* elf.c (assign_file_positions_for_segments): Split into..
[deliverable/binutils-gdb.git] / bfd / coff-h8300.c
1 /* BFD back-end for Renesas H8/300 COFF binaries.
2 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004, 2005, 2006
4 Free Software Foundation, Inc.
5 Written by Steve Chamberlain, <sac@cygnus.com>.
6
7 This file is part of BFD, the Binary File Descriptor library.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
22
23 #include "bfd.h"
24 #include "sysdep.h"
25 #include "libbfd.h"
26 #include "bfdlink.h"
27 #include "genlink.h"
28 #include "coff/h8300.h"
29 #include "coff/internal.h"
30 #include "libcoff.h"
31 #include "libiberty.h"
32
33 #define COFF_DEFAULT_SECTION_ALIGNMENT_POWER (1)
34
35 /* We derive a hash table from the basic BFD hash table to
36 hold entries in the function vector. Aside from the
37 info stored by the basic hash table, we need the offset
38 of a particular entry within the hash table as well as
39 the offset where we'll add the next entry. */
40
41 struct funcvec_hash_entry
42 {
43 /* The basic hash table entry. */
44 struct bfd_hash_entry root;
45
46 /* The offset within the vectors section where
47 this entry lives. */
48 bfd_vma offset;
49 };
50
51 struct funcvec_hash_table
52 {
53 /* The basic hash table. */
54 struct bfd_hash_table root;
55
56 bfd *abfd;
57
58 /* Offset at which we'll add the next entry. */
59 unsigned int offset;
60 };
61
62 static struct bfd_hash_entry *
63 funcvec_hash_newfunc
64 (struct bfd_hash_entry *, struct bfd_hash_table *, const char *);
65
66 static bfd_reloc_status_type special
67 (bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **);
68 static int select_reloc
69 (reloc_howto_type *);
70 static void rtype2howto
71 (arelent *, struct internal_reloc *);
72 static void reloc_processing
73 (arelent *, struct internal_reloc *, asymbol **, bfd *, asection *);
74 static bfd_boolean h8300_symbol_address_p
75 (bfd *, asection *, bfd_vma);
76 static int h8300_reloc16_estimate
77 (bfd *, asection *, arelent *, unsigned int,
78 struct bfd_link_info *);
79 static void h8300_reloc16_extra_cases
80 (bfd *, struct bfd_link_info *, struct bfd_link_order *, arelent *,
81 bfd_byte *, unsigned int *, unsigned int *);
82 static bfd_boolean h8300_bfd_link_add_symbols
83 (bfd *, struct bfd_link_info *);
84
85 /* To lookup a value in the function vector hash table. */
86 #define funcvec_hash_lookup(table, string, create, copy) \
87 ((struct funcvec_hash_entry *) \
88 bfd_hash_lookup (&(table)->root, (string), (create), (copy)))
89
90 /* The derived h8300 COFF linker table. Note it's derived from
91 the generic linker hash table, not the COFF backend linker hash
92 table! We use this to attach additional data structures we
93 need while linking on the h8300. */
94 struct h8300_coff_link_hash_table {
95 /* The main hash table. */
96 struct generic_link_hash_table root;
97
98 /* Section for the vectors table. This gets attached to a
99 random input bfd, we keep it here for easy access. */
100 asection *vectors_sec;
101
102 /* Hash table of the functions we need to enter into the function
103 vector. */
104 struct funcvec_hash_table *funcvec_hash_table;
105 };
106
107 static struct bfd_link_hash_table *h8300_coff_link_hash_table_create (bfd *);
108
109 /* Get the H8/300 COFF linker hash table from a link_info structure. */
110
111 #define h8300_coff_hash_table(p) \
112 ((struct h8300_coff_link_hash_table *) ((coff_hash_table (p))))
113
114 /* Initialize fields within a funcvec hash table entry. Called whenever
115 a new entry is added to the funcvec hash table. */
116
117 static struct bfd_hash_entry *
118 funcvec_hash_newfunc (struct bfd_hash_entry *entry,
119 struct bfd_hash_table *gen_table,
120 const char *string)
121 {
122 struct funcvec_hash_entry *ret;
123 struct funcvec_hash_table *table;
124
125 ret = (struct funcvec_hash_entry *) entry;
126 table = (struct funcvec_hash_table *) gen_table;
127
128 /* Allocate the structure if it has not already been allocated by a
129 subclass. */
130 if (ret == NULL)
131 ret = ((struct funcvec_hash_entry *)
132 bfd_hash_allocate (gen_table,
133 sizeof (struct funcvec_hash_entry)));
134 if (ret == NULL)
135 return NULL;
136
137 /* Call the allocation method of the superclass. */
138 ret = ((struct funcvec_hash_entry *)
139 bfd_hash_newfunc ((struct bfd_hash_entry *) ret, gen_table, string));
140
141 if (ret == NULL)
142 return NULL;
143
144 /* Note where this entry will reside in the function vector table. */
145 ret->offset = table->offset;
146
147 /* Bump the offset at which we store entries in the function
148 vector. We'd like to bump up the size of the vectors section,
149 but it's not easily available here. */
150 switch (bfd_get_mach (table->abfd))
151 {
152 case bfd_mach_h8300:
153 case bfd_mach_h8300hn:
154 case bfd_mach_h8300sn:
155 table->offset += 2;
156 break;
157 case bfd_mach_h8300h:
158 case bfd_mach_h8300s:
159 table->offset += 4;
160 break;
161 default:
162 return NULL;
163 }
164
165 /* Everything went OK. */
166 return (struct bfd_hash_entry *) ret;
167 }
168
169 /* Initialize the function vector hash table. */
170
171 static bfd_boolean
172 funcvec_hash_table_init (struct funcvec_hash_table *table,
173 bfd *abfd,
174 struct bfd_hash_entry *(*newfunc)
175 (struct bfd_hash_entry *,
176 struct bfd_hash_table *,
177 const char *),
178 unsigned int entsize)
179 {
180 /* Initialize our local fields, then call the generic initialization
181 routine. */
182 table->offset = 0;
183 table->abfd = abfd;
184 return (bfd_hash_table_init (&table->root, newfunc, entsize));
185 }
186
187 /* Create the derived linker hash table. We use a derived hash table
188 basically to hold "static" information during an H8/300 coff link
189 without using static variables. */
190
191 static struct bfd_link_hash_table *
192 h8300_coff_link_hash_table_create (bfd *abfd)
193 {
194 struct h8300_coff_link_hash_table *ret;
195 bfd_size_type amt = sizeof (struct h8300_coff_link_hash_table);
196
197 ret = (struct h8300_coff_link_hash_table *) bfd_malloc (amt);
198 if (ret == NULL)
199 return NULL;
200 if (!_bfd_link_hash_table_init (&ret->root.root, abfd,
201 _bfd_generic_link_hash_newfunc,
202 sizeof (struct generic_link_hash_entry)))
203 {
204 free (ret);
205 return NULL;
206 }
207
208 /* Initialize our data. */
209 ret->vectors_sec = NULL;
210 ret->funcvec_hash_table = NULL;
211
212 /* OK. Everything's initialized, return the base pointer. */
213 return &ret->root.root;
214 }
215
216 /* Special handling for H8/300 relocs.
