e1a269f91cb3cd04f66bf3a7e82a2046be65aa84
[deliverable/binutils-gdb.git] / bfd / coff-mips.c
1 /* BFD back-end for MIPS Extended-Coff files.
2 Copyright 1990, 1991, 1992, 1993, 1994 Free Software Foundation, Inc.
3 Original version by Per Bothner.
4 Full support added by Ian Lance Taylor, ian@cygnus.com.
5
6 This file is part of BFD, the Binary File Descriptor library.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
21
22 #include "bfd.h"
23 #include "sysdep.h"
24 #include "bfdlink.h"
25 #include "libbfd.h"
26 #include "coff/internal.h"
27 #include "coff/sym.h"
28 #include "coff/symconst.h"
29 #include "coff/ecoff.h"
30 #include "coff/mips.h"
31 #include "libcoff.h"
32 #include "libecoff.h"
33 \f
34 /* Prototypes for static functions. */
35
36 static boolean mips_ecoff_bad_format_hook PARAMS ((bfd *abfd, PTR filehdr));
37 static void mips_ecoff_swap_reloc_in PARAMS ((bfd *, PTR,
38 struct internal_reloc *));
39 static void mips_ecoff_swap_reloc_out PARAMS ((bfd *,
40 const struct internal_reloc *,
41 PTR));
42 static void mips_adjust_reloc_in PARAMS ((bfd *,
43 const struct internal_reloc *,
44 arelent *));
45 static void mips_adjust_reloc_out PARAMS ((bfd *, const arelent *,
46 struct internal_reloc *));
47 static bfd_reloc_status_type mips_generic_reloc PARAMS ((bfd *abfd,
48 arelent *reloc,
49 asymbol *symbol,
50 PTR data,
51 asection *section,
52 bfd *output_bfd,
53 char **error));
54 static bfd_reloc_status_type mips_refhi_reloc PARAMS ((bfd *abfd,
55 arelent *reloc,
56 asymbol *symbol,
57 PTR data,
58 asection *section,
59 bfd *output_bfd,
60 char **error));
61 static bfd_reloc_status_type mips_reflo_reloc PARAMS ((bfd *abfd,
62 arelent *reloc,
63 asymbol *symbol,
64 PTR data,
65 asection *section,
66 bfd *output_bfd,
67 char **error));
68 static bfd_reloc_status_type mips_gprel_reloc PARAMS ((bfd *abfd,
69 arelent *reloc,
70 asymbol *symbol,
71 PTR data,
72 asection *section,
73 bfd *output_bfd,
74 char **error));
75 static bfd_reloc_status_type mips_relhi_reloc PARAMS ((bfd *abfd,
76 arelent *reloc,
77 asymbol *symbol,
78 PTR data,
79 asection *section,
80 bfd *output_bfd,
81 char **error));
82 static bfd_reloc_status_type mips_rello_reloc PARAMS ((bfd *abfd,
83 arelent *reloc,
84 asymbol *symbol,
85 PTR data,
86 asection *section,
87 bfd *output_bfd,
88 char **error));
89 static bfd_reloc_status_type mips_switch_reloc PARAMS ((bfd *abfd,
90 arelent *reloc,
91 asymbol *symbol,
92 PTR data,
93 asection *section,
94 bfd *output_bfd,
95 char **error));
96 static void mips_relocate_hi PARAMS ((struct internal_reloc *refhi,
97 struct internal_reloc *reflo,
98 bfd *input_bfd,
99 asection *input_section,
100 bfd_byte *contents,
101 size_t adjust,
102 bfd_vma relocation,
103 boolean pcrel));
104 static boolean mips_relocate_section PARAMS ((bfd *, struct bfd_link_info *,
105 bfd *, asection *,
106 bfd_byte *, PTR));
107 static boolean mips_read_relocs PARAMS ((bfd *, asection *));
108 static boolean mips_relax_section PARAMS ((bfd *, asection *,
109 struct bfd_link_info *,
110 boolean *));
111 static boolean mips_relax_pcrel16 PARAMS ((struct bfd_link_info *, bfd *,
112 asection *,
113 struct ecoff_link_hash_entry *,
114 bfd_byte *, bfd_vma));
115 \f
116 /* ECOFF has COFF sections, but the debugging information is stored in
117 a completely different format. ECOFF targets use some of the
118 swapping routines from coffswap.h, and some of the generic COFF
119 routines in coffgen.c, but, unlike the real COFF targets, do not
120 use coffcode.h itself.
121
122 Get the generic COFF swapping routines, except for the reloc,
123 symbol, and lineno ones. Give them ECOFF names. */
124 #define MIPSECOFF
125 #define NO_COFF_RELOCS
126 #define NO_COFF_SYMBOLS
127 #define NO_COFF_LINENOS
128 #define coff_swap_filehdr_in mips_ecoff_swap_filehdr_in
129 #define coff_swap_filehdr_out mips_ecoff_swap_filehdr_out
130 #define coff_swap_aouthdr_in mips_ecoff_swap_aouthdr_in
131 #define coff_swap_aouthdr_out mips_ecoff_swap_aouthdr_out
132 #define coff_swap_scnhdr_in mips_ecoff_swap_scnhdr_in
133 #define coff_swap_scnhdr_out mips_ecoff_swap_scnhdr_out
134 #include "coffswap.h"
135
136 /* Get the ECOFF swapping routines. */
137 #define ECOFF_32
138 #include "ecoffswap.h"
139 \f
140 /* How to process the various relocs types. */
141
142 static reloc_howto_type mips_howto_table[] =
143 {
144 /* Reloc type 0 is ignored. The reloc reading code ensures that
145 this is a reference to the .abs section, which will cause
146 bfd_perform_relocation to do nothing. */
147 HOWTO (MIPS_R_IGNORE, /* type */
148 0, /* rightshift */
149 0, /* size (0 = byte, 1 = short, 2 = long) */
150 8, /* bitsize */
151 false, /* pc_relative */
152 0, /* bitpos */
153 complain_overflow_dont, /* complain_on_overflow */
154 0, /* special_function */
155 "IGNORE", /* name */
156 false, /* partial_inplace */
157 0, /* src_mask */
158 0, /* dst_mask */
159 false), /* pcrel_offset */
160
161 /* A 16 bit reference to a symbol, normally from a data section. */
162 HOWTO (MIPS_R_REFHALF, /* type */
163 0, /* rightshift */
164 1, /* size (0 = byte, 1 = short, 2 = long) */
165 16, /* bitsize */
166 false, /* pc_relative */
167 0, /* bitpos */
168 complain_overflow_bitfield, /* complain_on_overflow */
169 mips_generic_reloc, /* special_function */
170 "REFHALF", /* name */
171 true, /* partial_inplace */
172 0xffff, /* src_mask */
173 0xffff, /* dst_mask */
174 false), /* pcrel_offset */
175
176 /* A 32 bit reference to a symbol, normally from a data section. */
177 HOWTO (MIPS_R_REFWORD, /* type */
178 0, /* rightshift */
179 2, /* size (0 = byte, 1 = short, 2 = long) */
180 32, /* bitsize */
181 false, /* pc_relative */
182 0, /* bitpos */
183 complain_overflow_bitfield, /* complain_on_overflow */
184 mips_generic_reloc, /* special_function */
185 "REFWORD", /* name */
186 true, /* partial_inplace */
187 0xffffffff, /* src_mask */
188 0xffffffff, /* dst_mask */
189 false), /* pcrel_offset */
190
191 /* A 26 bit absolute jump address. */
192 HOWTO (MIPS_R_JMPADDR, /* type */
193 2, /* rightshift */
194 2, /* size (0 = byte, 1 = short, 2 = long) */
195 26, /* bitsize */
196 false, /* pc_relative */
197 0, /* bitpos */
198 complain_overflow_dont, /* complain_on_overflow */
199 /* This needs complex overflow
200 detection, because the upper four
201 bits must match the PC. */
202 mips_generic_reloc, /* special_function */
203 "JMPADDR", /* name */
204 true, /* partial_inplace */
205 0x3ffffff, /* src_mask */
206 0x3ffffff, /* dst_mask */
207 false), /* pcrel_offset */
208
209 /* The high 16 bits of a symbol value. Handled by the function
210 mips_refhi_reloc. */
211 HOWTO (MIPS_R_REFHI, /* type */
212 16, /* rightshift */
213 2, /* size (0 = byte, 1 = short, 2 = long) */
214 16, /* bitsize */
215 false, /* pc_relative */
216 0, /* bitpos */
217 complain_overflow_bitfield, /* complain_on_overflow */
218 mips_refhi_reloc, /* special_function */
219 "REFHI", /* name */
220 true, /* partial_inplace */
221 0xffff, /* src_mask */
222 0xffff, /* dst_mask */
223 false), /* pcrel_offset */
224
225 /* The low 16 bits of a symbol value. */
226 HOWTO (MIPS_R_REFLO, /* type */
227 0, /* rightshift */
228 2, /* size (0 = byte, 1 = short, 2 = long) */
229 16, /* bitsize */
230 false, /* pc_relative */
231 0, /* bitpos */
232 complain_overflow_dont, /* complain_on_overflow */
233 mips_reflo_reloc, /* special_function */
234 "REFLO", /* name */
235 true, /* partial_inplace */
236 0xffff, /* src_mask */
237 0xffff, /* dst_mask */
238 false), /* pcrel_offset */
239
240 /* A reference to an offset from the gp register. Handled by the
241 function mips_gprel_reloc. */
242 HOWTO (MIPS_R_GPREL, /* type */
243 0, /* rightshift */
244 2, /* size (0 = byte, 1 = short, 2 = long) */
245 16, /* bitsize */
246 false, /* pc_relative */
247 0, /* bitpos */
248 complain_overflow_signed, /* complain_on_overflow */
249 mips_gprel_reloc, /* special_function */
250 "GPREL", /* name */
251 true, /* partial_inplace */
252 0xffff, /* src_mask */
253 0xffff, /* dst_mask */
254 false), /* pcrel_offset */
255
256 /* A reference to a literal using an offset from the gp register.
