x86/xen: do not use _PAGE_IOMAP PTE flag for I/O mappings
[deliverable/linux.git] / arch / x86 / xen / mmu.c
1 /*
2 * Xen mmu operations
3 *
4 * This file contains the various mmu fetch and update operations.
5 * The most important job they must perform is the mapping between the
6 * domain's pfn and the overall machine mfns.
7 *
8 * Xen allows guests to directly update the pagetable, in a controlled
9 * fashion. In other words, the guest modifies the same pagetable
10 * that the CPU actually uses, which eliminates the overhead of having
11 * a separate shadow pagetable.
12 *
13 * In order to allow this, it falls on the guest domain to map its
14 * notion of a "physical" pfn - which is just a domain-local linear
15 * address - into a real "machine address" which the CPU's MMU can
16 * use.
17 *
18 * A pgd_t/pmd_t/pte_t will typically contain an mfn, and so can be
19 * inserted directly into the pagetable. When creating a new
20 * pte/pmd/pgd, it converts the passed pfn into an mfn. Conversely,
21 * when reading the content back with __(pgd|pmd|pte)_val, it converts
22 * the mfn back into a pfn.
23 *
24 * The other constraint is that all pages which make up a pagetable
25 * must be mapped read-only in the guest. This prevents uncontrolled
26 * guest updates to the pagetable. Xen strictly enforces this, and
27 * will disallow any pagetable update which will end up mapping a
28 * pagetable page RW, and will disallow using any writable page as a
29 * pagetable.
30 *
31 * Naively, when loading %cr3 with the base of a new pagetable, Xen
32 * would need to validate the whole pagetable before going on.
33 * Naturally, this is quite slow. The solution is to "pin" a
34 * pagetable, which enforces all the constraints on the pagetable even
35 * when it is not actively in use. This menas that Xen can be assured
36 * that it is still valid when you do load it into %cr3, and doesn't
37 * need to revalidate it.
38 *
39 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
40 */
41 #include <linux/sched.h>
42 #include <linux/highmem.h>
43 #include <linux/debugfs.h>
44 #include <linux/bug.h>
45 #include <linux/vmalloc.h>
46 #include <linux/module.h>
47 #include <linux/gfp.h>
48 #include <linux/memblock.h>
49 #include <linux/seq_file.h>
50 #include <linux/crash_dump.h>
51
52 #include <trace/events/xen.h>
53
54 #include <asm/pgtable.h>
55 #include <asm/tlbflush.h>
56 #include <asm/fixmap.h>
57 #include <asm/mmu_context.h>
58 #include <asm/setup.h>
59 #include <asm/paravirt.h>
60 #include <asm/e820.h>
61 #include <asm/linkage.h>
62 #include <asm/page.h>
63 #include <asm/init.h>
64 #include <asm/pat.h>
65 #include <asm/smp.h>
66
67 #include <asm/xen/hypercall.h>
68 #include <asm/xen/hypervisor.h>
69
70 #include <xen/xen.h>
71 #include <xen/page.h>
72 #include <xen/interface/xen.h>
73 #include <xen/interface/hvm/hvm_op.h>
74 #include <xen/interface/version.h>
75 #include <xen/interface/memory.h>
76 #include <xen/hvc-console.h>
77
78 #include "multicalls.h"
79 #include "mmu.h"
80 #include "debugfs.h"
81
82 /*
83 * Protects atomic reservation decrease/increase against concurrent increases.
84 * Also protects non-atomic updates of current_pages and balloon lists.
85 */
86 DEFINE_SPINLOCK(xen_reservation_lock);
87
88 #ifdef CONFIG_X86_32
89 /*
90 * Identity map, in addition to plain kernel map. This needs to be
91 * large enough to allocate page table pages to allocate the rest.
92 * Each page can map 2MB.
93 */
94 #define LEVEL1_IDENT_ENTRIES (PTRS_PER_PTE * 4)
95 static RESERVE_BRK_ARRAY(pte_t, level1_ident_pgt, LEVEL1_IDENT_ENTRIES);
96 #endif
97 #ifdef CONFIG_X86_64
98 /* l3 pud for userspace vsyscall mapping */
99 static pud_t level3_user_vsyscall[PTRS_PER_PUD] __page_aligned_bss;
100 #endif /* CONFIG_X86_64 */
101
102 /*
103 * Note about cr3 (pagetable base) values:
104 *
105 * xen_cr3 contains the current logical cr3 value; it contains the
106 * last set cr3. This may not be the current effective cr3, because
107 * its update may be being lazily deferred. However, a vcpu looking
108 * at its own cr3 can use this value knowing that it everything will
109 * be self-consistent.
110 *
111 * xen_current_cr3 contains the actual vcpu cr3; it is set once the
112 * hypercall to set the vcpu cr3 is complete (so it may be a little
113 * out of date, but it will never be set early). If one vcpu is
114 * looking at another vcpu's cr3 value, it should use this variable.
115 */
116 DEFINE_PER_CPU(unsigned long, xen_cr3); /* cr3 stored as physaddr */
117 DEFINE_PER_CPU(unsigned long, xen_current_cr3); /* actual vcpu cr3 */
118
119
120 /*
121 * Just beyond the highest usermode address. STACK_TOP_MAX has a
122 * redzone above it, so round it up to a PGD boundary.
123 */
124 #define USER_LIMIT ((STACK_TOP_MAX + PGDIR_SIZE - 1) & PGDIR_MASK)
125
126 unsigned long arbitrary_virt_to_mfn(void *vaddr)
127 {
128 xmaddr_t maddr = arbitrary_virt_to_machine(vaddr);
129
130 return PFN_DOWN(maddr.maddr);
131 }
132
133 xmaddr_t arbitrary_virt_to_machine(void *vaddr)
134 {
135 unsigned long address = (unsigned long)vaddr;
136 unsigned int level;
137 pte_t *pte;
138 unsigned offset;
139
140 /*
141 * if the PFN is in the linear mapped vaddr range, we can just use
142 * the (quick) virt_to_machine() p2m lookup
143 */
144 if (virt_addr_valid(vaddr))
145 return virt_to_machine(vaddr);
146
147 /* otherwise we have to do a (slower) full page-table walk */
148
149 pte = lookup_address(address, &level);
150 BUG_ON(pte == NULL);
151 offset = address & ~PAGE_MASK;
152 return XMADDR(((phys_addr_t)pte_mfn(*pte) << PAGE_SHIFT) + offset);
153 }
154 EXPORT_SYMBOL_GPL(arbitrary_virt_to_machine);
155
156 void make_lowmem_page_readonly(void *vaddr)
157 {
158 pte_t *pte, ptev;
159 unsigned long address = (unsigned long)vaddr;
160 unsigned int level;
161
162 pte = lookup_address(address, &level);
163 if (pte == NULL)
164 return; /* vaddr missing */
165
166 ptev = pte_wrprotect(*pte);
167
168 if (HYPERVISOR_update_va_mapping(address, ptev, 0))
169 BUG();
170 }
171
172 void make_lowmem_page_readwrite(void *vaddr)
173 {
174 pte_t *pte, ptev;
175 unsigned long address = (unsigned long)vaddr;
176 unsigned int level;
177
178 pte = lookup_address(address, &level);
179 if (pte == NULL)
180 return; /* vaddr missing */
181
182 ptev = pte_mkwrite(*pte);
183
184 if (HYPERVISOR_update_va_mapping(address, ptev, 0))
185 BUG();
186 }
187
188
189 static bool xen_page_pinned(void *ptr)
190 {
191 struct page *page = virt_to_page(ptr);
192
193 return PagePinned(page);
194 }
195
196 void xen_set_domain_pte(pte_t *ptep, pte_t pteval, unsigned domid)
197 {
198 struct multicall_space mcs;
199 struct mmu_update *u;
200
201 trace_xen_mmu_set_domain_pte(ptep, pteval, domid);
202
203 mcs = xen_mc_entry(sizeof(*u));
204 u = mcs.args;
205
206 /* ptep might be kmapped when using 32-bit HIGHPTE */
207 u->ptr = virt_to_machine(ptep).maddr;
208 u->val = pte_val_ma(pteval);
209
210 MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, domid);
211
212 xen_mc_issue(PARAVIRT_LAZY_MMU);
213 }
214 EXPORT_SYMBOL_GPL(xen_set_domain_pte);
215
216 static void xen_extend_mmu_update(const struct mmu_update *update)
217 {
218 struct multicall_space mcs;
219 struct mmu_update *u;
220
221 mcs = xen_mc_extend_args(__HYPERVISOR_mmu_update, sizeof(*u));
222
223 if (mcs.mc != NULL) {
224 mcs.mc->args[1]++;
225 } else {
226 mcs = __xen_mc_entry(sizeof(*u));
227 MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
228 }
229
230 u = mcs.args;
231 *u = *update;
232 }
233
234 static void xen_extend_mmuext_op(const struct mmuext_op *op)
235 {
236 struct multicall_space mcs;
237 struct mmuext_op *u;
238
239 mcs = xen_mc_extend_args(__HYPERVISOR_mmuext_op, sizeof(*u));
240
241 if (mcs.mc != NULL) {
242 mcs.mc->args[1]++;
243 } else {
244 mcs = __xen_mc_entry(sizeof(*u));
245 MULTI_mmuext_op(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
246 }
247
248 u = mcs.args;
249 *u = *op;
250 }
251
252 static void xen_set_pmd_hyper(pmd_t *ptr, pmd_t val)
253 {
254 struct mmu_update u;
255
256 preempt_disable();
257
258 xen_mc_batch();
259
260 /* ptr may be ioremapped for 64-bit pagetable setup */
261 u.ptr = arbitrary_virt_to_machine(ptr).maddr;
262 u.val = pmd_val_ma(val);
263 xen_extend_mmu_update(&u);
264
265 xen_mc_issue(PARAVIRT_LAZY_MMU);
266
267 preempt_enable();
268 }
269
270 static void xen_set_pmd(pmd_t *ptr, pmd_t val)
271 {
272 trace_xen_mmu_set_pmd(ptr, val);
273
274 /* If page is not pinned, we can just update the entry
275 directly */
276 if (!xen_page_pinned(ptr)) {
277 *ptr = val;
278 return;
279 }
280
281 xen_set_pmd_hyper(ptr, val);
282 }
283
284 /*
285 * Associate a virtual page frame with a given physical page frame
286 * and protection flags for that frame.
287 */
288 void set_pte_mfn(unsigned long vaddr, unsigned long mfn, pgprot_t flags)
289 {
290 set_pte_vaddr(vaddr, mfn_pte(mfn, flags));
291 }
292
293 static bool xen_batched_set_pte(pte_t *ptep, pte_t pteval)
294 {
295 struct mmu_update u;
296
297 if (paravirt_get_lazy_mode() != PARAVIRT_LAZY_MMU)
298 return false;
299
300 xen_mc_batch();
301
302 u.ptr = virt_to_machine(ptep).maddr | MMU_NORMAL_PT_UPDATE;
303 u.val = pte_val_ma(pteval);
304 xen_extend_mmu_update(&u);
305
306 xen_mc_issue(PARAVIRT_LAZY_MMU);
307
308 return true;
309 }
310
311 static inline void __xen_set_pte(pte_t *ptep, pte_t pteval)
312 {
313 if (!xen_batched_set_pte(ptep, pteval)) {
314 /*
315 * Could call native_set_pte() here and trap and
316 * emulate the PTE write but with 32-bit guests this
317 * needs two traps (one for each of the two 32-bit
318 * words in the PTE) so do one hypercall directly
319 * instead.
