1 /* BFD back-end for Renesas Super-H COFF binaries.
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004, 2005, 2007, 2008, 2009 Free Software Foundation, Inc.
4 Contributed by Cygnus Support.
5 Written by Steve Chamberlain, <sac@cygnus.com>.
6 Relaxing code written by Ian Lance Taylor, <ian@cygnus.com>.
8 This file is part of BFD, the Binary File Descriptor library.
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
23 MA 02110-1301, USA. */
27 #include "libiberty.h"
31 #include "coff/internal.h"
33 #undef bfd_pe_print_pdata
38 #ifndef COFF_IMAGE_WITH_PE
39 static bfd_boolean sh_align_load_span
40 PARAMS ((bfd
*, asection
*, bfd_byte
*,
41 bfd_boolean (*) (bfd
*, asection
*, PTR
, bfd_byte
*, bfd_vma
),
42 PTR
, bfd_vma
**, bfd_vma
*, bfd_vma
, bfd_vma
, bfd_boolean
*));
44 #define _bfd_sh_align_load_span sh_align_load_span
47 #define bfd_pe_print_pdata _bfd_pe_print_ce_compressed_pdata
51 #define bfd_pe_print_pdata NULL
53 #endif /* COFF_WITH_PE. */
57 /* Internal functions. */
58 static bfd_reloc_status_type sh_reloc
59 PARAMS ((bfd
*, arelent
*, asymbol
*, PTR
, asection
*, bfd
*, char **));
60 static long get_symbol_value
PARAMS ((asymbol
*));
61 static bfd_boolean sh_relax_section
62 PARAMS ((bfd
*, asection
*, struct bfd_link_info
*, bfd_boolean
*));
63 static bfd_boolean sh_relax_delete_bytes
64 PARAMS ((bfd
*, asection
*, bfd_vma
, int));
65 #ifndef COFF_IMAGE_WITH_PE
66 static const struct sh_opcode
*sh_insn_info
PARAMS ((unsigned int));
68 static bfd_boolean sh_align_loads
69 PARAMS ((bfd
*, asection
*, struct internal_reloc
*, bfd_byte
*,
71 static bfd_boolean sh_swap_insns
72 PARAMS ((bfd
*, asection
*, PTR
, bfd_byte
*, bfd_vma
));
73 static bfd_boolean sh_relocate_section
74 PARAMS ((bfd
*, struct bfd_link_info
*, bfd
*, asection
*, bfd_byte
*,
75 struct internal_reloc
*, struct internal_syment
*, asection
**));
76 static bfd_byte
*sh_coff_get_relocated_section_contents
77 PARAMS ((bfd
*, struct bfd_link_info
*, struct bfd_link_order
*,
78 bfd_byte
*, bfd_boolean
, asymbol
**));
79 static reloc_howto_type
* sh_coff_reloc_type_lookup
PARAMS ((bfd
*, bfd_reloc_code_real_type
));
82 /* Can't build import tables with 2**4 alignment. */
83 #define COFF_DEFAULT_SECTION_ALIGNMENT_POWER 2
85 /* Default section alignment to 2**4. */
86 #define COFF_DEFAULT_SECTION_ALIGNMENT_POWER 4
89 #ifdef COFF_IMAGE_WITH_PE
90 /* Align PE executables. */
91 #define COFF_PAGE_SIZE 0x1000
94 /* Generate long file names. */
95 #define COFF_LONG_FILENAMES
98 static bfd_boolean in_reloc_p
PARAMS ((bfd
*, reloc_howto_type
*));
99 /* Return TRUE if this relocation should
100 appear in the output .reloc section. */
101 static bfd_boolean
in_reloc_p (abfd
, howto
)
102 bfd
* abfd ATTRIBUTE_UNUSED
;
103 reloc_howto_type
* howto
;
105 return ! howto
->pc_relative
&& howto
->type
!= R_SH_IMAGEBASE
;
109 /* The supported relocations. There are a lot of relocations defined
110 in coff/internal.h which we do not expect to ever see. */
111 static reloc_howto_type sh_coff_howtos
[] =
117 HOWTO (R_SH_IMM32CE
, /* type */
119 2, /* size (0 = byte, 1 = short, 2 = long) */
121 FALSE
, /* pc_relative */
123 complain_overflow_bitfield
, /* complain_on_overflow */
124 sh_reloc
, /* special_function */
125 "r_imm32ce", /* name */
126 TRUE
, /* partial_inplace */
127 0xffffffff, /* src_mask */
128 0xffffffff, /* dst_mask */
129 FALSE
), /* pcrel_offset */
133 EMPTY_HOWTO (3), /* R_SH_PCREL8 */
134 EMPTY_HOWTO (4), /* R_SH_PCREL16 */
135 EMPTY_HOWTO (5), /* R_SH_HIGH8 */
136 EMPTY_HOWTO (6), /* R_SH_IMM24 */
137 EMPTY_HOWTO (7), /* R_SH_LOW16 */
139 EMPTY_HOWTO (9), /* R_SH_PCDISP8BY4 */
141 HOWTO (R_SH_PCDISP8BY2
, /* type */
143 1, /* size (0 = byte, 1 = short, 2 = long) */
145 TRUE
, /* pc_relative */
147 complain_overflow_signed
, /* complain_on_overflow */
148 sh_reloc
, /* special_function */
149 "r_pcdisp8by2", /* name */
150 TRUE
, /* partial_inplace */
153 TRUE
), /* pcrel_offset */
155 EMPTY_HOWTO (11), /* R_SH_PCDISP8 */
157 HOWTO (R_SH_PCDISP
, /* type */
159 1, /* size (0 = byte, 1 = short, 2 = long) */
161 TRUE
, /* pc_relative */
163 complain_overflow_signed
, /* complain_on_overflow */
164 sh_reloc
, /* special_function */
165 "r_pcdisp12by2", /* name */
166 TRUE
, /* partial_inplace */
167 0xfff, /* src_mask */
168 0xfff, /* dst_mask */
169 TRUE
), /* pcrel_offset */
173 HOWTO (R_SH_IMM32
, /* type */
175 2, /* size (0 = byte, 1 = short, 2 = long) */
177 FALSE
, /* pc_relative */
179 complain_overflow_bitfield
, /* complain_on_overflow */
180 sh_reloc
, /* special_function */
181 "r_imm32", /* name */
182 TRUE
, /* partial_inplace */
183 0xffffffff, /* src_mask */
184 0xffffffff, /* dst_mask */
185 FALSE
), /* pcrel_offset */
189 HOWTO (R_SH_IMAGEBASE
, /* type */
191 2, /* size (0 = byte, 1 = short, 2 = long) */
193 FALSE
, /* pc_relative */
195 complain_overflow_bitfield
, /* complain_on_overflow */
196 sh_reloc
, /* special_function */
198 TRUE
, /* partial_inplace */
199 0xffffffff, /* src_mask */
200 0xffffffff, /* dst_mask */
201 FALSE
), /* pcrel_offset */
203 EMPTY_HOWTO (16), /* R_SH_IMM8 */
205 EMPTY_HOWTO (17), /* R_SH_IMM8BY2 */
206 EMPTY_HOWTO (18), /* R_SH_IMM8BY4 */
207 EMPTY_HOWTO (19), /* R_SH_IMM4 */
208 EMPTY_HOWTO (20), /* R_SH_IMM4BY2 */
209 EMPTY_HOWTO (21), /* R_SH_IMM4BY4 */
211 HOWTO (R_SH_PCRELIMM8BY2
, /* type */
213 1, /* size (0 = byte, 1 = short, 2 = long) */
215 TRUE
, /* pc_relative */
217 complain_overflow_unsigned
, /* complain_on_overflow */
218 sh_reloc
, /* special_function */
219 "r_pcrelimm8by2", /* name */
220 TRUE
, /* partial_inplace */
223 TRUE
), /* pcrel_offset */
225 HOWTO (R_SH_PCRELIMM8BY4
, /* type */
227 1, /* size (0 = byte, 1 = short, 2 = long) */
229 TRUE
, /* pc_relative */
231 complain_overflow_unsigned
, /* complain_on_overflow */
232 sh_reloc
, /* special_function */
233 "r_pcrelimm8by4", /* name */
234 TRUE
, /* partial_inplace */
237 TRUE
), /* pcrel_offset */
239 HOWTO (R_SH_IMM16
, /* type */
241 1, /* size (0 = byte, 1 = short, 2 = long) */
243 FALSE
, /* pc_relative */
245 complain_overflow_bitfield
, /* complain_on_overflow */
246 sh_reloc
, /* special_function */
247 "r_imm16", /* name */
248 TRUE
, /* partial_inplace */
249 0xffff, /* src_mask */
250 0xffff, /* dst_mask */
251 FALSE
), /* pcrel_offset */
253 HOWTO (R_SH_SWITCH16
, /* type */
255 1, /* size (0 = byte, 1 = short, 2 = long) */
257 FALSE
, /* pc_relative */
259 complain_overflow_bitfield
, /* complain_on_overflow */
260 sh_reloc
, /* special_function */
261 "r_switch16", /* name */
262 TRUE
, /* partial_inplace */
263 0xffff, /* src_mask */
264 0xffff, /* dst_mask */
265 FALSE
), /* pcrel_offset */
267 HOWTO (R_SH_SWITCH32
, /* type */
269 2, /* size (0 = byte, 1 = short, 2 = long) */
271 FALSE
, /* pc_relative */
273 complain_overflow_bitfield
, /* complain_on_overflow */
274 sh_reloc
, /* special_function */
275 "r_switch32", /* name */
276 TRUE
, /* partial_inplace */
277 0xffffffff, /* src_mask */
278 0xffffffff, /* dst_mask */
279 FALSE
), /* pcrel_offset */
281 HOWTO (R_SH_USES
, /* type */
283 1, /* size (0 = byte, 1 = short, 2 = long) */
285 FALSE
, /* pc_relative */
287 complain_overflow_bitfield
, /* complain_on_overflow */
288 sh_reloc
, /* special_function */
290 TRUE
, /* partial_inplace */
291 0xffff, /* src_mask */
292 0xffff, /* dst_mask */
293 FALSE
), /* pcrel_offset */
295 HOWTO (R_SH_COUNT
, /* type */
297 2, /* size (0 = byte, 1 = short, 2 = long) */
299 FALSE
, /* pc_relative */
301 complain_overflow_bitfield
, /* complain_on_overflow */
302 sh_reloc
, /* special_function */
303 "r_count", /* name */
304 TRUE
, /* partial_inplace */
305 0xffffffff, /* src_mask */
306 0xffffffff, /* dst_mask */
307 FALSE
), /* pcrel_offset */
309 HOWTO (R_SH_ALIGN
, /* type */
311 2, /* size (0 = byte, 1 = short, 2 = long) */
313 FALSE
, /* pc_relative */
315 complain_overflow_bitfield
, /* complain_on_overflow */
316 sh_reloc
, /* special_function */
317 "r_align", /* name */
318 TRUE
, /* partial_inplace */
319 0xffffffff, /* src_mask */
320 0xffffffff, /* dst_mask */
321 FALSE
), /* pcrel_offset */
323 HOWTO (R_SH_CODE
, /* type */
325 2, /* size (0 = byte, 1 = short, 2 = long) */
327 FALSE
, /* pc_relative */
329 complain_overflow_bitfield
, /* complain_on_overflow */
330 sh_reloc
, /* special_function */
332 TRUE
, /* partial_inplace */
333 0xffffffff, /* src_mask */
334 0xffffffff, /* dst_mask */
335 FALSE
), /* pcrel_offset */
337 HOWTO (R_SH_DATA
, /* type */
339 2, /* size (0 = byte, 1 = short, 2 = long) */
341 FALSE
, /* pc_relative */
343 complain_overflow_bitfield
, /* complain_on_overflow */
344 sh_reloc
, /* special_function */
346 TRUE
, /* partial_inplace */
347 0xffffffff, /* src_mask */
348 0xffffffff, /* dst_mask */
349 FALSE
), /* pcrel_offset */
351 HOWTO (R_SH_LABEL
, /* type */
353 2, /* size (0 = byte, 1 = short, 2 = long) */
355 FALSE
, /* pc_relative */
357 complain_overflow_bitfield
, /* complain_on_overflow */
358 sh_reloc
, /* special_function */
359 "r_label", /* name */
360 TRUE
, /* partial_inplace */
361 0xffffffff, /* src_mask */
362 0xffffffff, /* dst_mask */
363 FALSE
), /* pcrel_offset */
365 HOWTO (R_SH_SWITCH8
, /* type */
367 0, /* size (0 = byte, 1 = short, 2 = long) */
369 FALSE
, /* pc_relative */
371 complain_overflow_bitfield
, /* complain_on_overflow */
372 sh_reloc
, /* special_function */
373 "r_switch8", /* name */
374 TRUE
, /* partial_inplace */
377 FALSE
) /* pcrel_offset */
380 #define SH_COFF_HOWTO_COUNT (sizeof sh_coff_howtos / sizeof sh_coff_howtos[0])
382 /* Check for a bad magic number. */
383 #define BADMAG(x) SHBADMAG(x)
385 /* Customize coffcode.h (this is not currently used). */
388 /* FIXME: This should not be set here. */
389 #define __A_MAGIC_SET__
392 /* Swap the r_offset field in and out. */
393 #define SWAP_IN_RELOC_OFFSET H_GET_32
394 #define SWAP_OUT_RELOC_OFFSET H_PUT_32
396 /* Swap out extra information in the reloc structure. */
397 #define SWAP_OUT_RELOC_EXTRA(abfd, src, dst) \
400 dst->r_stuff[0] = 'S'; \
401 dst->r_stuff[1] = 'C'; \
406 /* Get the value of a symbol, when performing a relocation. */
409 get_symbol_value (symbol
)
414 if (bfd_is_com_section (symbol
->section
))
417 relocation
= (symbol
->value
+
418 symbol
->section
->output_section
->vma
+
419 symbol
->section
->output_offset
);
425 /* Convert an rtype to howto for the COFF backend linker.
