[PATCH] x86_64: Convert page fault error codes to symbolic constants.
[deliverable/linux.git] / arch / x86_64 / mm / fault.c
1 /*
2 * linux/arch/x86-64/mm/fault.c
3 *
4 * Copyright (C) 1995 Linus Torvalds
5 * Copyright (C) 2001,2002 Andi Kleen, SuSE Labs.
6 */
7
8 #include <linux/config.h>
9 #include <linux/signal.h>
10 #include <linux/sched.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/string.h>
14 #include <linux/types.h>
15 #include <linux/ptrace.h>
16 #include <linux/mman.h>
17 #include <linux/mm.h>
18 #include <linux/smp.h>
19 #include <linux/smp_lock.h>
20 #include <linux/interrupt.h>
21 #include <linux/init.h>
22 #include <linux/tty.h>
23 #include <linux/vt_kern.h> /* For unblank_screen() */
24 #include <linux/compiler.h>
25 #include <linux/module.h>
26 #include <linux/kprobes.h>
27
28 #include <asm/system.h>
29 #include <asm/uaccess.h>
30 #include <asm/pgalloc.h>
31 #include <asm/smp.h>
32 #include <asm/tlbflush.h>
33 #include <asm/proto.h>
34 #include <asm/kdebug.h>
35 #include <asm-generic/sections.h>
36 #include <asm/kdebug.h>
37
38 /* Page fault error code bits */
39 #define PF_PROT (1<<0) /* or no page found */
40 #define PF_WRITE (1<<1)
41 #define PF_USER (1<<2)
42 #define PF_RSVD (1<<3)
43 #define PF_INSTR (1<<4)
44
45 void bust_spinlocks(int yes)
46 {
47 int loglevel_save = console_loglevel;
48 if (yes) {
49 oops_in_progress = 1;
50 } else {
51 #ifdef CONFIG_VT
52 unblank_screen();
53 #endif
54 oops_in_progress = 0;
55 /*
56 * OK, the message is on the console. Now we call printk()
57 * without oops_in_progress set so that printk will give klogd
58 * a poke. Hold onto your hats...
59 */
60 console_loglevel = 15; /* NMI oopser may have shut the console up */
61 printk(" ");
62 console_loglevel = loglevel_save;
63 }
64 }
65
66 /* Sometimes the CPU reports invalid exceptions on prefetch.
67 Check that here and ignore.
68 Opcode checker based on code by Richard Brunner */
69 static noinline int is_prefetch(struct pt_regs *regs, unsigned long addr,
70 unsigned long error_code)
71 {
72 unsigned char *instr;
73 int scan_more = 1;
74 int prefetch = 0;
75 unsigned char *max_instr;
76
77 /* If it was a exec fault ignore */
78 if (error_code & PF_INSTR)
79 return 0;
80
81 instr = (unsigned char *)convert_rip_to_linear(current, regs);
82 max_instr = instr + 15;
83
84 if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE)
85 return 0;
86
87 while (scan_more && instr < max_instr) {
88 unsigned char opcode;
89 unsigned char instr_hi;
90 unsigned char instr_lo;
91
92 if (__get_user(opcode, instr))
93 break;
94
95 instr_hi = opcode & 0xf0;
96 instr_lo = opcode & 0x0f;
97 instr++;
98
99 switch (instr_hi) {
100 case 0x20:
101 case 0x30:
102 /* Values 0x26,0x2E,0x36,0x3E are valid x86
103 prefixes. In long mode, the CPU will signal
104 invalid opcode if some of these prefixes are
105 present so we will never get here anyway */
106 scan_more = ((instr_lo & 7) == 0x6);
107 break;
108
109 case 0x40:
110 /* In AMD64 long mode, 0x40 to 0x4F are valid REX prefixes
111 Need to figure out under what instruction mode the
112 instruction was issued ... */
113 /* Could check the LDT for lm, but for now it's good
114 enough to assume that long mode only uses well known
115 segments or kernel. */
116 scan_more = (!user_mode(regs)) || (regs->cs == __USER_CS);
117 break;
118
119 case 0x60:
120 /* 0x64 thru 0x67 are valid prefixes in all modes. */
121 scan_more = (instr_lo & 0xC) == 0x4;
122 break;
123 case 0xF0:
124 /* 0xF0, 0xF2, and 0xF3 are valid prefixes in all modes. */