217 We only come here for pcrel stuff and return normally if not an -r link.
218 When doing -r, we can't do any arithmetic for the pcrel stuff, because
219 the code in reloc.c assumes that we can manipulate the targets of
220 the pcrel branches. This isn't so, since the H8/300 can do relaxing,
221 which means that the gap after the instruction may not be enough to
222 contain the offset required for the branch, so we have to use only
223 the addend until the final link. */
224
225 static bfd_reloc_status_type
226 special (bfd *abfd ATTRIBUTE_UNUSED,
227 arelent *reloc_entry ATTRIBUTE_UNUSED,
228 asymbol *symbol ATTRIBUTE_UNUSED,
229 PTR data ATTRIBUTE_UNUSED,
230 asection *input_section ATTRIBUTE_UNUSED,
231 bfd *output_bfd,
232 char **error_message ATTRIBUTE_UNUSED)
233 {
234 if (output_bfd == (bfd *) NULL)
235 return bfd_reloc_continue;
236
237 /* Adjust the reloc address to that in the output section. */
238 reloc_entry->address += input_section->output_offset;
239 return bfd_reloc_ok;
240 }
241
242 static reloc_howto_type howto_table[] = {
243 HOWTO (R_RELBYTE, 0, 0, 8, FALSE, 0, complain_overflow_bitfield, special, "8", FALSE, 0x000000ff, 0x000000ff, FALSE),
244 HOWTO (R_RELWORD, 0, 1, 16, FALSE, 0, complain_overflow_bitfield, special, "16", FALSE, 0x0000ffff, 0x0000ffff, FALSE),
245 HOWTO (R_RELLONG, 0, 2, 32, FALSE, 0, complain_overflow_bitfield, special, "32", FALSE, 0xffffffff, 0xffffffff, FALSE),
246 HOWTO (R_PCRBYTE, 0, 0, 8, TRUE, 0, complain_overflow_signed, special, "DISP8", FALSE, 0x000000ff, 0x000000ff, TRUE),
247 HOWTO (R_PCRWORD, 0, 1, 16, TRUE, 0, complain_overflow_signed, special, "DISP16", FALSE, 0x0000ffff, 0x0000ffff, TRUE),
248 HOWTO (R_PCRLONG, 0, 2, 32, TRUE, 0, complain_overflow_signed, special, "DISP32", FALSE, 0xffffffff, 0xffffffff, TRUE),
249 HOWTO (R_MOV16B1, 0, 1, 16, FALSE, 0, complain_overflow_bitfield, special, "relaxable mov.b:16", FALSE, 0x0000ffff, 0x0000ffff, FALSE),
250 HOWTO (R_MOV16B2, 0, 1, 8, FALSE, 0, complain_overflow_bitfield, special, "relaxed mov.b:16", FALSE, 0x000000ff, 0x000000ff, FALSE),
251 HOWTO (R_JMP1, 0, 1, 16, FALSE, 0, complain_overflow_bitfield, special, "16/pcrel", FALSE, 0x0000ffff, 0x0000ffff, FALSE),
252 HOWTO (R_JMP2, 0, 0, 8, FALSE, 0, complain_overflow_bitfield, special, "pcrecl/16", FALSE, 0x000000ff, 0x000000ff, FALSE),
253 HOWTO (R_JMPL1, 0, 2, 32, FALSE, 0, complain_overflow_bitfield, special, "24/pcrell", FALSE, 0x00ffffff, 0x00ffffff, FALSE),
254 HOWTO (R_JMPL2, 0, 0, 8, FALSE, 0, complain_overflow_bitfield, special, "pc8/24", FALSE, 0x000000ff, 0x000000ff, FALSE),
255 HOWTO (R_MOV24B1, 0, 1, 32, FALSE, 0, complain_overflow_bitfield, special, "relaxable mov.b:24", FALSE, 0xffffffff, 0xffffffff, FALSE),
256 HOWTO (R_MOV24B2, 0, 1, 8, FALSE, 0, complain_overflow_bitfield, special, "relaxed mov.b:24", FALSE, 0x0000ffff, 0x0000ffff, FALSE),
257
258 /* An indirect reference to a function. This causes the function's address
259 to be added to the function vector in lo-mem and puts the address of
260 the function vector's entry in the jsr instruction. */
261 HOWTO (R_MEM_INDIRECT, 0, 0, 8, FALSE, 0, complain_overflow_bitfield, special, "8/indirect", FALSE, 0x000000ff, 0x000000ff, FALSE),
262
263 /* Internal reloc for relaxing. This is created when a 16-bit pc-relative
264 branch is turned into an 8-bit pc-relative branch. */
265 HOWTO (R_PCRWORD_B, 0, 0, 8, TRUE, 0, complain_overflow_bitfield, special, "relaxed bCC:16", FALSE, 0x000000ff, 0x000000ff, FALSE),
266
267 HOWTO (R_MOVL1, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,special, "32/24 relaxable move", FALSE, 0xffffffff, 0xffffffff, FALSE),
268
269 HOWTO (R_MOVL2, 0, 1, 16, FALSE, 0, complain_overflow_bitfield, special, "32/24 relaxed move", FALSE, 0x0000ffff, 0x0000ffff, FALSE),
270
271 HOWTO (R_BCC_INV, 0, 0, 8, TRUE, 0, complain_overflow_signed, special, "DISP8 inverted", FALSE, 0x000000ff, 0x000000ff, TRUE),
272
273 HOWTO (R_JMP_DEL, 0, 0, 8, TRUE, 0, complain_overflow_signed, special, "Deleted jump", FALSE, 0x000000ff, 0x000000ff, TRUE),
274 };
275
276 /* Turn a howto into a reloc number. */
277
278 #define SELECT_RELOC(x,howto) \
279 { x.r_type = select_reloc (howto); }
280
281 #define BADMAG(x) (H8300BADMAG (x) && H8300HBADMAG (x) && H8300SBADMAG (x) \
282 && H8300HNBADMAG(x) && H8300SNBADMAG(x))
283 #define H8300 1 /* Customize coffcode.h */
284 #define __A_MAGIC_SET__
285
286 /* Code to swap in the reloc. */
287 #define SWAP_IN_RELOC_OFFSET H_GET_32
288 #define SWAP_OUT_RELOC_OFFSET H_PUT_32
289 #define SWAP_OUT_RELOC_EXTRA(abfd, src, dst) \
290 dst->r_stuff[0] = 'S'; \
291 dst->r_stuff[1] = 'C';
292
293 static int
294 select_reloc (reloc_howto_type *howto)
295 {
296 return howto->type;
297 }
298
299 /* Code to turn a r_type into a howto ptr, uses the above howto table. */
300
301 static void
302 rtype2howto (arelent *internal, struct internal_reloc *dst)
303 {
304 switch (dst->r_type)
305 {
306 case R_RELBYTE:
307 internal->howto = howto_table + 0;
308 break;
309 case R_RELWORD:
310 internal->howto = howto_table + 1;
311 break;
312 case R_RELLONG:
313 internal->howto = howto_table + 2;
