Merge branch 'slab/urgent' of git://git.kernel.org/pub/scm/linux/kernel/git/penberg...
[deliverable/linux.git] / arch / x86 / xen / mmu.c
1 /*
2 * Xen mmu operations
3 *
4 * This file contains the various mmu fetch and update operations.
5 * The most important job they must perform is the mapping between the
6 * domain's pfn and the overall machine mfns.
7 *
8 * Xen allows guests to directly update the pagetable, in a controlled
9 * fashion. In other words, the guest modifies the same pagetable
10 * that the CPU actually uses, which eliminates the overhead of having
11 * a separate shadow pagetable.
12 *
13 * In order to allow this, it falls on the guest domain to map its
14 * notion of a "physical" pfn - which is just a domain-local linear
15 * address - into a real "machine address" which the CPU's MMU can
16 * use.
17 *
18 * A pgd_t/pmd_t/pte_t will typically contain an mfn, and so can be
19 * inserted directly into the pagetable. When creating a new
20 * pte/pmd/pgd, it converts the passed pfn into an mfn. Conversely,
21 * when reading the content back with __(pgd|pmd|pte)_val, it converts
22 * the mfn back into a pfn.
23 *
24 * The other constraint is that all pages which make up a pagetable
25 * must be mapped read-only in the guest. This prevents uncontrolled
26 * guest updates to the pagetable. Xen strictly enforces this, and
27 * will disallow any pagetable update which will end up mapping a
28 * pagetable page RW, and will disallow using any writable page as a
29 * pagetable.
30 *
31 * Naively, when loading %cr3 with the base of a new pagetable, Xen
32 * would need to validate the whole pagetable before going on.
33 * Naturally, this is quite slow. The solution is to "pin" a
34 * pagetable, which enforces all the constraints on the pagetable even
35 * when it is not actively in use. This menas that Xen can be assured
36 * that it is still valid when you do load it into %cr3, and doesn't
37 * need to revalidate it.
38 *
39 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
40 */
41 #include <linux/sched.h>
42 #include <linux/highmem.h>
43 #include <linux/debugfs.h>
44 #include <linux/bug.h>
45 #include <linux/vmalloc.h>
46 #include <linux/module.h>
47 #include <linux/gfp.h>
48 #include <linux/memblock.h>
49
50 #include <asm/pgtable.h>
51 #include <asm/tlbflush.h>
52 #include <asm/fixmap.h>
53 #include <asm/mmu_context.h>
54 #include <asm/setup.h>
55 #include <asm/paravirt.h>
56 #include <asm/e820.h>
57 #include <asm/linkage.h>
58 #include <asm/page.h>
59 #include <asm/init.h>
60 #include <asm/pat.h>
61
62 #include <asm/xen/hypercall.h>
63 #include <asm/xen/hypervisor.h>
64
65 #include <xen/xen.h>
66 #include <xen/page.h>
67 #include <xen/interface/xen.h>
68 #include <xen/interface/hvm/hvm_op.h>
69 #include <xen/interface/version.h>
70 #include <xen/interface/memory.h>
71 #include <xen/hvc-console.h>
72
73 #include "multicalls.h"
74 #include "mmu.h"
75 #include "debugfs.h"
76
77 #define MMU_UPDATE_HISTO 30
78
79 /*
80 * Protects atomic reservation decrease/increase against concurrent increases.
81 * Also protects non-atomic updates of current_pages and driver_pages, and
82 * balloon lists.
83 */
84 DEFINE_SPINLOCK(xen_reservation_lock);
85
86 #ifdef CONFIG_XEN_DEBUG_FS
87
88 static struct {
89 u32 pgd_update;
90 u32 pgd_update_pinned;
91 u32 pgd_update_batched;
92
93 u32 pud_update;
94 u32 pud_update_pinned;
95 u32 pud_update_batched;
96
97 u32 pmd_update;
98 u32 pmd_update_pinned;
99 u32 pmd_update_batched;
100
101 u32 pte_update;
102 u32 pte_update_pinned;
103 u32 pte_update_batched;
104
105 u32 mmu_update;
106 u32 mmu_update_extended;
107 u32 mmu_update_histo[MMU_UPDATE_HISTO];
108
109 u32 prot_commit;
110 u32 prot_commit_batched;
111
112 u32 set_pte_at;
113 u32 set_pte_at_batched;
114 u32 set_pte_at_pinned;
115 u32 set_pte_at_current;
116 u32 set_pte_at_kernel;
117 } mmu_stats;
118
119 static u8 zero_stats;
120
121 static inline void check_zero(void)
122 {
123 if (unlikely(zero_stats)) {
124 memset(&mmu_stats, 0, sizeof(mmu_stats));
125 zero_stats = 0;
126 }
127 }
128
129 #define ADD_STATS(elem, val) \
130 do { check_zero(); mmu_stats.elem += (val); } while(0)
131
132 #else /* !CONFIG_XEN_DEBUG_FS */
133
134 #define ADD_STATS(elem, val) do { (void)(val); } while(0)
135
136 #endif /* CONFIG_XEN_DEBUG_FS */
137
138
139 /*
140 * Identity map, in addition to plain kernel map. This needs to be
141 * large enough to allocate page table pages to allocate the rest.
142 * Each page can map 2MB.
143 */
144 #define LEVEL1_IDENT_ENTRIES (PTRS_PER_PTE * 4)
145 static RESERVE_BRK_ARRAY(pte_t, level1_ident_pgt, LEVEL1_IDENT_ENTRIES);
146
147 #ifdef CONFIG_X86_64
148 /* l3 pud for userspace vsyscall mapping */
149 static pud_t level3_user_vsyscall[PTRS_PER_PUD] __page_aligned_bss;
150 #endif /* CONFIG_X86_64 */
151
152 /*
153 * Note about cr3 (pagetable base) values:
154 *
155 * xen_cr3 contains the current logical cr3 value; it contains the
156 * last set cr3. This may not be the current effective cr3, because
157 * its update may be being lazily deferred. However, a vcpu looking
158 * at its own cr3 can use this value knowing that it everything will
159 * be self-consistent.
160 *
161 * xen_current_cr3 contains the actual vcpu cr3; it is set once the
162 * hypercall to set the vcpu cr3 is complete (so it may be a little
163 * out of date, but it will never be set early). If one vcpu is
164 * looking at another vcpu's cr3 value, it should use this variable.
165 */
166 DEFINE_PER_CPU(unsigned long, xen_cr3); /* cr3 stored as physaddr */
167 DEFINE_PER_CPU(unsigned long, xen_current_cr3); /* actual vcpu cr3 */
168
169
170 /*
171 * Just beyond the highest usermode address. STACK_TOP_MAX has a
172 * redzone above it, so round it up to a PGD boundary.
173 */
174 #define USER_LIMIT ((STACK_TOP_MAX + PGDIR_SIZE - 1) & PGDIR_MASK)
175
176 /*
177 * Xen leaves the responsibility for maintaining p2m mappings to the
178 * guests themselves, but it must also access and update the p2m array
179 * during suspend/resume when all the pages are reallocated.
180 *
181 * The p2m table is logically a flat array, but we implement it as a
182 * three-level tree to allow the address space to be sparse.
183 *
184 * Xen
185 * |
186 * p2m_top p2m_top_mfn
187 * / \ / \
188 * p2m_mid p2m_mid p2m_mid_mfn p2m_mid_mfn
189 * / \ / \ / /
190 * p2m p2m p2m p2m p2m p2m p2m ...
191 *
192 * The p2m_mid_mfn pages are mapped by p2m_top_mfn_p.
193 *
194 * The p2m_top and p2m_top_mfn levels are limited to 1 page, so the
195 * maximum representable pseudo-physical address space is:
196 * P2M_TOP_PER_PAGE * P2M_MID_PER_PAGE * P2M_PER_PAGE pages
197 *
198 * P2M_PER_PAGE depends on the architecture, as a mfn is always
199 * unsigned long (8 bytes on 64-bit, 4 bytes on 32), leading to
200 * 512 and 1024 entries respectively.
201 */
202
203 unsigned long xen_max_p2m_pfn __read_mostly;
204
205 #define P2M_PER_PAGE (PAGE_SIZE / sizeof(unsigned long))
206 #define P2M_MID_PER_PAGE (PAGE_SIZE / sizeof(unsigned long *))
207 #define P2M_TOP_PER_PAGE (PAGE_SIZE / sizeof(unsigned long **))
208
209 #define MAX_P2M_PFN (P2M_TOP_PER_PAGE * P2M_MID_PER_PAGE * P2M_PER_PAGE)
210
211 /* Placeholders for holes in the address space */
212 static RESERVE_BRK_ARRAY(unsigned long, p2m_missing, P2M_PER_PAGE);
213 static RESERVE_BRK_ARRAY(unsigned long *, p2m_mid_missing, P2M_MID_PER_PAGE);
214 static RESERVE_BRK_ARRAY(unsigned long, p2m_mid_missing_mfn, P2M_MID_PER_PAGE);
215
216 static RESERVE_BRK_ARRAY(unsigned long **, p2m_top, P2M_TOP_PER_PAGE);
217 static RESERVE_BRK_ARRAY(unsigned long, p2m_top_mfn, P2M_TOP_PER_PAGE);
218 static RESERVE_BRK_ARRAY(unsigned long *, p2m_top_mfn_p, P2M_TOP_PER_PAGE);
219
220 RESERVE_BRK(p2m_mid, PAGE_SIZE * (MAX_DOMAIN_PAGES / (P2M_PER_PAGE * P2M_MID_PER_PAGE)));
221 RESERVE_BRK(p2m_mid_mfn, PAGE_SIZE * (MAX_DOMAIN_PAGES / (P2M_PER_PAGE * P2M_MID_PER_PAGE)));
222
223 static inline unsigned p2m_top_index(unsigned long pfn)
224 {
225 BUG_ON(pfn >= MAX_P2M_PFN);
226 return pfn / (P2M_MID_PER_PAGE * P2M_PER_PAGE);
227 }
228
229 static inline unsigned p2m_mid_index(unsigned long pfn)
230 {
231 return (pfn / P2M_PER_PAGE) % P2M_MID_PER_PAGE;
232 }
233
234 static inline unsigned p2m_index(unsigned long pfn)
235 {
236 return pfn % P2M_PER_PAGE;
237 }
238
239 static void p2m_top_init(unsigned long ***top)
240 {
241 unsigned i;
242
243 for (i = 0; i < P2M_TOP_PER_PAGE; i++)
244 top[i] = p2m_mid_missing;
245 }
246
247 static void p2m_top_mfn_init(unsigned long *top)
248 {
249 unsigned i;
250
251 for (i = 0; i < P2M_TOP_PER_PAGE; i++)
252 top[i] = virt_to_mfn(p2m_mid_missing_mfn);
253 }
254
255 static void p2m_top_mfn_p_init(unsigned long **top)
256 {
257 unsigned i;
258
259 for (i = 0; i < P2M_TOP_PER_PAGE; i++)
260 top[i] = p2m_mid_missing_mfn;
261 }
262
263 static void p2m_mid_init(unsigned long **mid)
264 {
265 unsigned i;
266
267 for (i = 0; i < P2M_MID_PER_PAGE; i++)
268 mid[i] = p2m_missing;
269 }
270
271 static void p2m_mid_mfn_init(unsigned long *mid)
272 {
273 unsigned i;
274
275 for (i = 0; i < P2M_MID_PER_PAGE; i++)
276 mid[i] = virt_to_mfn(p2m_missing);
277 }
278
279 static void p2m_init(unsigned long *p2m)
280 {
281 unsigned i;
282
283 for (i = 0; i < P2M_MID_PER_PAGE; i++)
284 p2m[i] = INVALID_P2M_ENTRY;
285 }
286
287 /*
288 * Build the parallel p2m_top_mfn and p2m_mid_mfn structures
289 *
290 * This is called both at boot time, and after resuming from suspend:
291 * - At boot time we're called very early, and must use extend_brk()
292 * to allocate memory.
293 *
294 * - After resume we're called from within stop_machine, but the mfn
295 * tree should alreay be completely allocated.
296 */
297 void xen_build_mfn_list_list(void)
298 {
299 unsigned long pfn;
300
301 /* Pre-initialize p2m_top_mfn to be completely missing */
302 if (p2m_top_mfn == NULL) {
303 p2m_mid_missing_mfn = extend_brk(PAGE_SIZE, PAGE_SIZE);
304 p2m_mid_mfn_init(p2m_mid_missing_mfn);
305
306 p2m_top_mfn_p = extend_brk(PAGE_SIZE, PAGE_SIZE);
307 p2m_top_mfn_p_init(p2m_top_mfn_p);
308
309 p2m_top_mfn = extend_brk(PAGE_SIZE, PAGE_SIZE);
310 p2m_top_mfn_init(p2m_top_mfn);
311 } else {
312 /* Reinitialise, mfn's all change after migration */
313 p2m_mid_mfn_init(p2m_mid_missing_mfn);
314 }
315
316 for (pfn = 0; pfn < xen_max_p2m_pfn; pfn += P2M_PER_PAGE) {
317 unsigned topidx = p2m_top_index(pfn);
318 unsigned mididx = p2m_mid_index(pfn);
319 unsigned long **mid;
320 unsigned long *mid_mfn_p;
321
322 mid = p2m_top[topidx];
323 mid_mfn_p = p2m_top_mfn_p[topidx];
324
325 /* Don't bother allocating any mfn mid levels if
326 * they're just missing, just update the stored mfn,
327 * since all could have changed over a migrate.
