daily update
[deliverable/binutils-gdb.git] / bfd / dwarf2.c
1 /* DWARF 2 support.
2 Copyright 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003,
3 2004, 2005, 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
4
5 Adapted from gdb/dwarf2read.c by Gavin Koch of Cygnus Solutions
6 (gavin@cygnus.com).
7
8 From the dwarf2read.c header:
9 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
10 Inc. with support from Florida State University (under contract
11 with the Ada Joint Program Office), and Silicon Graphics, Inc.
12 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
13 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
14 support in dwarfread.c
15
16 This file is part of BFD.
17
18 This program is free software; you can redistribute it and/or modify
19 it under the terms of the GNU General Public License as published by
20 the Free Software Foundation; either version 3 of the License, or (at
21 your option) any later version.
22
23 This program is distributed in the hope that it will be useful, but
24 WITHOUT ANY WARRANTY; without even the implied warranty of
25 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
26 General Public License for more details.
27
28 You should have received a copy of the GNU General Public License
29 along with this program; if not, write to the Free Software
30 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
31 MA 02110-1301, USA. */
32
33 #include "sysdep.h"
34 #include "bfd.h"
35 #include "libiberty.h"
36 #include "libbfd.h"
37 #include "elf-bfd.h"
38 #include "dwarf2.h"
39
40 /* The data in the .debug_line statement prologue looks like this. */
41
42 struct line_head
43 {
44 bfd_vma total_length;
45 unsigned short version;
46 bfd_vma prologue_length;
47 unsigned char minimum_instruction_length;
48 unsigned char maximum_ops_per_insn;
49 unsigned char default_is_stmt;
50 int line_base;
51 unsigned char line_range;
52 unsigned char opcode_base;
53 unsigned char *standard_opcode_lengths;
54 };
55
56 /* Attributes have a name and a value. */
57
58 struct attribute
59 {
60 enum dwarf_attribute name;
61 enum dwarf_form form;
62 union
63 {
64 char *str;
65 struct dwarf_block *blk;
66 bfd_uint64_t val;
67 bfd_int64_t sval;
68 }
69 u;
70 };
71
72 /* Blocks are a bunch of untyped bytes. */
73 struct dwarf_block
74 {
75 unsigned int size;
76 bfd_byte *data;
77 };
78
79 struct adjusted_section
80 {
81 asection *section;
82 bfd_vma adj_vma;
83 };
84
85 struct dwarf2_debug
86 {
87 /* A list of all previously read comp_units. */
88 struct comp_unit *all_comp_units;
89
90 /* Last comp unit in list above. */
91 struct comp_unit *last_comp_unit;
92
93 /* The next unread compilation unit within the .debug_info section.
94 Zero indicates that the .debug_info section has not been loaded
95 into a buffer yet. */
96 bfd_byte *info_ptr;
97
98 /* Pointer to the end of the .debug_info section memory buffer. */
99 bfd_byte *info_ptr_end;
100
101 /* Pointer to the bfd, section and address of the beginning of the
102 section. The bfd might be different than expected because of
103 gnu_debuglink sections. */
104 bfd *bfd_ptr;
105 asection *sec;
106 bfd_byte *sec_info_ptr;
107
108 /* A pointer to the memory block allocated for info_ptr. Neither
109 info_ptr nor sec_info_ptr are guaranteed to stay pointing to the
110 beginning of the malloc block. This is used only to free the
111 memory later. */
112 bfd_byte *info_ptr_memory;
113
114 /* Pointer to the symbol table. */
115 asymbol **syms;
116
117 /* Pointer to the .debug_abbrev section loaded into memory. */
118 bfd_byte *dwarf_abbrev_buffer;
119
120 /* Length of the loaded .debug_abbrev section. */
121 bfd_size_type dwarf_abbrev_size;
122
123 /* Buffer for decode_line_info. */
124 bfd_byte *dwarf_line_buffer;
125
126 /* Length of the loaded .debug_line section. */
127 bfd_size_type dwarf_line_size;
128
129 /* Pointer to the .debug_str section loaded into memory. */
130 bfd_byte *dwarf_str_buffer;
131
132 /* Length of the loaded .debug_str section. */
133 bfd_size_type dwarf_str_size;
134
135 /* Pointer to the .debug_ranges section loaded into memory. */
136 bfd_byte *dwarf_ranges_buffer;
137
138 /* Length of the loaded .debug_ranges section. */
139 bfd_size_type dwarf_ranges_size;
140
141 /* If the most recent call to bfd_find_nearest_line was given an
142 address in an inlined function, preserve a pointer into the
143 calling chain for subsequent calls to bfd_find_inliner_info to
144 use. */
145 struct funcinfo *inliner_chain;
146
147 /* Number of sections whose VMA we must adjust. */
148 unsigned int adjusted_section_count;
149
150 /* Array of sections with adjusted VMA. */
151 struct adjusted_section *adjusted_sections;
152
153 /* Number of times find_line is called. This is used in
154 the heuristic for enabling the info hash tables. */
155 int info_hash_count;
156
157 #define STASH_INFO_HASH_TRIGGER 100
158
159 /* Hash table mapping symbol names to function infos. */
160 struct info_hash_table *funcinfo_hash_table;
161
162 /* Hash table mapping symbol names to variable infos. */
163 struct info_hash_table *varinfo_hash_table;
164
165 /* Head of comp_unit list in the last hash table update. */
166 struct comp_unit *hash_units_head;
167
168 /* Status of info hash. */
169 int info_hash_status;
170 #define STASH_INFO_HASH_OFF 0
171 #define STASH_INFO_HASH_ON 1
172 #define STASH_INFO_HASH_DISABLED 2
173 };
174
175 struct arange
176 {
177 struct arange *next;
178 bfd_vma low;
179 bfd_vma high;
180 };
181
182 /* A minimal decoding of DWARF2 compilation units. We only decode
183 what's needed to get to the line number information. */
184
185 struct comp_unit
186 {
187 /* Chain the previously read compilation units. */
188 struct comp_unit *next_unit;
189
190 /* Likewise, chain the compilation unit read after this one.
191 The comp units are stored in reversed reading order. */
192 struct comp_unit *prev_unit;
193
194 /* Keep the bfd convenient (for memory allocation). */
195 bfd *abfd;
196
197 /* The lowest and highest addresses contained in this compilation
198 unit as specified in the compilation unit header. */
199 struct arange arange;
200
201 /* The DW_AT_name attribute (for error messages). */
202 char *name;
203
204 /* The abbrev hash table. */
205 struct abbrev_info **abbrevs;
206
207 /* Note that an error was found by comp_unit_find_nearest_line. */
208 int error;
209
210 /* The DW_AT_comp_dir attribute. */
211 char *comp_dir;
212
213 /* TRUE if there is a line number table associated with this comp. unit. */
214 int stmtlist;
215
216 /* Pointer to the current comp_unit so that we can find a given entry
217 by its reference. */
218 bfd_byte *info_ptr_unit;
219
220 /* Pointer to the start of the debug section, for DW_FORM_ref_addr. */
221 bfd_byte *sec_info_ptr;
222
223 /* The offset into .debug_line of the line number table. */
224 unsigned long line_offset;
225
226 /* Pointer to the first child die for the comp unit. */
227 bfd_byte *first_child_die_ptr;
228
229 /* The end of the comp unit. */
230 bfd_byte *end_ptr;
231
232 /* The decoded line number, NULL if not yet decoded. */
233 struct line_info_table *line_table;
234
235 /* A list of the functions found in this comp. unit. */
236 struct funcinfo *function_table;
237
238 /* A list of the variables found in this comp. unit. */
239 struct varinfo *variable_table;
240
241 /* Pointer to dwarf2_debug structure. */
242 struct dwarf2_debug *stash;
243
244 /* DWARF format version for this unit - from unit header. */
245 int version;
246
247 /* Address size for this unit - from unit header. */
248 unsigned char addr_size;
249
250 /* Offset size for this unit - from unit header. */
251 unsigned char offset_size;
252
253 /* Base address for this unit - from DW_AT_low_pc attribute of
254 DW_TAG_compile_unit DIE */
255 bfd_vma base_address;
256
257 /* TRUE if symbols are cached in hash table for faster lookup by name. */
258 bfd_boolean cached;
259 };
260
261 /* This data structure holds the information of an abbrev. */
262 struct abbrev_info
263 {
264 unsigned int number; /* Number identifying abbrev. */
265 enum dwarf_tag tag; /* DWARF tag. */
266 int has_children; /* Boolean. */
267 unsigned int num_attrs; /* Number of attributes. */
268 struct attr_abbrev *attrs; /* An array of attribute descriptions. */
269 struct abbrev_info *next; /* Next in chain. */
270 };
271
272 struct attr_abbrev
273 {
274 enum dwarf_attribute name;
275 enum dwarf_form form;
276 };
277
278 #ifndef ABBREV_HASH_SIZE
279 #define ABBREV_HASH_SIZE 121
280 #endif
281 #ifndef ATTR_ALLOC_CHUNK
282 #define ATTR_ALLOC_CHUNK 4
283 #endif
284
285 /* Variable and function hash tables. This is used to speed up look-up
286 in lookup_symbol_in_var_table() and lookup_symbol_in_function_table().
287 In order to share code between variable and function infos, we use
288 a list of untyped pointer for all variable/function info associated with
289 a symbol. We waste a bit of memory for list with one node but that
290 simplifies the code. */
291
292 struct info_list_node
293 {
294 struct info_list_node *next;
295 void *info;
296 };
297
298 /* Info hash entry. */
299 struct info_hash_entry
300 {
301 struct bfd_hash_entry root;
302 struct info_list_node *head;
303 };
304
305 struct info_hash_table
306 {
307 struct bfd_hash_table base;
308 };
309
310 /* Function to create a new entry in info hash table. */
311
312 static struct bfd_hash_entry *
313 info_hash_table_newfunc (struct bfd_hash_entry *entry,
314 struct bfd_hash_table *table,
315 const char *string)
316 {
317 struct info_hash_entry *ret = (struct info_hash_entry *) entry;
318
319 /* Allocate the structure if it has not already been allocated by a
320 derived class. */
321 if (ret == NULL)
322 {
323 ret = (struct info_hash_entry *) bfd_hash_allocate (table,
324 sizeof (* ret));
325 if (ret == NULL)
326 return NULL;
327 }
328
329 /* Call the allocation method of the base class. */
330 ret = ((struct info_hash_entry *)
331 bfd_hash_newfunc ((struct bfd_hash_entry *) ret, table, string));
332
333 /* Initialize the local fields here. */
334 if (ret)
335 ret->head = NULL;
336
337 return (struct bfd_hash_entry *) ret;
338 }
339
340 /* Function to create a new info hash table. It returns a pointer to the
341 newly created table or NULL if there is any error. We need abfd
342 solely for memory allocation. */
343
344 static struct info_hash_table *
345 create_info_hash_table (bfd *abfd)
346 {
347 struct info_hash_table *hash_table;
348
349 hash_table = (struct info_hash_table *)
350 bfd_alloc (abfd, sizeof (struct info_hash_table));
351 if (!hash_table)
352 return hash_table;
353
354 if (!bfd_hash_table_init (&hash_table->base, info_hash_table_newfunc,
355 sizeof (struct info_hash_entry)))
356 {
357 bfd_release (abfd, hash_table);
358 return NULL;
359 }
360
361 return hash_table;
362 }
363
364 /* Insert an info entry into an info hash table. We do not check of
365 duplicate entries. Also, the caller need to guarantee that the
366 right type of info in inserted as info is passed as a void* pointer.
