* symfile.c (list_overlays_command, map_overlay_command)
[deliverable/binutils-gdb.git] / bfd / coff-h8300.c
1 /* BFD back-end for Renesas H8/300 COFF binaries.
2 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2012
4 Free Software Foundation, Inc.
5 Written by Steve Chamberlain, <sac@cygnus.com>.
6
7 This file is part of BFD, the Binary File Descriptor library.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22 MA 02110-1301, USA. */
23
24 #include "sysdep.h"
25 #include "bfd.h"
26 #include "libbfd.h"
27 #include "bfdlink.h"
28 #include "genlink.h"
29 #include "coff/h8300.h"
30 #include "coff/internal.h"
31 #include "libcoff.h"
32 #include "libiberty.h"
33
34 #define COFF_DEFAULT_SECTION_ALIGNMENT_POWER (1)
35
36 /* We derive a hash table from the basic BFD hash table to
37 hold entries in the function vector. Aside from the
38 info stored by the basic hash table, we need the offset
39 of a particular entry within the hash table as well as
40 the offset where we'll add the next entry. */
41
42 struct funcvec_hash_entry
43 {
44 /* The basic hash table entry. */
45 struct bfd_hash_entry root;
46
47 /* The offset within the vectors section where
48 this entry lives. */
49 bfd_vma offset;
50 };
51
52 struct funcvec_hash_table
53 {
54 /* The basic hash table. */
55 struct bfd_hash_table root;
56
57 bfd *abfd;
58
59 /* Offset at which we'll add the next entry. */
60 unsigned int offset;
61 };
62
63
64 /* To lookup a value in the function vector hash table. */
65 #define funcvec_hash_lookup(table, string, create, copy) \
66 ((struct funcvec_hash_entry *) \
67 bfd_hash_lookup (&(table)->root, (string), (create), (copy)))
68
69 /* The derived h8300 COFF linker table. Note it's derived from
70 the generic linker hash table, not the COFF backend linker hash
71 table! We use this to attach additional data structures we
72 need while linking on the h8300. */
73 struct h8300_coff_link_hash_table {
74 /* The main hash table. */
75 struct generic_link_hash_table root;
76
77 /* Section for the vectors table. This gets attached to a
78 random input bfd, we keep it here for easy access. */
79 asection *vectors_sec;
80
81 /* Hash table of the functions we need to enter into the function
82 vector. */
83 struct funcvec_hash_table *funcvec_hash_table;
84 };
85
86 static struct bfd_link_hash_table *h8300_coff_link_hash_table_create (bfd *);
87
88 /* Get the H8/300 COFF linker hash table from a link_info structure. */
89
90 #define h8300_coff_hash_table(p) \
91 ((struct h8300_coff_link_hash_table *) ((coff_hash_table (p))))
92
93 /* Initialize fields within a funcvec hash table entry. Called whenever
94 a new entry is added to the funcvec hash table. */
95
96 static struct bfd_hash_entry *
97 funcvec_hash_newfunc (struct bfd_hash_entry *entry,
98 struct bfd_hash_table *gen_table,
99 const char *string)
100 {
101 struct funcvec_hash_entry *ret;
102 struct funcvec_hash_table *table;
103
104 ret = (struct funcvec_hash_entry *) entry;
105 table = (struct funcvec_hash_table *) gen_table;
106
107 /* Allocate the structure if it has not already been allocated by a
108 subclass. */
109 if (ret == NULL)
110 ret = ((struct funcvec_hash_entry *)
111 bfd_hash_allocate (gen_table,
112 sizeof (struct funcvec_hash_entry)));
113 if (ret == NULL)
114 return NULL;
115
116 /* Call the allocation method of the superclass. */
117 ret = ((struct funcvec_hash_entry *)
118 bfd_hash_newfunc ((struct bfd_hash_entry *) ret, gen_table, string));
119
120 if (ret == NULL)
121 return NULL;
122
123 /* Note where this entry will reside in the function vector table. */
124 ret->offset = table->offset;
125
126 /* Bump the offset at which we store entries in the function
127 vector. We'd like to bump up the size of the vectors section,
128 but it's not easily available here. */
129 switch (bfd_get_mach (table->abfd))
130 {
131 case bfd_mach_h8300:
132 case bfd_mach_h8300hn:
133 case bfd_mach_h8300sn:
134 table->offset += 2;
135 break;
136 case bfd_mach_h8300h:
137 case bfd_mach_h8300s:
138 table->offset += 4;
139 break;
140 default:
141 return NULL;
142 }
143
144 /* Everything went OK. */
145 return (struct bfd_hash_entry *) ret;
146 }
147
148 /* Initialize the function vector hash table. */
149
150 static bfd_boolean
151 funcvec_hash_table_init (struct funcvec_hash_table *table,
152 bfd *abfd,
153 struct bfd_hash_entry *(*newfunc)
154 (struct bfd_hash_entry *,
155 struct bfd_hash_table *,
156 const char *),
157 unsigned int entsize)
158 {
159 /* Initialize our local fields, then call the generic initialization
160 routine. */
161 table->offset = 0;
162 table->abfd = abfd;
163 return (bfd_hash_table_init (&table->root, newfunc, entsize));
164 }
165
166 /* Create the derived linker hash table. We use a derived hash table
167 basically to hold "static" information during an H8/300 coff link
168 without using static variables. */
169
170 static struct bfd_link_hash_table *
171 h8300_coff_link_hash_table_create (bfd *abfd)
172 {
173 struct h8300_coff_link_hash_table *ret;
174 bfd_size_type amt = sizeof (struct h8300_coff_link_hash_table);
175
176 ret = (struct h8300_coff_link_hash_table *) bfd_malloc (amt);
177 if (ret == NULL)
178 return NULL;
179 if (!_bfd_link_hash_table_init (&ret->root.root, abfd,
180 _bfd_generic_link_hash_newfunc,
181 sizeof (struct generic_link_hash_entry)))
182 {
183 free (ret);
184 return NULL;
185 }
186
187 /* Initialize our data. */
188 ret->vectors_sec = NULL;
189 ret->funcvec_hash_table = NULL;
190
191 /* OK. Everything's initialized, return the base pointer. */
192 return &ret->root.root;
193 }
194
195 /* Special handling for H8/300 relocs.