426 Copied from coff-i386. */
427 #define coff_rtype_to_howto coff_sh_rtype_to_howto
428 static reloc_howto_type
* coff_sh_rtype_to_howto
PARAMS ((bfd
*, asection
*, struct internal_reloc
*, struct coff_link_hash_entry
*, struct internal_syment
*, bfd_vma
*));
430 static reloc_howto_type
*
431 coff_sh_rtype_to_howto (abfd
, sec
, rel
, h
, sym
, addendp
)
432 bfd
* abfd ATTRIBUTE_UNUSED
;
434 struct internal_reloc
* rel
;
435 struct coff_link_hash_entry
* h
;
436 struct internal_syment
* sym
;
439 reloc_howto_type
* howto
;
441 howto
= sh_coff_howtos
+ rel
->r_type
;
445 if (howto
->pc_relative
)
446 *addendp
+= sec
->vma
;
448 if (sym
!= NULL
&& sym
->n_scnum
== 0 && sym
->n_value
!= 0)
450 /* This is a common symbol. The section contents include the
451 size (sym->n_value) as an addend. The relocate_section
452 function will be adding in the final value of the symbol. We
453 need to subtract out the current size in order to get the
455 BFD_ASSERT (h
!= NULL
);
458 if (howto
->pc_relative
)
462 /* If the symbol is defined, then the generic code is going to
463 add back the symbol value in order to cancel out an
464 adjustment it made to the addend. However, we set the addend
465 to 0 at the start of this function. We need to adjust here,
466 to avoid the adjustment the generic code will make. FIXME:
467 This is getting a bit hackish. */
468 if (sym
!= NULL
&& sym
->n_scnum
!= 0)
469 *addendp
-= sym
->n_value
;
472 if (rel
->r_type
== R_SH_IMAGEBASE
)
473 *addendp
-= pe_data (sec
->output_section
->owner
)->pe_opthdr
.ImageBase
;
478 #endif /* COFF_WITH_PE */
480 /* This structure is used to map BFD reloc codes to SH PE relocs. */
481 struct shcoff_reloc_map
483 bfd_reloc_code_real_type bfd_reloc_val
;
484 unsigned char shcoff_reloc_val
;
488 /* An array mapping BFD reloc codes to SH PE relocs. */
489 static const struct shcoff_reloc_map sh_reloc_map
[] =
491 { BFD_RELOC_32
, R_SH_IMM32CE
},
492 { BFD_RELOC_RVA
, R_SH_IMAGEBASE
},
493 { BFD_RELOC_CTOR
, R_SH_IMM32CE
},
496 /* An array mapping BFD reloc codes to SH PE relocs. */
497 static const struct shcoff_reloc_map sh_reloc_map
[] =
499 { BFD_RELOC_32
, R_SH_IMM32
},
500 { BFD_RELOC_CTOR
, R_SH_IMM32
},
504 /* Given a BFD reloc code, return the howto structure for the
505 corresponding SH PE reloc. */
506 #define coff_bfd_reloc_type_lookup sh_coff_reloc_type_lookup
507 #define coff_bfd_reloc_name_lookup sh_coff_reloc_name_lookup
509 static reloc_howto_type
*
510 sh_coff_reloc_type_lookup (abfd
, code
)
511 bfd
* abfd ATTRIBUTE_UNUSED
;
512 bfd_reloc_code_real_type code
;
516 for (i
= ARRAY_SIZE (sh_reloc_map
); i
--;)
517 if (sh_reloc_map
[i
].bfd_reloc_val
== code
)
518 return &sh_coff_howtos
[(int) sh_reloc_map
[i
].shcoff_reloc_val
];
520 fprintf (stderr
, "SH Error: unknown reloc type %d\n", code
);
524 static reloc_howto_type
*
525 sh_coff_reloc_name_lookup (bfd
*abfd ATTRIBUTE_UNUSED
,
530 for (i
= 0; i
< sizeof (sh_coff_howtos
) / sizeof (sh_coff_howtos
[0]); i
++)
531 if (sh_coff_howtos
[i
].name
!= NULL
532 && strcasecmp (sh_coff_howtos
[i
].name
, r_name
) == 0)
533 return &sh_coff_howtos
[i
];
538 /* This macro is used in coffcode.h to get the howto corresponding to
539 an internal reloc. */
541 #define RTYPE2HOWTO(relent, internal) \
543 ((internal)->r_type < SH_COFF_HOWTO_COUNT \
544 ? &sh_coff_howtos[(internal)->r_type] \
545 : (reloc_howto_type *) NULL))
547 /* This is the same as the macro in coffcode.h, except that it copies
548 r_offset into reloc_entry->addend for some relocs. */
549 #define CALC_ADDEND(abfd, ptr, reloc, cache_ptr) \
551 coff_symbol_type *coffsym = (coff_symbol_type *) NULL; \
552 if (ptr && bfd_asymbol_bfd (ptr) != abfd) \
553 coffsym = (obj_symbols (abfd) \
554 + (cache_ptr->sym_ptr_ptr - symbols)); \
556 coffsym = coff_symbol_from (abfd, ptr); \
557 if (coffsym != (coff_symbol_type *) NULL \
558 && coffsym->native->u.syment.n_scnum == 0) \
559 cache_ptr->addend = 0; \
560 else if (ptr && bfd_asymbol_bfd (ptr) == abfd \
561 && ptr->section != (asection *) NULL) \
562 cache_ptr->addend = - (ptr->section->vma + ptr->value); \
564 cache_ptr->addend = 0; \
565 if ((reloc).r_type == R_SH_SWITCH8 \
566 || (reloc).r_type == R_SH_SWITCH16 \
567 || (reloc).r_type == R_SH_SWITCH32 \
568 || (reloc).r_type == R_SH_USES \
569 || (reloc).r_type == R_SH_COUNT \
570 || (reloc).r_type == R_SH_ALIGN) \
571 cache_ptr->addend = (reloc).r_offset; \
574 /* This is the howto function for the SH relocations. */
576 static bfd_reloc_status_type
577 sh_reloc (abfd
, reloc_entry
, symbol_in
, data
, input_section
, output_bfd
,
580 arelent
*reloc_entry
;
583 asection
*input_section
;
585 char **error_message ATTRIBUTE_UNUSED
;
589 unsigned short r_type
;
590 bfd_vma addr
= reloc_entry
->address
;
591 bfd_byte
*hit_data
= addr
+ (bfd_byte
*) data
;
593 r_type
= reloc_entry
->howto
->type
;
595 if (output_bfd
!= NULL
)
597 /* Partial linking--do nothing. */
598 reloc_entry
->address
+= input_section
->output_offset
;
602 /* Almost all relocs have to do with relaxing. If any work must be
603 done for them, it has been done in sh_relax_section. */
604 if (r_type
!= R_SH_IMM32
606 && r_type
!= R_SH_IMM32CE
607 && r_type
!= R_SH_IMAGEBASE
609 && (r_type
!= R_SH_PCDISP
610 || (symbol_in
->flags
& BSF_LOCAL
) != 0))
613 if (symbol_in
!= NULL
614 && bfd_is_und_section (symbol_in
->section
))
615 return bfd_reloc_undefined
;
617 sym_value
= get_symbol_value (symbol_in
);
625 insn
= bfd_get_32 (abfd
, hit_data
);
626 insn
+= sym_value
+ reloc_entry
->addend
;
627 bfd_put_32 (abfd
, (bfd_vma
) insn
, hit_data
);
631 insn
= bfd_get_32 (abfd
, hit_data
);
632 insn
+= sym_value
+ reloc_entry
->addend
;
633 insn
-= pe_data (input_section
->output_section
->owner
)->pe_opthdr
.ImageBase
;
634 bfd_put_32 (abfd
, (bfd_vma
) insn
, hit_data
);
638 insn
= bfd_get_16 (abfd
, hit_data
);
639 sym_value
+= reloc_entry
->addend
;
640 sym_value
-= (input_section
->output_section
->vma
641 + input_section
->output_offset
644 sym_value
+= (insn
& 0xfff) << 1;
647 insn
= (insn
& 0xf000) | (sym_value
& 0xfff);
648 bfd_put_16 (abfd
, (bfd_vma
) insn
, hit_data
);
649 if (sym_value
< (bfd_vma
) -0x1000 || sym_value
>= 0x1000)
650 return bfd_reloc_overflow
;
660 #define coff_bfd_merge_private_bfd_data _bfd_generic_verify_endian_match
662 /* We can do relaxing. */
663 #define coff_bfd_relax_section sh_relax_section
665 /* We use the special COFF backend linker. */
666 #define coff_relocate_section sh_relocate_section
668 /* When relaxing, we need to use special code to get the relocated
670 #define coff_bfd_get_relocated_section_contents \
671 sh_coff_get_relocated_section_contents
673 #include "coffcode.h"
675 /* This function handles relaxing on the SH.
677 Function calls on the SH look like this:
686 The compiler and assembler will cooperate to create R_SH_USES
687 relocs on the jsr instructions. The r_offset field of the
688 R_SH_USES reloc is the PC relative offset to the instruction which
689 loads the register (the r_offset field is computed as though it
690 were a jump instruction, so the offset value is actually from four
691 bytes past the instruction). The linker can use this reloc to
692 determine just which function is being called, and thus decide
693 whether it is possible to replace the jsr with a bsr.
695 If multiple function calls are all based on a single register load
696 (i.e., the same function is called multiple times), the compiler
697 guarantees that each function call will have an R_SH_USES reloc.
698 Therefore, if the linker is able to convert each R_SH_USES reloc
699 which refers to that address, it can safely eliminate the register
702 When the assembler creates an R_SH_USES reloc, it examines it to
703 determine which address is being loaded (L1 in the above example).
704 It then counts the number of references to that address, and
705 creates an R_SH_COUNT reloc at that address. The r_offset field of
706 the R_SH_COUNT reloc will be the number of references. If the
707 linker is able to eliminate a register load, it can use the
708 R_SH_COUNT reloc to see whether it can also eliminate the function
711 SH relaxing also handles another, unrelated, matter. On the SH, if
712 a load or store instruction is not aligned on a four byte boundary,
713 the memory cycle interferes with the 32 bit instruction fetch,
714 causing a one cycle bubble in the pipeline. Therefore, we try to
715 align load and store instructions on four byte boundaries if we
716 can, by swapping them with one of the adjacent instructions. */
719 sh_relax_section (abfd
, sec
, link_info
, again
)
722 struct bfd_link_info
*link_info
;
725 struct internal_reloc
*internal_relocs
;
726 bfd_boolean have_code
;
727 struct internal_reloc
*irel
, *irelend
;
728 bfd_byte
*contents
= NULL
;
732 if (link_info
->relocatable
733 || (sec
->flags
& SEC_RELOC
) == 0
734 || sec
->reloc_count
== 0)
737 if (coff_section_data (abfd
, sec
) == NULL
)
739 bfd_size_type amt
= sizeof (struct coff_section_tdata
);
740 sec
->used_by_bfd
= (PTR
) bfd_zalloc (abfd
, amt
);
741 if (sec
->used_by_bfd
== NULL
)
745 internal_relocs
= (_bfd_coff_read_internal_relocs
746 (abfd
, sec
, link_info
->keep_memory
,
747 (bfd_byte
*) NULL
, FALSE
,
748 (struct internal_reloc
*) NULL
));
749 if (internal_relocs
== NULL
)
754 irelend
= internal_relocs
+ sec
->reloc_count
;
755 for (irel
= internal_relocs
; irel
< irelend
; irel
++)
757 bfd_vma laddr
, paddr
, symval
;
759 struct internal_reloc
*irelfn
, *irelscan
, *irelcount
;
760 struct internal_syment sym
;
763 if (irel
->r_type
== R_SH_CODE
)
766 if (irel
->r_type
!= R_SH_USES
)
769 /* Get the section contents. */
770 if (contents
== NULL
)
772 if (coff_section_data (abfd
, sec
)->contents
!= NULL
)
773 contents
= coff_section_data (abfd
, sec
)->contents
;
776 if (!bfd_malloc_and_get_section (abfd
, sec
, &contents
))
781 /* The r_offset field of the R_SH_USES reloc will point us to
782 the register load. The 4 is because the r_offset field is
783 computed as though it were a jump offset, which are based
784 from 4 bytes after the jump instruction. */
785 laddr
= irel
->r_vaddr
- sec
->vma
+ 4;
786 /* Careful to sign extend the 32-bit offset. */
787 laddr
+= ((irel
->r_offset
& 0xffffffff) ^ 0x80000000) - 0x80000000;
788 if (laddr
>= sec
->size
)
790 (*_bfd_error_handler
) ("%B: 0x%lx: warning: bad R_SH_USES offset",
791 abfd
, (unsigned long) irel
->r_vaddr
);
794 insn
= bfd_get_16 (abfd
, contents
+ laddr
);
796 /* If the instruction is not mov.l NN,rN, we don't know what to do. */
797 if ((insn
& 0xf000) != 0xd000)
799 ((*_bfd_error_handler
)
800 ("%B: 0x%lx: warning: R_SH_USES points to unrecognized insn 0x%x",
801 abfd
, (unsigned long) irel
->r_vaddr
, insn
));
805 /* Get the address from which the register is being loaded. The
806 displacement in the mov.l instruction is quadrupled. It is a
807 displacement from four bytes after the movl instruction, but,
808 before adding in the PC address, two least significant bits
809 of the PC are cleared. We assume that the section is aligned
810 on a four byte boundary. */
813 paddr
+= (laddr
+ 4) &~ (bfd_vma
) 3;
814 if (paddr
>= sec
->size
)
816 ((*_bfd_error_handler
)
817 ("%B: 0x%lx: warning: bad R_SH_USES load offset",
818 abfd
, (unsigned long) irel
->r_vaddr
));
822 /* Get the reloc for the address from which the register is
823 being loaded. This reloc will tell us which function is
824 actually being called. */
826 for (irelfn
= internal_relocs
; irelfn
< irelend
; irelfn
++)
827 if (irelfn
->r_vaddr
== paddr
829 && (irelfn
->r_type
== R_SH_IMM32
830 || irelfn
->r_type
== R_SH_IMM32CE
831 || irelfn
->r_type
== R_SH_IMAGEBASE
)
834 && irelfn
->r_type
== R_SH_IMM32
838 if (irelfn
>= irelend
)
840 ((*_bfd_error_handler
)
841 ("%B: 0x%lx: warning: could not find expected reloc",
842 abfd
, (unsigned long) paddr
));
846 /* Get the value of the symbol referred to by the reloc. */
847 if (! _bfd_coff_get_external_symbols (abfd
))
849 bfd_coff_swap_sym_in (abfd
,
850 ((bfd_byte
*) obj_coff_external_syms (abfd
)
852 * bfd_coff_symesz (abfd
))),
854 if (sym
.n_scnum
!= 0 && sym
.n_scnum
!= sec
->target_index
)
856 ((*_bfd_error_handler
)
857 ("%B: 0x%lx: warning: symbol in unexpected section",
858 abfd
, (unsigned long) paddr
));
862 if (sym
.n_sclass
!= C_EXT
)
864 symval
= (sym
.n_value
866 + sec
->output_section
->vma
867 + sec
->output_offset
);
871 struct coff_link_hash_entry
*h
;
873 h
= obj_coff_sym_hashes (abfd
)[irelfn
->r_symndx
];
874 BFD_ASSERT (h
!= NULL
);
875 if (h
->root
.type
!= bfd_link_hash_defined
876 && h
->root
.type
!= bfd_link_hash_defweak
)
878 /* This appears to be a reference to an undefined
879 symbol. Just ignore it--it will be caught by the
880 regular reloc processing. */
884 symval
= (h
->root
.u
.def
.value
885 + h
->root
.u
.def
.section
->output_section
->vma
886 + h
->root
.u
.def
.section
->output_offset
);
889 symval
+= bfd_get_32 (abfd
, contents
+ paddr
- sec
->vma
);
891 /* See if this function call can be shortened. */
895 + sec
->output_section
->vma
898 if (foff
< -0x1000 || foff
>= 0x1000)
900 /* After all that work, we can't shorten this function call. */
904 /* Shorten the function call. */
906 /* For simplicity of coding, we are going to modify the section
907 contents, the section relocs, and the BFD symbol table. We
908 must tell the rest of the code not to free up this
909 information. It would be possible to instead create a table
910 of changes which have to be made, as is done in coff-mips.c;
911 that would be more work, but would require less memory when
912 the linker is run. */
914 coff_section_data (abfd
, sec
)->relocs
= internal_relocs
;
915 coff_section_data (abfd
, sec
)->keep_relocs
= TRUE
;
917 coff_section_data (abfd
, sec
)->contents
= contents
;
918 coff_section_data (abfd
, sec
)->keep_contents
= TRUE
;
920 obj_coff_keep_syms (abfd
) = TRUE
;
922 /* Replace the jsr with a bsr. */
924 /* Change the R_SH_USES reloc into an R_SH_PCDISP reloc, and
925 replace the jsr with a bsr. */
926 irel
->r_type
= R_SH_PCDISP
;
927 irel
->r_symndx
= irelfn
->r_symndx
;
928 if (sym
.n_sclass
!= C_EXT
)
930 /* If this needs to be changed because of future relaxing,
931 it will be handled here like other internal PCDISP
934 (bfd_vma
) 0xb000 | ((foff
>> 1) & 0xfff),
935 contents
+ irel
->r_vaddr
- sec
->vma
);
939 /* We can't fully resolve this yet, because the external
940 symbol value may be changed by future relaxing. We let
941 the final link phase handle it. */
942 bfd_put_16 (abfd
, (bfd_vma
) 0xb000,
943 contents
+ irel
->r_vaddr
- sec
->vma
);
946 /* See if there is another R_SH_USES reloc referring to the same
948 for (irelscan
= internal_relocs
; irelscan
< irelend
; irelscan
++)
949 if (irelscan
->r_type
== R_SH_USES
950 && laddr
== irelscan
->r_vaddr
- sec
->vma
+ 4 + irelscan
->r_offset
)
952 if (irelscan
< irelend
)
954 /* Some other function call depends upon this register load,
955 and we have not yet converted that function call.
