* coff-alpha.c (alpha_ecoff_get_relocated_section_contents): Don't
[deliverable/binutils-gdb.git] / bfd / coff-alpha.c
1 /* BFD back-end for ALPHA Extended-Coff files.
2 Copyright 1993, 1994, 1995, 1996 Free Software Foundation, Inc.
3 Modified from coff-mips.c by Steve Chamberlain <sac@cygnus.com> and
4 Ian Lance Taylor <ian@cygnus.com>.
5
6 This file is part of BFD, the Binary File Descriptor library.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
21
22 #include "bfd.h"
23 #include "sysdep.h"
24 #include "bfdlink.h"
25 #include "libbfd.h"
26 #include "coff/internal.h"
27 #include "coff/sym.h"
28 #include "coff/symconst.h"
29 #include "coff/ecoff.h"
30 #include "coff/alpha.h"
31 #include "aout/ar.h"
32 #include "libcoff.h"
33 #include "libecoff.h"
34 \f
35 /* Prototypes for static functions. */
36
37 static const bfd_target *alpha_ecoff_object_p PARAMS ((bfd *));
38 static boolean alpha_ecoff_bad_format_hook PARAMS ((bfd *abfd, PTR filehdr));
39 static PTR alpha_ecoff_mkobject_hook PARAMS ((bfd *, PTR filehdr, PTR aouthdr));
40 static void alpha_ecoff_swap_reloc_in PARAMS ((bfd *, PTR,
41 struct internal_reloc *));
42 static void alpha_ecoff_swap_reloc_out PARAMS ((bfd *,
43 const struct internal_reloc *,
44 PTR));
45 static void alpha_adjust_reloc_in PARAMS ((bfd *,
46 const struct internal_reloc *,
47 arelent *));
48 static void alpha_adjust_reloc_out PARAMS ((bfd *, const arelent *,
49 struct internal_reloc *));
50 static bfd_byte *alpha_ecoff_get_relocated_section_contents
51 PARAMS ((bfd *abfd, struct bfd_link_info *, struct bfd_link_order *,
52 bfd_byte *data, boolean relocateable, asymbol **symbols));
53 static bfd_vma alpha_convert_external_reloc
54 PARAMS ((bfd *, struct bfd_link_info *, bfd *, struct external_reloc *,
55 struct ecoff_link_hash_entry *));
56 static boolean alpha_relocate_section PARAMS ((bfd *, struct bfd_link_info *,
57 bfd *, asection *,
58 bfd_byte *, PTR));
59 static boolean alpha_adjust_headers
60 PARAMS ((bfd *, struct internal_filehdr *, struct internal_aouthdr *));
61 static PTR alpha_ecoff_read_ar_hdr PARAMS ((bfd *));
62 static bfd *alpha_ecoff_get_elt_at_filepos PARAMS ((bfd *, file_ptr));
63 static bfd *alpha_ecoff_openr_next_archived_file PARAMS ((bfd *, bfd *));
64 static bfd *alpha_ecoff_get_elt_at_index PARAMS ((bfd *, symindex));
65 \f
66 /* ECOFF has COFF sections, but the debugging information is stored in
67 a completely different format. ECOFF targets use some of the
68 swapping routines from coffswap.h, and some of the generic COFF
69 routines in coffgen.c, but, unlike the real COFF targets, do not
70 use coffcode.h itself.
71
72 Get the generic COFF swapping routines, except for the reloc,
73 symbol, and lineno ones. Give them ecoff names. Define some
74 accessor macros for the large sizes used for Alpha ECOFF. */
75
76 #define GET_FILEHDR_SYMPTR bfd_h_get_64
77 #define PUT_FILEHDR_SYMPTR bfd_h_put_64
78 #define GET_AOUTHDR_TSIZE bfd_h_get_64
79 #define PUT_AOUTHDR_TSIZE bfd_h_put_64
80 #define GET_AOUTHDR_DSIZE bfd_h_get_64
81 #define PUT_AOUTHDR_DSIZE bfd_h_put_64
82 #define GET_AOUTHDR_BSIZE bfd_h_get_64
83 #define PUT_AOUTHDR_BSIZE bfd_h_put_64
84 #define GET_AOUTHDR_ENTRY bfd_h_get_64
85 #define PUT_AOUTHDR_ENTRY bfd_h_put_64
86 #define GET_AOUTHDR_TEXT_START bfd_h_get_64
87 #define PUT_AOUTHDR_TEXT_START bfd_h_put_64
88 #define GET_AOUTHDR_DATA_START bfd_h_get_64
89 #define PUT_AOUTHDR_DATA_START bfd_h_put_64
90 #define GET_SCNHDR_PADDR bfd_h_get_64
91 #define PUT_SCNHDR_PADDR bfd_h_put_64
92 #define GET_SCNHDR_VADDR bfd_h_get_64
93 #define PUT_SCNHDR_VADDR bfd_h_put_64
94 #define GET_SCNHDR_SIZE bfd_h_get_64
95 #define PUT_SCNHDR_SIZE bfd_h_put_64
96 #define GET_SCNHDR_SCNPTR bfd_h_get_64
97 #define PUT_SCNHDR_SCNPTR bfd_h_put_64
98 #define GET_SCNHDR_RELPTR bfd_h_get_64
99 #define PUT_SCNHDR_RELPTR bfd_h_put_64
100 #define GET_SCNHDR_LNNOPTR bfd_h_get_64
101 #define PUT_SCNHDR_LNNOPTR bfd_h_put_64
102
103 #define ALPHAECOFF
104
105 #define NO_COFF_RELOCS
106 #define NO_COFF_SYMBOLS
107 #define NO_COFF_LINENOS
108 #define coff_swap_filehdr_in alpha_ecoff_swap_filehdr_in
109 #define coff_swap_filehdr_out alpha_ecoff_swap_filehdr_out
110 #define coff_swap_aouthdr_in alpha_ecoff_swap_aouthdr_in
111 #define coff_swap_aouthdr_out alpha_ecoff_swap_aouthdr_out
112 #define coff_swap_scnhdr_in alpha_ecoff_swap_scnhdr_in
113 #define coff_swap_scnhdr_out alpha_ecoff_swap_scnhdr_out
114 #include "coffswap.h"
115
116 /* Get the ECOFF swapping routines. */
117 #define ECOFF_64
118 #include "ecoffswap.h"
119 \f
120 /* How to process the various reloc types. */
121
122 static bfd_reloc_status_type
123 reloc_nil PARAMS ((bfd *, arelent *, asymbol *, PTR,
124 asection *, bfd *, char **));
125
126 static bfd_reloc_status_type
127 reloc_nil (abfd, reloc, sym, data, sec, output_bfd, error_message)
128 bfd *abfd;
129 arelent *reloc;
130 asymbol *sym;
131 PTR data;
132 asection *sec;
133 bfd *output_bfd;
134 char **error_message;
135 {
136 return bfd_reloc_ok;
137 }
138
139 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
140 from smaller values. Start with zero, widen, *then* decrement. */
141 #define MINUS_ONE (((bfd_vma)0) - 1)
142
143 static reloc_howto_type alpha_howto_table[] =
144 {
145 /* Reloc type 0 is ignored by itself. However, it appears after a
146 GPDISP reloc to identify the location where the low order 16 bits
147 of the gp register are loaded. */
148 HOWTO (ALPHA_R_IGNORE, /* type */
149 0, /* rightshift */
150 0, /* size (0 = byte, 1 = short, 2 = long) */
151 8, /* bitsize */
152 true, /* pc_relative */
153 0, /* bitpos */
154 complain_overflow_dont, /* complain_on_overflow */
155 reloc_nil, /* special_function */
156 "IGNORE", /* name */
157 true, /* partial_inplace */
158 0, /* src_mask */
159 0, /* dst_mask */
160 true), /* pcrel_offset */
161
162 /* A 32 bit reference to a symbol. */
163 HOWTO (ALPHA_R_REFLONG, /* type */
164 0, /* rightshift */
165 2, /* size (0 = byte, 1 = short, 2 = long) */
166 32, /* bitsize */
167 false, /* pc_relative */
168 0, /* bitpos */
169 complain_overflow_bitfield, /* complain_on_overflow */
170 0, /* special_function */
171 "REFLONG", /* name */
172 true, /* partial_inplace */
173 0xffffffff, /* src_mask */
174 0xffffffff, /* dst_mask */
175 false), /* pcrel_offset */
176
177 /* A 64 bit reference to a symbol. */
178 HOWTO (ALPHA_R_REFQUAD, /* type */
179 0, /* rightshift */
180 4, /* size (0 = byte, 1 = short, 2 = long) */
181 64, /* bitsize */
182 false, /* pc_relative */
183 0, /* bitpos */
184 complain_overflow_bitfield, /* complain_on_overflow */
185 0, /* special_function */
186 "REFQUAD", /* name */
187 true, /* partial_inplace */
188 MINUS_ONE, /* src_mask */
189 MINUS_ONE, /* dst_mask */
190 false), /* pcrel_offset */
191
192 /* A 32 bit GP relative offset. This is just like REFLONG except
193 that when the value is used the value of the gp register will be
194 added in. */
195 HOWTO (ALPHA_R_GPREL32, /* type */
196 0, /* rightshift */
197 2, /* size (0 = byte, 1 = short, 2 = long) */
198 32, /* bitsize */
199 false, /* pc_relative */
200 0, /* bitpos */
201 complain_overflow_bitfield, /* complain_on_overflow */
202 0, /* special_function */
203 "GPREL32", /* name */
204 true, /* partial_inplace */
205 0xffffffff, /* src_mask */
206 0xffffffff, /* dst_mask */
207 false), /* pcrel_offset */
208
209 /* Used for an instruction that refers to memory off the GP
210 register. The offset is 16 bits of the 32 bit instruction. This
211 reloc always seems to be against the .lita section. */
212 HOWTO (ALPHA_R_LITERAL, /* type */
213 0, /* rightshift */
214 2, /* size (0 = byte, 1 = short, 2 = long) */
215 16, /* bitsize */
216 false, /* pc_relative */
217 0, /* bitpos */
218 complain_overflow_signed, /* complain_on_overflow */
219 0, /* special_function */
220 "LITERAL", /* name */
221 true, /* partial_inplace */
222 0xffff, /* src_mask */
223 0xffff, /* dst_mask */
224 false), /* pcrel_offset */
225
226 /* This reloc only appears immediately following a LITERAL reloc.