367 This function returns true if there is no error. */
368
369 static bfd_boolean
370 insert_info_hash_table (struct info_hash_table *hash_table,
371 const char *key,
372 void *info,
373 bfd_boolean copy_p)
374 {
375 struct info_hash_entry *entry;
376 struct info_list_node *node;
377
378 entry = (struct info_hash_entry*) bfd_hash_lookup (&hash_table->base,
379 key, TRUE, copy_p);
380 if (!entry)
381 return FALSE;
382
383 node = (struct info_list_node *) bfd_hash_allocate (&hash_table->base,
384 sizeof (*node));
385 if (!node)
386 return FALSE;
387
388 node->info = info;
389 node->next = entry->head;
390 entry->head = node;
391
392 return TRUE;
393 }
394
395 /* Look up an info entry list from an info hash table. Return NULL
396 if there is none. */
397
398 static struct info_list_node *
399 lookup_info_hash_table (struct info_hash_table *hash_table, const char *key)
400 {
401 struct info_hash_entry *entry;
402
403 entry = (struct info_hash_entry*) bfd_hash_lookup (&hash_table->base, key,
404 FALSE, FALSE);
405 return entry ? entry->head : NULL;
406 }
407
408 /* Read a section, uncompress it if necessary, and relocate it. */
409
410 static bfd_boolean
411 read_and_uncompress_section (bfd * abfd,
412 asection * msec,
413 bfd_boolean section_is_compressed,
414 asymbol ** syms,
415 bfd_byte ** section_buffer,
416 bfd_size_type * section_size)
417 {
418 /* Get the unrelocated contents of the section. */
419 *section_buffer = (bfd_byte *) bfd_malloc (*section_size);
420 if (! *section_buffer)
421 return FALSE;
422 if (! bfd_get_section_contents (abfd, msec, *section_buffer,
423 0, *section_size))
424 return FALSE;
425
426 if (section_is_compressed)
427 {
428 if (! bfd_uncompress_section_contents (section_buffer, section_size))
429 {
430 (*_bfd_error_handler) (_("Dwarf Error: unable to decompress %s section."),
431 bfd_get_section_name (abfd, msec));
432 bfd_set_error (bfd_error_bad_value);
433 return FALSE;
434 }
435 }
436
437 if (syms)
438 {
439 /* We want to relocate the data we've already read (and
440 decompressed), so we store a pointer to the data in
441 the bfd_section, and tell it that the contents are
442 already in memory. */
443 BFD_ASSERT (msec->contents == NULL && (msec->flags & SEC_IN_MEMORY) == 0);
444 msec->contents = *section_buffer;
445 msec->flags |= SEC_IN_MEMORY;
446 msec->size = *section_size;
447 *section_buffer
448 = bfd_simple_get_relocated_section_contents (abfd, msec, NULL, syms);
449 if (! *section_buffer)
450 return FALSE;
451 }
452
453 return TRUE;
454 }
455
456 /* Read a section into its appropriate place in the dwarf2_debug
457 struct (indicated by SECTION_BUFFER and SECTION_SIZE). If SYMS is
458 not NULL, use bfd_simple_get_relocated_section_contents to read the
459 section contents, otherwise use bfd_get_section_contents. Fail if
460 the located section does not contain at least OFFSET bytes. */
461
462 static bfd_boolean
463 read_section (bfd * abfd,
464 const char * section_name,
465 const char * compressed_section_name,
466 asymbol ** syms,
467 bfd_uint64_t offset,
468 bfd_byte ** section_buffer,
469 bfd_size_type * section_size)
470 {
471 asection *msec;
472 bfd_boolean section_is_compressed = FALSE;
473
474 /* read_section is a noop if the section has already been read. */
475 if (!*section_buffer)
476 {
477 msec = bfd_get_section_by_name (abfd, section_name);
478 if (! msec && compressed_section_name)
479 {
480 msec = bfd_get_section_by_name (abfd, compressed_section_name);
481 section_is_compressed = TRUE;
482 }
483 if (! msec)
484 {
485 (*_bfd_error_handler) (_("Dwarf Error: Can't find %s section."), section_name);
486 bfd_set_error (bfd_error_bad_value);
487 return FALSE;
488 }
489
490 *section_size = msec->rawsize ? msec->rawsize : msec->size;
491
492 if (! read_and_uncompress_section (abfd, msec, section_is_compressed,
493 syms, section_buffer, section_size))
494 return FALSE;
495 }
496
497 /* It is possible to get a bad value for the offset into the section
498 that the client wants. Validate it here to avoid trouble later. */
499 if (offset != 0 && offset >= *section_size)
500 {
501 (*_bfd_error_handler) (_("Dwarf Error: Offset (%lu) greater than or equal to %s size (%lu)."),
502 (long) offset, section_name, *section_size);
503 bfd_set_error (bfd_error_bad_value);
504 return FALSE;
505 }
506
507 return TRUE;
508 }
509
510 /* VERBATIM
511 The following function up to the END VERBATIM mark are
512 copied directly from dwarf2read.c. */
513
514 /* Read dwarf information from a buffer. */
515
516 static unsigned int
517 read_1_byte (bfd *abfd ATTRIBUTE_UNUSED, bfd_byte *buf)
518 {
519 return bfd_get_8 (abfd, buf);
520 }
521
522 static int
523 read_1_signed_byte (bfd *abfd ATTRIBUTE_UNUSED, bfd_byte *buf)
524 {
525 return bfd_get_signed_8 (abfd, buf);
526 }
527
528 static unsigned int
529 read_2_bytes (bfd *abfd, bfd_byte *buf)
530 {
531 return bfd_get_16 (abfd, buf);
532 }
533
534 static unsigned int
535 read_4_bytes (bfd *abfd, bfd_byte *buf)
536 {
537 return bfd_get_32 (abfd, buf);
538 }
539
540 static bfd_uint64_t
541 read_8_bytes (bfd *abfd, bfd_byte *buf)
542 {
543 return bfd_get_64 (abfd, buf);
544 }
545
546 static bfd_byte *
547 read_n_bytes (bfd *abfd ATTRIBUTE_UNUSED,
548 bfd_byte *buf,
549 unsigned int size ATTRIBUTE_UNUSED)
550 {
551 return buf;
552 }
553
554 static char *
555 read_string (bfd *abfd ATTRIBUTE_UNUSED,
556 bfd_byte *buf,
557 unsigned int *bytes_read_ptr)
558 {
559 /* Return a pointer to the embedded string. */
560 char *str = (char *) buf;
561
562 if (*str == '\0')
563 {
564 *bytes_read_ptr = 1;
565 return NULL;
566 }
567
568 *bytes_read_ptr = strlen (str) + 1;
569 return str;
570 }
571
572 /* END VERBATIM */
573
574 static char *
575 read_indirect_string (struct comp_unit * unit,
576 bfd_byte * buf,
577 unsigned int * bytes_read_ptr)
578 {
579 bfd_uint64_t offset;
580 struct dwarf2_debug *stash = unit->stash;
581 char *str;
582
583 if (unit->offset_size == 4)
584 offset = read_4_bytes (unit->abfd, buf);
585 else
586 offset = read_8_bytes (unit->abfd, buf);
587
588 *bytes_read_ptr = unit->offset_size;
589
590 if (! read_section (unit->abfd, ".debug_str", ".zdebug_str",
591 stash->syms, offset,
592 &stash->dwarf_str_buffer, &stash->dwarf_str_size))
593 return NULL;
594
595 str = (char *) stash->dwarf_str_buffer + offset;
596 if (*str == '\0')
597 return NULL;
598 return str;
599 }
600
601 static bfd_uint64_t
602 read_address (struct comp_unit *unit, bfd_byte *buf)
603 {
604 int signed_vma = get_elf_backend_data (unit->abfd)->sign_extend_vma;
605
606 if (signed_vma)
607 {
608 switch (unit->addr_size)
609 {
610 case 8:
611 return bfd_get_signed_64 (unit->abfd, buf);
612 case 4:
613 return bfd_get_signed_32 (unit->abfd, buf);
614 case 2:
615 return bfd_get_signed_16 (unit->abfd, buf);
616 default:
617 abort ();
618 }
619 }
620 else
621 {
622 switch (unit->addr_size)
623 {
624 case 8:
625 return bfd_get_64 (unit->abfd, buf);
626 case 4:
627 return bfd_get_32 (unit->abfd, buf);
628 case 2:
629 return bfd_get_16 (unit->abfd, buf);
630 default:
631 abort ();
632 }
633 }
634 }
635
636 /* Lookup an abbrev_info structure in the abbrev hash table. */
637
638 static struct abbrev_info *
639 lookup_abbrev (unsigned int number, struct abbrev_info **abbrevs)
640 {
641 unsigned int hash_number;
642 struct abbrev_info *abbrev;
643
644 hash_number = number % ABBREV_HASH_SIZE;
645 abbrev = abbrevs[hash_number];
646
647 while (abbrev)
648 {
649 if (abbrev->number == number)
650 return abbrev;
651 else
652 abbrev = abbrev->next;
653 }
654
655 return NULL;
656 }
657
658 /* In DWARF version 2, the description of the debugging information is
659 stored in a separate .debug_abbrev section. Before we read any
660 dies from a section we read in all abbreviations and install them
661 in a hash table. */
662
663 static struct abbrev_info**
664 read_abbrevs (bfd *abfd, bfd_uint64_t offset, struct dwarf2_debug *stash)
665 {
666 struct abbrev_info **abbrevs;
667 bfd_byte *abbrev_ptr;
668 struct abbrev_info *cur_abbrev;
669 unsigned int abbrev_number, bytes_read, abbrev_name;
670 unsigned int abbrev_form, hash_number;
671 bfd_size_type amt;
672
673 if (! read_section (abfd, ".debug_abbrev", ".zdebug_abbrev",
674 stash->syms, offset,
675 &stash->dwarf_abbrev_buffer, &stash->dwarf_abbrev_size))
676 return NULL;
677
678 amt = sizeof (struct abbrev_info*) * ABBREV_HASH_SIZE;
679 abbrevs = (struct abbrev_info **) bfd_zalloc (abfd, amt);
680 if (abbrevs == NULL)
681 return NULL;
682
683 abbrev_ptr = stash->dwarf_abbrev_buffer + offset;
684 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
685 abbrev_ptr += bytes_read;
686
687 /* Loop until we reach an abbrev number of 0. */
688 while (abbrev_number)
689 {
690 amt = sizeof (struct abbrev_info);
691 cur_abbrev = (struct abbrev_info *) bfd_zalloc (abfd, amt);
692 if (cur_abbrev == NULL)
693 return NULL;
694
695 /* Read in abbrev header. */
696 cur_abbrev->number = abbrev_number;
697 cur_abbrev->tag = (enum dwarf_tag)
698 read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
699 abbrev_ptr += bytes_read;
700 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
701 abbrev_ptr += 1;
702
703 /* Now read in declarations. */
704 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
705 abbrev_ptr += bytes_read;
706 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
707 abbrev_ptr += bytes_read;
708
709 while (abbrev_name)
710 {
711 if ((cur_abbrev->num_attrs % ATTR_ALLOC_CHUNK) == 0)
712 {
713 struct attr_abbrev *tmp;
714
715 amt = cur_abbrev->num_attrs + ATTR_ALLOC_CHUNK;
716 amt *= sizeof (struct attr_abbrev);
717 tmp = (struct attr_abbrev *) bfd_realloc (cur_abbrev->attrs, amt);
718 if (tmp == NULL)
719 {
720 size_t i;
721
722 for (i = 0; i < ABBREV_HASH_SIZE; i++)
723 {
724 struct abbrev_info *abbrev = abbrevs[i];
725
726 while (abbrev)
727 {
728 free (abbrev->attrs);
729 abbrev = abbrev->next;
730 }
731 }
732 return NULL;
733 }
734 cur_abbrev->attrs = tmp;
735 }
736
737 cur_abbrev->attrs[cur_abbrev->num_attrs].name
738 = (enum dwarf_attribute) abbrev_name;
739 cur_abbrev->attrs[cur_abbrev->num_attrs++].form
740 = (enum dwarf_form) abbrev_form;
741 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
742 abbrev_ptr += bytes_read;
743 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
744 abbrev_ptr += bytes_read;
745 }
746
747 hash_number = abbrev_number % ABBREV_HASH_SIZE;
748 cur_abbrev->next = abbrevs[hash_number];
749 abbrevs[hash_number] = cur_abbrev;
750
751 /* Get next abbreviation.
752 Under Irix6 the abbreviations for a compilation unit are not
753 always properly terminated with an abbrev number of 0.
754 Exit loop if we encounter an abbreviation which we have
755 already read (which means we are about to read the abbreviations
756 for the next compile unit) or if the end of the abbreviation
757 table is reached. */
758 if ((unsigned int) (abbrev_ptr - stash->dwarf_abbrev_buffer)
759 >= stash->dwarf_abbrev_size)
760 break;
761 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
762 abbrev_ptr += bytes_read;
763 if (lookup_abbrev (abbrev_number,abbrevs) != NULL)
764 break;
765 }
766
767 return abbrevs;
768 }
769
770 /* Read an attribute value described by an attribute form. */
771
772 static bfd_byte *
773 read_attribute_value (struct attribute *attr,
774 unsigned form,
775 struct comp_unit *unit,
776 bfd_byte *info_ptr)
777 {
778 bfd *abfd = unit->abfd;
779 unsigned int bytes_read;
780 struct dwarf_block *blk;
781 bfd_size_type amt;
782
783 attr->form = (enum dwarf_form) form;
784
785 switch (form)
786 {
787 case DW_FORM_ref_addr:
788 /* DW_FORM_ref_addr is an address in DWARF2, and an offset in
789 DWARF3. */
790 if (unit->version == 3 || unit->version == 4)
791 {
792 if (unit->offset_size == 4)
793 attr->u.val = read_4_bytes (unit->abfd, info_ptr);
794 else
795 attr->u.val = read_8_bytes (unit->abfd, info_ptr);
796 info_ptr += unit->offset_size;
797 break;
798 }
799 /* FALLTHROUGH */
800 case DW_FORM_addr:
801 attr->u.val = read_address (unit, info_ptr);
802 info_ptr += unit->addr_size;
803 break;
804 case DW_FORM_sec_offset:
805 if (unit->offset_size == 4)
806 attr->u.val = read_4_bytes (unit->abfd, info_ptr);
807 else
808 attr->u.val = read_8_bytes (unit->abfd, info_ptr);
809 info_ptr += unit->offset_size;
810 break;
811 case DW_FORM_block2:
812 amt = sizeof (struct dwarf_block);
813 blk = (struct dwarf_block *) bfd_alloc (abfd, amt);
814 if (blk == NULL)
815 return NULL;
816 blk->size = read_2_bytes (abfd, info_ptr);
817 info_ptr += 2;
818 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
819 info_ptr += blk->size;
820 attr->u.blk = blk;
821 break;
822 case DW_FORM_block4:
823 amt = sizeof (struct dwarf_block);
824 blk = (struct dwarf_block *) bfd_alloc (abfd, amt);
825 if (blk == NULL)
826 return NULL;
827 blk->size = read_4_bytes (abfd, info_ptr);
828 info_ptr += 4;
829 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
830 info_ptr += blk->size;
831 attr->u.blk = blk;
832 break;
833 case DW_FORM_data2:
834 attr->u.val = read_2_bytes (abfd, info_ptr);
835 info_ptr += 2;
836 break;
837 case DW_FORM_data4:
838 attr->u.val = read_4_bytes (abfd, info_ptr);
839 info_ptr += 4;
840 break;
841 case DW_FORM_data8:
842 attr->u.val = read_8_bytes (abfd, info_ptr);
843 info_ptr += 8;
844 break;
845 case DW_FORM_string:
846 attr->u.str = read_string (abfd, info_ptr, &bytes_read);
847 info_ptr += bytes_read;
848 break;
849 case DW_FORM_strp:
850 attr->u.str = read_indirect_string (unit, info_ptr, &bytes_read);
851 info_ptr += bytes_read;
852 break;
853 case DW_FORM_exprloc:
854 case DW_FORM_block:
855 amt = sizeof (struct dwarf_block);
856 blk = (struct dwarf_block *) bfd_alloc (abfd, amt);
857 if (blk == NULL)
858 return NULL;
859 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
860 info_ptr += bytes_read;
861 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
862 info_ptr += blk->size;
863 attr->u.blk = blk;
864 break;
