Tidy reading data in read_formatted_entries
[deliverable/binutils-gdb.git] / bfd / dwarf2.c
1 /* DWARF 2 support.
2 Copyright (C) 1994-2017 Free Software Foundation, Inc.
3
4 Adapted from gdb/dwarf2read.c by Gavin Koch of Cygnus Solutions
5 (gavin@cygnus.com).
6
7 From the dwarf2read.c header:
8 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
9 Inc. with support from Florida State University (under contract
10 with the Ada Joint Program Office), and Silicon Graphics, Inc.
11 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
12 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
13 support in dwarfread.c
14
15 This file is part of BFD.
16
17 This program is free software; you can redistribute it and/or modify
18 it under the terms of the GNU General Public License as published by
19 the Free Software Foundation; either version 3 of the License, or (at
20 your option) any later version.
21
22 This program is distributed in the hope that it will be useful, but
23 WITHOUT ANY WARRANTY; without even the implied warranty of
24 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
25 General Public License for more details.
26
27 You should have received a copy of the GNU General Public License
28 along with this program; if not, write to the Free Software
29 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
30 MA 02110-1301, USA. */
31
32 #include "sysdep.h"
33 #include "bfd.h"
34 #include "libiberty.h"
35 #include "libbfd.h"
36 #include "elf-bfd.h"
37 #include "dwarf2.h"
38
39 /* The data in the .debug_line statement prologue looks like this. */
40
41 struct line_head
42 {
43 bfd_vma total_length;
44 unsigned short version;
45 bfd_vma prologue_length;
46 unsigned char minimum_instruction_length;
47 unsigned char maximum_ops_per_insn;
48 unsigned char default_is_stmt;
49 int line_base;
50 unsigned char line_range;
51 unsigned char opcode_base;
52 unsigned char *standard_opcode_lengths;
53 };
54
55 /* Attributes have a name and a value. */
56
57 struct attribute
58 {
59 enum dwarf_attribute name;
60 enum dwarf_form form;
61 union
62 {
63 char *str;
64 struct dwarf_block *blk;
65 bfd_uint64_t val;
66 bfd_int64_t sval;
67 }
68 u;
69 };
70
71 /* Blocks are a bunch of untyped bytes. */
72 struct dwarf_block
73 {
74 unsigned int size;
75 bfd_byte *data;
76 };
77
78 struct adjusted_section
79 {
80 asection *section;
81 bfd_vma adj_vma;
82 };
83
84 struct dwarf2_debug
85 {
86 /* A list of all previously read comp_units. */
87 struct comp_unit *all_comp_units;
88
89 /* Last comp unit in list above. */
90 struct comp_unit *last_comp_unit;
91
92 /* Names of the debug sections. */
93 const struct dwarf_debug_section *debug_sections;
94
95 /* The next unread compilation unit within the .debug_info section.
96 Zero indicates that the .debug_info section has not been loaded
97 into a buffer yet. */
98 bfd_byte *info_ptr;
99
100 /* Pointer to the end of the .debug_info section memory buffer. */
101 bfd_byte *info_ptr_end;
102
103 /* Pointer to the original bfd for which debug was loaded. This is what
104 we use to compare and so check that the cached debug data is still
105 valid - it saves having to possibly dereference the gnu_debuglink each
106 time. */
107 bfd *orig_bfd;
108
109 /* Pointer to the bfd, section and address of the beginning of the
110 section. The bfd might be different than expected because of
111 gnu_debuglink sections. */
112 bfd *bfd_ptr;
113 asection *sec;
114 bfd_byte *sec_info_ptr;
115
116 /* Support for alternate debug info sections created by the DWZ utility:
117 This includes a pointer to an alternate bfd which contains *extra*,
118 possibly duplicate debug sections, and pointers to the loaded
119 .debug_str and .debug_info sections from this bfd. */
120 bfd * alt_bfd_ptr;
121 bfd_byte * alt_dwarf_str_buffer;
122 bfd_size_type alt_dwarf_str_size;
123 bfd_byte * alt_dwarf_info_buffer;
124 bfd_size_type alt_dwarf_info_size;
125
126 /* A pointer to the memory block allocated for info_ptr. Neither
127 info_ptr nor sec_info_ptr are guaranteed to stay pointing to the
128 beginning of the malloc block. */
129 bfd_byte *info_ptr_memory;
130
131 /* Pointer to the symbol table. */
132 asymbol **syms;
133
134 /* Pointer to the .debug_abbrev section loaded into memory. */
135 bfd_byte *dwarf_abbrev_buffer;
136
137 /* Length of the loaded .debug_abbrev section. */
138 bfd_size_type dwarf_abbrev_size;
139
140 /* Buffer for decode_line_info. */
141 bfd_byte *dwarf_line_buffer;
142
143 /* Length of the loaded .debug_line section. */
144 bfd_size_type dwarf_line_size;
145
146 /* Pointer to the .debug_str section loaded into memory. */
147 bfd_byte *dwarf_str_buffer;
148
149 /* Length of the loaded .debug_str section. */
150 bfd_size_type dwarf_str_size;
151
152 /* Pointer to the .debug_line_str section loaded into memory. */
153 bfd_byte *dwarf_line_str_buffer;
154
155 /* Length of the loaded .debug_line_str section. */
156 bfd_size_type dwarf_line_str_size;
157
158 /* Pointer to the .debug_ranges section loaded into memory. */
159 bfd_byte *dwarf_ranges_buffer;
160
161 /* Length of the loaded .debug_ranges section. */
162 bfd_size_type dwarf_ranges_size;
163
164 /* If the most recent call to bfd_find_nearest_line was given an
165 address in an inlined function, preserve a pointer into the
166 calling chain for subsequent calls to bfd_find_inliner_info to
167 use. */
168 struct funcinfo *inliner_chain;
169
170 /* Section VMAs at the time the stash was built. */
171 bfd_vma *sec_vma;
172
173 /* Number of sections whose VMA we must adjust. */
174 int adjusted_section_count;
175
176 /* Array of sections with adjusted VMA. */
177 struct adjusted_section *adjusted_sections;
178
179 /* Number of times find_line is called. This is used in
180 the heuristic for enabling the info hash tables. */
181 int info_hash_count;
182
183 #define STASH_INFO_HASH_TRIGGER 100
184
185 /* Hash table mapping symbol names to function infos. */
186 struct info_hash_table *funcinfo_hash_table;
187
188 /* Hash table mapping symbol names to variable infos. */
189 struct info_hash_table *varinfo_hash_table;
190
191 /* Head of comp_unit list in the last hash table update. */
192 struct comp_unit *hash_units_head;
193
194 /* Status of info hash. */
195 int info_hash_status;
196 #define STASH_INFO_HASH_OFF 0
197 #define STASH_INFO_HASH_ON 1
198 #define STASH_INFO_HASH_DISABLED 2
199
200 /* True if we opened bfd_ptr. */
201 bfd_boolean close_on_cleanup;
202 };
203
204 struct arange
205 {
206 struct arange *next;
207 bfd_vma low;
208 bfd_vma high;
209 };
210
211 /* A minimal decoding of DWARF2 compilation units. We only decode
212 what's needed to get to the line number information. */
213
214 struct comp_unit
215 {
216 /* Chain the previously read compilation units. */
217 struct comp_unit *next_unit;
218
219 /* Likewise, chain the compilation unit read after this one.
220 The comp units are stored in reversed reading order. */
221 struct comp_unit *prev_unit;
222
223 /* Keep the bfd convenient (for memory allocation). */
224 bfd *abfd;
225
226 /* The lowest and highest addresses contained in this compilation
227 unit as specified in the compilation unit header. */
228 struct arange arange;
229
230 /* The DW_AT_name attribute (for error messages). */
231 char *name;
232
233 /* The abbrev hash table. */
234 struct abbrev_info **abbrevs;
235
236 /* DW_AT_language. */
237 int lang;
238
239 /* Note that an error was found by comp_unit_find_nearest_line. */
240 int error;
241
242 /* The DW_AT_comp_dir attribute. */
243 char *comp_dir;
244
245 /* TRUE if there is a line number table associated with this comp. unit. */
246 int stmtlist;
247
248 /* Pointer to the current comp_unit so that we can find a given entry
249 by its reference. */
250 bfd_byte *info_ptr_unit;
251
252 /* The offset into .debug_line of the line number table. */
253 unsigned long line_offset;
254
255 /* Pointer to the first child die for the comp unit. */
256 bfd_byte *first_child_die_ptr;
257
258 /* The end of the comp unit. */
259 bfd_byte *end_ptr;
260
261 /* The decoded line number, NULL if not yet decoded. */
262 struct line_info_table *line_table;
263
264 /* A list of the functions found in this comp. unit. */
265 struct funcinfo *function_table;
266
267 /* A table of function information references searchable by address. */
268 struct lookup_funcinfo *lookup_funcinfo_table;
269
270 /* Number of functions in the function_table and sorted_function_table. */
271 bfd_size_type number_of_functions;
272
273 /* A list of the variables found in this comp. unit. */
274 struct varinfo *variable_table;
275
276 /* Pointer to dwarf2_debug structure. */
277 struct dwarf2_debug *stash;
278
279 /* DWARF format version for this unit - from unit header. */
280 int version;
281
282 /* Address size for this unit - from unit header. */
283 unsigned char addr_size;
284
285 /* Offset size for this unit - from unit header. */
286 unsigned char offset_size;
287
288 /* Base address for this unit - from DW_AT_low_pc attribute of
289 DW_TAG_compile_unit DIE */
290 bfd_vma base_address;
291
292 /* TRUE if symbols are cached in hash table for faster lookup by name. */
293 bfd_boolean cached;
294 };
295
296 /* This data structure holds the information of an abbrev. */
297 struct abbrev_info
298 {
299 unsigned int number; /* Number identifying abbrev. */
300 enum dwarf_tag tag; /* DWARF tag. */
301 int has_children; /* Boolean. */
302 unsigned int num_attrs; /* Number of attributes. */
303 struct attr_abbrev *attrs; /* An array of attribute descriptions. */
304 struct abbrev_info *next; /* Next in chain. */
305 };
306
307 struct attr_abbrev
308 {
309 enum dwarf_attribute name;
310 enum dwarf_form form;
311 bfd_vma implicit_const;
312 };
313
314 /* Map of uncompressed DWARF debug section name to compressed one. It
315 is terminated by NULL uncompressed_name. */
316
317 const struct dwarf_debug_section dwarf_debug_sections[] =
318 {
319 { ".debug_abbrev", ".zdebug_abbrev" },
320 { ".debug_aranges", ".zdebug_aranges" },
321 { ".debug_frame", ".zdebug_frame" },
322 { ".debug_info", ".zdebug_info" },
323 { ".debug_info", ".zdebug_info" },
324 { ".debug_line", ".zdebug_line" },
325 { ".debug_loc", ".zdebug_loc" },
326 { ".debug_macinfo", ".zdebug_macinfo" },
327 { ".debug_macro", ".zdebug_macro" },
328 { ".debug_pubnames", ".zdebug_pubnames" },
329 { ".debug_pubtypes", ".zdebug_pubtypes" },
330 { ".debug_ranges", ".zdebug_ranges" },
331 { ".debug_static_func", ".zdebug_static_func" },
332 { ".debug_static_vars", ".zdebug_static_vars" },
333 { ".debug_str", ".zdebug_str", },
334 { ".debug_str", ".zdebug_str", },
335 { ".debug_line_str", ".zdebug_line_str", },
336 { ".debug_types", ".zdebug_types" },
337 /* GNU DWARF 1 extensions */
338 { ".debug_sfnames", ".zdebug_sfnames" },
339 { ".debug_srcinfo", ".zebug_srcinfo" },
340 /* SGI/MIPS DWARF 2 extensions */
341 { ".debug_funcnames", ".zdebug_funcnames" },
342 { ".debug_typenames", ".zdebug_typenames" },
343 { ".debug_varnames", ".zdebug_varnames" },
344 { ".debug_weaknames", ".zdebug_weaknames" },
345 { NULL, NULL },
346 };
347
348 /* NB/ Numbers in this enum must match up with indicies
349 into the dwarf_debug_sections[] array above. */
350 enum dwarf_debug_section_enum
351 {
352 debug_abbrev = 0,
353 debug_aranges,
354 debug_frame,
355 debug_info,
356 debug_info_alt,
357 debug_line,
358 debug_loc,
359 debug_macinfo,
360 debug_macro,
361 debug_pubnames,
362 debug_pubtypes,
363 debug_ranges,
364 debug_static_func,
365 debug_static_vars,
366 debug_str,
367 debug_str_alt,
368 debug_line_str,
369 debug_types,
370 debug_sfnames,
371 debug_srcinfo,
372 debug_funcnames,
373 debug_typenames,
374 debug_varnames,
375 debug_weaknames,
376 debug_max
377 };
378
379 /* A static assertion. */
380 extern int dwarf_debug_section_assert[ARRAY_SIZE (dwarf_debug_sections)
381 == debug_max + 1 ? 1 : -1];
382
383 #ifndef ABBREV_HASH_SIZE
384 #define ABBREV_HASH_SIZE 121
385 #endif
386 #ifndef ATTR_ALLOC_CHUNK
387 #define ATTR_ALLOC_CHUNK 4
388 #endif
389
390 /* Variable and function hash tables. This is used to speed up look-up
391 in lookup_symbol_in_var_table() and lookup_symbol_in_function_table().
392 In order to share code between variable and function infos, we use
393 a list of untyped pointer for all variable/function info associated with
394 a symbol. We waste a bit of memory for list with one node but that
395 simplifies the code. */
396
397 struct info_list_node
398 {
399 struct info_list_node *next;
400 void *info;
401 };
402
403 /* Info hash entry. */
404 struct info_hash_entry
405 {
406 struct bfd_hash_entry root;
407 struct info_list_node *head;
408 };
409
410 struct info_hash_table
411 {
412 struct bfd_hash_table base;
413 };
414
415 /* Function to create a new entry in info hash table. */
416
417 static struct bfd_hash_entry *
418 info_hash_table_newfunc (struct bfd_hash_entry *entry,
419 struct bfd_hash_table *table,
420 const char *string)
421 {
422 struct info_hash_entry *ret = (struct info_hash_entry *) entry;
423
424 /* Allocate the structure if it has not already been allocated by a
425 derived class. */
426 if (ret == NULL)
427 {
428 ret = (struct info_hash_entry *) bfd_hash_allocate (table,
429 sizeof (* ret));
430 if (ret == NULL)
431 return NULL;
432 }
433
434 /* Call the allocation method of the base class. */
435 ret = ((struct info_hash_entry *)
436 bfd_hash_newfunc ((struct bfd_hash_entry *) ret, table, string));
437
438 /* Initialize the local fields here. */
439 if (ret)
440 ret->head = NULL;
441
442 return (struct bfd_hash_entry *) ret;
443 }
444
445 /* Function to create a new info hash table. It returns a pointer to the
446 newly created table or NULL if there is any error. We need abfd
447 solely for memory allocation. */
448
449 static struct info_hash_table *
450 create_info_hash_table (bfd *abfd)
451 {
452 struct info_hash_table *hash_table;
453
454 hash_table = ((struct info_hash_table *)
455 bfd_alloc (abfd, sizeof (struct info_hash_table)));
456 if (!hash_table)
457 return hash_table;
458
459 if (!bfd_hash_table_init (&hash_table->base, info_hash_table_newfunc,
460 sizeof (struct info_hash_entry)))
461 {
462 bfd_release (abfd, hash_table);
463 return NULL;
464 }
465
466 return hash_table;
467 }
468
469 /* Insert an info entry into an info hash table. We do not check of
470 duplicate entries. Also, the caller need to guarantee that the
471 right type of info in inserted as info is passed as a void* pointer.
472 This function returns true if there is no error. */
473
474 static bfd_boolean
475 insert_info_hash_table (struct info_hash_table *hash_table,
476 const char *key,
477 void *info,
478 bfd_boolean copy_p)
479 {
480 struct info_hash_entry *entry;
481 struct info_list_node *node;
482
483 entry = (struct info_hash_entry*) bfd_hash_lookup (&hash_table->base,
484 key, TRUE, copy_p);
485 if (!entry)
486 return FALSE;
487
488 node = (struct info_list_node *) bfd_hash_allocate (&hash_table->base,
489 sizeof (*node));
490 if (!node)
491 return FALSE;
492
493 node->info = info;
494 node->next = entry->head;
495 entry->head = node;
496
497 return TRUE;
498 }
499
500 /* Look up an info entry list from an info hash table. Return NULL
501 if there is none. */
502
503 static struct info_list_node *
504 lookup_info_hash_table (struct info_hash_table *hash_table, const char *key)
505 {
506 struct info_hash_entry *entry;
507
508 entry = (struct info_hash_entry*) bfd_hash_lookup (&hash_table->base, key,
509 FALSE, FALSE);
510 return entry ? entry->head : NULL;
511 }
512
513 /* Read a section into its appropriate place in the dwarf2_debug
514 struct (indicated by SECTION_BUFFER and SECTION_SIZE). If SYMS is
515 not NULL, use bfd_simple_get_relocated_section_contents to read the
516 section contents, otherwise use bfd_get_section_contents. Fail if
517 the located section does not contain at least OFFSET bytes. */
518
519 static bfd_boolean
520 read_section (bfd * abfd,
521 const struct dwarf_debug_section *sec,
522 asymbol ** syms,
523 bfd_uint64_t offset,
524 bfd_byte ** section_buffer,
525 bfd_size_type * section_size)
526 {
527 asection *msec;
528 const char *section_name = sec->uncompressed_name;
529
530 /* The section may have already been read. */
531 if (*section_buffer == NULL)
532 {
533 msec = bfd_get_section_by_name (abfd, section_name);
534 if (! msec)
535 {
536 section_name = sec->compressed_name;
537 if (section_name != NULL)
538 msec = bfd_get_section_by_name (abfd, section_name);
539 }
540 if (! msec)
541 {
542 _bfd_error_handler (_("Dwarf Error: Can't find %s section."),
543 sec->uncompressed_name);
544 bfd_set_error (bfd_error_bad_value);
545 return FALSE;
546 }
547
548 *section_size = msec->rawsize ? msec->rawsize : msec->size;
549 if (syms)
550 {
551 *section_buffer
552 = bfd_simple_get_relocated_section_contents (abfd, msec, NULL, syms);
553 if (! *section_buffer)
554 return FALSE;
555 }
556 else
557 {
558 *section_buffer = (bfd_byte *) bfd_malloc (*section_size);
559 if (! *section_buffer)
560 return FALSE;
561 if (! bfd_get_section_contents (abfd, msec, *section_buffer,
562 0, *section_size))
563 return FALSE;
564 }
565
566 /* Paranoia - if we are reading in a string section, make sure that it
567 is NUL terminated. This is to prevent string functions from running
568 off the end of the buffer. Note - knowing the size of the buffer is
569 not enough as some functions, eg strchr, do not have a range limited
570 equivalent.
