Merge commit 'v2.6.29-rc5' into x86/apic
[deliverable/linux.git] / arch / x86 / xen / enlighten.c
1 /*
2 * Core of Xen paravirt_ops implementation.
3 *
4 * This file contains the xen_paravirt_ops structure itself, and the
5 * implementations for:
6 * - privileged instructions
7 * - interrupt flags
8 * - segment operations
9 * - booting and setup
10 *
11 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
12 */
13
14 #include <linux/kernel.h>
15 #include <linux/init.h>
16 #include <linux/smp.h>
17 #include <linux/preempt.h>
18 #include <linux/hardirq.h>
19 #include <linux/percpu.h>
20 #include <linux/delay.h>
21 #include <linux/start_kernel.h>
22 #include <linux/sched.h>
23 #include <linux/bootmem.h>
24 #include <linux/module.h>
25 #include <linux/mm.h>
26 #include <linux/page-flags.h>
27 #include <linux/highmem.h>
28 #include <linux/console.h>
29
30 #include <xen/interface/xen.h>
31 #include <xen/interface/version.h>
32 #include <xen/interface/physdev.h>
33 #include <xen/interface/vcpu.h>
34 #include <xen/features.h>
35 #include <xen/page.h>
36 #include <xen/hvc-console.h>
37
38 #include <asm/paravirt.h>
39 #include <asm/apic.h>
40 #include <asm/page.h>
41 #include <asm/xen/hypercall.h>
42 #include <asm/xen/hypervisor.h>
43 #include <asm/fixmap.h>
44 #include <asm/processor.h>
45 #include <asm/msr-index.h>
46 #include <asm/setup.h>
47 #include <asm/desc.h>
48 #include <asm/pgtable.h>
49 #include <asm/tlbflush.h>
50 #include <asm/reboot.h>
51
52 #include "xen-ops.h"
53 #include "mmu.h"
54 #include "multicalls.h"
55
56 EXPORT_SYMBOL_GPL(hypercall_page);
57
58 DEFINE_PER_CPU(struct vcpu_info *, xen_vcpu);
59 DEFINE_PER_CPU(struct vcpu_info, xen_vcpu_info);
60
61 enum xen_domain_type xen_domain_type = XEN_NATIVE;
62 EXPORT_SYMBOL_GPL(xen_domain_type);
63
64 struct start_info *xen_start_info;
65 EXPORT_SYMBOL_GPL(xen_start_info);
66
67 struct shared_info xen_dummy_shared_info;
68
69 void *xen_initial_gdt;
70
71 /*
72 * Point at some empty memory to start with. We map the real shared_info
73 * page as soon as fixmap is up and running.
74 */
75 struct shared_info *HYPERVISOR_shared_info = (void *)&xen_dummy_shared_info;
76
77 /*
78 * Flag to determine whether vcpu info placement is available on all
79 * VCPUs. We assume it is to start with, and then set it to zero on
80 * the first failure. This is because it can succeed on some VCPUs
81 * and not others, since it can involve hypervisor memory allocation,
82 * or because the guest failed to guarantee all the appropriate
83 * constraints on all VCPUs (ie buffer can't cross a page boundary).
84 *
85 * Note that any particular CPU may be using a placed vcpu structure,
86 * but we can only optimise if the all are.
87 *
88 * 0: not available, 1: available
89 */
90 static int have_vcpu_info_placement = 1;
91
92 static void xen_vcpu_setup(int cpu)
93 {
94 struct vcpu_register_vcpu_info info;
95 int err;
96 struct vcpu_info *vcpup;
97
98 BUG_ON(HYPERVISOR_shared_info == &xen_dummy_shared_info);
99 per_cpu(xen_vcpu, cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
100
101 if (!have_vcpu_info_placement)
102 return; /* already tested, not available */
103
104 vcpup = &per_cpu(xen_vcpu_info, cpu);
105
106 info.mfn = virt_to_mfn(vcpup);
107 info.offset = offset_in_page(vcpup);
108
109 printk(KERN_DEBUG "trying to map vcpu_info %d at %p, mfn %llx, offset %d\n",
110 cpu, vcpup, info.mfn, info.offset);
111
112 /* Check to see if the hypervisor will put the vcpu_info
113 structure where we want it, which allows direct access via
114 a percpu-variable. */
115 err = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_info, cpu, &info);
116
117 if (err) {
118 printk(KERN_DEBUG "register_vcpu_info failed: err=%d\n", err);
119 have_vcpu_info_placement = 0;
120 } else {
121 /* This cpu is using the registered vcpu info, even if
122 later ones fail to. */
123 per_cpu(xen_vcpu, cpu) = vcpup;
124
125 printk(KERN_DEBUG "cpu %d using vcpu_info at %p\n",
126 cpu, vcpup);
127 }
128 }
129
130 /*
131 * On restore, set the vcpu placement up again.
