Merge master.kernel.org:/pub/scm/linux/kernel/git/acme/net-2.6
[deliverable/linux.git] / arch / x86_64 / mm / fault.c
1 /*
2 * linux/arch/x86-64/mm/fault.c
3 *
4 * Copyright (C) 1995 Linus Torvalds
5 * Copyright (C) 2001,2002 Andi Kleen, SuSE Labs.
6 */
7
8 #include <linux/config.h>
9 #include <linux/signal.h>
10 #include <linux/sched.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/string.h>
14 #include <linux/types.h>
15 #include <linux/ptrace.h>
16 #include <linux/mman.h>
17 #include <linux/mm.h>
18 #include <linux/smp.h>
19 #include <linux/smp_lock.h>
20 #include <linux/interrupt.h>
21 #include <linux/init.h>
22 #include <linux/tty.h>
23 #include <linux/vt_kern.h> /* For unblank_screen() */
24 #include <linux/compiler.h>
25 #include <linux/module.h>
26 #include <linux/kprobes.h>
27
28 #include <asm/system.h>
29 #include <asm/uaccess.h>
30 #include <asm/pgalloc.h>
31 #include <asm/smp.h>
32 #include <asm/tlbflush.h>
33 #include <asm/proto.h>
34 #include <asm/kdebug.h>
35 #include <asm-generic/sections.h>
36 #include <asm/kdebug.h>
37
38 void bust_spinlocks(int yes)
39 {
40 int loglevel_save = console_loglevel;
41 if (yes) {
42 oops_in_progress = 1;
43 } else {
44 #ifdef CONFIG_VT
45 unblank_screen();
46 #endif
47 oops_in_progress = 0;
48 /*
49 * OK, the message is on the console. Now we call printk()
50 * without oops_in_progress set so that printk will give klogd
51 * a poke. Hold onto your hats...
52 */
53 console_loglevel = 15; /* NMI oopser may have shut the console up */
54 printk(" ");
55 console_loglevel = loglevel_save;
56 }
57 }
58
59 /* Sometimes the CPU reports invalid exceptions on prefetch.
60 Check that here and ignore.
61 Opcode checker based on code by Richard Brunner */
62 static noinline int is_prefetch(struct pt_regs *regs, unsigned long addr,
63 unsigned long error_code)
64 {
65 unsigned char *instr;
66 int scan_more = 1;
67 int prefetch = 0;
68 unsigned char *max_instr;
69
70 /* If it was a exec fault ignore */
71 if (error_code & (1<<4))
72 return 0;
73
74 instr = (unsigned char *)convert_rip_to_linear(current, regs);
75 max_instr = instr + 15;
76
77 if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE)
78 return 0;
79
80 while (scan_more && instr < max_instr) {
81 unsigned char opcode;
82 unsigned char instr_hi;
83 unsigned char instr_lo;
84
85 if (__get_user(opcode, instr))
86 break;
87
88 instr_hi = opcode & 0xf0;
89 instr_lo = opcode & 0x0f;
90 instr++;
91
92 switch (instr_hi) {
93 case 0x20:
94 case 0x30:
95 /* Values 0x26,0x2E,0x36,0x3E are valid x86
96 prefixes. In long mode, the CPU will signal
97 invalid opcode if some of these prefixes are
98 present so we will never get here anyway */
99 scan_more = ((instr_lo & 7) == 0x6);
100 break;
101
102 case 0x40:
103 /* In AMD64 long mode, 0x40 to 0x4F are valid REX prefixes
104 Need to figure out under what instruction mode the
105 instruction was issued ... */
106 /* Could check the LDT for lm, but for now it's good
107 enough to assume that long mode only uses well known
108 segments or kernel. */
109 scan_more = (!user_mode(regs)) || (regs->cs == __USER_CS);
110 break;
111
112 case 0x60:
113 /* 0x64 thru 0x67 are valid prefixes in all modes. */
114 scan_more = (instr_lo & 0xC) == 0x4;
115 break;
116 case 0xF0:
117 /* 0xF0, 0xF2, and 0xF3 are valid prefixes in all modes. */
118 scan_more = !instr_lo || (instr_lo>>1) == 1;