227 It identifies a use of the literal. It seems that the linker can
228 use this to eliminate a portion of the .lita section. The symbol
229 index is special: 1 means the literal address is in the base
230 register of a memory format instruction; 2 means the literal
231 address is in the byte offset register of a byte-manipulation
232 instruction; 3 means the literal address is in the target
233 register of a jsr instruction. This does not actually do any
234 relocation. */
235 HOWTO (ALPHA_R_LITUSE, /* type */
236 0, /* rightshift */
237 2, /* size (0 = byte, 1 = short, 2 = long) */
238 32, /* bitsize */
239 false, /* pc_relative */
240 0, /* bitpos */
241 complain_overflow_dont, /* complain_on_overflow */
242 reloc_nil, /* special_function */
243 "LITUSE", /* name */
244 false, /* partial_inplace */
245 0, /* src_mask */
246 0, /* dst_mask */
247 false), /* pcrel_offset */
248
249 /* Load the gp register. This is always used for a ldah instruction
250 which loads the upper 16 bits of the gp register. The next reloc
251 will be an IGNORE reloc which identifies the location of the lda
252 instruction which loads the lower 16 bits. The symbol index of
253 the GPDISP instruction appears to actually be the number of bytes
254 between the ldah and lda instructions. This gives two different
255 ways to determine where the lda instruction is; I don't know why
256 both are used. The value to use for the relocation is the
257 difference between the GP value and the current location; the
258 load will always be done against a register holding the current
259 address. */
260 HOWTO (ALPHA_R_GPDISP, /* type */
261 16, /* rightshift */
262 2, /* size (0 = byte, 1 = short, 2 = long) */
263 16, /* bitsize */
264 true, /* pc_relative */
265 0, /* bitpos */
266 complain_overflow_dont, /* complain_on_overflow */
267 reloc_nil, /* special_function */
268 "GPDISP", /* name */
269 true, /* partial_inplace */
270 0xffff, /* src_mask */
271 0xffff, /* dst_mask */
272 true), /* pcrel_offset */
273
274 /* A 21 bit branch. The native assembler generates these for
275 branches within the text segment, and also fills in the PC
276 relative offset in the instruction. */
277 HOWTO (ALPHA_R_BRADDR, /* type */
278 2, /* rightshift */
279 2, /* size (0 = byte, 1 = short, 2 = long) */
280 21, /* bitsize */
281 true, /* pc_relative */
282 0, /* bitpos */
283 complain_overflow_signed, /* complain_on_overflow */
284 0, /* special_function */
285 "BRADDR", /* name */
286 true, /* partial_inplace */
287 0x1fffff, /* src_mask */
288 0x1fffff, /* dst_mask */
289 false), /* pcrel_offset */
290
291 /* A hint for a jump to a register. */
292 HOWTO (ALPHA_R_HINT, /* type */
293 2, /* rightshift */
294 2, /* size (0 = byte, 1 = short, 2 = long) */
295 14, /* bitsize */
296 true, /* pc_relative */
297 0, /* bitpos */
298 complain_overflow_dont, /* complain_on_overflow */
299 0, /* special_function */
300 "HINT", /* name */
301 true, /* partial_inplace */
302 0x3fff, /* src_mask */
303 0x3fff, /* dst_mask */
304 false), /* pcrel_offset */
305
306 /* 16 bit PC relative offset. */
307 HOWTO (ALPHA_R_SREL16, /* type */
308 0, /* rightshift */
309 1, /* size (0 = byte, 1 = short, 2 = long) */
310 16, /* bitsize */
311 true, /* pc_relative */
312 0, /* bitpos */
313 complain_overflow_signed, /* complain_on_overflow */
314 0, /* special_function */
315 "SREL16", /* name */
316 true, /* partial_inplace */
317 0xffff, /* src_mask */
318 0xffff, /* dst_mask */
319 false), /* pcrel_offset */
320
321 /* 32 bit PC relative offset. */
322 HOWTO (ALPHA_R_SREL32, /* type */
323 0, /* rightshift */
324 2, /* size (0 = byte, 1 = short, 2 = long) */
325 32, /* bitsize */
326 true, /* pc_relative */
327 0, /* bitpos */
328 complain_overflow_signed, /* complain_on_overflow */
329 0, /* special_function */
330 "SREL32", /* name */
331 true, /* partial_inplace */
332 0xffffffff, /* src_mask */
333 0xffffffff, /* dst_mask */
334 false), /* pcrel_offset */
335
336 /* A 64 bit PC relative offset. */
337 HOWTO (ALPHA_R_SREL64, /* type */
338 0, /* rightshift */
339 4, /* size (0 = byte, 1 = short, 2 = long) */
340 64, /* bitsize */
341 true, /* pc_relative */
342 0, /* bitpos */
343 complain_overflow_signed, /* complain_on_overflow */
344 0, /* special_function */
345 "SREL64", /* name */
346 true, /* partial_inplace */
347 MINUS_ONE, /* src_mask */
348 MINUS_ONE, /* dst_mask */
349 false), /* pcrel_offset */
350
351 /* Push a value on the reloc evaluation stack. */
352 HOWTO (ALPHA_R_OP_PUSH, /* type */
353 0, /* rightshift */
354 0, /* size (0 = byte, 1 = short, 2 = long) */
355 0, /* bitsize */
356 false, /* pc_relative */
357 0, /* bitpos */
358 complain_overflow_dont, /* complain_on_overflow */
359 0, /* special_function */
360 "OP_PUSH", /* name */
361 false, /* partial_inplace */
362 0, /* src_mask */
363 0, /* dst_mask */
364 false), /* pcrel_offset */
365
366 /* Store the value from the stack at the given address. Store it in
367 a bitfield of size r_size starting at bit position r_offset. */
368 HOWTO (ALPHA_R_OP_STORE, /* type */
369 0, /* rightshift */
370 4, /* size (0 = byte, 1 = short, 2 = long) */
371 64, /* bitsize */
372 false, /* pc_relative */
373 0, /* bitpos */
374 complain_overflow_dont, /* complain_on_overflow */
375 0, /* special_function */
376 "OP_STORE", /* name */
377 false, /* partial_inplace */
378 0, /* src_mask */
379 MINUS_ONE, /* dst_mask */
380 false), /* pcrel_offset */
381
382 /* Subtract the reloc address from the value on the top of the
383 relocation stack. */
384 HOWTO (ALPHA_R_OP_PSUB, /* type */
385 0, /* rightshift */
386 0, /* size (0 = byte, 1 = short, 2 = long) */
387 0, /* bitsize */
388 false, /* pc_relative */
389 0, /* bitpos */
390 complain_overflow_dont, /* complain_on_overflow */
391 0, /* special_function */
392 "OP_PSUB", /* name */
393 false, /* partial_inplace */
394 0, /* src_mask */
395 0, /* dst_mask */
396 false), /* pcrel_offset */
397
398 /* Shift the value on the top of the relocation stack right by the
399 given value. */
400 HOWTO (ALPHA_R_OP_PRSHIFT, /* type */
401 0, /* rightshift */
402 0, /* size (0 = byte, 1 = short, 2 = long) */
403 0, /* bitsize */
404 false, /* pc_relative */
405 0, /* bitpos */
406 complain_overflow_dont, /* complain_on_overflow */
407 0, /* special_function */
408 "OP_PRSHIFT", /* name */
409 false, /* partial_inplace */
410 0, /* src_mask */
411 0, /* dst_mask */
412 false), /* pcrel_offset */
413
414 /* Adjust the GP value for a new range in the object file. */
415 HOWTO (ALPHA_R_GPVALUE, /* type */
416 0, /* rightshift */
417 0, /* size (0 = byte, 1 = short, 2 = long) */
418 0, /* bitsize */
419 false, /* pc_relative */
420 0, /* bitpos */
421 complain_overflow_dont, /* complain_on_overflow */
422 0, /* special_function */
423 "GPVALUE", /* name */
424 false, /* partial_inplace */
425 0, /* src_mask */
426 0, /* dst_mask */
427 false) /* pcrel_offset */
428 };
429 \f
430 /* Recognize an Alpha ECOFF file. */
431
432 static const bfd_target *
433 alpha_ecoff_object_p (abfd)
434 bfd *abfd;
435 {
436 static const bfd_target *ret;
437
438 ret = coff_object_p (abfd);
439
440 if (ret != NULL)
441 {
442 asection *sec;
443
444 /* Alpha ECOFF has a .pdata section. The lnnoptr field of the
445 .pdata section is the number of entries it contains. Each
446 entry takes up 8 bytes. The number of entries is required
447 since the section is aligned to a 16 byte boundary. When we
448 link .pdata sections together, we do not want to include the
449 alignment bytes. We handle this on input by faking the size
450 of the .pdata section to remove the unwanted alignment bytes.
451 On output we will set the lnnoptr field and force the
452 alignment. */
453 sec = bfd_get_section_by_name (abfd, _PDATA);
454 if (sec != (asection *) NULL)
455 {
456 bfd_size_type size;
457
458 size = sec->line_filepos * 8;
459 BFD_ASSERT (size == bfd_section_size (abfd, sec)
460 || size + 8 == bfd_section_size (abfd, sec));
461 if (! bfd_set_section_size (abfd, sec, size))
462 return NULL;
463 }
464 }
465
466 return ret;
467 }
468
469 /* See whether the magic number matches. */
470
471 static boolean
472 alpha_ecoff_bad_format_hook (abfd, filehdr)
473 bfd *abfd;
474 PTR filehdr;
475 {
476 struct internal_filehdr *internal_f = (struct internal_filehdr *) filehdr;
477
478 if (ALPHA_ECOFF_BADMAG (*internal_f))
479 return false;
480
481 return true;
482 }
483
484 /* This is a hook called by coff_real_object_p to create any backend
485 specific information. */
486
487 static PTR
488 alpha_ecoff_mkobject_hook (abfd, filehdr, aouthdr)
489 bfd *abfd;
490 PTR filehdr;
491 PTR aouthdr;
492 {
493 PTR ecoff;
494
495 ecoff = _bfd_ecoff_mkobject_hook (abfd, filehdr, aouthdr);
496
497 if (ecoff != NULL)
498 {
499 struct internal_filehdr *internal_f = (struct internal_filehdr *) filehdr;
500
501 /* Set additional BFD flags according to the object type from the
502 machine specific file header flags. */
503 switch (internal_f->f_flags & F_ALPHA_OBJECT_TYPE_MASK)
504 {
505 case F_ALPHA_SHARABLE:
506 abfd->flags |= DYNAMIC;
507 break;
508 case F_ALPHA_CALL_SHARED:
509 /* Always executable if using shared libraries as the run time
510 loader might resolve undefined references. */
511 abfd->flags |= (DYNAMIC | EXEC_P);
512 break;
513 }
514 }
515 return ecoff;
516 }
517 \f
518 /* Reloc handling. */
519
520 /* Swap a reloc in. */
521
522 static void
523 alpha_ecoff_swap_reloc_in (abfd, ext_ptr, intern)
524 bfd *abfd;
525 PTR ext_ptr;
526 struct internal_reloc *intern;
527 {
528 const RELOC *ext = (RELOC *) ext_ptr;
529
530 intern->r_vaddr = bfd_h_get_64 (abfd, (bfd_byte *) ext->r_vaddr);
531 intern->r_symndx = bfd_h_get_32 (abfd, (bfd_byte *) ext->r_symndx);
532
533 BFD_ASSERT (bfd_header_little_endian (abfd));
534
535 intern->r_type = ((ext->r_bits[0] & RELOC_BITS0_TYPE_LITTLE)
536 >> RELOC_BITS0_TYPE_SH_LITTLE);
537 intern->r_extern = (ext->r_bits[1] & RELOC_BITS1_EXTERN_LITTLE) != 0;
538 intern->r_offset = ((ext->r_bits[1] & RELOC_BITS1_OFFSET_LITTLE)
539 >> RELOC_BITS1_OFFSET_SH_LITTLE);
540 /* Ignored the reserved bits. */
541 intern->r_size = ((ext->r_bits[3] & RELOC_BITS3_SIZE_LITTLE)
542 >> RELOC_BITS3_SIZE_SH_LITTLE);
543
544 if (intern->r_type == ALPHA_R_LITUSE
545 || intern->r_type == ALPHA_R_GPDISP)
546 {
