Add support for h8300hn and h8300sn
[deliverable/binutils-gdb.git] / bfd / coff-h8300.c
1 /* BFD back-end for Renesas H8/300 COFF binaries.
2 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003
4 Free Software Foundation, Inc.
5 Written by Steve Chamberlain, <sac@cygnus.com>.
6
7 This file is part of BFD, the Binary File Descriptor library.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
22
23 #include "bfd.h"
24 #include "sysdep.h"
25 #include "libbfd.h"
26 #include "bfdlink.h"
27 #include "genlink.h"
28 #include "coff/h8300.h"
29 #include "coff/internal.h"
30 #include "libcoff.h"
31 #include "libiberty.h"
32
33 #define COFF_DEFAULT_SECTION_ALIGNMENT_POWER (1)
34
35 /* We derive a hash table from the basic BFD hash table to
36 hold entries in the function vector. Aside from the
37 info stored by the basic hash table, we need the offset
38 of a particular entry within the hash table as well as
39 the offset where we'll add the next entry. */
40
41 struct funcvec_hash_entry
42 {
43 /* The basic hash table entry. */
44 struct bfd_hash_entry root;
45
46 /* The offset within the vectors section where
47 this entry lives. */
48 bfd_vma offset;
49 };
50
51 struct funcvec_hash_table
52 {
53 /* The basic hash table. */
54 struct bfd_hash_table root;
55
56 bfd *abfd;
57
58 /* Offset at which we'll add the next entry. */
59 unsigned int offset;
60 };
61
62 static struct bfd_hash_entry *
63 funcvec_hash_newfunc
64 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
65
66 static bfd_boolean
67 funcvec_hash_table_init
68 PARAMS ((struct funcvec_hash_table *, bfd *,
69 struct bfd_hash_entry *(*) (struct bfd_hash_entry *,
70 struct bfd_hash_table *,
71 const char *)));
72
73 static bfd_reloc_status_type special
74 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
75 static int select_reloc
76 PARAMS ((reloc_howto_type *));
77 static void rtype2howto
78 PARAMS ((arelent *, struct internal_reloc *));
79 static void reloc_processing
80 PARAMS ((arelent *, struct internal_reloc *, asymbol **, bfd *, asection *));
81 static bfd_boolean h8300_symbol_address_p
82 PARAMS ((bfd *, asection *, bfd_vma));
83 static int h8300_reloc16_estimate
84 PARAMS ((bfd *, asection *, arelent *, unsigned int,
85 struct bfd_link_info *));
86 static void h8300_reloc16_extra_cases
87 PARAMS ((bfd *, struct bfd_link_info *, struct bfd_link_order *, arelent *,
88 bfd_byte *, unsigned int *, unsigned int *));
89 static bfd_boolean h8300_bfd_link_add_symbols
90 PARAMS ((bfd *, struct bfd_link_info *));
91
92 /* To lookup a value in the function vector hash table. */
93 #define funcvec_hash_lookup(table, string, create, copy) \
94 ((struct funcvec_hash_entry *) \
95 bfd_hash_lookup (&(table)->root, (string), (create), (copy)))
96
97 /* The derived h8300 COFF linker table. Note it's derived from
98 the generic linker hash table, not the COFF backend linker hash
99 table! We use this to attach additional data structures we
100 need while linking on the h8300. */
101 struct h8300_coff_link_hash_table {
102 /* The main hash table. */
103 struct generic_link_hash_table root;
104
105 /* Section for the vectors table. This gets attached to a
106 random input bfd, we keep it here for easy access. */
107 asection *vectors_sec;
108
109 /* Hash table of the functions we need to enter into the function
110 vector. */
111 struct funcvec_hash_table *funcvec_hash_table;
112 };
113
114 static struct bfd_link_hash_table *h8300_coff_link_hash_table_create
115 PARAMS ((bfd *));
116
117 /* Get the H8/300 COFF linker hash table from a link_info structure. */
118
119 #define h8300_coff_hash_table(p) \
120 ((struct h8300_coff_link_hash_table *) ((coff_hash_table (p))))
121
122 /* Initialize fields within a funcvec hash table entry. Called whenever
123 a new entry is added to the funcvec hash table. */
124
125 static struct bfd_hash_entry *
126 funcvec_hash_newfunc (entry, gen_table, string)
127 struct bfd_hash_entry *entry;
128 struct bfd_hash_table *gen_table;
129 const char *string;
130 {
131 struct funcvec_hash_entry *ret;
132 struct funcvec_hash_table *table;
133
134 ret = (struct funcvec_hash_entry *) entry;
135 table = (struct funcvec_hash_table *) gen_table;
136
137 /* Allocate the structure if it has not already been allocated by a
138 subclass. */
139 if (ret == NULL)
140 ret = ((struct funcvec_hash_entry *)
141 bfd_hash_allocate (gen_table,
142 sizeof (struct funcvec_hash_entry)));
143 if (ret == NULL)
144 return NULL;
145
146 /* Call the allocation method of the superclass. */
147 ret = ((struct funcvec_hash_entry *)
148 bfd_hash_newfunc ((struct bfd_hash_entry *) ret, gen_table, string));
149
150 if (ret == NULL)
151 return NULL;
152
153 /* Note where this entry will reside in the function vector table. */
154 ret->offset = table->offset;
155
156 /* Bump the offset at which we store entries in the function
157 vector. We'd like to bump up the size of the vectors section,
158 but it's not easily available here. */
159 if (bfd_get_mach (table->abfd) == bfd_mach_h8300)
160 table->offset += 2;
161 else if (bfd_get_mach (table->abfd) == bfd_mach_h8300h
162 || bfd_get_mach (table->abfd) == bfd_mach_h8300s)
163 table->offset += 4;
164 else
165 return NULL;
166
167 /* Everything went OK. */
168 return (struct bfd_hash_entry *) ret;
169 }
170
171 /* Initialize the function vector hash table. */
172
173 static bfd_boolean
174 funcvec_hash_table_init (table, abfd, newfunc)
175 struct funcvec_hash_table *table;
176 bfd *abfd;
177 struct bfd_hash_entry *(*newfunc)
178 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *,
179 const char *));
180 {
181 /* Initialize our local fields, then call the generic initialization
182 routine. */
183 table->offset = 0;
184 table->abfd = abfd;
185 return (bfd_hash_table_init (&table->root, newfunc));
186 }
187
188 /* Create the derived linker hash table. We use a derived hash table
189 basically to hold "static" information during an H8/300 coff link
190 without using static variables. */
191
192 static struct bfd_link_hash_table *
193 h8300_coff_link_hash_table_create (abfd)
194 bfd *abfd;
195 {
196 struct h8300_coff_link_hash_table *ret;
197 bfd_size_type amt = sizeof (struct h8300_coff_link_hash_table);
198
199 ret = (struct h8300_coff_link_hash_table *) bfd_malloc (amt);
200 if (ret == NULL)
201 return NULL;
202 if (!_bfd_link_hash_table_init (&ret->root.root, abfd,
203 _bfd_generic_link_hash_newfunc))
204 {
205 free (ret);
206 return NULL;
207 }
208
209 /* Initialize our data. */
210 ret->vectors_sec = NULL;
211 ret->funcvec_hash_table = NULL;
212
213 /* OK. Everything's initialized, return the base pointer. */
214 return &ret->root.root;
215 }
216
217 /* Special handling for H8/300 relocs.
