Merge branch 'misc' of git://git.kernel.org/pub/scm/linux/kernel/git/mmarek/kbuild
[deliverable/linux.git] / arch / x86 / xen / enlighten.c
1 /*
2 * Core of Xen paravirt_ops implementation.
3 *
4 * This file contains the xen_paravirt_ops structure itself, and the
5 * implementations for:
6 * - privileged instructions
7 * - interrupt flags
8 * - segment operations
9 * - booting and setup
10 *
11 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
12 */
13
14 #include <linux/cpu.h>
15 #include <linux/kernel.h>
16 #include <linux/init.h>
17 #include <linux/smp.h>
18 #include <linux/preempt.h>
19 #include <linux/hardirq.h>
20 #include <linux/percpu.h>
21 #include <linux/delay.h>
22 #include <linux/start_kernel.h>
23 #include <linux/sched.h>
24 #include <linux/kprobes.h>
25 #include <linux/bootmem.h>
26 #include <linux/module.h>
27 #include <linux/mm.h>
28 #include <linux/page-flags.h>
29 #include <linux/highmem.h>
30 #include <linux/console.h>
31 #include <linux/pci.h>
32 #include <linux/gfp.h>
33 #include <linux/memblock.h>
34 #include <linux/edd.h>
35
36 #include <xen/xen.h>
37 #include <xen/events.h>
38 #include <xen/interface/xen.h>
39 #include <xen/interface/version.h>
40 #include <xen/interface/physdev.h>
41 #include <xen/interface/vcpu.h>
42 #include <xen/interface/memory.h>
43 #include <xen/interface/nmi.h>
44 #include <xen/interface/xen-mca.h>
45 #include <xen/features.h>
46 #include <xen/page.h>
47 #include <xen/hvm.h>
48 #include <xen/hvc-console.h>
49 #include <xen/acpi.h>
50
51 #include <asm/paravirt.h>
52 #include <asm/apic.h>
53 #include <asm/page.h>
54 #include <asm/xen/pci.h>
55 #include <asm/xen/hypercall.h>
56 #include <asm/xen/hypervisor.h>
57 #include <asm/fixmap.h>
58 #include <asm/processor.h>
59 #include <asm/proto.h>
60 #include <asm/msr-index.h>
61 #include <asm/traps.h>
62 #include <asm/setup.h>
63 #include <asm/desc.h>
64 #include <asm/pgalloc.h>
65 #include <asm/pgtable.h>
66 #include <asm/tlbflush.h>
67 #include <asm/reboot.h>
68 #include <asm/stackprotector.h>
69 #include <asm/hypervisor.h>
70 #include <asm/mach_traps.h>
71 #include <asm/mwait.h>
72 #include <asm/pci_x86.h>
73 #include <asm/pat.h>
74
75 #ifdef CONFIG_ACPI
76 #include <linux/acpi.h>
77 #include <asm/acpi.h>
78 #include <acpi/pdc_intel.h>
79 #include <acpi/processor.h>
80 #include <xen/interface/platform.h>
81 #endif
82
83 #include "xen-ops.h"
84 #include "mmu.h"
85 #include "smp.h"
86 #include "multicalls.h"
87
88 EXPORT_SYMBOL_GPL(hypercall_page);
89
90 /*
91 * Pointer to the xen_vcpu_info structure or
92 * &HYPERVISOR_shared_info->vcpu_info[cpu]. See xen_hvm_init_shared_info
93 * and xen_vcpu_setup for details. By default it points to share_info->vcpu_info
94 * but if the hypervisor supports VCPUOP_register_vcpu_info then it can point
95 * to xen_vcpu_info. The pointer is used in __xen_evtchn_do_upcall to
96 * acknowledge pending events.
97 * Also more subtly it is used by the patched version of irq enable/disable
98 * e.g. xen_irq_enable_direct and xen_iret in PV mode.
99 *
100 * The desire to be able to do those mask/unmask operations as a single
101 * instruction by using the per-cpu offset held in %gs is the real reason
102 * vcpu info is in a per-cpu pointer and the original reason for this
103 * hypercall.
104 *
105 */
106 DEFINE_PER_CPU(struct vcpu_info *, xen_vcpu);
107
108 /*
109 * Per CPU pages used if hypervisor supports VCPUOP_register_vcpu_info
110 * hypercall. This can be used both in PV and PVHVM mode. The structure
111 * overrides the default per_cpu(xen_vcpu, cpu) value.
112 */
113 DEFINE_PER_CPU(struct vcpu_info, xen_vcpu_info);
114
115 enum xen_domain_type xen_domain_type = XEN_NATIVE;
116 EXPORT_SYMBOL_GPL(xen_domain_type);
117
118 unsigned long *machine_to_phys_mapping = (void *)MACH2PHYS_VIRT_START;
119 EXPORT_SYMBOL(machine_to_phys_mapping);
120 unsigned long machine_to_phys_nr;
121 EXPORT_SYMBOL(machine_to_phys_nr);
122
123 struct start_info *xen_start_info;
124 EXPORT_SYMBOL_GPL(xen_start_info);
125
126 struct shared_info xen_dummy_shared_info;
127
128 void *xen_initial_gdt;
129
130 RESERVE_BRK(shared_info_page_brk, PAGE_SIZE);
131 __read_mostly int xen_have_vector_callback;
132 EXPORT_SYMBOL_GPL(xen_have_vector_callback);
133
134 /*
135 * Point at some empty memory to start with. We map the real shared_info
136 * page as soon as fixmap is up and running.
137 */
138 struct shared_info *HYPERVISOR_shared_info = &xen_dummy_shared_info;
139
140 /*
141 * Flag to determine whether vcpu info placement is available on all
142 * VCPUs. We assume it is to start with, and then set it to zero on
143 * the first failure. This is because it can succeed on some VCPUs
144 * and not others, since it can involve hypervisor memory allocation,
145 * or because the guest failed to guarantee all the appropriate
146 * constraints on all VCPUs (ie buffer can't cross a page boundary).
147 *
148 * Note that any particular CPU may be using a placed vcpu structure,
149 * but we can only optimise if the all are.
150 *
151 * 0: not available, 1: available
152 */
153 static int have_vcpu_info_placement = 1;
154
155 struct tls_descs {
156 struct desc_struct desc[3];
157 };
158
159 /*
160 * Updating the 3 TLS descriptors in the GDT on every task switch is
161 * surprisingly expensive so we avoid updating them if they haven't
162 * changed. Since Xen writes different descriptors than the one
163 * passed in the update_descriptor hypercall we keep shadow copies to
164 * compare against.
165 */
166 static DEFINE_PER_CPU(struct tls_descs, shadow_tls_desc);
167
168 static void clamp_max_cpus(void)
169 {
170 #ifdef CONFIG_SMP
171 if (setup_max_cpus > MAX_VIRT_CPUS)
172 setup_max_cpus = MAX_VIRT_CPUS;
173 #endif
174 }
175
176 static void xen_vcpu_setup(int cpu)
177 {
178 struct vcpu_register_vcpu_info info;
179 int err;
180 struct vcpu_info *vcpup;
181
182 BUG_ON(HYPERVISOR_shared_info == &xen_dummy_shared_info);
183
184 /*
185 * This path is called twice on PVHVM - first during bootup via
186 * smp_init -> xen_hvm_cpu_notify, and then if the VCPU is being
187 * hotplugged: cpu_up -> xen_hvm_cpu_notify.
188 * As we can only do the VCPUOP_register_vcpu_info once lets
189 * not over-write its result.
190 *
191 * For PV it is called during restore (xen_vcpu_restore) and bootup
192 * (xen_setup_vcpu_info_placement). The hotplug mechanism does not
193 * use this function.
194 */
195 if (xen_hvm_domain()) {
196 if (per_cpu(xen_vcpu, cpu) == &per_cpu(xen_vcpu_info, cpu))
197 return;
198 }
199 if (cpu < MAX_VIRT_CPUS)
200 per_cpu(xen_vcpu,cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
201
202 if (!have_vcpu_info_placement) {
203 if (cpu >= MAX_VIRT_CPUS)
204 clamp_max_cpus();
205 return;
206 }
207
208 vcpup = &per_cpu(xen_vcpu_info, cpu);
209 info.mfn = arbitrary_virt_to_mfn(vcpup);
210 info.offset = offset_in_page(vcpup);
211
212 /* Check to see if the hypervisor will put the vcpu_info
213 structure where we want it, which allows direct access via
214 a percpu-variable.
