Merge tag 'asoc-v4.3-rc6' into asoc-fix-rcar
[deliverable/linux.git] / arch / xtensa / include / asm / pgtable.h
1 /*
2 * include/asm-xtensa/pgtable.h
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 *
8 * Copyright (C) 2001 - 2013 Tensilica Inc.
9 */
10
11 #ifndef _XTENSA_PGTABLE_H
12 #define _XTENSA_PGTABLE_H
13
14 #include <asm-generic/pgtable-nopmd.h>
15 #include <asm/page.h>
16
17 /*
18 * We only use two ring levels, user and kernel space.
19 */
20
21 #define USER_RING 1 /* user ring level */
22 #define KERNEL_RING 0 /* kernel ring level */
23
24 /*
25 * The Xtensa architecture port of Linux has a two-level page table system,
26 * i.e. the logical three-level Linux page table layout is folded.
27 * Each task has the following memory page tables:
28 *
29 * PGD table (page directory), ie. 3rd-level page table:
30 * One page (4 kB) of 1024 (PTRS_PER_PGD) pointers to PTE tables
31 * (Architectures that don't have the PMD folded point to the PMD tables)
32 *
33 * The pointer to the PGD table for a given task can be retrieved from
34 * the task structure (struct task_struct*) t, e.g. current():
35 * (t->mm ? t->mm : t->active_mm)->pgd
36 *
37 * PMD tables (page middle-directory), ie. 2nd-level page tables:
38 * Absent for the Xtensa architecture (folded, PTRS_PER_PMD == 1).
39 *
40 * PTE tables (page table entry), ie. 1st-level page tables:
41 * One page (4 kB) of 1024 (PTRS_PER_PTE) PTEs with a special PTE
42 * invalid_pte_table for absent mappings.
43 *
44 * The individual pages are 4 kB big with special pages for the empty_zero_page.
45 */
46
47 #define PGDIR_SHIFT 22
48 #define PGDIR_SIZE (1UL << PGDIR_SHIFT)
49 #define PGDIR_MASK (~(PGDIR_SIZE-1))
50
51 /*
52 * Entries per page directory level: we use two-level, so
53 * we don't really have any PMD directory physically.
54 */
55 #define PTRS_PER_PTE 1024
56 #define PTRS_PER_PTE_SHIFT 10
57 #define PTRS_PER_PGD 1024
58 #define PGD_ORDER 0
59 #define USER_PTRS_PER_PGD (TASK_SIZE/PGDIR_SIZE)
60 #define FIRST_USER_ADDRESS 0UL
61 #define FIRST_USER_PGD_NR (FIRST_USER_ADDRESS >> PGDIR_SHIFT)
62
63 /*
64 * Virtual memory area. We keep a distance to other memory regions to be
65 * on the safe side. We also use this area for cache aliasing.
66 */
67 #define VMALLOC_START 0xC0000000
68 #define VMALLOC_END 0xC7FEFFFF
69 #define TLBTEMP_BASE_1 0xC7FF0000
70 #define TLBTEMP_BASE_2 (TLBTEMP_BASE_1 + DCACHE_WAY_SIZE)
71 #if 2 * DCACHE_WAY_SIZE > ICACHE_WAY_SIZE
72 #define TLBTEMP_SIZE (2 * DCACHE_WAY_SIZE)
73 #else
74 #define TLBTEMP_SIZE ICACHE_WAY_SIZE
75 #endif
76
77 /*
78 * For the Xtensa architecture, the PTE layout is as follows:
79 *
80 * 31------12 11 10-9 8-6 5-4 3-2 1-0
81 * +-----------------------------------------+
82 * | | Software | HARDWARE |
83 * | PPN | ADW | RI |Attribute|
84 * +-----------------------------------------+
85 * pte_none | MBZ | 01 | 11 | 00 |
86 * +-----------------------------------------+
87 * present | PPN | 0 | 00 | ADW | RI | CA | wx |
88 * +- - - - - - - - - - - - - - - - - - - - -+
89 * (PAGE_NONE)| PPN | 0 | 00 | ADW | 01 | 11 | 11 |
90 * +-----------------------------------------+
91 * swap | index | type | 01 | 11 | 00 |
92 * +-----------------------------------------+
93 *
94 * For T1050 hardware and earlier the layout differs for present and (PAGE_NONE)
95 * +-----------------------------------------+
96 * present | PPN | 0 | 00 | ADW | RI | CA | w1 |
97 * +-----------------------------------------+
98 * (PAGE_NONE)| PPN | 0 | 00 | ADW | 01 | 01 | 00 |
99 * +-----------------------------------------+
100 *
101 * Legend:
102 * PPN Physical Page Number
103 * ADW software: accessed (young) / dirty / writable
104 * RI ring (0=privileged, 1=user, 2 and 3 are unused)