320 */
321 struct mmu_update u;
322
323 u.ptr = virt_to_machine(ptep).maddr | MMU_NORMAL_PT_UPDATE;
324 u.val = pte_val_ma(pteval);
325 HYPERVISOR_mmu_update(&u, 1, NULL, DOMID_SELF);
326 }
327 }
328
329 static void xen_set_pte(pte_t *ptep, pte_t pteval)
330 {
331 trace_xen_mmu_set_pte(ptep, pteval);
332 __xen_set_pte(ptep, pteval);
333 }
334
335 static void xen_set_pte_at(struct mm_struct *mm, unsigned long addr,
336 pte_t *ptep, pte_t pteval)
337 {
338 trace_xen_mmu_set_pte_at(mm, addr, ptep, pteval);
339 __xen_set_pte(ptep, pteval);
340 }
341
342 pte_t xen_ptep_modify_prot_start(struct mm_struct *mm,
343 unsigned long addr, pte_t *ptep)
344 {
345 /* Just return the pte as-is. We preserve the bits on commit */
346 trace_xen_mmu_ptep_modify_prot_start(mm, addr, ptep, *ptep);
347 return *ptep;
348 }
349
350 void xen_ptep_modify_prot_commit(struct mm_struct *mm, unsigned long addr,
351 pte_t *ptep, pte_t pte)
352 {
353 struct mmu_update u;
354
355 trace_xen_mmu_ptep_modify_prot_commit(mm, addr, ptep, pte);
356 xen_mc_batch();
357
358 u.ptr = virt_to_machine(ptep).maddr | MMU_PT_UPDATE_PRESERVE_AD;
359 u.val = pte_val_ma(pte);
360 xen_extend_mmu_update(&u);
361
362 xen_mc_issue(PARAVIRT_LAZY_MMU);
363 }
364
365 /* Assume pteval_t is equivalent to all the other *val_t types. */
366 static pteval_t pte_mfn_to_pfn(pteval_t val)
367 {
368 if (val & _PAGE_PRESENT) {
369 unsigned long mfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
370 unsigned long pfn = mfn_to_pfn(mfn);
371
372 pteval_t flags = val & PTE_FLAGS_MASK;
373 if (unlikely(pfn == ~0))
374 val = flags & ~_PAGE_PRESENT;
375 else
376 val = ((pteval_t)pfn << PAGE_SHIFT) | flags;
377 }
378
379 return val;
380 }
381
382 static pteval_t pte_pfn_to_mfn(pteval_t val)
383 {
384 if (val & _PAGE_PRESENT) {
385 unsigned long pfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
386 pteval_t flags = val & PTE_FLAGS_MASK;
387 unsigned long mfn;
388
389 if (!xen_feature(XENFEAT_auto_translated_physmap))
390 mfn = get_phys_to_machine(pfn);
391 else
392 mfn = pfn;
393 /*
394 * If there's no mfn for the pfn, then just create an
395 * empty non-present pte. Unfortunately this loses
396 * information about the original pfn, so
397 * pte_mfn_to_pfn is asymmetric.
398 */
399 if (unlikely(mfn == INVALID_P2M_ENTRY)) {
400 mfn = 0;
401 flags = 0;
402 } else
403 mfn &= ~(FOREIGN_FRAME_BIT | IDENTITY_FRAME_BIT);
404 val = ((pteval_t)mfn << PAGE_SHIFT) | flags;
405 }
406
407 return val;
408 }
409
410 __visible pteval_t xen_pte_val(pte_t pte)
411 {
412 pteval_t pteval = pte.pte;
413 #if 0
414 /* If this is a WC pte, convert back from Xen WC to Linux WC */
415 if ((pteval & (_PAGE_PAT | _PAGE_PCD | _PAGE_PWT)) == _PAGE_PAT) {
416 WARN_ON(!pat_enabled);
417 pteval = (pteval & ~_PAGE_PAT) | _PAGE_PWT;
418 }
419 #endif
420 return pte_mfn_to_pfn(pteval);
421 }
422 PV_CALLEE_SAVE_REGS_THUNK(xen_pte_val);
423
424 __visible pgdval_t xen_pgd_val(pgd_t pgd)
425 {
426 return pte_mfn_to_pfn(pgd.pgd);
427 }
428 PV_CALLEE_SAVE_REGS_THUNK(xen_pgd_val);
429
430 /*
431 * Xen's PAT setup is part of its ABI, though I assume entries 6 & 7
432 * are reserved for now, to correspond to the Intel-reserved PAT
433 * types.
434 *
435 * We expect Linux's PAT set as follows:
436 *
437 * Idx PTE flags Linux Xen Default
438 * 0 WB WB WB
439 * 1 PWT WC WT WT
440 * 2 PCD UC- UC- UC-
441 * 3 PCD PWT UC UC UC
442 * 4 PAT WB WC WB
443 * 5 PAT PWT WC WP WT
444 * 6 PAT PCD UC- rsv UC-
445 * 7 PAT PCD PWT UC rsv UC
446 */
447
448 void xen_set_pat(u64 pat)
449 {
450 /* We expect Linux to use a PAT setting of
451 * UC UC- WC WB (ignoring the PAT flag) */
452 WARN_ON(pat != 0x0007010600070106ull);
453 }
454
455 __visible pte_t xen_make_pte(pteval_t pte)
456 {
457 #if 0
458 /* If Linux is trying to set a WC pte, then map to the Xen WC.
459 * If _PAGE_PAT is set, then it probably means it is really
460 * _PAGE_PSE, so avoid fiddling with the PAT mapping and hope
461 * things work out OK...
462 *
463 * (We should never see kernel mappings with _PAGE_PSE set,
464 * but we could see hugetlbfs mappings, I think.).
465 */
466 if (pat_enabled && !WARN_ON(pte & _PAGE_PAT)) {
467 if ((pte & (_PAGE_PCD | _PAGE_PWT)) == _PAGE_PWT)
468 pte = (pte & ~(_PAGE_PCD | _PAGE_PWT)) | _PAGE_PAT;
469 }
470 #endif
471 pte = pte_pfn_to_mfn(pte);
472
473 return native_make_pte(pte);
474 }
475 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pte);
476
477 __visible pgd_t xen_make_pgd(pgdval_t pgd)
478 {
479 pgd = pte_pfn_to_mfn(pgd);
480 return native_make_pgd(pgd);
481 }
482 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pgd);
483
484 __visible pmdval_t xen_pmd_val(pmd_t pmd)
485 {
486 return pte_mfn_to_pfn(pmd.pmd);
487 }
488 PV_CALLEE_SAVE_REGS_THUNK(xen_pmd_val);
489
490 static void xen_set_pud_hyper(pud_t *ptr, pud_t val)
491 {
492 struct mmu_update u;
493
494 preempt_disable();
495
496 xen_mc_batch();
497
498 /* ptr may be ioremapped for 64-bit pagetable setup */
499 u.ptr = arbitrary_virt_to_machine(ptr).maddr;
500 u.val = pud_val_ma(val);
501 xen_extend_mmu_update(&u);
502
503 xen_mc_issue(PARAVIRT_LAZY_MMU);
504
505 preempt_enable();
506 }
507
508 static void xen_set_pud(pud_t *ptr, pud_t val)
509 {
510 trace_xen_mmu_set_pud(ptr, val);
511
512 /* If page is not pinned, we can just update the entry
513 directly */
514 if (!xen_page_pinned(ptr)) {
515 *ptr = val;
516 return;
517 }
518
519 xen_set_pud_hyper(ptr, val);
520 }
521
522 #ifdef CONFIG_X86_PAE
523 static void xen_set_pte_atomic(pte_t *ptep, pte_t pte)
524 {
525 trace_xen_mmu_set_pte_atomic(ptep, pte);
526 set_64bit((u64 *)ptep, native_pte_val(pte));
527 }
528
529 static void xen_pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
530 {
531 trace_xen_mmu_pte_clear(mm, addr, ptep);
532 if (!xen_batched_set_pte(ptep, native_make_pte(0)))
533 native_pte_clear(mm, addr, ptep);
534 }
535
536 static void xen_pmd_clear(pmd_t *pmdp)
537 {
538 trace_xen_mmu_pmd_clear(pmdp);
539 set_pmd(pmdp, __pmd(0));
540 }
541 #endif /* CONFIG_X86_PAE */
542
543 __visible pmd_t xen_make_pmd(pmdval_t pmd)
544 {
545 pmd = pte_pfn_to_mfn(pmd);
546 return native_make_pmd(pmd);
547 }
548 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pmd);
549
550 #if PAGETABLE_LEVELS == 4
551 __visible pudval_t xen_pud_val(pud_t pud)
552 {
553 return pte_mfn_to_pfn(pud.pud);
554 }
555 PV_CALLEE_SAVE_REGS_THUNK(xen_pud_val);
556
557 __visible pud_t xen_make_pud(pudval_t pud)
558 {
559 pud = pte_pfn_to_mfn(pud);
560
561 return native_make_pud(pud);
562 }
563 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pud);
564
565 static pgd_t *xen_get_user_pgd(pgd_t *pgd)
566 {
567 pgd_t *pgd_page = (pgd_t *)(((unsigned long)pgd) & PAGE_MASK);
568 unsigned offset = pgd - pgd_page;
569 pgd_t *user_ptr = NULL;
570
571 if (offset < pgd_index(USER_LIMIT)) {
572 struct page *page = virt_to_page(pgd_page);
573 user_ptr = (pgd_t *)page->private;
574 if (user_ptr)
575 user_ptr += offset;
576 }
577
578 return user_ptr;
579 }
580
581 static void __xen_set_pgd_hyper(pgd_t *ptr, pgd_t val)
582 {
583 struct mmu_update u;
584
585 u.ptr = virt_to_machine(ptr).maddr;
586 u.val = pgd_val_ma(val);
587 xen_extend_mmu_update(&u);
588 }
589
590 /*
591 * Raw hypercall-based set_pgd, intended for in early boot before
592 * there's a page structure. This implies:
593 * 1. The only existing pagetable is the kernel's
594 * 2. It is always pinned
595 * 3. It has no user pagetable attached to it
596 */
597 static void __init xen_set_pgd_hyper(pgd_t *ptr, pgd_t val)
598 {
599 preempt_disable();
600
601 xen_mc_batch();
602
603 __xen_set_pgd_hyper(ptr, val);
604
605 xen_mc_issue(PARAVIRT_LAZY_MMU);
606
607 preempt_enable();
608 }
609
610 static void xen_set_pgd(pgd_t *ptr, pgd_t val)
611 {
612 pgd_t *user_ptr = xen_get_user_pgd(ptr);
613
614 trace_xen_mmu_set_pgd(ptr, user_ptr, val);
615
616 /* If page is not pinned, we can just update the entry
617 directly */
618 if (!xen_page_pinned(ptr)) {
619 *ptr = val;
620 if (user_ptr) {
621 WARN_ON(xen_page_pinned(user_ptr));
622 *user_ptr = val;
623 }
624 return;
625 }
626
627 /* If it's pinned, then we can at least batch the kernel and
628 user updates together. */
629 xen_mc_batch();
630
631 __xen_set_pgd_hyper(ptr, val);
632 if (user_ptr)
633 __xen_set_pgd_hyper(user_ptr, val);
634
635 xen_mc_issue(PARAVIRT_LAZY_MMU);
636 }
637 #endif /* PAGETABLE_LEVELS == 4 */
638
639 /*
640 * (Yet another) pagetable walker. This one is intended for pinning a
641 * pagetable. This means that it walks a pagetable and calls the
642 * callback function on each page it finds making up the page table,
643 * at every level. It walks the entire pagetable, but it only bothers
644 * pinning pte pages which are below limit. In the normal case this
645 * will be STACK_TOP_MAX, but at boot we need to pin up to
646 * FIXADDR_TOP.
647 *
648 * For 32-bit the important bit is that we don't pin beyond there,
649 * because then we start getting into Xen's ptes.
650 *
651 * For 64-bit, we must skip the Xen hole in the middle of the address
652 * space, just after the big x86-64 virtual hole.
653 */
654 static int __xen_pgd_walk(struct mm_struct *mm, pgd_t *pgd,
655 int (*func)(struct mm_struct *mm, struct page *,
656 enum pt_level),
657 unsigned long limit)
658 {
659 int flush = 0;
660 unsigned hole_low, hole_high;
661 unsigned pgdidx_limit, pudidx_limit, pmdidx_limit;
662 unsigned pgdidx, pudidx, pmdidx;
663
664 /* The limit is the last byte to be touched */
665 limit--;
666 BUG_ON(limit >= FIXADDR_TOP);
667
668 if (xen_feature(XENFEAT_auto_translated_physmap))
669 return 0;
670
671 /*
672 * 64-bit has a great big hole in the middle of the address
673 * space, which contains the Xen mappings. On 32-bit these
674 * will end up making a zero-sized hole and so is a no-op.