215 N.B. This hypercall can _only_ be called once per CPU. Subsequent
216 calls will error out with -EINVAL. This is due to the fact that
217 hypervisor has no unregister variant and this hypercall does not
218 allow to over-write info.mfn and info.offset.
219 */
220 err = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_info, cpu, &info);
221
222 if (err) {
223 printk(KERN_DEBUG "register_vcpu_info failed: err=%d\n", err);
224 have_vcpu_info_placement = 0;
225 clamp_max_cpus();
226 } else {
227 /* This cpu is using the registered vcpu info, even if
228 later ones fail to. */
229 per_cpu(xen_vcpu, cpu) = vcpup;
230 }
231 }
232
233 /*
234 * On restore, set the vcpu placement up again.
235 * If it fails, then we're in a bad state, since
236 * we can't back out from using it...
237 */
238 void xen_vcpu_restore(void)
239 {
240 int cpu;
241
242 for_each_possible_cpu(cpu) {
243 bool other_cpu = (cpu != smp_processor_id());
244 bool is_up = HYPERVISOR_vcpu_op(VCPUOP_is_up, cpu, NULL);
245
246 if (other_cpu && is_up &&
247 HYPERVISOR_vcpu_op(VCPUOP_down, cpu, NULL))
248 BUG();
249
250 xen_setup_runstate_info(cpu);
251
252 if (have_vcpu_info_placement)
253 xen_vcpu_setup(cpu);
254
255 if (other_cpu && is_up &&
256 HYPERVISOR_vcpu_op(VCPUOP_up, cpu, NULL))
257 BUG();
258 }
259 }
260
261 static void __init xen_banner(void)
262 {
263 unsigned version = HYPERVISOR_xen_version(XENVER_version, NULL);
264 struct xen_extraversion extra;
265 HYPERVISOR_xen_version(XENVER_extraversion, &extra);
266
267 pr_info("Booting paravirtualized kernel %son %s\n",
268 xen_feature(XENFEAT_auto_translated_physmap) ?
269 "with PVH extensions " : "", pv_info.name);
270 printk(KERN_INFO "Xen version: %d.%d%s%s\n",
271 version >> 16, version & 0xffff, extra.extraversion,
272 xen_feature(XENFEAT_mmu_pt_update_preserve_ad) ? " (preserve-AD)" : "");
273 }
274 /* Check if running on Xen version (major, minor) or later */
275 bool
276 xen_running_on_version_or_later(unsigned int major, unsigned int minor)
277 {
278 unsigned int version;
279
280 if (!xen_domain())
281 return false;
282
283 version = HYPERVISOR_xen_version(XENVER_version, NULL);
284 if ((((version >> 16) == major) && ((version & 0xffff) >= minor)) ||
285 ((version >> 16) > major))
286 return true;
287 return false;
288 }
289
290 #define CPUID_THERM_POWER_LEAF 6
291 #define APERFMPERF_PRESENT 0
292
293 static __read_mostly unsigned int cpuid_leaf1_edx_mask = ~0;
294 static __read_mostly unsigned int cpuid_leaf1_ecx_mask = ~0;
295
296 static __read_mostly unsigned int cpuid_leaf1_ecx_set_mask;
297 static __read_mostly unsigned int cpuid_leaf5_ecx_val;
298 static __read_mostly unsigned int cpuid_leaf5_edx_val;
299
300 static void xen_cpuid(unsigned int *ax, unsigned int *bx,
301 unsigned int *cx, unsigned int *dx)
302 {
303 unsigned maskebx = ~0;
304 unsigned maskecx = ~0;
305 unsigned maskedx = ~0;
306 unsigned setecx = 0;
307 /*
308 * Mask out inconvenient features, to try and disable as many
309 * unsupported kernel subsystems as possible.
310 */
311 switch (*ax) {
312 case 1:
313 maskecx = cpuid_leaf1_ecx_mask;
314 setecx = cpuid_leaf1_ecx_set_mask;
315 maskedx = cpuid_leaf1_edx_mask;
316 break;
317
318 case CPUID_MWAIT_LEAF:
319 /* Synthesize the values.. */
320 *ax = 0;
321 *bx = 0;
322 *cx = cpuid_leaf5_ecx_val;
323 *dx = cpuid_leaf5_edx_val;
324 return;
325
326 case CPUID_THERM_POWER_LEAF:
327 /* Disabling APERFMPERF for kernel usage */
328 maskecx = ~(1 << APERFMPERF_PRESENT);
329 break;
330
331 case 0xb:
332 /* Suppress extended topology stuff */
333 maskebx = 0;
334 break;
335 }
336
337 asm(XEN_EMULATE_PREFIX "cpuid"
338 : "=a" (*ax),
339 "=b" (*bx),
340 "=c" (*cx),
341 "=d" (*dx)
342 : "0" (*ax), "2" (*cx));
343
344 *bx &= maskebx;
345 *cx &= maskecx;
346 *cx |= setecx;
347 *dx &= maskedx;
348
349 }
350
351 static bool __init xen_check_mwait(void)
352 {
353 #ifdef CONFIG_ACPI
354 struct xen_platform_op op = {
355 .cmd = XENPF_set_processor_pminfo,
356 .u.set_pminfo.id = -1,
357 .u.set_pminfo.type = XEN_PM_PDC,
358 };
359 uint32_t buf[3];
360 unsigned int ax, bx, cx, dx;
361 unsigned int mwait_mask;
362
363 /* We need to determine whether it is OK to expose the MWAIT
364 * capability to the kernel to harvest deeper than C3 states from ACPI
365 * _CST using the processor_harvest_xen.c module. For this to work, we
366 * need to gather the MWAIT_LEAF values (which the cstate.c code
367 * checks against). The hypervisor won't expose the MWAIT flag because
368 * it would break backwards compatibility; so we will find out directly
369 * from the hardware and hypercall.
370 */
371 if (!xen_initial_domain())
372 return false;
373
374 /*
375 * When running under platform earlier than Xen4.2, do not expose
376 * mwait, to avoid the risk of loading native acpi pad driver
377 */
378 if (!xen_running_on_version_or_later(4, 2))
379 return false;
380
381 ax = 1;
382 cx = 0;
383
384 native_cpuid(&ax, &bx, &cx, &dx);
385
386 mwait_mask = (1 << (X86_FEATURE_EST % 32)) |
387 (1 << (X86_FEATURE_MWAIT % 32));
388
389 if ((cx & mwait_mask) != mwait_mask)
390 return false;
391
392 /* We need to emulate the MWAIT_LEAF and for that we need both
393 * ecx and edx. The hypercall provides only partial information.
394 */
395
396 ax = CPUID_MWAIT_LEAF;
397 bx = 0;
398 cx = 0;
399 dx = 0;
400
401 native_cpuid(&ax, &bx, &cx, &dx);
402
403 /* Ask the Hypervisor whether to clear ACPI_PDC_C_C2C3_FFH. If so,
404 * don't expose MWAIT_LEAF and let ACPI pick the IOPORT version of C3.
405 */
406 buf[0] = ACPI_PDC_REVISION_ID;
407 buf[1] = 1;
408 buf[2] = (ACPI_PDC_C_CAPABILITY_SMP | ACPI_PDC_EST_CAPABILITY_SWSMP);
409
410 set_xen_guest_handle(op.u.set_pminfo.pdc, buf);
411
412 if ((HYPERVISOR_dom0_op(&op) == 0) &&
413 (buf[2] & (ACPI_PDC_C_C1_FFH | ACPI_PDC_C_C2C3_FFH))) {
414 cpuid_leaf5_ecx_val = cx;
415 cpuid_leaf5_edx_val = dx;
416 }
417 return true;
418 #else
419 return false;
420 #endif
421 }
422 static void __init xen_init_cpuid_mask(void)
423 {
424 unsigned int ax, bx, cx, dx;
425 unsigned int xsave_mask;
426
427 cpuid_leaf1_edx_mask =
428 ~((1 << X86_FEATURE_MTRR) | /* disable MTRR */
429 (1 << X86_FEATURE_ACC)); /* thermal monitoring */
430
431 if (!xen_initial_domain())
432 cpuid_leaf1_edx_mask &=
433 ~((1 << X86_FEATURE_ACPI)); /* disable ACPI */
434
435 cpuid_leaf1_ecx_mask &= ~(1 << (X86_FEATURE_X2APIC % 32));
436
437 ax = 1;
438 cx = 0;
439 cpuid(1, &ax, &bx, &cx, &dx);
440
441 xsave_mask =
442 (1 << (X86_FEATURE_XSAVE % 32)) |
443 (1 << (X86_FEATURE_OSXSAVE % 32));
444
445 /* Xen will set CR4.OSXSAVE if supported and not disabled by force */
446 if ((cx & xsave_mask) != xsave_mask)
447 cpuid_leaf1_ecx_mask &= ~xsave_mask; /* disable XSAVE & OSXSAVE */
448 if (xen_check_mwait())
449 cpuid_leaf1_ecx_set_mask = (1 << (X86_FEATURE_MWAIT % 32));
450 }
451
452 static void xen_set_debugreg(int reg, unsigned long val)
453 {
454 HYPERVISOR_set_debugreg(reg, val);
455 }
456
457 static unsigned long xen_get_debugreg(int reg)
458 {
459 return HYPERVISOR_get_debugreg(reg);
460 }
461
462 static void xen_end_context_switch(struct task_struct *next)
463 {
464 xen_mc_flush();
465 paravirt_end_context_switch(next);
466 }
467
468 static unsigned long xen_store_tr(void)
469 {
470 return 0;
471 }
472
473 /*
474 * Set the page permissions for a particular virtual address. If the
475 * address is a vmalloc mapping (or other non-linear mapping), then
476 * find the linear mapping of the page and also set its protections to
477 * match.