105 * CA cache attribute: 00 bypass, 01 writeback, 10 writethrough
106 * (11 is invalid and used to mark pages that are not present)
107 * w page is writable (hw)
108 * x page is executable (hw)
109 * index swap offset / PAGE_SIZE (bit 11-31: 21 bits -> 8 GB)
110 * (note that the index is always non-zero)
111 * type swap type (5 bits -> 32 types)
112 *
113 * Notes:
114 * - (PROT_NONE) is a special case of 'present' but causes an exception for
115 * any access (read, write, and execute).
116 * - 'multihit-exception' has the highest priority of all MMU exceptions,
117 * so the ring must be set to 'RING_USER' even for 'non-present' pages.
118 * - on older hardware, the exectuable flag was not supported and
119 * used as a 'valid' flag, so it needs to be always set.
120 * - we need to keep track of certain flags in software (dirty and young)
121 * to do this, we use write exceptions and have a separate software w-flag.
122 * - attribute value 1101 (and 1111 on T1050 and earlier) is reserved
123 */
124
125 #define _PAGE_ATTRIB_MASK 0xf
126
127 #define _PAGE_HW_EXEC (1<<0) /* hardware: page is executable */
128 #define _PAGE_HW_WRITE (1<<1) /* hardware: page is writable */
129
130 #define _PAGE_CA_BYPASS (0<<2) /* bypass, non-speculative */
131 #define _PAGE_CA_WB (1<<2) /* write-back */
132 #define _PAGE_CA_WT (2<<2) /* write-through */
133 #define _PAGE_CA_MASK (3<<2)
134 #define _PAGE_CA_INVALID (3<<2)
135
136 /* We use invalid attribute values to distinguish special pte entries */
137 #if XCHAL_HW_VERSION_MAJOR < 2000
138 #define _PAGE_HW_VALID 0x01 /* older HW needed this bit set */
139 #define _PAGE_NONE 0x04
140 #else
141 #define _PAGE_HW_VALID 0x00
142 #define _PAGE_NONE 0x0f
143 #endif
144
145 #define _PAGE_USER (1<<4) /* user access (ring=1) */
146
147 /* Software */
148 #define _PAGE_WRITABLE_BIT 6
149 #define _PAGE_WRITABLE (1<<6) /* software: page writable */
150 #define _PAGE_DIRTY (1<<7) /* software: page dirty */
151 #define _PAGE_ACCESSED (1<<8) /* software: page accessed (read) */
152
153 #ifdef CONFIG_MMU
154
155 #define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY)
156 #define _PAGE_PRESENT (_PAGE_HW_VALID | _PAGE_CA_WB | _PAGE_ACCESSED)
157
158 #define PAGE_NONE __pgprot(_PAGE_NONE | _PAGE_USER)
159 #define PAGE_COPY __pgprot(_PAGE_PRESENT | _PAGE_USER)
160 #define PAGE_COPY_EXEC __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_HW_EXEC)
161 #define PAGE_READONLY __pgprot(_PAGE_PRESENT | _PAGE_USER)
162 #define PAGE_READONLY_EXEC __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_HW_EXEC)
163 #define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_WRITABLE)
164 #define PAGE_SHARED_EXEC \
165 __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_WRITABLE | _PAGE_HW_EXEC)
166 #define PAGE_KERNEL __pgprot(_PAGE_PRESENT | _PAGE_HW_WRITE)
167 #define PAGE_KERNEL_EXEC __pgprot(_PAGE_PRESENT|_PAGE_HW_WRITE|_PAGE_HW_EXEC)
168
169 #if (DCACHE_WAY_SIZE > PAGE_SIZE)
170 # define _PAGE_DIRECTORY (_PAGE_HW_VALID | _PAGE_ACCESSED | _PAGE_CA_BYPASS)
171 #else
172 # define _PAGE_DIRECTORY (_PAGE_HW_VALID | _PAGE_ACCESSED | _PAGE_CA_WB)
173 #endif
174
175 #else /* no mmu */
176
177 # define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY)
178 # define PAGE_NONE __pgprot(0)
179 # define PAGE_SHARED __pgprot(0)
180 # define PAGE_COPY __pgprot(0)
181 # define PAGE_READONLY __pgprot(0)
182 # define PAGE_KERNEL __pgprot(0)
183
184 #endif
185
186 /*
187 * On certain configurations of Xtensa MMUs (eg. the initial Linux config),
188 * the MMU can't do page protection for execute, and considers that the same as
189 * read. Also, write permissions may imply read permissions.