196 We only come here for pcrel stuff and return normally if not an -r link.
197 When doing -r, we can't do any arithmetic for the pcrel stuff, because
198 the code in reloc.c assumes that we can manipulate the targets of
199 the pcrel branches. This isn't so, since the H8/300 can do relaxing,
200 which means that the gap after the instruction may not be enough to
201 contain the offset required for the branch, so we have to use only
202 the addend until the final link. */
203
204 static bfd_reloc_status_type
205 special (bfd * abfd ATTRIBUTE_UNUSED,
206 arelent * reloc_entry ATTRIBUTE_UNUSED,
207 asymbol * symbol ATTRIBUTE_UNUSED,
208 void * data ATTRIBUTE_UNUSED,
209 asection * input_section ATTRIBUTE_UNUSED,
210 bfd * output_bfd,
211 char ** error_message ATTRIBUTE_UNUSED)
212 {
213 if (output_bfd == (bfd *) NULL)
214 return bfd_reloc_continue;
215
216 /* Adjust the reloc address to that in the output section. */
217 reloc_entry->address += input_section->output_offset;
218 return bfd_reloc_ok;
219 }
220
221 static reloc_howto_type howto_table[] =
222 {
223 HOWTO (R_RELBYTE, 0, 0, 8, FALSE, 0, complain_overflow_bitfield, special, "8", FALSE, 0x000000ff, 0x000000ff, FALSE),
224 HOWTO (R_RELWORD, 0, 1, 16, FALSE, 0, complain_overflow_bitfield, special, "16", FALSE, 0x0000ffff, 0x0000ffff, FALSE),
225 HOWTO (R_RELLONG, 0, 2, 32, FALSE, 0, complain_overflow_bitfield, special, "32", FALSE, 0xffffffff, 0xffffffff, FALSE),
226 HOWTO (R_PCRBYTE, 0, 0, 8, TRUE, 0, complain_overflow_signed, special, "DISP8", FALSE, 0x000000ff, 0x000000ff, TRUE),
227 HOWTO (R_PCRWORD, 0, 1, 16, TRUE, 0, complain_overflow_signed, special, "DISP16", FALSE, 0x0000ffff, 0x0000ffff, TRUE),
228 HOWTO (R_PCRLONG, 0, 2, 32, TRUE, 0, complain_overflow_signed, special, "DISP32", FALSE, 0xffffffff, 0xffffffff, TRUE),
229 HOWTO (R_MOV16B1, 0, 1, 16, FALSE, 0, complain_overflow_bitfield, special, "relaxable mov.b:16", FALSE, 0x0000ffff, 0x0000ffff, FALSE),
230 HOWTO (R_MOV16B2, 0, 1, 8, FALSE, 0, complain_overflow_bitfield, special, "relaxed mov.b:16", FALSE, 0x000000ff, 0x000000ff, FALSE),
231 HOWTO (R_JMP1, 0, 1, 16, FALSE, 0, complain_overflow_bitfield, special, "16/pcrel", FALSE, 0x0000ffff, 0x0000ffff, FALSE),
232 HOWTO (R_JMP2, 0, 0, 8, FALSE, 0, complain_overflow_bitfield, special, "pcrecl/16", FALSE, 0x000000ff, 0x000000ff, FALSE),
233 HOWTO (R_JMPL1, 0, 2, 32, FALSE, 0, complain_overflow_bitfield, special, "24/pcrell", FALSE, 0x00ffffff, 0x00ffffff, FALSE),
234 HOWTO (R_JMPL2, 0, 0, 8, FALSE, 0, complain_overflow_bitfield, special, "pc8/24", FALSE, 0x000000ff, 0x000000ff, FALSE),
235 HOWTO (R_MOV24B1, 0, 1, 32, FALSE, 0, complain_overflow_bitfield, special, "relaxable mov.b:24", FALSE, 0xffffffff, 0xffffffff, FALSE),
236 HOWTO (R_MOV24B2, 0, 1, 8, FALSE, 0, complain_overflow_bitfield, special, "relaxed mov.b:24", FALSE, 0x0000ffff, 0x0000ffff, FALSE),
237
238 /* An indirect reference to a function. This causes the function's address
239 to be added to the function vector in lo-mem and puts the address of
240 the function vector's entry in the jsr instruction. */
241 HOWTO (R_MEM_INDIRECT, 0, 0, 8, FALSE, 0, complain_overflow_bitfield, special, "8/indirect", FALSE, 0x000000ff, 0x000000ff, FALSE),
242
243 /* Internal reloc for relaxing. This is created when a 16-bit pc-relative
244 branch is turned into an 8-bit pc-relative branch. */
245 HOWTO (R_PCRWORD_B, 0, 0, 8, TRUE, 0, complain_overflow_bitfield, special, "relaxed bCC:16", FALSE, 0x000000ff, 0x000000ff, FALSE),
246
247 HOWTO (R_MOVL1, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,special, "32/24 relaxable move", FALSE, 0xffffffff, 0xffffffff, FALSE),
248
249 HOWTO (R_MOVL2, 0, 1, 16, FALSE, 0, complain_overflow_bitfield, special, "32/24 relaxed move", FALSE, 0x0000ffff, 0x0000ffff, FALSE),
250
251 HOWTO (R_BCC_INV, 0, 0, 8, TRUE, 0, complain_overflow_signed, special, "DISP8 inverted", FALSE, 0x000000ff, 0x000000ff, TRUE),
252
253 HOWTO (R_JMP_DEL, 0, 0, 8, TRUE, 0, complain_overflow_signed, special, "Deleted jump", FALSE, 0x000000ff, 0x000000ff, TRUE),
254 };
255
256 /* Turn a howto into a reloc number. */
257
258 #define SELECT_RELOC(x,howto) \
259 { x.r_type = select_reloc (howto); }
260
261 #define BADMAG(x) (H8300BADMAG (x) && H8300HBADMAG (x) && H8300SBADMAG (x) \
262 && H8300HNBADMAG(x) && H8300SNBADMAG(x))
263 #define H8300 1 /* Customize coffcode.h */
264 #define __A_MAGIC_SET__
265
266 /* Code to swap in the reloc. */
267 #define SWAP_IN_RELOC_OFFSET H_GET_32
268 #define SWAP_OUT_RELOC_OFFSET H_PUT_32
269 #define SWAP_OUT_RELOC_EXTRA(abfd, src, dst) \
270 dst->r_stuff[0] = 'S'; \
271 dst->r_stuff[1] = 'C';
272
273 static int
274 select_reloc (reloc_howto_type *howto)
275 {
276 return howto->type;
277 }
278
279 /* Code to turn a r_type into a howto ptr, uses the above howto table. */
280
281 static void
282 rtype2howto (arelent *internal, struct internal_reloc *dst)
283 {
284 switch (dst->r_type)
285 {
286 case R_RELBYTE:
287 internal->howto = howto_table + 0;
288 break;
289 case R_RELWORD:
290 internal->howto = howto_table + 1;
291 break;
292 case R_RELLONG:
293 internal->howto = howto_table + 2;
294 break;
295 case R_PCRBYTE:
296 internal->howto = howto_table + 3;
