Merge branch 'upstream'
[deliverable/linux.git] / arch / x86_64 / kernel / smpboot.c
1 /*
2 * x86 SMP booting functions
3 *
4 * (c) 1995 Alan Cox, Building #3 <alan@redhat.com>
5 * (c) 1998, 1999, 2000 Ingo Molnar <mingo@redhat.com>
6 * Copyright 2001 Andi Kleen, SuSE Labs.
7 *
8 * Much of the core SMP work is based on previous work by Thomas Radke, to
9 * whom a great many thanks are extended.
10 *
11 * Thanks to Intel for making available several different Pentium,
12 * Pentium Pro and Pentium-II/Xeon MP machines.
13 * Original development of Linux SMP code supported by Caldera.
14 *
15 * This code is released under the GNU General Public License version 2
16 *
17 * Fixes
18 * Felix Koop : NR_CPUS used properly
19 * Jose Renau : Handle single CPU case.
20 * Alan Cox : By repeated request 8) - Total BogoMIP report.
21 * Greg Wright : Fix for kernel stacks panic.
22 * Erich Boleyn : MP v1.4 and additional changes.
23 * Matthias Sattler : Changes for 2.1 kernel map.
24 * Michel Lespinasse : Changes for 2.1 kernel map.
25 * Michael Chastain : Change trampoline.S to gnu as.
26 * Alan Cox : Dumb bug: 'B' step PPro's are fine
27 * Ingo Molnar : Added APIC timers, based on code
28 * from Jose Renau
29 * Ingo Molnar : various cleanups and rewrites
30 * Tigran Aivazian : fixed "0.00 in /proc/uptime on SMP" bug.
31 * Maciej W. Rozycki : Bits for genuine 82489DX APICs
32 * Andi Kleen : Changed for SMP boot into long mode.
33 * Rusty Russell : Hacked into shape for new "hotplug" boot process.
34 * Andi Kleen : Converted to new state machine.
35 * Various cleanups.
36 * Probably mostly hotplug CPU ready now.
37 * Ashok Raj : CPU hotplug support
38 */
39
40
41 #include <linux/config.h>
42 #include <linux/init.h>
43
44 #include <linux/mm.h>
45 #include <linux/kernel_stat.h>
46 #include <linux/smp_lock.h>
47 #include <linux/bootmem.h>
48 #include <linux/thread_info.h>
49 #include <linux/module.h>
50
51 #include <linux/delay.h>
52 #include <linux/mc146818rtc.h>
53 #include <asm/mtrr.h>
54 #include <asm/pgalloc.h>
55 #include <asm/desc.h>
56 #include <asm/kdebug.h>
57 #include <asm/tlbflush.h>
58 #include <asm/proto.h>
59 #include <asm/nmi.h>
60 #include <asm/irq.h>
61 #include <asm/hw_irq.h>
62
63 /* Number of siblings per CPU package */
64 int smp_num_siblings = 1;
65 /* Package ID of each logical CPU */
66 u8 phys_proc_id[NR_CPUS] __read_mostly = { [0 ... NR_CPUS-1] = BAD_APICID };
67 u8 cpu_core_id[NR_CPUS] __read_mostly = { [0 ... NR_CPUS-1] = BAD_APICID };
68 EXPORT_SYMBOL(phys_proc_id);
69 EXPORT_SYMBOL(cpu_core_id);
70
71 /* Bitmask of currently online CPUs */
72 cpumask_t cpu_online_map __read_mostly;
73
74 EXPORT_SYMBOL(cpu_online_map);
75
76 /*
77 * Private maps to synchronize booting between AP and BP.
78 * Probably not needed anymore, but it makes for easier debugging. -AK
79 */
80 cpumask_t cpu_callin_map;
81 cpumask_t cpu_callout_map;
82
83 cpumask_t cpu_possible_map;
84 EXPORT_SYMBOL(cpu_possible_map);
85
86 /* Per CPU bogomips and other parameters */
87 struct cpuinfo_x86 cpu_data[NR_CPUS] __cacheline_aligned;
88
89 /* Set when the idlers are all forked */
90 int smp_threads_ready;
91
92 cpumask_t cpu_sibling_map[NR_CPUS] __read_mostly;
93 cpumask_t cpu_core_map[NR_CPUS] __read_mostly;
94 EXPORT_SYMBOL(cpu_core_map);
95
96 /*
97 * Trampoline 80x86 program as an array.
98 */
99
100 extern unsigned char trampoline_data[];
101 extern unsigned char trampoline_end[];
102
103 /* State of each CPU */
104 DEFINE_PER_CPU(int, cpu_state) = { 0 };
105
106 /*
107 * Store all idle threads, this can be reused instead of creating
108 * a new thread. Also avoids complicated thread destroy functionality
109 * for idle threads.
110 */
111 struct task_struct *idle_thread_array[NR_CPUS] __cpuinitdata ;
112
113 #define get_idle_for_cpu(x) (idle_thread_array[(x)])
114 #define set_idle_for_cpu(x,p) (idle_thread_array[(x)] = (p))
115
116 /*
117 * Currently trivial. Write the real->protected mode
118 * bootstrap into the page concerned. The caller
119 * has made sure it's suitably aligned.