478 */
479 static void set_aliased_prot(void *v, pgprot_t prot)
480 {
481 int level;
482 pte_t *ptep;
483 pte_t pte;
484 unsigned long pfn;
485 struct page *page;
486
487 ptep = lookup_address((unsigned long)v, &level);
488 BUG_ON(ptep == NULL);
489
490 pfn = pte_pfn(*ptep);
491 page = pfn_to_page(pfn);
492
493 pte = pfn_pte(pfn, prot);
494
495 if (HYPERVISOR_update_va_mapping((unsigned long)v, pte, 0))
496 BUG();
497
498 if (!PageHighMem(page)) {
499 void *av = __va(PFN_PHYS(pfn));
500
501 if (av != v)
502 if (HYPERVISOR_update_va_mapping((unsigned long)av, pte, 0))
503 BUG();
504 } else
505 kmap_flush_unused();
506 }
507
508 static void xen_alloc_ldt(struct desc_struct *ldt, unsigned entries)
509 {
510 const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
511 int i;
512
513 for(i = 0; i < entries; i += entries_per_page)
514 set_aliased_prot(ldt + i, PAGE_KERNEL_RO);
515 }
516
517 static void xen_free_ldt(struct desc_struct *ldt, unsigned entries)
518 {
519 const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
520 int i;
521
522 for(i = 0; i < entries; i += entries_per_page)
523 set_aliased_prot(ldt + i, PAGE_KERNEL);
524 }
525
526 static void xen_set_ldt(const void *addr, unsigned entries)
527 {
528 struct mmuext_op *op;
529 struct multicall_space mcs = xen_mc_entry(sizeof(*op));
530
531 trace_xen_cpu_set_ldt(addr, entries);
532
533 op = mcs.args;
534 op->cmd = MMUEXT_SET_LDT;
535 op->arg1.linear_addr = (unsigned long)addr;
536 op->arg2.nr_ents = entries;
537
538 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
539
540 xen_mc_issue(PARAVIRT_LAZY_CPU);
541 }
542
543 static void xen_load_gdt(const struct desc_ptr *dtr)
544 {
545 unsigned long va = dtr->address;
546 unsigned int size = dtr->size + 1;
547 unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
548 unsigned long frames[pages];
549 int f;
550
551 /*
552 * A GDT can be up to 64k in size, which corresponds to 8192
553 * 8-byte entries, or 16 4k pages..
554 */
555
556 BUG_ON(size > 65536);
557 BUG_ON(va & ~PAGE_MASK);
558
559 for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
560 int level;
561 pte_t *ptep;
562 unsigned long pfn, mfn;
563 void *virt;
564
565 /*
566 * The GDT is per-cpu and is in the percpu data area.
567 * That can be virtually mapped, so we need to do a
568 * page-walk to get the underlying MFN for the
569 * hypercall. The page can also be in the kernel's
570 * linear range, so we need to RO that mapping too.
571 */
572 ptep = lookup_address(va, &level);
573 BUG_ON(ptep == NULL);
574
575 pfn = pte_pfn(*ptep);
576 mfn = pfn_to_mfn(pfn);
577 virt = __va(PFN_PHYS(pfn));
578
579 frames[f] = mfn;
580
581 make_lowmem_page_readonly((void *)va);
582 make_lowmem_page_readonly(virt);
583 }
584
585 if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
586 BUG();
587 }
588
589 /*
590 * load_gdt for early boot, when the gdt is only mapped once
591 */
592 static void __init xen_load_gdt_boot(const struct desc_ptr *dtr)
593 {
594 unsigned long va = dtr->address;
595 unsigned int size = dtr->size + 1;
596 unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
597 unsigned long frames[pages];
598 int f;
599
600 /*
601 * A GDT can be up to 64k in size, which corresponds to 8192
602 * 8-byte entries, or 16 4k pages..
603 */
604
605 BUG_ON(size > 65536);
606 BUG_ON(va & ~PAGE_MASK);
607
608 for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
609 pte_t pte;
610 unsigned long pfn, mfn;
611
612 pfn = virt_to_pfn(va);
613 mfn = pfn_to_mfn(pfn);
614
615 pte = pfn_pte(pfn, PAGE_KERNEL_RO);
616
617 if (HYPERVISOR_update_va_mapping((unsigned long)va, pte, 0))
618 BUG();
619
620 frames[f] = mfn;
621 }
622
623 if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
624 BUG();
625 }
626
627 static inline bool desc_equal(const struct desc_struct *d1,
628 const struct desc_struct *d2)
629 {
630 return d1->a == d2->a && d1->b == d2->b;
631 }
632
633 static void load_TLS_descriptor(struct thread_struct *t,
634 unsigned int cpu, unsigned int i)
635 {
636 struct desc_struct *shadow = &per_cpu(shadow_tls_desc, cpu).desc[i];
637 struct desc_struct *gdt;
638 xmaddr_t maddr;
639 struct multicall_space mc;
640
641 if (desc_equal(shadow, &t->tls_array[i]))
642 return;
643
644 *shadow = t->tls_array[i];
645
646 gdt = get_cpu_gdt_table(cpu);
647 maddr = arbitrary_virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]);
648 mc = __xen_mc_entry(0);
649
650 MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]);
651 }
652
653 static void xen_load_tls(struct thread_struct *t, unsigned int cpu)
654 {
655 /*
656 * XXX sleazy hack: If we're being called in a lazy-cpu zone
657 * and lazy gs handling is enabled, it means we're in a
658 * context switch, and %gs has just been saved. This means we
659 * can zero it out to prevent faults on exit from the
660 * hypervisor if the next process has no %gs. Either way, it
661 * has been saved, and the new value will get loaded properly.
662 * This will go away as soon as Xen has been modified to not
663 * save/restore %gs for normal hypercalls.
664 *
665 * On x86_64, this hack is not used for %gs, because gs points
666 * to KERNEL_GS_BASE (and uses it for PDA references), so we
667 * must not zero %gs on x86_64
668 *
669 * For x86_64, we need to zero %fs, otherwise we may get an
670 * exception between the new %fs descriptor being loaded and
671 * %fs being effectively cleared at __switch_to().
672 */
673 if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_CPU) {
674 #ifdef CONFIG_X86_32
675 lazy_load_gs(0);
676 #else
677 loadsegment(fs, 0);
678 #endif
679 }
680
681 xen_mc_batch();
682
683 load_TLS_descriptor(t, cpu, 0);
684 load_TLS_descriptor(t, cpu, 1);
685 load_TLS_descriptor(t, cpu, 2);
686
687 xen_mc_issue(PARAVIRT_LAZY_CPU);
688 }
689
690 #ifdef CONFIG_X86_64
691 static void xen_load_gs_index(unsigned int idx)
692 {
693 if (HYPERVISOR_set_segment_base(SEGBASE_GS_USER_SEL, idx))
694 BUG();
695 }
696 #endif
697
698 static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum,
699 const void *ptr)
700 {
701 xmaddr_t mach_lp = arbitrary_virt_to_machine(&dt[entrynum]);
702 u64 entry = *(u64 *)ptr;
703
704 trace_xen_cpu_write_ldt_entry(dt, entrynum, entry);
705
706 preempt_disable();
707
708 xen_mc_flush();
709 if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry))
710 BUG();
711
712 preempt_enable();
713 }
714
715 static int cvt_gate_to_trap(int vector, const gate_desc *val,
716 struct trap_info *info)
717 {
718 unsigned long addr;
719
720 if (val->type != GATE_TRAP && val->type != GATE_INTERRUPT)
721 return 0;
722
723 info->vector = vector;
724
725 addr = gate_offset(*val);
726 #ifdef CONFIG_X86_64
727 /*
728 * Look for known traps using IST, and substitute them
729 * appropriately. The debugger ones are the only ones we care
730 * about. Xen will handle faults like double_fault,
731 * so we should never see them. Warn if
732 * there's an unexpected IST-using fault handler.