297 break;
298 case R_PCRWORD:
299 internal->howto = howto_table + 4;
300 break;
301 case R_PCRLONG:
302 internal->howto = howto_table + 5;
303 break;
304 case R_MOV16B1:
305 internal->howto = howto_table + 6;
306 break;
307 case R_MOV16B2:
308 internal->howto = howto_table + 7;
309 break;
310 case R_JMP1:
311 internal->howto = howto_table + 8;
312 break;
313 case R_JMP2:
314 internal->howto = howto_table + 9;
315 break;
316 case R_JMPL1:
317 internal->howto = howto_table + 10;
318 break;
319 case R_JMPL2:
320 internal->howto = howto_table + 11;
321 break;
322 case R_MOV24B1:
323 internal->howto = howto_table + 12;
324 break;
325 case R_MOV24B2:
326 internal->howto = howto_table + 13;
327 break;
328 case R_MEM_INDIRECT:
329 internal->howto = howto_table + 14;
330 break;
331 case R_PCRWORD_B:
332 internal->howto = howto_table + 15;
333 break;
334 case R_MOVL1:
335 internal->howto = howto_table + 16;
336 break;
337 case R_MOVL2:
338 internal->howto = howto_table + 17;
339 break;
340 case R_BCC_INV:
341 internal->howto = howto_table + 18;
342 break;
343 case R_JMP_DEL:
344 internal->howto = howto_table + 19;
345 break;
346 default:
347 abort ();
348 break;
349 }
350 }
351
352 #define RTYPE2HOWTO(internal, relocentry) rtype2howto (internal, relocentry)
353
354 /* Perform any necessary magic to the addend in a reloc entry. */
355
356 #define CALC_ADDEND(abfd, symbol, ext_reloc, cache_ptr) \
357 cache_ptr->addend = ext_reloc.r_offset;
358
359 #define RELOC_PROCESSING(relent,reloc,symbols,abfd,section) \
360 reloc_processing (relent, reloc, symbols, abfd, section)
361
362 static void
363 reloc_processing (arelent *relent, struct internal_reloc *reloc,
364 asymbol **symbols, bfd *abfd, asection *section)
365 {
366 relent->address = reloc->r_vaddr;
367 rtype2howto (relent, reloc);
368
369 if (((int) reloc->r_symndx) > 0)
370 relent->sym_ptr_ptr = symbols + obj_convert (abfd)[reloc->r_symndx];
371 else
372 relent->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
373
374 relent->addend = reloc->r_offset;
375 relent->address -= section->vma;
376 }
377
378 static bfd_boolean
379 h8300_symbol_address_p (bfd *abfd, asection *input_section, bfd_vma address)
380 {
381 asymbol **s;
382
383 s = _bfd_generic_link_get_symbols (abfd);
384 BFD_ASSERT (s != (asymbol **) NULL);
385
386 /* Search all the symbols for one in INPUT_SECTION with
387 address ADDRESS. */
388 while (*s)
389 {
390 asymbol *p = *s;
391
392 if (p->section == input_section
393 && (input_section->output_section->vma
394 + input_section->output_offset
395 + p->value) == address)
396 return TRUE;
397 s++;
398 }
399 return FALSE;
400 }
401
402 /* If RELOC represents a relaxable instruction/reloc, change it into
403 the relaxed reloc, notify the linker that symbol addresses
404 have changed (bfd_perform_slip) and return how much the current
405 section has shrunk by.
406
407 FIXME: Much of this code has knowledge of the ordering of entries
408 in the howto table. This needs to be fixed. */
409
410 static int
411 h8300_reloc16_estimate (bfd *abfd, asection *input_section, arelent *reloc,
412 unsigned int shrink, struct bfd_link_info *link_info)
413 {
414 bfd_vma value;
415 bfd_vma dot;
416 bfd_vma gap;
417 static asection *last_input_section = NULL;
418 static arelent *last_reloc = NULL;
419
420 /* The address of the thing to be relocated will have moved back by
421 the size of the shrink - but we don't change reloc->address here,
422 since we need it to know where the relocation lives in the source
423 uncooked section. */
424 bfd_vma address = reloc->address - shrink;
425
426 if (input_section != last_input_section)
427 last_reloc = NULL;
428
429 /* Only examine the relocs which might be relaxable. */
430 switch (reloc->howto->type)
431 {
432 /* This is the 16-/24-bit absolute branch which could become an
433 8-bit pc-relative branch. */
434 case R_JMP1:
435 case R_JMPL1:
436 /* Get the address of the target of this branch. */
437 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
438
439 /* Get the address of the next instruction (not the reloc). */
440 dot = (input_section->output_section->vma
441 + input_section->output_offset + address);
442
443 /* Adjust for R_JMP1 vs R_JMPL1. */
444 dot += (reloc->howto->type == R_JMP1 ? 1 : 2);
445
446 /* Compute the distance from this insn to the branch target. */
447 gap = value - dot;
448
449 /* If the distance is within -128..+128 inclusive, then we can relax
450 this jump. +128 is valid since the target will move two bytes
451 closer if we do relax this branch. */
452 if ((int) gap >= -128 && (int) gap <= 128)
453 {
454 bfd_byte code;
455
456 if (!bfd_get_section_contents (abfd, input_section, & code,
457 reloc->address, 1))
458 break;
459 code = bfd_get_8 (abfd, & code);
460
461 /* It's possible we may be able to eliminate this branch entirely;
462 if the previous instruction is a branch around this instruction,
463 and there's no label at this instruction, then we can reverse
464 the condition on the previous branch and eliminate this jump.
465
466 original: new:
467 bCC lab1 bCC' lab2
468 jmp lab2
469 lab1: lab1:
470
471 This saves 4 bytes instead of two, and should be relatively
472 common.