314 break;
315 case R_PCRBYTE:
316 internal->howto = howto_table + 3;
317 break;
318 case R_PCRWORD:
319 internal->howto = howto_table + 4;
320 break;
321 case R_PCRLONG:
322 internal->howto = howto_table + 5;
323 break;
324 case R_MOV16B1:
325 internal->howto = howto_table + 6;
326 break;
327 case R_MOV16B2:
328 internal->howto = howto_table + 7;
329 break;
330 case R_JMP1:
331 internal->howto = howto_table + 8;
332 break;
333 case R_JMP2:
334 internal->howto = howto_table + 9;
335 break;
336 case R_JMPL1:
337 internal->howto = howto_table + 10;
338 break;
339 case R_JMPL2:
340 internal->howto = howto_table + 11;
341 break;
342 case R_MOV24B1:
343 internal->howto = howto_table + 12;
344 break;
345 case R_MOV24B2:
346 internal->howto = howto_table + 13;
347 break;
348 case R_MEM_INDIRECT:
349 internal->howto = howto_table + 14;
350 break;
351 case R_PCRWORD_B:
352 internal->howto = howto_table + 15;
353 break;
354 case R_MOVL1:
355 internal->howto = howto_table + 16;
356 break;
357 case R_MOVL2:
358 internal->howto = howto_table + 17;
359 break;
360 case R_BCC_INV:
361 internal->howto = howto_table + 18;
362 break;
363 case R_JMP_DEL:
364 internal->howto = howto_table + 19;
365 break;
366 default:
367 abort ();
368 break;
369 }
370 }
371
372 #define RTYPE2HOWTO(internal, relocentry) rtype2howto (internal, relocentry)
373
374 /* Perform any necessary magic to the addend in a reloc entry. */
375
376 #define CALC_ADDEND(abfd, symbol, ext_reloc, cache_ptr) \
377 cache_ptr->addend = ext_reloc.r_offset;
378
379 #define RELOC_PROCESSING(relent,reloc,symbols,abfd,section) \
380 reloc_processing (relent, reloc, symbols, abfd, section)
381
382 static void
383 reloc_processing (arelent *relent, struct internal_reloc *reloc,
384 asymbol **symbols, bfd *abfd, asection *section)
385 {
386 relent->address = reloc->r_vaddr;
387 rtype2howto (relent, reloc);
388
389 if (((int) reloc->r_symndx) > 0)
390 relent->sym_ptr_ptr = symbols + obj_convert (abfd)[reloc->r_symndx];
391 else
392 relent->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
393
394 relent->addend = reloc->r_offset;
395 relent->address -= section->vma;
396 }
397
398 static bfd_boolean
399 h8300_symbol_address_p (bfd *abfd, asection *input_section, bfd_vma address)
400 {
401 asymbol **s;
402
403 s = _bfd_generic_link_get_symbols (abfd);
404 BFD_ASSERT (s != (asymbol **) NULL);
405
406 /* Search all the symbols for one in INPUT_SECTION with
407 address ADDRESS. */
408 while (*s)
409 {
410 asymbol *p = *s;
411
412 if (p->section == input_section
413 && (input_section->output_section->vma
414 + input_section->output_offset
415 + p->value) == address)
416 return TRUE;
417 s++;
418 }
419 return FALSE;
420 }
421
422 /* If RELOC represents a relaxable instruction/reloc, change it into
423 the relaxed reloc, notify the linker that symbol addresses
424 have changed (bfd_perform_slip) and return how much the current
425 section has shrunk by.
426
427 FIXME: Much of this code has knowledge of the ordering of entries
428 in the howto table. This needs to be fixed. */
429
430 static int
431 h8300_reloc16_estimate (bfd *abfd, asection *input_section, arelent *reloc,
432 unsigned int shrink, struct bfd_link_info *link_info)
433 {
434 bfd_vma value;
435 bfd_vma dot;
436 bfd_vma gap;
437 static asection *last_input_section = NULL;
438 static arelent *last_reloc = NULL;
439
440 /* The address of the thing to be relocated will have moved back by
441 the size of the shrink - but we don't change reloc->address here,
442 since we need it to know where the relocation lives in the source
443 uncooked section. */
444 bfd_vma address = reloc->address - shrink;
445
446 if (input_section != last_input_section)
447 last_reloc = NULL;
448
449 /* Only examine the relocs which might be relaxable. */
450 switch (reloc->howto->type)
451 {
452 /* This is the 16-/24-bit absolute branch which could become an
453 8-bit pc-relative branch. */
454 case R_JMP1:
455 case R_JMPL1:
456 /* Get the address of the target of this branch. */
457 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
458
459 /* Get the address of the next instruction (not the reloc). */
460 dot = (input_section->output_section->vma
461 + input_section->output_offset + address);
462
463 /* Adjust for R_JMP1 vs R_JMPL1. */
464 dot += (reloc->howto->type == R_JMP1 ? 1 : 2);
465
466 /* Compute the distance from this insn to the branch target. */
467 gap = value - dot;
468
469 /* If the distance is within -128..+128 inclusive, then we can relax
470 this jump. +128 is valid since the target will move two bytes
471 closer if we do relax this branch. */
472 if ((int) gap >= -128 && (int) gap <= 128)
473 {
474 bfd_byte code;
475
476 if (!bfd_get_section_contents (abfd, input_section, & code,
477 reloc->address, 1))
478 break;
479 code = bfd_get_8 (abfd, & code);
480
481 /* It's possible we may be able to eliminate this branch entirely;
482 if the previous instruction is a branch around this instruction,
483 and there's no label at this instruction, then we can reverse
484 the condition on the previous branch and eliminate this jump.
