5e322ce14c9f1872112917f7600c0bd18a3a1e74
[deliverable/binutils-gdb.git] / bfd / dwarf2.c
1 /* DWARF 2 support.
2 Copyright (C) 1994-2014 Free Software Foundation, Inc.
3
4 Adapted from gdb/dwarf2read.c by Gavin Koch of Cygnus Solutions
5 (gavin@cygnus.com).
6
7 From the dwarf2read.c header:
8 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
9 Inc. with support from Florida State University (under contract
10 with the Ada Joint Program Office), and Silicon Graphics, Inc.
11 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
12 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
13 support in dwarfread.c
14
15 This file is part of BFD.
16
17 This program is free software; you can redistribute it and/or modify
18 it under the terms of the GNU General Public License as published by
19 the Free Software Foundation; either version 3 of the License, or (at
20 your option) any later version.
21
22 This program is distributed in the hope that it will be useful, but
23 WITHOUT ANY WARRANTY; without even the implied warranty of
24 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
25 General Public License for more details.
26
27 You should have received a copy of the GNU General Public License
28 along with this program; if not, write to the Free Software
29 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
30 MA 02110-1301, USA. */
31
32 #include "sysdep.h"
33 #include "bfd.h"
34 #include "libiberty.h"
35 #include "libbfd.h"
36 #include "elf-bfd.h"
37 #include "dwarf2.h"
38
39 /* The data in the .debug_line statement prologue looks like this. */
40
41 struct line_head
42 {
43 bfd_vma total_length;
44 unsigned short version;
45 bfd_vma prologue_length;
46 unsigned char minimum_instruction_length;
47 unsigned char maximum_ops_per_insn;
48 unsigned char default_is_stmt;
49 int line_base;
50 unsigned char line_range;
51 unsigned char opcode_base;
52 unsigned char *standard_opcode_lengths;
53 };
54
55 /* Attributes have a name and a value. */
56
57 struct attribute
58 {
59 enum dwarf_attribute name;
60 enum dwarf_form form;
61 union
62 {
63 char *str;
64 struct dwarf_block *blk;
65 bfd_uint64_t val;
66 bfd_int64_t sval;
67 }
68 u;
69 };
70
71 /* Blocks are a bunch of untyped bytes. */
72 struct dwarf_block
73 {
74 unsigned int size;
75 bfd_byte *data;
76 };
77
78 struct adjusted_section
79 {
80 asection *section;
81 bfd_vma adj_vma;
82 };
83
84 struct dwarf2_debug
85 {
86 /* A list of all previously read comp_units. */
87 struct comp_unit *all_comp_units;
88
89 /* Last comp unit in list above. */
90 struct comp_unit *last_comp_unit;
91
92 /* Names of the debug sections. */
93 const struct dwarf_debug_section *debug_sections;
94
95 /* The next unread compilation unit within the .debug_info section.
96 Zero indicates that the .debug_info section has not been loaded
97 into a buffer yet. */
98 bfd_byte *info_ptr;
99
100 /* Pointer to the end of the .debug_info section memory buffer. */
101 bfd_byte *info_ptr_end;
102
103 /* Pointer to the bfd, section and address of the beginning of the
104 section. The bfd might be different than expected because of
105 gnu_debuglink sections. */
106 bfd *bfd_ptr;
107 asection *sec;
108 bfd_byte *sec_info_ptr;
109
110 /* Support for alternate debug info sections created by the DWZ utility:
111 This includes a pointer to an alternate bfd which contains *extra*,
112 possibly duplicate debug sections, and pointers to the loaded
113 .debug_str and .debug_info sections from this bfd. */
114 bfd * alt_bfd_ptr;
115 bfd_byte * alt_dwarf_str_buffer;
116 bfd_size_type alt_dwarf_str_size;
117 bfd_byte * alt_dwarf_info_buffer;
118 bfd_size_type alt_dwarf_info_size;
119
120 /* A pointer to the memory block allocated for info_ptr. Neither
121 info_ptr nor sec_info_ptr are guaranteed to stay pointing to the
122 beginning of the malloc block. This is used only to free the
123 memory later. */
124 bfd_byte *info_ptr_memory;
125
126 /* Pointer to the symbol table. */
127 asymbol **syms;
128
129 /* Pointer to the .debug_abbrev section loaded into memory. */
130 bfd_byte *dwarf_abbrev_buffer;
131
132 /* Length of the loaded .debug_abbrev section. */
133 bfd_size_type dwarf_abbrev_size;
134
135 /* Buffer for decode_line_info. */
136 bfd_byte *dwarf_line_buffer;
137
138 /* Length of the loaded .debug_line section. */
139 bfd_size_type dwarf_line_size;
140
141 /* Pointer to the .debug_str section loaded into memory. */
142 bfd_byte *dwarf_str_buffer;
143
144 /* Length of the loaded .debug_str section. */
145 bfd_size_type dwarf_str_size;
146
147 /* Pointer to the .debug_ranges section loaded into memory. */
148 bfd_byte *dwarf_ranges_buffer;
149
150 /* Length of the loaded .debug_ranges section. */
151 bfd_size_type dwarf_ranges_size;
152
153 /* If the most recent call to bfd_find_nearest_line was given an
154 address in an inlined function, preserve a pointer into the
155 calling chain for subsequent calls to bfd_find_inliner_info to
156 use. */
157 struct funcinfo *inliner_chain;
158
159 /* Section VMAs at the time the stash was built. */
160 bfd_vma *sec_vma;
161
162 /* Number of sections whose VMA we must adjust. */
163 int adjusted_section_count;
164
165 /* Array of sections with adjusted VMA. */
166 struct adjusted_section *adjusted_sections;
167
168 /* Number of times find_line is called. This is used in
169 the heuristic for enabling the info hash tables. */
170 int info_hash_count;
171
172 #define STASH_INFO_HASH_TRIGGER 100
173
174 /* Hash table mapping symbol names to function infos. */
175 struct info_hash_table *funcinfo_hash_table;
176
177 /* Hash table mapping symbol names to variable infos. */
178 struct info_hash_table *varinfo_hash_table;
179
180 /* Head of comp_unit list in the last hash table update. */
181 struct comp_unit *hash_units_head;
182
183 /* Status of info hash. */
184 int info_hash_status;
185 #define STASH_INFO_HASH_OFF 0
186 #define STASH_INFO_HASH_ON 1
187 #define STASH_INFO_HASH_DISABLED 2
188
189 /* True if we opened bfd_ptr. */
190 bfd_boolean close_on_cleanup;
191 };
192
193 struct arange
194 {
195 struct arange *next;
196 bfd_vma low;
197 bfd_vma high;
198 };
199
200 /* A minimal decoding of DWARF2 compilation units. We only decode
201 what's needed to get to the line number information. */
202
203 struct comp_unit
204 {
205 /* Chain the previously read compilation units. */
206 struct comp_unit *next_unit;
207
208 /* Likewise, chain the compilation unit read after this one.
209 The comp units are stored in reversed reading order. */
210 struct comp_unit *prev_unit;
211
212 /* Keep the bfd convenient (for memory allocation). */
213 bfd *abfd;
214
215 /* The lowest and highest addresses contained in this compilation
216 unit as specified in the compilation unit header. */
217 struct arange arange;
218
219 /* The DW_AT_name attribute (for error messages). */
220 char *name;
221
222 /* The abbrev hash table. */
223 struct abbrev_info **abbrevs;
224
225 /* Note that an error was found by comp_unit_find_nearest_line. */
226 int error;
227
228 /* The DW_AT_comp_dir attribute. */
229 char *comp_dir;
230
231 /* TRUE if there is a line number table associated with this comp. unit. */
232 int stmtlist;
233
234 /* Pointer to the current comp_unit so that we can find a given entry
235 by its reference. */
236 bfd_byte *info_ptr_unit;
237
238 /* Pointer to the start of the debug section, for DW_FORM_ref_addr. */
239 bfd_byte *sec_info_ptr;
240
241 /* The offset into .debug_line of the line number table. */
242 unsigned long line_offset;
243
244 /* Pointer to the first child die for the comp unit. */
245 bfd_byte *first_child_die_ptr;
246
247 /* The end of the comp unit. */
248 bfd_byte *end_ptr;
249
250 /* The decoded line number, NULL if not yet decoded. */
251 struct line_info_table *line_table;
252
253 /* A list of the functions found in this comp. unit. */
254 struct funcinfo *function_table;
255
256 /* A list of the variables found in this comp. unit. */
257 struct varinfo *variable_table;
258
259 /* Pointer to dwarf2_debug structure. */
260 struct dwarf2_debug *stash;
261
262 /* DWARF format version for this unit - from unit header. */
263 int version;
264
265 /* Address size for this unit - from unit header. */
266 unsigned char addr_size;
267
268 /* Offset size for this unit - from unit header. */
269 unsigned char offset_size;
270
271 /* Base address for this unit - from DW_AT_low_pc attribute of
272 DW_TAG_compile_unit DIE */
273 bfd_vma base_address;
274
275 /* TRUE if symbols are cached in hash table for faster lookup by name. */
276 bfd_boolean cached;
277 };
278
279 /* This data structure holds the information of an abbrev. */
280 struct abbrev_info
281 {
282 unsigned int number; /* Number identifying abbrev. */
283 enum dwarf_tag tag; /* DWARF tag. */
284 int has_children; /* Boolean. */
285 unsigned int num_attrs; /* Number of attributes. */
286 struct attr_abbrev *attrs; /* An array of attribute descriptions. */
287 struct abbrev_info *next; /* Next in chain. */
288 };
289
290 struct attr_abbrev
291 {
292 enum dwarf_attribute name;
293 enum dwarf_form form;
294 };
295
296 /* Map of uncompressed DWARF debug section name to compressed one. It
297 is terminated by NULL uncompressed_name. */
298
299 const struct dwarf_debug_section dwarf_debug_sections[] =
300 {
301 { ".debug_abbrev", ".zdebug_abbrev" },
302 { ".debug_aranges", ".zdebug_aranges" },
303 { ".debug_frame", ".zdebug_frame" },
304 { ".debug_info", ".zdebug_info" },
305 { ".debug_info", ".zdebug_info" },
306 { ".debug_line", ".zdebug_line" },
307 { ".debug_loc", ".zdebug_loc" },
308 { ".debug_macinfo", ".zdebug_macinfo" },
309 { ".debug_macro", ".zdebug_macro" },
310 { ".debug_pubnames", ".zdebug_pubnames" },
311 { ".debug_pubtypes", ".zdebug_pubtypes" },
312 { ".debug_ranges", ".zdebug_ranges" },
313 { ".debug_static_func", ".zdebug_static_func" },
314 { ".debug_static_vars", ".zdebug_static_vars" },
315 { ".debug_str", ".zdebug_str", },
316 { ".debug_str", ".zdebug_str", },
317 { ".debug_types", ".zdebug_types" },
318 /* GNU DWARF 1 extensions */
319 { ".debug_sfnames", ".zdebug_sfnames" },
320 { ".debug_srcinfo", ".zebug_srcinfo" },
321 /* SGI/MIPS DWARF 2 extensions */
322 { ".debug_funcnames", ".zdebug_funcnames" },
323 { ".debug_typenames", ".zdebug_typenames" },
324 { ".debug_varnames", ".zdebug_varnames" },
325 { ".debug_weaknames", ".zdebug_weaknames" },
326 { NULL, NULL },
327 };
328
329 /* NB/ Numbers in this enum must match up with indicies
330 into the dwarf_debug_sections[] array above. */
331 enum dwarf_debug_section_enum
332 {
333 debug_abbrev = 0,
334 debug_aranges,
335 debug_frame,
336 debug_info,
337 debug_info_alt,
338 debug_line,
339 debug_loc,
340 debug_macinfo,
341 debug_macro,
342 debug_pubnames,
343 debug_pubtypes,
344 debug_ranges,
345 debug_static_func,
346 debug_static_vars,
347 debug_str,
348 debug_str_alt,
349 debug_types,
350 debug_sfnames,
351 debug_srcinfo,
352 debug_funcnames,
353 debug_typenames,
354 debug_varnames,
355 debug_weaknames
356 };
357
358 #ifndef ABBREV_HASH_SIZE
359 #define ABBREV_HASH_SIZE 121
360 #endif
361 #ifndef ATTR_ALLOC_CHUNK
362 #define ATTR_ALLOC_CHUNK 4
363 #endif
364
365 /* Variable and function hash tables. This is used to speed up look-up
366 in lookup_symbol_in_var_table() and lookup_symbol_in_function_table().
367 In order to share code between variable and function infos, we use
368 a list of untyped pointer for all variable/function info associated with
369 a symbol. We waste a bit of memory for list with one node but that
370 simplifies the code. */
371
372 struct info_list_node
373 {
374 struct info_list_node *next;
375 void *info;
376 };
377
378 /* Info hash entry. */
379 struct info_hash_entry
380 {
381 struct bfd_hash_entry root;
382 struct info_list_node *head;
383 };
384
385 struct info_hash_table
386 {
387 struct bfd_hash_table base;
388 };
389
390 /* Function to create a new entry in info hash table. */
391
392 static struct bfd_hash_entry *
393 info_hash_table_newfunc (struct bfd_hash_entry *entry,
394 struct bfd_hash_table *table,
395 const char *string)
396 {
397 struct info_hash_entry *ret = (struct info_hash_entry *) entry;
398
399 /* Allocate the structure if it has not already been allocated by a
400 derived class. */
401 if (ret == NULL)
402 {
403 ret = (struct info_hash_entry *) bfd_hash_allocate (table,
404 sizeof (* ret));
405 if (ret == NULL)
406 return NULL;
407 }
408
409 /* Call the allocation method of the base class. */
410 ret = ((struct info_hash_entry *)
411 bfd_hash_newfunc ((struct bfd_hash_entry *) ret, table, string));
412
413 /* Initialize the local fields here. */
414 if (ret)
415 ret->head = NULL;
416
417 return (struct bfd_hash_entry *) ret;
418 }
419
420 /* Function to create a new info hash table. It returns a pointer to the
421 newly created table or NULL if there is any error. We need abfd
422 solely for memory allocation. */
423
424 static struct info_hash_table *
425 create_info_hash_table (bfd *abfd)
426 {
427 struct info_hash_table *hash_table;
428
429 hash_table = ((struct info_hash_table *)
430 bfd_alloc (abfd, sizeof (struct info_hash_table)));
431 if (!hash_table)
432 return hash_table;
433
434 if (!bfd_hash_table_init (&hash_table->base, info_hash_table_newfunc,
435 sizeof (struct info_hash_entry)))
436 {
437 bfd_release (abfd, hash_table);
438 return NULL;
439 }
440
441 return hash_table;
442 }
443
444 /* Insert an info entry into an info hash table. We do not check of
445 duplicate entries. Also, the caller need to guarantee that the
446 right type of info in inserted as info is passed as a void* pointer.