675 */
676 hole_low = pgd_index(USER_LIMIT);
677 hole_high = pgd_index(PAGE_OFFSET);
678
679 pgdidx_limit = pgd_index(limit);
680 #if PTRS_PER_PUD > 1
681 pudidx_limit = pud_index(limit);
682 #else
683 pudidx_limit = 0;
684 #endif
685 #if PTRS_PER_PMD > 1
686 pmdidx_limit = pmd_index(limit);
687 #else
688 pmdidx_limit = 0;
689 #endif
690
691 for (pgdidx = 0; pgdidx <= pgdidx_limit; pgdidx++) {
692 pud_t *pud;
693
694 if (pgdidx >= hole_low && pgdidx < hole_high)
695 continue;
696
697 if (!pgd_val(pgd[pgdidx]))
698 continue;
699
700 pud = pud_offset(&pgd[pgdidx], 0);
701
702 if (PTRS_PER_PUD > 1) /* not folded */
703 flush |= (*func)(mm, virt_to_page(pud), PT_PUD);
704
705 for (pudidx = 0; pudidx < PTRS_PER_PUD; pudidx++) {
706 pmd_t *pmd;
707
708 if (pgdidx == pgdidx_limit &&
709 pudidx > pudidx_limit)
710 goto out;
711
712 if (pud_none(pud[pudidx]))
713 continue;
714
715 pmd = pmd_offset(&pud[pudidx], 0);
716
717 if (PTRS_PER_PMD > 1) /* not folded */
718 flush |= (*func)(mm, virt_to_page(pmd), PT_PMD);
719
720 for (pmdidx = 0; pmdidx < PTRS_PER_PMD; pmdidx++) {
721 struct page *pte;
722
723 if (pgdidx == pgdidx_limit &&
724 pudidx == pudidx_limit &&
725 pmdidx > pmdidx_limit)
726 goto out;
727
728 if (pmd_none(pmd[pmdidx]))
729 continue;
730
731 pte = pmd_page(pmd[pmdidx]);
732 flush |= (*func)(mm, pte, PT_PTE);
733 }
734 }
735 }
736
737 out:
738 /* Do the top level last, so that the callbacks can use it as
739 a cue to do final things like tlb flushes. */
740 flush |= (*func)(mm, virt_to_page(pgd), PT_PGD);
741
742 return flush;
743 }
744
745 static int xen_pgd_walk(struct mm_struct *mm,
746 int (*func)(struct mm_struct *mm, struct page *,
747 enum pt_level),
748 unsigned long limit)
749 {
750 return __xen_pgd_walk(mm, mm->pgd, func, limit);
751 }
752
753 /* If we're using split pte locks, then take the page's lock and
754 return a pointer to it. Otherwise return NULL. */
755 static spinlock_t *xen_pte_lock(struct page *page, struct mm_struct *mm)
756 {
757 spinlock_t *ptl = NULL;
758
759 #if USE_SPLIT_PTE_PTLOCKS
760 ptl = ptlock_ptr(page);
761 spin_lock_nest_lock(ptl, &mm->page_table_lock);
762 #endif
763
764 return ptl;
765 }
766
767 static void xen_pte_unlock(void *v)
768 {
769 spinlock_t *ptl = v;
770 spin_unlock(ptl);
771 }
772
773 static void xen_do_pin(unsigned level, unsigned long pfn)
774 {
775 struct mmuext_op op;
776
777 op.cmd = level;
778 op.arg1.mfn = pfn_to_mfn(pfn);
779
780 xen_extend_mmuext_op(&op);
781 }
782
783 static int xen_pin_page(struct mm_struct *mm, struct page *page,
784 enum pt_level level)
785 {
786 unsigned pgfl = TestSetPagePinned(page);
787 int flush;
788
789 if (pgfl)
790 flush = 0; /* already pinned */
791 else if (PageHighMem(page))
792 /* kmaps need flushing if we found an unpinned
793 highpage */
794 flush = 1;
795 else {
796 void *pt = lowmem_page_address(page);
797 unsigned long pfn = page_to_pfn(page);
798 struct multicall_space mcs = __xen_mc_entry(0);
799 spinlock_t *ptl;
800
801 flush = 0;
802
803 /*
804 * We need to hold the pagetable lock between the time
805 * we make the pagetable RO and when we actually pin
806 * it. If we don't, then other users may come in and
807 * attempt to update the pagetable by writing it,
808 * which will fail because the memory is RO but not
809 * pinned, so Xen won't do the trap'n'emulate.
810 *
811 * If we're using split pte locks, we can't hold the
812 * entire pagetable's worth of locks during the
813 * traverse, because we may wrap the preempt count (8
814 * bits). The solution is to mark RO and pin each PTE
815 * page while holding the lock. This means the number
816 * of locks we end up holding is never more than a
817 * batch size (~32 entries, at present).
818 *
819 * If we're not using split pte locks, we needn't pin
820 * the PTE pages independently, because we're
821 * protected by the overall pagetable lock.
822 */
823 ptl = NULL;
824 if (level == PT_PTE)
825 ptl = xen_pte_lock(page, mm);
826
827 MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
828 pfn_pte(pfn, PAGE_KERNEL_RO),
829 level == PT_PGD ? UVMF_TLB_FLUSH : 0);
830
831 if (ptl) {
832 xen_do_pin(MMUEXT_PIN_L1_TABLE, pfn);
833
834 /* Queue a deferred unlock for when this batch
835 is completed. */
836 xen_mc_callback(xen_pte_unlock, ptl);
837 }
838 }
839
840 return flush;
841 }
842
843 /* This is called just after a mm has been created, but it has not
844 been used yet. We need to make sure that its pagetable is all
845 read-only, and can be pinned. */
846 static void __xen_pgd_pin(struct mm_struct *mm, pgd_t *pgd)
847 {
848 trace_xen_mmu_pgd_pin(mm, pgd);
849
850 xen_mc_batch();
851
852 if (__xen_pgd_walk(mm, pgd, xen_pin_page, USER_LIMIT)) {
853 /* re-enable interrupts for flushing */
854 xen_mc_issue(0);
855
856 kmap_flush_unused();
857
858 xen_mc_batch();
859 }
860
861 #ifdef CONFIG_X86_64
862 {
863 pgd_t *user_pgd = xen_get_user_pgd(pgd);
864
865 xen_do_pin(MMUEXT_PIN_L4_TABLE, PFN_DOWN(__pa(pgd)));
866
867 if (user_pgd) {
868 xen_pin_page(mm, virt_to_page(user_pgd), PT_PGD);
869 xen_do_pin(MMUEXT_PIN_L4_TABLE,
870 PFN_DOWN(__pa(user_pgd)));
871 }
872 }
873 #else /* CONFIG_X86_32 */
874 #ifdef CONFIG_X86_PAE
875 /* Need to make sure unshared kernel PMD is pinnable */
876 xen_pin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]),
877 PT_PMD);
878 #endif
879 xen_do_pin(MMUEXT_PIN_L3_TABLE, PFN_DOWN(__pa(pgd)));
880 #endif /* CONFIG_X86_64 */
881 xen_mc_issue(0);
882 }
883
884 static void xen_pgd_pin(struct mm_struct *mm)
885 {
886 __xen_pgd_pin(mm, mm->pgd);
887 }
888
889 /*
890 * On save, we need to pin all pagetables to make sure they get their
891 * mfns turned into pfns. Search the list for any unpinned pgds and pin
892 * them (unpinned pgds are not currently in use, probably because the
893 * process is under construction or destruction).
894 *
895 * Expected to be called in stop_machine() ("equivalent to taking
896 * every spinlock in the system"), so the locking doesn't really
897 * matter all that much.
898 */
899 void xen_mm_pin_all(void)
900 {
901 struct page *page;
902
903 spin_lock(&pgd_lock);
904
905 list_for_each_entry(page, &pgd_list, lru) {
906 if (!PagePinned(page)) {
907 __xen_pgd_pin(&init_mm, (pgd_t *)page_address(page));
908 SetPageSavePinned(page);
909 }
910 }
911
912 spin_unlock(&pgd_lock);
913 }
914
915 /*
916 * The init_mm pagetable is really pinned as soon as its created, but
917 * that's before we have page structures to store the bits. So do all
918 * the book-keeping now.
919 */
920 static int __init xen_mark_pinned(struct mm_struct *mm, struct page *page,
921 enum pt_level level)
922 {
923 SetPagePinned(page);
924 return 0;
925 }
926
927 static void __init xen_mark_init_mm_pinned(void)
928 {
929 xen_pgd_walk(&init_mm, xen_mark_pinned, FIXADDR_TOP);
930 }
931
932 static int xen_unpin_page(struct mm_struct *mm, struct page *page,
933 enum pt_level level)
934 {
935 unsigned pgfl = TestClearPagePinned(page);
936
937 if (pgfl && !PageHighMem(page)) {
938 void *pt = lowmem_page_address(page);
939 unsigned long pfn = page_to_pfn(page);
940 spinlock_t *ptl = NULL;
941 struct multicall_space mcs;
942
943 /*
944 * Do the converse to pin_page. If we're using split
945 * pte locks, we must be holding the lock for while
946 * the pte page is unpinned but still RO to prevent
947 * concurrent updates from seeing it in this
948 * partially-pinned state.
949 */
950 if (level == PT_PTE) {
951 ptl = xen_pte_lock(page, mm);
952
953 if (ptl)
954 xen_do_pin(MMUEXT_UNPIN_TABLE, pfn);
955 }
956
957 mcs = __xen_mc_entry(0);
958
959 MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
960 pfn_pte(pfn, PAGE_KERNEL),
961 level == PT_PGD ? UVMF_TLB_FLUSH : 0);
962
963 if (ptl) {
964 /* unlock when batch completed */
965 xen_mc_callback(xen_pte_unlock, ptl);
966 }
967 }
968
969 return 0; /* never need to flush on unpin */
970 }
971
972 /* Release a pagetables pages back as normal RW */
973 static void __xen_pgd_unpin(struct mm_struct *mm, pgd_t *pgd)
974 {
975 trace_xen_mmu_pgd_unpin(mm, pgd);
976
977 xen_mc_batch();
978
979 xen_do_pin(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
980
981 #ifdef CONFIG_X86_64
982 {
983 pgd_t *user_pgd = xen_get_user_pgd(pgd);
984
985 if (user_pgd) {
986 xen_do_pin(MMUEXT_UNPIN_TABLE,
987 PFN_DOWN(__pa(user_pgd)));
988 xen_unpin_page(mm, virt_to_page(user_pgd), PT_PGD);
989 }
990 }
991 #endif
992
993 #ifdef CONFIG_X86_PAE
994 /* Need to make sure unshared kernel PMD is unpinned */
995 xen_unpin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]),
996 PT_PMD);
997 #endif
998
999 __xen_pgd_walk(mm, pgd, xen_unpin_page, USER_LIMIT);
1000
1001 xen_mc_issue(0);
1002 }
1003
1004 static void xen_pgd_unpin(struct mm_struct *mm)
1005 {
1006 __xen_pgd_unpin(mm, mm->pgd);
1007 }
1008
1009 /*
1010 * On resume, undo any pinning done at save, so that the rest of the
1011 * kernel doesn't see any unexpected pinned pagetables.
1012 */
1013 void xen_mm_unpin_all(void)
1014 {
1015 struct page *page;
1016
1017 spin_lock(&pgd_lock);
1018
1019 list_for_each_entry(page, &pgd_list, lru) {
1020 if (PageSavePinned(page)) {
1021 BUG_ON(!PagePinned(page));
1022 __xen_pgd_unpin(&init_mm, (pgd_t *)page_address(page));
1023 ClearPageSavePinned(page);
1024 }
1025 }
1026
1027 spin_unlock(&pgd_lock);
1028 }
1029
1030 static void xen_activate_mm(struct mm_struct *prev, struct mm_struct *next)
1031 {
1032 spin_lock(&next->page_table_lock);
1033 xen_pgd_pin(next);
1034 spin_unlock(&next->page_table_lock);
1035 }
1036
1037 static void xen_dup_mmap(struct mm_struct *oldmm, struct mm_struct *mm)
1038 {
1039 spin_lock(&mm->page_table_lock);
1040 xen_pgd_pin(mm);
1041 spin_unlock(&mm->page_table_lock);
1042 }
1043
1044
1045 #ifdef CONFIG_SMP
1046 /* Another cpu may still have their %cr3 pointing at the pagetable, so
1047 we need to repoint it somewhere else before we can unpin it. */
1048 static void drop_other_mm_ref(void *info)
1049 {
1050 struct mm_struct *mm = info;
1051 struct mm_struct *active_mm;
1052
1053 active_mm = this_cpu_read(cpu_tlbstate.active_mm);
1054
1055 if (active_mm == mm && this_cpu_read(cpu_tlbstate.state) != TLBSTATE_OK)
1056 leave_mm(smp_processor_id());
1057
1058 /* If this cpu still has a stale cr3 reference, then make sure
1059 it has been flushed. */
1060 if (this_cpu_read(xen_current_cr3) == __pa(mm->pgd))
1061 load_cr3(swapper_pg_dir);
1062 }
1063
1064 static void xen_drop_mm_ref(struct mm_struct *mm)
1065 {
1066 cpumask_var_t mask;
1067 unsigned cpu;
1068
1069 if (current->active_mm == mm) {
1070 if (current->mm == mm)
1071 load_cr3(swapper_pg_dir);
1072 else
1073 leave_mm(smp_processor_id());
1074 }
1075
1076 /* Get the "official" set of cpus referring to our pagetable. */
1077 if (!alloc_cpumask_var(&mask, GFP_ATOMIC)) {
1078 for_each_online_cpu(cpu) {
1079 if (!cpumask_test_cpu(cpu, mm_cpumask(mm))
1080 && per_cpu(xen_current_cr3, cpu) != __pa(mm->pgd))
1081 continue;
1082 smp_call_function_single(cpu, drop_other_mm_ref, mm, 1);
1083 }
1084 return;
1085 }
1086 cpumask_copy(mask, mm_cpumask(mm));
1087
1088 /* It's possible that a vcpu may have a stale reference to our
1089 cr3, because its in lazy mode, and it hasn't yet flushed
1090 its set of pending hypercalls yet. In this case, we can
1091 look at its actual current cr3 value, and force it to flush
1092 if needed. */
1093 for_each_online_cpu(cpu) {
1094 if (per_cpu(xen_current_cr3, cpu) == __pa(mm->pgd))
1095 cpumask_set_cpu(cpu, mask);
1096 }
1097
1098 if (!cpumask_empty(mask))
1099 smp_call_function_many(mask, drop_other_mm_ref, mm, 1);
1100 free_cpumask_var(mask);
1101 }
1102 #else
1103 static void xen_drop_mm_ref(struct mm_struct *mm)
1104 {
1105 if (current->active_mm == mm)
1106 load_cr3(swapper_pg_dir);
1107 }
1108 #endif
1109
1110 /*
1111 * While a process runs, Xen pins its pagetables, which means that the
1112 * hypervisor forces it to be read-only, and it controls all updates
1113 * to it. This means that all pagetable updates have to go via the
1114 * hypervisor, which is moderately expensive.