485
486 original: new:
487 bCC lab1 bCC' lab2
488 jmp lab2
489 lab1: lab1:
490
491 This saves 4 bytes instead of two, and should be relatively
492 common.
493
494 Only perform this optimisation for jumps (code 0x5a) not
495 subroutine calls, as otherwise it could transform:
496
497 mov.w r0,r0
498 beq .L1
499 jsr @_bar
500 .L1: rts
501 _bar: rts
502 into:
503 mov.w r0,r0
504 bne _bar
505 rts
506 _bar: rts
507
508 which changes the call (jsr) into a branch (bne). */
509 if (code == 0x5a
510 && gap <= 126
511 && last_reloc
512 && last_reloc->howto->type == R_PCRBYTE)
513 {
514 bfd_vma last_value;
515 last_value = bfd_coff_reloc16_get_value (last_reloc, link_info,
516 input_section) + 1;
517
518 if (last_value == dot + 2
519 && last_reloc->address + 1 == reloc->address
520 && !h8300_symbol_address_p (abfd, input_section, dot - 2))
521 {
522 reloc->howto = howto_table + 19;
523 last_reloc->howto = howto_table + 18;
524 last_reloc->sym_ptr_ptr = reloc->sym_ptr_ptr;
525 last_reloc->addend = reloc->addend;
526 shrink += 4;
527 bfd_perform_slip (abfd, 4, input_section, address);
528 break;
529 }
530 }
531
532 /* Change the reloc type. */
533 reloc->howto = reloc->howto + 1;
534
535 /* This shrinks this section by two bytes. */
536 shrink += 2;
537 bfd_perform_slip (abfd, 2, input_section, address);
538 }
539 break;
540
541 /* This is the 16-bit pc-relative branch which could become an 8-bit
542 pc-relative branch. */
543 case R_PCRWORD:
544 /* Get the address of the target of this branch, add one to the value
545 because the addend field in PCrel jumps is off by -1. */
546 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section) + 1;
547
548 /* Get the address of the next instruction if we were to relax. */
549 dot = input_section->output_section->vma +
550 input_section->output_offset + address;
551
552 /* Compute the distance from this insn to the branch target. */
553 gap = value - dot;
554
555 /* If the distance is within -128..+128 inclusive, then we can relax
556 this jump. +128 is valid since the target will move two bytes
557 closer if we do relax this branch. */
558 if ((int) gap >= -128 && (int) gap <= 128)
559 {
560 /* Change the reloc type. */
561 reloc->howto = howto_table + 15;
562
563 /* This shrinks this section by two bytes. */
564 shrink += 2;
565 bfd_perform_slip (abfd, 2, input_section, address);
566 }
567 break;
568
569 /* This is a 16-bit absolute address in a mov.b insn, which can
570 become an 8-bit absolute address if it's in the right range. */
571 case R_MOV16B1:
572 /* Get the address of the data referenced by this mov.b insn. */
573 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
574 value = bfd_h8300_pad_address (abfd, value);
575
576 /* If the address is in the top 256 bytes of the address space
577 then we can relax this instruction. */
578 if (value >= 0xffffff00u)
579 {
580 /* Change the reloc type. */
581 reloc->howto = reloc->howto + 1;
582
583 /* This shrinks this section by two bytes. */
584 shrink += 2;
585 bfd_perform_slip (abfd, 2, input_section, address);
586 }
587 break;
588
589 /* Similarly for a 24-bit absolute address in a mov.b. Note that
590 if we can't relax this into an 8-bit absolute, we'll fall through
591 and try to relax it into a 16-bit absolute. */
592 case R_MOV24B1:
593 /* Get the address of the data referenced by this mov.b insn. */
594 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
595 value = bfd_h8300_pad_address (abfd, value);
596
597 if (value >= 0xffffff00u)
598 {
599 /* Change the reloc type. */
600 reloc->howto = reloc->howto + 1;
601
602 /* This shrinks this section by four bytes. */
603 shrink += 4;
604 bfd_perform_slip (abfd, 4, input_section, address);
605
606 /* Done with this reloc. */
607 break;
608 }
609
610 /* FALLTHROUGH and try to turn the 24-/32-bit reloc into a 16-bit
611 reloc. */
612
613 /* This is a 24-/32-bit absolute address in a mov insn, which can
614 become an 16-bit absolute address if it's in the right range. */
615 case R_MOVL1:
616 /* Get the address of the data referenced by this mov insn. */
617 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
618 value = bfd_h8300_pad_address (abfd, value);
619
620 /* If the address is a sign-extended 16-bit value then we can
621 relax this instruction. */
622 if (value <= 0x7fff || value >= 0xffff8000u)
623 {
624 /* Change the reloc type. */
625 reloc->howto = howto_table + 17;
626
627 /* This shrinks this section by two bytes. */
628 shrink += 2;
629 bfd_perform_slip (abfd, 2, input_section, address);
630 }
631 break;
632
633 /* No other reloc types represent relaxing opportunities. */
634 default:
635 break;
636 }
637
638 last_reloc = reloc;
639 last_input_section = input_section;
640 return shrink;
641 }
642
643 /* Handle relocations for the H8/300, including relocs for relaxed
644 instructions.