120 */
121
122 static unsigned long __cpuinit setup_trampoline(void)
123 {
124 void *tramp = __va(SMP_TRAMPOLINE_BASE);
125 memcpy(tramp, trampoline_data, trampoline_end - trampoline_data);
126 return virt_to_phys(tramp);
127 }
128
129 /*
130 * The bootstrap kernel entry code has set these up. Save them for
131 * a given CPU
132 */
133
134 static void __cpuinit smp_store_cpu_info(int id)
135 {
136 struct cpuinfo_x86 *c = cpu_data + id;
137
138 *c = boot_cpu_data;
139 identify_cpu(c);
140 print_cpu_info(c);
141 }
142
143 /*
144 * New Funky TSC sync algorithm borrowed from IA64.
145 * Main advantage is that it doesn't reset the TSCs fully and
146 * in general looks more robust and it works better than my earlier
147 * attempts. I believe it was written by David Mosberger. Some minor
148 * adjustments for x86-64 by me -AK
149 *
150 * Original comment reproduced below.
151 *
152 * Synchronize TSC of the current (slave) CPU with the TSC of the
153 * MASTER CPU (normally the time-keeper CPU). We use a closed loop to
154 * eliminate the possibility of unaccounted-for errors (such as
155 * getting a machine check in the middle of a calibration step). The
156 * basic idea is for the slave to ask the master what itc value it has
157 * and to read its own itc before and after the master responds. Each
158 * iteration gives us three timestamps:
159 *
160 * slave master
161 *
162 * t0 ---\
163 * ---\
164 * --->
165 * tm
166 * /---
167 * /---
168 * t1 <---
169 *
170 *
171 * The goal is to adjust the slave's TSC such that tm falls exactly
172 * half-way between t0 and t1. If we achieve this, the clocks are
173 * synchronized provided the interconnect between the slave and the
174 * master is symmetric. Even if the interconnect were asymmetric, we
175 * would still know that the synchronization error is smaller than the
176 * roundtrip latency (t0 - t1).
177 *
178 * When the interconnect is quiet and symmetric, this lets us
179 * synchronize the TSC to within one or two cycles. However, we can
180 * only *guarantee* that the synchronization is accurate to within a
181 * round-trip time, which is typically in the range of several hundred
182 * cycles (e.g., ~500 cycles). In practice, this means that the TSCs
183 * are usually almost perfectly synchronized, but we shouldn't assume
184 * that the accuracy is much better than half a micro second or so.
185 *
186 * [there are other errors like the latency of RDTSC and of the
187 * WRMSR. These can also account to hundreds of cycles. So it's
188 * probably worse. It claims 153 cycles error on a dual Opteron,
189 * but I suspect the numbers are actually somewhat worse -AK]
190 */
191
192 #define MASTER 0
193 #define SLAVE (SMP_CACHE_BYTES/8)
194
195 /* Intentionally don't use cpu_relax() while TSC synchronization
196 because we don't want to go into funky power save modi or cause
197 hypervisors to schedule us away. Going to sleep would likely affect
198 latency and low latency is the primary objective here. -AK */
199 #define no_cpu_relax() barrier()
200
201 static __cpuinitdata DEFINE_SPINLOCK(tsc_sync_lock);
202 static volatile __cpuinitdata unsigned long go[SLAVE + 1];
203 static int notscsync __cpuinitdata;
204
205 #undef DEBUG_TSC_SYNC
206
207 #define NUM_ROUNDS 64 /* magic value */
208 #define NUM_ITERS 5 /* likewise */
209
210 /* Callback on boot CPU */
211 static __cpuinit void sync_master(void *arg)
212 {
213 unsigned long flags, i;
214
215 go[MASTER] = 0;
216
217 local_irq_save(flags);
218 {
219 for (i = 0; i < NUM_ROUNDS*NUM_ITERS; ++i) {
220 while (!go[MASTER])
221 no_cpu_relax();
222 go[MASTER] = 0;
223 rdtscll(go[SLAVE]);
224 }
225 }
226 local_irq_restore(flags);
227 }
228
229 /*
230 * Return the number of cycles by which our tsc differs from the tsc
231 * on the master (time-keeper) CPU. A positive number indicates our
232 * tsc is ahead of the master, negative that it is behind.