865 case DW_FORM_block1:
866 amt = sizeof (struct dwarf_block);
867 blk = (struct dwarf_block *) bfd_alloc (abfd, amt);
868 if (blk == NULL)
869 return NULL;
870 blk->size = read_1_byte (abfd, info_ptr);
871 info_ptr += 1;
872 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
873 info_ptr += blk->size;
874 attr->u.blk = blk;
875 break;
876 case DW_FORM_data1:
877 attr->u.val = read_1_byte (abfd, info_ptr);
878 info_ptr += 1;
879 break;
880 case DW_FORM_flag:
881 attr->u.val = read_1_byte (abfd, info_ptr);
882 info_ptr += 1;
883 break;
884 case DW_FORM_flag_present:
885 attr->u.val = 1;
886 break;
887 case DW_FORM_sdata:
888 attr->u.sval = read_signed_leb128 (abfd, info_ptr, &bytes_read);
889 info_ptr += bytes_read;
890 break;
891 case DW_FORM_udata:
892 attr->u.val = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
893 info_ptr += bytes_read;
894 break;
895 case DW_FORM_ref1:
896 attr->u.val = read_1_byte (abfd, info_ptr);
897 info_ptr += 1;
898 break;
899 case DW_FORM_ref2:
900 attr->u.val = read_2_bytes (abfd, info_ptr);
901 info_ptr += 2;
902 break;
903 case DW_FORM_ref4:
904 attr->u.val = read_4_bytes (abfd, info_ptr);
905 info_ptr += 4;
906 break;
907 case DW_FORM_ref8:
908 attr->u.val = read_8_bytes (abfd, info_ptr);
909 info_ptr += 8;
910 break;
911 case DW_FORM_ref_sig8:
912 attr->u.val = read_8_bytes (abfd, info_ptr);
913 info_ptr += 8;
914 break;
915 case DW_FORM_ref_udata:
916 attr->u.val = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
917 info_ptr += bytes_read;
918 break;
919 case DW_FORM_indirect:
920 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
921 info_ptr += bytes_read;
922 info_ptr = read_attribute_value (attr, form, unit, info_ptr);
923 break;
924 default:
925 (*_bfd_error_handler) (_("Dwarf Error: Invalid or unhandled FORM value: %u."),
926 form);
927 bfd_set_error (bfd_error_bad_value);
928 return NULL;
929 }
930 return info_ptr;
931 }
932
933 /* Read an attribute described by an abbreviated attribute. */
934
935 static bfd_byte *
936 read_attribute (struct attribute *attr,
937 struct attr_abbrev *abbrev,
938 struct comp_unit *unit,
939 bfd_byte *info_ptr)
940 {
941 attr->name = abbrev->name;
942 info_ptr = read_attribute_value (attr, abbrev->form, unit, info_ptr);
943 return info_ptr;
944 }
945
946 /* Source line information table routines. */
947
948 #define FILE_ALLOC_CHUNK 5
949 #define DIR_ALLOC_CHUNK 5
950
951 struct line_info
952 {
953 struct line_info* prev_line;
954 bfd_vma address;
955 char *filename;
956 unsigned int line;
957 unsigned int column;
958 unsigned char op_index;
959 unsigned char end_sequence; /* End of (sequential) code sequence. */
960 };
961
962 struct fileinfo
963 {
964 char *name;
965 unsigned int dir;
966 unsigned int time;
967 unsigned int size;
968 };
969
970 struct line_sequence
971 {
972 bfd_vma low_pc;
973 struct line_sequence* prev_sequence;
974 struct line_info* last_line; /* Largest VMA. */
975 };
976
977 struct line_info_table
978 {
979 bfd* abfd;
980 unsigned int num_files;
981 unsigned int num_dirs;
982 unsigned int num_sequences;
983 char * comp_dir;
984 char ** dirs;
985 struct fileinfo* files;
986 struct line_sequence* sequences;
987 struct line_info* lcl_head; /* Local head; used in 'add_line_info'. */
988 };
989
990 /* Remember some information about each function. If the function is
991 inlined (DW_TAG_inlined_subroutine) it may have two additional
992 attributes, DW_AT_call_file and DW_AT_call_line, which specify the
993 source code location where this function was inlined. */
994
995 struct funcinfo
996 {
997 struct funcinfo *prev_func; /* Pointer to previous function in list of all functions */
998 struct funcinfo *caller_func; /* Pointer to function one scope higher */
999 char *caller_file; /* Source location file name where caller_func inlines this func */
1000 int caller_line; /* Source location line number where caller_func inlines this func */
1001 char *file; /* Source location file name */
1002 int line; /* Source location line number */
1003 int tag;
1004 char *name;
1005 struct arange arange;
1006 asection *sec; /* Where the symbol is defined */
1007 };
1008
1009 struct varinfo
1010 {
1011 /* Pointer to previous variable in list of all variables */
1012 struct varinfo *prev_var;
1013 /* Source location file name */
1014 char *file;
1015 /* Source location line number */
1016 int line;
1017 int tag;
1018 char *name;
1019 bfd_vma addr;
1020 /* Where the symbol is defined */
1021 asection *sec;
1022 /* Is this a stack variable? */
1023 unsigned int stack: 1;
1024 };
1025
1026 /* Return TRUE if NEW_LINE should sort after LINE. */
1027
1028 static inline bfd_boolean
1029 new_line_sorts_after (struct line_info *new_line, struct line_info *line)
1030 {
1031 return (new_line->address > line->address
1032 || (new_line->address == line->address
1033 && (new_line->op_index > line->op_index
1034 || (new_line->op_index == line->op_index
1035 && new_line->end_sequence < line->end_sequence))));
1036 }
1037
1038
1039 /* Adds a new entry to the line_info list in the line_info_table, ensuring
1040 that the list is sorted. Note that the line_info list is sorted from
1041 highest to lowest VMA (with possible duplicates); that is,
1042 line_info->prev_line always accesses an equal or smaller VMA. */
1043
1044 static bfd_boolean
1045 add_line_info (struct line_info_table *table,
1046 bfd_vma address,
1047 unsigned char op_index,
1048 char *filename,
1049 unsigned int line,
1050 unsigned int column,
1051 int end_sequence)
1052 {
1053 bfd_size_type amt = sizeof (struct line_info);
1054 struct line_sequence* seq = table->sequences;
1055 struct line_info* info = (struct line_info *) bfd_alloc (table->abfd, amt);
1056
1057 if (info == NULL)
1058 return FALSE;
1059
1060 /* Set member data of 'info'. */
1061 info->prev_line = NULL;
1062 info->address = address;
1063 info->op_index = op_index;
1064 info->line = line;
1065 info->column = column;
1066 info->end_sequence = end_sequence;
1067
1068 if (filename && filename[0])
1069 {
1070 info->filename = (char *) bfd_alloc (table->abfd, strlen (filename) + 1);
1071 if (info->filename == NULL)
1072 return FALSE;
1073 strcpy (info->filename, filename);
1074 }
1075 else
1076 info->filename = NULL;
1077
1078 /* Find the correct location for 'info'. Normally we will receive
1079 new line_info data 1) in order and 2) with increasing VMAs.
1080 However some compilers break the rules (cf. decode_line_info) and
1081 so we include some heuristics for quickly finding the correct
1082 location for 'info'. In particular, these heuristics optimize for
1083 the common case in which the VMA sequence that we receive is a
1084 list of locally sorted VMAs such as
1085 p...z a...j (where a < j < p < z)
1086
1087 Note: table->lcl_head is used to head an *actual* or *possible*
1088 sub-sequence within the list (such as a...j) that is not directly
1089 headed by table->last_line
1090
1091 Note: we may receive duplicate entries from 'decode_line_info'. */
1092
1093 if (seq
1094 && seq->last_line->address == address
1095 && seq->last_line->op_index == op_index
1096 && seq->last_line->end_sequence == end_sequence)
1097 {
1098 /* We only keep the last entry with the same address and end
1099 sequence. See PR ld/4986. */
1100 if (table->lcl_head == seq->last_line)
1101 table->lcl_head = info;
1102 info->prev_line = seq->last_line->prev_line;
1103 seq->last_line = info;
1104 }
1105 else if (!seq || seq->last_line->end_sequence)
1106 {
1107 /* Start a new line sequence. */
1108 amt = sizeof (struct line_sequence);
1109 seq = (struct line_sequence *) bfd_malloc (amt);
1110 if (seq == NULL)
1111 return FALSE;
1112 seq->low_pc = address;
1113 seq->prev_sequence = table->sequences;
1114 seq->last_line = info;
1115 table->lcl_head = info;
1116 table->sequences = seq;
1117 table->num_sequences++;
1118 }
1119 else if (new_line_sorts_after (info, seq->last_line))
1120 {
1121 /* Normal case: add 'info' to the beginning of the current sequence. */
1122 info->prev_line = seq->last_line;
1123 seq->last_line = info;
1124
1125 /* lcl_head: initialize to head a *possible* sequence at the end. */
1126 if (!table->lcl_head)
1127 table->lcl_head = info;
1128 }
1129 else if (!new_line_sorts_after (info, table->lcl_head)
1130 && (!table->lcl_head->prev_line
1131 || new_line_sorts_after (info, table->lcl_head->prev_line)))
1132 {
1133 /* Abnormal but easy: lcl_head is the head of 'info'. */
1134 info->prev_line = table->lcl_head->prev_line;
1135 table->lcl_head->prev_line = info;
1136 }
1137 else
1138 {
1139 /* Abnormal and hard: Neither 'last_line' nor 'lcl_head'
1140 are valid heads for 'info'. Reset 'lcl_head'. */
1141 struct line_info* li2 = seq->last_line; /* Always non-NULL. */
1142 struct line_info* li1 = li2->prev_line;
1143
1144 while (li1)
1145 {
1146 if (!new_line_sorts_after (info, li2)
1147 && new_line_sorts_after (info, li1))
1148 break;
1149
1150 li2 = li1; /* always non-NULL */
1151 li1 = li1->prev_line;
1152 }
1153 table->lcl_head = li2;
1154 info->prev_line = table->lcl_head->prev_line;
1155 table->lcl_head->prev_line = info;
1156 if (address < seq->low_pc)
1157 seq->low_pc = address;
1158 }
1159 return TRUE;
1160 }
1161
1162 /* Extract a fully qualified filename from a line info table.
1163 The returned string has been malloc'ed and it is the caller's
1164 responsibility to free it. */
1165
1166 static char *
1167 concat_filename (struct line_info_table *table, unsigned int file)
1168 {
1169 char *filename;
1170
1171 if (file - 1 >= table->num_files)
1172 {
1173 /* FILE == 0 means unknown. */
1174 if (file)
1175 (*_bfd_error_handler)
1176 (_("Dwarf Error: mangled line number section (bad file number)."));
1177 return strdup ("<unknown>");
1178 }
1179
1180 filename = table->files[file - 1].name;
1181
1182 if (!IS_ABSOLUTE_PATH (filename))
1183 {
1184 char *dir_name = NULL;
1185 char *subdir_name = NULL;
1186 char *name;
1187 size_t len;
1188
1189 if (table->files[file - 1].dir)
1190 subdir_name = table->dirs[table->files[file - 1].dir - 1];
1191
1192 if (!subdir_name || !IS_ABSOLUTE_PATH (subdir_name))
1193 dir_name = table->comp_dir;
1194
1195 if (!dir_name)
1196 {
1197 dir_name = subdir_name;
1198 subdir_name = NULL;
1199 }
1200
1201 if (!dir_name)
1202 return strdup (filename);
1203
1204 len = strlen (dir_name) + strlen (filename) + 2;
1205
1206 if (subdir_name)
1207 {
1208 len += strlen (subdir_name) + 1;
1209 name = (char *) bfd_malloc (len);
1210 if (name)
1211 sprintf (name, "%s/%s/%s", dir_name, subdir_name, filename);
1212 }
1213 else
1214 {
1215 name = (char *) bfd_malloc (len);
1216 if (name)
1217 sprintf (name, "%s/%s", dir_name, filename);
1218 }
1219
1220 return name;
1221 }
1222
1223 return strdup (filename);
1224 }
1225
1226 static bfd_boolean
1227 arange_add (bfd *abfd, struct arange *first_arange,
1228 bfd_vma low_pc, bfd_vma high_pc)
1229 {
1230 struct arange *arange;
1231
1232 /* If the first arange is empty, use it. */
1233 if (first_arange->high == 0)
1234 {
1235 first_arange->low = low_pc;
1236 first_arange->high = high_pc;
1237 return TRUE;
1238 }
1239
1240 /* Next see if we can cheaply extend an existing range. */
1241 arange = first_arange;
1242 do
1243 {
1244 if (low_pc == arange->high)
1245 {
1246 arange->high = high_pc;
1247 return TRUE;
1248 }
1249 if (high_pc == arange->low)
1250 {
1251 arange->low = low_pc;
1252 return TRUE;
1253 }
1254 arange = arange->next;
1255 }
1256 while (arange);
1257
1258 /* Need to allocate a new arange and insert it into the arange list.
1259 Order isn't significant, so just insert after the first arange. */
1260 arange = (struct arange *) bfd_zalloc (abfd, sizeof (*arange));
1261 if (arange == NULL)
1262 return FALSE;
1263 arange->low = low_pc;
1264 arange->high = high_pc;
1265 arange->next = first_arange->next;
1266 first_arange->next = arange;
1267 return TRUE;
1268 }
1269
1270 /* Compare function for line sequences. */
1271
1272 static int
1273 compare_sequences (const void* a, const void* b)
1274 {
1275 const struct line_sequence* seq1 = a;
1276 const struct line_sequence* seq2 = b;
1277
1278 /* Sort by low_pc as the primary key. */
1279 if (seq1->low_pc < seq2->low_pc)
1280 return -1;
1281 if (seq1->low_pc > seq2->low_pc)
1282 return 1;
1283
1284 /* If low_pc values are equal, sort in reverse order of
1285 high_pc, so that the largest region comes first. */
1286 if (seq1->last_line->address < seq2->last_line->address)
1287 return 1;
1288 if (seq1->last_line->address > seq2->last_line->address)
1289 return -1;
1290
1291 if (seq1->last_line->op_index < seq2->last_line->op_index)
1292 return 1;
1293 if (seq1->last_line->op_index > seq2->last_line->op_index)
1294 return -1;
1295
1296 return 0;
1297 }
1298
1299 /* Sort the line sequences for quick lookup. */
1300
1301 static bfd_boolean
1302 sort_line_sequences (struct line_info_table* table)
1303 {
1304 bfd_size_type amt;
1305 struct line_sequence* sequences;
1306 struct line_sequence* seq;
1307 unsigned int n = 0;
1308 unsigned int num_sequences = table->num_sequences;
1309 bfd_vma last_high_pc;
1310
1311 if (num_sequences == 0)
1312 return TRUE;
1313
1314 /* Allocate space for an array of sequences. */
1315 amt = sizeof (struct line_sequence) * num_sequences;
1316 sequences = (struct line_sequence *) bfd_alloc (table->abfd, amt);
1317 if (sequences == NULL)
1318 return FALSE;
1319
1320 /* Copy the linked list into the array, freeing the original nodes. */
1321 seq = table->sequences;
1322 for (n = 0; n < num_sequences; n++)
1323 {
1324 struct line_sequence* last_seq = seq;
1325
1326 BFD_ASSERT (seq);
1327 sequences[n].low_pc = seq->low_pc;
1328 sequences[n].prev_sequence = NULL;
1329 sequences[n].last_line = seq->last_line;
1330 seq = seq->prev_sequence;
1331 free (last_seq);
1332 }
1333 BFD_ASSERT (seq == NULL);
1334
1335 qsort (sequences, n, sizeof (struct line_sequence), compare_sequences);
1336