571
572 FIXME: We ought to use a flag in the dwarf_debug_sections[] table to
573 determine the nature of a debug section, rather than checking the
574 section name as we do here. */
575 if (*section_size > 0
576 && (*section_buffer)[*section_size - 1] != 0
577 && (strstr (section_name, "_str") || strstr (section_name, "names")))
578 {
579 bfd_byte * new_buffer = malloc (*section_size + 1);
580
581 _bfd_error_handler (_("warning: dwarf string section '%s' is not NUL terminated"),
582 section_name);
583 memcpy (new_buffer, *section_buffer, *section_size);
584 new_buffer[*section_size] = 0;
585 free (*section_buffer);
586 *section_buffer = new_buffer;
587 }
588 }
589
590 /* It is possible to get a bad value for the offset into the section
591 that the client wants. Validate it here to avoid trouble later. */
592 if (offset != 0 && offset >= *section_size)
593 {
594 /* xgettext: c-format */
595 _bfd_error_handler (_("Dwarf Error: Offset (%llu)"
596 " greater than or equal to %s size (%Lu)."),
597 (long long) offset, section_name, *section_size);
598 bfd_set_error (bfd_error_bad_value);
599 return FALSE;
600 }
601
602 return TRUE;
603 }
604
605 /* Read dwarf information from a buffer. */
606
607 static unsigned int
608 read_1_byte (bfd *abfd ATTRIBUTE_UNUSED, bfd_byte *buf, bfd_byte *end)
609 {
610 if (buf + 1 > end)
611 return 0;
612 return bfd_get_8 (abfd, buf);
613 }
614
615 static int
616 read_1_signed_byte (bfd *abfd ATTRIBUTE_UNUSED, bfd_byte *buf, bfd_byte *end)
617 {
618 if (buf + 1 > end)
619 return 0;
620 return bfd_get_signed_8 (abfd, buf);
621 }
622
623 static unsigned int
624 read_2_bytes (bfd *abfd, bfd_byte *buf, bfd_byte *end)
625 {
626 if (buf + 2 > end)
627 return 0;
628 return bfd_get_16 (abfd, buf);
629 }
630
631 static unsigned int
632 read_4_bytes (bfd *abfd, bfd_byte *buf, bfd_byte *end)
633 {
634 if (buf + 4 > end)
635 return 0;
636 return bfd_get_32 (abfd, buf);
637 }
638
639 static bfd_uint64_t
640 read_8_bytes (bfd *abfd, bfd_byte *buf, bfd_byte *end)
641 {
642 if (buf + 8 > end)
643 return 0;
644 return bfd_get_64 (abfd, buf);
645 }
646
647 static bfd_byte *
648 read_n_bytes (bfd *abfd ATTRIBUTE_UNUSED,
649 bfd_byte *buf,
650 bfd_byte *end,
651 unsigned int size ATTRIBUTE_UNUSED)
652 {
653 if (buf + size > end)
654 return NULL;
655 return buf;
656 }
657
658 /* Scans a NUL terminated string starting at BUF, returning a pointer to it.
659 Returns the number of characters in the string, *including* the NUL byte,
660 in BYTES_READ_PTR. This value is set even if the function fails. Bytes
661 at or beyond BUF_END will not be read. Returns NULL if there was a
662 problem, or if the string is empty. */
663
664 static char *
665 read_string (bfd * abfd ATTRIBUTE_UNUSED,
666 bfd_byte * buf,
667 bfd_byte * buf_end,
668 unsigned int * bytes_read_ptr)
669 {
670 bfd_byte *str = buf;
671
672 if (buf >= buf_end)
673 {
674 * bytes_read_ptr = 0;
675 return NULL;
676 }
677
678 if (*str == '\0')
679 {
680 * bytes_read_ptr = 1;
681 return NULL;
682 }
683
684 while (buf < buf_end)
685 if (* buf ++ == 0)
686 {
687 * bytes_read_ptr = buf - str;
688 return (char *) str;
689 }
690
691 * bytes_read_ptr = buf - str;
692 return NULL;
693 }
694
695 /* Reads an offset from BUF and then locates the string at this offset
696 inside the debug string section. Returns a pointer to the string.
697 Returns the number of bytes read from BUF, *not* the length of the string,
698 in BYTES_READ_PTR. This value is set even if the function fails. Bytes
699 at or beyond BUF_END will not be read from BUF. Returns NULL if there was
700 a problem, or if the string is empty. Does not check for NUL termination
701 of the string. */
702
703 static char *
704 read_indirect_string (struct comp_unit * unit,
705 bfd_byte * buf,
706 bfd_byte * buf_end,
707 unsigned int * bytes_read_ptr)
708 {
709 bfd_uint64_t offset;
710 struct dwarf2_debug *stash = unit->stash;
711 char *str;
712
713 if (buf + unit->offset_size > buf_end)
714 {
715 * bytes_read_ptr = 0;
716 return NULL;
717 }
718
719 if (unit->offset_size == 4)
720 offset = read_4_bytes (unit->abfd, buf, buf_end);
721 else
722 offset = read_8_bytes (unit->abfd, buf, buf_end);
723
724 *bytes_read_ptr = unit->offset_size;
725
726 if (! read_section (unit->abfd, &stash->debug_sections[debug_str],
727 stash->syms, offset,
728 &stash->dwarf_str_buffer, &stash->dwarf_str_size))
729 return NULL;
730
731 if (offset >= stash->dwarf_str_size)
732 return NULL;
733 str = (char *) stash->dwarf_str_buffer + offset;
734 if (*str == '\0')
735 return NULL;
736 return str;
737 }
738
739 /* Like read_indirect_string but from .debug_line_str section. */
740
741 static char *
742 read_indirect_line_string (struct comp_unit * unit,
743 bfd_byte * buf,
744 bfd_byte * buf_end,
745 unsigned int * bytes_read_ptr)
746 {
747 bfd_uint64_t offset;
748 struct dwarf2_debug *stash = unit->stash;
749 char *str;
750
751 if (buf + unit->offset_size > buf_end)
752 {
753 * bytes_read_ptr = 0;
754 return NULL;
755 }
756
757 if (unit->offset_size == 4)
758 offset = read_4_bytes (unit->abfd, buf, buf_end);
759 else
760 offset = read_8_bytes (unit->abfd, buf, buf_end);
761
762 *bytes_read_ptr = unit->offset_size;
763
764 if (! read_section (unit->abfd, &stash->debug_sections[debug_line_str],
765 stash->syms, offset,
766 &stash->dwarf_line_str_buffer,
767 &stash->dwarf_line_str_size))
768 return NULL;
769
770 if (offset >= stash->dwarf_line_str_size)
771 return NULL;
772 str = (char *) stash->dwarf_line_str_buffer + offset;
773 if (*str == '\0')
774 return NULL;
775 return str;
776 }
777
778 /* Like read_indirect_string but uses a .debug_str located in
779 an alternate file pointed to by the .gnu_debugaltlink section.
780 Used to impement DW_FORM_GNU_strp_alt. */
781
782 static char *
783 read_alt_indirect_string (struct comp_unit * unit,
784 bfd_byte * buf,
785 bfd_byte * buf_end,
786 unsigned int * bytes_read_ptr)
787 {
788 bfd_uint64_t offset;
789 struct dwarf2_debug *stash = unit->stash;
790 char *str;
791
792 if (buf + unit->offset_size > buf_end)
793 {
794 * bytes_read_ptr = 0;
795 return NULL;
796 }
797
798 if (unit->offset_size == 4)
799 offset = read_4_bytes (unit->abfd, buf, buf_end);
800 else
801 offset = read_8_bytes (unit->abfd, buf, buf_end);
802
803 *bytes_read_ptr = unit->offset_size;
804
805 if (stash->alt_bfd_ptr == NULL)
806 {
807 bfd * debug_bfd;
808 char * debug_filename = bfd_follow_gnu_debugaltlink (unit->abfd, DEBUGDIR);
809
810 if (debug_filename == NULL)
811 return NULL;
812
813 if ((debug_bfd = bfd_openr (debug_filename, NULL)) == NULL
814 || ! bfd_check_format (debug_bfd, bfd_object))
815 {
816 if (debug_bfd)
817 bfd_close (debug_bfd);
818
819 /* FIXME: Should we report our failure to follow the debuglink ? */
820 free (debug_filename);
821 return NULL;
822 }
823 stash->alt_bfd_ptr = debug_bfd;
824 }
825
826 if (! read_section (unit->stash->alt_bfd_ptr,
827 stash->debug_sections + debug_str_alt,
828 NULL, /* FIXME: Do we need to load alternate symbols ? */
829 offset,
830 &stash->alt_dwarf_str_buffer,
831 &stash->alt_dwarf_str_size))
832 return NULL;
833
834 if (offset >= stash->alt_dwarf_str_size)
835 return NULL;
836 str = (char *) stash->alt_dwarf_str_buffer + offset;
837 if (*str == '\0')
838 return NULL;
839
840 return str;
841 }
842
843 /* Resolve an alternate reference from UNIT at OFFSET.
844 Returns a pointer into the loaded alternate CU upon success
845 or NULL upon failure. */
846
847 static bfd_byte *
848 read_alt_indirect_ref (struct comp_unit * unit,
849 bfd_uint64_t offset)
850 {
851 struct dwarf2_debug *stash = unit->stash;
852
853 if (stash->alt_bfd_ptr == NULL)
854 {
855 bfd * debug_bfd;
856 char * debug_filename = bfd_follow_gnu_debugaltlink (unit->abfd, DEBUGDIR);
857
858 if (debug_filename == NULL)
859 return FALSE;
860
861 if ((debug_bfd = bfd_openr (debug_filename, NULL)) == NULL
862 || ! bfd_check_format (debug_bfd, bfd_object))
863 {
864 if (debug_bfd)
865 bfd_close (debug_bfd);
866
867 /* FIXME: Should we report our failure to follow the debuglink ? */
868 free (debug_filename);
869 return NULL;
870 }
871 stash->alt_bfd_ptr = debug_bfd;
872 }
873
874 if (! read_section (unit->stash->alt_bfd_ptr,
875 stash->debug_sections + debug_info_alt,
876 NULL, /* FIXME: Do we need to load alternate symbols ? */
877 offset,
878 &stash->alt_dwarf_info_buffer,
879 &stash->alt_dwarf_info_size))
880 return NULL;
881
882 if (offset >= stash->alt_dwarf_info_size)
883 return NULL;
884 return stash->alt_dwarf_info_buffer + offset;
885 }
886
887 static bfd_uint64_t
888 read_address (struct comp_unit *unit, bfd_byte *buf, bfd_byte * buf_end)
889 {
890 int signed_vma = 0;
891
892 if (bfd_get_flavour (unit->abfd) == bfd_target_elf_flavour)
893 signed_vma = get_elf_backend_data (unit->abfd)->sign_extend_vma;
894
895 if (buf + unit->addr_size > buf_end)
896 return 0;
897
898 if (signed_vma)
899 {
900 switch (unit->addr_size)
901 {
902 case 8:
903 return bfd_get_signed_64 (unit->abfd, buf);
904 case 4:
905 return bfd_get_signed_32 (unit->abfd, buf);
906 case 2:
907 return bfd_get_signed_16 (unit->abfd, buf);
908 default:
909 abort ();
910 }
911 }
912 else
913 {
914 switch (unit->addr_size)
915 {
916 case 8:
917 return bfd_get_64 (unit->abfd, buf);
918 case 4:
919 return bfd_get_32 (unit->abfd, buf);
920 case 2:
921 return bfd_get_16 (unit->abfd, buf);
922 default:
923 abort ();
924 }
925 }
926 }
927
928 /* Lookup an abbrev_info structure in the abbrev hash table. */
929
930 static struct abbrev_info *
931 lookup_abbrev (unsigned int number, struct abbrev_info **abbrevs)
932 {
933 unsigned int hash_number;
934 struct abbrev_info *abbrev;
935
936 hash_number = number % ABBREV_HASH_SIZE;
937 abbrev = abbrevs[hash_number];
938
939 while (abbrev)
940 {
941 if (abbrev->number == number)
942 return abbrev;
943 else
944 abbrev = abbrev->next;
945 }
946
947 return NULL;
948 }
949
950 /* In DWARF version 2, the description of the debugging information is
951 stored in a separate .debug_abbrev section. Before we read any
952 dies from a section we read in all abbreviations and install them
953 in a hash table. */
954
955 static struct abbrev_info**
956 read_abbrevs (bfd *abfd, bfd_uint64_t offset, struct dwarf2_debug *stash)
957 {
958 struct abbrev_info **abbrevs;
959 bfd_byte *abbrev_ptr;
960 bfd_byte *abbrev_end;
961 struct abbrev_info *cur_abbrev;
962 unsigned int abbrev_number, bytes_read, abbrev_name;
963 unsigned int abbrev_form, hash_number;
964 bfd_size_type amt;
965
966 if (! read_section (abfd, &stash->debug_sections[debug_abbrev],
967 stash->syms, offset,
968 &stash->dwarf_abbrev_buffer, &stash->dwarf_abbrev_size))
969 return NULL;
970
971 if (offset >= stash->dwarf_abbrev_size)
972 return NULL;
973
974 amt = sizeof (struct abbrev_info*) * ABBREV_HASH_SIZE;
975 abbrevs = (struct abbrev_info **) bfd_zalloc (abfd, amt);
976 if (abbrevs == NULL)
977 return NULL;
978
979 abbrev_ptr = stash->dwarf_abbrev_buffer + offset;
980 abbrev_end = stash->dwarf_abbrev_buffer + stash->dwarf_abbrev_size;
981 abbrev_number = _bfd_safe_read_leb128 (abfd, abbrev_ptr, &bytes_read,
982 FALSE, abbrev_end);
983 abbrev_ptr += bytes_read;
984
985 /* Loop until we reach an abbrev number of 0. */
986 while (abbrev_number)
987 {
988 amt = sizeof (struct abbrev_info);
989 cur_abbrev = (struct abbrev_info *) bfd_zalloc (abfd, amt);
990 if (cur_abbrev == NULL)
991 return NULL;
992
993 /* Read in abbrev header. */
994 cur_abbrev->number = abbrev_number;
995 cur_abbrev->tag = (enum dwarf_tag)
996 _bfd_safe_read_leb128 (abfd, abbrev_ptr, &bytes_read,
997 FALSE, abbrev_end);
998 abbrev_ptr += bytes_read;
999 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr, abbrev_end);
1000 abbrev_ptr += 1;
1001
1002 /* Now read in declarations. */
1003 for (;;)
1004 {
1005 /* Initialize it just to avoid a GCC false warning. */
1006 bfd_vma implicit_const = -1;
1007
1008 abbrev_name = _bfd_safe_read_leb128 (abfd, abbrev_ptr, &bytes_read,
1009 FALSE, abbrev_end);
1010 abbrev_ptr += bytes_read;
1011 abbrev_form = _bfd_safe_read_leb128 (abfd, abbrev_ptr, &bytes_read,
1012 FALSE, abbrev_end);
1013 abbrev_ptr += bytes_read;
1014 if (abbrev_form == DW_FORM_implicit_const)
1015 {
1016 implicit_const = _bfd_safe_read_leb128 (abfd, abbrev_ptr,
1017 &bytes_read, TRUE,
1018 abbrev_end);
1019 abbrev_ptr += bytes_read;
1020 }
1021
1022 if (abbrev_name == 0)
1023 break;
1024
1025 if ((cur_abbrev->num_attrs % ATTR_ALLOC_CHUNK) == 0)
1026 {
1027 struct attr_abbrev *tmp;
1028
1029 amt = cur_abbrev->num_attrs + ATTR_ALLOC_CHUNK;
1030 amt *= sizeof (struct attr_abbrev);
1031 tmp = (struct attr_abbrev *) bfd_realloc (cur_abbrev->attrs, amt);
1032 if (tmp == NULL)
1033 {
1034 size_t i;
1035
1036 for (i = 0; i < ABBREV_HASH_SIZE; i++)
1037 {
1038 struct abbrev_info *abbrev = abbrevs[i];
1039
1040 while (abbrev)
1041 {
1042 free (abbrev->attrs);
1043 abbrev = abbrev->next;
1044 }
1045 }
1046 return NULL;
1047 }
1048 cur_abbrev->attrs = tmp;
1049 }
1050
1051 cur_abbrev->attrs[cur_abbrev->num_attrs].name
1052 = (enum dwarf_attribute) abbrev_name;
1053 cur_abbrev->attrs[cur_abbrev->num_attrs].form
1054 = (enum dwarf_form) abbrev_form;
1055 cur_abbrev->attrs[cur_abbrev->num_attrs].implicit_const
1056 = implicit_const;
1057 ++cur_abbrev->num_attrs;
1058 }
1059
1060 hash_number = abbrev_number % ABBREV_HASH_SIZE;
1061 cur_abbrev->next = abbrevs[hash_number];
1062 abbrevs[hash_number] = cur_abbrev;
1063
1064 /* Get next abbreviation.
1065 Under Irix6 the abbreviations for a compilation unit are not
1066 always properly terminated with an abbrev number of 0.
1067 Exit loop if we encounter an abbreviation which we have
1068 already read (which means we are about to read the abbreviations
1069 for the next compile unit) or if the end of the abbreviation
1070 table is reached. */
1071 if ((unsigned int) (abbrev_ptr - stash->dwarf_abbrev_buffer)
1072 >= stash->dwarf_abbrev_size)
1073 break;
1074 abbrev_number = _bfd_safe_read_leb128 (abfd, abbrev_ptr,
1075 &bytes_read, FALSE, abbrev_end);
1076 abbrev_ptr += bytes_read;
1077 if (lookup_abbrev (abbrev_number, abbrevs) != NULL)
1078 break;
1079 }
1080
1081 return abbrevs;
1082 }
1083
1084 /* Returns true if the form is one which has a string value. */
1085
1086 static inline bfd_boolean
1087 is_str_attr (enum dwarf_form form)
1088 {
1089 return (form == DW_FORM_string || form == DW_FORM_strp
1090 || form == DW_FORM_line_strp || form == DW_FORM_GNU_strp_alt);
1091 }
1092
1093 /* Read and fill in the value of attribute ATTR as described by FORM.