233 */
234 static inline long
235 get_delta(long *rt, long *master)
236 {
237 unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
238 unsigned long tcenter, t0, t1, tm;
239 int i;
240
241 for (i = 0; i < NUM_ITERS; ++i) {
242 rdtscll(t0);
243 go[MASTER] = 1;
244 while (!(tm = go[SLAVE]))
245 no_cpu_relax();
246 go[SLAVE] = 0;
247 rdtscll(t1);
248
249 if (t1 - t0 < best_t1 - best_t0)
250 best_t0 = t0, best_t1 = t1, best_tm = tm;
251 }
252
253 *rt = best_t1 - best_t0;
254 *master = best_tm - best_t0;
255
256 /* average best_t0 and best_t1 without overflow: */
257 tcenter = (best_t0/2 + best_t1/2);
258 if (best_t0 % 2 + best_t1 % 2 == 2)
259 ++tcenter;
260 return tcenter - best_tm;
261 }
262
263 static __cpuinit void sync_tsc(unsigned int master)
264 {
265 int i, done = 0;
266 long delta, adj, adjust_latency = 0;
267 unsigned long flags, rt, master_time_stamp, bound;
268 #ifdef DEBUG_TSC_SYNC
269 static struct syncdebug {
270 long rt; /* roundtrip time */
271 long master; /* master's timestamp */
272 long diff; /* difference between midpoint and master's timestamp */
273 long lat; /* estimate of tsc adjustment latency */
274 } t[NUM_ROUNDS] __cpuinitdata;
275 #endif
276
277 printk(KERN_INFO "CPU %d: Syncing TSC to CPU %u.\n",
278 smp_processor_id(), master);
279
280 go[MASTER] = 1;
281
282 /* It is dangerous to broadcast IPI as cpus are coming up,
283 * as they may not be ready to accept them. So since
284 * we only need to send the ipi to the boot cpu direct
285 * the message, and avoid the race.
286 */
287 smp_call_function_single(master, sync_master, NULL, 1, 0);
288
289 while (go[MASTER]) /* wait for master to be ready */
290 no_cpu_relax();
291
292 spin_lock_irqsave(&tsc_sync_lock, flags);
293 {
294 for (i = 0; i < NUM_ROUNDS; ++i) {
295 delta = get_delta(&rt, &master_time_stamp);
296 if (delta == 0) {
297 done = 1; /* let's lock on to this... */
298 bound = rt;
299 }
300
301 if (!done) {
302 unsigned long t;
303 if (i > 0) {
304 adjust_latency += -delta;
305 adj = -delta + adjust_latency/4;
306 } else
307 adj = -delta;
308
309 rdtscll(t);
310 wrmsrl(MSR_IA32_TSC, t + adj);
311 }
312 #ifdef DEBUG_TSC_SYNC
313 t[i].rt = rt;
314 t[i].master = master_time_stamp;
315 t[i].diff = delta;
316 t[i].lat = adjust_latency/4;
317 #endif
318 }
319 }
320 spin_unlock_irqrestore(&tsc_sync_lock, flags);
321
322 #ifdef DEBUG_TSC_SYNC
323 for (i = 0; i < NUM_ROUNDS; ++i)
324 printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
325 t[i].rt, t[i].master, t[i].diff, t[i].lat);
326 #endif
327
328 printk(KERN_INFO
329 "CPU %d: synchronized TSC with CPU %u (last diff %ld cycles, "
330 "maxerr %lu cycles)\n",
331 smp_processor_id(), master, delta, rt);
332 }
333
334 static void __cpuinit tsc_sync_wait(void)
335 {
336 if (notscsync || !cpu_has_tsc)
337 return;
338 sync_tsc(0);
339 }
340
341 static __init int notscsync_setup(char *s)
342 {
343 notscsync = 1;
344 return 0;
345 }
346 __setup("notscsync", notscsync_setup);
347
348 static atomic_t init_deasserted __cpuinitdata;
349
350 /*
351 * Report back to the Boot Processor.
352 * Running on AP.
353 */
354 void __cpuinit smp_callin(void)
355 {
356 int cpuid, phys_id;
357 unsigned long timeout;
358
359 /*
360 * If waken up by an INIT in an 82489DX configuration
361 * we may get here before an INIT-deassert IPI reaches
362 * our local APIC. We have to wait for the IPI or we'll
363 * lock up on an APIC access.
364 */
365 while (!atomic_read(&init_deasserted))
366 cpu_relax();
367
368 /*
369 * (This works even if the APIC is not enabled.)
370 */
371 phys_id = GET_APIC_ID(apic_read(APIC_ID));
372 cpuid = smp_processor_id();
373 if (cpu_isset(cpuid, cpu_callin_map)) {
374 panic("smp_callin: phys CPU#%d, CPU#%d already present??\n",
375 phys_id, cpuid);
376 }
377 Dprintk("CPU#%d (phys ID: %d) waiting for CALLOUT\n", cpuid, phys_id);
378
379 /*
380 * STARTUP IPIs are fragile beasts as they might sometimes
381 * trigger some glue motherboard logic. Complete APIC bus
382 * silence for 1 second, this overestimates the time the
383 * boot CPU is spending to send the up to 2 STARTUP IPIs
384 * by a factor of two. This should be enough.
385 */
386
387 /*
388 * Waiting 2s total for startup (udelay is not yet working)
389 */
390 timeout = jiffies + 2*HZ;
391 while (time_before(jiffies, timeout)) {
392 /*
393 * Has the boot CPU finished it's STARTUP sequence?
394 */
395 if (cpu_isset(cpuid, cpu_callout_map))
396 break;
397 cpu_relax();
398 }
399
400 if (!time_before(jiffies, timeout)) {
401 panic("smp_callin: CPU%d started up but did not get a callout!\n",
402 cpuid);
403 }
404
405 /*
406 * the boot CPU has finished the init stage and is spinning
407 * on callin_map until we finish. We are free to set up this
408 * CPU, first the APIC. (this is probably redundant on most
409 * boards)
410 */
411
412 Dprintk("CALLIN, before setup_local_APIC().\n");
413 setup_local_APIC();
414
415 /*
416 * Get our bogomips.