956 Indeed, we may never be able to convert it. There is
957 nothing else we can do at this point. */
961 /* Look for a R_SH_COUNT reloc on the location where the
962 function address is stored. Do this before deleting any
963 bytes, to avoid confusion about the address. */
964 for (irelcount
= internal_relocs
; irelcount
< irelend
; irelcount
++)
965 if (irelcount
->r_vaddr
== paddr
966 && irelcount
->r_type
== R_SH_COUNT
)
969 /* Delete the register load. */
970 if (! sh_relax_delete_bytes (abfd
, sec
, laddr
, 2))
973 /* That will change things, so, just in case it permits some
974 other function call to come within range, we should relax
975 again. Note that this is not required, and it may be slow. */
978 /* Now check whether we got a COUNT reloc. */
979 if (irelcount
>= irelend
)
981 ((*_bfd_error_handler
)
982 ("%B: 0x%lx: warning: could not find expected COUNT reloc",
983 abfd
, (unsigned long) paddr
));
987 /* The number of uses is stored in the r_offset field. We've
989 if (irelcount
->r_offset
== 0)
991 ((*_bfd_error_handler
) ("%B: 0x%lx: warning: bad count",
992 abfd
, (unsigned long) paddr
));
996 --irelcount
->r_offset
;
998 /* If there are no more uses, we can delete the address. Reload
999 the address from irelfn, in case it was changed by the
1000 previous call to sh_relax_delete_bytes. */
1001 if (irelcount
->r_offset
== 0)
1003 if (! sh_relax_delete_bytes (abfd
, sec
,
1004 irelfn
->r_vaddr
- sec
->vma
, 4))
1008 /* We've done all we can with that function call. */
1011 /* Look for load and store instructions that we can align on four
1015 bfd_boolean swapped
;
1017 /* Get the section contents. */
1018 if (contents
== NULL
)
1020 if (coff_section_data (abfd
, sec
)->contents
!= NULL
)
1021 contents
= coff_section_data (abfd
, sec
)->contents
;
1024 if (!bfd_malloc_and_get_section (abfd
, sec
, &contents
))
1029 if (! sh_align_loads (abfd
, sec
, internal_relocs
, contents
, &swapped
))
1034 coff_section_data (abfd
, sec
)->relocs
= internal_relocs
;
1035 coff_section_data (abfd
, sec
)->keep_relocs
= TRUE
;
1037 coff_section_data (abfd
, sec
)->contents
= contents
;
1038 coff_section_data (abfd
, sec
)->keep_contents
= TRUE
;
1040 obj_coff_keep_syms (abfd
) = TRUE
;
1044 if (internal_relocs
!= NULL
1045 && internal_relocs
!= coff_section_data (abfd
, sec
)->relocs
)
1047 if (! link_info
->keep_memory
)
1048 free (internal_relocs
);
1050 coff_section_data (abfd
, sec
)->relocs
= internal_relocs
;
1053 if (contents
!= NULL
&& contents
!= coff_section_data (abfd
, sec
)->contents
)
1055 if (! link_info
->keep_memory
)
1058 /* Cache the section contents for coff_link_input_bfd. */
1059 coff_section_data (abfd
, sec
)->contents
= contents
;
1065 if (internal_relocs
!= NULL
1066 && internal_relocs
!= coff_section_data (abfd
, sec
)->relocs
)
1067 free (internal_relocs
);
1068 if (contents
!= NULL
&& contents
!= coff_section_data (abfd
, sec
)->contents
)
1073 /* Delete some bytes from a section while relaxing. */
1076 sh_relax_delete_bytes (abfd
, sec
, addr
, count
)
1083 struct internal_reloc
*irel
, *irelend
;
1084 struct internal_reloc
*irelalign
;
1086 bfd_byte
*esym
, *esymend
;
1087 bfd_size_type symesz
;
1088 struct coff_link_hash_entry
**sym_hash
;
1091 contents
= coff_section_data (abfd
, sec
)->contents
;
1093 /* The deletion must stop at the next ALIGN reloc for an aligment
1094 power larger than the number of bytes we are deleting. */
1099 irel
= coff_section_data (abfd
, sec
)->relocs
;
1100 irelend
= irel
+ sec
->reloc_count
;
1101 for (; irel
< irelend
; irel
++)
1103 if (irel
->r_type
== R_SH_ALIGN
1104 && irel
->r_vaddr
- sec
->vma
> addr
1105 && count
< (1 << irel
->r_offset
))
1108 toaddr
= irel
->r_vaddr
- sec
->vma
;
1113 /* Actually delete the bytes. */
1114 memmove (contents
+ addr
, contents
+ addr
+ count
,
1115 (size_t) (toaddr
- addr
- count
));
1116 if (irelalign
== NULL
)
1122 #define NOP_OPCODE (0x0009)
1124 BFD_ASSERT ((count
& 1) == 0);
1125 for (i
= 0; i
< count
; i
+= 2)
1126 bfd_put_16 (abfd
, (bfd_vma
) NOP_OPCODE
, contents
+ toaddr
- count
+ i
);
1129 /* Adjust all the relocs. */
1130 for (irel
= coff_section_data (abfd
, sec
)->relocs
; irel
< irelend
; irel
++)
1132 bfd_vma nraddr
, stop
;
1135 struct internal_syment sym
;
1136 int off
, adjust
, oinsn
;
1137 bfd_signed_vma voff
= 0;
1138 bfd_boolean overflow
;
1140 /* Get the new reloc address. */
1141 nraddr
= irel
->r_vaddr
- sec
->vma
;
1142 if ((irel
->r_vaddr
- sec
->vma
> addr
1143 && irel
->r_vaddr
- sec
->vma
< toaddr
)
1144 || (irel
->r_type
== R_SH_ALIGN
1145 && irel
->r_vaddr
- sec
->vma
== toaddr
))
1148 /* See if this reloc was for the bytes we have deleted, in which
1149 case we no longer care about it. Don't delete relocs which
1150 represent addresses, though. */
1151 if (irel
->r_vaddr
- sec
->vma
>= addr
1152 && irel
->r_vaddr
- sec
->vma
< addr
+ count
1153 && irel
->r_type
!= R_SH_ALIGN
1154 && irel
->r_type
!= R_SH_CODE
1155 && irel
->r_type
!= R_SH_DATA
1156 && irel
->r_type
!= R_SH_LABEL
)
1157 irel
->r_type
= R_SH_UNUSED
;
1159 /* If this is a PC relative reloc, see if the range it covers
1160 includes the bytes we have deleted. */
1161 switch (irel
->r_type
)
1166 case R_SH_PCDISP8BY2
:
1168 case R_SH_PCRELIMM8BY2
:
1169 case R_SH_PCRELIMM8BY4
:
1170 start
= irel
->r_vaddr
- sec
->vma
;
1171 insn
= bfd_get_16 (abfd
, contents
+ nraddr
);
1175 switch (irel
->r_type
)
1178 start
= stop
= addr
;
1184 case R_SH_IMAGEBASE
:
1186 /* If this reloc is against a symbol defined in this
1187 section, and the symbol will not be adjusted below, we
1188 must check the addend to see it will put the value in
1189 range to be adjusted, and hence must be changed. */
1190 bfd_coff_swap_sym_in (abfd
,
1191 ((bfd_byte
*) obj_coff_external_syms (abfd
)
1193 * bfd_coff_symesz (abfd
))),
1195 if (sym
.n_sclass
!= C_EXT
1196 && sym
.n_scnum
== sec
->target_index
1197 && ((bfd_vma
) sym
.n_value
<= addr
1198 || (bfd_vma
) sym
.n_value
>= toaddr
))
1202 val
= bfd_get_32 (abfd
, contents
+ nraddr
);
1204 if (val
> addr
&& val
< toaddr
)
1205 bfd_put_32 (abfd
, val
- count
, contents
+ nraddr
);
1207 start
= stop
= addr
;
1210 case R_SH_PCDISP8BY2
:
1214 stop
= (bfd_vma
) ((bfd_signed_vma
) start
+ 4 + off
* 2);
1218 bfd_coff_swap_sym_in (abfd
,
1219 ((bfd_byte
*) obj_coff_external_syms (abfd
)
1221 * bfd_coff_symesz (abfd
))),
1223 if (sym
.n_sclass
== C_EXT
)
1224 start
= stop
= addr
;
1230 stop
= (bfd_vma
) ((bfd_signed_vma
) start
+ 4 + off
* 2);
1234 case R_SH_PCRELIMM8BY2
:
1236 stop
= start
+ 4 + off
* 2;
1239 case R_SH_PCRELIMM8BY4
:
1241 stop
= (start
&~ (bfd_vma
) 3) + 4 + off
* 4;
1247 /* These relocs types represent
1249 The r_offset field holds the difference between the reloc
1250 address and L1. That is the start of the reloc, and
1251 adding in the contents gives us the top. We must adjust
1252 both the r_offset field and the section contents. */
1254 start
= irel
->r_vaddr
- sec
->vma
;
1255 stop
= (bfd_vma
) ((bfd_signed_vma
) start
- (long) irel
->r_offset
);
1259 && (stop
<= addr
|| stop
>= toaddr
))
1260 irel
->r_offset
+= count
;
1261 else if (stop
> addr
1263 && (start
<= addr
|| start
>= toaddr
))
1264 irel
->r_offset
-= count
;
1268 if (irel
->r_type
== R_SH_SWITCH16
)
1269 voff
= bfd_get_signed_16 (abfd
, contents
+ nraddr
);
1270 else if (irel
->r_type
== R_SH_SWITCH8
)
1271 voff
= bfd_get_8 (abfd
, contents
+ nraddr
);
1273 voff
= bfd_get_signed_32 (abfd
, contents
+ nraddr
);
1274 stop
= (bfd_vma
) ((bfd_signed_vma
) start
+ voff
);
1279 start
= irel
->r_vaddr
- sec
->vma
;
1280 stop
= (bfd_vma
) ((bfd_signed_vma
) start
1281 + (long) irel
->r_offset
1288 && (stop
<= addr
|| stop
>= toaddr
))
1290 else if (stop
> addr
1292 && (start
<= addr
|| start
>= toaddr
))
1301 switch (irel
->r_type
)
1307 case R_SH_PCDISP8BY2
:
1308 case R_SH_PCRELIMM8BY2
:
1310 if ((oinsn
& 0xff00) != (insn
& 0xff00))
1312 bfd_put_16 (abfd
, (bfd_vma
) insn
, contents
+ nraddr
);
1317 if ((oinsn
& 0xf000) != (insn
& 0xf000))
1319 bfd_put_16 (abfd
, (bfd_vma
) insn
, contents
+ nraddr
);
1322 case R_SH_PCRELIMM8BY4
:
1323 BFD_ASSERT (adjust
== count
|| count
>= 4);
1328 if ((irel
->r_vaddr
& 3) == 0)
1331 if ((oinsn
& 0xff00) != (insn
& 0xff00))
1333 bfd_put_16 (abfd
, (bfd_vma
) insn
, contents
+ nraddr
);
1338 if (voff
< 0 || voff
>= 0xff)
1340 bfd_put_8 (abfd
, (bfd_vma
) voff
, contents
+ nraddr
);
1345 if (voff
< - 0x8000 || voff
>= 0x8000)
1347 bfd_put_signed_16 (abfd
, (bfd_vma
) voff
, contents
+ nraddr
);
1352 bfd_put_signed_32 (abfd
, (bfd_vma
) voff
, contents
+ nraddr
);
1356 irel
->r_offset
+= adjust
;
1362 ((*_bfd_error_handler
)
1363 ("%B: 0x%lx: fatal: reloc overflow while relaxing",
1364 abfd
, (unsigned long) irel
->r_vaddr
));
1365 bfd_set_error (bfd_error_bad_value
);
1370 irel
->r_vaddr
= nraddr
+ sec
->vma
;
1373 /* Look through all the other sections. If there contain any IMM32
1374 relocs against internal symbols which we are not going to adjust
1375 below, we may need to adjust the addends. */
1376 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
1378 struct internal_reloc
*internal_relocs
;
1379 struct internal_reloc
*irelscan
, *irelscanend
;
1380 bfd_byte
*ocontents
;
1383 || (o
->flags
& SEC_RELOC
) == 0
1384 || o
->reloc_count
== 0)
1387 /* We always cache the relocs. Perhaps, if info->keep_memory is
1388 FALSE, we should free them, if we are permitted to, when we
1389 leave sh_coff_relax_section. */
1390 internal_relocs
= (_bfd_coff_read_internal_relocs
1391 (abfd
, o
, TRUE
, (bfd_byte
*) NULL
, FALSE
,
1392 (struct internal_reloc
*) NULL
));
1393 if (internal_relocs
== NULL
)
1397 irelscanend
= internal_relocs
+ o
->reloc_count
;
1398 for (irelscan
= internal_relocs
; irelscan
< irelscanend
; irelscan
++)
1400 struct internal_syment sym
;
1403 if (irelscan
->r_type
!= R_SH_IMM32
1404 && irelscan
->r_type
!= R_SH_IMAGEBASE
1405 && irelscan
->r_type
!= R_SH_IMM32CE
)
1407 if (irelscan
->r_type
!= R_SH_IMM32
)
1411 bfd_coff_swap_sym_in (abfd
,
1412 ((bfd_byte
*) obj_coff_external_syms (abfd
)
1413 + (irelscan
->r_symndx
1414 * bfd_coff_symesz (abfd
))),
1416 if (sym
.n_sclass
!= C_EXT
1417 && sym
.n_scnum
== sec
->target_index
1418 && ((bfd_vma
) sym
.n_value
<= addr
1419 || (bfd_vma
) sym
.n_value
>= toaddr
))
1423 if (ocontents
== NULL
)
1425 if (coff_section_data (abfd
, o
)->contents
!= NULL
)
1426 ocontents
= coff_section_data (abfd
, o
)->contents
;
1429 if (!bfd_malloc_and_get_section (abfd
, o
, &ocontents
))
1431 /* We always cache the section contents.