547 /* Handle the LITUSE and GPDISP relocs specially. Its symndx
548 value is not actually a symbol index, but is instead a
549 special code. We put the code in the r_size field, and
550 clobber the symndx. */
551 if (intern->r_size != 0)
552 abort ();
553 intern->r_size = intern->r_symndx;
554 intern->r_symndx = RELOC_SECTION_NONE;
555 }
556 else if (intern->r_type == ALPHA_R_IGNORE)
557 {
558 /* The IGNORE reloc generally follows a GPDISP reloc, and is
559 against the .lita section. The section is irrelevant. */
560 if (! intern->r_extern &&
561 intern->r_symndx == RELOC_SECTION_ABS)
562 abort ();
563 if (! intern->r_extern && intern->r_symndx == RELOC_SECTION_LITA)
564 intern->r_symndx = RELOC_SECTION_ABS;
565 }
566 }
567
568 /* Swap a reloc out. */
569
570 static void
571 alpha_ecoff_swap_reloc_out (abfd, intern, dst)
572 bfd *abfd;
573 const struct internal_reloc *intern;
574 PTR dst;
575 {
576 RELOC *ext = (RELOC *) dst;
577 long symndx;
578 unsigned char size;
579
580 /* Undo the hackery done in swap_reloc_in. */
581 if (intern->r_type == ALPHA_R_LITUSE
582 || intern->r_type == ALPHA_R_GPDISP)
583 {
584 symndx = intern->r_size;
585 size = 0;
586 }
587 else if (intern->r_type == ALPHA_R_IGNORE
588 && ! intern->r_extern
589 && intern->r_symndx == RELOC_SECTION_ABS)
590 {
591 symndx = RELOC_SECTION_LITA;
592 size = intern->r_size;
593 }
594 else
595 {
596 symndx = intern->r_symndx;
597 size = intern->r_size;
598 }
599
600 BFD_ASSERT (intern->r_extern
601 || (intern->r_symndx >= 0 && intern->r_symndx <= 14));
602
603 bfd_h_put_64 (abfd, intern->r_vaddr, (bfd_byte *) ext->r_vaddr);
604 bfd_h_put_32 (abfd, symndx, (bfd_byte *) ext->r_symndx);
605
606 BFD_ASSERT (bfd_header_little_endian (abfd));
607
608 ext->r_bits[0] = ((intern->r_type << RELOC_BITS0_TYPE_SH_LITTLE)
609 & RELOC_BITS0_TYPE_LITTLE);
610 ext->r_bits[1] = ((intern->r_extern ? RELOC_BITS1_EXTERN_LITTLE : 0)
611 | ((intern->r_offset << RELOC_BITS1_OFFSET_SH_LITTLE)
612 & RELOC_BITS1_OFFSET_LITTLE));
613 ext->r_bits[2] = 0;
614 ext->r_bits[3] = ((size << RELOC_BITS3_SIZE_SH_LITTLE)
615 & RELOC_BITS3_SIZE_LITTLE);
616 }
617
618 /* Finish canonicalizing a reloc. Part of this is generic to all
619 ECOFF targets, and that part is in ecoff.c. The rest is done in
620 this backend routine. It must fill in the howto field. */
621
622 static void
623 alpha_adjust_reloc_in (abfd, intern, rptr)
624 bfd *abfd;
625 const struct internal_reloc *intern;
626 arelent *rptr;
627 {
628 if (intern->r_type > ALPHA_R_GPVALUE)
629 abort ();
630
631 switch (intern->r_type)
632 {
633 case ALPHA_R_BRADDR:
634 case ALPHA_R_SREL16:
635 case ALPHA_R_SREL32:
636 case ALPHA_R_SREL64:
637 /* The PC relative relocs do not seem to use the section VMA as
638 a negative addend. */
639 rptr->addend = 0;
640 break;
641
642 case ALPHA_R_GPREL32:
643 case ALPHA_R_LITERAL:
644 /* Copy the gp value for this object file into the addend, to
645 ensure that we are not confused by the linker. */
646 if (! intern->r_extern)
647 rptr->addend += ecoff_data (abfd)->gp;
648 break;
649
650 case ALPHA_R_LITUSE:
651 case ALPHA_R_GPDISP:
652 /* The LITUSE and GPDISP relocs do not use a symbol, or an
653 addend, but they do use a special code. Put this code in the
654 addend field. */
655 rptr->addend = intern->r_size;
656 break;
657
658 case ALPHA_R_OP_STORE:
659 /* The STORE reloc needs the size and offset fields. We store
660 them in the addend. */
661 BFD_ASSERT (intern->r_offset <= 256 && intern->r_size <= 256);
662 rptr->addend = (intern->r_offset << 8) + intern->r_size;
663 break;
664
665 case ALPHA_R_OP_PUSH:
666 case ALPHA_R_OP_PSUB:
667 case ALPHA_R_OP_PRSHIFT:
668 /* The PUSH, PSUB and PRSHIFT relocs do not actually use an
669 address. I believe that the address supplied is really an
670 addend. */
671 rptr->addend = intern->r_vaddr;
672 break;
673
674 case ALPHA_R_GPVALUE:
675 /* Set the addend field to the new GP value. */
676 rptr->addend = intern->r_symndx + ecoff_data (abfd)->gp;
677 break;
678
679 case ALPHA_R_IGNORE:
680 /* If the type is ALPHA_R_IGNORE, make sure this is a reference
681 to the absolute section so that the reloc is ignored. For
682 some reason the address of this reloc type is not adjusted by
683 the section vma. We record the gp value for this object file
684 here, for convenience when doing the GPDISP relocation. */
685 rptr->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
686 rptr->address = intern->r_vaddr;
687 rptr->addend = ecoff_data (abfd)->gp;
688 break;
689
690 default:
691 break;
692 }
693
694 rptr->howto = &alpha_howto_table[intern->r_type];
695 }
696
697 /* When writing out a reloc we need to pull some values back out of
698 the addend field into the reloc. This is roughly the reverse of
699 alpha_adjust_reloc_in, except that there are several changes we do
700 not need to undo. */
701
702 static void
703 alpha_adjust_reloc_out (abfd, rel, intern)
704 bfd *abfd;
705 const arelent *rel;
706 struct internal_reloc *intern;
707 {
708 switch (intern->r_type)
709 {
710 case ALPHA_R_LITUSE:
711 case ALPHA_R_GPDISP:
712 intern->r_size = rel->addend;
713 break;
714
715 case ALPHA_R_OP_STORE:
716 intern->r_size = rel->addend & 0xff;
717 intern->r_offset = (rel->addend >> 8) & 0xff;
718 break;
719
720 case ALPHA_R_OP_PUSH:
721 case ALPHA_R_OP_PSUB:
722 case ALPHA_R_OP_PRSHIFT:
723 intern->r_vaddr = rel->addend;
724 break;
725
726 case ALPHA_R_IGNORE:
727 intern->r_vaddr = rel->address;
728 break;
729
730 default:
731 break;
732 }
733 }
734
735 /* The size of the stack for the relocation evaluator. */
736 #define RELOC_STACKSIZE (10)
737
738 /* Alpha ECOFF relocs have a built in expression evaluator as well as
739 other interdependencies. Rather than use a bunch of special
740 functions and global variables, we use a single routine to do all
741 the relocation for a section. I haven't yet worked out how the
742 assembler is going to handle this. */
743
744 static bfd_byte *
745 alpha_ecoff_get_relocated_section_contents (abfd, link_info, link_order,
746 data, relocateable, symbols)
747 bfd *abfd;
748 struct bfd_link_info *link_info;
749 struct bfd_link_order *link_order;
750 bfd_byte *data;
751 boolean relocateable;
752 asymbol **symbols;
753 {
754 bfd *input_bfd = link_order->u.indirect.section->owner;
755 asection *input_section = link_order->u.indirect.section;
756 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
757 arelent **reloc_vector = NULL;
758 long reloc_count;
759 bfd *output_bfd = relocateable ? abfd : (bfd *) NULL;
760 bfd_vma gp;
761 boolean gp_undefined;
762 bfd_vma gp;
763 bfd_vma stack[RELOC_STACKSIZE];
764 int tos = 0;
765
766 if (reloc_size < 0)
767 goto error_return;
768 reloc_vector = (arelent **) bfd_malloc (reloc_size);
769 if (reloc_vector == NULL && reloc_size != 0)
770 goto error_return;
771
772 if (! bfd_get_section_contents (input_bfd, input_section, data,
773 (file_ptr) 0, input_section->_raw_size))
774 goto error_return;
775
776 /* The section size is not going to change. */
777 input_section->_cooked_size = input_section->_raw_size;
778 input_section->reloc_done = true;
779
780 reloc_count = bfd_canonicalize_reloc (input_bfd, input_section,
781 reloc_vector, symbols);
782 if (reloc_count < 0)
783 goto error_return;
784 if (reloc_count == 0)
785 goto successful_return;
786
787 /* Get the GP value for the output BFD. */
788 gp_undefined = false;
789 gp = _bfd_get_gp_value (abfd);
790 if (gp == 0)
791 {
792 if (relocateable != false)
793 {
794 asection *sec;
795 bfd_vma lo;
796
797 /* Make up a value. */
798 lo = (bfd_vma) -1;
799 for (sec = abfd->sections; sec != NULL; sec = sec->next)
800 {
801 if (sec->vma < lo
802 && (strcmp (sec->name, ".sbss") == 0
803 || strcmp (sec->name, ".sdata") == 0
804 || strcmp (sec->name, ".lit4") == 0
805 || strcmp (sec->name, ".lit8") == 0
806 || strcmp (sec->name, ".lita") == 0))
807 lo = sec->vma;
808 }
809 gp = lo + 0x8000;
810 _bfd_set_gp_value (abfd, gp);
811 }
812 else
813 {
814 struct bfd_link_hash_entry *h;
815
816 h = bfd_link_hash_lookup (link_info->hash, "_gp", false, false,
817 true);
818 if (h == (struct bfd_link_hash_entry *) NULL
819 || h->type != bfd_link_hash_defined)
820 gp_undefined = true;
821 else
822 {
823 gp = (h->u.def.value
824 + h->u.def.section->output_section->vma
825 + h->u.def.section->output_offset);
826 _bfd_set_gp_value (abfd, gp);
827 }
828 }
829 }
830
831 for (; *reloc_vector != (arelent *) NULL; reloc_vector++)
832 {
833 arelent *rel;
834 bfd_reloc_status_type r;
835 char *err;
836
837 rel = *reloc_vector;
838 r = bfd_reloc_ok;
839 switch (rel->howto->type)
840 {
841 case ALPHA_R_IGNORE:
842 rel->address += input_section->output_offset;
843 break;
844
845 case ALPHA_R_REFLONG:
846 case ALPHA_R_REFQUAD:
847 case ALPHA_R_BRADDR:
848 case ALPHA_R_HINT:
849 case ALPHA_R_SREL16:
850 case ALPHA_R_SREL32:
851 case ALPHA_R_SREL64:
852 if (relocateable
853 && ((*rel->sym_ptr_ptr)->flags & BSF_SECTION_SYM) == 0)
854 {
855 rel->address += input_section->output_offset;
856 break;
857 }
858 r = bfd_perform_relocation (input_bfd, rel, data, input_section,
859 output_bfd, &err);
860 break;
861
862 case ALPHA_R_GPREL32:
863 /* This relocation is used in a switch table. It is a 32
864 bit offset from the current GP value. We must adjust it
865 by the different between the original GP value and the
866 current GP value. The original GP value is stored in the
867 addend. We adjust the addend and let
868 bfd_perform_relocation finish the job. */
869 rel->addend -= gp;
870 r = bfd_perform_relocation (input_bfd, rel, data, input_section,
871 output_bfd, &err);
872 if (r == bfd_reloc_ok && gp_undefined)
873 {
874 r = bfd_reloc_dangerous;
875 err = (char *) "GP relative relocation used when GP not defined";
876 }
877 break;
878
879 case ALPHA_R_LITERAL:
880 /* This is a reference to a literal value, generally
881 (always?) in the .lita section. This is a 16 bit GP
882 relative relocation. Sometimes the subsequent reloc is a
883 LITUSE reloc, which indicates how this reloc is used.
884 This sometimes permits rewriting the two instructions
885 referred to by the LITERAL and the LITUSE into different
886 instructions which do not refer to .lita. This can save
887 a memory reference, and permits removing a value from
888 .lita thus saving GP relative space.