190 * What follows is the closest we can get by reasonable means..
191 * See linux/mm/mmap.c for protection_map[] array that uses these definitions.
192 */
193 #define __P000 PAGE_NONE /* private --- */
194 #define __P001 PAGE_READONLY /* private --r */
195 #define __P010 PAGE_COPY /* private -w- */
196 #define __P011 PAGE_COPY /* private -wr */
197 #define __P100 PAGE_READONLY_EXEC /* private x-- */
198 #define __P101 PAGE_READONLY_EXEC /* private x-r */
199 #define __P110 PAGE_COPY_EXEC /* private xw- */
200 #define __P111 PAGE_COPY_EXEC /* private xwr */
201
202 #define __S000 PAGE_NONE /* shared --- */
203 #define __S001 PAGE_READONLY /* shared --r */
204 #define __S010 PAGE_SHARED /* shared -w- */
205 #define __S011 PAGE_SHARED /* shared -wr */
206 #define __S100 PAGE_READONLY_EXEC /* shared x-- */
207 #define __S101 PAGE_READONLY_EXEC /* shared x-r */
208 #define __S110 PAGE_SHARED_EXEC /* shared xw- */
209 #define __S111 PAGE_SHARED_EXEC /* shared xwr */
210
211 #ifndef __ASSEMBLY__
212
213 #define pte_ERROR(e) \
214 printk("%s:%d: bad pte %08lx.\n", __FILE__, __LINE__, pte_val(e))
215 #define pgd_ERROR(e) \
216 printk("%s:%d: bad pgd entry %08lx.\n", __FILE__, __LINE__, pgd_val(e))
217
218 extern unsigned long empty_zero_page[1024];
219
220 #define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
221
222 #ifdef CONFIG_MMU
223 extern pgd_t swapper_pg_dir[PAGE_SIZE/sizeof(pgd_t)];
224 extern void paging_init(void);
225 #else
226 # define swapper_pg_dir NULL
227 static inline void paging_init(void) { }
228 #endif
229 static inline void pgtable_cache_init(void) { }
230
231 /*
232 * The pmd contains the kernel virtual address of the pte page.
233 */
234 #define pmd_page_vaddr(pmd) ((unsigned long)(pmd_val(pmd) & PAGE_MASK))
235 #define pmd_page(pmd) virt_to_page(pmd_val(pmd))
236
237 /*
238 * pte status.