417 *
418 * Need to enable IRQs because it can take longer and then
419 * the NMI watchdog might kill us.
420 */
421 local_irq_enable();
422 calibrate_delay();
423 local_irq_disable();
424 Dprintk("Stack at about %p\n",&cpuid);
425
426 disable_APIC_timer();
427
428 /*
429 * Save our processor parameters
430 */
431 smp_store_cpu_info(cpuid);
432
433 /*
434 * Allow the master to continue.
435 */
436 cpu_set(cpuid, cpu_callin_map);
437 }
438
439 static inline void set_cpu_sibling_map(int cpu)
440 {
441 int i;
442
443 if (smp_num_siblings > 1) {
444 for_each_cpu(i) {
445 if (cpu_core_id[cpu] == cpu_core_id[i]) {
446 cpu_set(i, cpu_sibling_map[cpu]);
447 cpu_set(cpu, cpu_sibling_map[i]);
448 }
449 }
450 } else {
451 cpu_set(cpu, cpu_sibling_map[cpu]);
452 }
453
454 if (current_cpu_data.x86_num_cores > 1) {
455 for_each_cpu(i) {
456 if (phys_proc_id[cpu] == phys_proc_id[i]) {
457 cpu_set(i, cpu_core_map[cpu]);
458 cpu_set(cpu, cpu_core_map[i]);
459 }
460 }
461 } else {
462 cpu_core_map[cpu] = cpu_sibling_map[cpu];
463 }
464 }
465
466 /*
467 * Setup code on secondary processor (after comming out of the trampoline)
468 */
469 void __cpuinit start_secondary(void)
470 {
471 /*
472 * Dont put anything before smp_callin(), SMP
473 * booting is too fragile that we want to limit the
474 * things done here to the most necessary things.
475 */
476 cpu_init();
477 smp_callin();
478
479 /* otherwise gcc will move up the smp_processor_id before the cpu_init */
480 barrier();
481
482 Dprintk("cpu %d: setting up apic clock\n", smp_processor_id());
483 setup_secondary_APIC_clock();
484
485 Dprintk("cpu %d: enabling apic timer\n", smp_processor_id());
486
487 if (nmi_watchdog == NMI_IO_APIC) {
488 disable_8259A_irq(0);
489 enable_NMI_through_LVT0(NULL);
490 enable_8259A_irq(0);
491 }
492
493 enable_APIC_timer();
494
495 /*
496 * The sibling maps must be set before turing the online map on for
497 * this cpu
498 */
499 set_cpu_sibling_map(smp_processor_id());
500
501 /*
502 * Wait for TSC sync to not schedule things before.
503 * We still process interrupts, which could see an inconsistent
504 * time in that window unfortunately.
505 * Do this here because TSC sync has global unprotected state.
506 */
507 tsc_sync_wait();
508
509 /*
510 * We need to hold call_lock, so there is no inconsistency
511 * between the time smp_call_function() determines number of
512 * IPI receipients, and the time when the determination is made
513 * for which cpus receive the IPI in genapic_flat.c. Holding this
514 * lock helps us to not include this cpu in a currently in progress
515 * smp_call_function().
516 */
517 lock_ipi_call_lock();
518
519 /*
520 * Allow the master to continue.
521 */
522 cpu_set(smp_processor_id(), cpu_online_map);
523 per_cpu(cpu_state, smp_processor_id()) = CPU_ONLINE;
524 unlock_ipi_call_lock();
525
526 cpu_idle();
527 }
528
529 extern volatile unsigned long init_rsp;
530 extern void (*initial_code)(void);
531
532 #ifdef APIC_DEBUG
533 static void inquire_remote_apic(int apicid)
534 {
535 unsigned i, regs[] = { APIC_ID >> 4, APIC_LVR >> 4, APIC_SPIV >> 4 };
536 char *names[] = { "ID", "VERSION", "SPIV" };
537 int timeout, status;
538
539 printk(KERN_INFO "Inquiring remote APIC #%d...\n", apicid);
540
541 for (i = 0; i < sizeof(regs) / sizeof(*regs); i++) {
542 printk("... APIC #%d %s: ", apicid, names[i]);
543
544 /*
545 * Wait for idle.
546 */
547 apic_wait_icr_idle();
548
549 apic_write(APIC_ICR2, SET_APIC_DEST_FIELD(apicid));
550 apic_write(APIC_ICR, APIC_DM_REMRD | regs[i]);
551
552 timeout = 0;
553 do {
554 udelay(100);
555 status = apic_read(APIC_ICR) & APIC_ICR_RR_MASK;
556 } while (status == APIC_ICR_RR_INPROG && timeout++ < 1000);
557
558 switch (status) {
559 case APIC_ICR_RR_VALID:
560 status = apic_read(APIC_RRR);
561 printk("%08x\n", status);
562 break;
563 default:
564 printk("failed\n");
565 }
566 }
567 }
568 #endif
569
570 /*
571 * Kick the secondary to wake up.