257 Handled by the function mips_gprel_reloc. */
258 HOWTO (MIPS_R_LITERAL, /* type */
259 0, /* rightshift */
260 2, /* size (0 = byte, 1 = short, 2 = long) */
261 16, /* bitsize */
262 false, /* pc_relative */
263 0, /* bitpos */
264 complain_overflow_signed, /* complain_on_overflow */
265 mips_gprel_reloc, /* special_function */
266 "LITERAL", /* name */
267 true, /* partial_inplace */
268 0xffff, /* src_mask */
269 0xffff, /* dst_mask */
270 false), /* pcrel_offset */
271
272 { 8 },
273 { 9 },
274 { 10 },
275 { 11 },
276
277 /* This reloc is a Cygnus extension used when generating position
278 independent code for embedded systems. It represents a 16 bit PC
279 relative reloc rightshifted twice as used in the MIPS branch
280 instructions. */
281 HOWTO (MIPS_R_PCREL16, /* type */
282 2, /* rightshift */
283 2, /* size (0 = byte, 1 = short, 2 = long) */
284 16, /* bitsize */
285 true, /* pc_relative */
286 0, /* bitpos */
287 complain_overflow_signed, /* complain_on_overflow */
288 mips_generic_reloc, /* special_function */
289 "PCREL16", /* name */
290 true, /* partial_inplace */
291 0xffff, /* src_mask */
292 0xffff, /* dst_mask */
293 true), /* pcrel_offset */
294
295 /* This reloc is a Cygnus extension used when generating position
296 independent code for embedded systems. It represents the high 16
297 bits of a PC relative reloc. The next reloc must be
298 MIPS_R_RELLO, and the addend is formed from the addends of the
299 two instructions, just as in MIPS_R_REFHI and MIPS_R_REFLO. The
300 final value is actually PC relative to the location of the
301 MIPS_R_RELLO reloc, not the MIPS_R_RELHI reloc. */
302 HOWTO (MIPS_R_RELHI, /* type */
303 16, /* rightshift */
304 2, /* size (0 = byte, 1 = short, 2 = long) */
305 16, /* bitsize */
306 true, /* pc_relative */
307 0, /* bitpos */
308 complain_overflow_bitfield, /* complain_on_overflow */
309 mips_relhi_reloc, /* special_function */
310 "RELHI", /* name */
311 true, /* partial_inplace */
312 0xffff, /* src_mask */
313 0xffff, /* dst_mask */
314 true), /* pcrel_offset */
315
316 /* This reloc is a Cygnus extension used when generating position
317 independent code for embedded systems. It represents the low 16
318 bits of a PC relative reloc. */
319 HOWTO (MIPS_R_RELLO, /* type */
320 0, /* rightshift */
321 2, /* size (0 = byte, 1 = short, 2 = long) */
322 16, /* bitsize */
323 true, /* pc_relative */
324 0, /* bitpos */
325 complain_overflow_dont, /* complain_on_overflow */
326 mips_rello_reloc, /* special_function */
327 "RELLO", /* name */
328 true, /* partial_inplace */
329 0xffff, /* src_mask */
330 0xffff, /* dst_mask */
331 true), /* pcrel_offset */
332
333 { 15 },
334 { 16 },
335 { 17 },
336 { 18 },
337 { 19 },
338 { 20 },
339 { 21 },
340
341 /* This reloc is a Cygnus extension used when generating position
342 independent code for embedded systems. It represents an entry in
343 a switch table, which is the difference between two symbols in
344 the .text section. The symndx is actually the offset from the
345 reloc address to the subtrahend. See include/coff/mips.h for
346 more details. */
347 HOWTO (MIPS_R_SWITCH, /* type */
348 0, /* rightshift */
349 2, /* size (0 = byte, 1 = short, 2 = long) */
350 32, /* bitsize */
351 true, /* pc_relative */
352 0, /* bitpos */
353 complain_overflow_dont, /* complain_on_overflow */
354 mips_switch_reloc, /* special_function */
355 "SWITCH", /* name */
356 true, /* partial_inplace */
357 0xffffffff, /* src_mask */
358 0xffffffff, /* dst_mask */
359 true) /* pcrel_offset */
360 };
361
362 #define MIPS_HOWTO_COUNT \
363 (sizeof mips_howto_table / sizeof mips_howto_table[0])
364
365 /* When the linker is doing relaxing, it may change a external PCREL16
366 reloc. This typically represents an instruction like
367 bal foo
368 We change it to
369 .set noreorder
370 bal $L1
371 lui $at,%hi(foo - $L1)
372 $L1:
373 addiu $at,%lo(foo - $L1)
374 addu $at,$at,$31
375 jalr $at
376 PCREL16_EXPANSION_ADJUSTMENT is the number of bytes this changes the
377 instruction by. */
378
379 #define PCREL16_EXPANSION_ADJUSTMENT (4 * 4)
380 \f
381 /* See whether the magic number matches. */
382
383 static boolean
384 mips_ecoff_bad_format_hook (abfd, filehdr)
385 bfd *abfd;
386 PTR filehdr;
387 {
388 struct internal_filehdr *internal_f = (struct internal_filehdr *) filehdr;
389
390 switch (internal_f->f_magic)
391 {
392 case MIPS_MAGIC_1:
393 /* I don't know what endianness this implies. */
394 return true;
395
396 case MIPS_MAGIC_BIG:
397 case MIPS_MAGIC_BIG2:
398 case MIPS_MAGIC_BIG3:
399 return abfd->xvec->byteorder_big_p;
400
401 case MIPS_MAGIC_LITTLE:
402 case MIPS_MAGIC_LITTLE2:
403 case MIPS_MAGIC_LITTLE3:
404 return abfd->xvec->byteorder_big_p == false;
405
406 default:
407 return false;
408 }
409 }
410 \f
411 /* Reloc handling. MIPS ECOFF relocs are packed into 8 bytes in
412 external form. They use a bit which indicates whether the symbol
413 is external. */
414
415 /* Swap a reloc in. */
416
417 static void
418 mips_ecoff_swap_reloc_in (abfd, ext_ptr, intern)
419 bfd *abfd;
420 PTR ext_ptr;
421 struct internal_reloc *intern;
422 {
423 const RELOC *ext = (RELOC *) ext_ptr;
424
425 intern->r_vaddr = bfd_h_get_32 (abfd, (bfd_byte *) ext->r_vaddr);
426 if (abfd->xvec->header_byteorder_big_p != false)
427 {
428 intern->r_symndx = (((int) ext->r_bits[0]
429 << RELOC_BITS0_SYMNDX_SH_LEFT_BIG)
430 | ((int) ext->r_bits[1]
431 << RELOC_BITS1_SYMNDX_SH_LEFT_BIG)
432 | ((int) ext->r_bits[2]
433 << RELOC_BITS2_SYMNDX_SH_LEFT_BIG));
434 intern->r_type = ((ext->r_bits[3] & RELOC_BITS3_TYPE_BIG)
435 >> RELOC_BITS3_TYPE_SH_BIG);
436 intern->r_extern = (ext->r_bits[3] & RELOC_BITS3_EXTERN_BIG) != 0;
437 }
438 else
439 {
440 intern->r_symndx = (((int) ext->r_bits[0]
441 << RELOC_BITS0_SYMNDX_SH_LEFT_LITTLE)
442 | ((int) ext->r_bits[1]
443 << RELOC_BITS1_SYMNDX_SH_LEFT_LITTLE)
444 | ((int) ext->r_bits[2]
445 << RELOC_BITS2_SYMNDX_SH_LEFT_LITTLE));
446 intern->r_type = (((ext->r_bits[3] & RELOC_BITS3_TYPE_LITTLE)
447 >> RELOC_BITS3_TYPE_SH_LITTLE)
448 | ((ext->r_bits[3] & RELOC_BITS3_TYPEHI_LITTLE)
449 << RELOC_BITS3_TYPEHI_SH_LITTLE));
450 intern->r_extern = (ext->r_bits[3] & RELOC_BITS3_EXTERN_LITTLE) != 0;
451 }
452
453 /* If this is a MIPS_R_SWITCH reloc, or an internal MIPS_R_RELHI or
454 MIPS_R_RELLO reloc, r_symndx is actually the offset from the
455 reloc address to the base of the difference (see
456 include/coff/mips.h for more details). We copy symndx into the
457 r_offset field so as not to confuse ecoff_slurp_reloc_table in
458 ecoff.c. In adjust_reloc_in we then copy r_offset into the reloc
459 addend. */
460 if (intern->r_type == MIPS_R_SWITCH
461 || (! intern->r_extern
462 && (intern->r_type == MIPS_R_RELLO
463 || intern->r_type == MIPS_R_RELHI)))
464 {
465 BFD_ASSERT (! intern->r_extern);
466 intern->r_offset = intern->r_symndx;
467 if (intern->r_offset & 0x800000)
468 intern->r_offset -= 0x1000000;
469 intern->r_symndx = RELOC_SECTION_TEXT;
470 }
471 }
472
473 /* Swap a reloc out. */
474
475 static void
476 mips_ecoff_swap_reloc_out (abfd, intern, dst)
477 bfd *abfd;
478 const struct internal_reloc *intern;
479 PTR dst;
480 {
481 RELOC *ext = (RELOC *) dst;
482 long r_symndx;
483
484 BFD_ASSERT (intern->r_extern
485 || (intern->r_symndx >= 0 && intern->r_symndx <= 12));
486
487 /* If this is a MIPS_R_SWITCH reloc, or an internal MIPS_R_RELLO or
488 MIPS_R_RELHI reloc, we actually want to write the contents of
489 r_offset out as the symbol index. This undoes the change made by
490 mips_ecoff_swap_reloc_in. */
491 if (intern->r_type != MIPS_R_SWITCH
492 && (intern->r_extern
493 || (intern->r_type != MIPS_R_RELHI
494 && intern->r_type != MIPS_R_RELLO)))
495 r_symndx = intern->r_symndx;
496 else
497 {
498 BFD_ASSERT (intern->r_symndx == RELOC_SECTION_TEXT);
499 r_symndx = intern->r_offset & 0xffffff;
500 }
501
502 bfd_h_put_32 (abfd, intern->r_vaddr, (bfd_byte *) ext->r_vaddr);
503 if (abfd->xvec->header_byteorder_big_p != false)
504 {
505 ext->r_bits[0] = r_symndx >> RELOC_BITS0_SYMNDX_SH_LEFT_BIG;
506 ext->r_bits[1] = r_symndx >> RELOC_BITS1_SYMNDX_SH_LEFT_BIG;
507 ext->r_bits[2] = r_symndx >> RELOC_BITS2_SYMNDX_SH_LEFT_BIG;
508 ext->r_bits[3] = (((intern->r_type << RELOC_BITS3_TYPE_SH_BIG)
509 & RELOC_BITS3_TYPE_BIG)
510 | (intern->r_extern ? RELOC_BITS3_EXTERN_BIG : 0));
511 }
512 else
513 {
514 ext->r_bits[0] = r_symndx >> RELOC_BITS0_SYMNDX_SH_LEFT_LITTLE;
515 ext->r_bits[1] = r_symndx >> RELOC_BITS1_SYMNDX_SH_LEFT_LITTLE;
516 ext->r_bits[2] = r_symndx >> RELOC_BITS2_SYMNDX_SH_LEFT_LITTLE;
517 ext->r_bits[3] = (((intern->r_type << RELOC_BITS3_TYPE_SH_LITTLE)
518 & RELOC_BITS3_TYPE_LITTLE)
519 | ((intern->r_type >> RELOC_BITS3_TYPEHI_SH_LITTLE
520 & RELOC_BITS3_TYPEHI_LITTLE))
521 | (intern->r_extern ? RELOC_BITS3_EXTERN_LITTLE : 0));
522 }
523 }
524
525 /* Finish canonicalizing a reloc. Part of this is generic to all
526 ECOFF targets, and that part is in ecoff.c. The rest is done in
527 this backend routine. It must fill in the howto field. */
528
529 static void
530 mips_adjust_reloc_in (abfd, intern, rptr)
531 bfd *abfd;
532 const struct internal_reloc *intern;
533 arelent *rptr;
534 {
535 if (intern->r_type > MIPS_R_SWITCH)
536 abort ();
537
538 if (! intern->r_extern
539 && (intern->r_type == MIPS_R_GPREL
540 || intern->r_type == MIPS_R_LITERAL))
541 rptr->addend += ecoff_data (abfd)->gp;
542
543 /* If the type is MIPS_R_IGNORE, make sure this is a reference to
544 the absolute section so that the reloc is ignored. */
545 if (intern->r_type == MIPS_R_IGNORE)
546 rptr->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
547
548 /* If this is a MIPS_R_SWITCH reloc, or an internal MIPS_R_RELHI or
549 MIPS_R_RELLO reloc, we want the addend field of the BFD relocto
550 hold the value which was originally in the symndx field of the
551 internal MIPS ECOFF reloc. This value was copied into
552 intern->r_offset by mips_swap_reloc_in, and here we copy it into
553 the addend field. */
554 if (intern->r_type == MIPS_R_SWITCH
555 || (! intern->r_extern
556 && (intern->r_type == MIPS_R_RELHI
557 || intern->r_type == MIPS_R_RELLO)))
558 rptr->addend = intern->r_offset;
559
560 rptr->howto = &mips_howto_table[intern->r_type];
561 }
562
563 /* Make any adjustments needed to a reloc before writing it out. None
564 are needed for MIPS. */
565
566 static void
567 mips_adjust_reloc_out (abfd, rel, intern)
568 bfd *abfd;
569 const arelent *rel;
570 struct internal_reloc *intern;
571 {
572 /* For a MIPS_R_SWITCH reloc, or an internal MIPS_R_RELHI or
573 MIPS_R_RELLO reloc, we must copy rel->addend into
574 intern->r_offset. This will then be written out as the symbol
575 index by mips_ecoff_swap_reloc_out. This operation parallels the
576 action of mips_adjust_reloc_in. */
577 if (intern->r_type == MIPS_R_SWITCH
578 || (! intern->r_extern
579 && (intern->r_type == MIPS_R_RELHI
580 || intern->r_type == MIPS_R_RELLO)))
581 intern->r_offset = rel->addend;
582 }
583
584 /* ECOFF relocs are either against external symbols, or against
585 sections. If we are producing relocateable output, and the reloc
586 is against an external symbol, and nothing has given us any
587 additional addend, the resulting reloc will also be against the
588 same symbol. In such a case, we don't want to change anything
589 about the way the reloc is handled, since it will all be done at
590 final link time. Rather than put special case code into
591 bfd_perform_relocation, all the reloc types use this howto
592 function. It just short circuits the reloc if producing
593 relocateable output against an external symbol. */
594
595 static bfd_reloc_status_type
596 mips_generic_reloc (abfd,
597 reloc_entry,
598 symbol,
599 data,
600 input_section,
601 output_bfd,
602 error_message)
603 bfd *abfd;
604 arelent *reloc_entry;
605 asymbol *symbol;
606 PTR data;
607 asection *input_section;
608 bfd *output_bfd;
609 char **error_message;
610 {
611 if (output_bfd != (bfd *) NULL
612 && (symbol->flags & BSF_SECTION_SYM) == 0
613 && reloc_entry->addend == 0)
614 {
615 reloc_entry->address += input_section->output_offset;
616 return bfd_reloc_ok;
617 }
618
619 return bfd_reloc_continue;