328 */
329 if (mid == p2m_mid_missing) {
330 BUG_ON(mididx);
331 BUG_ON(mid_mfn_p != p2m_mid_missing_mfn);
332 p2m_top_mfn[topidx] = virt_to_mfn(p2m_mid_missing_mfn);
333 pfn += (P2M_MID_PER_PAGE - 1) * P2M_PER_PAGE;
334 continue;
335 }
336
337 if (mid_mfn_p == p2m_mid_missing_mfn) {
338 /*
339 * XXX boot-time only! We should never find
340 * missing parts of the mfn tree after
341 * runtime. extend_brk() will BUG if we call
342 * it too late.
343 */
344 mid_mfn_p = extend_brk(PAGE_SIZE, PAGE_SIZE);
345 p2m_mid_mfn_init(mid_mfn_p);
346
347 p2m_top_mfn_p[topidx] = mid_mfn_p;
348 }
349
350 p2m_top_mfn[topidx] = virt_to_mfn(mid_mfn_p);
351 mid_mfn_p[mididx] = virt_to_mfn(mid[mididx]);
352 }
353 }
354
355 void xen_setup_mfn_list_list(void)
356 {
357 BUG_ON(HYPERVISOR_shared_info == &xen_dummy_shared_info);
358
359 HYPERVISOR_shared_info->arch.pfn_to_mfn_frame_list_list =
360 virt_to_mfn(p2m_top_mfn);
361 HYPERVISOR_shared_info->arch.max_pfn = xen_max_p2m_pfn;
362 }
363
364 /* Set up p2m_top to point to the domain-builder provided p2m pages */
365 void __init xen_build_dynamic_phys_to_machine(void)
366 {
367 unsigned long *mfn_list = (unsigned long *)xen_start_info->mfn_list;
368 unsigned long max_pfn = min(MAX_DOMAIN_PAGES, xen_start_info->nr_pages);
369 unsigned long pfn;
370
371 xen_max_p2m_pfn = max_pfn;
372
373 p2m_missing = extend_brk(PAGE_SIZE, PAGE_SIZE);
374 p2m_init(p2m_missing);
375
376 p2m_mid_missing = extend_brk(PAGE_SIZE, PAGE_SIZE);
377 p2m_mid_init(p2m_mid_missing);
378
379 p2m_top = extend_brk(PAGE_SIZE, PAGE_SIZE);
380 p2m_top_init(p2m_top);
381
382 /*
383 * The domain builder gives us a pre-constructed p2m array in
384 * mfn_list for all the pages initially given to us, so we just
385 * need to graft that into our tree structure.
386 */
387 for (pfn = 0; pfn < max_pfn; pfn += P2M_PER_PAGE) {
388 unsigned topidx = p2m_top_index(pfn);
389 unsigned mididx = p2m_mid_index(pfn);
390
391 if (p2m_top[topidx] == p2m_mid_missing) {
392 unsigned long **mid = extend_brk(PAGE_SIZE, PAGE_SIZE);
393 p2m_mid_init(mid);
394
395 p2m_top[topidx] = mid;
396 }
397
398 p2m_top[topidx][mididx] = &mfn_list[pfn];
399 }
400 }
401
402 unsigned long get_phys_to_machine(unsigned long pfn)
403 {
404 unsigned topidx, mididx, idx;
405
406 if (unlikely(pfn >= MAX_P2M_PFN))
407 return INVALID_P2M_ENTRY;
408
409 topidx = p2m_top_index(pfn);
410 mididx = p2m_mid_index(pfn);
411 idx = p2m_index(pfn);
412
413 return p2m_top[topidx][mididx][idx];
414 }
415 EXPORT_SYMBOL_GPL(get_phys_to_machine);
416
417 static void *alloc_p2m_page(void)
418 {
419 return (void *)__get_free_page(GFP_KERNEL | __GFP_REPEAT);
420 }
421
422 static void free_p2m_page(void *p)
423 {
424 free_page((unsigned long)p);
425 }
426
427 /*
428 * Fully allocate the p2m structure for a given pfn. We need to check
429 * that both the top and mid levels are allocated, and make sure the
430 * parallel mfn tree is kept in sync. We may race with other cpus, so
431 * the new pages are installed with cmpxchg; if we lose the race then
432 * simply free the page we allocated and use the one that's there.
433 */
434 static bool alloc_p2m(unsigned long pfn)
435 {
436 unsigned topidx, mididx;
437 unsigned long ***top_p, **mid;
438 unsigned long *top_mfn_p, *mid_mfn;
439
440 topidx = p2m_top_index(pfn);
441 mididx = p2m_mid_index(pfn);
442
443 top_p = &p2m_top[topidx];
444 mid = *top_p;
445
446 if (mid == p2m_mid_missing) {
447 /* Mid level is missing, allocate a new one */
448 mid = alloc_p2m_page();
449 if (!mid)
450 return false;
451
452 p2m_mid_init(mid);
453
454 if (cmpxchg(top_p, p2m_mid_missing, mid) != p2m_mid_missing)
455 free_p2m_page(mid);
456 }
457
458 top_mfn_p = &p2m_top_mfn[topidx];
459 mid_mfn = p2m_top_mfn_p[topidx];
460
461 BUG_ON(virt_to_mfn(mid_mfn) != *top_mfn_p);
462
463 if (mid_mfn == p2m_mid_missing_mfn) {
464 /* Separately check the mid mfn level */
465 unsigned long missing_mfn;
466 unsigned long mid_mfn_mfn;
467
468 mid_mfn = alloc_p2m_page();
469 if (!mid_mfn)
470 return false;
471
472 p2m_mid_mfn_init(mid_mfn);
473
474 missing_mfn = virt_to_mfn(p2m_mid_missing_mfn);
475 mid_mfn_mfn = virt_to_mfn(mid_mfn);
476 if (cmpxchg(top_mfn_p, missing_mfn, mid_mfn_mfn) != missing_mfn)
477 free_p2m_page(mid_mfn);
478 else
479 p2m_top_mfn_p[topidx] = mid_mfn;
480 }
481
482 if (p2m_top[topidx][mididx] == p2m_missing) {
483 /* p2m leaf page is missing */
484 unsigned long *p2m;
485
486 p2m = alloc_p2m_page();
487 if (!p2m)
488 return false;
489
490 p2m_init(p2m);
491
492 if (cmpxchg(&mid[mididx], p2m_missing, p2m) != p2m_missing)
493 free_p2m_page(p2m);
494 else
495 mid_mfn[mididx] = virt_to_mfn(p2m);
496 }
497
498 return true;
499 }
500
501 /* Try to install p2m mapping; fail if intermediate bits missing */
502 bool __set_phys_to_machine(unsigned long pfn, unsigned long mfn)
503 {
504 unsigned topidx, mididx, idx;
505
506 if (unlikely(pfn >= MAX_P2M_PFN)) {
507 BUG_ON(mfn != INVALID_P2M_ENTRY);
508 return true;
509 }
510
511 topidx = p2m_top_index(pfn);
512 mididx = p2m_mid_index(pfn);
513 idx = p2m_index(pfn);
514
515 if (p2m_top[topidx][mididx] == p2m_missing)
516 return mfn == INVALID_P2M_ENTRY;
517
518 p2m_top[topidx][mididx][idx] = mfn;
519
520 return true;
521 }
522
523 bool set_phys_to_machine(unsigned long pfn, unsigned long mfn)
524 {
525 if (unlikely(xen_feature(XENFEAT_auto_translated_physmap))) {
526 BUG_ON(pfn != mfn && mfn != INVALID_P2M_ENTRY);
527 return true;
528 }
529
530 if (unlikely(!__set_phys_to_machine(pfn, mfn))) {
531 if (!alloc_p2m(pfn))
532 return false;
533
534 if (!__set_phys_to_machine(pfn, mfn))
535 return false;
536 }
537
538 return true;
539 }
540
541 unsigned long arbitrary_virt_to_mfn(void *vaddr)
542 {
543 xmaddr_t maddr = arbitrary_virt_to_machine(vaddr);
544
545 return PFN_DOWN(maddr.maddr);
546 }
547
548 xmaddr_t arbitrary_virt_to_machine(void *vaddr)
549 {
550 unsigned long address = (unsigned long)vaddr;
551 unsigned int level;
552 pte_t *pte;
553 unsigned offset;
554
555 /*
556 * if the PFN is in the linear mapped vaddr range, we can just use
557 * the (quick) virt_to_machine() p2m lookup
558 */
559 if (virt_addr_valid(vaddr))
560 return virt_to_machine(vaddr);
561
562 /* otherwise we have to do a (slower) full page-table walk */
563
564 pte = lookup_address(address, &level);
565 BUG_ON(pte == NULL);
566 offset = address & ~PAGE_MASK;
567 return XMADDR(((phys_addr_t)pte_mfn(*pte) << PAGE_SHIFT) + offset);
568 }
569
570 void make_lowmem_page_readonly(void *vaddr)
571 {
572 pte_t *pte, ptev;
573 unsigned long address = (unsigned long)vaddr;
574 unsigned int level;
575
576 pte = lookup_address(address, &level);
577 if (pte == NULL)
578 return; /* vaddr missing */
579
580 ptev = pte_wrprotect(*pte);
581
582 if (HYPERVISOR_update_va_mapping(address, ptev, 0))
583 BUG();
584 }
585
586 void make_lowmem_page_readwrite(void *vaddr)
587 {
588 pte_t *pte, ptev;
589 unsigned long address = (unsigned long)vaddr;
590 unsigned int level;
591
592 pte = lookup_address(address, &level);
593 if (pte == NULL)
594 return; /* vaddr missing */
595
596 ptev = pte_mkwrite(*pte);
597
598 if (HYPERVISOR_update_va_mapping(address, ptev, 0))
599 BUG();
600 }
601
602
603 static bool xen_page_pinned(void *ptr)
604 {
605 struct page *page = virt_to_page(ptr);
606
607 return PagePinned(page);
608 }
609
610 static bool xen_iomap_pte(pte_t pte)
611 {
612 return pte_flags(pte) & _PAGE_IOMAP;
613 }
614
615 void xen_set_domain_pte(pte_t *ptep, pte_t pteval, unsigned domid)
616 {
617 struct multicall_space mcs;
618 struct mmu_update *u;
619
620 mcs = xen_mc_entry(sizeof(*u));
621 u = mcs.args;
622
623 /* ptep might be kmapped when using 32-bit HIGHPTE */
624 u->ptr = arbitrary_virt_to_machine(ptep).maddr;
625 u->val = pte_val_ma(pteval);
626
627 MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, domid);
628
629 xen_mc_issue(PARAVIRT_LAZY_MMU);
630 }
631 EXPORT_SYMBOL_GPL(xen_set_domain_pte);
632
633 static void xen_set_iomap_pte(pte_t *ptep, pte_t pteval)
634 {
635 xen_set_domain_pte(ptep, pteval, DOMID_IO);
636 }
637
638 static void xen_extend_mmu_update(const struct mmu_update *update)
639 {
640 struct multicall_space mcs;
641 struct mmu_update *u;
642
643 mcs = xen_mc_extend_args(__HYPERVISOR_mmu_update, sizeof(*u));
644
645 if (mcs.mc != NULL) {
646 ADD_STATS(mmu_update_extended, 1);
647 ADD_STATS(mmu_update_histo[mcs.mc->args[1]], -1);
648
649 mcs.mc->args[1]++;
650
651 if (mcs.mc->args[1] < MMU_UPDATE_HISTO)
652 ADD_STATS(mmu_update_histo[mcs.mc->args[1]], 1);
653 else
654 ADD_STATS(mmu_update_histo[0], 1);
655 } else {
656 ADD_STATS(mmu_update, 1);
657 mcs = __xen_mc_entry(sizeof(*u));
658 MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
659 ADD_STATS(mmu_update_histo[1], 1);
660 }
661
662 u = mcs.args;
663 *u = *update;
664 }
665
666 void xen_set_pmd_hyper(pmd_t *ptr, pmd_t val)
667 {
668 struct mmu_update u;
669
670 preempt_disable();
671
672 xen_mc_batch();
673
674 /* ptr may be ioremapped for 64-bit pagetable setup */
675 u.ptr = arbitrary_virt_to_machine(ptr).maddr;
676 u.val = pmd_val_ma(val);
677 xen_extend_mmu_update(&u);
678
679 ADD_STATS(pmd_update_batched, paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU);
680
681 xen_mc_issue(PARAVIRT_LAZY_MMU);
682
683 preempt_enable();
684 }
685
686 void xen_set_pmd(pmd_t *ptr, pmd_t val)
687 {
688 ADD_STATS(pmd_update, 1);
689
690 /* If page is not pinned, we can just update the entry
691 directly */
692 if (!xen_page_pinned(ptr)) {
693 *ptr = val;
694 return;
695 }
696
697 ADD_STATS(pmd_update_pinned, 1);
698
699 xen_set_pmd_hyper(ptr, val);
700 }
701
702 /*
703 * Associate a virtual page frame with a given physical page frame
704 * and protection flags for that frame.