447 This function returns true if there is no error. */
448
449 static bfd_boolean
450 insert_info_hash_table (struct info_hash_table *hash_table,
451 const char *key,
452 void *info,
453 bfd_boolean copy_p)
454 {
455 struct info_hash_entry *entry;
456 struct info_list_node *node;
457
458 entry = (struct info_hash_entry*) bfd_hash_lookup (&hash_table->base,
459 key, TRUE, copy_p);
460 if (!entry)
461 return FALSE;
462
463 node = (struct info_list_node *) bfd_hash_allocate (&hash_table->base,
464 sizeof (*node));
465 if (!node)
466 return FALSE;
467
468 node->info = info;
469 node->next = entry->head;
470 entry->head = node;
471
472 return TRUE;
473 }
474
475 /* Look up an info entry list from an info hash table. Return NULL
476 if there is none. */
477
478 static struct info_list_node *
479 lookup_info_hash_table (struct info_hash_table *hash_table, const char *key)
480 {
481 struct info_hash_entry *entry;
482
483 entry = (struct info_hash_entry*) bfd_hash_lookup (&hash_table->base, key,
484 FALSE, FALSE);
485 return entry ? entry->head : NULL;
486 }
487
488 /* Read a section into its appropriate place in the dwarf2_debug
489 struct (indicated by SECTION_BUFFER and SECTION_SIZE). If SYMS is
490 not NULL, use bfd_simple_get_relocated_section_contents to read the
491 section contents, otherwise use bfd_get_section_contents. Fail if
492 the located section does not contain at least OFFSET bytes. */
493
494 static bfd_boolean
495 read_section (bfd * abfd,
496 const struct dwarf_debug_section *sec,
497 asymbol ** syms,
498 bfd_uint64_t offset,
499 bfd_byte ** section_buffer,
500 bfd_size_type * section_size)
501 {
502 asection *msec;
503 const char *section_name = sec->uncompressed_name;
504
505 /* The section may have already been read. */
506 if (*section_buffer == NULL)
507 {
508 msec = bfd_get_section_by_name (abfd, section_name);
509 if (! msec)
510 {
511 section_name = sec->compressed_name;
512 if (section_name != NULL)
513 msec = bfd_get_section_by_name (abfd, section_name);
514 }
515 if (! msec)
516 {
517 (*_bfd_error_handler) (_("Dwarf Error: Can't find %s section."),
518 sec->uncompressed_name);
519 bfd_set_error (bfd_error_bad_value);
520 return FALSE;
521 }
522
523 *section_size = msec->rawsize ? msec->rawsize : msec->size;
524 if (syms)
525 {
526 *section_buffer
527 = bfd_simple_get_relocated_section_contents (abfd, msec, NULL, syms);
528 if (! *section_buffer)
529 return FALSE;
530 }
531 else
532 {
533 *section_buffer = (bfd_byte *) bfd_malloc (*section_size);
534 if (! *section_buffer)
535 return FALSE;
536 if (! bfd_get_section_contents (abfd, msec, *section_buffer,
537 0, *section_size))
538 return FALSE;
539 }
540 }
541
542 /* It is possible to get a bad value for the offset into the section
543 that the client wants. Validate it here to avoid trouble later. */
544 if (offset != 0 && offset >= *section_size)
545 {
546 (*_bfd_error_handler) (_("Dwarf Error: Offset (%lu)"
547 " greater than or equal to %s size (%lu)."),
548 (long) offset, section_name, *section_size);
549 bfd_set_error (bfd_error_bad_value);
550 return FALSE;
551 }
552
553 return TRUE;
554 }
555
556 /* VERBATIM
557 The following function up to the END VERBATIM mark are
558 copied directly from dwarf2read.c. */
559
560 /* Read dwarf information from a buffer. */
561
562 static unsigned int
563 read_1_byte (bfd *abfd ATTRIBUTE_UNUSED, bfd_byte *buf)
564 {
565 return bfd_get_8 (abfd, buf);
566 }
567
568 static int
569 read_1_signed_byte (bfd *abfd ATTRIBUTE_UNUSED, bfd_byte *buf)
570 {
571 return bfd_get_signed_8 (abfd, buf);
572 }
573
574 static unsigned int
575 read_2_bytes (bfd *abfd, bfd_byte *buf)
576 {
577 return bfd_get_16 (abfd, buf);
578 }
579
580 static unsigned int
581 read_4_bytes (bfd *abfd, bfd_byte *buf)
582 {
583 return bfd_get_32 (abfd, buf);
584 }
585
586 static bfd_uint64_t
587 read_8_bytes (bfd *abfd, bfd_byte *buf)
588 {
589 return bfd_get_64 (abfd, buf);
590 }
591
592 static bfd_byte *
593 read_n_bytes (bfd *abfd ATTRIBUTE_UNUSED,
594 bfd_byte *buf,
595 unsigned int size ATTRIBUTE_UNUSED)
596 {
597 return buf;
598 }
599
600 static char *
601 read_string (bfd *abfd ATTRIBUTE_UNUSED,
602 bfd_byte *buf,
603 unsigned int *bytes_read_ptr)
604 {
605 /* Return a pointer to the embedded string. */
606 char *str = (char *) buf;
607
608 if (*str == '\0')
609 {
610 *bytes_read_ptr = 1;
611 return NULL;
612 }
613
614 *bytes_read_ptr = strlen (str) + 1;
615 return str;
616 }
617
618 /* END VERBATIM */
619
620 static char *
621 read_indirect_string (struct comp_unit * unit,
622 bfd_byte * buf,
623 unsigned int * bytes_read_ptr)
624 {
625 bfd_uint64_t offset;
626 struct dwarf2_debug *stash = unit->stash;
627 char *str;
628
629 if (unit->offset_size == 4)
630 offset = read_4_bytes (unit->abfd, buf);
631 else
632 offset = read_8_bytes (unit->abfd, buf);
633
634 *bytes_read_ptr = unit->offset_size;
635
636 if (! read_section (unit->abfd, &stash->debug_sections[debug_str],
637 stash->syms, offset,
638 &stash->dwarf_str_buffer, &stash->dwarf_str_size))
639 return NULL;
640
641 str = (char *) stash->dwarf_str_buffer + offset;
642 if (*str == '\0')
643 return NULL;
644 return str;
645 }
646
647 /* Like read_indirect_string but uses a .debug_str located in
648 an alternate file pointed to by the .gnu_debugaltlink section.
649 Used to impement DW_FORM_GNU_strp_alt. */
650
651 static char *
652 read_alt_indirect_string (struct comp_unit * unit,
653 bfd_byte * buf,
654 unsigned int * bytes_read_ptr)
655 {
656 bfd_uint64_t offset;
657 struct dwarf2_debug *stash = unit->stash;
658 char *str;
659
660 if (unit->offset_size == 4)
661 offset = read_4_bytes (unit->abfd, buf);
662 else
663 offset = read_8_bytes (unit->abfd, buf);
664
665 *bytes_read_ptr = unit->offset_size;
666
667 if (stash->alt_bfd_ptr == NULL)
668 {
669 bfd * debug_bfd;
670 char * debug_filename = bfd_follow_gnu_debugaltlink (unit->abfd, DEBUGDIR);
671
672 if (debug_filename == NULL)
673 return NULL;
674
675 if ((debug_bfd = bfd_openr (debug_filename, NULL)) == NULL
676 || ! bfd_check_format (debug_bfd, bfd_object))
677 {
678 if (debug_bfd)
679 bfd_close (debug_bfd);
680
681 /* FIXME: Should we report our failure to follow the debuglink ? */
682 free (debug_filename);
683 return NULL;
684 }
685 stash->alt_bfd_ptr = debug_bfd;
686 }
687
688 if (! read_section (unit->stash->alt_bfd_ptr,
689 stash->debug_sections + debug_str_alt,
690 NULL, /* FIXME: Do we need to load alternate symbols ? */
691 offset,
692 &stash->alt_dwarf_str_buffer,
693 &stash->alt_dwarf_str_size))
694 return NULL;
695
696 str = (char *) stash->alt_dwarf_str_buffer + offset;
697 if (*str == '\0')
698 return NULL;
699
700 return str;
701 }
702
703 /* Resolve an alternate reference from UNIT at OFFSET.
704 Returns a pointer into the loaded alternate CU upon success
705 or NULL upon failure. */
706
707 static bfd_byte *
708 read_alt_indirect_ref (struct comp_unit * unit,
709 bfd_uint64_t offset)
710 {
711 struct dwarf2_debug *stash = unit->stash;
712
713 if (stash->alt_bfd_ptr == NULL)
714 {
715 bfd * debug_bfd;
716 char * debug_filename = bfd_follow_gnu_debugaltlink (unit->abfd, DEBUGDIR);
717
718 if (debug_filename == NULL)
719 return FALSE;
720
721 if ((debug_bfd = bfd_openr (debug_filename, NULL)) == NULL
722 || ! bfd_check_format (debug_bfd, bfd_object))
723 {
724 if (debug_bfd)
725 bfd_close (debug_bfd);
726
727 /* FIXME: Should we report our failure to follow the debuglink ? */
728 free (debug_filename);
729 return NULL;
730 }
731 stash->alt_bfd_ptr = debug_bfd;
732 }
733
734 if (! read_section (unit->stash->alt_bfd_ptr,
735 stash->debug_sections + debug_info_alt,
736 NULL, /* FIXME: Do we need to load alternate symbols ? */
737 offset,
738 &stash->alt_dwarf_info_buffer,
739 &stash->alt_dwarf_info_size))
740 return NULL;
741
742 return stash->alt_dwarf_info_buffer + offset;
743 }
744
745 static bfd_uint64_t
746 read_address (struct comp_unit *unit, bfd_byte *buf)
747 {
748 int signed_vma = get_elf_backend_data (unit->abfd)->sign_extend_vma;
749
750 if (signed_vma)
751 {
752 switch (unit->addr_size)
753 {
754 case 8:
755 return bfd_get_signed_64 (unit->abfd, buf);
756 case 4:
757 return bfd_get_signed_32 (unit->abfd, buf);
758 case 2:
759 return bfd_get_signed_16 (unit->abfd, buf);
760 default:
761 abort ();
762 }
763 }
764 else
765 {
766 switch (unit->addr_size)
767 {
768 case 8:
769 return bfd_get_64 (unit->abfd, buf);
770 case 4:
771 return bfd_get_32 (unit->abfd, buf);
772 case 2:
773 return bfd_get_16 (unit->abfd, buf);
774 default:
775 abort ();
776 }
777 }
778 }
779
780 /* Lookup an abbrev_info structure in the abbrev hash table. */
781
782 static struct abbrev_info *
783 lookup_abbrev (unsigned int number, struct abbrev_info **abbrevs)
784 {
785 unsigned int hash_number;
786 struct abbrev_info *abbrev;
787
788 hash_number = number % ABBREV_HASH_SIZE;
789 abbrev = abbrevs[hash_number];
790
791 while (abbrev)
792 {
793 if (abbrev->number == number)
794 return abbrev;
795 else
796 abbrev = abbrev->next;
797 }
798
799 return NULL;
800 }
801
802 /* In DWARF version 2, the description of the debugging information is
803 stored in a separate .debug_abbrev section. Before we read any
804 dies from a section we read in all abbreviations and install them
805 in a hash table. */
806
807 static struct abbrev_info**
808 read_abbrevs (bfd *abfd, bfd_uint64_t offset, struct dwarf2_debug *stash)
809 {
810 struct abbrev_info **abbrevs;
811 bfd_byte *abbrev_ptr;
812 struct abbrev_info *cur_abbrev;
813 unsigned int abbrev_number, bytes_read, abbrev_name;
814 unsigned int abbrev_form, hash_number;
815 bfd_size_type amt;
816
817 if (! read_section (abfd, &stash->debug_sections[debug_abbrev],
818 stash->syms, offset,
819 &stash->dwarf_abbrev_buffer, &stash->dwarf_abbrev_size))
820 return NULL;
821
822 amt = sizeof (struct abbrev_info*) * ABBREV_HASH_SIZE;
823 abbrevs = (struct abbrev_info **) bfd_zalloc (abfd, amt);
824 if (abbrevs == NULL)
825 return NULL;
826
827 abbrev_ptr = stash->dwarf_abbrev_buffer + offset;
828 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
829 abbrev_ptr += bytes_read;
830
831 /* Loop until we reach an abbrev number of 0. */
832 while (abbrev_number)
833 {
834 amt = sizeof (struct abbrev_info);
835 cur_abbrev = (struct abbrev_info *) bfd_zalloc (abfd, amt);
836 if (cur_abbrev == NULL)
837 return NULL;
838
839 /* Read in abbrev header. */
840 cur_abbrev->number = abbrev_number;
841 cur_abbrev->tag = (enum dwarf_tag)
842 read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
843 abbrev_ptr += bytes_read;
844 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
845 abbrev_ptr += 1;
846
847 /* Now read in declarations. */
848 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
849 abbrev_ptr += bytes_read;
850 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
851 abbrev_ptr += bytes_read;
852
853 while (abbrev_name)
854 {
855 if ((cur_abbrev->num_attrs % ATTR_ALLOC_CHUNK) == 0)
856 {
857 struct attr_abbrev *tmp;
858
859 amt = cur_abbrev->num_attrs + ATTR_ALLOC_CHUNK;
860 amt *= sizeof (struct attr_abbrev);
861 tmp = (struct attr_abbrev *) bfd_realloc (cur_abbrev->attrs, amt);
862 if (tmp == NULL)
863 {
864 size_t i;
865
866 for (i = 0; i < ABBREV_HASH_SIZE; i++)
867 {
868 struct abbrev_info *abbrev = abbrevs[i];
869
870 while (abbrev)
871 {
872 free (abbrev->attrs);
873 abbrev = abbrev->next;
874 }
875 }
876 return NULL;
877 }
878 cur_abbrev->attrs = tmp;
879 }
880
881 cur_abbrev->attrs[cur_abbrev->num_attrs].name
882 = (enum dwarf_attribute) abbrev_name;
883 cur_abbrev->attrs[cur_abbrev->num_attrs++].form
884 = (enum dwarf_form) abbrev_form;
885 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
886 abbrev_ptr += bytes_read;
887 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
888 abbrev_ptr += bytes_read;
889 }
890
891 hash_number = abbrev_number % ABBREV_HASH_SIZE;
892 cur_abbrev->next = abbrevs[hash_number];
893 abbrevs[hash_number] = cur_abbrev;
894
895 /* Get next abbreviation.
896 Under Irix6 the abbreviations for a compilation unit are not
897 always properly terminated with an abbrev number of 0.