733 */
734 if (addr == (unsigned long)debug)
735 addr = (unsigned long)xen_debug;
736 else if (addr == (unsigned long)int3)
737 addr = (unsigned long)xen_int3;
738 else if (addr == (unsigned long)stack_segment)
739 addr = (unsigned long)xen_stack_segment;
740 else if (addr == (unsigned long)double_fault) {
741 /* Don't need to handle these */
742 return 0;
743 #ifdef CONFIG_X86_MCE
744 } else if (addr == (unsigned long)machine_check) {
745 /*
746 * when xen hypervisor inject vMCE to guest,
747 * use native mce handler to handle it
748 */
749 ;
750 #endif
751 } else if (addr == (unsigned long)nmi)
752 /*
753 * Use the native version as well.
754 */
755 ;
756 else {
757 /* Some other trap using IST? */
758 if (WARN_ON(val->ist != 0))
759 return 0;
760 }
761 #endif /* CONFIG_X86_64 */
762 info->address = addr;
763
764 info->cs = gate_segment(*val);
765 info->flags = val->dpl;
766 /* interrupt gates clear IF */
767 if (val->type == GATE_INTERRUPT)
768 info->flags |= 1 << 2;
769
770 return 1;
771 }
772
773 /* Locations of each CPU's IDT */
774 static DEFINE_PER_CPU(struct desc_ptr, idt_desc);
775
776 /* Set an IDT entry. If the entry is part of the current IDT, then
777 also update Xen. */
778 static void xen_write_idt_entry(gate_desc *dt, int entrynum, const gate_desc *g)
779 {
780 unsigned long p = (unsigned long)&dt[entrynum];
781 unsigned long start, end;
782
783 trace_xen_cpu_write_idt_entry(dt, entrynum, g);
784
785 preempt_disable();
786
787 start = __this_cpu_read(idt_desc.address);
788 end = start + __this_cpu_read(idt_desc.size) + 1;
789
790 xen_mc_flush();
791
792 native_write_idt_entry(dt, entrynum, g);
793
794 if (p >= start && (p + 8) <= end) {
795 struct trap_info info[2];
796
797 info[1].address = 0;
798
799 if (cvt_gate_to_trap(entrynum, g, &info[0]))
800 if (HYPERVISOR_set_trap_table(info))
801 BUG();
802 }
803
804 preempt_enable();
805 }
806
807 static void xen_convert_trap_info(const struct desc_ptr *desc,
808 struct trap_info *traps)
809 {
810 unsigned in, out, count;
811
812 count = (desc->size+1) / sizeof(gate_desc);
813 BUG_ON(count > 256);
814
815 for (in = out = 0; in < count; in++) {
816 gate_desc *entry = (gate_desc*)(desc->address) + in;
817
818 if (cvt_gate_to_trap(in, entry, &traps[out]))
819 out++;
820 }
821 traps[out].address = 0;
822 }
823
824 void xen_copy_trap_info(struct trap_info *traps)
825 {
826 const struct desc_ptr *desc = this_cpu_ptr(&idt_desc);
827
828 xen_convert_trap_info(desc, traps);
829 }
830
831 /* Load a new IDT into Xen. In principle this can be per-CPU, so we
832 hold a spinlock to protect the static traps[] array (static because
833 it avoids allocation, and saves stack space). */
834 static void xen_load_idt(const struct desc_ptr *desc)
835 {
836 static DEFINE_SPINLOCK(lock);
837 static struct trap_info traps[257];
838
839 trace_xen_cpu_load_idt(desc);
840
841 spin_lock(&lock);
842
843 memcpy(this_cpu_ptr(&idt_desc), desc, sizeof(idt_desc));
844
845 xen_convert_trap_info(desc, traps);
846
847 xen_mc_flush();
848 if (HYPERVISOR_set_trap_table(traps))
849 BUG();
850
851 spin_unlock(&lock);
852 }
853
854 /* Write a GDT descriptor entry. Ignore LDT descriptors, since
855 they're handled differently. */
856 static void xen_write_gdt_entry(struct desc_struct *dt, int entry,
857 const void *desc, int type)
858 {
859 trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
860
861 preempt_disable();
862
863 switch (type) {
864 case DESC_LDT:
865 case DESC_TSS:
866 /* ignore */
867 break;
868
869 default: {
870 xmaddr_t maddr = arbitrary_virt_to_machine(&dt[entry]);
871
872 xen_mc_flush();
873 if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
874 BUG();
875 }
876
877 }
878
879 preempt_enable();
880 }
881
882 /*
883 * Version of write_gdt_entry for use at early boot-time needed to
884 * update an entry as simply as possible.
885 */
886 static void __init xen_write_gdt_entry_boot(struct desc_struct *dt, int entry,
887 const void *desc, int type)
888 {
889 trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
890
891 switch (type) {
892 case DESC_LDT:
893 case DESC_TSS:
894 /* ignore */
895 break;
896
897 default: {
898 xmaddr_t maddr = virt_to_machine(&dt[entry]);
899
900 if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
901 dt[entry] = *(struct desc_struct *)desc;
902 }
903
904 }
905 }
906
907 static void xen_load_sp0(struct tss_struct *tss,
908 struct thread_struct *thread)
909 {
910 struct multicall_space mcs;
911
912 mcs = xen_mc_entry(0);
913 MULTI_stack_switch(mcs.mc, __KERNEL_DS, thread->sp0);
914 xen_mc_issue(PARAVIRT_LAZY_CPU);
915 }
916
917 static void xen_set_iopl_mask(unsigned mask)
918 {
919 struct physdev_set_iopl set_iopl;
920
921 /* Force the change at ring 0. */
922 set_iopl.iopl = (mask == 0) ? 1 : (mask >> 12) & 3;
923 HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
924 }
925
926 static void xen_io_delay(void)
927 {
928 }
929
930 #ifdef CONFIG_X86_LOCAL_APIC
931 static unsigned long xen_set_apic_id(unsigned int x)
932 {
933 WARN_ON(1);
934 return x;
935 }
936 static unsigned int xen_get_apic_id(unsigned long x)
937 {
938 return ((x)>>24) & 0xFFu;
939 }
940 static u32 xen_apic_read(u32 reg)
941 {
942 struct xen_platform_op op = {
943 .cmd = XENPF_get_cpuinfo,
944 .interface_version = XENPF_INTERFACE_VERSION,
945 .u.pcpu_info.xen_cpuid = 0,
946 };
947 int ret = 0;
948
949 /* Shouldn't need this as APIC is turned off for PV, and we only
950 * get called on the bootup processor. But just in case. */
951 if (!xen_initial_domain() || smp_processor_id())
952 return 0;
953
954 if (reg == APIC_LVR)
955 return 0x10;
956
957 if (reg != APIC_ID)
958 return 0;
959
960 ret = HYPERVISOR_dom0_op(&op);
961 if (ret)
962 return 0;
963
964 return op.u.pcpu_info.apic_id << 24;
965 }
966
967 static void xen_apic_write(u32 reg, u32 val)
968 {
969 /* Warn to see if there's any stray references */
970 WARN_ON(1);
971 }
972
973 static u64 xen_apic_icr_read(void)
974 {
975 return 0;
976 }
977
978 static void xen_apic_icr_write(u32 low, u32 id)
979 {
980 /* Warn to see if there's any stray references */
981 WARN_ON(1);
982 }
983
984 static void xen_apic_wait_icr_idle(void)
985 {
986 return;
987 }
988
989 static u32 xen_safe_apic_wait_icr_idle(void)