645
646 FIXME: Not all relocations check for overflow! */
647
648 static void
649 h8300_reloc16_extra_cases (bfd *abfd, struct bfd_link_info *link_info,
650 struct bfd_link_order *link_order, arelent *reloc,
651 bfd_byte *data, unsigned int *src_ptr,
652 unsigned int *dst_ptr)
653 {
654 unsigned int src_address = *src_ptr;
655 unsigned int dst_address = *dst_ptr;
656 asection *input_section = link_order->u.indirect.section;
657 bfd_vma value;
658 bfd_vma dot;
659 int gap, tmp;
660 unsigned char temp_code;
661
662 switch (reloc->howto->type)
663 {
664 /* Generic 8-bit pc-relative relocation. */
665 case R_PCRBYTE:
666 /* Get the address of the target of this branch. */
667 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
668
669 dot = (input_section->output_offset
670 + dst_address
671 + link_order->u.indirect.section->output_section->vma);
672
673 gap = value - dot;
674
675 /* Sanity check. */
676 if (gap < -128 || gap > 126)
677 {
678 if (! ((*link_info->callbacks->reloc_overflow)
679 (link_info, NULL,
680 bfd_asymbol_name (*reloc->sym_ptr_ptr),
681 reloc->howto->name, reloc->addend, input_section->owner,
682 input_section, reloc->address)))
683 abort ();
684 }
685
686 /* Everything looks OK. Apply the relocation and update the
687 src/dst address appropriately. */
688 bfd_put_8 (abfd, gap, data + dst_address);
689 dst_address++;
690 src_address++;
691
692 /* All done. */
693 break;
694
695 /* Generic 16-bit pc-relative relocation. */
696 case R_PCRWORD:
697 /* Get the address of the target of this branch. */
698 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
699
700 /* Get the address of the instruction (not the reloc). */
701 dot = (input_section->output_offset
702 + dst_address
703 + link_order->u.indirect.section->output_section->vma + 1);
704
705 gap = value - dot;
706
707 /* Sanity check. */
708 if (gap > 32766 || gap < -32768)
709 {
710 if (! ((*link_info->callbacks->reloc_overflow)
711 (link_info, NULL,
712 bfd_asymbol_name (*reloc->sym_ptr_ptr),
713 reloc->howto->name, reloc->addend, input_section->owner,
714 input_section, reloc->address)))
715 abort ();
716 }
717
718 /* Everything looks OK. Apply the relocation and update the
719 src/dst address appropriately. */
720 bfd_put_16 (abfd, (bfd_vma) gap, data + dst_address);
721 dst_address += 2;
722 src_address += 2;
723
724 /* All done. */
725 break;
726
727 /* Generic 8-bit absolute relocation. */
728 case R_RELBYTE:
729 /* Get the address of the object referenced by this insn. */
730 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
731
732 bfd_put_8 (abfd, value & 0xff, data + dst_address);
733 dst_address += 1;
734 src_address += 1;
735
736 /* All done. */
737 break;
738
739 /* Various simple 16-bit absolute relocations. */
740 case R_MOV16B1:
741 case R_JMP1:
742 case R_RELWORD:
743 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
744 bfd_put_16 (abfd, value, data + dst_address);
745 dst_address += 2;
746 src_address += 2;
747 break;
748
749 /* Various simple 24-/32-bit absolute relocations. */
750 case R_MOV24B1:
751 case R_MOVL1:
752 case R_RELLONG:
753 /* Get the address of the target of this branch. */
754 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
755 bfd_put_32 (abfd, value, data + dst_address);
756 dst_address += 4;
757 src_address += 4;
758 break;
759
760 /* Another 24-/32-bit absolute relocation. */
761 case R_JMPL1:
762 /* Get the address of the target of this branch. */
763 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
764
765 value = ((value & 0x00ffffff)
766 | (bfd_get_32 (abfd, data + src_address) & 0xff000000));
767 bfd_put_32 (abfd, value, data + dst_address);
768 dst_address += 4;
769 src_address += 4;
770 break;
771
772 /* This is a 24-/32-bit absolute address in one of the following
773 instructions:
774
775 "band", "bclr", "biand", "bild", "bior", "bist", "bixor",
776 "bld", "bnot", "bor", "bset", "bst", "btst", "bxor", "ldc.w",
777 "stc.w" and "mov.[bwl]"
778
779 We may relax this into an 16-bit absolute address if it's in
780 the right range. */
781 case R_MOVL2:
782 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
783 value = bfd_h8300_pad_address (abfd, value);
784
785 /* Sanity check. */
786 if (value <= 0x7fff || value >= 0xffff8000u)
787 {
788 /* Insert the 16-bit value into the proper location. */
789 bfd_put_16 (abfd, value, data + dst_address);
790
791 /* Fix the opcode. For all the instructions that belong to
792 this relaxation, we simply need to turn off bit 0x20 in
793 the previous byte. */
794 data[dst_address - 1] &= ~0x20;
795 dst_address += 2;
796 src_address += 4;
797 }
798 else
799 {
800 if (! ((*link_info->callbacks->reloc_overflow)
801 (link_info, NULL,
802 bfd_asymbol_name (*reloc->sym_ptr_ptr),
803 reloc->howto->name, reloc->addend, input_section->owner,
804 input_section, reloc->address)))
805 abort ();
806 }
807 break;
808
809 /* A 16-bit absolute branch that is now an 8-bit pc-relative branch. */
810 case R_JMP2:
811 /* Get the address of the target of this branch. */
812 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
813
814 /* Get the address of the next instruction. */
815 dot = (input_section->output_offset
816 + dst_address
817 + link_order->u.indirect.section->output_section->vma + 1);
818
819 gap = value - dot;
820
821 /* Sanity check. */
822 if (gap < -128 || gap > 126)
823 {
824 if (! ((*link_info->callbacks->reloc_overflow)
825 (link_info, NULL,
826 bfd_asymbol_name (*reloc->sym_ptr_ptr),
827 reloc->howto->name, reloc->addend, input_section->owner,
828 input_section, reloc->address)))
829 abort ();
830 }
831
832 /* Now fix the instruction itself. */
833 switch (data[dst_address - 1])
834 {
835 case 0x5e:
836 /* jsr -> bsr */
837 bfd_put_8 (abfd, 0x55, data + dst_address - 1);
838 break;
839 case 0x5a:
840 /* jmp -> bra */
841 bfd_put_8 (abfd, 0x40, data + dst_address - 1);
842 break;
843
844 default:
845 abort ();
846 }
847
848 /* Write out the 8-bit value. */
849 bfd_put_8 (abfd, gap, data + dst_address);
850
851 dst_address += 1;
852 src_address += 3;
853
854 break;
855
856 /* A 16-bit pc-relative branch that is now an 8-bit pc-relative branch. */
857 case R_PCRWORD_B:
858 /* Get the address of the target of this branch. */
859 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
860
861 /* Get the address of the instruction (not the reloc). */
862 dot = (input_section->output_offset
863 + dst_address
864 + link_order->u.indirect.section->output_section->vma - 1);
865
866 gap = value - dot;
867