239 */
240 # define pte_none(pte) (pte_val(pte) == (_PAGE_CA_INVALID | _PAGE_USER))
241 #if XCHAL_HW_VERSION_MAJOR < 2000
242 # define pte_present(pte) ((pte_val(pte) & _PAGE_CA_MASK) != _PAGE_CA_INVALID)
243 #else
244 # define pte_present(pte) \
245 (((pte_val(pte) & _PAGE_CA_MASK) != _PAGE_CA_INVALID) \
246 || ((pte_val(pte) & _PAGE_ATTRIB_MASK) == _PAGE_NONE))
247 #endif
248 #define pte_clear(mm,addr,ptep) \
249 do { update_pte(ptep, __pte(_PAGE_CA_INVALID | _PAGE_USER)); } while (0)
250
251 #define pmd_none(pmd) (!pmd_val(pmd))
252 #define pmd_present(pmd) (pmd_val(pmd) & PAGE_MASK)
253 #define pmd_bad(pmd) (pmd_val(pmd) & ~PAGE_MASK)
254 #define pmd_clear(pmdp) do { set_pmd(pmdp, __pmd(0)); } while (0)
255
256 static inline int pte_write(pte_t pte) { return pte_val(pte) & _PAGE_WRITABLE; }
257 static inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY; }
258 static inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED; }
259 static inline int pte_special(pte_t pte) { return 0; }
260
261 static inline pte_t pte_wrprotect(pte_t pte)
262 { pte_val(pte) &= ~(_PAGE_WRITABLE | _PAGE_HW_WRITE); return pte; }
263 static inline pte_t pte_mkclean(pte_t pte)
264 { pte_val(pte) &= ~(_PAGE_DIRTY | _PAGE_HW_WRITE); return pte; }
265 static inline pte_t pte_mkold(pte_t pte)
266 { pte_val(pte) &= ~_PAGE_ACCESSED; return pte; }
267 static inline pte_t pte_mkdirty(pte_t pte)
268 { pte_val(pte) |= _PAGE_DIRTY; return pte; }
269 static inline pte_t pte_mkyoung(pte_t pte)
270 { pte_val(pte) |= _PAGE_ACCESSED; return pte; }
271 static inline pte_t pte_mkwrite(pte_t pte)
272 { pte_val(pte) |= _PAGE_WRITABLE; return pte; }
273 static inline pte_t pte_mkspecial(pte_t pte)
274 { return pte; }
275
276 #define pgprot_noncached(prot) (__pgprot(pgprot_val(prot) & ~_PAGE_CA_MASK))
277
278 /*
279 * Conversion functions: convert a page and protection to a page entry,
280 * and a page entry and page directory to the page they refer to.
281 */
282
283 #define pte_pfn(pte) (pte_val(pte) >> PAGE_SHIFT)
284 #define pte_same(a,b) (pte_val(a) == pte_val(b))
285 #define pte_page(x) pfn_to_page(pte_pfn(x))
286 #define pfn_pte(pfn, prot) __pte(((pfn) << PAGE_SHIFT) | pgprot_val(prot))
287 #define mk_pte(page, prot) pfn_pte(page_to_pfn(page), prot)
288
289 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
290 {
291 return __pte((pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot));
292 }
293
294 /*
295 * Certain architectures need to do special things when pte's
296 * within a page table are directly modified. Thus, the following
297 * hook is made available.
298 */
299 static inline void update_pte(pte_t *ptep, pte_t pteval)
300 {
301 *ptep = pteval;
302 #if (DCACHE_WAY_SIZE > PAGE_SIZE) && XCHAL_DCACHE_IS_WRITEBACK
303 __asm__ __volatile__ ("dhwb %0, 0" :: "a" (ptep));
304 #endif
305
306 }
307
308 struct mm_struct;
309
310 static inline void
311 set_pte_at(struct mm_struct *mm, unsigned long addr, pte_t *ptep, pte_t pteval)
312 {
313 update_pte(ptep, pteval);
314 }
315
316 static inline void set_pte(pte_t *ptep, pte_t pteval)
317 {
318 update_pte(ptep, pteval);
319 }
320
321 static inline void
322 set_pmd(pmd_t *pmdp, pmd_t pmdval)
323 {
324 *pmdp = pmdval;
325 }
326
327 struct vm_area_struct;
328
329 static inline int
330 ptep_test_and_clear_young(struct vm_area_struct *vma, unsigned long addr,
331 pte_t *ptep)
332 {
333 pte_t pte = *ptep;
334 if (!pte_young(pte))
335 return 0;
336 update_pte(ptep, pte_mkold(pte));
337 return 1;
338 }
339
340 static inline pte_t
341 ptep_get_and_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
342 {
343 pte_t pte = *ptep;
344 pte_clear(mm, addr, ptep);
345 return pte;
346 }
347
348 static inline void
349 ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
350 {
351 pte_t pte = *ptep;
352 update_pte(ptep, pte_wrprotect(pte));
353 }
354
355 /* to find an entry in a kernel page-table-directory */
356 #define pgd_offset_k(address) pgd_offset(&init_mm, address)
357
358 /* to find an entry in a page-table-directory */
359 #define pgd_offset(mm,address) ((mm)->pgd + pgd_index(address))
360
361 #define pgd_index(address) ((address) >> PGDIR_SHIFT)
362
363 /* Find an entry in the second-level page table.. */
364 #define pmd_offset(dir,address) ((pmd_t*)(dir))
365
366 /* Find an entry in the third-level page table.. */
367 #define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
368 #define pte_offset_kernel(dir,addr) \
369 ((pte_t*) pmd_page_vaddr(*(dir)) + pte_index(addr))
370 #define pte_offset_map(dir,addr) pte_offset_kernel((dir),(addr))
371 #define pte_unmap(pte) do { } while (0)
372
373
374 /*
375 * Encode and decode a swap and file entry.