218 We only come here for pcrel stuff and return normally if not an -r link.
219 When doing -r, we can't do any arithmetic for the pcrel stuff, because
220 the code in reloc.c assumes that we can manipulate the targets of
221 the pcrel branches. This isn't so, since the H8/300 can do relaxing,
222 which means that the gap after the instruction may not be enough to
223 contain the offset required for the branch, so we have to use only
224 the addend until the final link. */
225
226 static bfd_reloc_status_type
227 special (abfd, reloc_entry, symbol, data, input_section, output_bfd,
228 error_message)
229 bfd *abfd ATTRIBUTE_UNUSED;
230 arelent *reloc_entry ATTRIBUTE_UNUSED;
231 asymbol *symbol ATTRIBUTE_UNUSED;
232 PTR data ATTRIBUTE_UNUSED;
233 asection *input_section ATTRIBUTE_UNUSED;
234 bfd *output_bfd;
235 char **error_message ATTRIBUTE_UNUSED;
236 {
237 if (output_bfd == (bfd *) NULL)
238 return bfd_reloc_continue;
239
240 /* Adjust the reloc address to that in the output section. */
241 reloc_entry->address += input_section->output_offset;
242 return bfd_reloc_ok;
243 }
244
245 static reloc_howto_type howto_table[] = {
246 HOWTO (R_RELBYTE, 0, 0, 8, FALSE, 0, complain_overflow_bitfield, special, "8", FALSE, 0x000000ff, 0x000000ff, FALSE),
247 HOWTO (R_RELWORD, 0, 1, 16, FALSE, 0, complain_overflow_bitfield, special, "16", FALSE, 0x0000ffff, 0x0000ffff, FALSE),
248 HOWTO (R_RELLONG, 0, 2, 32, FALSE, 0, complain_overflow_bitfield, special, "32", FALSE, 0xffffffff, 0xffffffff, FALSE),
249 HOWTO (R_PCRBYTE, 0, 0, 8, TRUE, 0, complain_overflow_signed, special, "DISP8", FALSE, 0x000000ff, 0x000000ff, TRUE),
250 HOWTO (R_PCRWORD, 0, 1, 16, TRUE, 0, complain_overflow_signed, special, "DISP16", FALSE, 0x0000ffff, 0x0000ffff, TRUE),
251 HOWTO (R_PCRLONG, 0, 2, 32, TRUE, 0, complain_overflow_signed, special, "DISP32", FALSE, 0xffffffff, 0xffffffff, TRUE),
252 HOWTO (R_MOV16B1, 0, 1, 16, FALSE, 0, complain_overflow_bitfield, special, "relaxable mov.b:16", FALSE, 0x0000ffff, 0x0000ffff, FALSE),
253 HOWTO (R_MOV16B2, 0, 1, 8, FALSE, 0, complain_overflow_bitfield, special, "relaxed mov.b:16", FALSE, 0x000000ff, 0x000000ff, FALSE),
254 HOWTO (R_JMP1, 0, 1, 16, FALSE, 0, complain_overflow_bitfield, special, "16/pcrel", FALSE, 0x0000ffff, 0x0000ffff, FALSE),
255 HOWTO (R_JMP2, 0, 0, 8, FALSE, 0, complain_overflow_bitfield, special, "pcrecl/16", FALSE, 0x000000ff, 0x000000ff, FALSE),
256 HOWTO (R_JMPL1, 0, 2, 32, FALSE, 0, complain_overflow_bitfield, special, "24/pcrell", FALSE, 0x00ffffff, 0x00ffffff, FALSE),
257 HOWTO (R_JMPL2, 0, 0, 8, FALSE, 0, complain_overflow_bitfield, special, "pc8/24", FALSE, 0x000000ff, 0x000000ff, FALSE),
258 HOWTO (R_MOV24B1, 0, 1, 32, FALSE, 0, complain_overflow_bitfield, special, "relaxable mov.b:24", FALSE, 0xffffffff, 0xffffffff, FALSE),
259 HOWTO (R_MOV24B2, 0, 1, 8, FALSE, 0, complain_overflow_bitfield, special, "relaxed mov.b:24", FALSE, 0x0000ffff, 0x0000ffff, FALSE),
260
261 /* An indirect reference to a function. This causes the function's address
262 to be added to the function vector in lo-mem and puts the address of
263 the function vector's entry in the jsr instruction. */
264 HOWTO (R_MEM_INDIRECT, 0, 0, 8, FALSE, 0, complain_overflow_bitfield, special, "8/indirect", FALSE, 0x000000ff, 0x000000ff, FALSE),
265
266 /* Internal reloc for relaxing. This is created when a 16bit pc-relative
267 branch is turned into an 8bit pc-relative branch. */
268 HOWTO (R_PCRWORD_B, 0, 0, 8, TRUE, 0, complain_overflow_bitfield, special, "relaxed bCC:16", FALSE, 0x000000ff, 0x000000ff, FALSE),
269
270 HOWTO (R_MOVL1, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,special, "32/24 relaxable move", FALSE, 0xffffffff, 0xffffffff, FALSE),
271
272 HOWTO (R_MOVL2, 0, 1, 16, FALSE, 0, complain_overflow_bitfield, special, "32/24 relaxed move", FALSE, 0x0000ffff, 0x0000ffff, FALSE),
273
274 HOWTO (R_BCC_INV, 0, 0, 8, TRUE, 0, complain_overflow_signed, special, "DISP8 inverted", FALSE, 0x000000ff, 0x000000ff, TRUE),
275
276 HOWTO (R_JMP_DEL, 0, 0, 8, TRUE, 0, complain_overflow_signed, special, "Deleted jump", FALSE, 0x000000ff, 0x000000ff, TRUE),
277 };
278