705 */
706 void set_pte_mfn(unsigned long vaddr, unsigned long mfn, pgprot_t flags)
707 {
708 set_pte_vaddr(vaddr, mfn_pte(mfn, flags));
709 }
710
711 void xen_set_pte_at(struct mm_struct *mm, unsigned long addr,
712 pte_t *ptep, pte_t pteval)
713 {
714 if (xen_iomap_pte(pteval)) {
715 xen_set_iomap_pte(ptep, pteval);
716 goto out;
717 }
718
719 ADD_STATS(set_pte_at, 1);
720 // ADD_STATS(set_pte_at_pinned, xen_page_pinned(ptep));
721 ADD_STATS(set_pte_at_current, mm == current->mm);
722 ADD_STATS(set_pte_at_kernel, mm == &init_mm);
723
724 if (mm == current->mm || mm == &init_mm) {
725 if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU) {
726 struct multicall_space mcs;
727 mcs = xen_mc_entry(0);
728
729 MULTI_update_va_mapping(mcs.mc, addr, pteval, 0);
730 ADD_STATS(set_pte_at_batched, 1);
731 xen_mc_issue(PARAVIRT_LAZY_MMU);
732 goto out;
733 } else
734 if (HYPERVISOR_update_va_mapping(addr, pteval, 0) == 0)
735 goto out;
736 }
737 xen_set_pte(ptep, pteval);
738
739 out: return;
740 }
741
742 pte_t xen_ptep_modify_prot_start(struct mm_struct *mm,
743 unsigned long addr, pte_t *ptep)
744 {
745 /* Just return the pte as-is. We preserve the bits on commit */
746 return *ptep;
747 }
748
749 void xen_ptep_modify_prot_commit(struct mm_struct *mm, unsigned long addr,
750 pte_t *ptep, pte_t pte)
751 {
752 struct mmu_update u;
753
754 xen_mc_batch();
755
756 u.ptr = arbitrary_virt_to_machine(ptep).maddr | MMU_PT_UPDATE_PRESERVE_AD;
757 u.val = pte_val_ma(pte);
758 xen_extend_mmu_update(&u);
759
760 ADD_STATS(prot_commit, 1);
761 ADD_STATS(prot_commit_batched, paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU);
762
763 xen_mc_issue(PARAVIRT_LAZY_MMU);
764 }
765
766 /* Assume pteval_t is equivalent to all the other *val_t types. */
767 static pteval_t pte_mfn_to_pfn(pteval_t val)
768 {
769 if (val & _PAGE_PRESENT) {
770 unsigned long mfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
771 pteval_t flags = val & PTE_FLAGS_MASK;
772 val = ((pteval_t)mfn_to_pfn(mfn) << PAGE_SHIFT) | flags;
773 }
774
775 return val;
776 }
777
778 static pteval_t pte_pfn_to_mfn(pteval_t val)
779 {
780 if (val & _PAGE_PRESENT) {
781 unsigned long pfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
782 pteval_t flags = val & PTE_FLAGS_MASK;
783 unsigned long mfn = pfn_to_mfn(pfn);
784
785 /*
786 * If there's no mfn for the pfn, then just create an
787 * empty non-present pte. Unfortunately this loses
788 * information about the original pfn, so
789 * pte_mfn_to_pfn is asymmetric.
790 */
791 if (unlikely(mfn == INVALID_P2M_ENTRY)) {
792 mfn = 0;
793 flags = 0;
794 }
795
796 val = ((pteval_t)mfn << PAGE_SHIFT) | flags;
797 }
798
799 return val;
800 }
801
802 static pteval_t iomap_pte(pteval_t val)
803 {
804 if (val & _PAGE_PRESENT) {
805 unsigned long pfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
806 pteval_t flags = val & PTE_FLAGS_MASK;
807
808 /* We assume the pte frame number is a MFN, so
809 just use it as-is. */
810 val = ((pteval_t)pfn << PAGE_SHIFT) | flags;
811 }
812
813 return val;
814 }
815
816 pteval_t xen_pte_val(pte_t pte)
817 {
818 pteval_t pteval = pte.pte;
819
820 /* If this is a WC pte, convert back from Xen WC to Linux WC */
821 if ((pteval & (_PAGE_PAT | _PAGE_PCD | _PAGE_PWT)) == _PAGE_PAT) {
822 WARN_ON(!pat_enabled);
823 pteval = (pteval & ~_PAGE_PAT) | _PAGE_PWT;
824 }
825
826 if (xen_initial_domain() && (pteval & _PAGE_IOMAP))
827 return pteval;
828
829 return pte_mfn_to_pfn(pteval);
830 }
831 PV_CALLEE_SAVE_REGS_THUNK(xen_pte_val);
832
833 pgdval_t xen_pgd_val(pgd_t pgd)
834 {
835 return pte_mfn_to_pfn(pgd.pgd);
836 }
837 PV_CALLEE_SAVE_REGS_THUNK(xen_pgd_val);
838
839 /*
840 * Xen's PAT setup is part of its ABI, though I assume entries 6 & 7
841 * are reserved for now, to correspond to the Intel-reserved PAT
842 * types.
843 *
844 * We expect Linux's PAT set as follows:
845 *
846 * Idx PTE flags Linux Xen Default
847 * 0 WB WB WB
848 * 1 PWT WC WT WT
849 * 2 PCD UC- UC- UC-
850 * 3 PCD PWT UC UC UC
851 * 4 PAT WB WC WB
852 * 5 PAT PWT WC WP WT
853 * 6 PAT PCD UC- UC UC-
854 * 7 PAT PCD PWT UC UC UC
855 */
856
857 void xen_set_pat(u64 pat)
858 {
859 /* We expect Linux to use a PAT setting of
860 * UC UC- WC WB (ignoring the PAT flag) */
861 WARN_ON(pat != 0x0007010600070106ull);
862 }
863
864 pte_t xen_make_pte(pteval_t pte)
865 {
866 phys_addr_t addr = (pte & PTE_PFN_MASK);
867
868 /* If Linux is trying to set a WC pte, then map to the Xen WC.
869 * If _PAGE_PAT is set, then it probably means it is really
870 * _PAGE_PSE, so avoid fiddling with the PAT mapping and hope
871 * things work out OK...
872 *
873 * (We should never see kernel mappings with _PAGE_PSE set,
874 * but we could see hugetlbfs mappings, I think.).
875 */
876 if (pat_enabled && !WARN_ON(pte & _PAGE_PAT)) {
877 if ((pte & (_PAGE_PCD | _PAGE_PWT)) == _PAGE_PWT)
878 pte = (pte & ~(_PAGE_PCD | _PAGE_PWT)) | _PAGE_PAT;
879 }
880
881 /*
882 * Unprivileged domains are allowed to do IOMAPpings for
883 * PCI passthrough, but not map ISA space. The ISA
884 * mappings are just dummy local mappings to keep other
885 * parts of the kernel happy.
886 */
887 if (unlikely(pte & _PAGE_IOMAP) &&
888 (xen_initial_domain() || addr >= ISA_END_ADDRESS)) {
889 pte = iomap_pte(pte);
890 } else {
891 pte &= ~_PAGE_IOMAP;
892 pte = pte_pfn_to_mfn(pte);
893 }
894
895 return native_make_pte(pte);
896 }
897 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pte);
898
899 pgd_t xen_make_pgd(pgdval_t pgd)
900 {
901 pgd = pte_pfn_to_mfn(pgd);
902 return native_make_pgd(pgd);
903 }
904 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pgd);
905
906 pmdval_t xen_pmd_val(pmd_t pmd)
907 {
908 return pte_mfn_to_pfn(pmd.pmd);
909 }
910 PV_CALLEE_SAVE_REGS_THUNK(xen_pmd_val);
911
912 void xen_set_pud_hyper(pud_t *ptr, pud_t val)
913 {
914 struct mmu_update u;
915
916 preempt_disable();
917
918 xen_mc_batch();
919
920 /* ptr may be ioremapped for 64-bit pagetable setup */
921 u.ptr = arbitrary_virt_to_machine(ptr).maddr;
922 u.val = pud_val_ma(val);
923 xen_extend_mmu_update(&u);
924
925 ADD_STATS(pud_update_batched, paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU);
926
927 xen_mc_issue(PARAVIRT_LAZY_MMU);
928
929 preempt_enable();
930 }
931
932 void xen_set_pud(pud_t *ptr, pud_t val)
933 {
934 ADD_STATS(pud_update, 1);
935
936 /* If page is not pinned, we can just update the entry
937 directly */
938 if (!xen_page_pinned(ptr)) {
939 *ptr = val;
940 return;
941 }
942
943 ADD_STATS(pud_update_pinned, 1);
944
945 xen_set_pud_hyper(ptr, val);
946 }
947
948 void xen_set_pte(pte_t *ptep, pte_t pte)
949 {
950 if (xen_iomap_pte(pte)) {
951 xen_set_iomap_pte(ptep, pte);
952 return;
953 }
954
955 ADD_STATS(pte_update, 1);
956 // ADD_STATS(pte_update_pinned, xen_page_pinned(ptep));
957 ADD_STATS(pte_update_batched, paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU);
958
959 #ifdef CONFIG_X86_PAE
960 ptep->pte_high = pte.pte_high;
961 smp_wmb();
962 ptep->pte_low = pte.pte_low;
963 #else
964 *ptep = pte;
965 #endif
966 }
967
968 #ifdef CONFIG_X86_PAE
969 void xen_set_pte_atomic(pte_t *ptep, pte_t pte)
970 {
971 if (xen_iomap_pte(pte)) {
972 xen_set_iomap_pte(ptep, pte);
973 return;
974 }
975
976 set_64bit((u64 *)ptep, native_pte_val(pte));
977 }
978
979 void xen_pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
980 {
981 ptep->pte_low = 0;
982 smp_wmb(); /* make sure low gets written first */
983 ptep->pte_high = 0;
984 }
985
986 void xen_pmd_clear(pmd_t *pmdp)
987 {
988 set_pmd(pmdp, __pmd(0));
989 }
990 #endif /* CONFIG_X86_PAE */
991
992 pmd_t xen_make_pmd(pmdval_t pmd)
993 {
994 pmd = pte_pfn_to_mfn(pmd);
995 return native_make_pmd(pmd);
996 }
997 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pmd);
998
999 #if PAGETABLE_LEVELS == 4
1000 pudval_t xen_pud_val(pud_t pud)
1001 {
1002 return pte_mfn_to_pfn(pud.pud);
1003 }
1004 PV_CALLEE_SAVE_REGS_THUNK(xen_pud_val);
1005
1006 pud_t xen_make_pud(pudval_t pud)
1007 {
1008 pud = pte_pfn_to_mfn(pud);
1009
1010 return native_make_pud(pud);
1011 }
1012 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pud);
1013
1014 pgd_t *xen_get_user_pgd(pgd_t *pgd)
1015 {
1016 pgd_t *pgd_page = (pgd_t *)(((unsigned long)pgd) & PAGE_MASK);
1017 unsigned offset = pgd - pgd_page;
1018 pgd_t *user_ptr = NULL;
1019
1020 if (offset < pgd_index(USER_LIMIT)) {
1021 struct page *page = virt_to_page(pgd_page);
1022 user_ptr = (pgd_t *)page->private;
1023 if (user_ptr)
1024 user_ptr += offset;
1025 }
1026
1027 return user_ptr;
1028 }
1029
1030 static void __xen_set_pgd_hyper(pgd_t *ptr, pgd_t val)
1031 {
1032 struct mmu_update u;
1033
1034 u.ptr = virt_to_machine(ptr).maddr;
1035 u.val = pgd_val_ma(val);
1036 xen_extend_mmu_update(&u);
1037 }
1038
1039 /*
1040 * Raw hypercall-based set_pgd, intended for in early boot before
1041 * there's a page structure. This implies:
1042 * 1. The only existing pagetable is the kernel's
1043 * 2. It is always pinned
1044 * 3. It has no user pagetable attached to it
1045 */
1046 void __init xen_set_pgd_hyper(pgd_t *ptr, pgd_t val)
1047 {
1048 preempt_disable();
1049
1050 xen_mc_batch();
1051
1052 __xen_set_pgd_hyper(ptr, val);
1053
1054 xen_mc_issue(PARAVIRT_LAZY_MMU);
1055
1056 preempt_enable();
1057 }
1058
1059 void xen_set_pgd(pgd_t *ptr, pgd_t val)
1060 {
1061 pgd_t *user_ptr = xen_get_user_pgd(ptr);
1062
1063 ADD_STATS(pgd_update, 1);
1064
1065 /* If page is not pinned, we can just update the entry
1066 directly */
1067 if (!xen_page_pinned(ptr)) {
1068 *ptr = val;
1069 if (user_ptr) {
1070 WARN_ON(xen_page_pinned(user_ptr));
1071 *user_ptr = val;
1072 }
1073 return;
1074 }
1075
1076 ADD_STATS(pgd_update_pinned, 1);
1077 ADD_STATS(pgd_update_batched, paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU);
1078
1079 /* If it's pinned, then we can at least batch the kernel and
1080 user updates together. */
1081 xen_mc_batch();
1082
1083 __xen_set_pgd_hyper(ptr, val);
1084 if (user_ptr)
1085 __xen_set_pgd_hyper(user_ptr, val);
1086
1087 xen_mc_issue(PARAVIRT_LAZY_MMU);
1088 }
1089 #endif /* PAGETABLE_LEVELS == 4 */
1090
1091 /*
1092 * (Yet another) pagetable walker. This one is intended for pinning a
1093 * pagetable. This means that it walks a pagetable and calls the
1094 * callback function on each page it finds making up the page table,
1095 * at every level. It walks the entire pagetable, but it only bothers
1096 * pinning pte pages which are below limit. In the normal case this
1097 * will be STACK_TOP_MAX, but at boot we need to pin up to
1098 * FIXADDR_TOP.