1115 *
1116 * Since we're pulling the pagetable down, we switch to use init_mm,
1117 * unpin old process pagetable and mark it all read-write, which
1118 * allows further operations on it to be simple memory accesses.
1119 *
1120 * The only subtle point is that another CPU may be still using the
1121 * pagetable because of lazy tlb flushing. This means we need need to
1122 * switch all CPUs off this pagetable before we can unpin it.
1123 */
1124 static void xen_exit_mmap(struct mm_struct *mm)
1125 {
1126 get_cpu(); /* make sure we don't move around */
1127 xen_drop_mm_ref(mm);
1128 put_cpu();
1129
1130 spin_lock(&mm->page_table_lock);
1131
1132 /* pgd may not be pinned in the error exit path of execve */
1133 if (xen_page_pinned(mm->pgd))
1134 xen_pgd_unpin(mm);
1135
1136 spin_unlock(&mm->page_table_lock);
1137 }
1138
1139 static void xen_post_allocator_init(void);
1140
1141 #ifdef CONFIG_X86_64
1142 static void __init xen_cleanhighmap(unsigned long vaddr,
1143 unsigned long vaddr_end)
1144 {
1145 unsigned long kernel_end = roundup((unsigned long)_brk_end, PMD_SIZE) - 1;
1146 pmd_t *pmd = level2_kernel_pgt + pmd_index(vaddr);
1147
1148 /* NOTE: The loop is more greedy than the cleanup_highmap variant.
1149 * We include the PMD passed in on _both_ boundaries. */
1150 for (; vaddr <= vaddr_end && (pmd < (level2_kernel_pgt + PAGE_SIZE));
1151 pmd++, vaddr += PMD_SIZE) {
1152 if (pmd_none(*pmd))
1153 continue;
1154 if (vaddr < (unsigned long) _text || vaddr > kernel_end)
1155 set_pmd(pmd, __pmd(0));
1156 }
1157 /* In case we did something silly, we should crash in this function
1158 * instead of somewhere later and be confusing. */
1159 xen_mc_flush();
1160 }
1161 static void __init xen_pagetable_p2m_copy(void)
1162 {
1163 unsigned long size;
1164 unsigned long addr;
1165 unsigned long new_mfn_list;
1166
1167 if (xen_feature(XENFEAT_auto_translated_physmap))
1168 return;
1169
1170 size = PAGE_ALIGN(xen_start_info->nr_pages * sizeof(unsigned long));
1171
1172 new_mfn_list = xen_revector_p2m_tree();
1173 /* No memory or already called. */
1174 if (!new_mfn_list || new_mfn_list == xen_start_info->mfn_list)
1175 return;
1176
1177 /* using __ka address and sticking INVALID_P2M_ENTRY! */
1178 memset((void *)xen_start_info->mfn_list, 0xff, size);
1179
1180 /* We should be in __ka space. */
1181 BUG_ON(xen_start_info->mfn_list < __START_KERNEL_map);
1182 addr = xen_start_info->mfn_list;
1183 /* We roundup to the PMD, which means that if anybody at this stage is
1184 * using the __ka address of xen_start_info or xen_start_info->shared_info
1185 * they are in going to crash. Fortunatly we have already revectored
1186 * in xen_setup_kernel_pagetable and in xen_setup_shared_info. */
1187 size = roundup(size, PMD_SIZE);
1188 xen_cleanhighmap(addr, addr + size);
1189
1190 size = PAGE_ALIGN(xen_start_info->nr_pages * sizeof(unsigned long));
1191 memblock_free(__pa(xen_start_info->mfn_list), size);
1192 /* And revector! Bye bye old array */
1193 xen_start_info->mfn_list = new_mfn_list;
1194
1195 /* At this stage, cleanup_highmap has already cleaned __ka space
1196 * from _brk_limit way up to the max_pfn_mapped (which is the end of
1197 * the ramdisk). We continue on, erasing PMD entries that point to page
1198 * tables - do note that they are accessible at this stage via __va.
1199 * For good measure we also round up to the PMD - which means that if
1200 * anybody is using __ka address to the initial boot-stack - and try
1201 * to use it - they are going to crash. The xen_start_info has been
1202 * taken care of already in xen_setup_kernel_pagetable. */
1203 addr = xen_start_info->pt_base;
1204 size = roundup(xen_start_info->nr_pt_frames * PAGE_SIZE, PMD_SIZE);
1205
1206 xen_cleanhighmap(addr, addr + size);
1207 xen_start_info->pt_base = (unsigned long)__va(__pa(xen_start_info->pt_base));
1208 #ifdef DEBUG
1209 /* This is superflous and is not neccessary, but you know what
1210 * lets do it. The MODULES_VADDR -> MODULES_END should be clear of
1211 * anything at this stage. */
1212 xen_cleanhighmap(MODULES_VADDR, roundup(MODULES_VADDR, PUD_SIZE) - 1);
1213 #endif
1214 }
1215 #endif
1216
1217 static void __init xen_pagetable_init(void)
1218 {
1219 paging_init();
1220 xen_setup_shared_info();
1221 #ifdef CONFIG_X86_64
1222 xen_pagetable_p2m_copy();
1223 #endif
1224 xen_post_allocator_init();
1225 }
1226 static void xen_write_cr2(unsigned long cr2)
1227 {
1228 this_cpu_read(xen_vcpu)->arch.cr2 = cr2;
1229 }
1230
1231 static unsigned long xen_read_cr2(void)
1232 {
1233 return this_cpu_read(xen_vcpu)->arch.cr2;
1234 }
1235
1236 unsigned long xen_read_cr2_direct(void)
1237 {
1238 return this_cpu_read(xen_vcpu_info.arch.cr2);
1239 }
1240
1241 void xen_flush_tlb_all(void)
1242 {
1243 struct mmuext_op *op;
1244 struct multicall_space mcs;
1245
1246 trace_xen_mmu_flush_tlb_all(0);
1247
1248 preempt_disable();
1249
1250 mcs = xen_mc_entry(sizeof(*op));
1251
1252 op = mcs.args;
1253 op->cmd = MMUEXT_TLB_FLUSH_ALL;
1254 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1255
1256 xen_mc_issue(PARAVIRT_LAZY_MMU);
1257
1258 preempt_enable();
1259 }
1260 static void xen_flush_tlb(void)
1261 {
1262 struct mmuext_op *op;
1263 struct multicall_space mcs;
1264
1265 trace_xen_mmu_flush_tlb(0);
1266
1267 preempt_disable();
1268
1269 mcs = xen_mc_entry(sizeof(*op));
1270
1271 op = mcs.args;
1272 op->cmd = MMUEXT_TLB_FLUSH_LOCAL;
1273 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1274
1275 xen_mc_issue(PARAVIRT_LAZY_MMU);
1276
1277 preempt_enable();
1278 }
1279
1280 static void xen_flush_tlb_single(unsigned long addr)
1281 {
1282 struct mmuext_op *op;
1283 struct multicall_space mcs;
1284
1285 trace_xen_mmu_flush_tlb_single(addr);
1286
1287 preempt_disable();
1288
1289 mcs = xen_mc_entry(sizeof(*op));
1290 op = mcs.args;
1291 op->cmd = MMUEXT_INVLPG_LOCAL;
1292 op->arg1.linear_addr = addr & PAGE_MASK;
1293 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1294
1295 xen_mc_issue(PARAVIRT_LAZY_MMU);
1296
1297 preempt_enable();
1298 }
1299
1300 static void xen_flush_tlb_others(const struct cpumask *cpus,
1301 struct mm_struct *mm, unsigned long start,
1302 unsigned long end)
1303 {
1304 struct {
1305 struct mmuext_op op;
1306 #ifdef CONFIG_SMP
1307 DECLARE_BITMAP(mask, num_processors);
1308 #else
1309 DECLARE_BITMAP(mask, NR_CPUS);
1310 #endif
1311 } *args;
1312 struct multicall_space mcs;
1313
1314 trace_xen_mmu_flush_tlb_others(cpus, mm, start, end);
1315
1316 if (cpumask_empty(cpus))
1317 return; /* nothing to do */
1318
1319 mcs = xen_mc_entry(sizeof(*args));
1320 args = mcs.args;
1321 args->op.arg2.vcpumask = to_cpumask(args->mask);
1322
1323 /* Remove us, and any offline CPUS. */
1324 cpumask_and(to_cpumask(args->mask), cpus, cpu_online_mask);
1325 cpumask_clear_cpu(smp_processor_id(), to_cpumask(args->mask));
1326
1327 args->op.cmd = MMUEXT_TLB_FLUSH_MULTI;
1328 if (end != TLB_FLUSH_ALL && (end - start) <= PAGE_SIZE) {
1329 args->op.cmd = MMUEXT_INVLPG_MULTI;
1330 args->op.arg1.linear_addr = start;
1331 }
1332
1333 MULTI_mmuext_op(mcs.mc, &args->op, 1, NULL, DOMID_SELF);
1334
1335 xen_mc_issue(PARAVIRT_LAZY_MMU);
1336 }
1337
1338 static unsigned long xen_read_cr3(void)
1339 {
1340 return this_cpu_read(xen_cr3);
1341 }
1342
1343 static void set_current_cr3(void *v)
1344 {
1345 this_cpu_write(xen_current_cr3, (unsigned long)v);
1346 }
1347
1348 static void __xen_write_cr3(bool kernel, unsigned long cr3)
1349 {
1350 struct mmuext_op op;
1351 unsigned long mfn;
1352
1353 trace_xen_mmu_write_cr3(kernel, cr3);
1354
1355 if (cr3)
1356 mfn = pfn_to_mfn(PFN_DOWN(cr3));
1357 else
1358 mfn = 0;
1359
1360 WARN_ON(mfn == 0 && kernel);
1361
1362 op.cmd = kernel ? MMUEXT_NEW_BASEPTR : MMUEXT_NEW_USER_BASEPTR;
1363 op.arg1.mfn = mfn;
1364
1365 xen_extend_mmuext_op(&op);
1366
1367 if (kernel) {
1368 this_cpu_write(xen_cr3, cr3);
1369
1370 /* Update xen_current_cr3 once the batch has actually
1371 been submitted. */
1372 xen_mc_callback(set_current_cr3, (void *)cr3);
1373 }
1374 }
1375 static void xen_write_cr3(unsigned long cr3)
1376 {
1377 BUG_ON(preemptible());
1378
1379 xen_mc_batch(); /* disables interrupts */
1380
1381 /* Update while interrupts are disabled, so its atomic with
1382 respect to ipis */
1383 this_cpu_write(xen_cr3, cr3);
1384
1385 __xen_write_cr3(true, cr3);
1386
1387 #ifdef CONFIG_X86_64
1388 {
1389 pgd_t *user_pgd = xen_get_user_pgd(__va(cr3));
1390 if (user_pgd)
1391 __xen_write_cr3(false, __pa(user_pgd));
1392 else
1393 __xen_write_cr3(false, 0);
1394 }
1395 #endif
1396
1397 xen_mc_issue(PARAVIRT_LAZY_CPU); /* interrupts restored */
1398 }
1399
1400 #ifdef CONFIG_X86_64
1401 /*
1402 * At the start of the day - when Xen launches a guest, it has already
1403 * built pagetables for the guest. We diligently look over them
1404 * in xen_setup_kernel_pagetable and graft as appropiate them in the
1405 * init_level4_pgt and its friends. Then when we are happy we load
1406 * the new init_level4_pgt - and continue on.