1432 Perhaps, if info->keep_memory is FALSE, we
1433 should free them, if we are permitted to,
1434 when we leave sh_coff_relax_section. */
1435 coff_section_data (abfd
, o
)->contents
= ocontents
;
1439 val
= bfd_get_32 (abfd
, ocontents
+ irelscan
->r_vaddr
- o
->vma
);
1441 if (val
> addr
&& val
< toaddr
)
1442 bfd_put_32 (abfd
, val
- count
,
1443 ocontents
+ irelscan
->r_vaddr
- o
->vma
);
1445 coff_section_data (abfd
, o
)->keep_contents
= TRUE
;
1450 /* Adjusting the internal symbols will not work if something has
1451 already retrieved the generic symbols. It would be possible to
1452 make this work by adjusting the generic symbols at the same time.
1453 However, this case should not arise in normal usage. */
1454 if (obj_symbols (abfd
) != NULL
1455 || obj_raw_syments (abfd
) != NULL
)
1457 ((*_bfd_error_handler
)
1458 ("%B: fatal: generic symbols retrieved before relaxing", abfd
));
1459 bfd_set_error (bfd_error_invalid_operation
);
1463 /* Adjust all the symbols. */
1464 sym_hash
= obj_coff_sym_hashes (abfd
);
1465 symesz
= bfd_coff_symesz (abfd
);
1466 esym
= (bfd_byte
*) obj_coff_external_syms (abfd
);
1467 esymend
= esym
+ obj_raw_syment_count (abfd
) * symesz
;
1468 while (esym
< esymend
)
1470 struct internal_syment isym
;
1472 bfd_coff_swap_sym_in (abfd
, (PTR
) esym
, (PTR
) &isym
);
1474 if (isym
.n_scnum
== sec
->target_index
1475 && (bfd_vma
) isym
.n_value
> addr
1476 && (bfd_vma
) isym
.n_value
< toaddr
)
1478 isym
.n_value
-= count
;
1480 bfd_coff_swap_sym_out (abfd
, (PTR
) &isym
, (PTR
) esym
);
1482 if (*sym_hash
!= NULL
)
1484 BFD_ASSERT ((*sym_hash
)->root
.type
== bfd_link_hash_defined
1485 || (*sym_hash
)->root
.type
== bfd_link_hash_defweak
);
1486 BFD_ASSERT ((*sym_hash
)->root
.u
.def
.value
>= addr
1487 && (*sym_hash
)->root
.u
.def
.value
< toaddr
);
1488 (*sym_hash
)->root
.u
.def
.value
-= count
;
1492 esym
+= (isym
.n_numaux
+ 1) * symesz
;
1493 sym_hash
+= isym
.n_numaux
+ 1;
1496 /* See if we can move the ALIGN reloc forward. We have adjusted
1497 r_vaddr for it already. */
1498 if (irelalign
!= NULL
)
1500 bfd_vma alignto
, alignaddr
;
1502 alignto
= BFD_ALIGN (toaddr
, 1 << irelalign
->r_offset
);
1503 alignaddr
= BFD_ALIGN (irelalign
->r_vaddr
- sec
->vma
,
1504 1 << irelalign
->r_offset
);
1505 if (alignto
!= alignaddr
)
1507 /* Tail recursion. */
1508 return sh_relax_delete_bytes (abfd
, sec
, alignaddr
,
1509 (int) (alignto
- alignaddr
));
1516 /* This is yet another version of the SH opcode table, used to rapidly
1517 get information about a particular instruction. */
1519 /* The opcode map is represented by an array of these structures. The
1520 array is indexed by the high order four bits in the instruction. */
1522 struct sh_major_opcode
1524 /* A pointer to the instruction list. This is an array which
1525 contains all the instructions with this major opcode. */
1526 const struct sh_minor_opcode
*minor_opcodes
;
1527 /* The number of elements in minor_opcodes. */
1528 unsigned short count
;
1531 /* This structure holds information for a set of SH opcodes. The
1532 instruction code is anded with the mask value, and the resulting
1533 value is used to search the order opcode list. */
1535 struct sh_minor_opcode
1537 /* The sorted opcode list. */
1538 const struct sh_opcode
*opcodes
;
1539 /* The number of elements in opcodes. */
1540 unsigned short count
;
1541 /* The mask value to use when searching the opcode list. */
1542 unsigned short mask
;
1545 /* This structure holds information for an SH instruction. An array
1546 of these structures is sorted in order by opcode. */
1550 /* The code for this instruction, after it has been anded with the
1551 mask value in the sh_major_opcode structure. */
1552 unsigned short opcode
;
1553 /* Flags for this instruction. */
1554 unsigned long flags
;
1557 /* Flag which appear in the sh_opcode structure. */
1559 /* This instruction loads a value from memory. */
1562 /* This instruction stores a value to memory. */
1565 /* This instruction is a branch. */
1566 #define BRANCH (0x4)
1568 /* This instruction has a delay slot. */
1571 /* This instruction uses the value in the register in the field at
1572 mask 0x0f00 of the instruction. */
1573 #define USES1 (0x10)
1574 #define USES1_REG(x) ((x & 0x0f00) >> 8)
1576 /* This instruction uses the value in the register in the field at
1577 mask 0x00f0 of the instruction. */
1578 #define USES2 (0x20)
1579 #define USES2_REG(x) ((x & 0x00f0) >> 4)
1581 /* This instruction uses the value in register 0. */
1582 #define USESR0 (0x40)
1584 /* This instruction sets the value in the register in the field at
1585 mask 0x0f00 of the instruction. */
1586 #define SETS1 (0x80)
1587 #define SETS1_REG(x) ((x & 0x0f00) >> 8)
1589 /* This instruction sets the value in the register in the field at
1590 mask 0x00f0 of the instruction. */
1591 #define SETS2 (0x100)
1592 #define SETS2_REG(x) ((x & 0x00f0) >> 4)
1594 /* This instruction sets register 0. */
1595 #define SETSR0 (0x200)
1597 /* This instruction sets a special register. */
1598 #define SETSSP (0x400)
1600 /* This instruction uses a special register. */
1601 #define USESSP (0x800)
1603 /* This instruction uses the floating point register in the field at
1604 mask 0x0f00 of the instruction. */
1605 #define USESF1 (0x1000)
1606 #define USESF1_REG(x) ((x & 0x0f00) >> 8)
1608 /* This instruction uses the floating point register in the field at
1609 mask 0x00f0 of the instruction. */
1610 #define USESF2 (0x2000)
1611 #define USESF2_REG(x) ((x & 0x00f0) >> 4)
1613 /* This instruction uses floating point register 0. */
1614 #define USESF0 (0x4000)
1616 /* This instruction sets the floating point register in the field at
1617 mask 0x0f00 of the instruction. */
1618 #define SETSF1 (0x8000)
1619 #define SETSF1_REG(x) ((x & 0x0f00) >> 8)
1621 #define USESAS (0x10000)
1622 #define USESAS_REG(x) (((((x) >> 8) - 2) & 3) + 2)
1623 #define USESR8 (0x20000)
1624 #define SETSAS (0x40000)
1625 #define SETSAS_REG(x) USESAS_REG (x)
1627 #define MAP(a) a, sizeof a / sizeof a[0]
1629 #ifndef COFF_IMAGE_WITH_PE
1630 static bfd_boolean sh_insn_uses_reg
1631 PARAMS ((unsigned int, const struct sh_opcode
*, unsigned int));
1632 static bfd_boolean sh_insn_sets_reg
1633 PARAMS ((unsigned int, const struct sh_opcode
*, unsigned int));
1634 static bfd_boolean sh_insn_uses_or_sets_reg
1635 PARAMS ((unsigned int, const struct sh_opcode
*, unsigned int));
1636 static bfd_boolean sh_insn_uses_freg
1637 PARAMS ((unsigned int, const struct sh_opcode
*, unsigned int));
1638 static bfd_boolean sh_insn_sets_freg
1639 PARAMS ((unsigned int, const struct sh_opcode
*, unsigned int));
1640 static bfd_boolean sh_insn_uses_or_sets_freg
1641 PARAMS ((unsigned int, const struct sh_opcode
*, unsigned int));
1642 static bfd_boolean sh_insns_conflict
1643 PARAMS ((unsigned int, const struct sh_opcode
*, unsigned int,
1644 const struct sh_opcode
*));
1645 static bfd_boolean sh_load_use
1646 PARAMS ((unsigned int, const struct sh_opcode
*, unsigned int,
1647 const struct sh_opcode
*));
1649 /* The opcode maps. */
1651 static const struct sh_opcode sh_opcode00
[] =
1653 { 0x0008, SETSSP
}, /* clrt */
1654 { 0x0009, 0 }, /* nop */
1655 { 0x000b, BRANCH
| DELAY
| USESSP
}, /* rts */
1656 { 0x0018, SETSSP
}, /* sett */
1657 { 0x0019, SETSSP
}, /* div0u */
1658 { 0x001b, 0 }, /* sleep */
1659 { 0x0028, SETSSP
}, /* clrmac */
1660 { 0x002b, BRANCH
| DELAY
| SETSSP
}, /* rte */
1661 { 0x0038, USESSP
| SETSSP
}, /* ldtlb */
1662 { 0x0048, SETSSP
}, /* clrs */
1663 { 0x0058, SETSSP
} /* sets */
1666 static const struct sh_opcode sh_opcode01
[] =
1668 { 0x0003, BRANCH
| DELAY
| USES1
| SETSSP
}, /* bsrf rn */
1669 { 0x000a, SETS1
| USESSP
}, /* sts mach,rn */
1670 { 0x001a, SETS1
| USESSP
}, /* sts macl,rn */
1671 { 0x0023, BRANCH
| DELAY
| USES1
}, /* braf rn */
1672 { 0x0029, SETS1
| USESSP
}, /* movt rn */
1673 { 0x002a, SETS1
| USESSP
}, /* sts pr,rn */
1674 { 0x005a, SETS1
| USESSP
}, /* sts fpul,rn */
1675 { 0x006a, SETS1
| USESSP
}, /* sts fpscr,rn / sts dsr,rn */
1676 { 0x0083, LOAD
| USES1
}, /* pref @rn */
1677 { 0x007a, SETS1
| USESSP
}, /* sts a0,rn */
1678 { 0x008a, SETS1
| USESSP
}, /* sts x0,rn */
1679 { 0x009a, SETS1
| USESSP
}, /* sts x1,rn */
1680 { 0x00aa, SETS1
| USESSP
}, /* sts y0,rn */
1681 { 0x00ba, SETS1
| USESSP
} /* sts y1,rn */
1684 static const struct sh_opcode sh_opcode02
[] =
1686 { 0x0002, SETS1
| USESSP
}, /* stc <special_reg>,rn */
1687 { 0x0004, STORE
| USES1
| USES2
| USESR0
}, /* mov.b rm,@(r0,rn) */
1688 { 0x0005, STORE
| USES1
| USES2
| USESR0
}, /* mov.w rm,@(r0,rn) */
1689 { 0x0006, STORE
| USES1
| USES2
| USESR0
}, /* mov.l rm,@(r0,rn) */
1690 { 0x0007, SETSSP
| USES1
| USES2
}, /* mul.l rm,rn */
1691 { 0x000c, LOAD
| SETS1
| USES2
| USESR0
}, /* mov.b @(r0,rm),rn */
1692 { 0x000d, LOAD
| SETS1
| USES2
| USESR0
}, /* mov.w @(r0,rm),rn */
1693 { 0x000e, LOAD
| SETS1
| USES2
| USESR0
}, /* mov.l @(r0,rm),rn */
1694 { 0x000f, LOAD
|SETS1
|SETS2
|SETSSP
|USES1
|USES2
|USESSP
}, /* mac.l @rm+,@rn+ */
1697 static const struct sh_minor_opcode sh_opcode0
[] =
1699 { MAP (sh_opcode00
), 0xffff },
1700 { MAP (sh_opcode01
), 0xf0ff },
1701 { MAP (sh_opcode02
), 0xf00f }
1704 static const struct sh_opcode sh_opcode10
[] =
1706 { 0x1000, STORE
| USES1
| USES2
} /* mov.l rm,@(disp,rn) */
1709 static const struct sh_minor_opcode sh_opcode1
[] =
1711 { MAP (sh_opcode10
), 0xf000 }
1714 static const struct sh_opcode sh_opcode20
[] =
1716 { 0x2000, STORE
| USES1
| USES2
}, /* mov.b rm,@rn */
1717 { 0x2001, STORE
| USES1
| USES2
}, /* mov.w rm,@rn */
1718 { 0x2002, STORE