990 {
991 return 0;
992 }
993
994 static void set_xen_basic_apic_ops(void)
995 {
996 apic->read = xen_apic_read;
997 apic->write = xen_apic_write;
998 apic->icr_read = xen_apic_icr_read;
999 apic->icr_write = xen_apic_icr_write;
1000 apic->wait_icr_idle = xen_apic_wait_icr_idle;
1001 apic->safe_wait_icr_idle = xen_safe_apic_wait_icr_idle;
1002 apic->set_apic_id = xen_set_apic_id;
1003 apic->get_apic_id = xen_get_apic_id;
1004
1005 #ifdef CONFIG_SMP
1006 apic->send_IPI_allbutself = xen_send_IPI_allbutself;
1007 apic->send_IPI_mask_allbutself = xen_send_IPI_mask_allbutself;
1008 apic->send_IPI_mask = xen_send_IPI_mask;
1009 apic->send_IPI_all = xen_send_IPI_all;
1010 apic->send_IPI_self = xen_send_IPI_self;
1011 #endif
1012 }
1013
1014 #endif
1015
1016 static void xen_clts(void)
1017 {
1018 struct multicall_space mcs;
1019
1020 mcs = xen_mc_entry(0);
1021
1022 MULTI_fpu_taskswitch(mcs.mc, 0);
1023
1024 xen_mc_issue(PARAVIRT_LAZY_CPU);
1025 }
1026
1027 static DEFINE_PER_CPU(unsigned long, xen_cr0_value);
1028
1029 static unsigned long xen_read_cr0(void)
1030 {
1031 unsigned long cr0 = this_cpu_read(xen_cr0_value);
1032
1033 if (unlikely(cr0 == 0)) {
1034 cr0 = native_read_cr0();
1035 this_cpu_write(xen_cr0_value, cr0);
1036 }
1037
1038 return cr0;
1039 }
1040
1041 static void xen_write_cr0(unsigned long cr0)
1042 {
1043 struct multicall_space mcs;
1044
1045 this_cpu_write(xen_cr0_value, cr0);
1046
1047 /* Only pay attention to cr0.TS; everything else is
1048 ignored. */
1049 mcs = xen_mc_entry(0);
1050
1051 MULTI_fpu_taskswitch(mcs.mc, (cr0 & X86_CR0_TS) != 0);
1052
1053 xen_mc_issue(PARAVIRT_LAZY_CPU);
1054 }
1055
1056 static void xen_write_cr4(unsigned long cr4)
1057 {
1058 cr4 &= ~X86_CR4_PGE;
1059 cr4 &= ~X86_CR4_PSE;
1060
1061 native_write_cr4(cr4);
1062 }
1063 #ifdef CONFIG_X86_64
1064 static inline unsigned long xen_read_cr8(void)
1065 {
1066 return 0;
1067 }
1068 static inline void xen_write_cr8(unsigned long val)
1069 {
1070 BUG_ON(val);
1071 }
1072 #endif
1073 static int xen_write_msr_safe(unsigned int msr, unsigned low, unsigned high)
1074 {
1075 int ret;
1076
1077 ret = 0;
1078
1079 switch (msr) {
1080 #ifdef CONFIG_X86_64
1081 unsigned which;
1082 u64 base;
1083
1084 case MSR_FS_BASE: which = SEGBASE_FS; goto set;
1085 case MSR_KERNEL_GS_BASE: which = SEGBASE_GS_USER; goto set;
1086 case MSR_GS_BASE: which = SEGBASE_GS_KERNEL; goto set;
1087
1088 set:
1089 base = ((u64)high << 32) | low;
1090 if (HYPERVISOR_set_segment_base(which, base) != 0)
1091 ret = -EIO;
1092 break;
1093 #endif
1094
1095 case MSR_STAR:
1096 case MSR_CSTAR:
1097 case MSR_LSTAR:
1098 case MSR_SYSCALL_MASK:
1099 case MSR_IA32_SYSENTER_CS:
1100 case MSR_IA32_SYSENTER_ESP:
1101 case MSR_IA32_SYSENTER_EIP:
1102 /* Fast syscall setup is all done in hypercalls, so
1103 these are all ignored. Stub them out here to stop
1104 Xen console noise. */
1105
1106 default:
1107 ret = native_write_msr_safe(msr, low, high);
1108 }
1109
1110 return ret;
1111 }
1112
1113 void xen_setup_shared_info(void)
1114 {
1115 if (!xen_feature(XENFEAT_auto_translated_physmap)) {
1116 set_fixmap(FIX_PARAVIRT_BOOTMAP,
1117 xen_start_info->shared_info);
1118
1119 HYPERVISOR_shared_info =
1120 (struct shared_info *)fix_to_virt(FIX_PARAVIRT_BOOTMAP);
1121 } else
1122 HYPERVISOR_shared_info =
1123 (struct shared_info *)__va(xen_start_info->shared_info);
1124
1125 #ifndef CONFIG_SMP
1126 /* In UP this is as good a place as any to set up shared info */
1127 xen_setup_vcpu_info_placement();
1128 #endif
1129
1130 xen_setup_mfn_list_list();
1131 }
1132
1133 /* This is called once we have the cpu_possible_mask */
1134 void xen_setup_vcpu_info_placement(void)
1135 {
1136 int cpu;
1137
1138 for_each_possible_cpu(cpu)
1139 xen_vcpu_setup(cpu);
1140
1141 /* xen_vcpu_setup managed to place the vcpu_info within the
1142 * percpu area for all cpus, so make use of it. Note that for
1143 * PVH we want to use native IRQ mechanism. */
1144 if (have_vcpu_info_placement && !xen_pvh_domain()) {
1145 pv_irq_ops.save_fl = __PV_IS_CALLEE_SAVE(xen_save_fl_direct);
1146 pv_irq_ops.restore_fl = __PV_IS_CALLEE_SAVE(xen_restore_fl_direct);
1147 pv_irq_ops.irq_disable = __PV_IS_CALLEE_SAVE(xen_irq_disable_direct);
1148 pv_irq_ops.irq_enable = __PV_IS_CALLEE_SAVE(xen_irq_enable_direct);
1149 pv_mmu_ops.read_cr2 = xen_read_cr2_direct;
1150 }
1151 }
1152
1153 static unsigned xen_patch(u8 type, u16 clobbers, void *insnbuf,
1154 unsigned long addr, unsigned len)
1155 {
1156 char *start, *end, *reloc;
1157 unsigned ret;
1158
1159 start = end = reloc = NULL;
1160
1161 #define SITE(op, x) \
1162 case PARAVIRT_PATCH(op.x): \
1163 if (have_vcpu_info_placement) { \
1164 start = (char *)xen_##x##_direct; \
1165 end = xen_##x##_direct_end; \
1166 reloc = xen_##x##_direct_reloc; \
1167 } \
1168 goto patch_site
1169
1170 switch (type) {
1171 SITE(pv_irq_ops, irq_enable);
1172 SITE(pv_irq_ops, irq_disable);
1173 SITE(pv_irq_ops, save_fl);
1174 SITE(pv_irq_ops, restore_fl);
1175 #undef SITE
1176
1177 patch_site:
1178 if (start == NULL || (end-start) > len)
1179 goto default_patch;
1180
1181 ret = paravirt_patch_insns(insnbuf, len, start, end);
1182
1183 /* Note: because reloc is assigned from something that
1184 appears to be an array, gcc assumes it's non-null,
1185 but doesn't know its relationship with start and
1186 end. */
1187 if (reloc > start && reloc < end) {
1188 int reloc_off = reloc - start;
1189 long *relocp = (long *)(insnbuf + reloc_off);
1190 long delta = start - (char *)addr;
1191
1192 *relocp += delta;
1193 }
1194 break;
1195
1196 default_patch:
1197 default:
1198 ret = paravirt_patch_default(type, clobbers, insnbuf,
1199 addr, len);
1200 break;
1201 }
1202
1203 return ret;
1204 }
1205
1206 static const struct pv_info xen_info __initconst = {
1207 .paravirt_enabled = 1,
1208 .shared_kernel_pmd = 0,
1209
1210 #ifdef CONFIG_X86_64
1211 .extra_user_64bit_cs = FLAT_USER_CS64,
1212 #endif
1213
1214 .name = "Xen",
1215 };
1216
1217 static const struct pv_init_ops xen_init_ops __initconst = {
1218 .patch = xen_patch,
1219 };
1220
1221 static const struct pv_cpu_ops xen_cpu_ops __initconst = {
1222 .cpuid = xen_cpuid,
1223
1224 .set_debugreg = xen_set_debugreg,