620 }
621
622 /* Do a REFHI relocation. This has to be done in combination with a
623 REFLO reloc, because there is a carry from the REFLO to the REFHI.
624 Here we just save the information we need; we do the actual
625 relocation when we see the REFLO. MIPS ECOFF requires that the
626 REFLO immediately follow the REFHI, so this ought to work. */
627
628 static bfd_byte *mips_refhi_addr;
629 static bfd_vma mips_refhi_addend;
630
631 static bfd_reloc_status_type
632 mips_refhi_reloc (abfd,
633 reloc_entry,
634 symbol,
635 data,
636 input_section,
637 output_bfd,
638 error_message)
639 bfd *abfd;
640 arelent *reloc_entry;
641 asymbol *symbol;
642 PTR data;
643 asection *input_section;
644 bfd *output_bfd;
645 char **error_message;
646 {
647 bfd_reloc_status_type ret;
648 bfd_vma relocation;
649
650 /* If we're relocating, and this an external symbol, we don't want
651 to change anything. */
652 if (output_bfd != (bfd *) NULL
653 && (symbol->flags & BSF_SECTION_SYM) == 0
654 && reloc_entry->addend == 0)
655 {
656 reloc_entry->address += input_section->output_offset;
657 return bfd_reloc_ok;
658 }
659
660 ret = bfd_reloc_ok;
661 if (bfd_is_und_section (symbol->section)
662 && output_bfd == (bfd *) NULL)
663 ret = bfd_reloc_undefined;
664
665 if (bfd_is_com_section (symbol->section))
666 relocation = 0;
667 else
668 relocation = symbol->value;
669
670 relocation += symbol->section->output_section->vma;
671 relocation += symbol->section->output_offset;
672 relocation += reloc_entry->addend;
673
674 if (reloc_entry->address > input_section->_cooked_size)
675 return bfd_reloc_outofrange;
676
677 /* Save the information, and let REFLO do the actual relocation. */
678 mips_refhi_addr = (bfd_byte *) data + reloc_entry->address;
679 mips_refhi_addend = relocation;
680
681 if (output_bfd != (bfd *) NULL)
682 reloc_entry->address += input_section->output_offset;
683
684 return ret;
685 }
686
687 /* Do a REFLO relocation. This is a straightforward 16 bit inplace
688 relocation; this function exists in order to do the REFHI
689 relocation described above. */
690
691 static bfd_reloc_status_type
692 mips_reflo_reloc (abfd,
693 reloc_entry,
694 symbol,
695 data,
696 input_section,
697 output_bfd,
698 error_message)
699 bfd *abfd;
700 arelent *reloc_entry;
701 asymbol *symbol;
702 PTR data;
703 asection *input_section;
704 bfd *output_bfd;
705 char **error_message;
706 {
707 if (mips_refhi_addr != (bfd_byte *) NULL)
708 {
709 unsigned long insn;
710 unsigned long val;
711 unsigned long vallo;
712
713 /* Do the REFHI relocation. Note that we actually don't need to
714 know anything about the REFLO itself, except where to find
715 the low 16 bits of the addend needed by the REFHI. */
716 insn = bfd_get_32 (abfd, mips_refhi_addr);
717 vallo = (bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address)
718 & 0xffff);
719 val = ((insn & 0xffff) << 16) + vallo;
720 val += mips_refhi_addend;
721
722 /* The low order 16 bits are always treated as a signed value.
723 Therefore, a negative value in the low order bits requires an
724 adjustment in the high order bits. We need to make this
725 adjustment in two ways: once for the bits we took from the
726 data, and once for the bits we are putting back in to the
727 data. */
728 if ((vallo & 0x8000) != 0)
729 val -= 0x10000;
730 if ((val & 0x8000) != 0)
731 val += 0x10000;
732
733 insn = (insn &~ 0xffff) | ((val >> 16) & 0xffff);
734 bfd_put_32 (abfd, insn, mips_refhi_addr);
735
736 mips_refhi_addr = (bfd_byte *) NULL;
737 }
738
739 /* Now do the REFLO reloc in the usual way. */
740 return mips_generic_reloc (abfd, reloc_entry, symbol, data,
741 input_section, output_bfd, error_message);
742 }
743
744 /* Do a GPREL relocation. This is a 16 bit value which must become
745 the offset from the gp register. */
746
747 static bfd_reloc_status_type
748 mips_gprel_reloc (abfd,
749 reloc_entry,
750 symbol,
751 data,
752 input_section,
753 output_bfd,
754 error_message)
755 bfd *abfd;
756 arelent *reloc_entry;
757 asymbol *symbol;
758 PTR data;
759 asection *input_section;
760 bfd *output_bfd;
761 char **error_message;
762 {
763 boolean relocateable;
764 bfd_vma relocation;
765 unsigned long val;
766 unsigned long insn;
767
768 /* If we're relocating, and this is an external symbol with no
769 addend, we don't want to change anything. We will only have an
770 addend if this is a newly created reloc, not read from an ECOFF
771 file. */
772 if (output_bfd != (bfd *) NULL
773 && (symbol->flags & BSF_SECTION_SYM) == 0
774 && reloc_entry->addend == 0)
775 {
776 reloc_entry->address += input_section->output_offset;
777 return bfd_reloc_ok;
778 }
779
780 if (output_bfd != (bfd *) NULL)
781 relocateable = true;
782 else
783 {
784 relocateable = false;
785 output_bfd = symbol->section->output_section->owner;
786 }
787
788 if (bfd_is_und_section (symbol->section)
789 && relocateable == false)
790 return bfd_reloc_undefined;
791
792 /* We have to figure out the gp value, so that we can adjust the
793 symbol value correctly. We look up the symbol _gp in the output
794 BFD. If we can't find it, we're stuck. We cache it in the ECOFF
795 target data. We don't need to adjust the symbol value for an
796 external symbol if we are producing relocateable output. */
797 if (ecoff_data (output_bfd)->gp == 0
798 && (relocateable == false
799 || (symbol->flags & BSF_SECTION_SYM) != 0))
800 {
801 if (relocateable != false)
802 {
803 /* Make up a value. */
804 ecoff_data (output_bfd)->gp =
805 symbol->section->output_section->vma + 0x4000;
806 }
807 else
808 {
809 unsigned int count;
810 asymbol **sym;
811 unsigned int i;
812
813 count = bfd_get_symcount (output_bfd);
814 sym = bfd_get_outsymbols (output_bfd);
815
816 if (sym == (asymbol **) NULL)
817 i = count;
818 else
819 {
820 for (i = 0; i < count; i++, sym++)
821 {
822 register CONST char *name;
823
824 name = bfd_asymbol_name (*sym);
825 if (*name == '_' && strcmp (name, "_gp") == 0)
826 {
827 ecoff_data (output_bfd)->gp = bfd_asymbol_value (*sym);
828 break;
829 }
830 }
831 }
832
833 if (i >= count)
834 {
835 /* Only get the error once. */
836 ecoff_data (output_bfd)->gp = 4;
837 *error_message =
838 (char *) "GP relative relocation when _gp not defined";
839 return bfd_reloc_dangerous;
840 }
841 }
842 }
843
844 if (bfd_is_com_section (symbol->section))
845 relocation = 0;
846 else
847 relocation = symbol->value;
848
849 relocation += symbol->section->output_section->vma;
850 relocation += symbol->section->output_offset;
851
852 if (reloc_entry->address > input_section->_cooked_size)
853 return bfd_reloc_outofrange;
854
855 insn = bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address);
856
857 /* Set val to the offset into the section or symbol. */
858 val = ((insn & 0xffff) + reloc_entry->addend) & 0xffff;
859 if (val & 0x8000)
860 val -= 0x10000;
861
862 /* Adjust val for the final section location and GP value. If we
863 are producing relocateable output, we don't want to do this for
864 an external symbol. */
865 if (relocateable == false
866 || (symbol->flags & BSF_SECTION_SYM) != 0)
867 val += relocation - ecoff_data (output_bfd)->gp;
868
869 insn = (insn &~ 0xffff) | (val & 0xffff);
870 bfd_put_32 (abfd, insn, (bfd_byte *) data + reloc_entry->address);
871
872 if (relocateable != false)
873 reloc_entry->address += input_section->output_offset;
874
875 /* Make sure it fit in 16 bits. */
876 if (val >= 0x8000 && val < 0xffff8000)
877 return bfd_reloc_overflow;
878
879 return bfd_reloc_ok;
880 }
881
882 /* Do a RELHI relocation. We do this in conjunction with a RELLO
883 reloc, just as REFHI and REFLO are done together. RELHI and RELLO
884 are Cygnus extensions used when generating position independent
885 code for embedded systems. */
886
887 static bfd_byte *mips_relhi_addr;
888 static bfd_vma mips_relhi_addend;
889
890 static bfd_reloc_status_type
891 mips_relhi_reloc (abfd,
892 reloc_entry,
893 symbol,
894 data,
895 input_section,
896 output_bfd,
897 error_message)
898 bfd *abfd;
899 arelent *reloc_entry;
900 asymbol *symbol;
901 PTR data;
902 asection *input_section;
903 bfd *output_bfd;
904 char **error_message;
905 {
906 bfd_reloc_status_type ret;
907 bfd_vma relocation;
908
909 /* If this is a reloc against a section symbol, then it is correct
910 in the object file. The only time we want to change this case is
911 when we are relaxing, and that is handled entirely by
912 mips_relocate_section and never calls this function. */
913 if ((symbol->flags & BSF_SECTION_SYM) != 0)
914 {
915 if (output_bfd != (bfd *) NULL)
916 reloc_entry->address += input_section->output_offset;
917 return bfd_reloc_ok;
918 }
919
920 /* This is an external symbol. If we're relocating, we don't want
921 to change anything. */
922 if (output_bfd != (bfd *) NULL)
923 {
924 reloc_entry->address += input_section->output_offset;
925 return bfd_reloc_ok;
926 }
927
928 ret = bfd_reloc_ok;
929 if (bfd_is_und_section (symbol->section)
930 && output_bfd == (bfd *) NULL)
931 ret = bfd_reloc_undefined;
932
933 if (bfd_is_com_section (symbol->section))
934 relocation = 0;
935 else
936 relocation = symbol->value;
937
938 relocation += symbol->section->output_section->vma;
939 relocation += symbol->section->output_offset;
940 relocation += reloc_entry->addend;
941
942 if (reloc_entry->address > input_section->_cooked_size)
943 return bfd_reloc_outofrange;
944
945 /* Save the information, and let RELLO do the actual relocation. */
946 mips_relhi_addr = (bfd_byte *) data + reloc_entry->address;
947 mips_relhi_addend = relocation;
948
949 if (output_bfd != (bfd *) NULL)
950 reloc_entry->address += input_section->output_offset;
951
952 return ret;
953 }
954
955 /* Do a RELLO relocation. This is a straightforward 16 bit PC
956 relative relocation; this function exists in order to do the RELHI
957 relocation described above. */
958
959 static bfd_reloc_status_type
960 mips_rello_reloc (abfd,
961 reloc_entry,
962 symbol,
963 data,
964 input_section,
965 output_bfd,
966 error_message)
967 bfd *abfd;
968 arelent *reloc_entry;
969 asymbol *symbol;
970 PTR data;
971 asection *input_section;
972 bfd *output_bfd;
973 char **error_message;
974 {
975 if (mips_relhi_addr != (bfd_byte *) NULL)
976 {
977 unsigned long insn;
978 unsigned long val;
979 unsigned long vallo;
980
981 /* Do the RELHI relocation. Note that we actually don't need to
982 know anything about the RELLO itself, except where to find
983 the low 16 bits of the addend needed by the RELHI. */
984 insn = bfd_get_32 (abfd, mips_relhi_addr);
985 vallo = (bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address)
986 & 0xffff);
987 val = ((insn & 0xffff) << 16) + vallo;
988 val += mips_relhi_addend;
989
990 /* If the symbol is defined, make val PC relative. If the
991 symbol is not defined we don't want to do this, because we
992 don't want the value in the object file to incorporate the
993 address of the reloc. */
994 if (! bfd_is_und_section (bfd_get_section (symbol))
995 && ! bfd_is_com_section (bfd_get_section (symbol)))
996 val -= (input_section->output_section->vma
997 + input_section->output_offset
998 + reloc_entry->address);
999
1000 /* The low order 16 bits are always treated as a signed value.
