Fix Aarch64 bug in warning filtering.
[deliverable/binutils-gdb.git] / bfd / dwarf2.c
1 /* DWARF 2 support.
2 Copyright (C) 1994-2018 Free Software Foundation, Inc.
3
4 Adapted from gdb/dwarf2read.c by Gavin Koch of Cygnus Solutions
5 (gavin@cygnus.com).
6
7 From the dwarf2read.c header:
8 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
9 Inc. with support from Florida State University (under contract
10 with the Ada Joint Program Office), and Silicon Graphics, Inc.
11 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
12 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
13 support in dwarfread.c
14
15 This file is part of BFD.
16
17 This program is free software; you can redistribute it and/or modify
18 it under the terms of the GNU General Public License as published by
19 the Free Software Foundation; either version 3 of the License, or (at
20 your option) any later version.
21
22 This program is distributed in the hope that it will be useful, but
23 WITHOUT ANY WARRANTY; without even the implied warranty of
24 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
25 General Public License for more details.
26
27 You should have received a copy of the GNU General Public License
28 along with this program; if not, write to the Free Software
29 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
30 MA 02110-1301, USA. */
31
32 #include "sysdep.h"
33 #include "bfd.h"
34 #include "libiberty.h"
35 #include "libbfd.h"
36 #include "elf-bfd.h"
37 #include "dwarf2.h"
38
39 /* The data in the .debug_line statement prologue looks like this. */
40
41 struct line_head
42 {
43 bfd_vma total_length;
44 unsigned short version;
45 bfd_vma prologue_length;
46 unsigned char minimum_instruction_length;
47 unsigned char maximum_ops_per_insn;
48 unsigned char default_is_stmt;
49 int line_base;
50 unsigned char line_range;
51 unsigned char opcode_base;
52 unsigned char *standard_opcode_lengths;
53 };
54
55 /* Attributes have a name and a value. */
56
57 struct attribute
58 {
59 enum dwarf_attribute name;
60 enum dwarf_form form;
61 union
62 {
63 char *str;
64 struct dwarf_block *blk;
65 bfd_uint64_t val;
66 bfd_int64_t sval;
67 }
68 u;
69 };
70
71 /* Blocks are a bunch of untyped bytes. */
72 struct dwarf_block
73 {
74 unsigned int size;
75 bfd_byte *data;
76 };
77
78 struct adjusted_section
79 {
80 asection *section;
81 bfd_vma adj_vma;
82 };
83
84 struct dwarf2_debug
85 {
86 /* A list of all previously read comp_units. */
87 struct comp_unit *all_comp_units;
88
89 /* Last comp unit in list above. */
90 struct comp_unit *last_comp_unit;
91
92 /* Names of the debug sections. */
93 const struct dwarf_debug_section *debug_sections;
94
95 /* The next unread compilation unit within the .debug_info section.
96 Zero indicates that the .debug_info section has not been loaded
97 into a buffer yet. */
98 bfd_byte *info_ptr;
99
100 /* Pointer to the end of the .debug_info section memory buffer. */
101 bfd_byte *info_ptr_end;
102
103 /* Pointer to the original bfd for which debug was loaded. This is what
104 we use to compare and so check that the cached debug data is still
105 valid - it saves having to possibly dereference the gnu_debuglink each
106 time. */
107 bfd *orig_bfd;
108
109 /* Pointer to the bfd, section and address of the beginning of the
110 section. The bfd might be different than expected because of
111 gnu_debuglink sections. */
112 bfd *bfd_ptr;
113 asection *sec;
114 bfd_byte *sec_info_ptr;
115
116 /* Support for alternate debug info sections created by the DWZ utility:
117 This includes a pointer to an alternate bfd which contains *extra*,
118 possibly duplicate debug sections, and pointers to the loaded
119 .debug_str and .debug_info sections from this bfd. */
120 bfd * alt_bfd_ptr;
121 bfd_byte * alt_dwarf_str_buffer;
122 bfd_size_type alt_dwarf_str_size;
123 bfd_byte * alt_dwarf_info_buffer;
124 bfd_size_type alt_dwarf_info_size;
125
126 /* A pointer to the memory block allocated for info_ptr. Neither
127 info_ptr nor sec_info_ptr are guaranteed to stay pointing to the
128 beginning of the malloc block. */
129 bfd_byte *info_ptr_memory;
130
131 /* Pointer to the symbol table. */
132 asymbol **syms;
133
134 /* Pointer to the .debug_abbrev section loaded into memory. */
135 bfd_byte *dwarf_abbrev_buffer;
136
137 /* Length of the loaded .debug_abbrev section. */
138 bfd_size_type dwarf_abbrev_size;
139
140 /* Buffer for decode_line_info. */
141 bfd_byte *dwarf_line_buffer;
142
143 /* Length of the loaded .debug_line section. */
144 bfd_size_type dwarf_line_size;
145
146 /* Pointer to the .debug_str section loaded into memory. */
147 bfd_byte *dwarf_str_buffer;
148
149 /* Length of the loaded .debug_str section. */
150 bfd_size_type dwarf_str_size;
151
152 /* Pointer to the .debug_line_str section loaded into memory. */
153 bfd_byte *dwarf_line_str_buffer;
154
155 /* Length of the loaded .debug_line_str section. */
156 bfd_size_type dwarf_line_str_size;
157
158 /* Pointer to the .debug_ranges section loaded into memory. */
159 bfd_byte *dwarf_ranges_buffer;
160
161 /* Length of the loaded .debug_ranges section. */
162 bfd_size_type dwarf_ranges_size;
163
164 /* If the most recent call to bfd_find_nearest_line was given an
165 address in an inlined function, preserve a pointer into the
166 calling chain for subsequent calls to bfd_find_inliner_info to
167 use. */
168 struct funcinfo *inliner_chain;
169
170 /* Section VMAs at the time the stash was built. */
171 bfd_vma *sec_vma;
172
173 /* Number of sections whose VMA we must adjust. */
174 int adjusted_section_count;
175
176 /* Array of sections with adjusted VMA. */
177 struct adjusted_section *adjusted_sections;
178
179 /* Number of times find_line is called. This is used in
180 the heuristic for enabling the info hash tables. */
181 int info_hash_count;
182
183 #define STASH_INFO_HASH_TRIGGER 100
184
185 /* Hash table mapping symbol names to function infos. */
186 struct info_hash_table *funcinfo_hash_table;
187
188 /* Hash table mapping symbol names to variable infos. */
189 struct info_hash_table *varinfo_hash_table;
190
191 /* Head of comp_unit list in the last hash table update. */
192 struct comp_unit *hash_units_head;
193
194 /* Status of info hash. */
195 int info_hash_status;
196 #define STASH_INFO_HASH_OFF 0
197 #define STASH_INFO_HASH_ON 1
198 #define STASH_INFO_HASH_DISABLED 2
199
200 /* True if we opened bfd_ptr. */
201 bfd_boolean close_on_cleanup;
202 };
203
204 struct arange
205 {
206 struct arange *next;
207 bfd_vma low;
208 bfd_vma high;
209 };
210
211 /* A minimal decoding of DWARF2 compilation units. We only decode
212 what's needed to get to the line number information. */
213
214 struct comp_unit
215 {
216 /* Chain the previously read compilation units. */
217 struct comp_unit *next_unit;
218
219 /* Likewise, chain the compilation unit read after this one.
220 The comp units are stored in reversed reading order. */
221 struct comp_unit *prev_unit;
222
223 /* Keep the bfd convenient (for memory allocation). */
224 bfd *abfd;
225
226 /* The lowest and highest addresses contained in this compilation
227 unit as specified in the compilation unit header. */
228 struct arange arange;
229
230 /* The DW_AT_name attribute (for error messages). */
231 char *name;
232
233 /* The abbrev hash table. */
234 struct abbrev_info **abbrevs;
235
236 /* DW_AT_language. */
237 int lang;
238
239 /* Note that an error was found by comp_unit_find_nearest_line. */
240 int error;
241
242 /* The DW_AT_comp_dir attribute. */
243 char *comp_dir;
244
245 /* TRUE if there is a line number table associated with this comp. unit. */
246 int stmtlist;
247
248 /* Pointer to the current comp_unit so that we can find a given entry
249 by its reference. */
250 bfd_byte *info_ptr_unit;
251
252 /* The offset into .debug_line of the line number table. */
253 unsigned long line_offset;
254
255 /* Pointer to the first child die for the comp unit. */
256 bfd_byte *first_child_die_ptr;
257
258 /* The end of the comp unit. */
259 bfd_byte *end_ptr;
260
261 /* The decoded line number, NULL if not yet decoded. */
262 struct line_info_table *line_table;
263
264 /* A list of the functions found in this comp. unit. */
265 struct funcinfo *function_table;
266
267 /* A table of function information references searchable by address. */
268 struct lookup_funcinfo *lookup_funcinfo_table;
269
270 /* Number of functions in the function_table and sorted_function_table. */
271 bfd_size_type number_of_functions;
272
273 /* A list of the variables found in this comp. unit. */
274 struct varinfo *variable_table;
275
276 /* Pointer to dwarf2_debug structure. */
277 struct dwarf2_debug *stash;
278
279 /* DWARF format version for this unit - from unit header. */
280 int version;
281
282 /* Address size for this unit - from unit header. */
283 unsigned char addr_size;
284
285 /* Offset size for this unit - from unit header. */
286 unsigned char offset_size;
287
288 /* Base address for this unit - from DW_AT_low_pc attribute of
289 DW_TAG_compile_unit DIE */
290 bfd_vma base_address;
291
292 /* TRUE if symbols are cached in hash table for faster lookup by name. */
293 bfd_boolean cached;
294 };
295
296 /* This data structure holds the information of an abbrev. */
297 struct abbrev_info
298 {
299 unsigned int number; /* Number identifying abbrev. */
300 enum dwarf_tag tag; /* DWARF tag. */
301 int has_children; /* Boolean. */
302 unsigned int num_attrs; /* Number of attributes. */
303 struct attr_abbrev *attrs; /* An array of attribute descriptions. */
304 struct abbrev_info *next; /* Next in chain. */
305 };
306
307 struct attr_abbrev
308 {
309 enum dwarf_attribute name;
310 enum dwarf_form form;
311 bfd_vma implicit_const;
312 };
313
314 /* Map of uncompressed DWARF debug section name to compressed one. It
315 is terminated by NULL uncompressed_name. */
316
317 const struct dwarf_debug_section dwarf_debug_sections[] =
318 {
319 { ".debug_abbrev", ".zdebug_abbrev" },
320 { ".debug_aranges", ".zdebug_aranges" },
321 { ".debug_frame", ".zdebug_frame" },
322 { ".debug_info", ".zdebug_info" },
323 { ".debug_info", ".zdebug_info" },
324 { ".debug_line", ".zdebug_line" },
325 { ".debug_loc", ".zdebug_loc" },
326 { ".debug_macinfo", ".zdebug_macinfo" },
327 { ".debug_macro", ".zdebug_macro" },
328 { ".debug_pubnames", ".zdebug_pubnames" },
329 { ".debug_pubtypes", ".zdebug_pubtypes" },
330 { ".debug_ranges", ".zdebug_ranges" },
331 { ".debug_static_func", ".zdebug_static_func" },
332 { ".debug_static_vars", ".zdebug_static_vars" },
333 { ".debug_str", ".zdebug_str", },
334 { ".debug_str", ".zdebug_str", },
335 { ".debug_line_str", ".zdebug_line_str", },
336 { ".debug_types", ".zdebug_types" },
337 /* GNU DWARF 1 extensions */
338 { ".debug_sfnames", ".zdebug_sfnames" },
339 { ".debug_srcinfo", ".zebug_srcinfo" },
340 /* SGI/MIPS DWARF 2 extensions */
341 { ".debug_funcnames", ".zdebug_funcnames" },
342 { ".debug_typenames", ".zdebug_typenames" },
343 { ".debug_varnames", ".zdebug_varnames" },
344 { ".debug_weaknames", ".zdebug_weaknames" },
345 { NULL, NULL },
346 };
347
348 /* NB/ Numbers in this enum must match up with indices
349 into the dwarf_debug_sections[] array above. */
350 enum dwarf_debug_section_enum
351 {
352 debug_abbrev = 0,
353 debug_aranges,
354 debug_frame,
355 debug_info,
356 debug_info_alt,
357 debug_line,
358 debug_loc,
359 debug_macinfo,
360 debug_macro,
361 debug_pubnames,
362 debug_pubtypes,
363 debug_ranges,
364 debug_static_func,
365 debug_static_vars,
366 debug_str,
367 debug_str_alt,
368 debug_line_str,
369 debug_types,
370 debug_sfnames,
371 debug_srcinfo,
372 debug_funcnames,
373 debug_typenames,
374 debug_varnames,
375 debug_weaknames,
376 debug_max
377 };
378
379 /* A static assertion. */
380 extern int dwarf_debug_section_assert[ARRAY_SIZE (dwarf_debug_sections)
381 == debug_max + 1 ? 1 : -1];
382
383 #ifndef ABBREV_HASH_SIZE
384 #define ABBREV_HASH_SIZE 121
385 #endif
386 #ifndef ATTR_ALLOC_CHUNK
387 #define ATTR_ALLOC_CHUNK 4
388 #endif
389
390 /* Variable and function hash tables. This is used to speed up look-up
391 in lookup_symbol_in_var_table() and lookup_symbol_in_function_table().
392 In order to share code between variable and function infos, we use
393 a list of untyped pointer for all variable/function info associated with
394 a symbol. We waste a bit of memory for list with one node but that
395 simplifies the code. */
396
397 struct info_list_node
398 {
399 struct info_list_node *next;
400 void *info;
401 };
402
403 /* Info hash entry. */
404 struct info_hash_entry
405 {
406 struct bfd_hash_entry root;
407 struct info_list_node *head;
408 };
409
410 struct info_hash_table
411 {
412 struct bfd_hash_table base;
413 };
414
415 /* Function to create a new entry in info hash table. */
416
417 static struct bfd_hash_entry *
418 info_hash_table_newfunc (struct bfd_hash_entry *entry,
419 struct bfd_hash_table *table,
420 const char *string)
421 {
422 struct info_hash_entry *ret = (struct info_hash_entry *) entry;
423
424 /* Allocate the structure if it has not already been allocated by a
425 derived class. */
426 if (ret == NULL)
427 {
428 ret = (struct info_hash_entry *) bfd_hash_allocate (table,
429 sizeof (* ret));
430 if (ret == NULL)
431 return NULL;
432 }
433
434 /* Call the allocation method of the base class. */
435 ret = ((struct info_hash_entry *)
436 bfd_hash_newfunc ((struct bfd_hash_entry *) ret, table, string));
437
438 /* Initialize the local fields here. */
439 if (ret)
440 ret->head = NULL;
441
442 return (struct bfd_hash_entry *) ret;
443 }
444
445 /* Function to create a new info hash table. It returns a pointer to the
446 newly created table or NULL if there is any error. We need abfd
447 solely for memory allocation. */
448
449 static struct info_hash_table *
450 create_info_hash_table (bfd *abfd)
451 {
452 struct info_hash_table *hash_table;
453
454 hash_table = ((struct info_hash_table *)
455 bfd_alloc (abfd, sizeof (struct info_hash_table)));
456 if (!hash_table)
457 return hash_table;
458
459 if (!bfd_hash_table_init (&hash_table->base, info_hash_table_newfunc,
460 sizeof (struct info_hash_entry)))
461 {
462 bfd_release (abfd, hash_table);
463 return NULL;
464 }
465
466 return hash_table;
467 }
468
469 /* Insert an info entry into an info hash table. We do not check of
470 duplicate entries. Also, the caller need to guarantee that the
471 right type of info in inserted as info is passed as a void* pointer.
472 This function returns true if there is no error. */
473
474 static bfd_boolean
475 insert_info_hash_table (struct info_hash_table *hash_table,
476 const char *key,
477 void *info,
478 bfd_boolean copy_p)
479 {
480 struct info_hash_entry *entry;
481 struct info_list_node *node;
482
483 entry = (struct info_hash_entry*) bfd_hash_lookup (&hash_table->base,
484 key, TRUE, copy_p);
485 if (!entry)
486 return FALSE;
487
488 node = (struct info_list_node *) bfd_hash_allocate (&hash_table->base,
489 sizeof (*node));
490 if (!node)
491 return FALSE;
492
493 node->info = info;
494 node->next = entry->head;
495 entry->head = node;
496
497 return TRUE;
498 }
499
500 /* Look up an info entry list from an info hash table. Return NULL
501 if there is none. */
502
503 static struct info_list_node *
504 lookup_info_hash_table (struct info_hash_table *hash_table, const char *key)
505 {
506 struct info_hash_entry *entry;
507
508 entry = (struct info_hash_entry*) bfd_hash_lookup (&hash_table->base, key,
509 FALSE, FALSE);
510 return entry ? entry->head : NULL;
511 }
512
513 /* Read a section into its appropriate place in the dwarf2_debug
514 struct (indicated by SECTION_BUFFER and SECTION_SIZE). If SYMS is
515 not NULL, use bfd_simple_get_relocated_section_contents to read the
516 section contents, otherwise use bfd_get_section_contents. Fail if
517 the located section does not contain at least OFFSET bytes. */
518
519 static bfd_boolean
520 read_section (bfd * abfd,
521 const struct dwarf_debug_section *sec,
522 asymbol ** syms,
523 bfd_uint64_t offset,
524 bfd_byte ** section_buffer,
525 bfd_size_type * section_size)
526 {
527 asection *msec;
528 const char *section_name = sec->uncompressed_name;
529 bfd_byte *contents = *section_buffer;
530
531 /* The section may have already been read. */
532 if (contents == NULL)
533 {
534 msec = bfd_get_section_by_name (abfd, section_name);
535 if (! msec)
536 {
537 section_name = sec->compressed_name;
538 if (section_name != NULL)
539 msec = bfd_get_section_by_name (abfd, section_name);
540 }
541 if (! msec)
542 {
543 _bfd_error_handler (_("DWARF error: can't find %s section."),
544 sec->uncompressed_name);
545 bfd_set_error (bfd_error_bad_value);
546 return FALSE;
547 }
548
549 *section_size = msec->rawsize ? msec->rawsize : msec->size;
550 /* Paranoia - alloc one extra so that we can make sure a string
551 section is NUL terminated. */
552 contents = (bfd_byte *) bfd_malloc (*section_size + 1);
553 if (contents == NULL)
554 return FALSE;
555 if (syms
556 ? !bfd_simple_get_relocated_section_contents (abfd, msec, contents,
557 syms)
558 : !bfd_get_section_contents (abfd, msec, contents, 0, *section_size))
559 {
560 free (contents);
561 return FALSE;
562 }
563 contents[*section_size] = 0;
564 *section_buffer = contents;
565 }
566
567 /* It is possible to get a bad value for the offset into the section
568 that the client wants. Validate it here to avoid trouble later. */
569 if (offset != 0 && offset >= *section_size)
570 {
571 /* xgettext: c-format */
572 _bfd_error_handler (_("DWARF error: offset (%" PRIu64 ")"
573 " greater than or equal to %s size (%" PRIu64 ")"),
574 (uint64_t) offset, section_name,
575 (uint64_t) *section_size);
576 bfd_set_error (bfd_error_bad_value);
577 return FALSE;
578 }
579
580 return TRUE;
581 }
582
583 /* Read dwarf information from a buffer. */
584
585 static unsigned int
586 read_1_byte (bfd *abfd ATTRIBUTE_UNUSED, bfd_byte *buf, bfd_byte *end)
587 {
588 if (buf + 1 > end)
589 return 0;
590 return bfd_get_8 (abfd, buf);
591 }
592
593 static int
594 read_1_signed_byte (bfd *abfd ATTRIBUTE_UNUSED, bfd_byte *buf, bfd_byte *end)
595 {
596 if (buf + 1 > end)
597 return 0;
598 return bfd_get_signed_8 (abfd, buf);
599 }
600
601 static unsigned int
602 read_2_bytes (bfd *abfd, bfd_byte *buf, bfd_byte *end)
603 {
604 if (buf + 2 > end)
605 return 0;
606 return bfd_get_16 (abfd, buf);
607 }
608
609 static unsigned int
610 read_4_bytes (bfd *abfd, bfd_byte *buf, bfd_byte *end)
611 {
612 if (buf + 4 > end)
613 return 0;
614 return bfd_get_32 (abfd, buf);
615 }
616
617 static bfd_uint64_t
618 read_8_bytes (bfd *abfd, bfd_byte *buf, bfd_byte *end)
619 {
620 if (buf + 8 > end)
621 return 0;
622 return bfd_get_64 (abfd, buf);
623 }
624
625 static bfd_byte *
626 read_n_bytes (bfd_byte * buf,
627 bfd_byte * end,
628 struct dwarf_block * block)
629 {
630 unsigned int size = block->size;
631 bfd_byte * block_end = buf + size;
632
633 if (block_end > end || block_end < buf)
634 {
635 block->data = NULL;
636 block->size = 0;
637 return end;
638 }
639 else
640 {
641 block->data = buf;
642 return block_end;
643 }
644 }
645
646 /* Scans a NUL terminated string starting at BUF, returning a pointer to it.
647 Returns the number of characters in the string, *including* the NUL byte,
648 in BYTES_READ_PTR. This value is set even if the function fails. Bytes
649 at or beyond BUF_END will not be read. Returns NULL if there was a
650 problem, or if the string is empty. */
651
652 static char *
653 read_string (bfd * abfd ATTRIBUTE_UNUSED,
654 bfd_byte * buf,
655 bfd_byte * buf_end,
656 unsigned int * bytes_read_ptr)
657 {
658 bfd_byte *str = buf;
659
660 if (buf >= buf_end)
661 {
662 * bytes_read_ptr = 0;
663 return NULL;
664 }
665
666 if (*str == '\0')
667 {
668 * bytes_read_ptr = 1;
669 return NULL;
670 }
671
672 while (buf < buf_end)
673 if (* buf ++ == 0)
674 {
675 * bytes_read_ptr = buf - str;
676 return (char *) str;
677 }
678
679 * bytes_read_ptr = buf - str;
680 return NULL;
681 }
682
683 /* Reads an offset from BUF and then locates the string at this offset
684 inside the debug string section. Returns a pointer to the string.