132 * If it fails, then we're in a bad state, since
133 * we can't back out from using it...
134 */
135 void xen_vcpu_restore(void)
136 {
137 if (have_vcpu_info_placement) {
138 int cpu;
139
140 for_each_online_cpu(cpu) {
141 bool other_cpu = (cpu != smp_processor_id());
142
143 if (other_cpu &&
144 HYPERVISOR_vcpu_op(VCPUOP_down, cpu, NULL))
145 BUG();
146
147 xen_vcpu_setup(cpu);
148
149 if (other_cpu &&
150 HYPERVISOR_vcpu_op(VCPUOP_up, cpu, NULL))
151 BUG();
152 }
153
154 BUG_ON(!have_vcpu_info_placement);
155 }
156 }
157
158 static void __init xen_banner(void)
159 {
160 unsigned version = HYPERVISOR_xen_version(XENVER_version, NULL);
161 struct xen_extraversion extra;
162 HYPERVISOR_xen_version(XENVER_extraversion, &extra);
163
164 printk(KERN_INFO "Booting paravirtualized kernel on %s\n",
165 pv_info.name);
166 printk(KERN_INFO "Xen version: %d.%d%s%s\n",
167 version >> 16, version & 0xffff, extra.extraversion,
168 xen_feature(XENFEAT_mmu_pt_update_preserve_ad) ? " (preserve-AD)" : "");
169 }
170
171 static void xen_cpuid(unsigned int *ax, unsigned int *bx,
172 unsigned int *cx, unsigned int *dx)
173 {
174 unsigned maskedx = ~0;
175
176 /*
177 * Mask out inconvenient features, to try and disable as many
178 * unsupported kernel subsystems as possible.
179 */
180 if (*ax == 1)
181 maskedx = ~((1 << X86_FEATURE_APIC) | /* disable APIC */
182 (1 << X86_FEATURE_ACPI) | /* disable ACPI */
183 (1 << X86_FEATURE_MCE) | /* disable MCE */
184 (1 << X86_FEATURE_MCA) | /* disable MCA */
185 (1 << X86_FEATURE_ACC)); /* thermal monitoring */
186
187 asm(XEN_EMULATE_PREFIX "cpuid"
188 : "=a" (*ax),
189 "=b" (*bx),
190 "=c" (*cx),
191 "=d" (*dx)
192 : "0" (*ax), "2" (*cx));
193 *dx &= maskedx;
194 }
195
196 static void xen_set_debugreg(int reg, unsigned long val)
197 {
198 HYPERVISOR_set_debugreg(reg, val);
199 }
200
201 static unsigned long xen_get_debugreg(int reg)
202 {
203 return HYPERVISOR_get_debugreg(reg);
204 }
205
206 void xen_leave_lazy(void)
207 {
208 paravirt_leave_lazy(paravirt_get_lazy_mode());
209 xen_mc_flush();
210 }
211
212 static unsigned long xen_store_tr(void)
213 {
214 return 0;
215 }
216
217 /*
218 * Set the page permissions for a particular virtual address. If the
219 * address is a vmalloc mapping (or other non-linear mapping), then
220 * find the linear mapping of the page and also set its protections to
221 * match.