572 */
573 static int __cpuinit wakeup_secondary_via_INIT(int phys_apicid, unsigned int start_rip)
574 {
575 unsigned long send_status = 0, accept_status = 0;
576 int maxlvt, timeout, num_starts, j;
577
578 Dprintk("Asserting INIT.\n");
579
580 /*
581 * Turn INIT on target chip
582 */
583 apic_write(APIC_ICR2, SET_APIC_DEST_FIELD(phys_apicid));
584
585 /*
586 * Send IPI
587 */
588 apic_write(APIC_ICR, APIC_INT_LEVELTRIG | APIC_INT_ASSERT
589 | APIC_DM_INIT);
590
591 Dprintk("Waiting for send to finish...\n");
592 timeout = 0;
593 do {
594 Dprintk("+");
595 udelay(100);
596 send_status = apic_read(APIC_ICR) & APIC_ICR_BUSY;
597 } while (send_status && (timeout++ < 1000));
598
599 mdelay(10);
600
601 Dprintk("Deasserting INIT.\n");
602
603 /* Target chip */
604 apic_write(APIC_ICR2, SET_APIC_DEST_FIELD(phys_apicid));
605
606 /* Send IPI */
607 apic_write(APIC_ICR, APIC_INT_LEVELTRIG | APIC_DM_INIT);
608
609 Dprintk("Waiting for send to finish...\n");
610 timeout = 0;
611 do {
612 Dprintk("+");
613 udelay(100);
614 send_status = apic_read(APIC_ICR) & APIC_ICR_BUSY;
615 } while (send_status && (timeout++ < 1000));
616
617 atomic_set(&init_deasserted, 1);
618
619 num_starts = 2;
620
621 /*
622 * Run STARTUP IPI loop.
623 */
624 Dprintk("#startup loops: %d.\n", num_starts);
625
626 maxlvt = get_maxlvt();
627
628 for (j = 1; j <= num_starts; j++) {
629 Dprintk("Sending STARTUP #%d.\n",j);
630 apic_read_around(APIC_SPIV);
631 apic_write(APIC_ESR, 0);
632 apic_read(APIC_ESR);
633 Dprintk("After apic_write.\n");
634
635 /*
636 * STARTUP IPI
637 */
638
639 /* Target chip */
640 apic_write(APIC_ICR2, SET_APIC_DEST_FIELD(phys_apicid));
641
642 /* Boot on the stack */
643 /* Kick the second */
644 apic_write(APIC_ICR, APIC_DM_STARTUP | (start_rip >> 12));
645
646 /*
647 * Give the other CPU some time to accept the IPI.
648 */
649 udelay(300);
650
651 Dprintk("Startup point 1.\n");
652
653 Dprintk("Waiting for send to finish...\n");
654 timeout = 0;
655 do {
656 Dprintk("+");
657 udelay(100);
658 send_status = apic_read(APIC_ICR) & APIC_ICR_BUSY;
659 } while (send_status && (timeout++ < 1000));
660
661 /*
662 * Give the other CPU some time to accept the IPI.
663 */
664 udelay(200);
665 /*
666 * Due to the Pentium erratum 3AP.
667 */
668 if (maxlvt > 3) {
669 apic_read_around(APIC_SPIV);
670 apic_write(APIC_ESR, 0);
671 }
672 accept_status = (apic_read(APIC_ESR) & 0xEF);
673 if (send_status || accept_status)
674 break;
675 }
676 Dprintk("After Startup.\n");
677
678 if (send_status)
679 printk(KERN_ERR "APIC never delivered???\n");
680 if (accept_status)
681 printk(KERN_ERR "APIC delivery error (%lx).\n", accept_status);
682
683 return (send_status | accept_status);
684 }
685
686 struct create_idle {
687 struct task_struct *idle;
688 struct completion done;
689 int cpu;
690 };
691
692 void do_fork_idle(void *_c_idle)
693 {
694 struct create_idle *c_idle = _c_idle;
695
696 c_idle->idle = fork_idle(c_idle->cpu);
697 complete(&c_idle->done);
698 }
699
700 /*
701 * Boot one CPU.
702 */
703 static int __cpuinit do_boot_cpu(int cpu, int apicid)
704 {
705 unsigned long boot_error;
706 int timeout;
707 unsigned long start_rip;
708 struct create_idle c_idle = {
709 .cpu = cpu,
710 .done = COMPLETION_INITIALIZER(c_idle.done),
711 };
712 DECLARE_WORK(work, do_fork_idle, &c_idle);
713
714 c_idle.idle = get_idle_for_cpu(cpu);
715
716 if (c_idle.idle) {
717 c_idle.idle->thread.rsp = (unsigned long) (((struct pt_regs *)
718 (THREAD_SIZE + (unsigned long) c_idle.idle->thread_info)) - 1);
719 init_idle(c_idle.idle, cpu);
720 goto do_rest;
721 }
722
723 /*
724 * During cold boot process, keventd thread is not spun up yet.
725 * When we do cpu hot-add, we create idle threads on the fly, we should
726 * not acquire any attributes from the calling context. Hence the clean
727 * way to create kernel_threads() is to do that from keventd().