868 /* Sanity check. */
869 if (gap < -128 || gap > 126)
870 {
871 if (! ((*link_info->callbacks->reloc_overflow)
872 (link_info, NULL,
873 bfd_asymbol_name (*reloc->sym_ptr_ptr),
874 reloc->howto->name, reloc->addend, input_section->owner,
875 input_section, reloc->address)))
876 abort ();
877 }
878
879 /* Now fix the instruction. */
880 switch (data[dst_address - 2])
881 {
882 case 0x58:
883 /* bCC:16 -> bCC:8 */
884 /* Get the second byte of the original insn, which contains
885 the condition code. */
886 tmp = data[dst_address - 1];
887
888 /* Compute the fisrt byte of the relaxed instruction. The
889 original sequence 0x58 0xX0 is relaxed to 0x4X, where X
890 represents the condition code. */
891 tmp &= 0xf0;
892 tmp >>= 4;
893 tmp |= 0x40;
894
895 /* Write it. */
896 bfd_put_8 (abfd, tmp, data + dst_address - 2);
897 break;
898
899 case 0x5c:
900 /* bsr:16 -> bsr:8 */
901 bfd_put_8 (abfd, 0x55, data + dst_address - 2);
902 break;
903
904 default:
905 abort ();
906 }
907
908 /* Output the target. */
909 bfd_put_8 (abfd, gap, data + dst_address - 1);
910
911 /* We don't advance dst_address -- the 8-bit reloc is applied at
912 dst_address - 1, so the next insn should begin at dst_address. */
913 src_address += 2;
914
915 break;
916
917 /* Similarly for a 24-bit absolute that is now 8 bits. */
918 case R_JMPL2:
919 /* Get the address of the target of this branch. */
920 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
921
922 /* Get the address of the instruction (not the reloc). */
923 dot = (input_section->output_offset
924 + dst_address
925 + link_order->u.indirect.section->output_section->vma + 2);
926
927 gap = value - dot;
928
929 /* Fix the instruction. */
930 switch (data[src_address])
931 {
932 case 0x5e:
933 /* jsr -> bsr */
934 bfd_put_8 (abfd, 0x55, data + dst_address);
935 break;
936 case 0x5a:
937 /* jmp ->bra */
938 bfd_put_8 (abfd, 0x40, data + dst_address);
939 break;
940 default:
941 abort ();
942 }
943
944 bfd_put_8 (abfd, gap, data + dst_address + 1);
945 dst_address += 2;
946 src_address += 4;
947
948 break;
949
950 /* This is a 16-bit absolute address in one of the following
951 instructions:
952
953 "band", "bclr", "biand", "bild", "bior", "bist", "bixor",
954 "bld", "bnot", "bor", "bset", "bst", "btst", "bxor", and
955 "mov.b"
956
957 We may relax this into an 8-bit absolute address if it's in
958 the right range. */
959 case R_MOV16B2:
960 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
961
962 /* All instructions with R_H8_DIR16B2 start with 0x6a. */
963 if (data[dst_address - 2] != 0x6a)
964 abort ();
965
966 temp_code = data[src_address - 1];
967
968 /* If this is a mov.b instruction, clear the lower nibble, which
969 contains the source/destination register number. */
970 if ((temp_code & 0x10) != 0x10)
971 temp_code &= 0xf0;
972
973 /* Fix up the opcode. */
974 switch (temp_code)
975 {
976 case 0x00:
977 /* This is mov.b @aa:16,Rd. */
978 data[dst_address - 2] = (data[src_address - 1] & 0xf) | 0x20;
979 break;
980 case 0x80:
981 /* This is mov.b Rs,@aa:16. */
982 data[dst_address - 2] = (data[src_address - 1] & 0xf) | 0x30;
983 break;
984 case 0x18:
985 /* This is a bit-maniputation instruction that stores one
986 bit into memory, one of "bclr", "bist", "bnot", "bset",
987 and "bst". */
988 data[dst_address - 2] = 0x7f;
989 break;
990 case 0x10:
991 /* This is a bit-maniputation instruction that loads one bit
992 from memory, one of "band", "biand", "bild", "bior",
993 "bixor", "bld", "bor", "btst", and "bxor". */
994 data[dst_address - 2] = 0x7e;
995 break;
996 default:
997 abort ();
998 }
999
1000 bfd_put_8 (abfd, value & 0xff, data + dst_address - 1);
1001 src_address += 2;
1002 break;
1003
1004 /* This is a 24-bit absolute address in one of the following
1005 instructions:
1006
1007 "band", "bclr", "biand", "bild", "bior", "bist", "bixor",
1008 "bld", "bnot", "bor", "bset", "bst", "btst", "bxor", and
1009 "mov.b"
1010
1011 We may relax this into an 8-bit absolute address if it's in
1012 the right range. */
1013 case R_MOV24B2:
1014 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
1015
1016 /* All instructions with R_MOV24B2 start with 0x6a. */
1017 if (data[dst_address - 2] != 0x6a)
1018 abort ();
1019
1020 temp_code = data[src_address - 1];
1021
1022 /* If this is a mov.b instruction, clear the lower nibble, which
1023 contains the source/destination register number. */
1024 if ((temp_code & 0x30) != 0x30)
1025 temp_code &= 0xf0;
1026
1027 /* Fix up the opcode. */
1028 switch (temp_code)
1029 {
1030 case 0x20:
1031 /* This is mov.b @aa:24/32,Rd. */
1032 data[dst_address - 2] = (data[src_address - 1] & 0xf) | 0x20;
1033 break;
1034 case 0xa0:
1035 /* This is mov.b Rs,@aa:24/32. */
1036 data[dst_address - 2] = (data[src_address - 1] & 0xf) | 0x30;
1037 break;
1038 case 0x38:
1039 /* This is a bit-maniputation instruction that stores one
1040 bit into memory, one of "bclr", "bist", "bnot", "bset",
1041 and "bst". */
1042 data[dst_address - 2] = 0x7f;
1043 break;
1044 case 0x30:
1045 /* This is a bit-maniputation instruction that loads one bit
1046 from memory, one of "band", "biand", "bild", "bior",
1047 "bixor", "bld", "bor", "btst", and "bxor". */
1048 data[dst_address - 2] = 0x7e;
1049 break;
1050 default:
1051 abort ();
1052 }
1053
1054 bfd_put_8 (abfd, value & 0xff, data + dst_address - 1);
1055 src_address += 4;
1056 break;
1057
1058 case R_BCC_INV:
1059 /* Get the address of the target of this branch. */
1060 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
1061
1062 dot = (input_section->output_offset
1063 + dst_address
1064 + link_order->u.indirect.section->output_section->vma) + 1;
1065
1066 gap = value - dot;
1067
1068 /* Sanity check. */
1069 if (gap < -128 || gap > 126)
1070 {
1071 if (! ((*link_info->callbacks->reloc_overflow)
1072 (link_info, NULL,
1073 bfd_asymbol_name (*reloc->sym_ptr_ptr),
1074 reloc->howto->name, reloc->addend, input_section->owner,
1075 input_section, reloc->address)))
1076 abort ();
1077 }
1078
1079 /* Everything looks OK. Fix the condition in the instruction, apply
1080 the relocation, and update the src/dst address appropriately. */
1081
1082 bfd_put_8 (abfd, bfd_get_8 (abfd, data + dst_address - 1) ^ 1,
1083 data + dst_address - 1);
1084 bfd_put_8 (abfd, gap, data + dst_address);
1085 dst_address++;
1086 src_address++;
1087
1088 /* All done. */
1089 break;
1090
1091 case R_JMP_DEL:
1092 src_address += 4;
1093 break;
1094
1095 /* An 8-bit memory indirect instruction (jmp/jsr).