1337 /* Make the list binary-searchable by trimming overlapping entries
1338 and removing nested entries. */
1339 num_sequences = 1;
1340 last_high_pc = sequences[0].last_line->address;
1341 for (n = 1; n < table->num_sequences; n++)
1342 {
1343 if (sequences[n].low_pc < last_high_pc)
1344 {
1345 if (sequences[n].last_line->address <= last_high_pc)
1346 /* Skip nested entries. */
1347 continue;
1348
1349 /* Trim overlapping entries. */
1350 sequences[n].low_pc = last_high_pc;
1351 }
1352 last_high_pc = sequences[n].last_line->address;
1353 if (n > num_sequences)
1354 {
1355 /* Close up the gap. */
1356 sequences[num_sequences].low_pc = sequences[n].low_pc;
1357 sequences[num_sequences].last_line = sequences[n].last_line;
1358 }
1359 num_sequences++;
1360 }
1361
1362 table->sequences = sequences;
1363 table->num_sequences = num_sequences;
1364 return TRUE;
1365 }
1366
1367 /* Decode the line number information for UNIT. */
1368
1369 static struct line_info_table*
1370 decode_line_info (struct comp_unit *unit, struct dwarf2_debug *stash)
1371 {
1372 bfd *abfd = unit->abfd;
1373 struct line_info_table* table;
1374 bfd_byte *line_ptr;
1375 bfd_byte *line_end;
1376 struct line_head lh;
1377 unsigned int i, bytes_read, offset_size;
1378 char *cur_file, *cur_dir;
1379 unsigned char op_code, extended_op, adj_opcode;
1380 bfd_size_type amt;
1381
1382 if (! read_section (abfd, ".debug_line", ".zdebug_line",
1383 stash->syms, unit->line_offset,
1384 &stash->dwarf_line_buffer, &stash->dwarf_line_size))
1385 return NULL;
1386
1387 amt = sizeof (struct line_info_table);
1388 table = (struct line_info_table *) bfd_alloc (abfd, amt);
1389 if (table == NULL)
1390 return NULL;
1391 table->abfd = abfd;
1392 table->comp_dir = unit->comp_dir;
1393
1394 table->num_files = 0;
1395 table->files = NULL;
1396
1397 table->num_dirs = 0;
1398 table->dirs = NULL;
1399
1400 table->num_sequences = 0;
1401 table->sequences = NULL;
1402
1403 table->lcl_head = NULL;
1404
1405 line_ptr = stash->dwarf_line_buffer + unit->line_offset;
1406
1407 /* Read in the prologue. */
1408 lh.total_length = read_4_bytes (abfd, line_ptr);
1409 line_ptr += 4;
1410 offset_size = 4;
1411 if (lh.total_length == 0xffffffff)
1412 {
1413 lh.total_length = read_8_bytes (abfd, line_ptr);
1414 line_ptr += 8;
1415 offset_size = 8;
1416 }
1417 else if (lh.total_length == 0 && unit->addr_size == 8)
1418 {
1419 /* Handle (non-standard) 64-bit DWARF2 formats. */
1420 lh.total_length = read_4_bytes (abfd, line_ptr);
1421 line_ptr += 4;
1422 offset_size = 8;
1423 }
1424 line_end = line_ptr + lh.total_length;
1425 lh.version = read_2_bytes (abfd, line_ptr);
1426 if (lh.version < 2 || lh.version > 4)
1427 {
1428 (*_bfd_error_handler)
1429 (_("Dwarf Error: Unhandled .debug_line version %d."), lh.version);
1430 bfd_set_error (bfd_error_bad_value);
1431 return NULL;
1432 }
1433 line_ptr += 2;
1434 if (offset_size == 4)
1435 lh.prologue_length = read_4_bytes (abfd, line_ptr);
1436 else
1437 lh.prologue_length = read_8_bytes (abfd, line_ptr);
1438 line_ptr += offset_size;
1439 lh.minimum_instruction_length = read_1_byte (abfd, line_ptr);
1440 line_ptr += 1;
1441 if (lh.version >= 4)
1442 {
1443 lh.maximum_ops_per_insn = read_1_byte (abfd, line_ptr);
1444 line_ptr += 1;
1445 }
1446 else
1447 lh.maximum_ops_per_insn = 1;
1448 if (lh.maximum_ops_per_insn == 0)
1449 {
1450 (*_bfd_error_handler)
1451 (_("Dwarf Error: Invalid maximum operations per instruction."));
1452 bfd_set_error (bfd_error_bad_value);
1453 return NULL;
1454 }
1455 lh.default_is_stmt = read_1_byte (abfd, line_ptr);
1456 line_ptr += 1;
1457 lh.line_base = read_1_signed_byte (abfd, line_ptr);
1458 line_ptr += 1;
1459 lh.line_range = read_1_byte (abfd, line_ptr);
1460 line_ptr += 1;
1461 lh.opcode_base = read_1_byte (abfd, line_ptr);
1462 line_ptr += 1;
1463 amt = lh.opcode_base * sizeof (unsigned char);
1464 lh.standard_opcode_lengths = (unsigned char *) bfd_alloc (abfd, amt);
1465
1466 lh.standard_opcode_lengths[0] = 1;
1467
1468 for (i = 1; i < lh.opcode_base; ++i)
1469 {
1470 lh.standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
1471 line_ptr += 1;
1472 }
1473
1474 /* Read directory table. */
1475 while ((cur_dir = read_string (abfd, line_ptr, &bytes_read)) != NULL)
1476 {
1477 line_ptr += bytes_read;
1478
1479 if ((table->num_dirs % DIR_ALLOC_CHUNK) == 0)
1480 {
1481 char **tmp;
1482
1483 amt = table->num_dirs + DIR_ALLOC_CHUNK;
1484 amt *= sizeof (char *);
1485
1486 tmp = (char **) bfd_realloc (table->dirs, amt);
1487 if (tmp == NULL)
1488 goto fail;
1489 table->dirs = tmp;
1490 }
1491
1492 table->dirs[table->num_dirs++] = cur_dir;
1493 }
1494
1495 line_ptr += bytes_read;
1496
1497 /* Read file name table. */
1498 while ((cur_file = read_string (abfd, line_ptr, &bytes_read)) != NULL)
1499 {
1500 line_ptr += bytes_read;
1501
1502 if ((table->num_files % FILE_ALLOC_CHUNK) == 0)
1503 {
1504 struct fileinfo *tmp;
1505
1506 amt = table->num_files + FILE_ALLOC_CHUNK;
1507 amt *= sizeof (struct fileinfo);
1508
1509 tmp = (struct fileinfo *) bfd_realloc (table->files, amt);
1510 if (tmp == NULL)
1511 goto fail;
1512 table->files = tmp;
1513 }
1514
1515 table->files[table->num_files].name = cur_file;
1516 table->files[table->num_files].dir =
1517 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
1518 line_ptr += bytes_read;
1519 table->files[table->num_files].time =
1520 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
1521 line_ptr += bytes_read;
1522 table->files[table->num_files].size =
1523 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
1524 line_ptr += bytes_read;
1525 table->num_files++;
1526 }
1527
1528 line_ptr += bytes_read;
1529
1530 /* Read the statement sequences until there's nothing left. */
1531 while (line_ptr < line_end)
1532 {
1533 /* State machine registers. */
1534 bfd_vma address = 0;
1535 unsigned char op_index = 0;
1536 char * filename = table->num_files ? concat_filename (table, 1) : NULL;
1537 unsigned int line = 1;
1538 unsigned int column = 0;
1539 int is_stmt = lh.default_is_stmt;
1540 int end_sequence = 0;
1541 /* eraxxon@alumni.rice.edu: Against the DWARF2 specs, some
1542 compilers generate address sequences that are wildly out of
1543 order using DW_LNE_set_address (e.g. Intel C++ 6.0 compiler
1544 for ia64-Linux). Thus, to determine the low and high
1545 address, we must compare on every DW_LNS_copy, etc. */
1546 bfd_vma low_pc = (bfd_vma) -1;
1547 bfd_vma high_pc = 0;
1548
1549 /* Decode the table. */
1550 while (! end_sequence)
1551 {
1552 op_code = read_1_byte (abfd, line_ptr);
1553 line_ptr += 1;
1554
1555 if (op_code >= lh.opcode_base)
1556 {
1557 /* Special operand. */
1558 adj_opcode = op_code - lh.opcode_base;
1559 if (lh.maximum_ops_per_insn == 1)
1560 address += (adj_opcode / lh.line_range)
1561 * lh.minimum_instruction_length;
1562 else
1563 {
1564 address += ((op_index + (adj_opcode / lh.line_range))
1565 / lh.maximum_ops_per_insn)
1566 * lh.minimum_instruction_length;
1567 op_index = (op_index + (adj_opcode / lh.line_range))
1568 % lh.maximum_ops_per_insn;
1569 }
1570 line += lh.line_base + (adj_opcode % lh.line_range);
1571 /* Append row to matrix using current values. */
1572 if (!add_line_info (table, address, op_index, filename,
1573 line, column, 0))
1574 goto line_fail;
1575 if (address < low_pc)
1576 low_pc = address;
1577 if (address > high_pc)
1578 high_pc = address;
1579 }
1580 else switch (op_code)
1581 {
1582 case DW_LNS_extended_op:
1583 /* Ignore length. */
1584 line_ptr += 1;
1585 extended_op = read_1_byte (abfd, line_ptr);
1586 line_ptr += 1;
1587
1588 switch (extended_op)
1589 {
1590 case DW_LNE_end_sequence:
1591 end_sequence = 1;
1592 if (!add_line_info (table, address, op_index, filename,
1593 line, column, end_sequence))
1594 goto line_fail;
1595 if (address < low_pc)
1596 low_pc = address;
1597 if (address > high_pc)
1598 high_pc = address;
1599 if (!arange_add (unit->abfd, &unit->arange, low_pc, high_pc))
1600 goto line_fail;
1601 break;
1602 case DW_LNE_set_address:
1603 address = read_address (unit, line_ptr);
1604 op_index = 0;
1605 line_ptr += unit->addr_size;
1606 break;
1607 case DW_LNE_define_file:
1608 cur_file = read_string (abfd, line_ptr, &bytes_read);
1609 line_ptr += bytes_read;
1610 if ((table->num_files % FILE_ALLOC_CHUNK) == 0)
1611 {
1612 struct fileinfo *tmp;
1613
1614 amt = table->num_files + FILE_ALLOC_CHUNK;
1615 amt *= sizeof (struct fileinfo);
1616 tmp = (struct fileinfo *) bfd_realloc (table->files, amt);
1617 if (tmp == NULL)
1618 goto line_fail;
1619 table->files = tmp;
1620 }
1621 table->files[table->num_files].name = cur_file;
1622 table->files[table->num_files].dir =
1623 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
1624 line_ptr += bytes_read;
1625 table->files[table->num_files].time =
1626 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
1627 line_ptr += bytes_read;
1628 table->files[table->num_files].size =
1629 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
1630 line_ptr += bytes_read;
1631 table->num_files++;
1632 break;
1633 case DW_LNE_set_discriminator:
1634 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
1635 line_ptr += bytes_read;
1636 break;
1637 default:
1638 (*_bfd_error_handler) (_("Dwarf Error: mangled line number section."));
1639 bfd_set_error (bfd_error_bad_value);
1640 line_fail:
1641 if (filename != NULL)
1642 free (filename);
1643 goto fail;
1644 }
1645 break;
1646 case DW_LNS_copy:
1647 if (!add_line_info (table, address, op_index,
1648 filename, line, column, 0))
1649 goto line_fail;
1650 if (address < low_pc)
1651 low_pc = address;
1652 if (address > high_pc)
1653 high_pc = address;
1654 break;
1655 case DW_LNS_advance_pc:
1656 if (lh.maximum_ops_per_insn == 1)
1657 address += lh.minimum_instruction_length
1658 * read_unsigned_leb128 (abfd, line_ptr,
1659 &bytes_read);
1660 else
1661 {
1662 bfd_vma adjust = read_unsigned_leb128 (abfd, line_ptr,
1663 &bytes_read);
1664 address = ((op_index + adjust) / lh.maximum_ops_per_insn)
1665 * lh.minimum_instruction_length;
1666 op_index = (op_index + adjust) % lh.maximum_ops_per_insn;
1667 }
1668 line_ptr += bytes_read;
1669 break;
1670 case DW_LNS_advance_line:
1671 line += read_signed_leb128 (abfd, line_ptr, &bytes_read);
1672 line_ptr += bytes_read;
1673 break;
1674 case DW_LNS_set_file:
1675 {
1676 unsigned int file;
1677
1678 /* The file and directory tables are 0
1679 based, the references are 1 based. */
1680 file = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
1681 line_ptr += bytes_read;
1682 if (filename)
1683 free (filename);
1684 filename = concat_filename (table, file);
1685 break;
1686 }
1687 case DW_LNS_set_column:
1688 column = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
1689 line_ptr += bytes_read;
1690 break;
1691 case DW_LNS_negate_stmt:
1692 is_stmt = (!is_stmt);
1693 break;
1694 case DW_LNS_set_basic_block:
1695 break;
1696 case DW_LNS_const_add_pc:
1697 if (lh.maximum_ops_per_insn == 1)
1698 address += lh.minimum_instruction_length
1699 * ((255 - lh.opcode_base) / lh.line_range);
1700 else
1701 {
1702 bfd_vma adjust = ((255 - lh.opcode_base) / lh.line_range);
1703 address += lh.minimum_instruction_length
1704 * ((op_index + adjust) / lh.maximum_ops_per_insn);
1705 op_index = (op_index + adjust) % lh.maximum_ops_per_insn;
1706 }
1707 break;
1708 case DW_LNS_fixed_advance_pc:
1709 address += read_2_bytes (abfd, line_ptr);
1710 op_index = 0;
1711 line_ptr += 2;
1712 break;
1713 default:
1714 /* Unknown standard opcode, ignore it. */
1715 for (i = 0; i < lh.standard_opcode_lengths[op_code]; i++)
1716 {
1717 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
1718 line_ptr += bytes_read;
1719 }
1720 break;
1721 }
1722 }
1723
1724 if (filename)
1725 free (filename);
1726 }
1727
1728 if (sort_line_sequences (table))
1729 return table;
1730
1731 fail:
1732 if (table->sequences != NULL)
1733 free (table->sequences);
1734 if (table->files != NULL)
1735 free (table->files);
1736 if (table->dirs != NULL)
1737 free (table->dirs);
1738 return NULL;
1739 }
1740
1741 /* If ADDR is within TABLE set the output parameters and return TRUE,
1742 otherwise return FALSE. The output parameters, FILENAME_PTR and
1743 LINENUMBER_PTR, are pointers to the objects to be filled in. */
1744
1745 static bfd_boolean
1746 lookup_address_in_line_info_table (struct line_info_table *table,
1747 bfd_vma addr,
1748 const char **filename_ptr,
1749 unsigned int *linenumber_ptr)
1750 {
1751 struct line_sequence *seq = NULL;
1752 struct line_info *each_line;
1753 int low, high, mid;
1754
1755 /* Binary search the array of sequences. */
1756 low = 0;
1757 high = table->num_sequences;
1758 while (low < high)
1759 {
1760 mid = (low + high) / 2;
1761 seq = &table->sequences[mid];
1762 if (addr < seq->low_pc)
1763 high = mid;
1764 else if (addr >= seq->last_line->address)
1765 low = mid + 1;
1766 else
1767 break;
1768 }
1769
1770 if (seq && addr >= seq->low_pc && addr < seq->last_line->address)
1771 {
1772 /* Note: seq->last_line should be a descendingly sorted list. */
1773 for (each_line = seq->last_line;
1774 each_line;
1775 each_line = each_line->prev_line)
1776 if (addr >= each_line->address)
1777 break;
1778
1779 if (each_line
1780 && !(each_line->end_sequence || each_line == seq->last_line))
1781 {
1782 *filename_ptr = each_line->filename;
1783 *linenumber_ptr = each_line->line;
1784 return TRUE;
1785 }
1786 }
1787
1788 *filename_ptr = NULL;
1789 return FALSE;
1790 }
1791
1792 /* Read in the .debug_ranges section for future reference. */
1793
1794 static bfd_boolean
1795 read_debug_ranges (struct comp_unit *unit)
1796 {
1797 struct dwarf2_debug *stash = unit->stash;
1798 return read_section (unit->abfd, ".debug_ranges", ".zdebug_ranges",
1799 stash->syms, 0,
1800 &stash->dwarf_ranges_buffer, &stash->dwarf_ranges_size);
1801 }
1802
1803 /* Function table functions. */
1804
1805 /* If ADDR is within TABLE, set FUNCTIONNAME_PTR, and return TRUE.