119 break;
120 case 0x00:
121 /* Prefetch instruction is 0x0F0D or 0x0F18 */
122 scan_more = 0;
123 if (__get_user(opcode, instr))
124 break;
125 prefetch = (instr_lo == 0xF) &&
126 (opcode == 0x0D || opcode == 0x18);
127 break;
128 default:
129 scan_more = 0;
130 break;
131 }
132 }
133 return prefetch;
134 }
135
136 static int bad_address(void *p)
137 {
138 unsigned long dummy;
139 return __get_user(dummy, (unsigned long *)p);
140 }
141
142 void dump_pagetable(unsigned long address)
143 {
144 pgd_t *pgd;
145 pud_t *pud;
146 pmd_t *pmd;
147 pte_t *pte;
148
149 asm("movq %%cr3,%0" : "=r" (pgd));
150
151 pgd = __va((unsigned long)pgd & PHYSICAL_PAGE_MASK);
152 pgd += pgd_index(address);
153 printk("PGD %lx ", pgd_val(*pgd));
154 if (bad_address(pgd)) goto bad;
155 if (!pgd_present(*pgd)) goto ret;
156
157 pud = __pud_offset_k((pud_t *)pgd_page(*pgd), address);
158 if (bad_address(pud)) goto bad;
159 printk("PUD %lx ", pud_val(*pud));
160 if (!pud_present(*pud)) goto ret;
161
162 pmd = pmd_offset(pud, address);
163 if (bad_address(pmd)) goto bad;
164 printk("PMD %lx ", pmd_val(*pmd));
165 if (!pmd_present(*pmd)) goto ret;
166
167 pte = pte_offset_kernel(pmd, address);
168 if (bad_address(pte)) goto bad;
169 printk("PTE %lx", pte_val(*pte));
170 ret:
171 printk("\n");
172 return;
173 bad:
174 printk("BAD\n");
175 }
176
177 static const char errata93_warning[] =
178 KERN_ERR "******* Your BIOS seems to not contain a fix for K8 errata #93\n"
179 KERN_ERR "******* Working around it, but it may cause SEGVs or burn power.\n"
180 KERN_ERR "******* Please consider a BIOS update.\n"
181 KERN_ERR "******* Disabling USB legacy in the BIOS may also help.\n";
182
183 /* Workaround for K8 erratum #93 & buggy BIOS.
184 BIOS SMM functions are required to use a specific workaround
185 to avoid corruption of the 64bit RIP register on C stepping K8.
186 A lot of BIOS that didn't get tested properly miss this.
187 The OS sees this as a page fault with the upper 32bits of RIP cleared.
188 Try to work around it here.
189 Note we only handle faults in kernel here. */
190
191 static int is_errata93(struct pt_regs *regs, unsigned long address)
192 {
193 static int warned;
194 if (address != regs->rip)
195 return 0;
196 if ((address >> 32) != 0)
197 return 0;
198 address |= 0xffffffffUL << 32;
199 if ((address >= (u64)_stext && address <= (u64)_etext) ||
200 (address >= MODULES_VADDR && address <= MODULES_END)) {
201 if (!warned) {
202 printk(errata93_warning);
203 warned = 1;
204 }
205 regs->rip = address;
206 return 1;
207 }
208 return 0;
209 }
210
211 int unhandled_signal(struct task_struct *tsk, int sig)
212 {
213 if (tsk->pid == 1)
214 return 1;
215 if (tsk->ptrace & PT_PTRACED)
216 return 0;
217 return (tsk->sighand->action[sig-1].sa.sa_handler == SIG_IGN) ||
218 (tsk->sighand->action[sig-1].sa.sa_handler == SIG_DFL);
219 }
220
221 static noinline void pgtable_bad(unsigned long address, struct pt_regs *regs,
222 unsigned long error_code)
223 {
224 unsigned long flags = oops_begin();
225
226 printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
227 current->comm, address);
228 dump_pagetable(address);
229 __die("Bad pagetable", regs, error_code);
230 oops_end(flags);
231 do_exit(SIGKILL);
232 }
233
234 /*
235 * Handle a fault on the vmalloc or module mapping area
236 *
237 * This assumes no large pages in there.