279 /* Turn a howto into a reloc number. */
280
281 #define SELECT_RELOC(x,howto) \
282 { x.r_type = select_reloc (howto); }
283
284 #define BADMAG(x) (H8300BADMAG (x) && H8300HBADMAG (x) && H8300SBADMAG (x) \
285 && H8300HNBADMAG(x) && H8300SNBADMAG(x))
286 #define H8300 1 /* Customize coffcode.h */
287 #define __A_MAGIC_SET__
288
289 /* Code to swap in the reloc. */
290 #define SWAP_IN_RELOC_OFFSET H_GET_32
291 #define SWAP_OUT_RELOC_OFFSET H_PUT_32
292 #define SWAP_OUT_RELOC_EXTRA(abfd, src, dst) \
293 dst->r_stuff[0] = 'S'; \
294 dst->r_stuff[1] = 'C';
295
296 static int
297 select_reloc (howto)
298 reloc_howto_type *howto;
299 {
300 return howto->type;
301 }
302
303 /* Code to turn a r_type into a howto ptr, uses the above howto table. */
304
305 static void
306 rtype2howto (internal, dst)
307 arelent *internal;
308 struct internal_reloc *dst;
309 {
310 switch (dst->r_type)
311 {
312 case R_RELBYTE:
313 internal->howto = howto_table + 0;
314 break;
315 case R_RELWORD:
316 internal->howto = howto_table + 1;
317 break;
318 case R_RELLONG:
319 internal->howto = howto_table + 2;
320 break;
321 case R_PCRBYTE:
322 internal->howto = howto_table + 3;
323 break;
324 case R_PCRWORD:
325 internal->howto = howto_table + 4;
326 break;
327 case R_PCRLONG:
328 internal->howto = howto_table + 5;
329 break;
330 case R_MOV16B1:
331 internal->howto = howto_table + 6;
332 break;
333 case R_MOV16B2:
334 internal->howto = howto_table + 7;
335 break;
336 case R_JMP1:
337 internal->howto = howto_table + 8;
338 break;
339 case R_JMP2:
340 internal->howto = howto_table + 9;
341 break;
342 case R_JMPL1:
343 internal->howto = howto_table + 10;
344 break;
345 case R_JMPL2:
346 internal->howto = howto_table + 11;
347 break;
348 case R_MOV24B1:
349 internal->howto = howto_table + 12;
350 break;
351 case R_MOV24B2:
352 internal->howto = howto_table + 13;
353 break;
354 case R_MEM_INDIRECT:
355 internal->howto = howto_table + 14;
356 break;
357 case R_PCRWORD_B:
358 internal->howto = howto_table + 15;
359 break;
360 case R_MOVL1:
361 internal->howto = howto_table + 16;
362 break;
363 case R_MOVL2:
364 internal->howto = howto_table + 17;
365 break;
366 case R_BCC_INV:
367 internal->howto = howto_table + 18;
368 break;
369 case R_JMP_DEL:
370 internal->howto = howto_table + 19;
371 break;
372 default:
373 abort ();
374 break;
375 }
376 }
377
378 #define RTYPE2HOWTO(internal, relocentry) rtype2howto (internal, relocentry)
379
380 /* Perform any necessary magic to the addend in a reloc entry. */
381
382 #define CALC_ADDEND(abfd, symbol, ext_reloc, cache_ptr) \
383 cache_ptr->addend = ext_reloc.r_offset;
384
385 #define RELOC_PROCESSING(relent,reloc,symbols,abfd,section) \
386 reloc_processing (relent, reloc, symbols, abfd, section)
387
388 static void
389 reloc_processing (relent, reloc, symbols, abfd, section)
390 arelent *relent;
391 struct internal_reloc *reloc;
392 asymbol **symbols;
393 bfd *abfd;
394 asection *section;
395 {
396 relent->address = reloc->r_vaddr;
397 rtype2howto (relent, reloc);
398
399 if (((int) reloc->r_symndx) > 0)
400 relent->sym_ptr_ptr = symbols + obj_convert (abfd)[reloc->r_symndx];
401 else
402 relent->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
403
404 relent->addend = reloc->r_offset;
405
406 relent->address -= section->vma;
407 #if 0
408 relent->section = 0;
409 #endif
410 }
411
412 static bfd_boolean
413 h8300_symbol_address_p (abfd, input_section, address)
414 bfd *abfd;
415 asection *input_section;
416 bfd_vma address;
417 {
418 asymbol **s;
419
420 s = _bfd_generic_link_get_symbols (abfd);
421 BFD_ASSERT (s != (asymbol **) NULL);
422
423 /* Search all the symbols for one in INPUT_SECTION with
424 address ADDRESS. */
425 while (*s)
426 {
427 asymbol *p = *s;
428
429 if (p->section == input_section
430 && (input_section->output_section->vma
431 + input_section->output_offset
432 + p->value) == address)
433 return TRUE;
434 s++;
435 }
436 return FALSE;
437 }
438
439 /* If RELOC represents a relaxable instruction/reloc, change it into
440 the relaxed reloc, notify the linker that symbol addresses
441 have changed (bfd_perform_slip) and return how much the current
442 section has shrunk by.