| USES1
| USES2
}, /* mov.l rm,@rn */
1719 { 0x2004, STORE
| SETS1
| USES1
| USES2
}, /* mov.b rm,@-rn */
1720 { 0x2005, STORE
| SETS1
| USES1
| USES2
}, /* mov.w rm,@-rn */
1721 { 0x2006, STORE
| SETS1
| USES1
| USES2
}, /* mov.l rm,@-rn */
1722 { 0x2007, SETSSP
| USES1
| USES2
| USESSP
}, /* div0s */
1723 { 0x2008, SETSSP
| USES1
| USES2
}, /* tst rm,rn */
1724 { 0x2009, SETS1
| USES1
| USES2
}, /* and rm,rn */
1725 { 0x200a, SETS1
| USES1
| USES2
}, /* xor rm,rn */
1726 { 0x200b, SETS1
| USES1
| USES2
}, /* or rm,rn */
1727 { 0x200c, SETSSP
| USES1
| USES2
}, /* cmp/str rm,rn */
1728 { 0x200d, SETS1
| USES1
| USES2
}, /* xtrct rm,rn */
1729 { 0x200e, SETSSP
| USES1
| USES2
}, /* mulu.w rm,rn */
1730 { 0x200f, SETSSP
| USES1
| USES2
} /* muls.w rm,rn */
1733 static const struct sh_minor_opcode sh_opcode2
[] =
1735 { MAP (sh_opcode20
), 0xf00f }
1738 static const struct sh_opcode sh_opcode30
[] =
1740 { 0x3000, SETSSP
| USES1
| USES2
}, /* cmp/eq rm,rn */
1741 { 0x3002, SETSSP
| USES1
| USES2
}, /* cmp/hs rm,rn */
1742 { 0x3003, SETSSP
| USES1
| USES2
}, /* cmp/ge rm,rn */
1743 { 0x3004, SETSSP
| USESSP
| USES1
| USES2
}, /* div1 rm,rn */
1744 { 0x3005, SETSSP
| USES1
| USES2
}, /* dmulu.l rm,rn */
1745 { 0x3006, SETSSP
| USES1
| USES2
}, /* cmp/hi rm,rn */
1746 { 0x3007, SETSSP
| USES1
| USES2
}, /* cmp/gt rm,rn */
1747 { 0x3008, SETS1
| USES1
| USES2
}, /* sub rm,rn */
1748 { 0x300a, SETS1
| SETSSP
| USES1
| USES2
| USESSP
}, /* subc rm,rn */
1749 { 0x300b, SETS1
| SETSSP
| USES1
| USES2
}, /* subv rm,rn */
1750 { 0x300c, SETS1
| USES1
| USES2
}, /* add rm,rn */
1751 { 0x300d, SETSSP
| USES1
| USES2
}, /* dmuls.l rm,rn */
1752 { 0x300e, SETS1
| SETSSP
| USES1
| USES2
| USESSP
}, /* addc rm,rn */
1753 { 0x300f, SETS1
| SETSSP
| USES1
| USES2
} /* addv rm,rn */
1756 static const struct sh_minor_opcode sh_opcode3
[] =
1758 { MAP (sh_opcode30
), 0xf00f }
1761 static const struct sh_opcode sh_opcode40
[] =
1763 { 0x4000, SETS1
| SETSSP
| USES1
}, /* shll rn */
1764 { 0x4001, SETS1
| SETSSP
| USES1
}, /* shlr rn */
1765 { 0x4002, STORE
| SETS1
| USES1
| USESSP
}, /* sts.l mach,@-rn */
1766 { 0x4004, SETS1
| SETSSP
| USES1
}, /* rotl rn */
1767 { 0x4005, SETS1
| SETSSP
| USES1
}, /* rotr rn */
1768 { 0x4006, LOAD
| SETS1
| SETSSP
| USES1
}, /* lds.l @rm+,mach */
1769 { 0x4008, SETS1
| USES1
}, /* shll2 rn */
1770 { 0x4009, SETS1
| USES1
}, /* shlr2 rn */
1771 { 0x400a, SETSSP
| USES1
}, /* lds rm,mach */
1772 { 0x400b, BRANCH
| DELAY
| USES1
}, /* jsr @rn */
1773 { 0x4010, SETS1
| SETSSP
| USES1
}, /* dt rn */
1774 { 0x4011, SETSSP
| USES1
}, /* cmp/pz rn */
1775 { 0x4012, STORE
| SETS1
| USES1
| USESSP
}, /* sts.l macl,@-rn */
1776 { 0x4014, SETSSP
| USES1
}, /* setrc rm */
1777 { 0x4015, SETSSP
| USES1
}, /* cmp/pl rn */
1778 { 0x4016, LOAD
| SETS1
| SETSSP
| USES1
}, /* lds.l @rm+,macl */
1779 { 0x4018, SETS1
| USES1
}, /* shll8 rn */
1780 { 0x4019, SETS1
| USES1
}, /* shlr8 rn */
1781 { 0x401a, SETSSP
| USES1
}, /* lds rm,macl */
1782 { 0x401b, LOAD
| SETSSP
| USES1
}, /* tas.b @rn */
1783 { 0x4020, SETS1
| SETSSP
| USES1
}, /* shal rn */
1784 { 0x4021, SETS1
| SETSSP
| USES1
}, /* shar rn */
1785 { 0x4022, STORE
| SETS1
| USES1
| USESSP
}, /* sts.l pr,@-rn */
1786 { 0x4024, SETS1
| SETSSP
| USES1
| USESSP
}, /* rotcl rn */
1787 { 0x4025, SETS1
| SETSSP
| USES1
| USESSP
}, /* rotcr rn */
1788 { 0x4026, LOAD
| SETS1
| SETSSP
| USES1
}, /* lds.l @rm+,pr */
1789 { 0x4028, SETS1
| USES1
}, /* shll16 rn */
1790 { 0x4029, SETS1
| USES1
}, /* shlr16 rn */
1791 { 0x402a, SETSSP
| USES1
}, /* lds rm,pr */
1792 { 0x402b, BRANCH
| DELAY
| USES1
}, /* jmp @rn */
1793 { 0x4052, STORE
| SETS1
| USES1
| USESSP
}, /* sts.l fpul,@-rn */
1794 { 0x4056, LOAD
| SETS1
| SETSSP
| USES1
}, /* lds.l @rm+,fpul */
1795 { 0x405a, SETSSP
| USES1
}, /* lds.l rm,fpul */
1796 { 0x4062, STORE
| SETS1
| USES1
| USESSP
}, /* sts.l fpscr / dsr,@-rn */
1797 { 0x4066, LOAD
| SETS1
| SETSSP
| USES1
}, /* lds.l @rm+,fpscr / dsr */
1798 { 0x406a, SETSSP
| USES1
}, /* lds rm,fpscr / lds rm,dsr */
1799 { 0x4072, STORE
| SETS1
| USES1
| USESSP
}, /* sts.l a0,@-rn */
1800 { 0x4076, LOAD
| SETS1
| SETSSP
| USES1
}, /* lds.l @rm+,a0 */
1801 { 0x407a, SETSSP
| USES1
}, /* lds.l rm,a0 */
1802 { 0x4082, STORE
| SETS1
| USES1
| USESSP
}, /* sts.l x0,@-rn */
1803 { 0x4086, LOAD
| SETS1
| SETSSP
| USES1
}, /* lds.l @rm+,x0 */
1804 { 0x408a, SETSSP
| USES1
}, /* lds.l rm,x0 */
1805 { 0x4092, STORE
| SETS1
| USES1
| USESSP
}, /* sts.l x1,@-rn */
1806 { 0x4096, LOAD
| SETS1
| SETSSP
| USES1
}, /* lds.l @rm+,x1 */
1807 { 0x409a, SETSSP
| USES1
}, /* lds.l rm,x1 */
1808 { 0x40a2, STORE
| SETS1
| USES1
| USESSP
}, /* sts.l y0,@-rn */
1809 { 0x40a6, LOAD
| SETS1
| SETSSP
| USES1
}, /* lds.l @rm+,y0 */
1810 { 0x40aa, SETSSP
| USES1
}, /* lds.l rm,y0 */
1811 { 0x40b2, STORE
| SETS1
| USES1
| USESSP
}, /* sts.l y1,@-rn */
1812 { 0x40b6, LOAD
| SETS1
| SETSSP
| USES1
}, /* lds.l @rm+,y1 */
1813 { 0x40ba, SETSSP
| USES1
} /* lds.l rm,y1 */
1816 static const struct sh_opcode sh_opcode41
[] =
1818 { 0x4003, STORE
| SETS1
| USES1
| USESSP
}, /* stc.l <special_reg>,@-rn */
1819 { 0x4007, LOAD
| SETS1
| SETSSP
| USES1
}, /* ldc.l @rm+,<special_reg> */
1820 { 0x400c, SETS1
| USES1
| USES2
}, /* shad rm,rn */
1821 { 0x400d, SETS1
| USES1
| USES2
}, /* shld rm,rn */
1822 { 0x400e, SETSSP
| USES1
}, /* ldc rm,<special_reg> */
1823 { 0x400f, LOAD
|SETS1
|SETS2
|SETSSP
|USES1
|USES2
|USESSP
}, /* mac.w @rm+,@rn+ */
1826 static const struct sh_minor_opcode sh_opcode4
[] =
1828 { MAP (sh_opcode40
), 0xf0ff },
1829 { MAP (sh_opcode41
), 0xf00f }
1832 static const struct sh_opcode sh_opcode50
[] =
1834 { 0x5000, LOAD
| SETS1
| USES2
} /* mov.l @(disp,rm),rn */
1837 static const struct sh_minor_opcode sh_opcode5
[] =
1839 { MAP (sh_opcode50
), 0xf000 }
1842 static const struct sh_opcode sh_opcode60
[] =
1844 { 0x6000, LOAD
| SETS1
| USES2
}, /* mov.b @rm,rn */
1845 { 0x6001, LOAD
| SETS1
| USES2
}, /* mov.w @rm,rn */
1846 { 0x6002, LOAD
| SETS1
| USES2
}, /* mov.l @rm,rn */
1847 { 0x6003, SETS1
| USES2
}, /* mov rm,rn */
1848 { 0x6004, LOAD
| SETS1
| SETS2
| USES2
}, /* mov.b @rm+,rn */
1849 { 0x6005, LOAD
| SETS1
| SETS2
| USES2
}, /* mov.w @rm+,rn */
1850 { 0x6006, LOAD
| SETS1
| SETS2
| USES2
}, /* mov.l @rm+,rn */
1851 { 0x6007, SETS1
| USES2
}, /* not rm,rn */
1852 { 0x6008, SETS1
| USES2
}, /* swap.b rm,rn */
1853 { 0x6009, SETS1
| USES2
}, /* swap.w rm,rn */
1854 { 0x600a, SETS1
| SETSSP
| USES2
| USESSP
}, /* negc rm,rn */
1855 { 0x600b, SETS1
| USES2
}, /* neg rm,rn */
1856 { 0x600c, SETS1
| USES2
}, /* extu.b rm,rn */
1857 { 0x600d, SETS1
| USES2
}, /* extu.w rm,rn */
1858 { 0x600e, SETS1
| USES2
}, /* exts.b rm,rn */
1859 { 0x600f, SETS1
| USES2
} /* exts.w rm,rn */
1862 static const struct sh_minor_opcode sh_opcode6
[] =
1864 { MAP (sh_opcode60
), 0xf00f }
1867 static const struct sh_opcode sh_opcode70
[] =
1869 { 0x7000, SETS1
| USES1
} /* add #imm,rn */
1872 static const struct sh_minor_opcode sh_opcode7
[] =
1874 { MAP (sh_opcode70
), 0xf000 }
1877 static const struct sh_opcode sh_opcode80
[] =
1879 { 0x8000, STORE
| USES2
| USESR0
}, /* mov.b r0,@(disp,rn) */
1880 { 0x8100, STORE
| USES2
| USESR0
}, /* mov.w r0,@(disp,rn) */
1881 { 0x8200, SETSSP
}, /* setrc #imm */
1882 { 0x8400, LOAD
| SETSR0
| USES2
}, /* mov.b @(disp,rm),r0 */
1883 { 0x8500, LOAD
| SETSR0
| USES2
}, /* mov.w @(disp,rn),r0 */
1884 { 0x8800, SETSSP
| USESR0
}, /* cmp/eq #imm,r0 */
1885 { 0x8900, BRANCH
| USESSP
}, /* bt label */
1886 { 0x8b00, BRANCH
| USESSP
}, /* bf label */
1887 { 0x8c00, SETSSP
}, /* ldrs @(disp,pc) */
1888 { 0x8d00, BRANCH
| DELAY
| USESSP
}, /* bt/s label */
1889 { 0x8e00, SETSSP
}, /* ldre @(disp,pc) */
1890 { 0x8f00, BRANCH
| DELAY
| USESSP
} /* bf/s label */
1893 static const struct sh_minor_opcode sh_opcode8
[] =
1895 { MAP (sh_opcode80
), 0xff00 }
1898 static const struct sh_opcode sh_opcode90
[] =
1900 { 0x9000, LOAD
| SETS1
} /* mov.w @(disp,pc),rn */
1903 static const struct sh_minor_opcode sh_opcode9
[] =
1905 { MAP (sh_opcode90
), 0xf000 }
1908 static const struct sh_opcode sh_opcodea0
[] =
1910 { 0xa000, BRANCH
| DELAY
} /* bra label */
1913 static const struct sh_minor_opcode sh_opcodea
[] =
1915 { MAP (sh_opcodea0
), 0xf000 }
1918 static const struct sh_opcode sh_opcodeb0
[] =
1920 { 0xb000, BRANCH
| DELAY
} /* bsr label */
1923 static const struct sh_minor_opcode sh_opcodeb
[] =
1925 { MAP (sh_opcodeb0
), 0xf000 }
1928 static const struct sh_opcode sh_opcodec0
[] =
1930 { 0xc000, STORE
| USESR0
| USESSP
}, /* mov.b r0,@(disp,gbr) */
1931 { 0xc100, STORE
| USESR0
| USESSP
}, /* mov.w r0,@(disp,gbr) */
1932 { 0xc200, STORE
| USESR0
| USESSP
}, /* mov.l r0,@(disp,gbr) */
1933 { 0xc300, BRANCH
| USESSP
}, /* trapa #imm */
1934 { 0xc400, LOAD
| SETSR0
| USESSP
}, /* mov.b @(disp,gbr),r0 */
1935 { 0xc500, LOAD
| SETSR0
| USESSP
}, /* mov.w @(disp,gbr),r0 */
1936 { 0xc600, LOAD
| SETSR0
| USESSP
}, /* mov.l @(disp,gbr),r0 */
1937 { 0xc700, SETSR0
}, /* mova @(disp,pc),r0 */
1938 { 0xc800, SETSSP
| USESR0
}, /* tst #imm,r0 */
1939 { 0xc900, SETSR0
| USESR0
}, /* and #imm,r0 */
1940 { 0xca00, SETSR0
| USESR0
}, /* xor #imm,r0 */
1941 { 0xcb00, SETSR0
| USESR0
}, /* or #imm,r0 */
1942 { 0xcc00, LOAD
| SETSSP
| USESR0
| USESSP
}, /* tst.b #imm,@(r0,gbr) */
1943 { 0xcd00, LOAD
| STORE
| USESR0
| USESSP
}, /* and.b #imm,@(r0,gbr) */
1944 { 0xce00, LOAD
| STORE
| USESR0
| USESSP
}, /* xor.b #imm,@(r0,gbr) */
1945 { 0xcf00, LOAD
| STORE
| USESR0
| USESSP
} /* or.b #imm,@(r0,gbr) */
1948 static const struct sh_minor_opcode sh_opcodec
[] =
1950 { MAP (sh_opcodec0