1407 *
1408 * The generic code starts (start_kernel) and 'init_mem_mapping' sets
1409 * up the rest of the pagetables. When it has completed it loads the cr3.
1410 * N.B. that baremetal would start at 'start_kernel' (and the early
1411 * #PF handler would create bootstrap pagetables) - so we are running
1412 * with the same assumptions as what to do when write_cr3 is executed
1413 * at this point.
1414 *
1415 * Since there are no user-page tables at all, we have two variants
1416 * of xen_write_cr3 - the early bootup (this one), and the late one
1417 * (xen_write_cr3). The reason we have to do that is that in 64-bit
1418 * the Linux kernel and user-space are both in ring 3 while the
1419 * hypervisor is in ring 0.
1420 */
1421 static void __init xen_write_cr3_init(unsigned long cr3)
1422 {
1423 BUG_ON(preemptible());
1424
1425 xen_mc_batch(); /* disables interrupts */
1426
1427 /* Update while interrupts are disabled, so its atomic with
1428 respect to ipis */
1429 this_cpu_write(xen_cr3, cr3);
1430
1431 __xen_write_cr3(true, cr3);
1432
1433 xen_mc_issue(PARAVIRT_LAZY_CPU); /* interrupts restored */
1434 }
1435 #endif
1436
1437 static int xen_pgd_alloc(struct mm_struct *mm)
1438 {
1439 pgd_t *pgd = mm->pgd;
1440 int ret = 0;
1441
1442 BUG_ON(PagePinned(virt_to_page(pgd)));
1443
1444 #ifdef CONFIG_X86_64
1445 {
1446 struct page *page = virt_to_page(pgd);
1447 pgd_t *user_pgd;
1448
1449 BUG_ON(page->private != 0);
1450
1451 ret = -ENOMEM;
1452
1453 user_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
1454 page->private = (unsigned long)user_pgd;
1455
1456 if (user_pgd != NULL) {
1457 user_pgd[pgd_index(VSYSCALL_ADDR)] =
1458 __pgd(__pa(level3_user_vsyscall) | _PAGE_TABLE);
1459 ret = 0;
1460 }
1461
1462 BUG_ON(PagePinned(virt_to_page(xen_get_user_pgd(pgd))));
1463 }
1464 #endif
1465
1466 return ret;
1467 }
1468
1469 static void xen_pgd_free(struct mm_struct *mm, pgd_t *pgd)
1470 {
1471 #ifdef CONFIG_X86_64
1472 pgd_t *user_pgd = xen_get_user_pgd(pgd);
1473
1474 if (user_pgd)
1475 free_page((unsigned long)user_pgd);
1476 #endif
1477 }
1478
1479 #ifdef CONFIG_X86_32
1480 static pte_t __init mask_rw_pte(pte_t *ptep, pte_t pte)
1481 {
1482 /* If there's an existing pte, then don't allow _PAGE_RW to be set */
1483 if (pte_val_ma(*ptep) & _PAGE_PRESENT)
1484 pte = __pte_ma(((pte_val_ma(*ptep) & _PAGE_RW) | ~_PAGE_RW) &
1485 pte_val_ma(pte));
1486
1487 return pte;
1488 }
1489 #else /* CONFIG_X86_64 */
1490 static pte_t __init mask_rw_pte(pte_t *ptep, pte_t pte)
1491 {
1492 return pte;
1493 }
1494 #endif /* CONFIG_X86_64 */
1495
1496 /*
1497 * Init-time set_pte while constructing initial pagetables, which
1498 * doesn't allow RO page table pages to be remapped RW.
1499 *
1500 * If there is no MFN for this PFN then this page is initially
1501 * ballooned out so clear the PTE (as in decrease_reservation() in
1502 * drivers/xen/balloon.c).
1503 *
1504 * Many of these PTE updates are done on unpinned and writable pages
1505 * and doing a hypercall for these is unnecessary and expensive. At
1506 * this point it is not possible to tell if a page is pinned or not,
1507 * so always write the PTE directly and rely on Xen trapping and
1508 * emulating any updates as necessary.
1509 */
1510 static void __init xen_set_pte_init(pte_t *ptep, pte_t pte)
1511 {
1512 if (pte_mfn(pte) != INVALID_P2M_ENTRY)
1513 pte = mask_rw_pte(ptep, pte);
1514 else
1515 pte = __pte_ma(0);
1516
1517 native_set_pte(ptep, pte);
1518 }
1519
1520 static void pin_pagetable_pfn(unsigned cmd, unsigned long pfn)
1521 {
1522 struct mmuext_op op;
1523 op.cmd = cmd;
1524 op.arg1.mfn = pfn_to_mfn(pfn);
1525 if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF))
1526 BUG();
1527 }
1528
1529 /* Early in boot, while setting up the initial pagetable, assume
1530 everything is pinned. */
1531 static void __init xen_alloc_pte_init(struct mm_struct *mm, unsigned long pfn)
1532 {
1533 #ifdef CONFIG_FLATMEM
1534 BUG_ON(mem_map); /* should only be used early */
1535 #endif
1536 make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
1537 pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
1538 }
1539
1540 /* Used for pmd and pud */
1541 static void __init xen_alloc_pmd_init(struct mm_struct *mm, unsigned long pfn)
1542 {
1543 #ifdef CONFIG_FLATMEM
1544 BUG_ON(mem_map); /* should only be used early */
1545 #endif
1546 make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
1547 }
1548
1549 /* Early release_pte assumes that all pts are pinned, since there's
1550 only init_mm and anything attached to that is pinned. */
1551 static void __init xen_release_pte_init(unsigned long pfn)
1552 {
1553 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
1554 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1555 }
1556
1557 static void __init xen_release_pmd_init(unsigned long pfn)
1558 {
1559 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1560 }
1561
1562 static inline void __pin_pagetable_pfn(unsigned cmd, unsigned long pfn)
1563 {
1564 struct multicall_space mcs;
1565 struct mmuext_op *op;
1566
1567 mcs = __xen_mc_entry(sizeof(*op));
1568 op = mcs.args;
1569 op->cmd = cmd;
1570 op->arg1.mfn = pfn_to_mfn(pfn);
1571
1572 MULTI_mmuext_op(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
1573 }
1574
1575 static inline void __set_pfn_prot(unsigned long pfn, pgprot_t prot)
1576 {
1577 struct multicall_space mcs;
1578 unsigned long addr = (unsigned long)__va(pfn << PAGE_SHIFT);
1579
1580 mcs = __xen_mc_entry(0);
1581 MULTI_update_va_mapping(mcs.mc, (unsigned long)addr,
1582 pfn_pte(pfn, prot), 0);
1583 }
1584
1585 /* This needs to make sure the new pte page is pinned iff its being
1586 attached to a pinned pagetable. */
1587 static inline void xen_alloc_ptpage(struct mm_struct *mm, unsigned long pfn,
1588 unsigned level)
1589 {
1590 bool pinned = PagePinned(virt_to_page(mm->pgd));
1591
1592 trace_xen_mmu_alloc_ptpage(mm, pfn, level, pinned);
1593
1594 if (pinned) {
1595 struct page *page = pfn_to_page(pfn);
1596
1597 SetPagePinned(page);
1598
1599 if (!PageHighMem(page)) {
1600 xen_mc_batch();
1601
1602 __set_pfn_prot(pfn, PAGE_KERNEL_RO);
1603
1604 if (level == PT_PTE && USE_SPLIT_PTE_PTLOCKS)
1605 __pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
1606
1607 xen_mc_issue(PARAVIRT_LAZY_MMU);
1608 } else {
1609 /* make sure there are no stray mappings of
1610 this page */
1611 kmap_flush_unused();
1612 }
1613 }
1614 }
1615
1616 static void xen_alloc_pte(struct mm_struct *mm, unsigned long pfn)
1617 {
1618 xen_alloc_ptpage(mm, pfn, PT_PTE);
1619 }
1620
1621 static void xen_alloc_pmd(struct mm_struct *mm, unsigned long pfn)
1622 {
1623 xen_alloc_ptpage(mm, pfn, PT_PMD);
1624 }
1625
1626 /* This should never happen until we're OK to use struct page */
1627 static inline void xen_release_ptpage(unsigned long pfn, unsigned level)
1628 {
1629 struct page *page = pfn_to_page(pfn);
1630 bool pinned = PagePinned(page);
1631
1632 trace_xen_mmu_release_ptpage(pfn, level, pinned);
1633
1634 if (pinned) {
1635 if (!PageHighMem(page)) {
1636 xen_mc_batch();
1637
1638 if (level == PT_PTE && USE_SPLIT_PTE_PTLOCKS)
1639 __pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
1640
1641 __set_pfn_prot(pfn, PAGE_KERNEL);
1642
1643 xen_mc_issue(PARAVIRT_LAZY_MMU);
1644 }
1645 ClearPagePinned(page);
1646 }
1647 }
1648
1649 static void xen_release_pte(unsigned long pfn)
1650 {
1651 xen_release_ptpage(pfn, PT_PTE);
1652 }
1653
1654 static void xen_release_pmd(unsigned long pfn)
1655 {
1656 xen_release_ptpage(pfn, PT_PMD);
1657 }
1658
1659 #if PAGETABLE_LEVELS == 4
1660 static void xen_alloc_pud(struct mm_struct *mm, unsigned long pfn)
1661 {
1662 xen_alloc_ptpage(mm, pfn, PT_PUD);
1663 }
1664
1665 static void xen_release_pud(unsigned long pfn)
1666 {
1667 xen_release_ptpage(pfn, PT_PUD);
1668 }
1669 #endif
1670
1671 void __init xen_reserve_top(void)
1672 {
1673 #ifdef CONFIG_X86_32
1674 unsigned long top = HYPERVISOR_VIRT_START;
1675 struct xen_platform_parameters pp;
1676
1677 if (HYPERVISOR_xen_version(XENVER_platform_parameters, &pp) == 0)
1678 top = pp.virt_start;
1679
1680 reserve_top_address(-top);
1681 #endif /* CONFIG_X86_32 */
1682 }
1683
1684 /*
1685 * Like __va(), but returns address in the kernel mapping (which is
1686 * all we have until the physical memory mapping has been set up.