685 Returns the number of bytes read from BUF, *not* the length of the string,
686 in BYTES_READ_PTR. This value is set even if the function fails. Bytes
687 at or beyond BUF_END will not be read from BUF. Returns NULL if there was
688 a problem, or if the string is empty. Does not check for NUL termination
689 of the string. */
690
691 static char *
692 read_indirect_string (struct comp_unit * unit,
693 bfd_byte * buf,
694 bfd_byte * buf_end,
695 unsigned int * bytes_read_ptr)
696 {
697 bfd_uint64_t offset;
698 struct dwarf2_debug *stash = unit->stash;
699 char *str;
700
701 if (buf + unit->offset_size > buf_end)
702 {
703 * bytes_read_ptr = 0;
704 return NULL;
705 }
706
707 if (unit->offset_size == 4)
708 offset = read_4_bytes (unit->abfd, buf, buf_end);
709 else
710 offset = read_8_bytes (unit->abfd, buf, buf_end);
711
712 *bytes_read_ptr = unit->offset_size;
713
714 if (! read_section (unit->abfd, &stash->debug_sections[debug_str],
715 stash->syms, offset,
716 &stash->dwarf_str_buffer, &stash->dwarf_str_size))
717 return NULL;
718
719 if (offset >= stash->dwarf_str_size)
720 return NULL;
721 str = (char *) stash->dwarf_str_buffer + offset;
722 if (*str == '\0')
723 return NULL;
724 return str;
725 }
726
727 /* Like read_indirect_string but from .debug_line_str section. */
728
729 static char *
730 read_indirect_line_string (struct comp_unit * unit,
731 bfd_byte * buf,
732 bfd_byte * buf_end,
733 unsigned int * bytes_read_ptr)
734 {
735 bfd_uint64_t offset;
736 struct dwarf2_debug *stash = unit->stash;
737 char *str;
738
739 if (buf + unit->offset_size > buf_end)
740 {
741 * bytes_read_ptr = 0;
742 return NULL;
743 }
744
745 if (unit->offset_size == 4)
746 offset = read_4_bytes (unit->abfd, buf, buf_end);
747 else
748 offset = read_8_bytes (unit->abfd, buf, buf_end);
749
750 *bytes_read_ptr = unit->offset_size;
751
752 if (! read_section (unit->abfd, &stash->debug_sections[debug_line_str],
753 stash->syms, offset,
754 &stash->dwarf_line_str_buffer,
755 &stash->dwarf_line_str_size))
756 return NULL;
757
758 if (offset >= stash->dwarf_line_str_size)
759 return NULL;
760 str = (char *) stash->dwarf_line_str_buffer + offset;
761 if (*str == '\0')
762 return NULL;
763 return str;
764 }
765
766 /* Like read_indirect_string but uses a .debug_str located in
767 an alternate file pointed to by the .gnu_debugaltlink section.
768 Used to impement DW_FORM_GNU_strp_alt. */
769
770 static char *
771 read_alt_indirect_string (struct comp_unit * unit,
772 bfd_byte * buf,
773 bfd_byte * buf_end,
774 unsigned int * bytes_read_ptr)
775 {
776 bfd_uint64_t offset;
777 struct dwarf2_debug *stash = unit->stash;
778 char *str;
779
780 if (buf + unit->offset_size > buf_end)
781 {
782 * bytes_read_ptr = 0;
783 return NULL;
784 }
785
786 if (unit->offset_size == 4)
787 offset = read_4_bytes (unit->abfd, buf, buf_end);
788 else
789 offset = read_8_bytes (unit->abfd, buf, buf_end);
790
791 *bytes_read_ptr = unit->offset_size;
792
793 if (stash->alt_bfd_ptr == NULL)
794 {
795 bfd * debug_bfd;
796 char * debug_filename = bfd_follow_gnu_debugaltlink (unit->abfd, DEBUGDIR);
797
798 if (debug_filename == NULL)
799 return NULL;
800
801 if ((debug_bfd = bfd_openr (debug_filename, NULL)) == NULL
802 || ! bfd_check_format (debug_bfd, bfd_object))
803 {
804 if (debug_bfd)
805 bfd_close (debug_bfd);
806
807 /* FIXME: Should we report our failure to follow the debuglink ? */
808 free (debug_filename);
809 return NULL;
810 }
811 stash->alt_bfd_ptr = debug_bfd;
812 }
813
814 if (! read_section (unit->stash->alt_bfd_ptr,
815 stash->debug_sections + debug_str_alt,
816 NULL, /* FIXME: Do we need to load alternate symbols ? */
817 offset,
818 &stash->alt_dwarf_str_buffer,
819 &stash->alt_dwarf_str_size))
820 return NULL;
821
822 if (offset >= stash->alt_dwarf_str_size)
823 return NULL;
824 str = (char *) stash->alt_dwarf_str_buffer + offset;
825 if (*str == '\0')
826 return NULL;
827
828 return str;
829 }
830
831 /* Resolve an alternate reference from UNIT at OFFSET.
832 Returns a pointer into the loaded alternate CU upon success
833 or NULL upon failure. */
834
835 static bfd_byte *
836 read_alt_indirect_ref (struct comp_unit * unit,
837 bfd_uint64_t offset)
838 {
839 struct dwarf2_debug *stash = unit->stash;
840
841 if (stash->alt_bfd_ptr == NULL)
842 {
843 bfd * debug_bfd;
844 char * debug_filename = bfd_follow_gnu_debugaltlink (unit->abfd, DEBUGDIR);
845
846 if (debug_filename == NULL)
847 return FALSE;
848
849 if ((debug_bfd = bfd_openr (debug_filename, NULL)) == NULL
850 || ! bfd_check_format (debug_bfd, bfd_object))
851 {
852 if (debug_bfd)
853 bfd_close (debug_bfd);
854
855 /* FIXME: Should we report our failure to follow the debuglink ? */
856 free (debug_filename);
857 return NULL;
858 }
859 stash->alt_bfd_ptr = debug_bfd;
860 }
861
862 if (! read_section (unit->stash->alt_bfd_ptr,
863 stash->debug_sections + debug_info_alt,
864 NULL, /* FIXME: Do we need to load alternate symbols ? */
865 offset,
866 &stash->alt_dwarf_info_buffer,
867 &stash->alt_dwarf_info_size))
868 return NULL;
869
870 if (offset >= stash->alt_dwarf_info_size)
871 return NULL;
872 return stash->alt_dwarf_info_buffer + offset;
873 }
874
875 static bfd_uint64_t
876 read_address (struct comp_unit *unit, bfd_byte *buf, bfd_byte * buf_end)
877 {
878 int signed_vma = 0;
879
880 if (bfd_get_flavour (unit->abfd) == bfd_target_elf_flavour)
881 signed_vma = get_elf_backend_data (unit->abfd)->sign_extend_vma;
882
883 if (buf + unit->addr_size > buf_end)
884 return 0;
885
886 if (signed_vma)
887 {
888 switch (unit->addr_size)
889 {
890 case 8:
891 return bfd_get_signed_64 (unit->abfd, buf);
892 case 4:
893 return bfd_get_signed_32 (unit->abfd, buf);
894 case 2:
895 return bfd_get_signed_16 (unit->abfd, buf);
896 default:
897 abort ();
898 }
899 }
900 else
901 {
902 switch (unit->addr_size)
903 {
904 case 8:
905 return bfd_get_64 (unit->abfd, buf);
906 case 4:
907 return bfd_get_32 (unit->abfd, buf);
908 case 2:
909 return bfd_get_16 (unit->abfd, buf);
910 default:
911 abort ();
912 }
913 }
914 }
915
916 /* Lookup an abbrev_info structure in the abbrev hash table. */
917
918 static struct abbrev_info *
919 lookup_abbrev (unsigned int number, struct abbrev_info **abbrevs)
920 {
921 unsigned int hash_number;
922 struct abbrev_info *abbrev;
923
924 hash_number = number % ABBREV_HASH_SIZE;
925 abbrev = abbrevs[hash_number];
926
927 while (abbrev)
928 {
929 if (abbrev->number == number)
930 return abbrev;
931 else
932 abbrev = abbrev->next;
933 }
934
935 return NULL;
936 }
937
938 /* In DWARF version 2, the description of the debugging information is
939 stored in a separate .debug_abbrev section. Before we read any
940 dies from a section we read in all abbreviations and install them
941 in a hash table. */
942
943 static struct abbrev_info**
944 read_abbrevs (bfd *abfd, bfd_uint64_t offset, struct dwarf2_debug *stash)
945 {
946 struct abbrev_info **abbrevs;
947 bfd_byte *abbrev_ptr;
948 bfd_byte *abbrev_end;
949 struct abbrev_info *cur_abbrev;
950 unsigned int abbrev_number, bytes_read, abbrev_name;
951 unsigned int abbrev_form, hash_number;
952 bfd_size_type amt;
953
954 if (! read_section (abfd, &stash->debug_sections[debug_abbrev],
955 stash->syms, offset,
956 &stash->dwarf_abbrev_buffer, &stash->dwarf_abbrev_size))
957 return NULL;
958
959 if (offset >= stash->dwarf_abbrev_size)
960 return NULL;
961
962 amt = sizeof (struct abbrev_info*) * ABBREV_HASH_SIZE;
963 abbrevs = (struct abbrev_info **) bfd_zalloc (abfd, amt);
964 if (abbrevs == NULL)
965 return NULL;
966
967 abbrev_ptr = stash->dwarf_abbrev_buffer + offset;
968 abbrev_end = stash->dwarf_abbrev_buffer + stash->dwarf_abbrev_size;
969 abbrev_number = _bfd_safe_read_leb128 (abfd, abbrev_ptr, &bytes_read,
970 FALSE, abbrev_end);
971 abbrev_ptr += bytes_read;
972
973 /* Loop until we reach an abbrev number of 0. */
974 while (abbrev_number)
975 {
976 amt = sizeof (struct abbrev_info);
977 cur_abbrev = (struct abbrev_info *) bfd_zalloc (abfd, amt);
978 if (cur_abbrev == NULL)
979 return NULL;
980
981 /* Read in abbrev header. */
982 cur_abbrev->number = abbrev_number;
983 cur_abbrev->tag = (enum dwarf_tag)
984 _bfd_safe_read_leb128 (abfd, abbrev_ptr, &bytes_read,
985 FALSE, abbrev_end);
986 abbrev_ptr += bytes_read;
987 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr, abbrev_end);
988 abbrev_ptr += 1;
989
990 /* Now read in declarations. */
991 for (;;)
992 {
993 /* Initialize it just to avoid a GCC false warning. */
994 bfd_vma implicit_const = -1;
995
996 abbrev_name = _bfd_safe_read_leb128 (abfd, abbrev_ptr, &bytes_read,
997 FALSE, abbrev_end);
998 abbrev_ptr += bytes_read;
999 abbrev_form = _bfd_safe_read_leb128 (abfd, abbrev_ptr, &bytes_read,
1000 FALSE, abbrev_end);
1001 abbrev_ptr += bytes_read;
1002 if (abbrev_form == DW_FORM_implicit_const)
1003 {
1004 implicit_const = _bfd_safe_read_leb128 (abfd, abbrev_ptr,
1005 &bytes_read, TRUE,
1006 abbrev_end);
1007 abbrev_ptr += bytes_read;
1008 }
1009
1010 if (abbrev_name == 0)
1011 break;
1012
1013 if ((cur_abbrev->num_attrs % ATTR_ALLOC_CHUNK) == 0)
1014 {
1015 struct attr_abbrev *tmp;
1016
1017 amt = cur_abbrev->num_attrs + ATTR_ALLOC_CHUNK;
1018 amt *= sizeof (struct attr_abbrev);
1019 tmp = (struct attr_abbrev *) bfd_realloc (cur_abbrev->attrs, amt);
1020 if (tmp == NULL)
1021 {
1022 size_t i;
1023
1024 for (i = 0; i < ABBREV_HASH_SIZE; i++)
1025 {
1026 struct abbrev_info *abbrev = abbrevs[i];
1027
1028 while (abbrev)
1029 {
1030 free (abbrev->attrs);
1031 abbrev = abbrev->next;
1032 }
1033 }
1034 return NULL;
1035 }
1036 cur_abbrev->attrs = tmp;
1037 }
1038
1039 cur_abbrev->attrs[cur_abbrev->num_attrs].name
1040 = (enum dwarf_attribute) abbrev_name;
1041 cur_abbrev->attrs[cur_abbrev->num_attrs].form
1042 = (enum dwarf_form) abbrev_form;
1043 cur_abbrev->attrs[cur_abbrev->num_attrs].implicit_const
1044 = implicit_const;
1045 ++cur_abbrev->num_attrs;
1046 }
1047
1048 hash_number = abbrev_number % ABBREV_HASH_SIZE;
1049 cur_abbrev->next = abbrevs[hash_number];
1050 abbrevs[hash_number] = cur_abbrev;
1051
1052 /* Get next abbreviation.
1053 Under Irix6 the abbreviations for a compilation unit are not
1054 always properly terminated with an abbrev number of 0.
1055 Exit loop if we encounter an abbreviation which we have
1056 already read (which means we are about to read the abbreviations
1057 for the next compile unit) or if the end of the abbreviation
1058 table is reached. */
1059 if ((unsigned int) (abbrev_ptr - stash->dwarf_abbrev_buffer)
1060 >= stash->dwarf_abbrev_size)
1061 break;
1062 abbrev_number = _bfd_safe_read_leb128 (abfd, abbrev_ptr,
1063 &bytes_read, FALSE, abbrev_end);
1064 abbrev_ptr += bytes_read;
1065 if (lookup_abbrev (abbrev_number, abbrevs) != NULL)
1066 break;
1067 }
1068
1069 return abbrevs;
1070 }
1071
1072 /* Returns true if the form is one which has a string value. */
1073
1074 static inline bfd_boolean
1075 is_str_attr (enum dwarf_form form)
1076 {
1077 return (form == DW_FORM_string || form == DW_FORM_strp
1078 || form == DW_FORM_line_strp || form == DW_FORM_GNU_strp_alt);
1079 }
1080
1081 /* Read and fill in the value of attribute ATTR as described by FORM.
1082 Read data starting from INFO_PTR, but never at or beyond INFO_PTR_END.
1083 Returns an updated INFO_PTR taking into account the amount of data read. */
1084
1085 static bfd_byte *
1086 read_attribute_value (struct attribute * attr,
1087 unsigned form,
1088 bfd_vma implicit_const,
1089 struct comp_unit * unit,
1090 bfd_byte * info_ptr,
1091 bfd_byte * info_ptr_end)
1092 {
1093 bfd *abfd = unit->abfd;
1094 unsigned int bytes_read;
1095 struct dwarf_block *blk;
1096 bfd_size_type amt;
1097
1098 if (info_ptr >= info_ptr_end && form != DW_FORM_flag_present)
1099 {
1100 _bfd_error_handler (_("DWARF error: info pointer extends beyond end of attributes"));
1101 bfd_set_error (bfd_error_bad_value);
1102 return info_ptr;
1103 }
1104
1105 attr->form = (enum dwarf_form) form;
1106
1107 switch (form)
1108 {
1109 case DW_FORM_ref_addr:
1110 /* DW_FORM_ref_addr is an address in DWARF2, and an offset in
1111 DWARF3. */
1112 if (unit->version == 3 || unit->version == 4)
1113 {
1114 if (unit->offset_size == 4)
1115 attr->u.val = read_4_bytes (unit->abfd, info_ptr, info_ptr_end);
1116 else
1117 attr->u.val = read_8_bytes (unit->abfd, info_ptr, info_ptr_end);
1118 info_ptr += unit->offset_size;
1119 break;
1120 }
1121 /* FALLTHROUGH */
1122 case DW_FORM_addr:
1123 attr->u.val = read_address (unit, info_ptr, info_ptr_end);
1124 info_ptr += unit->addr_size;
1125 break;
1126 case DW_FORM_GNU_ref_alt:
1127 case DW_FORM_sec_offset:
1128 if (unit->offset_size == 4)
1129 attr->u.val = read_4_bytes (unit->abfd, info_ptr, info_ptr_end);
1130 else
1131 attr->u.val = read_8_bytes (unit->abfd, info_ptr, info_ptr_end);
1132 info_ptr += unit->offset_size;
1133 break;
1134 case DW_FORM_block2:
1135 amt = sizeof (struct dwarf_block);
1136 blk = (struct dwarf_block *) bfd_alloc (abfd, amt);
1137 if (blk == NULL)
1138 return NULL;
1139 blk->size = read_2_bytes (abfd, info_ptr, info_ptr_end);
1140 info_ptr += 2;
1141 info_ptr = read_n_bytes (info_ptr, info_ptr_end, blk);
1142 attr->u.blk = blk;
1143 break;
1144 case DW_FORM_block4:
1145 amt = sizeof (struct dwarf_block);
1146 blk = (struct dwarf_block *) bfd_alloc (abfd, amt);
1147 if (blk == NULL)
1148 return NULL;
1149 blk->size = read_4_bytes (abfd, info_ptr, info_ptr_end);
1150 info_ptr += 4;
1151 info_ptr = read_n_bytes (info_ptr, info_ptr_end, blk);
1152 attr->u.blk = blk;
1153 break;
1154 case DW_FORM_data2:
1155 attr->u.val = read_2_bytes (abfd, info_ptr, info_ptr_end);
1156 info_ptr += 2;
1157 break;
1158 case DW_FORM_data4:
1159 attr->u.val = read_4_bytes (abfd, info_ptr, info_ptr_end);
1160 info_ptr += 4;
1161 break;
1162 case DW_FORM_data8:
1163 attr->u.val = read_8_bytes (abfd, info_ptr, info_ptr_end);
1164 info_ptr += 8;
1165 break;
1166 case DW_FORM_string:
1167 attr->u.str = read_string (abfd, info_ptr, info_ptr_end, &bytes_read);
1168 info_ptr += bytes_read;
1169 break;
1170 case DW_FORM_strp:
1171 attr->u.str = read_indirect_string (unit, info_ptr, info_ptr_end, &bytes_read);
1172 info_ptr += bytes_read;
1173 break;
1174 case DW_FORM_line_strp:
1175 attr->u.str = read_indirect_line_string (unit, info_ptr, info_ptr_end, &bytes_read);
1176 info_ptr += bytes_read;
1177 break;
1178 case DW_FORM_GNU_strp_alt:
1179 attr->u.str = read_alt_indirect_string (unit, info_ptr, info_ptr_end, &bytes_read);
1180 info_ptr += bytes_read;
1181 break;
1182 case DW_FORM_exprloc:
1183 case DW_FORM_block:
1184 amt = sizeof (struct dwarf_block);
1185 blk = (struct dwarf_block *) bfd_alloc (abfd, amt);
1186 if (blk == NULL)
1187 return NULL;
1188 blk->size = _bfd_safe_read_leb128 (abfd, info_ptr, &bytes_read,
1189 FALSE, info_ptr_end);
1190 info_ptr += bytes_read;
1191 info_ptr = read_n_bytes (info_ptr, info_ptr_end, blk);
1192 attr->u.blk = blk;
1193 break;
1194 case DW_FORM_block1:
1195 amt = sizeof (struct dwarf_block);
1196 blk = (struct dwarf_block *) bfd_alloc (abfd, amt);
1197 if (blk == NULL)
1198 return NULL;
1199 blk->size = read_1_byte (abfd, info_ptr, info_ptr_end);
1200 info_ptr += 1;
1201 info_ptr = read_n_bytes (info_ptr, info_ptr_end, blk);
1202 attr->u.blk = blk;
1203 break;
1204 case DW_FORM_data1:
1205 attr->u.val = read_1_byte (abfd, info_ptr, info_ptr_end);
1206 info_ptr += 1;
1207 break;
1208 case DW_FORM_flag:
1209 attr->u.val = read_1_byte (abfd, info_ptr, info_ptr_end);
1210 info_ptr += 1;
1211 break;
1212 case DW_FORM_flag_present:
1213 attr->u.val = 1;
1214 break;
1215 case DW_FORM_sdata:
1216 attr->u.sval = _bfd_safe_read_leb128 (abfd, info_ptr, &bytes_read,
1217 TRUE, info_ptr_end);
1218 info_ptr += bytes_read;
1219 break;
1220 case DW_FORM_udata:
1221 attr->u.val = _bfd_safe_read_leb128 (abfd, info_ptr, &bytes_read,
1222 FALSE, info_ptr_end);
1223 info_ptr += bytes_read;
1224 break;
1225 case DW_FORM_ref1:
1226 attr->u.val = read_1_byte (abfd, info_ptr, info_ptr_end);
1227 info_ptr += 1;
1228 break;
1229 case DW_FORM_ref2:
1230 attr->u.val = read_2_bytes (abfd, info_ptr, info_ptr_end);
1231 info_ptr += 2;
1232 break;
1233 case DW_FORM_ref4:
1234 attr->u.val = read_4_bytes (abfd, info_ptr, info_ptr_end);
1235 info_ptr += 4;
1236 break;
1237 case DW_FORM_ref8:
1238 attr->u.val = read_8_bytes (abfd, info_ptr, info_ptr_end);
1239 info_ptr += 8;
1240 break;
1241 case DW_FORM_ref_sig8:
1242 attr->u.val = read_8_bytes (abfd, info_ptr, info_ptr_end);
1243 info_ptr += 8;
1244 break;
1245 case DW_FORM_ref_udata:
1246 attr->u.val = _bfd_safe_read_leb128 (abfd, info_ptr, &bytes_read,
1247 FALSE, info_ptr_end);
1248 info_ptr += bytes_read;
1249 break;
1250 case DW_FORM_indirect:
1251 form = _bfd_safe_read_leb128 (abfd, info_ptr, &bytes_read,
1252 FALSE, info_ptr_end);
1253 info_ptr += bytes_read;
1254 if (form == DW_FORM_implicit_const)
1255 {
1256 implicit_const = _bfd_safe_read_leb128 (abfd, info_ptr, &bytes_read,
1257 TRUE, info_ptr_end);
1258 info_ptr += bytes_read;
1259 }
1260 info_ptr = read_attribute_value (attr, form, implicit_const, unit,
1261 info_ptr, info_ptr_end);
1262 break;
1263 case DW_FORM_implicit_const:
1264 attr->form = DW_FORM_sdata;
1265 attr->u.sval = implicit_const;
1266 break;
1267 default:
1268 _bfd_error_handler (_("DWARF error: invalid or unhandled FORM value: %#x"),
1269 form);
1270 bfd_set_error (bfd_error_bad_value);
1271 return NULL;
1272 }
1273 return info_ptr;
1274 }
1275
1276 /* Read an attribute described by an abbreviated attribute. */
1277
1278 static bfd_byte *
1279 read_attribute (struct attribute * attr,
1280 struct attr_abbrev * abbrev,
1281 struct comp_unit * unit,
1282 bfd_byte * info_ptr,
1283 bfd_byte * info_ptr_end)
1284 {
1285 attr->name = abbrev->name;
1286 info_ptr = read_attribute_value (attr, abbrev->form, abbrev->implicit_const,
1287 unit, info_ptr, info_ptr_end);
1288 return info_ptr;
1289 }
1290
1291 /* Return whether DW_AT_name will return the same as DW_AT_linkage_name
1292 for a function. */
1293
1294 static bfd_boolean
1295 non_mangled (int lang)
1296 {
1297 switch (lang)
1298 {
1299 default:
1300 return FALSE;
1301
1302 case DW_LANG_C89:
1303 case DW_LANG_C:
1304 case DW_LANG_Ada83:
1305 case DW_LANG_Cobol74:
1306 case DW_LANG_Cobol85:
1307 case DW_LANG_Fortran77:
1308 case DW_LANG_Pascal83:
1309 case DW_LANG_C99:
1310 case DW_LANG_Ada95:
1311 case DW_LANG_PLI:
1312 case DW_LANG_UPC:
1313 case DW_LANG_C11:
1314 return TRUE;
1315 }
1316 }
1317
1318 /* Source line information table routines. */
1319
1320 #define FILE_ALLOC_CHUNK 5
1321 #define DIR_ALLOC_CHUNK 5
1322
1323 struct line_info
1324 {
1325 struct line_info * prev_line;
1326 bfd_vma address;
1327 char * filename;
1328 unsigned int line;
1329 unsigned int column;
1330 unsigned int discriminator;
1331 unsigned char op_index;
1332 unsigned char end_sequence; /* End of (sequential) code sequence. */
1333 };
1334
1335 struct fileinfo
1336 {
1337 char * name;
1338 unsigned int dir;
1339 unsigned int time;
1340 unsigned int size;
1341 };
1342
1343 struct line_sequence
1344 {
1345 bfd_vma low_pc;
1346 struct line_sequence* prev_sequence;
1347 struct line_info* last_line; /* Largest VMA. */
1348 struct line_info** line_info_lookup;
1349 bfd_size_type num_lines;
1350 };
1351
1352 struct line_info_table
1353 {
1354 bfd * abfd;
1355 unsigned int num_files;
1356 unsigned int num_dirs;
1357 unsigned int num_sequences;
1358 char * comp_dir;
1359 char ** dirs;
1360 struct fileinfo* files;
1361 struct line_sequence* sequences;
1362 struct line_info* lcl_head; /* Local head; used in 'add_line_info'. */
1363 };
1364
1365 /* Remember some information about each function. If the function is
1366 inlined (DW_TAG_inlined_subroutine) it may have two additional
1367 attributes, DW_AT_call_file and DW_AT_call_line, which specify the
1368 source code location where this function was inlined. */
1369
1370 struct funcinfo
1371 {
1372 /* Pointer to previous function in list of all functions. */
1373 struct funcinfo * prev_func;
1374 /* Pointer to function one scope higher. */
1375 struct funcinfo * caller_func;
1376 /* Source location file name where caller_func inlines this func. */
1377 char * caller_file;
1378 /* Source location file name. */
1379 char * file;
1380 /* Source location line number where caller_func inlines this func. */
1381 int caller_line;
1382 /* Source location line number. */
1383 int line;
1384 int tag;
1385 bfd_boolean is_linkage;
1386 const char * name;
1387 struct arange arange;
1388 /* Where the symbol is defined. */
1389 asection * sec;
1390 };
1391
1392 struct lookup_funcinfo
1393 {
1394 /* Function information corresponding to this lookup table entry. */
1395 struct funcinfo * funcinfo;
1396
1397 /* The lowest address for this specific function. */
1398 bfd_vma low_addr;
1399
1400 /* The highest address of this function before the lookup table is sorted.
