Tue Jan 9 15:22:53 1996 David Mosberger-Tang <davidm@azstarnet.com>
[deliverable/binutils-gdb.git] / bfd / coff-alpha.c
1 /* BFD back-end for ALPHA Extended-Coff files.
2 Copyright 1993, 1994 Free Software Foundation, Inc.
3 Modified from coff-mips.c by Steve Chamberlain <sac@cygnus.com> and
4 Ian Lance Taylor <ian@cygnus.com>.
5
6 This file is part of BFD, the Binary File Descriptor library.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
21
22 #include "bfd.h"
23 #include "sysdep.h"
24 #include "bfdlink.h"
25 #include "libbfd.h"
26 #include "coff/internal.h"
27 #include "coff/sym.h"
28 #include "coff/symconst.h"
29 #include "coff/ecoff.h"
30 #include "coff/alpha.h"
31 #include "aout/ar.h"
32 #include "libcoff.h"
33 #include "libecoff.h"
34 \f
35 /* Prototypes for static functions. */
36
37 static const bfd_target *alpha_ecoff_object_p PARAMS ((bfd *));
38 static boolean alpha_ecoff_bad_format_hook PARAMS ((bfd *abfd, PTR filehdr));
39 static PTR alpha_ecoff_mkobject_hook PARAMS ((bfd *, PTR filehdr, PTR aouthdr));
40 static void alpha_ecoff_swap_reloc_in PARAMS ((bfd *, PTR,
41 struct internal_reloc *));
42 static void alpha_ecoff_swap_reloc_out PARAMS ((bfd *,
43 const struct internal_reloc *,
44 PTR));
45 static void alpha_adjust_reloc_in PARAMS ((bfd *,
46 const struct internal_reloc *,
47 arelent *));
48 static void alpha_adjust_reloc_out PARAMS ((bfd *, const arelent *,
49 struct internal_reloc *));
50 static bfd_byte *alpha_ecoff_get_relocated_section_contents
51 PARAMS ((bfd *abfd, struct bfd_link_info *, struct bfd_link_order *,
52 bfd_byte *data, boolean relocateable, asymbol **symbols));
53 static bfd_vma alpha_convert_external_reloc
54 PARAMS ((bfd *, struct bfd_link_info *, bfd *, struct external_reloc *,
55 struct ecoff_link_hash_entry *));
56 static boolean alpha_relocate_section PARAMS ((bfd *, struct bfd_link_info *,
57 bfd *, asection *,
58 bfd_byte *, PTR));
59 static boolean alpha_adjust_headers
60 PARAMS ((bfd *, struct internal_filehdr *, struct internal_aouthdr *));
61 static PTR alpha_ecoff_read_ar_hdr PARAMS ((bfd *));
62 static bfd *alpha_ecoff_get_elt_at_filepos PARAMS ((bfd *, file_ptr));
63 static bfd *alpha_ecoff_openr_next_archived_file PARAMS ((bfd *, bfd *));
64 static bfd *alpha_ecoff_get_elt_at_index PARAMS ((bfd *, symindex));
65 \f
66 /* ECOFF has COFF sections, but the debugging information is stored in
67 a completely different format. ECOFF targets use some of the
68 swapping routines from coffswap.h, and some of the generic COFF
69 routines in coffgen.c, but, unlike the real COFF targets, do not
70 use coffcode.h itself.
71
72 Get the generic COFF swapping routines, except for the reloc,
73 symbol, and lineno ones. Give them ecoff names. Define some
74 accessor macros for the large sizes used for Alpha ECOFF. */
75
76 #define GET_FILEHDR_SYMPTR bfd_h_get_64
77 #define PUT_FILEHDR_SYMPTR bfd_h_put_64
78 #define GET_AOUTHDR_TSIZE bfd_h_get_64
79 #define PUT_AOUTHDR_TSIZE bfd_h_put_64
80 #define GET_AOUTHDR_DSIZE bfd_h_get_64
81 #define PUT_AOUTHDR_DSIZE bfd_h_put_64
82 #define GET_AOUTHDR_BSIZE bfd_h_get_64
83 #define PUT_AOUTHDR_BSIZE bfd_h_put_64
84 #define GET_AOUTHDR_ENTRY bfd_h_get_64
85 #define PUT_AOUTHDR_ENTRY bfd_h_put_64
86 #define GET_AOUTHDR_TEXT_START bfd_h_get_64
87 #define PUT_AOUTHDR_TEXT_START bfd_h_put_64
88 #define GET_AOUTHDR_DATA_START bfd_h_get_64
89 #define PUT_AOUTHDR_DATA_START bfd_h_put_64
90 #define GET_SCNHDR_PADDR bfd_h_get_64
91 #define PUT_SCNHDR_PADDR bfd_h_put_64
92 #define GET_SCNHDR_VADDR bfd_h_get_64
93 #define PUT_SCNHDR_VADDR bfd_h_put_64
94 #define GET_SCNHDR_SIZE bfd_h_get_64
95 #define PUT_SCNHDR_SIZE bfd_h_put_64
96 #define GET_SCNHDR_SCNPTR bfd_h_get_64
97 #define PUT_SCNHDR_SCNPTR bfd_h_put_64
98 #define GET_SCNHDR_RELPTR bfd_h_get_64
99 #define PUT_SCNHDR_RELPTR bfd_h_put_64
100 #define GET_SCNHDR_LNNOPTR bfd_h_get_64
101 #define PUT_SCNHDR_LNNOPTR bfd_h_put_64
102
103 #define ALPHAECOFF
104
105 #define NO_COFF_RELOCS
106 #define NO_COFF_SYMBOLS
107 #define NO_COFF_LINENOS
108 #define coff_swap_filehdr_in alpha_ecoff_swap_filehdr_in
109 #define coff_swap_filehdr_out alpha_ecoff_swap_filehdr_out
110 #define coff_swap_aouthdr_in alpha_ecoff_swap_aouthdr_in
111 #define coff_swap_aouthdr_out alpha_ecoff_swap_aouthdr_out
112 #define coff_swap_scnhdr_in alpha_ecoff_swap_scnhdr_in
113 #define coff_swap_scnhdr_out alpha_ecoff_swap_scnhdr_out
114 #include "coffswap.h"
115
116 /* Get the ECOFF swapping routines. */
117 #define ECOFF_64
118 #include "ecoffswap.h"
119 \f
120 /* How to process the various reloc types. */
121
122 static bfd_reloc_status_type
123 reloc_nil PARAMS ((bfd *, arelent *, asymbol *, PTR,
124 asection *, bfd *, char **));
125
126 static bfd_reloc_status_type
127 reloc_nil (abfd, reloc, sym, data, sec, output_bfd, error_message)
128 bfd *abfd;
129 arelent *reloc;
130 asymbol *sym;
131 PTR data;
132 asection *sec;
133 bfd *output_bfd;
134 char **error_message;
135 {
136 return bfd_reloc_ok;
137 }
138
139 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
140 from smaller values. Start with zero, widen, *then* decrement. */
141 #define MINUS_ONE (((bfd_vma)0) - 1)
142
143 static reloc_howto_type alpha_howto_table[] =
144 {
145 /* Reloc type 0 is ignored by itself. However, it appears after a
146 GPDISP reloc to identify the location where the low order 16 bits
147 of the gp register are loaded. */
148 HOWTO (ALPHA_R_IGNORE, /* type */
149 0, /* rightshift */
150 0, /* size (0 = byte, 1 = short, 2 = long) */
151 8, /* bitsize */
152 true, /* pc_relative */
153 0, /* bitpos */
154 complain_overflow_dont, /* complain_on_overflow */
155 reloc_nil, /* special_function */
156 "IGNORE", /* name */
157 true, /* partial_inplace */
158 0, /* src_mask */
159 0, /* dst_mask */
160 true), /* pcrel_offset */
161
162 /* A 32 bit reference to a symbol. */
163 HOWTO (ALPHA_R_REFLONG, /* type */
164 0, /* rightshift */
165 2, /* size (0 = byte, 1 = short, 2 = long) */
166 32, /* bitsize */
167 false, /* pc_relative */
168 0, /* bitpos */
169 complain_overflow_bitfield, /* complain_on_overflow */
170 0, /* special_function */
171 "REFLONG", /* name */
172 true, /* partial_inplace */
173 0xffffffff, /* src_mask */
174 0xffffffff, /* dst_mask */
175 false), /* pcrel_offset */
176
177 /* A 64 bit reference to a symbol. */
178 HOWTO (ALPHA_R_REFQUAD, /* type */
179 0, /* rightshift */
180 4, /* size (0 = byte, 1 = short, 2 = long) */
181 64, /* bitsize */
182 false, /* pc_relative */
183 0, /* bitpos */
184 complain_overflow_bitfield, /* complain_on_overflow */
185 0, /* special_function */
186 "REFQUAD", /* name */
187 true, /* partial_inplace */
188 MINUS_ONE, /* src_mask */
189 MINUS_ONE, /* dst_mask */
190 false), /* pcrel_offset */
191
192 /* A 32 bit GP relative offset. This is just like REFLONG except
193 that when the value is used the value of the gp register will be
194 added in. */
195 HOWTO (ALPHA_R_GPREL32, /* type */
196 0, /* rightshift */
197 2, /* size (0 = byte, 1 = short, 2 = long) */
198 32, /* bitsize */
199 false, /* pc_relative */
200 0, /* bitpos */
201 complain_overflow_bitfield, /* complain_on_overflow */
202 0, /* special_function */
203 "GPREL32", /* name */
204 true, /* partial_inplace */
205 0xffffffff, /* src_mask */
206 0xffffffff, /* dst_mask */
207 false), /* pcrel_offset */
208
209 /* Used for an instruction that refers to memory off the GP
210 register. The offset is 16 bits of the 32 bit instruction. This
211 reloc always seems to be against the .lita section. */
212 HOWTO (ALPHA_R_LITERAL, /* type */
213 0, /* rightshift */
214 2, /* size (0 = byte, 1 = short, 2 = long) */
215 16, /* bitsize */
216 false, /* pc_relative */
217 0, /* bitpos */
218 complain_overflow_signed, /* complain_on_overflow */
219 0, /* special_function */
220 "LITERAL", /* name */
221 true, /* partial_inplace */
222 0xffff, /* src_mask */
223 0xffff, /* dst_mask */
224 false), /* pcrel_offset */
225
226 /* This reloc only appears immediately following a LITERAL reloc.