125 scan_more = !instr_lo || (instr_lo>>1) == 1;
126 break;
127 case 0x00:
128 /* Prefetch instruction is 0x0F0D or 0x0F18 */
129 scan_more = 0;
130 if (__get_user(opcode, instr))
131 break;
132 prefetch = (instr_lo == 0xF) &&
133 (opcode == 0x0D || opcode == 0x18);
134 break;
135 default:
136 scan_more = 0;
137 break;
138 }
139 }
140 return prefetch;
141 }
142
143 static int bad_address(void *p)
144 {
145 unsigned long dummy;
146 return __get_user(dummy, (unsigned long *)p);
147 }
148
149 void dump_pagetable(unsigned long address)
150 {
151 pgd_t *pgd;
152 pud_t *pud;
153 pmd_t *pmd;
154 pte_t *pte;
155
156 asm("movq %%cr3,%0" : "=r" (pgd));
157
158 pgd = __va((unsigned long)pgd & PHYSICAL_PAGE_MASK);
159 pgd += pgd_index(address);
160 printk("PGD %lx ", pgd_val(*pgd));
161 if (bad_address(pgd)) goto bad;
162 if (!pgd_present(*pgd)) goto ret;
163
164 pud = __pud_offset_k((pud_t *)pgd_page(*pgd), address);
165 if (bad_address(pud)) goto bad;
166 printk("PUD %lx ", pud_val(*pud));
167 if (!pud_present(*pud)) goto ret;
168
169 pmd = pmd_offset(pud, address);
170 if (bad_address(pmd)) goto bad;
171 printk("PMD %lx ", pmd_val(*pmd));
172 if (!pmd_present(*pmd)) goto ret;
173
174 pte = pte_offset_kernel(pmd, address);
175 if (bad_address(pte)) goto bad;
176 printk("PTE %lx", pte_val(*pte));
177 ret:
178 printk("\n");
179 return;
180 bad:
181 printk("BAD\n");
182 }
183
184 static const char errata93_warning[] =
185 KERN_ERR "******* Your BIOS seems to not contain a fix for K8 errata #93\n"
186 KERN_ERR "******* Working around it, but it may cause SEGVs or burn power.\n"
187 KERN_ERR "******* Please consider a BIOS update.\n"
188 KERN_ERR "******* Disabling USB legacy in the BIOS may also help.\n";
189
190 /* Workaround for K8 erratum #93 & buggy BIOS.
191 BIOS SMM functions are required to use a specific workaround
192 to avoid corruption of the 64bit RIP register on C stepping K8.
193 A lot of BIOS that didn't get tested properly miss this.
194 The OS sees this as a page fault with the upper 32bits of RIP cleared.
195 Try to work around it here.
196 Note we only handle faults in kernel here. */
197
198 static int is_errata93(struct pt_regs *regs, unsigned long address)
199 {
200 static int warned;
201 if (address != regs->rip)
202 return 0;
203 if ((address >> 32) != 0)
204 return 0;
205 address |= 0xffffffffUL << 32;
206 if ((address >= (u64)_stext && address <= (u64)_etext) ||
207 (address >= MODULES_VADDR && address <= MODULES_END)) {
208 if (!warned) {
209 printk(errata93_warning);
210 warned = 1;
211 }
212 regs->rip = address;
213 return 1;
214 }
215 return 0;
216 }
217
218 int unhandled_signal(struct task_struct *tsk, int sig)
219 {
220 if (tsk->pid == 1)
221 return 1;
222 if (tsk->ptrace & PT_PTRACED)
223 return 0;
224 return (tsk->sighand->action[sig-1].sa.sa_handler == SIG_IGN) ||
225 (tsk->sighand->action[sig-1].sa.sa_handler == SIG_DFL);
226 }
227
228 static noinline void pgtable_bad(unsigned long address, struct pt_regs *regs,
229 unsigned long error_code)
230 {
231 unsigned long flags = oops_begin();
232 struct task_struct *tsk;
233
234 printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
235 current->comm, address);
236 dump_pagetable(address);
237 tsk = current;
238 tsk->thread.cr2 = address;
239 tsk->thread.trap_no = 14;
240 tsk->thread.error_code = error_code;
241 __die("Bad pagetable", regs, error_code);
242 oops_end(flags);
243 do_exit(SIGKILL);
244 }
245
246 /*
247 * Handle a fault on the vmalloc area
248 *
249 * This assumes no large pages in there.