1401 The highest address of all prior functions after the lookup table is
1402 sorted, which is used for binary search. */
1403 bfd_vma high_addr;
1404 };
1405
1406 struct varinfo
1407 {
1408 /* Pointer to previous variable in list of all variables */
1409 struct varinfo *prev_var;
1410 /* Source location file name */
1411 char *file;
1412 /* Source location line number */
1413 int line;
1414 int tag;
1415 char *name;
1416 bfd_vma addr;
1417 /* Where the symbol is defined */
1418 asection *sec;
1419 /* Is this a stack variable? */
1420 unsigned int stack: 1;
1421 };
1422
1423 /* Return TRUE if NEW_LINE should sort after LINE. */
1424
1425 static inline bfd_boolean
1426 new_line_sorts_after (struct line_info *new_line, struct line_info *line)
1427 {
1428 return (new_line->address > line->address
1429 || (new_line->address == line->address
1430 && new_line->op_index > line->op_index));
1431 }
1432
1433
1434 /* Adds a new entry to the line_info list in the line_info_table, ensuring
1435 that the list is sorted. Note that the line_info list is sorted from
1436 highest to lowest VMA (with possible duplicates); that is,
1437 line_info->prev_line always accesses an equal or smaller VMA. */
1438
1439 static bfd_boolean
1440 add_line_info (struct line_info_table *table,
1441 bfd_vma address,
1442 unsigned char op_index,
1443 char *filename,
1444 unsigned int line,
1445 unsigned int column,
1446 unsigned int discriminator,
1447 int end_sequence)
1448 {
1449 bfd_size_type amt = sizeof (struct line_info);
1450 struct line_sequence* seq = table->sequences;
1451 struct line_info* info = (struct line_info *) bfd_alloc (table->abfd, amt);
1452
1453 if (info == NULL)
1454 return FALSE;
1455
1456 /* Set member data of 'info'. */
1457 info->prev_line = NULL;
1458 info->address = address;
1459 info->op_index = op_index;
1460 info->line = line;
1461 info->column = column;
1462 info->discriminator = discriminator;
1463 info->end_sequence = end_sequence;
1464
1465 if (filename && filename[0])
1466 {
1467 info->filename = (char *) bfd_alloc (table->abfd, strlen (filename) + 1);
1468 if (info->filename == NULL)
1469 return FALSE;
1470 strcpy (info->filename, filename);
1471 }
1472 else
1473 info->filename = NULL;
1474
1475 /* Find the correct location for 'info'. Normally we will receive
1476 new line_info data 1) in order and 2) with increasing VMAs.
1477 However some compilers break the rules (cf. decode_line_info) and
1478 so we include some heuristics for quickly finding the correct
1479 location for 'info'. In particular, these heuristics optimize for
1480 the common case in which the VMA sequence that we receive is a
1481 list of locally sorted VMAs such as
1482 p...z a...j (where a < j < p < z)
1483
1484 Note: table->lcl_head is used to head an *actual* or *possible*
1485 sub-sequence within the list (such as a...j) that is not directly
1486 headed by table->last_line
1487
1488 Note: we may receive duplicate entries from 'decode_line_info'. */
1489
1490 if (seq
1491 && seq->last_line->address == address
1492 && seq->last_line->op_index == op_index
1493 && seq->last_line->end_sequence == end_sequence)
1494 {
1495 /* We only keep the last entry with the same address and end
1496 sequence. See PR ld/4986. */
1497 if (table->lcl_head == seq->last_line)
1498 table->lcl_head = info;
1499 info->prev_line = seq->last_line->prev_line;
1500 seq->last_line = info;
1501 }
1502 else if (!seq || seq->last_line->end_sequence)
1503 {
1504 /* Start a new line sequence. */
1505 amt = sizeof (struct line_sequence);
1506 seq = (struct line_sequence *) bfd_malloc (amt);
1507 if (seq == NULL)
1508 return FALSE;
1509 seq->low_pc = address;
1510 seq->prev_sequence = table->sequences;
1511 seq->last_line = info;
1512 table->lcl_head = info;
1513 table->sequences = seq;
1514 table->num_sequences++;
1515 }
1516 else if (info->end_sequence
1517 || new_line_sorts_after (info, seq->last_line))
1518 {
1519 /* Normal case: add 'info' to the beginning of the current sequence. */
1520 info->prev_line = seq->last_line;
1521 seq->last_line = info;
1522
1523 /* lcl_head: initialize to head a *possible* sequence at the end. */
1524 if (!table->lcl_head)
1525 table->lcl_head = info;
1526 }
1527 else if (!new_line_sorts_after (info, table->lcl_head)
1528 && (!table->lcl_head->prev_line
1529 || new_line_sorts_after (info, table->lcl_head->prev_line)))
1530 {
1531 /* Abnormal but easy: lcl_head is the head of 'info'. */
1532 info->prev_line = table->lcl_head->prev_line;
1533 table->lcl_head->prev_line = info;
1534 }
1535 else
1536 {
1537 /* Abnormal and hard: Neither 'last_line' nor 'lcl_head'
1538 are valid heads for 'info'. Reset 'lcl_head'. */
1539 struct line_info* li2 = seq->last_line; /* Always non-NULL. */
1540 struct line_info* li1 = li2->prev_line;
1541
1542 while (li1)
1543 {
1544 if (!new_line_sorts_after (info, li2)
1545 && new_line_sorts_after (info, li1))
1546 break;
1547
1548 li2 = li1; /* always non-NULL */
1549 li1 = li1->prev_line;
1550 }
1551 table->lcl_head = li2;
1552 info->prev_line = table->lcl_head->prev_line;
1553 table->lcl_head->prev_line = info;
1554 if (address < seq->low_pc)
1555 seq->low_pc = address;
1556 }
1557 return TRUE;
1558 }
1559
1560 /* Extract a fully qualified filename from a line info table.
1561 The returned string has been malloc'ed and it is the caller's
1562 responsibility to free it. */
1563
1564 static char *
1565 concat_filename (struct line_info_table *table, unsigned int file)
1566 {
1567 char *filename;
1568
1569 if (table == NULL || file - 1 >= table->num_files)
1570 {
1571 /* FILE == 0 means unknown. */
1572 if (file)
1573 _bfd_error_handler
1574 (_("DWARF error: mangled line number section (bad file number)"));
1575 return strdup ("<unknown>");
1576 }
1577
1578 filename = table->files[file - 1].name;
1579 if (filename == NULL)
1580 return strdup ("<unknown>");
1581
1582 if (!IS_ABSOLUTE_PATH (filename))
1583 {
1584 char *dir_name = NULL;
1585 char *subdir_name = NULL;
1586 char *name;
1587 size_t len;
1588
1589 if (table->files[file - 1].dir
1590 /* PR 17512: file: 0317e960. */
1591 && table->files[file - 1].dir <= table->num_dirs
1592 /* PR 17512: file: 7f3d2e4b. */
1593 && table->dirs != NULL)
1594 subdir_name = table->dirs[table->files[file - 1].dir - 1];
1595
1596 if (!subdir_name || !IS_ABSOLUTE_PATH (subdir_name))
1597 dir_name = table->comp_dir;
1598
1599 if (!dir_name)
1600 {
1601 dir_name = subdir_name;
1602 subdir_name = NULL;
1603 }
1604
1605 if (!dir_name)
1606 return strdup (filename);
1607
1608 len = strlen (dir_name) + strlen (filename) + 2;
1609
1610 if (subdir_name)
1611 {
1612 len += strlen (subdir_name) + 1;
1613 name = (char *) bfd_malloc (len);
1614 if (name)
1615 sprintf (name, "%s/%s/%s", dir_name, subdir_name, filename);
1616 }
1617 else
1618 {
1619 name = (char *) bfd_malloc (len);
1620 if (name)
1621 sprintf (name, "%s/%s", dir_name, filename);
1622 }
1623
1624 return name;
1625 }
1626
1627 return strdup (filename);
1628 }
1629
1630 static bfd_boolean
1631 arange_add (const struct comp_unit *unit, struct arange *first_arange,
1632 bfd_vma low_pc, bfd_vma high_pc)
1633 {
1634 struct arange *arange;
1635
1636 /* Ignore empty ranges. */
1637 if (low_pc == high_pc)
1638 return TRUE;
1639
1640 /* If the first arange is empty, use it. */
1641 if (first_arange->high == 0)
1642 {
1643 first_arange->low = low_pc;
1644 first_arange->high = high_pc;
1645 return TRUE;
1646 }
1647
1648 /* Next see if we can cheaply extend an existing range. */
1649 arange = first_arange;
1650 do
1651 {
1652 if (low_pc == arange->high)
1653 {
1654 arange->high = high_pc;
1655 return TRUE;
1656 }
1657 if (high_pc == arange->low)
1658 {
1659 arange->low = low_pc;
1660 return TRUE;
1661 }
1662 arange = arange->next;
1663 }
1664 while (arange);
1665
1666 /* Need to allocate a new arange and insert it into the arange list.
1667 Order isn't significant, so just insert after the first arange. */
1668 arange = (struct arange *) bfd_alloc (unit->abfd, sizeof (*arange));
1669 if (arange == NULL)
1670 return FALSE;
1671 arange->low = low_pc;
1672 arange->high = high_pc;
1673 arange->next = first_arange->next;
1674 first_arange->next = arange;
1675 return TRUE;
1676 }
1677
1678 /* Compare function for line sequences. */
1679
1680 static int
1681 compare_sequences (const void* a, const void* b)
1682 {
1683 const struct line_sequence* seq1 = a;
1684 const struct line_sequence* seq2 = b;
1685
1686 /* Sort by low_pc as the primary key. */
1687 if (seq1->low_pc < seq2->low_pc)
1688 return -1;
1689 if (seq1->low_pc > seq2->low_pc)
1690 return 1;
1691
1692 /* If low_pc values are equal, sort in reverse order of
1693 high_pc, so that the largest region comes first. */
1694 if (seq1->last_line->address < seq2->last_line->address)
1695 return 1;
1696 if (seq1->last_line->address > seq2->last_line->address)
1697 return -1;
1698
1699 if (seq1->last_line->op_index < seq2->last_line->op_index)
1700 return 1;
1701 if (seq1->last_line->op_index > seq2->last_line->op_index)
1702 return -1;
1703
1704 return 0;
1705 }
1706
1707 /* Construct the line information table for quick lookup. */
1708
1709 static bfd_boolean
1710 build_line_info_table (struct line_info_table * table,
1711 struct line_sequence * seq)
1712 {
1713 bfd_size_type amt;
1714 struct line_info** line_info_lookup;
1715 struct line_info* each_line;
1716 unsigned int num_lines;
1717 unsigned int line_index;
1718
1719 if (seq->line_info_lookup != NULL)
1720 return TRUE;
1721
1722 /* Count the number of line information entries. We could do this while
1723 scanning the debug information, but some entries may be added via
1724 lcl_head without having a sequence handy to increment the number of
1725 lines. */
1726 num_lines = 0;
1727 for (each_line = seq->last_line; each_line; each_line = each_line->prev_line)
1728 num_lines++;
1729
1730 if (num_lines == 0)
1731 return TRUE;
1732
1733 /* Allocate space for the line information lookup table. */
1734 amt = sizeof (struct line_info*) * num_lines;
1735 line_info_lookup = (struct line_info**) bfd_alloc (table->abfd, amt);
1736 if (line_info_lookup == NULL)
1737 return FALSE;
1738
1739 /* Create the line information lookup table. */
1740 line_index = num_lines;
1741 for (each_line = seq->last_line; each_line; each_line = each_line->prev_line)
1742 line_info_lookup[--line_index] = each_line;
1743
1744 BFD_ASSERT (line_index == 0);
1745
1746 seq->num_lines = num_lines;
1747 seq->line_info_lookup = line_info_lookup;
1748
1749 return TRUE;
1750 }
1751
1752 /* Sort the line sequences for quick lookup. */
1753
1754 static bfd_boolean
1755 sort_line_sequences (struct line_info_table* table)
1756 {
1757 bfd_size_type amt;
1758 struct line_sequence* sequences;
1759 struct line_sequence* seq;
1760 unsigned int n = 0;
1761 unsigned int num_sequences = table->num_sequences;
1762 bfd_vma last_high_pc;
1763
1764 if (num_sequences == 0)
1765 return TRUE;
1766
1767 /* Allocate space for an array of sequences. */
1768 amt = sizeof (struct line_sequence) * num_sequences;
1769 sequences = (struct line_sequence *) bfd_alloc (table->abfd, amt);
1770 if (sequences == NULL)
1771 return FALSE;
1772
1773 /* Copy the linked list into the array, freeing the original nodes. */
1774 seq = table->sequences;
1775 for (n = 0; n < num_sequences; n++)
1776 {
1777 struct line_sequence* last_seq = seq;
1778
1779 BFD_ASSERT (seq);
1780 sequences[n].low_pc = seq->low_pc;
1781 sequences[n].prev_sequence = NULL;
1782 sequences[n].last_line = seq->last_line;
1783 sequences[n].line_info_lookup = NULL;
1784 sequences[n].num_lines = 0;
1785 seq = seq->prev_sequence;
1786 free (last_seq);
1787 }
1788 BFD_ASSERT (seq == NULL);
1789
1790 qsort (sequences, n, sizeof (struct line_sequence), compare_sequences);
1791
1792 /* Make the list binary-searchable by trimming overlapping entries
1793 and removing nested entries. */
1794 num_sequences = 1;
1795 last_high_pc = sequences[0].last_line->address;
1796 for (n = 1; n < table->num_sequences; n++)
1797 {
1798 if (sequences[n].low_pc < last_high_pc)
1799 {
1800 if (sequences[n].last_line->address <= last_high_pc)
1801 /* Skip nested entries. */
1802 continue;
1803
1804 /* Trim overlapping entries. */
1805 sequences[n].low_pc = last_high_pc;
1806 }
1807 last_high_pc = sequences[n].last_line->address;
1808 if (n > num_sequences)
1809 {
1810 /* Close up the gap. */
1811 sequences[num_sequences].low_pc = sequences[n].low_pc;
1812 sequences[num_sequences].last_line = sequences[n].last_line;
1813 }
1814 num_sequences++;
1815 }
1816
1817 table->sequences = sequences;
1818 table->num_sequences = num_sequences;
1819 return TRUE;
1820 }
1821
1822 /* Add directory to TABLE. CUR_DIR memory ownership is taken by TABLE. */
1823
1824 static bfd_boolean
1825 line_info_add_include_dir (struct line_info_table *table, char *cur_dir)
1826 {
1827 if ((table->num_dirs % DIR_ALLOC_CHUNK) == 0)
1828 {
1829 char **tmp;
1830 bfd_size_type amt;
1831
1832 amt = table->num_dirs + DIR_ALLOC_CHUNK;
1833 amt *= sizeof (char *);
1834
1835 tmp = (char **) bfd_realloc (table->dirs, amt);
1836 if (tmp == NULL)
1837 return FALSE;
1838 table->dirs = tmp;
1839 }
1840
1841 table->dirs[table->num_dirs++] = cur_dir;
1842 return TRUE;
1843 }
1844
1845 static bfd_boolean
1846 line_info_add_include_dir_stub (struct line_info_table *table, char *cur_dir,
1847 unsigned int dir ATTRIBUTE_UNUSED,
1848 unsigned int xtime ATTRIBUTE_UNUSED,
1849 unsigned int size ATTRIBUTE_UNUSED)
1850 {
1851 return line_info_add_include_dir (table, cur_dir);
1852 }
1853
1854 /* Add file to TABLE. CUR_FILE memory ownership is taken by TABLE. */
1855
1856 static bfd_boolean
1857 line_info_add_file_name (struct line_info_table *table, char *cur_file,
1858 unsigned int dir, unsigned int xtime,
1859 unsigned int size)
1860 {
1861 if ((table->num_files % FILE_ALLOC_CHUNK) == 0)
1862 {
1863 struct fileinfo *tmp;
1864 bfd_size_type amt;
1865
1866 amt = table->num_files + FILE_ALLOC_CHUNK;
1867 amt *= sizeof (struct fileinfo);
1868
1869 tmp = (struct fileinfo *) bfd_realloc (table->files, amt);
1870 if (tmp == NULL)
1871 return FALSE;
1872 table->files = tmp;
1873 }
1874
1875 table->files[table->num_files].name = cur_file;
1876 table->files[table->num_files].dir = dir;
1877 table->files[table->num_files].time = xtime;
1878 table->files[table->num_files].size = size;
1879 table->num_files++;
1880 return TRUE;
1881 }
1882
1883 /* Read directory or file name entry format, starting with byte of
1884 format count entries, ULEB128 pairs of entry formats, ULEB128 of
1885 entries count and the entries themselves in the described entry
1886 format. */
1887
1888 static bfd_boolean
1889 read_formatted_entries (struct comp_unit *unit, bfd_byte **bufp,
1890 bfd_byte *buf_end, struct line_info_table *table,
1891 bfd_boolean (*callback) (struct line_info_table *table,
1892 char *cur_file,
1893 unsigned int dir,
1894 unsigned int time,
1895 unsigned int size))
1896 {
1897 bfd *abfd = unit->abfd;
1898 bfd_byte format_count, formati;
1899 bfd_vma data_count, datai;
1900 bfd_byte *buf = *bufp;
1901 bfd_byte *format_header_data;
1902 unsigned int bytes_read;
1903
1904 format_count = read_1_byte (abfd, buf, buf_end);
1905 buf += 1;
1906 format_header_data = buf;
1907 for (formati = 0; formati < format_count; formati++)
1908 {
1909 _bfd_safe_read_leb128 (abfd, buf, &bytes_read, FALSE, buf_end);
1910 buf += bytes_read;
1911 _bfd_safe_read_leb128 (abfd, buf, &bytes_read, FALSE, buf_end);
1912 buf += bytes_read;
1913 }
1914
1915 data_count = _bfd_safe_read_leb128 (abfd, buf, &bytes_read, FALSE, buf_end);
1916 buf += bytes_read;
1917 if (format_count == 0 && data_count != 0)
1918 {