473
474 Only perform this optimisation for jumps (code 0x5a) not
475 subroutine calls, as otherwise it could transform:
476
477 mov.w r0,r0
478 beq .L1
479 jsr @_bar
480 .L1: rts
481 _bar: rts
482 into:
483 mov.w r0,r0
484 bne _bar
485 rts
486 _bar: rts
487
488 which changes the call (jsr) into a branch (bne). */
489 if (code == 0x5a
490 && gap <= 126
491 && last_reloc
492 && last_reloc->howto->type == R_PCRBYTE)
493 {
494 bfd_vma last_value;
495 last_value = bfd_coff_reloc16_get_value (last_reloc, link_info,
496 input_section) + 1;
497
498 if (last_value == dot + 2
499 && last_reloc->address + 1 == reloc->address
500 && !h8300_symbol_address_p (abfd, input_section, dot - 2))
501 {
502 reloc->howto = howto_table + 19;
503 last_reloc->howto = howto_table + 18;
504 last_reloc->sym_ptr_ptr = reloc->sym_ptr_ptr;
505 last_reloc->addend = reloc->addend;
506 shrink += 4;
507 bfd_perform_slip (abfd, 4, input_section, address);
508 break;
509 }
510 }
511
512 /* Change the reloc type. */
513 reloc->howto = reloc->howto + 1;
514
515 /* This shrinks this section by two bytes. */
516 shrink += 2;
517 bfd_perform_slip (abfd, 2, input_section, address);
518 }
519 break;
520
521 /* This is the 16-bit pc-relative branch which could become an 8-bit
522 pc-relative branch. */
523 case R_PCRWORD:
524 /* Get the address of the target of this branch, add one to the value
525 because the addend field in PCrel jumps is off by -1. */
526 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section) + 1;
527
528 /* Get the address of the next instruction if we were to relax. */
529 dot = input_section->output_section->vma +
530 input_section->output_offset + address;
531
532 /* Compute the distance from this insn to the branch target. */
533 gap = value - dot;
534
535 /* If the distance is within -128..+128 inclusive, then we can relax
536 this jump. +128 is valid since the target will move two bytes
537 closer if we do relax this branch. */
538 if ((int) gap >= -128 && (int) gap <= 128)
539 {
540 /* Change the reloc type. */
541 reloc->howto = howto_table + 15;
542
543 /* This shrinks this section by two bytes. */
544 shrink += 2;
545 bfd_perform_slip (abfd, 2, input_section, address);
546 }
547 break;
548
549 /* This is a 16-bit absolute address in a mov.b insn, which can
550 become an 8-bit absolute address if it's in the right range. */
551 case R_MOV16B1:
552 /* Get the address of the data referenced by this mov.b insn. */
553 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
554 value = bfd_h8300_pad_address (abfd, value);
555
556 /* If the address is in the top 256 bytes of the address space
557 then we can relax this instruction. */
558 if (value >= 0xffffff00u)
559 {
560 /* Change the reloc type. */
561 reloc->howto = reloc->howto + 1;
562
563 /* This shrinks this section by two bytes. */
564 shrink += 2;
565 bfd_perform_slip (abfd, 2, input_section, address);
566 }
567 break;
568
569 /* Similarly for a 24-bit absolute address in a mov.b. Note that
570 if we can't relax this into an 8-bit absolute, we'll fall through
571 and try to relax it into a 16-bit absolute. */
572 case R_MOV24B1:
573 /* Get the address of the data referenced by this mov.b insn. */
574 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
575 value = bfd_h8300_pad_address (abfd, value);
576
577 if (value >= 0xffffff00u)
578 {
579 /* Change the reloc type. */
580 reloc->howto = reloc->howto + 1;
581
582 /* This shrinks this section by four bytes. */
583 shrink += 4;
584 bfd_perform_slip (abfd, 4, input_section, address);
585
586 /* Done with this reloc. */
587 break;
588 }
589
590 /* FALLTHROUGH and try to turn the 24-/32-bit reloc into a 16-bit
591 reloc. */
592
593 /* This is a 24-/32-bit absolute address in a mov insn, which can
594 become an 16-bit absolute address if it's in the right range. */
595 case R_MOVL1:
596 /* Get the address of the data referenced by this mov insn. */
597 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
598 value = bfd_h8300_pad_address (abfd, value);
599
600 /* If the address is a sign-extended 16-bit value then we can
601 relax this instruction. */
602 if (value <= 0x7fff || value >= 0xffff8000u)
603 {
604 /* Change the reloc type. */
605 reloc->howto = howto_table + 17;
606
607 /* This shrinks this section by two bytes. */
608 shrink += 2;
609 bfd_perform_slip (abfd, 2, input_section, address);
610 }
611 break;
612
613 /* No other reloc types represent relaxing opportunities. */
614 default:
615 break;
616 }
617
618 last_reloc = reloc;
619 last_input_section = input_section;
620 return shrink;
621 }
622
623 /* Handle relocations for the H8/300, including relocs for relaxed
624 instructions.