238 */
239 static int vmalloc_fault(unsigned long address)
240 {
241 pgd_t *pgd, *pgd_ref;
242 pud_t *pud, *pud_ref;
243 pmd_t *pmd, *pmd_ref;
244 pte_t *pte, *pte_ref;
245
246 /* Copy kernel mappings over when needed. This can also
247 happen within a race in page table update. In the later
248 case just flush. */
249
250 pgd = pgd_offset(current->mm ?: &init_mm, address);
251 pgd_ref = pgd_offset_k(address);
252 if (pgd_none(*pgd_ref))
253 return -1;
254 if (pgd_none(*pgd))
255 set_pgd(pgd, *pgd_ref);
256
257 /* Below here mismatches are bugs because these lower tables
258 are shared */
259
260 pud = pud_offset(pgd, address);
261 pud_ref = pud_offset(pgd_ref, address);
262 if (pud_none(*pud_ref))
263 return -1;
264 if (pud_none(*pud) || pud_page(*pud) != pud_page(*pud_ref))
265 BUG();
266 pmd = pmd_offset(pud, address);
267 pmd_ref = pmd_offset(pud_ref, address);
268 if (pmd_none(*pmd_ref))
269 return -1;
270 if (pmd_none(*pmd) || pmd_page(*pmd) != pmd_page(*pmd_ref))
271 BUG();
272 pte_ref = pte_offset_kernel(pmd_ref, address);
273 if (!pte_present(*pte_ref))
274 return -1;
275 pte = pte_offset_kernel(pmd, address);
276 /* Don't use pte_page here, because the mappings can point
277 outside mem_map, and the NUMA hash lookup cannot handle
278 that. */
279 if (!pte_present(*pte) || pte_pfn(*pte) != pte_pfn(*pte_ref))
280 BUG();
281 __flush_tlb_all();
282 return 0;
283 }
284
285 int page_fault_trace = 0;
286 int exception_trace = 1;
287
288 /*
289 * This routine handles page faults. It determines the address,
290 * and the problem, and then passes it off to one of the appropriate
291 * routines.
292 *
293 * error_code:
294 * bit 0 == 0 means no page found, 1 means protection fault
295 * bit 1 == 0 means read, 1 means write
296 * bit 2 == 0 means kernel, 1 means user-mode
297 * bit 3 == 1 means fault was an instruction fetch
298 */
299 asmlinkage void __kprobes do_page_fault(struct pt_regs *regs,
300 unsigned long error_code)
301 {
302 struct task_struct *tsk;
303 struct mm_struct *mm;
304 struct vm_area_struct * vma;
305 unsigned long address;
306 const struct exception_table_entry *fixup;
307 int write;
308 unsigned long flags;
309 siginfo_t info;
310
311 #ifdef CONFIG_CHECKING
312 {
313 unsigned long gs;
314 struct x8664_pda *pda = cpu_pda + stack_smp_processor_id();
315 rdmsrl(MSR_GS_BASE, gs);
316 if (gs != (unsigned long)pda) {
317 wrmsrl(MSR_GS_BASE, pda);
318 printk("page_fault: wrong gs %lx expected %p\n", gs, pda);
319 }
320 }
321 #endif
322
323 /* get the address */
324 __asm__("movq %%cr2,%0":"=r" (address));
325 if (notify_die(DIE_PAGE_FAULT, "page fault", regs, error_code, 14,
326 SIGSEGV) == NOTIFY_STOP)
327 return;
328
329 if (likely(regs->eflags & X86_EFLAGS_IF))
330 local_irq_enable();
331
332 if (unlikely(page_fault_trace))
333 printk("pagefault rip:%lx rsp:%lx cs:%lu ss:%lu address %lx error %lx\n",
334 regs->rip,regs->rsp,regs->cs,regs->ss,address,error_code);
335
336 tsk = current;
337 mm = tsk->mm;
338 info.si_code = SEGV_MAPERR;
339
340
341 /*
342 * We fault-in kernel-space virtual memory on-demand. The
343 * 'reference' page table is init_mm.pgd.