1094 Read data starting from INFO_PTR, but never at or beyond INFO_PTR_END.
1095 Returns an updated INFO_PTR taking into account the amount of data read. */
1096
1097 static bfd_byte *
1098 read_attribute_value (struct attribute * attr,
1099 unsigned form,
1100 bfd_vma implicit_const,
1101 struct comp_unit * unit,
1102 bfd_byte * info_ptr,
1103 bfd_byte * info_ptr_end)
1104 {
1105 bfd *abfd = unit->abfd;
1106 unsigned int bytes_read;
1107 struct dwarf_block *blk;
1108 bfd_size_type amt;
1109
1110 if (info_ptr >= info_ptr_end && form != DW_FORM_flag_present)
1111 {
1112 _bfd_error_handler (_("Dwarf Error: Info pointer extends beyond end of attributes"));
1113 bfd_set_error (bfd_error_bad_value);
1114 return info_ptr;
1115 }
1116
1117 attr->form = (enum dwarf_form) form;
1118
1119 switch (form)
1120 {
1121 case DW_FORM_ref_addr:
1122 /* DW_FORM_ref_addr is an address in DWARF2, and an offset in
1123 DWARF3. */
1124 if (unit->version == 3 || unit->version == 4)
1125 {
1126 if (unit->offset_size == 4)
1127 attr->u.val = read_4_bytes (unit->abfd, info_ptr, info_ptr_end);
1128 else
1129 attr->u.val = read_8_bytes (unit->abfd, info_ptr, info_ptr_end);
1130 info_ptr += unit->offset_size;
1131 break;
1132 }
1133 /* FALLTHROUGH */
1134 case DW_FORM_addr:
1135 attr->u.val = read_address (unit, info_ptr, info_ptr_end);
1136 info_ptr += unit->addr_size;
1137 break;
1138 case DW_FORM_GNU_ref_alt:
1139 case DW_FORM_sec_offset:
1140 if (unit->offset_size == 4)
1141 attr->u.val = read_4_bytes (unit->abfd, info_ptr, info_ptr_end);
1142 else
1143 attr->u.val = read_8_bytes (unit->abfd, info_ptr, info_ptr_end);
1144 info_ptr += unit->offset_size;
1145 break;
1146 case DW_FORM_block2:
1147 amt = sizeof (struct dwarf_block);
1148 blk = (struct dwarf_block *) bfd_alloc (abfd, amt);
1149 if (blk == NULL)
1150 return NULL;
1151 blk->size = read_2_bytes (abfd, info_ptr, info_ptr_end);
1152 info_ptr += 2;
1153 blk->data = read_n_bytes (abfd, info_ptr, info_ptr_end, blk->size);
1154 info_ptr += blk->size;
1155 attr->u.blk = blk;
1156 break;
1157 case DW_FORM_block4:
1158 amt = sizeof (struct dwarf_block);
1159 blk = (struct dwarf_block *) bfd_alloc (abfd, amt);
1160 if (blk == NULL)
1161 return NULL;
1162 blk->size = read_4_bytes (abfd, info_ptr, info_ptr_end);
1163 info_ptr += 4;
1164 blk->data = read_n_bytes (abfd, info_ptr, info_ptr_end, blk->size);
1165 info_ptr += blk->size;
1166 attr->u.blk = blk;
1167 break;
1168 case DW_FORM_data2:
1169 attr->u.val = read_2_bytes (abfd, info_ptr, info_ptr_end);
1170 info_ptr += 2;
1171 break;
1172 case DW_FORM_data4:
1173 attr->u.val = read_4_bytes (abfd, info_ptr, info_ptr_end);
1174 info_ptr += 4;
1175 break;
1176 case DW_FORM_data8:
1177 attr->u.val = read_8_bytes (abfd, info_ptr, info_ptr_end);
1178 info_ptr += 8;
1179 break;
1180 case DW_FORM_string:
1181 attr->u.str = read_string (abfd, info_ptr, info_ptr_end, &bytes_read);
1182 info_ptr += bytes_read;
1183 break;
1184 case DW_FORM_strp:
1185 attr->u.str = read_indirect_string (unit, info_ptr, info_ptr_end, &bytes_read);
1186 info_ptr += bytes_read;
1187 break;
1188 case DW_FORM_line_strp:
1189 attr->u.str = read_indirect_line_string (unit, info_ptr, info_ptr_end, &bytes_read);
1190 info_ptr += bytes_read;
1191 break;
1192 case DW_FORM_GNU_strp_alt:
1193 attr->u.str = read_alt_indirect_string (unit, info_ptr, info_ptr_end, &bytes_read);
1194 info_ptr += bytes_read;
1195 break;
1196 case DW_FORM_exprloc:
1197 case DW_FORM_block:
1198 amt = sizeof (struct dwarf_block);
1199 blk = (struct dwarf_block *) bfd_alloc (abfd, amt);
1200 if (blk == NULL)
1201 return NULL;
1202 blk->size = _bfd_safe_read_leb128 (abfd, info_ptr, &bytes_read,
1203 FALSE, info_ptr_end);
1204 info_ptr += bytes_read;
1205 blk->data = read_n_bytes (abfd, info_ptr, info_ptr_end, blk->size);
1206 info_ptr += blk->size;
1207 attr->u.blk = blk;
1208 break;
1209 case DW_FORM_block1:
1210 amt = sizeof (struct dwarf_block);
1211 blk = (struct dwarf_block *) bfd_alloc (abfd, amt);
1212 if (blk == NULL)
1213 return NULL;
1214 blk->size = read_1_byte (abfd, info_ptr, info_ptr_end);
1215 info_ptr += 1;
1216 blk->data = read_n_bytes (abfd, info_ptr, info_ptr_end, blk->size);
1217 info_ptr += blk->size;
1218 attr->u.blk = blk;
1219 break;
1220 case DW_FORM_data1:
1221 attr->u.val = read_1_byte (abfd, info_ptr, info_ptr_end);
1222 info_ptr += 1;
1223 break;
1224 case DW_FORM_flag:
1225 attr->u.val = read_1_byte (abfd, info_ptr, info_ptr_end);
1226 info_ptr += 1;
1227 break;
1228 case DW_FORM_flag_present:
1229 attr->u.val = 1;
1230 break;
1231 case DW_FORM_sdata:
1232 attr->u.sval = _bfd_safe_read_leb128 (abfd, info_ptr, &bytes_read,
1233 TRUE, info_ptr_end);
1234 info_ptr += bytes_read;
1235 break;
1236 case DW_FORM_udata:
1237 attr->u.val = _bfd_safe_read_leb128 (abfd, info_ptr, &bytes_read,
1238 FALSE, info_ptr_end);
1239 info_ptr += bytes_read;
1240 break;
1241 case DW_FORM_ref1:
1242 attr->u.val = read_1_byte (abfd, info_ptr, info_ptr_end);
1243 info_ptr += 1;
1244 break;
1245 case DW_FORM_ref2:
1246 attr->u.val = read_2_bytes (abfd, info_ptr, info_ptr_end);
1247 info_ptr += 2;
1248 break;
1249 case DW_FORM_ref4:
1250 attr->u.val = read_4_bytes (abfd, info_ptr, info_ptr_end);
1251 info_ptr += 4;
1252 break;
1253 case DW_FORM_ref8:
1254 attr->u.val = read_8_bytes (abfd, info_ptr, info_ptr_end);
1255 info_ptr += 8;
1256 break;
1257 case DW_FORM_ref_sig8:
1258 attr->u.val = read_8_bytes (abfd, info_ptr, info_ptr_end);
1259 info_ptr += 8;
1260 break;
1261 case DW_FORM_ref_udata:
1262 attr->u.val = _bfd_safe_read_leb128 (abfd, info_ptr, &bytes_read,
1263 FALSE, info_ptr_end);
1264 info_ptr += bytes_read;
1265 break;
1266 case DW_FORM_indirect:
1267 form = _bfd_safe_read_leb128 (abfd, info_ptr, &bytes_read,
1268 FALSE, info_ptr_end);
1269 info_ptr += bytes_read;
1270 if (form == DW_FORM_implicit_const)
1271 {
1272 implicit_const = _bfd_safe_read_leb128 (abfd, info_ptr, &bytes_read,
1273 TRUE, info_ptr_end);
1274 info_ptr += bytes_read;
1275 }
1276 info_ptr = read_attribute_value (attr, form, implicit_const, unit,
1277 info_ptr, info_ptr_end);
1278 break;
1279 case DW_FORM_implicit_const:
1280 attr->form = DW_FORM_sdata;
1281 attr->u.sval = implicit_const;
1282 break;
1283 default:
1284 _bfd_error_handler (_("Dwarf Error: Invalid or unhandled FORM value: %#x."),
1285 form);
1286 bfd_set_error (bfd_error_bad_value);
1287 return NULL;
1288 }
1289 return info_ptr;
1290 }
1291
1292 /* Read an attribute described by an abbreviated attribute. */
1293
1294 static bfd_byte *
1295 read_attribute (struct attribute * attr,
1296 struct attr_abbrev * abbrev,
1297 struct comp_unit * unit,
1298 bfd_byte * info_ptr,
1299 bfd_byte * info_ptr_end)
1300 {
1301 attr->name = abbrev->name;
1302 info_ptr = read_attribute_value (attr, abbrev->form, abbrev->implicit_const,
1303 unit, info_ptr, info_ptr_end);
1304 return info_ptr;
1305 }
1306
1307 /* Return whether DW_AT_name will return the same as DW_AT_linkage_name
1308 for a function. */
1309
1310 static bfd_boolean
1311 non_mangled (int lang)
1312 {
1313 switch (lang)
1314 {
1315 default:
1316 return FALSE;
1317
1318 case DW_LANG_C89:
1319 case DW_LANG_C:
1320 case DW_LANG_Ada83:
1321 case DW_LANG_Cobol74:
1322 case DW_LANG_Cobol85:
1323 case DW_LANG_Fortran77:
1324 case DW_LANG_Pascal83:
1325 case DW_LANG_C99:
1326 case DW_LANG_Ada95:
1327 case DW_LANG_PLI:
1328 case DW_LANG_UPC:
1329 case DW_LANG_C11:
1330 return TRUE;
1331 }
1332 }
1333
1334 /* Source line information table routines. */
1335
1336 #define FILE_ALLOC_CHUNK 5
1337 #define DIR_ALLOC_CHUNK 5
1338
1339 struct line_info
1340 {
1341 struct line_info * prev_line;
1342 bfd_vma address;
1343 char * filename;
1344 unsigned int line;
1345 unsigned int column;
1346 unsigned int discriminator;
1347 unsigned char op_index;
1348 unsigned char end_sequence; /* End of (sequential) code sequence. */
1349 };
1350
1351 struct fileinfo
1352 {
1353 char * name;
1354 unsigned int dir;
1355 unsigned int time;
1356 unsigned int size;
1357 };
1358
1359 struct line_sequence
1360 {
1361 bfd_vma low_pc;
1362 struct line_sequence* prev_sequence;
1363 struct line_info* last_line; /* Largest VMA. */
1364 struct line_info** line_info_lookup;
1365 bfd_size_type num_lines;
1366 };
1367
1368 struct line_info_table
1369 {
1370 bfd * abfd;
1371 unsigned int num_files;
1372 unsigned int num_dirs;
1373 unsigned int num_sequences;
1374 char * comp_dir;
1375 char ** dirs;
1376 struct fileinfo* files;
1377 struct line_sequence* sequences;
1378 struct line_info* lcl_head; /* Local head; used in 'add_line_info'. */
1379 };
1380
1381 /* Remember some information about each function. If the function is
1382 inlined (DW_TAG_inlined_subroutine) it may have two additional
1383 attributes, DW_AT_call_file and DW_AT_call_line, which specify the
1384 source code location where this function was inlined. */
1385
1386 struct funcinfo
1387 {
1388 /* Pointer to previous function in list of all functions. */
1389 struct funcinfo * prev_func;
1390 /* Pointer to function one scope higher. */
1391 struct funcinfo * caller_func;
1392 /* Source location file name where caller_func inlines this func. */
1393 char * caller_file;
1394 /* Source location file name. */
1395 char * file;
1396 /* Source location line number where caller_func inlines this func. */
1397 int caller_line;
1398 /* Source location line number. */
1399 int line;
1400 int tag;
1401 bfd_boolean is_linkage;
1402 const char * name;
1403 struct arange arange;
1404 /* Where the symbol is defined. */
1405 asection * sec;
1406 };
1407
1408 struct lookup_funcinfo
1409 {
1410 /* Function information corresponding to this lookup table entry. */
1411 struct funcinfo * funcinfo;
1412
1413 /* The lowest address for this specific function. */
1414 bfd_vma low_addr;
1415
1416 /* The highest address of this function before the lookup table is sorted.
1417 The highest address of all prior functions after the lookup table is
1418 sorted, which is used for binary search. */
1419 bfd_vma high_addr;
1420 };
1421
1422 struct varinfo
1423 {
1424 /* Pointer to previous variable in list of all variables */
1425 struct varinfo *prev_var;
1426 /* Source location file name */
1427 char *file;
1428 /* Source location line number */
1429 int line;
1430 int tag;
1431 char *name;
1432 bfd_vma addr;
1433 /* Where the symbol is defined */
1434 asection *sec;
1435 /* Is this a stack variable? */
1436 unsigned int stack: 1;
1437 };
1438
1439 /* Return TRUE if NEW_LINE should sort after LINE. */
1440
1441 static inline bfd_boolean
1442 new_line_sorts_after (struct line_info *new_line, struct line_info *line)
1443 {
1444 return (new_line->address > line->address
1445 || (new_line->address == line->address
1446 && (new_line->op_index > line->op_index
1447 || (new_line->op_index == line->op_index
1448 && new_line->end_sequence < line->end_sequence))));
1449 }
1450
1451
1452 /* Adds a new entry to the line_info list in the line_info_table, ensuring
1453 that the list is sorted. Note that the line_info list is sorted from
1454 highest to lowest VMA (with possible duplicates); that is,
1455 line_info->prev_line always accesses an equal or smaller VMA. */
1456
1457 static bfd_boolean
1458 add_line_info (struct line_info_table *table,
1459 bfd_vma address,
1460 unsigned char op_index,
1461 char *filename,
1462 unsigned int line,
1463 unsigned int column,
1464 unsigned int discriminator,
1465 int end_sequence)
1466 {
1467 bfd_size_type amt = sizeof (struct line_info);
1468 struct line_sequence* seq = table->sequences;
1469 struct line_info* info = (struct line_info *) bfd_alloc (table->abfd, amt);
1470
1471 if (info == NULL)
1472 return FALSE;
1473
1474 /* Set member data of 'info'. */
1475 info->prev_line = NULL;
1476 info->address = address;
1477 info->op_index = op_index;
1478 info->line = line;
1479 info->column = column;
1480 info->discriminator = discriminator;
1481 info->end_sequence = end_sequence;
1482
1483 if (filename && filename[0])
1484 {
1485 info->filename = (char *) bfd_alloc (table->abfd, strlen (filename) + 1);
1486 if (info->filename == NULL)
1487 return FALSE;
1488 strcpy (info->filename, filename);
1489 }
1490 else
1491 info->filename = NULL;
1492
1493 /* Find the correct location for 'info'. Normally we will receive
1494 new line_info data 1) in order and 2) with increasing VMAs.
1495 However some compilers break the rules (cf. decode_line_info) and
1496 so we include some heuristics for quickly finding the correct
1497 location for 'info'. In particular, these heuristics optimize for
1498 the common case in which the VMA sequence that we receive is a
1499 list of locally sorted VMAs such as
1500 p...z a...j (where a < j < p < z)
1501
1502 Note: table->lcl_head is used to head an *actual* or *possible*
1503 sub-sequence within the list (such as a...j) that is not directly
1504 headed by table->last_line
1505
1506 Note: we may receive duplicate entries from 'decode_line_info'. */
1507
1508 if (seq
1509 && seq->last_line->address == address
1510 && seq->last_line->op_index == op_index
1511 && seq->last_line->end_sequence == end_sequence)
1512 {
1513 /* We only keep the last entry with the same address and end
1514 sequence. See PR ld/4986. */
1515 if (table->lcl_head == seq->last_line)
1516 table->lcl_head = info;
1517 info->prev_line = seq->last_line->prev_line;
1518 seq->last_line = info;
1519 }
1520 else if (!seq || seq->last_line->end_sequence)
1521 {
1522 /* Start a new line sequence. */
1523 amt = sizeof (struct line_sequence);
1524 seq = (struct line_sequence *) bfd_malloc (amt);
1525 if (seq == NULL)
1526 return FALSE;
1527 seq->low_pc = address;
1528 seq->prev_sequence = table->sequences;
1529 seq->last_line = info;
1530 table->lcl_head = info;
1531 table->sequences = seq;
1532 table->num_sequences++;
1533 }
1534 else if (new_line_sorts_after (info, seq->last_line))
1535 {
1536 /* Normal case: add 'info' to the beginning of the current sequence. */
1537 info->prev_line = seq->last_line;
1538 seq->last_line = info;
1539
1540 /* lcl_head: initialize to head a *possible* sequence at the end. */
1541 if (!table->lcl_head)
1542 table->lcl_head = info;
1543 }
1544 else if (!new_line_sorts_after (info, table->lcl_head)
1545 && (!table->lcl_head->prev_line
1546 || new_line_sorts_after (info, table->lcl_head->prev_line)))
1547 {
1548 /* Abnormal but easy: lcl_head is the head of 'info'. */
1549 info->prev_line = table->lcl_head->prev_line;
1550 table->lcl_head->prev_line = info;
1551 }
1552 else
1553 {
1554 /* Abnormal and hard: Neither 'last_line' nor 'lcl_head'
1555 are valid heads for 'info'. Reset 'lcl_head'. */
1556 struct line_info* li2 = seq->last_line; /* Always non-NULL. */
1557 struct line_info* li1 = li2->prev_line;
1558
1559 while (li1)
1560 {
1561 if (!new_line_sorts_after (info, li2)
1562 && new_line_sorts_after (info, li1))
1563 break;
1564
1565 li2 = li1; /* always non-NULL */
1566 li1 = li1->prev_line;
1567 }
1568 table->lcl_head = li2;
1569 info->prev_line = table->lcl_head->prev_line;
1570 table->lcl_head->prev_line = info;
1571 if (address < seq->low_pc)
1572 seq->low_pc = address;
1573 }
1574 return TRUE;
1575 }
1576
1577 /* Extract a fully qualified filename from a line info table.
1578 The returned string has been malloc'ed and it is the caller's
1579 responsibility to free it. */
1580
1581 static char *
1582 concat_filename (struct line_info_table *table, unsigned int file)
1583 {
1584 char *filename;
1585
1586 if (file - 1 >= table->num_files)
1587 {
1588 /* FILE == 0 means unknown. */
1589 if (file)
1590 _bfd_error_handler
1591 (_("Dwarf Error: mangled line number section (bad file number)."));
1592 return strdup ("<unknown>");
1593 }
1594
1595 filename = table->files[file - 1].name;
1596 if (filename == NULL)
1597 return strdup ("<unknown>");
1598
1599 if (!IS_ABSOLUTE_PATH (filename))
1600 {
1601 char *dir_name = NULL;
1602 char *subdir_name = NULL;
1603 char *name;
1604 size_t len;
1605
1606 if (table->files[file - 1].dir
1607 /* PR 17512: file: 0317e960. */
1608 && table->files[file - 1].dir <= table->num_dirs
1609 /* PR 17512: file: 7f3d2e4b. */
1610 && table->dirs != NULL)
1611 subdir_name = table->dirs[table->files[file - 1].dir - 1];
1612
1613 if (!subdir_name || !IS_ABSOLUTE_PATH (subdir_name))
1614 dir_name = table->comp_dir;
1615
1616 if (!dir_name)
1617 {
1618 dir_name = subdir_name;
1619 subdir_name = NULL;
1620 }
1621
1622 if (!dir_name)
1623 return strdup (filename);
1624
1625 len = strlen (dir_name) + strlen (filename) + 2;
1626
1627 if (subdir_name)
1628 {
1629 len += strlen (subdir_name) + 1;
1630 name = (char *) bfd_malloc (len);
1631 if (name)
1632 sprintf (name, "%s/%s/%s", dir_name, subdir_name, filename);
1633 }
1634 else
1635 {
1636 name = (char *) bfd_malloc (len);
1637 if (name)
1638 sprintf (name, "%s/%s", dir_name, filename);
1639 }
1640
1641 return name;
1642 }
1643
1644 return strdup (filename);
1645 }
1646
1647 static bfd_boolean
1648 arange_add (const struct comp_unit *unit, struct arange *first_arange,
1649 bfd_vma low_pc, bfd_vma high_pc)
1650 {
1651 struct arange *arange;
1652
1653 /* Ignore empty ranges. */
1654 if (low_pc == high_pc)
1655 return TRUE;
1656
1657 /* If the first arange is empty, use it. */
1658 if (first_arange->high == 0)
1659 {
1660 first_arange->low = low_pc;
1661 first_arange->high = high_pc;
1662 return TRUE;
1663 }
1664
1665 /* Next see if we can cheaply extend an existing range. */
1666 arange = first_arange;
1667 do
1668 {
1669 if (low_pc == arange->high)
1670 {
1671 arange->high = high_pc;
1672 return TRUE;
1673 }
1674 if (high_pc == arange->low)
1675 {
1676 arange->low = low_pc;
1677 return TRUE;
1678 }
1679 arange = arange->next;
1680 }
1681 while (arange);
1682
1683 /* Need to allocate a new arange and insert it into the arange list.