1001 Therefore, a negative value in the low order bits requires an
1002 adjustment in the high order bits. We need to make this
1003 adjustment in two ways: once for the bits we took from the
1004 data, and once for the bits we are putting back in to the
1005 data. */
1006 if ((vallo & 0x8000) != 0)
1007 val -= 0x10000;
1008 if ((val & 0x8000) != 0)
1009 val += 0x10000;
1010
1011 insn = (insn &~ 0xffff) | ((val >> 16) & 0xffff);
1012 bfd_put_32 (abfd, insn, mips_relhi_addr);
1013
1014 mips_relhi_addr = (bfd_byte *) NULL;
1015 }
1016
1017 /* If this is a reloc against a section symbol, then it is correct
1018 in the object file. The only time we want to change this case is
1019 when we are relaxing, and that is handled entirely by
1020 mips_relocate_section and never calls this function. */
1021 if ((symbol->flags & BSF_SECTION_SYM) != 0)
1022 {
1023 if (output_bfd != (bfd *) NULL)
1024 reloc_entry->address += input_section->output_offset;
1025 return bfd_reloc_ok;
1026 }
1027
1028 /* bfd_perform_relocation does not handle pcrel_offset relocations
1029 correctly when generating a relocateable file, so handle them
1030 directly here. */
1031 if (output_bfd != (bfd *) NULL)
1032 {
1033 reloc_entry->address += input_section->output_offset;
1034 return bfd_reloc_ok;
1035 }
1036
1037 /* Now do the RELLO reloc in the usual way. */
1038 return mips_generic_reloc (abfd, reloc_entry, symbol, data,
1039 input_section, output_bfd, error_message);
1040 }
1041
1042 /* This is the special function for the MIPS_R_SWITCH reloc. This
1043 special reloc is normally correct in the object file, and only
1044 requires special handling when relaxing. We don't want
1045 bfd_perform_relocation to tamper with it at all. */
1046
1047 /*ARGSUSED*/
1048 static bfd_reloc_status_type
1049 mips_switch_reloc (abfd,
1050 reloc_entry,
1051 symbol,
1052 data,
1053 input_section,
1054 output_bfd,
1055 error_message)
1056 bfd *abfd;
1057 arelent *reloc_entry;
1058 asymbol *symbol;
1059 PTR data;
1060 asection *input_section;
1061 bfd *output_bfd;
1062 char **error_message;
1063 {
1064 return bfd_reloc_ok;
1065 }
1066
1067 /* Get the howto structure for a generic reloc type. */
1068
1069 static reloc_howto_type *
1070 mips_bfd_reloc_type_lookup (abfd, code)
1071 bfd *abfd;
1072 bfd_reloc_code_real_type code;
1073 {
1074 int mips_type;
1075
1076 switch (code)
1077 {
1078 case BFD_RELOC_16:
1079 mips_type = MIPS_R_REFHALF;
1080 break;
1081 case BFD_RELOC_32:
1082 case BFD_RELOC_CTOR:
1083 mips_type = MIPS_R_REFWORD;
1084 break;
1085 case BFD_RELOC_MIPS_JMP:
1086 mips_type = MIPS_R_JMPADDR;
1087 break;
1088 case BFD_RELOC_HI16_S:
1089 mips_type = MIPS_R_REFHI;
1090 break;
1091 case BFD_RELOC_LO16:
1092 mips_type = MIPS_R_REFLO;
1093 break;
1094 case BFD_RELOC_MIPS_GPREL:
1095 mips_type = MIPS_R_GPREL;
1096 break;
1097 case BFD_RELOC_MIPS_LITERAL:
1098 mips_type = MIPS_R_LITERAL;
1099 break;
1100 case BFD_RELOC_16_PCREL_S2:
1101 mips_type = MIPS_R_PCREL16;
1102 break;
1103 case BFD_RELOC_PCREL_HI16_S:
1104 mips_type = MIPS_R_RELHI;
1105 break;
1106 case BFD_RELOC_PCREL_LO16:
1107 mips_type = MIPS_R_RELLO;
1108 break;
1109 case BFD_RELOC_GPREL32:
1110 mips_type = MIPS_R_SWITCH;
1111 break;
1112 default:
1113 return (reloc_howto_type *) NULL;
1114 }
1115
1116 return &mips_howto_table[mips_type];
1117 }
1118 \f
1119 /* A helper routine for mips_relocate_section which handles the REFHI
1120 and RELHI relocations. The REFHI relocation must be followed by a
1121 REFLO relocation (and RELHI by a RELLO), and the addend used is
1122 formed from the addends of both instructions. */
1123
1124 static void
1125 mips_relocate_hi (refhi, reflo, input_bfd, input_section, contents, adjust,
1126 relocation, pcrel)
1127 struct internal_reloc *refhi;
1128 struct internal_reloc *reflo;
1129 bfd *input_bfd;
1130 asection *input_section;
1131 bfd_byte *contents;
1132 size_t adjust;
1133 bfd_vma relocation;
1134 boolean pcrel;
1135 {
1136 unsigned long insn;
1137 unsigned long val;
1138 unsigned long vallo;
1139
1140 insn = bfd_get_32 (input_bfd,
1141 contents + adjust + refhi->r_vaddr - input_section->vma);
1142 vallo = (bfd_get_32 (input_bfd,
1143 contents + adjust + reflo->r_vaddr - input_section->vma)
1144 & 0xffff);
1145 val = ((insn & 0xffff) << 16) + vallo;
1146 val += relocation;
1147
1148 /* The low order 16 bits are always treated as a signed value.
1149 Therefore, a negative value in the low order bits requires an
1150 adjustment in the high order bits. We need to make this
1151 adjustment in two ways: once for the bits we took from the data,
1152 and once for the bits we are putting back in to the data. */
1153 if ((vallo & 0x8000) != 0)
1154 val -= 0x10000;
1155
1156 if (pcrel)
1157 val -= (input_section->output_section->vma
1158 + input_section->output_offset
1159 + (reflo->r_vaddr - input_section->vma + adjust));
1160
1161 if ((val & 0x8000) != 0)
1162 val += 0x10000;
1163
1164 insn = (insn &~ 0xffff) | ((val >> 16) & 0xffff);
1165 bfd_put_32 (input_bfd, (bfd_vma) insn,
1166 contents + adjust + refhi->r_vaddr - input_section->vma);
1167 }
1168
1169 /* Relocate a section while linking a MIPS ECOFF file. */
1170
1171 static boolean
1172 mips_relocate_section (output_bfd, info, input_bfd, input_section,
1173 contents, external_relocs)
1174 bfd *output_bfd;
1175 struct bfd_link_info *info;
1176 bfd *input_bfd;
1177 asection *input_section;
1178 bfd_byte *contents;
1179 PTR external_relocs;
1180 {
1181 asection **symndx_to_section;
1182 struct ecoff_link_hash_entry **sym_hashes;
1183 bfd_vma gp;
1184 boolean gp_undefined;
1185 size_t adjust;
1186 long *offsets;
1187 struct external_reloc *ext_rel;
1188 struct external_reloc *ext_rel_end;
1189 unsigned int i;
1190 boolean got_lo;
1191 struct internal_reloc lo_int_rel;
1192
1193 BFD_ASSERT (input_bfd->xvec->header_byteorder_big_p
1194 == output_bfd->xvec->header_byteorder_big_p);
1195
1196 /* We keep a table mapping the symndx found in an internal reloc to
1197 the appropriate section. This is faster than looking up the
1198 section by name each time. */
1199 symndx_to_section = ecoff_data (input_bfd)->symndx_to_section;
1200 if (symndx_to_section == (asection **) NULL)
1201 {
1202 symndx_to_section = ((asection **)
1203 bfd_alloc (input_bfd,
1204 (NUM_RELOC_SECTIONS
1205 * sizeof (asection *))));
1206 if (!symndx_to_section)
1207 {
1208 bfd_set_error (bfd_error_no_memory);
1209 return false;
1210 }
1211
1212 symndx_to_section[RELOC_SECTION_NONE] = NULL;
1213 symndx_to_section[RELOC_SECTION_TEXT] =
1214 bfd_get_section_by_name (input_bfd, ".text");
1215 symndx_to_section[RELOC_SECTION_RDATA] =
1216 bfd_get_section_by_name (input_bfd, ".rdata");
1217 symndx_to_section[RELOC_SECTION_DATA] =
1218 bfd_get_section_by_name (input_bfd, ".data");
1219 symndx_to_section[RELOC_SECTION_SDATA] =
1220 bfd_get_section_by_name (input_bfd, ".sdata");
1221 symndx_to_section[RELOC_SECTION_SBSS] =
1222 bfd_get_section_by_name (input_bfd, ".sbss");
1223 symndx_to_section[RELOC_SECTION_BSS] =
1224 bfd_get_section_by_name (input_bfd, ".bss");
1225 symndx_to_section[RELOC_SECTION_INIT] =
1226 bfd_get_section_by_name (input_bfd, ".init");
1227 symndx_to_section[RELOC_SECTION_LIT8] =
1228 bfd_get_section_by_name (input_bfd, ".lit8");
1229 symndx_to_section[RELOC_SECTION_LIT4] =
1230 bfd_get_section_by_name (input_bfd, ".lit4");
1231 symndx_to_section[RELOC_SECTION_XDATA] = NULL;
1232 symndx_to_section[RELOC_SECTION_PDATA] = NULL;
1233 symndx_to_section[RELOC_SECTION_FINI] =
1234 bfd_get_section_by_name (input_bfd, ".fini");
1235 symndx_to_section[RELOC_SECTION_LITA] = NULL;
1236 symndx_to_section[RELOC_SECTION_ABS] = NULL;
1237
1238 ecoff_data (input_bfd)->symndx_to_section = symndx_to_section;
1239 }
1240
1241 sym_hashes = ecoff_data (input_bfd)->sym_hashes;
1242
1243 gp = ecoff_data (output_bfd)->gp;
1244 if (gp == 0)
1245 gp_undefined = true;
1246 else
1247 gp_undefined = false;
1248
1249 got_lo = false;
1250
1251 adjust = 0;
1252
1253 if (ecoff_section_data (input_bfd, input_section) == NULL)
1254 offsets = NULL;
1255 else
1256 offsets = ecoff_section_data (input_bfd, input_section)->offsets;
1257
1258 ext_rel = (struct external_reloc *) external_relocs;
1259 ext_rel_end = ext_rel + input_section->reloc_count;
1260 for (i = 0; ext_rel < ext_rel_end; ext_rel++, i++)
1261 {
1262 struct internal_reloc int_rel;
1263 bfd_vma addend;
1264 reloc_howto_type *howto;
1265 struct ecoff_link_hash_entry *h = NULL;
1266 asection *s = NULL;
1267 bfd_vma relocation;
1268 bfd_reloc_status_type r;
1269
1270 if (! got_lo)
1271 mips_ecoff_swap_reloc_in (input_bfd, (PTR) ext_rel, &int_rel);
1272 else
1273 {
1274 int_rel = lo_int_rel;
1275 got_lo = false;
1276 }
1277
1278 BFD_ASSERT (int_rel.r_type
1279 < sizeof mips_howto_table / sizeof mips_howto_table[0]);
1280
1281 /* The REFHI and RELHI relocs requires special handling. they
1282 must be followed by a REFLO or RELLO reloc, respectively, and
1283 the addend is formed from both relocs. */
1284 if (int_rel.r_type == MIPS_R_REFHI
1285 || int_rel.r_type == MIPS_R_RELHI)
1286 {
1287 BFD_ASSERT ((ext_rel + 1) < ext_rel_end);
1288 mips_ecoff_swap_reloc_in (input_bfd, (PTR) (ext_rel + 1),
1289 &lo_int_rel);
1290 BFD_ASSERT ((lo_int_rel.r_type
1291 == (int_rel.r_type == MIPS_R_REFHI
1292 ? MIPS_R_REFLO
1293 : MIPS_R_RELLO))
1294 && int_rel.r_extern == lo_int_rel.r_extern
1295 && int_rel.r_symndx == lo_int_rel.r_symndx);
1296 got_lo = true;
1297 }
1298
1299 howto = &mips_howto_table[int_rel.r_type];
1300
1301 /* The SWITCH reloc must be handled specially. This reloc is
1302 marks the location of a difference between two portions of an
1303 object file. The symbol index does not reference a symbol,
1304 but is actually the offset from the reloc to the subtrahend
1305 of the difference. This reloc is correct in the object file,
1306 and needs no further adjustment, unless we are relaxing. If
1307 we are relaxing, we may have to add in an offset. Since no
1308 symbols are involved in this reloc, we handle it completely
1309 here. */