443
444 FIXME: Much of this code has knowledge of the ordering of entries
445 in the howto table. This needs to be fixed. */
446
447 static int
448 h8300_reloc16_estimate (abfd, input_section, reloc, shrink, link_info)
449 bfd *abfd;
450 asection *input_section;
451 arelent *reloc;
452 unsigned int shrink;
453 struct bfd_link_info *link_info;
454 {
455 bfd_vma value;
456 bfd_vma dot;
457 bfd_vma gap;
458 static asection *last_input_section = NULL;
459 static arelent *last_reloc = NULL;
460
461 /* The address of the thing to be relocated will have moved back by
462 the size of the shrink - but we don't change reloc->address here,
463 since we need it to know where the relocation lives in the source
464 uncooked section. */
465 bfd_vma address = reloc->address - shrink;
466
467 if (input_section != last_input_section)
468 last_reloc = NULL;
469
470 /* Only examine the relocs which might be relaxable. */
471 switch (reloc->howto->type)
472 {
473 /* This is the 16/24 bit absolute branch which could become an 8 bit
474 pc-relative branch. */
475 case R_JMP1:
476 case R_JMPL1:
477 /* Get the address of the target of this branch. */
478 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
479
480 /* Get the address of the next instruction (not the reloc). */
481 dot = (input_section->output_section->vma
482 + input_section->output_offset + address);
483
484 /* Adjust for R_JMP1 vs R_JMPL1. */
485 dot += (reloc->howto->type == R_JMP1 ? 1 : 2);
486
487 /* Compute the distance from this insn to the branch target. */
488 gap = value - dot;
489
490 /* If the distance is within -128..+128 inclusive, then we can relax
491 this jump. +128 is valid since the target will move two bytes
492 closer if we do relax this branch. */
493 if ((int) gap >= -128 && (int) gap <= 128)
494 {
495 bfd_byte code;
496
497 if (!bfd_get_section_contents (abfd, input_section, & code,
498 reloc->address, 1))
499 break;
500 code = bfd_get_8 (abfd, & code);
501
502 /* It's possible we may be able to eliminate this branch entirely;
503 if the previous instruction is a branch around this instruction,
504 and there's no label at this instruction, then we can reverse
505 the condition on the previous branch and eliminate this jump.
506
507 original: new:
508 bCC lab1 bCC' lab2
509 jmp lab2
510 lab1: lab1:
511
512 This saves 4 bytes instead of two, and should be relatively
513 common.
514
515 Only perform this optimisation for jumps (code 0x5a) not
516 subroutine calls, as otherwise it could transform:
517
518 mov.w r0,r0
519 beq .L1
520 jsr @_bar
521 .L1: rts
522 _bar: rts
523 into:
524 mov.w r0,r0
525 bne _bar
526 rts
527 _bar: rts
528
529 which changes the call (jsr) into a branch (bne). */
530 if (code == 0x5a
531 && gap <= 126
532 && last_reloc
533 && last_reloc->howto->type == R_PCRBYTE)
534 {
535 bfd_vma last_value;
536 last_value = bfd_coff_reloc16_get_value (last_reloc, link_info,
537 input_section) + 1;
538
539 if (last_value == dot + 2
540 && last_reloc->address + 1 == reloc->address
541 && !h8300_symbol_address_p (abfd, input_section, dot - 2))
542 {
543 reloc->howto = howto_table + 19;
544 last_reloc->howto = howto_table + 18;
545 last_reloc->sym_ptr_ptr = reloc->sym_ptr_ptr;
546 last_reloc->addend = reloc->addend;
547 shrink += 4;
548 bfd_perform_slip (abfd, 4, input_section, address);
549 break;
550 }
551 }
552
553 /* Change the reloc type. */
554 reloc->howto = reloc->howto + 1;
555
556 /* This shrinks this section by two bytes. */
557 shrink += 2;
558 bfd_perform_slip (abfd, 2, input_section, address);
559 }
560 break;
561
562 /* This is the 16 bit pc-relative branch which could become an 8 bit
563 pc-relative branch. */
564 case R_PCRWORD:
565 /* Get the address of the target of this branch, add one to the value
566 because the addend field in PCrel jumps is off by -1. */
567 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section) + 1;
568
569 /* Get the address of the next instruction if we were to relax. */
570 dot = input_section->output_section->vma +
571 input_section->output_offset + address;
572
573 /* Compute the distance from this insn to the branch target. */
574 gap = value - dot;
575
576 /* If the distance is within -128..+128 inclusive, then we can relax
577 this jump. +128 is valid since the target will move two bytes
578 closer if we do relax this branch. */
579 if ((int) gap >= -128 && (int) gap <= 128)
580 {
581 /* Change the reloc type. */
582 reloc->howto = howto_table + 15;
583
584 /* This shrinks this section by two bytes. */
585 shrink += 2;
586 bfd_perform_slip (abfd, 2, input_section, address);
587 }
588 break;
589
590 /* This is a 16 bit absolute address in a mov.b insn, which can
591 become an 8 bit absolute address if it's in the right range. */
592 case R_MOV16B1:
593 /* Get the address of the data referenced by this mov.b insn. */
594 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
595
596 /* The address is in 0xff00..0xffff inclusive on the h8300 or
597 0xffff00..0xffffff inclusive on the h8300h, then we can
598 relax this mov.b */
599 if ((bfd_get_mach (abfd) == bfd_mach_h8300
600 && value >= 0xff00
601 && value <= 0xffff)
602 || ((bfd_get_mach (abfd) == bfd_mach_h8300h
603 || bfd_get_mach (abfd) == bfd_mach_h8300s)
604 && value >= 0xffff00
605 && value <= 0xffffff))
606 {
607 /* Change the reloc type. */
608 reloc->howto = reloc->howto + 1;
609
610 /* This shrinks this section by two bytes. */
611 shrink += 2;
612 bfd_perform_slip (abfd, 2, input_section, address);
613 }
614 break;
615
616 /* Similarly for a 24 bit absolute address in a mov.b. Note that
617 if we can't relax this into an 8 bit absolute, we'll fall through
618 and try to relax it into a 16bit absolute. */
619 case R_MOV24B1:
620 /* Get the address of the data referenced by this mov.b insn. */
621 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
622
623 /* The address is in 0xffff00..0xffffff inclusive on the h8300h,
624 then we can relax this mov.b */
625 if ((bfd_get_mach (abfd) == bfd_mach_h8300h
626 || bfd_get_mach (abfd) == bfd_mach_h8300s)
627 && value >= 0xffff00
628 && value <= 0xffffff)
629 {
630 /* Change the reloc type. */
631 reloc->howto = reloc->howto + 1;
632
633 /* This shrinks this section by four bytes. */
634 shrink += 4;
635 bfd_perform_slip (abfd, 4, input_section, address);
636
637 /* Done with this reloc. */
638 break;
639 }
640
641 /* FALLTHROUGH and try to turn the 32/24 bit reloc into a 16 bit
642 reloc. */
643
644 /* This is a 24/32 bit absolute address in a mov insn, which can
645 become an 16 bit absolute address if it's in the right range. */
646 case R_MOVL1:
647 /* Get the address of the data referenced by this mov insn. */
648 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
649
650 /* If this address is in 0x0000..0x7fff inclusive or
651 0xff8000..0xffffff inclusive, then it can be relaxed. */
652 if (value <= 0x7fff || value >= 0xff8000)
653 {
654 /* Change the reloc type. */
655 reloc->howto = howto_table + 17;
656
657 /* This shrinks this section by two bytes. */
658 shrink += 2;
659 bfd_perform_slip (abfd, 2, input_section, address);
660 }
661 break;
662
663 /* No other reloc types represent relaxing opportunities. */
664 default:
665 break;
666 }
667
668 last_reloc = reloc;
669 last_input_section = input_section;
670 return shrink;
671 }
672
673 /* Handle relocations for the H8/300, including relocs for relaxed
674 instructions.