1684 Order isn't significant, so just insert after the first arange. */
1685 arange = (struct arange *) bfd_alloc (unit->abfd, sizeof (*arange));
1686 if (arange == NULL)
1687 return FALSE;
1688 arange->low = low_pc;
1689 arange->high = high_pc;
1690 arange->next = first_arange->next;
1691 first_arange->next = arange;
1692 return TRUE;
1693 }
1694
1695 /* Compare function for line sequences. */
1696
1697 static int
1698 compare_sequences (const void* a, const void* b)
1699 {
1700 const struct line_sequence* seq1 = a;
1701 const struct line_sequence* seq2 = b;
1702
1703 /* Sort by low_pc as the primary key. */
1704 if (seq1->low_pc < seq2->low_pc)
1705 return -1;
1706 if (seq1->low_pc > seq2->low_pc)
1707 return 1;
1708
1709 /* If low_pc values are equal, sort in reverse order of
1710 high_pc, so that the largest region comes first. */
1711 if (seq1->last_line->address < seq2->last_line->address)
1712 return 1;
1713 if (seq1->last_line->address > seq2->last_line->address)
1714 return -1;
1715
1716 if (seq1->last_line->op_index < seq2->last_line->op_index)
1717 return 1;
1718 if (seq1->last_line->op_index > seq2->last_line->op_index)
1719 return -1;
1720
1721 return 0;
1722 }
1723
1724 /* Construct the line information table for quick lookup. */
1725
1726 static bfd_boolean
1727 build_line_info_table (struct line_info_table * table,
1728 struct line_sequence * seq)
1729 {
1730 bfd_size_type amt;
1731 struct line_info** line_info_lookup;
1732 struct line_info* each_line;
1733 unsigned int num_lines;
1734 unsigned int line_index;
1735
1736 if (seq->line_info_lookup != NULL)
1737 return TRUE;
1738
1739 /* Count the number of line information entries. We could do this while
1740 scanning the debug information, but some entries may be added via
1741 lcl_head without having a sequence handy to increment the number of
1742 lines. */
1743 num_lines = 0;
1744 for (each_line = seq->last_line; each_line; each_line = each_line->prev_line)
1745 num_lines++;
1746
1747 if (num_lines == 0)
1748 return TRUE;
1749
1750 /* Allocate space for the line information lookup table. */
1751 amt = sizeof (struct line_info*) * num_lines;
1752 line_info_lookup = (struct line_info**) bfd_alloc (table->abfd, amt);
1753 if (line_info_lookup == NULL)
1754 return FALSE;
1755
1756 /* Create the line information lookup table. */
1757 line_index = num_lines;
1758 for (each_line = seq->last_line; each_line; each_line = each_line->prev_line)
1759 line_info_lookup[--line_index] = each_line;
1760
1761 BFD_ASSERT (line_index == 0);
1762
1763 seq->num_lines = num_lines;
1764 seq->line_info_lookup = line_info_lookup;
1765
1766 return TRUE;
1767 }
1768
1769 /* Sort the line sequences for quick lookup. */
1770
1771 static bfd_boolean
1772 sort_line_sequences (struct line_info_table* table)
1773 {
1774 bfd_size_type amt;
1775 struct line_sequence* sequences;
1776 struct line_sequence* seq;
1777 unsigned int n = 0;
1778 unsigned int num_sequences = table->num_sequences;
1779 bfd_vma last_high_pc;
1780
1781 if (num_sequences == 0)
1782 return TRUE;
1783
1784 /* Allocate space for an array of sequences. */
1785 amt = sizeof (struct line_sequence) * num_sequences;
1786 sequences = (struct line_sequence *) bfd_alloc (table->abfd, amt);
1787 if (sequences == NULL)
1788 return FALSE;
1789
1790 /* Copy the linked list into the array, freeing the original nodes. */
1791 seq = table->sequences;
1792 for (n = 0; n < num_sequences; n++)
1793 {
1794 struct line_sequence* last_seq = seq;
1795
1796 BFD_ASSERT (seq);
1797 sequences[n].low_pc = seq->low_pc;
1798 sequences[n].prev_sequence = NULL;
1799 sequences[n].last_line = seq->last_line;
1800 sequences[n].line_info_lookup = NULL;
1801 sequences[n].num_lines = 0;
1802 seq = seq->prev_sequence;
1803 free (last_seq);
1804 }
1805 BFD_ASSERT (seq == NULL);
1806
1807 qsort (sequences, n, sizeof (struct line_sequence), compare_sequences);
1808
1809 /* Make the list binary-searchable by trimming overlapping entries
1810 and removing nested entries. */
1811 num_sequences = 1;
1812 last_high_pc = sequences[0].last_line->address;
1813 for (n = 1; n < table->num_sequences; n++)
1814 {
1815 if (sequences[n].low_pc < last_high_pc)
1816 {
1817 if (sequences[n].last_line->address <= last_high_pc)
1818 /* Skip nested entries. */
1819 continue;
1820
1821 /* Trim overlapping entries. */
1822 sequences[n].low_pc = last_high_pc;
1823 }
1824 last_high_pc = sequences[n].last_line->address;
1825 if (n > num_sequences)
1826 {
1827 /* Close up the gap. */
1828 sequences[num_sequences].low_pc = sequences[n].low_pc;
1829 sequences[num_sequences].last_line = sequences[n].last_line;
1830 }
1831 num_sequences++;
1832 }
1833
1834 table->sequences = sequences;
1835 table->num_sequences = num_sequences;
1836 return TRUE;
1837 }
1838
1839 /* Add directory to TABLE. CUR_DIR memory ownership is taken by TABLE. */
1840
1841 static bfd_boolean
1842 line_info_add_include_dir (struct line_info_table *table, char *cur_dir)
1843 {
1844 if ((table->num_dirs % DIR_ALLOC_CHUNK) == 0)
1845 {
1846 char **tmp;
1847 bfd_size_type amt;
1848
1849 amt = table->num_dirs + DIR_ALLOC_CHUNK;
1850 amt *= sizeof (char *);
1851
1852 tmp = (char **) bfd_realloc (table->dirs, amt);
1853 if (tmp == NULL)
1854 return FALSE;
1855 table->dirs = tmp;
1856 }
1857
1858 table->dirs[table->num_dirs++] = cur_dir;
1859 return TRUE;
1860 }
1861
1862 static bfd_boolean
1863 line_info_add_include_dir_stub (struct line_info_table *table, char *cur_dir,
1864 unsigned int dir ATTRIBUTE_UNUSED,
1865 unsigned int xtime ATTRIBUTE_UNUSED,
1866 unsigned int size ATTRIBUTE_UNUSED)
1867 {
1868 return line_info_add_include_dir (table, cur_dir);
1869 }
1870
1871 /* Add file to TABLE. CUR_FILE memory ownership is taken by TABLE. */
1872
1873 static bfd_boolean
1874 line_info_add_file_name (struct line_info_table *table, char *cur_file,
1875 unsigned int dir, unsigned int xtime,
1876 unsigned int size)
1877 {
1878 if ((table->num_files % FILE_ALLOC_CHUNK) == 0)
1879 {
1880 struct fileinfo *tmp;
1881 bfd_size_type amt;
1882
1883 amt = table->num_files + FILE_ALLOC_CHUNK;
1884 amt *= sizeof (struct fileinfo);
1885
1886 tmp = (struct fileinfo *) bfd_realloc (table->files, amt);
1887 if (tmp == NULL)
1888 return FALSE;
1889 table->files = tmp;
1890 }
1891
1892 table->files[table->num_files].name = cur_file;
1893 table->files[table->num_files].dir = dir;
1894 table->files[table->num_files].time = xtime;
1895 table->files[table->num_files].size = size;
1896 table->num_files++;
1897 return TRUE;
1898 }
1899
1900 /* Read directory or file name entry format, starting with byte of
1901 format count entries, ULEB128 pairs of entry formats, ULEB128 of
1902 entries count and the entries themselves in the described entry
1903 format. */
1904
1905 static bfd_boolean
1906 read_formatted_entries (struct comp_unit *unit, bfd_byte **bufp,
1907 bfd_byte *buf_end, struct line_info_table *table,
1908 bfd_boolean (*callback) (struct line_info_table *table,
1909 char *cur_file,
1910 unsigned int dir,
1911 unsigned int time,
1912 unsigned int size))
1913 {
1914 bfd *abfd = unit->abfd;
1915 bfd_byte format_count, formati;
1916 bfd_vma data_count, datai;
1917 bfd_byte *buf = *bufp;
1918 bfd_byte *format_header_data;
1919 unsigned int bytes_read;
1920
1921 format_count = read_1_byte (abfd, buf, buf_end);
1922 buf += 1;
1923 format_header_data = buf;
1924 for (formati = 0; formati < format_count; formati++)
1925 {
1926 _bfd_safe_read_leb128 (abfd, buf, &bytes_read, FALSE, buf_end);
1927 buf += bytes_read;
1928 _bfd_safe_read_leb128 (abfd, buf, &bytes_read, FALSE, buf_end);
1929 buf += bytes_read;
1930 }
1931
1932 data_count = _bfd_safe_read_leb128 (abfd, buf, &bytes_read, FALSE, buf_end);
1933 buf += bytes_read;
1934 if (format_count == 0 && data_count != 0)
1935 {
1936 _bfd_error_handler (_("Dwarf Error: Zero format count."));
1937 bfd_set_error (bfd_error_bad_value);
1938 return FALSE;
1939 }
1940
1941 /* PR 22210. Paranoia check. Don't bother running the loop
1942 if we know that we are going to run out of buffer. */
1943 if (data_count > (bfd_vma) (buf_end - buf))
1944 {
1945 _bfd_error_handler (_("Dwarf Error: data count (%Lx) larger than buffer size."),
1946 data_count);
1947 bfd_set_error (bfd_error_bad_value);
1948 return FALSE;
1949 }
1950
1951 for (datai = 0; datai < data_count; datai++)
1952 {
1953 bfd_byte *format = format_header_data;
1954 struct fileinfo fe;
1955
1956 memset (&fe, 0, sizeof fe);
1957 for (formati = 0; formati < format_count; formati++)
1958 {
1959 bfd_vma content_type, form;
1960 char *string_trash;
1961 char **stringp = &string_trash;
1962 unsigned int uint_trash, *uintp = &uint_trash;
1963 struct attribute attr;
1964
1965 content_type = _bfd_safe_read_leb128 (abfd, format, &bytes_read,
1966 FALSE, buf_end);
1967 format += bytes_read;
1968 switch (content_type)
1969 {
1970 case DW_LNCT_path:
1971 stringp = &fe.name;
1972 break;
1973 case DW_LNCT_directory_index:
1974 uintp = &fe.dir;
1975 break;
1976 case DW_LNCT_timestamp:
1977 uintp = &fe.time;
1978 break;
1979 case DW_LNCT_size:
1980 uintp = &fe.size;
1981 break;
1982 case DW_LNCT_MD5:
1983 break;
1984 default:
1985 _bfd_error_handler
1986 (_("Dwarf Error: Unknown format content type %Lu."),
1987 content_type);
1988 bfd_set_error (bfd_error_bad_value);
1989 return FALSE;
1990 }
1991
1992 form = _bfd_safe_read_leb128 (abfd, format, &bytes_read, FALSE,
1993 buf_end);
1994 format += bytes_read;
1995
1996 buf = read_attribute_value (&attr, form, 0, unit, buf, buf_end);
1997 if (buf == NULL)
1998 return FALSE;
1999 switch (form)
2000 {
2001 case DW_FORM_string:
2002 case DW_FORM_line_strp:
2003 *stringp = attr.u.str;
2004 break;
2005
2006 case DW_FORM_data1:
2007 case DW_FORM_data2:
2008 case DW_FORM_data4:
2009 case DW_FORM_data8:
2010 case DW_FORM_udata:
2011 *uintp = attr.u.val;
2012 break;
2013 }
2014 }
2015
2016 if (!callback (table, fe.name, fe.dir, fe.time, fe.size))
2017 return FALSE;
2018 }
2019
2020 *bufp = buf;
2021 return TRUE;
2022 }
2023
2024 /* Decode the line number information for UNIT. */
2025
2026 static struct line_info_table*
2027 decode_line_info (struct comp_unit *unit, struct dwarf2_debug *stash)
2028 {
2029 bfd *abfd = unit->abfd;
2030 struct line_info_table* table;
2031 bfd_byte *line_ptr;
2032 bfd_byte *line_end;
2033 struct line_head lh;
2034 unsigned int i, bytes_read, offset_size;
2035 char *cur_file, *cur_dir;
2036 unsigned char op_code, extended_op, adj_opcode;
2037 unsigned int exop_len;
2038 bfd_size_type amt;
2039
2040 if (! read_section (abfd, &stash->debug_sections[debug_line],
2041 stash->syms, unit->line_offset,
2042 &stash->dwarf_line_buffer, &stash->dwarf_line_size))
2043 return NULL;
2044
2045 amt = sizeof (struct line_info_table);
2046 table = (struct line_info_table *) bfd_alloc (abfd, amt);
2047 if (table == NULL)
2048 return NULL;
2049 table->abfd = abfd;
2050 table->comp_dir = unit->comp_dir;
2051
2052 table->num_files = 0;
2053 table->files = NULL;
2054
2055 table->num_dirs = 0;
2056 table->dirs = NULL;
2057
2058 table->num_sequences = 0;
2059 table->sequences = NULL;
2060
2061 table->lcl_head = NULL;
2062
2063 if (stash->dwarf_line_size < 16)
2064 {
2065 _bfd_error_handler
2066 (_("Dwarf Error: Line info section is too small (%Ld)"),
2067 stash->dwarf_line_size);
2068 bfd_set_error (bfd_error_bad_value);
2069 return NULL;
2070 }
2071 line_ptr = stash->dwarf_line_buffer + unit->line_offset;
2072 line_end = stash->dwarf_line_buffer + stash->dwarf_line_size;
2073
2074 /* Read in the prologue. */
2075 lh.total_length = read_4_bytes (abfd, line_ptr, line_end);
2076 line_ptr += 4;
2077 offset_size = 4;
2078 if (lh.total_length == 0xffffffff)
2079 {
2080 lh.total_length = read_8_bytes (abfd, line_ptr, line_end);
2081 line_ptr += 8;
2082 offset_size = 8;
2083 }
2084 else if (lh.total_length == 0 && unit->addr_size == 8)
2085 {
2086 /* Handle (non-standard) 64-bit DWARF2 formats. */
2087 lh.total_length = read_4_bytes (abfd, line_ptr, line_end);
2088 line_ptr += 4;
2089 offset_size = 8;
2090 }
2091
2092 if (lh.total_length > (size_t) (line_end - line_ptr))
2093 {
2094 _bfd_error_handler
2095 /* xgettext: c-format */
2096 (_("Dwarf Error: Line info data is bigger (%#Lx)"
2097 " than the space remaining in the section (%#lx)"),
2098 lh.total_length, (unsigned long) (line_end - line_ptr));
2099 bfd_set_error (bfd_error_bad_value);
2100 return NULL;
2101 }
2102
2103 line_end = line_ptr + lh.total_length;
2104
2105 lh.version = read_2_bytes (abfd, line_ptr, line_end);
2106 if (lh.version < 2 || lh.version > 5)
2107 {
2108 _bfd_error_handler
2109 (_("Dwarf Error: Unhandled .debug_line version %d."), lh.version);
2110 bfd_set_error (bfd_error_bad_value);
2111 return NULL;
2112 }
2113 line_ptr += 2;
2114
2115 if (line_ptr + offset_size + (lh.version >= 5 ? 8 : (lh.version >= 4 ? 6 : 5))
2116 >= line_end)
2117 {
2118 _bfd_error_handler
2119 (_("Dwarf Error: Ran out of room reading prologue"));
2120 bfd_set_error (bfd_error_bad_value);
2121 return NULL;
2122 }
2123
2124 if (lh.version >= 5)
2125 {
2126 unsigned int segment_selector_size;
2127
2128 /* Skip address size. */
2129 read_1_byte (abfd, line_ptr, line_end);
2130 line_ptr += 1;
2131
2132 segment_selector_size = read_1_byte (abfd, line_ptr, line_end);
2133 line_ptr += 1;
2134 if (segment_selector_size != 0)
2135 {
2136 _bfd_error_handler
2137 (_("Dwarf Error: Line info unsupported segment selector size %u."),
2138 segment_selector_size);
2139 bfd_set_error (bfd_error_bad_value);
2140 return NULL;
2141 }
2142 }
2143
2144 if (offset_size == 4)
2145 lh.prologue_length = read_4_bytes (abfd, line_ptr, line_end);
2146 else
2147 lh.prologue_length = read_8_bytes (abfd, line_ptr, line_end);
2148 line_ptr += offset_size;
2149
2150 lh.minimum_instruction_length = read_1_byte (abfd, line_ptr, line_end);
2151 line_ptr += 1;
2152
2153 if (lh.version >= 4)
2154 {
2155 lh.maximum_ops_per_insn = read_1_byte (abfd, line_ptr, line_end);
2156 line_ptr += 1;
2157 }
2158 else
2159 lh.maximum_ops_per_insn = 1;
2160
2161 if (lh.maximum_ops_per_insn == 0)
2162 {
2163 _bfd_error_handler
2164 (_("Dwarf Error: Invalid maximum operations per instruction."));
2165 bfd_set_error (bfd_error_bad_value);
2166 return NULL;
2167 }
2168
2169 lh.default_is_stmt = read_1_byte (abfd, line_ptr, line_end);
2170 line_ptr += 1;
2171
2172 lh.line_base = read_1_signed_byte (abfd, line_ptr, line_end);
2173 line_ptr += 1;
2174
2175 lh.line_range = read_1_byte (abfd, line_ptr, line_end);
2176 line_ptr += 1;
2177
2178 lh.opcode_base = read_1_byte (abfd, line_ptr, line_end);
2179 line_ptr += 1;
2180
2181 if (line_ptr + (lh.opcode_base - 1) >= line_end)
2182 {
2183 _bfd_error_handler (_("Dwarf Error: Ran out of room reading opcodes"));
2184 bfd_set_error (bfd_error_bad_value);
2185 return NULL;
2186 }
2187
2188 amt = lh.opcode_base * sizeof (unsigned char);
2189 lh.standard_opcode_lengths = (unsigned char *) bfd_alloc (abfd, amt);
2190
2191 lh.standard_opcode_lengths[0] = 1;
2192
2193 for (i = 1; i < lh.opcode_base; ++i)
2194 {
2195 lh.standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr, line_end);
2196 line_ptr += 1;
2197 }
2198
2199 if (lh.version >= 5)
2200 {
2201 /* Read directory table. */
2202 if (!read_formatted_entries (unit, &line_ptr, line_end, table,
2203 line_info_add_include_dir_stub))
2204 goto fail;
2205
2206 /* Read file name table. */
2207 if (!read_formatted_entries (unit, &line_ptr, line_end, table,
2208 line_info_add_file_name))
2209 goto fail;
2210 }
2211 else
2212 {
2213 /* Read directory table. */
2214 while ((cur_dir = read_string (abfd, line_ptr, line_end, &bytes_read)) != NULL)
2215 {
2216 line_ptr += bytes_read;
2217
2218 if (!line_info_add_include_dir (table, cur_dir))
2219 goto fail;
2220 }
2221
2222 line_ptr += bytes_read;
2223
2224 /* Read file name table. */
2225 while ((cur_file = read_string (abfd, line_ptr, line_end, &bytes_read)) != NULL)
2226 {
2227 unsigned int dir, xtime, size;
2228
2229 line_ptr += bytes_read;
2230
2231 dir = _bfd_safe_read_leb128 (abfd, line_ptr, &bytes_read, FALSE, line_end);
2232 line_ptr += bytes_read;
2233 xtime = _bfd_safe_read_leb128 (abfd, line_ptr, &bytes_read, FALSE, line_end);
2234 line_ptr += bytes_read;
2235 size = _bfd_safe_read_leb128 (abfd, line_ptr, &bytes_read, FALSE, line_end);
2236 line_ptr += bytes_read;
2237
2238 if (!line_info_add_file_name (table, cur_file, dir, xtime, size))
2239 goto fail;
2240 }
2241
2242 line_ptr += bytes_read;
2243 }
2244
2245 /* Read the statement sequences until there's nothing left. */
2246 while (line_ptr < line_end)
2247 {
2248 /* State machine registers. */
2249 bfd_vma address = 0;
2250 unsigned char op_index = 0;
2251 char * filename = table->num_files ? concat_filename (table, 1) : NULL;
2252 unsigned int line = 1;
2253 unsigned int column = 0;
2254 unsigned int discriminator = 0;
2255 int is_stmt = lh.default_is_stmt;
2256 int end_sequence = 0;
2257 unsigned int dir, xtime, size;
2258 /* eraxxon@alumni.rice.edu: Against the DWARF2 specs, some
2259 compilers generate address sequences that are wildly out of
2260 order using DW_LNE_set_address (e.g. Intel C++ 6.0 compiler