728 * We do the current_is_keventd() due to the fact that ACPI notifier
729 * was also queuing to keventd() and when the caller is already running
730 * in context of keventd(), we would end up with locking up the keventd
731 * thread.
732 */
733 if (!keventd_up() || current_is_keventd())
734 work.func(work.data);
735 else {
736 schedule_work(&work);
737 wait_for_completion(&c_idle.done);
738 }
739
740 if (IS_ERR(c_idle.idle)) {
741 printk("failed fork for CPU %d\n", cpu);
742 return PTR_ERR(c_idle.idle);
743 }
744
745 set_idle_for_cpu(cpu, c_idle.idle);
746
747 do_rest:
748
749 cpu_pda[cpu].pcurrent = c_idle.idle;
750
751 start_rip = setup_trampoline();
752
753 init_rsp = c_idle.idle->thread.rsp;
754 per_cpu(init_tss,cpu).rsp0 = init_rsp;
755 initial_code = start_secondary;
756 clear_ti_thread_flag(c_idle.idle->thread_info, TIF_FORK);
757
758 printk(KERN_INFO "Booting processor %d/%d APIC 0x%x\n", cpu,
759 cpus_weight(cpu_present_map),
760 apicid);
761
762 /*
763 * This grunge runs the startup process for
764 * the targeted processor.
765 */
766
767 atomic_set(&init_deasserted, 0);
768
769 Dprintk("Setting warm reset code and vector.\n");
770
771 CMOS_WRITE(0xa, 0xf);
772 local_flush_tlb();
773 Dprintk("1.\n");
774 *((volatile unsigned short *) phys_to_virt(0x469)) = start_rip >> 4;
775 Dprintk("2.\n");
776 *((volatile unsigned short *) phys_to_virt(0x467)) = start_rip & 0xf;
777 Dprintk("3.\n");
778
779 /*
780 * Be paranoid about clearing APIC errors.
781 */
782 if (APIC_INTEGRATED(apic_version[apicid])) {
783 apic_read_around(APIC_SPIV);
784 apic_write(APIC_ESR, 0);
785 apic_read(APIC_ESR);
786 }
787
788 /*
789 * Status is now clean
790 */
791 boot_error = 0;
792
793 /*
794 * Starting actual IPI sequence...
795 */
796 boot_error = wakeup_secondary_via_INIT(apicid, start_rip);
797
798 if (!boot_error) {
799 /*
800 * allow APs to start initializing.
801 */
802 Dprintk("Before Callout %d.\n", cpu);
803 cpu_set(cpu, cpu_callout_map);
804 Dprintk("After Callout %d.\n", cpu);
805
806 /*
807 * Wait 5s total for a response
808 */
809 for (timeout = 0; timeout < 50000; timeout++) {
810 if (cpu_isset(cpu, cpu_callin_map))
811 break; /* It has booted */
812 udelay(100);
813 }
814
815 if (cpu_isset(cpu, cpu_callin_map)) {
816 /* number CPUs logically, starting from 1 (BSP is 0) */
817 Dprintk("CPU has booted.\n");
818 } else {
819 boot_error = 1;
820 if (*((volatile unsigned char *)phys_to_virt(SMP_TRAMPOLINE_BASE))
821 == 0xA5)
822 /* trampoline started but...? */
823 printk("Stuck ??\n");
824 else
825 /* trampoline code not run */
826 printk("Not responding.\n");
827 #ifdef APIC_DEBUG
828 inquire_remote_apic(apicid);
829 #endif
830 }
831 }
832 if (boot_error) {
833 cpu_clear(cpu, cpu_callout_map); /* was set here (do_boot_cpu()) */
834 clear_bit(cpu, &cpu_initialized); /* was set by cpu_init() */
835 cpu_clear(cpu, cpu_present_map);
836 cpu_clear(cpu, cpu_possible_map);
837 x86_cpu_to_apicid[cpu] = BAD_APICID;
838 x86_cpu_to_log_apicid[cpu] = BAD_APICID;
839 return -EIO;
840 }
841
842 return 0;
843 }
844
845 cycles_t cacheflush_time;
846 unsigned long cache_decay_ticks;
847
848 /*
849 * Cleanup possible dangling ends...
850 */
851 static __cpuinit void smp_cleanup_boot(void)
852 {
853 /*
854 * Paranoid: Set warm reset code and vector here back
855 * to default values.
856 */
857 CMOS_WRITE(0, 0xf);
858
859 /*
860 * Reset trampoline flag
861 */
862 *((volatile int *) phys_to_virt(0x467)) = 0;
863 }
864
865 /*
866 * Fall back to non SMP mode after errors.
867 *
868 * RED-PEN audit/test this more. I bet there is more state messed up here.