344 *
345 * NOTE! We MUST NOT take any locks for this case. We may
346 * be in an interrupt or a critical region, and should
347 * only copy the information from the master page table,
348 * nothing more.
349 *
350 * This verifies that the fault happens in kernel space
351 * (error_code & 4) == 0, and that the fault was not a
352 * protection error (error_code & 1) == 0.
353 */
354 if (unlikely(address >= TASK_SIZE64)) {
355 if (!(error_code & 5) &&
356 ((address >= VMALLOC_START && address < VMALLOC_END) ||
357 (address >= MODULES_VADDR && address < MODULES_END))) {
358 if (vmalloc_fault(address) < 0)
359 goto bad_area_nosemaphore;
360 return;
361 }
362 /*
363 * Don't take the mm semaphore here. If we fixup a prefetch
364 * fault we could otherwise deadlock.
365 */
366 goto bad_area_nosemaphore;
367 }
368
369 if (unlikely(error_code & (1 << 3)))
370 pgtable_bad(address, regs, error_code);
371
372 /*
373 * If we're in an interrupt or have no user
374 * context, we must not take the fault..
375 */
376 if (unlikely(in_atomic() || !mm))
377 goto bad_area_nosemaphore;
378
379 again:
380 /* When running in the kernel we expect faults to occur only to
381 * addresses in user space. All other faults represent errors in the
382 * kernel and should generate an OOPS. Unfortunatly, in the case of an
383 * erroneous fault occuring in a code path which already holds mmap_sem
384 * we will deadlock attempting to validate the fault against the
385 * address space. Luckily the kernel only validly references user
386 * space from well defined areas of code, which are listed in the
387 * exceptions table.
388 *
389 * As the vast majority of faults will be valid we will only perform
390 * the source reference check when there is a possibilty of a deadlock.
391 * Attempt to lock the address space, if we cannot we then validate the
392 * source. If this is invalid we can skip the address space check,
393 * thus avoiding the deadlock.
394 */
395 if (!down_read_trylock(&mm->mmap_sem)) {
396 if ((error_code & 4) == 0 &&
397 !search_exception_tables(regs->rip))
398 goto bad_area_nosemaphore;
399 down_read(&mm->mmap_sem);
400 }
401
402 vma = find_vma(mm, address);
403 if (!vma)
404 goto bad_area;
405 if (likely(vma->vm_start <= address))
406 goto good_area;
407 if (!(vma->vm_flags & VM_GROWSDOWN))
408 goto bad_area;
409 if (error_code & 4) {
410 // XXX: align red zone size with ABI
411 if (address + 128 < regs->rsp)
412 goto bad_area;
413 }
414 if (expand_stack(vma, address))
415 goto bad_area;
416 /*
417 * Ok, we have a good vm_area for this memory access, so
418 * we can handle it..
419 */
420 good_area:
421 info.si_code = SEGV_ACCERR;
422 write = 0;
423 switch (error_code & 3) {
424 default: /* 3: write, present */
425 /* fall through */
426 case 2: /* write, not present */
427 if (!(vma->vm_flags & VM_WRITE))
428 goto bad_area;
429 write++;
430 break;
431 case 1: /* read, present */
432 goto bad_area;
433 case 0: /* read, not present */
434 if (!(vma->vm_flags & (VM_READ | VM_EXEC)))
435 goto bad_area;
436 }
437
438 /*
439 * If for any reason at all we couldn't handle the fault,
440 * make sure we exit gracefully rather than endlessly redo
441 * the fault.
442 */
443 switch (handle_mm_fault(mm, vma, address, write)) {
444 case VM_FAULT_MINOR:
445 tsk->min_flt++;
446 break;
447 case VM_FAULT_MAJOR:
448 tsk->maj_flt++;
449 break;
450 case VM_FAULT_SIGBUS:
451 goto do_sigbus;
452 default:
453 goto out_of_memory;
454 }
455
456 up_read(&mm->mmap_sem);
457 return;
458
459 /*
460 * Something tried to access memory that isn't in our memory map..