1096
1097 There's several things that need to be done to handle
1098 this relocation.
1099
1100 If this is a reloc against the absolute symbol, then
1101 we should handle it just R_RELBYTE. Likewise if it's
1102 for a symbol with a value ge 0 and le 0xff.
1103
1104 Otherwise it's a jump/call through the function vector,
1105 and the linker is expected to set up the function vector
1106 and put the right value into the jump/call instruction. */
1107 case R_MEM_INDIRECT:
1108 {
1109 /* We need to find the symbol so we can determine it's
1110 address in the function vector table. */
1111 asymbol *symbol;
1112 const char *name;
1113 struct funcvec_hash_table *ftab;
1114 struct funcvec_hash_entry *h;
1115 struct h8300_coff_link_hash_table *htab;
1116 asection *vectors_sec;
1117
1118 if (link_info->hash->creator != abfd->xvec)
1119 {
1120 (*_bfd_error_handler)
1121 (_("cannot handle R_MEM_INDIRECT reloc when using %s output"),
1122 link_info->hash->creator->name);
1123
1124 /* What else can we do? This function doesn't allow return
1125 of an error, and we don't want to call abort as that
1126 indicates an internal error. */
1127 #ifndef EXIT_FAILURE
1128 #define EXIT_FAILURE 1
1129 #endif
1130 xexit (EXIT_FAILURE);
1131 }
1132 htab = h8300_coff_hash_table (link_info);
1133 vectors_sec = htab->vectors_sec;
1134
1135 /* First see if this is a reloc against the absolute symbol
1136 or against a symbol with a nonnegative value <= 0xff. */
1137 symbol = *(reloc->sym_ptr_ptr);
1138 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
1139 if (symbol == bfd_abs_section_ptr->symbol
1140 || value <= 0xff)
1141 {
1142 /* This should be handled in a manner very similar to
1143 R_RELBYTES. If the value is in range, then just slam
1144 the value into the right location. Else trigger a
1145 reloc overflow callback. */
1146 if (value <= 0xff)
1147 {
1148 bfd_put_8 (abfd, value, data + dst_address);
1149 dst_address += 1;
1150 src_address += 1;
1151 }
1152 else
1153 {
1154 if (! ((*link_info->callbacks->reloc_overflow)
1155 (link_info, NULL,
1156 bfd_asymbol_name (*reloc->sym_ptr_ptr),
1157 reloc->howto->name, reloc->addend, input_section->owner,
1158 input_section, reloc->address)))
1159 abort ();
1160 }
1161 break;
1162 }
1163
1164 /* This is a jump/call through a function vector, and we're
1165 expected to create the function vector ourselves.
1166
1167 First look up this symbol in the linker hash table -- we need
1168 the derived linker symbol which holds this symbol's index
1169 in the function vector. */
1170 name = symbol->name;
1171 if (symbol->flags & BSF_LOCAL)
1172 {
1173 char *new_name = bfd_malloc ((bfd_size_type) strlen (name) + 10);
1174
1175 if (new_name == NULL)
1176 abort ();
1177
1178 sprintf (new_name, "%s_%08x", name, symbol->section->id);
1179 name = new_name;
1180 }
1181
1182 ftab = htab->funcvec_hash_table;
1183 h = funcvec_hash_lookup (ftab, name, FALSE, FALSE);
1184
1185 /* This shouldn't ever happen. If it does that means we've got
1186 data corruption of some kind. Aborting seems like a reasonable
1187 thing to do here. */
1188 if (h == NULL || vectors_sec == NULL)
1189 abort ();
1190
1191 /* Place the address of the function vector entry into the
1192 reloc's address. */
1193 bfd_put_8 (abfd,
1194 vectors_sec->output_offset + h->offset,
1195 data + dst_address);
1196
1197 dst_address++;
1198 src_address++;
1199
1200 /* Now create an entry in the function vector itself. */
1201 switch (bfd_get_mach (input_section->owner))
1202 {
1203 case bfd_mach_h8300:
1204 case bfd_mach_h8300hn:
1205 case bfd_mach_h8300sn:
1206 bfd_put_16 (abfd,
1207 bfd_coff_reloc16_get_value (reloc,
1208 link_info,
1209 input_section),
1210 vectors_sec->contents + h->offset);
1211 break;
1212 case bfd_mach_h8300h:
1213 case bfd_mach_h8300s:
1214 bfd_put_32 (abfd,
1215 bfd_coff_reloc16_get_value (reloc,
1216 link_info,
1217 input_section),
1218 vectors_sec->contents + h->offset);
1219 break;
1220 default:
1221 abort ();
1222 }
1223
1224 /* Gross. We've already written the contents of the vector section
1225 before we get here... So we write it again with the new data. */
1226 bfd_set_section_contents (vectors_sec->output_section->owner,
1227 vectors_sec->output_section,
1228 vectors_sec->contents,
1229 (file_ptr) vectors_sec->output_offset,
1230 vectors_sec->size);
1231 break;
1232 }
1233
1234 default:
1235 abort ();
1236 break;
1237
1238 }
1239
1240 *src_ptr = src_address;
1241 *dst_ptr = dst_address;
1242 }
1243
1244 /* Routine for the h8300 linker.
1245
1246 This routine is necessary to handle the special R_MEM_INDIRECT
1247 relocs on the h8300. It's responsible for generating a vectors
1248 section and attaching it to an input bfd as well as sizing
1249 the vectors section. It also creates our vectors hash table.