1099 *
1100 * For 32-bit the important bit is that we don't pin beyond there,
1101 * because then we start getting into Xen's ptes.
1102 *
1103 * For 64-bit, we must skip the Xen hole in the middle of the address
1104 * space, just after the big x86-64 virtual hole.
1105 */
1106 static int __xen_pgd_walk(struct mm_struct *mm, pgd_t *pgd,
1107 int (*func)(struct mm_struct *mm, struct page *,
1108 enum pt_level),
1109 unsigned long limit)
1110 {
1111 int flush = 0;
1112 unsigned hole_low, hole_high;
1113 unsigned pgdidx_limit, pudidx_limit, pmdidx_limit;
1114 unsigned pgdidx, pudidx, pmdidx;
1115
1116 /* The limit is the last byte to be touched */
1117 limit--;
1118 BUG_ON(limit >= FIXADDR_TOP);
1119
1120 if (xen_feature(XENFEAT_auto_translated_physmap))
1121 return 0;
1122
1123 /*
1124 * 64-bit has a great big hole in the middle of the address
1125 * space, which contains the Xen mappings. On 32-bit these
1126 * will end up making a zero-sized hole and so is a no-op.
1127 */
1128 hole_low = pgd_index(USER_LIMIT);
1129 hole_high = pgd_index(PAGE_OFFSET);
1130
1131 pgdidx_limit = pgd_index(limit);
1132 #if PTRS_PER_PUD > 1
1133 pudidx_limit = pud_index(limit);
1134 #else
1135 pudidx_limit = 0;
1136 #endif
1137 #if PTRS_PER_PMD > 1
1138 pmdidx_limit = pmd_index(limit);
1139 #else
1140 pmdidx_limit = 0;
1141 #endif
1142
1143 for (pgdidx = 0; pgdidx <= pgdidx_limit; pgdidx++) {
1144 pud_t *pud;
1145
1146 if (pgdidx >= hole_low && pgdidx < hole_high)
1147 continue;
1148
1149 if (!pgd_val(pgd[pgdidx]))
1150 continue;
1151
1152 pud = pud_offset(&pgd[pgdidx], 0);
1153
1154 if (PTRS_PER_PUD > 1) /* not folded */
1155 flush |= (*func)(mm, virt_to_page(pud), PT_PUD);
1156
1157 for (pudidx = 0; pudidx < PTRS_PER_PUD; pudidx++) {
1158 pmd_t *pmd;
1159
1160 if (pgdidx == pgdidx_limit &&
1161 pudidx > pudidx_limit)
1162 goto out;
1163
1164 if (pud_none(pud[pudidx]))
1165 continue;
1166
1167 pmd = pmd_offset(&pud[pudidx], 0);
1168
1169 if (PTRS_PER_PMD > 1) /* not folded */
1170 flush |= (*func)(mm, virt_to_page(pmd), PT_PMD);
1171
1172 for (pmdidx = 0; pmdidx < PTRS_PER_PMD; pmdidx++) {
1173 struct page *pte;
1174
1175 if (pgdidx == pgdidx_limit &&
1176 pudidx == pudidx_limit &&
1177 pmdidx > pmdidx_limit)
1178 goto out;
1179
1180 if (pmd_none(pmd[pmdidx]))
1181 continue;
1182
1183 pte = pmd_page(pmd[pmdidx]);
1184 flush |= (*func)(mm, pte, PT_PTE);
1185 }
1186 }
1187 }
1188
1189 out:
1190 /* Do the top level last, so that the callbacks can use it as
1191 a cue to do final things like tlb flushes. */
1192 flush |= (*func)(mm, virt_to_page(pgd), PT_PGD);
1193
1194 return flush;
1195 }
1196
1197 static int xen_pgd_walk(struct mm_struct *mm,
1198 int (*func)(struct mm_struct *mm, struct page *,
1199 enum pt_level),
1200 unsigned long limit)
1201 {
1202 return __xen_pgd_walk(mm, mm->pgd, func, limit);
1203 }
1204
1205 /* If we're using split pte locks, then take the page's lock and
1206 return a pointer to it. Otherwise return NULL. */
1207 static spinlock_t *xen_pte_lock(struct page *page, struct mm_struct *mm)
1208 {
1209 spinlock_t *ptl = NULL;
1210
1211 #if USE_SPLIT_PTLOCKS
1212 ptl = __pte_lockptr(page);
1213 spin_lock_nest_lock(ptl, &mm->page_table_lock);
1214 #endif
1215
1216 return ptl;
1217 }
1218
1219 static void xen_pte_unlock(void *v)
1220 {
1221 spinlock_t *ptl = v;
1222 spin_unlock(ptl);
1223 }
1224
1225 static void xen_do_pin(unsigned level, unsigned long pfn)
1226 {
1227 struct mmuext_op *op;
1228 struct multicall_space mcs;
1229
1230 mcs = __xen_mc_entry(sizeof(*op));
1231 op = mcs.args;
1232 op->cmd = level;
1233 op->arg1.mfn = pfn_to_mfn(pfn);
1234 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1235 }
1236
1237 static int xen_pin_page(struct mm_struct *mm, struct page *page,
1238 enum pt_level level)
1239 {
1240 unsigned pgfl = TestSetPagePinned(page);
1241 int flush;
1242
1243 if (pgfl)
1244 flush = 0; /* already pinned */
1245 else if (PageHighMem(page))
1246 /* kmaps need flushing if we found an unpinned
1247 highpage */
1248 flush = 1;
1249 else {
1250 void *pt = lowmem_page_address(page);
1251 unsigned long pfn = page_to_pfn(page);
1252 struct multicall_space mcs = __xen_mc_entry(0);
1253 spinlock_t *ptl;
1254
1255 flush = 0;
1256
1257 /*
1258 * We need to hold the pagetable lock between the time
1259 * we make the pagetable RO and when we actually pin
1260 * it. If we don't, then other users may come in and
1261 * attempt to update the pagetable by writing it,
1262 * which will fail because the memory is RO but not
1263 * pinned, so Xen won't do the trap'n'emulate.
1264 *
1265 * If we're using split pte locks, we can't hold the
1266 * entire pagetable's worth of locks during the
1267 * traverse, because we may wrap the preempt count (8
1268 * bits). The solution is to mark RO and pin each PTE
1269 * page while holding the lock. This means the number
1270 * of locks we end up holding is never more than a
1271 * batch size (~32 entries, at present).
1272 *
1273 * If we're not using split pte locks, we needn't pin
1274 * the PTE pages independently, because we're
1275 * protected by the overall pagetable lock.
1276 */
1277 ptl = NULL;
1278 if (level == PT_PTE)
1279 ptl = xen_pte_lock(page, mm);
1280
1281 MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
1282 pfn_pte(pfn, PAGE_KERNEL_RO),
1283 level == PT_PGD ? UVMF_TLB_FLUSH : 0);
1284
1285 if (ptl) {
1286 xen_do_pin(MMUEXT_PIN_L1_TABLE, pfn);
1287
1288 /* Queue a deferred unlock for when this batch
1289 is completed. */
1290 xen_mc_callback(xen_pte_unlock, ptl);
1291 }
1292 }
1293
1294 return flush;
1295 }
1296
1297 /* This is called just after a mm has been created, but it has not
1298 been used yet. We need to make sure that its pagetable is all
1299 read-only, and can be pinned. */
1300 static void __xen_pgd_pin(struct mm_struct *mm, pgd_t *pgd)
1301 {
1302 xen_mc_batch();
1303
1304 if (__xen_pgd_walk(mm, pgd, xen_pin_page, USER_LIMIT)) {
1305 /* re-enable interrupts for flushing */
1306 xen_mc_issue(0);
1307
1308 kmap_flush_unused();
1309
1310 xen_mc_batch();
1311 }
1312
1313 #ifdef CONFIG_X86_64
1314 {
1315 pgd_t *user_pgd = xen_get_user_pgd(pgd);
1316
1317 xen_do_pin(MMUEXT_PIN_L4_TABLE, PFN_DOWN(__pa(pgd)));
1318
1319 if (user_pgd) {
1320 xen_pin_page(mm, virt_to_page(user_pgd), PT_PGD);
1321 xen_do_pin(MMUEXT_PIN_L4_TABLE,
1322 PFN_DOWN(__pa(user_pgd)));
1323 }
1324 }
1325 #else /* CONFIG_X86_32 */
1326 #ifdef CONFIG_X86_PAE
1327 /* Need to make sure unshared kernel PMD is pinnable */
1328 xen_pin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]),
1329 PT_PMD);
1330 #endif
1331 xen_do_pin(MMUEXT_PIN_L3_TABLE, PFN_DOWN(__pa(pgd)));
1332 #endif /* CONFIG_X86_64 */
1333 xen_mc_issue(0);
1334 }
1335
1336 static void xen_pgd_pin(struct mm_struct *mm)
1337 {
1338 __xen_pgd_pin(mm, mm->pgd);
1339 }
1340
1341 /*
1342 * On save, we need to pin all pagetables to make sure they get their
1343 * mfns turned into pfns. Search the list for any unpinned pgds and pin
1344 * them (unpinned pgds are not currently in use, probably because the
1345 * process is under construction or destruction).
1346 *
1347 * Expected to be called in stop_machine() ("equivalent to taking
1348 * every spinlock in the system"), so the locking doesn't really
1349 * matter all that much.
1350 */
1351 void xen_mm_pin_all(void)
1352 {
1353 unsigned long flags;
1354 struct page *page;
1355
1356 spin_lock_irqsave(&pgd_lock, flags);
1357
1358 list_for_each_entry(page, &pgd_list, lru) {
1359 if (!PagePinned(page)) {
1360 __xen_pgd_pin(&init_mm, (pgd_t *)page_address(page));
1361 SetPageSavePinned(page);
1362 }
1363 }
1364
1365 spin_unlock_irqrestore(&pgd_lock, flags);
1366 }
1367
1368 /*
1369 * The init_mm pagetable is really pinned as soon as its created, but
1370 * that's before we have page structures to store the bits. So do all
1371 * the book-keeping now.
1372 */
1373 static __init int xen_mark_pinned(struct mm_struct *mm, struct page *page,
1374 enum pt_level level)
1375 {
1376 SetPagePinned(page);
1377 return 0;
1378 }
1379
1380 static void __init xen_mark_init_mm_pinned(void)
1381 {
1382 xen_pgd_walk(&init_mm, xen_mark_pinned, FIXADDR_TOP);
1383 }
1384
1385 static int xen_unpin_page(struct mm_struct *mm, struct page *page,
1386 enum pt_level level)
1387 {
1388 unsigned pgfl = TestClearPagePinned(page);
1389
1390 if (pgfl && !PageHighMem(page)) {
1391 void *pt = lowmem_page_address(page);
1392 unsigned long pfn = page_to_pfn(page);
1393 spinlock_t *ptl = NULL;
1394 struct multicall_space mcs;
1395
1396 /*
1397 * Do the converse to pin_page. If we're using split
1398 * pte locks, we must be holding the lock for while
1399 * the pte page is unpinned but still RO to prevent
1400 * concurrent updates from seeing it in this
1401 * partially-pinned state.
1402 */
1403 if (level == PT_PTE) {
1404 ptl = xen_pte_lock(page, mm);
1405
1406 if (ptl)
1407 xen_do_pin(MMUEXT_UNPIN_TABLE, pfn);
1408 }
1409
1410 mcs = __xen_mc_entry(0);
1411
1412 MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
1413 pfn_pte(pfn, PAGE_KERNEL),
1414 level == PT_PGD ? UVMF_TLB_FLUSH : 0);
1415
1416 if (ptl) {
1417 /* unlock when batch completed */
1418 xen_mc_callback(xen_pte_unlock, ptl);
1419 }
1420 }
1421
1422 return 0; /* never need to flush on unpin */
1423 }
1424
1425 /* Release a pagetables pages back as normal RW */
1426 static void __xen_pgd_unpin(struct mm_struct *mm, pgd_t *pgd)
1427 {
1428 xen_mc_batch();
1429
1430 xen_do_pin(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1431
1432 #ifdef CONFIG_X86_64
1433 {
1434 pgd_t *user_pgd = xen_get_user_pgd(pgd);
1435
1436 if (user_pgd) {
1437 xen_do_pin(MMUEXT_UNPIN_TABLE,
1438 PFN_DOWN(__pa(user_pgd)));
1439 xen_unpin_page(mm, virt_to_page(user_pgd), PT_PGD);
1440 }
1441 }
1442 #endif
1443
1444 #ifdef CONFIG_X86_PAE
1445 /* Need to make sure unshared kernel PMD is unpinned */
1446 xen_unpin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]),
1447 PT_PMD);
1448 #endif
1449
1450 __xen_pgd_walk(mm, pgd, xen_unpin_page, USER_LIMIT);
1451
1452 xen_mc_issue(0);
1453 }
1454
1455 static void xen_pgd_unpin(struct mm_struct *mm)
1456 {
1457 __xen_pgd_unpin(mm, mm->pgd);
1458 }
1459
1460 /*
1461 * On resume, undo any pinning done at save, so that the rest of the
1462 * kernel doesn't see any unexpected pinned pagetables.