1225 .get_debugreg = xen_get_debugreg,
1226
1227 .clts = xen_clts,
1228
1229 .read_cr0 = xen_read_cr0,
1230 .write_cr0 = xen_write_cr0,
1231
1232 .read_cr4 = native_read_cr4,
1233 .read_cr4_safe = native_read_cr4_safe,
1234 .write_cr4 = xen_write_cr4,
1235
1236 #ifdef CONFIG_X86_64
1237 .read_cr8 = xen_read_cr8,
1238 .write_cr8 = xen_write_cr8,
1239 #endif
1240
1241 .wbinvd = native_wbinvd,
1242
1243 .read_msr = native_read_msr_safe,
1244 .write_msr = xen_write_msr_safe,
1245
1246 .read_tsc = native_read_tsc,
1247 .read_pmc = native_read_pmc,
1248
1249 .read_tscp = native_read_tscp,
1250
1251 .iret = xen_iret,
1252 .irq_enable_sysexit = xen_sysexit,
1253 #ifdef CONFIG_X86_64
1254 .usergs_sysret32 = xen_sysret32,
1255 .usergs_sysret64 = xen_sysret64,
1256 #endif
1257
1258 .load_tr_desc = paravirt_nop,
1259 .set_ldt = xen_set_ldt,
1260 .load_gdt = xen_load_gdt,
1261 .load_idt = xen_load_idt,
1262 .load_tls = xen_load_tls,
1263 #ifdef CONFIG_X86_64
1264 .load_gs_index = xen_load_gs_index,
1265 #endif
1266
1267 .alloc_ldt = xen_alloc_ldt,
1268 .free_ldt = xen_free_ldt,
1269
1270 .store_idt = native_store_idt,
1271 .store_tr = xen_store_tr,
1272
1273 .write_ldt_entry = xen_write_ldt_entry,
1274 .write_gdt_entry = xen_write_gdt_entry,
1275 .write_idt_entry = xen_write_idt_entry,
1276 .load_sp0 = xen_load_sp0,
1277
1278 .set_iopl_mask = xen_set_iopl_mask,
1279 .io_delay = xen_io_delay,
1280
1281 /* Xen takes care of %gs when switching to usermode for us */
1282 .swapgs = paravirt_nop,
1283
1284 .start_context_switch = paravirt_start_context_switch,
1285 .end_context_switch = xen_end_context_switch,
1286 };
1287
1288 static const struct pv_apic_ops xen_apic_ops __initconst = {
1289 #ifdef CONFIG_X86_LOCAL_APIC
1290 .startup_ipi_hook = paravirt_nop,
1291 #endif
1292 };
1293
1294 static void xen_reboot(int reason)
1295 {
1296 struct sched_shutdown r = { .reason = reason };
1297
1298 if (HYPERVISOR_sched_op(SCHEDOP_shutdown, &r))
1299 BUG();
1300 }
1301
1302 static void xen_restart(char *msg)
1303 {
1304 xen_reboot(SHUTDOWN_reboot);
1305 }
1306
1307 static void xen_emergency_restart(void)
1308 {
1309 xen_reboot(SHUTDOWN_reboot);
1310 }
1311
1312 static void xen_machine_halt(void)
1313 {
1314 xen_reboot(SHUTDOWN_poweroff);
1315 }
1316
1317 static void xen_machine_power_off(void)
1318 {
1319 if (pm_power_off)
1320 pm_power_off();
1321 xen_reboot(SHUTDOWN_poweroff);
1322 }
1323
1324 static void xen_crash_shutdown(struct pt_regs *regs)
1325 {
1326 xen_reboot(SHUTDOWN_crash);
1327 }
1328
1329 static int
1330 xen_panic_event(struct notifier_block *this, unsigned long event, void *ptr)
1331 {
1332 xen_reboot(SHUTDOWN_crash);
1333 return NOTIFY_DONE;
1334 }
1335
1336 static struct notifier_block xen_panic_block = {
1337 .notifier_call= xen_panic_event,
1338 .priority = INT_MIN
1339 };
1340
1341 int xen_panic_handler_init(void)
1342 {
1343 atomic_notifier_chain_register(&panic_notifier_list, &xen_panic_block);
1344 return 0;
1345 }
1346
1347 static const struct machine_ops xen_machine_ops __initconst = {
1348 .restart = xen_restart,
1349 .halt = xen_machine_halt,
1350 .power_off = xen_machine_power_off,
1351 .shutdown = xen_machine_halt,
1352 .crash_shutdown = xen_crash_shutdown,
1353 .emergency_restart = xen_emergency_restart,
1354 };
1355
1356 static unsigned char xen_get_nmi_reason(void)
1357 {
1358 unsigned char reason = 0;
1359
1360 /* Construct a value which looks like it came from port 0x61. */
1361 if (test_bit(_XEN_NMIREASON_io_error,
1362 &HYPERVISOR_shared_info->arch.nmi_reason))
1363 reason |= NMI_REASON_IOCHK;
1364 if (test_bit(_XEN_NMIREASON_pci_serr,
1365 &HYPERVISOR_shared_info->arch.nmi_reason))
1366 reason |= NMI_REASON_SERR;
1367
1368 return reason;
1369 }
1370
1371 static void __init xen_boot_params_init_edd(void)
1372 {
1373 #if IS_ENABLED(CONFIG_EDD)
1374 struct xen_platform_op op;
1375 struct edd_info *edd_info;
1376 u32 *mbr_signature;
1377 unsigned nr;
1378 int ret;
1379
1380 edd_info = boot_params.eddbuf;
1381 mbr_signature = boot_params.edd_mbr_sig_buffer;
1382
1383 op.cmd = XENPF_firmware_info;
1384
1385 op.u.firmware_info.type = XEN_FW_DISK_INFO;
1386 for (nr = 0; nr < EDDMAXNR; nr++) {
1387 struct edd_info *info = edd_info + nr;
1388
1389 op.u.firmware_info.index = nr;
1390 info->params.length = sizeof(info->params);
1391 set_xen_guest_handle(op.u.firmware_info.u.disk_info.edd_params,
1392 &info->params);
1393 ret = HYPERVISOR_dom0_op(&op);
1394 if (ret)
1395 break;
1396
1397 #define C(x) info->x = op.u.firmware_info.u.disk_info.x
1398 C(device);
1399 C(version);
1400 C(interface_support);
1401 C(legacy_max_cylinder);
1402 C(legacy_max_head);
1403 C(legacy_sectors_per_track);
1404 #undef C
1405 }
1406 boot_params.eddbuf_entries = nr;
1407
1408 op.u.firmware_info.type = XEN_FW_DISK_MBR_SIGNATURE;
1409 for (nr = 0; nr < EDD_MBR_SIG_MAX; nr++) {
1410 op.u.firmware_info.index = nr;
1411 ret = HYPERVISOR_dom0_op(&op);
1412 if (ret)
1413 break;
1414 mbr_signature[nr] = op.u.firmware_info.u.disk_mbr_signature.mbr_signature;
1415 }
1416 boot_params.edd_mbr_sig_buf_entries = nr;
1417 #endif
1418 }
1419
1420 /*
1421 * Set up the GDT and segment registers for -fstack-protector. Until
1422 * we do this, we have to be careful not to call any stack-protected
1423 * function, which is most of the kernel.
1424 *
1425 * Note, that it is __ref because the only caller of this after init
1426 * is PVH which is not going to use xen_load_gdt_boot or other
1427 * __init functions.
1428 */
1429 static void __ref xen_setup_gdt(int cpu)
1430 {
1431 if (xen_feature(XENFEAT_auto_translated_physmap)) {
1432 #ifdef CONFIG_X86_64
1433 unsigned long dummy;
1434
1435 load_percpu_segment(cpu); /* We need to access per-cpu area */
1436 switch_to_new_gdt(cpu); /* GDT and GS set */
1437
1438 /* We are switching of the Xen provided GDT to our HVM mode
1439 * GDT. The new GDT has __KERNEL_CS with CS.L = 1
1440 * and we are jumping to reload it.
1441 */
1442 asm volatile ("pushq %0\n"
1443 "leaq 1f(%%rip),%0\n"
1444 "pushq %0\n"
1445 "lretq\n"
1446 "1:\n"
1447 : "=&r" (dummy) : "0" (__KERNEL_CS));
1448
1449 /*
1450 * While not needed, we also set the %es, %ds, and %fs
1451 * to zero. We don't care about %ss as it is NULL.