2261 for ia64-Linux). Thus, to determine the low and high
2262 address, we must compare on every DW_LNS_copy, etc. */
2263 bfd_vma low_pc = (bfd_vma) -1;
2264 bfd_vma high_pc = 0;
2265
2266 /* Decode the table. */
2267 while (!end_sequence && line_ptr < line_end)
2268 {
2269 op_code = read_1_byte (abfd, line_ptr, line_end);
2270 line_ptr += 1;
2271
2272 if (op_code >= lh.opcode_base)
2273 {
2274 /* Special operand. */
2275 adj_opcode = op_code - lh.opcode_base;
2276 if (lh.line_range == 0)
2277 goto line_fail;
2278 if (lh.maximum_ops_per_insn == 1)
2279 address += (adj_opcode / lh.line_range
2280 * lh.minimum_instruction_length);
2281 else
2282 {
2283 address += ((op_index + adj_opcode / lh.line_range)
2284 / lh.maximum_ops_per_insn
2285 * lh.minimum_instruction_length);
2286 op_index = ((op_index + adj_opcode / lh.line_range)
2287 % lh.maximum_ops_per_insn);
2288 }
2289 line += lh.line_base + (adj_opcode % lh.line_range);
2290 /* Append row to matrix using current values. */
2291 if (!add_line_info (table, address, op_index, filename,
2292 line, column, discriminator, 0))
2293 goto line_fail;
2294 discriminator = 0;
2295 if (address < low_pc)
2296 low_pc = address;
2297 if (address > high_pc)
2298 high_pc = address;
2299 }
2300 else switch (op_code)
2301 {
2302 case DW_LNS_extended_op:
2303 exop_len = _bfd_safe_read_leb128 (abfd, line_ptr, &bytes_read,
2304 FALSE, line_end);
2305 line_ptr += bytes_read;
2306 extended_op = read_1_byte (abfd, line_ptr, line_end);
2307 line_ptr += 1;
2308
2309 switch (extended_op)
2310 {
2311 case DW_LNE_end_sequence:
2312 end_sequence = 1;
2313 if (!add_line_info (table, address, op_index, filename, line,
2314 column, discriminator, end_sequence))
2315 goto line_fail;
2316 discriminator = 0;
2317 if (address < low_pc)
2318 low_pc = address;
2319 if (address > high_pc)
2320 high_pc = address;
2321 if (!arange_add (unit, &unit->arange, low_pc, high_pc))
2322 goto line_fail;
2323 break;
2324 case DW_LNE_set_address:
2325 address = read_address (unit, line_ptr, line_end);
2326 op_index = 0;
2327 line_ptr += unit->addr_size;
2328 break;
2329 case DW_LNE_define_file:
2330 cur_file = read_string (abfd, line_ptr, line_end, &bytes_read);
2331 line_ptr += bytes_read;
2332 dir = _bfd_safe_read_leb128 (abfd, line_ptr, &bytes_read,
2333 FALSE, line_end);
2334 line_ptr += bytes_read;
2335 xtime = _bfd_safe_read_leb128 (abfd, line_ptr, &bytes_read,
2336 FALSE, line_end);
2337 line_ptr += bytes_read;
2338 size = _bfd_safe_read_leb128 (abfd, line_ptr, &bytes_read,
2339 FALSE, line_end);
2340 line_ptr += bytes_read;
2341 if (!line_info_add_file_name (table, cur_file, dir,
2342 xtime, size))
2343 goto line_fail;
2344 break;
2345 case DW_LNE_set_discriminator:
2346 discriminator =
2347 _bfd_safe_read_leb128 (abfd, line_ptr, &bytes_read,
2348 FALSE, line_end);
2349 line_ptr += bytes_read;
2350 break;
2351 case DW_LNE_HP_source_file_correlation:
2352 line_ptr += exop_len - 1;
2353 break;
2354 default:
2355 _bfd_error_handler
2356 (_("Dwarf Error: mangled line number section."));
2357 bfd_set_error (bfd_error_bad_value);
2358 line_fail:
2359 if (filename != NULL)
2360 free (filename);
2361 goto fail;
2362 }
2363 break;
2364 case DW_LNS_copy:
2365 if (!add_line_info (table, address, op_index,
2366 filename, line, column, discriminator, 0))
2367 goto line_fail;
2368 discriminator = 0;
2369 if (address < low_pc)
2370 low_pc = address;
2371 if (address > high_pc)
2372 high_pc = address;
2373 break;
2374 case DW_LNS_advance_pc:
2375 if (lh.maximum_ops_per_insn == 1)
2376 address += (lh.minimum_instruction_length
2377 * _bfd_safe_read_leb128 (abfd, line_ptr,
2378 &bytes_read,
2379 FALSE, line_end));
2380 else
2381 {
2382 bfd_vma adjust = _bfd_safe_read_leb128 (abfd, line_ptr,
2383 &bytes_read,
2384 FALSE, line_end);
2385 address = ((op_index + adjust) / lh.maximum_ops_per_insn
2386 * lh.minimum_instruction_length);
2387 op_index = (op_index + adjust) % lh.maximum_ops_per_insn;
2388 }
2389 line_ptr += bytes_read;
2390 break;
2391 case DW_LNS_advance_line:
2392 line += _bfd_safe_read_leb128 (abfd, line_ptr, &bytes_read,
2393 TRUE, line_end);
2394 line_ptr += bytes_read;
2395 break;
2396 case DW_LNS_set_file:
2397 {
2398 unsigned int file;
2399
2400 /* The file and directory tables are 0
2401 based, the references are 1 based. */
2402 file = _bfd_safe_read_leb128 (abfd, line_ptr, &bytes_read,
2403 FALSE, line_end);
2404 line_ptr += bytes_read;
2405 if (filename)
2406 free (filename);
2407 filename = concat_filename (table, file);
2408 break;
2409 }
2410 case DW_LNS_set_column:
2411 column = _bfd_safe_read_leb128 (abfd, line_ptr, &bytes_read,
2412 FALSE, line_end);
2413 line_ptr += bytes_read;
2414 break;
2415 case DW_LNS_negate_stmt:
2416 is_stmt = (!is_stmt);
2417 break;
2418 case DW_LNS_set_basic_block:
2419 break;
2420 case DW_LNS_const_add_pc:
2421 if (lh.line_range == 0)
2422 goto line_fail;
2423 if (lh.maximum_ops_per_insn == 1)
2424 address += (lh.minimum_instruction_length
2425 * ((255 - lh.opcode_base) / lh.line_range));
2426 else
2427 {
2428 bfd_vma adjust = ((255 - lh.opcode_base) / lh.line_range);
2429 address += (lh.minimum_instruction_length
2430 * ((op_index + adjust)
2431 / lh.maximum_ops_per_insn));
2432 op_index = (op_index + adjust) % lh.maximum_ops_per_insn;
2433 }
2434 break;
2435 case DW_LNS_fixed_advance_pc:
2436 address += read_2_bytes (abfd, line_ptr, line_end);
2437 op_index = 0;
2438 line_ptr += 2;
2439 break;
2440 default:
2441 /* Unknown standard opcode, ignore it. */
2442 for (i = 0; i < lh.standard_opcode_lengths[op_code]; i++)
2443 {
2444 (void) _bfd_safe_read_leb128 (abfd, line_ptr, &bytes_read,
2445 FALSE, line_end);
2446 line_ptr += bytes_read;
2447 }
2448 break;
2449 }
2450 }
2451
2452 if (filename)
2453 free (filename);
2454 }
2455
2456 if (sort_line_sequences (table))
2457 return table;
2458
2459 fail:
2460 while (table->sequences != NULL)
2461 {
2462 struct line_sequence* seq = table->sequences;
2463 table->sequences = table->sequences->prev_sequence;
2464 free (seq);
2465 }
2466 if (table->files != NULL)
2467 free (table->files);
2468 if (table->dirs != NULL)
2469 free (table->dirs);
2470 return NULL;
2471 }
2472
2473 /* If ADDR is within TABLE set the output parameters and return the
2474 range of addresses covered by the entry used to fill them out.
2475 Otherwise set * FILENAME_PTR to NULL and return 0.
2476 The parameters FILENAME_PTR, LINENUMBER_PTR and DISCRIMINATOR_PTR
2477 are pointers to the objects to be filled in. */
2478
2479 static bfd_vma
2480 lookup_address_in_line_info_table (struct line_info_table *table,
2481 bfd_vma addr,
2482 const char **filename_ptr,
2483 unsigned int *linenumber_ptr,
2484 unsigned int *discriminator_ptr)
2485 {
2486 struct line_sequence *seq = NULL;
2487 struct line_info *info;
2488 int low, high, mid;
2489
2490 /* Binary search the array of sequences. */
2491 low = 0;
2492 high = table->num_sequences;
2493 while (low < high)
2494 {
2495 mid = (low + high) / 2;
2496 seq = &table->sequences[mid];
2497 if (addr < seq->low_pc)
2498 high = mid;
2499 else if (addr >= seq->last_line->address)
2500 low = mid + 1;
2501 else
2502 break;
2503 }
2504
2505 /* Check for a valid sequence. */
2506 if (!seq || addr < seq->low_pc || addr >= seq->last_line->address)
2507 goto fail;
2508
2509 if (!build_line_info_table (table, seq))
2510 goto fail;
2511
2512 /* Binary search the array of line information. */
2513 low = 0;
2514 high = seq->num_lines;
2515 info = NULL;
2516 while (low < high)
2517 {
2518 mid = (low + high) / 2;
2519 info = seq->line_info_lookup[mid];
2520 if (addr < info->address)
2521 high = mid;
2522 else if (addr >= seq->line_info_lookup[mid + 1]->address)
2523 low = mid + 1;
2524 else
2525 break;
2526 }
2527
2528 /* Check for a valid line information entry. */
2529 if (info
2530 && addr >= info->address
2531 && addr < seq->line_info_lookup[mid + 1]->address
2532 && !(info->end_sequence || info == seq->last_line))
2533 {
2534 *filename_ptr = info->filename;
2535 *linenumber_ptr = info->line;
2536 if (discriminator_ptr)
2537 *discriminator_ptr = info->discriminator;
2538 return seq->last_line->address - seq->low_pc;
2539 }
2540
2541 fail:
2542 *filename_ptr = NULL;
2543 return 0;
2544 }
2545
2546 /* Read in the .debug_ranges section for future reference. */
2547
2548 static bfd_boolean
2549 read_debug_ranges (struct comp_unit * unit)
2550 {
2551 struct dwarf2_debug * stash = unit->stash;
2552
2553 return read_section (unit->abfd, &stash->debug_sections[debug_ranges],
2554 stash->syms, 0,
2555 &stash->dwarf_ranges_buffer,
2556 &stash->dwarf_ranges_size);
2557 }
2558
2559 /* Function table functions. */
2560
2561 static int
2562 compare_lookup_funcinfos (const void * a, const void * b)
2563 {
2564 const struct lookup_funcinfo * lookup1 = a;
2565 const struct lookup_funcinfo * lookup2 = b;
2566
2567 if (lookup1->low_addr < lookup2->low_addr)
2568 return -1;
2569 if (lookup1->low_addr > lookup2->low_addr)
2570 return 1;
2571 if (lookup1->high_addr < lookup2->high_addr)
2572 return -1;
2573 if (lookup1->high_addr > lookup2->high_addr)
2574 return 1;
2575
2576 return 0;
2577 }
2578
2579 static bfd_boolean
2580 build_lookup_funcinfo_table (struct comp_unit * unit)
2581 {
2582 struct lookup_funcinfo *lookup_funcinfo_table = unit->lookup_funcinfo_table;
2583 unsigned int number_of_functions = unit->number_of_functions;
2584 struct funcinfo *each;
2585 struct lookup_funcinfo *entry;
2586 size_t func_index;
2587 struct arange *range;
2588 bfd_vma low_addr, high_addr;
2589
2590 if (lookup_funcinfo_table || number_of_functions == 0)
2591 return TRUE;
2592
2593 /* Create the function info lookup table. */
2594 lookup_funcinfo_table = (struct lookup_funcinfo *)
2595 bfd_malloc (number_of_functions * sizeof (struct lookup_funcinfo));
2596 if (lookup_funcinfo_table == NULL)
2597 return FALSE;
2598
2599 /* Populate the function info lookup table. */
2600 func_index = number_of_functions;
2601 for (each = unit->function_table; each; each = each->prev_func)
2602 {
2603 entry = &lookup_funcinfo_table[--func_index];
2604 entry->funcinfo = each;
2605
2606 /* Calculate the lowest and highest address for this function entry. */
2607 low_addr = entry->funcinfo->arange.low;
2608 high_addr = entry->funcinfo->arange.high;
2609
2610 for (range = entry->funcinfo->arange.next; range; range = range->next)
2611 {
2612 if (range->low < low_addr)
2613 low_addr = range->low;
2614 if (range->high > high_addr)
2615 high_addr = range->high;
2616 }
2617
2618 entry->low_addr = low_addr;
2619 entry->high_addr = high_addr;
2620 }
2621
2622 BFD_ASSERT (func_index == 0);
2623
2624 /* Sort the function by address. */
2625 qsort (lookup_funcinfo_table,
2626 number_of_functions,
2627 sizeof (struct lookup_funcinfo),
2628 compare_lookup_funcinfos);
2629
2630 /* Calculate the high watermark for each function in the lookup table. */
2631 high_addr = lookup_funcinfo_table[0].high_addr;
2632 for (func_index = 1; func_index < number_of_functions; func_index++)
2633 {
2634 entry = &lookup_funcinfo_table[func_index];
2635 if (entry->high_addr > high_addr)
2636 high_addr = entry->high_addr;
2637 else
2638 entry->high_addr = high_addr;
2639 }
2640
2641 unit->lookup_funcinfo_table = lookup_funcinfo_table;
2642 return TRUE;
2643 }
2644
2645 /* If ADDR is within UNIT's function tables, set FUNCTION_PTR, and return
2646 TRUE. Note that we need to find the function that has the smallest range
2647 that contains ADDR, to handle inlined functions without depending upon
2648 them being ordered in TABLE by increasing range. */
2649
2650 static bfd_boolean
2651 lookup_address_in_function_table (struct comp_unit *unit,
2652 bfd_vma addr,
2653 struct funcinfo **function_ptr)
2654 {
2655 unsigned int number_of_functions = unit->number_of_functions;
2656 struct lookup_funcinfo* lookup_funcinfo = NULL;
2657 struct funcinfo* funcinfo = NULL;
2658 struct funcinfo* best_fit = NULL;
2659 bfd_vma best_fit_len = 0;
2660 bfd_size_type low, high, mid, first;
2661 struct arange *arange;
2662
2663 if (number_of_functions == 0)
2664 return FALSE;
2665
2666 if (!build_lookup_funcinfo_table (unit))
2667 return FALSE;
2668
2669 if (unit->lookup_funcinfo_table[number_of_functions - 1].high_addr < addr)
2670 return FALSE;
2671
2672 /* Find the first function in the lookup table which may contain the
2673 specified address. */
2674 low = 0;
2675 high = number_of_functions;
2676 first = high;
2677 while (low < high)
2678 {
2679 mid = (low + high) / 2;
2680 lookup_funcinfo = &unit->lookup_funcinfo_table[mid];
2681 if (addr < lookup_funcinfo->low_addr)
2682 high = mid;
2683 else if (addr >= lookup_funcinfo->high_addr)
2684 low = mid + 1;
2685 else
2686 high = first = mid;
2687 }
2688
2689 /* Find the 'best' match for the address. The prior algorithm defined the
2690 best match as the function with the smallest address range containing
2691 the specified address. This definition should probably be changed to the
2692 innermost inline routine containing the address, but right now we want
2693 to get the same results we did before. */
2694 while (first < number_of_functions)
2695 {
2696 if (addr < unit->lookup_funcinfo_table[first].low_addr)
2697 break;
2698 funcinfo = unit->lookup_funcinfo_table[first].funcinfo;
2699
2700 for (arange = &funcinfo->arange; arange; arange = arange->next)
2701 {
2702 if (addr < arange->low || addr >= arange->high)
2703 continue;
2704
2705 if (!best_fit
2706 || arange->high - arange->low < best_fit_len
2707 /* The following comparison is designed to return the same
2708 match as the previous algorithm for routines which have the
2709 same best fit length. */
2710 || (arange->high - arange->low == best_fit_len
2711 && funcinfo > best_fit))
2712 {
2713 best_fit = funcinfo;
2714 best_fit_len = arange->high - arange->low;
2715 }
2716 }
2717
2718 first++;
2719 }
2720
2721 if (!best_fit)
2722 return FALSE;
2723
2724 *function_ptr = best_fit;
2725 return TRUE;
2726 }
2727
2728 /* If SYM at ADDR is within function table of UNIT, set FILENAME_PTR
2729 and LINENUMBER_PTR, and return TRUE. */
2730
2731 static bfd_boolean
2732 lookup_symbol_in_function_table (struct comp_unit *unit,
2733 asymbol *sym,
2734 bfd_vma addr,
2735 const char **filename_ptr,
2736 unsigned int *linenumber_ptr)
2737 {
2738 struct funcinfo* each_func;
2739 struct funcinfo* best_fit = NULL;
2740 bfd_vma best_fit_len = 0;
2741 struct arange *arange;
2742 const char *name = bfd_asymbol_name (sym);
2743 asection *sec = bfd_get_section (sym);
2744
2745 for (each_func = unit->function_table;
2746 each_func;
2747 each_func = each_func->prev_func)
2748 {
2749 for (arange = &each_func->arange;
2750 arange;
2751 arange = arange->next)
2752 {
2753 if ((!each_func->sec || each_func->sec == sec)
2754 && addr >= arange->low
2755 && addr < arange->high
2756 && each_func->name
2757 && strcmp (name, each_func->name) == 0
2758 && (!best_fit
2759 || arange->high - arange->low < best_fit_len))
2760 {
2761 best_fit = each_func;
2762 best_fit_len = arange->high - arange->low;
2763 }
2764 }
2765 }
2766
2767 if (best_fit)
2768 {
2769 best_fit->sec = sec;
2770 *filename_ptr = best_fit->file;
2771 *linenumber_ptr = best_fit->line;
2772 return TRUE;
2773 }
2774 else
2775 return FALSE;
2776 }
2777
2778 /* Variable table functions. */
2779
2780 /* If SYM is within variable table of UNIT, set FILENAME_PTR and
2781 LINENUMBER_PTR, and return TRUE. */
2782
2783 static bfd_boolean
2784 lookup_symbol_in_variable_table (struct comp_unit *unit,
2785 asymbol *sym,
2786 bfd_vma addr,
2787 const char **filename_ptr,
2788 unsigned int *linenumber_ptr)
2789 {
2790 const char *name = bfd_asymbol_name (sym);
2791 asection *sec = bfd_get_section (sym);
2792 struct varinfo* each;
2793
2794 for (each = unit->variable_table; each; each = each->prev_var)
2795 if (each->stack == 0
2796 && each->file != NULL
2797 && each->name != NULL
2798 && each->addr == addr
2799 && (!each->sec || each->sec == sec)
2800 && strcmp (name, each->name) == 0)
2801 break;
2802
2803 if (each)
2804 {
2805 each->sec = sec;
2806 *filename_ptr = each->file;
2807 *linenumber_ptr = each->line;
2808 return TRUE;
2809 }
2810
2811 return FALSE;
2812 }
2813
2814 static bfd_boolean
2815 find_abstract_instance_name (struct comp_unit *unit,
2816 bfd_byte *orig_info_ptr,
2817 struct attribute *attr_ptr,
2818 const char **pname,
2819 bfd_boolean *is_linkage)
2820 {
2821 bfd *abfd = unit->abfd;
2822 bfd_byte *info_ptr;
2823 bfd_byte *info_ptr_end;
2824 unsigned int abbrev_number, bytes_read, i;
2825 struct abbrev_info *abbrev;
2826 bfd_uint64_t die_ref = attr_ptr->u.val;
2827 struct attribute attr;
2828 const char *name = NULL;
2829
2830 /* DW_FORM_ref_addr can reference an entry in a different CU. It
2831 is an offset from the .debug_info section, not the current CU. */
2832 if (attr_ptr->form == DW_FORM_ref_addr)
2833 {
2834 /* We only support DW_FORM_ref_addr within the same file, so
2835 any relocations should be resolved already. Check this by
2836 testing for a zero die_ref; There can't be a valid reference
2837 to the header of a .debug_info section.