1687 */
1688 static void *__ka(phys_addr_t paddr)
1689 {
1690 #ifdef CONFIG_X86_64
1691 return (void *)(paddr + __START_KERNEL_map);
1692 #else
1693 return __va(paddr);
1694 #endif
1695 }
1696
1697 /* Convert a machine address to physical address */
1698 static unsigned long m2p(phys_addr_t maddr)
1699 {
1700 phys_addr_t paddr;
1701
1702 maddr &= PTE_PFN_MASK;
1703 paddr = mfn_to_pfn(maddr >> PAGE_SHIFT) << PAGE_SHIFT;
1704
1705 return paddr;
1706 }
1707
1708 /* Convert a machine address to kernel virtual */
1709 static void *m2v(phys_addr_t maddr)
1710 {
1711 return __ka(m2p(maddr));
1712 }
1713
1714 /* Set the page permissions on an identity-mapped pages */
1715 static void set_page_prot_flags(void *addr, pgprot_t prot, unsigned long flags)
1716 {
1717 unsigned long pfn = __pa(addr) >> PAGE_SHIFT;
1718 pte_t pte = pfn_pte(pfn, prot);
1719
1720 /* For PVH no need to set R/O or R/W to pin them or unpin them. */
1721 if (xen_feature(XENFEAT_auto_translated_physmap))
1722 return;
1723
1724 if (HYPERVISOR_update_va_mapping((unsigned long)addr, pte, flags))
1725 BUG();
1726 }
1727 static void set_page_prot(void *addr, pgprot_t prot)
1728 {
1729 return set_page_prot_flags(addr, prot, UVMF_NONE);
1730 }
1731 #ifdef CONFIG_X86_32
1732 static void __init xen_map_identity_early(pmd_t *pmd, unsigned long max_pfn)
1733 {
1734 unsigned pmdidx, pteidx;
1735 unsigned ident_pte;
1736 unsigned long pfn;
1737
1738 level1_ident_pgt = extend_brk(sizeof(pte_t) * LEVEL1_IDENT_ENTRIES,
1739 PAGE_SIZE);
1740
1741 ident_pte = 0;
1742 pfn = 0;
1743 for (pmdidx = 0; pmdidx < PTRS_PER_PMD && pfn < max_pfn; pmdidx++) {
1744 pte_t *pte_page;
1745
1746 /* Reuse or allocate a page of ptes */
1747 if (pmd_present(pmd[pmdidx]))
1748 pte_page = m2v(pmd[pmdidx].pmd);
1749 else {
1750 /* Check for free pte pages */
1751 if (ident_pte == LEVEL1_IDENT_ENTRIES)
1752 break;
1753
1754 pte_page = &level1_ident_pgt[ident_pte];
1755 ident_pte += PTRS_PER_PTE;
1756
1757 pmd[pmdidx] = __pmd(__pa(pte_page) | _PAGE_TABLE);
1758 }
1759
1760 /* Install mappings */
1761 for (pteidx = 0; pteidx < PTRS_PER_PTE; pteidx++, pfn++) {
1762 pte_t pte;
1763
1764 #ifdef CONFIG_X86_32
1765 if (pfn > max_pfn_mapped)
1766 max_pfn_mapped = pfn;
1767 #endif
1768
1769 if (!pte_none(pte_page[pteidx]))
1770 continue;
1771
1772 pte = pfn_pte(pfn, PAGE_KERNEL_EXEC);
1773 pte_page[pteidx] = pte;
1774 }
1775 }
1776
1777 for (pteidx = 0; pteidx < ident_pte; pteidx += PTRS_PER_PTE)
1778 set_page_prot(&level1_ident_pgt[pteidx], PAGE_KERNEL_RO);
1779
1780 set_page_prot(pmd, PAGE_KERNEL_RO);
1781 }
1782 #endif
1783 void __init xen_setup_machphys_mapping(void)
1784 {
1785 struct xen_machphys_mapping mapping;
1786
1787 if (HYPERVISOR_memory_op(XENMEM_machphys_mapping, &mapping) == 0) {
1788 machine_to_phys_mapping = (unsigned long *)mapping.v_start;
1789 machine_to_phys_nr = mapping.max_mfn + 1;
1790 } else {
1791 machine_to_phys_nr = MACH2PHYS_NR_ENTRIES;
1792 }
1793 #ifdef CONFIG_X86_32
1794 WARN_ON((machine_to_phys_mapping + (machine_to_phys_nr - 1))
1795 < machine_to_phys_mapping);
1796 #endif
1797 }
1798
1799 #ifdef CONFIG_X86_64
1800 static void convert_pfn_mfn(void *v)
1801 {
1802 pte_t *pte = v;
1803 int i;
1804
1805 /* All levels are converted the same way, so just treat them
1806 as ptes. */
1807 for (i = 0; i < PTRS_PER_PTE; i++)
1808 pte[i] = xen_make_pte(pte[i].pte);
1809 }
1810 static void __init check_pt_base(unsigned long *pt_base, unsigned long *pt_end,
1811 unsigned long addr)
1812 {
1813 if (*pt_base == PFN_DOWN(__pa(addr))) {
1814 set_page_prot_flags((void *)addr, PAGE_KERNEL, UVMF_INVLPG);
1815 clear_page((void *)addr);
1816 (*pt_base)++;
1817 }
1818 if (*pt_end == PFN_DOWN(__pa(addr))) {
1819 set_page_prot_flags((void *)addr, PAGE_KERNEL, UVMF_INVLPG);
1820 clear_page((void *)addr);
1821 (*pt_end)--;
1822 }
1823 }
1824 /*
1825 * Set up the initial kernel pagetable.
1826 *
1827 * We can construct this by grafting the Xen provided pagetable into
1828 * head_64.S's preconstructed pagetables. We copy the Xen L2's into
1829 * level2_ident_pgt, and level2_kernel_pgt. This means that only the
1830 * kernel has a physical mapping to start with - but that's enough to
1831 * get __va working. We need to fill in the rest of the physical
1832 * mapping once some sort of allocator has been set up. NOTE: for
1833 * PVH, the page tables are native.
1834 */
1835 void __init xen_setup_kernel_pagetable(pgd_t *pgd, unsigned long max_pfn)
1836 {
1837 pud_t *l3;
1838 pmd_t *l2;
1839 unsigned long addr[3];
1840 unsigned long pt_base, pt_end;
1841 unsigned i;
1842
1843 /* max_pfn_mapped is the last pfn mapped in the initial memory
1844 * mappings. Considering that on Xen after the kernel mappings we
1845 * have the mappings of some pages that don't exist in pfn space, we
1846 * set max_pfn_mapped to the last real pfn mapped. */
1847 max_pfn_mapped = PFN_DOWN(__pa(xen_start_info->mfn_list));
1848
1849 pt_base = PFN_DOWN(__pa(xen_start_info->pt_base));
1850 pt_end = pt_base + xen_start_info->nr_pt_frames;
1851
1852 /* Zap identity mapping */
1853 init_level4_pgt[0] = __pgd(0);
1854
1855 if (!xen_feature(XENFEAT_auto_translated_physmap)) {
1856 /* Pre-constructed entries are in pfn, so convert to mfn */
1857 /* L4[272] -> level3_ident_pgt
1858 * L4[511] -> level3_kernel_pgt */
1859 convert_pfn_mfn(init_level4_pgt);
1860
1861 /* L3_i[0] -> level2_ident_pgt */
1862 convert_pfn_mfn(level3_ident_pgt);
1863 /* L3_k[510] -> level2_kernel_pgt
1864 * L3_k[511] -> level2_fixmap_pgt */
1865 convert_pfn_mfn(level3_kernel_pgt);
1866
1867 /* L3_k[511][506] -> level1_fixmap_pgt */
1868 convert_pfn_mfn(level2_fixmap_pgt);
1869 }
1870 /* We get [511][511] and have Xen's version of level2_kernel_pgt */
1871 l3 = m2v(pgd[pgd_index(__START_KERNEL_map)].pgd);
1872 l2 = m2v(l3[pud_index(__START_KERNEL_map)].pud);
1873
1874 addr[0] = (unsigned long)pgd;
1875 addr[1] = (unsigned long)l3;
1876 addr[2] = (unsigned long)l2;
1877 /* Graft it onto L4[272][0]. Note that we creating an aliasing problem:
1878 * Both L4[272][0] and L4[511][510] have entries that point to the same
1879 * L2 (PMD) tables. Meaning that if you modify it in __va space
1880 * it will be also modified in the __ka space! (But if you just
1881 * modify the PMD table to point to other PTE's or none, then you
1882 * are OK - which is what cleanup_highmap does) */
1883 copy_page(level2_ident_pgt, l2);
1884 /* Graft it onto L4[511][510] */
1885 copy_page(level2_kernel_pgt, l2);
1886
1887 if (!xen_feature(XENFEAT_auto_translated_physmap)) {
1888 /* Make pagetable pieces RO */
1889 set_page_prot(init_level4_pgt, PAGE_KERNEL_RO);
1890 set_page_prot(level3_ident_pgt, PAGE_KERNEL_RO);
1891 set_page_prot(level3_kernel_pgt, PAGE_KERNEL_RO);
1892 set_page_prot(level3_user_vsyscall, PAGE_KERNEL_RO);
1893 set_page_prot(level2_ident_pgt, PAGE_KERNEL_RO);
1894 set_page_prot(level2_kernel_pgt, PAGE_KERNEL_RO);
1895 set_page_prot(level2_fixmap_pgt, PAGE_KERNEL_RO);
1896 set_page_prot(level1_fixmap_pgt, PAGE_KERNEL_RO);
1897
1898 /* Pin down new L4 */
1899 pin_pagetable_pfn(MMUEXT_PIN_L4_TABLE,
1900 PFN_DOWN(__pa_symbol(init_level4_pgt)));
1901
1902 /* Unpin Xen-provided one */
1903 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1904
1905 /*
1906 * At this stage there can be no user pgd, and no page
1907 * structure to attach it to, so make sure we just set kernel
1908 * pgd.
1909 */
1910 xen_mc_batch();
1911 __xen_write_cr3(true, __pa(init_level4_pgt));
1912 xen_mc_issue(PARAVIRT_LAZY_CPU);
1913 } else
1914 native_write_cr3(__pa(init_level4_pgt));
1915
1916 /* We can't that easily rip out L3 and L2, as the Xen pagetables are
1917 * set out this way: [L4], [L1], [L2], [L3], [L1], [L1] ... for
1918 * the initial domain. For guests using the toolstack, they are in:
1919 * [L4], [L3], [L2], [L1], [L1], order .. So for dom0 we can only
1920 * rip out the [L4] (pgd), but for guests we shave off three pages.
1921 */
1922 for (i = 0; i < ARRAY_SIZE(addr); i++)
1923 check_pt_base(&pt_base, &pt_end, addr[i]);
1924
1925 /* Our (by three pages) smaller Xen pagetable that we are using */
1926 memblock_reserve(PFN_PHYS(pt_base), (pt_end - pt_base) * PAGE_SIZE);
1927 /* Revector the xen_start_info */
1928 xen_start_info = (struct start_info *)__va(__pa(xen_start_info));
1929 }
1930 #else /* !CONFIG_X86_64 */
1931 static RESERVE_BRK_ARRAY(pmd_t, initial_kernel_pmd, PTRS_PER_PMD);
1932 static RESERVE_BRK_ARRAY(pmd_t, swapper_kernel_pmd, PTRS_PER_PMD);
1933
1934 static void __init xen_write_cr3_init(unsigned long cr3)
1935 {
1936 unsigned long pfn = PFN_DOWN(__pa(swapper_pg_dir));
1937
1938 BUG_ON(read_cr3() != __pa(initial_page_table));
1939 BUG_ON(cr3 != __pa(swapper_pg_dir));
1940
1941 /*
1942 * We are switching to swapper_pg_dir for the first time (from
1943 * initial_page_table) and therefore need to mark that page
1944 * read-only and then pin it.
1945 *
1946 * Xen disallows sharing of kernel PMDs for PAE
1947 * guests. Therefore we must copy the kernel PMD from
1948 * initial_page_table into a new kernel PMD to be used in
1949 * swapper_pg_dir.
1950 */
1951 swapper_kernel_pmd =
1952 extend_brk(sizeof(pmd_t) * PTRS_PER_PMD, PAGE_SIZE);
1953 copy_page(swapper_kernel_pmd, initial_kernel_pmd);
1954 swapper_pg_dir[KERNEL_PGD_BOUNDARY] =
1955 __pgd(__pa(swapper_kernel_pmd) | _PAGE_PRESENT);
1956 set_page_prot(swapper_kernel_pmd, PAGE_KERNEL_RO);
1957
1958 set_page_prot(swapper_pg_dir, PAGE_KERNEL_RO);
1959 xen_write_cr3(cr3);
1960 pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, pfn);
1961
1962 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE,
1963 PFN_DOWN(__pa(initial_page_table)));
1964 set_page_prot(initial_page_table, PAGE_KERNEL);
1965 set_page_prot(initial_kernel_pmd, PAGE_KERNEL);
1966
1967 pv_mmu_ops.write_cr3 = &xen_write_cr3;
1968 }
1969
1970 void __init xen_setup_kernel_pagetable(pgd_t *pgd, unsigned long max_pfn)
1971 {
1972 pmd_t *kernel_pmd;
1973
1974 initial_kernel_pmd =
1975 extend_brk(sizeof(pmd_t) * PTRS_PER_PMD, PAGE_SIZE);
1976
1977 max_pfn_mapped = PFN_DOWN(__pa(xen_start_info->pt_base) +
1978 xen_start_info->nr_pt_frames * PAGE_SIZE +
1979 512*1024);
1980
1981 kernel_pmd = m2v(pgd[KERNEL_PGD_BOUNDARY].pgd);
1982 copy_page(initial_kernel_pmd, kernel_pmd);
1983
1984 xen_map_identity_early(initial_kernel_pmd, max_pfn);
1985
1986 copy_page(initial_page_table, pgd);
1987 initial_page_table[KERNEL_PGD_BOUNDARY] =
1988 __pgd(__pa(initial_kernel_pmd) | _PAGE_PRESENT);
1989
1990 set_page_prot(initial_kernel_pmd, PAGE_KERNEL_RO);
1991 set_page_prot(initial_page_table, PAGE_KERNEL_RO);
1992 set_page_prot(empty_zero_page, PAGE_KERNEL_RO);
1993
1994 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1995
1996 pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE,
1997 PFN_DOWN(__pa(initial_page_table)));
1998 xen_write_cr3(__pa(initial_page_table));
1999
2000 memblock_reserve(__pa(xen_start_info->pt_base),
2001 xen_start_info->nr_pt_frames * PAGE_SIZE);
2002 }
2003 #endif /* CONFIG_X86_64 */
2004
2005 static unsigned char dummy_mapping[PAGE_SIZE] __page_aligned_bss;
2006
2007 static void xen_set_fixmap(unsigned idx, phys_addr_t phys, pgprot_t prot)
2008 {
2009 pte_t pte;
2010
2011 phys >>= PAGE_SHIFT;
2012
2013 switch (idx) {
2014 case FIX_BTMAP_END ... FIX_BTMAP_BEGIN:
2015 case FIX_RO_IDT:
2016 #ifdef CONFIG_X86_32
2017 case FIX_WP_TEST:
2018 # ifdef CONFIG_HIGHMEM
2019 case FIX_KMAP_BEGIN ... FIX_KMAP_END:
2020 # endif
2021 #else
2022 case VSYSCALL_PAGE:
2023 #endif
2024 case FIX_TEXT_POKE0:
2025 case FIX_TEXT_POKE1:
2026 /* All local page mappings */
2027 pte = pfn_pte(phys, prot);
2028 break;
2029
2030 #ifdef CONFIG_X86_LOCAL_APIC
2031 case FIX_APIC_BASE: /* maps dummy local APIC */
2032 pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL);
2033 break;
2034 #endif
2035
2036 #ifdef CONFIG_X86_IO_APIC
2037 case FIX_IO_APIC_BASE_0 ... FIX_IO_APIC_BASE_END:
2038 /*
2039 * We just don't map the IO APIC - all access is via
2040 * hypercalls. Keep the address in the pte for reference.