1919 _bfd_error_handler (_("DWARF error: zero format count"));
1920 bfd_set_error (bfd_error_bad_value);
1921 return FALSE;
1922 }
1923
1924 /* PR 22210. Paranoia check. Don't bother running the loop
1925 if we know that we are going to run out of buffer. */
1926 if (data_count > (bfd_vma) (buf_end - buf))
1927 {
1928 _bfd_error_handler
1929 (_("DWARF error: data count (%" PRIx64 ") larger than buffer size"),
1930 (uint64_t) data_count);
1931 bfd_set_error (bfd_error_bad_value);
1932 return FALSE;
1933 }
1934
1935 for (datai = 0; datai < data_count; datai++)
1936 {
1937 bfd_byte *format = format_header_data;
1938 struct fileinfo fe;
1939
1940 memset (&fe, 0, sizeof fe);
1941 for (formati = 0; formati < format_count; formati++)
1942 {
1943 bfd_vma content_type, form;
1944 char *string_trash;
1945 char **stringp = &string_trash;
1946 unsigned int uint_trash, *uintp = &uint_trash;
1947 struct attribute attr;
1948
1949 content_type = _bfd_safe_read_leb128 (abfd, format, &bytes_read,
1950 FALSE, buf_end);
1951 format += bytes_read;
1952 switch (content_type)
1953 {
1954 case DW_LNCT_path:
1955 stringp = &fe.name;
1956 break;
1957 case DW_LNCT_directory_index:
1958 uintp = &fe.dir;
1959 break;
1960 case DW_LNCT_timestamp:
1961 uintp = &fe.time;
1962 break;
1963 case DW_LNCT_size:
1964 uintp = &fe.size;
1965 break;
1966 case DW_LNCT_MD5:
1967 break;
1968 default:
1969 _bfd_error_handler
1970 (_("DWARF error: unknown format content type %" PRIu64),
1971 (uint64_t) content_type);
1972 bfd_set_error (bfd_error_bad_value);
1973 return FALSE;
1974 }
1975
1976 form = _bfd_safe_read_leb128 (abfd, format, &bytes_read, FALSE,
1977 buf_end);
1978 format += bytes_read;
1979
1980 buf = read_attribute_value (&attr, form, 0, unit, buf, buf_end);
1981 if (buf == NULL)
1982 return FALSE;
1983 switch (form)
1984 {
1985 case DW_FORM_string:
1986 case DW_FORM_line_strp:
1987 *stringp = attr.u.str;
1988 break;
1989
1990 case DW_FORM_data1:
1991 case DW_FORM_data2:
1992 case DW_FORM_data4:
1993 case DW_FORM_data8:
1994 case DW_FORM_udata:
1995 *uintp = attr.u.val;
1996 break;
1997 }
1998 }
1999
2000 if (!callback (table, fe.name, fe.dir, fe.time, fe.size))
2001 return FALSE;
2002 }
2003
2004 *bufp = buf;
2005 return TRUE;
2006 }
2007
2008 /* Decode the line number information for UNIT. */
2009
2010 static struct line_info_table*
2011 decode_line_info (struct comp_unit *unit, struct dwarf2_debug *stash)
2012 {
2013 bfd *abfd = unit->abfd;
2014 struct line_info_table* table;
2015 bfd_byte *line_ptr;
2016 bfd_byte *line_end;
2017 struct line_head lh;
2018 unsigned int i, bytes_read, offset_size;
2019 char *cur_file, *cur_dir;
2020 unsigned char op_code, extended_op, adj_opcode;
2021 unsigned int exop_len;
2022 bfd_size_type amt;
2023
2024 if (! read_section (abfd, &stash->debug_sections[debug_line],
2025 stash->syms, unit->line_offset,
2026 &stash->dwarf_line_buffer, &stash->dwarf_line_size))
2027 return NULL;
2028
2029 amt = sizeof (struct line_info_table);
2030 table = (struct line_info_table *) bfd_alloc (abfd, amt);
2031 if (table == NULL)
2032 return NULL;
2033 table->abfd = abfd;
2034 table->comp_dir = unit->comp_dir;
2035
2036 table->num_files = 0;
2037 table->files = NULL;
2038
2039 table->num_dirs = 0;
2040 table->dirs = NULL;
2041
2042 table->num_sequences = 0;
2043 table->sequences = NULL;
2044
2045 table->lcl_head = NULL;
2046
2047 if (stash->dwarf_line_size < 16)
2048 {
2049 _bfd_error_handler
2050 (_("DWARF error: line info section is too small (%" PRId64 ")"),
2051 (int64_t) stash->dwarf_line_size);
2052 bfd_set_error (bfd_error_bad_value);
2053 return NULL;
2054 }
2055 line_ptr = stash->dwarf_line_buffer + unit->line_offset;
2056 line_end = stash->dwarf_line_buffer + stash->dwarf_line_size;
2057
2058 /* Read in the prologue. */
2059 lh.total_length = read_4_bytes (abfd, line_ptr, line_end);
2060 line_ptr += 4;
2061 offset_size = 4;
2062 if (lh.total_length == 0xffffffff)
2063 {
2064 lh.total_length = read_8_bytes (abfd, line_ptr, line_end);
2065 line_ptr += 8;
2066 offset_size = 8;
2067 }
2068 else if (lh.total_length == 0 && unit->addr_size == 8)
2069 {
2070 /* Handle (non-standard) 64-bit DWARF2 formats. */
2071 lh.total_length = read_4_bytes (abfd, line_ptr, line_end);
2072 line_ptr += 4;
2073 offset_size = 8;
2074 }
2075
2076 if (lh.total_length > (size_t) (line_end - line_ptr))
2077 {
2078 _bfd_error_handler
2079 /* xgettext: c-format */
2080 (_("DWARF error: line info data is bigger (%#" PRIx64 ")"
2081 " than the space remaining in the section (%#lx)"),
2082 (uint64_t) lh.total_length, (unsigned long) (line_end - line_ptr));
2083 bfd_set_error (bfd_error_bad_value);
2084 return NULL;
2085 }
2086
2087 line_end = line_ptr + lh.total_length;
2088
2089 lh.version = read_2_bytes (abfd, line_ptr, line_end);
2090 if (lh.version < 2 || lh.version > 5)
2091 {
2092 _bfd_error_handler
2093 (_("DWARF error: unhandled .debug_line version %d"), lh.version);
2094 bfd_set_error (bfd_error_bad_value);
2095 return NULL;
2096 }
2097 line_ptr += 2;
2098
2099 if (line_ptr + offset_size + (lh.version >= 5 ? 8 : (lh.version >= 4 ? 6 : 5))
2100 >= line_end)
2101 {
2102 _bfd_error_handler
2103 (_("DWARF error: ran out of room reading prologue"));
2104 bfd_set_error (bfd_error_bad_value);
2105 return NULL;
2106 }
2107
2108 if (lh.version >= 5)
2109 {
2110 unsigned int segment_selector_size;
2111
2112 /* Skip address size. */
2113 read_1_byte (abfd, line_ptr, line_end);
2114 line_ptr += 1;
2115
2116 segment_selector_size = read_1_byte (abfd, line_ptr, line_end);
2117 line_ptr += 1;
2118 if (segment_selector_size != 0)
2119 {
2120 _bfd_error_handler
2121 (_("DWARF error: line info unsupported segment selector size %u"),
2122 segment_selector_size);
2123 bfd_set_error (bfd_error_bad_value);
2124 return NULL;
2125 }
2126 }
2127
2128 if (offset_size == 4)
2129 lh.prologue_length = read_4_bytes (abfd, line_ptr, line_end);
2130 else
2131 lh.prologue_length = read_8_bytes (abfd, line_ptr, line_end);
2132 line_ptr += offset_size;
2133
2134 lh.minimum_instruction_length = read_1_byte (abfd, line_ptr, line_end);
2135 line_ptr += 1;
2136
2137 if (lh.version >= 4)
2138 {
2139 lh.maximum_ops_per_insn = read_1_byte (abfd, line_ptr, line_end);
2140 line_ptr += 1;
2141 }
2142 else
2143 lh.maximum_ops_per_insn = 1;
2144
2145 if (lh.maximum_ops_per_insn == 0)
2146 {
2147 _bfd_error_handler
2148 (_("DWARF error: invalid maximum operations per instruction"));
2149 bfd_set_error (bfd_error_bad_value);
2150 return NULL;
2151 }
2152
2153 lh.default_is_stmt = read_1_byte (abfd, line_ptr, line_end);
2154 line_ptr += 1;
2155
2156 lh.line_base = read_1_signed_byte (abfd, line_ptr, line_end);
2157 line_ptr += 1;
2158
2159 lh.line_range = read_1_byte (abfd, line_ptr, line_end);
2160 line_ptr += 1;
2161
2162 lh.opcode_base = read_1_byte (abfd, line_ptr, line_end);
2163 line_ptr += 1;
2164
2165 if (line_ptr + (lh.opcode_base - 1) >= line_end)
2166 {
2167 _bfd_error_handler (_("DWARF error: ran out of room reading opcodes"));
2168 bfd_set_error (bfd_error_bad_value);
2169 return NULL;
2170 }
2171
2172 amt = lh.opcode_base * sizeof (unsigned char);
2173 lh.standard_opcode_lengths = (unsigned char *) bfd_alloc (abfd, amt);
2174
2175 lh.standard_opcode_lengths[0] = 1;
2176
2177 for (i = 1; i < lh.opcode_base; ++i)
2178 {
2179 lh.standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr, line_end);
2180 line_ptr += 1;
2181 }
2182
2183 if (lh.version >= 5)
2184 {
2185 /* Read directory table. */
2186 if (!read_formatted_entries (unit, &line_ptr, line_end, table,
2187 line_info_add_include_dir_stub))
2188 goto fail;
2189
2190 /* Read file name table. */
2191 if (!read_formatted_entries (unit, &line_ptr, line_end, table,
2192 line_info_add_file_name))
2193 goto fail;
2194 }
2195 else
2196 {
2197 /* Read directory table. */
2198 while ((cur_dir = read_string (abfd, line_ptr, line_end, &bytes_read)) != NULL)
2199 {
2200 line_ptr += bytes_read;
2201
2202 if (!line_info_add_include_dir (table, cur_dir))
2203 goto fail;
2204 }
2205
2206 line_ptr += bytes_read;
2207
2208 /* Read file name table. */
2209 while ((cur_file = read_string (abfd, line_ptr, line_end, &bytes_read)) != NULL)
2210 {
2211 unsigned int dir, xtime, size;
2212
2213 line_ptr += bytes_read;
2214
2215 dir = _bfd_safe_read_leb128 (abfd, line_ptr, &bytes_read, FALSE, line_end);
2216 line_ptr += bytes_read;
2217 xtime = _bfd_safe_read_leb128 (abfd, line_ptr, &bytes_read, FALSE, line_end);
2218 line_ptr += bytes_read;
2219 size = _bfd_safe_read_leb128 (abfd, line_ptr, &bytes_read, FALSE, line_end);
2220 line_ptr += bytes_read;
2221
2222 if (!line_info_add_file_name (table, cur_file, dir, xtime, size))
2223 goto fail;
2224 }
2225
2226 line_ptr += bytes_read;
2227 }
2228
2229 /* Read the statement sequences until there's nothing left. */
2230 while (line_ptr < line_end)
2231 {
2232 /* State machine registers. */
2233 bfd_vma address = 0;
2234 unsigned char op_index = 0;
2235 char * filename = table->num_files ? concat_filename (table, 1) : NULL;
2236 unsigned int line = 1;
2237 unsigned int column = 0;
2238 unsigned int discriminator = 0;
2239 int is_stmt = lh.default_is_stmt;
2240 int end_sequence = 0;
2241 unsigned int dir, xtime, size;
2242 /* eraxxon@alumni.rice.edu: Against the DWARF2 specs, some
2243 compilers generate address sequences that are wildly out of
2244 order using DW_LNE_set_address (e.g. Intel C++ 6.0 compiler
2245 for ia64-Linux). Thus, to determine the low and high
2246 address, we must compare on every DW_LNS_copy, etc. */
2247 bfd_vma low_pc = (bfd_vma) -1;
2248 bfd_vma high_pc = 0;
2249
2250 /* Decode the table. */
2251 while (!end_sequence && line_ptr < line_end)
2252 {
2253 op_code = read_1_byte (abfd, line_ptr, line_end);
2254 line_ptr += 1;
2255
2256 if (op_code >= lh.opcode_base)
2257 {
2258 /* Special operand. */
2259 adj_opcode = op_code - lh.opcode_base;
2260 if (lh.line_range == 0)
2261 goto line_fail;
2262 if (lh.maximum_ops_per_insn == 1)
2263 address += (adj_opcode / lh.line_range
2264 * lh.minimum_instruction_length);
2265 else
2266 {
2267 address += ((op_index + adj_opcode / lh.line_range)
2268 / lh.maximum_ops_per_insn
2269 * lh.minimum_instruction_length);
2270 op_index = ((op_index + adj_opcode / lh.line_range)
2271 % lh.maximum_ops_per_insn);
2272 }
2273 line += lh.line_base + (adj_opcode % lh.line_range);
2274 /* Append row to matrix using current values. */
2275 if (!add_line_info (table, address, op_index, filename,
2276 line, column, discriminator, 0))
2277 goto line_fail;
2278 discriminator = 0;
2279 if (address < low_pc)
2280 low_pc = address;
2281 if (address > high_pc)
2282 high_pc = address;
2283 }
2284 else switch (op_code)
2285 {
2286 case DW_LNS_extended_op:
2287 exop_len = _bfd_safe_read_leb128 (abfd, line_ptr, &bytes_read,
2288 FALSE, line_end);
2289 line_ptr += bytes_read;
2290 extended_op = read_1_byte (abfd, line_ptr, line_end);
2291 line_ptr += 1;
2292
2293 switch (extended_op)
2294 {
2295 case DW_LNE_end_sequence:
2296 end_sequence = 1;
2297 if (!add_line_info (table, address, op_index, filename, line,
2298 column, discriminator, end_sequence))
2299 goto line_fail;
2300 discriminator = 0;
2301 if (address < low_pc)
2302 low_pc = address;
2303 if (address > high_pc)
2304 high_pc = address;
2305 if (!arange_add (unit, &unit->arange, low_pc, high_pc))
2306 goto line_fail;
2307 break;
2308 case DW_LNE_set_address:
2309 address = read_address (unit, line_ptr, line_end);
2310 op_index = 0;
2311 line_ptr += unit->addr_size;
2312 break;
2313 case DW_LNE_define_file:
2314 cur_file = read_string (abfd, line_ptr, line_end, &bytes_read);
2315 line_ptr += bytes_read;
2316 dir = _bfd_safe_read_leb128 (abfd, line_ptr, &bytes_read,
2317 FALSE, line_end);
2318 line_ptr += bytes_read;
2319 xtime = _bfd_safe_read_leb128 (abfd, line_ptr, &bytes_read,
2320 FALSE, line_end);
2321 line_ptr += bytes_read;
2322 size = _bfd_safe_read_leb128 (abfd, line_ptr, &bytes_read,
2323 FALSE, line_end);
2324 line_ptr += bytes_read;
2325 if (!line_info_add_file_name (table, cur_file, dir,
2326 xtime, size))
2327 goto line_fail;
2328 break;
2329 case DW_LNE_set_discriminator:
2330 discriminator =
2331 _bfd_safe_read_leb128 (abfd, line_ptr, &bytes_read,
2332 FALSE, line_end);
2333 line_ptr += bytes_read;
2334 break;
2335 case DW_LNE_HP_source_file_correlation:
2336 line_ptr += exop_len - 1;
2337 break;
2338 default:
2339 _bfd_error_handler
2340 (_("DWARF error: mangled line number section"));
2341 bfd_set_error (bfd_error_bad_value);
2342 line_fail:
2343 if (filename != NULL)
2344 free (filename);
2345 goto fail;
2346 }
2347 break;
2348 case DW_LNS_copy:
2349 if (!add_line_info (table, address, op_index,
2350 filename, line, column, discriminator, 0))
2351 goto line_fail;
2352 discriminator = 0;
2353 if (address < low_pc)
2354 low_pc = address;
2355 if (address > high_pc)
2356 high_pc = address;
2357 break;
2358 case DW_LNS_advance_pc:
2359 if (lh.maximum_ops_per_insn == 1)
2360 address += (lh.minimum_instruction_length
2361 * _bfd_safe_read_leb128 (abfd, line_ptr,
2362 &bytes_read,
2363 FALSE, line_end));
2364 else
2365 {
2366 bfd_vma adjust = _bfd_safe_read_leb128 (abfd, line_ptr,
2367 &bytes_read,
2368 FALSE, line_end);
2369 address = ((op_index + adjust) / lh.maximum_ops_per_insn
2370 * lh.minimum_instruction_length);
2371 op_index = (op_index + adjust) % lh.maximum_ops_per_insn;
2372 }
2373 line_ptr += bytes_read;
2374 break;
2375 case DW_LNS_advance_line:
2376 line += _bfd_safe_read_leb128 (abfd, line_ptr, &bytes_read,
2377 TRUE, line_end);
2378 line_ptr += bytes_read;
2379 break;
2380 case DW_LNS_set_file:
2381 {
2382 unsigned int file;
2383
2384 /* The file and directory tables are 0
2385 based, the references are 1 based. */
2386 file = _bfd_safe_read_leb128 (abfd, line_ptr, &bytes_read,
2387 FALSE, line_end);
2388 line_ptr += bytes_read;
2389 if (filename)
2390 free (filename);
2391 filename = concat_filename (table, file);
2392 break;
2393 }
2394 case DW_LNS_set_column:
2395 column = _bfd_safe_read_leb128 (abfd, line_ptr, &bytes_read,
2396 FALSE, line_end);
2397 line_ptr += bytes_read;
2398 break;
2399 case DW_LNS_negate_stmt:
2400 is_stmt = (!is_stmt);
2401 break;
2402 case DW_LNS_set_basic_block:
2403 break;
2404 case DW_LNS_const_add_pc:
2405 if (lh.line_range == 0)
2406 goto line_fail;
2407 if (lh.maximum_ops_per_insn == 1)
2408 address += (lh.minimum_instruction_length
2409 * ((255 - lh.opcode_base) / lh.line_range));
2410 else
2411 {
2412 bfd_vma adjust = ((255 - lh.opcode_base) / lh.line_range);
2413 address += (lh.minimum_instruction_length
2414 * ((op_index + adjust)
2415 / lh.maximum_ops_per_insn));
2416 op_index = (op_index + adjust) % lh.maximum_ops_per_insn;
2417 }
2418 break;
2419 case DW_LNS_fixed_advance_pc:
2420 address += read_2_bytes (abfd, line_ptr, line_end);
2421 op_index = 0;
2422 line_ptr += 2;
2423 break;
2424 default:
2425 /* Unknown standard opcode, ignore it. */
2426 for (i = 0; i < lh.standard_opcode_lengths[op_code]; i++)
2427 {
2428 (void) _bfd_safe_read_leb128 (abfd, line_ptr, &bytes_read,
2429 FALSE, line_end);
2430 line_ptr += bytes_read;
2431 }
2432 break;
2433 }
2434 }
2435
2436 if (filename)
2437 free (filename);
2438 }
2439
2440 if (sort_line_sequences (table))
2441 return table;
2442
2443 fail:
2444 while (table->sequences != NULL)
2445 {
2446 struct line_sequence* seq = table->sequences;
2447 table->sequences = table->sequences->prev_sequence;
2448 free (seq);
2449 }
2450 if (table->files != NULL)
2451 free (table->files);
2452 if (table->dirs != NULL)
2453 free (table->dirs);
2454 return NULL;
2455 }
2456
2457 /* If ADDR is within TABLE set the output parameters and return the
2458 range of addresses covered by the entry used to fill them out.