250 */
251 static int vmalloc_fault(unsigned long address)
252 {
253 pgd_t *pgd, *pgd_ref;
254 pud_t *pud, *pud_ref;
255 pmd_t *pmd, *pmd_ref;
256 pte_t *pte, *pte_ref;
257
258 /* Copy kernel mappings over when needed. This can also
259 happen within a race in page table update. In the later
260 case just flush. */
261
262 pgd = pgd_offset(current->mm ?: &init_mm, address);
263 pgd_ref = pgd_offset_k(address);
264 if (pgd_none(*pgd_ref))
265 return -1;
266 if (pgd_none(*pgd))
267 set_pgd(pgd, *pgd_ref);
268
269 /* Below here mismatches are bugs because these lower tables
270 are shared */
271
272 pud = pud_offset(pgd, address);
273 pud_ref = pud_offset(pgd_ref, address);
274 if (pud_none(*pud_ref))
275 return -1;
276 if (pud_none(*pud) || pud_page(*pud) != pud_page(*pud_ref))
277 BUG();
278 pmd = pmd_offset(pud, address);
279 pmd_ref = pmd_offset(pud_ref, address);
280 if (pmd_none(*pmd_ref))
281 return -1;
282 if (pmd_none(*pmd) || pmd_page(*pmd) != pmd_page(*pmd_ref))
283 BUG();
284 pte_ref = pte_offset_kernel(pmd_ref, address);
285 if (!pte_present(*pte_ref))
286 return -1;
287 pte = pte_offset_kernel(pmd, address);
288 /* Don't use pte_page here, because the mappings can point
289 outside mem_map, and the NUMA hash lookup cannot handle
290 that. */
291 if (!pte_present(*pte) || pte_pfn(*pte) != pte_pfn(*pte_ref))
292 BUG();
293 return 0;
294 }
295
296 int page_fault_trace = 0;
297 int exception_trace = 1;
298
299 /*
300 * This routine handles page faults. It determines the address,
301 * and the problem, and then passes it off to one of the appropriate
302 * routines.
303 */
304 asmlinkage void __kprobes do_page_fault(struct pt_regs *regs,
305 unsigned long error_code)
306 {
307 struct task_struct *tsk;
308 struct mm_struct *mm;
309 struct vm_area_struct * vma;
310 unsigned long address;
311 const struct exception_table_entry *fixup;
312 int write;
313 unsigned long flags;
314 siginfo_t info;
315
316 /* get the address */
317 __asm__("movq %%cr2,%0":"=r" (address));
318 if (notify_die(DIE_PAGE_FAULT, "page fault", regs, error_code, 14,
319 SIGSEGV) == NOTIFY_STOP)
320 return;
321
322 if (likely(regs->eflags & X86_EFLAGS_IF))
323 local_irq_enable();
324
325 if (unlikely(page_fault_trace))
326 printk("pagefault rip:%lx rsp:%lx cs:%lu ss:%lu address %lx error %lx\n",
327 regs->rip,regs->rsp,regs->cs,regs->ss,address,error_code);
328
329 tsk = current;
330 mm = tsk->mm;
331 info.si_code = SEGV_MAPERR;
332
333
334 /*
335 * We fault-in kernel-space virtual memory on-demand. The
336 * 'reference' page table is init_mm.pgd.
337 *
338 * NOTE! We MUST NOT take any locks for this case. We may
339 * be in an interrupt or a critical region, and should
340 * only copy the information from the master page table,
341 * nothing more.