1806 Note that we need to find the function that has the smallest
1807 range that contains ADDR, to handle inlined functions without
1808 depending upon them being ordered in TABLE by increasing range. */
1809
1810 static bfd_boolean
1811 lookup_address_in_function_table (struct comp_unit *unit,
1812 bfd_vma addr,
1813 struct funcinfo **function_ptr,
1814 const char **functionname_ptr)
1815 {
1816 struct funcinfo* each_func;
1817 struct funcinfo* best_fit = NULL;
1818 struct arange *arange;
1819
1820 for (each_func = unit->function_table;
1821 each_func;
1822 each_func = each_func->prev_func)
1823 {
1824 for (arange = &each_func->arange;
1825 arange;
1826 arange = arange->next)
1827 {
1828 if (addr >= arange->low && addr < arange->high)
1829 {
1830 if (!best_fit ||
1831 ((arange->high - arange->low) < (best_fit->arange.high - best_fit->arange.low)))
1832 best_fit = each_func;
1833 }
1834 }
1835 }
1836
1837 if (best_fit)
1838 {
1839 *functionname_ptr = best_fit->name;
1840 *function_ptr = best_fit;
1841 return TRUE;
1842 }
1843 else
1844 {
1845 return FALSE;
1846 }
1847 }
1848
1849 /* If SYM at ADDR is within function table of UNIT, set FILENAME_PTR
1850 and LINENUMBER_PTR, and return TRUE. */
1851
1852 static bfd_boolean
1853 lookup_symbol_in_function_table (struct comp_unit *unit,
1854 asymbol *sym,
1855 bfd_vma addr,
1856 const char **filename_ptr,
1857 unsigned int *linenumber_ptr)
1858 {
1859 struct funcinfo* each_func;
1860 struct funcinfo* best_fit = NULL;
1861 struct arange *arange;
1862 const char *name = bfd_asymbol_name (sym);
1863 asection *sec = bfd_get_section (sym);
1864
1865 for (each_func = unit->function_table;
1866 each_func;
1867 each_func = each_func->prev_func)
1868 {
1869 for (arange = &each_func->arange;
1870 arange;
1871 arange = arange->next)
1872 {
1873 if ((!each_func->sec || each_func->sec == sec)
1874 && addr >= arange->low
1875 && addr < arange->high
1876 && each_func->name
1877 && strcmp (name, each_func->name) == 0
1878 && (!best_fit
1879 || ((arange->high - arange->low)
1880 < (best_fit->arange.high - best_fit->arange.low))))
1881 best_fit = each_func;
1882 }
1883 }
1884
1885 if (best_fit)
1886 {
1887 best_fit->sec = sec;
1888 *filename_ptr = best_fit->file;
1889 *linenumber_ptr = best_fit->line;
1890 return TRUE;
1891 }
1892 else
1893 return FALSE;
1894 }
1895
1896 /* Variable table functions. */
1897
1898 /* If SYM is within variable table of UNIT, set FILENAME_PTR and
1899 LINENUMBER_PTR, and return TRUE. */
1900
1901 static bfd_boolean
1902 lookup_symbol_in_variable_table (struct comp_unit *unit,
1903 asymbol *sym,
1904 bfd_vma addr,
1905 const char **filename_ptr,
1906 unsigned int *linenumber_ptr)
1907 {
1908 const char *name = bfd_asymbol_name (sym);
1909 asection *sec = bfd_get_section (sym);
1910 struct varinfo* each;
1911
1912 for (each = unit->variable_table; each; each = each->prev_var)
1913 if (each->stack == 0
1914 && each->file != NULL
1915 && each->name != NULL
1916 && each->addr == addr
1917 && (!each->sec || each->sec == sec)
1918 && strcmp (name, each->name) == 0)
1919 break;
1920
1921 if (each)
1922 {
1923 each->sec = sec;
1924 *filename_ptr = each->file;
1925 *linenumber_ptr = each->line;
1926 return TRUE;
1927 }
1928 else
1929 return FALSE;
1930 }
1931
1932 static char *
1933 find_abstract_instance_name (struct comp_unit *unit,
1934 struct attribute *attr_ptr)
1935 {
1936 bfd *abfd = unit->abfd;
1937 bfd_byte *info_ptr;
1938 unsigned int abbrev_number, bytes_read, i;
1939 struct abbrev_info *abbrev;
1940 bfd_uint64_t die_ref = attr_ptr->u.val;
1941 struct attribute attr;
1942 char *name = 0;
1943
1944 /* DW_FORM_ref_addr can reference an entry in a different CU. It
1945 is an offset from the .debug_info section, not the current CU. */
1946 if (attr_ptr->form == DW_FORM_ref_addr)
1947 {
1948 /* We only support DW_FORM_ref_addr within the same file, so
1949 any relocations should be resolved already. */
1950 if (!die_ref)
1951 abort ();
1952
1953 info_ptr = unit->sec_info_ptr + die_ref;
1954 }
1955 else
1956 info_ptr = unit->info_ptr_unit + die_ref;
1957 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
1958 info_ptr += bytes_read;
1959
1960 if (abbrev_number)
1961 {
1962 abbrev = lookup_abbrev (abbrev_number, unit->abbrevs);
1963 if (! abbrev)
1964 {
1965 (*_bfd_error_handler) (_("Dwarf Error: Could not find abbrev number %u."),
1966 abbrev_number);
1967 bfd_set_error (bfd_error_bad_value);
1968 }
1969 else
1970 {
1971 for (i = 0; i < abbrev->num_attrs; ++i)
1972 {
1973 info_ptr = read_attribute (&attr, &abbrev->attrs[i], unit,
1974 info_ptr);
1975 if (info_ptr == NULL)
1976 break;
1977 switch (attr.name)
1978 {
1979 case DW_AT_name:
1980 /* Prefer DW_AT_MIPS_linkage_name or DW_AT_linkage_name
1981 over DW_AT_name. */
1982 if (name == NULL)
1983 name = attr.u.str;
1984 break;
1985 case DW_AT_specification:
1986 name = find_abstract_instance_name (unit, &attr);
1987 break;
1988 case DW_AT_linkage_name:
1989 case DW_AT_MIPS_linkage_name:
1990 name = attr.u.str;
1991 break;
1992 default:
1993 break;
1994 }
1995 }
1996 }
1997 }
1998 return name;
1999 }
2000
2001 static bfd_boolean
2002 read_rangelist (struct comp_unit *unit, struct arange *arange,
2003 bfd_uint64_t offset)
2004 {
2005 bfd_byte *ranges_ptr;
2006 bfd_vma base_address = unit->base_address;
2007
2008 if (! unit->stash->dwarf_ranges_buffer)
2009 {
2010 if (! read_debug_ranges (unit))
2011 return FALSE;
2012 }
2013 ranges_ptr = unit->stash->dwarf_ranges_buffer + offset;
2014
2015 for (;;)
2016 {
2017 bfd_vma low_pc;
2018 bfd_vma high_pc;
2019
2020 low_pc = read_address (unit, ranges_ptr);
2021 ranges_ptr += unit->addr_size;
2022 high_pc = read_address (unit, ranges_ptr);
2023 ranges_ptr += unit->addr_size;
2024
2025 if (low_pc == 0 && high_pc == 0)
2026 break;
2027 if (low_pc == -1UL && high_pc != -1UL)
2028 base_address = high_pc;
2029 else
2030 {
2031 if (!arange_add (unit->abfd, arange,
2032 base_address + low_pc, base_address + high_pc))
2033 return FALSE;
2034 }
2035 }
2036 return TRUE;
2037 }
2038
2039 /* DWARF2 Compilation unit functions. */
2040
2041 /* Scan over each die in a comp. unit looking for functions to add
2042 to the function table and variables to the variable table. */
2043
2044 static bfd_boolean
2045 scan_unit_for_symbols (struct comp_unit *unit)
2046 {
2047 bfd *abfd = unit->abfd;
2048 bfd_byte *info_ptr = unit->first_child_die_ptr;
2049 int nesting_level = 1;
2050 struct funcinfo **nested_funcs;
2051 int nested_funcs_size;
2052
2053 /* Maintain a stack of in-scope functions and inlined functions, which we
2054 can use to set the caller_func field. */
2055 nested_funcs_size = 32;
2056 nested_funcs = (struct funcinfo **)
2057 bfd_malloc (nested_funcs_size * sizeof (struct funcinfo *));
2058 if (nested_funcs == NULL)
2059 return FALSE;
2060 nested_funcs[nesting_level] = 0;
2061
2062 while (nesting_level)
2063 {
2064 unsigned int abbrev_number, bytes_read, i;
2065 struct abbrev_info *abbrev;
2066 struct attribute attr;
2067 struct funcinfo *func;
2068 struct varinfo *var;
2069 bfd_vma low_pc = 0;
2070 bfd_vma high_pc = 0;
2071
2072 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
2073 info_ptr += bytes_read;
2074
2075 if (! abbrev_number)
2076 {
2077 nesting_level--;
2078 continue;
2079 }
2080
2081 abbrev = lookup_abbrev (abbrev_number,unit->abbrevs);
2082 if (! abbrev)
2083 {
2084 (*_bfd_error_handler)
2085 (_("Dwarf Error: Could not find abbrev number %u."),
2086 abbrev_number);
2087 bfd_set_error (bfd_error_bad_value);
2088 goto fail;
2089 }
2090
2091 var = NULL;
2092 if (abbrev->tag == DW_TAG_subprogram
2093 || abbrev->tag == DW_TAG_entry_point
2094 || abbrev->tag == DW_TAG_inlined_subroutine)
2095 {
2096 bfd_size_type amt = sizeof (struct funcinfo);
2097 func = (struct funcinfo *) bfd_zalloc (abfd, amt);
2098 if (func == NULL)
2099 goto fail;
2100 func->tag = abbrev->tag;
2101 func->prev_func = unit->function_table;
2102 unit->function_table = func;
2103 BFD_ASSERT (!unit->cached);
2104
2105 if (func->tag == DW_TAG_inlined_subroutine)
2106 for (i = nesting_level - 1; i >= 1; i--)
2107 if (nested_funcs[i])
2108 {
2109 func->caller_func = nested_funcs[i];
2110 break;
2111 }
2112 nested_funcs[nesting_level] = func;
2113 }
2114 else
2115 {
2116 func = NULL;
2117 if (abbrev->tag == DW_TAG_variable)
2118 {
2119 bfd_size_type amt = sizeof (struct varinfo);
2120 var = (struct varinfo *) bfd_zalloc (abfd, amt);
2121 if (var == NULL)
2122 goto fail;
2123 var->tag = abbrev->tag;
2124 var->stack = 1;
2125 var->prev_var = unit->variable_table;
2126 unit->variable_table = var;
2127 BFD_ASSERT (!unit->cached);
2128 }
2129
2130 /* No inline function in scope at this nesting level. */
2131 nested_funcs[nesting_level] = 0;
2132 }
2133
2134 for (i = 0; i < abbrev->num_attrs; ++i)
2135 {
2136 info_ptr = read_attribute (&attr, &abbrev->attrs[i], unit, info_ptr);
2137 if (info_ptr == NULL)
2138 return FALSE;
2139
2140 if (func)
2141 {
2142 switch (attr.name)
2143 {
2144 case DW_AT_call_file:
2145 func->caller_file = concat_filename (unit->line_table,
2146 attr.u.val);
2147 break;
2148
2149 case DW_AT_call_line:
2150 func->caller_line = attr.u.val;
2151 break;
2152
2153 case DW_AT_abstract_origin:
2154 func->name = find_abstract_instance_name (unit, &attr);
2155 break;
2156
2157 case DW_AT_name:
2158 /* Prefer DW_AT_MIPS_linkage_name or DW_AT_linkage_name
2159 over DW_AT_name. */
2160 if (func->name == NULL)
2161 func->name = attr.u.str;
2162 break;
2163
2164 case DW_AT_linkage_name:
2165 case DW_AT_MIPS_linkage_name:
2166 func->name = attr.u.str;
2167 break;
2168
2169 case DW_AT_low_pc:
2170 low_pc = attr.u.val;
2171 break;
2172
2173 case DW_AT_high_pc:
2174 high_pc = attr.u.val;
2175 break;
2176
2177 case DW_AT_ranges:
2178 if (!read_rangelist (unit, &func->arange, attr.u.val))
2179 goto fail;
2180 break;
2181
2182 case DW_AT_decl_file:
2183 func->file = concat_filename (unit->line_table,
2184 attr.u.val);
2185 break;
2186
2187 case DW_AT_decl_line:
2188 func->line = attr.u.val;
2189 break;
2190
2191 default:
2192 break;
2193 }
2194 }
2195 else if (var)
2196 {
2197 switch (attr.name)
2198 {
2199 case DW_AT_name:
2200 var->name = attr.u.str;
2201 break;
2202
2203 case DW_AT_decl_file:
2204 var->file = concat_filename (unit->line_table,
2205 attr.u.val);
2206 break;
2207
2208 case DW_AT_decl_line:
2209 var->line = attr.u.val;
2210 break;
2211
2212 case DW_AT_external:
2213 if (attr.u.val != 0)
2214 var->stack = 0;
2215 break;
2216
2217 case DW_AT_location:
2218 switch (attr.form)
2219 {
2220 case DW_FORM_block:
2221 case DW_FORM_block1:
2222 case DW_FORM_block2:
2223 case DW_FORM_block4:
2224 case DW_FORM_exprloc:
2225 if (*attr.u.blk->data == DW_OP_addr)
2226 {
2227 var->stack = 0;
2228
2229 /* Verify that DW_OP_addr is the only opcode in the
2230 location, in which case the block size will be 1
2231 plus the address size. */
2232 /* ??? For TLS variables, gcc can emit
2233 DW_OP_addr <addr> DW_OP_GNU_push_tls_address
2234 which we don't handle here yet. */
2235 if (attr.u.blk->size == unit->addr_size + 1U)
2236 var->addr = bfd_get (unit->addr_size * 8,
2237 unit->abfd,
2238 attr.u.blk->data + 1);
2239 }
2240 break;
2241
2242 default:
2243 break;
2244 }
2245 break;
2246
2247 default:
2248 break;
2249 }
2250 }
2251 }
2252
2253 if (func && high_pc != 0)
2254 {
2255 if (!arange_add (unit->abfd, &func->arange, low_pc, high_pc))
2256 goto fail;
2257 }
2258
2259 if (abbrev->has_children)
2260 {
2261 nesting_level++;
2262
2263 if (nesting_level >= nested_funcs_size)
2264 {
2265 struct funcinfo **tmp;
2266
2267 nested_funcs_size *= 2;
2268 tmp = (struct funcinfo **)
2269 bfd_realloc (nested_funcs,
2270 (nested_funcs_size * sizeof (struct funcinfo *)));
2271 if (tmp == NULL)
2272 goto fail;
2273 nested_funcs = tmp;
2274 }
2275 nested_funcs[nesting_level] = 0;
2276 }
2277 }
2278
2279 free (nested_funcs);
2280 return TRUE;
2281
2282 fail:
2283 free (nested_funcs);
2284 return FALSE;
2285 }
2286
2287 /* Parse a DWARF2 compilation unit starting at INFO_PTR. This
2288 includes the compilation unit header that proceeds the DIE's, but
2289 does not include the length field that precedes each compilation
2290 unit header. END_PTR points one past the end of this comp unit.