625
626 FIXME: Not all relocations check for overflow! */
627
628 static void
629 h8300_reloc16_extra_cases (bfd *abfd, struct bfd_link_info *link_info,
630 struct bfd_link_order *link_order, arelent *reloc,
631 bfd_byte *data, unsigned int *src_ptr,
632 unsigned int *dst_ptr)
633 {
634 unsigned int src_address = *src_ptr;
635 unsigned int dst_address = *dst_ptr;
636 asection *input_section = link_order->u.indirect.section;
637 bfd_vma value;
638 bfd_vma dot;
639 int gap, tmp;
640 unsigned char temp_code;
641
642 switch (reloc->howto->type)
643 {
644 /* Generic 8-bit pc-relative relocation. */
645 case R_PCRBYTE:
646 /* Get the address of the target of this branch. */
647 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
648
649 dot = (input_section->output_offset
650 + dst_address
651 + link_order->u.indirect.section->output_section->vma);
652
653 gap = value - dot;
654
655 /* Sanity check. */
656 if (gap < -128 || gap > 126)
657 {
658 if (! ((*link_info->callbacks->reloc_overflow)
659 (link_info, NULL,
660 bfd_asymbol_name (*reloc->sym_ptr_ptr),
661 reloc->howto->name, reloc->addend, input_section->owner,
662 input_section, reloc->address)))
663 abort ();
664 }
665
666 /* Everything looks OK. Apply the relocation and update the
667 src/dst address appropriately. */
668 bfd_put_8 (abfd, gap, data + dst_address);
669 dst_address++;
670 src_address++;
671
672 /* All done. */
673 break;
674
675 /* Generic 16-bit pc-relative relocation. */
676 case R_PCRWORD:
677 /* Get the address of the target of this branch. */
678 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
679
680 /* Get the address of the instruction (not the reloc). */
681 dot = (input_section->output_offset
682 + dst_address
683 + link_order->u.indirect.section->output_section->vma + 1);
684
685 gap = value - dot;
686
687 /* Sanity check. */
688 if (gap > 32766 || gap < -32768)
689 {
690 if (! ((*link_info->callbacks->reloc_overflow)
691 (link_info, NULL,
692 bfd_asymbol_name (*reloc->sym_ptr_ptr),
693 reloc->howto->name, reloc->addend, input_section->owner,
694 input_section, reloc->address)))
695 abort ();
696 }
697
698 /* Everything looks OK. Apply the relocation and update the
699 src/dst address appropriately. */
700 bfd_put_16 (abfd, (bfd_vma) gap, data + dst_address);
701 dst_address += 2;
702 src_address += 2;
703
704 /* All done. */
705 break;
706
707 /* Generic 8-bit absolute relocation. */
708 case R_RELBYTE:
709 /* Get the address of the object referenced by this insn. */
710 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
711
712 bfd_put_8 (abfd, value & 0xff, data + dst_address);
713 dst_address += 1;
714 src_address += 1;
715
716 /* All done. */
717 break;
718
719 /* Various simple 16-bit absolute relocations. */
720 case R_MOV16B1:
721 case R_JMP1:
722 case R_RELWORD:
723 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
724 bfd_put_16 (abfd, value, data + dst_address);
725 dst_address += 2;
726 src_address += 2;
727 break;
728
729 /* Various simple 24-/32-bit absolute relocations. */
730 case R_MOV24B1:
731 case R_MOVL1:
732 case R_RELLONG:
733 /* Get the address of the target of this branch. */
734 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
735 bfd_put_32 (abfd, value, data + dst_address);
736 dst_address += 4;
737 src_address += 4;
738 break;
739
740 /* Another 24-/32-bit absolute relocation. */
741 case R_JMPL1:
742 /* Get the address of the target of this branch. */
743 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
744
745 value = ((value & 0x00ffffff)
746 | (bfd_get_32 (abfd, data + src_address) & 0xff000000));
747 bfd_put_32 (abfd, value, data + dst_address);
748 dst_address += 4;
749 src_address += 4;
750 break;
751
752 /* This is a 24-/32-bit absolute address in one of the following
753 instructions:
754
755 "band", "bclr", "biand", "bild", "bior", "bist", "bixor",
756 "bld", "bnot", "bor", "bset", "bst", "btst", "bxor", "ldc.w",
757 "stc.w" and "mov.[bwl]"
758
759 We may relax this into an 16-bit absolute address if it's in
760 the right range. */
761 case R_MOVL2:
762 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
763 value = bfd_h8300_pad_address (abfd, value);
764
765 /* Sanity check. */
766 if (value <= 0x7fff || value >= 0xffff8000u)
767 {
768 /* Insert the 16-bit value into the proper location. */
769 bfd_put_16 (abfd, value, data + dst_address);
770
771 /* Fix the opcode. For all the instructions that belong to
772 this relaxation, we simply need to turn off bit 0x20 in
773 the previous byte. */
774 data[dst_address - 1] &= ~0x20;
775 dst_address += 2;
776 src_address += 4;
777 }
778 else
779 {
780 if (! ((*link_info->callbacks->reloc_overflow)
781 (link_info, NULL,
782 bfd_asymbol_name (*reloc->sym_ptr_ptr),
783 reloc->howto->name, reloc->addend, input_section->owner,
784 input_section, reloc->address)))
785 abort ();
786 }
787 break;
788
789 /* A 16-bit absolute branch that is now an 8-bit pc-relative branch. */
790 case R_JMP2:
791 /* Get the address of the target of this branch. */
792 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
793
794 /* Get the address of the next instruction. */
795 dot = (input_section->output_offset
796 + dst_address
797 + link_order->u.indirect.section->output_section->vma + 1);
798
799 gap = value - dot;
800
801 /* Sanity check. */
802 if (gap < -128 || gap > 126)
803 {
804 if (! ((*link_info->callbacks->reloc_overflow)
805 (link_info, NULL,
806 bfd_asymbol_name (*reloc->sym_ptr_ptr),
807 reloc->howto->name, reloc->addend, input_section->owner,
808 input_section, reloc->address)))
809 abort ();
810 }
811
812 /* Now fix the instruction itself. */
813 switch (data[dst_address - 1])
814 {
815 case 0x5e:
816 /* jsr -> bsr */
817 bfd_put_8 (abfd, 0x55, data + dst_address - 1);
818 break;
819 case 0x5a:
820 /* jmp -> bra */
821 bfd_put_8 (abfd, 0x40, data + dst_address - 1);
822 break;
823
824 default:
825 abort ();
826 }
827
828 /* Write out the 8-bit value. */
829 bfd_put_8 (abfd, gap, data + dst_address);
830
831 dst_address += 1;
832 src_address += 3;
833
834 break;
835
836 /* A 16-bit pc-relative branch that is now an 8-bit pc-relative branch. */
837 case R_PCRWORD_B:
838 /* Get the address of the target of this branch. */
839 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
840
841 /* Get the address of the instruction (not the reloc). */
842 dot = (input_section->output_offset
843 + dst_address
844 + link_order->u.indirect.section->output_section->vma - 1);
845
846 gap = value - dot;