2459 Otherwise set * FILENAME_PTR to NULL and return 0.
2460 The parameters FILENAME_PTR, LINENUMBER_PTR and DISCRIMINATOR_PTR
2461 are pointers to the objects to be filled in. */
2462
2463 static bfd_vma
2464 lookup_address_in_line_info_table (struct line_info_table *table,
2465 bfd_vma addr,
2466 const char **filename_ptr,
2467 unsigned int *linenumber_ptr,
2468 unsigned int *discriminator_ptr)
2469 {
2470 struct line_sequence *seq = NULL;
2471 struct line_info *info;
2472 int low, high, mid;
2473
2474 /* Binary search the array of sequences. */
2475 low = 0;
2476 high = table->num_sequences;
2477 while (low < high)
2478 {
2479 mid = (low + high) / 2;
2480 seq = &table->sequences[mid];
2481 if (addr < seq->low_pc)
2482 high = mid;
2483 else if (addr >= seq->last_line->address)
2484 low = mid + 1;
2485 else
2486 break;
2487 }
2488
2489 /* Check for a valid sequence. */
2490 if (!seq || addr < seq->low_pc || addr >= seq->last_line->address)
2491 goto fail;
2492
2493 if (!build_line_info_table (table, seq))
2494 goto fail;
2495
2496 /* Binary search the array of line information. */
2497 low = 0;
2498 high = seq->num_lines;
2499 info = NULL;
2500 while (low < high)
2501 {
2502 mid = (low + high) / 2;
2503 info = seq->line_info_lookup[mid];
2504 if (addr < info->address)
2505 high = mid;
2506 else if (addr >= seq->line_info_lookup[mid + 1]->address)
2507 low = mid + 1;
2508 else
2509 break;
2510 }
2511
2512 /* Check for a valid line information entry. */
2513 if (info
2514 && addr >= info->address
2515 && addr < seq->line_info_lookup[mid + 1]->address
2516 && !(info->end_sequence || info == seq->last_line))
2517 {
2518 *filename_ptr = info->filename;
2519 *linenumber_ptr = info->line;
2520 if (discriminator_ptr)
2521 *discriminator_ptr = info->discriminator;
2522 return seq->last_line->address - seq->low_pc;
2523 }
2524
2525 fail:
2526 *filename_ptr = NULL;
2527 return 0;
2528 }
2529
2530 /* Read in the .debug_ranges section for future reference. */
2531
2532 static bfd_boolean
2533 read_debug_ranges (struct comp_unit * unit)
2534 {
2535 struct dwarf2_debug * stash = unit->stash;
2536
2537 return read_section (unit->abfd, &stash->debug_sections[debug_ranges],
2538 stash->syms, 0,
2539 &stash->dwarf_ranges_buffer,
2540 &stash->dwarf_ranges_size);
2541 }
2542
2543 /* Function table functions. */
2544
2545 static int
2546 compare_lookup_funcinfos (const void * a, const void * b)
2547 {
2548 const struct lookup_funcinfo * lookup1 = a;
2549 const struct lookup_funcinfo * lookup2 = b;
2550
2551 if (lookup1->low_addr < lookup2->low_addr)
2552 return -1;
2553 if (lookup1->low_addr > lookup2->low_addr)
2554 return 1;
2555 if (lookup1->high_addr < lookup2->high_addr)
2556 return -1;
2557 if (lookup1->high_addr > lookup2->high_addr)
2558 return 1;
2559
2560 return 0;
2561 }
2562
2563 static bfd_boolean
2564 build_lookup_funcinfo_table (struct comp_unit * unit)
2565 {
2566 struct lookup_funcinfo *lookup_funcinfo_table = unit->lookup_funcinfo_table;
2567 unsigned int number_of_functions = unit->number_of_functions;
2568 struct funcinfo *each;
2569 struct lookup_funcinfo *entry;
2570 size_t func_index;
2571 struct arange *range;
2572 bfd_vma low_addr, high_addr;
2573
2574 if (lookup_funcinfo_table || number_of_functions == 0)
2575 return TRUE;
2576
2577 /* Create the function info lookup table. */
2578 lookup_funcinfo_table = (struct lookup_funcinfo *)
2579 bfd_malloc (number_of_functions * sizeof (struct lookup_funcinfo));
2580 if (lookup_funcinfo_table == NULL)
2581 return FALSE;
2582
2583 /* Populate the function info lookup table. */
2584 func_index = number_of_functions;
2585 for (each = unit->function_table; each; each = each->prev_func)
2586 {
2587 entry = &lookup_funcinfo_table[--func_index];
2588 entry->funcinfo = each;
2589
2590 /* Calculate the lowest and highest address for this function entry. */
2591 low_addr = entry->funcinfo->arange.low;
2592 high_addr = entry->funcinfo->arange.high;
2593
2594 for (range = entry->funcinfo->arange.next; range; range = range->next)
2595 {
2596 if (range->low < low_addr)
2597 low_addr = range->low;
2598 if (range->high > high_addr)
2599 high_addr = range->high;
2600 }
2601
2602 entry->low_addr = low_addr;
2603 entry->high_addr = high_addr;
2604 }
2605
2606 BFD_ASSERT (func_index == 0);
2607
2608 /* Sort the function by address. */
2609 qsort (lookup_funcinfo_table,
2610 number_of_functions,
2611 sizeof (struct lookup_funcinfo),
2612 compare_lookup_funcinfos);
2613
2614 /* Calculate the high watermark for each function in the lookup table. */
2615 high_addr = lookup_funcinfo_table[0].high_addr;
2616 for (func_index = 1; func_index < number_of_functions; func_index++)
2617 {
2618 entry = &lookup_funcinfo_table[func_index];
2619 if (entry->high_addr > high_addr)
2620 high_addr = entry->high_addr;
2621 else
2622 entry->high_addr = high_addr;
2623 }
2624
2625 unit->lookup_funcinfo_table = lookup_funcinfo_table;
2626 return TRUE;
2627 }
2628
2629 /* If ADDR is within UNIT's function tables, set FUNCTION_PTR, and return
2630 TRUE. Note that we need to find the function that has the smallest range
2631 that contains ADDR, to handle inlined functions without depending upon
2632 them being ordered in TABLE by increasing range. */
2633
2634 static bfd_boolean
2635 lookup_address_in_function_table (struct comp_unit *unit,
2636 bfd_vma addr,
2637 struct funcinfo **function_ptr)
2638 {
2639 unsigned int number_of_functions = unit->number_of_functions;
2640 struct lookup_funcinfo* lookup_funcinfo = NULL;
2641 struct funcinfo* funcinfo = NULL;
2642 struct funcinfo* best_fit = NULL;
2643 bfd_vma best_fit_len = 0;
2644 bfd_size_type low, high, mid, first;
2645 struct arange *arange;
2646
2647 if (number_of_functions == 0)
2648 return FALSE;
2649
2650 if (!build_lookup_funcinfo_table (unit))
2651 return FALSE;
2652
2653 if (unit->lookup_funcinfo_table[number_of_functions - 1].high_addr < addr)
2654 return FALSE;
2655
2656 /* Find the first function in the lookup table which may contain the
2657 specified address. */
2658 low = 0;
2659 high = number_of_functions;
2660 first = high;
2661 while (low < high)
2662 {
2663 mid = (low + high) / 2;
2664 lookup_funcinfo = &unit->lookup_funcinfo_table[mid];
2665 if (addr < lookup_funcinfo->low_addr)
2666 high = mid;
2667 else if (addr >= lookup_funcinfo->high_addr)
2668 low = mid + 1;
2669 else
2670 high = first = mid;
2671 }
2672
2673 /* Find the 'best' match for the address. The prior algorithm defined the
2674 best match as the function with the smallest address range containing
2675 the specified address. This definition should probably be changed to the
2676 innermost inline routine containing the address, but right now we want
2677 to get the same results we did before. */
2678 while (first < number_of_functions)
2679 {
2680 if (addr < unit->lookup_funcinfo_table[first].low_addr)
2681 break;
2682 funcinfo = unit->lookup_funcinfo_table[first].funcinfo;
2683
2684 for (arange = &funcinfo->arange; arange; arange = arange->next)
2685 {
2686 if (addr < arange->low || addr >= arange->high)
2687 continue;
2688
2689 if (!best_fit
2690 || arange->high - arange->low < best_fit_len
2691 /* The following comparison is designed to return the same
2692 match as the previous algorithm for routines which have the
2693 same best fit length. */
2694 || (arange->high - arange->low == best_fit_len
2695 && funcinfo > best_fit))
2696 {
2697 best_fit = funcinfo;
2698 best_fit_len = arange->high - arange->low;
2699 }
2700 }
2701
2702 first++;
2703 }
2704
2705 if (!best_fit)
2706 return FALSE;
2707
2708 *function_ptr = best_fit;
2709 return TRUE;
2710 }
2711
2712 /* If SYM at ADDR is within function table of UNIT, set FILENAME_PTR
2713 and LINENUMBER_PTR, and return TRUE. */
2714
2715 static bfd_boolean
2716 lookup_symbol_in_function_table (struct comp_unit *unit,
2717 asymbol *sym,
2718 bfd_vma addr,
2719 const char **filename_ptr,
2720 unsigned int *linenumber_ptr)
2721 {
2722 struct funcinfo* each_func;
2723 struct funcinfo* best_fit = NULL;
2724 bfd_vma best_fit_len = 0;
2725 struct arange *arange;
2726 const char *name = bfd_asymbol_name (sym);
2727 asection *sec = bfd_get_section (sym);
2728
2729 for (each_func = unit->function_table;
2730 each_func;
2731 each_func = each_func->prev_func)
2732 {
2733 for (arange = &each_func->arange;
2734 arange;
2735 arange = arange->next)
2736 {
2737 if ((!each_func->sec || each_func->sec == sec)
2738 && addr >= arange->low
2739 && addr < arange->high
2740 && each_func->name
2741 && strcmp (name, each_func->name) == 0
2742 && (!best_fit
2743 || arange->high - arange->low < best_fit_len))
2744 {
2745 best_fit = each_func;
2746 best_fit_len = arange->high - arange->low;
2747 }
2748 }
2749 }
2750
2751 if (best_fit)
2752 {
2753 best_fit->sec = sec;
2754 *filename_ptr = best_fit->file;
2755 *linenumber_ptr = best_fit->line;
2756 return TRUE;
2757 }
2758 else
2759 return FALSE;
2760 }
2761
2762 /* Variable table functions. */
2763
2764 /* If SYM is within variable table of UNIT, set FILENAME_PTR and
2765 LINENUMBER_PTR, and return TRUE. */
2766
2767 static bfd_boolean
2768 lookup_symbol_in_variable_table (struct comp_unit *unit,
2769 asymbol *sym,
2770 bfd_vma addr,
2771 const char **filename_ptr,
2772 unsigned int *linenumber_ptr)
2773 {
2774 const char *name = bfd_asymbol_name (sym);
2775 asection *sec = bfd_get_section (sym);
2776 struct varinfo* each;
2777
2778 for (each = unit->variable_table; each; each = each->prev_var)
2779 if (each->stack == 0
2780 && each->file != NULL
2781 && each->name != NULL
2782 && each->addr == addr
2783 && (!each->sec || each->sec == sec)
2784 && strcmp (name, each->name) == 0)
2785 break;
2786
2787 if (each)
2788 {
2789 each->sec = sec;
2790 *filename_ptr = each->file;
2791 *linenumber_ptr = each->line;
2792 return TRUE;
2793 }
2794
2795 return FALSE;
2796 }
2797
2798 static bfd_boolean
2799 find_abstract_instance (struct comp_unit * unit,
2800 bfd_byte * orig_info_ptr,
2801 struct attribute * attr_ptr,
2802 const char ** pname,
2803 bfd_boolean * is_linkage,
2804 char ** filename_ptr,
2805 int * linenumber_ptr)
2806 {
2807 bfd *abfd = unit->abfd;
2808 bfd_byte *info_ptr;
2809 bfd_byte *info_ptr_end;
2810 unsigned int abbrev_number, bytes_read, i;
2811 struct abbrev_info *abbrev;
2812 bfd_uint64_t die_ref = attr_ptr->u.val;
2813 struct attribute attr;
2814 const char *name = NULL;
2815
2816 /* DW_FORM_ref_addr can reference an entry in a different CU. It
2817 is an offset from the .debug_info section, not the current CU. */
2818 if (attr_ptr->form == DW_FORM_ref_addr)
2819 {
2820 /* We only support DW_FORM_ref_addr within the same file, so
2821 any relocations should be resolved already. Check this by
2822 testing for a zero die_ref; There can't be a valid reference
2823 to the header of a .debug_info section.
2824 DW_FORM_ref_addr is an offset relative to .debug_info.
2825 Normally when using the GNU linker this is accomplished by
2826 emitting a symbolic reference to a label, because .debug_info
2827 sections are linked at zero. When there are multiple section
2828 groups containing .debug_info, as there might be in a
2829 relocatable object file, it would be reasonable to assume that
2830 a symbolic reference to a label in any .debug_info section
2831 might be used. Since we lay out multiple .debug_info
2832 sections at non-zero VMAs (see place_sections), and read
2833 them contiguously into stash->info_ptr_memory, that means
2834 the reference is relative to stash->info_ptr_memory. */
2835 size_t total;
2836
2837 info_ptr = unit->stash->info_ptr_memory;
2838 info_ptr_end = unit->stash->info_ptr_end;
2839 total = info_ptr_end - info_ptr;
2840 if (!die_ref)
2841 return TRUE;
2842 else if (die_ref >= total)
2843 {
2844 _bfd_error_handler
2845 (_("DWARF error: invalid abstract instance DIE ref"));
2846 bfd_set_error (bfd_error_bad_value);
2847 return FALSE;
2848 }
2849 info_ptr += die_ref;
2850
2851 /* Now find the CU containing this pointer. */
2852 if (info_ptr >= unit->info_ptr_unit && info_ptr < unit->end_ptr)
2853 info_ptr_end = unit->end_ptr;
2854 else
2855 {
2856 /* Check other CUs to see if they contain the abbrev. */
2857 struct comp_unit * u;
2858
2859 for (u = unit->prev_unit; u != NULL; u = u->prev_unit)
2860 if (info_ptr >= u->info_ptr_unit && info_ptr < u->end_ptr)
2861 break;
2862
2863 if (u == NULL)
2864 for (u = unit->next_unit; u != NULL; u = u->next_unit)
2865 if (info_ptr >= u->info_ptr_unit && info_ptr < u->end_ptr)
2866 break;
2867
2868 if (u)
2869 {
2870 unit = u;
2871 info_ptr_end = unit->end_ptr;
2872 }
2873 /* else FIXME: What do we do now ? */
2874 }
2875 }
2876 else if (attr_ptr->form == DW_FORM_GNU_ref_alt)
2877 {
2878 info_ptr = read_alt_indirect_ref (unit, die_ref);
2879 if (info_ptr == NULL)
2880 {
2881 _bfd_error_handler
2882 (_("DWARF error: unable to read alt ref %" PRIu64),
2883 (uint64_t) die_ref);
2884 bfd_set_error (bfd_error_bad_value);
2885 return FALSE;
2886 }
2887 info_ptr_end = (unit->stash->alt_dwarf_info_buffer
2888 + unit->stash->alt_dwarf_info_size);
2889
2890 /* FIXME: Do we need to locate the correct CU, in a similar
2891 fashion to the code in the DW_FORM_ref_addr case above ? */
2892 }
2893 else
2894 {
2895 /* DW_FORM_ref1, DW_FORM_ref2, DW_FORM_ref4, DW_FORM_ref8 or
2896 DW_FORM_ref_udata. These are all references relative to the
2897 start of the current CU. */
2898 size_t total;
2899
2900 info_ptr = unit->info_ptr_unit;
2901 info_ptr_end = unit->end_ptr;
2902 total = info_ptr_end - info_ptr;
2903 if (!die_ref || die_ref >= total)
2904 {
2905 _bfd_error_handler
2906 (_("DWARF error: invalid abstract instance DIE ref"));
2907 bfd_set_error (bfd_error_bad_value);
2908 return FALSE;
2909 }
2910 info_ptr += die_ref;
2911 }
2912
2913 abbrev_number = _bfd_safe_read_leb128 (abfd, info_ptr, &bytes_read,
2914 FALSE, info_ptr_end);
2915 info_ptr += bytes_read;
2916
2917 if (abbrev_number)
2918 {
2919 abbrev = lookup_abbrev (abbrev_number, unit->abbrevs);
2920 if (! abbrev)
2921 {
2922 _bfd_error_handler
2923 (_("DWARF error: could not find abbrev number %u"), abbrev_number);
2924 bfd_set_error (bfd_error_bad_value);
2925 return FALSE;
2926 }
2927 else
2928 {
2929 for (i = 0; i < abbrev->num_attrs; ++i)
2930 {
2931 info_ptr = read_attribute (&attr, &abbrev->attrs[i], unit,
2932 info_ptr, info_ptr_end);
2933 if (info_ptr == NULL)
2934 break;
2935 /* It doesn't ever make sense for DW_AT_specification to
2936 refer to the same DIE. Stop simple recursion. */
2937 if (info_ptr == orig_info_ptr)
2938 {
2939 _bfd_error_handler
2940 (_("DWARF error: abstract instance recursion detected"));
2941 bfd_set_error (bfd_error_bad_value);
2942 return FALSE;
2943 }
2944 switch (attr.name)
2945 {
2946 case DW_AT_name:
2947 /* Prefer DW_AT_MIPS_linkage_name or DW_AT_linkage_name
2948 over DW_AT_name. */
2949 if (name == NULL && is_str_attr (attr.form))
2950 {
2951 name = attr.u.str;
2952 if (non_mangled (unit->lang))
2953 *is_linkage = TRUE;
2954 }
2955 break;
2956 case DW_AT_specification:
2957 if (!find_abstract_instance (unit, info_ptr, &attr,
2958 pname, is_linkage,
2959 filename_ptr, linenumber_ptr))
2960 return FALSE;
2961 break;
2962 case DW_AT_linkage_name:
2963 case DW_AT_MIPS_linkage_name:
2964 /* PR 16949: Corrupt debug info can place
2965 non-string forms into these attributes. */
2966 if (is_str_attr (attr.form))
2967 {
2968 name = attr.u.str;
2969 *is_linkage = TRUE;
2970 }
2971 break;
2972 case DW_AT_decl_file:
2973 *filename_ptr = concat_filename (unit->line_table,
2974 attr.u.val);
2975 break;
2976 case DW_AT_decl_line:
2977 *linenumber_ptr = attr.u.val;
2978 break;
2979 default:
2980 break;
2981 }
2982 }
2983 }
2984 }
2985 *pname = name;
2986 return TRUE;
2987 }
2988
2989 static bfd_boolean
2990 read_rangelist (struct comp_unit *unit, struct arange *arange,
2991 bfd_uint64_t offset)
2992 {
2993 bfd_byte *ranges_ptr;
2994 bfd_byte *ranges_end;
2995 bfd_vma base_address = unit->base_address;
2996
2997 if (! unit->stash->dwarf_ranges_buffer)
2998 {
2999 if (! read_debug_ranges (unit))
3000 return FALSE;
3001 }
3002
3003 ranges_ptr = unit->stash->dwarf_ranges_buffer + offset;
3004 if (ranges_ptr < unit->stash->dwarf_ranges_buffer)
3005 return FALSE;
3006 ranges_end = unit->stash->dwarf_ranges_buffer + unit->stash->dwarf_ranges_size;
3007
3008 for (;;)
3009 {
3010 bfd_vma low_pc;
3011 bfd_vma high_pc;
3012
3013 /* PR 17512: file: 62cada7d. */
3014 if (ranges_ptr + 2 * unit->addr_size > ranges_end)
3015 return FALSE;
3016
3017 low_pc = read_address (unit, ranges_ptr, ranges_end);
3018 ranges_ptr += unit->addr_size;
3019 high_pc = read_address (unit, ranges_ptr, ranges_end);
3020 ranges_ptr += unit->addr_size;
3021
3022 if (low_pc == 0 && high_pc == 0)
3023 break;
3024 if (low_pc == -1UL && high_pc != -1UL)
3025 base_address = high_pc;
3026 else
3027 {
3028 if (!arange_add (unit, arange,
3029 base_address + low_pc, base_address + high_pc))
3030 return FALSE;
3031 }
3032 }
3033 return TRUE;
3034 }
3035
3036 /* DWARF2 Compilation unit functions. */
3037
3038 /* Scan over each die in a comp. unit looking for functions to add
3039 to the function table and variables to the variable table. */
3040
3041 static bfd_boolean
3042 scan_unit_for_symbols (struct comp_unit *unit)
3043 {
3044 bfd *abfd = unit->abfd;
3045 bfd_byte *info_ptr = unit->first_child_die_ptr;
3046 bfd_byte *info_ptr_end = unit->stash->info_ptr_end;
3047 int nesting_level = 0;
3048 struct nest_funcinfo {
3049 struct funcinfo *func;
3050 } *nested_funcs;
3051 int nested_funcs_size;
3052
3053 /* Maintain a stack of in-scope functions and inlined functions, which we
3054 can use to set the caller_func field. */
3055 nested_funcs_size = 32;
3056 nested_funcs = (struct nest_funcinfo *)
3057 bfd_malloc (nested_funcs_size * sizeof (*nested_funcs));
3058 if (nested_funcs == NULL)
3059 return FALSE;
3060 nested_funcs[nesting_level].func = 0;
3061
3062 while (nesting_level >= 0)
3063 {
3064 unsigned int abbrev_number, bytes_read, i;
3065 struct abbrev_info *abbrev;
3066 struct attribute attr;
3067 struct funcinfo *func;
3068 struct varinfo *var;
3069 bfd_vma low_pc = 0;
3070 bfd_vma high_pc = 0;
3071 bfd_boolean high_pc_relative = FALSE;
3072
3073 /* PR 17512: file: 9f405d9d. */
3074 if (info_ptr >= info_ptr_end)
3075 goto fail;
3076
3077 abbrev_number = _bfd_safe_read_leb128 (abfd, info_ptr, &bytes_read,
3078 FALSE, info_ptr_end);
3079 info_ptr += bytes_read;
3080
3081 if (! abbrev_number)
3082 {
3083 nesting_level--;
3084 continue;
3085 }
3086
3087 abbrev = lookup_abbrev (abbrev_number, unit->abbrevs);
3088 if (! abbrev)
3089 {
3090 static unsigned int previous_failed_abbrev = -1U;
3091
3092 /* Avoid multiple reports of the same missing abbrev. */
3093 if (abbrev_number != previous_failed_abbrev)
3094 {
3095 _bfd_error_handler
3096 (_("DWARF error: could not find abbrev number %u"),
3097 abbrev_number);
3098 previous_failed_abbrev = abbrev_number;
3099 }
3100 bfd_set_error (bfd_error_bad_value);
3101 goto fail;
3102 }
3103
3104 var = NULL;
3105 if (abbrev->tag == DW_TAG_subprogram
3106 || abbrev->tag == DW_TAG_entry_point
3107 || abbrev->tag == DW_TAG_inlined_subroutine)
3108 {
3109 bfd_size_type amt = sizeof (struct funcinfo);
3110 func = (struct funcinfo *) bfd_zalloc (abfd, amt);
3111 if (func == NULL)
3112 goto fail;
3113 func->tag = abbrev->tag;
3114 func->prev_func = unit->function_table;
3115 unit->function_table = func;
3116 unit->number_of_functions++;
3117 BFD_ASSERT (!unit->cached);
3118
3119 if (func->tag == DW_TAG_inlined_subroutine)
3120 for (i = nesting_level; i-- != 0; )
3121 if (nested_funcs[i].func)
3122 {
3123 func->caller_func = nested_funcs[i].func;
3124 break;
3125 }
3126 nested_funcs[nesting_level].func = func;
3127 }
3128 else
3129 {
3130 func = NULL;
3131 if (abbrev->tag == DW_TAG_variable)
3132 {
3133 bfd_size_type amt = sizeof (struct varinfo);
3134 var = (struct varinfo *) bfd_zalloc (abfd, amt);
3135 if (var == NULL)
3136 goto fail;
3137 var->tag = abbrev->tag;
3138 var->stack = 1;
3139 var->prev_var = unit->variable_table;
3140 unit->variable_table = var;
3141 /* PR 18205: Missing debug information can cause this
3142 var to be attached to an already cached unit. */
3143 }
3144
3145 /* No inline function in scope at this nesting level. */
3146 nested_funcs[nesting_level].func = 0;
3147 }
3148
3149 for (i = 0; i < abbrev->num_attrs; ++i)
3150 {
3151 info_ptr = read_attribute (&attr, &abbrev->attrs[i],
3152 unit, info_ptr, info_ptr_end);
3153 if (info_ptr == NULL)
3154 goto fail;
3155
3156 if (func)
3157 {
3158 switch (attr.name)
3159 {
3160 case DW_AT_call_file:
3161 func->caller_file = concat_filename (unit->line_table,
3162 attr.u.val);
3163 break;
3164
3165 case DW_AT_call_line:
3166 func->caller_line = attr.u.val;
3167 break;
3168
3169 case DW_AT_abstract_origin:
3170 case DW_AT_specification:
3171 if (!find_abstract_instance (unit, info_ptr, &attr,
3172 &func->name,
3173 &func->is_linkage,
3174 &func->file,
3175 &func->line))
3176 goto fail;
3177 break;
3178
3179 case DW_AT_name:
3180 /* Prefer DW_AT_MIPS_linkage_name or DW_AT_linkage_name
3181 over DW_AT_name. */
3182 if (func->name == NULL && is_str_attr (attr.form))
3183 {
3184 func->name = attr.u.str;
3185 if (non_mangled (unit->lang))
3186 func->is_linkage = TRUE;
3187 }
3188 break;
3189
3190 case DW_AT_linkage_name:
3191 case DW_AT_MIPS_linkage_name:
3192 /* PR 16949: Corrupt debug info can place
3193 non-string forms into these attributes. */
3194 if (is_str_attr (attr.form))
3195 {
3196 func->name = attr.u.str;
3197 func->is_linkage = TRUE;
3198 }
3199 break;
3200
3201 case DW_AT_low_pc:
3202 low_pc = attr.u.val;
3203 break;
3204
3205 case DW_AT_high_pc:
3206 high_pc = attr.u.val;
3207 high_pc_relative = attr.form != DW_FORM_addr;
3208 break;
3209
3210 case DW_AT_ranges:
3211 if (!read_rangelist (unit, &func->arange, attr.u.val))
3212 goto fail;
3213 break;
3214
3215 case DW_AT_decl_file:
3216 func->file = concat_filename (unit->line_table,
3217 attr.u.val);
3218 break;
3219
3220 case DW_AT_decl_line:
3221 func->line = attr.u.val;
3222 break;
3223
3224 default:
3225 break;
3226 }
3227 }
3228 else if (var)
3229 {
3230 switch (attr.name)
3231 {
3232 case DW_AT_name:
3233 if (is_str_attr (attr.form))
3234 var->name = attr.u.str;
3235 break;
3236
3237 case DW_AT_decl_file:
3238 var->file = concat_filename (unit->line_table,
3239 attr.u.val);
3240 break;
3241
3242 case DW_AT_decl_line:
3243 var->line = attr.u.val;
3244 break;
3245
3246 case DW_AT_external:
3247 if (attr.u.val != 0)
3248 var->stack = 0;
3249 break;
3250
3251 case DW_AT_location:
3252 switch (attr.form)
3253 {
3254 case DW_FORM_block:
3255 case DW_FORM_block1:
3256 case DW_FORM_block2:
3257 case DW_FORM_block4:
3258 case DW_FORM_exprloc:
3259 if (attr.u.blk->data != NULL
3260 && *attr.u.blk->data == DW_OP_addr)
3261 {
3262 var->stack = 0;
3263
3264 /* Verify that DW_OP_addr is the only opcode in the
3265 location, in which case the block size will be 1
3266 plus the address size. */
3267 /* ??? For TLS variables, gcc can emit
3268 DW_OP_addr <addr> DW_OP_GNU_push_tls_address
3269 which we don't handle here yet. */
3270 if (attr.u.blk->size == unit->addr_size + 1U)
3271 var->addr = bfd_get (unit->addr_size * 8,
3272 unit->abfd,
3273 attr.u.blk->data + 1);
3274 }
3275 break;
3276
3277 default:
3278 break;
3279 }
3280 break;
3281
3282 default:
3283 break;
3284 }
3285 }
3286 }
3287
3288 if (high_pc_relative)
3289 high_pc += low_pc;
3290
3291 if (func && high_pc != 0)
3292 {
3293 if (!arange_add (unit, &func->arange, low_pc, high_pc))
3294 goto fail;
3295 }
3296
3297 if (abbrev->has_children)
3298 {
3299 nesting_level++;
3300
3301 if (nesting_level >= nested_funcs_size)
3302 {
3303 struct nest_funcinfo *tmp;
3304
3305 nested_funcs_size *= 2;
3306 tmp = (struct nest_funcinfo *)
3307 bfd_realloc (nested_funcs,
3308 nested_funcs_size * sizeof (*nested_funcs));
3309 if (tmp == NULL)
3310 goto fail;
3311 nested_funcs = tmp;
3312 }
3313 nested_funcs[nesting_level].func = 0;
3314 }
3315 }
3316
3317 free (nested_funcs);
3318 return TRUE;
3319
3320 fail:
3321 free (nested_funcs);
3322 return FALSE;
3323 }
3324
3325 /* Parse a DWARF2 compilation unit starting at INFO_PTR. This
3326 includes the compilation unit header that proceeds the DIE's, but
3327 does not include the length field that precedes each compilation
3328 unit header. END_PTR points one past the end of this comp unit.