2291 OFFSET_SIZE is the size of DWARF2 offsets (either 4 or 8 bytes).
2292
2293 This routine does not read the whole compilation unit; only enough
2294 to get to the line number information for the compilation unit. */
2295
2296 static struct comp_unit *
2297 parse_comp_unit (struct dwarf2_debug *stash,
2298 bfd_vma unit_length,
2299 bfd_byte *info_ptr_unit,
2300 unsigned int offset_size)
2301 {
2302 struct comp_unit* unit;
2303 unsigned int version;
2304 bfd_uint64_t abbrev_offset = 0;
2305 unsigned int addr_size;
2306 struct abbrev_info** abbrevs;
2307 unsigned int abbrev_number, bytes_read, i;
2308 struct abbrev_info *abbrev;
2309 struct attribute attr;
2310 bfd_byte *info_ptr = stash->info_ptr;
2311 bfd_byte *end_ptr = info_ptr + unit_length;
2312 bfd_size_type amt;
2313 bfd_vma low_pc = 0;
2314 bfd_vma high_pc = 0;
2315 bfd *abfd = stash->bfd_ptr;
2316
2317 version = read_2_bytes (abfd, info_ptr);
2318 info_ptr += 2;
2319 BFD_ASSERT (offset_size == 4 || offset_size == 8);
2320 if (offset_size == 4)
2321 abbrev_offset = read_4_bytes (abfd, info_ptr);
2322 else
2323 abbrev_offset = read_8_bytes (abfd, info_ptr);
2324 info_ptr += offset_size;
2325 addr_size = read_1_byte (abfd, info_ptr);
2326 info_ptr += 1;
2327
2328 if (version != 2 && version != 3 && version != 4)
2329 {
2330 (*_bfd_error_handler) (_("Dwarf Error: found dwarf version '%u', this reader only handles version 2, 3 and 4 information."), version);
2331 bfd_set_error (bfd_error_bad_value);
2332 return 0;
2333 }
2334
2335 if (addr_size > sizeof (bfd_vma))
2336 {
2337 (*_bfd_error_handler) (_("Dwarf Error: found address size '%u', this reader can not handle sizes greater than '%u'."),
2338 addr_size,
2339 (unsigned int) sizeof (bfd_vma));
2340 bfd_set_error (bfd_error_bad_value);
2341 return 0;
2342 }
2343
2344 if (addr_size != 2 && addr_size != 4 && addr_size != 8)
2345 {
2346 (*_bfd_error_handler) ("Dwarf Error: found address size '%u', this reader can only handle address sizes '2', '4' and '8'.", addr_size);
2347 bfd_set_error (bfd_error_bad_value);
2348 return 0;
2349 }
2350
2351 /* Read the abbrevs for this compilation unit into a table. */
2352 abbrevs = read_abbrevs (abfd, abbrev_offset, stash);
2353 if (! abbrevs)
2354 return 0;
2355
2356 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
2357 info_ptr += bytes_read;
2358 if (! abbrev_number)
2359 {
2360 (*_bfd_error_handler) (_("Dwarf Error: Bad abbrev number: %u."),
2361 abbrev_number);
2362 bfd_set_error (bfd_error_bad_value);
2363 return 0;
2364 }
2365
2366 abbrev = lookup_abbrev (abbrev_number, abbrevs);
2367 if (! abbrev)
2368 {
2369 (*_bfd_error_handler) (_("Dwarf Error: Could not find abbrev number %u."),
2370 abbrev_number);
2371 bfd_set_error (bfd_error_bad_value);
2372 return 0;
2373 }
2374
2375 amt = sizeof (struct comp_unit);
2376 unit = (struct comp_unit *) bfd_zalloc (abfd, amt);
2377 if (unit == NULL)
2378 return NULL;
2379 unit->abfd = abfd;
2380 unit->version = version;
2381 unit->addr_size = addr_size;
2382 unit->offset_size = offset_size;
2383 unit->abbrevs = abbrevs;
2384 unit->end_ptr = end_ptr;
2385 unit->stash = stash;
2386 unit->info_ptr_unit = info_ptr_unit;
2387 unit->sec_info_ptr = stash->sec_info_ptr;
2388
2389 for (i = 0; i < abbrev->num_attrs; ++i)
2390 {
2391 info_ptr = read_attribute (&attr, &abbrev->attrs[i], unit, info_ptr);
2392 if (info_ptr == NULL)
2393 return NULL;
2394
2395 /* Store the data if it is of an attribute we want to keep in a
2396 partial symbol table. */
2397 switch (attr.name)
2398 {
2399 case DW_AT_stmt_list:
2400 unit->stmtlist = 1;
2401 unit->line_offset = attr.u.val;
2402 break;
2403
2404 case DW_AT_name:
2405 unit->name = attr.u.str;
2406 break;
2407
2408 case DW_AT_low_pc:
2409 low_pc = attr.u.val;
2410 /* If the compilation unit DIE has a DW_AT_low_pc attribute,
2411 this is the base address to use when reading location
2412 lists or range lists. */
2413 unit->base_address = low_pc;
2414 break;
2415
2416 case DW_AT_high_pc:
2417 high_pc = attr.u.val;
2418 break;
2419
2420 case DW_AT_ranges:
2421 if (!read_rangelist (unit, &unit->arange, attr.u.val))
2422 return NULL;
2423 break;
2424
2425 case DW_AT_comp_dir:
2426 {
2427 char *comp_dir = attr.u.str;
2428 if (comp_dir)
2429 {
2430 /* Irix 6.2 native cc prepends <machine>.: to the compilation
2431 directory, get rid of it. */
2432 char *cp = strchr (comp_dir, ':');
2433
2434 if (cp && cp != comp_dir && cp[-1] == '.' && cp[1] == '/')
2435 comp_dir = cp + 1;
2436 }
2437 unit->comp_dir = comp_dir;
2438 break;
2439 }
2440
2441 default:
2442 break;
2443 }
2444 }
2445 if (high_pc != 0)
2446 {
2447 if (!arange_add (unit->abfd, &unit->arange, low_pc, high_pc))
2448 return NULL;
2449 }
2450
2451 unit->first_child_die_ptr = info_ptr;
2452 return unit;
2453 }
2454
2455 /* Return TRUE if UNIT may contain the address given by ADDR. When
2456 there are functions written entirely with inline asm statements, the
2457 range info in the compilation unit header may not be correct. We
2458 need to consult the line info table to see if a compilation unit
2459 really contains the given address. */
2460
2461 static bfd_boolean
2462 comp_unit_contains_address (struct comp_unit *unit, bfd_vma addr)
2463 {
2464 struct arange *arange;
2465
2466 if (unit->error)
2467 return FALSE;
2468
2469 arange = &unit->arange;
2470 do
2471 {
2472 if (addr >= arange->low && addr < arange->high)
2473 return TRUE;
2474 arange = arange->next;
2475 }
2476 while (arange);
2477
2478 return FALSE;
2479 }
2480
2481 /* If UNIT contains ADDR, set the output parameters to the values for
2482 the line containing ADDR. The output parameters, FILENAME_PTR,
2483 FUNCTIONNAME_PTR, and LINENUMBER_PTR, are pointers to the objects
2484 to be filled in.
2485
2486 Return TRUE if UNIT contains ADDR, and no errors were encountered;
2487 FALSE otherwise. */
2488
2489 static bfd_boolean
2490 comp_unit_find_nearest_line (struct comp_unit *unit,
2491 bfd_vma addr,
2492 const char **filename_ptr,
2493 const char **functionname_ptr,
2494 unsigned int *linenumber_ptr,
2495 struct dwarf2_debug *stash)
2496 {
2497 bfd_boolean line_p;
2498 bfd_boolean func_p;
2499 struct funcinfo *function;
2500
2501 if (unit->error)
2502 return FALSE;
2503
2504 if (! unit->line_table)
2505 {
2506 if (! unit->stmtlist)
2507 {
2508 unit->error = 1;
2509 return FALSE;
2510 }
2511
2512 unit->line_table = decode_line_info (unit, stash);
2513
2514 if (! unit->line_table)
2515 {
2516 unit->error = 1;
2517 return FALSE;
2518 }
2519
2520 if (unit->first_child_die_ptr < unit->end_ptr
2521 && ! scan_unit_for_symbols (unit))
2522 {
2523 unit->error = 1;
2524 return FALSE;
2525 }
2526 }
2527
2528 function = NULL;
2529 func_p = lookup_address_in_function_table (unit, addr,
2530 &function, functionname_ptr);
2531 if (func_p && (function->tag == DW_TAG_inlined_subroutine))
2532 stash->inliner_chain = function;
2533 line_p = lookup_address_in_line_info_table (unit->line_table, addr,
2534 filename_ptr,
2535 linenumber_ptr);
2536 return line_p || func_p;
2537 }
2538
2539 /* Check to see if line info is already decoded in a comp_unit.
2540 If not, decode it. Returns TRUE if no errors were encountered;
2541 FALSE otherwise. */
2542
2543 static bfd_boolean
2544 comp_unit_maybe_decode_line_info (struct comp_unit *unit,
2545 struct dwarf2_debug *stash)
2546 {
2547 if (unit->error)
2548 return FALSE;
2549
2550 if (! unit->line_table)
2551 {
2552 if (! unit->stmtlist)
2553 {
2554 unit->error = 1;
2555 return FALSE;
2556 }
2557
2558 unit->line_table = decode_line_info (unit, stash);
2559
2560 if (! unit->line_table)
2561 {
2562 unit->error = 1;
2563 return FALSE;
2564 }
2565
2566 if (unit->first_child_die_ptr < unit->end_ptr
2567 && ! scan_unit_for_symbols (unit))
2568 {
2569 unit->error = 1;
2570 return FALSE;
2571 }
2572 }
2573
2574 return TRUE;
2575 }
2576
2577 /* If UNIT contains SYM at ADDR, set the output parameters to the
2578 values for the line containing SYM. The output parameters,
2579 FILENAME_PTR, and LINENUMBER_PTR, are pointers to the objects to be
2580 filled in.
2581
2582 Return TRUE if UNIT contains SYM, and no errors were encountered;
2583 FALSE otherwise. */
2584
2585 static bfd_boolean
2586 comp_unit_find_line (struct comp_unit *unit,
2587 asymbol *sym,
2588 bfd_vma addr,
2589 const char **filename_ptr,
2590 unsigned int *linenumber_ptr,
2591 struct dwarf2_debug *stash)
2592 {
2593 if (!comp_unit_maybe_decode_line_info (unit, stash))
2594 return FALSE;
2595
2596 if (sym->flags & BSF_FUNCTION)
2597 return lookup_symbol_in_function_table (unit, sym, addr,
2598 filename_ptr,
2599 linenumber_ptr);
2600
2601 return lookup_symbol_in_variable_table (unit, sym, addr,
2602 filename_ptr,
2603 linenumber_ptr);
2604 }
2605
2606 static struct funcinfo *
2607 reverse_funcinfo_list (struct funcinfo *head)
2608 {
2609 struct funcinfo *rhead;
2610 struct funcinfo *temp;
2611
2612 for (rhead = NULL; head; head = temp)
2613 {
2614 temp = head->prev_func;
2615 head->prev_func = rhead;
2616 rhead = head;
2617 }
2618 return rhead;
2619 }
2620
2621 static struct varinfo *
2622 reverse_varinfo_list (struct varinfo *head)
2623 {
2624 struct varinfo *rhead;
2625 struct varinfo *temp;
2626
2627 for (rhead = NULL; head; head = temp)
2628 {
2629 temp = head->prev_var;
2630 head->prev_var = rhead;
2631 rhead = head;
2632 }
2633 return rhead;
2634 }
2635
2636 /* Extract all interesting funcinfos and varinfos of a compilation
2637 unit into hash tables for faster lookup. Returns TRUE if no
2638 errors were enountered; FALSE otherwise. */
2639
2640 static bfd_boolean
2641 comp_unit_hash_info (struct dwarf2_debug *stash,
2642 struct comp_unit *unit,
2643 struct info_hash_table *funcinfo_hash_table,
2644 struct info_hash_table *varinfo_hash_table)
2645 {
2646 struct funcinfo* each_func;
2647 struct varinfo* each_var;
2648 bfd_boolean okay = TRUE;
2649
2650 BFD_ASSERT (stash->info_hash_status != STASH_INFO_HASH_DISABLED);
2651
2652 if (!comp_unit_maybe_decode_line_info (unit, stash))
2653 return FALSE;
2654
2655 BFD_ASSERT (!unit->cached);
2656
2657 /* To preserve the original search order, we went to visit the function
2658 infos in the reversed order of the list. However, making the list
2659 bi-directional use quite a bit of extra memory. So we reverse
2660 the list first, traverse the list in the now reversed order and
2661 finally reverse the list again to get back the original order. */
2662 unit->function_table = reverse_funcinfo_list (unit->function_table);
2663 for (each_func = unit->function_table;
2664 each_func && okay;
2665 each_func = each_func->prev_func)
2666 {
2667 /* Skip nameless functions. */
2668 if (each_func->name)
2669 /* There is no need to copy name string into hash table as
2670 name string is either in the dwarf string buffer or
2671 info in the stash. */
2672 okay = insert_info_hash_table (funcinfo_hash_table, each_func->name,
2673 (void*) each_func, FALSE);
2674 }
2675 unit->function_table = reverse_funcinfo_list (unit->function_table);
2676 if (!okay)
2677 return FALSE;
2678
2679 /* We do the same for variable infos. */
2680 unit->variable_table = reverse_varinfo_list (unit->variable_table);
2681 for (each_var = unit->variable_table;
2682 each_var && okay;
2683 each_var = each_var->prev_var)
2684 {
2685 /* Skip stack vars and vars with no files or names. */
2686 if (each_var->stack == 0
2687 && each_var->file != NULL
2688 && each_var->name != NULL)
2689 /* There is no need to copy name string into hash table as
2690 name string is either in the dwarf string buffer or
2691 info in the stash. */
2692 okay = insert_info_hash_table (varinfo_hash_table, each_var->name,
2693 (void*) each_var, FALSE);
2694 }
2695
2696 unit->variable_table = reverse_varinfo_list (unit->variable_table);
2697 unit->cached = TRUE;
2698 return okay;
2699 }
2700
2701 /* Locate a section in a BFD containing debugging info. The search starts
2702 from the section after AFTER_SEC, or from the first section in the BFD if
2703 AFTER_SEC is NULL. The search works by examining the names of the
2704 sections. There are two permissiable names. The first is .debug_info.
2705 This is the standard DWARF2 name. The second is a prefix .gnu.linkonce.wi.
2706 This is a variation on the .debug_info section which has a checksum
2707 describing the contents appended onto the name. This allows the linker to
2708 identify and discard duplicate debugging sections for different
2709 compilation units. */
2710 #define DWARF2_DEBUG_INFO ".debug_info"
2711 #define DWARF2_COMPRESSED_DEBUG_INFO ".zdebug_info"
2712 #define GNU_LINKONCE_INFO ".gnu.linkonce.wi."