2041 */
2042 pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL);
2043 break;
2044 #endif
2045
2046 case FIX_PARAVIRT_BOOTMAP:
2047 /* This is an MFN, but it isn't an IO mapping from the
2048 IO domain */
2049 pte = mfn_pte(phys, prot);
2050 break;
2051
2052 default:
2053 /* By default, set_fixmap is used for hardware mappings */
2054 pte = mfn_pte(phys, prot);
2055 break;
2056 }
2057
2058 __native_set_fixmap(idx, pte);
2059
2060 #ifdef CONFIG_X86_64
2061 /* Replicate changes to map the vsyscall page into the user
2062 pagetable vsyscall mapping. */
2063 if (idx == VSYSCALL_PAGE) {
2064 unsigned long vaddr = __fix_to_virt(idx);
2065 set_pte_vaddr_pud(level3_user_vsyscall, vaddr, pte);
2066 }
2067 #endif
2068 }
2069
2070 static void __init xen_post_allocator_init(void)
2071 {
2072 if (xen_feature(XENFEAT_auto_translated_physmap))
2073 return;
2074
2075 pv_mmu_ops.set_pte = xen_set_pte;
2076 pv_mmu_ops.set_pmd = xen_set_pmd;
2077 pv_mmu_ops.set_pud = xen_set_pud;
2078 #if PAGETABLE_LEVELS == 4
2079 pv_mmu_ops.set_pgd = xen_set_pgd;
2080 #endif
2081
2082 /* This will work as long as patching hasn't happened yet
2083 (which it hasn't) */
2084 pv_mmu_ops.alloc_pte = xen_alloc_pte;
2085 pv_mmu_ops.alloc_pmd = xen_alloc_pmd;
2086 pv_mmu_ops.release_pte = xen_release_pte;
2087 pv_mmu_ops.release_pmd = xen_release_pmd;
2088 #if PAGETABLE_LEVELS == 4
2089 pv_mmu_ops.alloc_pud = xen_alloc_pud;
2090 pv_mmu_ops.release_pud = xen_release_pud;
2091 #endif
2092
2093 #ifdef CONFIG_X86_64
2094 pv_mmu_ops.write_cr3 = &xen_write_cr3;
2095 SetPagePinned(virt_to_page(level3_user_vsyscall));
2096 #endif
2097 xen_mark_init_mm_pinned();
2098 }
2099
2100 static void xen_leave_lazy_mmu(void)
2101 {
2102 preempt_disable();
2103 xen_mc_flush();
2104 paravirt_leave_lazy_mmu();
2105 preempt_enable();
2106 }
2107
2108 static const struct pv_mmu_ops xen_mmu_ops __initconst = {
2109 .read_cr2 = xen_read_cr2,
2110 .write_cr2 = xen_write_cr2,
2111
2112 .read_cr3 = xen_read_cr3,
2113 .write_cr3 = xen_write_cr3_init,
2114
2115 .flush_tlb_user = xen_flush_tlb,
2116 .flush_tlb_kernel = xen_flush_tlb,
2117 .flush_tlb_single = xen_flush_tlb_single,
2118 .flush_tlb_others = xen_flush_tlb_others,
2119
2120 .pte_update = paravirt_nop,
2121 .pte_update_defer = paravirt_nop,
2122
2123 .pgd_alloc = xen_pgd_alloc,
2124 .pgd_free = xen_pgd_free,
2125
2126 .alloc_pte = xen_alloc_pte_init,
2127 .release_pte = xen_release_pte_init,
2128 .alloc_pmd = xen_alloc_pmd_init,
2129 .release_pmd = xen_release_pmd_init,
2130
2131 .set_pte = xen_set_pte_init,
2132 .set_pte_at = xen_set_pte_at,
2133 .set_pmd = xen_set_pmd_hyper,
2134
2135 .ptep_modify_prot_start = __ptep_modify_prot_start,
2136 .ptep_modify_prot_commit = __ptep_modify_prot_commit,
2137
2138 .pte_val = PV_CALLEE_SAVE(xen_pte_val),
2139 .pgd_val = PV_CALLEE_SAVE(xen_pgd_val),
2140
2141 .make_pte = PV_CALLEE_SAVE(xen_make_pte),
2142 .make_pgd = PV_CALLEE_SAVE(xen_make_pgd),
2143
2144 #ifdef CONFIG_X86_PAE
2145 .set_pte_atomic = xen_set_pte_atomic,
2146 .pte_clear = xen_pte_clear,
2147 .pmd_clear = xen_pmd_clear,
2148 #endif /* CONFIG_X86_PAE */
2149 .set_pud = xen_set_pud_hyper,
2150
2151 .make_pmd = PV_CALLEE_SAVE(xen_make_pmd),
2152 .pmd_val = PV_CALLEE_SAVE(xen_pmd_val),
2153
2154 #if PAGETABLE_LEVELS == 4
2155 .pud_val = PV_CALLEE_SAVE(xen_pud_val),
2156 .make_pud = PV_CALLEE_SAVE(xen_make_pud),
2157 .set_pgd = xen_set_pgd_hyper,
2158
2159 .alloc_pud = xen_alloc_pmd_init,
2160 .release_pud = xen_release_pmd_init,
2161 #endif /* PAGETABLE_LEVELS == 4 */
2162
2163 .activate_mm = xen_activate_mm,
2164 .dup_mmap = xen_dup_mmap,
2165 .exit_mmap = xen_exit_mmap,
2166
2167 .lazy_mode = {
2168 .enter = paravirt_enter_lazy_mmu,
2169 .leave = xen_leave_lazy_mmu,
2170 .flush = paravirt_flush_lazy_mmu,
2171 },
2172
2173 .set_fixmap = xen_set_fixmap,
2174 };
2175
2176 void __init xen_init_mmu_ops(void)
2177 {
2178 x86_init.paging.pagetable_init = xen_pagetable_init;
2179
2180 /* Optimization - we can use the HVM one but it has no idea which
2181 * VCPUs are descheduled - which means that it will needlessly IPI
2182 * them. Xen knows so let it do the job.
2183 */
2184 if (xen_feature(XENFEAT_auto_translated_physmap)) {
2185 pv_mmu_ops.flush_tlb_others = xen_flush_tlb_others;
2186 return;
2187 }
2188 pv_mmu_ops = xen_mmu_ops;
2189
2190 memset(dummy_mapping, 0xff, PAGE_SIZE);
2191 }
2192
2193 /* Protected by xen_reservation_lock. */
2194 #define MAX_CONTIG_ORDER 9 /* 2MB */
2195 static unsigned long discontig_frames[1<<MAX_CONTIG_ORDER];
2196
2197 #define VOID_PTE (mfn_pte(0, __pgprot(0)))
2198 static void xen_zap_pfn_range(unsigned long vaddr, unsigned int order,
2199 unsigned long *in_frames,
2200 unsigned long *out_frames)
2201 {
2202 int i;
2203 struct multicall_space mcs;
2204
2205 xen_mc_batch();
2206 for (i = 0; i < (1UL<<order); i++, vaddr += PAGE_SIZE) {
2207 mcs = __xen_mc_entry(0);
2208
2209 if (in_frames)
2210 in_frames[i] = virt_to_mfn(vaddr);
2211
2212 MULTI_update_va_mapping(mcs.mc, vaddr, VOID_PTE, 0);
2213 __set_phys_to_machine(virt_to_pfn(vaddr), INVALID_P2M_ENTRY);
2214
2215 if (out_frames)
2216 out_frames[i] = virt_to_pfn(vaddr);
2217 }
2218 xen_mc_issue(0);
2219 }
2220
2221 /*
2222 * Update the pfn-to-mfn mappings for a virtual address range, either to
2223 * point to an array of mfns, or contiguously from a single starting
2224 * mfn.
2225 */
2226 static void xen_remap_exchanged_ptes(unsigned long vaddr, int order,
2227 unsigned long *mfns,
2228 unsigned long first_mfn)
2229 {
2230 unsigned i, limit;
2231 unsigned long mfn;
2232
2233 xen_mc_batch();
2234
2235 limit = 1u << order;
2236 for (i = 0; i < limit; i++, vaddr += PAGE_SIZE) {
2237 struct multicall_space mcs;
2238 unsigned flags;
2239
2240 mcs = __xen_mc_entry(0);
2241 if (mfns)
2242 mfn = mfns[i];
2243 else
2244 mfn = first_mfn + i;
2245
2246 if (i < (limit - 1))
2247 flags = 0;
2248 else {
2249 if (order == 0)
2250 flags = UVMF_INVLPG | UVMF_ALL;
2251 else
2252 flags = UVMF_TLB_FLUSH | UVMF_ALL;
2253 }
2254
2255 MULTI_update_va_mapping(mcs.mc, vaddr,
2256 mfn_pte(mfn, PAGE_KERNEL), flags);
2257
2258 set_phys_to_machine(virt_to_pfn(vaddr), mfn);
2259 }
2260
2261 xen_mc_issue(0);
2262 }
2263
2264 /*
2265 * Perform the hypercall to exchange a region of our pfns to point to
2266 * memory with the required contiguous alignment. Takes the pfns as
2267 * input, and populates mfns as output.
2268 *
2269 * Returns a success code indicating whether the hypervisor was able to
2270 * satisfy the request or not.
2271 */
2272 static int xen_exchange_memory(unsigned long extents_in, unsigned int order_in,
2273 unsigned long *pfns_in,
2274 unsigned long extents_out,
2275 unsigned int order_out,
2276 unsigned long *mfns_out,
2277 unsigned int address_bits)
2278 {
2279 long rc;
2280 int success;
2281
2282 struct xen_memory_exchange exchange = {
2283 .in = {
2284 .nr_extents = extents_in,
2285 .extent_order = order_in,
2286 .extent_start = pfns_in,
2287 .domid = DOMID_SELF
2288 },
2289 .out = {
2290 .nr_extents = extents_out,
2291 .extent_order = order_out,
2292 .extent_start = mfns_out,
2293 .address_bits = address_bits,
2294 .domid = DOMID_SELF
2295 }
2296 };
2297
2298 BUG_ON(extents_in << order_in != extents_out << order_out);
2299
2300 rc = HYPERVISOR_memory_op(XENMEM_exchange, &exchange);
2301 success = (exchange.nr_exchanged == extents_in);
2302
2303 BUG_ON(!success && ((exchange.nr_exchanged != 0) || (rc == 0)));
2304 BUG_ON(success && (rc != 0));
2305
2306 return success;
2307 }
2308
2309 int xen_create_contiguous_region(phys_addr_t pstart, unsigned int order,
2310 unsigned int address_bits,
2311 dma_addr_t *dma_handle)
2312 {
2313 unsigned long *in_frames = discontig_frames, out_frame;
2314 unsigned long flags;
2315 int success;
2316 unsigned long vstart = (unsigned long)phys_to_virt(pstart);
2317
2318 /*
2319 * Currently an auto-translated guest will not perform I/O, nor will
2320 * it require PAE page directories below 4GB. Therefore any calls to
2321 * this function are redundant and can be ignored.