222 */
223 static void set_aliased_prot(void *v, pgprot_t prot)
224 {
225 int level;
226 pte_t *ptep;
227 pte_t pte;
228 unsigned long pfn;
229 struct page *page;
230
231 ptep = lookup_address((unsigned long)v, &level);
232 BUG_ON(ptep == NULL);
233
234 pfn = pte_pfn(*ptep);
235 page = pfn_to_page(pfn);
236
237 pte = pfn_pte(pfn, prot);
238
239 if (HYPERVISOR_update_va_mapping((unsigned long)v, pte, 0))
240 BUG();
241
242 if (!PageHighMem(page)) {
243 void *av = __va(PFN_PHYS(pfn));
244
245 if (av != v)
246 if (HYPERVISOR_update_va_mapping((unsigned long)av, pte, 0))
247 BUG();
248 } else
249 kmap_flush_unused();
250 }
251
252 static void xen_alloc_ldt(struct desc_struct *ldt, unsigned entries)
253 {
254 const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
255 int i;
256
257 for(i = 0; i < entries; i += entries_per_page)
258 set_aliased_prot(ldt + i, PAGE_KERNEL_RO);
259 }
260
261 static void xen_free_ldt(struct desc_struct *ldt, unsigned entries)
262 {
263 const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
264 int i;
265
266 for(i = 0; i < entries; i += entries_per_page)
267 set_aliased_prot(ldt + i, PAGE_KERNEL);
268 }
269
270 static void xen_set_ldt(const void *addr, unsigned entries)
271 {
272 struct mmuext_op *op;
273 struct multicall_space mcs = xen_mc_entry(sizeof(*op));
274
275 op = mcs.args;
276 op->cmd = MMUEXT_SET_LDT;
277 op->arg1.linear_addr = (unsigned long)addr;
278 op->arg2.nr_ents = entries;
279
280 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
281
282 xen_mc_issue(PARAVIRT_LAZY_CPU);
283 }
284
285 static void xen_load_gdt(const struct desc_ptr *dtr)
286 {
287 unsigned long *frames;
288 unsigned long va = dtr->address;
289 unsigned int size = dtr->size + 1;
290 unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
291 int f;
292 struct multicall_space mcs;
293
294 /* A GDT can be up to 64k in size, which corresponds to 8192
295 8-byte entries, or 16 4k pages.. */
296
297 BUG_ON(size > 65536);
298 BUG_ON(va & ~PAGE_MASK);
299
300 mcs = xen_mc_entry(sizeof(*frames) * pages);
301 frames = mcs.args;
302
303 for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
304 frames[f] = virt_to_mfn(va);
305 make_lowmem_page_readonly((void *)va);
306 }
307
308 MULTI_set_gdt(mcs.mc, frames, size / sizeof(struct desc_struct));
309
310 xen_mc_issue(PARAVIRT_LAZY_CPU);
311 }
312
313 static void load_TLS_descriptor(struct thread_struct *t,
314 unsigned int cpu, unsigned int i)
315 {
316 struct desc_struct *gdt = get_cpu_gdt_table(cpu);
317 xmaddr_t maddr = virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]);
318 struct multicall_space mc = __xen_mc_entry(0);
319
320 MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]);
321 }
322
323 static void xen_load_tls(struct thread_struct *t, unsigned int cpu)
324 {
325 /*
326 * XXX sleazy hack: If we're being called in a lazy-cpu zone,
327 * it means we're in a context switch, and %gs has just been
328 * saved. This means we can zero it out to prevent faults on
329 * exit from the hypervisor if the next process has no %gs.
330 * Either way, it has been saved, and the new value will get
331 * loaded properly. This will go away as soon as Xen has been
332 * modified to not save/restore %gs for normal hypercalls.
333 *
334 * On x86_64, this hack is not used for %gs, because gs points
335 * to KERNEL_GS_BASE (and uses it for PDA references), so we
336 * must not zero %gs on x86_64
337 *
338 * For x86_64, we need to zero %fs, otherwise we may get an
339 * exception between the new %fs descriptor being loaded and
340 * %fs being effectively cleared at __switch_to().