227 It identifies a use of the literal. It seems that the linker can
228 use this to eliminate a portion of the .lita section. The symbol
229 index is special: 1 means the literal address is in the base
230 register of a memory format instruction; 2 means the literal
231 address is in the byte offset register of a byte-manipulation
232 instruction; 3 means the literal address is in the target
233 register of a jsr instruction. This does not actually do any
234 relocation. */
235 HOWTO (ALPHA_R_LITUSE, /* type */
236 0, /* rightshift */
237 2, /* size (0 = byte, 1 = short, 2 = long) */
238 32, /* bitsize */
239 false, /* pc_relative */
240 0, /* bitpos */
241 complain_overflow_dont, /* complain_on_overflow */
242 reloc_nil, /* special_function */
243 "LITUSE", /* name */
244 false, /* partial_inplace */
245 0, /* src_mask */
246 0, /* dst_mask */
247 false), /* pcrel_offset */
248
249 /* Load the gp register. This is always used for a ldah instruction
250 which loads the upper 16 bits of the gp register. The next reloc
251 will be an IGNORE reloc which identifies the location of the lda
252 instruction which loads the lower 16 bits. The symbol index of
253 the GPDISP instruction appears to actually be the number of bytes
254 between the ldah and lda instructions. This gives two different
255 ways to determine where the lda instruction is; I don't know why
256 both are used. The value to use for the relocation is the
257 difference between the GP value and the current location; the
258 load will always be done against a register holding the current
259 address. */
260 HOWTO (ALPHA_R_GPDISP, /* type */
261 16, /* rightshift */
262 2, /* size (0 = byte, 1 = short, 2 = long) */
263 16, /* bitsize */
264 true, /* pc_relative */
265 0, /* bitpos */
266 complain_overflow_dont, /* complain_on_overflow */
267 reloc_nil, /* special_function */
268 "GPDISP", /* name */
269 true, /* partial_inplace */
270 0xffff, /* src_mask */
271 0xffff, /* dst_mask */
272 true), /* pcrel_offset */
273
274 /* A 21 bit branch. The native assembler generates these for
275 branches within the text segment, and also fills in the PC
276 relative offset in the instruction. */
277 HOWTO (ALPHA_R_BRADDR, /* type */
278 2, /* rightshift */
279 2, /* size (0 = byte, 1 = short, 2 = long) */
280 21, /* bitsize */
281 true, /* pc_relative */
282 0, /* bitpos */
283 complain_overflow_signed, /* complain_on_overflow */
284 0, /* special_function */
285 "BRADDR", /* name */
286 true, /* partial_inplace */
287 0x1fffff, /* src_mask */
288 0x1fffff, /* dst_mask */
289 false), /* pcrel_offset */
290
291 /* A hint for a jump to a register. */
292 HOWTO (ALPHA_R_HINT, /* type */
293 2, /* rightshift */
294 2, /* size (0 = byte, 1 = short, 2 = long) */
295 14, /* bitsize */
296 true, /* pc_relative */
297 0, /* bitpos */
298 complain_overflow_dont, /* complain_on_overflow */
299 0, /* special_function */
300 "HINT", /* name */
301 true, /* partial_inplace */
302 0x3fff, /* src_mask */
303 0x3fff, /* dst_mask */
304 false), /* pcrel_offset */
305
306 /* 16 bit PC relative offset. */
307 HOWTO (ALPHA_R_SREL16, /* type */
308 0, /* rightshift */
309 1, /* size (0 = byte, 1 = short, 2 = long) */
310 16, /* bitsize */
311 true, /* pc_relative */
312 0, /* bitpos */
313 complain_overflow_signed, /* complain_on_overflow */
314 0, /* special_function */
315 "SREL16", /* name */
316 true, /* partial_inplace */
317 0xffff, /* src_mask */
318 0xffff, /* dst_mask */
319 false), /* pcrel_offset */
320
321 /* 32 bit PC relative offset. */
322 HOWTO (ALPHA_R_SREL32, /* type */
323 0, /* rightshift */
324 2, /* size (0 = byte, 1 = short, 2 = long) */
325 32, /* bitsize */
326 true, /* pc_relative */
327 0, /* bitpos */
328 complain_overflow_signed, /* complain_on_overflow */
329 0, /* special_function */
330 "SREL32", /* name */
331 true, /* partial_inplace */
332 0xffffffff, /* src_mask */
333 0xffffffff, /* dst_mask */
334 false), /* pcrel_offset */
335
336 /* A 64 bit PC relative offset. */
337 HOWTO (ALPHA_R_SREL64, /* type */
338 0, /* rightshift */
339 4, /* size (0 = byte, 1 = short, 2 = long) */
340 64, /* bitsize */
341 true, /* pc_relative */
342 0, /* bitpos */
343 complain_overflow_signed, /* complain_on_overflow */
344 0, /* special_function */
345 "SREL64", /* name */
346 true, /* partial_inplace */
347 MINUS_ONE, /* src_mask */
348 MINUS_ONE, /* dst_mask */
349 false), /* pcrel_offset */
350
351 /* Push a value on the reloc evaluation stack. */
352 HOWTO (ALPHA_R_OP_PUSH, /* type */
353 0, /* rightshift */
354 0, /* size (0 = byte, 1 = short, 2 = long) */
355 0, /* bitsize */
356 false, /* pc_relative */
357 0, /* bitpos */
358 complain_overflow_dont, /* complain_on_overflow */
359 0, /* special_function */
360 "OP_PUSH", /* name */
361 false, /* partial_inplace */
362 0, /* src_mask */
363 0, /* dst_mask */
364 false), /* pcrel_offset */
365
366 /* Store the value from the stack at the given address. Store it in
367 a bitfield of size r_size starting at bit position r_offset. */
368 HOWTO (ALPHA_R_OP_STORE, /* type */
369 0, /* rightshift */
370 4, /* size (0 = byte, 1 = short, 2 = long) */
371 64, /* bitsize */
372 false, /* pc_relative */
373 0, /* bitpos */
374 complain_overflow_dont, /* complain_on_overflow */
375 0, /* special_function */
376 "OP_STORE", /* name */
377 false, /* partial_inplace */
378 0, /* src_mask */
379 MINUS_ONE, /* dst_mask */
380 false), /* pcrel_offset */
381
382 /* Subtract the reloc address from the value on the top of the
383 relocation stack. */
384 HOWTO (ALPHA_R_OP_PSUB, /* type */
385 0, /* rightshift */
386 0, /* size (0 = byte, 1 = short, 2 = long) */
387 0, /* bitsize */
388 false, /* pc_relative */
389 0, /* bitpos */
390 complain_overflow_dont, /* complain_on_overflow */
391 0, /* special_function */
392 "OP_PSUB", /* name */
393 false, /* partial_inplace */
394 0, /* src_mask */
395 0, /* dst_mask */
396 false), /* pcrel_offset */
397
398 /* Shift the value on the top of the relocation stack right by the
399 given value. */
400 HOWTO (ALPHA_R_OP_PRSHIFT, /* type */
401 0, /* rightshift */
402 0, /* size (0 = byte, 1 = short, 2 = long) */
403 0, /* bitsize */
404 false, /* pc_relative */
405 0, /* bitpos */
406 complain_overflow_dont, /* complain_on_overflow */
407 0, /* special_function */
408 "OP_PRSHIFT", /* name */
409 false, /* partial_inplace */
410 0, /* src_mask */
411 0, /* dst_mask */
412 false), /* pcrel_offset */
413
414 /* Adjust the GP value for a new range in the object file. */
415 HOWTO (ALPHA_R_GPVALUE, /* type */
416 0, /* rightshift */
417 0, /* size (0 = byte, 1 = short, 2 = long) */
418 0, /* bitsize */
419 false, /* pc_relative */
420 0, /* bitpos */
421 complain_overflow_dont, /* complain_on_overflow */
422 0, /* special_function */
423 "GPVALUE", /* name */
424 false, /* partial_inplace */
425 0, /* src_mask */
426 0, /* dst_mask */
427 false) /* pcrel_offset */
428 };
429 \f
430 /* Recognize an Alpha ECOFF file. */
431
432 static const bfd_target *
433 alpha_ecoff_object_p (abfd)
434 bfd *abfd;
435 {
436 static const bfd_target *ret;
437
438 ret = coff_object_p (abfd);
439
440 if (ret != NULL)
441 {
442 asection *sec;
443
444 /* Alpha ECOFF has a .pdata section. The lnnoptr field of the
445 .pdata section is the number of entries it contains. Each
446 entry takes up 8 bytes. The number of entries is required
447 since the section is aligned to a 16 byte boundary. When we
448 link .pdata sections together, we do not want to include the
449 alignment bytes. We handle this on input by faking the size
450 of the .pdata section to remove the unwanted alignment bytes.
451 On output we will set the lnnoptr field and force the
452 alignment. */
453 sec = bfd_get_section_by_name (abfd, _PDATA);
454 if (sec != (asection *) NULL)
455 {
456 bfd_size_type size;
457
458 size = sec->line_filepos * 8;
459 BFD_ASSERT (size == bfd_section_size (abfd, sec)
460 || size + 8 == bfd_section_size (abfd, sec));
461 if (! bfd_set_section_size (abfd, sec, size))
462 return NULL;
463 }
464 }
465
466 return ret;
467 }
468
469 /* See whether the magic number matches. */
470
471 static boolean
472 alpha_ecoff_bad_format_hook (abfd, filehdr)
473 bfd *abfd;
474 PTR filehdr;
475 {
476 struct internal_filehdr *internal_f = (struct internal_filehdr *) filehdr;
477
478 if (ALPHA_ECOFF_BADMAG (*internal_f))
479 return false;
480
481 return true;
482 }
483
484 /* This is a hook called by coff_real_object_p to create any backend
485 specific information. */
486
487 static PTR
488 alpha_ecoff_mkobject_hook (abfd, filehdr, aouthdr)
489 bfd *abfd;
490 PTR filehdr;
491 PTR aouthdr;
492 {
493 PTR ecoff;
494
495 ecoff = _bfd_ecoff_mkobject_hook (abfd, filehdr, aouthdr);
496
497 if (ecoff != NULL)
498 {
499 struct internal_filehdr *internal_f = (struct internal_filehdr *) filehdr;
500
501 /* Set additional BFD flags according to the object type from the
502 machine specific file header flags. */
503 switch (internal_f->f_flags & F_ALPHA_OBJECT_TYPE_MASK)
504 {
505 case F_ALPHA_SHARABLE:
506 abfd->flags |= DYNAMIC;
507 break;
508 case F_ALPHA_CALL_SHARED:
509 /* Always executable if using shared libraries as the run time
510 loader might resolve undefined references. */
511 abfd->flags |= (DYNAMIC | EXEC_P);
512 break;
513 }
514 }
515 return ecoff;
516 }
517 \f
518 /* Reloc handling. */
519
520 /* Swap a reloc in. */
521
522 static void
523 alpha_ecoff_swap_reloc_in (abfd, ext_ptr, intern)
524 bfd *abfd;
525 PTR ext_ptr;
526 struct internal_reloc *intern;
527 {
528 const RELOC *ext = (RELOC *) ext_ptr;
529
530 intern->r_vaddr = bfd_h_get_64 (abfd, (bfd_byte *) ext->r_vaddr);
531 intern->r_symndx = bfd_h_get_32 (abfd, (bfd_byte *) ext->r_symndx);
532
533 BFD_ASSERT (bfd_header_little_endian (abfd));
534
535 intern->r_type = ((ext->r_bits[0] & RELOC_BITS0_TYPE_LITTLE)
536 >> RELOC_BITS0_TYPE_SH_LITTLE);
537 intern->r_extern = (ext->r_bits[1] & RELOC_BITS1_EXTERN_LITTLE) != 0;
538 intern->r_offset = ((ext->r_bits[1] & RELOC_BITS1_OFFSET_LITTLE)
539 >> RELOC_BITS1_OFFSET_SH_LITTLE);
540 /* Ignored the reserved bits. */
541 intern->r_size = ((ext->r_bits[3] & RELOC_BITS3_SIZE_LITTLE)
542 >> RELOC_BITS3_SIZE_SH_LITTLE);
543
544 if (intern->r_type == ALPHA_R_LITUSE
545 || intern->r_type == ALPHA_R_GPDISP)