675
676 FIXME: Not all relocations check for overflow! */
677
678 static void
679 h8300_reloc16_extra_cases (abfd, link_info, link_order, reloc, data, src_ptr,
680 dst_ptr)
681 bfd *abfd;
682 struct bfd_link_info *link_info;
683 struct bfd_link_order *link_order;
684 arelent *reloc;
685 bfd_byte *data;
686 unsigned int *src_ptr;
687 unsigned int *dst_ptr;
688 {
689 unsigned int src_address = *src_ptr;
690 unsigned int dst_address = *dst_ptr;
691 asection *input_section = link_order->u.indirect.section;
692 bfd_vma value;
693 bfd_vma dot;
694 int gap, tmp;
695
696 switch (reloc->howto->type)
697 {
698 /* Generic 8bit pc-relative relocation. */
699 case R_PCRBYTE:
700 /* Get the address of the target of this branch. */
701 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
702
703 dot = (link_order->offset
704 + dst_address
705 + link_order->u.indirect.section->output_section->vma);
706
707 gap = value - dot;
708
709 /* Sanity check. */
710 if (gap < -128 || gap > 126)
711 {
712 if (! ((*link_info->callbacks->reloc_overflow)
713 (link_info, bfd_asymbol_name (*reloc->sym_ptr_ptr),
714 reloc->howto->name, reloc->addend, input_section->owner,
715 input_section, reloc->address)))
716 abort ();
717 }
718
719 /* Everything looks OK. Apply the relocation and update the
720 src/dst address appropriately. */
721 bfd_put_8 (abfd, gap, data + dst_address);
722 dst_address++;
723 src_address++;
724
725 /* All done. */
726 break;
727
728 /* Generic 16bit pc-relative relocation. */
729 case R_PCRWORD:
730 /* Get the address of the target of this branch. */
731 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
732
733 /* Get the address of the instruction (not the reloc). */
734 dot = (link_order->offset
735 + dst_address
736 + link_order->u.indirect.section->output_section->vma + 1);
737
738 gap = value - dot;
739
740 /* Sanity check. */
741 if (gap > 32766 || gap < -32768)
742 {
743 if (! ((*link_info->callbacks->reloc_overflow)
744 (link_info, bfd_asymbol_name (*reloc->sym_ptr_ptr),
745 reloc->howto->name, reloc->addend, input_section->owner,
746 input_section, reloc->address)))
747 abort ();
748 }
749
750 /* Everything looks OK. Apply the relocation and update the
751 src/dst address appropriately. */
752 bfd_put_16 (abfd, (bfd_vma) gap, data + dst_address);
753 dst_address += 2;
754 src_address += 2;
755
756 /* All done. */
757 break;
758
759 /* Generic 8bit absolute relocation. */
760 case R_RELBYTE:
761 /* Get the address of the object referenced by this insn. */
762 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
763
764 /* Sanity check. */
765 if (value <= 0xff
766 || (value >= 0x0000ff00 && value <= 0x0000ffff)
767 || (value >= 0x00ffff00 && value <= 0x00ffffff)
768 || (value >= 0xffffff00 && value <= 0xffffffff))
769 {
770 /* Everything looks OK. Apply the relocation and update the
771 src/dst address appropriately. */
772 bfd_put_8 (abfd, value & 0xff, data + dst_address);
773 dst_address += 1;
774 src_address += 1;
775 }
776 else
777 {
778 if (! ((*link_info->callbacks->reloc_overflow)
779 (link_info, bfd_asymbol_name (*reloc->sym_ptr_ptr),
780 reloc->howto->name, reloc->addend, input_section->owner,
781 input_section, reloc->address)))
782 abort ();
783 }
784
785 /* All done. */
786 break;
787
788 /* Various simple 16bit absolute relocations. */
789 case R_MOV16B1:
790 case R_JMP1:
791 case R_RELWORD:
792 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
793 bfd_put_16 (abfd, value, data + dst_address);
794 dst_address += 2;
795 src_address += 2;
796 break;
797
798 /* Various simple 24/32bit absolute relocations. */
799 case R_MOV24B1:
800 case R_MOVL1:
801 case R_RELLONG:
802 /* Get the address of the target of this branch. */
803 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
804 bfd_put_32 (abfd, value, data + dst_address);
805 dst_address += 4;
806 src_address += 4;
807 break;
808
809 /* Another 24/32bit absolute relocation. */
810 case R_JMPL1:
811 /* Get the address of the target of this branch. */
812 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
813
814 value = ((value & 0x00ffffff)
815 | (bfd_get_32 (abfd, data + src_address) & 0xff000000));
816 bfd_put_32 (abfd, value, data + dst_address);
817 dst_address += 4;
818 src_address += 4;
819 break;
820
821 /* A 16bit abolute relocation that was formerlly a 24/32bit
822 absolute relocation. */
823 case R_MOVL2:
824 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
825
826 /* Sanity check. */
827 if (value <= 0x7fff || value >= 0xff8000)
828 {
829 /* Insert the 16bit value into the proper location. */
830 bfd_put_16 (abfd, value, data + dst_address);
831
832 /* Fix the opcode. For all the move insns, we simply
833 need to turn off bit 0x20 in the previous byte. */
834 data[dst_address - 1] &= ~0x20;
835 dst_address += 2;
836 src_address += 4;
837 }
838 else
839 {
840 if (! ((*link_info->callbacks->reloc_overflow)
841 (link_info, bfd_asymbol_name (*reloc->sym_ptr_ptr),
842 reloc->howto->name, reloc->addend, input_section->owner,
843 input_section, reloc->address)))
844 abort ();
845 }
846 break;
847
848 /* A 16bit absolute branch that is now an 8-bit pc-relative branch. */
849 case R_JMP2:
850 /* Get the address of the target of this branch. */
851 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
852
853 /* Get the address of the next instruction. */
854 dot = (link_order->offset
855 + dst_address
856 + link_order->u.indirect.section->output_section->vma + 1);
857