341 */
342 if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_CPU) {
343 #ifdef CONFIG_X86_32
344 loadsegment(gs, 0);
345 #else
346 loadsegment(fs, 0);
347 #endif
348 }
349
350 xen_mc_batch();
351
352 load_TLS_descriptor(t, cpu, 0);
353 load_TLS_descriptor(t, cpu, 1);
354 load_TLS_descriptor(t, cpu, 2);
355
356 xen_mc_issue(PARAVIRT_LAZY_CPU);
357 }
358
359 #ifdef CONFIG_X86_64
360 static void xen_load_gs_index(unsigned int idx)
361 {
362 if (HYPERVISOR_set_segment_base(SEGBASE_GS_USER_SEL, idx))
363 BUG();
364 }
365 #endif
366
367 static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum,
368 const void *ptr)
369 {
370 xmaddr_t mach_lp = arbitrary_virt_to_machine(&dt[entrynum]);
371 u64 entry = *(u64 *)ptr;
372
373 preempt_disable();
374
375 xen_mc_flush();
376 if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry))
377 BUG();
378
379 preempt_enable();
380 }
381
382 static int cvt_gate_to_trap(int vector, const gate_desc *val,
383 struct trap_info *info)
384 {
385 if (val->type != 0xf && val->type != 0xe)
386 return 0;
387
388 info->vector = vector;
389 info->address = gate_offset(*val);
390 info->cs = gate_segment(*val);
391 info->flags = val->dpl;
392 /* interrupt gates clear IF */
393 if (val->type == 0xe)
394 info->flags |= 4;
395
396 return 1;
397 }
398
399 /* Locations of each CPU's IDT */
400 static DEFINE_PER_CPU(struct desc_ptr, idt_desc);
401
402 /* Set an IDT entry. If the entry is part of the current IDT, then
403 also update Xen. */
404 static void xen_write_idt_entry(gate_desc *dt, int entrynum, const gate_desc *g)
405 {
406 unsigned long p = (unsigned long)&dt[entrynum];
407 unsigned long start, end;
408
409 preempt_disable();
410
411 start = __get_cpu_var(idt_desc).address;
412 end = start + __get_cpu_var(idt_desc).size + 1;
413
414 xen_mc_flush();
415
416 native_write_idt_entry(dt, entrynum, g);
417
418 if (p >= start && (p + 8) <= end) {
419 struct trap_info info[2];
420
421 info[1].address = 0;
422
423 if (cvt_gate_to_trap(entrynum, g, &info[0]))
424 if (HYPERVISOR_set_trap_table(info))
425 BUG();
426 }
427
428 preempt_enable();
429 }
430
431 static void xen_convert_trap_info(const struct desc_ptr *desc,
432 struct trap_info *traps)
433 {
434 unsigned in, out, count;
435
436 count = (desc->size+1) / sizeof(gate_desc);
437 BUG_ON(count > 256);
438
439 for (in = out = 0; in < count; in++) {
440 gate_desc *entry = (gate_desc*)(desc->address) + in;
441
442 if (cvt_gate_to_trap(in, entry, &traps[out]))
443 out++;
444 }
445 traps[out].address = 0;
446 }
447
448 void xen_copy_trap_info(struct trap_info *traps)
449 {
450 const struct desc_ptr *desc = &__get_cpu_var(idt_desc);
451
452 xen_convert_trap_info(desc, traps);
453 }
454
455 /* Load a new IDT into Xen. In principle this can be per-CPU, so we
456 hold a spinlock to protect the static traps[] array (static because
457 it avoids allocation, and saves stack space). */
458 static void xen_load_idt(const struct desc_ptr *desc)
459 {
460 static DEFINE_SPINLOCK(lock);
461 static struct trap_info traps[257];
462
463 spin_lock(&lock);
464
465 __get_cpu_var(idt_desc) = *desc;
466
467 xen_convert_trap_info(desc, traps);
468
469 xen_mc_flush();
470 if (HYPERVISOR_set_trap_table(traps))
471 BUG();
472
473 spin_unlock(&lock);
474 }
475
476 /* Write a GDT descriptor entry. Ignore LDT descriptors, since
477 they're handled differently. */