2713
2714 static asection *
2715 find_debug_info (bfd *abfd, asection *after_sec)
2716 {
2717 asection * msec;
2718
2719 msec = after_sec != NULL ? after_sec->next : abfd->sections;
2720
2721 while (msec)
2722 {
2723 if (strcmp (msec->name, DWARF2_DEBUG_INFO) == 0)
2724 return msec;
2725
2726 if (strcmp (msec->name, DWARF2_COMPRESSED_DEBUG_INFO) == 0)
2727 return msec;
2728
2729 if (CONST_STRNEQ (msec->name, GNU_LINKONCE_INFO))
2730 return msec;
2731
2732 msec = msec->next;
2733 }
2734
2735 return NULL;
2736 }
2737
2738 /* Unset vmas for adjusted sections in STASH. */
2739
2740 static void
2741 unset_sections (struct dwarf2_debug *stash)
2742 {
2743 unsigned int i;
2744 struct adjusted_section *p;
2745
2746 i = stash->adjusted_section_count;
2747 p = stash->adjusted_sections;
2748 for (; i > 0; i--, p++)
2749 p->section->vma = 0;
2750 }
2751
2752 /* Set unique VMAs for loadable and DWARF sections in ABFD and save
2753 VMAs in STASH for unset_sections. */
2754
2755 static bfd_boolean
2756 place_sections (bfd *abfd, struct dwarf2_debug *stash)
2757 {
2758 struct adjusted_section *p;
2759 unsigned int i;
2760
2761 if (stash->adjusted_section_count != 0)
2762 {
2763 i = stash->adjusted_section_count;
2764 p = stash->adjusted_sections;
2765 for (; i > 0; i--, p++)
2766 p->section->vma = p->adj_vma;
2767 }
2768 else
2769 {
2770 asection *sect;
2771 bfd_vma last_vma = 0, last_dwarf = 0;
2772 bfd_size_type amt;
2773
2774 i = 0;
2775 for (sect = abfd->sections; sect != NULL; sect = sect->next)
2776 {
2777 bfd_size_type sz;
2778 int is_debug_info;
2779
2780 if (sect->vma != 0)
2781 continue;
2782
2783 /* We need to adjust the VMAs of any .debug_info sections.
2784 Skip compressed ones, since no relocations could target
2785 them - they should not appear in object files anyway. */
2786 if (strcmp (sect->name, DWARF2_DEBUG_INFO) == 0)
2787 is_debug_info = 1;
2788 else if (CONST_STRNEQ (sect->name, GNU_LINKONCE_INFO))
2789 is_debug_info = 1;
2790 else
2791 is_debug_info = 0;
2792
2793 if (!is_debug_info && (sect->flags & SEC_LOAD) == 0)
2794 continue;
2795
2796 sz = sect->rawsize ? sect->rawsize : sect->size;
2797 if (sz == 0)
2798 continue;
2799
2800 i++;
2801 }
2802
2803 amt = i * sizeof (struct adjusted_section);
2804 p = (struct adjusted_section *) bfd_zalloc (abfd, amt);
2805 if (! p)
2806 return FALSE;
2807
2808 stash->adjusted_sections = p;
2809 stash->adjusted_section_count = i;
2810
2811 for (sect = abfd->sections; sect != NULL; sect = sect->next)
2812 {
2813 bfd_size_type sz;
2814 int is_debug_info;
2815
2816 if (sect->vma != 0)
2817 continue;
2818
2819 /* We need to adjust the VMAs of any .debug_info sections.
2820 Skip compressed ones, since no relocations could target
2821 them - they should not appear in object files anyway. */
2822 if (strcmp (sect->name, DWARF2_DEBUG_INFO) == 0)
2823 is_debug_info = 1;
2824 else if (CONST_STRNEQ (sect->name, GNU_LINKONCE_INFO))
2825 is_debug_info = 1;
2826 else
2827 is_debug_info = 0;
2828
2829 if (!is_debug_info && (sect->flags & SEC_LOAD) == 0)
2830 continue;
2831
2832 sz = sect->rawsize ? sect->rawsize : sect->size;
2833 if (sz == 0)
2834 continue;
2835
2836 p->section = sect;
2837 if (is_debug_info)
2838 {
2839 BFD_ASSERT (sect->alignment_power == 0);
2840 sect->vma = last_dwarf;
2841 last_dwarf += sz;
2842 }
2843 else if (last_vma != 0)
2844 {
2845 /* Align the new address to the current section
2846 alignment. */
2847 last_vma = ((last_vma
2848 + ~((bfd_vma) -1 << sect->alignment_power))
2849 & ((bfd_vma) -1 << sect->alignment_power));
2850 sect->vma = last_vma;
2851 last_vma += sect->vma + sz;
2852 }
2853 else
2854 last_vma += sect->vma + sz;
2855
2856 p->adj_vma = sect->vma;
2857
2858 p++;
2859 }
2860 }
2861
2862 return TRUE;
2863 }
2864
2865 /* Look up a funcinfo by name using the given info hash table. If found,
2866 also update the locations pointed to by filename_ptr and linenumber_ptr.
2867
2868 This function returns TRUE if a funcinfo that matches the given symbol
2869 and address is found with any error; otherwise it returns FALSE. */
2870
2871 static bfd_boolean
2872 info_hash_lookup_funcinfo (struct info_hash_table *hash_table,
2873 asymbol *sym,
2874 bfd_vma addr,
2875 const char **filename_ptr,
2876 unsigned int *linenumber_ptr)
2877 {
2878 struct funcinfo* each_func;
2879 struct funcinfo* best_fit = NULL;
2880 struct info_list_node *node;
2881 struct arange *arange;
2882 const char *name = bfd_asymbol_name (sym);
2883 asection *sec = bfd_get_section (sym);
2884
2885 for (node = lookup_info_hash_table (hash_table, name);
2886 node;
2887 node = node->next)
2888 {
2889 each_func = (struct funcinfo *) node->info;
2890 for (arange = &each_func->arange;
2891 arange;
2892 arange = arange->next)
2893 {
2894 if ((!each_func->sec || each_func->sec == sec)
2895 && addr >= arange->low
2896 && addr < arange->high
2897 && (!best_fit
2898 || ((arange->high - arange->low)
2899 < (best_fit->arange.high - best_fit->arange.low))))
2900 best_fit = each_func;
2901 }
2902 }
2903
2904 if (best_fit)
2905 {
2906 best_fit->sec = sec;
2907 *filename_ptr = best_fit->file;
2908 *linenumber_ptr = best_fit->line;
2909 return TRUE;
2910 }
2911
2912 return FALSE;
2913 }
2914
2915 /* Look up a varinfo by name using the given info hash table. If found,
2916 also update the locations pointed to by filename_ptr and linenumber_ptr.
2917
2918 This function returns TRUE if a varinfo that matches the given symbol
2919 and address is found with any error; otherwise it returns FALSE. */
2920
2921 static bfd_boolean
2922 info_hash_lookup_varinfo (struct info_hash_table *hash_table,
2923 asymbol *sym,
2924 bfd_vma addr,
2925 const char **filename_ptr,
2926 unsigned int *linenumber_ptr)
2927 {
2928 const char *name = bfd_asymbol_name (sym);
2929 asection *sec = bfd_get_section (sym);
2930 struct varinfo* each;
2931 struct info_list_node *node;
2932
2933 for (node = lookup_info_hash_table (hash_table, name);
2934 node;
2935 node = node->next)
2936 {
2937 each = (struct varinfo *) node->info;
2938 if (each->addr == addr
2939 && (!each->sec || each->sec == sec))
2940 {
2941 each->sec = sec;
2942 *filename_ptr = each->file;
2943 *linenumber_ptr = each->line;
2944 return TRUE;
2945 }
2946 }
2947
2948 return FALSE;
2949 }
2950
2951 /* Update the funcinfo and varinfo info hash tables if they are
2952 not up to date. Returns TRUE if there is no error; otherwise
2953 returns FALSE and disable the info hash tables. */
2954
2955 static bfd_boolean
2956 stash_maybe_update_info_hash_tables (struct dwarf2_debug *stash)
2957 {
2958 struct comp_unit *each;
2959
2960 /* Exit if hash tables are up-to-date. */
2961 if (stash->all_comp_units == stash->hash_units_head)
2962 return TRUE;
2963
2964 if (stash->hash_units_head)
2965 each = stash->hash_units_head->prev_unit;
2966 else
2967 each = stash->last_comp_unit;
2968
2969 while (each)
2970 {
2971 if (!comp_unit_hash_info (stash, each, stash->funcinfo_hash_table,
2972 stash->varinfo_hash_table))
2973 {
2974 stash->info_hash_status = STASH_INFO_HASH_DISABLED;
2975 return FALSE;
2976 }
2977 each = each->prev_unit;
2978 }
2979
2980 stash->hash_units_head = stash->all_comp_units;
2981 return TRUE;
2982 }
2983
2984 /* Check consistency of info hash tables. This is for debugging only. */
2985
2986 static void ATTRIBUTE_UNUSED
2987 stash_verify_info_hash_table (struct dwarf2_debug *stash)
2988 {
2989 struct comp_unit *each_unit;
2990 struct funcinfo *each_func;
2991 struct varinfo *each_var;
2992 struct info_list_node *node;
2993 bfd_boolean found;
2994
2995 for (each_unit = stash->all_comp_units;
2996 each_unit;
2997 each_unit = each_unit->next_unit)
2998 {
2999 for (each_func = each_unit->function_table;
3000 each_func;
3001 each_func = each_func->prev_func)
3002 {
3003 if (!each_func->name)
3004 continue;
3005 node = lookup_info_hash_table (stash->funcinfo_hash_table,
3006 each_func->name);
3007 BFD_ASSERT (node);
3008 found = FALSE;
3009 while (node && !found)
3010 {
3011 found = node->info == each_func;
3012 node = node->next;
3013 }
3014 BFD_ASSERT (found);
3015 }
3016
3017 for (each_var = each_unit->variable_table;
3018 each_var;
3019 each_var = each_var->prev_var)
3020 {
3021 if (!each_var->name || !each_var->file || each_var->stack)
3022 continue;
3023 node = lookup_info_hash_table (stash->varinfo_hash_table,
3024 each_var->name);
3025 BFD_ASSERT (node);
3026 found = FALSE;
3027 while (node && !found)
3028 {
3029 found = node->info == each_var;
3030 node = node->next;
3031 }
3032 BFD_ASSERT (found);
3033 }
3034 }
3035 }
3036
3037 /* Check to see if we want to enable the info hash tables, which consume
3038 quite a bit of memory. Currently we only check the number times
3039 bfd_dwarf2_find_line is called. In the future, we may also want to
3040 take the number of symbols into account. */
3041
3042 static void
3043 stash_maybe_enable_info_hash_tables (bfd *abfd, struct dwarf2_debug *stash)
3044 {
3045 BFD_ASSERT (stash->info_hash_status == STASH_INFO_HASH_OFF);
3046
3047 if (stash->info_hash_count++ < STASH_INFO_HASH_TRIGGER)
3048 return;
3049
3050 /* FIXME: Maybe we should check the reduce_memory_overheads
3051 and optimize fields in the bfd_link_info structure ? */
3052
3053 /* Create hash tables. */
3054 stash->funcinfo_hash_table = create_info_hash_table (abfd);
3055 stash->varinfo_hash_table = create_info_hash_table (abfd);
3056 if (!stash->funcinfo_hash_table || !stash->varinfo_hash_table)
3057 {
3058 /* Turn off info hashes if any allocation above fails. */
3059 stash->info_hash_status = STASH_INFO_HASH_DISABLED;
3060 return;
3061 }
3062 /* We need a forced update so that the info hash tables will
3063 be created even though there is no compilation unit. That
3064 happens if STASH_INFO_HASH_TRIGGER is 0. */
3065 stash_maybe_update_info_hash_tables (stash);
3066 stash->info_hash_status = STASH_INFO_HASH_ON;
3067 }
3068
3069 /* Find the file and line associated with a symbol and address using the
3070 info hash tables of a stash. If there is a match, the function returns
3071 TRUE and update the locations pointed to by filename_ptr and linenumber_ptr;
3072 otherwise it returns FALSE. */
3073
3074 static bfd_boolean
3075 stash_find_line_fast (struct dwarf2_debug *stash,
3076 asymbol *sym,
3077 bfd_vma addr,
3078 const char **filename_ptr,
3079 unsigned int *linenumber_ptr)
3080 {
3081 BFD_ASSERT (stash->info_hash_status == STASH_INFO_HASH_ON);
3082
3083 if (sym->flags & BSF_FUNCTION)
3084 return info_hash_lookup_funcinfo (stash->funcinfo_hash_table, sym, addr,
3085 filename_ptr, linenumber_ptr);
3086 return info_hash_lookup_varinfo (stash->varinfo_hash_table, sym, addr,
3087 filename_ptr, linenumber_ptr);
3088 }
3089
3090 /* Find the source code location of SYMBOL. If SYMBOL is NULL
3091 then find the nearest source code location corresponding to
3092 the address SECTION + OFFSET.
3093 Returns TRUE if the line is found without error and fills in
3094 FILENAME_PTR and LINENUMBER_PTR. In the case where SYMBOL was
3095 NULL the FUNCTIONNAME_PTR is also filled in.
3096 SYMBOLS contains the symbol table for ABFD.
3097 ADDR_SIZE is the number of bytes in the initial .debug_info length
3098 field and in the abbreviation offset, or zero to indicate that the
3099 default value should be used. */
3100
3101 static bfd_boolean
3102 find_line (bfd *abfd,
3103 asection *section,
3104 bfd_vma offset,
3105 asymbol *symbol,
3106 asymbol **symbols,
3107 const char **filename_ptr,
3108 const char **functionname_ptr,
3109 unsigned int *linenumber_ptr,
3110 unsigned int addr_size,
3111 void **pinfo)
3112 {
3113 /* Read each compilation unit from the section .debug_info, and check
3114 to see if it contains the address we are searching for. If yes,
3115 lookup the address, and return the line number info. If no, go
3116 on to the next compilation unit.
3117
3118 We keep a list of all the previously read compilation units, and
3119 a pointer to the next un-read compilation unit. Check the
3120 previously read units before reading more. */
3121 struct dwarf2_debug *stash;
3122 /* What address are we looking for? */
3123 bfd_vma addr;
3124 struct comp_unit* each;
3125 bfd_vma found = FALSE;
3126 bfd_boolean do_line;
3127
3128 stash = (struct dwarf2_debug *) *pinfo;
3129
3130 if (! stash)
3131 {
3132 bfd_size_type amt = sizeof (struct dwarf2_debug);
3133
3134 stash = (struct dwarf2_debug *) bfd_zalloc (abfd, amt);
3135 if (! stash)
3136 return FALSE;
3137 }
3138
3139 /* In a relocatable file, 2 functions may have the same address.
3140 We change the section vma so that they won't overlap. */
3141 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0)
3142 {
3143 if (! place_sections (abfd, stash))
3144 return FALSE;
3145 }
3146
3147 do_line = (section == NULL
3148 && offset == 0
3149 && functionname_ptr == NULL
3150 && symbol != NULL);
3151 if (do_line)
3152 {
3153 addr = symbol->value;
3154 section = bfd_get_section (symbol);
3155 }
3156 else if (section != NULL
3157 && functionname_ptr != NULL
3158 && symbol == NULL)
3159 addr = offset;
3160 else
3161 abort ();
3162
3163 if (section->output_section)
3164 addr += section->output_section->vma + section->output_offset;
3165 else
3166 addr += section->vma;
3167 *filename_ptr = NULL;
3168 if (! do_line)
3169 *functionname_ptr = NULL;
3170 *linenumber_ptr = 0;
3171
3172 if (! *pinfo)
3173 {
3174 bfd *debug_bfd;
3175 bfd_size_type total_size;
3176 asection *msec;
3177
3178 *pinfo = stash;
3179
3180 msec = find_debug_info (abfd, NULL);
3181 if (msec == NULL)
3182 {
3183 char * debug_filename = bfd_follow_gnu_debuglink (abfd, DEBUGDIR);
3184
3185 if (debug_filename == NULL)
3186 /* No dwarf2 info, and no gnu_debuglink to follow.