546 {
547 /* Handle the LITUSE and GPDISP relocs specially. Its symndx
548 value is not actually a symbol index, but is instead a
549 special code. We put the code in the r_size field, and
550 clobber the symndx. */
551 if (intern->r_size != 0)
552 abort ();
553 intern->r_size = intern->r_symndx;
554 intern->r_symndx = RELOC_SECTION_NONE;
555 }
556 else if (intern->r_type == ALPHA_R_IGNORE)
557 {
558 /* The IGNORE reloc generally follows a GPDISP reloc, and is
559 against the .lita section. The section is irrelevant. */
560 if (! intern->r_extern &&
561 intern->r_symndx == RELOC_SECTION_ABS)
562 abort ();
563 if (! intern->r_extern && intern->r_symndx == RELOC_SECTION_LITA)
564 intern->r_symndx = RELOC_SECTION_ABS;
565 }
566 }
567
568 /* Swap a reloc out. */
569
570 static void
571 alpha_ecoff_swap_reloc_out (abfd, intern, dst)
572 bfd *abfd;
573 const struct internal_reloc *intern;
574 PTR dst;
575 {
576 RELOC *ext = (RELOC *) dst;
577 long symndx;
578 unsigned char size;
579
580 /* Undo the hackery done in swap_reloc_in. */
581 if (intern->r_type == ALPHA_R_LITUSE
582 || intern->r_type == ALPHA_R_GPDISP)
583 {
584 symndx = intern->r_size;
585 size = 0;
586 }
587 else if (intern->r_type == ALPHA_R_IGNORE
588 && ! intern->r_extern
589 && intern->r_symndx == RELOC_SECTION_ABS)
590 {
591 symndx = RELOC_SECTION_LITA;
592 size = intern->r_size;
593 }
594 else
595 {
596 symndx = intern->r_symndx;
597 size = intern->r_size;
598 }
599
600 BFD_ASSERT (intern->r_extern
601 || (intern->r_symndx >= 0 && intern->r_symndx <= 14));
602
603 bfd_h_put_64 (abfd, intern->r_vaddr, (bfd_byte *) ext->r_vaddr);
604 bfd_h_put_32 (abfd, symndx, (bfd_byte *) ext->r_symndx);
605
606 BFD_ASSERT (bfd_header_little_endian (abfd));
607
608 ext->r_bits[0] = ((intern->r_type << RELOC_BITS0_TYPE_SH_LITTLE)
609 & RELOC_BITS0_TYPE_LITTLE);
610 ext->r_bits[1] = ((intern->r_extern ? RELOC_BITS1_EXTERN_LITTLE : 0)
611 | ((intern->r_offset << RELOC_BITS1_OFFSET_SH_LITTLE)
612 & RELOC_BITS1_OFFSET_LITTLE));
613 ext->r_bits[2] = 0;
614 ext->r_bits[3] = ((size << RELOC_BITS3_SIZE_SH_LITTLE)
615 & RELOC_BITS3_SIZE_LITTLE);
616 }
617
618 /* Finish canonicalizing a reloc. Part of this is generic to all
619 ECOFF targets, and that part is in ecoff.c. The rest is done in
620 this backend routine. It must fill in the howto field. */
621
622 static void
623 alpha_adjust_reloc_in (abfd, intern, rptr)
624 bfd *abfd;
625 const struct internal_reloc *intern;
626 arelent *rptr;
627 {
628 if (intern->r_type > ALPHA_R_GPVALUE)
629 abort ();
630
631 switch (intern->r_type)
632 {
633 case ALPHA_R_BRADDR:
634 case ALPHA_R_SREL16:
635 case ALPHA_R_SREL32:
636 case ALPHA_R_SREL64:
637 /* The PC relative relocs do not seem to use the section VMA as
638 a negative addend. */
639 rptr->addend = 0;
640 break;
641
642 case ALPHA_R_GPREL32:
643 case ALPHA_R_LITERAL:
644 /* Copy the gp value for this object file into the addend, to
645 ensure that we are not confused by the linker. */
646 if (! intern->r_extern)
647 rptr->addend += ecoff_data (abfd)->gp;
648 break;
649
650 case ALPHA_R_LITUSE:
651 case ALPHA_R_GPDISP:
652 /* The LITUSE and GPDISP relocs do not use a symbol, or an
653 addend, but they do use a special code. Put this code in the
654 addend field. */
655 rptr->addend = intern->r_size;
656 break;
657
658 case ALPHA_R_OP_STORE:
659 /* The STORE reloc needs the size and offset fields. We store
660 them in the addend. */
661 BFD_ASSERT (intern->r_offset <= 256 && intern->r_size <= 256);
662 rptr->addend = (intern->r_offset << 8) + intern->r_size;
663 break;
664
665 case ALPHA_R_OP_PUSH:
666 case ALPHA_R_OP_PSUB:
667 case ALPHA_R_OP_PRSHIFT:
668 /* The PUSH, PSUB and PRSHIFT relocs do not actually use an
669 address. I believe that the address supplied is really an
670 addend. */
671 rptr->addend = intern->r_vaddr;
672 break;
673
674 case ALPHA_R_GPVALUE:
675 /* Set the addend field to the new GP value. */
676 rptr->addend = intern->r_symndx + ecoff_data (abfd)->gp;
677 break;
678
679 case ALPHA_R_IGNORE:
680 /* If the type is ALPHA_R_IGNORE, make sure this is a reference
681 to the absolute section so that the reloc is ignored. For
682 some reason the address of this reloc type is not adjusted by
683 the section vma. We record the gp value for this object file
684 here, for convenience when doing the GPDISP relocation. */
685 rptr->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
686 rptr->address = intern->r_vaddr;
687 rptr->addend = ecoff_data (abfd)->gp;
688 break;
689
690 default:
691 break;
692 }
693
694 rptr->howto = &alpha_howto_table[intern->r_type];
695 }
696
697 /* When writing out a reloc we need to pull some values back out of
698 the addend field into the reloc. This is roughly the reverse of
699 alpha_adjust_reloc_in, except that there are several changes we do
700 not need to undo. */
701
702 static void
703 alpha_adjust_reloc_out (abfd, rel, intern)
704 bfd *abfd;
705 const arelent *rel;
706 struct internal_reloc *intern;
707 {
708 switch (intern->r_type)
709 {
710 case ALPHA_R_LITUSE:
711 case ALPHA_R_GPDISP:
712 intern->r_size = rel->addend;
713 break;
714
715 case ALPHA_R_OP_STORE:
716 intern->r_size = rel->addend & 0xff;
717 intern->r_offset = (rel->addend >> 8) & 0xff;
718 break;
719
720 case ALPHA_R_OP_PUSH:
721 case ALPHA_R_OP_PSUB:
722 case ALPHA_R_OP_PRSHIFT:
723 intern->r_vaddr = rel->addend;
724 break;
725
726 case ALPHA_R_IGNORE:
727 intern->r_vaddr = rel->address;
728 break;
729
730 default:
731 break;
732 }
733 }
734
735 /* The size of the stack for the relocation evaluator. */
736 #define RELOC_STACKSIZE (10)
737
738 /* Alpha ECOFF relocs have a built in expression evaluator as well as
739 other interdependencies. Rather than use a bunch of special
740 functions and global variables, we use a single routine to do all
741 the relocation for a section. I haven't yet worked out how the
742 assembler is going to handle this. */
743
744 static bfd_byte *
745 alpha_ecoff_get_relocated_section_contents (abfd, link_info, link_order,
746 data, relocateable, symbols)
747 bfd *abfd;
748 struct bfd_link_info *link_info;
749 struct bfd_link_order *link_order;
750 bfd_byte *data;
751 boolean relocateable;
752 asymbol **symbols;
753 {
754 bfd *input_bfd = link_order->u.indirect.section->owner;
755 asection *input_section = link_order->u.indirect.section;
756 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
757 arelent **reloc_vector = NULL;
758 long reloc_count;
759 bfd *output_bfd = relocateable ? abfd : (bfd *) NULL;
760 bfd_vma gp;
761 boolean gp_undefined;
762 bfd_vma stack[RELOC_STACKSIZE];
763 int tos = 0;
764
765 if (reloc_size < 0)
766 goto error_return;
767 reloc_vector = (arelent **) bfd_malloc (reloc_size);
768 if (reloc_vector == NULL && reloc_size != 0)
769 goto error_return;
770
771 if (! bfd_get_section_contents (input_bfd, input_section, data,
772 (file_ptr) 0, input_section->_raw_size))
773 goto error_return;
774
775 /* The section size is not going to change. */
776 input_section->_cooked_size = input_section->_raw_size;
777 input_section->reloc_done = true;
778
779 reloc_count = bfd_canonicalize_reloc (input_bfd, input_section,
780 reloc_vector, symbols);
781 if (reloc_count < 0)
782 goto error_return;
783 if (reloc_count == 0)
784 goto successful_return;
785
786 /* Get the GP value for the output BFD. */
787 gp_undefined = false;
788 if (ecoff_data (abfd)->gp == 0)
789 {
790 if (relocateable != false)
791 {
792 asection *sec;
793 bfd_vma lo;
794
795 /* Make up a value. */
796 lo = (bfd_vma) -1;
797 for (sec = abfd->sections; sec != NULL; sec = sec->next)
798 {
799 if (sec->vma < lo
800 && (strcmp (sec->name, ".sbss") == 0
801 || strcmp (sec->name, ".sdata") == 0
802 || strcmp (sec->name, ".lit4") == 0
803 || strcmp (sec->name, ".lit8") == 0
804 || strcmp (sec->name, ".lita") == 0))
805 lo = sec->vma;
806 }
807 ecoff_data (abfd)->gp = lo + 0x8000;
808 }
809 else
810 {
811 struct bfd_link_hash_entry *h;
812
813 h = bfd_link_hash_lookup (link_info->hash, "_gp", false, false,
814 true);
815 if (h == (struct bfd_link_hash_entry *) NULL
816 || h->type != bfd_link_hash_defined)
817 gp_undefined = true;
818 else
819 ecoff_data (abfd)->gp = (h->u.def.value
820 + h->u.def.section->output_section->vma
821 + h->u.def.section->output_offset);
822 }
823 }
824 gp = ecoff_data (abfd)->gp;
825
826 for (; *reloc_vector != (arelent *) NULL; reloc_vector++)
827 {
828 arelent *rel;
829 bfd_reloc_status_type r;
830 char *err;
831
832 rel = *reloc_vector;
833 r = bfd_reloc_ok;
834 switch (rel->howto->type)
835 {
836 case ALPHA_R_IGNORE:
837 rel->address += input_section->output_offset;
838 break;
839
840 case ALPHA_R_REFLONG:
841 case ALPHA_R_REFQUAD:
842 case ALPHA_R_BRADDR:
843 case ALPHA_R_HINT:
844 case ALPHA_R_SREL16:
845 case ALPHA_R_SREL32:
846 case ALPHA_R_SREL64:
847 if (relocateable
848 && ((*rel->sym_ptr_ptr)->flags & BSF_SECTION_SYM) == 0)
849 {
850 rel->address += input_section->output_offset;
851 break;
852 }
853 r = bfd_perform_relocation (input_bfd, rel, data, input_section,
854 output_bfd, &err);
855 break;
856
857 case ALPHA_R_GPREL32:
858 /* This relocation is used in a switch table. It is a 32
859 bit offset from the current GP value. We must adjust it
860 by the different between the original GP value and the
861 current GP value. The original GP value is stored in the
862 addend. We adjust the addend and let
863 bfd_perform_relocation finish the job. */
864 rel->addend -= gp;
865 r = bfd_perform_relocation (input_bfd, rel, data, input_section,
866 output_bfd, &err);
867 if (r == bfd_reloc_ok && gp_undefined)
868 {
869 r = bfd_reloc_dangerous;
870 err = (char *) "GP relative relocation used when GP not defined";
871 }
872 break;
873
874 case ALPHA_R_LITERAL:
875 /* This is a reference to a literal value, generally
876 (always?) in the .lita section. This is a 16 bit GP
877 relative relocation. Sometimes the subsequent reloc is a
878 LITUSE reloc, which indicates how this reloc is used.
879 This sometimes permits rewriting the two instructions
880 referred to by the LITERAL and the LITUSE into different
881 instructions which do not refer to .lita. This can save
882 a memory reference, and permits removing a value from
883 .lita thus saving GP relative space.