1310 if (int_rel.r_type == MIPS_R_SWITCH)
1311 {
1312 if (offsets != NULL
1313 && offsets[i] != 0)
1314 {
1315 r = _bfd_relocate_contents (howto, input_bfd,
1316 (bfd_vma) offsets[i],
1317 (contents
1318 + adjust
1319 + int_rel.r_vaddr
1320 - input_section->vma));
1321 BFD_ASSERT (r == bfd_reloc_ok);
1322 }
1323
1324 continue;
1325 }
1326
1327 if (int_rel.r_extern)
1328 {
1329 h = sym_hashes[int_rel.r_symndx];
1330 /* If h is NULL, that means that there is a reloc against an
1331 external symbol which we thought was just a debugging
1332 symbol. This should not happen. */
1333 if (h == (struct ecoff_link_hash_entry *) NULL)
1334 abort ();
1335 }
1336 else
1337 {
1338 if (int_rel.r_symndx < 0 || int_rel.r_symndx >= NUM_RELOC_SECTIONS)
1339 s = NULL;
1340 else
1341 s = symndx_to_section[int_rel.r_symndx];
1342
1343 if (s == (asection *) NULL)
1344 abort ();
1345 }
1346
1347 /* The GPREL reloc uses an addend: the difference in the GP
1348 values. */
1349 if (int_rel.r_type != MIPS_R_GPREL
1350 && int_rel.r_type != MIPS_R_LITERAL)
1351 addend = 0;
1352 else
1353 {
1354 if (gp_undefined)
1355 {
1356 if (! ((*info->callbacks->reloc_dangerous)
1357 (info, "GP relative relocation when GP not defined",
1358 input_bfd, input_section,
1359 int_rel.r_vaddr - input_section->vma)))
1360 return false;
1361 /* Only give the error once per link. */
1362 ecoff_data (output_bfd)->gp = gp = 4;
1363 gp_undefined = false;
1364 }
1365 if (! int_rel.r_extern)
1366 {
1367 /* This is a relocation against a section. The current
1368 addend in the instruction is the difference between
1369 INPUT_SECTION->vma and the GP value of INPUT_BFD. We
1370 must change this to be the difference between the
1371 final definition (which will end up in RELOCATION)
1372 and the GP value of OUTPUT_BFD (which is in GP). */
1373 addend = ecoff_data (input_bfd)->gp - gp;
1374 }
1375 else if (! info->relocateable
1376 || h->root.type == bfd_link_hash_defined
1377 || h->root.type == bfd_link_hash_defweak)
1378 {
1379 /* This is a relocation against a defined symbol. The
1380 current addend in the instruction is simply the
1381 desired offset into the symbol (normally zero). We
1382 are going to change this into a relocation against a
1383 defined symbol, so we want the instruction to hold
1384 the difference between the final definition of the
1385 symbol (which will end up in RELOCATION) and the GP
1386 value of OUTPUT_BFD (which is in GP). */
1387 addend = - gp;
1388 }
1389 else
1390 {
1391 /* This is a relocation against an undefined or common
1392 symbol. The current addend in the instruction is
1393 simply the desired offset into the symbol (normally
1394 zero). We are generating relocateable output, and we
1395 aren't going to define this symbol, so we just leave
1396 the instruction alone. */
1397 addend = 0;
1398 }
1399 }
1400
1401 /* If we are relaxing, mips_relax_section may have set
1402 offsets[i] to some value. A value of 1 means we must expand
1403 a PC relative branch into a multi-instruction of sequence,
1404 and any other value is an addend. */
1405 if (offsets != NULL
1406 && offsets[i] != 0)
1407 {
1408 BFD_ASSERT (! info->relocateable);
1409 BFD_ASSERT (int_rel.r_type == MIPS_R_PCREL16
1410 || int_rel.r_type == MIPS_R_RELHI
1411 || int_rel.r_type == MIPS_R_RELLO);
1412 if (offsets[i] != 1)
1413 addend += offsets[i];
1414 else
1415 {
1416 bfd_byte *here;
1417
1418 BFD_ASSERT (int_rel.r_extern
1419 && int_rel.r_type == MIPS_R_PCREL16);
1420
1421 /* Move the rest of the instructions up. */
1422 here = (contents
1423 + adjust
1424 + int_rel.r_vaddr
1425 - input_section->vma);
1426 memmove (here + PCREL16_EXPANSION_ADJUSTMENT, here,
1427 (size_t) (input_section->_raw_size
1428 - (int_rel.r_vaddr - input_section->vma)));
1429
1430 /* Generate the new instructions. */
1431 if (! mips_relax_pcrel16 (info, input_bfd, input_section,
1432 h, here,
1433 (input_section->output_section->vma
1434 + input_section->output_offset
1435 + (int_rel.r_vaddr
1436 - input_section->vma)
1437 + adjust)))
1438 return false;
1439
1440 /* We must adjust everything else up a notch. */
1441 adjust += PCREL16_EXPANSION_ADJUSTMENT;
1442
1443 /* mips_relax_pcrel16 handles all the details of this
1444 relocation. */
1445 continue;
1446 }
1447 }
1448
1449 /* If we are relaxing, and this is a reloc against the .text
1450 segment, we may need to adjust it if some branches have been
1451 expanded. The reloc types which are likely to occur in the
1452 .text section are handled efficiently by mips_relax_section,
1453 and thus do not need to be handled here. */
1454 if (ecoff_data (input_bfd)->debug_info.adjust != NULL
1455 && ! int_rel.r_extern
1456 && int_rel.r_symndx == RELOC_SECTION_TEXT
1457 && (strcmp (bfd_get_section_name (input_bfd, input_section),
1458 ".text") != 0
1459 || (int_rel.r_type != MIPS_R_PCREL16
1460 && int_rel.r_type != MIPS_R_SWITCH
1461 && int_rel.r_type != MIPS_R_RELHI
1462 && int_rel.r_type != MIPS_R_RELLO)))
1463 {
1464 bfd_vma adr;
1465 struct ecoff_value_adjust *a;
1466
1467 /* We need to get the addend so that we know whether we need
1468 to adjust the address. */
1469 BFD_ASSERT (int_rel.r_type == MIPS_R_REFWORD);
1470
1471 adr = bfd_get_32 (input_bfd,
1472 (contents
1473 + adjust
1474 + int_rel.r_vaddr
1475 - input_section->vma));
1476
1477 for (a = ecoff_data (input_bfd)->debug_info.adjust;
1478 a != (struct ecoff_value_adjust *) NULL;
1479 a = a->next)
1480 {
1481 if (adr >= a->start && adr < a->end)
1482 addend += a->adjust;
1483 }
1484 }
1485
1486 if (info->relocateable)
1487 {
1488 /* We are generating relocateable output, and must convert
1489 the existing reloc. */
1490 if (int_rel.r_extern)
1491 {
1492 if ((h->root.type == bfd_link_hash_defined
1493 || h->root.type == bfd_link_hash_defweak)
1494 && ! bfd_is_abs_section (h->root.u.def.section))
1495 {
1496 const char *name;
1497
1498 /* This symbol is defined in the output. Convert
1499 the reloc from being against the symbol to being
1500 against the section. */
1501
1502 /* Clear the r_extern bit. */
1503 int_rel.r_extern = 0;
1504
1505 /* Compute a new r_symndx value. */
1506 s = h->root.u.def.section;
1507 name = bfd_get_section_name (output_bfd,
1508 s->output_section);
1509
1510 int_rel.r_symndx = -1;
1511 switch (name[1])
1512 {
1513 case 'b':
1514 if (strcmp (name, ".bss") == 0)
1515 int_rel.r_symndx = RELOC_SECTION_BSS;
1516 break;
1517 case 'd':
1518 if (strcmp (name, ".data") == 0)
1519 int_rel.r_symndx = RELOC_SECTION_DATA;
1520 break;
1521 case 'f':
1522 if (strcmp (name, ".fini") == 0)
1523 int_rel.r_symndx = RELOC_SECTION_FINI;
1524 break;
1525 case 'i':
1526 if (strcmp (name, ".init") == 0)
1527 int_rel.r_symndx = RELOC_SECTION_INIT;
1528 break;
1529 case 'l':
1530 if (strcmp (name, ".lit8") == 0)
1531 int_rel.r_symndx = RELOC_SECTION_LIT8;
1532 else if (strcmp (name, ".lit4") == 0)
1533 int_rel.r_symndx = RELOC_SECTION_LIT4;
1534 break;
1535 case 'r':
1536 if (strcmp (name, ".rdata") == 0)
1537 int_rel.r_symndx = RELOC_SECTION_RDATA;
1538 break;
1539 case 's':
1540 if (strcmp (name, ".sdata") == 0)
1541 int_rel.r_symndx = RELOC_SECTION_SDATA;
1542 else if (strcmp (name, ".sbss") == 0)
1543 int_rel.r_symndx = RELOC_SECTION_SBSS;
1544 break;
1545 case 't':
1546 if (strcmp (name, ".text") == 0)
1547 int_rel.r_symndx = RELOC_SECTION_TEXT;
1548 break;
1549 }
1550
1551 if (int_rel.r_symndx == -1)
1552 abort ();
1553
1554 /* Add the section VMA and the symbol value. */
1555 relocation = (h->root.u.def.value
1556 + s->output_section->vma
1557 + s->output_offset);
1558
1559 /* For a PC relative relocation, the object file
1560 currently holds just the addend. We must adjust
1561 by the address to get the right value. */
1562 if (howto->pc_relative)
1563 {
1564 relocation -= int_rel.r_vaddr - input_section->vma;
1565
1566 /* If we are converting a RELHI or RELLO reloc
1567 from being against an external symbol to
1568 being against a section, we must put a
1569 special value into the r_offset field. This
1570 value is the old addend. The r_offset for
1571 both the RELOHI and RELLO relocs are the
1572 same, and we set both when we see RELHI. */
1573 if (int_rel.r_type == MIPS_R_RELHI)
1574 {
1575 long addhi, addlo;
1576
1577 addhi = bfd_get_32 (input_bfd,
1578 (contents
1579 + adjust
1580 + int_rel.r_vaddr
1581 - input_section->vma));
1582 addhi &= 0xffff;
1583 if (addhi & 0x8000)
1584 addhi -= 0x10000;
1585 addhi <<= 16;
1586
1587 addlo = bfd_get_32 (input_bfd,
1588 (contents
1589 + adjust
1590 + lo_int_rel.r_vaddr
1591 - input_section->vma));
1592 addlo &= 0xffff;
1593 if (addlo & 0x8000)
1594 addlo -= 0x10000;
1595
1596 int_rel.r_offset = addhi + addlo;
1597 lo_int_rel.r_offset = int_rel.r_offset;
1598 }
1599 }
1600
1601 h = NULL;
1602 }
1603 else
1604 {
1605 /* Change the symndx value to the right one for the
1606 output BFD. */
1607 int_rel.r_symndx = h->indx;
1608 if (int_rel.r_symndx == -1)
1609 {
1610 /* This symbol is not being written out. */
1611 if (! ((*info->callbacks->unattached_reloc)
1612 (info, h->root.root.string, input_bfd,
1613 input_section,
1614 int_rel.r_vaddr - input_section->vma)))
1615 return false;
1616 int_rel.r_symndx = 0;
1617 }
1618 relocation = 0;
1619 }
1620 }
1621 else
1622 {
1623 /* This is a relocation against a section. Adjust the
1624 value by the amount the section moved. */
1625 relocation = (s->output_section->vma
1626 + s->output_offset
1627 - s->vma);
1628 }
1629
1630 relocation += addend;
1631 addend = 0;
1632
1633 /* Adjust a PC relative relocation by removing the reference
1634 to the original address in the section and including the
1635 reference to the new address. However, external RELHI
1636 and RELLO relocs are PC relative, but don't include any
1637 reference to the address. The addend is merely an
1638 addend. */
1639 if (howto->pc_relative
1640 && (! int_rel.r_extern
1641 || (int_rel.r_type != MIPS_R_RELHI
1642 && int_rel.r_type != MIPS_R_RELLO)))
1643 relocation -= (input_section->output_section->vma
1644 + input_section->output_offset
1645 - input_section->vma);
1646