1452 * Strictly speaking this is not needed as Xen zeros those
1453 * out (and also MSR_FS_BASE, MSR_GS_BASE, MSR_KERNEL_GS_BASE)
1454 *
1455 * Linux zeros them in cpu_init() and in secondary_startup_64
1456 * (for BSP).
1457 */
1458 loadsegment(es, 0);
1459 loadsegment(ds, 0);
1460 loadsegment(fs, 0);
1461 #else
1462 /* PVH: TODO Implement. */
1463 BUG();
1464 #endif
1465 return; /* PVH does not need any PV GDT ops. */
1466 }
1467 pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry_boot;
1468 pv_cpu_ops.load_gdt = xen_load_gdt_boot;
1469
1470 setup_stack_canary_segment(0);
1471 switch_to_new_gdt(0);
1472
1473 pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry;
1474 pv_cpu_ops.load_gdt = xen_load_gdt;
1475 }
1476
1477 #ifdef CONFIG_XEN_PVH
1478 /*
1479 * A PV guest starts with default flags that are not set for PVH, set them
1480 * here asap.
1481 */
1482 static void xen_pvh_set_cr_flags(int cpu)
1483 {
1484
1485 /* Some of these are setup in 'secondary_startup_64'. The others:
1486 * X86_CR0_TS, X86_CR0_PE, X86_CR0_ET are set by Xen for HVM guests
1487 * (which PVH shared codepaths), while X86_CR0_PG is for PVH. */
1488 write_cr0(read_cr0() | X86_CR0_MP | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM);
1489
1490 if (!cpu)
1491 return;
1492 /*
1493 * For BSP, PSE PGE are set in probe_page_size_mask(), for APs
1494 * set them here. For all, OSFXSR OSXMMEXCPT are set in fpu_init.
1495 */
1496 if (cpu_has_pse)
1497 cr4_set_bits_and_update_boot(X86_CR4_PSE);
1498
1499 if (cpu_has_pge)
1500 cr4_set_bits_and_update_boot(X86_CR4_PGE);
1501 }
1502
1503 /*
1504 * Note, that it is ref - because the only caller of this after init
1505 * is PVH which is not going to use xen_load_gdt_boot or other
1506 * __init functions.
1507 */
1508 void __ref xen_pvh_secondary_vcpu_init(int cpu)
1509 {
1510 xen_setup_gdt(cpu);
1511 xen_pvh_set_cr_flags(cpu);
1512 }
1513
1514 static void __init xen_pvh_early_guest_init(void)
1515 {
1516 if (!xen_feature(XENFEAT_auto_translated_physmap))
1517 return;
1518
1519 if (!xen_feature(XENFEAT_hvm_callback_vector))
1520 return;
1521
1522 xen_have_vector_callback = 1;
1523
1524 xen_pvh_early_cpu_init(0, false);
1525 xen_pvh_set_cr_flags(0);
1526
1527 #ifdef CONFIG_X86_32
1528 BUG(); /* PVH: Implement proper support. */
1529 #endif
1530 }
1531 #endif /* CONFIG_XEN_PVH */
1532
1533 /* First C function to be called on Xen boot */
1534 asmlinkage __visible void __init xen_start_kernel(void)
1535 {
1536 struct physdev_set_iopl set_iopl;
1537 unsigned long initrd_start = 0;
1538 int rc;
1539
1540 if (!xen_start_info)
1541 return;
1542
1543 xen_domain_type = XEN_PV_DOMAIN;
1544
1545 xen_setup_features();
1546 #ifdef CONFIG_XEN_PVH
1547 xen_pvh_early_guest_init();
1548 #endif
1549 xen_setup_machphys_mapping();
1550
1551 /* Install Xen paravirt ops */
1552 pv_info = xen_info;
1553 pv_init_ops = xen_init_ops;
1554 pv_apic_ops = xen_apic_ops;
1555 if (!xen_pvh_domain()) {
1556 pv_cpu_ops = xen_cpu_ops;
1557
1558 x86_platform.get_nmi_reason = xen_get_nmi_reason;
1559 }
1560
1561 if (xen_feature(XENFEAT_auto_translated_physmap))
1562 x86_init.resources.memory_setup = xen_auto_xlated_memory_setup;
1563 else
1564 x86_init.resources.memory_setup = xen_memory_setup;
1565 x86_init.oem.arch_setup = xen_arch_setup;
1566 x86_init.oem.banner = xen_banner;
1567
1568 xen_init_time_ops();
1569
1570 /*
1571 * Set up some pagetable state before starting to set any ptes.
1572 */
1573
1574 xen_init_mmu_ops();
1575
1576 /* Prevent unwanted bits from being set in PTEs. */
1577 __supported_pte_mask &= ~_PAGE_GLOBAL;
1578
1579 /*
1580 * Prevent page tables from being allocated in highmem, even
1581 * if CONFIG_HIGHPTE is enabled.
1582 */
1583 __userpte_alloc_gfp &= ~__GFP_HIGHMEM;
1584
1585 /* Work out if we support NX */
1586 x86_configure_nx();
1587
1588 /* Get mfn list */
1589 xen_build_dynamic_phys_to_machine();
1590
1591 /*
1592 * Set up kernel GDT and segment registers, mainly so that
1593 * -fstack-protector code can be executed.
1594 */
1595 xen_setup_gdt(0);
1596
1597 xen_init_irq_ops();
1598 xen_init_cpuid_mask();
1599
1600 #ifdef CONFIG_X86_LOCAL_APIC
1601 /*
1602 * set up the basic apic ops.
1603 */
1604 set_xen_basic_apic_ops();
1605 #endif
1606
1607 if (xen_feature(XENFEAT_mmu_pt_update_preserve_ad)) {
1608 pv_mmu_ops.ptep_modify_prot_start = xen_ptep_modify_prot_start;
1609 pv_mmu_ops.ptep_modify_prot_commit = xen_ptep_modify_prot_commit;
1610 }
1611
1612 machine_ops = xen_machine_ops;
1613
1614 /*
1615 * The only reliable way to retain the initial address of the
1616 * percpu gdt_page is to remember it here, so we can go and
1617 * mark it RW later, when the initial percpu area is freed.
1618 */
1619 xen_initial_gdt = &per_cpu(gdt_page, 0);
1620
1621 xen_smp_init();
1622
1623 #ifdef CONFIG_ACPI_NUMA
1624 /*
1625 * The pages we from Xen are not related to machine pages, so
1626 * any NUMA information the kernel tries to get from ACPI will
1627 * be meaningless. Prevent it from trying.
1628 */
1629 acpi_numa = -1;
1630 #endif
1631 /* Don't do the full vcpu_info placement stuff until we have a
1632 possible map and a non-dummy shared_info. */
1633 per_cpu(xen_vcpu, 0) = &HYPERVISOR_shared_info->vcpu_info[0];
1634
1635 local_irq_disable();
1636 early_boot_irqs_disabled = true;
1637
1638 xen_raw_console_write("mapping kernel into physical memory\n");
1639 xen_setup_kernel_pagetable((pgd_t *)xen_start_info->pt_base, xen_start_info->nr_pages);
1640
1641 /*
1642 * Modify the cache mode translation tables to match Xen's PAT
1643 * configuration.
1644 */
1645
1646 pat_init_cache_modes();
1647
1648 /* keep using Xen gdt for now; no urgent need to change it */
1649
1650 #ifdef CONFIG_X86_32
1651 pv_info.kernel_rpl = 1;
1652 if (xen_feature(XENFEAT_supervisor_mode_kernel))
1653 pv_info.kernel_rpl = 0;
1654 #else
1655 pv_info.kernel_rpl = 0;
1656 #endif
1657 /* set the limit of our address space */
1658 xen_reserve_top();
1659
1660 /* PVH: runs at default kernel iopl of 0 */
1661 if (!xen_pvh_domain()) {
1662 /*
1663 * We used to do this in xen_arch_setup, but that is too late
1664 * on AMD were early_cpu_init (run before ->arch_setup()) calls
1665 * early_amd_init which pokes 0xcf8 port.