884
885 We do not these optimizations. To do them we would need
886 to arrange to link the .lita section first, so that by
887 the time we got here we would know the final values to
888 use. This would not be particularly difficult, but it is
889 not currently implemented. */
890
891 {
892 unsigned long insn;
893
894 /* I believe that the LITERAL reloc will only apply to a
895 ldq or ldl instruction, so check my assumption. */
896 insn = bfd_get_32 (input_bfd, data + rel->address);
897 BFD_ASSERT (((insn >> 26) & 0x3f) == 0x29
898 || ((insn >> 26) & 0x3f) == 0x28);
899
900 rel->addend -= gp;
901 r = bfd_perform_relocation (input_bfd, rel, data, input_section,
902 output_bfd, &err);
903 if (r == bfd_reloc_ok && gp_undefined)
904 {
905 r = bfd_reloc_dangerous;
906 err =
907 (char *) "GP relative relocation used when GP not defined";
908 }
909 }
910 break;
911
912 case ALPHA_R_LITUSE:
913 /* See ALPHA_R_LITERAL above for the uses of this reloc. It
914 does not cause anything to happen, itself. */
915 rel->address += input_section->output_offset;
916 break;
917
918 case ALPHA_R_GPDISP:
919 /* This marks the ldah of an ldah/lda pair which loads the
920 gp register with the difference of the gp value and the
921 current location. The second of the pair is r_size bytes
922 ahead; it used to be marked with an ALPHA_R_IGNORE reloc,
923 but that no longer happens in OSF/1 3.2. */
924 {
925 unsigned long insn1, insn2;
926 bfd_vma addend;
927
928 /* Get the two instructions. */
929 insn1 = bfd_get_32 (input_bfd, data + rel->address);
930 insn2 = bfd_get_32 (input_bfd, data + rel->address + rel->addend);
931
932 BFD_ASSERT (((insn1 >> 26) & 0x3f) == 0x09); /* ldah */
933 BFD_ASSERT (((insn2 >> 26) & 0x3f) == 0x08); /* lda */
934
935 /* Get the existing addend. We must account for the sign
936 extension done by lda and ldah. */
937 addend = ((insn1 & 0xffff) << 16) + (insn2 & 0xffff);
938 if (insn1 & 0x8000)
939 {
940 addend -= 0x80000000;
941 addend -= 0x80000000;
942 }
943 if (insn2 & 0x8000)
944 addend -= 0x10000;
945
946 /* The existing addend includes the different between the
947 gp of the input BFD and the address in the input BFD.
948 Subtract this out. */
949 addend -= (ecoff_data (input_bfd)->gp
950 - (input_section->vma + rel->address));
951
952 /* Now add in the final gp value, and subtract out the
953 final address. */
954 addend += (gp
955 - (input_section->output_section->vma
956 + input_section->output_offset
957 + rel->address));
958
959 /* Change the instructions, accounting for the sign
960 extension, and write them out. */
961 if (addend & 0x8000)
962 addend += 0x10000;
963 insn1 = (insn1 & 0xffff0000) | ((addend >> 16) & 0xffff);
964 insn2 = (insn2 & 0xffff0000) | (addend & 0xffff);
965
966 bfd_put_32 (input_bfd, (bfd_vma) insn1, data + rel->address);
967 bfd_put_32 (input_bfd, (bfd_vma) insn2,
968 data + rel->address + rel->addend);
969
970 rel->address += input_section->output_offset;
971 }
972 break;
973
974 case ALPHA_R_OP_PUSH:
975 /* Push a value on the reloc evaluation stack. */
976 {
977 asymbol *symbol;
978 bfd_vma relocation;
979
980 if (relocateable)
981 {
982 rel->address += input_section->output_offset;
983 break;
984 }
985
986 /* Figure out the relocation of this symbol. */
987 symbol = *rel->sym_ptr_ptr;
988
989 if (bfd_is_und_section (symbol->section))
990 r = bfd_reloc_undefined;
991
992 if (bfd_is_com_section (symbol->section))
993 relocation = 0;
994 else
995 relocation = symbol->value;
996 relocation += symbol->section->output_section->vma;
997 relocation += symbol->section->output_offset;
998 relocation += rel->addend;
999
1000 if (tos >= RELOC_STACKSIZE)
1001 abort ();
1002
1003 stack[tos++] = relocation;
1004 }
1005 break;
1006
1007 case ALPHA_R_OP_STORE:
1008 /* Store a value from the reloc stack into a bitfield. */
1009 {
1010 bfd_vma val;
1011 int offset, size;
1012
1013 if (relocateable)
1014 {
1015 rel->address += input_section->output_offset;
1016 break;
1017 }
1018
1019 if (tos == 0)
1020 abort ();
1021
1022 /* The offset and size for this reloc are encoded into the
1023 addend field by alpha_adjust_reloc_in. */
1024 offset = (rel->addend >> 8) & 0xff;
1025 size = rel->addend & 0xff;
1026
1027 val = bfd_get_64 (abfd, data + rel->address);
1028 val &=~ (((1 << size) - 1) << offset);
1029 val |= (stack[--tos] & ((1 << size) - 1)) << offset;
1030 bfd_put_64 (abfd, val, data + rel->address);
1031 }
1032 break;
1033
1034 case ALPHA_R_OP_PSUB:
1035 /* Subtract a value from the top of the stack. */
1036 {
1037 asymbol *symbol;
1038 bfd_vma relocation;
1039
1040 if (relocateable)
1041 {
1042 rel->address += input_section->output_offset;
1043 break;
1044 }
1045
1046 /* Figure out the relocation of this symbol. */
1047 symbol = *rel->sym_ptr_ptr;
1048
1049 if (bfd_is_und_section (symbol->section))
1050 r = bfd_reloc_undefined;
1051
1052 if (bfd_is_com_section (symbol->section))
1053 relocation = 0;
1054 else
1055 relocation = symbol->value;
1056 relocation += symbol->section->output_section->vma;
1057 relocation += symbol->section->output_offset;
1058 relocation += rel->addend;
1059
1060 if (tos == 0)
1061 abort ();
1062
1063 stack[tos - 1] -= relocation;
1064 }
1065 break;
1066
1067 case ALPHA_R_OP_PRSHIFT:
1068 /* Shift the value on the top of the stack. */
1069 {
1070 asymbol *symbol;
1071 bfd_vma relocation;
1072
1073 if (relocateable)
1074 {
1075 rel->address += input_section->output_offset;
1076 break;
1077 }
1078
1079 /* Figure out the relocation of this symbol. */
1080 symbol = *rel->sym_ptr_ptr;
1081
1082 if (bfd_is_und_section (symbol->section))
1083 r = bfd_reloc_undefined;
1084
1085 if (bfd_is_com_section (symbol->section))
1086 relocation = 0;
1087 else
1088 relocation = symbol->value;
1089 relocation += symbol->section->output_section->vma;
1090 relocation += symbol->section->output_offset;
1091 relocation += rel->addend;
1092
1093 if (tos == 0)
1094 abort ();
1095
1096 stack[tos - 1] >>= relocation;
1097 }
1098 break;
1099
1100 case ALPHA_R_GPVALUE:
1101 /* I really don't know if this does the right thing. */
1102 gp = rel->addend;
1103 gp_undefined = false;
1104 break;
1105
1106 default:
1107 abort ();
1108 }
1109
1110 if (relocateable)
1111 {
1112 asection *os = input_section->output_section;
1113
1114 /* A partial link, so keep the relocs. */
1115 os->orelocation[os->reloc_count] = rel;
1116 os->reloc_count++;
1117 }
1118
1119 if (r != bfd_reloc_ok)
1120 {
1121 switch (r)
1122 {
1123 case bfd_reloc_undefined:
1124 if (! ((*link_info->callbacks->undefined_symbol)
1125 (link_info, bfd_asymbol_name (*rel->sym_ptr_ptr),
1126 input_bfd, input_section, rel->address)))
1127 goto error_return;
1128 break;
1129 case bfd_reloc_dangerous:
1130 if (! ((*link_info->callbacks->reloc_dangerous)
1131 (link_info, err, input_bfd, input_section,
1132 rel->address)))
1133 goto error_return;
1134 break;
1135 case bfd_reloc_overflow:
1136 if (! ((*link_info->callbacks->reloc_overflow)
1137 (link_info, bfd_asymbol_name (*rel->sym_ptr_ptr),
1138 rel->howto->name, rel->addend, input_bfd,
1139 input_section, rel->address)))
1140 goto error_return;
1141 break;
1142 case bfd_reloc_outofrange:
1143 default:
1144 abort ();
1145 break;
1146 }
1147 }
1148 }
1149
1150 if (tos != 0)
1151 abort ();
1152
1153 successful_return:
1154 if (reloc_vector != NULL)
1155 free (reloc_vector);
1156 return data;
1157
1158 error_return:
1159 if (reloc_vector != NULL)
1160 free (reloc_vector);
1161 return NULL;
1162 }
1163
1164 /* Get the howto structure for a generic reloc type. */
1165
1166 static reloc_howto_type *
1167 alpha_bfd_reloc_type_lookup (abfd, code)
1168 bfd *abfd;
1169 bfd_reloc_code_real_type code;
1170 {
1171 int alpha_type;
1172
1173 switch (code)
1174 {
1175 case BFD_RELOC_32:
1176 alpha_type = ALPHA_R_REFLONG;
1177 break;
1178 case BFD_RELOC_64:
1179 case BFD_RELOC_CTOR:
1180 alpha_type = ALPHA_R_REFQUAD;
1181 break;
1182 case BFD_RELOC_GPREL32:
1183 alpha_type = ALPHA_R_GPREL32;
1184 break;
1185 case BFD_RELOC_ALPHA_LITERAL:
1186 alpha_type = ALPHA_R_LITERAL;
1187 break;
1188 case BFD_RELOC_ALPHA_LITUSE:
1189 alpha_type = ALPHA_R_LITUSE;
1190 break;
1191 case BFD_RELOC_ALPHA_GPDISP_HI16:
1192 alpha_type = ALPHA_R_GPDISP;
1193 break;
1194 case BFD_RELOC_ALPHA_GPDISP_LO16:
1195 alpha_type = ALPHA_R_IGNORE;
1196 break;
1197 case BFD_RELOC_23_PCREL_S2:
1198 alpha_type = ALPHA_R_BRADDR;
1199 break;
1200 case BFD_RELOC_ALPHA_HINT:
1201 alpha_type = ALPHA_R_HINT;
1202 break;
1203 case BFD_RELOC_16_PCREL:
1204 alpha_type = ALPHA_R_SREL16;
1205 break;
1206 case BFD_RELOC_32_PCREL:
1207 alpha_type = ALPHA_R_SREL32;
1208 break;
1209 case BFD_RELOC_64_PCREL:
1210 alpha_type = ALPHA_R_SREL64;
1211 break;
1212 #if 0
1213 case ???:
1214 alpha_type = ALPHA_R_OP_PUSH;
1215 break;
1216 case ???:
1217 alpha_type = ALPHA_R_OP_STORE;
1218 break;
1219 case ???:
1220 alpha_type = ALPHA_R_OP_PSUB;
1221 break;
1222 case ???:
1223 alpha_type = ALPHA_R_OP_PRSHIFT;
1224 break;
1225 case ???:
1226 alpha_type = ALPHA_R_GPVALUE;
1227 break;
1228 #endif
1229 default:
1230 return (reloc_howto_type *) NULL;
1231 }
1232
1233 return &alpha_howto_table[alpha_type];
1234 }
1235 \f
1236 /* A helper routine for alpha_relocate_section which converts an
1237 external reloc when generating relocateable output. Returns the
1238 relocation amount. */
1239
1240 static bfd_vma
1241 alpha_convert_external_reloc (output_bfd, info, input_bfd, ext_rel, h)
1242 bfd *output_bfd;
1243 struct bfd_link_info *info;
1244 bfd *input_bfd;
1245 struct external_reloc *ext_rel;
1246 struct ecoff_link_hash_entry *h;
1247 {
1248 unsigned long r_symndx;
1249 bfd_vma relocation;
1250
1251 BFD_ASSERT (info->relocateable);
1252
1253 if (h->root.type == bfd_link_hash_defined
1254 || h->root.type == bfd_link_hash_defweak)
1255 {
1256 asection *hsec;
1257 const char *name;
1258
1259 /* This symbol is defined in the output. Convert the reloc from
1260 being against the symbol to being against the section. */
1261
1262 /* Clear the r_extern bit. */
1263 ext_rel->r_bits[1] &=~ RELOC_BITS1_EXTERN_LITTLE;
1264
1265 /* Compute a new r_symndx value. */
1266 hsec = h->root.u.def.section;
1267 name = bfd_get_section_name (output_bfd, hsec->output_section);
1268
1269 r_symndx = -1;
1270 switch (name[1])
1271 {
1272 case 'A':
1273 if (strcmp (name, "*ABS*") == 0)
1274 r_symndx = RELOC_SECTION_ABS;
1275 break;
1276 case 'b':
1277 if (strcmp (name, ".bss") == 0)
1278 r_symndx = RELOC_SECTION_BSS;
1279 break;
1280 case 'd':
1281 if (strcmp (name, ".data") == 0)
1282 r_symndx = RELOC_SECTION_DATA;
1283 break;
1284 case 'f':
1285 if (strcmp (name, ".fini") == 0)
1286 r_symndx = RELOC_SECTION_FINI;
1287 break;
1288 case 'i':
1289 if (strcmp (name, ".init") == 0)
1290 r_symndx = RELOC_SECTION_INIT;
1291 break;
1292 case 'l':
1293 if (strcmp (name, ".lita") == 0)
1294 r_symndx = RELOC_SECTION_LITA;
1295 else if (strcmp (name, ".lit8") == 0)
1296 r_symndx = RELOC_SECTION_LIT8;
1297 else if (strcmp (name, ".lit4") == 0)
1298 r_symndx = RELOC_SECTION_LIT4;
1299 break;
1300 case 'p':
1301 if (strcmp (name, ".pdata") == 0)
1302 r_symndx = RELOC_SECTION_PDATA;
1303 break;
1304 case 'r':
1305 if (strcmp (name, ".rdata") == 0)
1306 r_symndx = RELOC_SECTION_RDATA;
1307 else if (strcmp (name, ".rconst") == 0)
1308 r_symndx = RELOC_SECTION_RCONST;
1309 break;
1310 case 's':
1311 if (strcmp (name, ".sdata") == 0)
1312 r_symndx = RELOC_SECTION_SDATA;
1313 else if (strcmp (name, ".sbss") == 0)
1314 r_symndx = RELOC_SECTION_SBSS;
1315 break;
1316 case 't':
1317 if (strcmp (name, ".text") == 0)
1318 r_symndx = RELOC_SECTION_TEXT;
1319 break;
1320 case 'x':
1321 if (strcmp (name, ".xdata") == 0)
1322 r_symndx = RELOC_SECTION_XDATA;
1323 break;
1324 }
1325
1326 if (r_symndx == -1)
1327 abort ();
1328
1329 /* Add the section VMA and the symbol value. */
1330 relocation = (h->root.u.def.value
1331 + hsec->output_section->vma
1332 + hsec->output_offset);
1333 }
1334 else
1335 {
1336 /* Change the symndx value to the right one for
1337 the output BFD. */
1338 r_symndx = h->indx;
1339 if (r_symndx == -1)
1340 {
1341 /* Caller must give an error. */
1342 r_symndx = 0;
1343 }
1344 relocation = 0;
1345 }
1346
1347 /* Write out the new r_symndx value. */
1348 bfd_h_put_32 (input_bfd, (bfd_vma) r_symndx,
1349 (bfd_byte *) ext_rel->r_symndx);
1350
1351 return relocation;
1352 }
1353
1354 /* Relocate a section while linking an Alpha ECOFF file. This is
1355 quite similar to get_relocated_section_contents. Perhaps they
1356 could be combined somehow. */
1357
1358 static boolean
1359 alpha_relocate_section (output_bfd, info, input_bfd, input_section,
1360 contents, external_relocs)
1361 bfd *output_bfd;
1362 struct bfd_link_info *info;
1363 bfd *input_bfd;
1364 asection *input_section;
1365 bfd_byte *contents;
1366 PTR external_relocs;
1367 {
1368 asection **symndx_to_section, *lita_sec;
1369 struct ecoff_link_hash_entry **sym_hashes;
1370 bfd_vma gp;
1371 boolean gp_undefined;
1372 bfd_vma stack[RELOC_STACKSIZE];
1373 int tos = 0;
1374 struct external_reloc *ext_rel;
1375 struct external_reloc *ext_rel_end;
1376
1377 /* We keep a table mapping the symndx found in an internal reloc to
1378 the appropriate section. This is faster than looking up the
1379 section by name each time. */
1380 symndx_to_section = ecoff_data (input_bfd)->symndx_to_section;
1381 if (symndx_to_section == (asection **) NULL)
1382 {
1383 symndx_to_section = ((asection **)
1384 bfd_alloc (input_bfd,
1385 (NUM_RELOC_SECTIONS
1386 * sizeof (asection *))));
1387 if (!symndx_to_section)
1388 return false;
1389
1390 symndx_to_section[RELOC_SECTION_NONE] = NULL;
1391 symndx_to_section[RELOC_SECTION_TEXT] =
1392 bfd_get_section_by_name (input_bfd, ".text");
1393 symndx_to_section[RELOC_SECTION_RDATA] =
1394 bfd_get_section_by_name (input_bfd, ".rdata");
1395 symndx_to_section[RELOC_SECTION_DATA] =
1396 bfd_get_section_by_name (input_bfd, ".data");
1397 symndx_to_section[RELOC_SECTION_SDATA] =
1398 bfd_get_section_by_name (input_bfd, ".sdata");
1399 symndx_to_section[RELOC_SECTION_SBSS] =
1400 bfd_get_section_by_name (input_bfd, ".sbss");
1401 symndx_to_section[RELOC_SECTION_BSS] =
1402 bfd_get_section_by_name (input_bfd, ".bss");
1403 symndx_to_section[RELOC_SECTION_INIT] =
1404 bfd_get_section_by_name (input_bfd, ".init");
1405 symndx_to_section[RELOC_SECTION_LIT8] =
1406 bfd_get_section_by_name (input_bfd, ".lit8");
1407 symndx_to_section[RELOC_SECTION_LIT4] =
1408 bfd_get_section_by_name (input_bfd, ".lit4");
1409 symndx_to_section[RELOC_SECTION_XDATA] =
1410 bfd_get_section_by_name (input_bfd, ".xdata");
1411 symndx_to_section[RELOC_SECTION_PDATA] =
1412 bfd_get_section_by_name (input_bfd, ".pdata");
1413 symndx_to_section[RELOC_SECTION_FINI] =
1414 bfd_get_section_by_name (input_bfd, ".fini");
1415 symndx_to_section[RELOC_SECTION_LITA] =
1416 bfd_get_section_by_name (input_bfd, ".lita");
1417 symndx_to_section[RELOC_SECTION_ABS] = bfd_abs_section_ptr;
1418 symndx_to_section[RELOC_SECTION_RCONST] =
1419 bfd_get_section_by_name (input_bfd, ".rconst");
1420
1421 ecoff_data (input_bfd)->symndx_to_section = symndx_to_section;
1422 }
1423
1424 sym_hashes = ecoff_data (input_bfd)->sym_hashes;
1425
1426 /* On the Alpha, the .lita section must be addressable by the global
1427 pointer. To support large programs, we need to allow multiple
1428 global pointers. This works as long as each input .lita section
1429 is <64KB big. This implies that when producing relocatable
1430 output, the .lita section is limited to 64KB. . */
1431
1432 lita_sec = symndx_to_section[RELOC_SECTION_LITA];
1433 gp = ecoff_data (output_bfd)->gp;
1434 if (! info->relocateable && lita_sec != NULL)
1435 {
1436 struct ecoff_section_tdata *lita_sec_data;
1437
1438 /* Make sure we have a section data structure to which we can
1439 hang on to the gp value we pick for the section. */
1440 lita_sec_data = ecoff_section_data (input_bfd, lita_sec);
1441 if (lita_sec_data == NULL)
1442 {
1443 lita_sec_data = ((struct ecoff_section_tdata *)
1444 bfd_zalloc (input_bfd,
1445 sizeof (struct ecoff_section_tdata)));
1446 ecoff_section_data (input_bfd, lita_sec) = lita_sec_data;
1447 }
1448
1449 if (lita_sec_data->gp != 0)
1450 {
1451 /* If we already assigned a gp to this section, we better
1452 stick with that value. */
1453 gp = lita_sec_data->gp;
1454 }
1455 else
1456 {
1457 bfd_vma lita_vma;
1458 bfd_size_type lita_size;
1459
1460 lita_vma = lita_sec->output_offset + lita_sec->output_section->vma;
1461 lita_size = lita_sec->_cooked_size;
1462 if (lita_size == 0)
1463 lita_size = lita_sec->_raw_size;
1464
1465 if (gp == 0
1466 || lita_vma < gp - 0x8000
1467 || lita_vma + lita_size >= gp + 0x8000)
1468 {
1469 /* Either gp hasn't been set at all or the current gp
1470 cannot address this .lita section. In both cases we
1471 reset the gp to point into the "middle" of the
1472 current input .lita section. For now, we issue a
1473 warning when redefining the gp value (probably should
1474 be made optional). */
1475 if (gp && !ecoff_data (output_bfd)->issued_multiple_gp_warning)
1476 {
1477 (*_bfd_error_handler)
1478 ("%s: warning: using multiple gp values",
1479 bfd_get_filename (output_bfd));
1480 ecoff_data (output_bfd)->issued_multiple_gp_warning = true;
1481 }
1482 if (lita_vma < gp - 0x8000)
1483 gp = lita_vma + lita_size - 0x8000;
1484 else
1485 gp = lita_vma + 0x8000;
1486
1487 }
1488
1489 lita_sec_data->gp = gp;
1490 }
1491
1492 ecoff_data (output_bfd)->gp = gp;