342 *
343 * This verifies that the fault happens in kernel space
344 * (error_code & 4) == 0, and that the fault was not a
345 * protection error (error_code & 9) == 0.
346 */
347 if (unlikely(address >= TASK_SIZE64)) {
348 /*
349 * Don't check for the module range here: its PML4
350 * is always initialized because it's shared with the main
351 * kernel text. Only vmalloc may need PML4 syncups.
352 */
353 if (!(error_code & (PF_RSVD|PF_USER|PF_PROT)) &&
354 ((address >= VMALLOC_START && address < VMALLOC_END))) {
355 if (vmalloc_fault(address) < 0)
356 goto bad_area_nosemaphore;
357 return;
358 }
359 /*
360 * Don't take the mm semaphore here. If we fixup a prefetch
361 * fault we could otherwise deadlock.
362 */
363 goto bad_area_nosemaphore;
364 }
365
366 if (unlikely(error_code & PF_RSVD))
367 pgtable_bad(address, regs, error_code);
368
369 /*
370 * If we're in an interrupt or have no user
371 * context, we must not take the fault..
372 */
373 if (unlikely(in_atomic() || !mm))
374 goto bad_area_nosemaphore;
375
376 again:
377 /* When running in the kernel we expect faults to occur only to
378 * addresses in user space. All other faults represent errors in the
379 * kernel and should generate an OOPS. Unfortunatly, in the case of an
380 * erroneous fault occuring in a code path which already holds mmap_sem
381 * we will deadlock attempting to validate the fault against the
382 * address space. Luckily the kernel only validly references user
383 * space from well defined areas of code, which are listed in the
384 * exceptions table.
385 *
386 * As the vast majority of faults will be valid we will only perform
387 * the source reference check when there is a possibilty of a deadlock.
388 * Attempt to lock the address space, if we cannot we then validate the
389 * source. If this is invalid we can skip the address space check,
390 * thus avoiding the deadlock.
391 */
392 if (!down_read_trylock(&mm->mmap_sem)) {
393 if ((error_code & PF_USER) == 0 &&
394 !search_exception_tables(regs->rip))
395 goto bad_area_nosemaphore;
396 down_read(&mm->mmap_sem);
397 }
398
399 vma = find_vma(mm, address);
400 if (!vma)
401 goto bad_area;
402 if (likely(vma->vm_start <= address))
403 goto good_area;
404 if (!(vma->vm_flags & VM_GROWSDOWN))
405 goto bad_area;
406 if (error_code & 4) {
407 // XXX: align red zone size with ABI
408 if (address + 128 < regs->rsp)
409 goto bad_area;
410 }
411 if (expand_stack(vma, address))
412 goto bad_area;
413 /*
414 * Ok, we have a good vm_area for this memory access, so
415 * we can handle it..
416 */
417 good_area:
418 info.si_code = SEGV_ACCERR;
419 write = 0;
420 switch (error_code & (PF_PROT|PF_WRITE)) {
421 default: /* 3: write, present */
422 /* fall through */
423 case PF_WRITE: /* write, not present */
424 if (!(vma->vm_flags & VM_WRITE))
425 goto bad_area;
426 write++;
427 break;
428 case PF_PROT: /* read, present */
429 goto bad_area;
430 case 0: /* read, not present */
431 if (!(vma->vm_flags & (VM_READ | VM_EXEC)))
432 goto bad_area;
433 }
434
435 /*
436 * If for any reason at all we couldn't handle the fault,
437 * make sure we exit gracefully rather than endlessly redo
438 * the fault.
439 */
440 switch (handle_mm_fault(mm, vma, address, write)) {
441 case VM_FAULT_MINOR:
442 tsk->min_flt++;
443 break;
444 case VM_FAULT_MAJOR:
445 tsk->maj_flt++;
446 break;
447 case VM_FAULT_SIGBUS:
448 goto do_sigbus;
449 default:
450 goto out_of_memory;
451 }
452
453 up_read(&mm->mmap_sem);
454 return;
455
456 /*
457 * Something tried to access memory that isn't in our memory map..
458 * Fix it, but check if it's kernel or user first..