889
890 We do not these optimizations. To do them we would need
891 to arrange to link the .lita section first, so that by
892 the time we got here we would know the final values to
893 use. This would not be particularly difficult, but it is
894 not currently implemented. */
895
896 {
897 unsigned long insn;
898
899 /* I believe that the LITERAL reloc will only apply to a
900 ldq or ldl instruction, so check my assumption. */
901 insn = bfd_get_32 (input_bfd, data + rel->address);
902 BFD_ASSERT (((insn >> 26) & 0x3f) == 0x29
903 || ((insn >> 26) & 0x3f) == 0x28);
904
905 rel->addend -= gp;
906 r = bfd_perform_relocation (input_bfd, rel, data, input_section,
907 output_bfd, &err);
908 if (r == bfd_reloc_ok && gp_undefined)
909 {
910 r = bfd_reloc_dangerous;
911 err =
912 (char *) "GP relative relocation used when GP not defined";
913 }
914 }
915 break;
916
917 case ALPHA_R_LITUSE:
918 /* See ALPHA_R_LITERAL above for the uses of this reloc. It
919 does not cause anything to happen, itself. */
920 rel->address += input_section->output_offset;
921 break;
922
923 case ALPHA_R_GPDISP:
924 /* This marks the ldah of an ldah/lda pair which loads the
925 gp register with the difference of the gp value and the
926 current location. The second of the pair is r_size bytes
927 ahead; it used to be marked with an ALPHA_R_IGNORE reloc,
928 but that no longer happens in OSF/1 3.2. */
929 {
930 unsigned long insn1, insn2;
931 bfd_vma addend;
932
933 /* Get the two instructions. */
934 insn1 = bfd_get_32 (input_bfd, data + rel->address);
935 insn2 = bfd_get_32 (input_bfd, data + rel->address + rel->addend);
936
937 BFD_ASSERT (((insn1 >> 26) & 0x3f) == 0x09); /* ldah */
938 BFD_ASSERT (((insn2 >> 26) & 0x3f) == 0x08); /* lda */
939
940 /* Get the existing addend. We must account for the sign
941 extension done by lda and ldah. */
942 addend = ((insn1 & 0xffff) << 16) + (insn2 & 0xffff);
943 if (insn1 & 0x8000)
944 {
945 addend -= 0x80000000;
946 addend -= 0x80000000;
947 }
948 if (insn2 & 0x8000)
949 addend -= 0x10000;
950
951 /* The existing addend includes the different between the
952 gp of the input BFD and the address in the input BFD.
953 Subtract this out. */
954 addend -= (ecoff_data (input_bfd)->gp
955 - (input_section->vma + rel->address));
956
957 /* Now add in the final gp value, and subtract out the
958 final address. */
959 addend += (gp
960 - (input_section->output_section->vma
961 + input_section->output_offset
962 + rel->address));
963
964 /* Change the instructions, accounting for the sign
965 extension, and write them out. */
966 if (addend & 0x8000)
967 addend += 0x10000;
968 insn1 = (insn1 & 0xffff0000) | ((addend >> 16) & 0xffff);
969 insn2 = (insn2 & 0xffff0000) | (addend & 0xffff);
970
971 bfd_put_32 (input_bfd, (bfd_vma) insn1, data + rel->address);
972 bfd_put_32 (input_bfd, (bfd_vma) insn2,
973 data + rel->address + rel->addend);
974
975 rel->address += input_section->output_offset;
976 }
977 break;
978
979 case ALPHA_R_OP_PUSH:
980 /* Push a value on the reloc evaluation stack. */
981 {
982 asymbol *symbol;
983 bfd_vma relocation;
984
985 if (relocateable)
986 {
987 rel->address += input_section->output_offset;
988 break;
989 }
990
991 /* Figure out the relocation of this symbol. */
992 symbol = *rel->sym_ptr_ptr;
993
994 if (bfd_is_und_section (symbol->section))
995 r = bfd_reloc_undefined;
996
997 if (bfd_is_com_section (symbol->section))
998 relocation = 0;
999 else
1000 relocation = symbol->value;
1001 relocation += symbol->section->output_section->vma;
1002 relocation += symbol->section->output_offset;
1003 relocation += rel->addend;
1004
1005 if (tos >= RELOC_STACKSIZE)
1006 abort ();
1007
1008 stack[tos++] = relocation;
1009 }
1010 break;
1011
1012 case ALPHA_R_OP_STORE:
1013 /* Store a value from the reloc stack into a bitfield. */
1014 {
1015 bfd_vma val;
1016 int offset, size;
1017
1018 if (relocateable)
1019 {
1020 rel->address += input_section->output_offset;
1021 break;
1022 }
1023
1024 if (tos == 0)
1025 abort ();
1026
1027 /* The offset and size for this reloc are encoded into the
1028 addend field by alpha_adjust_reloc_in. */
1029 offset = (rel->addend >> 8) & 0xff;
1030 size = rel->addend & 0xff;
1031
1032 val = bfd_get_64 (abfd, data + rel->address);
1033 val &=~ (((1 << size) - 1) << offset);
1034 val |= (stack[--tos] & ((1 << size) - 1)) << offset;
1035 bfd_put_64 (abfd, val, data + rel->address);
1036 }
1037 break;
1038
1039 case ALPHA_R_OP_PSUB:
1040 /* Subtract a value from the top of the stack. */
1041 {
1042 asymbol *symbol;
1043 bfd_vma relocation;
1044
1045 if (relocateable)
1046 {
1047 rel->address += input_section->output_offset;
1048 break;
1049 }
1050
1051 /* Figure out the relocation of this symbol. */
1052 symbol = *rel->sym_ptr_ptr;
1053
1054 if (bfd_is_und_section (symbol->section))
1055 r = bfd_reloc_undefined;
1056
1057 if (bfd_is_com_section (symbol->section))
1058 relocation = 0;
1059 else
1060 relocation = symbol->value;
1061 relocation += symbol->section->output_section->vma;
1062 relocation += symbol->section->output_offset;
1063 relocation += rel->addend;
1064
1065 if (tos == 0)
1066 abort ();
1067
1068 stack[tos - 1] -= relocation;
1069 }
1070 break;
1071
1072 case ALPHA_R_OP_PRSHIFT:
1073 /* Shift the value on the top of the stack. */
1074 {
1075 asymbol *symbol;
1076 bfd_vma relocation;
1077
1078 if (relocateable)
1079 {
1080 rel->address += input_section->output_offset;
1081 break;
1082 }
1083
1084 /* Figure out the relocation of this symbol. */
1085 symbol = *rel->sym_ptr_ptr;
1086
1087 if (bfd_is_und_section (symbol->section))
1088 r = bfd_reloc_undefined;
1089
1090 if (bfd_is_com_section (symbol->section))
1091 relocation = 0;
1092 else
1093 relocation = symbol->value;
1094 relocation += symbol->section->output_section->vma;
1095 relocation += symbol->section->output_offset;
1096 relocation += rel->addend;
1097
1098 if (tos == 0)
1099 abort ();
1100
1101 stack[tos - 1] >>= relocation;
1102 }
1103 break;
1104
1105 case ALPHA_R_GPVALUE:
1106 /* I really don't know if this does the right thing. */
1107 gp = rel->addend;
1108 gp_undefined = false;
1109 break;
1110
1111 default:
1112 abort ();
1113 }
1114
1115 if (relocateable)
1116 {
1117 asection *os = input_section->output_section;
1118
1119 /* A partial link, so keep the relocs. */
1120 os->orelocation[os->reloc_count] = rel;
1121 os->reloc_count++;
1122 }
1123
1124 if (r != bfd_reloc_ok)
1125 {
1126 switch (r)
1127 {
1128 case bfd_reloc_undefined:
1129 if (! ((*link_info->callbacks->undefined_symbol)
1130 (link_info, bfd_asymbol_name (*rel->sym_ptr_ptr),
1131 input_bfd, input_section, rel->address)))
1132 goto error_return;
1133 break;
1134 case bfd_reloc_dangerous:
1135 if (! ((*link_info->callbacks->reloc_dangerous)
1136 (link_info, err, input_bfd, input_section,
1137 rel->address)))
1138 goto error_return;
1139 break;
1140 case bfd_reloc_overflow:
1141 if (! ((*link_info->callbacks->reloc_overflow)
1142 (link_info, bfd_asymbol_name (*rel->sym_ptr_ptr),
1143 rel->howto->name, rel->addend, input_bfd,
1144 input_section, rel->address)))
1145 goto error_return;
1146 break;
1147 case bfd_reloc_outofrange:
1148 default:
1149 abort ();
1150 break;
1151 }
1152 }
1153 }
1154
1155 if (tos != 0)
1156 abort ();
1157
1158 successful_return:
1159 if (reloc_vector != NULL)
1160 free (reloc_vector);
1161 return data;
1162
1163 error_return:
1164 if (reloc_vector != NULL)
1165 free (reloc_vector);
1166 return NULL;
1167 }
1168
1169 /* Get the howto structure for a generic reloc type. */
1170
1171 static reloc_howto_type *
1172 alpha_bfd_reloc_type_lookup (abfd, code)
1173 bfd *abfd;
1174 bfd_reloc_code_real_type code;
1175 {
1176 int alpha_type;
1177
1178 switch (code)
1179 {
1180 case BFD_RELOC_32:
1181 alpha_type = ALPHA_R_REFLONG;
1182 break;
1183 case BFD_RELOC_64:
1184 case BFD_RELOC_CTOR:
1185 alpha_type = ALPHA_R_REFQUAD;
1186 break;
1187 case BFD_RELOC_GPREL32:
1188 alpha_type = ALPHA_R_GPREL32;
1189 break;
1190 case BFD_RELOC_ALPHA_LITERAL:
1191 alpha_type = ALPHA_R_LITERAL;
1192 break;
1193 case BFD_RELOC_ALPHA_LITUSE:
1194 alpha_type = ALPHA_R_LITUSE;
1195 break;
1196 case BFD_RELOC_ALPHA_GPDISP_HI16:
1197 alpha_type = ALPHA_R_GPDISP;
1198 break;
1199 case BFD_RELOC_ALPHA_GPDISP_LO16:
1200 alpha_type = ALPHA_R_IGNORE;
1201 break;
1202 case BFD_RELOC_23_PCREL_S2:
1203 alpha_type = ALPHA_R_BRADDR;
1204 break;
1205 case BFD_RELOC_ALPHA_HINT:
1206 alpha_type = ALPHA_R_HINT;
1207 break;
1208 case BFD_RELOC_16_PCREL:
1209 alpha_type = ALPHA_R_SREL16;
1210 break;
1211 case BFD_RELOC_32_PCREL:
1212 alpha_type = ALPHA_R_SREL32;
1213 break;
1214 case BFD_RELOC_64_PCREL:
1215 alpha_type = ALPHA_R_SREL64;
1216 break;
1217 #if 0
1218 case ???:
1219 alpha_type = ALPHA_R_OP_PUSH;
1220 break;
1221 case ???:
1222 alpha_type = ALPHA_R_OP_STORE;
1223 break;
1224 case ???:
1225 alpha_type = ALPHA_R_OP_PSUB;
1226 break;
1227 case ???:
1228 alpha_type = ALPHA_R_OP_PRSHIFT;
1229 break;
1230 case ???:
1231 alpha_type = ALPHA_R_GPVALUE;
1232 break;
1233 #endif
1234 default:
1235 return (reloc_howto_type *) NULL;
1236 }
1237
1238 return &alpha_howto_table[alpha_type];
1239 }
1240 \f
1241 /* A helper routine for alpha_relocate_section which converts an
1242 external reloc when generating relocateable output. Returns the
1243 relocation amount. */
1244
1245 static bfd_vma
1246 alpha_convert_external_reloc (output_bfd, info, input_bfd, ext_rel, h)
1247 bfd *output_bfd;
1248 struct bfd_link_info *info;
1249 bfd *input_bfd;
1250 struct external_reloc *ext_rel;
1251 struct ecoff_link_hash_entry *h;
1252 {
1253 unsigned long r_symndx;
1254 bfd_vma relocation;
1255
1256 BFD_ASSERT (info->relocateable);
1257
1258 if (h->root.type == bfd_link_hash_defined
1259 || h->root.type == bfd_link_hash_defweak)
1260 {
1261 asection *hsec;
1262 const char *name;
1263
1264 /* This symbol is defined in the output. Convert the reloc from
1265 being against the symbol to being against the section. */
1266
1267 /* Clear the r_extern bit. */
1268 ext_rel->r_bits[1] &=~ RELOC_BITS1_EXTERN_LITTLE;
1269
1270 /* Compute a new r_symndx value. */
1271 hsec = h->root.u.def.section;
1272 name = bfd_get_section_name (output_bfd, hsec->output_section);
1273
1274 r_symndx = -1;
1275 switch (name[1])
1276 {
1277 case 'A':
1278 if (strcmp (name, "*ABS*") == 0)
1279 r_symndx = RELOC_SECTION_ABS;
1280 break;
1281 case 'b':
1282 if (strcmp (name, ".bss") == 0)
1283 r_symndx = RELOC_SECTION_BSS;
1284 break;
1285 case 'd':
1286 if (strcmp (name, ".data") == 0)
1287 r_symndx = RELOC_SECTION_DATA;
1288 break;
1289 case 'f':
1290 if (strcmp (name, ".fini") == 0)
1291 r_symndx = RELOC_SECTION_FINI;
1292 break;
1293 case 'i':
1294 if (strcmp (name, ".init") == 0)
1295 r_symndx = RELOC_SECTION_INIT;
1296 break;
1297 case 'l':
1298 if (strcmp (name, ".lita") == 0)
1299 r_symndx = RELOC_SECTION_LITA;
1300 else if (strcmp (name, ".lit8") == 0)
1301 r_symndx = RELOC_SECTION_LIT8;
1302 else if (strcmp (name, ".lit4") == 0)
1303 r_symndx = RELOC_SECTION_LIT4;
1304 break;
1305 case 'p':
1306 if (strcmp (name, ".pdata") == 0)
1307 r_symndx = RELOC_SECTION_PDATA;
1308 break;
1309 case 'r':
1310 if (strcmp (name, ".rdata") == 0)
1311 r_symndx = RELOC_SECTION_RDATA;
1312 else if (strcmp (name, ".rconst") == 0)
1313 r_symndx = RELOC_SECTION_RCONST;
1314 break;
1315 case 's':
1316 if (strcmp (name, ".sdata") == 0)
1317 r_symndx = RELOC_SECTION_SDATA;
1318 else if (strcmp (name, ".sbss") == 0)
1319 r_symndx = RELOC_SECTION_SBSS;
1320 break;
1321 case 't':
1322 if (strcmp (name, ".text") == 0)
1323 r_symndx = RELOC_SECTION_TEXT;
1324 break;
1325 case 'x':
1326 if (strcmp (name, ".xdata") == 0)
1327 r_symndx = RELOC_SECTION_XDATA;
1328 break;
1329 }
1330
1331 if (r_symndx == -1)
1332 abort ();
1333
1334 /* Add the section VMA and the symbol value. */
1335 relocation = (h->root.u.def.value
1336 + hsec->output_section->vma
1337 + hsec->output_offset);
1338 }
1339 else
1340 {
1341 /* Change the symndx value to the right one for
1342 the output BFD. */
1343 r_symndx = h->indx;
1344 if (r_symndx == -1)
1345 {
1346 /* Caller must give an error. */
1347 r_symndx = 0;
1348 }
1349 relocation = 0;
1350 }
1351
1352 /* Write out the new r_symndx value. */
1353 bfd_h_put_32 (input_bfd, (bfd_vma) r_symndx,
1354 (bfd_byte *) ext_rel->r_symndx);
1355
1356 return relocation;
1357 }
1358
1359 /* Relocate a section while linking an Alpha ECOFF file. This is
1360 quite similar to get_relocated_section_contents. Perhaps they
1361 could be combined somehow. */
1362
1363 static boolean
1364 alpha_relocate_section (output_bfd, info, input_bfd, input_section,
1365 contents, external_relocs)
1366 bfd *output_bfd;
1367 struct bfd_link_info *info;
1368 bfd *input_bfd;
1369 asection *input_section;
1370 bfd_byte *contents;
1371 PTR external_relocs;
1372 {
1373 asection **symndx_to_section, *lita_sec;
1374 struct ecoff_link_hash_entry **sym_hashes;
1375 bfd_vma gp;
1376 boolean gp_undefined;
1377 bfd_vma stack[RELOC_STACKSIZE];
1378 int tos = 0;
1379 struct external_reloc *ext_rel;
1380 struct external_reloc *ext_rel_end;
1381
1382 /* We keep a table mapping the symndx found in an internal reloc to
1383 the appropriate section. This is faster than looking up the
1384 section by name each time. */
1385 symndx_to_section = ecoff_data (input_bfd)->symndx_to_section;
1386 if (symndx_to_section == (asection **) NULL)
1387 {
1388 symndx_to_section = ((asection **)
1389 bfd_alloc (input_bfd,
1390 (NUM_RELOC_SECTIONS
1391 * sizeof (asection *))));
1392 if (!symndx_to_section)
1393 return false;
1394
1395 symndx_to_section[RELOC_SECTION_NONE] = NULL;
1396 symndx_to_section[RELOC_SECTION_TEXT] =
1397 bfd_get_section_by_name (input_bfd, ".text");
1398 symndx_to_section[RELOC_SECTION_RDATA] =
1399 bfd_get_section_by_name (input_bfd, ".rdata");
1400 symndx_to_section[RELOC_SECTION_DATA] =
1401 bfd_get_section_by_name (input_bfd, ".data");
1402 symndx_to_section[RELOC_SECTION_SDATA] =
1403 bfd_get_section_by_name (input_bfd, ".sdata");
1404 symndx_to_section[RELOC_SECTION_SBSS] =
1405 bfd_get_section_by_name (input_bfd, ".sbss");
1406 symndx_to_section[RELOC_SECTION_BSS] =
1407 bfd_get_section_by_name (input_bfd, ".bss");
1408 symndx_to_section[RELOC_SECTION_INIT] =
1409 bfd_get_section_by_name (input_bfd, ".init");
1410 symndx_to_section[RELOC_SECTION_LIT8] =
1411 bfd_get_section_by_name (input_bfd, ".lit8");
1412 symndx_to_section[RELOC_SECTION_LIT4] =
1413 bfd_get_section_by_name (input_bfd, ".lit4");
1414 symndx_to_section[RELOC_SECTION_XDATA] =
1415 bfd_get_section_by_name (input_bfd, ".xdata");
1416 symndx_to_section[RELOC_SECTION_PDATA] =
1417 bfd_get_section_by_name (input_bfd, ".pdata");
1418 symndx_to_section[RELOC_SECTION_FINI] =
1419 bfd_get_section_by_name (input_bfd, ".fini");
1420 symndx_to_section[RELOC_SECTION_LITA] =
1421 bfd_get_section_by_name (input_bfd, ".lita");
1422 symndx_to_section[RELOC_SECTION_ABS] = bfd_abs_section_ptr;
1423 symndx_to_section[RELOC_SECTION_RCONST] =
1424 bfd_get_section_by_name (input_bfd, ".rconst");
1425
1426 ecoff_data (input_bfd)->symndx_to_section = symndx_to_section;
1427 }
1428
1429 sym_hashes = ecoff_data (input_bfd)->sym_hashes;
1430
1431 /* On the Alpha, the .lita section must be addressable by the global
1432 pointer. To support large programs, we need to allow multiple
1433 global pointers. This works as long as each input .lita section
1434 is <64KB big. This implies that when producing relocatable
1435 output, the .lita section is limited to 64KB. . */
1436
1437 lita_sec = symndx_to_section[RELOC_SECTION_LITA];
1438 gp = _bfd_get_gp_value (output_bfd);
1439 if (! info->relocateable && lita_sec != NULL)
1440 {
1441 struct ecoff_section_tdata *lita_sec_data;
1442
1443 /* Make sure we have a section data structure to which we can
1444 hang on to the gp value we pick for the section. */
1445 lita_sec_data = ecoff_section_data (input_bfd, lita_sec);
1446 if (lita_sec_data == NULL)
1447 {
1448 lita_sec_data = ((struct ecoff_section_tdata *)
1449 bfd_zalloc (input_bfd,
1450 sizeof (struct ecoff_section_tdata)));
1451 ecoff_section_data (input_bfd, lita_sec) = lita_sec_data;
1452 }
1453
1454 if (lita_sec_data->gp != 0)
1455 {
1456 /* If we already assigned a gp to this section, we better
1457 stick with that value. */
1458 gp = lita_sec_data->gp;
1459 }
1460 else
1461 {
1462 bfd_vma lita_vma;
1463 bfd_size_type lita_size;
1464
1465 lita_vma = lita_sec->output_offset + lita_sec->output_section->vma;
1466 lita_size = lita_sec->_cooked_size;
1467 if (lita_size == 0)
1468 lita_size = lita_sec->_raw_size;
1469
1470 if (gp == 0
1471 || lita_vma < gp - 0x8000
1472 || lita_vma + lita_size >= gp + 0x8000)
1473 {
1474 /* Either gp hasn't been set at all or the current gp
1475 cannot address this .lita section. In both cases we
1476 reset the gp to point into the "middle" of the
1477 current input .lita section. For now, we issue a
1478 warning when redefining the gp value (probably should
1479 be made optional). */
1480 if (gp && !ecoff_data (output_bfd)->issued_multiple_gp_warning)
1481 {
1482 (*_bfd_error_handler)
1483 ("%s: warning: using multiple gp values",
1484 bfd_get_filename (output_bfd));
1485 ecoff_data (output_bfd)->issued_multiple_gp_warning = true;
1486 }
1487 if (lita_vma < gp - 0x8000)
1488 gp = lita_vma + lita_size - 0x8000;
1489 else
1490 gp = lita_vma + 0x8000;
1491
1492 }
1493
1494 lita_sec_data->gp = gp;
1495 }
1496
1497 _bfd_set_gp_value (output_bfd, gp);