478 static void xen_write_gdt_entry(struct desc_struct *dt, int entry,
479 const void *desc, int type)
480 {
481 preempt_disable();
482
483 switch (type) {
484 case DESC_LDT:
485 case DESC_TSS:
486 /* ignore */
487 break;
488
489 default: {
490 xmaddr_t maddr = virt_to_machine(&dt[entry]);
491
492 xen_mc_flush();
493 if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
494 BUG();
495 }
496
497 }
498
499 preempt_enable();
500 }
501
502 static void xen_load_sp0(struct tss_struct *tss,
503 struct thread_struct *thread)
504 {
505 struct multicall_space mcs = xen_mc_entry(0);
506 MULTI_stack_switch(mcs.mc, __KERNEL_DS, thread->sp0);
507 xen_mc_issue(PARAVIRT_LAZY_CPU);
508 }
509
510 static void xen_set_iopl_mask(unsigned mask)
511 {
512 struct physdev_set_iopl set_iopl;
513
514 /* Force the change at ring 0. */
515 set_iopl.iopl = (mask == 0) ? 1 : (mask >> 12) & 3;
516 HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
517 }
518
519 static void xen_io_delay(void)
520 {
521 }
522
523 #ifdef CONFIG_X86_LOCAL_APIC
524 static u32 xen_apic_read(u32 reg)
525 {
526 return 0;
527 }
528
529 static void xen_apic_write(u32 reg, u32 val)
530 {
531 /* Warn to see if there's any stray references */
532 WARN_ON(1);
533 }
534
535 static u64 xen_apic_icr_read(void)
536 {
537 return 0;
538 }
539
540 static void xen_apic_icr_write(u32 low, u32 id)
541 {
542 /* Warn to see if there's any stray references */
543 WARN_ON(1);
544 }
545
546 static void xen_apic_wait_icr_idle(void)
547 {
548 return;
549 }
550
551 static u32 xen_safe_apic_wait_icr_idle(void)
552 {
553 return 0;
554 }
555
556 static struct apic_ops xen_basic_apic_ops = {
557 .read = xen_apic_read,
558 .write = xen_apic_write,
559 .icr_read = xen_apic_icr_read,
560 .icr_write = xen_apic_icr_write,
561 .wait_icr_idle = xen_apic_wait_icr_idle,
562 .safe_wait_icr_idle = xen_safe_apic_wait_icr_idle,
563 };
564
565 #endif
566
567
568 static void xen_clts(void)
569 {
570 struct multicall_space mcs;
571
572 mcs = xen_mc_entry(0);
573
574 MULTI_fpu_taskswitch(mcs.mc, 0);
575
576 xen_mc_issue(PARAVIRT_LAZY_CPU);
577 }
578
579 static void xen_write_cr0(unsigned long cr0)
580 {
581 struct multicall_space mcs;
582
583 /* Only pay attention to cr0.TS; everything else is
584 ignored. */
585 mcs = xen_mc_entry(0);
586
587 MULTI_fpu_taskswitch(mcs.mc, (cr0 & X86_CR0_TS) != 0);
588
589 xen_mc_issue(PARAVIRT_LAZY_CPU);
590 }
591
592 static void xen_write_cr4(unsigned long cr4)
593 {
594 cr4 &= ~X86_CR4_PGE;
595 cr4 &= ~X86_CR4_PSE;
596
597 native_write_cr4(cr4);
598 }
599
600 static int xen_write_msr_safe(unsigned int msr, unsigned low, unsigned high)
601 {
602 int ret;
603
604 ret = 0;
605
606 switch (msr) {
607 #ifdef CONFIG_X86_64
608 unsigned which;
609 u64 base;
610
611 case MSR_FS_BASE: which = SEGBASE_FS; goto set;
612 case MSR_KERNEL_GS_BASE: which = SEGBASE_GS_USER; goto set;
613 case MSR_GS_BASE: which = SEGBASE_GS_KERNEL; goto set;
614
615 set:
616 base = ((u64)high << 32) | low;
617 if (HYPERVISOR_set_segment_base(which, base) != 0)
618 ret = -EFAULT;
619 break;
620 #endif
621
622 case MSR_STAR:
623 case MSR_CSTAR:
624 case MSR_LSTAR:
625 case MSR_SYSCALL_MASK:
626 case MSR_IA32_SYSENTER_CS:
627 case MSR_IA32_SYSENTER_ESP:
628 case MSR_IA32_SYSENTER_EIP:
629 /* Fast syscall setup is all done in hypercalls, so
630 these are all ignored. Stub them out here to stop