869 */
870 static __init void disable_smp(void)
871 {
872 cpu_present_map = cpumask_of_cpu(0);
873 cpu_possible_map = cpumask_of_cpu(0);
874 if (smp_found_config)
875 phys_cpu_present_map = physid_mask_of_physid(boot_cpu_id);
876 else
877 phys_cpu_present_map = physid_mask_of_physid(0);
878 cpu_set(0, cpu_sibling_map[0]);
879 cpu_set(0, cpu_core_map[0]);
880 }
881
882 #ifdef CONFIG_HOTPLUG_CPU
883 /*
884 * cpu_possible_map should be static, it cannot change as cpu's
885 * are onlined, or offlined. The reason is per-cpu data-structures
886 * are allocated by some modules at init time, and dont expect to
887 * do this dynamically on cpu arrival/departure.
888 * cpu_present_map on the other hand can change dynamically.
889 * In case when cpu_hotplug is not compiled, then we resort to current
890 * behaviour, which is cpu_possible == cpu_present.
891 * If cpu-hotplug is supported, then we need to preallocate for all
892 * those NR_CPUS, hence cpu_possible_map represents entire NR_CPUS range.
893 * - Ashok Raj
894 */
895 __init void prefill_possible_map(void)
896 {
897 int i;
898 for (i = 0; i < NR_CPUS; i++)
899 cpu_set(i, cpu_possible_map);
900 }
901 #endif
902
903 /*
904 * Various sanity checks.
905 */
906 static int __init smp_sanity_check(unsigned max_cpus)
907 {
908 if (!physid_isset(hard_smp_processor_id(), phys_cpu_present_map)) {
909 printk("weird, boot CPU (#%d) not listed by the BIOS.\n",
910 hard_smp_processor_id());
911 physid_set(hard_smp_processor_id(), phys_cpu_present_map);
912 }
913
914 /*
915 * If we couldn't find an SMP configuration at boot time,
916 * get out of here now!
917 */
918 if (!smp_found_config) {
919 printk(KERN_NOTICE "SMP motherboard not detected.\n");
920 disable_smp();
921 if (APIC_init_uniprocessor())
922 printk(KERN_NOTICE "Local APIC not detected."
923 " Using dummy APIC emulation.\n");
924 return -1;
925 }
926
927 /*
928 * Should not be necessary because the MP table should list the boot
929 * CPU too, but we do it for the sake of robustness anyway.
930 */
931 if (!physid_isset(boot_cpu_id, phys_cpu_present_map)) {
932 printk(KERN_NOTICE "weird, boot CPU (#%d) not listed by the BIOS.\n",
933 boot_cpu_id);
934 physid_set(hard_smp_processor_id(), phys_cpu_present_map);
935 }
936
937 /*
938 * If we couldn't find a local APIC, then get out of here now!
939 */
940 if (APIC_INTEGRATED(apic_version[boot_cpu_id]) && !cpu_has_apic) {
941 printk(KERN_ERR "BIOS bug, local APIC #%d not detected!...\n",
942 boot_cpu_id);
943 printk(KERN_ERR "... forcing use of dummy APIC emulation. (tell your hw vendor)\n");
944 nr_ioapics = 0;
945 return -1;
946 }
947
948 /*
949 * If SMP should be disabled, then really disable it!
950 */
951 if (!max_cpus) {
952 printk(KERN_INFO "SMP mode deactivated, forcing use of dummy APIC emulation.\n");
953 nr_ioapics = 0;
954 return -1;
955 }
956
957 return 0;
958 }
959
960 /*
961 * Prepare for SMP bootup. The MP table or ACPI has been read
962 * earlier. Just do some sanity checking here and enable APIC mode.
963 */
964 void __init smp_prepare_cpus(unsigned int max_cpus)
965 {
966 nmi_watchdog_default();
967 current_cpu_data = boot_cpu_data;
968 current_thread_info()->cpu = 0; /* needed? */
969
970 if (smp_sanity_check(max_cpus) < 0) {
971 printk(KERN_INFO "SMP disabled\n");
972 disable_smp();
973 return;
974 }
975
976
977 /*
978 * Switch from PIC to APIC mode.
979 */
980 connect_bsp_APIC();
981 setup_local_APIC();
982
983 if (GET_APIC_ID(apic_read(APIC_ID)) != boot_cpu_id) {
984 panic("Boot APIC ID in local APIC unexpected (%d vs %d)",
985 GET_APIC_ID(apic_read(APIC_ID)), boot_cpu_id);
986 /* Or can we switch back to PIC here? */
987 }
988
989 /*
990 * Now start the IO-APICs
991 */
992 if (!skip_ioapic_setup && nr_ioapics)
993 setup_IO_APIC();
994 else
995 nr_ioapics = 0;
996
997 /*
998 * Set up local APIC timer on boot CPU.
999 */
1000
1001 setup_boot_APIC_clock();
1002 }
1003
1004 /*
1005 * Early setup to make printk work.
1006 */
1007 void __init smp_prepare_boot_cpu(void)
1008 {
1009 int me = smp_processor_id();
1010 cpu_set(me, cpu_online_map);
1011 cpu_set(me, cpu_callout_map);
1012 cpu_set(0, cpu_sibling_map[0]);
1013 cpu_set(0, cpu_core_map[0]);
1014 per_cpu(cpu_state, me) = CPU_ONLINE;
1015 }
1016
1017 /*
1018 * Entry point to boot a CPU.