), 0xff00 }
1953 static const struct sh_opcode sh_opcoded0
[] =
1955 { 0xd000, LOAD
| SETS1
} /* mov.l @(disp,pc),rn */
1958 static const struct sh_minor_opcode sh_opcoded
[] =
1960 { MAP (sh_opcoded0
), 0xf000 }
1963 static const struct sh_opcode sh_opcodee0
[] =
1965 { 0xe000, SETS1
} /* mov #imm,rn */
1968 static const struct sh_minor_opcode sh_opcodee
[] =
1970 { MAP (sh_opcodee0
), 0xf000 }
1973 static const struct sh_opcode sh_opcodef0
[] =
1975 { 0xf000, SETSF1
| USESF1
| USESF2
}, /* fadd fm,fn */
1976 { 0xf001, SETSF1
| USESF1
| USESF2
}, /* fsub fm,fn */
1977 { 0xf002, SETSF1
| USESF1
| USESF2
}, /* fmul fm,fn */
1978 { 0xf003, SETSF1
| USESF1
| USESF2
}, /* fdiv fm,fn */
1979 { 0xf004, SETSSP
| USESF1
| USESF2
}, /* fcmp/eq fm,fn */
1980 { 0xf005, SETSSP
| USESF1
| USESF2
}, /* fcmp/gt fm,fn */
1981 { 0xf006, LOAD
| SETSF1
| USES2
| USESR0
}, /* fmov.s @(r0,rm),fn */
1982 { 0xf007, STORE
| USES1
| USESF2
| USESR0
}, /* fmov.s fm,@(r0,rn) */
1983 { 0xf008, LOAD
| SETSF1
| USES2
}, /* fmov.s @rm,fn */
1984 { 0xf009, LOAD
| SETS2
| SETSF1
| USES2
}, /* fmov.s @rm+,fn */
1985 { 0xf00a, STORE
| USES1
| USESF2
}, /* fmov.s fm,@rn */
1986 { 0xf00b, STORE
| SETS1
| USES1
| USESF2
}, /* fmov.s fm,@-rn */
1987 { 0xf00c, SETSF1
| USESF2
}, /* fmov fm,fn */
1988 { 0xf00e, SETSF1
| USESF1
| USESF2
| USESF0
} /* fmac f0,fm,fn */
1991 static const struct sh_opcode sh_opcodef1
[] =
1993 { 0xf00d, SETSF1
| USESSP
}, /* fsts fpul,fn */
1994 { 0xf01d, SETSSP
| USESF1
}, /* flds fn,fpul */
1995 { 0xf02d, SETSF1
| USESSP
}, /* float fpul,fn */
1996 { 0xf03d, SETSSP
| USESF1
}, /* ftrc fn,fpul */
1997 { 0xf04d, SETSF1
| USESF1
}, /* fneg fn */
1998 { 0xf05d, SETSF1
| USESF1
}, /* fabs fn */
1999 { 0xf06d, SETSF1
| USESF1
}, /* fsqrt fn */
2000 { 0xf07d, SETSSP
| USESF1
}, /* ftst/nan fn */
2001 { 0xf08d, SETSF1
}, /* fldi0 fn */
2002 { 0xf09d, SETSF1
} /* fldi1 fn */
2005 static const struct sh_minor_opcode sh_opcodef
[] =
2007 { MAP (sh_opcodef0
), 0xf00f },
2008 { MAP (sh_opcodef1
), 0xf0ff }
2011 static struct sh_major_opcode sh_opcodes
[] =
2013 { MAP (sh_opcode0
) },
2014 { MAP (sh_opcode1
) },
2015 { MAP (sh_opcode2
) },
2016 { MAP (sh_opcode3
) },
2017 { MAP (sh_opcode4
) },
2018 { MAP (sh_opcode5
) },
2019 { MAP (sh_opcode6
) },
2020 { MAP (sh_opcode7
) },
2021 { MAP (sh_opcode8
) },
2022 { MAP (sh_opcode9
) },
2023 { MAP (sh_opcodea
) },
2024 { MAP (sh_opcodeb
) },
2025 { MAP (sh_opcodec
) },
2026 { MAP (sh_opcoded
) },
2027 { MAP (sh_opcodee
) },
2028 { MAP (sh_opcodef
) }
2031 /* The double data transfer / parallel processing insns are not
2032 described here. This will cause sh_align_load_span to leave them alone. */
2034 static const struct sh_opcode sh_dsp_opcodef0
[] =
2036 { 0xf400, USESAS
| SETSAS
| LOAD
| SETSSP
}, /* movs.x @-as,ds */
2037 { 0xf401, USESAS
| SETSAS
| STORE
| USESSP
}, /* movs.x ds,@-as */
2038 { 0xf404, USESAS
| LOAD
| SETSSP
}, /* movs.x @as,ds */
2039 { 0xf405, USESAS
| STORE
| USESSP
}, /* movs.x ds,@as */
2040 { 0xf408, USESAS
| SETSAS
| LOAD
| SETSSP
}, /* movs.x @as+,ds */
2041 { 0xf409, USESAS
| SETSAS
| STORE
| USESSP
}, /* movs.x ds,@as+ */
2042 { 0xf40c, USESAS
| SETSAS
| LOAD
| SETSSP
| USESR8
}, /* movs.x @as+r8,ds */
2043 { 0xf40d, USESAS
| SETSAS
| STORE
| USESSP
| USESR8
} /* movs.x ds,@as+r8 */
2046 static const struct sh_minor_opcode sh_dsp_opcodef
[] =
2048 { MAP (sh_dsp_opcodef0
), 0xfc0d }
2051 /* Given an instruction, return a pointer to the corresponding
2052 sh_opcode structure. Return NULL if the instruction is not
2055 static const struct sh_opcode
*
2059 const struct sh_major_opcode
*maj
;
2060 const struct sh_minor_opcode
*min
, *minend
;
2062 maj
= &sh_opcodes
[(insn
& 0xf000) >> 12];
2063 min
= maj
->minor_opcodes
;
2064 minend
= min
+ maj
->count
;
2065 for (; min
< minend
; min
++)
2068 const struct sh_opcode
*op
, *opend
;
2070 l
= insn
& min
->mask
;
2072 opend
= op
+ min
->count
;
2074 /* Since the opcodes tables are sorted, we could use a binary
2075 search here if the count were above some cutoff value. */
2076 for (; op
< opend
; op
++)
2077 if (op
->opcode
== l
)
2084 /* See whether an instruction uses or sets a general purpose register */
2087 sh_insn_uses_or_sets_reg (insn
, op
, reg
)
2089 const struct sh_opcode
*op
;
2092 if (sh_insn_uses_reg (insn
, op
, reg
))
2095 return sh_insn_sets_reg (insn
, op
, reg
);
2098 /* See whether an instruction uses a general purpose register. */
2101 sh_insn_uses_reg (insn
, op
, reg
)
2103 const struct sh_opcode
*op
;
2110 if ((f
& USES1
) != 0
2111 && USES1_REG (insn
) == reg
)
2113 if ((f
& USES2
) != 0
2114 && USES2_REG (insn
) == reg
)
2116 if ((f
& USESR0
) != 0
2119 if ((f
& USESAS
) && reg
== USESAS_REG (insn
))
2121 if ((f
& USESR8
) && reg
== 8)
2127 /* See whether an instruction sets a general purpose register. */
2130 sh_insn_sets_reg (insn
, op
, reg
)
2132 const struct sh_opcode
*op
;
2139 if ((f
& SETS1
) != 0
2140 && SETS1_REG (insn
) == reg
)
2142 if ((f
& SETS2
) != 0
2143 && SETS2_REG (insn
) == reg
)
2145 if ((f
& SETSR0
) != 0
2148 if ((f
& SETSAS
) && reg
== SETSAS_REG (insn
))
2154 /* See whether an instruction uses or sets a floating point register */
2157 sh_insn_uses_or_sets_freg (insn
, op
, reg
)
2159 const struct sh_opcode
*op
;
2162 if (sh_insn_uses_freg (insn
, op
, reg
))
2165 return sh_insn_sets_freg (insn
, op
, reg
);
2168 /* See whether an instruction uses a floating point register. */
2171 sh_insn_uses_freg (insn
, op
, freg
)
2173 const struct sh_opcode
*op
;
2180 /* We can't tell if this is a double-precision insn, so just play safe
2181 and assume that it might be. So not only have we test FREG against
2182 itself, but also even FREG against FREG+1 - if the using insn uses
2183 just the low part of a double precision value - but also an odd
2184 FREG against FREG-1 - if the setting insn sets just the low part
2185 of a double precision value.
2186 So what this all boils down to is that we have to ignore the lowest
2187 bit of the register number. */
2189 if ((f
& USESF1
) != 0
2190 && (USESF1_REG (insn
) & 0xe) == (freg
& 0xe))
2192 if ((f
& USESF2
) != 0
2193 && (USESF2_REG (insn
) & 0xe) == (freg
& 0xe))
2195 if ((f
& USESF0
) != 0
2202 /* See whether an instruction sets a floating point register. */
2205 sh_insn_sets_freg (insn
, op
, freg
)
2207 const struct sh_opcode
*op
;
2214 /* We can't tell if this is a double-precision insn, so just play safe
2215 and assume that it might be. So not only have we test FREG against
2216 itself, but also even FREG against FREG+1 - if the using insn uses
2217 just the low part of a double precision value - but also an odd
2218 FREG against FREG-1 - if the setting insn sets just the low part
2219 of a double precision value.
2220 So what this all boils down to is that we have to ignore the lowest
2221 bit of the register number. */
2223 if ((f
& SETSF1
) != 0
2224 && (SETSF1_REG (insn
) & 0xe) == (freg
& 0xe))
2230 /* See whether instructions I1 and I2 conflict, assuming I1 comes
2231 before I2. OP1 and OP2 are the corresponding sh_opcode structures.
2232 This should return TRUE if there is a conflict, or FALSE if the
2233 instructions can be swapped safely. */
2236 sh_insns_conflict (i1
, op1
, i2
, op2
)
2238 const struct sh_opcode
*op1
;
2240 const struct sh_opcode
*op2
;
2242 unsigned int f1
, f2
;
2247 /* Load of fpscr conflicts with floating point operations.
2248 FIXME: shouldn't test raw opcodes here. */
2249 if (((i1
& 0xf0ff) == 0x4066 && (i2
& 0xf000) == 0xf000)
2250 || ((i2
& 0xf0ff) == 0x4066 && (i1
& 0xf000) == 0xf000))
2253 if ((f1
& (BRANCH
| DELAY
)) != 0
2254 || (f2
& (BRANCH
| DELAY
)) != 0)
2257 if (((f1
| f2
) & SETSSP
)
2258 && (f1
& (SETSSP
| USESSP
))
2259 && (f2
& (SETSSP
| USESSP
)))
2262 if ((f1
& SETS1
) != 0
2263 && sh_insn_uses_or_sets_reg (i2
, op2
, SETS1_REG (i1
)))
2265 if ((f1
& SETS2
) != 0
2266 && sh_insn_uses_or_sets_reg (i2
, op2
, SETS2_REG (i1
)))
2268 if ((f1
& SETSR0
) != 0
2269 && sh_insn_uses_or_sets_reg (i2
, op2
, 0))
2272 && sh_insn_uses_or_sets_reg (i2
, op2
, SETSAS_REG (i1
)))
2274 if ((f1
& SETSF1
) != 0
2275 && sh_insn_uses_or_sets_freg (i2
, op2
, SETSF1_REG (i1
)))
2278 if ((f2
& SETS1
) != 0
2279 && sh_insn_uses_or_sets_reg (i1
, op1
, SETS1_REG (i2
)))
2281 if ((f2
& SETS2
) != 0
2282 && sh_insn_uses_or_sets_reg (i1
, op1
, SETS2_REG (i2
)))
2284 if ((f2
& SETSR0
) != 0
2285 && sh_insn_uses_or_sets_reg (i1
, op1
, 0))
2288 && sh_insn_uses_or_sets_reg (i1
, op1
, SETSAS_REG (i2
)))
2290 if ((f2
& SETSF1
) != 0
2291 && sh_insn_uses_or_sets_freg (i1
, op1
, SETSF1_REG (i2
)))
2294 /* The instructions do not conflict. */
2298 /* I1 is a load instruction, and I2 is some other instruction. Return
2299 TRUE if I1 loads a register which I2 uses. */
2302 sh_load_use (i1
, op1
, i2
, op2
)
2304 const struct sh_opcode
*op1
;
2306 const struct sh_opcode
*op2
;
2312 if ((f1
& LOAD
) == 0)
2315 /* If both SETS1 and SETSSP are set, that means a load to a special
2316 register using postincrement addressing mode, which we don't care
2318 if ((f1
& SETS1
) != 0
2319 && (f1
& SETSSP
) == 0
2320 && sh_insn_uses_reg (i2
, op2
, (i1
& 0x0f00) >> 8))
2323 if ((f1
& SETSR0
) != 0
2324 && sh_insn_uses_reg (i2
, op2
, 0))
2327 if ((f1
& SETSF1
) != 0
2328 && sh_insn_uses_freg (i2
, op2
, (i1
& 0x0f00) >> 8))
2334 /* Try to align loads and stores within a span of memory. This is
2335 called by both the ELF and the COFF sh targets. ABFD and SEC are
2336 the BFD and section we are examining. CONTENTS is the contents of
2337 the section. SWAP is the routine to call to swap two instructions.