376 */
377 #define SWP_TYPE_BITS 5
378 #define MAX_SWAPFILES_CHECK() BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > SWP_TYPE_BITS)
379
380 #define __swp_type(entry) (((entry).val >> 6) & 0x1f)
381 #define __swp_offset(entry) ((entry).val >> 11)
382 #define __swp_entry(type,offs) \
383 ((swp_entry_t){((type) << 6) | ((offs) << 11) | \
384 _PAGE_CA_INVALID | _PAGE_USER})
385 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
386 #define __swp_entry_to_pte(x) ((pte_t) { (x).val })
387
388 #endif /* !defined (__ASSEMBLY__) */
389
390
391 #ifdef __ASSEMBLY__
392
393 /* Assembly macro _PGD_INDEX is the same as C pgd_index(unsigned long),
394 * _PGD_OFFSET as C pgd_offset(struct mm_struct*, unsigned long),
395 * _PMD_OFFSET as C pmd_offset(pgd_t*, unsigned long)
396 * _PTE_OFFSET as C pte_offset(pmd_t*, unsigned long)
397 *
398 * Note: We require an additional temporary register which can be the same as
399 * the register that holds the address.
400 *
401 * ((pte_t*) ((unsigned long)(pmd_val(*pmd) & PAGE_MASK)) + pte_index(addr))
402 *
403 */
404 #define _PGD_INDEX(rt,rs) extui rt, rs, PGDIR_SHIFT, 32-PGDIR_SHIFT
405 #define _PTE_INDEX(rt,rs) extui rt, rs, PAGE_SHIFT, PTRS_PER_PTE_SHIFT
406
407 #define _PGD_OFFSET(mm,adr,tmp) l32i mm, mm, MM_PGD; \
408 _PGD_INDEX(tmp, adr); \
409 addx4 mm, tmp, mm
410
411 #define _PTE_OFFSET(pmd,adr,tmp) _PTE_INDEX(tmp, adr); \
412 srli pmd, pmd, PAGE_SHIFT; \
413 slli pmd, pmd, PAGE_SHIFT; \
414 addx4 pmd, tmp, pmd
415
416 #else
417
418 #define kern_addr_valid(addr) (1)
419
420 extern void update_mmu_cache(struct vm_area_struct * vma,
421 unsigned long address, pte_t *ptep);
422
423 typedef pte_t *pte_addr_t;
424
425 #endif /* !defined (__ASSEMBLY__) */
426
427 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
428 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
429 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
430 #define __HAVE_ARCH_PTEP_MKDIRTY
431 #define __HAVE_ARCH_PTE_SAME
432 /* We provide our own get_unmapped_area to cope with
433 * SHM area cache aliasing for userland.
434 */
435 #define HAVE_ARCH_UNMAPPED_AREA
436
437 #include <asm-generic/pgtable.h>
438
439 #endif /* _XTENSA_PGTABLE_H */
This page took 0.32409 seconds and 5 git commands to generate.