2838 DW_FORM_ref_addr is an offset relative to .debug_info.
2839 Normally when using the GNU linker this is accomplished by
2840 emitting a symbolic reference to a label, because .debug_info
2841 sections are linked at zero. When there are multiple section
2842 groups containing .debug_info, as there might be in a
2843 relocatable object file, it would be reasonable to assume that
2844 a symbolic reference to a label in any .debug_info section
2845 might be used. Since we lay out multiple .debug_info
2846 sections at non-zero VMAs (see place_sections), and read
2847 them contiguously into stash->info_ptr_memory, that means
2848 the reference is relative to stash->info_ptr_memory. */
2849 size_t total;
2850
2851 info_ptr = unit->stash->info_ptr_memory;
2852 info_ptr_end = unit->stash->info_ptr_end;
2853 total = info_ptr_end - info_ptr;
2854 if (!die_ref || die_ref >= total)
2855 {
2856 _bfd_error_handler
2857 (_("Dwarf Error: Invalid abstract instance DIE ref."));
2858 bfd_set_error (bfd_error_bad_value);
2859 return FALSE;
2860 }
2861 info_ptr += die_ref;
2862
2863 /* Now find the CU containing this pointer. */
2864 if (info_ptr >= unit->info_ptr_unit && info_ptr < unit->end_ptr)
2865 info_ptr_end = unit->end_ptr;
2866 else
2867 {
2868 /* Check other CUs to see if they contain the abbrev. */
2869 struct comp_unit * u;
2870
2871 for (u = unit->prev_unit; u != NULL; u = u->prev_unit)
2872 if (info_ptr >= u->info_ptr_unit && info_ptr < u->end_ptr)
2873 break;
2874
2875 if (u == NULL)
2876 for (u = unit->next_unit; u != NULL; u = u->next_unit)
2877 if (info_ptr >= u->info_ptr_unit && info_ptr < u->end_ptr)
2878 break;
2879
2880 if (u)
2881 {
2882 unit = u;
2883 info_ptr_end = unit->end_ptr;
2884 }
2885 /* else FIXME: What do we do now ? */
2886 }
2887 }
2888 else if (attr_ptr->form == DW_FORM_GNU_ref_alt)
2889 {
2890 info_ptr = read_alt_indirect_ref (unit, die_ref);
2891 if (info_ptr == NULL)
2892 {
2893 _bfd_error_handler
2894 (_("Dwarf Error: Unable to read alt ref %llu."),
2895 (long long) die_ref);
2896 bfd_set_error (bfd_error_bad_value);
2897 return FALSE;
2898 }
2899 info_ptr_end = (unit->stash->alt_dwarf_info_buffer
2900 + unit->stash->alt_dwarf_info_size);
2901
2902 /* FIXME: Do we need to locate the correct CU, in a similar
2903 fashion to the code in the DW_FORM_ref_addr case above ? */
2904 }
2905 else
2906 {
2907 /* DW_FORM_ref1, DW_FORM_ref2, DW_FORM_ref4, DW_FORM_ref8 or
2908 DW_FORM_ref_udata. These are all references relative to the
2909 start of the current CU. */
2910 size_t total;
2911
2912 info_ptr = unit->info_ptr_unit;
2913 info_ptr_end = unit->end_ptr;
2914 total = info_ptr_end - info_ptr;
2915 if (!die_ref || die_ref >= total)
2916 {
2917 _bfd_error_handler
2918 (_("Dwarf Error: Invalid abstract instance DIE ref."));
2919 bfd_set_error (bfd_error_bad_value);
2920 return FALSE;
2921 }
2922 info_ptr += die_ref;
2923 }
2924
2925 abbrev_number = _bfd_safe_read_leb128 (abfd, info_ptr, &bytes_read,
2926 FALSE, info_ptr_end);
2927 info_ptr += bytes_read;
2928
2929 if (abbrev_number)
2930 {
2931 abbrev = lookup_abbrev (abbrev_number, unit->abbrevs);
2932 if (! abbrev)
2933 {
2934 _bfd_error_handler
2935 (_("Dwarf Error: Could not find abbrev number %u."), abbrev_number);
2936 bfd_set_error (bfd_error_bad_value);
2937 return FALSE;
2938 }
2939 else
2940 {
2941 for (i = 0; i < abbrev->num_attrs; ++i)
2942 {
2943 info_ptr = read_attribute (&attr, &abbrev->attrs[i], unit,
2944 info_ptr, info_ptr_end);
2945 if (info_ptr == NULL)
2946 break;
2947 /* It doesn't ever make sense for DW_AT_specification to
2948 refer to the same DIE. Stop simple recursion. */
2949 if (info_ptr == orig_info_ptr)
2950 {
2951 _bfd_error_handler
2952 (_("Dwarf Error: Abstract instance recursion detected."));
2953 bfd_set_error (bfd_error_bad_value);
2954 return FALSE;
2955 }
2956 switch (attr.name)
2957 {
2958 case DW_AT_name:
2959 /* Prefer DW_AT_MIPS_linkage_name or DW_AT_linkage_name
2960 over DW_AT_name. */
2961 if (name == NULL && is_str_attr (attr.form))
2962 {
2963 name = attr.u.str;
2964 if (non_mangled (unit->lang))
2965 *is_linkage = TRUE;
2966 }
2967 break;
2968 case DW_AT_specification:
2969 if (!find_abstract_instance_name (unit, info_ptr, &attr,
2970 pname, is_linkage))
2971 return FALSE;
2972 break;
2973 case DW_AT_linkage_name:
2974 case DW_AT_MIPS_linkage_name:
2975 /* PR 16949: Corrupt debug info can place
2976 non-string forms into these attributes. */
2977 if (is_str_attr (attr.form))
2978 {
2979 name = attr.u.str;
2980 *is_linkage = TRUE;
2981 }
2982 break;
2983 default:
2984 break;
2985 }
2986 }
2987 }
2988 }
2989 *pname = name;
2990 return TRUE;
2991 }
2992
2993 static bfd_boolean
2994 read_rangelist (struct comp_unit *unit, struct arange *arange,
2995 bfd_uint64_t offset)
2996 {
2997 bfd_byte *ranges_ptr;
2998 bfd_byte *ranges_end;
2999 bfd_vma base_address = unit->base_address;
3000
3001 if (! unit->stash->dwarf_ranges_buffer)
3002 {
3003 if (! read_debug_ranges (unit))
3004 return FALSE;
3005 }
3006
3007 ranges_ptr = unit->stash->dwarf_ranges_buffer + offset;
3008 if (ranges_ptr < unit->stash->dwarf_ranges_buffer)
3009 return FALSE;
3010 ranges_end = unit->stash->dwarf_ranges_buffer + unit->stash->dwarf_ranges_size;
3011
3012 for (;;)
3013 {
3014 bfd_vma low_pc;
3015 bfd_vma high_pc;
3016
3017 /* PR 17512: file: 62cada7d. */
3018 if (ranges_ptr + 2 * unit->addr_size > ranges_end)
3019 return FALSE;
3020
3021 low_pc = read_address (unit, ranges_ptr, ranges_end);
3022 ranges_ptr += unit->addr_size;
3023 high_pc = read_address (unit, ranges_ptr, ranges_end);
3024 ranges_ptr += unit->addr_size;
3025
3026 if (low_pc == 0 && high_pc == 0)
3027 break;
3028 if (low_pc == -1UL && high_pc != -1UL)
3029 base_address = high_pc;
3030 else
3031 {
3032 if (!arange_add (unit, arange,
3033 base_address + low_pc, base_address + high_pc))
3034 return FALSE;
3035 }
3036 }
3037 return TRUE;
3038 }
3039
3040 /* DWARF2 Compilation unit functions. */
3041
3042 /* Scan over each die in a comp. unit looking for functions to add
3043 to the function table and variables to the variable table. */
3044
3045 static bfd_boolean
3046 scan_unit_for_symbols (struct comp_unit *unit)
3047 {
3048 bfd *abfd = unit->abfd;
3049 bfd_byte *info_ptr = unit->first_child_die_ptr;
3050 bfd_byte *info_ptr_end = unit->stash->info_ptr_end;
3051 int nesting_level = 0;
3052 struct nest_funcinfo {
3053 struct funcinfo *func;
3054 } *nested_funcs;
3055 int nested_funcs_size;
3056
3057 /* Maintain a stack of in-scope functions and inlined functions, which we
3058 can use to set the caller_func field. */
3059 nested_funcs_size = 32;
3060 nested_funcs = (struct nest_funcinfo *)
3061 bfd_malloc (nested_funcs_size * sizeof (*nested_funcs));
3062 if (nested_funcs == NULL)
3063 return FALSE;
3064 nested_funcs[nesting_level].func = 0;
3065
3066 while (nesting_level >= 0)
3067 {
3068 unsigned int abbrev_number, bytes_read, i;
3069 struct abbrev_info *abbrev;
3070 struct attribute attr;
3071 struct funcinfo *func;
3072 struct varinfo *var;
3073 bfd_vma low_pc = 0;
3074 bfd_vma high_pc = 0;
3075 bfd_boolean high_pc_relative = FALSE;
3076
3077 /* PR 17512: file: 9f405d9d. */
3078 if (info_ptr >= info_ptr_end)
3079 goto fail;
3080
3081 abbrev_number = _bfd_safe_read_leb128 (abfd, info_ptr, &bytes_read,
3082 FALSE, info_ptr_end);
3083 info_ptr += bytes_read;
3084
3085 if (! abbrev_number)
3086 {
3087 nesting_level--;
3088 continue;
3089 }
3090
3091 abbrev = lookup_abbrev (abbrev_number, unit->abbrevs);
3092 if (! abbrev)
3093 {
3094 static unsigned int previous_failed_abbrev = -1U;
3095
3096 /* Avoid multiple reports of the same missing abbrev. */
3097 if (abbrev_number != previous_failed_abbrev)
3098 {
3099 _bfd_error_handler
3100 (_("Dwarf Error: Could not find abbrev number %u."),
3101 abbrev_number);
3102 previous_failed_abbrev = abbrev_number;
3103 }
3104 bfd_set_error (bfd_error_bad_value);
3105 goto fail;
3106 }
3107
3108 var = NULL;
3109 if (abbrev->tag == DW_TAG_subprogram
3110 || abbrev->tag == DW_TAG_entry_point
3111 || abbrev->tag == DW_TAG_inlined_subroutine)
3112 {
3113 bfd_size_type amt = sizeof (struct funcinfo);
3114 func = (struct funcinfo *) bfd_zalloc (abfd, amt);
3115 if (func == NULL)
3116 goto fail;
3117 func->tag = abbrev->tag;
3118 func->prev_func = unit->function_table;
3119 unit->function_table = func;
3120 unit->number_of_functions++;
3121 BFD_ASSERT (!unit->cached);
3122
3123 if (func->tag == DW_TAG_inlined_subroutine)
3124 for (i = nesting_level; i-- != 0; )
3125 if (nested_funcs[i].func)
3126 {
3127 func->caller_func = nested_funcs[i].func;
3128 break;
3129 }
3130 nested_funcs[nesting_level].func = func;
3131 }
3132 else
3133 {
3134 func = NULL;
3135 if (abbrev->tag == DW_TAG_variable)
3136 {
3137 bfd_size_type amt = sizeof (struct varinfo);
3138 var = (struct varinfo *) bfd_zalloc (abfd, amt);
3139 if (var == NULL)
3140 goto fail;
3141 var->tag = abbrev->tag;
3142 var->stack = 1;
3143 var->prev_var = unit->variable_table;
3144 unit->variable_table = var;
3145 /* PR 18205: Missing debug information can cause this
3146 var to be attached to an already cached unit. */
3147 }
3148
3149 /* No inline function in scope at this nesting level. */
3150 nested_funcs[nesting_level].func = 0;
3151 }
3152
3153 for (i = 0; i < abbrev->num_attrs; ++i)
3154 {
3155 info_ptr = read_attribute (&attr, &abbrev->attrs[i],
3156 unit, info_ptr, info_ptr_end);
3157 if (info_ptr == NULL)
3158 goto fail;
3159
3160 if (func)
3161 {
3162 switch (attr.name)
3163 {
3164 case DW_AT_call_file:
3165 func->caller_file = concat_filename (unit->line_table,
3166 attr.u.val);
3167 break;
3168
3169 case DW_AT_call_line:
3170 func->caller_line = attr.u.val;
3171 break;
3172
3173 case DW_AT_abstract_origin:
3174 case DW_AT_specification:
3175 if (!find_abstract_instance_name (unit, info_ptr, &attr,
3176 &func->name,
3177 &func->is_linkage))
3178 goto fail;
3179 break;
3180
3181 case DW_AT_name:
3182 /* Prefer DW_AT_MIPS_linkage_name or DW_AT_linkage_name
3183 over DW_AT_name. */
3184 if (func->name == NULL && is_str_attr (attr.form))
3185 {
3186 func->name = attr.u.str;
3187 if (non_mangled (unit->lang))
3188 func->is_linkage = TRUE;
3189 }
3190 break;
3191
3192 case DW_AT_linkage_name:
3193 case DW_AT_MIPS_linkage_name:
3194 /* PR 16949: Corrupt debug info can place
3195 non-string forms into these attributes. */
3196 if (is_str_attr (attr.form))
3197 {
3198 func->name = attr.u.str;
3199 func->is_linkage = TRUE;
3200 }
3201 break;
3202
3203 case DW_AT_low_pc:
3204 low_pc = attr.u.val;
3205 break;
3206
3207 case DW_AT_high_pc:
3208 high_pc = attr.u.val;
3209 high_pc_relative = attr.form != DW_FORM_addr;
3210 break;
3211
3212 case DW_AT_ranges:
3213 if (!read_rangelist (unit, &func->arange, attr.u.val))
3214 goto fail;
3215 break;
3216
3217 case DW_AT_decl_file:
3218 func->file = concat_filename (unit->line_table,
3219 attr.u.val);
3220 break;
3221
3222 case DW_AT_decl_line:
3223 func->line = attr.u.val;
3224 break;
3225
3226 default:
3227 break;
3228 }
3229 }
3230 else if (var)
3231 {
3232 switch (attr.name)
3233 {
3234 case DW_AT_name:
3235 if (is_str_attr (attr.form))
3236 var->name = attr.u.str;
3237 break;
3238
3239 case DW_AT_decl_file:
3240 var->file = concat_filename (unit->line_table,
3241 attr.u.val);
3242 break;
3243
3244 case DW_AT_decl_line:
3245 var->line = attr.u.val;
3246 break;
3247
3248 case DW_AT_external:
3249 if (attr.u.val != 0)
3250 var->stack = 0;
3251 break;
3252
3253 case DW_AT_location:
3254 switch (attr.form)
3255 {
3256 case DW_FORM_block:
3257 case DW_FORM_block1:
3258 case DW_FORM_block2:
3259 case DW_FORM_block4:
3260 case DW_FORM_exprloc:
3261 if (attr.u.blk->data != NULL
3262 && *attr.u.blk->data == DW_OP_addr)
3263 {
3264 var->stack = 0;
3265
3266 /* Verify that DW_OP_addr is the only opcode in the
3267 location, in which case the block size will be 1
3268 plus the address size. */
3269 /* ??? For TLS variables, gcc can emit
3270 DW_OP_addr <addr> DW_OP_GNU_push_tls_address
3271 which we don't handle here yet. */
3272 if (attr.u.blk->size == unit->addr_size + 1U)
3273 var->addr = bfd_get (unit->addr_size * 8,
3274 unit->abfd,
3275 attr.u.blk->data + 1);
3276 }
3277 break;
3278
3279 default:
3280 break;
3281 }
3282 break;
3283
3284 default:
3285 break;
3286 }
3287 }
3288 }
3289
3290 if (high_pc_relative)
3291 high_pc += low_pc;
3292
3293 if (func && high_pc != 0)
3294 {
3295 if (!arange_add (unit, &func->arange, low_pc, high_pc))
3296 goto fail;
3297 }
3298
3299 if (abbrev->has_children)
3300 {
3301 nesting_level++;
3302
3303 if (nesting_level >= nested_funcs_size)
3304 {
3305 struct nest_funcinfo *tmp;
3306
3307 nested_funcs_size *= 2;
3308 tmp = (struct nest_funcinfo *)
3309 bfd_realloc (nested_funcs,
3310 nested_funcs_size * sizeof (*nested_funcs));
3311 if (tmp == NULL)
3312 goto fail;
3313 nested_funcs = tmp;
3314 }
3315 nested_funcs[nesting_level].func = 0;
3316 }
3317 }
3318
3319 free (nested_funcs);
3320 return TRUE;
3321
3322 fail:
3323 free (nested_funcs);
3324 return FALSE;
3325 }
3326
3327 /* Parse a DWARF2 compilation unit starting at INFO_PTR. This
3328 includes the compilation unit header that proceeds the DIE's, but
3329 does not include the length field that precedes each compilation
3330 unit header. END_PTR points one past the end of this comp unit.