2338 RELOCS is a pointer to the internal relocation information, to be
2339 passed to SWAP. PLABEL is a pointer to the current label in a
2340 sorted list of labels; LABEL_END is the end of the list. START and
2341 STOP are the range of memory to examine. If a swap is made,
2342 *PSWAPPED is set to TRUE. */
2348 _bfd_sh_align_load_span (abfd
, sec
, contents
, swap
, relocs
,
2349 plabel
, label_end
, start
, stop
, pswapped
)
2353 bfd_boolean (*swap
) PARAMS ((bfd
*, asection
*, PTR
, bfd_byte
*, bfd_vma
));
2359 bfd_boolean
*pswapped
;
2361 int dsp
= (abfd
->arch_info
->mach
== bfd_mach_sh_dsp
2362 || abfd
->arch_info
->mach
== bfd_mach_sh3_dsp
);
2365 /* The SH4 has a Harvard architecture, hence aligning loads is not
2366 desirable. In fact, it is counter-productive, since it interferes
2367 with the schedules generated by the compiler. */
2368 if (abfd
->arch_info
->mach
== bfd_mach_sh4
)
2371 /* If we are linking sh[3]-dsp code, swap the FPU instructions for DSP
2375 sh_opcodes
[0xf].minor_opcodes
= sh_dsp_opcodef
;
2376 sh_opcodes
[0xf].count
= sizeof sh_dsp_opcodef
/ sizeof sh_dsp_opcodef
;
2379 /* Instructions should be aligned on 2 byte boundaries. */
2380 if ((start
& 1) == 1)
2383 /* Now look through the unaligned addresses. */
2387 for (; i
< stop
; i
+= 4)
2390 const struct sh_opcode
*op
;
2391 unsigned int prev_insn
= 0;
2392 const struct sh_opcode
*prev_op
= NULL
;
2394 insn
= bfd_get_16 (abfd
, contents
+ i
);
2395 op
= sh_insn_info (insn
);
2397 || (op
->flags
& (LOAD
| STORE
)) == 0)
2400 /* This is a load or store which is not on a four byte boundary. */
2402 while (*plabel
< label_end
&& **plabel
< i
)
2407 prev_insn
= bfd_get_16 (abfd
, contents
+ i
- 2);
2408 /* If INSN is the field b of a parallel processing insn, it is not
2409 a load / store after all. Note that the test here might mistake
2410 the field_b of a pcopy insn for the starting code of a parallel
2411 processing insn; this might miss a swapping opportunity, but at
2412 least we're on the safe side. */
2413 if (dsp
&& (prev_insn
& 0xfc00) == 0xf800)
2416 /* Check if prev_insn is actually the field b of a parallel
2417 processing insn. Again, this can give a spurious match
2419 if (dsp
&& i
- 2 > start
)
2421 unsigned pprev_insn
= bfd_get_16 (abfd
, contents
+ i
- 4);
2423 if ((pprev_insn
& 0xfc00) == 0xf800)
2426 prev_op
= sh_insn_info (prev_insn
);
2429 prev_op
= sh_insn_info (prev_insn
);
2431 /* If the load/store instruction is in a delay slot, we
2434 || (prev_op
->flags
& DELAY
) != 0)
2438 && (*plabel
>= label_end
|| **plabel
!= i
)
2440 && (prev_op
->flags
& (LOAD
| STORE
)) == 0
2441 && ! sh_insns_conflict (prev_insn
, prev_op
, insn
, op
))
2445 /* The load/store instruction does not have a label, and
2446 there is a previous instruction; PREV_INSN is not
2447 itself a load/store instruction, and PREV_INSN and
2448 INSN do not conflict. */
2454 unsigned int prev2_insn
;
2455 const struct sh_opcode
*prev2_op
;
2457 prev2_insn
= bfd_get_16 (abfd
, contents
+ i
- 4);
2458 prev2_op
= sh_insn_info (prev2_insn
);
2460 /* If the instruction before PREV_INSN has a delay
2461 slot--that is, PREV_INSN is in a delay slot--we
2463 if (prev2_op
== NULL
2464 || (prev2_op
->flags
& DELAY
) != 0)
2467 /* If the instruction before PREV_INSN is a load,
2468 and it sets a register which INSN uses, then
2469 putting INSN immediately after PREV_INSN will
2470 cause a pipeline bubble, so there is no point to
2473 && (prev2_op
->flags
& LOAD
) != 0
2474 && sh_load_use (prev2_insn
, prev2_op
, insn
, op
))
2480 if (! (*swap
) (abfd
, sec
, relocs
, contents
, i
- 2))
2487 while (*plabel
< label_end
&& **plabel
< i
+ 2)
2491 && (*plabel
>= label_end
|| **plabel
!= i
+ 2))
2493 unsigned int next_insn
;
2494 const struct sh_opcode
*next_op
;
2496 /* There is an instruction after the load/store
2497 instruction, and it does not have a label. */
2498 next_insn
= bfd_get_16 (abfd
, contents
+ i
+ 2);
2499 next_op
= sh_insn_info (next_insn
);
2501 && (next_op
->flags
& (LOAD
| STORE
)) == 0
2502 && ! sh_insns_conflict (insn
, op
, next_insn
, next_op
))
2506 /* NEXT_INSN is not itself a load/store instruction,
2507 and it does not conflict with INSN. */
2511 /* If PREV_INSN is a load, and it sets a register
2512 which NEXT_INSN uses, then putting NEXT_INSN
2513 immediately after PREV_INSN will cause a pipeline
2514 bubble, so there is no reason to make this swap. */
2516 && (prev_op
->flags
& LOAD
) != 0
2517 && sh_load_use (prev_insn
, prev_op
, next_insn
, next_op
))
2520 /* If INSN is a load, and it sets a register which
2521 the insn after NEXT_INSN uses, then doing the
2522 swap will cause a pipeline bubble, so there is no
2523 reason to make the swap. However, if the insn
2524 after NEXT_INSN is itself a load or store
2525 instruction, then it is misaligned, so
2526 optimistically hope that it will be swapped
2527 itself, and just live with the pipeline bubble if
2531 && (op
->flags
& LOAD
) != 0)
2533 unsigned int next2_insn
;
2534 const struct sh_opcode
*next2_op
;
2536 next2_insn
= bfd_get_16 (abfd
, contents
+ i
+ 4);
2537 next2_op
= sh_insn_info (next2_insn
);
2538 if (next2_op
== NULL
2539 || ((next2_op
->flags
& (LOAD
| STORE
)) == 0
2540 && sh_load_use (insn
, op
, next2_insn
, next2_op
)))
2546 if (! (*swap
) (abfd
, sec
, relocs
, contents
, i
))
2557 #endif /* not COFF_IMAGE_WITH_PE */
2559 /* Look for loads and stores which we can align to four byte
2560 boundaries. See the longer comment above sh_relax_section for why
2561 this is desirable. This sets *PSWAPPED if some instruction was
2565 sh_align_loads (abfd
, sec
, internal_relocs
, contents
, pswapped
)
2568 struct internal_reloc
*internal_relocs
;
2570 bfd_boolean
*pswapped
;
2572 struct internal_reloc
*irel
, *irelend
;
2573 bfd_vma
*labels
= NULL
;
2574 bfd_vma
*label
, *label_end
;
2579 irelend
= internal_relocs
+ sec
->reloc_count
;
2581 /* Get all the addresses with labels on them. */
2582 amt
= (bfd_size_type
) sec
->reloc_count
* sizeof (bfd_vma
);
2583 labels
= (bfd_vma
*) bfd_malloc (amt
);
2587 for (irel
= internal_relocs
; irel
< irelend
; irel
++)
2589 if (irel
->r_type
== R_SH_LABEL
)
2591 *label_end
= irel
->r_vaddr
- sec
->vma
;
2596 /* Note that the assembler currently always outputs relocs in
2597 address order. If that ever changes, this code will need to sort
2598 the label values and the relocs. */
2602 for (irel
= internal_relocs
; irel
< irelend
; irel
++)
2604 bfd_vma start
, stop
;
2606 if (irel
->r_type
!= R_SH_CODE
)
2609 start
= irel
->r_vaddr
- sec
->vma
;
2611 for (irel
++; irel
< irelend
; irel
++)
2612 if (irel
->r_type
== R_SH_DATA
)
2615 stop
= irel
->r_vaddr
- sec
->vma
;
2619 if (! _bfd_sh_align_load_span (abfd
, sec
, contents
, sh_swap_insns
,
2620 (PTR
) internal_relocs
, &label
,
2621 label_end
, start
, stop
, pswapped
))
2635 /* Swap two SH instructions. */
2638 sh_swap_insns (abfd
, sec
, relocs
, contents
, addr
)
2645 struct internal_reloc
*internal_relocs
= (struct internal_reloc
*) relocs
;
2646 unsigned short i1
, i2
;
2647 struct internal_reloc
*irel
, *irelend
;
2649 /* Swap the instructions themselves. */
2650 i1
= bfd_get_16 (abfd
, contents
+ addr
);
2651 i2
= bfd_get_16 (abfd
, contents
+ addr
+ 2);
2652 bfd_put_16 (abfd
, (bfd_vma
) i2
, contents
+ addr
);
2653 bfd_put_16 (abfd
, (bfd_vma
) i1
, contents
+ addr
+ 2);
2655 /* Adjust all reloc addresses. */
2656 irelend
= internal_relocs
+ sec
->reloc_count
;
2657 for (irel
= internal_relocs
; irel
< irelend
; irel
++)
2661 /* There are a few special types of relocs that we don't want to
2662 adjust. These relocs do not apply to the instruction itself,
2663 but are only associated with the address. */
2664 type
= irel
->r_type
;
2665 if (type
== R_SH_ALIGN
2666 || type
== R_SH_CODE
2667 || type
== R_SH_DATA
2668 || type
== R_SH_LABEL
)
2671 /* If an R_SH_USES reloc points to one of the addresses being
2672 swapped, we must adjust it. It would be incorrect to do this
2673 for a jump, though, since we want to execute both
2674 instructions after the jump. (We have avoided swapping
2675 around a label, so the jump will not wind up executing an
2676 instruction it shouldn't). */
2677 if (type
== R_SH_USES
)
2681 off
= irel
->r_vaddr
- sec
->vma
+ 4 + irel
->r_offset
;
2683 irel
->r_offset
+= 2;
2684 else if (off
== addr
+ 2)
2685 irel
->r_offset
-= 2;
2688 if (irel
->r_vaddr
- sec
->vma
== addr
)
2693 else if (irel
->r_vaddr
- sec
->vma
== addr
+ 2)
2704 unsigned short insn
, oinsn
;
2705 bfd_boolean overflow
;
2707 loc
= contents
+ irel
->r_vaddr
- sec
->vma
;
2714 case R_SH_PCDISP8BY2
:
2715 case R_SH_PCRELIMM8BY2
:
2716 insn
= bfd_get_16 (abfd
, loc
);
2719 if ((oinsn
& 0xff00) != (insn
& 0xff00))
2721 bfd_put_16 (abfd
, (bfd_vma
) insn
, loc
);
2725 insn
= bfd_get_16 (abfd
, loc
);
2728 if ((oinsn
& 0xf000) != (insn
& 0xf000))
2730 bfd_put_16 (abfd
, (bfd_vma
) insn
, loc
);
2733 case R_SH_PCRELIMM8BY4
:
2734 /* This reloc ignores the least significant 3 bits of
2735 the program counter before adding in the offset.