898 Exit loop if we encounter an abbreviation which we have
899 already read (which means we are about to read the abbreviations
900 for the next compile unit) or if the end of the abbreviation
901 table is reached. */
902 if ((unsigned int) (abbrev_ptr - stash->dwarf_abbrev_buffer)
903 >= stash->dwarf_abbrev_size)
904 break;
905 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
906 abbrev_ptr += bytes_read;
907 if (lookup_abbrev (abbrev_number,abbrevs) != NULL)
908 break;
909 }
910
911 return abbrevs;
912 }
913
914 /* Read an attribute value described by an attribute form. */
915
916 static bfd_byte *
917 read_attribute_value (struct attribute *attr,
918 unsigned form,
919 struct comp_unit *unit,
920 bfd_byte *info_ptr)
921 {
922 bfd *abfd = unit->abfd;
923 unsigned int bytes_read;
924 struct dwarf_block *blk;
925 bfd_size_type amt;
926
927 attr->form = (enum dwarf_form) form;
928
929 switch (form)
930 {
931 case DW_FORM_ref_addr:
932 /* DW_FORM_ref_addr is an address in DWARF2, and an offset in
933 DWARF3. */
934 if (unit->version == 3 || unit->version == 4)
935 {
936 if (unit->offset_size == 4)
937 attr->u.val = read_4_bytes (unit->abfd, info_ptr);
938 else
939 attr->u.val = read_8_bytes (unit->abfd, info_ptr);
940 info_ptr += unit->offset_size;
941 break;
942 }
943 /* FALLTHROUGH */
944 case DW_FORM_addr:
945 attr->u.val = read_address (unit, info_ptr);
946 info_ptr += unit->addr_size;
947 break;
948 case DW_FORM_GNU_ref_alt:
949 case DW_FORM_sec_offset:
950 if (unit->offset_size == 4)
951 attr->u.val = read_4_bytes (unit->abfd, info_ptr);
952 else
953 attr->u.val = read_8_bytes (unit->abfd, info_ptr);
954 info_ptr += unit->offset_size;
955 break;
956 case DW_FORM_block2:
957 amt = sizeof (struct dwarf_block);
958 blk = (struct dwarf_block *) bfd_alloc (abfd, amt);
959 if (blk == NULL)
960 return NULL;
961 blk->size = read_2_bytes (abfd, info_ptr);
962 info_ptr += 2;
963 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
964 info_ptr += blk->size;
965 attr->u.blk = blk;
966 break;
967 case DW_FORM_block4:
968 amt = sizeof (struct dwarf_block);
969 blk = (struct dwarf_block *) bfd_alloc (abfd, amt);
970 if (blk == NULL)
971 return NULL;
972 blk->size = read_4_bytes (abfd, info_ptr);
973 info_ptr += 4;
974 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
975 info_ptr += blk->size;
976 attr->u.blk = blk;
977 break;
978 case DW_FORM_data2:
979 attr->u.val = read_2_bytes (abfd, info_ptr);
980 info_ptr += 2;
981 break;
982 case DW_FORM_data4:
983 attr->u.val = read_4_bytes (abfd, info_ptr);
984 info_ptr += 4;
985 break;
986 case DW_FORM_data8:
987 attr->u.val = read_8_bytes (abfd, info_ptr);
988 info_ptr += 8;
989 break;
990 case DW_FORM_string:
991 attr->u.str = read_string (abfd, info_ptr, &bytes_read);
992 info_ptr += bytes_read;
993 break;
994 case DW_FORM_strp:
995 attr->u.str = read_indirect_string (unit, info_ptr, &bytes_read);
996 info_ptr += bytes_read;
997 break;
998 case DW_FORM_GNU_strp_alt:
999 attr->u.str = read_alt_indirect_string (unit, info_ptr, &bytes_read);
1000 info_ptr += bytes_read;
1001 break;
1002 case DW_FORM_exprloc:
1003 case DW_FORM_block:
1004 amt = sizeof (struct dwarf_block);
1005 blk = (struct dwarf_block *) bfd_alloc (abfd, amt);
1006 if (blk == NULL)
1007 return NULL;
1008 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
1009 info_ptr += bytes_read;
1010 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
1011 info_ptr += blk->size;
1012 attr->u.blk = blk;
1013 break;
1014 case DW_FORM_block1:
1015 amt = sizeof (struct dwarf_block);
1016 blk = (struct dwarf_block *) bfd_alloc (abfd, amt);
1017 if (blk == NULL)
1018 return NULL;
1019 blk->size = read_1_byte (abfd, info_ptr);
1020 info_ptr += 1;
1021 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
1022 info_ptr += blk->size;
1023 attr->u.blk = blk;
1024 break;
1025 case DW_FORM_data1:
1026 attr->u.val = read_1_byte (abfd, info_ptr);
1027 info_ptr += 1;
1028 break;
1029 case DW_FORM_flag:
1030 attr->u.val = read_1_byte (abfd, info_ptr);
1031 info_ptr += 1;
1032 break;
1033 case DW_FORM_flag_present:
1034 attr->u.val = 1;
1035 break;
1036 case DW_FORM_sdata:
1037 attr->u.sval = read_signed_leb128 (abfd, info_ptr, &bytes_read);
1038 info_ptr += bytes_read;
1039 break;
1040 case DW_FORM_udata:
1041 attr->u.val = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
1042 info_ptr += bytes_read;
1043 break;
1044 case DW_FORM_ref1:
1045 attr->u.val = read_1_byte (abfd, info_ptr);
1046 info_ptr += 1;
1047 break;
1048 case DW_FORM_ref2:
1049 attr->u.val = read_2_bytes (abfd, info_ptr);
1050 info_ptr += 2;
1051 break;
1052 case DW_FORM_ref4:
1053 attr->u.val = read_4_bytes (abfd, info_ptr);
1054 info_ptr += 4;
1055 break;
1056 case DW_FORM_ref8:
1057 attr->u.val = read_8_bytes (abfd, info_ptr);
1058 info_ptr += 8;
1059 break;
1060 case DW_FORM_ref_sig8:
1061 attr->u.val = read_8_bytes (abfd, info_ptr);
1062 info_ptr += 8;
1063 break;
1064 case DW_FORM_ref_udata:
1065 attr->u.val = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
1066 info_ptr += bytes_read;
1067 break;
1068 case DW_FORM_indirect:
1069 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
1070 info_ptr += bytes_read;
1071 info_ptr = read_attribute_value (attr, form, unit, info_ptr);
1072 break;
1073 default:
1074 (*_bfd_error_handler) (_("Dwarf Error: Invalid or unhandled FORM value: %#x."),
1075 form);
1076 bfd_set_error (bfd_error_bad_value);
1077 return NULL;
1078 }
1079 return info_ptr;
1080 }
1081
1082 /* Read an attribute described by an abbreviated attribute. */
1083
1084 static bfd_byte *
1085 read_attribute (struct attribute *attr,
1086 struct attr_abbrev *abbrev,
1087 struct comp_unit *unit,
1088 bfd_byte *info_ptr)
1089 {
1090 attr->name = abbrev->name;
1091 info_ptr = read_attribute_value (attr, abbrev->form, unit, info_ptr);
1092 return info_ptr;
1093 }
1094
1095 /* Source line information table routines. */
1096
1097 #define FILE_ALLOC_CHUNK 5
1098 #define DIR_ALLOC_CHUNK 5
1099
1100 struct line_info
1101 {
1102 struct line_info* prev_line;
1103 bfd_vma address;
1104 char *filename;
1105 unsigned int line;
1106 unsigned int column;
1107 unsigned int discriminator;
1108 unsigned char op_index;
1109 unsigned char end_sequence; /* End of (sequential) code sequence. */
1110 };
1111
1112 struct fileinfo
1113 {
1114 char *name;
1115 unsigned int dir;
1116 unsigned int time;
1117 unsigned int size;
1118 };
1119
1120 struct line_sequence
1121 {
1122 bfd_vma low_pc;
1123 struct line_sequence* prev_sequence;
1124 struct line_info* last_line; /* Largest VMA. */
1125 };
1126
1127 struct line_info_table
1128 {
1129 bfd* abfd;
1130 unsigned int num_files;
1131 unsigned int num_dirs;
1132 unsigned int num_sequences;
1133 char * comp_dir;
1134 char ** dirs;
1135 struct fileinfo* files;
1136 struct line_sequence* sequences;
1137 struct line_info* lcl_head; /* Local head; used in 'add_line_info'. */
1138 };
1139
1140 /* Remember some information about each function. If the function is
1141 inlined (DW_TAG_inlined_subroutine) it may have two additional
1142 attributes, DW_AT_call_file and DW_AT_call_line, which specify the
1143 source code location where this function was inlined. */
1144
1145 struct funcinfo
1146 {
1147 /* Pointer to previous function in list of all functions. */
1148 struct funcinfo *prev_func;
1149 /* Pointer to function one scope higher. */
1150 struct funcinfo *caller_func;
1151 /* Source location file name where caller_func inlines this func. */
1152 char *caller_file;
1153 /* Source location line number where caller_func inlines this func. */
1154 int caller_line;
1155 /* Source location file name. */
1156 char *file;
1157 /* Source location line number. */
1158 int line;
1159 int tag;
1160 char *name;
1161 struct arange arange;
1162 /* Where the symbol is defined. */
1163 asection *sec;
1164 };
1165
1166 struct varinfo
1167 {
1168 /* Pointer to previous variable in list of all variables */
1169 struct varinfo *prev_var;
1170 /* Source location file name */
1171 char *file;
1172 /* Source location line number */
1173 int line;
1174 int tag;
1175 char *name;
1176 bfd_vma addr;
1177 /* Where the symbol is defined */
1178 asection *sec;
1179 /* Is this a stack variable? */
1180 unsigned int stack: 1;
1181 };
1182
1183 /* Return TRUE if NEW_LINE should sort after LINE. */
1184
1185 static inline bfd_boolean
1186 new_line_sorts_after (struct line_info *new_line, struct line_info *line)
1187 {
1188 return (new_line->address > line->address
1189 || (new_line->address == line->address
1190 && (new_line->op_index > line->op_index
1191 || (new_line->op_index == line->op_index
1192 && new_line->end_sequence < line->end_sequence))));
1193 }
1194
1195
1196 /* Adds a new entry to the line_info list in the line_info_table, ensuring
1197 that the list is sorted. Note that the line_info list is sorted from
1198 highest to lowest VMA (with possible duplicates); that is,
1199 line_info->prev_line always accesses an equal or smaller VMA. */
1200
1201 static bfd_boolean
1202 add_line_info (struct line_info_table *table,
1203 bfd_vma address,
1204 unsigned char op_index,
1205 char *filename,
1206 unsigned int line,
1207 unsigned int column,
1208 unsigned int discriminator,
1209 int end_sequence)
1210 {
1211 bfd_size_type amt = sizeof (struct line_info);
1212 struct line_sequence* seq = table->sequences;
1213 struct line_info* info = (struct line_info *) bfd_alloc (table->abfd, amt);
1214
1215 if (info == NULL)
1216 return FALSE;
1217
1218 /* Set member data of 'info'. */
1219 info->prev_line = NULL;
1220 info->address = address;
1221 info->op_index = op_index;
1222 info->line = line;
1223 info->column = column;
1224 info->discriminator = discriminator;
1225 info->end_sequence = end_sequence;
1226
1227 if (filename && filename[0])
1228 {
1229 info->filename = (char *) bfd_alloc (table->abfd, strlen (filename) + 1);
1230 if (info->filename == NULL)
1231 return FALSE;
1232 strcpy (info->filename, filename);
1233 }
1234 else
1235 info->filename = NULL;
1236
1237 /* Find the correct location for 'info'. Normally we will receive
1238 new line_info data 1) in order and 2) with increasing VMAs.
1239 However some compilers break the rules (cf. decode_line_info) and
1240 so we include some heuristics for quickly finding the correct
1241 location for 'info'. In particular, these heuristics optimize for
1242 the common case in which the VMA sequence that we receive is a
1243 list of locally sorted VMAs such as
1244 p...z a...j (where a < j < p < z)
1245
1246 Note: table->lcl_head is used to head an *actual* or *possible*
1247 sub-sequence within the list (such as a...j) that is not directly
1248 headed by table->last_line
1249
1250 Note: we may receive duplicate entries from 'decode_line_info'. */
1251
1252 if (seq
1253 && seq->last_line->address == address
1254 && seq->last_line->op_index == op_index
1255 && seq->last_line->end_sequence == end_sequence)
1256 {
1257 /* We only keep the last entry with the same address and end
1258 sequence. See PR ld/4986. */
1259 if (table->lcl_head == seq->last_line)
1260 table->lcl_head = info;
1261 info->prev_line = seq->last_line->prev_line;
1262 seq->last_line = info;
1263 }
1264 else if (!seq || seq->last_line->end_sequence)
1265 {
1266 /* Start a new line sequence. */
1267 amt = sizeof (struct line_sequence);
1268 seq = (struct line_sequence *) bfd_malloc (amt);
1269 if (seq == NULL)
1270 return FALSE;
1271 seq->low_pc = address;
1272 seq->prev_sequence = table->sequences;
1273 seq->last_line = info;
1274 table->lcl_head = info;
1275 table->sequences = seq;
1276 table->num_sequences++;
1277 }
1278 else if (new_line_sorts_after (info, seq->last_line))
1279 {
1280 /* Normal case: add 'info' to the beginning of the current sequence. */
1281 info->prev_line = seq->last_line;
1282 seq->last_line = info;
1283
1284 /* lcl_head: initialize to head a *possible* sequence at the end. */
1285 if (!table->lcl_head)
1286 table->lcl_head = info;
1287 }
1288 else if (!new_line_sorts_after (info, table->lcl_head)
1289 && (!table->lcl_head->prev_line
1290 || new_line_sorts_after (info, table->lcl_head->prev_line)))
1291 {
1292 /* Abnormal but easy: lcl_head is the head of 'info'. */
1293 info->prev_line = table->lcl_head->prev_line;
1294 table->lcl_head->prev_line = info;
1295 }
1296 else
1297 {
1298 /* Abnormal and hard: Neither 'last_line' nor 'lcl_head'
1299 are valid heads for 'info'. Reset 'lcl_head'. */
1300 struct line_info* li2 = seq->last_line; /* Always non-NULL. */
1301 struct line_info* li1 = li2->prev_line;
1302
1303 while (li1)
1304 {
1305 if (!new_line_sorts_after (info, li2)
1306 && new_line_sorts_after (info, li1))
1307 break;
1308
1309 li2 = li1; /* always non-NULL */
1310 li1 = li1->prev_line;
1311 }
1312 table->lcl_head = li2;
1313 info->prev_line = table->lcl_head->prev_line;
1314 table->lcl_head->prev_line = info;
1315 if (address < seq->low_pc)
1316 seq->low_pc = address;
1317 }
1318 return TRUE;
1319 }
1320
1321 /* Extract a fully qualified filename from a line info table.
1322 The returned string has been malloc'ed and it is the caller's
1323 responsibility to free it. */
1324
1325 static char *
1326 concat_filename (struct line_info_table *table, unsigned int file)
1327 {
1328 char *filename;
1329
1330 if (file - 1 >= table->num_files)
1331 {
1332 /* FILE == 0 means unknown. */
1333 if (file)
1334 (*_bfd_error_handler)
1335 (_("Dwarf Error: mangled line number section (bad file number)."));
1336 return strdup ("<unknown>");
1337 }
1338
1339 filename = table->files[file - 1].name;
1340
1341 if (!IS_ABSOLUTE_PATH (filename))
1342 {
1343 char *dir_name = NULL;
1344 char *subdir_name = NULL;
1345 char *name;
1346 size_t len;
1347
1348 if (table->files[file - 1].dir)
1349 subdir_name = table->dirs[table->files[file - 1].dir - 1];
1350
1351 if (!subdir_name || !IS_ABSOLUTE_PATH (subdir_name))
1352 dir_name = table->comp_dir;
1353
1354 if (!dir_name)
1355 {
1356 dir_name = subdir_name;
1357 subdir_name = NULL;
1358 }
1359
1360 if (!dir_name)
1361 return strdup (filename);
1362
1363 len = strlen (dir_name) + strlen (filename) + 2;
1364
1365 if (subdir_name)
1366 {
1367 len += strlen (subdir_name) + 1;
1368 name = (char *) bfd_malloc (len);
1369 if (name)
1370 sprintf (name, "%s/%s/%s", dir_name, subdir_name, filename);
1371 }
1372 else
1373 {
1374 name = (char *) bfd_malloc (len);
1375 if (name)
1376 sprintf (name, "%s/%s", dir_name, filename);
1377 }
1378
1379 return name;
1380 }
1381
1382 return strdup (filename);
1383 }
1384
1385 static bfd_boolean
1386 arange_add (const struct comp_unit *unit, struct arange *first_arange,
1387 bfd_vma low_pc, bfd_vma high_pc)
1388 {
1389 struct arange *arange;
1390
1391 /* Ignore empty ranges. */
1392 if (low_pc == high_pc)
1393 return TRUE;
1394
1395 /* If the first arange is empty, use it. */
1396 if (first_arange->high == 0)
1397 {
1398 first_arange->low = low_pc;
1399 first_arange->high = high_pc;
1400 return TRUE;
1401 }
1402
1403 /* Next see if we can cheaply extend an existing range. */
1404 arange = first_arange;
1405 do
1406 {
1407 if (low_pc == arange->high)
1408 {
1409 arange->high = high_pc;
1410 return TRUE;
1411 }
1412 if (high_pc == arange->low)
1413 {
1414 arange->low = low_pc;
1415 return TRUE;
1416 }
1417 arange = arange->next;
1418 }
1419 while (arange);
1420
1421 /* Need to allocate a new arange and insert it into the arange list.