3329 OFFSET_SIZE is the size of DWARF2 offsets (either 4 or 8 bytes).
3330
3331 This routine does not read the whole compilation unit; only enough
3332 to get to the line number information for the compilation unit. */
3333
3334 static struct comp_unit *
3335 parse_comp_unit (struct dwarf2_debug *stash,
3336 bfd_vma unit_length,
3337 bfd_byte *info_ptr_unit,
3338 unsigned int offset_size)
3339 {
3340 struct comp_unit* unit;
3341 unsigned int version;
3342 bfd_uint64_t abbrev_offset = 0;
3343 /* Initialize it just to avoid a GCC false warning. */
3344 unsigned int addr_size = -1;
3345 struct abbrev_info** abbrevs;
3346 unsigned int abbrev_number, bytes_read, i;
3347 struct abbrev_info *abbrev;
3348 struct attribute attr;
3349 bfd_byte *info_ptr = stash->info_ptr;
3350 bfd_byte *end_ptr = info_ptr + unit_length;
3351 bfd_size_type amt;
3352 bfd_vma low_pc = 0;
3353 bfd_vma high_pc = 0;
3354 bfd *abfd = stash->bfd_ptr;
3355 bfd_boolean high_pc_relative = FALSE;
3356 enum dwarf_unit_type unit_type;
3357
3358 version = read_2_bytes (abfd, info_ptr, end_ptr);
3359 info_ptr += 2;
3360 if (version < 2 || version > 5)
3361 {
3362 /* PR 19872: A version number of 0 probably means that there is padding
3363 at the end of the .debug_info section. Gold puts it there when
3364 performing an incremental link, for example. So do not generate
3365 an error, just return a NULL. */
3366 if (version)
3367 {
3368 _bfd_error_handler
3369 (_("DWARF error: found dwarf version '%u', this reader"
3370 " only handles version 2, 3, 4 and 5 information"), version);
3371 bfd_set_error (bfd_error_bad_value);
3372 }
3373 return NULL;
3374 }
3375
3376 if (version < 5)
3377 unit_type = DW_UT_compile;
3378 else
3379 {
3380 unit_type = read_1_byte (abfd, info_ptr, end_ptr);
3381 info_ptr += 1;
3382
3383 addr_size = read_1_byte (abfd, info_ptr, end_ptr);
3384 info_ptr += 1;
3385 }
3386
3387 BFD_ASSERT (offset_size == 4 || offset_size == 8);
3388 if (offset_size == 4)
3389 abbrev_offset = read_4_bytes (abfd, info_ptr, end_ptr);
3390 else
3391 abbrev_offset = read_8_bytes (abfd, info_ptr, end_ptr);
3392 info_ptr += offset_size;
3393
3394 if (version < 5)
3395 {
3396 addr_size = read_1_byte (abfd, info_ptr, end_ptr);
3397 info_ptr += 1;
3398 }
3399
3400 if (unit_type == DW_UT_type)
3401 {
3402 /* Skip type signature. */
3403 info_ptr += 8;
3404
3405 /* Skip type offset. */
3406 info_ptr += offset_size;
3407 }
3408
3409 if (addr_size > sizeof (bfd_vma))
3410 {
3411 _bfd_error_handler
3412 /* xgettext: c-format */
3413 (_("DWARF error: found address size '%u', this reader"
3414 " can not handle sizes greater than '%u'"),
3415 addr_size,
3416 (unsigned int) sizeof (bfd_vma));
3417 bfd_set_error (bfd_error_bad_value);
3418 return NULL;
3419 }
3420
3421 if (addr_size != 2 && addr_size != 4 && addr_size != 8)
3422 {
3423 _bfd_error_handler
3424 ("DWARF error: found address size '%u', this reader"
3425 " can only handle address sizes '2', '4' and '8'", addr_size);
3426 bfd_set_error (bfd_error_bad_value);
3427 return NULL;
3428 }
3429
3430 /* Read the abbrevs for this compilation unit into a table. */
3431 abbrevs = read_abbrevs (abfd, abbrev_offset, stash);
3432 if (! abbrevs)
3433 return NULL;
3434
3435 abbrev_number = _bfd_safe_read_leb128 (abfd, info_ptr, &bytes_read,
3436 FALSE, end_ptr);
3437 info_ptr += bytes_read;
3438 if (! abbrev_number)
3439 {
3440 /* PR 19872: An abbrev number of 0 probably means that there is padding
3441 at the end of the .debug_abbrev section. Gold puts it there when
3442 performing an incremental link, for example. So do not generate
3443 an error, just return a NULL. */
3444 return NULL;
3445 }
3446
3447 abbrev = lookup_abbrev (abbrev_number, abbrevs);
3448 if (! abbrev)
3449 {
3450 _bfd_error_handler (_("DWARF error: could not find abbrev number %u"),
3451 abbrev_number);
3452 bfd_set_error (bfd_error_bad_value);
3453 return NULL;
3454 }
3455
3456 amt = sizeof (struct comp_unit);
3457 unit = (struct comp_unit *) bfd_zalloc (abfd, amt);
3458 if (unit == NULL)
3459 return NULL;
3460 unit->abfd = abfd;
3461 unit->version = version;
3462 unit->addr_size = addr_size;
3463 unit->offset_size = offset_size;
3464 unit->abbrevs = abbrevs;
3465 unit->end_ptr = end_ptr;
3466 unit->stash = stash;
3467 unit->info_ptr_unit = info_ptr_unit;
3468
3469 for (i = 0; i < abbrev->num_attrs; ++i)
3470 {
3471 info_ptr = read_attribute (&attr, &abbrev->attrs[i], unit, info_ptr, end_ptr);
3472 if (info_ptr == NULL)
3473 return NULL;
3474
3475 /* Store the data if it is of an attribute we want to keep in a
3476 partial symbol table. */
3477 switch (attr.name)
3478 {
3479 case DW_AT_stmt_list:
3480 unit->stmtlist = 1;
3481 unit->line_offset = attr.u.val;
3482 break;
3483
3484 case DW_AT_name:
3485 if (is_str_attr (attr.form))
3486 unit->name = attr.u.str;
3487 break;
3488
3489 case DW_AT_low_pc:
3490 low_pc = attr.u.val;
3491 /* If the compilation unit DIE has a DW_AT_low_pc attribute,
3492 this is the base address to use when reading location
3493 lists or range lists. */
3494 if (abbrev->tag == DW_TAG_compile_unit)
3495 unit->base_address = low_pc;
3496 break;
3497
3498 case DW_AT_high_pc:
3499 high_pc = attr.u.val;
3500 high_pc_relative = attr.form != DW_FORM_addr;
3501 break;
3502
3503 case DW_AT_ranges:
3504 if (!read_rangelist (unit, &unit->arange, attr.u.val))
3505 return NULL;
3506 break;
3507
3508 case DW_AT_comp_dir:
3509 {
3510 char *comp_dir = attr.u.str;
3511
3512 /* PR 17512: file: 1fe726be. */
3513 if (! is_str_attr (attr.form))
3514 {
3515 _bfd_error_handler
3516 (_("DWARF error: DW_AT_comp_dir attribute encountered with a non-string form"));
3517 comp_dir = NULL;
3518 }
3519
3520 if (comp_dir)
3521 {
3522 /* Irix 6.2 native cc prepends <machine>.: to the compilation
3523 directory, get rid of it. */
3524 char *cp = strchr (comp_dir, ':');
3525
3526 if (cp && cp != comp_dir && cp[-1] == '.' && cp[1] == '/')
3527 comp_dir = cp + 1;
3528 }
3529 unit->comp_dir = comp_dir;
3530 break;
3531 }
3532
3533 case DW_AT_language:
3534 unit->lang = attr.u.val;
3535 break;
3536
3537 default:
3538 break;
3539 }
3540 }
3541 if (high_pc_relative)
3542 high_pc += low_pc;
3543 if (high_pc != 0)
3544 {
3545 if (!arange_add (unit, &unit->arange, low_pc, high_pc))
3546 return NULL;
3547 }
3548
3549 unit->first_child_die_ptr = info_ptr;
3550 return unit;
3551 }
3552
3553 /* Return TRUE if UNIT may contain the address given by ADDR. When
3554 there are functions written entirely with inline asm statements, the
3555 range info in the compilation unit header may not be correct. We
3556 need to consult the line info table to see if a compilation unit
3557 really contains the given address. */
3558
3559 static bfd_boolean
3560 comp_unit_contains_address (struct comp_unit *unit, bfd_vma addr)
3561 {
3562 struct arange *arange;
3563
3564 if (unit->error)
3565 return FALSE;
3566
3567 arange = &unit->arange;
3568 do
3569 {
3570 if (addr >= arange->low && addr < arange->high)
3571 return TRUE;
3572 arange = arange->next;
3573 }
3574 while (arange);
3575
3576 return FALSE;
3577 }
3578
3579 /* If UNIT contains ADDR, set the output parameters to the values for
3580 the line containing ADDR. The output parameters, FILENAME_PTR,
3581 FUNCTION_PTR, and LINENUMBER_PTR, are pointers to the objects
3582 to be filled in.
3583
3584 Returns the range of addresses covered by the entry that was used
3585 to fill in *LINENUMBER_PTR or 0 if it was not filled in. */
3586
3587 static bfd_vma
3588 comp_unit_find_nearest_line (struct comp_unit *unit,
3589 bfd_vma addr,
3590 const char **filename_ptr,
3591 struct funcinfo **function_ptr,
3592 unsigned int *linenumber_ptr,
3593 unsigned int *discriminator_ptr,
3594 struct dwarf2_debug *stash)
3595 {
3596 bfd_boolean func_p;
3597
3598 if (unit->error)
3599 return FALSE;
3600
3601 if (! unit->line_table)
3602 {
3603 if (! unit->stmtlist)
3604 {
3605 unit->error = 1;
3606 return FALSE;
3607 }
3608
3609 unit->line_table = decode_line_info (unit, stash);
3610
3611 if (! unit->line_table)
3612 {
3613 unit->error = 1;
3614 return FALSE;
3615 }
3616
3617 if (unit->first_child_die_ptr < unit->end_ptr
3618 && ! scan_unit_for_symbols (unit))
3619 {
3620 unit->error = 1;
3621 return FALSE;
3622 }
3623 }
3624
3625 *function_ptr = NULL;
3626 func_p = lookup_address_in_function_table (unit, addr, function_ptr);
3627 if (func_p && (*function_ptr)->tag == DW_TAG_inlined_subroutine)
3628 stash->inliner_chain = *function_ptr;
3629
3630 return lookup_address_in_line_info_table (unit->line_table, addr,
3631 filename_ptr,
3632 linenumber_ptr,
3633 discriminator_ptr);
3634 }
3635
3636 /* Check to see if line info is already decoded in a comp_unit.
3637 If not, decode it. Returns TRUE if no errors were encountered;
3638 FALSE otherwise. */
3639
3640 static bfd_boolean
3641 comp_unit_maybe_decode_line_info (struct comp_unit *unit,
3642 struct dwarf2_debug *stash)
3643 {
3644 if (unit->error)
3645 return FALSE;
3646
3647 if (! unit->line_table)
3648 {
3649 if (! unit->stmtlist)
3650 {
3651 unit->error = 1;
3652 return FALSE;
3653 }
3654
3655 unit->line_table = decode_line_info (unit, stash);
3656
3657 if (! unit->line_table)
3658 {
3659 unit->error = 1;
3660 return FALSE;
3661 }
3662
3663 if (unit->first_child_die_ptr < unit->end_ptr
3664 && ! scan_unit_for_symbols (unit))
3665 {
3666 unit->error = 1;
3667 return FALSE;
3668 }
3669 }
3670
3671 return TRUE;
3672 }
3673
3674 /* If UNIT contains SYM at ADDR, set the output parameters to the
3675 values for the line containing SYM. The output parameters,
3676 FILENAME_PTR, and LINENUMBER_PTR, are pointers to the objects to be
3677 filled in.
3678
3679 Return TRUE if UNIT contains SYM, and no errors were encountered;
3680 FALSE otherwise. */
3681
3682 static bfd_boolean
3683 comp_unit_find_line (struct comp_unit *unit,
3684 asymbol *sym,
3685 bfd_vma addr,
3686 const char **filename_ptr,
3687 unsigned int *linenumber_ptr,
3688 struct dwarf2_debug *stash)
3689 {
3690 if (!comp_unit_maybe_decode_line_info (unit, stash))
3691 return FALSE;
3692
3693 if (sym->flags & BSF_FUNCTION)
3694 return lookup_symbol_in_function_table (unit, sym, addr,
3695 filename_ptr,
3696 linenumber_ptr);
3697
3698 return lookup_symbol_in_variable_table (unit, sym, addr,
3699 filename_ptr,
3700 linenumber_ptr);
3701 }
3702
3703 static struct funcinfo *
3704 reverse_funcinfo_list (struct funcinfo *head)
3705 {
3706 struct funcinfo *rhead;
3707 struct funcinfo *temp;
3708
3709 for (rhead = NULL; head; head = temp)
3710 {
3711 temp = head->prev_func;
3712 head->prev_func = rhead;
3713 rhead = head;
3714 }
3715 return rhead;
3716 }
3717
3718 static struct varinfo *
3719 reverse_varinfo_list (struct varinfo *head)
3720 {
3721 struct varinfo *rhead;
3722 struct varinfo *temp;
3723
3724 for (rhead = NULL; head; head = temp)
3725 {
3726 temp = head->prev_var;
3727 head->prev_var = rhead;
3728 rhead = head;
3729 }
3730 return rhead;
3731 }
3732
3733 /* Extract all interesting funcinfos and varinfos of a compilation
3734 unit into hash tables for faster lookup. Returns TRUE if no
3735 errors were enountered; FALSE otherwise. */
3736
3737 static bfd_boolean
3738 comp_unit_hash_info (struct dwarf2_debug *stash,
3739 struct comp_unit *unit,
3740 struct info_hash_table *funcinfo_hash_table,
3741 struct info_hash_table *varinfo_hash_table)
3742 {
3743 struct funcinfo* each_func;
3744 struct varinfo* each_var;
3745 bfd_boolean okay = TRUE;
3746
3747 BFD_ASSERT (stash->info_hash_status != STASH_INFO_HASH_DISABLED);
3748
3749 if (!comp_unit_maybe_decode_line_info (unit, stash))
3750 return FALSE;
3751
3752 BFD_ASSERT (!unit->cached);
3753
3754 /* To preserve the original search order, we went to visit the function
3755 infos in the reversed order of the list. However, making the list
3756 bi-directional use quite a bit of extra memory. So we reverse
3757 the list first, traverse the list in the now reversed order and
3758 finally reverse the list again to get back the original order. */
3759 unit->function_table = reverse_funcinfo_list (unit->function_table);
3760 for (each_func = unit->function_table;
3761 each_func && okay;
3762 each_func = each_func->prev_func)
3763 {
3764 /* Skip nameless functions. */
3765 if (each_func->name)
3766 /* There is no need to copy name string into hash table as
3767 name string is either in the dwarf string buffer or
3768 info in the stash. */
3769 okay = insert_info_hash_table (funcinfo_hash_table, each_func->name,
3770 (void*) each_func, FALSE);
3771 }
3772 unit->function_table = reverse_funcinfo_list (unit->function_table);
3773 if (!okay)
3774 return FALSE;
3775
3776 /* We do the same for variable infos. */
3777 unit->variable_table = reverse_varinfo_list (unit->variable_table);
3778 for (each_var = unit->variable_table;
3779 each_var && okay;
3780 each_var = each_var->prev_var)
3781 {
3782 /* Skip stack vars and vars with no files or names. */
3783 if (each_var->stack == 0
3784 && each_var->file != NULL
3785 && each_var->name != NULL)
3786 /* There is no need to copy name string into hash table as
3787 name string is either in the dwarf string buffer or
3788 info in the stash. */
3789 okay = insert_info_hash_table (varinfo_hash_table, each_var->name,
3790 (void*) each_var, FALSE);
3791 }
3792
3793 unit->variable_table = reverse_varinfo_list (unit->variable_table);
3794 unit->cached = TRUE;
3795 return okay;
3796 }
3797
3798 /* Locate a section in a BFD containing debugging info. The search starts
3799 from the section after AFTER_SEC, or from the first section in the BFD if
3800 AFTER_SEC is NULL. The search works by examining the names of the
3801 sections. There are three permissiable names. The first two are given
3802 by DEBUG_SECTIONS[debug_info] (whose standard DWARF2 names are .debug_info
3803 and .zdebug_info). The third is a prefix .gnu.linkonce.wi.
3804 This is a variation on the .debug_info section which has a checksum
3805 describing the contents appended onto the name. This allows the linker to
3806 identify and discard duplicate debugging sections for different
3807 compilation units. */
3808 #define GNU_LINKONCE_INFO ".gnu.linkonce.wi."