1463 */
1464 void xen_mm_unpin_all(void)
1465 {
1466 unsigned long flags;
1467 struct page *page;
1468
1469 spin_lock_irqsave(&pgd_lock, flags);
1470
1471 list_for_each_entry(page, &pgd_list, lru) {
1472 if (PageSavePinned(page)) {
1473 BUG_ON(!PagePinned(page));
1474 __xen_pgd_unpin(&init_mm, (pgd_t *)page_address(page));
1475 ClearPageSavePinned(page);
1476 }
1477 }
1478
1479 spin_unlock_irqrestore(&pgd_lock, flags);
1480 }
1481
1482 void xen_activate_mm(struct mm_struct *prev, struct mm_struct *next)
1483 {
1484 spin_lock(&next->page_table_lock);
1485 xen_pgd_pin(next);
1486 spin_unlock(&next->page_table_lock);
1487 }
1488
1489 void xen_dup_mmap(struct mm_struct *oldmm, struct mm_struct *mm)
1490 {
1491 spin_lock(&mm->page_table_lock);
1492 xen_pgd_pin(mm);
1493 spin_unlock(&mm->page_table_lock);
1494 }
1495
1496
1497 #ifdef CONFIG_SMP
1498 /* Another cpu may still have their %cr3 pointing at the pagetable, so
1499 we need to repoint it somewhere else before we can unpin it. */
1500 static void drop_other_mm_ref(void *info)
1501 {
1502 struct mm_struct *mm = info;
1503 struct mm_struct *active_mm;
1504
1505 active_mm = percpu_read(cpu_tlbstate.active_mm);
1506
1507 if (active_mm == mm)
1508 leave_mm(smp_processor_id());
1509
1510 /* If this cpu still has a stale cr3 reference, then make sure
1511 it has been flushed. */
1512 if (percpu_read(xen_current_cr3) == __pa(mm->pgd))
1513 load_cr3(swapper_pg_dir);
1514 }
1515
1516 static void xen_drop_mm_ref(struct mm_struct *mm)
1517 {
1518 cpumask_var_t mask;
1519 unsigned cpu;
1520
1521 if (current->active_mm == mm) {
1522 if (current->mm == mm)
1523 load_cr3(swapper_pg_dir);
1524 else
1525 leave_mm(smp_processor_id());
1526 }
1527
1528 /* Get the "official" set of cpus referring to our pagetable. */
1529 if (!alloc_cpumask_var(&mask, GFP_ATOMIC)) {
1530 for_each_online_cpu(cpu) {
1531 if (!cpumask_test_cpu(cpu, mm_cpumask(mm))
1532 && per_cpu(xen_current_cr3, cpu) != __pa(mm->pgd))
1533 continue;
1534 smp_call_function_single(cpu, drop_other_mm_ref, mm, 1);
1535 }
1536 return;
1537 }
1538 cpumask_copy(mask, mm_cpumask(mm));
1539
1540 /* It's possible that a vcpu may have a stale reference to our
1541 cr3, because its in lazy mode, and it hasn't yet flushed
1542 its set of pending hypercalls yet. In this case, we can
1543 look at its actual current cr3 value, and force it to flush
1544 if needed. */
1545 for_each_online_cpu(cpu) {
1546 if (per_cpu(xen_current_cr3, cpu) == __pa(mm->pgd))
1547 cpumask_set_cpu(cpu, mask);
1548 }
1549
1550 if (!cpumask_empty(mask))
1551 smp_call_function_many(mask, drop_other_mm_ref, mm, 1);
1552 free_cpumask_var(mask);
1553 }
1554 #else
1555 static void xen_drop_mm_ref(struct mm_struct *mm)
1556 {
1557 if (current->active_mm == mm)
1558 load_cr3(swapper_pg_dir);
1559 }
1560 #endif
1561
1562 /*
1563 * While a process runs, Xen pins its pagetables, which means that the
1564 * hypervisor forces it to be read-only, and it controls all updates
1565 * to it. This means that all pagetable updates have to go via the
1566 * hypervisor, which is moderately expensive.
1567 *
1568 * Since we're pulling the pagetable down, we switch to use init_mm,
1569 * unpin old process pagetable and mark it all read-write, which
1570 * allows further operations on it to be simple memory accesses.
1571 *
1572 * The only subtle point is that another CPU may be still using the
1573 * pagetable because of lazy tlb flushing. This means we need need to
1574 * switch all CPUs off this pagetable before we can unpin it.
1575 */
1576 void xen_exit_mmap(struct mm_struct *mm)
1577 {
1578 get_cpu(); /* make sure we don't move around */
1579 xen_drop_mm_ref(mm);
1580 put_cpu();
1581
1582 spin_lock(&mm->page_table_lock);
1583
1584 /* pgd may not be pinned in the error exit path of execve */
1585 if (xen_page_pinned(mm->pgd))
1586 xen_pgd_unpin(mm);
1587
1588 spin_unlock(&mm->page_table_lock);
1589 }
1590
1591 static __init void xen_pagetable_setup_start(pgd_t *base)
1592 {
1593 }
1594
1595 static void xen_post_allocator_init(void);
1596
1597 static __init void xen_pagetable_setup_done(pgd_t *base)
1598 {
1599 xen_setup_shared_info();
1600 xen_post_allocator_init();
1601 }
1602
1603 static void xen_write_cr2(unsigned long cr2)
1604 {
1605 percpu_read(xen_vcpu)->arch.cr2 = cr2;
1606 }
1607
1608 static unsigned long xen_read_cr2(void)
1609 {
1610 return percpu_read(xen_vcpu)->arch.cr2;
1611 }
1612
1613 unsigned long xen_read_cr2_direct(void)
1614 {
1615 return percpu_read(xen_vcpu_info.arch.cr2);
1616 }
1617
1618 static void xen_flush_tlb(void)
1619 {
1620 struct mmuext_op *op;
1621 struct multicall_space mcs;
1622
1623 preempt_disable();
1624
1625 mcs = xen_mc_entry(sizeof(*op));
1626
1627 op = mcs.args;
1628 op->cmd = MMUEXT_TLB_FLUSH_LOCAL;
1629 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1630
1631 xen_mc_issue(PARAVIRT_LAZY_MMU);
1632
1633 preempt_enable();
1634 }
1635
1636 static void xen_flush_tlb_single(unsigned long addr)
1637 {
1638 struct mmuext_op *op;
1639 struct multicall_space mcs;
1640
1641 preempt_disable();
1642
1643 mcs = xen_mc_entry(sizeof(*op));
1644 op = mcs.args;
1645 op->cmd = MMUEXT_INVLPG_LOCAL;
1646 op->arg1.linear_addr = addr & PAGE_MASK;
1647 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1648
1649 xen_mc_issue(PARAVIRT_LAZY_MMU);
1650
1651 preempt_enable();
1652 }
1653
1654 static void xen_flush_tlb_others(const struct cpumask *cpus,
1655 struct mm_struct *mm, unsigned long va)
1656 {
1657 struct {
1658 struct mmuext_op op;
1659 DECLARE_BITMAP(mask, NR_CPUS);
1660 } *args;
1661 struct multicall_space mcs;
1662
1663 if (cpumask_empty(cpus))
1664 return; /* nothing to do */
1665
1666 mcs = xen_mc_entry(sizeof(*args));
1667 args = mcs.args;
1668 args->op.arg2.vcpumask = to_cpumask(args->mask);
1669
1670 /* Remove us, and any offline CPUS. */
1671 cpumask_and(to_cpumask(args->mask), cpus, cpu_online_mask);
1672 cpumask_clear_cpu(smp_processor_id(), to_cpumask(args->mask));
1673
1674 if (va == TLB_FLUSH_ALL) {
1675 args->op.cmd = MMUEXT_TLB_FLUSH_MULTI;
1676 } else {
1677 args->op.cmd = MMUEXT_INVLPG_MULTI;
1678 args->op.arg1.linear_addr = va;
1679 }
1680
1681 MULTI_mmuext_op(mcs.mc, &args->op, 1, NULL, DOMID_SELF);
1682
1683 xen_mc_issue(PARAVIRT_LAZY_MMU);
1684 }
1685
1686 static unsigned long xen_read_cr3(void)
1687 {
1688 return percpu_read(xen_cr3);
1689 }
1690
1691 static void set_current_cr3(void *v)
1692 {
1693 percpu_write(xen_current_cr3, (unsigned long)v);
1694 }
1695
1696 static void __xen_write_cr3(bool kernel, unsigned long cr3)
1697 {
1698 struct mmuext_op *op;
1699 struct multicall_space mcs;
1700 unsigned long mfn;
1701
1702 if (cr3)
1703 mfn = pfn_to_mfn(PFN_DOWN(cr3));
1704 else
1705 mfn = 0;
1706
1707 WARN_ON(mfn == 0 && kernel);
1708
1709 mcs = __xen_mc_entry(sizeof(*op));
1710
1711 op = mcs.args;
1712 op->cmd = kernel ? MMUEXT_NEW_BASEPTR : MMUEXT_NEW_USER_BASEPTR;
1713 op->arg1.mfn = mfn;
1714
1715 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1716
1717 if (kernel) {
1718 percpu_write(xen_cr3, cr3);
1719
1720 /* Update xen_current_cr3 once the batch has actually
1721 been submitted. */
1722 xen_mc_callback(set_current_cr3, (void *)cr3);
1723 }
1724 }
1725
1726 static void xen_write_cr3(unsigned long cr3)
1727 {
1728 BUG_ON(preemptible());
1729
1730 xen_mc_batch(); /* disables interrupts */
1731
1732 /* Update while interrupts are disabled, so its atomic with
1733 respect to ipis */
1734 percpu_write(xen_cr3, cr3);
1735
1736 __xen_write_cr3(true, cr3);
1737
1738 #ifdef CONFIG_X86_64
1739 {
1740 pgd_t *user_pgd = xen_get_user_pgd(__va(cr3));
1741 if (user_pgd)
1742 __xen_write_cr3(false, __pa(user_pgd));
1743 else
1744 __xen_write_cr3(false, 0);
1745 }
1746 #endif
1747
1748 xen_mc_issue(PARAVIRT_LAZY_CPU); /* interrupts restored */
1749 }
1750
1751 static int xen_pgd_alloc(struct mm_struct *mm)
1752 {
1753 pgd_t *pgd = mm->pgd;
1754 int ret = 0;
1755
1756 BUG_ON(PagePinned(virt_to_page(pgd)));
1757
1758 #ifdef CONFIG_X86_64
1759 {
1760 struct page *page = virt_to_page(pgd);
1761 pgd_t *user_pgd;
1762
1763 BUG_ON(page->private != 0);
1764
1765 ret = -ENOMEM;
1766
1767 user_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
1768 page->private = (unsigned long)user_pgd;
1769
1770 if (user_pgd != NULL) {
1771 user_pgd[pgd_index(VSYSCALL_START)] =
1772 __pgd(__pa(level3_user_vsyscall) | _PAGE_TABLE);
1773 ret = 0;
1774 }
1775
1776 BUG_ON(PagePinned(virt_to_page(xen_get_user_pgd(pgd))));
1777 }
1778 #endif
1779
1780 return ret;
1781 }
1782
1783 static void xen_pgd_free(struct mm_struct *mm, pgd_t *pgd)
1784 {
1785 #ifdef CONFIG_X86_64
1786 pgd_t *user_pgd = xen_get_user_pgd(pgd);
1787
1788 if (user_pgd)
1789 free_page((unsigned long)user_pgd);
1790 #endif
1791 }
1792
1793 static __init pte_t mask_rw_pte(pte_t *ptep, pte_t pte)
1794 {
1795 unsigned long pfn = pte_pfn(pte);
1796
1797 #ifdef CONFIG_X86_32
1798 /* If there's an existing pte, then don't allow _PAGE_RW to be set */
1799 if (pte_val_ma(*ptep) & _PAGE_PRESENT)
1800 pte = __pte_ma(((pte_val_ma(*ptep) & _PAGE_RW) | ~_PAGE_RW) &
1801 pte_val_ma(pte));
1802 #endif
1803
1804 /*
1805 * If the new pfn is within the range of the newly allocated
1806 * kernel pagetable, and it isn't being mapped into an
1807 * early_ioremap fixmap slot, make sure it is RO.