1422 Order isn't significant, so just insert after the first arange. */
1423 arange = (struct arange *) bfd_alloc (unit->abfd, sizeof (*arange));
1424 if (arange == NULL)
1425 return FALSE;
1426 arange->low = low_pc;
1427 arange->high = high_pc;
1428 arange->next = first_arange->next;
1429 first_arange->next = arange;
1430 return TRUE;
1431 }
1432
1433 /* Compare function for line sequences. */
1434
1435 static int
1436 compare_sequences (const void* a, const void* b)
1437 {
1438 const struct line_sequence* seq1 = a;
1439 const struct line_sequence* seq2 = b;
1440
1441 /* Sort by low_pc as the primary key. */
1442 if (seq1->low_pc < seq2->low_pc)
1443 return -1;
1444 if (seq1->low_pc > seq2->low_pc)
1445 return 1;
1446
1447 /* If low_pc values are equal, sort in reverse order of
1448 high_pc, so that the largest region comes first. */
1449 if (seq1->last_line->address < seq2->last_line->address)
1450 return 1;
1451 if (seq1->last_line->address > seq2->last_line->address)
1452 return -1;
1453
1454 if (seq1->last_line->op_index < seq2->last_line->op_index)
1455 return 1;
1456 if (seq1->last_line->op_index > seq2->last_line->op_index)
1457 return -1;
1458
1459 return 0;
1460 }
1461
1462 /* Sort the line sequences for quick lookup. */
1463
1464 static bfd_boolean
1465 sort_line_sequences (struct line_info_table* table)
1466 {
1467 bfd_size_type amt;
1468 struct line_sequence* sequences;
1469 struct line_sequence* seq;
1470 unsigned int n = 0;
1471 unsigned int num_sequences = table->num_sequences;
1472 bfd_vma last_high_pc;
1473
1474 if (num_sequences == 0)
1475 return TRUE;
1476
1477 /* Allocate space for an array of sequences. */
1478 amt = sizeof (struct line_sequence) * num_sequences;
1479 sequences = (struct line_sequence *) bfd_alloc (table->abfd, amt);
1480 if (sequences == NULL)
1481 return FALSE;
1482
1483 /* Copy the linked list into the array, freeing the original nodes. */
1484 seq = table->sequences;
1485 for (n = 0; n < num_sequences; n++)
1486 {
1487 struct line_sequence* last_seq = seq;
1488
1489 BFD_ASSERT (seq);
1490 sequences[n].low_pc = seq->low_pc;
1491 sequences[n].prev_sequence = NULL;
1492 sequences[n].last_line = seq->last_line;
1493 seq = seq->prev_sequence;
1494 free (last_seq);
1495 }
1496 BFD_ASSERT (seq == NULL);
1497
1498 qsort (sequences, n, sizeof (struct line_sequence), compare_sequences);
1499
1500 /* Make the list binary-searchable by trimming overlapping entries
1501 and removing nested entries. */
1502 num_sequences = 1;
1503 last_high_pc = sequences[0].last_line->address;
1504 for (n = 1; n < table->num_sequences; n++)
1505 {
1506 if (sequences[n].low_pc < last_high_pc)
1507 {
1508 if (sequences[n].last_line->address <= last_high_pc)
1509 /* Skip nested entries. */
1510 continue;
1511
1512 /* Trim overlapping entries. */
1513 sequences[n].low_pc = last_high_pc;
1514 }
1515 last_high_pc = sequences[n].last_line->address;
1516 if (n > num_sequences)
1517 {
1518 /* Close up the gap. */
1519 sequences[num_sequences].low_pc = sequences[n].low_pc;
1520 sequences[num_sequences].last_line = sequences[n].last_line;
1521 }
1522 num_sequences++;
1523 }
1524
1525 table->sequences = sequences;
1526 table->num_sequences = num_sequences;
1527 return TRUE;
1528 }
1529
1530 /* Decode the line number information for UNIT. */
1531
1532 static struct line_info_table*
1533 decode_line_info (struct comp_unit *unit, struct dwarf2_debug *stash)
1534 {
1535 bfd *abfd = unit->abfd;
1536 struct line_info_table* table;
1537 bfd_byte *line_ptr;
1538 bfd_byte *line_end;
1539 struct line_head lh;
1540 unsigned int i, bytes_read, offset_size;
1541 char *cur_file, *cur_dir;
1542 unsigned char op_code, extended_op, adj_opcode;
1543 unsigned int exop_len;
1544 bfd_size_type amt;
1545
1546 if (! read_section (abfd, &stash->debug_sections[debug_line],
1547 stash->syms, unit->line_offset,
1548 &stash->dwarf_line_buffer, &stash->dwarf_line_size))
1549 return NULL;
1550
1551 amt = sizeof (struct line_info_table);
1552 table = (struct line_info_table *) bfd_alloc (abfd, amt);
1553 if (table == NULL)
1554 return NULL;
1555 table->abfd = abfd;
1556 table->comp_dir = unit->comp_dir;
1557
1558 table->num_files = 0;
1559 table->files = NULL;
1560
1561 table->num_dirs = 0;
1562 table->dirs = NULL;
1563
1564 table->num_sequences = 0;
1565 table->sequences = NULL;
1566
1567 table->lcl_head = NULL;
1568
1569 line_ptr = stash->dwarf_line_buffer + unit->line_offset;
1570
1571 /* Read in the prologue. */
1572 lh.total_length = read_4_bytes (abfd, line_ptr);
1573 line_ptr += 4;
1574 offset_size = 4;
1575 if (lh.total_length == 0xffffffff)
1576 {
1577 lh.total_length = read_8_bytes (abfd, line_ptr);
1578 line_ptr += 8;
1579 offset_size = 8;
1580 }
1581 else if (lh.total_length == 0 && unit->addr_size == 8)
1582 {
1583 /* Handle (non-standard) 64-bit DWARF2 formats. */
1584 lh.total_length = read_4_bytes (abfd, line_ptr);
1585 line_ptr += 4;
1586 offset_size = 8;
1587 }
1588 line_end = line_ptr + lh.total_length;
1589 lh.version = read_2_bytes (abfd, line_ptr);
1590 if (lh.version < 2 || lh.version > 4)
1591 {
1592 (*_bfd_error_handler)
1593 (_("Dwarf Error: Unhandled .debug_line version %d."), lh.version);
1594 bfd_set_error (bfd_error_bad_value);
1595 return NULL;
1596 }
1597 line_ptr += 2;
1598 if (offset_size == 4)
1599 lh.prologue_length = read_4_bytes (abfd, line_ptr);
1600 else
1601 lh.prologue_length = read_8_bytes (abfd, line_ptr);
1602 line_ptr += offset_size;
1603 lh.minimum_instruction_length = read_1_byte (abfd, line_ptr);
1604 line_ptr += 1;
1605 if (lh.version >= 4)
1606 {
1607 lh.maximum_ops_per_insn = read_1_byte (abfd, line_ptr);
1608 line_ptr += 1;
1609 }
1610 else
1611 lh.maximum_ops_per_insn = 1;
1612 if (lh.maximum_ops_per_insn == 0)
1613 {
1614 (*_bfd_error_handler)
1615 (_("Dwarf Error: Invalid maximum operations per instruction."));
1616 bfd_set_error (bfd_error_bad_value);
1617 return NULL;
1618 }
1619 lh.default_is_stmt = read_1_byte (abfd, line_ptr);
1620 line_ptr += 1;
1621 lh.line_base = read_1_signed_byte (abfd, line_ptr);
1622 line_ptr += 1;
1623 lh.line_range = read_1_byte (abfd, line_ptr);
1624 line_ptr += 1;
1625 lh.opcode_base = read_1_byte (abfd, line_ptr);
1626 line_ptr += 1;
1627 amt = lh.opcode_base * sizeof (unsigned char);
1628 lh.standard_opcode_lengths = (unsigned char *) bfd_alloc (abfd, amt);
1629
1630 lh.standard_opcode_lengths[0] = 1;
1631
1632 for (i = 1; i < lh.opcode_base; ++i)
1633 {
1634 lh.standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
1635 line_ptr += 1;
1636 }
1637
1638 /* Read directory table. */
1639 while ((cur_dir = read_string (abfd, line_ptr, &bytes_read)) != NULL)
1640 {
1641 line_ptr += bytes_read;
1642
1643 if ((table->num_dirs % DIR_ALLOC_CHUNK) == 0)
1644 {
1645 char **tmp;
1646
1647 amt = table->num_dirs + DIR_ALLOC_CHUNK;
1648 amt *= sizeof (char *);
1649
1650 tmp = (char **) bfd_realloc (table->dirs, amt);
1651 if (tmp == NULL)
1652 goto fail;
1653 table->dirs = tmp;
1654 }
1655
1656 table->dirs[table->num_dirs++] = cur_dir;
1657 }
1658
1659 line_ptr += bytes_read;
1660
1661 /* Read file name table. */
1662 while ((cur_file = read_string (abfd, line_ptr, &bytes_read)) != NULL)
1663 {
1664 line_ptr += bytes_read;
1665
1666 if ((table->num_files % FILE_ALLOC_CHUNK) == 0)
1667 {
1668 struct fileinfo *tmp;
1669
1670 amt = table->num_files + FILE_ALLOC_CHUNK;
1671 amt *= sizeof (struct fileinfo);
1672
1673 tmp = (struct fileinfo *) bfd_realloc (table->files, amt);
1674 if (tmp == NULL)
1675 goto fail;
1676 table->files = tmp;
1677 }
1678
1679 table->files[table->num_files].name = cur_file;
1680 table->files[table->num_files].dir =
1681 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
1682 line_ptr += bytes_read;
1683 table->files[table->num_files].time =
1684 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
1685 line_ptr += bytes_read;
1686 table->files[table->num_files].size =
1687 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
1688 line_ptr += bytes_read;
1689 table->num_files++;
1690 }
1691
1692 line_ptr += bytes_read;
1693
1694 /* Read the statement sequences until there's nothing left. */
1695 while (line_ptr < line_end)
1696 {
1697 /* State machine registers. */
1698 bfd_vma address = 0;
1699 unsigned char op_index = 0;
1700 char * filename = table->num_files ? concat_filename (table, 1) : NULL;
1701 unsigned int line = 1;
1702 unsigned int column = 0;
1703 unsigned int discriminator = 0;
1704 int is_stmt = lh.default_is_stmt;
1705 int end_sequence = 0;
1706 /* eraxxon@alumni.rice.edu: Against the DWARF2 specs, some
1707 compilers generate address sequences that are wildly out of
1708 order using DW_LNE_set_address (e.g. Intel C++ 6.0 compiler
1709 for ia64-Linux). Thus, to determine the low and high
1710 address, we must compare on every DW_LNS_copy, etc. */
1711 bfd_vma low_pc = (bfd_vma) -1;
1712 bfd_vma high_pc = 0;
1713
1714 /* Decode the table. */
1715 while (! end_sequence)
1716 {
1717 op_code = read_1_byte (abfd, line_ptr);
1718 line_ptr += 1;
1719
1720 if (op_code >= lh.opcode_base)
1721 {
1722 /* Special operand. */
1723 adj_opcode = op_code - lh.opcode_base;
1724 if (lh.maximum_ops_per_insn == 1)
1725 address += (adj_opcode / lh.line_range
1726 * lh.minimum_instruction_length);
1727 else
1728 {
1729 address += ((op_index + adj_opcode / lh.line_range)
1730 / lh.maximum_ops_per_insn
1731 * lh.minimum_instruction_length);
1732 op_index = ((op_index + adj_opcode / lh.line_range)
1733 % lh.maximum_ops_per_insn);
1734 }
1735 line += lh.line_base + (adj_opcode % lh.line_range);
1736 /* Append row to matrix using current values. */
1737 if (!add_line_info (table, address, op_index, filename,
1738 line, column, discriminator, 0))
1739 goto line_fail;
1740 discriminator = 0;
1741 if (address < low_pc)
1742 low_pc = address;
1743 if (address > high_pc)
1744 high_pc = address;
1745 }
1746 else switch (op_code)
1747 {
1748 case DW_LNS_extended_op:
1749 exop_len = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
1750 line_ptr += bytes_read;
1751 extended_op = read_1_byte (abfd, line_ptr);
1752 line_ptr += 1;
1753
1754 switch (extended_op)
1755 {
1756 case DW_LNE_end_sequence:
1757 end_sequence = 1;
1758 if (!add_line_info (table, address, op_index, filename, line,
1759 column, discriminator, end_sequence))
1760 goto line_fail;
1761 discriminator = 0;
1762 if (address < low_pc)
1763 low_pc = address;
1764 if (address > high_pc)
1765 high_pc = address;
1766 if (!arange_add (unit, &unit->arange, low_pc, high_pc))
1767 goto line_fail;
1768 break;
1769 case DW_LNE_set_address:
1770 address = read_address (unit, line_ptr);
1771 op_index = 0;
1772 line_ptr += unit->addr_size;
1773 break;
1774 case DW_LNE_define_file:
1775 cur_file = read_string (abfd, line_ptr, &bytes_read);
1776 line_ptr += bytes_read;
1777 if ((table->num_files % FILE_ALLOC_CHUNK) == 0)
1778 {
1779 struct fileinfo *tmp;
1780
1781 amt = table->num_files + FILE_ALLOC_CHUNK;
1782 amt *= sizeof (struct fileinfo);
1783 tmp = (struct fileinfo *) bfd_realloc (table->files, amt);
1784 if (tmp == NULL)
1785 goto line_fail;
1786 table->files = tmp;
1787 }
1788 table->files[table->num_files].name = cur_file;
1789 table->files[table->num_files].dir =
1790 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
1791 line_ptr += bytes_read;
1792 table->files[table->num_files].time =
1793 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
1794 line_ptr += bytes_read;
1795 table->files[table->num_files].size =
1796 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
1797 line_ptr += bytes_read;
1798 table->num_files++;
1799 break;
1800 case DW_LNE_set_discriminator:
1801 discriminator =
1802 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
1803 line_ptr += bytes_read;
1804 break;
1805 case DW_LNE_HP_source_file_correlation:
1806 line_ptr += exop_len - 1;
1807 break;
1808 default:
1809 (*_bfd_error_handler)
1810 (_("Dwarf Error: mangled line number section."));
1811 bfd_set_error (bfd_error_bad_value);
1812 line_fail:
1813 if (filename != NULL)
1814 free (filename);
1815 goto fail;
1816 }
1817 break;
1818 case DW_LNS_copy:
1819 if (!add_line_info (table, address, op_index,
1820 filename, line, column, discriminator, 0))
1821 goto line_fail;
1822 discriminator = 0;
1823 if (address < low_pc)
1824 low_pc = address;
1825 if (address > high_pc)
1826 high_pc = address;
1827 break;
1828 case DW_LNS_advance_pc:
1829 if (lh.maximum_ops_per_insn == 1)
1830 address += (lh.minimum_instruction_length
1831 * read_unsigned_leb128 (abfd, line_ptr,
1832 &bytes_read));
1833 else
1834 {
1835 bfd_vma adjust = read_unsigned_leb128 (abfd, line_ptr,
1836 &bytes_read);
1837 address = ((op_index + adjust) / lh.maximum_ops_per_insn
1838 * lh.minimum_instruction_length);
1839 op_index = (op_index + adjust) % lh.maximum_ops_per_insn;
1840 }
1841 line_ptr += bytes_read;
1842 break;
1843 case DW_LNS_advance_line:
1844 line += read_signed_leb128 (abfd, line_ptr, &bytes_read);
1845 line_ptr += bytes_read;
1846 break;
1847 case DW_LNS_set_file:
1848 {
1849 unsigned int file;
1850
1851 /* The file and directory tables are 0
1852 based, the references are 1 based. */
1853 file = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
1854 line_ptr += bytes_read;
1855 if (filename)
1856 free (filename);
1857 filename = concat_filename (table, file);
1858 break;
1859 }
1860 case DW_LNS_set_column:
1861 column = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
1862 line_ptr += bytes_read;
1863 break;
1864 case DW_LNS_negate_stmt:
1865 is_stmt = (!is_stmt);
1866 break;
1867 case DW_LNS_set_basic_block:
1868 break;
1869 case DW_LNS_const_add_pc:
1870 if (lh.maximum_ops_per_insn == 1)
1871 address += (lh.minimum_instruction_length
1872 * ((255 - lh.opcode_base) / lh.line_range));
1873 else
1874 {
1875 bfd_vma adjust = ((255 - lh.opcode_base) / lh.line_range);
1876 address += (lh.minimum_instruction_length
1877 * ((op_index + adjust)
1878 / lh.maximum_ops_per_insn));
1879 op_index = (op_index + adjust) % lh.maximum_ops_per_insn;
1880 }
1881 break;
1882 case DW_LNS_fixed_advance_pc:
1883 address += read_2_bytes (abfd, line_ptr);
1884 op_index = 0;
1885 line_ptr += 2;
1886 break;
1887 default:
1888 /* Unknown standard opcode, ignore it. */
1889 for (i = 0; i < lh.standard_opcode_lengths[op_code]; i++)
1890 {
1891 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
1892 line_ptr += bytes_read;
1893 }
1894 break;
1895 }
1896 }
1897
1898 if (filename)
1899 free (filename);
1900 }
1901
1902 if (sort_line_sequences (table))
1903 return table;
1904
1905 fail:
1906 if (table->sequences != NULL)
1907 free (table->sequences);
1908 if (table->files != NULL)
1909 free (table->files);
1910 if (table->dirs != NULL)
1911 free (table->dirs);
1912 return NULL;
1913 }
1914
1915 /* If ADDR is within TABLE set the output parameters and return the
1916 range of addresses covered by the entry used to fill them out.