3809
3810 static asection *
3811 find_debug_info (bfd *abfd, const struct dwarf_debug_section *debug_sections,
3812 asection *after_sec)
3813 {
3814 asection *msec;
3815 const char *look;
3816
3817 if (after_sec == NULL)
3818 {
3819 look = debug_sections[debug_info].uncompressed_name;
3820 msec = bfd_get_section_by_name (abfd, look);
3821 if (msec != NULL)
3822 return msec;
3823
3824 look = debug_sections[debug_info].compressed_name;
3825 if (look != NULL)
3826 {
3827 msec = bfd_get_section_by_name (abfd, look);
3828 if (msec != NULL)
3829 return msec;
3830 }
3831
3832 for (msec = abfd->sections; msec != NULL; msec = msec->next)
3833 if (CONST_STRNEQ (msec->name, GNU_LINKONCE_INFO))
3834 return msec;
3835
3836 return NULL;
3837 }
3838
3839 for (msec = after_sec->next; msec != NULL; msec = msec->next)
3840 {
3841 look = debug_sections[debug_info].uncompressed_name;
3842 if (strcmp (msec->name, look) == 0)
3843 return msec;
3844
3845 look = debug_sections[debug_info].compressed_name;
3846 if (look != NULL && strcmp (msec->name, look) == 0)
3847 return msec;
3848
3849 if (CONST_STRNEQ (msec->name, GNU_LINKONCE_INFO))
3850 return msec;
3851 }
3852
3853 return NULL;
3854 }
3855
3856 /* Transfer VMAs from object file to separate debug file. */
3857
3858 static void
3859 set_debug_vma (bfd *orig_bfd, bfd *debug_bfd)
3860 {
3861 asection *s, *d;
3862
3863 for (s = orig_bfd->sections, d = debug_bfd->sections;
3864 s != NULL && d != NULL;
3865 s = s->next, d = d->next)
3866 {
3867 if ((d->flags & SEC_DEBUGGING) != 0)
3868 break;
3869 /* ??? Assumes 1-1 correspondence between sections in the
3870 two files. */
3871 if (strcmp (s->name, d->name) == 0)
3872 {
3873 d->output_section = s->output_section;
3874 d->output_offset = s->output_offset;
3875 d->vma = s->vma;
3876 }
3877 }
3878 }
3879
3880 /* Unset vmas for adjusted sections in STASH. */
3881
3882 static void
3883 unset_sections (struct dwarf2_debug *stash)
3884 {
3885 int i;
3886 struct adjusted_section *p;
3887
3888 i = stash->adjusted_section_count;
3889 p = stash->adjusted_sections;
3890 for (; i > 0; i--, p++)
3891 p->section->vma = 0;
3892 }
3893
3894 /* Set VMAs for allocated and .debug_info sections in ORIG_BFD, a
3895 relocatable object file. VMAs are normally all zero in relocatable
3896 object files, so if we want to distinguish locations in sections by
3897 address we need to set VMAs so the sections do not overlap. We
3898 also set VMA on .debug_info so that when we have multiple
3899 .debug_info sections (or the linkonce variant) they also do not
3900 overlap. The multiple .debug_info sections make up a single
3901 logical section. ??? We should probably do the same for other
3902 debug sections. */
3903
3904 static bfd_boolean
3905 place_sections (bfd *orig_bfd, struct dwarf2_debug *stash)
3906 {
3907 bfd *abfd;
3908 struct adjusted_section *p;
3909 int i;
3910 const char *debug_info_name;
3911
3912 if (stash->adjusted_section_count != 0)
3913 {
3914 i = stash->adjusted_section_count;
3915 p = stash->adjusted_sections;
3916 for (; i > 0; i--, p++)
3917 p->section->vma = p->adj_vma;
3918 return TRUE;
3919 }
3920
3921 debug_info_name = stash->debug_sections[debug_info].uncompressed_name;
3922 i = 0;
3923 abfd = orig_bfd;
3924 while (1)
3925 {
3926 asection *sect;
3927
3928 for (sect = abfd->sections; sect != NULL; sect = sect->next)
3929 {
3930 int is_debug_info;
3931
3932 if ((sect->output_section != NULL
3933 && sect->output_section != sect
3934 && (sect->flags & SEC_DEBUGGING) == 0)
3935 || sect->vma != 0)
3936 continue;
3937
3938 is_debug_info = (strcmp (sect->name, debug_info_name) == 0
3939 || CONST_STRNEQ (sect->name, GNU_LINKONCE_INFO));
3940
3941 if (!((sect->flags & SEC_ALLOC) != 0 && abfd == orig_bfd)
3942 && !is_debug_info)
3943 continue;
3944
3945 i++;
3946 }
3947 if (abfd == stash->bfd_ptr)
3948 break;
3949 abfd = stash->bfd_ptr;
3950 }
3951
3952 if (i <= 1)
3953 stash->adjusted_section_count = -1;
3954 else
3955 {
3956 bfd_vma last_vma = 0, last_dwarf = 0;
3957 bfd_size_type amt = i * sizeof (struct adjusted_section);
3958
3959 p = (struct adjusted_section *) bfd_malloc (amt);
3960 if (p == NULL)
3961 return FALSE;
3962
3963 stash->adjusted_sections = p;
3964 stash->adjusted_section_count = i;
3965
3966 abfd = orig_bfd;
3967 while (1)
3968 {
3969 asection *sect;
3970
3971 for (sect = abfd->sections; sect != NULL; sect = sect->next)
3972 {
3973 bfd_size_type sz;
3974 int is_debug_info;
3975
3976 if ((sect->output_section != NULL
3977 && sect->output_section != sect
3978 && (sect->flags & SEC_DEBUGGING) == 0)
3979 || sect->vma != 0)
3980 continue;
3981
3982 is_debug_info = (strcmp (sect->name, debug_info_name) == 0
3983 || CONST_STRNEQ (sect->name, GNU_LINKONCE_INFO));
3984
3985 if (!((sect->flags & SEC_ALLOC) != 0 && abfd == orig_bfd)
3986 && !is_debug_info)
3987 continue;
3988
3989 sz = sect->rawsize ? sect->rawsize : sect->size;
3990
3991 if (is_debug_info)
3992 {
3993 BFD_ASSERT (sect->alignment_power == 0);
3994 sect->vma = last_dwarf;
3995 last_dwarf += sz;
3996 }
3997 else
3998 {
3999 /* Align the new address to the current section
4000 alignment. */
4001 last_vma = ((last_vma
4002 + ~(-((bfd_vma) 1 << sect->alignment_power)))
4003 & (-((bfd_vma) 1 << sect->alignment_power)));
4004 sect->vma = last_vma;
4005 last_vma += sz;
4006 }
4007
4008 p->section = sect;
4009 p->adj_vma = sect->vma;
4010 p++;
4011 }
4012 if (abfd == stash->bfd_ptr)
4013 break;
4014 abfd = stash->bfd_ptr;
4015 }
4016 }
4017
4018 if (orig_bfd != stash->bfd_ptr)
4019 set_debug_vma (orig_bfd, stash->bfd_ptr);
4020
4021 return TRUE;
4022 }
4023
4024 /* Look up a funcinfo by name using the given info hash table. If found,
4025 also update the locations pointed to by filename_ptr and linenumber_ptr.
4026
4027 This function returns TRUE if a funcinfo that matches the given symbol
4028 and address is found with any error; otherwise it returns FALSE. */
4029
4030 static bfd_boolean
4031 info_hash_lookup_funcinfo (struct info_hash_table *hash_table,
4032 asymbol *sym,
4033 bfd_vma addr,
4034 const char **filename_ptr,
4035 unsigned int *linenumber_ptr)
4036 {
4037 struct funcinfo* each_func;
4038 struct funcinfo* best_fit = NULL;
4039 bfd_vma best_fit_len = 0;
4040 struct info_list_node *node;
4041 struct arange *arange;
4042 const char *name = bfd_asymbol_name (sym);
4043 asection *sec = bfd_get_section (sym);
4044
4045 for (node = lookup_info_hash_table (hash_table, name);
4046 node;
4047 node = node->next)
4048 {
4049 each_func = (struct funcinfo *) node->info;
4050 for (arange = &each_func->arange;
4051 arange;
4052 arange = arange->next)
4053 {
4054 if ((!each_func->sec || each_func->sec == sec)
4055 && addr >= arange->low
4056 && addr < arange->high
4057 && (!best_fit
4058 || arange->high - arange->low < best_fit_len))
4059 {
4060 best_fit = each_func;
4061 best_fit_len = arange->high - arange->low;
4062 }
4063 }
4064 }
4065
4066 if (best_fit)
4067 {
4068 best_fit->sec = sec;
4069 *filename_ptr = best_fit->file;
4070 *linenumber_ptr = best_fit->line;
4071 return TRUE;
4072 }
4073
4074 return FALSE;
4075 }
4076
4077 /* Look up a varinfo by name using the given info hash table. If found,
4078 also update the locations pointed to by filename_ptr and linenumber_ptr.
4079
4080 This function returns TRUE if a varinfo that matches the given symbol
4081 and address is found with any error; otherwise it returns FALSE. */
4082
4083 static bfd_boolean
4084 info_hash_lookup_varinfo (struct info_hash_table *hash_table,
4085 asymbol *sym,
4086 bfd_vma addr,
4087 const char **filename_ptr,
4088 unsigned int *linenumber_ptr)
4089 {
4090 const char *name = bfd_asymbol_name (sym);
4091 asection *sec = bfd_get_section (sym);
4092 struct varinfo* each;
4093 struct info_list_node *node;
4094
4095 for (node = lookup_info_hash_table (hash_table, name);
4096 node;
4097 node = node->next)
4098 {
4099 each = (struct varinfo *) node->info;
4100 if (each->addr == addr
4101 && (!each->sec || each->sec == sec))
4102 {
4103 each->sec = sec;
4104 *filename_ptr = each->file;
4105 *linenumber_ptr = each->line;
4106 return TRUE;
4107 }
4108 }
4109
4110 return FALSE;
4111 }
4112
4113 /* Update the funcinfo and varinfo info hash tables if they are
4114 not up to date. Returns TRUE if there is no error; otherwise
4115 returns FALSE and disable the info hash tables. */
4116
4117 static bfd_boolean
4118 stash_maybe_update_info_hash_tables (struct dwarf2_debug *stash)
4119 {
4120 struct comp_unit *each;
4121
4122 /* Exit if hash tables are up-to-date. */
4123 if (stash->all_comp_units == stash->hash_units_head)
4124 return TRUE;
4125
4126 if (stash->hash_units_head)
4127 each = stash->hash_units_head->prev_unit;
4128 else
4129 each = stash->last_comp_unit;
4130
4131 while (each)
4132 {
4133 if (!comp_unit_hash_info (stash, each, stash->funcinfo_hash_table,
4134 stash->varinfo_hash_table))
4135 {
4136 stash->info_hash_status = STASH_INFO_HASH_DISABLED;
4137 return FALSE;
4138 }
4139 each = each->prev_unit;
4140 }
4141
4142 stash->hash_units_head = stash->all_comp_units;
4143 return TRUE;
4144 }
4145
4146 /* Check consistency of info hash tables. This is for debugging only. */
4147
4148 static void ATTRIBUTE_UNUSED
4149 stash_verify_info_hash_table (struct dwarf2_debug *stash)
4150 {
4151 struct comp_unit *each_unit;
4152 struct funcinfo *each_func;
4153 struct varinfo *each_var;
4154 struct info_list_node *node;
4155 bfd_boolean found;
4156
4157 for (each_unit = stash->all_comp_units;
4158 each_unit;
4159 each_unit = each_unit->next_unit)
4160 {
4161 for (each_func = each_unit->function_table;
4162 each_func;
4163 each_func = each_func->prev_func)
4164 {
4165 if (!each_func->name)
4166 continue;
4167 node = lookup_info_hash_table (stash->funcinfo_hash_table,
4168 each_func->name);
4169 BFD_ASSERT (node);
4170 found = FALSE;
4171 while (node && !found)
4172 {
4173 found = node->info == each_func;
4174 node = node->next;
4175 }
4176 BFD_ASSERT (found);
4177 }
4178
4179 for (each_var = each_unit->variable_table;
4180 each_var;
4181 each_var = each_var->prev_var)
4182 {
4183 if (!each_var->name || !each_var->file || each_var->stack)
4184 continue;
4185 node = lookup_info_hash_table (stash->varinfo_hash_table,
4186 each_var->name);
4187 BFD_ASSERT (node);
4188 found = FALSE;
4189 while (node && !found)
4190 {
4191 found = node->info == each_var;
4192 node = node->next;
4193 }
4194 BFD_ASSERT (found);
4195 }
4196 }
4197 }
4198
4199 /* Check to see if we want to enable the info hash tables, which consume
4200 quite a bit of memory. Currently we only check the number times
4201 bfd_dwarf2_find_line is called. In the future, we may also want to
4202 take the number of symbols into account. */
4203
4204 static void
4205 stash_maybe_enable_info_hash_tables (bfd *abfd, struct dwarf2_debug *stash)
4206 {
4207 BFD_ASSERT (stash->info_hash_status == STASH_INFO_HASH_OFF);
4208
4209 if (stash->info_hash_count++ < STASH_INFO_HASH_TRIGGER)
4210 return;
4211
4212 /* FIXME: Maybe we should check the reduce_memory_overheads
4213 and optimize fields in the bfd_link_info structure ? */
4214
4215 /* Create hash tables. */
4216 stash->funcinfo_hash_table = create_info_hash_table (abfd);
4217 stash->varinfo_hash_table = create_info_hash_table (abfd);
4218 if (!stash->funcinfo_hash_table || !stash->varinfo_hash_table)
4219 {
4220 /* Turn off info hashes if any allocation above fails. */
4221 stash->info_hash_status = STASH_INFO_HASH_DISABLED;
4222 return;
4223 }
4224 /* We need a forced update so that the info hash tables will
4225 be created even though there is no compilation unit. That
4226 happens if STASH_INFO_HASH_TRIGGER is 0. */
4227 stash_maybe_update_info_hash_tables (stash);
4228 stash->info_hash_status = STASH_INFO_HASH_ON;
4229 }
4230
4231 /* Find the file and line associated with a symbol and address using the
4232 info hash tables of a stash. If there is a match, the function returns
4233 TRUE and update the locations pointed to by filename_ptr and linenumber_ptr;
4234 otherwise it returns FALSE. */
4235
4236 static bfd_boolean
4237 stash_find_line_fast (struct dwarf2_debug *stash,
4238 asymbol *sym,
4239 bfd_vma addr,
4240 const char **filename_ptr,
4241 unsigned int *linenumber_ptr)
4242 {
4243 BFD_ASSERT (stash->info_hash_status == STASH_INFO_HASH_ON);
4244
4245 if (sym->flags & BSF_FUNCTION)
4246 return info_hash_lookup_funcinfo (stash->funcinfo_hash_table, sym, addr,
4247 filename_ptr, linenumber_ptr);
4248 return info_hash_lookup_varinfo (stash->varinfo_hash_table, sym, addr,
4249 filename_ptr, linenumber_ptr);
4250 }
4251
4252 /* Save current section VMAs. */
4253
4254 static bfd_boolean
4255 save_section_vma (const bfd *abfd, struct dwarf2_debug *stash)
4256 {
4257 asection *s;
4258 unsigned int i;
4259
4260 if (abfd->section_count == 0)
4261 return TRUE;
4262 stash->sec_vma = bfd_malloc (sizeof (*stash->sec_vma) * abfd->section_count);
4263 if (stash->sec_vma == NULL)
4264 return FALSE;
4265 for (i = 0, s = abfd->sections; i < abfd->section_count; i++, s = s->next)
4266 {
4267 if (s->output_section != NULL)
4268 stash->sec_vma[i] = s->output_section->vma + s->output_offset;
4269 else
4270 stash->sec_vma[i] = s->vma;
4271 }
4272 return TRUE;
4273 }
4274
4275 /* Compare current section VMAs against those at the time the stash
4276 was created. If find_nearest_line is used in linker warnings or
4277 errors early in the link process, the debug info stash will be
4278 invalid for later calls. This is because we relocate debug info
4279 sections, so the stashed section contents depend on symbol values,
4280 which in turn depend on section VMAs. */
4281
4282 static bfd_boolean
4283 section_vma_same (const bfd *abfd, const struct dwarf2_debug *stash)
4284 {
4285 asection *s;
4286 unsigned int i;
4287
4288 for (i = 0, s = abfd->sections; i < abfd->section_count; i++, s = s->next)
4289 {
4290 bfd_vma vma;
4291
4292 if (s->output_section != NULL)
4293 vma = s->output_section->vma + s->output_offset;
4294 else
4295 vma = s->vma;
4296 if (vma != stash->sec_vma[i])
4297 return FALSE;
4298 }
4299 return TRUE;
4300 }
4301
4302 /* Read debug information from DEBUG_BFD when DEBUG_BFD is specified.
4303 If DEBUG_BFD is not specified, we read debug information from ABFD
4304 or its gnu_debuglink. The results will be stored in PINFO.
4305 The function returns TRUE iff debug information is ready. */
4306
4307 bfd_boolean
4308 _bfd_dwarf2_slurp_debug_info (bfd *abfd, bfd *debug_bfd,
4309 const struct dwarf_debug_section *debug_sections,
4310 asymbol **symbols,
4311 void **pinfo,
4312 bfd_boolean do_place)
4313 {
4314 bfd_size_type amt = sizeof (struct dwarf2_debug);
4315 bfd_size_type total_size;
4316 asection *msec;
4317 struct dwarf2_debug *stash = (struct dwarf2_debug *) *pinfo;
4318
4319 if (stash != NULL)
4320 {
4321 if (stash->orig_bfd == abfd
4322 && section_vma_same (abfd, stash))
4323 {
4324 /* Check that we did previously find some debug information
4325 before attempting to make use of it. */
4326 if (stash->bfd_ptr != NULL)
4327 {
4328 if (do_place && !place_sections (abfd, stash))
4329 return FALSE;
4330 return TRUE;
4331 }
4332
4333 return FALSE;
4334 }
4335 _bfd_dwarf2_cleanup_debug_info (abfd, pinfo);
4336 memset (stash, 0, amt);
4337 }
4338 else
4339 {
4340 stash = (struct dwarf2_debug *) bfd_zalloc (abfd, amt);
4341 if (! stash)
4342 return FALSE;
4343 }
4344 stash->orig_bfd = abfd;
4345 stash->debug_sections = debug_sections;
4346 stash->syms = symbols;
4347 if (!save_section_vma (abfd, stash))
4348 return FALSE;
4349
4350 *pinfo = stash;
4351
4352 if (debug_bfd == NULL)
4353 debug_bfd = abfd;
4354
4355 msec = find_debug_info (debug_bfd, debug_sections, NULL);
4356 if (msec == NULL && abfd == debug_bfd)
4357 {
4358 char * debug_filename;
4359
4360 debug_filename = bfd_follow_build_id_debuglink (abfd, DEBUGDIR);
4361 if (debug_filename == NULL)
4362 debug_filename = bfd_follow_gnu_debuglink (abfd, DEBUGDIR);
4363
4364 if (debug_filename == NULL)
4365 /* No dwarf2 info, and no gnu_debuglink to follow.
4366 Note that at this point the stash has been allocated, but
4367 contains zeros. This lets future calls to this function
4368 fail more quickly. */
4369 return FALSE;
4370
4371 /* Set BFD_DECOMPRESS to decompress debug sections. */
4372 if ((debug_bfd = bfd_openr (debug_filename, NULL)) == NULL
4373 || !(debug_bfd->flags |= BFD_DECOMPRESS,
4374 bfd_check_format (debug_bfd, bfd_object))
4375 || (msec = find_debug_info (debug_bfd,
4376 debug_sections, NULL)) == NULL
4377 || !bfd_generic_link_read_symbols (debug_bfd))
4378 {
4379 if (debug_bfd)
4380 bfd_close (debug_bfd);
4381 /* FIXME: Should we report our failure to follow the debuglink ? */
4382 free (debug_filename);
4383 return FALSE;
4384 }
4385
4386 symbols = bfd_get_outsymbols (debug_bfd);
4387 stash->syms = symbols;
4388 stash->close_on_cleanup = TRUE;
4389 }
4390 stash->bfd_ptr = debug_bfd;
4391
4392 if (do_place
4393 && !place_sections (abfd, stash))
4394 return FALSE;
4395
4396 /* There can be more than one DWARF2 info section in a BFD these
4397 days. First handle the easy case when there's only one. If
4398 there's more than one, try case two: none of the sections is
4399 compressed. In that case, read them all in and produce one
4400 large stash. We do this in two passes - in the first pass we
4401 just accumulate the section sizes, and in the second pass we
4402 read in the section's contents. (The allows us to avoid
4403 reallocing the data as we add sections to the stash.) If
4404 some or all sections are compressed, then do things the slow
4405 way, with a bunch of reallocs. */
4406
4407 if (! find_debug_info (debug_bfd, debug_sections, msec))
4408 {
4409 /* Case 1: only one info section. */
4410 total_size = msec->size;
4411 if (! read_section (debug_bfd, &stash->debug_sections[debug_info],
4412 symbols, 0,
4413 &stash->info_ptr_memory, &total_size))
4414 return FALSE;
4415 }
4416 else
4417 {
4418 /* Case 2: multiple sections. */
4419 for (total_size = 0;
4420 msec;
4421 msec = find_debug_info (debug_bfd, debug_sections, msec))
4422 total_size += msec->size;
4423
4424 stash->info_ptr_memory = (bfd_byte *) bfd_malloc (total_size);
4425 if (stash->info_ptr_memory == NULL)
4426 return FALSE;
4427
4428 total_size = 0;
4429 for (msec = find_debug_info (debug_bfd, debug_sections, NULL);
4430 msec;
4431 msec = find_debug_info (debug_bfd, debug_sections, msec))
4432 {
4433 bfd_size_type size;
4434
4435 size = msec->size;
4436 if (size == 0)
4437 continue;
4438
4439 if (!(bfd_simple_get_relocated_section_contents
4440 (debug_bfd, msec, stash->info_ptr_memory + total_size,
4441 symbols)))
4442 return FALSE;
4443
4444 total_size += size;
4445 }
4446 }
4447
4448 stash->info_ptr = stash->info_ptr_memory;
4449 stash->info_ptr_end = stash->info_ptr + total_size;
4450 stash->sec = find_debug_info (debug_bfd, debug_sections, NULL);
4451 stash->sec_info_ptr = stash->info_ptr;
4452 return TRUE;
4453 }
4454
4455 /* Scan the debug information in PINFO looking for a DW_TAG_subprogram
4456 abbrev with a DW_AT_low_pc attached to it. Then lookup that same
4457 symbol in SYMBOLS and return the difference between the low_pc and
4458 the symbol's address. Returns 0 if no suitable symbol could be found. */
4459
4460 bfd_signed_vma
4461 _bfd_dwarf2_find_symbol_bias (asymbol ** symbols, void ** pinfo)
4462 {
4463 struct dwarf2_debug *stash;
4464 struct comp_unit * unit;
4465
4466 stash = (struct dwarf2_debug *) *pinfo;
4467
4468 if (stash == NULL)
4469 return 0;
4470
4471 for (unit = stash->all_comp_units; unit; unit = unit->next_unit)
4472 {
4473 struct funcinfo * func;
4474
4475 if (unit->function_table == NULL)
4476 {
4477 if (unit->line_table == NULL)
4478 unit->line_table = decode_line_info (unit, stash);
4479 if (unit->line_table != NULL)
4480 scan_unit_for_symbols (unit);
4481 }
4482
4483 for (func = unit->function_table; func != NULL; func = func->prev_func)
4484 if (func->name && func->arange.low)
4485 {
4486 asymbol ** psym;
4487
4488 /* FIXME: Do we need to scan the aranges looking for the lowest pc value ? */
4489
4490 for (psym = symbols; * psym != NULL; psym++)
4491 {
4492 asymbol * sym = * psym;
4493
4494 if (sym->flags & BSF_FUNCTION
4495 && sym->section != NULL
4496 && strcmp (sym->name, func->name) == 0)
4497 return ((bfd_signed_vma) func->arange.low) -
4498 ((bfd_signed_vma) (sym->value + sym->section->vma));
4499 }
4500 }
4501 }
4502
4503 return 0;
4504 }
4505
4506 /* Find the source code location of SYMBOL. If SYMBOL is NULL
4507 then find the nearest source code location corresponding to
4508 the address SECTION + OFFSET.