847
848 /* Sanity check. */
849 if (gap < -128 || gap > 126)
850 {
851 if (! ((*link_info->callbacks->reloc_overflow)
852 (link_info, NULL,
853 bfd_asymbol_name (*reloc->sym_ptr_ptr),
854 reloc->howto->name, reloc->addend, input_section->owner,
855 input_section, reloc->address)))
856 abort ();
857 }
858
859 /* Now fix the instruction. */
860 switch (data[dst_address - 2])
861 {
862 case 0x58:
863 /* bCC:16 -> bCC:8 */
864 /* Get the second byte of the original insn, which contains
865 the condition code. */
866 tmp = data[dst_address - 1];
867
868 /* Compute the fisrt byte of the relaxed instruction. The
869 original sequence 0x58 0xX0 is relaxed to 0x4X, where X
870 represents the condition code. */
871 tmp &= 0xf0;
872 tmp >>= 4;
873 tmp |= 0x40;
874
875 /* Write it. */
876 bfd_put_8 (abfd, tmp, data + dst_address - 2);
877 break;
878
879 case 0x5c:
880 /* bsr:16 -> bsr:8 */
881 bfd_put_8 (abfd, 0x55, data + dst_address - 2);
882 break;
883
884 default:
885 abort ();
886 }
887
888 /* Output the target. */
889 bfd_put_8 (abfd, gap, data + dst_address - 1);
890
891 /* We don't advance dst_address -- the 8-bit reloc is applied at
892 dst_address - 1, so the next insn should begin at dst_address. */
893 src_address += 2;
894
895 break;
896
897 /* Similarly for a 24-bit absolute that is now 8 bits. */
898 case R_JMPL2:
899 /* Get the address of the target of this branch. */
900 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
901
902 /* Get the address of the instruction (not the reloc). */
903 dot = (input_section->output_offset
904 + dst_address
905 + link_order->u.indirect.section->output_section->vma + 2);
906
907 gap = value - dot;
908
909 /* Fix the instruction. */
910 switch (data[src_address])
911 {
912 case 0x5e:
913 /* jsr -> bsr */
914 bfd_put_8 (abfd, 0x55, data + dst_address);
915 break;
916 case 0x5a:
917 /* jmp ->bra */
918 bfd_put_8 (abfd, 0x40, data + dst_address);
919 break;
920 default:
921 abort ();
922 }
923
924 bfd_put_8 (abfd, gap, data + dst_address + 1);
925 dst_address += 2;
926 src_address += 4;
927
928 break;
929
930 /* This is a 16-bit absolute address in one of the following
931 instructions:
932
933 "band", "bclr", "biand", "bild", "bior", "bist", "bixor",
934 "bld", "bnot", "bor", "bset", "bst", "btst", "bxor", and
935 "mov.b"
936
937 We may relax this into an 8-bit absolute address if it's in
938 the right range. */
939 case R_MOV16B2:
940 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
941
942 /* All instructions with R_H8_DIR16B2 start with 0x6a. */
943 if (data[dst_address - 2] != 0x6a)
944 abort ();
945
946 temp_code = data[src_address - 1];
947
948 /* If this is a mov.b instruction, clear the lower nibble, which
949 contains the source/destination register number. */
950 if ((temp_code & 0x10) != 0x10)
951 temp_code &= 0xf0;
952
953 /* Fix up the opcode. */
954 switch (temp_code)
955 {
956 case 0x00:
957 /* This is mov.b @aa:16,Rd. */
958 data[dst_address - 2] = (data[src_address - 1] & 0xf) | 0x20;
959 break;
960 case 0x80:
961 /* This is mov.b Rs,@aa:16. */
962 data[dst_address - 2] = (data[src_address - 1] & 0xf) | 0x30;
963 break;
964 case 0x18:
965 /* This is a bit-maniputation instruction that stores one
966 bit into memory, one of "bclr", "bist", "bnot", "bset",
967 and "bst". */
968 data[dst_address - 2] = 0x7f;
969 break;
970 case 0x10:
971 /* This is a bit-maniputation instruction that loads one bit
972 from memory, one of "band", "biand", "bild", "bior",
973 "bixor", "bld", "bor", "btst", and "bxor". */
974 data[dst_address - 2] = 0x7e;
975 break;
976 default:
977 abort ();
978 }
979
980 bfd_put_8 (abfd, value & 0xff, data + dst_address - 1);
981 src_address += 2;
982 break;
983
984 /* This is a 24-bit absolute address in one of the following
985 instructions:
986
987 "band", "bclr", "biand", "bild", "bior", "bist", "bixor",
988 "bld", "bnot", "bor", "bset", "bst", "btst", "bxor", and
989 "mov.b"
990
991 We may relax this into an 8-bit absolute address if it's in
992 the right range. */
993 case R_MOV24B2:
994 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
995
996 /* All instructions with R_MOV24B2 start with 0x6a. */
997 if (data[dst_address - 2] != 0x6a)
998 abort ();
999
1000 temp_code = data[src_address - 1];
1001
1002 /* If this is a mov.b instruction, clear the lower nibble, which
1003 contains the source/destination register number. */
1004 if ((temp_code & 0x30) != 0x30)
1005 temp_code &= 0xf0;
1006
1007 /* Fix up the opcode. */
1008 switch (temp_code)
1009 {
1010 case 0x20:
1011 /* This is mov.b @aa:24/32,Rd. */
1012 data[dst_address - 2] = (data[src_address - 1] & 0xf) | 0x20;
1013 break;
1014 case 0xa0:
1015 /* This is mov.b Rs,@aa:24/32. */
1016 data[dst_address - 2] = (data[src_address - 1] & 0xf) | 0x30;
1017 break;
1018 case 0x38:
1019 /* This is a bit-maniputation instruction that stores one
1020 bit into memory, one of "bclr", "bist", "bnot", "bset",
1021 and "bst". */
1022 data[dst_address - 2] = 0x7f;
1023 break;
1024 case 0x30:
1025 /* This is a bit-maniputation instruction that loads one bit
1026 from memory, one of "band", "biand", "bild", "bior",
1027 "bixor", "bld", "bor", "btst", and "bxor". */
1028 data[dst_address - 2] = 0x7e;
1029 break;
1030 default:
1031 abort ();
1032 }
1033
1034 bfd_put_8 (abfd, value & 0xff, data + dst_address - 1);
1035 src_address += 4;
1036 break;
1037
1038 case R_BCC_INV:
1039 /* Get the address of the target of this branch. */
1040 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
1041
1042 dot = (input_section->output_offset
1043 + dst_address
1044 + link_order->u.indirect.section->output_section->vma) + 1;
1045
1046 gap = value - dot;
1047
1048 /* Sanity check. */
1049 if (gap < -128 || gap > 126)
1050 {
1051 if (! ((*link_info->callbacks->reloc_overflow)
1052 (link_info, NULL,
1053 bfd_asymbol_name (*reloc->sym_ptr_ptr),
1054 reloc->howto->name, reloc->addend, input_section->owner,
1055 input_section, reloc->address)))
1056 abort ();
1057 }
1058
1059 /* Everything looks OK. Fix the condition in the instruction, apply
1060 the relocation, and update the src/dst address appropriately. */
1061
1062 bfd_put_8 (abfd, bfd_get_8 (abfd, data + dst_address - 1) ^ 1,
1063 data + dst_address - 1);
1064 bfd_put_8 (abfd, gap, data + dst_address);
1065 dst_address++;
1066 src_address++;
1067
1068 /* All done. */
1069 break;
1070
1071 case R_JMP_DEL:
1072 src_address += 4;
1073 break;
1074
1075 /* An 8-bit memory indirect instruction (jmp/jsr).