1917 Otherwise set * FILENAME_PTR to NULL and return 0.
1918 The parameters FILENAME_PTR, LINENUMBER_PTR and DISCRIMINATOR_PTR
1919 are pointers to the objects to be filled in. */
1920
1921 static bfd_vma
1922 lookup_address_in_line_info_table (struct line_info_table *table,
1923 bfd_vma addr,
1924 const char **filename_ptr,
1925 unsigned int *linenumber_ptr,
1926 unsigned int *discriminator_ptr)
1927 {
1928 struct line_sequence *seq = NULL;
1929 struct line_info *each_line;
1930 int low, high, mid;
1931
1932 /* Binary search the array of sequences. */
1933 low = 0;
1934 high = table->num_sequences;
1935 while (low < high)
1936 {
1937 mid = (low + high) / 2;
1938 seq = &table->sequences[mid];
1939 if (addr < seq->low_pc)
1940 high = mid;
1941 else if (addr >= seq->last_line->address)
1942 low = mid + 1;
1943 else
1944 break;
1945 }
1946
1947 if (seq && addr >= seq->low_pc && addr < seq->last_line->address)
1948 {
1949 /* Note: seq->last_line should be a descendingly sorted list. */
1950 for (each_line = seq->last_line;
1951 each_line;
1952 each_line = each_line->prev_line)
1953 if (addr >= each_line->address)
1954 break;
1955
1956 if (each_line
1957 && !(each_line->end_sequence || each_line == seq->last_line))
1958 {
1959 *filename_ptr = each_line->filename;
1960 *linenumber_ptr = each_line->line;
1961 if (discriminator_ptr)
1962 *discriminator_ptr = each_line->discriminator;
1963 return seq->last_line->address - seq->low_pc;
1964 }
1965 }
1966
1967 *filename_ptr = NULL;
1968 return 0;
1969 }
1970
1971 /* Read in the .debug_ranges section for future reference. */
1972
1973 static bfd_boolean
1974 read_debug_ranges (struct comp_unit *unit)
1975 {
1976 struct dwarf2_debug *stash = unit->stash;
1977 return read_section (unit->abfd, &stash->debug_sections[debug_ranges],
1978 stash->syms, 0,
1979 &stash->dwarf_ranges_buffer, &stash->dwarf_ranges_size);
1980 }
1981
1982 /* Function table functions. */
1983
1984 /* If ADDR is within UNIT's function tables, set FUNCTIONNAME_PTR, and return
1985 TRUE. Note that we need to find the function that has the smallest range
1986 that contains ADDR, to handle inlined functions without depending upon
1987 them being ordered in TABLE by increasing range. */
1988
1989 static bfd_boolean
1990 lookup_address_in_function_table (struct comp_unit *unit,
1991 bfd_vma addr,
1992 struct funcinfo **function_ptr,
1993 const char **functionname_ptr)
1994 {
1995 struct funcinfo* each_func;
1996 struct funcinfo* best_fit = NULL;
1997 bfd_vma best_fit_len = 0;
1998 struct arange *arange;
1999
2000 for (each_func = unit->function_table;
2001 each_func;
2002 each_func = each_func->prev_func)
2003 {
2004 for (arange = &each_func->arange;
2005 arange;
2006 arange = arange->next)
2007 {
2008 if (addr >= arange->low && addr < arange->high)
2009 {
2010 if (!best_fit
2011 || arange->high - arange->low < best_fit_len)
2012 {
2013 best_fit = each_func;
2014 best_fit_len = arange->high - arange->low;
2015 }
2016 }
2017 }
2018 }
2019
2020 if (best_fit)
2021 {
2022 *functionname_ptr = best_fit->name;
2023 *function_ptr = best_fit;
2024 return TRUE;
2025 }
2026 else
2027 {
2028 return FALSE;
2029 }
2030 }
2031
2032 /* If SYM at ADDR is within function table of UNIT, set FILENAME_PTR
2033 and LINENUMBER_PTR, and return TRUE. */
2034
2035 static bfd_boolean
2036 lookup_symbol_in_function_table (struct comp_unit *unit,
2037 asymbol *sym,
2038 bfd_vma addr,
2039 const char **filename_ptr,
2040 unsigned int *linenumber_ptr)
2041 {
2042 struct funcinfo* each_func;
2043 struct funcinfo* best_fit = NULL;
2044 bfd_vma best_fit_len = 0;
2045 struct arange *arange;
2046 const char *name = bfd_asymbol_name (sym);
2047 asection *sec = bfd_get_section (sym);
2048
2049 for (each_func = unit->function_table;
2050 each_func;
2051 each_func = each_func->prev_func)
2052 {
2053 for (arange = &each_func->arange;
2054 arange;
2055 arange = arange->next)
2056 {
2057 if ((!each_func->sec || each_func->sec == sec)
2058 && addr >= arange->low
2059 && addr < arange->high
2060 && each_func->name
2061 && strcmp (name, each_func->name) == 0
2062 && (!best_fit
2063 || arange->high - arange->low < best_fit_len))
2064 {
2065 best_fit = each_func;
2066 best_fit_len = arange->high - arange->low;
2067 }
2068 }
2069 }
2070
2071 if (best_fit)
2072 {
2073 best_fit->sec = sec;
2074 *filename_ptr = best_fit->file;
2075 *linenumber_ptr = best_fit->line;
2076 return TRUE;
2077 }
2078 else
2079 return FALSE;
2080 }
2081
2082 /* Variable table functions. */
2083
2084 /* If SYM is within variable table of UNIT, set FILENAME_PTR and
2085 LINENUMBER_PTR, and return TRUE. */
2086
2087 static bfd_boolean
2088 lookup_symbol_in_variable_table (struct comp_unit *unit,
2089 asymbol *sym,
2090 bfd_vma addr,
2091 const char **filename_ptr,
2092 unsigned int *linenumber_ptr)
2093 {
2094 const char *name = bfd_asymbol_name (sym);
2095 asection *sec = bfd_get_section (sym);
2096 struct varinfo* each;
2097
2098 for (each = unit->variable_table; each; each = each->prev_var)
2099 if (each->stack == 0
2100 && each->file != NULL
2101 && each->name != NULL
2102 && each->addr == addr
2103 && (!each->sec || each->sec == sec)
2104 && strcmp (name, each->name) == 0)
2105 break;
2106
2107 if (each)
2108 {
2109 each->sec = sec;
2110 *filename_ptr = each->file;
2111 *linenumber_ptr = each->line;
2112 return TRUE;
2113 }
2114 else
2115 return FALSE;
2116 }
2117
2118 static char *
2119 find_abstract_instance_name (struct comp_unit *unit,
2120 struct attribute *attr_ptr)
2121 {
2122 bfd *abfd = unit->abfd;
2123 bfd_byte *info_ptr;
2124 unsigned int abbrev_number, bytes_read, i;
2125 struct abbrev_info *abbrev;
2126 bfd_uint64_t die_ref = attr_ptr->u.val;
2127 struct attribute attr;
2128 char *name = NULL;
2129
2130 /* DW_FORM_ref_addr can reference an entry in a different CU. It
2131 is an offset from the .debug_info section, not the current CU. */
2132 if (attr_ptr->form == DW_FORM_ref_addr)
2133 {
2134 /* We only support DW_FORM_ref_addr within the same file, so
2135 any relocations should be resolved already. */
2136 if (!die_ref)
2137 abort ();
2138
2139 info_ptr = unit->sec_info_ptr + die_ref;
2140
2141 /* Now find the CU containing this pointer. */
2142 if (info_ptr >= unit->info_ptr_unit && info_ptr < unit->end_ptr)
2143 ;
2144 else
2145 {
2146 /* Check other CUs to see if they contain the abbrev. */
2147 struct comp_unit * u;
2148
2149 for (u = unit->prev_unit; u != NULL; u = u->prev_unit)
2150 if (info_ptr >= u->info_ptr_unit && info_ptr < u->end_ptr)
2151 break;
2152
2153 if (u == NULL)
2154 for (u = unit->next_unit; u != NULL; u = u->next_unit)
2155 if (info_ptr >= u->info_ptr_unit && info_ptr < u->end_ptr)
2156 break;
2157
2158 if (u)
2159 unit = u;
2160 /* else FIXME: What do we do now ? */
2161 }
2162 }
2163 else if (attr_ptr->form == DW_FORM_GNU_ref_alt)
2164 {
2165 info_ptr = read_alt_indirect_ref (unit, die_ref);
2166 if (info_ptr == NULL)
2167 {
2168 (*_bfd_error_handler)
2169 (_("Dwarf Error: Unable to read alt ref %u."), die_ref);
2170 bfd_set_error (bfd_error_bad_value);
2171 return name;
2172 }
2173 /* FIXME: Do we need to locate the correct CU, in a similar
2174 fashion to the code in the DW_FORM_ref_addr case above ? */
2175 }
2176 else
2177 info_ptr = unit->info_ptr_unit + die_ref;
2178
2179 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
2180 info_ptr += bytes_read;
2181
2182 if (abbrev_number)
2183 {
2184 abbrev = lookup_abbrev (abbrev_number, unit->abbrevs);
2185 if (! abbrev)
2186 {
2187 (*_bfd_error_handler)
2188 (_("Dwarf Error: Could not find abbrev number %u."), abbrev_number);
2189 bfd_set_error (bfd_error_bad_value);
2190 }
2191 else
2192 {
2193 for (i = 0; i < abbrev->num_attrs; ++i)
2194 {
2195 info_ptr = read_attribute (&attr, &abbrev->attrs[i], unit,
2196 info_ptr);
2197 if (info_ptr == NULL)
2198 break;
2199 switch (attr.name)
2200 {
2201 case DW_AT_name:
2202 /* Prefer DW_AT_MIPS_linkage_name or DW_AT_linkage_name
2203 over DW_AT_name. */
2204 if (name == NULL)
2205 name = attr.u.str;
2206 break;
2207 case DW_AT_specification:
2208 name = find_abstract_instance_name (unit, &attr);
2209 break;
2210 case DW_AT_linkage_name:
2211 case DW_AT_MIPS_linkage_name:
2212 name = attr.u.str;
2213 break;
2214 default:
2215 break;
2216 }
2217 }
2218 }
2219 }
2220 return name;
2221 }
2222
2223 static bfd_boolean
2224 read_rangelist (struct comp_unit *unit, struct arange *arange,
2225 bfd_uint64_t offset)
2226 {
2227 bfd_byte *ranges_ptr;
2228 bfd_vma base_address = unit->base_address;
2229
2230 if (! unit->stash->dwarf_ranges_buffer)
2231 {
2232 if (! read_debug_ranges (unit))
2233 return FALSE;
2234 }
2235 ranges_ptr = unit->stash->dwarf_ranges_buffer + offset;
2236
2237 for (;;)
2238 {
2239 bfd_vma low_pc;
2240 bfd_vma high_pc;
2241
2242 low_pc = read_address (unit, ranges_ptr);
2243 ranges_ptr += unit->addr_size;
2244 high_pc = read_address (unit, ranges_ptr);
2245 ranges_ptr += unit->addr_size;
2246
2247 if (low_pc == 0 && high_pc == 0)
2248 break;
2249 if (low_pc == -1UL && high_pc != -1UL)
2250 base_address = high_pc;
2251 else
2252 {
2253 if (!arange_add (unit, arange,
2254 base_address + low_pc, base_address + high_pc))
2255 return FALSE;
2256 }
2257 }
2258 return TRUE;
2259 }
2260
2261 /* DWARF2 Compilation unit functions. */
2262
2263 /* Scan over each die in a comp. unit looking for functions to add
2264 to the function table and variables to the variable table. */
2265
2266 static bfd_boolean
2267 scan_unit_for_symbols (struct comp_unit *unit)
2268 {
2269 bfd *abfd = unit->abfd;
2270 bfd_byte *info_ptr = unit->first_child_die_ptr;
2271 int nesting_level = 1;
2272 struct funcinfo **nested_funcs;
2273 int nested_funcs_size;
2274
2275 /* Maintain a stack of in-scope functions and inlined functions, which we
2276 can use to set the caller_func field. */
2277 nested_funcs_size = 32;
2278 nested_funcs = (struct funcinfo **)
2279 bfd_malloc (nested_funcs_size * sizeof (struct funcinfo *));
2280 if (nested_funcs == NULL)
2281 return FALSE;
2282 nested_funcs[nesting_level] = 0;
2283
2284 while (nesting_level)
2285 {
2286 unsigned int abbrev_number, bytes_read, i;
2287 struct abbrev_info *abbrev;
2288 struct attribute attr;
2289 struct funcinfo *func;
2290 struct varinfo *var;
2291 bfd_vma low_pc = 0;
2292 bfd_vma high_pc = 0;
2293 bfd_boolean high_pc_relative = FALSE;
2294
2295 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
2296 info_ptr += bytes_read;
2297
2298 if (! abbrev_number)
2299 {
2300 nesting_level--;
2301 continue;
2302 }
2303
2304 abbrev = lookup_abbrev (abbrev_number,unit->abbrevs);
2305 if (! abbrev)
2306 {
2307 (*_bfd_error_handler)
2308 (_("Dwarf Error: Could not find abbrev number %u."),
2309 abbrev_number);
2310 bfd_set_error (bfd_error_bad_value);
2311 goto fail;
2312 }
2313
2314 var = NULL;
2315 if (abbrev->tag == DW_TAG_subprogram
2316 || abbrev->tag == DW_TAG_entry_point
2317 || abbrev->tag == DW_TAG_inlined_subroutine)
2318 {
2319 bfd_size_type amt = sizeof (struct funcinfo);
2320 func = (struct funcinfo *) bfd_zalloc (abfd, amt);
2321 if (func == NULL)
2322 goto fail;
2323 func->tag = abbrev->tag;
2324 func->prev_func = unit->function_table;
2325 unit->function_table = func;
2326 BFD_ASSERT (!unit->cached);
2327
2328 if (func->tag == DW_TAG_inlined_subroutine)
2329 for (i = nesting_level - 1; i >= 1; i--)
2330 if (nested_funcs[i])
2331 {
2332 func->caller_func = nested_funcs[i];
2333 break;
2334 }
2335 nested_funcs[nesting_level] = func;
2336 }
2337 else
2338 {
2339 func = NULL;
2340 if (abbrev->tag == DW_TAG_variable)
2341 {
2342 bfd_size_type amt = sizeof (struct varinfo);
2343 var = (struct varinfo *) bfd_zalloc (abfd, amt);
2344 if (var == NULL)
2345 goto fail;
2346 var->tag = abbrev->tag;
2347 var->stack = 1;
2348 var->prev_var = unit->variable_table;
2349 unit->variable_table = var;
2350 BFD_ASSERT (!unit->cached);
2351 }
2352
2353 /* No inline function in scope at this nesting level. */
2354 nested_funcs[nesting_level] = 0;
2355 }
2356
2357 for (i = 0; i < abbrev->num_attrs; ++i)
2358 {
2359 info_ptr = read_attribute (&attr, &abbrev->attrs[i], unit, info_ptr);
2360 if (info_ptr == NULL)
2361 goto fail;
2362
2363 if (func)
2364 {
2365 switch (attr.name)
2366 {
2367 case DW_AT_call_file:
2368 func->caller_file = concat_filename (unit->line_table,
2369 attr.u.val);
2370 break;
2371
2372 case DW_AT_call_line:
2373 func->caller_line = attr.u.val;
2374 break;
2375
2376 case DW_AT_abstract_origin:
2377 case DW_AT_specification:
2378 func->name = find_abstract_instance_name (unit, &attr);
2379 break;
2380
2381 case DW_AT_name:
2382 /* Prefer DW_AT_MIPS_linkage_name or DW_AT_linkage_name
2383 over DW_AT_name. */
2384 if (func->name == NULL)
2385 func->name = attr.u.str;
2386 break;
2387
2388 case DW_AT_linkage_name:
2389 case DW_AT_MIPS_linkage_name:
2390 func->name = attr.u.str;
2391 break;
2392
2393 case DW_AT_low_pc:
2394 low_pc = attr.u.val;
2395 break;
2396
2397 case DW_AT_high_pc:
2398 high_pc = attr.u.val;
2399 high_pc_relative = attr.form != DW_FORM_addr;
2400 break;
2401
2402 case DW_AT_ranges:
2403 if (!read_rangelist (unit, &func->arange, attr.u.val))
2404 goto fail;
2405 break;
2406
2407 case DW_AT_decl_file:
2408 func->file = concat_filename (unit->line_table,
2409 attr.u.val);
2410 break;
2411
2412 case DW_AT_decl_line:
2413 func->line = attr.u.val;
2414 break;
2415
2416 default:
2417 break;
2418 }
2419 }
2420 else if (var)
2421 {
2422 switch (attr.name)
2423 {
2424 case DW_AT_name:
2425 var->name = attr.u.str;
2426 break;
2427
2428 case DW_AT_decl_file:
2429 var->file = concat_filename (unit->line_table,
2430 attr.u.val);
2431 break;
2432
2433 case DW_AT_decl_line:
2434 var->line = attr.u.val;
2435 break;
2436
2437 case DW_AT_external:
2438 if (attr.u.val != 0)
2439 var->stack = 0;
2440 break;
2441
2442 case DW_AT_location:
2443 switch (attr.form)
2444 {
2445 case DW_FORM_block:
2446 case DW_FORM_block1:
2447 case DW_FORM_block2:
2448 case DW_FORM_block4:
2449 case DW_FORM_exprloc:
2450 if (*attr.u.blk->data == DW_OP_addr)
2451 {
2452 var->stack = 0;
2453
2454 /* Verify that DW_OP_addr is the only opcode in the
2455 location, in which case the block size will be 1
2456 plus the address size. */
2457 /* ??? For TLS variables, gcc can emit
2458 DW_OP_addr <addr> DW_OP_GNU_push_tls_address
2459 which we don't handle here yet. */
2460 if (attr.u.blk->size == unit->addr_size + 1U)
2461 var->addr = bfd_get (unit->addr_size * 8,
2462 unit->abfd,
2463 attr.u.blk->data + 1);
2464 }
2465 break;
2466
2467 default:
2468 break;
2469 }
2470 break;
2471
2472 default:
2473 break;
2474 }
2475 }
2476 }
2477
2478 if (high_pc_relative)
2479 high_pc += low_pc;
2480
2481 if (func && high_pc != 0)
2482 {
2483 if (!arange_add (unit, &func->arange, low_pc, high_pc))
2484 goto fail;
2485 }
2486
2487 if (abbrev->has_children)
2488 {
2489 nesting_level++;
2490
2491 if (nesting_level >= nested_funcs_size)
2492 {
2493 struct funcinfo **tmp;
2494
2495 nested_funcs_size *= 2;
2496 tmp = (struct funcinfo **)
2497 bfd_realloc (nested_funcs,
2498 nested_funcs_size * sizeof (struct funcinfo *));
2499 if (tmp == NULL)
2500 goto fail;
2501 nested_funcs = tmp;
2502 }
2503 nested_funcs[nesting_level] = 0;
2504 }
2505 }
2506
2507 free (nested_funcs);
2508 return TRUE;
2509
2510 fail:
2511 free (nested_funcs);
2512 return FALSE;
2513 }
2514
2515 /* Parse a DWARF2 compilation unit starting at INFO_PTR. This
2516 includes the compilation unit header that proceeds the DIE's, but
2517 does not include the length field that precedes each compilation
2518 unit header. END_PTR points one past the end of this comp unit.