858 gap = value - dot;
859
860 /* Sanity check. */
861 if (gap < -128 || gap > 126)
862 {
863 if (! ((*link_info->callbacks->reloc_overflow)
864 (link_info, bfd_asymbol_name (*reloc->sym_ptr_ptr),
865 reloc->howto->name, reloc->addend, input_section->owner,
866 input_section, reloc->address)))
867 abort ();
868 }
869
870 /* Now fix the instruction itself. */
871 switch (data[dst_address - 1])
872 {
873 case 0x5e:
874 /* jsr -> bsr */
875 bfd_put_8 (abfd, 0x55, data + dst_address - 1);
876 break;
877 case 0x5a:
878 /* jmp ->bra */
879 bfd_put_8 (abfd, 0x40, data + dst_address - 1);
880 break;
881
882 default:
883 abort ();
884 }
885
886 /* Write out the 8bit value. */
887 bfd_put_8 (abfd, gap, data + dst_address);
888
889 dst_address += 1;
890 src_address += 3;
891
892 break;
893
894 /* A 16bit pc-relative branch that is now an 8-bit pc-relative branch. */
895 case R_PCRWORD_B:
896 /* Get the address of the target of this branch. */
897 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
898
899 /* Get the address of the instruction (not the reloc). */
900 dot = (link_order->offset
901 + dst_address
902 + link_order->u.indirect.section->output_section->vma - 1);
903
904 gap = value - dot;
905
906 /* Sanity check. */
907 if (gap < -128 || gap > 126)
908 {
909 if (! ((*link_info->callbacks->reloc_overflow)
910 (link_info, bfd_asymbol_name (*reloc->sym_ptr_ptr),
911 reloc->howto->name, reloc->addend, input_section->owner,
912 input_section, reloc->address)))
913 abort ();
914 }
915
916 /* Now fix the instruction. */
917 switch (data[dst_address - 2])
918 {
919 case 0x58:
920 /* bCC:16 -> bCC:8 */
921 /* Get the condition code from the original insn. */
922 tmp = data[dst_address - 1];
923 tmp &= 0xf0;
924 tmp >>= 4;
925
926 /* Now or in the high nibble of the opcode. */
927 tmp |= 0x40;
928
929 /* Write it. */
930 bfd_put_8 (abfd, tmp, data + dst_address - 2);
931 break;
932
933 case 0x5c:
934 /* bsr:16 -> bsr:8 */
935 bfd_put_8 (abfd, 0x55, data + dst_address - 2);
936 break;
937
938 default:
939 abort ();
940 }
941
942 /* Output the target. */
943 bfd_put_8 (abfd, gap, data + dst_address - 1);
944
945 /* We don't advance dst_address -- the 8bit reloc is applied at
946 dst_address - 1, so the next insn should begin at dst_address. */
947 src_address += 2;
948
949 break;
950
951 /* Similarly for a 24bit absolute that is now 8 bits. */
952 case R_JMPL2:
953 /* Get the address of the target of this branch. */
954 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
955
956 /* Get the address of the instruction (not the reloc). */
957 dot = (link_order->offset
958 + dst_address
959 + link_order->u.indirect.section->output_section->vma + 2);
960
961 gap = value - dot;
962
963 /* Fix the instruction. */
964 switch (data[src_address])
965 {
966 case 0x5e:
967 /* jsr -> bsr */
968 bfd_put_8 (abfd, 0x55, data + dst_address);
969 break;
970 case 0x5a:
971 /* jmp ->bra */
972 bfd_put_8 (abfd, 0x40, data + dst_address);
973 break;
974 default:
975 abort ();
976 }
977
978 bfd_put_8 (abfd, gap, data + dst_address + 1);
979 dst_address += 2;
980 src_address += 4;
981
982 break;
983
984 /* A 16bit absolute mov.b that is now an 8bit absolute mov.b. */
985 case R_MOV16B2:
986 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
987
988 /* Sanity check. */
989 if (data[dst_address - 2] != 0x6a)
990 abort ();
991
992 /* Fix up the opcode. */
993 switch (data[src_address - 1] & 0xf0)
994 {
995 case 0x00:
996 data[dst_address - 2] = (data[src_address - 1] & 0xf) | 0x20;
997 break;
998 case 0x80:
999 data[dst_address - 2] = (data[src_address - 1] & 0xf) | 0x30;
1000 break;
1001 default:
1002 abort ();
1003 }
1004
1005 bfd_put_8 (abfd, value & 0xff, data + dst_address - 1);
1006 src_address += 2;
1007 break;
1008
1009 /* Similarly for a 24bit mov.b */
1010 case R_MOV24B2:
1011 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
1012
1013 /* Sanity check. */
1014 if (data[dst_address - 2] != 0x6a)
1015 abort ();
1016
1017 /* Fix up the opcode. */
1018 switch (data[src_address - 1] & 0xf0)
1019 {
1020 case 0x20:
1021 data[dst_address - 2] = (data[src_address - 1] & 0xf) | 0x20;
1022 break;
1023 case 0xa0:
1024 data[dst_address - 2] = (data[src_address - 1] & 0xf) | 0x30;
1025 break;
1026 default:
1027 abort ();
1028 }
1029
1030 bfd_put_8 (abfd, value & 0xff, data + dst_address - 1);
1031 src_address += 4;
1032 break;
1033
1034 case R_BCC_INV:
1035 /* Get the address of the target of this branch. */
1036 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
1037
1038 dot = (link_order->offset
1039 + dst_address
1040 + link_order->u.indirect.section->output_section->vma) + 1;
1041
1042 gap = value - dot;
1043
1044 /* Sanity check. */
1045 if (gap < -128 || gap > 126)
1046 {
1047 if (! ((*link_info->callbacks->reloc_overflow)
1048 (link_info, bfd_asymbol_name (*reloc->sym_ptr_ptr),
1049 reloc->howto->name, reloc->addend, input_section->owner,
1050 input_section, reloc->address)))
1051 abort ();
1052 }
1053
1054 /* Everything looks OK. Fix the condition in the instruction, apply
1055 the relocation, and update the src/dst address appropriately. */
1056
1057 bfd_put_8 (abfd, bfd_get_8 (abfd, data + dst_address - 1) ^ 1,
1058 data + dst_address - 1);
1059 bfd_put_8 (abfd, gap, data + dst_address);
1060 dst_address++;
1061 src_address++;
1062
1063 /* All done. */
1064 break;
1065
1066 case R_JMP_DEL:
1067 src_address += 4;
1068 break;
1069
1070 /* An 8bit memory indirect instruction (jmp/jsr).