1666 */
1667 set_iopl.iopl = 1;
1668 rc = HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
1669 if (rc != 0)
1670 xen_raw_printk("physdev_op failed %d\n", rc);
1671 }
1672
1673 #ifdef CONFIG_X86_32
1674 /* set up basic CPUID stuff */
1675 cpu_detect(&new_cpu_data);
1676 set_cpu_cap(&new_cpu_data, X86_FEATURE_FPU);
1677 new_cpu_data.wp_works_ok = 1;
1678 new_cpu_data.x86_capability[0] = cpuid_edx(1);
1679 #endif
1680
1681 if (xen_start_info->mod_start) {
1682 if (xen_start_info->flags & SIF_MOD_START_PFN)
1683 initrd_start = PFN_PHYS(xen_start_info->mod_start);
1684 else
1685 initrd_start = __pa(xen_start_info->mod_start);
1686 }
1687
1688 /* Poke various useful things into boot_params */
1689 boot_params.hdr.type_of_loader = (9 << 4) | 0;
1690 boot_params.hdr.ramdisk_image = initrd_start;
1691 boot_params.hdr.ramdisk_size = xen_start_info->mod_len;
1692 boot_params.hdr.cmd_line_ptr = __pa(xen_start_info->cmd_line);
1693
1694 if (!xen_initial_domain()) {
1695 add_preferred_console("xenboot", 0, NULL);
1696 add_preferred_console("tty", 0, NULL);
1697 add_preferred_console("hvc", 0, NULL);
1698 if (pci_xen)
1699 x86_init.pci.arch_init = pci_xen_init;
1700 } else {
1701 const struct dom0_vga_console_info *info =
1702 (void *)((char *)xen_start_info +
1703 xen_start_info->console.dom0.info_off);
1704 struct xen_platform_op op = {
1705 .cmd = XENPF_firmware_info,
1706 .interface_version = XENPF_INTERFACE_VERSION,
1707 .u.firmware_info.type = XEN_FW_KBD_SHIFT_FLAGS,
1708 };
1709
1710 xen_init_vga(info, xen_start_info->console.dom0.info_size);
1711 xen_start_info->console.domU.mfn = 0;
1712 xen_start_info->console.domU.evtchn = 0;
1713
1714 if (HYPERVISOR_dom0_op(&op) == 0)
1715 boot_params.kbd_status = op.u.firmware_info.u.kbd_shift_flags;
1716
1717 xen_init_apic();
1718
1719 /* Make sure ACS will be enabled */
1720 pci_request_acs();
1721
1722 xen_acpi_sleep_register();
1723
1724 /* Avoid searching for BIOS MP tables */
1725 x86_init.mpparse.find_smp_config = x86_init_noop;
1726 x86_init.mpparse.get_smp_config = x86_init_uint_noop;
1727
1728 xen_boot_params_init_edd();
1729 }
1730 #ifdef CONFIG_PCI
1731 /* PCI BIOS service won't work from a PV guest. */
1732 pci_probe &= ~PCI_PROBE_BIOS;
1733 #endif
1734 xen_raw_console_write("about to get started...\n");
1735
1736 xen_setup_runstate_info(0);
1737
1738 xen_efi_init();
1739
1740 /* Start the world */
1741 #ifdef CONFIG_X86_32
1742 i386_start_kernel();
1743 #else
1744 x86_64_start_reservations((char *)__pa_symbol(&boot_params));
1745 #endif
1746 }
1747
1748 void __ref xen_hvm_init_shared_info(void)
1749 {
1750 int cpu;
1751 struct xen_add_to_physmap xatp;
1752 static struct shared_info *shared_info_page = 0;
1753
1754 if (!shared_info_page)
1755 shared_info_page = (struct shared_info *)
1756 extend_brk(PAGE_SIZE, PAGE_SIZE);
1757 xatp.domid = DOMID_SELF;
1758 xatp.idx = 0;
1759 xatp.space = XENMAPSPACE_shared_info;
1760 xatp.gpfn = __pa(shared_info_page) >> PAGE_SHIFT;
1761 if (HYPERVISOR_memory_op(XENMEM_add_to_physmap, &xatp))
1762 BUG();
1763
1764 HYPERVISOR_shared_info = (struct shared_info *)shared_info_page;
1765
1766 /* xen_vcpu is a pointer to the vcpu_info struct in the shared_info
1767 * page, we use it in the event channel upcall and in some pvclock
1768 * related functions. We don't need the vcpu_info placement
1769 * optimizations because we don't use any pv_mmu or pv_irq op on
1770 * HVM.
1771 * When xen_hvm_init_shared_info is run at boot time only vcpu 0 is
1772 * online but xen_hvm_init_shared_info is run at resume time too and
1773 * in that case multiple vcpus might be online. */
1774 for_each_online_cpu(cpu) {
1775 /* Leave it to be NULL. */
1776 if (cpu >= MAX_VIRT_CPUS)
1777 continue;
1778 per_cpu(xen_vcpu, cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
1779 }
1780 }
1781
1782 #ifdef CONFIG_XEN_PVHVM
1783 static void __init init_hvm_pv_info(void)
1784 {
1785 int major, minor;
1786 uint32_t eax, ebx, ecx, edx, pages, msr, base;
1787 u64 pfn;
1788
1789 base = xen_cpuid_base();
1790 cpuid(base + 1, &eax, &ebx, &ecx, &edx);
1791
1792 major = eax >> 16;
1793 minor = eax & 0xffff;
1794 printk(KERN_INFO "Xen version %d.%d.\n", major, minor);
1795
1796 cpuid(base + 2, &pages, &msr, &ecx, &edx);
1797
1798 pfn = __pa(hypercall_page);
1799 wrmsr_safe(msr, (u32)pfn, (u32)(pfn >> 32));
1800
1801 xen_setup_features();
1802
1803 pv_info.name = "Xen HVM";
1804
1805 xen_domain_type = XEN_HVM_DOMAIN;
1806 }
1807
1808 static int xen_hvm_cpu_notify(struct notifier_block *self, unsigned long action,
1809 void *hcpu)
1810 {
1811 int cpu = (long)hcpu;
1812 switch (action) {
1813 case CPU_UP_PREPARE:
1814 xen_vcpu_setup(cpu);
1815 if (xen_have_vector_callback) {
1816 if (xen_feature(XENFEAT_hvm_safe_pvclock))
1817 xen_setup_timer(cpu);
1818 }
1819 break;
1820 default:
1821 break;
1822 }
1823 return NOTIFY_OK;
1824 }
1825
1826 static struct notifier_block xen_hvm_cpu_notifier = {
1827 .notifier_call = xen_hvm_cpu_notify,
1828 };
1829
1830 static void __init xen_hvm_guest_init(void)
1831 {
1832 init_hvm_pv_info();
1833
1834 xen_hvm_init_shared_info();
1835
1836 xen_panic_handler_init();
1837
1838 if (xen_feature(XENFEAT_hvm_callback_vector))
1839 xen_have_vector_callback = 1;
1840 xen_hvm_smp_init();
1841 register_cpu_notifier(&xen_hvm_cpu_notifier);
1842 xen_unplug_emulated_devices();
1843 x86_init.irqs.intr_init = xen_init_IRQ;
1844 xen_hvm_init_time_ops();
1845 xen_hvm_init_mmu_ops();
1846 }
1847
1848 static bool xen_nopv = false;
1849 static __init int xen_parse_nopv(char *arg)
1850 {
1851 xen_nopv = true;
1852 return 0;
1853 }
1854 early_param("xen_nopv", xen_parse_nopv);
1855
1856 static uint32_t __init xen_hvm_platform(void)
1857 {
1858 if (xen_nopv)
1859 return 0;
1860
1861 if (xen_pv_domain())
1862 return 0;
1863
1864 return xen_cpuid_base();
1865 }
1866
1867 bool xen_hvm_need_lapic(void)
1868 {
1869 if (xen_nopv)
1870 return false;
1871 if (xen_pv_domain())
1872 return false;
1873 if (!xen_hvm_domain())
1874 return false;
1875 if (xen_feature(XENFEAT_hvm_pirqs) && xen_have_vector_callback)
1876 return false;
1877 return true;
1878 }
1879 EXPORT_SYMBOL_GPL(xen_hvm_need_lapic);
1880
1881 const struct hypervisor_x86 x86_hyper_xen_hvm __refconst = {
1882 .name = "Xen HVM",
1883 .detect = xen_hvm_platform,
1884 .init_platform = xen_hvm_guest_init,
1885 .x2apic_available = xen_x2apic_para_available,
1886 };
1887 EXPORT_SYMBOL(x86_hyper_xen_hvm);
1888 #endif
This page took 0.072219 seconds and 6 git commands to generate.