1647 /* Adjust the contents. */
1648 if (relocation == 0)
1649 r = bfd_reloc_ok;
1650 else
1651 {
1652 if (int_rel.r_type != MIPS_R_REFHI
1653 && int_rel.r_type != MIPS_R_RELHI)
1654 r = _bfd_relocate_contents (howto, input_bfd, relocation,
1655 (contents
1656 + adjust
1657 + int_rel.r_vaddr
1658 - input_section->vma));
1659 else
1660 {
1661 mips_relocate_hi (&int_rel, &lo_int_rel,
1662 input_bfd, input_section, contents,
1663 adjust, relocation,
1664 int_rel.r_type == MIPS_R_RELHI);
1665 r = bfd_reloc_ok;
1666 }
1667 }
1668
1669 /* Adjust the reloc address. */
1670 int_rel.r_vaddr += (input_section->output_section->vma
1671 + input_section->output_offset
1672 - input_section->vma);
1673
1674 /* Save the changed reloc information. */
1675 mips_ecoff_swap_reloc_out (input_bfd, &int_rel, (PTR) ext_rel);
1676 }
1677 else
1678 {
1679 /* We are producing a final executable. */
1680 if (int_rel.r_extern)
1681 {
1682 /* This is a reloc against a symbol. */
1683 if (h->root.type == bfd_link_hash_defined
1684 || h->root.type == bfd_link_hash_defweak)
1685 {
1686 asection *hsec;
1687
1688 hsec = h->root.u.def.section;
1689 relocation = (h->root.u.def.value
1690 + hsec->output_section->vma
1691 + hsec->output_offset);
1692 }
1693 else
1694 {
1695 if (! ((*info->callbacks->undefined_symbol)
1696 (info, h->root.root.string, input_bfd,
1697 input_section,
1698 int_rel.r_vaddr - input_section->vma)))
1699 return false;
1700 relocation = 0;
1701 }
1702 }
1703 else
1704 {
1705 /* This is a reloc against a section. */
1706 relocation = (s->output_section->vma
1707 + s->output_offset
1708 - s->vma);
1709
1710 /* A PC relative reloc is already correct in the object
1711 file. Make it look like a pcrel_offset relocation by
1712 adding in the start address. */
1713 if (howto->pc_relative)
1714 {
1715 if (int_rel.r_type != MIPS_R_RELHI)
1716 relocation += int_rel.r_vaddr + adjust;
1717 else
1718 relocation += lo_int_rel.r_vaddr + adjust;
1719 }
1720 }
1721
1722 if (int_rel.r_type != MIPS_R_REFHI
1723 && int_rel.r_type != MIPS_R_RELHI)
1724 r = _bfd_final_link_relocate (howto,
1725 input_bfd,
1726 input_section,
1727 contents,
1728 (int_rel.r_vaddr
1729 - input_section->vma
1730 + adjust),
1731 relocation,
1732 addend);
1733 else
1734 {
1735 mips_relocate_hi (&int_rel, &lo_int_rel, input_bfd,
1736 input_section, contents, adjust,
1737 relocation,
1738 int_rel.r_type == MIPS_R_RELHI);
1739 r = bfd_reloc_ok;
1740 }
1741 }
1742
1743 /* MIPS_R_JMPADDR requires peculiar overflow detection. The
1744 instruction provides a 28 bit address (the two lower bits are
1745 implicit zeroes) which is combined with the upper four bits
1746 of the instruction address. */
1747 if (r == bfd_reloc_ok
1748 && int_rel.r_type == MIPS_R_JMPADDR
1749 && (((relocation
1750 + addend
1751 + (int_rel.r_extern ? 0 : s->vma))
1752 & 0xf0000000)
1753 != ((input_section->output_section->vma
1754 + input_section->output_offset
1755 + (int_rel.r_vaddr - input_section->vma)
1756 + adjust)
1757 & 0xf0000000)))
1758 r = bfd_reloc_overflow;
1759
1760 if (r != bfd_reloc_ok)
1761 {
1762 switch (r)
1763 {
1764 default:
1765 case bfd_reloc_outofrange:
1766 abort ();
1767 case bfd_reloc_overflow:
1768 {
1769 const char *name;
1770
1771 if (int_rel.r_extern)
1772 name = h->root.root.string;
1773 else
1774 name = bfd_section_name (input_bfd, s);
1775 if (! ((*info->callbacks->reloc_overflow)
1776 (info, name, howto->name, (bfd_vma) 0,
1777 input_bfd, input_section,
1778 int_rel.r_vaddr - input_section->vma)))
1779 return false;
1780 }
1781 break;
1782 }
1783 }
1784 }
1785
1786 return true;
1787 }
1788 \f
1789 /* Read in the relocs for a section. */
1790
1791 static boolean
1792 mips_read_relocs (abfd, sec)
1793 bfd *abfd;
1794 asection *sec;
1795 {
1796 struct ecoff_section_tdata *section_tdata;
1797
1798 section_tdata = ecoff_section_data (abfd, sec);
1799 if (section_tdata == (struct ecoff_section_tdata *) NULL)
1800 {
1801 sec->used_by_bfd =
1802 (PTR) bfd_alloc_by_size_t (abfd, sizeof (struct ecoff_section_tdata));
1803 if (sec->used_by_bfd == NULL)
1804 {
1805 bfd_set_error (bfd_error_no_memory);
1806 return false;
1807 }
1808
1809 section_tdata = ecoff_section_data (abfd, sec);
1810 section_tdata->external_relocs = NULL;
1811 section_tdata->contents = NULL;
1812 section_tdata->offsets = NULL;
1813 }
1814
1815 if (section_tdata->external_relocs == NULL)
1816 {
1817 bfd_size_type external_relocs_size;
1818
1819 external_relocs_size = (ecoff_backend (abfd)->external_reloc_size
1820 * sec->reloc_count);
1821
1822 section_tdata->external_relocs =
1823 (PTR) bfd_alloc (abfd, external_relocs_size);
1824 if (section_tdata->external_relocs == NULL && external_relocs_size != 0)
1825 {
1826 bfd_set_error (bfd_error_no_memory);
1827 return false;
1828 }
1829
1830 if (bfd_seek (abfd, sec->rel_filepos, SEEK_SET) != 0
1831 || (bfd_read (section_tdata->external_relocs, 1,
1832 external_relocs_size, abfd)
1833 != external_relocs_size))
1834 return false;
1835 }
1836
1837 return true;
1838 }
1839
1840 /* Relax a section when linking a MIPS ECOFF file. This is used for
1841 embedded PIC code, which always uses PC relative branches which
1842 only have an 18 bit range on MIPS. If a branch is not in range, we
1843 generate a long instruction sequence to compensate. Each time we
1844 find a branch to expand, we have to check all the others again to
1845 make sure they are still in range. This is slow, but it only has
1846 to be done when -relax is passed to the linker.
1847
1848 This routine figures out which branches need to expand; the actual
1849 expansion is done in mips_relocate_section when the section
1850 contents are relocated. The information is stored in the offsets
1851 field of the ecoff_section_tdata structure. An offset of 1 means
1852 that the branch must be expanded into a multi-instruction PC
1853 relative branch (such an offset will only occur for a PC relative
1854 branch to an external symbol). Any other offset must be a multiple
1855 of four, and is the amount to change the branch by (such an offset
1856 will only occur for a PC relative branch within the same section).
1857
1858 We do not modify the section relocs or contents themselves so that
1859 if memory usage becomes an issue we can discard them and read them
1860 again. The only information we must save in memory between this
1861 routine and the mips_relocate_section routine is the table of
1862 offsets. */
1863
1864 static boolean
1865 mips_relax_section (abfd, sec, info, again)
1866 bfd *abfd;
1867 asection *sec;
1868 struct bfd_link_info *info;
1869 boolean *again;
1870 {
1871 struct ecoff_section_tdata *section_tdata;
1872 bfd_byte *contents = NULL;
1873 long *offsets;
1874 struct external_reloc *ext_rel;
1875 struct external_reloc *ext_rel_end;
1876 unsigned int i;
1877
1878 /* Assume we are not going to need another pass. */
1879 *again = false;
1880
1881 /* If we are not generating an ECOFF file, this is much too
1882 confusing to deal with. */
1883 if (info->hash->creator->flavour != bfd_get_flavour (abfd))
1884 return true;
1885
1886 /* If there are no relocs, there is nothing to do. */
1887 if (sec->reloc_count == 0)
1888 return true;
1889
1890 /* We are only interested in PC relative relocs, and why would there
1891 ever be one from anything but the .text section? */
1892 if (strcmp (bfd_get_section_name (abfd, sec), ".text") != 0)
1893 return true;
1894
1895 /* Read in the relocs, if we haven't already got them. */
1896 section_tdata = ecoff_section_data (abfd, sec);
1897 if (section_tdata == (struct ecoff_section_tdata *) NULL
1898 || section_tdata->external_relocs == NULL)
1899 {
1900 if (! mips_read_relocs (abfd, sec))
1901 goto error_return;
1902 section_tdata = ecoff_section_data (abfd, sec);
1903 }
1904
1905 if (sec->_cooked_size == 0)
1906 {
1907 /* We must initialize _cooked_size only the first time we are
1908 called. */
1909 sec->_cooked_size = sec->_raw_size;
1910 }
1911
1912 contents = section_tdata->contents;
1913 offsets = section_tdata->offsets;
1914
1915 /* Look for any external PC relative relocs. Internal PC relative
1916 relocs are already correct in the object file, so they certainly
1917 can not overflow. */
1918 ext_rel = (struct external_reloc *) section_tdata->external_relocs;
1919 ext_rel_end = ext_rel + sec->reloc_count;
1920 for (i = 0; ext_rel < ext_rel_end; ext_rel++, i++)
1921 {
1922 struct internal_reloc int_rel;
1923 struct ecoff_link_hash_entry *h;
1924 asection *hsec;
1925 bfd_signed_vma relocation;
1926 struct external_reloc *adj_ext_rel;
1927 unsigned int adj_i;
1928 unsigned long ext_count;
1929 struct ecoff_link_hash_entry **adj_h_ptr;
1930 struct ecoff_link_hash_entry **adj_h_ptr_end;
1931 struct ecoff_value_adjust *adjust;
1932
1933 /* If we have already expanded this reloc, we certainly don't
1934 need to do it again. */
1935 if (offsets != (long *) NULL && offsets[i] == 1)
1936 continue;
1937
1938 /* Quickly check that this reloc is external PCREL16. */
1939 if (abfd->xvec->header_byteorder_big_p)
1940 {
1941 if ((ext_rel->r_bits[3] & RELOC_BITS3_EXTERN_BIG) == 0
1942 || (((ext_rel->r_bits[3] & RELOC_BITS3_TYPE_BIG)
1943 >> RELOC_BITS3_TYPE_SH_BIG)
1944 != MIPS_R_PCREL16))
1945 continue;
1946 }
1947 else
1948 {
1949 if ((ext_rel->r_bits[3] & RELOC_BITS3_EXTERN_LITTLE) == 0
1950 || (((ext_rel->r_bits[3] & RELOC_BITS3_TYPE_LITTLE)
1951 >> RELOC_BITS3_TYPE_SH_LITTLE)
1952 != MIPS_R_PCREL16))
1953 continue;
1954 }
1955
1956 mips_ecoff_swap_reloc_in (abfd, (PTR) ext_rel, &int_rel);
1957
1958 h = ecoff_data (abfd)->sym_hashes[int_rel.r_symndx];
1959 if (h == (struct ecoff_link_hash_entry *) NULL)
1960 abort ();
1961
1962 if (h->root.type != bfd_link_hash_defined
1963 && h->root.type != bfd_link_hash_defweak)
1964 {
1965 /* Just ignore undefined symbols. These will presumably
1966 generate an error later in the link. */
1967 continue;
1968 }
1969
1970 /* Get the value of the symbol. */
1971 hsec = h->root.u.def.section;
1972 relocation = (h->root.u.def.value
1973 + hsec->output_section->vma
1974 + hsec->output_offset);