1250
1251 It uses the generic linker routines to actually add the symbols.
1252 from this BFD to the bfd linker hash table. It may add a few
1253 selected static symbols to the bfd linker hash table. */
1254
1255 static bfd_boolean
1256 h8300_bfd_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
1257 {
1258 asection *sec;
1259 struct funcvec_hash_table *funcvec_hash_table;
1260 bfd_size_type amt;
1261 struct h8300_coff_link_hash_table *htab;
1262
1263 /* Add the symbols using the generic code. */
1264 _bfd_generic_link_add_symbols (abfd, info);
1265
1266 if (info->hash->creator != abfd->xvec)
1267 return TRUE;
1268
1269 htab = h8300_coff_hash_table (info);
1270
1271 /* If we haven't created a vectors section, do so now. */
1272 if (!htab->vectors_sec)
1273 {
1274 flagword flags;
1275
1276 /* Make sure the appropriate flags are set, including SEC_IN_MEMORY. */
1277 flags = (SEC_ALLOC | SEC_LOAD
1278 | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_READONLY);
1279 htab->vectors_sec = bfd_make_section (abfd, ".vectors");
1280
1281 /* If the section wasn't created, or we couldn't set the flags,
1282 quit quickly now, rather than dying a painful death later. */
1283 if (!htab->vectors_sec
1284 || !bfd_set_section_flags (abfd, htab->vectors_sec, flags))
1285 return FALSE;
1286
1287 /* Also create the vector hash table. */
1288 amt = sizeof (struct funcvec_hash_table);
1289 funcvec_hash_table = (struct funcvec_hash_table *) bfd_alloc (abfd, amt);
1290
1291 if (!funcvec_hash_table)
1292 return FALSE;
1293
1294 /* And initialize the funcvec hash table. */
1295 if (!funcvec_hash_table_init (funcvec_hash_table, abfd,
1296 funcvec_hash_newfunc,
1297 sizeof (struct funcvec_hash_entry)))
1298 {
1299 bfd_release (abfd, funcvec_hash_table);
1300 return FALSE;
1301 }
1302
1303 /* Store away a pointer to the funcvec hash table. */
1304 htab->funcvec_hash_table = funcvec_hash_table;
1305 }
1306
1307 /* Load up the function vector hash table. */
1308 funcvec_hash_table = htab->funcvec_hash_table;
1309
1310 /* Now scan the relocs for all the sections in this bfd; create
1311 additional space in the .vectors section as needed. */
1312 for (sec = abfd->sections; sec; sec = sec->next)
1313 {
1314 long reloc_size, reloc_count, i;
1315 asymbol **symbols;
1316 arelent **relocs;
1317
1318 /* Suck in the relocs, symbols & canonicalize them. */
1319 reloc_size = bfd_get_reloc_upper_bound (abfd, sec);
1320 if (reloc_size <= 0)
1321 continue;
1322
1323 relocs = (arelent **) bfd_malloc ((bfd_size_type) reloc_size);
1324 if (!relocs)
1325 return FALSE;
1326
1327 /* The symbols should have been read in by _bfd_generic link_add_symbols
1328 call abovec, so we can cheat and use the pointer to them that was
1329 saved in the above call. */
1330 symbols = _bfd_generic_link_get_symbols(abfd);
1331 reloc_count = bfd_canonicalize_reloc (abfd, sec, relocs, symbols);
1332 if (reloc_count <= 0)
1333 {
1334 free (relocs);
1335 continue;
1336 }
1337
1338 /* Now walk through all the relocations in this section. */
1339 for (i = 0; i < reloc_count; i++)
1340 {
1341 arelent *reloc = relocs[i];
1342 asymbol *symbol = *(reloc->sym_ptr_ptr);
1343 const char *name;
1344
1345 /* We've got an indirect reloc. See if we need to add it
1346 to the function vector table. At this point, we have
1347 to add a new entry for each unique symbol referenced
1348 by an R_MEM_INDIRECT relocation except for a reloc
1349 against the absolute section symbol. */
1350 if (reloc->howto->type == R_MEM_INDIRECT
1351 && symbol != bfd_abs_section_ptr->symbol)
1352
1353 {
1354 struct funcvec_hash_table *ftab;
1355 struct funcvec_hash_entry *h;
1356
1357 name = symbol->name;
1358 if (symbol->flags & BSF_LOCAL)
1359 {
1360 char *new_name;
1361
1362 new_name = bfd_malloc ((bfd_size_type) strlen (name) + 10);
1363 if (new_name == NULL)
1364 abort ();
1365
1366 sprintf (new_name, "%s_%08x", name, symbol->section->id);
1367 name = new_name;
1368 }
1369
1370 /* Look this symbol up in the function vector hash table. */
1371 ftab = htab->funcvec_hash_table;
1372 h = funcvec_hash_lookup (ftab, name, FALSE, FALSE);
1373
1374 /* If this symbol isn't already in the hash table, add
1375 it and bump up the size of the hash table. */
1376 if (h == NULL)
1377 {
1378 h = funcvec_hash_lookup (ftab, name, TRUE, TRUE);
1379 if (h == NULL)
1380 {
1381 free (relocs);
1382 return FALSE;
1383 }
1384
1385 /* Bump the size of the vectors section. Each vector
1386 takes 2 bytes on the h8300 and 4 bytes on the h8300h. */
1387 switch (bfd_get_mach (abfd))
1388 {
1389 case bfd_mach_h8300:
1390 case bfd_mach_h8300hn:
1391 case bfd_mach_h8300sn:
1392 htab->vectors_sec->size += 2;
1393 break;
1394 case bfd_mach_h8300h:
1395 case bfd_mach_h8300s:
1396 htab->vectors_sec->size += 4;
1397 break;
1398 default:
1399 abort ();
1400 }
1401 }
1402 }
1403 }
1404
1405 /* We're done with the relocations, release them. */
1406 free (relocs);
1407 }
1408
1409 /* Now actually allocate some space for the function vector. It's
1410 wasteful to do this more than once, but this is easier. */
1411 sec = htab->vectors_sec;
1412 if (sec->size != 0)
1413 {
1414 /* Free the old contents. */
1415 if (sec->contents)
1416 free (sec->contents);
1417
1418 /* Allocate new contents. */
1419 sec->contents = bfd_malloc (sec->size);
1420 }
1421
1422 return TRUE;
1423 }
1424
1425 #define coff_reloc16_extra_cases h8300_reloc16_extra_cases
1426 #define coff_reloc16_estimate h8300_reloc16_estimate
1427 #define coff_bfd_link_add_symbols h8300_bfd_link_add_symbols
1428 #define coff_bfd_link_hash_table_create h8300_coff_link_hash_table_create
1429
1430 #define COFF_LONG_FILENAMES
1431 #include "coffcode.h"
1432
1433 #undef coff_bfd_get_relocated_section_contents
1434 #undef coff_bfd_relax_section
1435 #define coff_bfd_get_relocated_section_contents \
1436 bfd_coff_reloc16_get_relocated_section_contents
1437 #define coff_bfd_relax_section bfd_coff_reloc16_relax_section
1438
1439 CREATE_BIG_COFF_TARGET_VEC (h8300coff_vec, "coff-h8300", BFD_IS_RELAXABLE, 0, '_', NULL, COFF_SWAP_TABLE)
This page took 0.062844 seconds and 4 git commands to generate.