1498 }
1499
1500 gp_undefined = (gp == 0);
1501
1502 BFD_ASSERT (bfd_header_little_endian (output_bfd));
1503 BFD_ASSERT (bfd_header_little_endian (input_bfd));
1504
1505 ext_rel = (struct external_reloc *) external_relocs;
1506 ext_rel_end = ext_rel + input_section->reloc_count;
1507 for (; ext_rel < ext_rel_end; ext_rel++)
1508 {
1509 bfd_vma r_vaddr;
1510 unsigned long r_symndx;
1511 int r_type;
1512 int r_extern;
1513 int r_offset;
1514 int r_size;
1515 boolean relocatep;
1516 boolean adjust_addrp;
1517 boolean gp_usedp;
1518 bfd_vma addend;
1519
1520 r_vaddr = bfd_h_get_64 (input_bfd, (bfd_byte *) ext_rel->r_vaddr);
1521 r_symndx = bfd_h_get_32 (input_bfd, (bfd_byte *) ext_rel->r_symndx);
1522
1523 r_type = ((ext_rel->r_bits[0] & RELOC_BITS0_TYPE_LITTLE)
1524 >> RELOC_BITS0_TYPE_SH_LITTLE);
1525 r_extern = (ext_rel->r_bits[1] & RELOC_BITS1_EXTERN_LITTLE) != 0;
1526 r_offset = ((ext_rel->r_bits[1] & RELOC_BITS1_OFFSET_LITTLE)
1527 >> RELOC_BITS1_OFFSET_SH_LITTLE);
1528 /* Ignored the reserved bits. */
1529 r_size = ((ext_rel->r_bits[3] & RELOC_BITS3_SIZE_LITTLE)
1530 >> RELOC_BITS3_SIZE_SH_LITTLE);
1531
1532 relocatep = false;
1533 adjust_addrp = true;
1534 gp_usedp = false;
1535 addend = 0;
1536
1537 switch (r_type)
1538 {
1539 default:
1540 abort ();
1541
1542 case ALPHA_R_IGNORE:
1543 /* This reloc appears after a GPDISP reloc. On earlier
1544 versions of OSF/1, It marked the position of the second
1545 instruction to be altered by the GPDISP reloc, but it is
1546 not otherwise used for anything. For some reason, the
1547 address of the relocation does not appear to include the
1548 section VMA, unlike the other relocation types. */
1549 if (info->relocateable)
1550 bfd_h_put_64 (input_bfd,
1551 input_section->output_offset + r_vaddr,
1552 (bfd_byte *) ext_rel->r_vaddr);
1553 adjust_addrp = false;
1554 break;
1555
1556 case ALPHA_R_REFLONG:
1557 case ALPHA_R_REFQUAD:
1558 case ALPHA_R_BRADDR:
1559 case ALPHA_R_HINT:
1560 case ALPHA_R_SREL16:
1561 case ALPHA_R_SREL32:
1562 case ALPHA_R_SREL64:
1563 relocatep = true;
1564 break;
1565
1566 case ALPHA_R_GPREL32:
1567 /* This relocation is used in a switch table. It is a 32
1568 bit offset from the current GP value. We must adjust it
1569 by the different between the original GP value and the
1570 current GP value. */
1571 relocatep = true;
1572 addend = ecoff_data (input_bfd)->gp - gp;
1573 gp_usedp = true;
1574 break;
1575
1576 case ALPHA_R_LITERAL:
1577 /* This is a reference to a literal value, generally
1578 (always?) in the .lita section. This is a 16 bit GP
1579 relative relocation. Sometimes the subsequent reloc is a
1580 LITUSE reloc, which indicates how this reloc is used.
1581 This sometimes permits rewriting the two instructions
1582 referred to by the LITERAL and the LITUSE into different
1583 instructions which do not refer to .lita. This can save
1584 a memory reference, and permits removing a value from
1585 .lita thus saving GP relative space.
1586
1587 We do not these optimizations. To do them we would need
1588 to arrange to link the .lita section first, so that by
1589 the time we got here we would know the final values to
1590 use. This would not be particularly difficult, but it is
1591 not currently implemented. */
1592
1593 /* I believe that the LITERAL reloc will only apply to a ldq
1594 or ldl instruction, so check my assumption. */
1595 {
1596 unsigned long insn;
1597
1598 insn = bfd_get_32 (input_bfd,
1599 contents + r_vaddr - input_section->vma);
1600 BFD_ASSERT (((insn >> 26) & 0x3f) == 0x29
1601 || ((insn >> 26) & 0x3f) == 0x28);
1602 }
1603
1604 relocatep = true;
1605 addend = ecoff_data (input_bfd)->gp - gp;
1606 gp_usedp = true;
1607 break;
1608
1609 case ALPHA_R_LITUSE:
1610 /* See ALPHA_R_LITERAL above for the uses of this reloc. It
1611 does not cause anything to happen, itself. */
1612 break;
1613
1614 case ALPHA_R_GPDISP:
1615 /* This marks the ldah of an ldah/lda pair which loads the
1616 gp register with the difference of the gp value and the
1617 current location. The second of the pair is r_symndx
1618 bytes ahead. It used to be marked with an ALPHA_R_IGNORE
1619 reloc, but OSF/1 3.2 no longer does that. */
1620 {
1621 unsigned long insn1, insn2;
1622
1623 /* Get the two instructions. */
1624 insn1 = bfd_get_32 (input_bfd,
1625 contents + r_vaddr - input_section->vma);
1626 insn2 = bfd_get_32 (input_bfd,
1627 (contents
1628 + r_vaddr
1629 - input_section->vma
1630 + r_symndx));
1631
1632 BFD_ASSERT (((insn1 >> 26) & 0x3f) == 0x09); /* ldah */
1633 BFD_ASSERT (((insn2 >> 26) & 0x3f) == 0x08); /* lda */
1634
1635 /* Get the existing addend. We must account for the sign
1636 extension done by lda and ldah. */
1637 addend = ((insn1 & 0xffff) << 16) + (insn2 & 0xffff);
1638 if (insn1 & 0x8000)
1639 {
1640 /* This is addend -= 0x100000000 without causing an
1641 integer overflow on a 32 bit host. */
1642 addend -= 0x80000000;
1643 addend -= 0x80000000;
1644 }
1645 if (insn2 & 0x8000)
1646 addend -= 0x10000;
1647
1648 /* The existing addend includes the difference between the
1649 gp of the input BFD and the address in the input BFD.
1650 We want to change this to the difference between the
1651 final GP and the final address. */
1652 addend += (gp
1653 - ecoff_data (input_bfd)->gp
1654 + input_section->vma
1655 - (input_section->output_section->vma
1656 + input_section->output_offset));
1657
1658 /* Change the instructions, accounting for the sign
1659 extension, and write them out. */
1660 if (addend & 0x8000)
1661 addend += 0x10000;
1662 insn1 = (insn1 & 0xffff0000) | ((addend >> 16) & 0xffff);
1663 insn2 = (insn2 & 0xffff0000) | (addend & 0xffff);
1664
1665 bfd_put_32 (input_bfd, (bfd_vma) insn1,
1666 contents + r_vaddr - input_section->vma);
1667 bfd_put_32 (input_bfd, (bfd_vma) insn2,
1668 contents + r_vaddr - input_section->vma + r_symndx);
1669
1670 gp_usedp = true;
1671 }
1672 break;
1673
1674 case ALPHA_R_OP_PUSH:
1675 case ALPHA_R_OP_PSUB:
1676 case ALPHA_R_OP_PRSHIFT:
1677 /* Manipulate values on the reloc evaluation stack. The
1678 r_vaddr field is not an address in input_section, it is
1679 the current value (including any addend) of the object
1680 being used. */
1681 if (! r_extern)
1682 {
1683 asection *s;
1684
1685 s = symndx_to_section[r_symndx];
1686 if (s == (asection *) NULL)
1687 abort ();
1688 addend = s->output_section->vma + s->output_offset - s->vma;
1689 }
1690 else
1691 {
1692 struct ecoff_link_hash_entry *h;
1693
1694 h = sym_hashes[r_symndx];
1695 if (h == (struct ecoff_link_hash_entry *) NULL)
1696 abort ();
1697
1698 if (! info->relocateable)
1699 {
1700 if (h->root.type == bfd_link_hash_defined
1701 || h->root.type == bfd_link_hash_defweak)
1702 addend = (h->root.u.def.value
1703 + h->root.u.def.section->output_section->vma
1704 + h->root.u.def.section->output_offset);
1705 else
1706 {
1707 /* Note that we pass the address as 0, since we
1708 do not have a meaningful number for the
1709 location within the section that is being
1710 relocated. */
1711 if (! ((*info->callbacks->undefined_symbol)
1712 (info, h->root.root.string, input_bfd,
1713 input_section, (bfd_vma) 0)))
1714 return false;
1715 addend = 0;
1716 }
1717 }
1718 else
1719 {
1720 if (h->root.type != bfd_link_hash_defined
1721 && h->root.type != bfd_link_hash_defweak
1722 && h->indx == -1)
1723 {
1724 /* This symbol is not being written out. Pass
1725 the address as 0, as with undefined_symbol,
1726 above. */
1727 if (! ((*info->callbacks->unattached_reloc)
1728 (info, h->root.root.string, input_bfd,
1729 input_section, (bfd_vma) 0)))
1730 return false;
1731 }
1732
1733 addend = alpha_convert_external_reloc (output_bfd, info,
1734 input_bfd,
1735 ext_rel, h);
1736 }
1737 }
1738
1739 addend += r_vaddr;
1740
1741 if (info->relocateable)
1742 {
1743 /* Adjust r_vaddr by the addend. */
1744 bfd_h_put_64 (input_bfd, addend,
1745 (bfd_byte *) ext_rel->r_vaddr);
1746 }
1747 else
1748 {
1749 switch (r_type)
1750 {
1751 case ALPHA_R_OP_PUSH:
1752 if (tos >= RELOC_STACKSIZE)
1753 abort ();
1754 stack[tos++] = addend;
1755 break;
1756
1757 case ALPHA_R_OP_PSUB:
1758 if (tos == 0)
1759 abort ();
1760 stack[tos - 1] -= addend;
1761 break;
1762
1763 case ALPHA_R_OP_PRSHIFT:
1764 if (tos == 0)
1765 abort ();
1766 stack[tos - 1] >>= addend;
1767 break;
1768 }
1769 }
1770
1771 adjust_addrp = false;
1772 break;
1773
1774 case ALPHA_R_OP_STORE:
1775 /* Store a value from the reloc stack into a bitfield. If
1776 we are generating relocateable output, all we do is
1777 adjust the address of the reloc. */
1778 if (! info->relocateable)
1779 {
1780 bfd_vma mask;
1781 bfd_vma val;
1782
1783 if (tos == 0)
1784 abort ();
1785
1786 /* Get the relocation mask. The separate steps and the