1975
1976 /* Subtract out the current address. */
1977 relocation -= (sec->output_section->vma
1978 + sec->output_offset
1979 + (int_rel.r_vaddr - sec->vma));
1980
1981 /* The addend is stored in the object file. In the normal case
1982 of ``bal symbol'', the addend will be -4. It will only be
1983 different in the case of ``bal symbol+constant''. To avoid
1984 always reading in the section contents, we don't check the
1985 addend in the object file (we could easily check the contents
1986 if we happen to have already read them in, but I fear that
1987 this could be confusing). This means we will screw up if
1988 there is a branch to a symbol that is in range, but added to
1989 a constant which puts it out of range; in such a case the
1990 link will fail with a reloc overflow error. Since the
1991 compiler will never generate such code, it should be easy
1992 enough to work around it by changing the assembly code in the
1993 source file. */
1994 relocation -= 4;
1995
1996 /* Now RELOCATION is the number we want to put in the object
1997 file. See whether it fits. */
1998 if (relocation >= -0x20000 && relocation < 0x20000)
1999 continue;
2000
2001 /* Now that we know this reloc needs work, which will rarely
2002 happen, go ahead and grab the section contents. */
2003 if (contents == (bfd_byte *) NULL)
2004 {
2005 if (info->keep_memory)
2006 contents = (bfd_byte *) bfd_alloc (abfd, sec->_raw_size);
2007 else
2008 contents = (bfd_byte *) malloc ((size_t) sec->_raw_size);
2009 if (contents == (bfd_byte *) NULL)
2010 {
2011 bfd_set_error (bfd_error_no_memory);
2012 goto error_return;
2013 }
2014 if (! bfd_get_section_contents (abfd, sec, (PTR) contents,
2015 (file_ptr) 0, sec->_raw_size))
2016 goto error_return;
2017 if (info->keep_memory)
2018 section_tdata->contents = contents;
2019 }
2020
2021 /* We only support changing the bal instruction. It would be
2022 possible to handle other PC relative branches, but some of
2023 them (the conditional branches) would require a different
2024 length instruction sequence which would complicate both this
2025 routine and mips_relax_pcrel16. It could be written if
2026 somebody felt it were important. Ignoring this reloc will
2027 presumably cause a reloc overflow error later on. */
2028 if (bfd_get_32 (abfd, contents + int_rel.r_vaddr - sec->vma)
2029 != 0x0411ffff) /* bgezal $0,. == bal . */
2030 continue;
2031
2032 /* Bother. We need to expand this reloc, and we will need to
2033 make another relaxation pass since this change may put other
2034 relocs out of range. We need to examine the local branches
2035 and we need to allocate memory to hold the offsets we must
2036 add to them. We also need to adjust the values of all
2037 symbols in the object file following this location. */
2038
2039 sec->_cooked_size += PCREL16_EXPANSION_ADJUSTMENT;
2040 *again = true;
2041
2042 if (offsets == (long *) NULL)
2043 {
2044 size_t size;
2045
2046 size = sec->reloc_count * sizeof (long);
2047 offsets = (long *) bfd_alloc_by_size_t (abfd, size);
2048 if (offsets == (long *) NULL)
2049 {
2050 bfd_set_error (bfd_error_no_memory);
2051 goto error_return;
2052 }
2053 memset (offsets, 0, size);
2054 section_tdata->offsets = offsets;
2055 }
2056
2057 offsets[i] = 1;
2058
2059 /* Now look for all PC relative references that cross this reloc
2060 and adjust their offsets. */
2061 adj_ext_rel = (struct external_reloc *) section_tdata->external_relocs;
2062 for (adj_i = 0; adj_ext_rel < ext_rel_end; adj_ext_rel++, adj_i++)
2063 {
2064 struct internal_reloc adj_int_rel;
2065 bfd_vma start, stop;
2066 int change;
2067
2068 mips_ecoff_swap_reloc_in (abfd, (PTR) adj_ext_rel, &adj_int_rel);
2069
2070 if (adj_int_rel.r_type == MIPS_R_PCREL16)
2071 {
2072 unsigned long insn;
2073
2074 /* We only care about local references. External ones
2075 will be relocated correctly anyhow. */
2076 if (adj_int_rel.r_extern)
2077 continue;
2078
2079 /* We are only interested in a PC relative reloc within
2080 this section. FIXME: Cross section PC relative
2081 relocs may not be handled correctly; does anybody
2082 care? */
2083 if (adj_int_rel.r_symndx != RELOC_SECTION_TEXT)
2084 continue;
2085
2086 start = adj_int_rel.r_vaddr;
2087
2088 insn = bfd_get_32 (abfd,
2089 contents + adj_int_rel.r_vaddr - sec->vma);
2090
2091 stop = (insn & 0xffff) << 2;
2092 if ((stop & 0x20000) != 0)
2093 stop -= 0x40000;
2094 stop += adj_int_rel.r_vaddr + 4;
2095 }
2096 else if (adj_int_rel.r_type == MIPS_R_RELHI)
2097 {
2098 struct internal_reloc rello;
2099 long addhi, addlo;
2100
2101 /* The next reloc must be MIPS_R_RELLO, and we handle
2102 them together. */
2103 BFD_ASSERT (adj_ext_rel + 1 < ext_rel_end);
2104
2105 mips_ecoff_swap_reloc_in (abfd, (PTR) (adj_ext_rel + 1), &rello);
2106
2107 BFD_ASSERT (rello.r_type == MIPS_R_RELLO);
2108
2109 addhi = bfd_get_32 (abfd,
2110 contents + adj_int_rel.r_vaddr - sec->vma);
2111 addhi &= 0xffff;
2112 if (addhi & 0x8000)
2113 addhi -= 0x10000;
2114 addhi <<= 16;
2115
2116 addlo = bfd_get_32 (abfd, contents + rello.r_vaddr - sec->vma);
2117 addlo &= 0xffff;
2118 if (addlo & 0x8000)
2119 addlo -= 0x10000;
2120
2121 if (adj_int_rel.r_extern)
2122 {
2123 /* The value we want here is
2124 sym - RELLOaddr + addend
2125 which we can express as
2126 sym - (RELLOaddr - addend)
2127 Therefore if we are expanding the area between
2128 RELLOaddr and RELLOaddr - addend we must adjust
2129 the addend. This is admittedly ambiguous, since
2130 we might mean (sym + addend) - RELLOaddr, but in
2131 practice we don't, and there is no way to handle
2132 that case correctly since at this point we have
2133 no idea whether any reloc is being expanded
2134 between sym and sym + addend. */
2135 start = rello.r_vaddr - (addhi + addlo);
2136 stop = rello.r_vaddr;
2137 }
2138 else
2139 {
2140 /* An internal RELHI/RELLO pair represents the
2141 difference between two addresses, $LC0 - foo.
2142 The symndx value is actually the difference
2143 between the reloc address and $LC0. This lets us
2144 compute $LC0, and, by considering the addend,
2145 foo. If the reloc we are expanding falls between
2146 those two relocs, we must adjust the addend. At
2147 this point, the symndx value is actually in the
2148 r_offset field, where it was put by
2149 mips_ecoff_swap_reloc_in. */
2150 start = rello.r_vaddr - adj_int_rel.r_offset;
2151 stop = start + addhi + addlo;
2152 }
2153 }
2154 else if (adj_int_rel.r_type == MIPS_R_SWITCH)
2155 {
2156 /* A MIPS_R_SWITCH reloc represents a word of the form
2157 .word $L3-$LS12
2158 The value in the object file is correct, assuming the
2159 original value of $L3. The symndx value is actually
2160 the difference between the reloc address and $LS12.
2161 This lets us compute the original value of $LS12 as
2162 vaddr - symndx
2163 and the original value of $L3 as
2164 vaddr - symndx + addend
2165 where addend is the value from the object file. At
2166 this point, the symndx value is actually found in the
2167 r_offset field, since it was moved by
2168 mips_ecoff_swap_reloc_in. */
2169 start = adj_int_rel.r_vaddr - adj_int_rel.r_offset;
2170 stop = start + bfd_get_32 (abfd,
2171 (contents
2172 + adj_int_rel.r_vaddr
2173 - sec->vma));
2174 }
2175 else
2176 continue;
2177
2178 /* If the range expressed by this reloc, which is the
2179 distance between START and STOP crosses the reloc we are
2180 expanding, we must adjust the offset. The sign of the
2181 adjustment depends upon the direction in which the range
2182 crosses the reloc being expanded. */
2183 if (start <= int_rel.r_vaddr && stop > int_rel.r_vaddr)
2184 change = PCREL16_EXPANSION_ADJUSTMENT;
2185 else if (start > int_rel.r_vaddr && stop <= int_rel.r_vaddr)
2186 change = - PCREL16_EXPANSION_ADJUSTMENT;
2187 else
2188 change = 0;
2189
2190 offsets[adj_i] += change;
2191
2192 if (adj_int_rel.r_type == MIPS_R_RELHI)
2193 {
2194 adj_ext_rel++;
2195 adj_i++;
2196 offsets[adj_i] += change;
2197 }
2198 }
2199
2200 /* Find all symbols in this section defined by this object file
2201 and adjust their values. Note that we decide whether to
2202 adjust the value based on the value stored in the ECOFF EXTR
2203 structure, because the value stored in the hash table may
2204 have been changed by an earlier expanded reloc and thus may
2205 no longer correctly indicate whether the symbol is before or
2206 after the expanded reloc. */
2207 ext_count = ecoff_data (abfd)->debug_info.symbolic_header.iextMax;
2208 adj_h_ptr = ecoff_data (abfd)->sym_hashes;
2209 adj_h_ptr_end = adj_h_ptr + ext_count;
2210 for (; adj_h_ptr < adj_h_ptr_end; adj_h_ptr++)
2211 {
2212 struct ecoff_link_hash_entry *adj_h;
2213
2214 adj_h = *adj_h_ptr;
2215 if (adj_h != (struct ecoff_link_hash_entry *) NULL
2216 && (adj_h->root.type == bfd_link_hash_defined
2217 || adj_h->root.type == bfd_link_hash_defweak)
2218 && adj_h->root.u.def.section == sec
2219 && adj_h->esym.asym.value > int_rel.r_vaddr)
2220 adj_h->root.u.def.value += PCREL16_EXPANSION_ADJUSTMENT;
2221 }
2222
2223 /* Add an entry to the symbol value adjust list. This is used
2224 by bfd_ecoff_debug_accumulate to adjust the values of
2225 internal symbols and FDR's. */
2226 adjust = ((struct ecoff_value_adjust *)
2227 bfd_alloc (abfd, sizeof (struct ecoff_value_adjust)));
2228 if (adjust == (struct ecoff_value_adjust *) NULL)
2229 {
2230 bfd_set_error (bfd_error_no_memory);
2231 goto error_return;
2232 }
2233
2234 adjust->start = int_rel.r_vaddr;
2235 adjust->end = sec->vma + sec->_raw_size;
2236 adjust->adjust = PCREL16_EXPANSION_ADJUSTMENT;
2237
2238 adjust->next = ecoff_data (abfd)->debug_info.adjust;
2239 ecoff_data (abfd)->debug_info.adjust = adjust;
2240 }
2241
2242 if (contents != (bfd_byte *) NULL && ! info->keep_memory)
2243 free (contents);
2244
2245 return true;
2246
2247 error_return:
2248 if (contents != (bfd_byte *) NULL && ! info->keep_memory)
2249 free (contents);
2250 return false;
2251 }
2252
2253 /* This routine is called from mips_relocate_section when a PC
2254 relative reloc must be expanded into the five instruction sequence.