1076
1077 There's several things that need to be done to handle
1078 this relocation.
1079
1080 If this is a reloc against the absolute symbol, then
1081 we should handle it just R_RELBYTE. Likewise if it's
1082 for a symbol with a value ge 0 and le 0xff.
1083
1084 Otherwise it's a jump/call through the function vector,
1085 and the linker is expected to set up the function vector
1086 and put the right value into the jump/call instruction. */
1087 case R_MEM_INDIRECT:
1088 {
1089 /* We need to find the symbol so we can determine it's
1090 address in the function vector table. */
1091 asymbol *symbol;
1092 const char *name;
1093 struct funcvec_hash_table *ftab;
1094 struct funcvec_hash_entry *h;
1095 struct h8300_coff_link_hash_table *htab;
1096 asection *vectors_sec;
1097
1098 if (link_info->output_bfd->xvec != abfd->xvec)
1099 {
1100 (*_bfd_error_handler)
1101 (_("cannot handle R_MEM_INDIRECT reloc when using %s output"),
1102 link_info->output_bfd->xvec->name);
1103
1104 /* What else can we do? This function doesn't allow return
1105 of an error, and we don't want to call abort as that
1106 indicates an internal error. */
1107 #ifndef EXIT_FAILURE
1108 #define EXIT_FAILURE 1
1109 #endif
1110 xexit (EXIT_FAILURE);
1111 }
1112 htab = h8300_coff_hash_table (link_info);
1113 vectors_sec = htab->vectors_sec;
1114
1115 /* First see if this is a reloc against the absolute symbol
1116 or against a symbol with a nonnegative value <= 0xff. */
1117 symbol = *(reloc->sym_ptr_ptr);
1118 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
1119 if (symbol == bfd_abs_section_ptr->symbol
1120 || value <= 0xff)
1121 {
1122 /* This should be handled in a manner very similar to
1123 R_RELBYTES. If the value is in range, then just slam
1124 the value into the right location. Else trigger a
1125 reloc overflow callback. */
1126 if (value <= 0xff)
1127 {
1128 bfd_put_8 (abfd, value, data + dst_address);
1129 dst_address += 1;
1130 src_address += 1;
1131 }
1132 else
1133 {
1134 if (! ((*link_info->callbacks->reloc_overflow)
1135 (link_info, NULL,
1136 bfd_asymbol_name (*reloc->sym_ptr_ptr),
1137 reloc->howto->name, reloc->addend, input_section->owner,
1138 input_section, reloc->address)))
1139 abort ();
1140 }
1141 break;
1142 }
1143
1144 /* This is a jump/call through a function vector, and we're
1145 expected to create the function vector ourselves.
1146
1147 First look up this symbol in the linker hash table -- we need
1148 the derived linker symbol which holds this symbol's index
1149 in the function vector. */
1150 name = symbol->name;
1151 if (symbol->flags & BSF_LOCAL)
1152 {
1153 char *new_name = bfd_malloc ((bfd_size_type) strlen (name) + 10);
1154
1155 if (new_name == NULL)
1156 abort ();
1157
1158 sprintf (new_name, "%s_%08x", name, symbol->section->id);
1159 name = new_name;
1160 }
1161
1162 ftab = htab->funcvec_hash_table;
1163 h = funcvec_hash_lookup (ftab, name, FALSE, FALSE);
1164
1165 /* This shouldn't ever happen. If it does that means we've got
1166 data corruption of some kind. Aborting seems like a reasonable
1167 thing to do here. */
1168 if (h == NULL || vectors_sec == NULL)
1169 abort ();
1170
1171 /* Place the address of the function vector entry into the
1172 reloc's address. */
1173 bfd_put_8 (abfd,
1174 vectors_sec->output_offset + h->offset,
1175 data + dst_address);
1176
1177 dst_address++;
1178 src_address++;
1179
1180 /* Now create an entry in the function vector itself. */
1181 switch (bfd_get_mach (input_section->owner))
1182 {
1183 case bfd_mach_h8300:
1184 case bfd_mach_h8300hn:
1185 case bfd_mach_h8300sn:
1186 bfd_put_16 (abfd,
1187 bfd_coff_reloc16_get_value (reloc,
1188 link_info,
1189 input_section),
1190 vectors_sec->contents + h->offset);
1191 break;
1192 case bfd_mach_h8300h:
1193 case bfd_mach_h8300s:
1194 bfd_put_32 (abfd,
1195 bfd_coff_reloc16_get_value (reloc,
1196 link_info,
1197 input_section),
1198 vectors_sec->contents + h->offset);
1199 break;
1200 default:
1201 abort ();
1202 }
1203
1204 /* Gross. We've already written the contents of the vector section
1205 before we get here... So we write it again with the new data. */
1206 bfd_set_section_contents (vectors_sec->output_section->owner,
1207 vectors_sec->output_section,
1208 vectors_sec->contents,
1209 (file_ptr) vectors_sec->output_offset,
1210 vectors_sec->size);
1211 break;
1212 }
1213
1214 default:
1215 abort ();
1216 break;
1217
1218 }
1219
1220 *src_ptr = src_address;
1221 *dst_ptr = dst_address;
1222 }
1223
1224 /* Routine for the h8300 linker.
1225
1226 This routine is necessary to handle the special R_MEM_INDIRECT
1227 relocs on the h8300. It's responsible for generating a vectors
1228 section and attaching it to an input bfd as well as sizing
1229 the vectors section. It also creates our vectors hash table.