1019 */
1020 int __cpuinit __cpu_up(unsigned int cpu)
1021 {
1022 int err;
1023 int apicid = cpu_present_to_apicid(cpu);
1024
1025 WARN_ON(irqs_disabled());
1026
1027 Dprintk("++++++++++++++++++++=_---CPU UP %u\n", cpu);
1028
1029 if (apicid == BAD_APICID || apicid == boot_cpu_id ||
1030 !physid_isset(apicid, phys_cpu_present_map)) {
1031 printk("__cpu_up: bad cpu %d\n", cpu);
1032 return -EINVAL;
1033 }
1034
1035 /*
1036 * Already booted CPU?
1037 */
1038 if (cpu_isset(cpu, cpu_callin_map)) {
1039 Dprintk("do_boot_cpu %d Already started\n", cpu);
1040 return -ENOSYS;
1041 }
1042
1043 per_cpu(cpu_state, cpu) = CPU_UP_PREPARE;
1044 /* Boot it! */
1045 err = do_boot_cpu(cpu, apicid);
1046 if (err < 0) {
1047 Dprintk("do_boot_cpu failed %d\n", err);
1048 return err;
1049 }
1050
1051 /* Unleash the CPU! */
1052 Dprintk("waiting for cpu %d\n", cpu);
1053
1054 while (!cpu_isset(cpu, cpu_online_map))
1055 cpu_relax();
1056 err = 0;
1057
1058 return err;
1059 }
1060
1061 /*
1062 * Finish the SMP boot.
1063 */
1064 void __init smp_cpus_done(unsigned int max_cpus)
1065 {
1066 #ifndef CONFIG_HOTPLUG_CPU
1067 zap_low_mappings();
1068 #endif
1069 smp_cleanup_boot();
1070
1071 #ifdef CONFIG_X86_IO_APIC
1072 setup_ioapic_dest();
1073 #endif
1074
1075 time_init_gtod();
1076
1077 check_nmi_watchdog();
1078 }
1079
1080 #ifdef CONFIG_HOTPLUG_CPU
1081
1082 static void remove_siblinginfo(int cpu)
1083 {
1084 int sibling;
1085
1086 for_each_cpu_mask(sibling, cpu_sibling_map[cpu])
1087 cpu_clear(cpu, cpu_sibling_map[sibling]);
1088 for_each_cpu_mask(sibling, cpu_core_map[cpu])
1089 cpu_clear(cpu, cpu_core_map[sibling]);
1090 cpus_clear(cpu_sibling_map[cpu]);
1091 cpus_clear(cpu_core_map[cpu]);
1092 phys_proc_id[cpu] = BAD_APICID;
1093 cpu_core_id[cpu] = BAD_APICID;
1094 }
1095
1096 void remove_cpu_from_maps(void)
1097 {
1098 int cpu = smp_processor_id();
1099
1100 cpu_clear(cpu, cpu_callout_map);
1101 cpu_clear(cpu, cpu_callin_map);
1102 clear_bit(cpu, &cpu_initialized); /* was set by cpu_init() */
1103 }
1104
1105 int __cpu_disable(void)
1106 {
1107 int cpu = smp_processor_id();
1108
1109 /*
1110 * Perhaps use cpufreq to drop frequency, but that could go
1111 * into generic code.
1112 *
1113 * We won't take down the boot processor on i386 due to some
1114 * interrupts only being able to be serviced by the BSP.
1115 * Especially so if we're not using an IOAPIC -zwane
1116 */
1117 if (cpu == 0)
1118 return -EBUSY;
1119
1120 disable_APIC_timer();
1121
1122 /*
1123 * HACK:
1124 * Allow any queued timer interrupts to get serviced
1125 * This is only a temporary solution until we cleanup
1126 * fixup_irqs as we do for IA64.
1127 */
1128 local_irq_enable();
1129 mdelay(1);
1130
1131 local_irq_disable();
1132 remove_siblinginfo(cpu);
1133
1134 /* It's now safe to remove this processor from the online map */
1135 cpu_clear(cpu, cpu_online_map);
1136 remove_cpu_from_maps();
1137 fixup_irqs(cpu_online_map);
1138 return 0;
1139 }
1140
1141 void __cpu_die(unsigned int cpu)
1142 {
1143 /* We don't do anything here: idle task is faking death itself. */
1144 unsigned int i;
1145
1146 for (i = 0; i < 10; i++) {
1147 /* They ack this in play_dead by setting CPU_DEAD */
1148 if (per_cpu(cpu_state, cpu) == CPU_DEAD) {
1149 printk ("CPU %d is now offline\n", cpu);
1150 return;
1151 }
1152 msleep(100);
1153 }
1154 printk(KERN_ERR "CPU %u didn't die...\n", cpu);
1155 }
1156
1157 #else /* ... !CONFIG_HOTPLUG_CPU */
1158
1159 int __cpu_disable(void)
1160 {
1161 return -ENOSYS;
1162 }
1163
1164 void __cpu_die(unsigned int cpu)
1165 {
1166 /* We said "no" in __cpu_disable */
1167 BUG();
1168 }
1169 #endif /* CONFIG_HOTPLUG_CPU */
This page took 0.082407 seconds and 6 git commands to generate.