2736 This means that if ADDR is at an even address, the
2737 swap will not affect the offset. If ADDR is an at an
2738 odd address, then the instruction will be crossing a
2739 four byte boundary, and must be adjusted. */
2740 if ((addr
& 3) != 0)
2742 insn
= bfd_get_16 (abfd
, loc
);
2745 if ((oinsn
& 0xff00) != (insn
& 0xff00))
2747 bfd_put_16 (abfd
, (bfd_vma
) insn
, loc
);
2755 ((*_bfd_error_handler
)
2756 ("%B: 0x%lx: fatal: reloc overflow while relaxing",
2757 abfd
, (unsigned long) irel
->r_vaddr
));
2758 bfd_set_error (bfd_error_bad_value
);
2767 /* This is a modification of _bfd_coff_generic_relocate_section, which
2768 will handle SH relaxing. */
2771 sh_relocate_section (output_bfd
, info
, input_bfd
, input_section
, contents
,
2772 relocs
, syms
, sections
)
2773 bfd
*output_bfd ATTRIBUTE_UNUSED
;
2774 struct bfd_link_info
*info
;
2776 asection
*input_section
;
2778 struct internal_reloc
*relocs
;
2779 struct internal_syment
*syms
;
2780 asection
**sections
;
2782 struct internal_reloc
*rel
;
2783 struct internal_reloc
*relend
;
2786 relend
= rel
+ input_section
->reloc_count
;
2787 for (; rel
< relend
; rel
++)
2790 struct coff_link_hash_entry
*h
;
2791 struct internal_syment
*sym
;
2794 reloc_howto_type
*howto
;
2795 bfd_reloc_status_type rstat
;
2797 /* Almost all relocs have to do with relaxing. If any work must
2798 be done for them, it has been done in sh_relax_section. */
2799 if (rel
->r_type
!= R_SH_IMM32
2801 && rel
->r_type
!= R_SH_IMM32CE
2802 && rel
->r_type
!= R_SH_IMAGEBASE
2804 && rel
->r_type
!= R_SH_PCDISP
)
2807 symndx
= rel
->r_symndx
;
2817 || (unsigned long) symndx
>= obj_raw_syment_count (input_bfd
))
2819 (*_bfd_error_handler
)
2820 ("%B: illegal symbol index %ld in relocs",
2822 bfd_set_error (bfd_error_bad_value
);
2825 h
= obj_coff_sym_hashes (input_bfd
)[symndx
];
2826 sym
= syms
+ symndx
;
2829 if (sym
!= NULL
&& sym
->n_scnum
!= 0)
2830 addend
= - sym
->n_value
;
2834 if (rel
->r_type
== R_SH_PCDISP
)
2837 if (rel
->r_type
>= SH_COFF_HOWTO_COUNT
)
2840 howto
= &sh_coff_howtos
[rel
->r_type
];
2844 bfd_set_error (bfd_error_bad_value
);
2849 if (rel
->r_type
== R_SH_IMAGEBASE
)
2850 addend
-= pe_data (input_section
->output_section
->owner
)->pe_opthdr
.ImageBase
;
2859 /* There is nothing to do for an internal PCDISP reloc. */
2860 if (rel
->r_type
== R_SH_PCDISP
)
2865 sec
= bfd_abs_section_ptr
;
2870 sec
= sections
[symndx
];
2871 val
= (sec
->output_section
->vma
2872 + sec
->output_offset
2879 if (h
->root
.type
== bfd_link_hash_defined
2880 || h
->root
.type
== bfd_link_hash_defweak
)
2884 sec
= h
->root
.u
.def
.section
;
2885 val
= (h
->root
.u
.def
.value
2886 + sec
->output_section
->vma
2887 + sec
->output_offset
);
2889 else if (! info
->relocatable
)
2891 if (! ((*info
->callbacks
->undefined_symbol
)
2892 (info
, h
->root
.root
.string
, input_bfd
, input_section
,
2893 rel
->r_vaddr
- input_section
->vma
, TRUE
)))
2898 rstat
= _bfd_final_link_relocate (howto
, input_bfd
, input_section
,
2900 rel
->r_vaddr
- input_section
->vma
,
2909 case bfd_reloc_overflow
:
2912 char buf
[SYMNMLEN
+ 1];
2918 else if (sym
->_n
._n_n
._n_zeroes
== 0
2919 && sym
->_n
._n_n
._n_offset
!= 0)
2920 name
= obj_coff_strings (input_bfd
) + sym
->_n
._n_n
._n_offset
;
2923 strncpy (buf
, sym
->_n
._n_name
, SYMNMLEN
);
2924 buf
[SYMNMLEN
] = '\0';
2928 if (! ((*info
->callbacks
->reloc_overflow
)
2929 (info
, (h
? &h
->root
: NULL
), name
, howto
->name
,
2930 (bfd_vma
) 0, input_bfd
, input_section
,
2931 rel
->r_vaddr
- input_section
->vma
)))
2940 /* This is a version of bfd_generic_get_relocated_section_contents
2941 which uses sh_relocate_section. */
2944 sh_coff_get_relocated_section_contents (output_bfd
, link_info
, link_order
,
2945 data
, relocatable
, symbols
)
2947 struct bfd_link_info
*link_info
;
2948 struct bfd_link_order
*link_order
;
2950 bfd_boolean relocatable
;
2953 asection
*input_section
= link_order
->u
.indirect
.section
;
2954 bfd
*input_bfd
= input_section
->owner
;
2955 asection
**sections
= NULL
;
2956 struct internal_reloc
*internal_relocs
= NULL
;
2957 struct internal_syment
*internal_syms
= NULL
;
2959 /* We only need to handle the case of relaxing, or of having a
2960 particular set of section contents, specially. */
2962 || coff_section_data (input_bfd
, input_section
) == NULL
2963 || coff_section_data (input_bfd
, input_section
)->contents
== NULL
)
2964 return bfd_generic_get_relocated_section_contents (output_bfd
, link_info
,
2969 memcpy (data
, coff_section_data (input_bfd
, input_section
)->contents
,
2970 (size_t) input_section
->size
);
2972 if ((input_section
->flags
& SEC_RELOC
) != 0
2973 && input_section
->reloc_count
> 0)
2975 bfd_size_type symesz
= bfd_coff_symesz (input_bfd
);
2976 bfd_byte
*esym
, *esymend
;
2977 struct internal_syment
*isymp
;
2981 if (! _bfd_coff_get_external_symbols (input_bfd
))
2984 internal_relocs
= (_bfd_coff_read_internal_relocs
2985 (input_bfd
, input_section
, FALSE
, (bfd_byte
*) NULL
,
2986 FALSE
, (struct internal_reloc
*) NULL
));
2987 if (internal_relocs
== NULL
)
2990 amt
= obj_raw_syment_count (input_bfd
);
2991 amt
*= sizeof (struct internal_syment
);
2992 internal_syms
= (struct internal_syment
*) bfd_malloc (amt
);
2993 if (internal_syms
== NULL
)
2996 amt
= obj_raw_syment_count (input_bfd
);
2997 amt
*= sizeof (asection
*);
2998 sections
= (asection
**) bfd_malloc (amt
);
2999 if (sections
== NULL
)
3002 isymp
= internal_syms
;
3004 esym
= (bfd_byte
*) obj_coff_external_syms (input_bfd
);
3005 esymend
= esym
+ obj_raw_syment_count (input_bfd
) * symesz
;
3006 while (esym
< esymend
)
3008 bfd_coff_swap_sym_in (input_bfd
, (PTR
) esym
, (PTR
) isymp
);
3010 if (isymp
->n_scnum
!= 0)
3011 *secpp
= coff_section_from_bfd_index (input_bfd
, isymp
->n_scnum
);
3014 if (isymp
->n_value
== 0)
3015 *secpp
= bfd_und_section_ptr
;
3017 *secpp
= bfd_com_section_ptr
;
3020 esym
+= (isymp
->n_numaux
+ 1) * symesz
;
3021 secpp
+= isymp
->n_numaux
+ 1;
3022 isymp
+= isymp
->n_numaux
+ 1;
3025 if (! sh_relocate_section (output_bfd
, link_info
, input_bfd
,
3026 input_section
, data
, internal_relocs
,
3027 internal_syms
, sections
))
3032 free (internal_syms
);
3033 internal_syms
= NULL
;
3034 free (internal_relocs
);
3035 internal_relocs
= NULL
;
3041 if (internal_relocs
!= NULL
)
3042 free (internal_relocs
);
3043 if (internal_syms
!= NULL
)
3044 free (internal_syms
);
3045 if (sections
!= NULL
)
3050 /* The target vectors. */
3052 #ifndef TARGET_SHL_SYM
3053 CREATE_BIG_COFF_TARGET_VEC (shcoff_vec
, "coff-sh", BFD_IS_RELAXABLE
, 0, '_', NULL
, COFF_SWAP_TABLE
)
3056 #ifdef TARGET_SHL_SYM
3057 #define TARGET_SYM TARGET_SHL_SYM
3059 #define TARGET_SYM shlcoff_vec
3062 #ifndef TARGET_SHL_NAME
3063 #define TARGET_SHL_NAME "coff-shl"
3067 CREATE_LITTLE_COFF_TARGET_VEC (TARGET_SYM
, TARGET_SHL_NAME
, BFD_IS_RELAXABLE
,
3068 SEC_CODE
| SEC_DATA
, '_', NULL
, COFF_SWAP_TABLE
);
3070 CREATE_LITTLE_COFF_TARGET_VEC (TARGET_SYM
, TARGET_SHL_NAME
, BFD_IS_RELAXABLE
,
3071 0, '_', NULL
, COFF_SWAP_TABLE
)
3074 #ifndef TARGET_SHL_SYM
3075 static const bfd_target
* coff_small_object_p
PARAMS ((bfd
*));
3076 static bfd_boolean coff_small_new_section_hook
PARAMS ((bfd
*, asection
*));
3077 /* Some people want versions of the SH COFF target which do not align
3078 to 16 byte boundaries. We implement that by adding a couple of new
3079 target vectors. These are just like the ones above, but they
3080 change the default section alignment. To generate them in the
3081 assembler, use -small. To use them in the linker, use -b
3082 coff-sh{l}-small and -oformat coff-sh{l}-small.
3084 Yes, this is a horrible hack. A general solution for setting
3085 section alignment in COFF is rather complex. ELF handles this
3088 /* Only recognize the small versions if the target was not defaulted.
3089 Otherwise we won't recognize the non default endianness. */
3091 static const bfd_target
*
3092 coff_small_object_p (abfd
)
3095 if (abfd
->target_defaulted
)
3097 bfd_set_error (bfd_error_wrong_format
);
3100 return coff_object_p (abfd
);
3103 /* Set the section alignment for the small versions. */
3106 coff_small_new_section_hook (abfd
, section
)
3110 if (! coff_new_section_hook (abfd
, section
))
3113 /* We must align to at least a four byte boundary, because longword
3114 accesses must be on a four byte boundary. */
3115 if (section
->alignment_power
== COFF_DEFAULT_SECTION_ALIGNMENT_POWER
)
3116 section
->alignment_power
= 2;
3121 /* This is copied from bfd_coff_std_swap_table so that we can change
3122 the default section alignment power. */
3124 static bfd_coff_backend_data bfd_coff_small_swap_table
=
3126 coff_swap_aux_in
, coff_swap_sym_in
, coff_swap_lineno_in
,
3127 coff_swap_aux_out
, coff_swap_sym_out
,
3128 coff_swap_lineno_out
, coff_swap_reloc_out
,
3129 coff_swap_filehdr_out
, coff_swap_aouthdr_out
,
3130 coff_swap_scnhdr_out
,
3131 FILHSZ
, AOUTSZ
, SCNHSZ
, SYMESZ
, AUXESZ
, RELSZ
, LINESZ
, FILNMLEN
,
3132 #ifdef COFF_LONG_FILENAMES
3137 COFF_DEFAULT_LONG_SECTION_NAMES
,
3139 #ifdef COFF_FORCE_SYMBOLS_IN_STRINGS
3144 #ifdef COFF_DEBUG_STRING_WIDE_PREFIX
3149 coff_swap_filehdr_in
, coff_swap_aouthdr_in
, coff_swap_scnhdr_in
,
3150 coff_swap_reloc_in
, coff_bad_format_hook
, coff_set_arch_mach_hook
,
3151 coff_mkobject_hook
, styp_to_sec_flags
, coff_set_alignment_hook
,
3152 coff_slurp_symbol_table
, symname_in_debug_hook
, coff_pointerize_aux_hook
,
3153 coff_print_aux
, coff_reloc16_extra_cases
, coff_reloc16_estimate
,
3154 coff_classify_symbol
, coff_compute_section_file_positions
,
3155 coff_start_final_link
, coff_relocate_section
, coff_rtype_to_howto
,
3156 coff_adjust_symndx
, coff_link_add_one_symbol
,
3157 coff_link_output_has_begun
, coff_final_link_postscript
,
3161 #define coff_small_close_and_cleanup \
3162 coff_close_and_cleanup
3163 #define coff_small_bfd_free_cached_info \
3164 coff_bfd_free_cached_info
3165 #define coff_small_get_section_contents \
3166 coff_get_section_contents
3167 #define coff_small_get_section_contents_in_window \
3168 coff_get_section_contents_in_window
3170 extern const bfd_target shlcoff_small_vec
;
3172 const bfd_target shcoff_small_vec
=
3174 "coff-sh-small", /* name */
3175 bfd_target_coff_flavour
,
3176 BFD_ENDIAN_BIG
, /* data byte order is big */
3177 BFD_ENDIAN_BIG
, /* header byte order is big */
3179 (HAS_RELOC
| EXEC_P
| /* object flags */
3180 HAS_LINENO
| HAS_DEBUG
|
3181 HAS_SYMS
| HAS_LOCALS
| WP_TEXT
| BFD_IS_RELAXABLE
),
3183 (SEC_HAS_CONTENTS
| SEC_ALLOC
| SEC_LOAD
| SEC_RELOC
),
3184 '_', /* leading symbol underscore */
3185 '/', /* ar_pad_char */
3186 15, /* ar_max_namelen */
3187 bfd_getb64
, bfd_getb_signed_64
, bfd_putb64
,
3188 bfd_getb32
, bfd_getb_signed_32
, bfd_putb32
,
3189 bfd_getb16
, bfd_getb_signed_16
, bfd_putb16
, /* data */
3190 bfd_getb64
, bfd_getb_signed_64
, bfd_putb64
,
3191 bfd_getb32
, bfd_getb_signed_32
, bfd_putb32
,
3192 bfd_getb16
, bfd_getb_signed_16
, bfd_putb16
, /* hdrs */
3194 {_bfd_dummy_target
, coff_small_object_p
, /* bfd_check_format */
3195 bfd_generic_archive_p
, _bfd_dummy_target
},
3196 {bfd_false
, coff_mkobject
, _bfd_generic_mkarchive
, /* bfd_set_format */
3198 {bfd_false
, coff_write_object_contents
, /* bfd_write_contents */
3199 _bfd_write_archive_contents
, bfd_false
},
3201 BFD_JUMP_TABLE_GENERIC (coff_small
),
3202 BFD_JUMP_TABLE_COPY (coff
),
3203 BFD_JUMP_TABLE_CORE (_bfd_nocore
),
3204 BFD_JUMP_TABLE_ARCHIVE (_bfd_archive_coff
),
3205 BFD_JUMP_TABLE_SYMBOLS (coff
),
3206 BFD_JUMP_TABLE_RELOCS (coff
),
3207 BFD_JUMP_TABLE_WRITE (coff
),
3208 BFD_JUMP_TABLE_LINK (coff
),
3209 BFD_JUMP_TABLE_DYNAMIC (_bfd_nodynamic
),
3211 & shlcoff_small_vec
,
3213 (PTR
) &bfd_coff_small_swap_table
3216 const bfd_target shlcoff_small_vec
=
3218 "coff-shl-small", /* name */
3219 bfd_target_coff_flavour
,
3220 BFD_ENDIAN_LITTLE
, /* data byte order is little */
3221 BFD_ENDIAN_LITTLE
, /* header byte order is little endian too*/
3223 (HAS_RELOC
| EXEC_P
| /* object flags */
3224 HAS_LINENO
| HAS_DEBUG
|
3225 HAS_SYMS
| HAS_LOCALS
| WP_TEXT
| BFD_IS_RELAXABLE
),
3227 (SEC_HAS_CONTENTS
| SEC_ALLOC
| SEC_LOAD
| SEC_RELOC
),
3228 '_', /* leading symbol underscore */
3229 '/', /* ar_pad_char */
3230 15, /* ar_max_namelen */
3231 bfd_getl64
, bfd_getl_signed_64
, bfd_putl64
,
3232 bfd_getl32
, bfd_getl_signed_32
, bfd_putl32
,
3233 bfd_getl16
, bfd_getl_signed_16
, bfd_putl16
, /* data */
3234 bfd_getl64
, bfd_getl_signed_64
, bfd_putl64
,
3235 bfd_getl32
, bfd_getl_signed_32
, bfd_putl32
,
3236 bfd_getl16
, bfd_getl_signed_16
, bfd_putl16
, /* hdrs */
3238 {_bfd_dummy_target
, coff_small_object_p
, /* bfd_check_format */
3239 bfd_generic_archive_p
, _bfd_dummy_target
},
3240 {bfd_false
, coff_mkobject
, _bfd_generic_mkarchive
, /* bfd_set_format */
3242 {bfd_false
, coff_write_object_contents
, /* bfd_write_contents */
3243 _bfd_write_archive_contents
, bfd_false
},
3245 BFD_JUMP_TABLE_GENERIC (coff_small
),
3246 BFD_JUMP_TABLE_COPY (coff
),
3247 BFD_JUMP_TABLE_CORE (_bfd_nocore
),
3248 BFD_JUMP_TABLE_ARCHIVE (_bfd_archive_coff
),
3249 BFD_JUMP_TABLE_SYMBOLS (coff
),
3250 BFD_JUMP_TABLE_RELOCS (coff
),
3251 BFD_JUMP_TABLE_WRITE (coff
),
3252 BFD_JUMP_TABLE_LINK (coff
),
3253 BFD_JUMP_TABLE_DYNAMIC (_bfd_nodynamic
),
3257 (PTR
) &bfd_coff_small_swap_table