1787 casts to bfd_vma are attempts to avoid a bug in the
1788 Alpha OSF 1.3 C compiler. See reloc.c for more
1789 details. */
1790 mask = 1;
1791 mask <<= (bfd_vma) r_size;
1792 mask -= 1;
1793
1794 /* FIXME: I don't know what kind of overflow checking,
1795 if any, should be done here. */
1796 val = bfd_get_64 (input_bfd,
1797 contents + r_vaddr - input_section->vma);
1798 val &=~ mask << (bfd_vma) r_offset;
1799 val |= (stack[--tos] & mask) << (bfd_vma) r_offset;
1800 bfd_put_64 (input_bfd, val,
1801 contents + r_vaddr - input_section->vma);
1802 }
1803 break;
1804
1805 case ALPHA_R_GPVALUE:
1806 /* I really don't know if this does the right thing. */
1807 gp = ecoff_data (input_bfd)->gp + r_symndx;
1808 gp_undefined = false;
1809 break;
1810 }
1811
1812 if (relocatep)
1813 {
1814 reloc_howto_type *howto;
1815 struct ecoff_link_hash_entry *h = NULL;
1816 asection *s = NULL;
1817 bfd_vma relocation;
1818 bfd_reloc_status_type r;
1819
1820 /* Perform a relocation. */
1821
1822 howto = &alpha_howto_table[r_type];
1823
1824 if (r_extern)
1825 {
1826 h = sym_hashes[r_symndx];
1827 /* If h is NULL, that means that there is a reloc
1828 against an external symbol which we thought was just
1829 a debugging symbol. This should not happen. */
1830 if (h == (struct ecoff_link_hash_entry *) NULL)
1831 abort ();
1832 }
1833 else
1834 {
1835 if (r_symndx >= NUM_RELOC_SECTIONS)
1836 s = NULL;
1837 else
1838 s = symndx_to_section[r_symndx];
1839
1840 if (s == (asection *) NULL)
1841 abort ();
1842 }
1843
1844 if (info->relocateable)
1845 {
1846 /* We are generating relocateable output, and must
1847 convert the existing reloc. */
1848 if (r_extern)
1849 {
1850 if (h->root.type != bfd_link_hash_defined
1851 && h->root.type != bfd_link_hash_defweak
1852 && h->indx == -1)
1853 {
1854 /* This symbol is not being written out. */
1855 if (! ((*info->callbacks->unattached_reloc)
1856 (info, h->root.root.string, input_bfd,
1857 input_section, r_vaddr - input_section->vma)))
1858 return false;
1859 }
1860
1861 relocation = alpha_convert_external_reloc (output_bfd,
1862 info,
1863 input_bfd,
1864 ext_rel,
1865 h);
1866 }
1867 else
1868 {
1869 /* This is a relocation against a section. Adjust
1870 the value by the amount the section moved. */
1871 relocation = (s->output_section->vma
1872 + s->output_offset
1873 - s->vma);
1874 }
1875
1876 /* If this is PC relative, the existing object file
1877 appears to already have the reloc worked out. We
1878 must subtract out the old value and add in the new
1879 one. */
1880 if (howto->pc_relative)
1881 relocation -= (input_section->output_section->vma
1882 + input_section->output_offset
1883 - input_section->vma);
1884
1885 /* Put in any addend. */
1886 relocation += addend;
1887
1888 /* Adjust the contents. */
1889 r = _bfd_relocate_contents (howto, input_bfd, relocation,
1890 (contents
1891 + r_vaddr
1892 - input_section->vma));
1893 }
1894 else
1895 {
1896 /* We are producing a final executable. */
1897 if (r_extern)
1898 {
1899 /* This is a reloc against a symbol. */
1900 if (h->root.type == bfd_link_hash_defined
1901 || h->root.type == bfd_link_hash_defweak)
1902 {
1903 asection *hsec;
1904
1905 hsec = h->root.u.def.section;
1906 relocation = (h->root.u.def.value
1907 + hsec->output_section->vma
1908 + hsec->output_offset);
1909 }
1910 else
1911 {
1912 if (! ((*info->callbacks->undefined_symbol)
1913 (info, h->root.root.string, input_bfd,
1914 input_section,
1915 r_vaddr - input_section->vma)))
1916 return false;
1917 relocation = 0;
1918 }
1919 }
1920 else
1921 {
1922 /* This is a reloc against a section. */
1923 relocation = (s->output_section->vma
1924 + s->output_offset
1925 - s->vma);
1926
1927 /* Adjust a PC relative relocation by removing the
1928 reference to the original source section. */
1929 if (howto->pc_relative)
1930 relocation += input_section->vma;
1931 }
1932
1933 r = _bfd_final_link_relocate (howto,
1934 input_bfd,
1935 input_section,
1936 contents,
1937 r_vaddr - input_section->vma,
1938 relocation,
1939 addend);
1940 }
1941
1942 if (r != bfd_reloc_ok)
1943 {
1944 switch (r)
1945 {
1946 default:
1947 case bfd_reloc_outofrange:
1948 abort ();
1949 case bfd_reloc_overflow:
1950 {
1951 const char *name;
1952
1953 if (r_extern)
1954 name = sym_hashes[r_symndx]->root.root.string;
1955 else
1956 name = bfd_section_name (input_bfd,
1957 symndx_to_section[r_symndx]);
1958 if (! ((*info->callbacks->reloc_overflow)
1959 (info, name, alpha_howto_table[r_type].name,
1960 (bfd_vma) 0, input_bfd, input_section,
1961 r_vaddr - input_section->vma)))
1962 return false;
1963 }
1964 break;
1965 }
1966 }
1967 }
1968
1969 if (info->relocateable && adjust_addrp)
1970 {
1971 /* Change the address of the relocation. */
1972 bfd_h_put_64 (input_bfd,
1973 (input_section->output_section->vma
1974 + input_section->output_offset
1975 - input_section->vma
1976 + r_vaddr),
1977 (bfd_byte *) ext_rel->r_vaddr);
1978 }
1979
1980 if (gp_usedp && gp_undefined)
1981 {
1982 if (! ((*info->callbacks->reloc_dangerous)
1983 (info, "GP relative relocation when GP not defined",
1984 input_bfd, input_section, r_vaddr - input_section->vma)))
1985 return false;
1986 /* Only give the error once per link. */
1987 gp = 4;
1988 _bfd_set_gp_value (output_bfd, gp);
1989 gp_undefined = false;
1990 }
1991 }
1992
1993 if (tos != 0)
1994 abort ();
1995
1996 return true;
1997 }
1998 \f
1999 /* Do final adjustments to the filehdr and the aouthdr. This routine
2000 sets the dynamic bits in the file header. */
2001
2002 /*ARGSUSED*/
2003 static boolean
2004 alpha_adjust_headers (abfd, fhdr, ahdr)
2005 bfd *abfd;
2006 struct internal_filehdr *fhdr;
2007 struct internal_aouthdr *ahdr;
2008 {
2009 if ((abfd->flags & (DYNAMIC | EXEC_P)) == (DYNAMIC | EXEC_P))
2010 fhdr->f_flags |= F_ALPHA_CALL_SHARED;
2011 else if ((abfd->flags & DYNAMIC) != 0)
2012 fhdr->f_flags |= F_ALPHA_SHARABLE;
2013 return true;
2014 }
2015 \f
2016 /* Archive handling. In OSF/1 (or Digital Unix) v3.2, Digital
2017 introduced archive packing, in which the elements in an archive are
2018 optionally compressed using a simple dictionary scheme. We know
2019 how to read such archives, but we don't write them. */
2020
2021 #define alpha_ecoff_slurp_armap _bfd_ecoff_slurp_armap
2022 #define alpha_ecoff_slurp_extended_name_table \
2023 _bfd_ecoff_slurp_extended_name_table
2024 #define alpha_ecoff_construct_extended_name_table \
2025 _bfd_ecoff_construct_extended_name_table
2026 #define alpha_ecoff_truncate_arname _bfd_ecoff_truncate_arname
2027 #define alpha_ecoff_write_armap _bfd_ecoff_write_armap
2028 #define alpha_ecoff_generic_stat_arch_elt _bfd_ecoff_generic_stat_arch_elt
2029 #define alpha_ecoff_update_armap_timestamp _bfd_ecoff_update_armap_timestamp
2030
2031 /* A compressed file uses this instead of ARFMAG. */
2032
2033 #define ARFZMAG "Z\012"
2034
2035 /* Read an archive header. This is like the standard routine, but it
2036 also accepts ARFZMAG. */
2037
2038 static PTR
2039 alpha_ecoff_read_ar_hdr (abfd)
2040 bfd *abfd;
2041 {
2042 struct areltdata *ret;
2043 struct ar_hdr *h;
2044
2045 ret = (struct areltdata *) _bfd_generic_read_ar_hdr_mag (abfd, ARFZMAG);
2046 if (ret == NULL)
2047 return NULL;
2048
2049 h = (struct ar_hdr *) ret->arch_header;
2050 if (strncmp (h->ar_fmag, ARFZMAG, 2) == 0)
2051 {
2052 bfd_byte ab[8];
2053
2054 /* This is a compressed file. We must set the size correctly.
2055 The size is the eight bytes after the dummy file header. */
2056 if (bfd_seek (abfd, FILHSZ, SEEK_CUR) != 0
2057 || bfd_read (ab, 1, 8, abfd) != 8
2058 || bfd_seek (abfd, - (FILHSZ + 8), SEEK_CUR) != 0)
2059 return NULL;
2060
2061 ret->parsed_size = bfd_h_get_64 (abfd, ab);
2062 }
2063
2064 return (PTR) ret;
2065 }
2066
2067 /* Get an archive element at a specified file position. This is where
2068 we uncompress the archive element if necessary. */
2069
2070 static bfd *
2071 alpha_ecoff_get_elt_at_filepos (archive, filepos)
2072 bfd *archive;
2073 file_ptr filepos;
2074 {
2075 bfd *nbfd = NULL;
2076 struct areltdata *tdata;
2077 struct ar_hdr *hdr;
2078 bfd_byte ab[8];
2079 bfd_size_type size;
2080 bfd_byte *buf, *p;
2081 struct bfd_in_memory *bim;
2082
2083 nbfd = _bfd_get_elt_at_filepos (archive, filepos);
2084 if (nbfd == NULL)
2085 goto error_return;
2086
2087 if ((nbfd->flags & BFD_IN_MEMORY) != 0)
2088 {
2089 /* We have already expanded this BFD. */
2090 return nbfd;
2091 }
2092
2093 tdata = (struct areltdata *) nbfd->arelt_data;
2094 hdr = (struct ar_hdr *) tdata->arch_header;
2095 if (strncmp (hdr->ar_fmag, ARFZMAG, 2) != 0)
2096 return nbfd;
2097
2098 /* We must uncompress this element. We do this by copying it into a
2099 memory buffer, and making bfd_read and bfd_seek use that buffer.