1493 }
1494
1495 gp_undefined = (gp == 0);
1496
1497 BFD_ASSERT (bfd_header_little_endian (output_bfd));
1498 BFD_ASSERT (bfd_header_little_endian (input_bfd));
1499
1500 ext_rel = (struct external_reloc *) external_relocs;
1501 ext_rel_end = ext_rel + input_section->reloc_count;
1502 for (; ext_rel < ext_rel_end; ext_rel++)
1503 {
1504 bfd_vma r_vaddr;
1505 unsigned long r_symndx;
1506 int r_type;
1507 int r_extern;
1508 int r_offset;
1509 int r_size;
1510 boolean relocatep;
1511 boolean adjust_addrp;
1512 boolean gp_usedp;
1513 bfd_vma addend;
1514
1515 r_vaddr = bfd_h_get_64 (input_bfd, (bfd_byte *) ext_rel->r_vaddr);
1516 r_symndx = bfd_h_get_32 (input_bfd, (bfd_byte *) ext_rel->r_symndx);
1517
1518 r_type = ((ext_rel->r_bits[0] & RELOC_BITS0_TYPE_LITTLE)
1519 >> RELOC_BITS0_TYPE_SH_LITTLE);
1520 r_extern = (ext_rel->r_bits[1] & RELOC_BITS1_EXTERN_LITTLE) != 0;
1521 r_offset = ((ext_rel->r_bits[1] & RELOC_BITS1_OFFSET_LITTLE)
1522 >> RELOC_BITS1_OFFSET_SH_LITTLE);
1523 /* Ignored the reserved bits. */
1524 r_size = ((ext_rel->r_bits[3] & RELOC_BITS3_SIZE_LITTLE)
1525 >> RELOC_BITS3_SIZE_SH_LITTLE);
1526
1527 relocatep = false;
1528 adjust_addrp = true;
1529 gp_usedp = false;
1530 addend = 0;
1531
1532 switch (r_type)
1533 {
1534 default:
1535 abort ();
1536
1537 case ALPHA_R_IGNORE:
1538 /* This reloc appears after a GPDISP reloc. On earlier
1539 versions of OSF/1, It marked the position of the second
1540 instruction to be altered by the GPDISP reloc, but it is
1541 not otherwise used for anything. For some reason, the
1542 address of the relocation does not appear to include the
1543 section VMA, unlike the other relocation types. */
1544 if (info->relocateable)
1545 bfd_h_put_64 (input_bfd,
1546 input_section->output_offset + r_vaddr,
1547 (bfd_byte *) ext_rel->r_vaddr);
1548 adjust_addrp = false;
1549 break;
1550
1551 case ALPHA_R_REFLONG:
1552 case ALPHA_R_REFQUAD:
1553 case ALPHA_R_BRADDR:
1554 case ALPHA_R_HINT:
1555 case ALPHA_R_SREL16:
1556 case ALPHA_R_SREL32:
1557 case ALPHA_R_SREL64:
1558 relocatep = true;
1559 break;
1560
1561 case ALPHA_R_GPREL32:
1562 /* This relocation is used in a switch table. It is a 32
1563 bit offset from the current GP value. We must adjust it
1564 by the different between the original GP value and the
1565 current GP value. */
1566 relocatep = true;
1567 addend = ecoff_data (input_bfd)->gp - gp;
1568 gp_usedp = true;
1569 break;
1570
1571 case ALPHA_R_LITERAL:
1572 /* This is a reference to a literal value, generally
1573 (always?) in the .lita section. This is a 16 bit GP
1574 relative relocation. Sometimes the subsequent reloc is a
1575 LITUSE reloc, which indicates how this reloc is used.
1576 This sometimes permits rewriting the two instructions
1577 referred to by the LITERAL and the LITUSE into different
1578 instructions which do not refer to .lita. This can save
1579 a memory reference, and permits removing a value from
1580 .lita thus saving GP relative space.
1581
1582 We do not these optimizations. To do them we would need
1583 to arrange to link the .lita section first, so that by
1584 the time we got here we would know the final values to
1585 use. This would not be particularly difficult, but it is
1586 not currently implemented. */
1587
1588 /* I believe that the LITERAL reloc will only apply to a ldq
1589 or ldl instruction, so check my assumption. */
1590 {
1591 unsigned long insn;
1592
1593 insn = bfd_get_32 (input_bfd,
1594 contents + r_vaddr - input_section->vma);
1595 BFD_ASSERT (((insn >> 26) & 0x3f) == 0x29
1596 || ((insn >> 26) & 0x3f) == 0x28);
1597 }
1598
1599 relocatep = true;
1600 addend = ecoff_data (input_bfd)->gp - gp;
1601 gp_usedp = true;
1602 break;
1603
1604 case ALPHA_R_LITUSE:
1605 /* See ALPHA_R_LITERAL above for the uses of this reloc. It
1606 does not cause anything to happen, itself. */
1607 break;
1608
1609 case ALPHA_R_GPDISP:
1610 /* This marks the ldah of an ldah/lda pair which loads the
1611 gp register with the difference of the gp value and the
1612 current location. The second of the pair is r_symndx
1613 bytes ahead. It used to be marked with an ALPHA_R_IGNORE
1614 reloc, but OSF/1 3.2 no longer does that. */
1615 {
1616 unsigned long insn1, insn2;
1617
1618 /* Get the two instructions. */
1619 insn1 = bfd_get_32 (input_bfd,
1620 contents + r_vaddr - input_section->vma);
1621 insn2 = bfd_get_32 (input_bfd,
1622 (contents
1623 + r_vaddr
1624 - input_section->vma
1625 + r_symndx));
1626
1627 BFD_ASSERT (((insn1 >> 26) & 0x3f) == 0x09); /* ldah */
1628 BFD_ASSERT (((insn2 >> 26) & 0x3f) == 0x08); /* lda */
1629
1630 /* Get the existing addend. We must account for the sign
1631 extension done by lda and ldah. */
1632 addend = ((insn1 & 0xffff) << 16) + (insn2 & 0xffff);
1633 if (insn1 & 0x8000)
1634 {
1635 /* This is addend -= 0x100000000 without causing an
1636 integer overflow on a 32 bit host. */
1637 addend -= 0x80000000;
1638 addend -= 0x80000000;
1639 }
1640 if (insn2 & 0x8000)
1641 addend -= 0x10000;
1642
1643 /* The existing addend includes the difference between the
1644 gp of the input BFD and the address in the input BFD.
1645 We want to change this to the difference between the
1646 final GP and the final address. */
1647 addend += (gp
1648 - ecoff_data (input_bfd)->gp
1649 + input_section->vma
1650 - (input_section->output_section->vma
1651 + input_section->output_offset));
1652
1653 /* Change the instructions, accounting for the sign
1654 extension, and write them out. */
1655 if (addend & 0x8000)
1656 addend += 0x10000;
1657 insn1 = (insn1 & 0xffff0000) | ((addend >> 16) & 0xffff);
1658 insn2 = (insn2 & 0xffff0000) | (addend & 0xffff);
1659
1660 bfd_put_32 (input_bfd, (bfd_vma) insn1,
1661 contents + r_vaddr - input_section->vma);
1662 bfd_put_32 (input_bfd, (bfd_vma) insn2,
1663 contents + r_vaddr - input_section->vma + r_symndx);
1664
1665 gp_usedp = true;
1666 }
1667 break;
1668
1669 case ALPHA_R_OP_PUSH:
1670 case ALPHA_R_OP_PSUB:
1671 case ALPHA_R_OP_PRSHIFT:
1672 /* Manipulate values on the reloc evaluation stack. The
1673 r_vaddr field is not an address in input_section, it is
1674 the current value (including any addend) of the object
1675 being used. */
1676 if (! r_extern)
1677 {
1678 asection *s;
1679
1680 s = symndx_to_section[r_symndx];
1681 if (s == (asection *) NULL)
1682 abort ();
1683 addend = s->output_section->vma + s->output_offset - s->vma;
1684 }
1685 else
1686 {
1687 struct ecoff_link_hash_entry *h;
1688
1689 h = sym_hashes[r_symndx];
1690 if (h == (struct ecoff_link_hash_entry *) NULL)
1691 abort ();
1692
1693 if (! info->relocateable)
1694 {
1695 if (h->root.type == bfd_link_hash_defined
1696 || h->root.type == bfd_link_hash_defweak)
1697 addend = (h->root.u.def.value
1698 + h->root.u.def.section->output_section->vma
1699 + h->root.u.def.section->output_offset);
1700 else
1701 {
1702 /* Note that we pass the address as 0, since we
1703 do not have a meaningful number for the
1704 location within the section that is being
1705 relocated. */
1706 if (! ((*info->callbacks->undefined_symbol)
1707 (info, h->root.root.string, input_bfd,
1708 input_section, (bfd_vma) 0)))
1709 return false;
1710 addend = 0;
1711 }
1712 }
1713 else
1714 {
1715 if (h->root.type != bfd_link_hash_defined
1716 && h->root.type != bfd_link_hash_defweak
1717 && h->indx == -1)
1718 {
1719 /* This symbol is not being written out. Pass
1720 the address as 0, as with undefined_symbol,
1721 above. */
1722 if (! ((*info->callbacks->unattached_reloc)
1723 (info, h->root.root.string, input_bfd,
1724 input_section, (bfd_vma) 0)))
1725 return false;
1726 }
1727
1728 addend = alpha_convert_external_reloc (output_bfd, info,
1729 input_bfd,
1730 ext_rel, h);
1731 }
1732 }
1733
1734 addend += r_vaddr;
1735
1736 if (info->relocateable)
1737 {
1738 /* Adjust r_vaddr by the addend. */
1739 bfd_h_put_64 (input_bfd, addend,
1740 (bfd_byte *) ext_rel->r_vaddr);
1741 }
1742 else
1743 {
1744 switch (r_type)
1745 {
1746 case ALPHA_R_OP_PUSH:
1747 if (tos >= RELOC_STACKSIZE)
1748 abort ();
1749 stack[tos++] = addend;
1750 break;
1751
1752 case ALPHA_R_OP_PSUB:
1753 if (tos == 0)
1754 abort ();
1755 stack[tos - 1] -= addend;
1756 break;
1757
1758 case ALPHA_R_OP_PRSHIFT:
1759 if (tos == 0)
1760 abort ();
1761 stack[tos - 1] >>= addend;
1762 break;
1763 }
1764 }
1765
1766 adjust_addrp = false;
1767 break;
1768
1769 case ALPHA_R_OP_STORE:
1770 /* Store a value from the reloc stack into a bitfield. If
1771 we are generating relocateable output, all we do is
1772 adjust the address of the reloc. */
1773 if (! info->relocateable)
1774 {
1775 bfd_vma mask;
1776 bfd_vma val;
1777
1778 if (tos == 0)
1779 abort ();
1780
1781 /* Get the relocation mask. The separate steps and the