1230
1231 It uses the generic linker routines to actually add the symbols.
1232 from this BFD to the bfd linker hash table. It may add a few
1233 selected static symbols to the bfd linker hash table. */
1234
1235 static bfd_boolean
1236 h8300_bfd_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
1237 {
1238 asection *sec;
1239 struct funcvec_hash_table *funcvec_hash_table;
1240 bfd_size_type amt;
1241 struct h8300_coff_link_hash_table *htab;
1242
1243 /* Add the symbols using the generic code. */
1244 _bfd_generic_link_add_symbols (abfd, info);
1245
1246 if (info->output_bfd->xvec != abfd->xvec)
1247 return TRUE;
1248
1249 htab = h8300_coff_hash_table (info);
1250
1251 /* If we haven't created a vectors section, do so now. */
1252 if (!htab->vectors_sec)
1253 {
1254 flagword flags;
1255
1256 /* Make sure the appropriate flags are set, including SEC_IN_MEMORY. */
1257 flags = (SEC_ALLOC | SEC_LOAD
1258 | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_READONLY);
1259 htab->vectors_sec = bfd_make_section_with_flags (abfd, ".vectors",
1260 flags);
1261
1262 /* If the section wasn't created, or we couldn't set the flags,
1263 quit quickly now, rather than dying a painful death later. */
1264 if (!htab->vectors_sec)
1265 return FALSE;
1266
1267 /* Also create the vector hash table. */
1268 amt = sizeof (struct funcvec_hash_table);
1269 funcvec_hash_table = (struct funcvec_hash_table *) bfd_alloc (abfd, amt);
1270
1271 if (!funcvec_hash_table)
1272 return FALSE;
1273
1274 /* And initialize the funcvec hash table. */
1275 if (!funcvec_hash_table_init (funcvec_hash_table, abfd,
1276 funcvec_hash_newfunc,
1277 sizeof (struct funcvec_hash_entry)))
1278 {
1279 bfd_release (abfd, funcvec_hash_table);
1280 return FALSE;
1281 }
1282
1283 /* Store away a pointer to the funcvec hash table. */
1284 htab->funcvec_hash_table = funcvec_hash_table;
1285 }
1286
1287 /* Load up the function vector hash table. */
1288 funcvec_hash_table = htab->funcvec_hash_table;
1289
1290 /* Now scan the relocs for all the sections in this bfd; create
1291 additional space in the .vectors section as needed. */
1292 for (sec = abfd->sections; sec; sec = sec->next)
1293 {
1294 long reloc_size, reloc_count, i;
1295 asymbol **symbols;
1296 arelent **relocs;
1297
1298 /* Suck in the relocs, symbols & canonicalize them. */
1299 reloc_size = bfd_get_reloc_upper_bound (abfd, sec);
1300 if (reloc_size <= 0)
1301 continue;
1302
1303 relocs = (arelent **) bfd_malloc ((bfd_size_type) reloc_size);
1304 if (!relocs)
1305 return FALSE;
1306
1307 /* The symbols should have been read in by _bfd_generic link_add_symbols
1308 call abovec, so we can cheat and use the pointer to them that was
1309 saved in the above call. */
1310 symbols = _bfd_generic_link_get_symbols(abfd);
1311 reloc_count = bfd_canonicalize_reloc (abfd, sec, relocs, symbols);
1312 if (reloc_count <= 0)
1313 {
1314 free (relocs);
1315 continue;
1316 }
1317
1318 /* Now walk through all the relocations in this section. */
1319 for (i = 0; i < reloc_count; i++)
1320 {
1321 arelent *reloc = relocs[i];
1322 asymbol *symbol = *(reloc->sym_ptr_ptr);
1323 const char *name;
1324
1325 /* We've got an indirect reloc. See if we need to add it
1326 to the function vector table. At this point, we have
1327 to add a new entry for each unique symbol referenced
1328 by an R_MEM_INDIRECT relocation except for a reloc
1329 against the absolute section symbol. */
1330 if (reloc->howto->type == R_MEM_INDIRECT
1331 && symbol != bfd_abs_section_ptr->symbol)
1332
1333 {
1334 struct funcvec_hash_table *ftab;
1335 struct funcvec_hash_entry *h;
1336
1337 name = symbol->name;
1338 if (symbol->flags & BSF_LOCAL)
1339 {
1340 char *new_name;
1341
1342 new_name = bfd_malloc ((bfd_size_type) strlen (name) + 10);
1343 if (new_name == NULL)
1344 abort ();
1345
1346 sprintf (new_name, "%s_%08x", name, symbol->section->id);
1347 name = new_name;
1348 }
1349
1350 /* Look this symbol up in the function vector hash table. */
1351 ftab = htab->funcvec_hash_table;
1352 h = funcvec_hash_lookup (ftab, name, FALSE, FALSE);
1353
1354 /* If this symbol isn't already in the hash table, add
1355 it and bump up the size of the hash table. */
1356 if (h == NULL)
1357 {
1358 h = funcvec_hash_lookup (ftab, name, TRUE, TRUE);
1359 if (h == NULL)
1360 {
1361 free (relocs);
1362 return FALSE;
1363 }
1364
1365 /* Bump the size of the vectors section. Each vector
1366 takes 2 bytes on the h8300 and 4 bytes on the h8300h. */
1367 switch (bfd_get_mach (abfd))
1368 {
1369 case bfd_mach_h8300:
1370 case bfd_mach_h8300hn:
1371 case bfd_mach_h8300sn:
1372 htab->vectors_sec->size += 2;
1373 break;
1374 case bfd_mach_h8300h:
1375 case bfd_mach_h8300s:
1376 htab->vectors_sec->size += 4;
1377 break;
1378 default:
1379 abort ();
1380 }
1381 }
1382 }
1383 }
1384
1385 /* We're done with the relocations, release them. */
1386 free (relocs);
1387 }
1388
1389 /* Now actually allocate some space for the function vector. It's
1390 wasteful to do this more than once, but this is easier. */
1391 sec = htab->vectors_sec;
1392 if (sec->size != 0)
1393 {
1394 /* Free the old contents. */
1395 if (sec->contents)
1396 free (sec->contents);
1397
1398 /* Allocate new contents. */
1399 sec->contents = bfd_malloc (sec->size);
1400 }
1401
1402 return TRUE;
1403 }
1404
1405 #define coff_reloc16_extra_cases h8300_reloc16_extra_cases
1406 #define coff_reloc16_estimate h8300_reloc16_estimate
1407 #define coff_bfd_link_add_symbols h8300_bfd_link_add_symbols
1408 #define coff_bfd_link_hash_table_create h8300_coff_link_hash_table_create
1409
1410 #define COFF_LONG_FILENAMES
1411
1412 #ifndef bfd_pe_print_pdata
1413 #define bfd_pe_print_pdata NULL
1414 #endif
1415
1416 #include "coffcode.h"
1417
1418 #undef coff_bfd_get_relocated_section_contents
1419 #undef coff_bfd_relax_section
1420 #define coff_bfd_get_relocated_section_contents \
1421 bfd_coff_reloc16_get_relocated_section_contents
1422 #define coff_bfd_relax_section bfd_coff_reloc16_relax_section
1423
1424 CREATE_BIG_COFF_TARGET_VEC (h8300coff_vec, "coff-h8300", BFD_IS_RELAXABLE, 0, '_', NULL, COFF_SWAP_TABLE)
This page took 0.061159 seconds and 4 git commands to generate.