1071
1072 There's several things that need to be done to handle
1073 this relocation.
1074
1075 If this is a reloc against the absolute symbol, then
1076 we should handle it just R_RELBYTE. Likewise if it's
1077 for a symbol with a value ge 0 and le 0xff.
1078
1079 Otherwise it's a jump/call through the function vector,
1080 and the linker is expected to set up the function vector
1081 and put the right value into the jump/call instruction. */
1082 case R_MEM_INDIRECT:
1083 {
1084 /* We need to find the symbol so we can determine it's
1085 address in the function vector table. */
1086 asymbol *symbol;
1087 const char *name;
1088 struct funcvec_hash_table *ftab;
1089 struct funcvec_hash_entry *h;
1090 struct h8300_coff_link_hash_table *htab;
1091 asection *vectors_sec;
1092
1093 if (link_info->hash->creator != abfd->xvec)
1094 {
1095 (*_bfd_error_handler)
1096 (_("cannot handle R_MEM_INDIRECT reloc when using %s output"),
1097 link_info->hash->creator->name);
1098
1099 /* What else can we do? This function doesn't allow return
1100 of an error, and we don't want to call abort as that
1101 indicates an internal error. */
1102 #ifndef EXIT_FAILURE
1103 #define EXIT_FAILURE 1
1104 #endif
1105 xexit (EXIT_FAILURE);
1106 }
1107 htab = h8300_coff_hash_table (link_info);
1108 vectors_sec = htab->vectors_sec;
1109
1110 /* First see if this is a reloc against the absolute symbol
1111 or against a symbol with a nonnegative value <= 0xff. */
1112 symbol = *(reloc->sym_ptr_ptr);
1113 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
1114 if (symbol == bfd_abs_section_ptr->symbol
1115 || value <= 0xff)
1116 {
1117 /* This should be handled in a manner very similar to
1118 R_RELBYTES. If the value is in range, then just slam
1119 the value into the right location. Else trigger a
1120 reloc overflow callback. */
1121 if (value <= 0xff)
1122 {
1123 bfd_put_8 (abfd, value, data + dst_address);
1124 dst_address += 1;
1125 src_address += 1;
1126 }
1127 else
1128 {
1129 if (! ((*link_info->callbacks->reloc_overflow)
1130 (link_info, bfd_asymbol_name (*reloc->sym_ptr_ptr),
1131 reloc->howto->name, reloc->addend, input_section->owner,
1132 input_section, reloc->address)))
1133 abort ();
1134 }
1135 break;
1136 }
1137
1138 /* This is a jump/call through a function vector, and we're
1139 expected to create the function vector ourselves.
1140
1141 First look up this symbol in the linker hash table -- we need
1142 the derived linker symbol which holds this symbol's index
1143 in the function vector. */
1144 name = symbol->name;
1145 if (symbol->flags & BSF_LOCAL)
1146 {
1147 char *new_name = bfd_malloc ((bfd_size_type) strlen (name) + 9);
1148 if (new_name == NULL)
1149 abort ();
1150
1151 strcpy (new_name, name);
1152 sprintf (new_name + strlen (name), "_%08x",
1153 (int) symbol->section);
1154 name = new_name;
1155 }
1156
1157 ftab = htab->funcvec_hash_table;
1158 h = funcvec_hash_lookup (ftab, name, FALSE, FALSE);
1159
1160 /* This shouldn't ever happen. If it does that means we've got
1161 data corruption of some kind. Aborting seems like a reasonable
1162 thing to do here. */
1163 if (h == NULL || vectors_sec == NULL)
1164 abort ();
1165
1166 /* Place the address of the function vector entry into the
1167 reloc's address. */
1168 bfd_put_8 (abfd,
1169 vectors_sec->output_offset + h->offset,
1170 data + dst_address);
1171
1172 dst_address++;
1173 src_address++;
1174
1175 /* Now create an entry in the function vector itself. */
1176 if (bfd_get_mach (input_section->owner) == bfd_mach_h8300)
1177 bfd_put_16 (abfd,
1178 bfd_coff_reloc16_get_value (reloc,
1179 link_info,
1180 input_section),
1181 vectors_sec->contents + h->offset);
1182 else if (bfd_get_mach (input_section->owner) == bfd_mach_h8300h
1183 || bfd_get_mach (input_section->owner) == bfd_mach_h8300s)
1184 bfd_put_32 (abfd,
1185 bfd_coff_reloc16_get_value (reloc,
1186 link_info,
1187 input_section),
1188 vectors_sec->contents + h->offset);
1189 else
1190 abort ();
1191
1192 /* Gross. We've already written the contents of the vector section
1193 before we get here... So we write it again with the new data. */
1194 bfd_set_section_contents (vectors_sec->output_section->owner,
1195 vectors_sec->output_section,
1196 vectors_sec->contents,
1197 (file_ptr) vectors_sec->output_offset,
1198 vectors_sec->_raw_size);
1199 break;
1200 }
1201
1202 default:
1203 abort ();
1204 break;
1205
1206 }
1207
1208 *src_ptr = src_address;
1209 *dst_ptr = dst_address;
1210 }
1211
1212 /* Routine for the h8300 linker.
1213
1214 This routine is necessary to handle the special R_MEM_INDIRECT
1215 relocs on the h8300. It's responsible for generating a vectors
1216 section and attaching it to an input bfd as well as sizing
1217 the vectors section. It also creates our vectors hash table.