2519 OFFSET_SIZE is the size of DWARF2 offsets (either 4 or 8 bytes).
2520
2521 This routine does not read the whole compilation unit; only enough
2522 to get to the line number information for the compilation unit. */
2523
2524 static struct comp_unit *
2525 parse_comp_unit (struct dwarf2_debug *stash,
2526 bfd_vma unit_length,
2527 bfd_byte *info_ptr_unit,
2528 unsigned int offset_size)
2529 {
2530 struct comp_unit* unit;
2531 unsigned int version;
2532 bfd_uint64_t abbrev_offset = 0;
2533 unsigned int addr_size;
2534 struct abbrev_info** abbrevs;
2535 unsigned int abbrev_number, bytes_read, i;
2536 struct abbrev_info *abbrev;
2537 struct attribute attr;
2538 bfd_byte *info_ptr = stash->info_ptr;
2539 bfd_byte *end_ptr = info_ptr + unit_length;
2540 bfd_size_type amt;
2541 bfd_vma low_pc = 0;
2542 bfd_vma high_pc = 0;
2543 bfd *abfd = stash->bfd_ptr;
2544 bfd_boolean high_pc_relative = FALSE;
2545
2546 version = read_2_bytes (abfd, info_ptr);
2547 info_ptr += 2;
2548 BFD_ASSERT (offset_size == 4 || offset_size == 8);
2549 if (offset_size == 4)
2550 abbrev_offset = read_4_bytes (abfd, info_ptr);
2551 else
2552 abbrev_offset = read_8_bytes (abfd, info_ptr);
2553 info_ptr += offset_size;
2554 addr_size = read_1_byte (abfd, info_ptr);
2555 info_ptr += 1;
2556
2557 if (version != 2 && version != 3 && version != 4)
2558 {
2559 (*_bfd_error_handler)
2560 (_("Dwarf Error: found dwarf version '%u', this reader"
2561 " only handles version 2, 3 and 4 information."), version);
2562 bfd_set_error (bfd_error_bad_value);
2563 return 0;
2564 }
2565
2566 if (addr_size > sizeof (bfd_vma))
2567 {
2568 (*_bfd_error_handler)
2569 (_("Dwarf Error: found address size '%u', this reader"
2570 " can not handle sizes greater than '%u'."),
2571 addr_size,
2572 (unsigned int) sizeof (bfd_vma));
2573 bfd_set_error (bfd_error_bad_value);
2574 return 0;
2575 }
2576
2577 if (addr_size != 2 && addr_size != 4 && addr_size != 8)
2578 {
2579 (*_bfd_error_handler)
2580 ("Dwarf Error: found address size '%u', this reader"
2581 " can only handle address sizes '2', '4' and '8'.", addr_size);
2582 bfd_set_error (bfd_error_bad_value);
2583 return 0;
2584 }
2585
2586 /* Read the abbrevs for this compilation unit into a table. */
2587 abbrevs = read_abbrevs (abfd, abbrev_offset, stash);
2588 if (! abbrevs)
2589 return 0;
2590
2591 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
2592 info_ptr += bytes_read;
2593 if (! abbrev_number)
2594 {
2595 (*_bfd_error_handler) (_("Dwarf Error: Bad abbrev number: %u."),
2596 abbrev_number);
2597 bfd_set_error (bfd_error_bad_value);
2598 return 0;
2599 }
2600
2601 abbrev = lookup_abbrev (abbrev_number, abbrevs);
2602 if (! abbrev)
2603 {
2604 (*_bfd_error_handler) (_("Dwarf Error: Could not find abbrev number %u."),
2605 abbrev_number);
2606 bfd_set_error (bfd_error_bad_value);
2607 return 0;
2608 }
2609
2610 amt = sizeof (struct comp_unit);
2611 unit = (struct comp_unit *) bfd_zalloc (abfd, amt);
2612 if (unit == NULL)
2613 return NULL;
2614 unit->abfd = abfd;
2615 unit->version = version;
2616 unit->addr_size = addr_size;
2617 unit->offset_size = offset_size;
2618 unit->abbrevs = abbrevs;
2619 unit->end_ptr = end_ptr;
2620 unit->stash = stash;
2621 unit->info_ptr_unit = info_ptr_unit;
2622 unit->sec_info_ptr = stash->sec_info_ptr;
2623
2624 for (i = 0; i < abbrev->num_attrs; ++i)
2625 {
2626 info_ptr = read_attribute (&attr, &abbrev->attrs[i], unit, info_ptr);
2627 if (info_ptr == NULL)
2628 return NULL;
2629
2630 /* Store the data if it is of an attribute we want to keep in a
2631 partial symbol table. */
2632 switch (attr.name)
2633 {
2634 case DW_AT_stmt_list:
2635 unit->stmtlist = 1;
2636 unit->line_offset = attr.u.val;
2637 break;
2638
2639 case DW_AT_name:
2640 unit->name = attr.u.str;
2641 break;
2642
2643 case DW_AT_low_pc:
2644 low_pc = attr.u.val;
2645 /* If the compilation unit DIE has a DW_AT_low_pc attribute,
2646 this is the base address to use when reading location
2647 lists or range lists. */
2648 if (abbrev->tag == DW_TAG_compile_unit)
2649 unit->base_address = low_pc;
2650 break;
2651
2652 case DW_AT_high_pc:
2653 high_pc = attr.u.val;
2654 high_pc_relative = attr.form != DW_FORM_addr;
2655 break;
2656
2657 case DW_AT_ranges:
2658 if (!read_rangelist (unit, &unit->arange, attr.u.val))
2659 return NULL;
2660 break;
2661
2662 case DW_AT_comp_dir:
2663 {
2664 char *comp_dir = attr.u.str;
2665 if (comp_dir)
2666 {
2667 /* Irix 6.2 native cc prepends <machine>.: to the compilation
2668 directory, get rid of it. */
2669 char *cp = strchr (comp_dir, ':');
2670
2671 if (cp && cp != comp_dir && cp[-1] == '.' && cp[1] == '/')
2672 comp_dir = cp + 1;
2673 }
2674 unit->comp_dir = comp_dir;
2675 break;
2676 }
2677
2678 default:
2679 break;
2680 }
2681 }
2682 if (high_pc_relative)
2683 high_pc += low_pc;
2684 if (high_pc != 0)
2685 {
2686 if (!arange_add (unit, &unit->arange, low_pc, high_pc))
2687 return NULL;
2688 }
2689
2690 unit->first_child_die_ptr = info_ptr;
2691 return unit;
2692 }
2693
2694 /* Return TRUE if UNIT may contain the address given by ADDR. When
2695 there are functions written entirely with inline asm statements, the
2696 range info in the compilation unit header may not be correct. We
2697 need to consult the line info table to see if a compilation unit
2698 really contains the given address. */
2699
2700 static bfd_boolean
2701 comp_unit_contains_address (struct comp_unit *unit, bfd_vma addr)
2702 {
2703 struct arange *arange;
2704
2705 if (unit->error)
2706 return FALSE;
2707
2708 arange = &unit->arange;
2709 do
2710 {
2711 if (addr >= arange->low && addr < arange->high)
2712 return TRUE;
2713 arange = arange->next;
2714 }
2715 while (arange);
2716
2717 return FALSE;
2718 }
2719
2720 /* If UNIT contains ADDR, set the output parameters to the values for
2721 the line containing ADDR. The output parameters, FILENAME_PTR,
2722 FUNCTIONNAME_PTR, and LINENUMBER_PTR, are pointers to the objects
2723 to be filled in.
2724
2725 Returns the range of addresses covered by the entry that was used
2726 to fill in *LINENUMBER_PTR or 0 if it was not filled in. */
2727
2728 static bfd_vma
2729 comp_unit_find_nearest_line (struct comp_unit *unit,
2730 bfd_vma addr,
2731 const char **filename_ptr,
2732 const char **functionname_ptr,
2733 unsigned int *linenumber_ptr,
2734 unsigned int *discriminator_ptr,
2735 struct dwarf2_debug *stash)
2736 {
2737 bfd_boolean func_p;
2738 struct funcinfo *function;
2739
2740 if (unit->error)
2741 return FALSE;
2742
2743 if (! unit->line_table)
2744 {
2745 if (! unit->stmtlist)
2746 {
2747 unit->error = 1;
2748 return FALSE;
2749 }
2750
2751 unit->line_table = decode_line_info (unit, stash);
2752
2753 if (! unit->line_table)
2754 {
2755 unit->error = 1;
2756 return FALSE;
2757 }
2758
2759 if (unit->first_child_die_ptr < unit->end_ptr
2760 && ! scan_unit_for_symbols (unit))
2761 {
2762 unit->error = 1;
2763 return FALSE;
2764 }
2765 }
2766
2767 function = NULL;
2768 func_p = lookup_address_in_function_table (unit, addr,
2769 &function, functionname_ptr);
2770 if (func_p && (function->tag == DW_TAG_inlined_subroutine))
2771 stash->inliner_chain = function;
2772
2773 return lookup_address_in_line_info_table (unit->line_table, addr,
2774 filename_ptr,
2775 linenumber_ptr,
2776 discriminator_ptr);
2777 }
2778
2779 /* Check to see if line info is already decoded in a comp_unit.
2780 If not, decode it. Returns TRUE if no errors were encountered;
2781 FALSE otherwise. */
2782
2783 static bfd_boolean
2784 comp_unit_maybe_decode_line_info (struct comp_unit *unit,
2785 struct dwarf2_debug *stash)
2786 {
2787 if (unit->error)
2788 return FALSE;
2789
2790 if (! unit->line_table)
2791 {
2792 if (! unit->stmtlist)
2793 {
2794 unit->error = 1;
2795 return FALSE;
2796 }
2797
2798 unit->line_table = decode_line_info (unit, stash);
2799
2800 if (! unit->line_table)
2801 {
2802 unit->error = 1;
2803 return FALSE;
2804 }
2805
2806 if (unit->first_child_die_ptr < unit->end_ptr
2807 && ! scan_unit_for_symbols (unit))
2808 {
2809 unit->error = 1;
2810 return FALSE;
2811 }
2812 }
2813
2814 return TRUE;
2815 }
2816
2817 /* If UNIT contains SYM at ADDR, set the output parameters to the
2818 values for the line containing SYM. The output parameters,
2819 FILENAME_PTR, and LINENUMBER_PTR, are pointers to the objects to be
2820 filled in.
2821
2822 Return TRUE if UNIT contains SYM, and no errors were encountered;
2823 FALSE otherwise. */
2824
2825 static bfd_boolean
2826 comp_unit_find_line (struct comp_unit *unit,
2827 asymbol *sym,
2828 bfd_vma addr,
2829 const char **filename_ptr,
2830 unsigned int *linenumber_ptr,
2831 struct dwarf2_debug *stash)
2832 {
2833 if (!comp_unit_maybe_decode_line_info (unit, stash))
2834 return FALSE;
2835
2836 if (sym->flags & BSF_FUNCTION)
2837 return lookup_symbol_in_function_table (unit, sym, addr,
2838 filename_ptr,
2839 linenumber_ptr);
2840
2841 return lookup_symbol_in_variable_table (unit, sym, addr,
2842 filename_ptr,
2843 linenumber_ptr);
2844 }
2845
2846 static struct funcinfo *
2847 reverse_funcinfo_list (struct funcinfo *head)
2848 {
2849 struct funcinfo *rhead;
2850 struct funcinfo *temp;
2851
2852 for (rhead = NULL; head; head = temp)
2853 {
2854 temp = head->prev_func;
2855 head->prev_func = rhead;
2856 rhead = head;
2857 }
2858 return rhead;
2859 }
2860
2861 static struct varinfo *
2862 reverse_varinfo_list (struct varinfo *head)
2863 {
2864 struct varinfo *rhead;
2865 struct varinfo *temp;
2866
2867 for (rhead = NULL; head; head = temp)
2868 {
2869 temp = head->prev_var;
2870 head->prev_var = rhead;
2871 rhead = head;
2872 }
2873 return rhead;
2874 }
2875
2876 /* Extract all interesting funcinfos and varinfos of a compilation
2877 unit into hash tables for faster lookup. Returns TRUE if no
2878 errors were enountered; FALSE otherwise. */
2879
2880 static bfd_boolean
2881 comp_unit_hash_info (struct dwarf2_debug *stash,
2882 struct comp_unit *unit,
2883 struct info_hash_table *funcinfo_hash_table,
2884 struct info_hash_table *varinfo_hash_table)
2885 {
2886 struct funcinfo* each_func;
2887 struct varinfo* each_var;
2888 bfd_boolean okay = TRUE;
2889
2890 BFD_ASSERT (stash->info_hash_status != STASH_INFO_HASH_DISABLED);
2891
2892 if (!comp_unit_maybe_decode_line_info (unit, stash))
2893 return FALSE;
2894
2895 BFD_ASSERT (!unit->cached);
2896
2897 /* To preserve the original search order, we went to visit the function
2898 infos in the reversed order of the list. However, making the list
2899 bi-directional use quite a bit of extra memory. So we reverse
2900 the list first, traverse the list in the now reversed order and
2901 finally reverse the list again to get back the original order. */
2902 unit->function_table = reverse_funcinfo_list (unit->function_table);
2903 for (each_func = unit->function_table;
2904 each_func && okay;
2905 each_func = each_func->prev_func)
2906 {
2907 /* Skip nameless functions. */
2908 if (each_func->name)
2909 /* There is no need to copy name string into hash table as
2910 name string is either in the dwarf string buffer or
2911 info in the stash. */
2912 okay = insert_info_hash_table (funcinfo_hash_table, each_func->name,
2913 (void*) each_func, FALSE);
2914 }
2915 unit->function_table = reverse_funcinfo_list (unit->function_table);
2916 if (!okay)
2917 return FALSE;
2918
2919 /* We do the same for variable infos. */
2920 unit->variable_table = reverse_varinfo_list (unit->variable_table);
2921 for (each_var = unit->variable_table;
2922 each_var && okay;
2923 each_var = each_var->prev_var)
2924 {
2925 /* Skip stack vars and vars with no files or names. */
2926 if (each_var->stack == 0
2927 && each_var->file != NULL
2928 && each_var->name != NULL)
2929 /* There is no need to copy name string into hash table as
2930 name string is either in the dwarf string buffer or
2931 info in the stash. */
2932 okay = insert_info_hash_table (varinfo_hash_table, each_var->name,
2933 (void*) each_var, FALSE);
2934 }
2935
2936 unit->variable_table = reverse_varinfo_list (unit->variable_table);
2937 unit->cached = TRUE;
2938 return okay;
2939 }
2940
2941 /* Locate a section in a BFD containing debugging info. The search starts
2942 from the section after AFTER_SEC, or from the first section in the BFD if
2943 AFTER_SEC is NULL. The search works by examining the names of the
2944 sections. There are three permissiable names. The first two are given
2945 by DEBUG_SECTIONS[debug_info] (whose standard DWARF2 names are .debug_info
2946 and .zdebug_info). The third is a prefix .gnu.linkonce.wi.
2947 This is a variation on the .debug_info section which has a checksum
2948 describing the contents appended onto the name. This allows the linker to
2949 identify and discard duplicate debugging sections for different
2950 compilation units. */
2951 #define GNU_LINKONCE_INFO ".gnu.linkonce.wi."