1808 */
1809 if (!is_early_ioremap_ptep(ptep) &&
1810 pfn >= e820_table_start && pfn < e820_table_end)
1811 pte = pte_wrprotect(pte);
1812
1813 return pte;
1814 }
1815
1816 /* Init-time set_pte while constructing initial pagetables, which
1817 doesn't allow RO pagetable pages to be remapped RW */
1818 static __init void xen_set_pte_init(pte_t *ptep, pte_t pte)
1819 {
1820 pte = mask_rw_pte(ptep, pte);
1821
1822 xen_set_pte(ptep, pte);
1823 }
1824
1825 static void pin_pagetable_pfn(unsigned cmd, unsigned long pfn)
1826 {
1827 struct mmuext_op op;
1828 op.cmd = cmd;
1829 op.arg1.mfn = pfn_to_mfn(pfn);
1830 if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF))
1831 BUG();
1832 }
1833
1834 /* Early in boot, while setting up the initial pagetable, assume
1835 everything is pinned. */
1836 static __init void xen_alloc_pte_init(struct mm_struct *mm, unsigned long pfn)
1837 {
1838 #ifdef CONFIG_FLATMEM
1839 BUG_ON(mem_map); /* should only be used early */
1840 #endif
1841 make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
1842 pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
1843 }
1844
1845 /* Used for pmd and pud */
1846 static __init void xen_alloc_pmd_init(struct mm_struct *mm, unsigned long pfn)
1847 {
1848 #ifdef CONFIG_FLATMEM
1849 BUG_ON(mem_map); /* should only be used early */
1850 #endif
1851 make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
1852 }
1853
1854 /* Early release_pte assumes that all pts are pinned, since there's
1855 only init_mm and anything attached to that is pinned. */
1856 static __init void xen_release_pte_init(unsigned long pfn)
1857 {
1858 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
1859 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1860 }
1861
1862 static __init void xen_release_pmd_init(unsigned long pfn)
1863 {
1864 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1865 }
1866
1867 /* This needs to make sure the new pte page is pinned iff its being
1868 attached to a pinned pagetable. */
1869 static void xen_alloc_ptpage(struct mm_struct *mm, unsigned long pfn, unsigned level)
1870 {
1871 struct page *page = pfn_to_page(pfn);
1872
1873 if (PagePinned(virt_to_page(mm->pgd))) {
1874 SetPagePinned(page);
1875
1876 if (!PageHighMem(page)) {
1877 make_lowmem_page_readonly(__va(PFN_PHYS((unsigned long)pfn)));
1878 if (level == PT_PTE && USE_SPLIT_PTLOCKS)
1879 pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
1880 } else {
1881 /* make sure there are no stray mappings of
1882 this page */
1883 kmap_flush_unused();
1884 }
1885 }
1886 }
1887
1888 static void xen_alloc_pte(struct mm_struct *mm, unsigned long pfn)
1889 {
1890 xen_alloc_ptpage(mm, pfn, PT_PTE);
1891 }
1892
1893 static void xen_alloc_pmd(struct mm_struct *mm, unsigned long pfn)
1894 {
1895 xen_alloc_ptpage(mm, pfn, PT_PMD);
1896 }
1897
1898 /* This should never happen until we're OK to use struct page */
1899 static void xen_release_ptpage(unsigned long pfn, unsigned level)
1900 {
1901 struct page *page = pfn_to_page(pfn);
1902
1903 if (PagePinned(page)) {
1904 if (!PageHighMem(page)) {
1905 if (level == PT_PTE && USE_SPLIT_PTLOCKS)
1906 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
1907 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1908 }
1909 ClearPagePinned(page);
1910 }
1911 }
1912
1913 static void xen_release_pte(unsigned long pfn)
1914 {
1915 xen_release_ptpage(pfn, PT_PTE);
1916 }
1917
1918 static void xen_release_pmd(unsigned long pfn)
1919 {
1920 xen_release_ptpage(pfn, PT_PMD);
1921 }
1922
1923 #if PAGETABLE_LEVELS == 4
1924 static void xen_alloc_pud(struct mm_struct *mm, unsigned long pfn)
1925 {
1926 xen_alloc_ptpage(mm, pfn, PT_PUD);
1927 }
1928
1929 static void xen_release_pud(unsigned long pfn)
1930 {
1931 xen_release_ptpage(pfn, PT_PUD);
1932 }
1933 #endif
1934
1935 void __init xen_reserve_top(void)
1936 {
1937 #ifdef CONFIG_X86_32
1938 unsigned long top = HYPERVISOR_VIRT_START;
1939 struct xen_platform_parameters pp;
1940
1941 if (HYPERVISOR_xen_version(XENVER_platform_parameters, &pp) == 0)
1942 top = pp.virt_start;
1943
1944 reserve_top_address(-top);
1945 #endif /* CONFIG_X86_32 */
1946 }
1947
1948 /*
1949 * Like __va(), but returns address in the kernel mapping (which is
1950 * all we have until the physical memory mapping has been set up.
1951 */
1952 static void *__ka(phys_addr_t paddr)
1953 {
1954 #ifdef CONFIG_X86_64
1955 return (void *)(paddr + __START_KERNEL_map);
1956 #else
1957 return __va(paddr);
1958 #endif
1959 }
1960
1961 /* Convert a machine address to physical address */
1962 static unsigned long m2p(phys_addr_t maddr)
1963 {
1964 phys_addr_t paddr;
1965
1966 maddr &= PTE_PFN_MASK;
1967 paddr = mfn_to_pfn(maddr >> PAGE_SHIFT) << PAGE_SHIFT;
1968
1969 return paddr;
1970 }
1971
1972 /* Convert a machine address to kernel virtual */
1973 static void *m2v(phys_addr_t maddr)
1974 {
1975 return __ka(m2p(maddr));
1976 }
1977
1978 /* Set the page permissions on an identity-mapped pages */
1979 static void set_page_prot(void *addr, pgprot_t prot)
1980 {
1981 unsigned long pfn = __pa(addr) >> PAGE_SHIFT;
1982 pte_t pte = pfn_pte(pfn, prot);
1983
1984 if (HYPERVISOR_update_va_mapping((unsigned long)addr, pte, 0))
1985 BUG();
1986 }
1987
1988 static __init void xen_map_identity_early(pmd_t *pmd, unsigned long max_pfn)
1989 {
1990 unsigned pmdidx, pteidx;
1991 unsigned ident_pte;
1992 unsigned long pfn;
1993
1994 level1_ident_pgt = extend_brk(sizeof(pte_t) * LEVEL1_IDENT_ENTRIES,
1995 PAGE_SIZE);
1996
1997 ident_pte = 0;
1998 pfn = 0;
1999 for (pmdidx = 0; pmdidx < PTRS_PER_PMD && pfn < max_pfn; pmdidx++) {
2000 pte_t *pte_page;
2001
2002 /* Reuse or allocate a page of ptes */
2003 if (pmd_present(pmd[pmdidx]))
2004 pte_page = m2v(pmd[pmdidx].pmd);
2005 else {
2006 /* Check for free pte pages */
2007 if (ident_pte == LEVEL1_IDENT_ENTRIES)
2008 break;
2009
2010 pte_page = &level1_ident_pgt[ident_pte];
2011 ident_pte += PTRS_PER_PTE;
2012
2013 pmd[pmdidx] = __pmd(__pa(pte_page) | _PAGE_TABLE);
2014 }
2015
2016 /* Install mappings */
2017 for (pteidx = 0; pteidx < PTRS_PER_PTE; pteidx++, pfn++) {
2018 pte_t pte;
2019
2020 if (pfn > max_pfn_mapped)
2021 max_pfn_mapped = pfn;
2022
2023 if (!pte_none(pte_page[pteidx]))
2024 continue;
2025
2026 pte = pfn_pte(pfn, PAGE_KERNEL_EXEC);
2027 pte_page[pteidx] = pte;
2028 }
2029 }
2030
2031 for (pteidx = 0; pteidx < ident_pte; pteidx += PTRS_PER_PTE)
2032 set_page_prot(&level1_ident_pgt[pteidx], PAGE_KERNEL_RO);
2033
2034 set_page_prot(pmd, PAGE_KERNEL_RO);
2035 }
2036
2037 void __init xen_setup_machphys_mapping(void)
2038 {
2039 struct xen_machphys_mapping mapping;
2040 unsigned long machine_to_phys_nr_ents;
2041
2042 if (HYPERVISOR_memory_op(XENMEM_machphys_mapping, &mapping) == 0) {
2043 machine_to_phys_mapping = (unsigned long *)mapping.v_start;
2044 machine_to_phys_nr_ents = mapping.max_mfn + 1;
2045 } else {
2046 machine_to_phys_nr_ents = MACH2PHYS_NR_ENTRIES;
2047 }
2048 machine_to_phys_order = fls(machine_to_phys_nr_ents - 1);
2049 }
2050
2051 #ifdef CONFIG_X86_64
2052 static void convert_pfn_mfn(void *v)
2053 {
2054 pte_t *pte = v;
2055 int i;
2056
2057 /* All levels are converted the same way, so just treat them
2058 as ptes. */
2059 for (i = 0; i < PTRS_PER_PTE; i++)
2060 pte[i] = xen_make_pte(pte[i].pte);
2061 }
2062
2063 /*
2064 * Set up the inital kernel pagetable.
2065 *
2066 * We can construct this by grafting the Xen provided pagetable into
2067 * head_64.S's preconstructed pagetables. We copy the Xen L2's into
2068 * level2_ident_pgt, level2_kernel_pgt and level2_fixmap_pgt. This
2069 * means that only the kernel has a physical mapping to start with -
2070 * but that's enough to get __va working. We need to fill in the rest
2071 * of the physical mapping once some sort of allocator has been set
2072 * up.
2073 */
2074 __init pgd_t *xen_setup_kernel_pagetable(pgd_t *pgd,
2075 unsigned long max_pfn)
2076 {
2077 pud_t *l3;
2078 pmd_t *l2;
2079
2080 /* Zap identity mapping */
2081 init_level4_pgt[0] = __pgd(0);
2082
2083 /* Pre-constructed entries are in pfn, so convert to mfn */
2084 convert_pfn_mfn(init_level4_pgt);
2085 convert_pfn_mfn(level3_ident_pgt);
2086 convert_pfn_mfn(level3_kernel_pgt);
2087
2088 l3 = m2v(pgd[pgd_index(__START_KERNEL_map)].pgd);
2089 l2 = m2v(l3[pud_index(__START_KERNEL_map)].pud);
2090
2091 memcpy(level2_ident_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD);
2092 memcpy(level2_kernel_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD);
2093
2094 l3 = m2v(pgd[pgd_index(__START_KERNEL_map + PMD_SIZE)].pgd);
2095 l2 = m2v(l3[pud_index(__START_KERNEL_map + PMD_SIZE)].pud);
2096 memcpy(level2_fixmap_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD);
2097
2098 /* Set up identity map */
2099 xen_map_identity_early(level2_ident_pgt, max_pfn);
2100
2101 /* Make pagetable pieces RO */
2102 set_page_prot(init_level4_pgt, PAGE_KERNEL_RO);
2103 set_page_prot(level3_ident_pgt, PAGE_KERNEL_RO);
2104 set_page_prot(level3_kernel_pgt, PAGE_KERNEL_RO);
2105 set_page_prot(level3_user_vsyscall, PAGE_KERNEL_RO);
2106 set_page_prot(level2_kernel_pgt, PAGE_KERNEL_RO);
2107 set_page_prot(level2_fixmap_pgt, PAGE_KERNEL_RO);
2108
2109 /* Pin down new L4 */
2110 pin_pagetable_pfn(MMUEXT_PIN_L4_TABLE,
2111 PFN_DOWN(__pa_symbol(init_level4_pgt)));
2112
2113 /* Unpin Xen-provided one */
2114 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
2115
2116 /* Switch over */
2117 pgd = init_level4_pgt;
2118
2119 /*
2120 * At this stage there can be no user pgd, and no page
2121 * structure to attach it to, so make sure we just set kernel
2122 * pgd.
2123 */
2124 xen_mc_batch();
2125 __xen_write_cr3(true, __pa(pgd));
2126 xen_mc_issue(PARAVIRT_LAZY_CPU);
2127
2128 memblock_x86_reserve_range(__pa(xen_start_info->pt_base),
2129 __pa(xen_start_info->pt_base +
2130 xen_start_info->nr_pt_frames * PAGE_SIZE),
2131 "XEN PAGETABLES");
2132
2133 return pgd;
2134 }
2135 #else /* !CONFIG_X86_64 */
2136 static RESERVE_BRK_ARRAY(pmd_t, initial_kernel_pmd, PTRS_PER_PMD);
2137 static RESERVE_BRK_ARRAY(pmd_t, swapper_kernel_pmd, PTRS_PER_PMD);
2138
2139 static __init void xen_write_cr3_init(unsigned long cr3)
2140 {
2141 unsigned long pfn = PFN_DOWN(__pa(swapper_pg_dir));
2142
2143 BUG_ON(read_cr3() != __pa(initial_page_table));
2144 BUG_ON(cr3 != __pa(swapper_pg_dir));
2145
2146 /*
2147 * We are switching to swapper_pg_dir for the first time (from
2148 * initial_page_table) and therefore need to mark that page
2149 * read-only and then pin it.