3187 Note that at this point the stash has been allocated, but
3188 contains zeros. This lets future calls to this function
3189 fail more quickly. */
3190 goto done;
3191
3192 if ((debug_bfd = bfd_openr (debug_filename, NULL)) == NULL
3193 || ! bfd_check_format (debug_bfd, bfd_object)
3194 || (msec = find_debug_info (debug_bfd, NULL)) == NULL)
3195 {
3196 if (debug_bfd)
3197 bfd_close (debug_bfd);
3198 /* FIXME: Should we report our failure to follow the debuglink ? */
3199 free (debug_filename);
3200 goto done;
3201 }
3202 }
3203 else
3204 debug_bfd = abfd;
3205
3206 /* There can be more than one DWARF2 info section in a BFD these
3207 days. First handle the easy case when there's only one. If
3208 there's more than one, try case two: none of the sections is
3209 compressed. In that case, read them all in and produce one
3210 large stash. We do this in two passes - in the first pass we
3211 just accumulate the section sizes, and in the second pass we
3212 read in the section's contents. (The allows us to avoid
3213 reallocing the data as we add sections to the stash.) If
3214 some or all sections are compressed, then do things the slow
3215 way, with a bunch of reallocs. */
3216
3217 if (! find_debug_info (debug_bfd, msec))
3218 {
3219 /* Case 1: only one info section. */
3220 total_size = msec->size;
3221 if (! read_section (debug_bfd, ".debug_info", ".zdebug_info",
3222 symbols, 0,
3223 &stash->info_ptr_memory, &total_size))
3224 goto done;
3225 }
3226 else
3227 {
3228 int all_uncompressed = 1;
3229 for (total_size = 0; msec; msec = find_debug_info (debug_bfd, msec))
3230 {
3231 total_size += msec->size;
3232 if (strcmp (msec->name, DWARF2_COMPRESSED_DEBUG_INFO) == 0)
3233 all_uncompressed = 0;
3234 }
3235 if (all_uncompressed)
3236 {
3237 /* Case 2: multiple sections, but none is compressed. */
3238 stash->info_ptr_memory = (bfd_byte *) bfd_malloc (total_size);
3239 if (stash->info_ptr_memory == NULL)
3240 goto done;
3241
3242 total_size = 0;
3243 for (msec = find_debug_info (debug_bfd, NULL);
3244 msec;
3245 msec = find_debug_info (debug_bfd, msec))
3246 {
3247 bfd_size_type size;
3248
3249 size = msec->size;
3250 if (size == 0)
3251 continue;
3252
3253 if (!(bfd_simple_get_relocated_section_contents
3254 (debug_bfd, msec, stash->info_ptr_memory + total_size,
3255 symbols)))
3256 goto done;
3257
3258 total_size += size;
3259 }
3260 }
3261 else
3262 {
3263 /* Case 3: multiple sections, some or all compressed. */
3264 stash->info_ptr_memory = NULL;
3265 total_size = 0;
3266 for (msec = find_debug_info (debug_bfd, NULL);
3267 msec;
3268 msec = find_debug_info (debug_bfd, msec))
3269 {
3270 bfd_size_type size = msec->size;
3271 bfd_byte *buffer, *tmp;
3272 bfd_boolean is_compressed =
3273 strcmp (msec->name, DWARF2_COMPRESSED_DEBUG_INFO) == 0;
3274
3275 if (size == 0)
3276 continue;
3277
3278 if (! read_and_uncompress_section (debug_bfd, msec,
3279 is_compressed, symbols,
3280 &buffer, &size))
3281 goto done;
3282
3283 tmp = (bfd_byte *) bfd_realloc (stash->info_ptr_memory,
3284 total_size + size);
3285 if (tmp == NULL)
3286 {
3287 free (buffer);
3288 goto done;
3289 }
3290 stash->info_ptr_memory = tmp;
3291 memcpy (stash->info_ptr_memory + total_size, buffer, size);
3292 free (buffer);
3293 total_size += size;
3294 }
3295 }
3296 }
3297
3298 stash->info_ptr = stash->info_ptr_memory;
3299 stash->info_ptr_end = stash->info_ptr + total_size;
3300 stash->sec = find_debug_info (debug_bfd, NULL);
3301 stash->sec_info_ptr = stash->info_ptr;
3302 stash->syms = symbols;
3303 stash->bfd_ptr = debug_bfd;
3304 }
3305
3306 /* A null info_ptr indicates that there is no dwarf2 info
3307 (or that an error occured while setting up the stash). */
3308 if (! stash->info_ptr)
3309 goto done;
3310
3311 stash->inliner_chain = NULL;
3312
3313 /* Check the previously read comp. units first. */
3314 if (do_line)
3315 {
3316 /* The info hash tables use quite a bit of memory. We may not want to
3317 always use them. We use some heuristics to decide if and when to
3318 turn it on. */
3319 if (stash->info_hash_status == STASH_INFO_HASH_OFF)
3320 stash_maybe_enable_info_hash_tables (abfd, stash);
3321
3322 /* Keep info hash table up to date if they are available. Note that we
3323 may disable the hash tables if there is any error duing update. */
3324 if (stash->info_hash_status == STASH_INFO_HASH_ON)
3325 stash_maybe_update_info_hash_tables (stash);
3326
3327 if (stash->info_hash_status == STASH_INFO_HASH_ON)
3328 {
3329 found = stash_find_line_fast (stash, symbol, addr, filename_ptr,
3330 linenumber_ptr);
3331 if (found)
3332 goto done;
3333 }
3334 else
3335 {
3336 /* Check the previously read comp. units first. */
3337 for (each = stash->all_comp_units; each; each = each->next_unit)
3338 if ((symbol->flags & BSF_FUNCTION) == 0
3339 || comp_unit_contains_address (each, addr))
3340 {
3341 found = comp_unit_find_line (each, symbol, addr, filename_ptr,
3342 linenumber_ptr, stash);
3343 if (found)
3344 goto done;
3345 }
3346 }
3347 }
3348 else
3349 {
3350 for (each = stash->all_comp_units; each; each = each->next_unit)
3351 {
3352 found = (comp_unit_contains_address (each, addr)
3353 && comp_unit_find_nearest_line (each, addr,
3354 filename_ptr,
3355 functionname_ptr,
3356 linenumber_ptr,
3357 stash));
3358 if (found)
3359 goto done;
3360 }
3361 }
3362
3363 /* The DWARF2 spec says that the initial length field, and the
3364 offset of the abbreviation table, should both be 4-byte values.
3365 However, some compilers do things differently. */
3366 if (addr_size == 0)
3367 addr_size = 4;
3368 BFD_ASSERT (addr_size == 4 || addr_size == 8);
3369
3370 /* Read each remaining comp. units checking each as they are read. */
3371 while (stash->info_ptr < stash->info_ptr_end)
3372 {
3373 bfd_vma length;
3374 unsigned int offset_size = addr_size;
3375 bfd_byte *info_ptr_unit = stash->info_ptr;
3376
3377 length = read_4_bytes (stash->bfd_ptr, stash->info_ptr);
3378 /* A 0xffffff length is the DWARF3 way of indicating
3379 we use 64-bit offsets, instead of 32-bit offsets. */
3380 if (length == 0xffffffff)
3381 {
3382 offset_size = 8;
3383 length = read_8_bytes (stash->bfd_ptr, stash->info_ptr + 4);
3384 stash->info_ptr += 12;
3385 }
3386 /* A zero length is the IRIX way of indicating 64-bit offsets,
3387 mostly because the 64-bit length will generally fit in 32
3388 bits, and the endianness helps. */
3389 else if (length == 0)
3390 {
3391 offset_size = 8;
3392 length = read_4_bytes (stash->bfd_ptr, stash->info_ptr + 4);
3393 stash->info_ptr += 8;
3394 }
3395 /* In the absence of the hints above, we assume 32-bit DWARF2
3396 offsets even for targets with 64-bit addresses, because:
3397 a) most of the time these targets will not have generated
3398 more than 2Gb of debug info and so will not need 64-bit
3399 offsets,
3400 and
3401 b) if they do use 64-bit offsets but they are not using
3402 the size hints that are tested for above then they are
3403 not conforming to the DWARF3 standard anyway. */
3404 else if (addr_size == 8)
3405 {
3406 offset_size = 4;
3407 stash->info_ptr += 4;
3408 }
3409 else
3410 stash->info_ptr += 4;
3411
3412 if (length > 0)
3413 {
3414 each = parse_comp_unit (stash, length, info_ptr_unit,
3415 offset_size);
3416 if (!each)
3417 /* The dwarf information is damaged, don't trust it any
3418 more. */
3419 break;
3420 stash->info_ptr += length;
3421
3422 if (stash->all_comp_units)
3423 stash->all_comp_units->prev_unit = each;
3424 else
3425 stash->last_comp_unit = each;
3426
3427 each->next_unit = stash->all_comp_units;
3428 stash->all_comp_units = each;
3429
3430 /* DW_AT_low_pc and DW_AT_high_pc are optional for
3431 compilation units. If we don't have them (i.e.,
3432 unit->high == 0), we need to consult the line info table
3433 to see if a compilation unit contains the given
3434 address. */
3435 if (do_line)
3436 found = (((symbol->flags & BSF_FUNCTION) == 0
3437 || each->arange.high == 0
3438 || comp_unit_contains_address (each, addr))
3439 && comp_unit_find_line (each, symbol, addr,
3440 filename_ptr,
3441 linenumber_ptr,
3442 stash));
3443 else
3444 found = ((each->arange.high == 0
3445 || comp_unit_contains_address (each, addr))
3446 && comp_unit_find_nearest_line (each, addr,
3447 filename_ptr,
3448 functionname_ptr,
3449 linenumber_ptr,
3450 stash));
3451
3452 if ((bfd_vma) (stash->info_ptr - stash->sec_info_ptr)
3453 == stash->sec->size)
3454 {
3455 stash->sec = find_debug_info (stash->bfd_ptr, stash->sec);
3456 stash->sec_info_ptr = stash->info_ptr;
3457 }
3458
3459 if (found)
3460 goto done;
3461 }
3462 }
3463
3464 done:
3465 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0)
3466 unset_sections (stash);
3467
3468 return found;
3469 }
3470
3471 /* The DWARF2 version of find_nearest_line.
3472 Return TRUE if the line is found without error. */
3473
3474 bfd_boolean
3475 _bfd_dwarf2_find_nearest_line (bfd *abfd,
3476 asection *section,
3477 asymbol **symbols,
3478 bfd_vma offset,
3479 const char **filename_ptr,
3480 const char **functionname_ptr,
3481 unsigned int *linenumber_ptr,
3482 unsigned int addr_size,
3483 void **pinfo)
3484 {
3485 return find_line (abfd, section, offset, NULL, symbols, filename_ptr,
3486 functionname_ptr, linenumber_ptr, addr_size,
3487 pinfo);
3488 }
3489
3490 /* The DWARF2 version of find_line.
3491 Return TRUE if the line is found without error. */
3492
3493 bfd_boolean
3494 _bfd_dwarf2_find_line (bfd *abfd,
3495 asymbol **symbols,
3496 asymbol *symbol,
3497 const char **filename_ptr,
3498 unsigned int *linenumber_ptr,
3499 unsigned int addr_size,
3500 void **pinfo)
3501 {
3502 return find_line (abfd, NULL, 0, symbol, symbols, filename_ptr,
3503 NULL, linenumber_ptr, addr_size,
3504 pinfo);
3505 }
3506
3507 bfd_boolean
3508 _bfd_dwarf2_find_inliner_info (bfd *abfd ATTRIBUTE_UNUSED,
3509 const char **filename_ptr,
3510 const char **functionname_ptr,
3511 unsigned int *linenumber_ptr,
3512 void **pinfo)
3513 {
3514 struct dwarf2_debug *stash;
3515
3516 stash = (struct dwarf2_debug *) *pinfo;
3517 if (stash)
3518 {
3519 struct funcinfo *func = stash->inliner_chain;
3520
3521 if (func && func->caller_func)
3522 {
3523 *filename_ptr = func->caller_file;
3524 *functionname_ptr = func->caller_func->name;
3525 *linenumber_ptr = func->caller_line;
3526 stash->inliner_chain = func->caller_func;
3527 return TRUE;
3528 }
3529 }
3530
3531 return FALSE;
3532 }
3533
3534 void
3535 _bfd_dwarf2_cleanup_debug_info (bfd *abfd)
3536 {
3537 struct comp_unit *each;
3538 struct dwarf2_debug *stash;
3539
3540 if (abfd == NULL || elf_tdata (abfd) == NULL)
3541 return;
3542
3543 stash = (struct dwarf2_debug *) elf_tdata (abfd)->dwarf2_find_line_info;
3544
3545 if (stash == NULL)
3546 return;
3547
3548 for (each = stash->all_comp_units; each; each = each->next_unit)
3549 {
3550 struct abbrev_info **abbrevs = each->abbrevs;
3551 struct funcinfo *function_table = each->function_table;
3552 struct varinfo *variable_table = each->variable_table;
3553 size_t i;
3554
3555 for (i = 0; i < ABBREV_HASH_SIZE; i++)
3556 {
3557 struct abbrev_info *abbrev = abbrevs[i];
3558
3559 while (abbrev)
3560 {
3561 free (abbrev->attrs);
3562 abbrev = abbrev->next;
3563 }
3564 }
3565
3566 if (each->line_table)
3567 {
3568 free (each->line_table->dirs);
3569 free (each->line_table->files);
3570 }
3571
3572 while (function_table)
3573 {
3574 if (function_table->file)
3575 {
3576 free (function_table->file);
3577 function_table->file = NULL;
3578 }
3579
3580 if (function_table->caller_file)
3581 {
3582 free (function_table->caller_file);
3583 function_table->caller_file = NULL;
3584 }
3585 function_table = function_table->prev_func;
3586 }
3587
3588 while (variable_table)
3589 {
3590 if (variable_table->file)
3591 {
3592 free (variable_table->file);
3593 variable_table->file = NULL;
3594 }
3595
3596 variable_table = variable_table->prev_var;
3597 }
3598 }
3599
3600 if (stash->dwarf_abbrev_buffer)
3601 free (stash->dwarf_abbrev_buffer);
3602 if (stash->dwarf_line_buffer)
3603 free (stash->dwarf_line_buffer);
3604 if (stash->dwarf_str_buffer)
3605 free (stash->dwarf_str_buffer);
3606 if (stash->dwarf_ranges_buffer)
3607 free (stash->dwarf_ranges_buffer);
3608 if (stash->info_ptr_memory)
3609 free (stash->info_ptr_memory);
3610 }
This page took 0.106182 seconds and 4 git commands to generate.