2952
2953 static asection *
2954 find_debug_info (bfd *abfd, const struct dwarf_debug_section *debug_sections,
2955 asection *after_sec)
2956 {
2957 asection *msec;
2958 const char *look;
2959
2960 if (after_sec == NULL)
2961 {
2962 look = debug_sections[debug_info].uncompressed_name;
2963 msec = bfd_get_section_by_name (abfd, look);
2964 if (msec != NULL)
2965 return msec;
2966
2967 look = debug_sections[debug_info].compressed_name;
2968 if (look != NULL)
2969 {
2970 msec = bfd_get_section_by_name (abfd, look);
2971 if (msec != NULL)
2972 return msec;
2973 }
2974
2975 for (msec = abfd->sections; msec != NULL; msec = msec->next)
2976 if (CONST_STRNEQ (msec->name, GNU_LINKONCE_INFO))
2977 return msec;
2978
2979 return NULL;
2980 }
2981
2982 for (msec = after_sec->next; msec != NULL; msec = msec->next)
2983 {
2984 look = debug_sections[debug_info].uncompressed_name;
2985 if (strcmp (msec->name, look) == 0)
2986 return msec;
2987
2988 look = debug_sections[debug_info].compressed_name;
2989 if (look != NULL && strcmp (msec->name, look) == 0)
2990 return msec;
2991
2992 if (CONST_STRNEQ (msec->name, GNU_LINKONCE_INFO))
2993 return msec;
2994 }
2995
2996 return NULL;
2997 }
2998
2999 /* Transfer VMAs from object file to separate debug file. */
3000
3001 static void
3002 set_debug_vma (bfd *orig_bfd, bfd *debug_bfd)
3003 {
3004 asection *s, *d;
3005
3006 for (s = orig_bfd->sections, d = debug_bfd->sections;
3007 s != NULL && d != NULL;
3008 s = s->next, d = d->next)
3009 {
3010 if ((d->flags & SEC_DEBUGGING) != 0)
3011 break;
3012 /* ??? Assumes 1-1 correspondence between sections in the
3013 two files. */
3014 if (strcmp (s->name, d->name) == 0)
3015 {
3016 d->output_section = s->output_section;
3017 d->output_offset = s->output_offset;
3018 d->vma = s->vma;
3019 }
3020 }
3021 }
3022
3023 /* Unset vmas for adjusted sections in STASH. */
3024
3025 static void
3026 unset_sections (struct dwarf2_debug *stash)
3027 {
3028 int i;
3029 struct adjusted_section *p;
3030
3031 i = stash->adjusted_section_count;
3032 p = stash->adjusted_sections;
3033 for (; i > 0; i--, p++)
3034 p->section->vma = 0;
3035 }
3036
3037 /* Set VMAs for allocated and .debug_info sections in ORIG_BFD, a
3038 relocatable object file. VMAs are normally all zero in relocatable
3039 object files, so if we want to distinguish locations in sections by
3040 address we need to set VMAs so the sections do not overlap. We
3041 also set VMA on .debug_info so that when we have multiple
3042 .debug_info sections (or the linkonce variant) they also do not
3043 overlap. The multiple .debug_info sections make up a single
3044 logical section. ??? We should probably do the same for other
3045 debug sections. */
3046
3047 static bfd_boolean
3048 place_sections (bfd *orig_bfd, struct dwarf2_debug *stash)
3049 {
3050 bfd *abfd;
3051 struct adjusted_section *p;
3052 int i;
3053 const char *debug_info_name;
3054
3055 if (stash->adjusted_section_count != 0)
3056 {
3057 i = stash->adjusted_section_count;
3058 p = stash->adjusted_sections;
3059 for (; i > 0; i--, p++)
3060 p->section->vma = p->adj_vma;
3061 return TRUE;
3062 }
3063
3064 debug_info_name = stash->debug_sections[debug_info].uncompressed_name;
3065 i = 0;
3066 abfd = orig_bfd;
3067 while (1)
3068 {
3069 asection *sect;
3070
3071 for (sect = abfd->sections; sect != NULL; sect = sect->next)
3072 {
3073 int is_debug_info;
3074
3075 if ((sect->output_section != NULL
3076 && sect->output_section != sect
3077 && (sect->flags & SEC_DEBUGGING) == 0)
3078 || sect->vma != 0)
3079 continue;
3080
3081 is_debug_info = (strcmp (sect->name, debug_info_name) == 0
3082 || CONST_STRNEQ (sect->name, GNU_LINKONCE_INFO));
3083
3084 if (!((sect->flags & SEC_ALLOC) != 0 && abfd == orig_bfd)
3085 && !is_debug_info)
3086 continue;
3087
3088 i++;
3089 }
3090 if (abfd == stash->bfd_ptr)
3091 break;
3092 abfd = stash->bfd_ptr;
3093 }
3094
3095 if (i <= 1)
3096 stash->adjusted_section_count = -1;
3097 else
3098 {
3099 bfd_vma last_vma = 0, last_dwarf = 0;
3100 bfd_size_type amt = i * sizeof (struct adjusted_section);
3101
3102 p = (struct adjusted_section *) bfd_malloc (amt);
3103 if (p == NULL)
3104 return FALSE;
3105
3106 stash->adjusted_sections = p;
3107 stash->adjusted_section_count = i;
3108
3109 abfd = orig_bfd;
3110 while (1)
3111 {
3112 asection *sect;
3113
3114 for (sect = abfd->sections; sect != NULL; sect = sect->next)
3115 {
3116 bfd_size_type sz;
3117 int is_debug_info;
3118
3119 if ((sect->output_section != NULL
3120 && sect->output_section != sect
3121 && (sect->flags & SEC_DEBUGGING) == 0)
3122 || sect->vma != 0)
3123 continue;
3124
3125 is_debug_info = (strcmp (sect->name, debug_info_name) == 0
3126 || CONST_STRNEQ (sect->name, GNU_LINKONCE_INFO));
3127
3128 if (!((sect->flags & SEC_ALLOC) != 0 && abfd == orig_bfd)
3129 && !is_debug_info)
3130 continue;
3131
3132 sz = sect->rawsize ? sect->rawsize : sect->size;
3133
3134 if (is_debug_info)
3135 {
3136 BFD_ASSERT (sect->alignment_power == 0);
3137 sect->vma = last_dwarf;
3138 last_dwarf += sz;
3139 }
3140 else
3141 {
3142 /* Align the new address to the current section
3143 alignment. */
3144 last_vma = ((last_vma
3145 + ~((bfd_vma) -1 << sect->alignment_power))
3146 & ((bfd_vma) -1 << sect->alignment_power));
3147 sect->vma = last_vma;
3148 last_vma += sz;
3149 }
3150
3151 p->section = sect;
3152 p->adj_vma = sect->vma;
3153 p++;
3154 }
3155 if (abfd == stash->bfd_ptr)
3156 break;
3157 abfd = stash->bfd_ptr;
3158 }
3159 }
3160
3161 if (orig_bfd != stash->bfd_ptr)
3162 set_debug_vma (orig_bfd, stash->bfd_ptr);
3163
3164 return TRUE;
3165 }
3166
3167 /* Look up a funcinfo by name using the given info hash table. If found,
3168 also update the locations pointed to by filename_ptr and linenumber_ptr.
3169
3170 This function returns TRUE if a funcinfo that matches the given symbol
3171 and address is found with any error; otherwise it returns FALSE. */
3172
3173 static bfd_boolean
3174 info_hash_lookup_funcinfo (struct info_hash_table *hash_table,
3175 asymbol *sym,
3176 bfd_vma addr,
3177 const char **filename_ptr,
3178 unsigned int *linenumber_ptr)
3179 {
3180 struct funcinfo* each_func;
3181 struct funcinfo* best_fit = NULL;
3182 bfd_vma best_fit_len = 0;
3183 struct info_list_node *node;
3184 struct arange *arange;
3185 const char *name = bfd_asymbol_name (sym);
3186 asection *sec = bfd_get_section (sym);
3187
3188 for (node = lookup_info_hash_table (hash_table, name);
3189 node;
3190 node = node->next)
3191 {
3192 each_func = (struct funcinfo *) node->info;
3193 for (arange = &each_func->arange;
3194 arange;
3195 arange = arange->next)
3196 {
3197 if ((!each_func->sec || each_func->sec == sec)
3198 && addr >= arange->low
3199 && addr < arange->high
3200 && (!best_fit
3201 || arange->high - arange->low < best_fit_len))
3202 {
3203 best_fit = each_func;
3204 best_fit_len = arange->high - arange->low;
3205 }
3206 }
3207 }
3208
3209 if (best_fit)
3210 {
3211 best_fit->sec = sec;
3212 *filename_ptr = best_fit->file;
3213 *linenumber_ptr = best_fit->line;
3214 return TRUE;
3215 }
3216
3217 return FALSE;
3218 }
3219
3220 /* Look up a varinfo by name using the given info hash table. If found,
3221 also update the locations pointed to by filename_ptr and linenumber_ptr.
3222
3223 This function returns TRUE if a varinfo that matches the given symbol
3224 and address is found with any error; otherwise it returns FALSE. */
3225
3226 static bfd_boolean
3227 info_hash_lookup_varinfo (struct info_hash_table *hash_table,
3228 asymbol *sym,
3229 bfd_vma addr,
3230 const char **filename_ptr,
3231 unsigned int *linenumber_ptr)
3232 {
3233 const char *name = bfd_asymbol_name (sym);
3234 asection *sec = bfd_get_section (sym);
3235 struct varinfo* each;
3236 struct info_list_node *node;
3237
3238 for (node = lookup_info_hash_table (hash_table, name);
3239 node;
3240 node = node->next)
3241 {
3242 each = (struct varinfo *) node->info;
3243 if (each->addr == addr
3244 && (!each->sec || each->sec == sec))
3245 {
3246 each->sec = sec;
3247 *filename_ptr = each->file;
3248 *linenumber_ptr = each->line;
3249 return TRUE;
3250 }
3251 }
3252
3253 return FALSE;
3254 }
3255
3256 /* Update the funcinfo and varinfo info hash tables if they are
3257 not up to date. Returns TRUE if there is no error; otherwise
3258 returns FALSE and disable the info hash tables. */
3259
3260 static bfd_boolean
3261 stash_maybe_update_info_hash_tables (struct dwarf2_debug *stash)
3262 {
3263 struct comp_unit *each;
3264
3265 /* Exit if hash tables are up-to-date. */
3266 if (stash->all_comp_units == stash->hash_units_head)
3267 return TRUE;
3268
3269 if (stash->hash_units_head)
3270 each = stash->hash_units_head->prev_unit;
3271 else
3272 each = stash->last_comp_unit;
3273
3274 while (each)
3275 {
3276 if (!comp_unit_hash_info (stash, each, stash->funcinfo_hash_table,
3277 stash->varinfo_hash_table))
3278 {
3279 stash->info_hash_status = STASH_INFO_HASH_DISABLED;
3280 return FALSE;
3281 }
3282 each = each->prev_unit;
3283 }
3284
3285 stash->hash_units_head = stash->all_comp_units;
3286 return TRUE;
3287 }
3288
3289 /* Check consistency of info hash tables. This is for debugging only. */
3290
3291 static void ATTRIBUTE_UNUSED
3292 stash_verify_info_hash_table (struct dwarf2_debug *stash)
3293 {
3294 struct comp_unit *each_unit;
3295 struct funcinfo *each_func;
3296 struct varinfo *each_var;
3297 struct info_list_node *node;
3298 bfd_boolean found;
3299
3300 for (each_unit = stash->all_comp_units;
3301 each_unit;
3302 each_unit = each_unit->next_unit)
3303 {
3304 for (each_func = each_unit->function_table;
3305 each_func;
3306 each_func = each_func->prev_func)
3307 {
3308 if (!each_func->name)
3309 continue;
3310 node = lookup_info_hash_table (stash->funcinfo_hash_table,
3311 each_func->name);
3312 BFD_ASSERT (node);
3313 found = FALSE;
3314 while (node && !found)
3315 {
3316 found = node->info == each_func;
3317 node = node->next;
3318 }
3319 BFD_ASSERT (found);
3320 }
3321
3322 for (each_var = each_unit->variable_table;
3323 each_var;
3324 each_var = each_var->prev_var)
3325 {
3326 if (!each_var->name || !each_var->file || each_var->stack)
3327 continue;
3328 node = lookup_info_hash_table (stash->varinfo_hash_table,
3329 each_var->name);
3330 BFD_ASSERT (node);
3331 found = FALSE;
3332 while (node && !found)
3333 {
3334 found = node->info == each_var;
3335 node = node->next;
3336 }
3337 BFD_ASSERT (found);
3338 }
3339 }
3340 }
3341
3342 /* Check to see if we want to enable the info hash tables, which consume
3343 quite a bit of memory. Currently we only check the number times
3344 bfd_dwarf2_find_line is called. In the future, we may also want to
3345 take the number of symbols into account. */
3346
3347 static void
3348 stash_maybe_enable_info_hash_tables (bfd *abfd, struct dwarf2_debug *stash)
3349 {
3350 BFD_ASSERT (stash->info_hash_status == STASH_INFO_HASH_OFF);
3351
3352 if (stash->info_hash_count++ < STASH_INFO_HASH_TRIGGER)
3353 return;
3354
3355 /* FIXME: Maybe we should check the reduce_memory_overheads
3356 and optimize fields in the bfd_link_info structure ? */
3357
3358 /* Create hash tables. */
3359 stash->funcinfo_hash_table = create_info_hash_table (abfd);
3360 stash->varinfo_hash_table = create_info_hash_table (abfd);
3361 if (!stash->funcinfo_hash_table || !stash->varinfo_hash_table)
3362 {
3363 /* Turn off info hashes if any allocation above fails. */
3364 stash->info_hash_status = STASH_INFO_HASH_DISABLED;
3365 return;
3366 }
3367 /* We need a forced update so that the info hash tables will
3368 be created even though there is no compilation unit. That
3369 happens if STASH_INFO_HASH_TRIGGER is 0. */
3370 stash_maybe_update_info_hash_tables (stash);
3371 stash->info_hash_status = STASH_INFO_HASH_ON;
3372 }
3373
3374 /* Find the file and line associated with a symbol and address using the
3375 info hash tables of a stash. If there is a match, the function returns
3376 TRUE and update the locations pointed to by filename_ptr and linenumber_ptr;
3377 otherwise it returns FALSE. */
3378
3379 static bfd_boolean
3380 stash_find_line_fast (struct dwarf2_debug *stash,
3381 asymbol *sym,
3382 bfd_vma addr,
3383 const char **filename_ptr,
3384 unsigned int *linenumber_ptr)
3385 {
3386 BFD_ASSERT (stash->info_hash_status == STASH_INFO_HASH_ON);
3387
3388 if (sym->flags & BSF_FUNCTION)
3389 return info_hash_lookup_funcinfo (stash->funcinfo_hash_table, sym, addr,
3390 filename_ptr, linenumber_ptr);
3391 return info_hash_lookup_varinfo (stash->varinfo_hash_table, sym, addr,
3392 filename_ptr, linenumber_ptr);
3393 }
3394
3395 /* Save current section VMAs. */
3396
3397 static bfd_boolean
3398 save_section_vma (const bfd *abfd, struct dwarf2_debug *stash)
3399 {
3400 asection *s;
3401 unsigned int i;
3402
3403 if (abfd->section_count == 0)
3404 return TRUE;
3405 stash->sec_vma = bfd_malloc (sizeof (*stash->sec_vma) * abfd->section_count);
3406 if (stash->sec_vma == NULL)
3407 return FALSE;
3408 for (i = 0, s = abfd->sections; i < abfd->section_count; i++, s = s->next)
3409 {
3410 if (s->output_section != NULL)
3411 stash->sec_vma[i] = s->output_section->vma + s->output_offset;
3412 else
3413 stash->sec_vma[i] = s->vma;
3414 }
3415 return TRUE;
3416 }
3417
3418 /* Compare current section VMAs against those at the time the stash
3419 was created. If find_nearest_line is used in linker warnings or
3420 errors early in the link process, the debug info stash will be
3421 invalid for later calls. This is because we relocate debug info
3422 sections, so the stashed section contents depend on symbol values,
3423 which in turn depend on section VMAs. */
3424
3425 static bfd_boolean
3426 section_vma_same (const bfd *abfd, const struct dwarf2_debug *stash)
3427 {
3428 asection *s;
3429 unsigned int i;
3430
3431 for (i = 0, s = abfd->sections; i < abfd->section_count; i++, s = s->next)
3432 {
3433 bfd_vma vma;
3434
3435 if (s->output_section != NULL)
3436 vma = s->output_section->vma + s->output_offset;
3437 else
3438 vma = s->vma;
3439 if (vma != stash->sec_vma[i])
3440 return FALSE;
3441 }
3442 return TRUE;
3443 }
3444
3445 /* Read debug information from DEBUG_BFD when DEBUG_BFD is specified.
3446 If DEBUG_BFD is not specified, we read debug information from ABFD
3447 or its gnu_debuglink. The results will be stored in PINFO.
3448 The function returns TRUE iff debug information is ready. */
3449
3450 bfd_boolean
3451 _bfd_dwarf2_slurp_debug_info (bfd *abfd, bfd *debug_bfd,
3452 const struct dwarf_debug_section *debug_sections,
3453 asymbol **symbols,
3454 void **pinfo,
3455 bfd_boolean do_place)
3456 {
3457 bfd_size_type amt = sizeof (struct dwarf2_debug);
3458 bfd_size_type total_size;
3459 asection *msec;
3460 struct dwarf2_debug *stash = (struct dwarf2_debug *) *pinfo;
3461
3462 if (stash != NULL)
3463 {
3464 if (section_vma_same (abfd, stash))
3465 return TRUE;
3466 _bfd_dwarf2_cleanup_debug_info (abfd, pinfo);
3467 memset (stash, 0, amt);
3468 }
3469 else
3470 {
3471 stash = (struct dwarf2_debug *) bfd_zalloc (abfd, amt);
3472 if (! stash)
3473 return FALSE;
3474 }
3475 stash->debug_sections = debug_sections;
3476 stash->syms = symbols;
3477 if (!save_section_vma (abfd, stash))
3478 return FALSE;
3479
3480 *pinfo = stash;
3481
3482 if (debug_bfd == NULL)
3483 debug_bfd = abfd;
3484
3485 msec = find_debug_info (debug_bfd, debug_sections, NULL);
3486 if (msec == NULL && abfd == debug_bfd)
3487 {
3488 char * debug_filename = bfd_follow_gnu_debuglink (abfd, DEBUGDIR);
3489
3490 if (debug_filename == NULL)
3491 /* No dwarf2 info, and no gnu_debuglink to follow.