2322 */
2323
2324 if (xen_feature(XENFEAT_auto_translated_physmap))
2325 return 0;
2326
2327 if (unlikely(order > MAX_CONTIG_ORDER))
2328 return -ENOMEM;
2329
2330 memset((void *) vstart, 0, PAGE_SIZE << order);
2331
2332 spin_lock_irqsave(&xen_reservation_lock, flags);
2333
2334 /* 1. Zap current PTEs, remembering MFNs. */
2335 xen_zap_pfn_range(vstart, order, in_frames, NULL);
2336
2337 /* 2. Get a new contiguous memory extent. */
2338 out_frame = virt_to_pfn(vstart);
2339 success = xen_exchange_memory(1UL << order, 0, in_frames,
2340 1, order, &out_frame,
2341 address_bits);
2342
2343 /* 3. Map the new extent in place of old pages. */
2344 if (success)
2345 xen_remap_exchanged_ptes(vstart, order, NULL, out_frame);
2346 else
2347 xen_remap_exchanged_ptes(vstart, order, in_frames, 0);
2348
2349 spin_unlock_irqrestore(&xen_reservation_lock, flags);
2350
2351 *dma_handle = virt_to_machine(vstart).maddr;
2352 return success ? 0 : -ENOMEM;
2353 }
2354 EXPORT_SYMBOL_GPL(xen_create_contiguous_region);
2355
2356 void xen_destroy_contiguous_region(phys_addr_t pstart, unsigned int order)
2357 {
2358 unsigned long *out_frames = discontig_frames, in_frame;
2359 unsigned long flags;
2360 int success;
2361 unsigned long vstart;
2362
2363 if (xen_feature(XENFEAT_auto_translated_physmap))
2364 return;
2365
2366 if (unlikely(order > MAX_CONTIG_ORDER))
2367 return;
2368
2369 vstart = (unsigned long)phys_to_virt(pstart);
2370 memset((void *) vstart, 0, PAGE_SIZE << order);
2371
2372 spin_lock_irqsave(&xen_reservation_lock, flags);
2373
2374 /* 1. Find start MFN of contiguous extent. */
2375 in_frame = virt_to_mfn(vstart);
2376
2377 /* 2. Zap current PTEs. */
2378 xen_zap_pfn_range(vstart, order, NULL, out_frames);
2379
2380 /* 3. Do the exchange for non-contiguous MFNs. */
2381 success = xen_exchange_memory(1, order, &in_frame, 1UL << order,
2382 0, out_frames, 0);
2383
2384 /* 4. Map new pages in place of old pages. */
2385 if (success)
2386 xen_remap_exchanged_ptes(vstart, order, out_frames, 0);
2387 else
2388 xen_remap_exchanged_ptes(vstart, order, NULL, in_frame);
2389
2390 spin_unlock_irqrestore(&xen_reservation_lock, flags);
2391 }
2392 EXPORT_SYMBOL_GPL(xen_destroy_contiguous_region);
2393
2394 #ifdef CONFIG_XEN_PVHVM
2395 #ifdef CONFIG_PROC_VMCORE
2396 /*
2397 * This function is used in two contexts:
2398 * - the kdump kernel has to check whether a pfn of the crashed kernel
2399 * was a ballooned page. vmcore is using this function to decide
2400 * whether to access a pfn of the crashed kernel.
2401 * - the kexec kernel has to check whether a pfn was ballooned by the
2402 * previous kernel. If the pfn is ballooned, handle it properly.
2403 * Returns 0 if the pfn is not backed by a RAM page, the caller may
2404 * handle the pfn special in this case.
2405 */
2406 static int xen_oldmem_pfn_is_ram(unsigned long pfn)
2407 {
2408 struct xen_hvm_get_mem_type a = {
2409 .domid = DOMID_SELF,
2410 .pfn = pfn,
2411 };
2412 int ram;
2413
2414 if (HYPERVISOR_hvm_op(HVMOP_get_mem_type, &a))
2415 return -ENXIO;
2416
2417 switch (a.mem_type) {
2418 case HVMMEM_mmio_dm:
2419 ram = 0;
2420 break;
2421 case HVMMEM_ram_rw:
2422 case HVMMEM_ram_ro:
2423 default:
2424 ram = 1;
2425 break;
2426 }
2427
2428 return ram;
2429 }
2430 #endif
2431
2432 static void xen_hvm_exit_mmap(struct mm_struct *mm)
2433 {
2434 struct xen_hvm_pagetable_dying a;
2435 int rc;
2436
2437 a.domid = DOMID_SELF;
2438 a.gpa = __pa(mm->pgd);
2439 rc = HYPERVISOR_hvm_op(HVMOP_pagetable_dying, &a);
2440 WARN_ON_ONCE(rc < 0);
2441 }
2442
2443 static int is_pagetable_dying_supported(void)
2444 {
2445 struct xen_hvm_pagetable_dying a;
2446 int rc = 0;
2447
2448 a.domid = DOMID_SELF;
2449 a.gpa = 0x00;
2450 rc = HYPERVISOR_hvm_op(HVMOP_pagetable_dying, &a);
2451 if (rc < 0) {
2452 printk(KERN_DEBUG "HVMOP_pagetable_dying not supported\n");
2453 return 0;
2454 }
2455 return 1;
2456 }
2457
2458 void __init xen_hvm_init_mmu_ops(void)
2459 {
2460 if (is_pagetable_dying_supported())
2461 pv_mmu_ops.exit_mmap = xen_hvm_exit_mmap;
2462 #ifdef CONFIG_PROC_VMCORE
2463 register_oldmem_pfn_is_ram(&xen_oldmem_pfn_is_ram);
2464 #endif
2465 }
2466 #endif
2467
2468 #ifdef CONFIG_XEN_PVH
2469 /*
2470 * Map foreign gfn (fgfn), to local pfn (lpfn). This for the user
2471 * space creating new guest on pvh dom0 and needing to map domU pages.
2472 */
2473 static int xlate_add_to_p2m(unsigned long lpfn, unsigned long fgfn,
2474 unsigned int domid)
2475 {
2476 int rc, err = 0;
2477 xen_pfn_t gpfn = lpfn;
2478 xen_ulong_t idx = fgfn;
2479
2480 struct xen_add_to_physmap_range xatp = {
2481 .domid = DOMID_SELF,
2482 .foreign_domid = domid,
2483 .size = 1,
2484 .space = XENMAPSPACE_gmfn_foreign,
2485 };
2486 set_xen_guest_handle(xatp.idxs, &idx);
2487 set_xen_guest_handle(xatp.gpfns, &gpfn);
2488 set_xen_guest_handle(xatp.errs, &err);
2489
2490 rc = HYPERVISOR_memory_op(XENMEM_add_to_physmap_range, &xatp);
2491 if (rc < 0)
2492 return rc;
2493 return err;
2494 }
2495
2496 static int xlate_remove_from_p2m(unsigned long spfn, int count)
2497 {
2498 struct xen_remove_from_physmap xrp;
2499 int i, rc;
2500
2501 for (i = 0; i < count; i++) {
2502 xrp.domid = DOMID_SELF;
2503 xrp.gpfn = spfn+i;
2504 rc = HYPERVISOR_memory_op(XENMEM_remove_from_physmap, &xrp);
2505 if (rc)
2506 break;
2507 }
2508 return rc;
2509 }
2510
2511 struct xlate_remap_data {
2512 unsigned long fgfn; /* foreign domain's gfn */
2513 pgprot_t prot;
2514 domid_t domid;
2515 int index;
2516 struct page **pages;
2517 };
2518
2519 static int xlate_map_pte_fn(pte_t *ptep, pgtable_t token, unsigned long addr,
2520 void *data)
2521 {
2522 int rc;
2523 struct xlate_remap_data *remap = data;
2524 unsigned long pfn = page_to_pfn(remap->pages[remap->index++]);
2525 pte_t pteval = pte_mkspecial(pfn_pte(pfn, remap->prot));
2526
2527 rc = xlate_add_to_p2m(pfn, remap->fgfn, remap->domid);
2528 if (rc)
2529 return rc;
2530 native_set_pte(ptep, pteval);
2531
2532 return 0;
2533 }
2534
2535 static int xlate_remap_gfn_range(struct vm_area_struct *vma,
2536 unsigned long addr, unsigned long mfn,
2537 int nr, pgprot_t prot, unsigned domid,
2538 struct page **pages)
2539 {
2540 int err;
2541 struct xlate_remap_data pvhdata;
2542
2543 BUG_ON(!pages);
2544
2545 pvhdata.fgfn = mfn;
2546 pvhdata.prot = prot;
2547 pvhdata.domid = domid;
2548 pvhdata.index = 0;
2549 pvhdata.pages = pages;
2550 err = apply_to_page_range(vma->vm_mm, addr, nr << PAGE_SHIFT,
2551 xlate_map_pte_fn, &pvhdata);
2552 flush_tlb_all();
2553 return err;
2554 }
2555 #endif
2556
2557 #define REMAP_BATCH_SIZE 16
2558
2559 struct remap_data {
2560 unsigned long mfn;
2561 pgprot_t prot;
2562 struct mmu_update *mmu_update;
2563 };
2564
2565 static int remap_area_mfn_pte_fn(pte_t *ptep, pgtable_t token,
2566 unsigned long addr, void *data)
2567 {
2568 struct remap_data *rmd = data;
2569 pte_t pte = pte_mkspecial(mfn_pte(rmd->mfn++, rmd->prot));
2570
2571 rmd->mmu_update->ptr = virt_to_machine(ptep).maddr;
2572 rmd->mmu_update->val = pte_val_ma(pte);
2573 rmd->mmu_update++;
2574
2575 return 0;
2576 }
2577
2578 int xen_remap_domain_mfn_range(struct vm_area_struct *vma,
2579 unsigned long addr,
2580 xen_pfn_t mfn, int nr,
2581 pgprot_t prot, unsigned domid,
2582 struct page **pages)
2583
2584 {
2585 struct remap_data rmd;
2586 struct mmu_update mmu_update[REMAP_BATCH_SIZE];
2587 int batch;
2588 unsigned long range;
2589 int err = 0;
2590
2591 BUG_ON(!((vma->vm_flags & (VM_PFNMAP | VM_IO)) == (VM_PFNMAP | VM_IO)));
2592
2593 if (xen_feature(XENFEAT_auto_translated_physmap)) {
2594 #ifdef CONFIG_XEN_PVH
2595 /* We need to update the local page tables and the xen HAP */
2596 return xlate_remap_gfn_range(vma, addr, mfn, nr, prot,
2597 domid, pages);
2598 #else
2599 return -EINVAL;
2600 #endif
2601 }
2602
2603 rmd.mfn = mfn;
2604 rmd.prot = prot;
2605
2606 while (nr) {
2607 batch = min(REMAP_BATCH_SIZE, nr);
2608 range = (unsigned long)batch << PAGE_SHIFT;
2609
2610 rmd.mmu_update = mmu_update;
2611 err = apply_to_page_range(vma->vm_mm, addr, range,
2612 remap_area_mfn_pte_fn, &rmd);
2613 if (err)
2614 goto out;
2615
2616 err = HYPERVISOR_mmu_update(mmu_update, batch, NULL, domid);
2617 if (err < 0)
2618 goto out;
2619
2620 nr -= batch;
2621 addr += range;
2622 }
2623
2624 err = 0;
2625 out:
2626
2627 xen_flush_tlb_all();
2628
2629 return err;
2630 }
2631 EXPORT_SYMBOL_GPL(xen_remap_domain_mfn_range);
2632
2633 /* Returns: 0 success */
2634 int xen_unmap_domain_mfn_range(struct vm_area_struct *vma,
2635 int numpgs, struct page **pages)
2636 {
2637 if (!pages || !xen_feature(XENFEAT_auto_translated_physmap))
2638 return 0;
2639
2640 #ifdef CONFIG_XEN_PVH
2641 while (numpgs--) {
2642 /*
2643 * The mmu has already cleaned up the process mmu
2644 * resources at this point (lookup_address will return
2645 * NULL).
2646 */
2647 unsigned long pfn = page_to_pfn(pages[numpgs]);
2648
2649 xlate_remove_from_p2m(pfn, 1);
2650 }
2651 /*
2652 * We don't need to flush tlbs because as part of
2653 * xlate_remove_from_p2m, the hypervisor will do tlb flushes
2654 * after removing the p2m entries from the EPT/NPT
2655 */
2656 return 0;
2657 #else
2658 return -EINVAL;
2659 #endif
2660 }
2661 EXPORT_SYMBOL_GPL(xen_unmap_domain_mfn_range);
This page took 0.087174 seconds and 5 git commands to generate.