1782 casts to bfd_vma are attempts to avoid a bug in the
1783 Alpha OSF 1.3 C compiler. See reloc.c for more
1784 details. */
1785 mask = 1;
1786 mask <<= (bfd_vma) r_size;
1787 mask -= 1;
1788
1789 /* FIXME: I don't know what kind of overflow checking,
1790 if any, should be done here. */
1791 val = bfd_get_64 (input_bfd,
1792 contents + r_vaddr - input_section->vma);
1793 val &=~ mask << (bfd_vma) r_offset;
1794 val |= (stack[--tos] & mask) << (bfd_vma) r_offset;
1795 bfd_put_64 (input_bfd, val,
1796 contents + r_vaddr - input_section->vma);
1797 }
1798 break;
1799
1800 case ALPHA_R_GPVALUE:
1801 /* I really don't know if this does the right thing. */
1802 gp = ecoff_data (input_bfd)->gp + r_symndx;
1803 gp_undefined = false;
1804 break;
1805 }
1806
1807 if (relocatep)
1808 {
1809 reloc_howto_type *howto;
1810 struct ecoff_link_hash_entry *h = NULL;
1811 asection *s = NULL;
1812 bfd_vma relocation;
1813 bfd_reloc_status_type r;
1814
1815 /* Perform a relocation. */
1816
1817 howto = &alpha_howto_table[r_type];
1818
1819 if (r_extern)
1820 {
1821 h = sym_hashes[r_symndx];
1822 /* If h is NULL, that means that there is a reloc
1823 against an external symbol which we thought was just
1824 a debugging symbol. This should not happen. */
1825 if (h == (struct ecoff_link_hash_entry *) NULL)
1826 abort ();
1827 }
1828 else
1829 {
1830 if (r_symndx >= NUM_RELOC_SECTIONS)
1831 s = NULL;
1832 else
1833 s = symndx_to_section[r_symndx];
1834
1835 if (s == (asection *) NULL)
1836 abort ();
1837 }
1838
1839 if (info->relocateable)
1840 {
1841 /* We are generating relocateable output, and must
1842 convert the existing reloc. */
1843 if (r_extern)
1844 {
1845 if (h->root.type != bfd_link_hash_defined
1846 && h->root.type != bfd_link_hash_defweak
1847 && h->indx == -1)
1848 {
1849 /* This symbol is not being written out. */
1850 if (! ((*info->callbacks->unattached_reloc)
1851 (info, h->root.root.string, input_bfd,
1852 input_section, r_vaddr - input_section->vma)))
1853 return false;
1854 }
1855
1856 relocation = alpha_convert_external_reloc (output_bfd,
1857 info,
1858 input_bfd,
1859 ext_rel,
1860 h);
1861 }
1862 else
1863 {
1864 /* This is a relocation against a section. Adjust
1865 the value by the amount the section moved. */
1866 relocation = (s->output_section->vma
1867 + s->output_offset
1868 - s->vma);
1869 }
1870
1871 /* If this is PC relative, the existing object file
1872 appears to already have the reloc worked out. We
1873 must subtract out the old value and add in the new
1874 one. */
1875 if (howto->pc_relative)
1876 relocation -= (input_section->output_section->vma
1877 + input_section->output_offset
1878 - input_section->vma);
1879
1880 /* Put in any addend. */
1881 relocation += addend;
1882
1883 /* Adjust the contents. */
1884 r = _bfd_relocate_contents (howto, input_bfd, relocation,
1885 (contents
1886 + r_vaddr
1887 - input_section->vma));
1888 }
1889 else
1890 {
1891 /* We are producing a final executable. */
1892 if (r_extern)
1893 {
1894 /* This is a reloc against a symbol. */
1895 if (h->root.type == bfd_link_hash_defined
1896 || h->root.type == bfd_link_hash_defweak)
1897 {
1898 asection *hsec;
1899
1900 hsec = h->root.u.def.section;
1901 relocation = (h->root.u.def.value
1902 + hsec->output_section->vma
1903 + hsec->output_offset);
1904 }
1905 else
1906 {
1907 if (! ((*info->callbacks->undefined_symbol)
1908 (info, h->root.root.string, input_bfd,
1909 input_section,
1910 r_vaddr - input_section->vma)))
1911 return false;
1912 relocation = 0;
1913 }
1914 }
1915 else
1916 {
1917 /* This is a reloc against a section. */
1918 relocation = (s->output_section->vma
1919 + s->output_offset
1920 - s->vma);
1921
1922 /* Adjust a PC relative relocation by removing the
1923 reference to the original source section. */
1924 if (howto->pc_relative)
1925 relocation += input_section->vma;
1926 }
1927
1928 r = _bfd_final_link_relocate (howto,
1929 input_bfd,
1930 input_section,
1931 contents,
1932 r_vaddr - input_section->vma,
1933 relocation,
1934 addend);
1935 }
1936
1937 if (r != bfd_reloc_ok)
1938 {
1939 switch (r)
1940 {
1941 default:
1942 case bfd_reloc_outofrange:
1943 abort ();
1944 case bfd_reloc_overflow:
1945 {
1946 const char *name;
1947
1948 if (r_extern)
1949 name = sym_hashes[r_symndx]->root.root.string;
1950 else
1951 name = bfd_section_name (input_bfd,
1952 symndx_to_section[r_symndx]);
1953 if (! ((*info->callbacks->reloc_overflow)
1954 (info, name, alpha_howto_table[r_type].name,
1955 (bfd_vma) 0, input_bfd, input_section,
1956 r_vaddr - input_section->vma)))
1957 return false;
1958 }
1959 break;
1960 }
1961 }
1962 }
1963
1964 if (info->relocateable && adjust_addrp)
1965 {
1966 /* Change the address of the relocation. */
1967 bfd_h_put_64 (input_bfd,
1968 (input_section->output_section->vma
1969 + input_section->output_offset
1970 - input_section->vma
1971 + r_vaddr),
1972 (bfd_byte *) ext_rel->r_vaddr);
1973 }
1974
1975 if (gp_usedp && gp_undefined)
1976 {
1977 if (! ((*info->callbacks->reloc_dangerous)
1978 (info, "GP relative relocation when GP not defined",
1979 input_bfd, input_section, r_vaddr - input_section->vma)))
1980 return false;
1981 /* Only give the error once per link. */
1982 ecoff_data (output_bfd)->gp = gp = 4;
1983 gp_undefined = false;
1984 }
1985 }
1986
1987 if (tos != 0)
1988 abort ();
1989
1990 return true;
1991 }
1992 \f
1993 /* Do final adjustments to the filehdr and the aouthdr. This routine
1994 sets the dynamic bits in the file header. */
1995
1996 /*ARGSUSED*/
1997 static boolean
1998 alpha_adjust_headers (abfd, fhdr, ahdr)
1999 bfd *abfd;
2000 struct internal_filehdr *fhdr;
2001 struct internal_aouthdr *ahdr;
2002 {
2003 if ((abfd->flags & (DYNAMIC | EXEC_P)) == (DYNAMIC | EXEC_P))
2004 fhdr->f_flags |= F_ALPHA_CALL_SHARED;
2005 else if ((abfd->flags & DYNAMIC) != 0)
2006 fhdr->f_flags |= F_ALPHA_SHARABLE;
2007 return true;
2008 }
2009 \f
2010 /* Archive handling. In OSF/1 (or Digital Unix) v3.2, Digital
2011 introduced archive packing, in which the elements in an archive are
2012 optionally compressed using a simple dictionary scheme. We know
2013 how to read such archives, but we don't write them. */
2014
2015 #define alpha_ecoff_slurp_armap _bfd_ecoff_slurp_armap
2016 #define alpha_ecoff_slurp_extended_name_table \
2017 _bfd_ecoff_slurp_extended_name_table
2018 #define alpha_ecoff_construct_extended_name_table \
2019 _bfd_ecoff_construct_extended_name_table
2020 #define alpha_ecoff_truncate_arname _bfd_ecoff_truncate_arname
2021 #define alpha_ecoff_write_armap _bfd_ecoff_write_armap
2022 #define alpha_ecoff_generic_stat_arch_elt _bfd_ecoff_generic_stat_arch_elt
2023 #define alpha_ecoff_update_armap_timestamp _bfd_ecoff_update_armap_timestamp
2024
2025 /* A compressed file uses this instead of ARFMAG. */
2026
2027 #define ARFZMAG "Z\012"
2028
2029 /* Read an archive header. This is like the standard routine, but it
2030 also accepts ARFZMAG. */
2031
2032 static PTR
2033 alpha_ecoff_read_ar_hdr (abfd)
2034 bfd *abfd;
2035 {
2036 struct areltdata *ret;
2037 struct ar_hdr *h;
2038
2039 ret = (struct areltdata *) _bfd_generic_read_ar_hdr_mag (abfd, ARFZMAG);
2040 if (ret == NULL)
2041 return NULL;
2042
2043 h = (struct ar_hdr *) ret->arch_header;
2044 if (strncmp (h->ar_fmag, ARFZMAG, 2) == 0)
2045 {
2046 bfd_byte ab[8];
2047
2048 /* This is a compressed file. We must set the size correctly.
2049 The size is the eight bytes after the dummy file header. */
2050 if (bfd_seek (abfd, FILHSZ, SEEK_CUR) != 0
2051 || bfd_read (ab, 1, 8, abfd) != 8
2052 || bfd_seek (abfd, - (FILHSZ + 8), SEEK_CUR) != 0)
2053 return NULL;
2054
2055 ret->parsed_size = bfd_h_get_64 (abfd, ab);
2056 }
2057
2058 return (PTR) ret;
2059 }
2060
2061 /* Get an archive element at a specified file position. This is where
2062 we uncompress the archive element if necessary. */
2063
2064 static bfd *
2065 alpha_ecoff_get_elt_at_filepos (archive, filepos)
2066 bfd *archive;
2067 file_ptr filepos;
2068 {
2069 bfd *nbfd = NULL;
2070 struct areltdata *tdata;
2071 struct ar_hdr *hdr;
2072 bfd_byte ab[8];
2073 bfd_size_type size;
2074 bfd_byte *buf, *p;
2075 struct bfd_in_memory *bim;
2076
2077 nbfd = _bfd_get_elt_at_filepos (archive, filepos);
2078 if (nbfd == NULL)
2079 goto error_return;
2080
2081 if ((nbfd->flags & BFD_IN_MEMORY) != 0)
2082 {
2083 /* We have already expanded this BFD. */
2084 return nbfd;
2085 }
2086
2087 tdata = (struct areltdata *) nbfd->arelt_data;
2088 hdr = (struct ar_hdr *) tdata->arch_header;
2089 if (strncmp (hdr->ar_fmag, ARFZMAG, 2) != 0)
2090 return nbfd;
2091
2092 /* We must uncompress this element. We do this by copying it into a
2093 memory buffer, and making bfd_read and bfd_seek use that buffer.
