE(pv_irq_ops, save_fl);
710 SITE(pv_irq_ops, restore_fl);
711 #undef SITE
712
713 patch_site:
714 if (start == NULL || (end-start) > len)
715 goto default_patch;
716
717 ret = paravirt_patch_insns(insnbuf, len, start, end);
718
719 /* Note: because reloc is assigned from something that
720 appears to be an array, gcc assumes it's non-null,
721 but doesn't know its relationship with start and
722 end. */
723 if (reloc > start && reloc < end) {
724 int reloc_off = reloc - start;
725 long *relocp = (long *)(insnbuf + reloc_off);
726 long delta = start - (char *)addr;
727
728 *relocp += delta;
729 }
730 break;
731
732 default_patch:
733 default:
734 ret = paravirt_patch_default(type, clobbers, insnbuf,
735 addr, len);
736 break;
737 }
738
739 return ret;
740 }
741
742 static const struct pv_info xen_info __initdata = {
743 .paravirt_enabled = 1,
744 .shared_kernel_pmd = 0,
745
746 .name = "Xen",
747 };
748
749 static const struct pv_init_ops xen_init_ops __initdata = {
750 .patch = xen_patch,
751
752 .banner = xen_banner,
753 .memory_setup = xen_memory_setup,
754 .arch_setup = xen_arch_setup,
755 .post_allocator_init = xen_post_allocator_init,
756 };
757
758 static const struct pv_time_ops xen_time_ops __initdata = {
759 .time_init = xen_time_init,
760
761 .set_wallclock = xen_set_wallclock,
762 .get_wallclock = xen_get_wallclock,
763 .get_tsc_khz = xen_tsc_khz,
764 .sched_clock = xen_sched_clock,
765 };
766
767 static const struct pv_cpu_ops xen_cpu_ops __initdata = {
768 .cpuid = xen_cpuid,
769
770 .set_debugreg = xen_set_debugreg,
771 .get_debugreg = xen_get_debugreg,
772
773 .clts = xen_clts,
774
775 .read_cr0 = native_read_cr0,
776 .write_cr0 = xen_write_cr0,
777
778 .read_cr4 = native_read_cr4,
779 .read_cr4_safe = native_read_cr4_safe,
780 .write_cr4 = xen_write_cr4,
781
782 .wbinvd = native_wbinvd,
783
784 .read_msr = native_read_msr_safe,
785 .write_msr = xen_write_msr_safe,
786 .read_tsc = native_read_tsc,
787 .read_pmc = native_read_pmc,
788
789 .iret = xen_iret,
790 .irq_enable_sysexit = xen_sysexit,
791 #ifdef CONFIG_X86_64
792 .usergs_sysret32 = xen_sysret32,
793 .usergs_sysret64 = xen_sysret64,
794 #endif
795
796 .load_tr_desc = paravirt_nop,
797 .set_ldt = xen_set_ldt,
798 .load_gdt = xen_load_gdt,
799 .load_idt = xen_load_idt,
800 .load_tls = xen_load_tls,
801 #ifdef CONFIG_X86_64
802 .load_gs_index = xen_load_gs_index,
803 #endif
804
805 .alloc_ldt = xen_alloc_ldt,
806 .free_ldt = xen_free_ldt,
807
808 .store_gdt = native_store_gdt,
809 .store_idt = native_store_idt,
810 .store_tr = xen_store_tr,
811
812 .write_ldt_entry = xen_write_ldt_entry,
813 .write_gdt_entry = xen_write_gdt_entry,
814 .write_idt_entry = xen_write_idt_entry,
815 .load_sp0 = xen_load_sp0,
816
817 .set_iopl_mask = xen_set_iopl_mask,
818 .io_delay = xen_io_delay,
819
820 /* Xen takes care of %gs when switching to usermode for us */
821 .swapgs = paravirt_nop,
822
823 .lazy_mode = {
824 .enter = paravirt_enter_lazy_cpu,
825 .leave = xen_leave_lazy,
826 },
827 };
828
829 static const struct pv_apic_ops xen_apic_ops __initdata = {
830 #ifdef CONFIG_X86_LOCAL_APIC
831 .setup_boot_clock = paravirt_nop,
832 .setup_secondary_clock = paravirt_nop,
833 .startup_ipi_hook = paravirt_nop,
834 #endif
835 };
836
837 static void xen_reboot(int reason)
838 {
839 struct sched_shutdown r = { .reason = reason };
840
841 #ifdef CONFIG_SMP
842 smp_send_stop();
843 #endif
844
845 if (HYPERVISOR_sched_op(SCHEDOP_shutdown, &r))
846 BUG();
847 }
848
849 static void xen_restart(char *msg)
850 {
851 xen_reboot(SHUTDOWN_reboot);
852 }
853
854 static void xen_emergency_restart(void)
855 {
856 xen_reboot(SHUTDOWN_reboot);
857 }
858
859 static void xen_machine_halt(void)
860 {
861 xen_reboot(SHUTDOWN_poweroff);
862 }
863
864 static void xen_crash_shutdown(struct pt_regs *regs)
865 {
866 xen_reboot(SHUTDOWN_crash);
867 }
868
869 static const struct machine_ops __initdata xen_machine_ops = {
870 .restart = xen_restart,
871 .halt = xen_machine_halt,
872 .power_off = xen_machine_halt,
873 .shutdown = xen_machine_halt,
874 .crash_shutdown = xen_crash_shutdown,
875 .emergency_restart = xen_emergency_restart,
876 };
877
878
879 /* First C function to be called on Xen boot */
880 asmlinkage void __init xen_start_kernel(void)
881 {
882 pgd_t *pgd;
883
884 if (!xen_start_info)
885 return;
886
887 xen_domain_type = XEN_PV_DOMAIN;
888
889 BUG_ON(memcmp(xen_start_info->magic, "xen-3", 5) != 0);
890
891 xen_setup_features();
892
893 /* Install Xen paravirt ops */
894 pv_info = xen_info;
895 pv_init_ops = xen_init_ops;
896 pv_time_ops = xen_time_ops;
897 pv_cpu_ops = xen_cpu_ops;
898 pv_apic_ops = xen_apic_ops;
899 pv_mmu_ops = xen_mmu_ops;
900
901 xen_init_irq_ops();
902
903 #ifdef CONFIG_X86_LOCAL_APIC
904 /*
905 * set up the basic apic ops.