2100 This can use a lot of memory, but it's simpler than getting a
2101 temporary file, making that work with the file descriptor caching
2102 code, and making sure that it is deleted at all appropriate
2103 times. It can be changed if it ever becomes important. */
2104
2105 /* The compressed file starts with a dummy ECOFF file header. */
2106 if (bfd_seek (nbfd, FILHSZ, SEEK_SET) != 0)
2107 goto error_return;
2108
2109 /* The next eight bytes are the real file size. */
2110 if (bfd_read (ab, 1, 8, nbfd) != 8)
2111 goto error_return;
2112 size = bfd_h_get_64 (nbfd, ab);
2113
2114 if (size == 0)
2115 buf = NULL;
2116 else
2117 {
2118 bfd_size_type left;
2119 bfd_byte dict[4096];
2120 unsigned int h;
2121 bfd_byte b;
2122
2123 buf = (bfd_byte *) bfd_alloc (nbfd, size);
2124 if (buf == NULL)
2125 goto error_return;
2126 p = buf;
2127
2128 left = size;
2129
2130 /* I don't know what the next eight bytes are for. */
2131 if (bfd_read (ab, 1, 8, nbfd) != 8)
2132 goto error_return;
2133
2134 /* This is the uncompression algorithm. It's a simple
2135 dictionary based scheme in which each character is predicted
2136 by a hash of the previous three characters. A control byte
2137 indicates whether the character is predicted or whether it
2138 appears in the input stream; each control byte manages the
2139 next eight bytes in the output stream. */
2140 memset (dict, 0, sizeof dict);
2141 h = 0;
2142 while (bfd_read (&b, 1, 1, nbfd) == 1)
2143 {
2144 unsigned int i;
2145
2146 for (i = 0; i < 8; i++, b >>= 1)
2147 {
2148 bfd_byte n;
2149
2150 if ((b & 1) == 0)
2151 n = dict[h];
2152 else
2153 {
2154 if (! bfd_read (&n, 1, 1, nbfd))
2155 goto error_return;
2156 dict[h] = n;
2157 }
2158
2159 *p++ = n;
2160
2161 --left;
2162 if (left == 0)
2163 break;
2164
2165 h <<= 4;
2166 h ^= n;
2167 h &= sizeof dict - 1;
2168 }
2169
2170 if (left == 0)
2171 break;
2172 }
2173 }
2174
2175 /* Now the uncompressed file contents are in buf. */
2176 bim = ((struct bfd_in_memory *)
2177 bfd_alloc (nbfd, sizeof (struct bfd_in_memory)));
2178 if (bim == NULL)
2179 goto error_return;
2180 bim->size = size;
2181 bim->buffer = buf;
2182
2183 nbfd->mtime_set = true;
2184 nbfd->mtime = strtol (hdr->ar_date, (char **) NULL, 10);
2185
2186 nbfd->flags |= BFD_IN_MEMORY;
2187 nbfd->iostream = (PTR) bim;
2188 BFD_ASSERT (! nbfd->cacheable);
2189
2190 return nbfd;
2191
2192 error_return:
2193 if (nbfd != NULL)
2194 bfd_close (nbfd);
2195 return NULL;
2196 }
2197
2198 /* Open the next archived file. */
2199
2200 static bfd *
2201 alpha_ecoff_openr_next_archived_file (archive, last_file)
2202 bfd *archive;
2203 bfd *last_file;
2204 {
2205 file_ptr filestart;
2206
2207 if (last_file == NULL)
2208 filestart = bfd_ardata (archive)->first_file_filepos;
2209 else
2210 {
2211 struct areltdata *t;
2212 struct ar_hdr *h;
2213 bfd_size_type size;
2214
2215 /* We can't use arelt_size here, because that uses parsed_size,
2216 which is the uncompressed size. We need the compressed size. */
2217 t = (struct areltdata *) last_file->arelt_data;
2218 h = (struct ar_hdr *) t->arch_header;
2219 size = strtol (h->ar_size, (char **) NULL, 10);
2220
2221 /* Pad to an even boundary...
2222 Note that last_file->origin can be odd in the case of
2223 BSD-4.4-style element with a long odd size. */
2224 filestart = last_file->origin + size;
2225 filestart += filestart % 2;
2226 }
2227
2228 return alpha_ecoff_get_elt_at_filepos (archive, filestart);
2229 }
2230
2231 /* Open the archive file given an index into the armap. */
2232
2233 static bfd *
2234 alpha_ecoff_get_elt_at_index (abfd, index)
2235 bfd *abfd;
2236 symindex index;
2237 {
2238 carsym *entry;
2239
2240 entry = bfd_ardata (abfd)->symdefs + index;
2241 return alpha_ecoff_get_elt_at_filepos (abfd, entry->file_offset);
2242 }
2243 \f
2244 /* This is the ECOFF backend structure. The backend field of the
2245 target vector points to this. */
2246
2247 static const struct ecoff_backend_data alpha_ecoff_backend_data =
2248 {
2249 /* COFF backend structure. */
2250 {
2251 (void (*) PARAMS ((bfd *,PTR,int,int,int,int,PTR))) bfd_void, /* aux_in */
2252 (void (*) PARAMS ((bfd *,PTR,PTR))) bfd_void, /* sym_in */
2253 (void (*) PARAMS ((bfd *,PTR,PTR))) bfd_void, /* lineno_in */
2254 (unsigned (*) PARAMS ((bfd *,PTR,int,int,int,int,PTR)))bfd_void,/*aux_out*/
2255 (unsigned (*) PARAMS ((bfd *,PTR,PTR))) bfd_void, /* sym_out */
2256 (unsigned (*) PARAMS ((bfd *,PTR,PTR))) bfd_void, /* lineno_out */
2257 (unsigned (*) PARAMS ((bfd *,PTR,PTR))) bfd_void, /* reloc_out */
2258 alpha_ecoff_swap_filehdr_out, alpha_ecoff_swap_aouthdr_out,
2259 alpha_ecoff_swap_scnhdr_out,
2260 FILHSZ, AOUTSZ, SCNHSZ, 0, 0, 0, 0, true,
2261 alpha_ecoff_swap_filehdr_in, alpha_ecoff_swap_aouthdr_in,
2262 alpha_ecoff_swap_scnhdr_in, NULL,
2263 alpha_ecoff_bad_format_hook, _bfd_ecoff_set_arch_mach_hook,
2264 alpha_ecoff_mkobject_hook, _bfd_ecoff_styp_to_sec_flags,
2265 _bfd_ecoff_set_alignment_hook, _bfd_ecoff_slurp_symbol_table,
2266 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL
2267 },
2268 /* Supported architecture. */
2269 bfd_arch_alpha,
2270 /* Initial portion of armap string. */
2271 "________64",
2272 /* The page boundary used to align sections in a demand-paged
2273 executable file. E.g., 0x1000. */
2274 0x2000,
2275 /* True if the .rdata section is part of the text segment, as on the
2276 Alpha. False if .rdata is part of the data segment, as on the
2277 MIPS. */
2278 true,
2279 /* Bitsize of constructor entries. */
2280 64,
2281 /* Reloc to use for constructor entries. */
2282 &alpha_howto_table[ALPHA_R_REFQUAD],
2283 {
2284 /* Symbol table magic number. */
2285 magicSym2,
2286 /* Alignment of debugging information. E.g., 4. */
2287 8,
2288 /* Sizes of external symbolic information. */
2289 sizeof (struct hdr_ext),
2290 sizeof (struct dnr_ext),
2291 sizeof (struct pdr_ext),
2292 sizeof (struct sym_ext),
2293 sizeof (struct opt_ext),
2294 sizeof (struct fdr_ext),
2295 sizeof (struct rfd_ext),
2296 sizeof (struct ext_ext),
2297 /* Functions to swap in external symbolic data. */
2298 ecoff_swap_hdr_in,
2299 ecoff_swap_dnr_in,
2300 ecoff_swap_pdr_in,
2301 ecoff_swap_sym_in,
2302 ecoff_swap_opt_in,
2303 ecoff_swap_fdr_in,
2304 ecoff_swap_rfd_in,
2305 ecoff_swap_ext_in,
2306 _bfd_ecoff_swap_tir_in,
2307 _bfd_ecoff_swap_rndx_in,
2308 /* Functions to swap out external symbolic data. */
2309 ecoff_swap_hdr_out,
2310 ecoff_swap_dnr_out,
2311 ecoff_swap_pdr_out,
2312 ecoff_swap_sym_out,
2313 ecoff_swap_opt_out,
2314 ecoff_swap_fdr_out,
2315 ecoff_swap_rfd_out,
2316 ecoff_swap_ext_out,
2317 _bfd_ecoff_swap_tir_out,
2318 _bfd_ecoff_swap_rndx_out,
2319 /* Function to read in symbolic data. */
2320 _bfd_ecoff_slurp_symbolic_info
2321 },
2322 /* External reloc size. */
2323 RELSZ,
2324 /* Reloc swapping functions. */
2325 alpha_ecoff_swap_reloc_in,
2326 alpha_ecoff_swap_reloc_out,
2327 /* Backend reloc tweaking. */
2328 alpha_adjust_reloc_in,
2329 alpha_adjust_reloc_out,
2330 /* Relocate section contents while linking. */
2331 alpha_relocate_section,
2332 /* Do final adjustments to filehdr and aouthdr. */
2333 alpha_adjust_headers,
2334 /* Read an element from an archive at a given file position. */
2335 alpha_ecoff_get_elt_at_filepos
2336 };
2337
2338 /* Looking up a reloc type is Alpha specific. */
2339 #define _bfd_ecoff_bfd_reloc_type_lookup alpha_bfd_reloc_type_lookup
2340
2341 /* So is getting relocated section contents. */
2342 #define _bfd_ecoff_bfd_get_relocated_section_contents \
2343 alpha_ecoff_get_relocated_section_contents
2344
2345 /* Handling file windows is generic. */
2346 #define _bfd_ecoff_get_section_contents_in_window \
2347 _bfd_generic_get_section_contents_in_window
2348
2349 /* Relaxing sections is generic. */
2350 #define _bfd_ecoff_bfd_relax_section bfd_generic_relax_section
2351
2352 const bfd_target ecoffalpha_little_vec =
2353 {
2354 "ecoff-littlealpha", /* name */
2355 bfd_target_ecoff_flavour,
2356 BFD_ENDIAN_LITTLE, /* data byte order is little */
2357 BFD_ENDIAN_LITTLE, /* header byte order is little */
2358
2359 (HAS_RELOC | EXEC_P | /* object flags */
2360 HAS_LINENO | HAS_DEBUG |
2361 HAS_SYMS | HAS_LOCALS | DYNAMIC | WP_TEXT | D_PAGED),
2362
2363 (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD | SEC_RELOC | SEC_CODE | SEC_DATA),
2364 0, /* leading underscore */
2365 ' ', /* ar_pad_char */
2366 15, /* ar_max_namelen */
2367 bfd_getl64, bfd_getl_signed_64, bfd_putl64,
2368 bfd_getl32, bfd_getl_signed_32, bfd_putl32,
2369 bfd_getl16, bfd_getl_signed_16, bfd_putl16, /* data */
2370 bfd_getl64, bfd_getl_signed_64, bfd_putl64,
2371 bfd_getl32, bfd_getl_signed_32, bfd_putl32,
2372 bfd_getl16, bfd_getl_signed_16, bfd_putl16, /* hdrs */
2373
2374 {_bfd_dummy_target, alpha_ecoff_object_p, /* bfd_check_format */
2375 _bfd_ecoff_archive_p, _bfd_dummy_target},
2376 {bfd_false, _bfd_ecoff_mkobject, /* bfd_set_format */
2377 _bfd_generic_mkarchive, bfd_false},
2378 {bfd_false, _bfd_ecoff_write_object_contents, /* bfd_write_contents */
2379 _bfd_write_archive_contents, bfd_false},
2380
2381 BFD_JUMP_TABLE_GENERIC (_bfd_ecoff),
2382 BFD_JUMP_TABLE_COPY (_bfd_ecoff),
2383 BFD_JUMP_TABLE_CORE (_bfd_nocore),
2384 BFD_JUMP_TABLE_ARCHIVE (alpha_ecoff),
2385 BFD_JUMP_TABLE_SYMBOLS (_bfd_ecoff),
2386 BFD_JUMP_TABLE_RELOCS (_bfd_ecoff),
2387 BFD_JUMP_TABLE_WRITE (_bfd_ecoff),
2388 BFD_JUMP_TABLE_LINK (_bfd_ecoff),
2389 BFD_JUMP_TABLE_DYNAMIC (_bfd_nodynamic),
2390
2391 (PTR) &alpha_ecoff_backend_data
2392 };
This page took 0.079492 seconds and 5 git commands to generate.