2094 This can use a lot of memory, but it's simpler than getting a
2095 temporary file, making that work with the file descriptor caching
2096 code, and making sure that it is deleted at all appropriate
2097 times. It can be changed if it ever becomes important. */
2098
2099 /* The compressed file starts with a dummy ECOFF file header. */
2100 if (bfd_seek (nbfd, FILHSZ, SEEK_SET) != 0)
2101 goto error_return;
2102
2103 /* The next eight bytes are the real file size. */
2104 if (bfd_read (ab, 1, 8, nbfd) != 8)
2105 goto error_return;
2106 size = bfd_h_get_64 (nbfd, ab);
2107
2108 if (size == 0)
2109 buf = NULL;
2110 else
2111 {
2112 bfd_size_type left;
2113 bfd_byte dict[4096];
2114 unsigned int h;
2115 bfd_byte b;
2116
2117 buf = (bfd_byte *) bfd_alloc (nbfd, size);
2118 if (buf == NULL)
2119 goto error_return;
2120 p = buf;
2121
2122 left = size;
2123
2124 /* I don't know what the next eight bytes are for. */
2125 if (bfd_read (ab, 1, 8, nbfd) != 8)
2126 goto error_return;
2127
2128 /* This is the uncompression algorithm. It's a simple
2129 dictionary based scheme in which each character is predicted
2130 by a hash of the previous three characters. A control byte
2131 indicates whether the character is predicted or whether it
2132 appears in the input stream; each control byte manages the
2133 next eight bytes in the output stream. */
2134 memset (dict, 0, sizeof dict);
2135 h = 0;
2136 while (bfd_read (&b, 1, 1, nbfd) == 1)
2137 {
2138 unsigned int i;
2139
2140 for (i = 0; i < 8; i++, b >>= 1)
2141 {
2142 bfd_byte n;
2143
2144 if ((b & 1) == 0)
2145 n = dict[h];
2146 else
2147 {
2148 if (! bfd_read (&n, 1, 1, nbfd))
2149 goto error_return;
2150 dict[h] = n;
2151 }
2152
2153 *p++ = n;
2154
2155 --left;
2156 if (left == 0)
2157 break;
2158
2159 h <<= 4;
2160 h ^= n;
2161 h &= sizeof dict - 1;
2162 }
2163
2164 if (left == 0)
2165 break;
2166 }
2167 }
2168
2169 /* Now the uncompressed file contents are in buf. */
2170 bim = ((struct bfd_in_memory *)
2171 bfd_alloc (nbfd, sizeof (struct bfd_in_memory)));
2172 if (bim == NULL)
2173 goto error_return;
2174 bim->size = size;
2175 bim->buffer = buf;
2176
2177 nbfd->mtime_set = true;
2178 nbfd->mtime = strtol (hdr->ar_date, (char **) NULL, 10);
2179
2180 nbfd->flags |= BFD_IN_MEMORY;
2181 nbfd->iostream = (PTR) bim;
2182 BFD_ASSERT (! nbfd->cacheable);
2183
2184 return nbfd;
2185
2186 error_return:
2187 if (nbfd != NULL)
2188 bfd_close (nbfd);
2189 return NULL;
2190 }
2191
2192 /* Open the next archived file. */
2193
2194 static bfd *
2195 alpha_ecoff_openr_next_archived_file (archive, last_file)
2196 bfd *archive;
2197 bfd *last_file;
2198 {
2199 file_ptr filestart;
2200
2201 if (last_file == NULL)
2202 filestart = bfd_ardata (archive)->first_file_filepos;
2203 else
2204 {
2205 struct areltdata *t;
2206 struct ar_hdr *h;
2207 bfd_size_type size;
2208
2209 /* We can't use arelt_size here, because that uses parsed_size,
2210 which is the uncompressed size. We need the compressed size. */
2211 t = (struct areltdata *) last_file->arelt_data;
2212 h = (struct ar_hdr *) t->arch_header;
2213 size = strtol (h->ar_size, (char **) NULL, 10);
2214
2215 /* Pad to an even boundary...
2216 Note that last_file->origin can be odd in the case of
2217 BSD-4.4-style element with a long odd size. */
2218 filestart = last_file->origin + size;
2219 filestart += filestart % 2;
2220 }
2221
2222 return alpha_ecoff_get_elt_at_filepos (archive, filestart);
2223 }
2224
2225 /* Open the archive file given an index into the armap. */
2226
2227 static bfd *
2228 alpha_ecoff_get_elt_at_index (abfd, index)
2229 bfd *abfd;
2230 symindex index;
2231 {
2232 carsym *entry;
2233
2234 entry = bfd_ardata (abfd)->symdefs + index;
2235 return alpha_ecoff_get_elt_at_filepos (abfd, entry->file_offset);
2236 }
2237 \f
2238 /* This is the ECOFF backend structure. The backend field of the
2239 target vector points to this. */
2240
2241 static const struct ecoff_backend_data alpha_ecoff_backend_data =
2242 {
2243 /* COFF backend structure. */
2244 {
2245 (void (*) PARAMS ((bfd *,PTR,int,int,int,int,PTR))) bfd_void, /* aux_in */
2246 (void (*) PARAMS ((bfd *,PTR,PTR))) bfd_void, /* sym_in */
2247 (void (*) PARAMS ((bfd *,PTR,PTR))) bfd_void, /* lineno_in */
2248 (unsigned (*) PARAMS ((bfd *,PTR,int,int,int,int,PTR)))bfd_void,/*aux_out*/
2249 (unsigned (*) PARAMS ((bfd *,PTR,PTR))) bfd_void, /* sym_out */
2250 (unsigned (*) PARAMS ((bfd *,PTR,PTR))) bfd_void, /* lineno_out */
2251 (unsigned (*) PARAMS ((bfd *,PTR,PTR))) bfd_void, /* reloc_out */
2252 alpha_ecoff_swap_filehdr_out, alpha_ecoff_swap_aouthdr_out,
2253 alpha_ecoff_swap_scnhdr_out,
2254 FILHSZ, AOUTSZ, SCNHSZ, 0, 0, 0, 0, true,
2255 alpha_ecoff_swap_filehdr_in, alpha_ecoff_swap_aouthdr_in,
2256 alpha_ecoff_swap_scnhdr_in, NULL,
2257 alpha_ecoff_bad_format_hook, _bfd_ecoff_set_arch_mach_hook,
2258 alpha_ecoff_mkobject_hook, _bfd_ecoff_styp_to_sec_flags,
2259 _bfd_ecoff_set_alignment_hook, _bfd_ecoff_slurp_symbol_table,
2260 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL
2261 },
2262 /* Supported architecture. */
2263 bfd_arch_alpha,
2264 /* Initial portion of armap string. */
2265 "________64",
2266 /* The page boundary used to align sections in a demand-paged
2267 executable file. E.g., 0x1000. */
2268 0x2000,
2269 /* True if the .rdata section is part of the text segment, as on the
2270 Alpha. False if .rdata is part of the data segment, as on the
2271 MIPS. */
2272 true,
2273 /* Bitsize of constructor entries. */
2274 64,
2275 /* Reloc to use for constructor entries. */
2276 &alpha_howto_table[ALPHA_R_REFQUAD],
2277 {
2278 /* Symbol table magic number. */
2279 magicSym2,
2280 /* Alignment of debugging information. E.g., 4. */
2281 8,
2282 /* Sizes of external symbolic information. */
2283 sizeof (struct hdr_ext),
2284 sizeof (struct dnr_ext),
2285 sizeof (struct pdr_ext),
2286 sizeof (struct sym_ext),
2287 sizeof (struct opt_ext),
2288 sizeof (struct fdr_ext),
2289 sizeof (struct rfd_ext),
2290 sizeof (struct ext_ext),
2291 /* Functions to swap in external symbolic data. */
2292 ecoff_swap_hdr_in,
2293 ecoff_swap_dnr_in,
2294 ecoff_swap_pdr_in,
2295 ecoff_swap_sym_in,
2296 ecoff_swap_opt_in,
2297 ecoff_swap_fdr_in,
2298 ecoff_swap_rfd_in,
2299 ecoff_swap_ext_in,
2300 _bfd_ecoff_swap_tir_in,
2301 _bfd_ecoff_swap_rndx_in,
2302 /* Functions to swap out external symbolic data. */
2303 ecoff_swap_hdr_out,
2304 ecoff_swap_dnr_out,
2305 ecoff_swap_pdr_out,
2306 ecoff_swap_sym_out,
2307 ecoff_swap_opt_out,
2308 ecoff_swap_fdr_out,
2309 ecoff_swap_rfd_out,
2310 ecoff_swap_ext_out,
2311 _bfd_ecoff_swap_tir_out,
2312 _bfd_ecoff_swap_rndx_out,
2313 /* Function to read in symbolic data. */
2314 _bfd_ecoff_slurp_symbolic_info
2315 },
2316 /* External reloc size. */
2317 RELSZ,
2318 /* Reloc swapping functions. */
2319 alpha_ecoff_swap_reloc_in,
2320 alpha_ecoff_swap_reloc_out,
2321 /* Backend reloc tweaking. */
2322 alpha_adjust_reloc_in,
2323 alpha_adjust_reloc_out,
2324 /* Relocate section contents while linking. */
2325 alpha_relocate_section,
2326 /* Do final adjustments to filehdr and aouthdr. */
2327 alpha_adjust_headers,
2328 /* Read an element from an archive at a given file position. */
2329 alpha_ecoff_get_elt_at_filepos
2330 };
2331
2332 /* Looking up a reloc type is Alpha specific. */
2333 #define _bfd_ecoff_bfd_reloc_type_lookup alpha_bfd_reloc_type_lookup
2334
2335 /* So is getting relocated section contents. */
2336 #define _bfd_ecoff_bfd_get_relocated_section_contents \
2337 alpha_ecoff_get_relocated_section_contents
2338
2339 /* Handling file windows is generic. */
2340 #define _bfd_ecoff_get_section_contents_in_window \
2341 _bfd_generic_get_section_contents_in_window
2342
2343 /* Relaxing sections is generic. */
2344 #define _bfd_ecoff_bfd_relax_section bfd_generic_relax_section
2345
2346 const bfd_target ecoffalpha_little_vec =
2347 {
2348 "ecoff-littlealpha", /* name */
2349 bfd_target_ecoff_flavour,
2350 BFD_ENDIAN_LITTLE, /* data byte order is little */
2351 BFD_ENDIAN_LITTLE, /* header byte order is little */
2352
2353 (HAS_RELOC | EXEC_P | /* object flags */
2354 HAS_LINENO | HAS_DEBUG |
2355 HAS_SYMS | HAS_LOCALS | DYNAMIC | WP_TEXT | D_PAGED),
2356
2357 (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD | SEC_RELOC | SEC_CODE | SEC_DATA),
2358 0, /* leading underscore */
2359 ' ', /* ar_pad_char */
2360 15, /* ar_max_namelen */
2361 bfd_getl64, bfd_getl_signed_64, bfd_putl64,
2362 bfd_getl32, bfd_getl_signed_32, bfd_putl32,
2363 bfd_getl16, bfd_getl_signed_16, bfd_putl16, /* data */
2364 bfd_getl64, bfd_getl_signed_64, bfd_putl64,
2365 bfd_getl32, bfd_getl_signed_32, bfd_putl32,
2366 bfd_getl16, bfd_getl_signed_16, bfd_putl16, /* hdrs */
2367
2368 {_bfd_dummy_target, alpha_ecoff_object_p, /* bfd_check_format */
2369 _bfd_ecoff_archive_p, _bfd_dummy_target},
2370 {bfd_false, _bfd_ecoff_mkobject, /* bfd_set_format */
2371 _bfd_generic_mkarchive, bfd_false},
2372 {bfd_false, _bfd_ecoff_write_object_contents, /* bfd_write_contents */
2373 _bfd_write_archive_contents, bfd_false},
2374
2375 BFD_JUMP_TABLE_GENERIC (_bfd_ecoff),
2376 BFD_JUMP_TABLE_COPY (_bfd_ecoff),
2377 BFD_JUMP_TABLE_CORE (_bfd_nocore),
2378 BFD_JUMP_TABLE_ARCHIVE (alpha_ecoff),
2379 BFD_JUMP_TABLE_SYMBOLS (_bfd_ecoff),
2380 BFD_JUMP_TABLE_RELOCS (_bfd_ecoff),
2381 BFD_JUMP_TABLE_WRITE (_bfd_ecoff),
2382 BFD_JUMP_TABLE_LINK (_bfd_ecoff),
2383 BFD_JUMP_TABLE_DYNAMIC (_bfd_nodynamic),
2384
2385 (PTR) &alpha_ecoff_backend_data
2386 };
This page took 0.079199 seconds and 5 git commands to generate.