2150 *
2151 * Xen disallows sharing of kernel PMDs for PAE
2152 * guests. Therefore we must copy the kernel PMD from
2153 * initial_page_table into a new kernel PMD to be used in
2154 * swapper_pg_dir.
2155 */
2156 swapper_kernel_pmd =
2157 extend_brk(sizeof(pmd_t) * PTRS_PER_PMD, PAGE_SIZE);
2158 memcpy(swapper_kernel_pmd, initial_kernel_pmd,
2159 sizeof(pmd_t) * PTRS_PER_PMD);
2160 swapper_pg_dir[KERNEL_PGD_BOUNDARY] =
2161 __pgd(__pa(swapper_kernel_pmd) | _PAGE_PRESENT);
2162 set_page_prot(swapper_kernel_pmd, PAGE_KERNEL_RO);
2163
2164 set_page_prot(swapper_pg_dir, PAGE_KERNEL_RO);
2165 xen_write_cr3(cr3);
2166 pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, pfn);
2167
2168 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE,
2169 PFN_DOWN(__pa(initial_page_table)));
2170 set_page_prot(initial_page_table, PAGE_KERNEL);
2171 set_page_prot(initial_kernel_pmd, PAGE_KERNEL);
2172
2173 pv_mmu_ops.write_cr3 = &xen_write_cr3;
2174 }
2175
2176 __init pgd_t *xen_setup_kernel_pagetable(pgd_t *pgd,
2177 unsigned long max_pfn)
2178 {
2179 pmd_t *kernel_pmd;
2180
2181 initial_kernel_pmd =
2182 extend_brk(sizeof(pmd_t) * PTRS_PER_PMD, PAGE_SIZE);
2183
2184 max_pfn_mapped = PFN_DOWN(__pa(xen_start_info->pt_base) +
2185 xen_start_info->nr_pt_frames * PAGE_SIZE +
2186 512*1024);
2187
2188 kernel_pmd = m2v(pgd[KERNEL_PGD_BOUNDARY].pgd);
2189 memcpy(initial_kernel_pmd, kernel_pmd, sizeof(pmd_t) * PTRS_PER_PMD);
2190
2191 xen_map_identity_early(initial_kernel_pmd, max_pfn);
2192
2193 memcpy(initial_page_table, pgd, sizeof(pgd_t) * PTRS_PER_PGD);
2194 initial_page_table[KERNEL_PGD_BOUNDARY] =
2195 __pgd(__pa(initial_kernel_pmd) | _PAGE_PRESENT);
2196
2197 set_page_prot(initial_kernel_pmd, PAGE_KERNEL_RO);
2198 set_page_prot(initial_page_table, PAGE_KERNEL_RO);
2199 set_page_prot(empty_zero_page, PAGE_KERNEL_RO);
2200
2201 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
2202
2203 pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE,
2204 PFN_DOWN(__pa(initial_page_table)));
2205 xen_write_cr3(__pa(initial_page_table));
2206
2207 memblock_x86_reserve_range(__pa(xen_start_info->pt_base),
2208 __pa(xen_start_info->pt_base +
2209 xen_start_info->nr_pt_frames * PAGE_SIZE),
2210 "XEN PAGETABLES");
2211
2212 return initial_page_table;
2213 }
2214 #endif /* CONFIG_X86_64 */
2215
2216 static unsigned char dummy_mapping[PAGE_SIZE] __page_aligned_bss;
2217
2218 static void xen_set_fixmap(unsigned idx, phys_addr_t phys, pgprot_t prot)
2219 {
2220 pte_t pte;
2221
2222 phys >>= PAGE_SHIFT;
2223
2224 switch (idx) {
2225 case FIX_BTMAP_END ... FIX_BTMAP_BEGIN:
2226 #ifdef CONFIG_X86_F00F_BUG
2227 case FIX_F00F_IDT:
2228 #endif
2229 #ifdef CONFIG_X86_32
2230 case FIX_WP_TEST:
2231 case FIX_VDSO:
2232 # ifdef CONFIG_HIGHMEM
2233 case FIX_KMAP_BEGIN ... FIX_KMAP_END:
2234 # endif
2235 #else
2236 case VSYSCALL_LAST_PAGE ... VSYSCALL_FIRST_PAGE:
2237 #endif
2238 case FIX_TEXT_POKE0:
2239 case FIX_TEXT_POKE1:
2240 /* All local page mappings */
2241 pte = pfn_pte(phys, prot);
2242 break;
2243
2244 #ifdef CONFIG_X86_LOCAL_APIC
2245 case FIX_APIC_BASE: /* maps dummy local APIC */
2246 pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL);
2247 break;
2248 #endif
2249
2250 #ifdef CONFIG_X86_IO_APIC
2251 case FIX_IO_APIC_BASE_0 ... FIX_IO_APIC_BASE_END:
2252 /*
2253 * We just don't map the IO APIC - all access is via
2254 * hypercalls. Keep the address in the pte for reference.
2255 */
2256 pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL);
2257 break;
2258 #endif
2259
2260 case FIX_PARAVIRT_BOOTMAP:
2261 /* This is an MFN, but it isn't an IO mapping from the
2262 IO domain */
2263 pte = mfn_pte(phys, prot);
2264 break;
2265
2266 default:
2267 /* By default, set_fixmap is used for hardware mappings */
2268 pte = mfn_pte(phys, __pgprot(pgprot_val(prot) | _PAGE_IOMAP));
2269 break;
2270 }
2271
2272 __native_set_fixmap(idx, pte);
2273
2274 #ifdef CONFIG_X86_64
2275 /* Replicate changes to map the vsyscall page into the user
2276 pagetable vsyscall mapping. */
2277 if (idx >= VSYSCALL_LAST_PAGE && idx <= VSYSCALL_FIRST_PAGE) {
2278 unsigned long vaddr = __fix_to_virt(idx);
2279 set_pte_vaddr_pud(level3_user_vsyscall, vaddr, pte);
2280 }
2281 #endif
2282 }
2283
2284 __init void xen_ident_map_ISA(void)
2285 {
2286 unsigned long pa;
2287
2288 /*
2289 * If we're dom0, then linear map the ISA machine addresses into
2290 * the kernel's address space.
2291 */
2292 if (!xen_initial_domain())
2293 return;
2294
2295 xen_raw_printk("Xen: setup ISA identity maps\n");
2296
2297 for (pa = ISA_START_ADDRESS; pa < ISA_END_ADDRESS; pa += PAGE_SIZE) {
2298 pte_t pte = mfn_pte(PFN_DOWN(pa), PAGE_KERNEL_IO);
2299
2300 if (HYPERVISOR_update_va_mapping(PAGE_OFFSET + pa, pte, 0))
2301 BUG();
2302 }
2303
2304 xen_flush_tlb();
2305 }
2306
2307 static __init void xen_post_allocator_init(void)
2308 {
2309 pv_mmu_ops.set_pte = xen_set_pte;
2310 pv_mmu_ops.set_pmd = xen_set_pmd;
2311 pv_mmu_ops.set_pud = xen_set_pud;
2312 #if PAGETABLE_LEVELS == 4
2313 pv_mmu_ops.set_pgd = xen_set_pgd;
2314 #endif
2315
2316 /* This will work as long as patching hasn't happened yet
2317 (which it hasn't) */
2318 pv_mmu_ops.alloc_pte = xen_alloc_pte;
2319 pv_mmu_ops.alloc_pmd = xen_alloc_pmd;
2320 pv_mmu_ops.release_pte = xen_release_pte;
2321 pv_mmu_ops.release_pmd = xen_release_pmd;
2322 #if PAGETABLE_LEVELS == 4
2323 pv_mmu_ops.alloc_pud = xen_alloc_pud;
2324 pv_mmu_ops.release_pud = xen_release_pud;
2325 #endif
2326
2327 #ifdef CONFIG_X86_64
2328 SetPagePinned(virt_to_page(level3_user_vsyscall));
2329 #endif
2330 xen_mark_init_mm_pinned();
2331 }
2332
2333 static void xen_leave_lazy_mmu(void)
2334 {
2335 preempt_disable();
2336 xen_mc_flush();
2337 paravirt_leave_lazy_mmu();
2338 preempt_enable();
2339 }
2340
2341 static const struct pv_mmu_ops xen_mmu_ops __initdata = {
2342 .read_cr2 = xen_read_cr2,
2343 .write_cr2 = xen_write_cr2,
2344
2345 .read_cr3 = xen_read_cr3,
2346 #ifdef CONFIG_X86_32
2347 .write_cr3 = xen_write_cr3_init,
2348 #else
2349 .write_cr3 = xen_write_cr3,
2350 #endif
2351
2352 .flush_tlb_user = xen_flush_tlb,
2353 .flush_tlb_kernel = xen_flush_tlb,
2354 .flush_tlb_single = xen_flush_tlb_single,
2355 .flush_tlb_others = xen_flush_tlb_others,
2356
2357 .pte_update = paravirt_nop,
2358 .pte_update_defer = paravirt_nop,
2359
2360 .pgd_alloc = xen_pgd_alloc,
2361 .pgd_free = xen_pgd_free,
2362
2363 .alloc_pte = xen_alloc_pte_init,
2364 .release_pte = xen_release_pte_init,
2365 .alloc_pmd = xen_alloc_pmd_init,
2366 .release_pmd = xen_release_pmd_init,
2367
2368 .set_pte = xen_set_pte_init,
2369 .set_pte_at = xen_set_pte_at,
2370 .set_pmd = xen_set_pmd_hyper,
2371
2372 .ptep_modify_prot_start = __ptep_modify_prot_start,
2373 .ptep_modify_prot_commit = __ptep_modify_prot_commit,
2374
2375 .pte_val = PV_CALLEE_SAVE(xen_pte_val),
2376 .pgd_val = PV_CALLEE_SAVE(xen_pgd_val),
2377
2378 .make_pte = PV_CALLEE_SAVE(xen_make_pte),
2379 .make_pgd = PV_CALLEE_SAVE(xen_make_pgd),
2380
2381 #ifdef CONFIG_X86_PAE
2382 .set_pte_atomic = xen_set_pte_atomic,
2383 .pte_clear = xen_pte_clear,
2384 .pmd_clear = xen_pmd_clear,
2385 #endif /* CONFIG_X86_PAE */
2386 .set_pud = xen_set_pud_hyper,
2387
2388 .make_pmd = PV_CALLEE_SAVE(xen_make_pmd),
2389 .pmd_val = PV_CALLEE_SAVE(xen_pmd_val),
2390
2391 #if PAGETABLE_LEVELS == 4
2392 .pud_val = PV_CALLEE_SAVE(xen_pud_val),
2393 .make_pud = PV_CALLEE_SAVE(xen_make_pud),
2394 .set_pgd = xen_set_pgd_hyper,
2395
2396 .alloc_pud = xen_alloc_pmd_init,
2397 .release_pud = xen_release_pmd_init,
2398 #endif /* PAGETABLE_LEVELS == 4 */
2399
2400 .activate_mm = xen_activate_mm,
2401 .dup_mmap = xen_dup_mmap,
2402 .exit_mmap = xen_exit_mmap,
2403
2404 .lazy_mode = {
2405 .enter = paravirt_enter_lazy_mmu,
2406 .leave = xen_leave_lazy_mmu,
2407 },
2408
2409 .set_fixmap = xen_set_fixmap,
2410 };
2411
2412 void __init xen_init_mmu_ops(void)
2413 {
2414 x86_init.paging.pagetable_setup_start = xen_pagetable_setup_start;
2415 x86_init.paging.pagetable_setup_done = xen_pagetable_setup_done;
2416 pv_mmu_ops = xen_mmu_ops;
2417
2418 memset(dummy_mapping, 0xff, PAGE_SIZE);
2419 }
2420
2421 /* Protected by xen_reservation_lock. */
2422 #define MAX_CONTIG_ORDER 9 /* 2MB */
2423 static unsigned long discontig_frames[1<<MAX_CONTIG_ORDER];
2424
2425 #define VOID_PTE (mfn_pte(0, __pgprot(0)))
2426 static void xen_zap_pfn_range(unsigned long vaddr, unsigned int order,
2427 unsigned long *in_frames,
2428 unsigned long *out_frames)
2429 {
2430 int i;
2431 struct multicall_space mcs;
2432
2433 xen_mc_batch();
2434 for (i = 0; i < (1UL<<order); i++, vaddr += PAGE_SIZE) {
2435 mcs = __xen_mc_entry(0);
2436
2437 if (in_frames)
2438 in_frames[i] = virt_to_mfn(vaddr);
2439
2440 MULTI_update_va_mapping(mcs.mc, vaddr, VOID_PTE, 0);
2441 set_phys_to_machine(virt_to_pfn(vaddr), INVALID_P2M_ENTRY);
2442
2443 if (out_frames)
2444 out_frames[i] = virt_to_pfn(vaddr);
2445 }
2446 xen_mc_issue(0);
2447 }
2448
2449 /*
2450 * Update the pfn-to-mfn mappings for a virtual address range, either to
2451 * point to an array of mfns, or contiguously from a single starting
2452 * mfn.