3492 Note that at this point the stash has been allocated, but
3493 contains zeros. This lets future calls to this function
3494 fail more quickly. */
3495 return FALSE;
3496
3497 if ((debug_bfd = bfd_openr (debug_filename, NULL)) == NULL
3498 || ! bfd_check_format (debug_bfd, bfd_object)
3499 || (msec = find_debug_info (debug_bfd,
3500 debug_sections, NULL)) == NULL
3501 || !bfd_generic_link_read_symbols (debug_bfd))
3502 {
3503 if (debug_bfd)
3504 bfd_close (debug_bfd);
3505 /* FIXME: Should we report our failure to follow the debuglink ? */
3506 free (debug_filename);
3507 return FALSE;
3508 }
3509
3510 symbols = bfd_get_outsymbols (debug_bfd);
3511 stash->syms = symbols;
3512 stash->close_on_cleanup = TRUE;
3513 }
3514 stash->bfd_ptr = debug_bfd;
3515
3516 if (do_place
3517 && !place_sections (abfd, stash))
3518 return FALSE;
3519
3520 /* There can be more than one DWARF2 info section in a BFD these
3521 days. First handle the easy case when there's only one. If
3522 there's more than one, try case two: none of the sections is
3523 compressed. In that case, read them all in and produce one
3524 large stash. We do this in two passes - in the first pass we
3525 just accumulate the section sizes, and in the second pass we
3526 read in the section's contents. (The allows us to avoid
3527 reallocing the data as we add sections to the stash.) If
3528 some or all sections are compressed, then do things the slow
3529 way, with a bunch of reallocs. */
3530
3531 if (! find_debug_info (debug_bfd, debug_sections, msec))
3532 {
3533 /* Case 1: only one info section. */
3534 total_size = msec->size;
3535 if (! read_section (debug_bfd, &stash->debug_sections[debug_info],
3536 symbols, 0,
3537 &stash->info_ptr_memory, &total_size))
3538 return FALSE;
3539 }
3540 else
3541 {
3542 /* Case 2: multiple sections. */
3543 for (total_size = 0;
3544 msec;
3545 msec = find_debug_info (debug_bfd, debug_sections, msec))
3546 total_size += msec->size;
3547
3548 stash->info_ptr_memory = (bfd_byte *) bfd_malloc (total_size);
3549 if (stash->info_ptr_memory == NULL)
3550 return FALSE;
3551
3552 total_size = 0;
3553 for (msec = find_debug_info (debug_bfd, debug_sections, NULL);
3554 msec;
3555 msec = find_debug_info (debug_bfd, debug_sections, msec))
3556 {
3557 bfd_size_type size;
3558
3559 size = msec->size;
3560 if (size == 0)
3561 continue;
3562
3563 if (!(bfd_simple_get_relocated_section_contents
3564 (debug_bfd, msec, stash->info_ptr_memory + total_size,
3565 symbols)))
3566 return FALSE;
3567
3568 total_size += size;
3569 }
3570 }
3571
3572 stash->info_ptr = stash->info_ptr_memory;
3573 stash->info_ptr_end = stash->info_ptr + total_size;
3574 stash->sec = find_debug_info (debug_bfd, debug_sections, NULL);
3575 stash->sec_info_ptr = stash->info_ptr;
3576 return TRUE;
3577 }
3578
3579 /* Find the source code location of SYMBOL. If SYMBOL is NULL
3580 then find the nearest source code location corresponding to
3581 the address SECTION + OFFSET.
3582 Returns TRUE if the line is found without error and fills in
3583 FILENAME_PTR and LINENUMBER_PTR. In the case where SYMBOL was
3584 NULL the FUNCTIONNAME_PTR is also filled in.
3585 SYMBOLS contains the symbol table for ABFD.
3586 DEBUG_SECTIONS contains the name of the dwarf debug sections.
3587 ADDR_SIZE is the number of bytes in the initial .debug_info length
3588 field and in the abbreviation offset, or zero to indicate that the
3589 default value should be used. */
3590
3591 static bfd_boolean
3592 find_line (bfd *abfd,
3593 const struct dwarf_debug_section *debug_sections,
3594 asection *section,
3595 bfd_vma offset,
3596 asymbol *symbol,
3597 asymbol **symbols,
3598 const char **filename_ptr,
3599 const char **functionname_ptr,
3600 unsigned int *linenumber_ptr,
3601 unsigned int *discriminator_ptr,
3602 unsigned int addr_size,
3603 void **pinfo)
3604 {
3605 /* Read each compilation unit from the section .debug_info, and check
3606 to see if it contains the address we are searching for. If yes,
3607 lookup the address, and return the line number info. If no, go
3608 on to the next compilation unit.
3609
3610 We keep a list of all the previously read compilation units, and
3611 a pointer to the next un-read compilation unit. Check the
3612 previously read units before reading more. */
3613 struct dwarf2_debug *stash;
3614 /* What address are we looking for? */
3615 bfd_vma addr;
3616 struct comp_unit* each;
3617 bfd_boolean found = FALSE;
3618 bfd_boolean do_line;
3619
3620 *filename_ptr = NULL;
3621 if (functionname_ptr != NULL)
3622 *functionname_ptr = NULL;
3623 *linenumber_ptr = 0;
3624 if (discriminator_ptr)
3625 *discriminator_ptr = 0;
3626
3627 if (! _bfd_dwarf2_slurp_debug_info (abfd, NULL, debug_sections,
3628 symbols, pinfo,
3629 (abfd->flags & (EXEC_P | DYNAMIC)) == 0))
3630 return FALSE;
3631
3632 stash = (struct dwarf2_debug *) *pinfo;
3633
3634 do_line = (section == NULL
3635 && offset == 0
3636 && functionname_ptr == NULL
3637 && symbol != NULL);
3638 if (do_line)
3639 {
3640 addr = symbol->value;
3641 section = bfd_get_section (symbol);
3642 }
3643 else if (section != NULL
3644 && functionname_ptr != NULL
3645 && symbol == NULL)
3646 addr = offset;
3647 else
3648 abort ();
3649
3650 if (section->output_section)
3651 addr += section->output_section->vma + section->output_offset;
3652 else
3653 addr += section->vma;
3654
3655 /* A null info_ptr indicates that there is no dwarf2 info
3656 (or that an error occured while setting up the stash). */
3657 if (! stash->info_ptr)
3658 return FALSE;
3659
3660 stash->inliner_chain = NULL;
3661
3662 /* Check the previously read comp. units first. */
3663 if (do_line)
3664 {
3665 /* The info hash tables use quite a bit of memory. We may not want to
3666 always use them. We use some heuristics to decide if and when to
3667 turn it on. */
3668 if (stash->info_hash_status == STASH_INFO_HASH_OFF)
3669 stash_maybe_enable_info_hash_tables (abfd, stash);
3670
3671 /* Keep info hash table up to date if they are available. Note that we
3672 may disable the hash tables if there is any error duing update. */
3673 if (stash->info_hash_status == STASH_INFO_HASH_ON)
3674 stash_maybe_update_info_hash_tables (stash);
3675
3676 if (stash->info_hash_status == STASH_INFO_HASH_ON)
3677 {
3678 found = stash_find_line_fast (stash, symbol, addr, filename_ptr,
3679 linenumber_ptr);
3680 if (found)
3681 goto done;
3682 }
3683 else
3684 {
3685 /* Check the previously read comp. units first. */
3686 for (each = stash->all_comp_units; each; each = each->next_unit)
3687 if ((symbol->flags & BSF_FUNCTION) == 0
3688 || each->arange.high == 0
3689 || comp_unit_contains_address (each, addr))
3690 {
3691 found = comp_unit_find_line (each, symbol, addr, filename_ptr,
3692 linenumber_ptr, stash);
3693 if (found)
3694 goto done;
3695 }
3696 }
3697 }
3698 else
3699 {
3700 bfd_vma min_range = (bfd_vma) -1;
3701 const char * local_filename = NULL;
3702 const char * local_functionname = NULL;
3703 unsigned int local_linenumber = 0;
3704 unsigned int local_discriminator = 0;
3705
3706 for (each = stash->all_comp_units; each; each = each->next_unit)
3707 {
3708 bfd_vma range = (bfd_vma) -1;
3709
3710 found = ((each->arange.high == 0
3711 || comp_unit_contains_address (each, addr))
3712 && (range = comp_unit_find_nearest_line (each, addr,
3713 & local_filename,
3714 & local_functionname,
3715 & local_linenumber,
3716 & local_discriminator,
3717 stash)) != 0);
3718 if (found)
3719 {
3720 /* PRs 15935 15994: Bogus debug information may have provided us
3721 with an erroneous match. We attempt to counter this by
3722 selecting the match that has the smallest address range
3723 associated with it. (We are assuming that corrupt debug info
3724 will tend to result in extra large address ranges rather than
3725 extra small ranges).
3726
3727 This does mean that we scan through all of the CUs associated
3728 with the bfd each time this function is called. But this does
3729 have the benefit of producing consistent results every time the
3730 function is called. */
3731 if (range <= min_range)
3732 {
3733 if (filename_ptr && local_filename)
3734 * filename_ptr = local_filename;
3735 if (functionname_ptr && local_functionname)
3736 * functionname_ptr = local_functionname;
3737 if (discriminator_ptr && local_discriminator)
3738 * discriminator_ptr = local_discriminator;
3739 if (local_linenumber)
3740 * linenumber_ptr = local_linenumber;
3741 min_range = range;
3742 }
3743 }
3744 }
3745
3746 if (* linenumber_ptr)
3747 {
3748 found = TRUE;
3749 goto done;
3750 }
3751 }
3752
3753 /* The DWARF2 spec says that the initial length field, and the
3754 offset of the abbreviation table, should both be 4-byte values.
3755 However, some compilers do things differently. */
3756 if (addr_size == 0)
3757 addr_size = 4;
3758 BFD_ASSERT (addr_size == 4 || addr_size == 8);
3759
3760 /* Read each remaining comp. units checking each as they are read. */
3761 while (stash->info_ptr < stash->info_ptr_end)
3762 {
3763 bfd_vma length;
3764 unsigned int offset_size = addr_size;
3765 bfd_byte *info_ptr_unit = stash->info_ptr;
3766
3767 length = read_4_bytes (stash->bfd_ptr, stash->info_ptr);
3768 /* A 0xffffff length is the DWARF3 way of indicating
3769 we use 64-bit offsets, instead of 32-bit offsets. */
3770 if (length == 0xffffffff)
3771 {
3772 offset_size = 8;
3773 length = read_8_bytes (stash->bfd_ptr, stash->info_ptr + 4);
3774 stash->info_ptr += 12;
3775 }
3776 /* A zero length is the IRIX way of indicating 64-bit offsets,
3777 mostly because the 64-bit length will generally fit in 32
3778 bits, and the endianness helps. */
3779 else if (length == 0)
3780 {
3781 offset_size = 8;
3782 length = read_4_bytes (stash->bfd_ptr, stash->info_ptr + 4);
3783 stash->info_ptr += 8;
3784 }
3785 /* In the absence of the hints above, we assume 32-bit DWARF2
3786 offsets even for targets with 64-bit addresses, because:
3787 a) most of the time these targets will not have generated
3788 more than 2Gb of debug info and so will not need 64-bit
3789 offsets,
3790 and
3791 b) if they do use 64-bit offsets but they are not using
3792 the size hints that are tested for above then they are
3793 not conforming to the DWARF3 standard anyway. */
3794 else if (addr_size == 8)
3795 {
3796 offset_size = 4;
3797 stash->info_ptr += 4;
3798 }
3799 else
3800 stash->info_ptr += 4;
3801
3802 if (length > 0)
3803 {
3804 each = parse_comp_unit (stash, length, info_ptr_unit,
3805 offset_size);
3806 if (!each)
3807 /* The dwarf information is damaged, don't trust it any
3808 more. */
3809 break;
3810 stash->info_ptr += length;
3811
3812 if (stash->all_comp_units)
3813 stash->all_comp_units->prev_unit = each;
3814 else
3815 stash->last_comp_unit = each;
3816
3817 each->next_unit = stash->all_comp_units;
3818 stash->all_comp_units = each;
3819
3820 /* DW_AT_low_pc and DW_AT_high_pc are optional for
3821 compilation units. If we don't have them (i.e.,
3822 unit->high == 0), we need to consult the line info table
3823 to see if a compilation unit contains the given
3824 address. */
3825 if (do_line)
3826 found = (((symbol->flags & BSF_FUNCTION) == 0
3827 || each->arange.high == 0
3828 || comp_unit_contains_address (each, addr))
3829 && comp_unit_find_line (each, symbol, addr,
3830 filename_ptr,
3831 linenumber_ptr,
3832 stash));
3833 else
3834 found = ((each->arange.high == 0
3835 || comp_unit_contains_address (each, addr))
3836 && comp_unit_find_nearest_line (each, addr,
3837 filename_ptr,
3838 functionname_ptr,
3839 linenumber_ptr,
3840 discriminator_ptr,
3841 stash)) > 0;
3842
3843 if ((bfd_vma) (stash->info_ptr - stash->sec_info_ptr)
3844 == stash->sec->size)
3845 {
3846 stash->sec = find_debug_info (stash->bfd_ptr, debug_sections,
3847 stash->sec);
3848 stash->sec_info_ptr = stash->info_ptr;
3849 }
3850
3851 if (found)
3852 goto done;
3853 }
3854 }
3855
3856 done:
3857 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0)
3858 unset_sections (stash);
3859
3860 return found;
3861 }
3862
3863 /* The DWARF2 version of find_nearest_line.
3864 Return TRUE if the line is found without error. */
3865
3866 bfd_boolean
3867 _bfd_dwarf2_find_nearest_line (bfd *abfd,
3868 const struct dwarf_debug_section *debug_sections,
3869 asection *section,
3870 asymbol **symbols,
3871 bfd_vma offset,
3872 const char **filename_ptr,
3873 const char **functionname_ptr,
3874 unsigned int *linenumber_ptr,
3875 unsigned int *discriminator_ptr,
3876 unsigned int addr_size,
3877 void **pinfo)
3878 {
3879 return find_line (abfd, debug_sections, section, offset, NULL, symbols,
3880 filename_ptr, functionname_ptr, linenumber_ptr,
3881 discriminator_ptr, addr_size, pinfo);
3882 }
3883
3884 /* The DWARF2 version of find_line.
3885 Return TRUE if the line is found without error. */
3886
3887 bfd_boolean
3888 _bfd_dwarf2_find_line (bfd *abfd,
3889 asymbol **symbols,
3890 asymbol *symbol,
3891 const char **filename_ptr,
3892 unsigned int *linenumber_ptr,
3893 unsigned int *discriminator_ptr,
3894 unsigned int addr_size,
3895 void **pinfo)
3896 {
3897 return find_line (abfd, dwarf_debug_sections, NULL, 0, symbol, symbols,
3898 filename_ptr, NULL, linenumber_ptr, discriminator_ptr,
3899 addr_size, pinfo);
3900 }
3901
3902 bfd_boolean
3903 _bfd_dwarf2_find_inliner_info (bfd *abfd ATTRIBUTE_UNUSED,
3904 const char **filename_ptr,
3905 const char **functionname_ptr,
3906 unsigned int *linenumber_ptr,
3907 void **pinfo)
3908 {
3909 struct dwarf2_debug *stash;
3910
3911 stash = (struct dwarf2_debug *) *pinfo;
3912 if (stash)
3913 {
3914 struct funcinfo *func = stash->inliner_chain;
3915
3916 if (func && func->caller_func)
3917 {
3918 *filename_ptr = func->caller_file;
3919 *functionname_ptr = func->caller_func->name;
3920 *linenumber_ptr = func->caller_line;
3921 stash->inliner_chain = func->caller_func;
3922 return TRUE;
3923 }
3924 }
3925
3926 return FALSE;
3927 }
3928
3929 void
3930 _bfd_dwarf2_cleanup_debug_info (bfd *abfd, void **pinfo)
3931 {
3932 struct dwarf2_debug *stash = (struct dwarf2_debug *) *pinfo;
3933 struct comp_unit *each;
3934
3935 if (abfd == NULL || stash == NULL)
3936 return;
3937
3938 for (each = stash->all_comp_units; each; each = each->next_unit)
3939 {
3940 struct abbrev_info **abbrevs = each->abbrevs;
3941 struct funcinfo *function_table = each->function_table;
3942 struct varinfo *variable_table = each->variable_table;
3943 size_t i;
3944
3945 for (i = 0; i < ABBREV_HASH_SIZE; i++)
3946 {
3947 struct abbrev_info *abbrev = abbrevs[i];
3948
3949 while (abbrev)
3950 {
3951 free (abbrev->attrs);
3952 abbrev = abbrev->next;
3953 }
3954 }
3955
3956 if (each->line_table)
3957 {
3958 free (each->line_table->dirs);
3959 free (each->line_table->files);
3960 }
3961
3962 while (function_table)
3963 {
3964 if (function_table->file)
3965 {
3966 free (function_table->file);
3967 function_table->file = NULL;
3968 }
3969
3970 if (function_table->caller_file)
3971 {
3972 free (function_table->caller_file);
3973 function_table->caller_file = NULL;
3974 }
3975 function_table = function_table->prev_func;
3976 }
3977
3978 while (variable_table)
3979 {
3980 if (variable_table->file)
3981 {
3982 free (variable_table->file);
3983 variable_table->file = NULL;
3984 }
3985
3986 variable_table = variable_table->prev_var;
3987 }
3988 }
3989
3990 if (stash->dwarf_abbrev_buffer)
3991 free (stash->dwarf_abbrev_buffer);
3992 if (stash->dwarf_line_buffer)
3993 free (stash->dwarf_line_buffer);
3994 if (stash->dwarf_str_buffer)
3995 free (stash->dwarf_str_buffer);
3996 if (stash->dwarf_ranges_buffer)
3997 free (stash->dwarf_ranges_buffer);
3998 if (stash->info_ptr_memory)
3999 free (stash->info_ptr_memory);
4000 if (stash->close_on_cleanup)
4001 bfd_close (stash->bfd_ptr);
4002 if (stash->alt_dwarf_str_buffer)
4003 free (stash->alt_dwarf_str_buffer);
4004 if (stash->alt_dwarf_info_buffer)
4005 free (stash->alt_dwarf_info_buffer);
4006 if (stash->sec_vma)
4007 free (stash->sec_vma);
4008 if (stash->adjusted_sections)
4009 free (stash->adjusted_sections);
4010 if (stash->alt_bfd_ptr)
4011 bfd_close (stash->alt_bfd_ptr);
4012 }
This page took 0.204356 seconds and 3 git commands to generate.