631 Xen console noise. */
632 break;
633
634 default:
635 ret = native_write_msr_safe(msr, low, high);
636 }
637
638 return ret;
639 }
640
641 void xen_setup_shared_info(void)
642 {
643 if (!xen_feature(XENFEAT_auto_translated_physmap)) {
644 set_fixmap(FIX_PARAVIRT_BOOTMAP,
645 xen_start_info->shared_info);
646
647 HYPERVISOR_shared_info =
648 (struct shared_info *)fix_to_virt(FIX_PARAVIRT_BOOTMAP);
649 } else
650 HYPERVISOR_shared_info =
651 (struct shared_info *)__va(xen_start_info->shared_info);
652
653 #ifndef CONFIG_SMP
654 /* In UP this is as good a place as any to set up shared info */
655 xen_setup_vcpu_info_placement();
656 #endif
657
658 xen_setup_mfn_list_list();
659 }
660
661 /* This is called once we have the cpu_possible_map */
662 void xen_setup_vcpu_info_placement(void)
663 {
664 int cpu;
665
666 for_each_possible_cpu(cpu)
667 xen_vcpu_setup(cpu);
668
669 /* xen_vcpu_setup managed to place the vcpu_info within the
670 percpu area for all cpus, so make use of it */
671 if (have_vcpu_info_placement) {
672 printk(KERN_INFO "Xen: using vcpu_info placement\n");
673
674 pv_irq_ops.save_fl = __PV_IS_CALLEE_SAVE(xen_save_fl_direct);
675 pv_irq_ops.restore_fl = __PV_IS_CALLEE_SAVE(xen_restore_fl_direct);
676 pv_irq_ops.irq_disable = __PV_IS_CALLEE_SAVE(xen_irq_disable_direct);
677 pv_irq_ops.irq_enable = __PV_IS_CALLEE_SAVE(xen_irq_enable_direct);
678 pv_mmu_ops.read_cr2 = xen_read_cr2_direct;
679 }
680 }
681
682 static unsigned xen_patch(u8 type, u16 clobbers, void *insnbuf,
683 unsigned long addr, unsigned len)
684 {
685 char *start, *end, *reloc;
686 unsigned ret;
687
688 start = end = reloc = NULL;
689
690 #define SITE(op, x) \
691 case PARAVIRT_PATCH(op.x): \
692 if (have_vcpu_info_placement) { \
693 start = (char *)xen_##x##_direct; \
694 end = xen_##x##_direct_end; \
695 reloc = xen_##x##_direct_reloc; \
696 } \
697 goto patch_site
698
699 switch (type) {
700 SITE(pv_irq_ops, irq_enable);
701 SITE(pv_irq_ops, irq_disable);
702 SITE(pv_irq_ops, save_fl);
703 SITE(pv_irq_ops, restore_fl);
704 #undef SITE
705
706 patch_site:
707 if (start == NULL || (end-start) > len)
708 goto default_patch;
709
710 ret = paravirt_patch_insns(insnbuf, len, start, end);
711
712 /* Note: because reloc is assigned from something that
713 appears to be an array, gcc assumes it's non-null,
714 but doesn't know its relationship with start and
715 end. */
716 if (reloc > start && reloc < end) {
717 int reloc_off = reloc - start;
718 long *relocp = (long *)(insnbuf + reloc_off);
719 long delta = start - (char *)addr;
720
721 *relocp += delta;
722 }
723 break;
724
725 default_patch:
726 default:
727 ret = paravirt_patch_default(type, clobbers, insnbuf,
728 addr, len);
729 break;
730 }
731
732 return ret;
733 }
734
735 static const struct pv_info xen_info __initdata = {
736 .paravirt_enabled = 1,
737 .shared_kernel_pmd = 0,
738
739 .name = "Xen",
740 };
741
742 static const struct pv_init_ops xen_init_ops __initdata = {
743 .patch = xen_patch,
744
745 .banner = xen_banner,
746 .memory_setup = xen_memory_setup,
747 .arch_setup = xen_arch_setup,
748 .post_allocator_init = xen_post_allocator_init,
749 };
750
751 static const struct pv_time_ops xen_time_ops __initdata = {
752 .time_init = xen_time_init,
753
754 .set_wallclock = xen_set_wallclock,
755 .get_wallclock = xen_get_wallclock,
756 .get_tsc_khz = xen_tsc_khz,
757 .sched_clock = xen_sched_clock,