459 */
460 bad_area:
461 up_read(&mm->mmap_sem);
462
463 bad_area_nosemaphore:
464 /* User mode accesses just cause a SIGSEGV */
465 if (error_code & PF_USER) {
466 if (is_prefetch(regs, address, error_code))
467 return;
468
469 /* Work around K8 erratum #100 K8 in compat mode
470 occasionally jumps to illegal addresses >4GB. We
471 catch this here in the page fault handler because
472 these addresses are not reachable. Just detect this
473 case and return. Any code segment in LDT is
474 compatibility mode. */
475 if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) &&
476 (address >> 32))
477 return;
478
479 if (exception_trace && unhandled_signal(tsk, SIGSEGV)) {
480 printk(
481 "%s%s[%d]: segfault at %016lx rip %016lx rsp %016lx error %lx\n",
482 tsk->pid > 1 ? KERN_INFO : KERN_EMERG,
483 tsk->comm, tsk->pid, address, regs->rip,
484 regs->rsp, error_code);
485 }
486
487 tsk->thread.cr2 = address;
488 /* Kernel addresses are always protection faults */
489 tsk->thread.error_code = error_code | (address >= TASK_SIZE);
490 tsk->thread.trap_no = 14;
491 info.si_signo = SIGSEGV;
492 info.si_errno = 0;
493 /* info.si_code has been set above */
494 info.si_addr = (void __user *)address;
495 force_sig_info(SIGSEGV, &info, tsk);
496 return;
497 }
498
499 no_context:
500
501 /* Are we prepared to handle this kernel fault? */
502 fixup = search_exception_tables(regs->rip);
503 if (fixup) {
504 regs->rip = fixup->fixup;
505 return;
506 }
507
508 /*
509 * Hall of shame of CPU/BIOS bugs.
510 */
511
512 if (is_prefetch(regs, address, error_code))
513 return;
514
515 if (is_errata93(regs, address))
516 return;
517
518 /*
519 * Oops. The kernel tried to access some bad page. We'll have to
520 * terminate things with extreme prejudice.
521 */
522
523 flags = oops_begin();
524
525 if (address < PAGE_SIZE)
526 printk(KERN_ALERT "Unable to handle kernel NULL pointer dereference");
527 else
528 printk(KERN_ALERT "Unable to handle kernel paging request");
529 printk(" at %016lx RIP: \n" KERN_ALERT,address);
530 printk_address(regs->rip);
531 printk("\n");
532 dump_pagetable(address);
533 tsk->thread.cr2 = address;
534 tsk->thread.trap_no = 14;
535 tsk->thread.error_code = error_code;
536 __die("Oops", regs, error_code);
537 /* Executive summary in case the body of the oops scrolled away */
538 printk(KERN_EMERG "CR2: %016lx\n", address);
539 oops_end(flags);
540 do_exit(SIGKILL);
541
542 /*
543 * We ran out of memory, or some other thing happened to us that made
544 * us unable to handle the page fault gracefully.
545 */
546 out_of_memory:
547 up_read(&mm->mmap_sem);
548 if (current->pid == 1) {
549 yield();
550 goto again;
551 }
552 printk("VM: killing process %s\n", tsk->comm);
553 if (error_code & 4)
554 do_exit(SIGKILL);
555 goto no_context;
556
557 do_sigbus:
558 up_read(&mm->mmap_sem);
559
560 /* Kernel mode? Handle exceptions or die */
561 if (!(error_code & PF_USER))
562 goto no_context;
563
564 tsk->thread.cr2 = address;
565 tsk->thread.error_code = error_code;
566 tsk->thread.trap_no = 14;
567 info.si_signo = SIGBUS;
568 info.si_errno = 0;
569 info.si_code = BUS_ADRERR;
570 info.si_addr = (void __user *)address;
571 force_sig_info(SIGBUS, &info, tsk);
572 return;
573 }
574
575 static int __init enable_pagefaulttrace(char *str)
576 {
577 page_fault_trace = 1;
578 return 0;
579 }
580 __setup("pagefaulttrace", enable_pagefaulttrace);
This page took 0.045857 seconds and 6 git commands to generate.