461 * Fix it, but check if it's kernel or user first..
462 */
463 bad_area:
464 up_read(&mm->mmap_sem);
465
466 bad_area_nosemaphore:
467 /* User mode accesses just cause a SIGSEGV */
468 if (error_code & 4) {
469 if (is_prefetch(regs, address, error_code))
470 return;
471
472 /* Work around K8 erratum #100 K8 in compat mode
473 occasionally jumps to illegal addresses >4GB. We
474 catch this here in the page fault handler because
475 these addresses are not reachable. Just detect this
476 case and return. Any code segment in LDT is
477 compatibility mode. */
478 if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) &&
479 (address >> 32))
480 return;
481
482 if (exception_trace && unhandled_signal(tsk, SIGSEGV)) {
483 printk(
484 "%s%s[%d]: segfault at %016lx rip %016lx rsp %016lx error %lx\n",
485 tsk->pid > 1 ? KERN_INFO : KERN_EMERG,
486 tsk->comm, tsk->pid, address, regs->rip,
487 regs->rsp, error_code);
488 }
489
490 tsk->thread.cr2 = address;
491 /* Kernel addresses are always protection faults */
492 tsk->thread.error_code = error_code | (address >= TASK_SIZE);
493 tsk->thread.trap_no = 14;
494 info.si_signo = SIGSEGV;
495 info.si_errno = 0;
496 /* info.si_code has been set above */
497 info.si_addr = (void __user *)address;
498 force_sig_info(SIGSEGV, &info, tsk);
499 return;
500 }
501
502 no_context:
503
504 /* Are we prepared to handle this kernel fault? */
505 fixup = search_exception_tables(regs->rip);
506 if (fixup) {
507 regs->rip = fixup->fixup;
508 return;
509 }
510
511 /*
512 * Hall of shame of CPU/BIOS bugs.
513 */
514
515 if (is_prefetch(regs, address, error_code))
516 return;
517
518 if (is_errata93(regs, address))
519 return;
520
521 /*
522 * Oops. The kernel tried to access some bad page. We'll have to
523 * terminate things with extreme prejudice.
524 */
525
526 flags = oops_begin();
527
528 if (address < PAGE_SIZE)
529 printk(KERN_ALERT "Unable to handle kernel NULL pointer dereference");
530 else
531 printk(KERN_ALERT "Unable to handle kernel paging request");
532 printk(" at %016lx RIP: \n" KERN_ALERT,address);
533 printk_address(regs->rip);
534 printk("\n");
535 dump_pagetable(address);
536 __die("Oops", regs, error_code);
537 /* Executive summary in case the body of the oops scrolled away */
538 printk(KERN_EMERG "CR2: %016lx\n", address);
539 oops_end(flags);
540 do_exit(SIGKILL);
541
542 /*
543 * We ran out of memory, or some other thing happened to us that made
544 * us unable to handle the page fault gracefully.
545 */
546 out_of_memory:
547 up_read(&mm->mmap_sem);
548 if (current->pid == 1) {
549 yield();
550 goto again;
551 }
552 printk("VM: killing process %s\n", tsk->comm);
553 if (error_code & 4)
554 do_exit(SIGKILL);
555 goto no_context;
556
557 do_sigbus:
558 up_read(&mm->mmap_sem);
559
560 /* Kernel mode? Handle exceptions or die */
561 if (!(error_code & 4))
562 goto no_context;
563
564 tsk->thread.cr2 = address;
565 tsk->thread.error_code = error_code;
566 tsk->thread.trap_no = 14;
567 info.si_signo = SIGBUS;
568 info.si_errno = 0;
569 info.si_code = BUS_ADRERR;
570 info.si_addr = (void __user *)address;
571 force_sig_info(SIGBUS, &info, tsk);
572 return;
573 }
This page took 0.043563 seconds and 6 git commands to generate.