758 };
759
760 static const struct pv_cpu_ops xen_cpu_ops __initdata = {
761 .cpuid = xen_cpuid,
762
763 .set_debugreg = xen_set_debugreg,
764 .get_debugreg = xen_get_debugreg,
765
766 .clts = xen_clts,
767
768 .read_cr0 = native_read_cr0,
769 .write_cr0 = xen_write_cr0,
770
771 .read_cr4 = native_read_cr4,
772 .read_cr4_safe = native_read_cr4_safe,
773 .write_cr4 = xen_write_cr4,
774
775 .wbinvd = native_wbinvd,
776
777 .read_msr = native_read_msr_safe,
778 .write_msr = xen_write_msr_safe,
779 .read_tsc = native_read_tsc,
780 .read_pmc = native_read_pmc,
781
782 .iret = xen_iret,
783 .irq_enable_sysexit = xen_sysexit,
784 #ifdef CONFIG_X86_64
785 .usergs_sysret32 = xen_sysret32,
786 .usergs_sysret64 = xen_sysret64,
787 #endif
788
789 .load_tr_desc = paravirt_nop,
790 .set_ldt = xen_set_ldt,
791 .load_gdt = xen_load_gdt,
792 .load_idt = xen_load_idt,
793 .load_tls = xen_load_tls,
794 #ifdef CONFIG_X86_64
795 .load_gs_index = xen_load_gs_index,
796 #endif
797
798 .alloc_ldt = xen_alloc_ldt,
799 .free_ldt = xen_free_ldt,
800
801 .store_gdt = native_store_gdt,
802 .store_idt = native_store_idt,
803 .store_tr = xen_store_tr,
804
805 .write_ldt_entry = xen_write_ldt_entry,
806 .write_gdt_entry = xen_write_gdt_entry,
807 .write_idt_entry = xen_write_idt_entry,
808 .load_sp0 = xen_load_sp0,
809
810 .set_iopl_mask = xen_set_iopl_mask,
811 .io_delay = xen_io_delay,
812
813 /* Xen takes care of %gs when switching to usermode for us */
814 .swapgs = paravirt_nop,
815
816 .lazy_mode = {
817 .enter = paravirt_enter_lazy_cpu,
818 .leave = xen_leave_lazy,
819 },
820 };
821
822 static const struct pv_apic_ops xen_apic_ops __initdata = {
823 #ifdef CONFIG_X86_LOCAL_APIC
824 .setup_boot_clock = paravirt_nop,
825 .setup_secondary_clock = paravirt_nop,
826 .startup_ipi_hook = paravirt_nop,
827 #endif
828 };
829
830 static void xen_reboot(int reason)
831 {
832 struct sched_shutdown r = { .reason = reason };
833
834 #ifdef CONFIG_SMP
835 smp_send_stop();
836 #endif
837
838 if (HYPERVISOR_sched_op(SCHEDOP_shutdown, &r))
839 BUG();
840 }
841
842 static void xen_restart(char *msg)
843 {
844 xen_reboot(SHUTDOWN_reboot);
845 }
846
847 static void xen_emergency_restart(void)
848 {
849 xen_reboot(SHUTDOWN_reboot);
850 }
851
852 static void xen_machine_halt(void)
853 {
854 xen_reboot(SHUTDOWN_poweroff);
855 }
856
857 static void xen_crash_shutdown(struct pt_regs *regs)
858 {
859 xen_reboot(SHUTDOWN_crash);
860 }
861
862 static const struct machine_ops __initdata xen_machine_ops = {
863 .restart = xen_restart,
864 .halt = xen_machine_halt,
865 .power_off = xen_machine_halt,
866 .shutdown = xen_machine_halt,
867 .crash_shutdown = xen_crash_shutdown,
868 .emergency_restart = xen_emergency_restart,
869 };
870
871
872 /* First C function to be called on Xen boot */
873 asmlinkage void __init xen_start_kernel(void)
874 {
875 pgd_t *pgd;
876
877 if (!xen_start_info)
878 return;
879
880 xen_domain_type = XEN_PV_DOMAIN;
881
882 BUG_ON(memcmp(xen_start_info->magic, "xen-3", 5) != 0);
883
884 xen_setup_features();
885
886 /* Install Xen paravirt ops */
887 pv_info = xen_info;
888 pv_init_ops = xen_init_ops;
889 pv_time_ops = xen_time_ops;
890 pv_cpu_ops = xen_cpu_ops;
891 pv_apic_ops = xen_apic_ops;
892 pv_mmu_ops = xen_mmu_ops;
893
894 xen_init_irq_ops();
895
896 #ifdef CONFIG_X86_LOCAL_APIC
897 /*
898 * set up the basic apic ops.