1218
1219 It uses the generic linker routines to actually add the symbols.
1220 from this BFD to the bfd linker hash table. It may add a few
1221 selected static symbols to the bfd linker hash table. */
1222
1223 static bfd_boolean
1224 h8300_bfd_link_add_symbols (abfd, info)
1225 bfd *abfd;
1226 struct bfd_link_info *info;
1227 {
1228 asection *sec;
1229 struct funcvec_hash_table *funcvec_hash_table;
1230 bfd_size_type amt;
1231 struct h8300_coff_link_hash_table *htab;
1232
1233 /* Add the symbols using the generic code. */
1234 _bfd_generic_link_add_symbols (abfd, info);
1235
1236 if (info->hash->creator != abfd->xvec)
1237 return TRUE;
1238
1239 htab = h8300_coff_hash_table (info);
1240
1241 /* If we haven't created a vectors section, do so now. */
1242 if (!htab->vectors_sec)
1243 {
1244 flagword flags;
1245
1246 /* Make sure the appropriate flags are set, including SEC_IN_MEMORY. */
1247 flags = (SEC_ALLOC | SEC_LOAD
1248 | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_READONLY);
1249 htab->vectors_sec = bfd_make_section (abfd, ".vectors");
1250
1251 /* If the section wasn't created, or we couldn't set the flags,
1252 quit quickly now, rather than dying a painful death later. */
1253 if (!htab->vectors_sec
1254 || !bfd_set_section_flags (abfd, htab->vectors_sec, flags))
1255 return FALSE;
1256
1257 /* Also create the vector hash table. */
1258 amt = sizeof (struct funcvec_hash_table);
1259 funcvec_hash_table = (struct funcvec_hash_table *) bfd_alloc (abfd, amt);
1260
1261 if (!funcvec_hash_table)
1262 return FALSE;
1263
1264 /* And initialize the funcvec hash table. */
1265 if (!funcvec_hash_table_init (funcvec_hash_table, abfd,
1266 funcvec_hash_newfunc))
1267 {
1268 bfd_release (abfd, funcvec_hash_table);
1269 return FALSE;
1270 }
1271
1272 /* Store away a pointer to the funcvec hash table. */
1273 htab->funcvec_hash_table = funcvec_hash_table;
1274 }
1275
1276 /* Load up the function vector hash table. */
1277 funcvec_hash_table = htab->funcvec_hash_table;
1278
1279 /* Now scan the relocs for all the sections in this bfd; create
1280 additional space in the .vectors section as needed. */
1281 for (sec = abfd->sections; sec; sec = sec->next)
1282 {
1283 long reloc_size, reloc_count, i;
1284 asymbol **symbols;
1285 arelent **relocs;
1286
1287 /* Suck in the relocs, symbols & canonicalize them. */
1288 reloc_size = bfd_get_reloc_upper_bound (abfd, sec);
1289 if (reloc_size <= 0)
1290 continue;
1291
1292 relocs = (arelent **) bfd_malloc ((bfd_size_type) reloc_size);
1293 if (!relocs)
1294 return FALSE;
1295
1296 /* The symbols should have been read in by _bfd_generic link_add_symbols
1297 call abovec, so we can cheat and use the pointer to them that was
1298 saved in the above call. */
1299 symbols = _bfd_generic_link_get_symbols(abfd);
1300 reloc_count = bfd_canonicalize_reloc (abfd, sec, relocs, symbols);
1301 if (reloc_count <= 0)
1302 {
1303 free (relocs);
1304 continue;
1305 }
1306
1307 /* Now walk through all the relocations in this section. */
1308 for (i = 0; i < reloc_count; i++)
1309 {
1310 arelent *reloc = relocs[i];
1311 asymbol *symbol = *(reloc->sym_ptr_ptr);
1312 const char *name;
1313
1314 /* We've got an indirect reloc. See if we need to add it
1315 to the function vector table. At this point, we have
1316 to add a new entry for each unique symbol referenced
1317 by an R_MEM_INDIRECT relocation except for a reloc
1318 against the absolute section symbol. */
1319 if (reloc->howto->type == R_MEM_INDIRECT
1320 && symbol != bfd_abs_section_ptr->symbol)
1321
1322 {
1323 struct funcvec_hash_table *ftab;
1324 struct funcvec_hash_entry *h;
1325
1326 name = symbol->name;
1327 if (symbol->flags & BSF_LOCAL)
1328 {
1329 char *new_name;
1330
1331 new_name = bfd_malloc ((bfd_size_type) strlen (name) + 9);
1332 if (new_name == NULL)
1333 abort ();
1334
1335 strcpy (new_name, name);
1336 sprintf (new_name + strlen (name), "_%08x",
1337 (int) symbol->section);
1338 name = new_name;
1339 }
1340
1341 /* Look this symbol up in the function vector hash table. */
1342 ftab = htab->funcvec_hash_table;
1343 h = funcvec_hash_lookup (ftab, name, FALSE, FALSE);
1344
1345 /* If this symbol isn't already in the hash table, add
1346 it and bump up the size of the hash table. */
1347 if (h == NULL)
1348 {
1349 h = funcvec_hash_lookup (ftab, name, TRUE, TRUE);
1350 if (h == NULL)
1351 {
1352 free (relocs);
1353 return FALSE;
1354 }
1355
1356 /* Bump the size of the vectors section. Each vector
1357 takes 2 bytes on the h8300 and 4 bytes on the h8300h. */
1358 if (bfd_get_mach (abfd) == bfd_mach_h8300)
1359 htab->vectors_sec->_raw_size += 2;
1360 else if (bfd_get_mach (abfd) == bfd_mach_h8300h
1361 || bfd_get_mach (abfd) == bfd_mach_h8300s)
1362 htab->vectors_sec->_raw_size += 4;
1363 }
1364 }
1365 }
1366
1367 /* We're done with the relocations, release them. */
1368 free (relocs);
1369 }
1370
1371 /* Now actually allocate some space for the function vector. It's
1372 wasteful to do this more than once, but this is easier. */
1373 sec = htab->vectors_sec;
1374 if (sec->_raw_size != 0)
1375 {
1376 /* Free the old contents. */
1377 if (sec->contents)
1378 free (sec->contents);
1379
1380 /* Allocate new contents. */
1381 sec->contents = bfd_malloc (sec->_raw_size);
1382 }
1383
1384 return TRUE;
1385 }
1386
1387 #define coff_reloc16_extra_cases h8300_reloc16_extra_cases
1388 #define coff_reloc16_estimate h8300_reloc16_estimate
1389 #define coff_bfd_link_add_symbols h8300_bfd_link_add_symbols
1390 #define coff_bfd_link_hash_table_create h8300_coff_link_hash_table_create
1391
1392 #define COFF_LONG_FILENAMES
1393 #include "coffcode.h"
1394
1395 #undef coff_bfd_get_relocated_section_contents
1396 #undef coff_bfd_relax_section
1397 #define coff_bfd_get_relocated_section_contents \
1398 bfd_coff_reloc16_get_relocated_section_contents
1399 #define coff_bfd_relax_section bfd_coff_reloc16_relax_section
1400
1401 CREATE_BIG_COFF_TARGET_VEC (h8300coff_vec, "coff-h8300", BFD_IS_RELAXABLE, 0, '_', NULL)
This page took 0.06809 seconds and 4 git commands to generate.