3331 OFFSET_SIZE is the size of DWARF2 offsets (either 4 or 8 bytes).
3332
3333 This routine does not read the whole compilation unit; only enough
3334 to get to the line number information for the compilation unit. */
3335
3336 static struct comp_unit *
3337 parse_comp_unit (struct dwarf2_debug *stash,
3338 bfd_vma unit_length,
3339 bfd_byte *info_ptr_unit,
3340 unsigned int offset_size)
3341 {
3342 struct comp_unit* unit;
3343 unsigned int version;
3344 bfd_uint64_t abbrev_offset = 0;
3345 /* Initialize it just to avoid a GCC false warning. */
3346 unsigned int addr_size = -1;
3347 struct abbrev_info** abbrevs;
3348 unsigned int abbrev_number, bytes_read, i;
3349 struct abbrev_info *abbrev;
3350 struct attribute attr;
3351 bfd_byte *info_ptr = stash->info_ptr;
3352 bfd_byte *end_ptr = info_ptr + unit_length;
3353 bfd_size_type amt;
3354 bfd_vma low_pc = 0;
3355 bfd_vma high_pc = 0;
3356 bfd *abfd = stash->bfd_ptr;
3357 bfd_boolean high_pc_relative = FALSE;
3358 enum dwarf_unit_type unit_type;
3359
3360 version = read_2_bytes (abfd, info_ptr, end_ptr);
3361 info_ptr += 2;
3362 if (version < 2 || version > 5)
3363 {
3364 /* PR 19872: A version number of 0 probably means that there is padding
3365 at the end of the .debug_info section. Gold puts it there when
3366 performing an incremental link, for example. So do not generate
3367 an error, just return a NULL. */
3368 if (version)
3369 {
3370 _bfd_error_handler
3371 (_("Dwarf Error: found dwarf version '%u', this reader"
3372 " only handles version 2, 3, 4 and 5 information."), version);
3373 bfd_set_error (bfd_error_bad_value);
3374 }
3375 return NULL;
3376 }
3377
3378 if (version < 5)
3379 unit_type = DW_UT_compile;
3380 else
3381 {
3382 unit_type = read_1_byte (abfd, info_ptr, end_ptr);
3383 info_ptr += 1;
3384
3385 addr_size = read_1_byte (abfd, info_ptr, end_ptr);
3386 info_ptr += 1;
3387 }
3388
3389 BFD_ASSERT (offset_size == 4 || offset_size == 8);
3390 if (offset_size == 4)
3391 abbrev_offset = read_4_bytes (abfd, info_ptr, end_ptr);
3392 else
3393 abbrev_offset = read_8_bytes (abfd, info_ptr, end_ptr);
3394 info_ptr += offset_size;
3395
3396 if (version < 5)
3397 {
3398 addr_size = read_1_byte (abfd, info_ptr, end_ptr);
3399 info_ptr += 1;
3400 }
3401
3402 if (unit_type == DW_UT_type)
3403 {
3404 /* Skip type signature. */
3405 info_ptr += 8;
3406
3407 /* Skip type offset. */
3408 info_ptr += offset_size;
3409 }
3410
3411 if (addr_size > sizeof (bfd_vma))
3412 {
3413 _bfd_error_handler
3414 /* xgettext: c-format */
3415 (_("Dwarf Error: found address size '%u', this reader"
3416 " can not handle sizes greater than '%u'."),
3417 addr_size,
3418 (unsigned int) sizeof (bfd_vma));
3419 bfd_set_error (bfd_error_bad_value);
3420 return NULL;
3421 }
3422
3423 if (addr_size != 2 && addr_size != 4 && addr_size != 8)
3424 {
3425 _bfd_error_handler
3426 ("Dwarf Error: found address size '%u', this reader"
3427 " can only handle address sizes '2', '4' and '8'.", addr_size);
3428 bfd_set_error (bfd_error_bad_value);
3429 return NULL;
3430 }
3431
3432 /* Read the abbrevs for this compilation unit into a table. */
3433 abbrevs = read_abbrevs (abfd, abbrev_offset, stash);
3434 if (! abbrevs)
3435 return NULL;
3436
3437 abbrev_number = _bfd_safe_read_leb128 (abfd, info_ptr, &bytes_read,
3438 FALSE, end_ptr);
3439 info_ptr += bytes_read;
3440 if (! abbrev_number)
3441 {
3442 /* PR 19872: An abbrev number of 0 probably means that there is padding
3443 at the end of the .debug_abbrev section. Gold puts it there when
3444 performing an incremental link, for example. So do not generate
3445 an error, just return a NULL. */
3446 return NULL;
3447 }
3448
3449 abbrev = lookup_abbrev (abbrev_number, abbrevs);
3450 if (! abbrev)
3451 {
3452 _bfd_error_handler (_("Dwarf Error: Could not find abbrev number %u."),
3453 abbrev_number);
3454 bfd_set_error (bfd_error_bad_value);
3455 return NULL;
3456 }
3457
3458 amt = sizeof (struct comp_unit);
3459 unit = (struct comp_unit *) bfd_zalloc (abfd, amt);
3460 if (unit == NULL)
3461 return NULL;
3462 unit->abfd = abfd;
3463 unit->version = version;
3464 unit->addr_size = addr_size;
3465 unit->offset_size = offset_size;
3466 unit->abbrevs = abbrevs;
3467 unit->end_ptr = end_ptr;
3468 unit->stash = stash;
3469 unit->info_ptr_unit = info_ptr_unit;
3470
3471 for (i = 0; i < abbrev->num_attrs; ++i)
3472 {
3473 info_ptr = read_attribute (&attr, &abbrev->attrs[i], unit, info_ptr, end_ptr);
3474 if (info_ptr == NULL)
3475 return NULL;
3476
3477 /* Store the data if it is of an attribute we want to keep in a
3478 partial symbol table. */
3479 switch (attr.name)
3480 {
3481 case DW_AT_stmt_list:
3482 unit->stmtlist = 1;
3483 unit->line_offset = attr.u.val;
3484 break;
3485
3486 case DW_AT_name:
3487 if (is_str_attr (attr.form))
3488 unit->name = attr.u.str;
3489 break;
3490
3491 case DW_AT_low_pc:
3492 low_pc = attr.u.val;
3493 /* If the compilation unit DIE has a DW_AT_low_pc attribute,
3494 this is the base address to use when reading location
3495 lists or range lists. */
3496 if (abbrev->tag == DW_TAG_compile_unit)
3497 unit->base_address = low_pc;
3498 break;
3499
3500 case DW_AT_high_pc:
3501 high_pc = attr.u.val;
3502 high_pc_relative = attr.form != DW_FORM_addr;
3503 break;
3504
3505 case DW_AT_ranges:
3506 if (!read_rangelist (unit, &unit->arange, attr.u.val))
3507 return NULL;
3508 break;
3509
3510 case DW_AT_comp_dir:
3511 {
3512 char *comp_dir = attr.u.str;
3513
3514 /* PR 17512: file: 1fe726be. */
3515 if (! is_str_attr (attr.form))
3516 {
3517 _bfd_error_handler
3518 (_("Dwarf Error: DW_AT_comp_dir attribute encountered with a non-string form."));
3519 comp_dir = NULL;
3520 }
3521
3522 if (comp_dir)
3523 {
3524 /* Irix 6.2 native cc prepends <machine>.: to the compilation
3525 directory, get rid of it. */
3526 char *cp = strchr (comp_dir, ':');
3527
3528 if (cp && cp != comp_dir && cp[-1] == '.' && cp[1] == '/')
3529 comp_dir = cp + 1;
3530 }
3531 unit->comp_dir = comp_dir;
3532 break;
3533 }
3534
3535 case DW_AT_language:
3536 unit->lang = attr.u.val;
3537 break;
3538
3539 default:
3540 break;
3541 }
3542 }
3543 if (high_pc_relative)
3544 high_pc += low_pc;
3545 if (high_pc != 0)
3546 {
3547 if (!arange_add (unit, &unit->arange, low_pc, high_pc))
3548 return NULL;
3549 }
3550
3551 unit->first_child_die_ptr = info_ptr;
3552 return unit;
3553 }
3554
3555 /* Return TRUE if UNIT may contain the address given by ADDR. When
3556 there are functions written entirely with inline asm statements, the
3557 range info in the compilation unit header may not be correct. We
3558 need to consult the line info table to see if a compilation unit
3559 really contains the given address. */
3560
3561 static bfd_boolean
3562 comp_unit_contains_address (struct comp_unit *unit, bfd_vma addr)
3563 {
3564 struct arange *arange;
3565
3566 if (unit->error)
3567 return FALSE;
3568
3569 arange = &unit->arange;
3570 do
3571 {
3572 if (addr >= arange->low && addr < arange->high)
3573 return TRUE;
3574 arange = arange->next;
3575 }
3576 while (arange);
3577
3578 return FALSE;
3579 }
3580
3581 /* If UNIT contains ADDR, set the output parameters to the values for
3582 the line containing ADDR. The output parameters, FILENAME_PTR,
3583 FUNCTION_PTR, and LINENUMBER_PTR, are pointers to the objects
3584 to be filled in.
3585
3586 Returns the range of addresses covered by the entry that was used
3587 to fill in *LINENUMBER_PTR or 0 if it was not filled in. */
3588
3589 static bfd_vma
3590 comp_unit_find_nearest_line (struct comp_unit *unit,
3591 bfd_vma addr,
3592 const char **filename_ptr,
3593 struct funcinfo **function_ptr,
3594 unsigned int *linenumber_ptr,
3595 unsigned int *discriminator_ptr,
3596 struct dwarf2_debug *stash)
3597 {
3598 bfd_boolean func_p;
3599
3600 if (unit->error)
3601 return FALSE;
3602
3603 if (! unit->line_table)
3604 {
3605 if (! unit->stmtlist)
3606 {
3607 unit->error = 1;
3608 return FALSE;
3609 }
3610
3611 unit->line_table = decode_line_info (unit, stash);
3612
3613 if (! unit->line_table)
3614 {
3615 unit->error = 1;
3616 return FALSE;
3617 }
3618
3619 if (unit->first_child_die_ptr < unit->end_ptr
3620 && ! scan_unit_for_symbols (unit))
3621 {
3622 unit->error = 1;
3623 return FALSE;
3624 }
3625 }
3626
3627 *function_ptr = NULL;
3628 func_p = lookup_address_in_function_table (unit, addr, function_ptr);
3629 if (func_p && (*function_ptr)->tag == DW_TAG_inlined_subroutine)
3630 stash->inliner_chain = *function_ptr;
3631
3632 return lookup_address_in_line_info_table (unit->line_table, addr,
3633 filename_ptr,
3634 linenumber_ptr,
3635 discriminator_ptr);
3636 }
3637
3638 /* Check to see if line info is already decoded in a comp_unit.
3639 If not, decode it. Returns TRUE if no errors were encountered;
3640 FALSE otherwise. */
3641
3642 static bfd_boolean
3643 comp_unit_maybe_decode_line_info (struct comp_unit *unit,
3644 struct dwarf2_debug *stash)
3645 {
3646 if (unit->error)
3647 return FALSE;
3648
3649 if (! unit->line_table)
3650 {
3651 if (! unit->stmtlist)
3652 {
3653 unit->error = 1;
3654 return FALSE;
3655 }
3656
3657 unit->line_table = decode_line_info (unit, stash);
3658
3659 if (! unit->line_table)
3660 {
3661 unit->error = 1;
3662 return FALSE;
3663 }
3664
3665 if (unit->first_child_die_ptr < unit->end_ptr
3666 && ! scan_unit_for_symbols (unit))
3667 {
3668 unit->error = 1;
3669 return FALSE;
3670 }
3671 }
3672
3673 return TRUE;
3674 }
3675
3676 /* If UNIT contains SYM at ADDR, set the output parameters to the
3677 values for the line containing SYM. The output parameters,
3678 FILENAME_PTR, and LINENUMBER_PTR, are pointers to the objects to be
3679 filled in.
3680
3681 Return TRUE if UNIT contains SYM, and no errors were encountered;
3682 FALSE otherwise. */
3683
3684 static bfd_boolean
3685 comp_unit_find_line (struct comp_unit *unit,
3686 asymbol *sym,
3687 bfd_vma addr,
3688 const char **filename_ptr,
3689 unsigned int *linenumber_ptr,
3690 struct dwarf2_debug *stash)
3691 {
3692 if (!comp_unit_maybe_decode_line_info (unit, stash))
3693 return FALSE;
3694
3695 if (sym->flags & BSF_FUNCTION)
3696 return lookup_symbol_in_function_table (unit, sym, addr,
3697 filename_ptr,
3698 linenumber_ptr);
3699
3700 return lookup_symbol_in_variable_table (unit, sym, addr,
3701 filename_ptr,
3702 linenumber_ptr);
3703 }
3704
3705 static struct funcinfo *
3706 reverse_funcinfo_list (struct funcinfo *head)
3707 {
3708 struct funcinfo *rhead;
3709 struct funcinfo *temp;
3710
3711 for (rhead = NULL; head; head = temp)
3712 {
3713 temp = head->prev_func;
3714 head->prev_func = rhead;
3715 rhead = head;
3716 }
3717 return rhead;
3718 }
3719
3720 static struct varinfo *
3721 reverse_varinfo_list (struct varinfo *head)
3722 {
3723 struct varinfo *rhead;
3724 struct varinfo *temp;
3725
3726 for (rhead = NULL; head; head = temp)
3727 {
3728 temp = head->prev_var;
3729 head->prev_var = rhead;
3730 rhead = head;
3731 }
3732 return rhead;
3733 }
3734
3735 /* Extract all interesting funcinfos and varinfos of a compilation
3736 unit into hash tables for faster lookup. Returns TRUE if no
3737 errors were enountered; FALSE otherwise. */
3738
3739 static bfd_boolean
3740 comp_unit_hash_info (struct dwarf2_debug *stash,
3741 struct comp_unit *unit,
3742 struct info_hash_table *funcinfo_hash_table,
3743 struct info_hash_table *varinfo_hash_table)
3744 {
3745 struct funcinfo* each_func;
3746 struct varinfo* each_var;
3747 bfd_boolean okay = TRUE;
3748
3749 BFD_ASSERT (stash->info_hash_status != STASH_INFO_HASH_DISABLED);
3750
3751 if (!comp_unit_maybe_decode_line_info (unit, stash))
3752 return FALSE;
3753
3754 BFD_ASSERT (!unit->cached);
3755
3756 /* To preserve the original search order, we went to visit the function
3757 infos in the reversed order of the list. However, making the list
3758 bi-directional use quite a bit of extra memory. So we reverse
3759 the list first, traverse the list in the now reversed order and
3760 finally reverse the list again to get back the original order. */
3761 unit->function_table = reverse_funcinfo_list (unit->function_table);
3762 for (each_func = unit->function_table;
3763 each_func && okay;
3764 each_func = each_func->prev_func)
3765 {
3766 /* Skip nameless functions. */
3767 if (each_func->name)
3768 /* There is no need to copy name string into hash table as
3769 name string is either in the dwarf string buffer or
3770 info in the stash. */
3771 okay = insert_info_hash_table (funcinfo_hash_table, each_func->name,
3772 (void*) each_func, FALSE);
3773 }
3774 unit->function_table = reverse_funcinfo_list (unit->function_table);
3775 if (!okay)
3776 return FALSE;
3777
3778 /* We do the same for variable infos. */
3779 unit->variable_table = reverse_varinfo_list (unit->variable_table);
3780 for (each_var = unit->variable_table;
3781 each_var && okay;
3782 each_var = each_var->prev_var)
3783 {
3784 /* Skip stack vars and vars with no files or names. */
3785 if (each_var->stack == 0
3786 && each_var->file != NULL
3787 && each_var->name != NULL)
3788 /* There is no need to copy name string into hash table as
3789 name string is either in the dwarf string buffer or
3790 info in the stash. */
3791 okay = insert_info_hash_table (varinfo_hash_table, each_var->name,
3792 (void*) each_var, FALSE);
3793 }
3794
3795 unit->variable_table = reverse_varinfo_list (unit->variable_table);
3796 unit->cached = TRUE;
3797 return okay;
3798 }
3799
3800 /* Locate a section in a BFD containing debugging info. The search starts
3801 from the section after AFTER_SEC, or from the first section in the BFD if
3802 AFTER_SEC is NULL. The search works by examining the names of the
3803 sections. There are three permissiable names. The first two are given
3804 by DEBUG_SECTIONS[debug_info] (whose standard DWARF2 names are .debug_info
3805 and .zdebug_info). The third is a prefix .gnu.linkonce.wi.
3806 This is a variation on the .debug_info section which has a checksum
3807 describing the contents appended onto the name. This allows the linker to
3808 identify and discard duplicate debugging sections for different
3809 compilation units. */
3810 #define GNU_LINKONCE_INFO ".gnu.linkonce.wi."
3811
3812 static asection *
3813 find_debug_info (bfd *abfd, const struct dwarf_debug_section *debug_sections,
3814 asection *after_sec)
3815 {
3816 asection *msec;
3817 const char *look;
3818
3819 if (after_sec == NULL)
3820 {
3821 look = debug_sections[debug_info].uncompressed_name;
3822 msec = bfd_get_section_by_name (abfd, look);
3823 if (msec != NULL)
3824 return msec;
3825
3826 look = debug_sections[debug_info].compressed_name;
3827 if (look != NULL)
3828 {
3829 msec = bfd_get_section_by_name (abfd, look);
3830 if (msec != NULL)
3831 return msec;
3832 }
3833
3834 for (msec = abfd->sections; msec != NULL; msec = msec->next)
3835 if (CONST_STRNEQ (msec->name, GNU_LINKONCE_INFO))
3836 return msec;
3837
3838 return NULL;
3839 }
3840
3841 for (msec = after_sec->next; msec != NULL; msec = msec->next)
3842 {
3843 look = debug_sections[debug_info].uncompressed_name;
3844 if (strcmp (msec->name, look) == 0)
3845 return msec;
3846
3847 look = debug_sections[debug_info].compressed_name;
3848 if (look != NULL && strcmp (msec->name, look) == 0)
3849 return msec;
3850
3851 if (CONST_STRNEQ (msec->name, GNU_LINKONCE_INFO))
3852 return msec;
3853 }
3854
3855 return NULL;
3856 }
3857
3858 /* Transfer VMAs from object file to separate debug file. */
3859
3860 static void
3861 set_debug_vma (bfd *orig_bfd, bfd *debug_bfd)
3862 {
3863 asection *s, *d;
3864
3865 for (s = orig_bfd->sections, d = debug_bfd->sections;
3866 s != NULL && d != NULL;
3867 s = s->next, d = d->next)
3868 {
3869 if ((d->flags & SEC_DEBUGGING) != 0)
3870 break;
3871 /* ??? Assumes 1-1 correspondence between sections in the
3872 two files. */
3873 if (strcmp (s->name, d->name) == 0)
3874 {
3875 d->output_section = s->output_section;
3876 d->output_offset = s->output_offset;
3877 d->vma = s->vma;
3878 }
3879 }
3880 }
3881
3882 /* Unset vmas for adjusted sections in STASH. */
3883
3884 static void
3885 unset_sections (struct dwarf2_debug *stash)
3886 {
3887 int i;
3888 struct adjusted_section *p;
3889
3890 i = stash->adjusted_section_count;
3891 p = stash->adjusted_sections;
3892 for (; i > 0; i--, p++)
3893 p->section->vma = 0;
3894 }
3895
3896 /* Set VMAs for allocated and .debug_info sections in ORIG_BFD, a
3897 relocatable object file. VMAs are normally all zero in relocatable
3898 object files, so if we want to distinguish locations in sections by
3899 address we need to set VMAs so the sections do not overlap. We
3900 also set VMA on .debug_info so that when we have multiple
3901 .debug_info sections (or the linkonce variant) they also do not
3902 overlap. The multiple .debug_info sections make up a single
3903 logical section. ??? We should probably do the same for other
3904 debug sections. */
3905
3906 static bfd_boolean
3907 place_sections (bfd *orig_bfd, struct dwarf2_debug *stash)
3908 {
3909 bfd *abfd;
3910 struct adjusted_section *p;
3911 int i;
3912 const char *debug_info_name;
3913
3914 if (stash->adjusted_section_count != 0)
3915 {
3916 i = stash->adjusted_section_count;
3917 p = stash->adjusted_sections;
3918 for (; i > 0; i--, p++)
3919 p->section->vma = p->adj_vma;
3920 return TRUE;
3921 }
3922
3923 debug_info_name = stash->debug_sections[debug_info].uncompressed_name;
3924 i = 0;
3925 abfd = orig_bfd;
3926 while (1)
3927 {
3928 asection *sect;
3929
3930 for (sect = abfd->sections; sect != NULL; sect = sect->next)
3931 {
3932 int is_debug_info;
3933
3934 if ((sect->output_section != NULL
3935 && sect->output_section != sect
3936 && (sect->flags & SEC_DEBUGGING) == 0)
3937 || sect->vma != 0)
3938 continue;
3939
3940 is_debug_info = (strcmp (sect->name, debug_info_name) == 0
3941 || CONST_STRNEQ (sect->name, GNU_LINKONCE_INFO));
3942
3943 if (!((sect->flags & SEC_ALLOC) != 0 && abfd == orig_bfd)
3944 && !is_debug_info)
3945 continue;
3946
3947 i++;
3948 }
3949 if (abfd == stash->bfd_ptr)
3950 break;
3951 abfd = stash->bfd_ptr;
3952 }
3953
3954 if (i <= 1)
3955 stash->adjusted_section_count = -1;
3956 else
3957 {
3958 bfd_vma last_vma = 0, last_dwarf = 0;
3959 bfd_size_type amt = i * sizeof (struct adjusted_section);
3960
3961 p = (struct adjusted_section *) bfd_malloc (amt);
3962 if (p == NULL)
3963 return FALSE;
3964
3965 stash->adjusted_sections = p;
3966 stash->adjusted_section_count = i;
3967
3968 abfd = orig_bfd;
3969 while (1)
3970 {
3971 asection *sect;
3972
3973 for (sect = abfd->sections; sect != NULL; sect = sect->next)
3974 {
3975 bfd_size_type sz;
3976 int is_debug_info;
3977
3978 if ((sect->output_section != NULL
3979 && sect->output_section != sect
3980 && (sect->flags & SEC_DEBUGGING) == 0)
3981 || sect->vma != 0)
3982 continue;
3983
3984 is_debug_info = (strcmp (sect->name, debug_info_name) == 0
3985 || CONST_STRNEQ (sect->name, GNU_LINKONCE_INFO));
3986
3987 if (!((sect->flags & SEC_ALLOC) != 0 && abfd == orig_bfd)
3988 && !is_debug_info)
3989 continue;
3990
3991 sz = sect->rawsize ? sect->rawsize : sect->size;
3992
3993 if (is_debug_info)
3994 {
3995 BFD_ASSERT (sect->alignment_power == 0);
3996 sect->vma = last_dwarf;
3997 last_dwarf += sz;
3998 }
3999 else
4000 {
4001 /* Align the new address to the current section
4002 alignment. */
4003 last_vma = ((last_vma
4004 + ~(-((bfd_vma) 1 << sect->alignment_power)))
4005 & (-((bfd_vma) 1 << sect->alignment_power)));
4006 sect->vma = last_vma;
4007 last_vma += sz;
4008 }
4009
4010 p->section = sect;
4011 p->adj_vma = sect->vma;
4012 p++;
4013 }
4014 if (abfd == stash->bfd_ptr)
4015 break;
4016 abfd = stash->bfd_ptr;
4017 }
4018 }
4019
4020 if (orig_bfd != stash->bfd_ptr)
4021 set_debug_vma (orig_bfd, stash->bfd_ptr);
4022
4023 return TRUE;
4024 }
4025
4026 /* Look up a funcinfo by name using the given info hash table. If found,
4027 also update the locations pointed to by filename_ptr and linenumber_ptr.