899 */
900 apic_ops = &xen_basic_apic_ops;
901 #endif
902
903 if (xen_feature(XENFEAT_mmu_pt_update_preserve_ad)) {
904 pv_mmu_ops.ptep_modify_prot_start = xen_ptep_modify_prot_start;
905 pv_mmu_ops.ptep_modify_prot_commit = xen_ptep_modify_prot_commit;
906 }
907
908 machine_ops = xen_machine_ops;
909
910 #ifdef CONFIG_X86_64
911 /*
912 * Setup percpu state. We only need to do this for 64-bit
913 * because 32-bit already has %fs set properly.
914 */
915 load_percpu_segment(0);
916 #endif
917 /*
918 * The only reliable way to retain the initial address of the
919 * percpu gdt_page is to remember it here, so we can go and
920 * mark it RW later, when the initial percpu area is freed.
921 */
922 xen_initial_gdt = &per_cpu(gdt_page, 0);
923
924 xen_smp_init();
925
926 /* Get mfn list */
927 if (!xen_feature(XENFEAT_auto_translated_physmap))
928 xen_build_dynamic_phys_to_machine();
929
930 pgd = (pgd_t *)xen_start_info->pt_base;
931
932 /* Prevent unwanted bits from being set in PTEs. */
933 __supported_pte_mask &= ~_PAGE_GLOBAL;
934 if (!xen_initial_domain())
935 __supported_pte_mask &= ~(_PAGE_PWT | _PAGE_PCD);
936
937 /* Don't do the full vcpu_info placement stuff until we have a
938 possible map and a non-dummy shared_info. */
939 per_cpu(xen_vcpu, 0) = &HYPERVISOR_shared_info->vcpu_info[0];
940
941 xen_raw_console_write("mapping kernel into physical memory\n");
942 pgd = xen_setup_kernel_pagetable(pgd, xen_start_info->nr_pages);
943
944 init_mm.pgd = pgd;
945
946 /* keep using Xen gdt for now; no urgent need to change it */
947
948 pv_info.kernel_rpl = 1;
949 if (xen_feature(XENFEAT_supervisor_mode_kernel))
950 pv_info.kernel_rpl = 0;
951
952 /* set the limit of our address space */
953 xen_reserve_top();
954
955 #ifdef CONFIG_X86_32
956 /* set up basic CPUID stuff */
957 cpu_detect(&new_cpu_data);
958 new_cpu_data.hard_math = 1;
959 new_cpu_data.x86_capability[0] = cpuid_edx(1);
960 #endif
961
962 /* Poke various useful things into boot_params */
963 boot_params.hdr.type_of_loader = (9 << 4) | 0;
964 boot_params.hdr.ramdisk_image = xen_start_info->mod_start
965 ? __pa(xen_start_info->mod_start) : 0;
966 boot_params.hdr.ramdisk_size = xen_start_info->mod_len;
967 boot_params.hdr.cmd_line_ptr = __pa(xen_start_info->cmd_line);
968
969 if (!xen_initial_domain()) {
970 add_preferred_console("xenboot", 0, NULL);
971 add_preferred_console("tty", 0, NULL);
972 add_preferred_console("hvc", 0, NULL);
973 }
974
975 xen_raw_console_write("about to get started...\n");
976
977 /* Start the world */
978 #ifdef CONFIG_X86_32
979 i386_start_kernel();
980 #else
981 x86_64_start_reservations((char *)__pa_symbol(&boot_params));
982 #endif
983 }
This page took 0.053012 seconds and 6 git commands to generate.