2453 */
2454 static void xen_remap_exchanged_ptes(unsigned long vaddr, int order,
2455 unsigned long *mfns,
2456 unsigned long first_mfn)
2457 {
2458 unsigned i, limit;
2459 unsigned long mfn;
2460
2461 xen_mc_batch();
2462
2463 limit = 1u << order;
2464 for (i = 0; i < limit; i++, vaddr += PAGE_SIZE) {
2465 struct multicall_space mcs;
2466 unsigned flags;
2467
2468 mcs = __xen_mc_entry(0);
2469 if (mfns)
2470 mfn = mfns[i];
2471 else
2472 mfn = first_mfn + i;
2473
2474 if (i < (limit - 1))
2475 flags = 0;
2476 else {
2477 if (order == 0)
2478 flags = UVMF_INVLPG | UVMF_ALL;
2479 else
2480 flags = UVMF_TLB_FLUSH | UVMF_ALL;
2481 }
2482
2483 MULTI_update_va_mapping(mcs.mc, vaddr,
2484 mfn_pte(mfn, PAGE_KERNEL), flags);
2485
2486 set_phys_to_machine(virt_to_pfn(vaddr), mfn);
2487 }
2488
2489 xen_mc_issue(0);
2490 }
2491
2492 /*
2493 * Perform the hypercall to exchange a region of our pfns to point to
2494 * memory with the required contiguous alignment. Takes the pfns as
2495 * input, and populates mfns as output.
2496 *
2497 * Returns a success code indicating whether the hypervisor was able to
2498 * satisfy the request or not.
2499 */
2500 static int xen_exchange_memory(unsigned long extents_in, unsigned int order_in,
2501 unsigned long *pfns_in,
2502 unsigned long extents_out,
2503 unsigned int order_out,
2504 unsigned long *mfns_out,
2505 unsigned int address_bits)
2506 {
2507 long rc;
2508 int success;
2509
2510 struct xen_memory_exchange exchange = {
2511 .in = {
2512 .nr_extents = extents_in,
2513 .extent_order = order_in,
2514 .extent_start = pfns_in,
2515 .domid = DOMID_SELF
2516 },
2517 .out = {
2518 .nr_extents = extents_out,
2519 .extent_order = order_out,
2520 .extent_start = mfns_out,
2521 .address_bits = address_bits,
2522 .domid = DOMID_SELF
2523 }
2524 };
2525
2526 BUG_ON(extents_in << order_in != extents_out << order_out);
2527
2528 rc = HYPERVISOR_memory_op(XENMEM_exchange, &exchange);
2529 success = (exchange.nr_exchanged == extents_in);
2530
2531 BUG_ON(!success && ((exchange.nr_exchanged != 0) || (rc == 0)));
2532 BUG_ON(success && (rc != 0));
2533
2534 return success;
2535 }
2536
2537 int xen_create_contiguous_region(unsigned long vstart, unsigned int order,
2538 unsigned int address_bits)
2539 {
2540 unsigned long *in_frames = discontig_frames, out_frame;
2541 unsigned long flags;
2542 int success;
2543
2544 /*
2545 * Currently an auto-translated guest will not perform I/O, nor will
2546 * it require PAE page directories below 4GB. Therefore any calls to
2547 * this function are redundant and can be ignored.
2548 */
2549
2550 if (xen_feature(XENFEAT_auto_translated_physmap))
2551 return 0;
2552
2553 if (unlikely(order > MAX_CONTIG_ORDER))
2554 return -ENOMEM;
2555
2556 memset((void *) vstart, 0, PAGE_SIZE << order);
2557
2558 spin_lock_irqsave(&xen_reservation_lock, flags);
2559
2560 /* 1. Zap current PTEs, remembering MFNs. */
2561 xen_zap_pfn_range(vstart, order, in_frames, NULL);
2562
2563 /* 2. Get a new contiguous memory extent. */
2564 out_frame = virt_to_pfn(vstart);
2565 success = xen_exchange_memory(1UL << order, 0, in_frames,
2566 1, order, &out_frame,
2567 address_bits);
2568
2569 /* 3. Map the new extent in place of old pages. */
2570 if (success)
2571 xen_remap_exchanged_ptes(vstart, order, NULL, out_frame);
2572 else
2573 xen_remap_exchanged_ptes(vstart, order, in_frames, 0);
2574
2575 spin_unlock_irqrestore(&xen_reservation_lock, flags);
2576
2577 return success ? 0 : -ENOMEM;
2578 }
2579 EXPORT_SYMBOL_GPL(xen_create_contiguous_region);
2580
2581 void xen_destroy_contiguous_region(unsigned long vstart, unsigned int order)
2582 {
2583 unsigned long *out_frames = discontig_frames, in_frame;
2584 unsigned long flags;
2585 int success;
2586
2587 if (xen_feature(XENFEAT_auto_translated_physmap))
2588 return;
2589
2590 if (unlikely(order > MAX_CONTIG_ORDER))
2591 return;
2592
2593 memset((void *) vstart, 0, PAGE_SIZE << order);
2594
2595 spin_lock_irqsave(&xen_reservation_lock, flags);
2596
2597 /* 1. Find start MFN of contiguous extent. */
2598 in_frame = virt_to_mfn(vstart);
2599
2600 /* 2. Zap current PTEs. */
2601 xen_zap_pfn_range(vstart, order, NULL, out_frames);
2602
2603 /* 3. Do the exchange for non-contiguous MFNs. */
2604 success = xen_exchange_memory(1, order, &in_frame, 1UL << order,
2605 0, out_frames, 0);
2606
2607 /* 4. Map new pages in place of old pages. */
2608 if (success)
2609 xen_remap_exchanged_ptes(vstart, order, out_frames, 0);
2610 else
2611 xen_remap_exchanged_ptes(vstart, order, NULL, in_frame);
2612
2613 spin_unlock_irqrestore(&xen_reservation_lock, flags);
2614 }
2615 EXPORT_SYMBOL_GPL(xen_destroy_contiguous_region);
2616
2617 #ifdef CONFIG_XEN_PVHVM
2618 static void xen_hvm_exit_mmap(struct mm_struct *mm)
2619 {
2620 struct xen_hvm_pagetable_dying a;
2621 int rc;
2622
2623 a.domid = DOMID_SELF;
2624 a.gpa = __pa(mm->pgd);
2625 rc = HYPERVISOR_hvm_op(HVMOP_pagetable_dying, &a);
2626 WARN_ON_ONCE(rc < 0);
2627 }
2628
2629 static int is_pagetable_dying_supported(void)
2630 {
2631 struct xen_hvm_pagetable_dying a;
2632 int rc = 0;
2633
2634 a.domid = DOMID_SELF;
2635 a.gpa = 0x00;
2636 rc = HYPERVISOR_hvm_op(HVMOP_pagetable_dying, &a);
2637 if (rc < 0) {
2638 printk(KERN_DEBUG "HVMOP_pagetable_dying not supported\n");
2639 return 0;
2640 }
2641 return 1;
2642 }
2643
2644 void __init xen_hvm_init_mmu_ops(void)
2645 {
2646 if (is_pagetable_dying_supported())
2647 pv_mmu_ops.exit_mmap = xen_hvm_exit_mmap;
2648 }
2649 #endif
2650
2651 #define REMAP_BATCH_SIZE 16
2652
2653 struct remap_data {
2654 unsigned long mfn;
2655 pgprot_t prot;
2656 struct mmu_update *mmu_update;
2657 };
2658
2659 static int remap_area_mfn_pte_fn(pte_t *ptep, pgtable_t token,
2660 unsigned long addr, void *data)
2661 {
2662 struct remap_data *rmd = data;
2663 pte_t pte = pte_mkspecial(pfn_pte(rmd->mfn++, rmd->prot));
2664
2665 rmd->mmu_update->ptr = arbitrary_virt_to_machine(ptep).maddr;
2666 rmd->mmu_update->val = pte_val_ma(pte);
2667 rmd->mmu_update++;
2668
2669 return 0;
2670 }
2671
2672 int xen_remap_domain_mfn_range(struct vm_area_struct *vma,
2673 unsigned long addr,
2674 unsigned long mfn, int nr,
2675 pgprot_t prot, unsigned domid)
2676 {
2677 struct remap_data rmd;
2678 struct mmu_update mmu_update[REMAP_BATCH_SIZE];
2679 int batch;
2680 unsigned long range;
2681 int err = 0;
2682
2683 prot = __pgprot(pgprot_val(prot) | _PAGE_IOMAP);
2684
2685 BUG_ON(!((vma->vm_flags & (VM_PFNMAP | VM_RESERVED | VM_IO)) ==
2686 (VM_PFNMAP | VM_RESERVED | VM_IO)));
2687
2688 rmd.mfn = mfn;
2689 rmd.prot = prot;
2690
2691 while (nr) {
2692 batch = min(REMAP_BATCH_SIZE, nr);
2693 range = (unsigned long)batch << PAGE_SHIFT;
2694
2695 rmd.mmu_update = mmu_update;
2696 err = apply_to_page_range(vma->vm_mm, addr, range,
2697 remap_area_mfn_pte_fn, &rmd);
2698 if (err)
2699 goto out;
2700
2701 err = -EFAULT;
2702 if (HYPERVISOR_mmu_update(mmu_update, batch, NULL, domid) < 0)
2703 goto out;
2704
2705 nr -= batch;
2706 addr += range;
2707 }
2708
2709 err = 0;
2710 out:
2711
2712 flush_tlb_all();
2713
2714 return err;
2715 }
2716 EXPORT_SYMBOL_GPL(xen_remap_domain_mfn_range);
2717
2718 #ifdef CONFIG_XEN_DEBUG_FS
2719
2720 static struct dentry *d_mmu_debug;
2721
2722 static int __init xen_mmu_debugfs(void)
2723 {
2724 struct dentry *d_xen = xen_init_debugfs();
2725
2726 if (d_xen == NULL)
2727 return -ENOMEM;
2728
2729 d_mmu_debug = debugfs_create_dir("mmu", d_xen);
2730
2731 debugfs_create_u8("zero_stats", 0644, d_mmu_debug, &zero_stats);
2732
2733 debugfs_create_u32("pgd_update", 0444, d_mmu_debug, &mmu_stats.pgd_update);
2734 debugfs_create_u32("pgd_update_pinned", 0444, d_mmu_debug,
2735 &mmu_stats.pgd_update_pinned);
2736 debugfs_create_u32("pgd_update_batched", 0444, d_mmu_debug,
2737 &mmu_stats.pgd_update_pinned);
2738
2739 debugfs_create_u32("pud_update", 0444, d_mmu_debug, &mmu_stats.pud_update);
2740 debugfs_create_u32("pud_update_pinned", 0444, d_mmu_debug,
2741 &mmu_stats.pud_update_pinned);
2742 debugfs_create_u32("pud_update_batched", 0444, d_mmu_debug,
2743 &mmu_stats.pud_update_pinned);
2744
2745 debugfs_create_u32("pmd_update", 0444, d_mmu_debug, &mmu_stats.pmd_update);
2746 debugfs_create_u32("pmd_update_pinned", 0444, d_mmu_debug,
2747 &mmu_stats.pmd_update_pinned);
2748 debugfs_create_u32("pmd_update_batched", 0444, d_mmu_debug,
2749 &mmu_stats.pmd_update_pinned);
2750
2751 debugfs_create_u32("pte_update", 0444, d_mmu_debug, &mmu_stats.pte_update);
2752 // debugfs_create_u32("pte_update_pinned", 0444, d_mmu_debug,
2753 // &mmu_stats.pte_update_pinned);
2754 debugfs_create_u32("pte_update_batched", 0444, d_mmu_debug,
2755 &mmu_stats.pte_update_pinned);
2756
2757 debugfs_create_u32("mmu_update", 0444, d_mmu_debug, &mmu_stats.mmu_update);
2758 debugfs_create_u32("mmu_update_extended", 0444, d_mmu_debug,
2759 &mmu_stats.mmu_update_extended);
2760 xen_debugfs_create_u32_array("mmu_update_histo", 0444, d_mmu_debug,
2761 mmu_stats.mmu_update_histo, 20);
2762
2763 debugfs_create_u32("set_pte_at", 0444, d_mmu_debug, &mmu_stats.set_pte_at);
2764 debugfs_create_u32("set_pte_at_batched", 0444, d_mmu_debug,
2765 &mmu_stats.set_pte_at_batched);
2766 debugfs_create_u32("set_pte_at_current", 0444, d_mmu_debug,
2767 &mmu_stats.set_pte_at_current);
2768 debugfs_create_u32("set_pte_at_kernel", 0444, d_mmu_debug,
2769 &mmu_stats.set_pte_at_kernel);
2770
2771 debugfs_create_u32("prot_commit", 0444, d_mmu_debug, &mmu_stats.prot_commit);
2772 debugfs_create_u32("prot_commit_batched", 0444, d_mmu_debug,
2773 &mmu_stats.prot_commit_batched);
2774
2775 return 0;
2776 }
2777 fs_initcall(xen_mmu_debugfs);
2778
2779 #endif /* CONFIG_XEN_DEBUG_FS */
This page took 0.089861 seconds and 6 git commands to generate.