2255 It handles all the details of the expansion, including resolving
2256 the reloc. */
2257
2258 static boolean
2259 mips_relax_pcrel16 (info, input_bfd, input_section, h, location, address)
2260 struct bfd_link_info *info;
2261 bfd *input_bfd;
2262 asection *input_section;
2263 struct ecoff_link_hash_entry *h;
2264 bfd_byte *location;
2265 bfd_vma address;
2266 {
2267 bfd_vma relocation;
2268
2269 /* 0x0411ffff is bgezal $0,. == bal . */
2270 BFD_ASSERT (bfd_get_32 (input_bfd, location) == 0x0411ffff);
2271
2272 /* We need to compute the distance between the symbol and the
2273 current address plus eight. */
2274 relocation = (h->root.u.def.value
2275 + h->root.u.def.section->output_section->vma
2276 + h->root.u.def.section->output_offset);
2277 relocation -= address + 8;
2278
2279 /* If the lower half is negative, increment the upper 16 half. */
2280 if ((relocation & 0x8000) != 0)
2281 relocation += 0x10000;
2282
2283 bfd_put_32 (input_bfd, 0x04110001, location); /* bal .+8 */
2284 bfd_put_32 (input_bfd,
2285 0x3c010000 | ((relocation >> 16) & 0xffff), /* lui $at,XX */
2286 location + 4);
2287 bfd_put_32 (input_bfd,
2288 0x24210000 | (relocation & 0xffff), /* addiu $at,$at,XX */
2289 location + 8);
2290 bfd_put_32 (input_bfd, 0x003f0821, location + 12); /* addu $at,$at,$ra */
2291 bfd_put_32 (input_bfd, 0x0020f809, location + 16); /* jalr $at */
2292
2293 return true;
2294 }
2295
2296 /* Given a .sdata section and a .rel.sdata in-memory section, store
2297 relocation information into the .rel.sdata section which can be
2298 used at runtime to relocate the section. This is called by the
2299 linker when the --embedded-relocs switch is used. This is called
2300 after the add_symbols entry point has been called for all the
2301 objects, and before the final_link entry point is called. This
2302 function presumes that the object was compiled using
2303 -membedded-pic. */
2304
2305 boolean
2306 bfd_mips_ecoff_create_embedded_relocs (abfd, info, datasec, relsec, errmsg)
2307 bfd *abfd;
2308 struct bfd_link_info *info;
2309 asection *datasec;
2310 asection *relsec;
2311 char **errmsg;
2312 {
2313 struct ecoff_link_hash_entry **sym_hashes;
2314 struct ecoff_section_tdata *section_tdata;
2315 struct external_reloc *ext_rel;
2316 struct external_reloc *ext_rel_end;
2317 bfd_byte *p;
2318
2319 BFD_ASSERT (! info->relocateable);
2320
2321 *errmsg = NULL;
2322
2323 if (datasec->reloc_count == 0)
2324 return true;
2325
2326 sym_hashes = ecoff_data (abfd)->sym_hashes;
2327
2328 if (! mips_read_relocs (abfd, datasec))
2329 return false;
2330
2331 relsec->contents = (bfd_byte *) bfd_alloc (abfd, datasec->reloc_count * 4);
2332 if (relsec->contents == NULL)
2333 {
2334 bfd_set_error (bfd_error_no_memory);
2335 return false;
2336 }
2337
2338 p = relsec->contents;
2339
2340 section_tdata = ecoff_section_data (abfd, datasec);
2341 ext_rel = (struct external_reloc *) section_tdata->external_relocs;
2342 ext_rel_end = ext_rel + datasec->reloc_count;
2343 for (; ext_rel < ext_rel_end; ext_rel++, p += 4)
2344 {
2345 struct internal_reloc int_rel;
2346 boolean text_relative;
2347
2348 mips_ecoff_swap_reloc_in (abfd, (PTR) ext_rel, &int_rel);
2349
2350 /* We are going to write a four byte word into the runtime reloc
2351 section. The word will be the address in the data section
2352 which must be relocated. This must be on a word boundary,
2353 which means the lower two bits must be zero. We use the
2354 least significant bit to indicate how the value in the data
2355 section must be relocated. A 0 means that the value is
2356 relative to the text section, while a 1 indicates that the
2357 value is relative to the data section. Given that we are
2358 assuming the code was compiled using -membedded-pic, there
2359 should not be any other possibilities. */
2360
2361 /* We can only relocate REFWORD relocs at run time. */
2362 if (int_rel.r_type != MIPS_R_REFWORD)
2363 {
2364 *errmsg = "unsupported reloc type";
2365 bfd_set_error (bfd_error_bad_value);
2366 return false;
2367 }
2368
2369 if (int_rel.r_extern)
2370 {
2371 struct ecoff_link_hash_entry *h;
2372
2373 h = sym_hashes[int_rel.r_symndx];
2374 /* If h is NULL, that means that there is a reloc against an
2375 external symbol which we thought was just a debugging
2376 symbol. This should not happen. */
2377 if (h == (struct ecoff_link_hash_entry *) NULL)
2378 abort ();
2379 if ((h->root.type == bfd_link_hash_defined
2380 || h->root.type == bfd_link_hash_defweak)
2381 && (h->root.u.def.section->flags & SEC_CODE) != 0)
2382 text_relative = true;
2383 else
2384 text_relative = false;
2385 }
2386 else
2387 {
2388 switch (int_rel.r_symndx)
2389 {
2390 case RELOC_SECTION_TEXT:
2391 text_relative = true;
2392 break;
2393 case RELOC_SECTION_SDATA:
2394 case RELOC_SECTION_SBSS:
2395 case RELOC_SECTION_LIT8:
2396 text_relative = false;
2397 break;
2398 default:
2399 /* No other sections should appear in -membedded-pic
2400 code. */
2401 *errmsg = "reloc against unsupported section";
2402 bfd_set_error (bfd_error_bad_value);
2403 return false;
2404 }
2405 }
2406
2407 if ((int_rel.r_offset & 3) != 0)
2408 {
2409 *errmsg = "reloc not properly aligned";
2410 bfd_set_error (bfd_error_bad_value);
2411 return false;
2412 }
2413
2414 bfd_put_32 (abfd,
2415 (int_rel.r_vaddr - datasec->vma + datasec->output_offset
2416 + (text_relative ? 0 : 1)),
2417 p);
2418 }
2419
2420 return true;
2421 }
2422 \f
2423 /* This is the ECOFF backend structure. The backend field of the
2424 target vector points to this. */
2425
2426 static const struct ecoff_backend_data mips_ecoff_backend_data =
2427 {
2428 /* COFF backend structure. */
2429 {
2430 (void (*) PARAMS ((bfd *,PTR,int,int,int,int,PTR))) bfd_void, /* aux_in */
2431 (void (*) PARAMS ((bfd *,PTR,PTR))) bfd_void, /* sym_in */
2432 (void (*) PARAMS ((bfd *,PTR,PTR))) bfd_void, /* lineno_in */
2433 (unsigned (*) PARAMS ((bfd *,PTR,int,int,int,int,PTR)))bfd_void,/*aux_out*/
2434 (unsigned (*) PARAMS ((bfd *,PTR,PTR))) bfd_void, /* sym_out */
2435 (unsigned (*) PARAMS ((bfd *,PTR,PTR))) bfd_void, /* lineno_out */
2436 (unsigned (*) PARAMS ((bfd *,PTR,PTR))) bfd_void, /* reloc_out */
2437 mips_ecoff_swap_filehdr_out, mips_ecoff_swap_aouthdr_out,
2438 mips_ecoff_swap_scnhdr_out,
2439 FILHSZ, AOUTSZ, SCNHSZ, 0, 0, 0, 0, true,
2440 mips_ecoff_swap_filehdr_in, mips_ecoff_swap_aouthdr_in,
2441 mips_ecoff_swap_scnhdr_in, NULL,
2442 mips_ecoff_bad_format_hook, _bfd_ecoff_set_arch_mach_hook,
2443 _bfd_ecoff_mkobject_hook, _bfd_ecoff_styp_to_sec_flags,
2444 _bfd_ecoff_set_alignment_hook, _bfd_ecoff_slurp_symbol_table,
2445 NULL, NULL, NULL, NULL, NULL, NULL, NULL
2446 },
2447 /* Supported architecture. */
2448 bfd_arch_mips,
2449 /* Initial portion of armap string. */
2450 "__________",
2451 /* The page boundary used to align sections in a demand-paged
2452 executable file. E.g., 0x1000. */
2453 0x1000,
2454 /* True if the .rdata section is part of the text segment, as on the
2455 Alpha. False if .rdata is part of the data segment, as on the
2456 MIPS. */
2457 false,
2458 /* Bitsize of constructor entries. */
2459 32,
2460 /* Reloc to use for constructor entries. */
2461 &mips_howto_table[MIPS_R_REFWORD],
2462 {
2463 /* Symbol table magic number. */
2464 magicSym,
2465 /* Alignment of debugging information. E.g., 4. */
2466 4,
2467 /* Sizes of external symbolic information. */
2468 sizeof (struct hdr_ext),
2469 sizeof (struct dnr_ext),
2470 sizeof (struct pdr_ext),
2471 sizeof (struct sym_ext),
2472 sizeof (struct opt_ext),
2473 sizeof (struct fdr_ext),
2474 sizeof (struct rfd_ext),
2475 sizeof (struct ext_ext),
2476 /* Functions to swap in external symbolic data. */
2477 ecoff_swap_hdr_in,
2478 ecoff_swap_dnr_in,
2479 ecoff_swap_pdr_in,
2480 ecoff_swap_sym_in,
2481 ecoff_swap_opt_in,
2482 ecoff_swap_fdr_in,
2483 ecoff_swap_rfd_in,
2484 ecoff_swap_ext_in,
2485 _bfd_ecoff_swap_tir_in,
2486 _bfd_ecoff_swap_rndx_in,
2487 /* Functions to swap out external symbolic data. */
2488 ecoff_swap_hdr_out,
2489 ecoff_swap_dnr_out,
2490 ecoff_swap_pdr_out,
2491 ecoff_swap_sym_out,
2492 ecoff_swap_opt_out,
2493 ecoff_swap_fdr_out,
2494 ecoff_swap_rfd_out,
2495 ecoff_swap_ext_out,
2496 _bfd_ecoff_swap_tir_out,
2497 _bfd_ecoff_swap_rndx_out,
2498 /* Function to read in symbolic data. */
2499 _bfd_ecoff_slurp_symbolic_info
2500 },
2501 /* External reloc size. */
2502 RELSZ,
2503 /* Reloc swapping functions. */
2504 mips_ecoff_swap_reloc_in,
2505 mips_ecoff_swap_reloc_out,
2506 /* Backend reloc tweaking. */
2507 mips_adjust_reloc_in,
2508 mips_adjust_reloc_out,
2509 /* Relocate section contents while linking. */
2510 mips_relocate_section,
2511 /* Do final adjustments to filehdr and aouthdr. */
2512 NULL
2513 };
2514
2515 /* Looking up a reloc type is MIPS specific. */
2516 #define _bfd_ecoff_bfd_reloc_type_lookup mips_bfd_reloc_type_lookup
2517
2518 /* Getting relocated section contents is generic. */
2519 #define _bfd_ecoff_bfd_get_relocated_section_contents \
2520 bfd_generic_get_relocated_section_contents
2521
2522 /* Relaxing sections is MIPS specific. */
2523 #define _bfd_ecoff_bfd_relax_section mips_relax_section
2524
2525 const bfd_target ecoff_little_vec =
2526 {
2527 "ecoff-littlemips", /* name */
2528 bfd_target_ecoff_flavour,
2529 false, /* data byte order is little */
2530 false, /* header byte order is little */
2531
2532 (HAS_RELOC | EXEC_P | /* object flags */
2533 HAS_LINENO | HAS_DEBUG |
2534 HAS_SYMS | HAS_LOCALS | WP_TEXT | D_PAGED),
2535
2536 (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD | SEC_RELOC | SEC_CODE | SEC_DATA),
2537 0, /* leading underscore */
2538 ' ', /* ar_pad_char */
2539 15, /* ar_max_namelen */
2540 bfd_getl64, bfd_getl_signed_64, bfd_putl64,
2541 bfd_getl32, bfd_getl_signed_32, bfd_putl32,
2542 bfd_getl16, bfd_getl_signed_16, bfd_putl16, /* data */
2543 bfd_getl64, bfd_getl_signed_64, bfd_putl64,
2544 bfd_getl32, bfd_getl_signed_32, bfd_putl32,
2545 bfd_getl16, bfd_getl_signed_16, bfd_putl16, /* hdrs */
2546
2547 {_bfd_dummy_target, coff_object_p, /* bfd_check_format */
2548 _bfd_ecoff_archive_p, _bfd_dummy_target},
2549 {bfd_false, _bfd_ecoff_mkobject, /* bfd_set_format */
2550 _bfd_generic_mkarchive, bfd_false},
2551 {bfd_false, _bfd_ecoff_write_object_contents, /* bfd_write_contents */
2552 _bfd_write_archive_contents, bfd_false},
2553
2554 BFD_JUMP_TABLE_GENERIC (_bfd_ecoff),
2555 BFD_JUMP_TABLE_COPY (_bfd_ecoff),
2556 BFD_JUMP_TABLE_CORE (_bfd_nocore),
2557 BFD_JUMP_TABLE_ARCHIVE (_bfd_ecoff),
2558 BFD_JUMP_TABLE_SYMBOLS (_bfd_ecoff),
2559 BFD_JUMP_TABLE_RELOCS (_bfd_ecoff),
2560 BFD_JUMP_TABLE_WRITE (_bfd_ecoff),
2561 BFD_JUMP_TABLE_LINK (_bfd_ecoff),
2562 BFD_JUMP_TABLE_DYNAMIC (_bfd_nodynamic),
2563
2564 (PTR) &mips_ecoff_backend_data
2565 };
2566
2567 const bfd_target ecoff_big_vec =
2568 {
2569 "ecoff-bigmips", /* name */
2570 bfd_target_ecoff_flavour,
2571 true, /* data byte order is big */
2572 true, /* header byte order is big */
2573
2574 (HAS_RELOC | EXEC_P | /* object flags */
2575 HAS_LINENO | HAS_DEBUG |
2576 HAS_SYMS | HAS_LOCALS | WP_TEXT | D_PAGED),
2577
2578 (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD | SEC_RELOC | SEC_CODE | SEC_DATA),
2579 0, /* leading underscore */
2580 ' ', /* ar_pad_char */
2581 15, /* ar_max_namelen */
2582 bfd_getb64, bfd_getb_signed_64, bfd_putb64,
2583 bfd_getb32, bfd_getb_signed_32, bfd_putb32,
2584 bfd_getb16, bfd_getb_signed_16, bfd_putb16,
2585 bfd_getb64, bfd_getb_signed_64, bfd_putb64,
2586 bfd_getb32, bfd_getb_signed_32, bfd_putb32,
2587 bfd_getb16, bfd_getb_signed_16, bfd_putb16,
2588 {_bfd_dummy_target, coff_object_p, /* bfd_check_format */
2589 _bfd_ecoff_archive_p, _bfd_dummy_target},
2590 {bfd_false, _bfd_ecoff_mkobject, /* bfd_set_format */
2591 _bfd_generic_mkarchive, bfd_false},
2592 {bfd_false, _bfd_ecoff_write_object_contents, /* bfd_write_contents */
2593 _bfd_write_archive_contents, bfd_false},
2594
2595 BFD_JUMP_TABLE_GENERIC (_bfd_ecoff),
2596 BFD_JUMP_TABLE_COPY (_bfd_ecoff),
2597 BFD_JUMP_TABLE_CORE (_bfd_nocore),
2598 BFD_JUMP_TABLE_ARCHIVE (_bfd_ecoff),
2599 BFD_JUMP_TABLE_SYMBOLS (_bfd_ecoff),
2600 BFD_JUMP_TABLE_RELOCS (_bfd_ecoff),
2601 BFD_JUMP_TABLE_WRITE (_bfd_ecoff),
2602 BFD_JUMP_TABLE_LINK (_bfd_ecoff),
2603 BFD_JUMP_TABLE_DYNAMIC (_bfd_nodynamic),
2604
2605 (PTR) &mips_ecoff_backend_data
2606 };
This page took 0.095842 seconds and 4 git commands to generate.