4509 Returns TRUE if the line is found without error and fills in
4510 FILENAME_PTR and LINENUMBER_PTR. In the case where SYMBOL was
4511 NULL the FUNCTIONNAME_PTR is also filled in.
4512 SYMBOLS contains the symbol table for ABFD.
4513 DEBUG_SECTIONS contains the name of the dwarf debug sections.
4514 ADDR_SIZE is the number of bytes in the initial .debug_info length
4515 field and in the abbreviation offset, or zero to indicate that the
4516 default value should be used. */
4517
4518 bfd_boolean
4519 _bfd_dwarf2_find_nearest_line (bfd *abfd,
4520 asymbol **symbols,
4521 asymbol *symbol,
4522 asection *section,
4523 bfd_vma offset,
4524 const char **filename_ptr,
4525 const char **functionname_ptr,
4526 unsigned int *linenumber_ptr,
4527 unsigned int *discriminator_ptr,
4528 const struct dwarf_debug_section *debug_sections,
4529 unsigned int addr_size,
4530 void **pinfo)
4531 {
4532 /* Read each compilation unit from the section .debug_info, and check
4533 to see if it contains the address we are searching for. If yes,
4534 lookup the address, and return the line number info. If no, go
4535 on to the next compilation unit.
4536
4537 We keep a list of all the previously read compilation units, and
4538 a pointer to the next un-read compilation unit. Check the
4539 previously read units before reading more. */
4540 struct dwarf2_debug *stash;
4541 /* What address are we looking for? */
4542 bfd_vma addr;
4543 struct comp_unit* each;
4544 struct funcinfo *function = NULL;
4545 bfd_boolean found = FALSE;
4546 bfd_boolean do_line;
4547
4548 *filename_ptr = NULL;
4549 if (functionname_ptr != NULL)
4550 *functionname_ptr = NULL;
4551 *linenumber_ptr = 0;
4552 if (discriminator_ptr)
4553 *discriminator_ptr = 0;
4554
4555 if (! _bfd_dwarf2_slurp_debug_info (abfd, NULL, debug_sections,
4556 symbols, pinfo,
4557 (abfd->flags & (EXEC_P | DYNAMIC)) == 0))
4558 return FALSE;
4559
4560 stash = (struct dwarf2_debug *) *pinfo;
4561
4562 do_line = symbol != NULL;
4563 if (do_line)
4564 {
4565 BFD_ASSERT (section == NULL && offset == 0 && functionname_ptr == NULL);
4566 section = bfd_get_section (symbol);
4567 addr = symbol->value;
4568 }
4569 else
4570 {
4571 BFD_ASSERT (section != NULL && functionname_ptr != NULL);
4572 addr = offset;
4573
4574 /* If we have no SYMBOL but the section we're looking at is not a
4575 code section, then take a look through the list of symbols to see
4576 if we have a symbol at the address we're looking for. If we do
4577 then use this to look up line information. This will allow us to
4578 give file and line results for data symbols. We exclude code
4579 symbols here, if we look up a function symbol and then look up the
4580 line information we'll actually return the line number for the
4581 opening '{' rather than the function definition line. This is
4582 because looking up by symbol uses the line table, in which the
4583 first line for a function is usually the opening '{', while
4584 looking up the function by section + offset uses the
4585 DW_AT_decl_line from the function DW_TAG_subprogram for the line,
4586 which will be the line of the function name. */
4587 if (symbols != NULL && (section->flags & SEC_CODE) == 0)
4588 {
4589 asymbol **tmp;
4590
4591 for (tmp = symbols; (*tmp) != NULL; ++tmp)
4592 if ((*tmp)->the_bfd == abfd
4593 && (*tmp)->section == section
4594 && (*tmp)->value == offset
4595 && ((*tmp)->flags & BSF_SECTION_SYM) == 0)
4596 {
4597 symbol = *tmp;
4598 do_line = TRUE;
4599 /* For local symbols, keep going in the hope we find a
4600 global. */
4601 if ((symbol->flags & BSF_GLOBAL) != 0)
4602 break;
4603 }
4604 }
4605 }
4606
4607 if (section->output_section)
4608 addr += section->output_section->vma + section->output_offset;
4609 else
4610 addr += section->vma;
4611
4612 /* A null info_ptr indicates that there is no dwarf2 info
4613 (or that an error occured while setting up the stash). */
4614 if (! stash->info_ptr)
4615 return FALSE;
4616
4617 stash->inliner_chain = NULL;
4618
4619 /* Check the previously read comp. units first. */
4620 if (do_line)
4621 {
4622 /* The info hash tables use quite a bit of memory. We may not want to
4623 always use them. We use some heuristics to decide if and when to
4624 turn it on. */
4625 if (stash->info_hash_status == STASH_INFO_HASH_OFF)
4626 stash_maybe_enable_info_hash_tables (abfd, stash);
4627
4628 /* Keep info hash table up to date if they are available. Note that we
4629 may disable the hash tables if there is any error duing update. */
4630 if (stash->info_hash_status == STASH_INFO_HASH_ON)
4631 stash_maybe_update_info_hash_tables (stash);
4632
4633 if (stash->info_hash_status == STASH_INFO_HASH_ON)
4634 {
4635 found = stash_find_line_fast (stash, symbol, addr, filename_ptr,
4636 linenumber_ptr);
4637 if (found)
4638 goto done;
4639 }
4640 else
4641 {
4642 /* Check the previously read comp. units first. */
4643 for (each = stash->all_comp_units; each; each = each->next_unit)
4644 if ((symbol->flags & BSF_FUNCTION) == 0
4645 || each->arange.high == 0
4646 || comp_unit_contains_address (each, addr))
4647 {
4648 found = comp_unit_find_line (each, symbol, addr, filename_ptr,
4649 linenumber_ptr, stash);
4650 if (found)
4651 goto done;
4652 }
4653 }
4654 }
4655 else
4656 {
4657 bfd_vma min_range = (bfd_vma) -1;
4658 const char * local_filename = NULL;
4659 struct funcinfo *local_function = NULL;
4660 unsigned int local_linenumber = 0;
4661 unsigned int local_discriminator = 0;
4662
4663 for (each = stash->all_comp_units; each; each = each->next_unit)
4664 {
4665 bfd_vma range = (bfd_vma) -1;
4666
4667 found = ((each->arange.high == 0
4668 || comp_unit_contains_address (each, addr))
4669 && (range = comp_unit_find_nearest_line (each, addr,
4670 & local_filename,
4671 & local_function,
4672 & local_linenumber,
4673 & local_discriminator,
4674 stash)) != 0);
4675 if (found)
4676 {
4677 /* PRs 15935 15994: Bogus debug information may have provided us
4678 with an erroneous match. We attempt to counter this by
4679 selecting the match that has the smallest address range
4680 associated with it. (We are assuming that corrupt debug info
4681 will tend to result in extra large address ranges rather than
4682 extra small ranges).
4683
4684 This does mean that we scan through all of the CUs associated
4685 with the bfd each time this function is called. But this does
4686 have the benefit of producing consistent results every time the
4687 function is called. */
4688 if (range <= min_range)
4689 {
4690 if (filename_ptr && local_filename)
4691 * filename_ptr = local_filename;
4692 if (local_function)
4693 function = local_function;
4694 if (discriminator_ptr && local_discriminator)
4695 * discriminator_ptr = local_discriminator;
4696 if (local_linenumber)
4697 * linenumber_ptr = local_linenumber;
4698 min_range = range;
4699 }
4700 }
4701 }
4702
4703 if (* linenumber_ptr)
4704 {
4705 found = TRUE;
4706 goto done;
4707 }
4708 }
4709
4710 /* The DWARF2 spec says that the initial length field, and the
4711 offset of the abbreviation table, should both be 4-byte values.
4712 However, some compilers do things differently. */
4713 if (addr_size == 0)
4714 addr_size = 4;
4715 BFD_ASSERT (addr_size == 4 || addr_size == 8);
4716
4717 /* Read each remaining comp. units checking each as they are read. */
4718 while (stash->info_ptr < stash->info_ptr_end)
4719 {
4720 bfd_vma length;
4721 unsigned int offset_size = addr_size;
4722 bfd_byte *info_ptr_unit = stash->info_ptr;
4723
4724 length = read_4_bytes (stash->bfd_ptr, stash->info_ptr, stash->info_ptr_end);
4725 /* A 0xffffff length is the DWARF3 way of indicating
4726 we use 64-bit offsets, instead of 32-bit offsets. */
4727 if (length == 0xffffffff)
4728 {
4729 offset_size = 8;
4730 length = read_8_bytes (stash->bfd_ptr, stash->info_ptr + 4, stash->info_ptr_end);
4731 stash->info_ptr += 12;
4732 }
4733 /* A zero length is the IRIX way of indicating 64-bit offsets,
4734 mostly because the 64-bit length will generally fit in 32
4735 bits, and the endianness helps. */
4736 else if (length == 0)
4737 {
4738 offset_size = 8;
4739 length = read_4_bytes (stash->bfd_ptr, stash->info_ptr + 4, stash->info_ptr_end);
4740 stash->info_ptr += 8;
4741 }
4742 /* In the absence of the hints above, we assume 32-bit DWARF2
4743 offsets even for targets with 64-bit addresses, because:
4744 a) most of the time these targets will not have generated
4745 more than 2Gb of debug info and so will not need 64-bit
4746 offsets,
4747 and
4748 b) if they do use 64-bit offsets but they are not using
4749 the size hints that are tested for above then they are
4750 not conforming to the DWARF3 standard anyway. */
4751 else if (addr_size == 8)
4752 {
4753 offset_size = 4;
4754 stash->info_ptr += 4;
4755 }
4756 else
4757 stash->info_ptr += 4;
4758
4759 if (length > 0)
4760 {
4761 bfd_byte * new_ptr;
4762
4763 /* PR 21151 */
4764 if (stash->info_ptr + length > stash->info_ptr_end)
4765 return FALSE;
4766
4767 each = parse_comp_unit (stash, length, info_ptr_unit,
4768 offset_size);
4769 if (!each)
4770 /* The dwarf information is damaged, don't trust it any
4771 more. */
4772 break;
4773
4774 new_ptr = stash->info_ptr + length;
4775 /* PR 17512: file: 1500698c. */
4776 if (new_ptr < stash->info_ptr)
4777 {
4778 /* A corrupt length value - do not trust the info any more. */
4779 found = FALSE;
4780 break;
4781 }
4782 else
4783 stash->info_ptr = new_ptr;
4784
4785 if (stash->all_comp_units)
4786 stash->all_comp_units->prev_unit = each;
4787 else
4788 stash->last_comp_unit = each;
4789
4790 each->next_unit = stash->all_comp_units;
4791 stash->all_comp_units = each;
4792
4793 /* DW_AT_low_pc and DW_AT_high_pc are optional for
4794 compilation units. If we don't have them (i.e.,
4795 unit->high == 0), we need to consult the line info table
4796 to see if a compilation unit contains the given
4797 address. */
4798 if (do_line)
4799 found = (((symbol->flags & BSF_FUNCTION) == 0
4800 || each->arange.high == 0
4801 || comp_unit_contains_address (each, addr))
4802 && comp_unit_find_line (each, symbol, addr,
4803 filename_ptr,
4804 linenumber_ptr,
4805 stash));
4806 else
4807 found = ((each->arange.high == 0
4808 || comp_unit_contains_address (each, addr))
4809 && comp_unit_find_nearest_line (each, addr,
4810 filename_ptr,
4811 &function,
4812 linenumber_ptr,
4813 discriminator_ptr,
4814 stash) != 0);
4815
4816 if ((bfd_vma) (stash->info_ptr - stash->sec_info_ptr)
4817 == stash->sec->size)
4818 {
4819 stash->sec = find_debug_info (stash->bfd_ptr, debug_sections,
4820 stash->sec);
4821 stash->sec_info_ptr = stash->info_ptr;
4822 }
4823
4824 if (found)
4825 goto done;
4826 }
4827 }
4828
4829 done:
4830 if (function)
4831 {
4832 if (!function->is_linkage)
4833 {
4834 asymbol *fun;
4835 bfd_vma sec_vma;
4836
4837 fun = _bfd_elf_find_function (abfd, symbols, section, offset,
4838 *filename_ptr ? NULL : filename_ptr,
4839 functionname_ptr);
4840 sec_vma = section->vma;
4841 if (section->output_section != NULL)
4842 sec_vma = section->output_section->vma + section->output_offset;
4843 if (fun != NULL
4844 && fun->value + sec_vma == function->arange.low)
4845 function->name = *functionname_ptr;
4846 /* Even if we didn't find a linkage name, say that we have
4847 to stop a repeated search of symbols. */
4848 function->is_linkage = TRUE;
4849 }
4850 *functionname_ptr = function->name;
4851 }
4852 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0)
4853 unset_sections (stash);
4854
4855 return found;
4856 }
4857
4858 bfd_boolean
4859 _bfd_dwarf2_find_inliner_info (bfd *abfd ATTRIBUTE_UNUSED,
4860 const char **filename_ptr,
4861 const char **functionname_ptr,
4862 unsigned int *linenumber_ptr,
4863 void **pinfo)
4864 {
4865 struct dwarf2_debug *stash;
4866
4867 stash = (struct dwarf2_debug *) *pinfo;
4868 if (stash)
4869 {
4870 struct funcinfo *func = stash->inliner_chain;
4871
4872 if (func && func->caller_func)
4873 {
4874 *filename_ptr = func->caller_file;
4875 *functionname_ptr = func->caller_func->name;
4876 *linenumber_ptr = func->caller_line;
4877 stash->inliner_chain = func->caller_func;
4878 return TRUE;
4879 }
4880 }
4881
4882 return FALSE;
4883 }
4884
4885 void
4886 _bfd_dwarf2_cleanup_debug_info (bfd *abfd, void **pinfo)
4887 {
4888 struct dwarf2_debug *stash = (struct dwarf2_debug *) *pinfo;
4889 struct comp_unit *each;
4890
4891 if (abfd == NULL || stash == NULL)
4892 return;
4893
4894 for (each = stash->all_comp_units; each; each = each->next_unit)
4895 {
4896 struct abbrev_info **abbrevs = each->abbrevs;
4897 struct funcinfo *function_table = each->function_table;
4898 struct varinfo *variable_table = each->variable_table;
4899 size_t i;
4900
4901 for (i = 0; i < ABBREV_HASH_SIZE; i++)
4902 {
4903 struct abbrev_info *abbrev = abbrevs[i];
4904
4905 while (abbrev)
4906 {
4907 free (abbrev->attrs);
4908 abbrev = abbrev->next;
4909 }
4910 }
4911
4912 if (each->line_table)
4913 {
4914 free (each->line_table->dirs);
4915 free (each->line_table->files);
4916 }
4917
4918 while (function_table)
4919 {
4920 if (function_table->file)
4921 {
4922 free (function_table->file);
4923 function_table->file = NULL;
4924 }
4925
4926 if (function_table->caller_file)
4927 {
4928 free (function_table->caller_file);
4929 function_table->caller_file = NULL;
4930 }
4931 function_table = function_table->prev_func;
4932 }
4933
4934 if (each->lookup_funcinfo_table)
4935 {
4936 free (each->lookup_funcinfo_table);
4937 each->lookup_funcinfo_table = NULL;
4938 }
4939
4940 while (variable_table)
4941 {
4942 if (variable_table->file)
4943 {
4944 free (variable_table->file);
4945 variable_table->file = NULL;
4946 }
4947
4948 variable_table = variable_table->prev_var;
4949 }
4950 }
4951
4952 if (stash->funcinfo_hash_table)
4953 bfd_hash_table_free (&stash->funcinfo_hash_table->base);
4954 if (stash->varinfo_hash_table)
4955 bfd_hash_table_free (&stash->varinfo_hash_table->base);
4956 if (stash->dwarf_abbrev_buffer)
4957 free (stash->dwarf_abbrev_buffer);
4958 if (stash->dwarf_line_buffer)
4959 free (stash->dwarf_line_buffer);
4960 if (stash->dwarf_str_buffer)
4961 free (stash->dwarf_str_buffer);
4962 if (stash->dwarf_line_str_buffer)
4963 free (stash->dwarf_line_str_buffer);
4964 if (stash->dwarf_ranges_buffer)
4965 free (stash->dwarf_ranges_buffer);
4966 if (stash->info_ptr_memory)
4967 free (stash->info_ptr_memory);
4968 if (stash->close_on_cleanup)
4969 bfd_close (stash->bfd_ptr);
4970 if (stash->alt_dwarf_str_buffer)
4971 free (stash->alt_dwarf_str_buffer);
4972 if (stash->alt_dwarf_info_buffer)
4973 free (stash->alt_dwarf_info_buffer);
4974 if (stash->sec_vma)
4975 free (stash->sec_vma);
4976 if (stash->adjusted_sections)
4977 free (stash->adjusted_sections);
4978 if (stash->alt_bfd_ptr)
4979 bfd_close (stash->alt_bfd_ptr);
4980 }
4981
4982 /* Find the function to a particular section and offset,
4983 for error reporting. */
4984
4985 asymbol *
4986 _bfd_elf_find_function (bfd *abfd,
4987 asymbol **symbols,
4988 asection *section,
4989 bfd_vma offset,
4990 const char **filename_ptr,
4991 const char **functionname_ptr)
4992 {
4993 struct elf_find_function_cache
4994 {
4995 asection *last_section;
4996 asymbol *func;
4997 const char *filename;
4998 bfd_size_type func_size;
4999 } *cache;
5000
5001 if (symbols == NULL)
5002 return NULL;
5003
5004 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
5005 return NULL;
5006
5007 cache = elf_tdata (abfd)->elf_find_function_cache;
5008 if (cache == NULL)
5009 {
5010 cache = bfd_zalloc (abfd, sizeof (*cache));
5011 elf_tdata (abfd)->elf_find_function_cache = cache;
5012 if (cache == NULL)
5013 return NULL;
5014 }
5015 if (cache->last_section != section
5016 || cache->func == NULL
5017 || offset < cache->func->value
5018 || offset >= cache->func->value + cache->func_size)
5019 {
5020 asymbol *file;
5021 bfd_vma low_func;
5022 asymbol **p;
5023 /* ??? Given multiple file symbols, it is impossible to reliably
5024 choose the right file name for global symbols. File symbols are
5025 local symbols, and thus all file symbols must sort before any
5026 global symbols. The ELF spec may be interpreted to say that a
5027 file symbol must sort before other local symbols, but currently
5028 ld -r doesn't do this. So, for ld -r output, it is possible to
5029 make a better choice of file name for local symbols by ignoring
5030 file symbols appearing after a given local symbol. */
5031 enum { nothing_seen, symbol_seen, file_after_symbol_seen } state;
5032 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5033
5034 file = NULL;
5035 low_func = 0;
5036 state = nothing_seen;
5037 cache->filename = NULL;
5038 cache->func = NULL;
5039 cache->func_size = 0;
5040 cache->last_section = section;
5041
5042 for (p = symbols; *p != NULL; p++)
5043 {
5044 asymbol *sym = *p;
5045 bfd_vma code_off;
5046 bfd_size_type size;
5047
5048 if ((sym->flags & BSF_FILE) != 0)
5049 {
5050 file = sym;
5051 if (state == symbol_seen)
5052 state = file_after_symbol_seen;
5053 continue;
5054 }
5055
5056 size = bed->maybe_function_sym (sym, section, &code_off);
5057 if (size != 0
5058 && code_off <= offset
5059 && (code_off > low_func
5060 || (code_off == low_func
5061 && size > cache->func_size)))
5062 {
5063 cache->func = sym;
5064 cache->func_size = size;
5065 cache->filename = NULL;
5066 low_func = code_off;
5067 if (file != NULL
5068 && ((sym->flags & BSF_LOCAL) != 0
5069 || state != file_after_symbol_seen))
5070 cache->filename = bfd_asymbol_name (file);
5071 }
5072 if (state == nothing_seen)
5073 state = symbol_seen;
5074 }
5075 }
5076
5077 if (cache->func == NULL)
5078 return NULL;
5079
5080 if (filename_ptr)
5081 *filename_ptr = cache->filename;
5082 if (functionname_ptr)
5083 *functionname_ptr = bfd_asymbol_name (cache->func);
5084
5085 return cache->func;
5086 }
This page took 0.134205 seconds and 4 git commands to generate.