906 */
907 apic_ops = &xen_basic_apic_ops;
908 #endif
909
910 if (xen_feature(XENFEAT_mmu_pt_update_preserve_ad)) {
911 pv_mmu_ops.ptep_modify_prot_start = xen_ptep_modify_prot_start;
912 pv_mmu_ops.ptep_modify_prot_commit = xen_ptep_modify_prot_commit;
913 }
914
915 machine_ops = xen_machine_ops;
916
917 #ifdef CONFIG_X86_64
918 /* Disable until direct per-cpu data access. */
919 have_vcpu_info_placement = 0;
920 #endif
921
922 #ifdef CONFIG_X86_64
923 /*
924 * Setup percpu state. We only need to do this for 64-bit
925 * because 32-bit already has %fs set properly.
926 */
927 load_percpu_segment(0);
928 #endif
929 /*
930 * The only reliable way to retain the initial address of the
931 * percpu gdt_page is to remember it here, so we can go and
932 * mark it RW later, when the initial percpu area is freed.
933 */
934 xen_initial_gdt = &per_cpu(gdt_page, 0);
935
936 xen_smp_init();
937
938 /* Get mfn list */
939 if (!xen_feature(XENFEAT_auto_translated_physmap))
940 xen_build_dynamic_phys_to_machine();
941
942 pgd = (pgd_t *)xen_start_info->pt_base;
943
944 /* Prevent unwanted bits from being set in PTEs. */
945 __supported_pte_mask &= ~_PAGE_GLOBAL;
946 if (!xen_initial_domain())
947 __supported_pte_mask &= ~(_PAGE_PWT | _PAGE_PCD);
948
949 /* Don't do the full vcpu_info placement stuff until we have a
950 possible map and a non-dummy shared_info. */
951 per_cpu(xen_vcpu, 0) = &HYPERVISOR_shared_info->vcpu_info[0];
952
953 xen_raw_console_write("mapping kernel into physical memory\n");
954 pgd = xen_setup_kernel_pagetable(pgd, xen_start_info->nr_pages);
955
956 init_mm.pgd = pgd;
957
958 /* keep using Xen gdt for now; no urgent need to change it */
959
960 pv_info.kernel_rpl = 1;
961 if (xen_feature(XENFEAT_supervisor_mode_kernel))
962 pv_info.kernel_rpl = 0;
963
964 /* set the limit of our address space */
965 xen_reserve_top();
966
967 #ifdef CONFIG_X86_32
968 /* set up basic CPUID stuff */
969 cpu_detect(&new_cpu_data);
970 new_cpu_data.hard_math = 1;
971 new_cpu_data.x86_capability[0] = cpuid_edx(1);
972 #endif
973
974 /* Poke various useful things into boot_params */
975 boot_params.hdr.type_of_loader = (9 << 4) | 0;
976 boot_params.hdr.ramdisk_image = xen_start_info->mod_start
977 ? __pa(xen_start_info->mod_start) : 0;
978 boot_params.hdr.ramdisk_size = xen_start_info->mod_len;
979 boot_params.hdr.cmd_line_ptr = __pa(xen_start_info->cmd_line);
980
981 if (!xen_initial_domain()) {
982 add_preferred_console("xenboot", 0, NULL);
983 add_preferred_console("tty", 0, NULL);
984 add_preferred_console("hvc", 0, NULL);
985 }
986
987 xen_raw_console_write("about to get started...\n");
988
989 /* Start the world */
990 #ifdef CONFIG_X86_32
991 i386_start_kernel();
992 #else
993 x86_64_start_reservations((char *)__pa_symbol(&boot_params));
994 #endif
995 }
This page took 0.064172 seconds and 6 git commands to generate.