4028
4029 This function returns TRUE if a funcinfo that matches the given symbol
4030 and address is found with any error; otherwise it returns FALSE. */
4031
4032 static bfd_boolean
4033 info_hash_lookup_funcinfo (struct info_hash_table *hash_table,
4034 asymbol *sym,
4035 bfd_vma addr,
4036 const char **filename_ptr,
4037 unsigned int *linenumber_ptr)
4038 {
4039 struct funcinfo* each_func;
4040 struct funcinfo* best_fit = NULL;
4041 bfd_vma best_fit_len = 0;
4042 struct info_list_node *node;
4043 struct arange *arange;
4044 const char *name = bfd_asymbol_name (sym);
4045 asection *sec = bfd_get_section (sym);
4046
4047 for (node = lookup_info_hash_table (hash_table, name);
4048 node;
4049 node = node->next)
4050 {
4051 each_func = (struct funcinfo *) node->info;
4052 for (arange = &each_func->arange;
4053 arange;
4054 arange = arange->next)
4055 {
4056 if ((!each_func->sec || each_func->sec == sec)
4057 && addr >= arange->low
4058 && addr < arange->high
4059 && (!best_fit
4060 || arange->high - arange->low < best_fit_len))
4061 {
4062 best_fit = each_func;
4063 best_fit_len = arange->high - arange->low;
4064 }
4065 }
4066 }
4067
4068 if (best_fit)
4069 {
4070 best_fit->sec = sec;
4071 *filename_ptr = best_fit->file;
4072 *linenumber_ptr = best_fit->line;
4073 return TRUE;
4074 }
4075
4076 return FALSE;
4077 }
4078
4079 /* Look up a varinfo by name using the given info hash table. If found,
4080 also update the locations pointed to by filename_ptr and linenumber_ptr.
4081
4082 This function returns TRUE if a varinfo that matches the given symbol
4083 and address is found with any error; otherwise it returns FALSE. */
4084
4085 static bfd_boolean
4086 info_hash_lookup_varinfo (struct info_hash_table *hash_table,
4087 asymbol *sym,
4088 bfd_vma addr,
4089 const char **filename_ptr,
4090 unsigned int *linenumber_ptr)
4091 {
4092 const char *name = bfd_asymbol_name (sym);
4093 asection *sec = bfd_get_section (sym);
4094 struct varinfo* each;
4095 struct info_list_node *node;
4096
4097 for (node = lookup_info_hash_table (hash_table, name);
4098 node;
4099 node = node->next)
4100 {
4101 each = (struct varinfo *) node->info;
4102 if (each->addr == addr
4103 && (!each->sec || each->sec == sec))
4104 {
4105 each->sec = sec;
4106 *filename_ptr = each->file;
4107 *linenumber_ptr = each->line;
4108 return TRUE;
4109 }
4110 }
4111
4112 return FALSE;
4113 }
4114
4115 /* Update the funcinfo and varinfo info hash tables if they are
4116 not up to date. Returns TRUE if there is no error; otherwise
4117 returns FALSE and disable the info hash tables. */
4118
4119 static bfd_boolean
4120 stash_maybe_update_info_hash_tables (struct dwarf2_debug *stash)
4121 {
4122 struct comp_unit *each;
4123
4124 /* Exit if hash tables are up-to-date. */
4125 if (stash->all_comp_units == stash->hash_units_head)
4126 return TRUE;
4127
4128 if (stash->hash_units_head)
4129 each = stash->hash_units_head->prev_unit;
4130 else
4131 each = stash->last_comp_unit;
4132
4133 while (each)
4134 {
4135 if (!comp_unit_hash_info (stash, each, stash->funcinfo_hash_table,
4136 stash->varinfo_hash_table))
4137 {
4138 stash->info_hash_status = STASH_INFO_HASH_DISABLED;
4139 return FALSE;
4140 }
4141 each = each->prev_unit;
4142 }
4143
4144 stash->hash_units_head = stash->all_comp_units;
4145 return TRUE;
4146 }
4147
4148 /* Check consistency of info hash tables. This is for debugging only. */
4149
4150 static void ATTRIBUTE_UNUSED
4151 stash_verify_info_hash_table (struct dwarf2_debug *stash)
4152 {
4153 struct comp_unit *each_unit;
4154 struct funcinfo *each_func;
4155 struct varinfo *each_var;
4156 struct info_list_node *node;
4157 bfd_boolean found;
4158
4159 for (each_unit = stash->all_comp_units;
4160 each_unit;
4161 each_unit = each_unit->next_unit)
4162 {
4163 for (each_func = each_unit->function_table;
4164 each_func;
4165 each_func = each_func->prev_func)
4166 {
4167 if (!each_func->name)
4168 continue;
4169 node = lookup_info_hash_table (stash->funcinfo_hash_table,
4170 each_func->name);
4171 BFD_ASSERT (node);
4172 found = FALSE;
4173 while (node && !found)
4174 {
4175 found = node->info == each_func;
4176 node = node->next;
4177 }
4178 BFD_ASSERT (found);
4179 }
4180
4181 for (each_var = each_unit->variable_table;
4182 each_var;
4183 each_var = each_var->prev_var)
4184 {
4185 if (!each_var->name || !each_var->file || each_var->stack)
4186 continue;
4187 node = lookup_info_hash_table (stash->varinfo_hash_table,
4188 each_var->name);
4189 BFD_ASSERT (node);
4190 found = FALSE;
4191 while (node && !found)
4192 {
4193 found = node->info == each_var;
4194 node = node->next;
4195 }
4196 BFD_ASSERT (found);
4197 }
4198 }
4199 }
4200
4201 /* Check to see if we want to enable the info hash tables, which consume
4202 quite a bit of memory. Currently we only check the number times
4203 bfd_dwarf2_find_line is called. In the future, we may also want to
4204 take the number of symbols into account. */
4205
4206 static void
4207 stash_maybe_enable_info_hash_tables (bfd *abfd, struct dwarf2_debug *stash)
4208 {
4209 BFD_ASSERT (stash->info_hash_status == STASH_INFO_HASH_OFF);
4210
4211 if (stash->info_hash_count++ < STASH_INFO_HASH_TRIGGER)
4212 return;
4213
4214 /* FIXME: Maybe we should check the reduce_memory_overheads
4215 and optimize fields in the bfd_link_info structure ? */
4216
4217 /* Create hash tables. */
4218 stash->funcinfo_hash_table = create_info_hash_table (abfd);
4219 stash->varinfo_hash_table = create_info_hash_table (abfd);
4220 if (!stash->funcinfo_hash_table || !stash->varinfo_hash_table)
4221 {
4222 /* Turn off info hashes if any allocation above fails. */
4223 stash->info_hash_status = STASH_INFO_HASH_DISABLED;
4224 return;
4225 }
4226 /* We need a forced update so that the info hash tables will
4227 be created even though there is no compilation unit. That
4228 happens if STASH_INFO_HASH_TRIGGER is 0. */
4229 stash_maybe_update_info_hash_tables (stash);
4230 stash->info_hash_status = STASH_INFO_HASH_ON;
4231 }
4232
4233 /* Find the file and line associated with a symbol and address using the
4234 info hash tables of a stash. If there is a match, the function returns
4235 TRUE and update the locations pointed to by filename_ptr and linenumber_ptr;
4236 otherwise it returns FALSE. */
4237
4238 static bfd_boolean
4239 stash_find_line_fast (struct dwarf2_debug *stash,
4240 asymbol *sym,
4241 bfd_vma addr,
4242 const char **filename_ptr,
4243 unsigned int *linenumber_ptr)
4244 {
4245 BFD_ASSERT (stash->info_hash_status == STASH_INFO_HASH_ON);
4246
4247 if (sym->flags & BSF_FUNCTION)
4248 return info_hash_lookup_funcinfo (stash->funcinfo_hash_table, sym, addr,
4249 filename_ptr, linenumber_ptr);
4250 return info_hash_lookup_varinfo (stash->varinfo_hash_table, sym, addr,
4251 filename_ptr, linenumber_ptr);
4252 }
4253
4254 /* Save current section VMAs. */
4255
4256 static bfd_boolean
4257 save_section_vma (const bfd *abfd, struct dwarf2_debug *stash)
4258 {
4259 asection *s;
4260 unsigned int i;
4261
4262 if (abfd->section_count == 0)
4263 return TRUE;
4264 stash->sec_vma = bfd_malloc (sizeof (*stash->sec_vma) * abfd->section_count);
4265 if (stash->sec_vma == NULL)
4266 return FALSE;
4267 for (i = 0, s = abfd->sections; i < abfd->section_count; i++, s = s->next)
4268 {
4269 if (s->output_section != NULL)
4270 stash->sec_vma[i] = s->output_section->vma + s->output_offset;
4271 else
4272 stash->sec_vma[i] = s->vma;
4273 }
4274 return TRUE;
4275 }
4276
4277 /* Compare current section VMAs against those at the time the stash
4278 was created. If find_nearest_line is used in linker warnings or
4279 errors early in the link process, the debug info stash will be
4280 invalid for later calls. This is because we relocate debug info
4281 sections, so the stashed section contents depend on symbol values,
4282 which in turn depend on section VMAs. */
4283
4284 static bfd_boolean
4285 section_vma_same (const bfd *abfd, const struct dwarf2_debug *stash)
4286 {
4287 asection *s;
4288 unsigned int i;
4289
4290 for (i = 0, s = abfd->sections; i < abfd->section_count; i++, s = s->next)
4291 {
4292 bfd_vma vma;
4293
4294 if (s->output_section != NULL)
4295 vma = s->output_section->vma + s->output_offset;
4296 else
4297 vma = s->vma;
4298 if (vma != stash->sec_vma[i])
4299 return FALSE;
4300 }
4301 return TRUE;
4302 }
4303
4304 /* Read debug information from DEBUG_BFD when DEBUG_BFD is specified.
4305 If DEBUG_BFD is not specified, we read debug information from ABFD
4306 or its gnu_debuglink. The results will be stored in PINFO.
4307 The function returns TRUE iff debug information is ready. */
4308
4309 bfd_boolean
4310 _bfd_dwarf2_slurp_debug_info (bfd *abfd, bfd *debug_bfd,
4311 const struct dwarf_debug_section *debug_sections,
4312 asymbol **symbols,
4313 void **pinfo,
4314 bfd_boolean do_place)
4315 {
4316 bfd_size_type amt = sizeof (struct dwarf2_debug);
4317 bfd_size_type total_size;
4318 asection *msec;
4319 struct dwarf2_debug *stash = (struct dwarf2_debug *) *pinfo;
4320
4321 if (stash != NULL)
4322 {
4323 if (stash->orig_bfd == abfd
4324 && section_vma_same (abfd, stash))
4325 {
4326 /* Check that we did previously find some debug information
4327 before attempting to make use of it. */
4328 if (stash->bfd_ptr != NULL)
4329 {
4330 if (do_place && !place_sections (abfd, stash))
4331 return FALSE;
4332 return TRUE;
4333 }
4334
4335 return FALSE;
4336 }
4337 _bfd_dwarf2_cleanup_debug_info (abfd, pinfo);
4338 memset (stash, 0, amt);
4339 }
4340 else
4341 {
4342 stash = (struct dwarf2_debug *) bfd_zalloc (abfd, amt);
4343 if (! stash)
4344 return FALSE;
4345 }
4346 stash->orig_bfd = abfd;
4347 stash->debug_sections = debug_sections;
4348 stash->syms = symbols;
4349 if (!save_section_vma (abfd, stash))
4350 return FALSE;
4351
4352 *pinfo = stash;
4353
4354 if (debug_bfd == NULL)
4355 debug_bfd = abfd;
4356
4357 msec = find_debug_info (debug_bfd, debug_sections, NULL);
4358 if (msec == NULL && abfd == debug_bfd)
4359 {
4360 char * debug_filename;
4361
4362 debug_filename = bfd_follow_build_id_debuglink (abfd, DEBUGDIR);
4363 if (debug_filename == NULL)
4364 debug_filename = bfd_follow_gnu_debuglink (abfd, DEBUGDIR);
4365
4366 if (debug_filename == NULL)
4367 /* No dwarf2 info, and no gnu_debuglink to follow.
4368 Note that at this point the stash has been allocated, but
4369 contains zeros. This lets future calls to this function
4370 fail more quickly. */
4371 return FALSE;
4372
4373 /* Set BFD_DECOMPRESS to decompress debug sections. */
4374 if ((debug_bfd = bfd_openr (debug_filename, NULL)) == NULL
4375 || !(debug_bfd->flags |= BFD_DECOMPRESS,
4376 bfd_check_format (debug_bfd, bfd_object))
4377 || (msec = find_debug_info (debug_bfd,
4378 debug_sections, NULL)) == NULL
4379 || !bfd_generic_link_read_symbols (debug_bfd))
4380 {
4381 if (debug_bfd)
4382 bfd_close (debug_bfd);
4383 /* FIXME: Should we report our failure to follow the debuglink ? */
4384 free (debug_filename);
4385 return FALSE;
4386 }
4387
4388 symbols = bfd_get_outsymbols (debug_bfd);
4389 stash->syms = symbols;
4390 stash->close_on_cleanup = TRUE;
4391 }
4392 stash->bfd_ptr = debug_bfd;
4393
4394 if (do_place
4395 && !place_sections (abfd, stash))
4396 return FALSE;
4397
4398 /* There can be more than one DWARF2 info section in a BFD these
4399 days. First handle the easy case when there's only one. If
4400 there's more than one, try case two: none of the sections is
4401 compressed. In that case, read them all in and produce one
4402 large stash. We do this in two passes - in the first pass we
4403 just accumulate the section sizes, and in the second pass we
4404 read in the section's contents. (The allows us to avoid
4405 reallocing the data as we add sections to the stash.) If
4406 some or all sections are compressed, then do things the slow
4407 way, with a bunch of reallocs. */
4408
4409 if (! find_debug_info (debug_bfd, debug_sections, msec))
4410 {
4411 /* Case 1: only one info section. */
4412 total_size = msec->size;
4413 if (! read_section (debug_bfd, &stash->debug_sections[debug_info],
4414 symbols, 0,
4415 &stash->info_ptr_memory, &total_size))
4416 return FALSE;
4417 }
4418 else
4419 {
4420 /* Case 2: multiple sections. */
4421 for (total_size = 0;
4422 msec;
4423 msec = find_debug_info (debug_bfd, debug_sections, msec))
4424 total_size += msec->size;
4425
4426 stash->info_ptr_memory = (bfd_byte *) bfd_malloc (total_size);
4427 if (stash->info_ptr_memory == NULL)
4428 return FALSE;
4429
4430 total_size = 0;
4431 for (msec = find_debug_info (debug_bfd, debug_sections, NULL);
4432 msec;
4433 msec = find_debug_info (debug_bfd, debug_sections, msec))
4434 {
4435 bfd_size_type size;
4436
4437 size = msec->size;
4438 if (size == 0)
4439 continue;
4440
4441 if (!(bfd_simple_get_relocated_section_contents
4442 (debug_bfd, msec, stash->info_ptr_memory + total_size,
4443 symbols)))
4444 return FALSE;
4445
4446 total_size += size;
4447 }
4448 }
4449
4450 stash->info_ptr = stash->info_ptr_memory;
4451 stash->info_ptr_end = stash->info_ptr + total_size;
4452 stash->sec = find_debug_info (debug_bfd, debug_sections, NULL);
4453 stash->sec_info_ptr = stash->info_ptr;
4454 return TRUE;
4455 }
4456
4457 /* Scan the debug information in PINFO looking for a DW_TAG_subprogram
4458 abbrev with a DW_AT_low_pc attached to it. Then lookup that same
4459 symbol in SYMBOLS and return the difference between the low_pc and
4460 the symbol's address. Returns 0 if no suitable symbol could be found. */
4461
4462 bfd_signed_vma
4463 _bfd_dwarf2_find_symbol_bias (asymbol ** symbols, void ** pinfo)
4464 {
4465 struct dwarf2_debug *stash;
4466 struct comp_unit * unit;
4467
4468 stash = (struct dwarf2_debug *) *pinfo;
4469
4470 if (stash == NULL)
4471 return 0;
4472
4473 for (unit = stash->all_comp_units; unit; unit = unit->next_unit)
4474 {
4475 struct funcinfo * func;
4476
4477 if (unit->function_table == NULL)
4478 {
4479 if (unit->line_table == NULL)
4480 unit->line_table = decode_line_info (unit, stash);
4481 if (unit->line_table != NULL)
4482 scan_unit_for_symbols (unit);
4483 }
4484
4485 for (func = unit->function_table; func != NULL; func = func->prev_func)
4486 if (func->name && func->arange.low)
4487 {
4488 asymbol ** psym;
4489
4490 /* FIXME: Do we need to scan the aranges looking for the lowest pc value ? */
4491
4492 for (psym = symbols; * psym != NULL; psym++)
4493 {
4494 asymbol * sym = * psym;
4495
4496 if (sym->flags & BSF_FUNCTION
4497 && sym->section != NULL
4498 && strcmp (sym->name, func->name) == 0)
4499 return ((bfd_signed_vma) func->arange.low) -
4500 ((bfd_signed_vma) (sym->value + sym->section->vma));
4501 }
4502 }
4503 }
4504
4505 return 0;
4506 }
4507
4508 /* Find the source code location of SYMBOL. If SYMBOL is NULL
4509 then find the nearest source code location corresponding to
4510 the address SECTION + OFFSET.
4511 Returns TRUE if the line is found without error and fills in
4512 FILENAME_PTR and LINENUMBER_PTR. In the case where SYMBOL was
4513 NULL the FUNCTIONNAME_PTR is also filled in.
4514 SYMBOLS contains the symbol table for ABFD.
4515 DEBUG_SECTIONS contains the name of the dwarf debug sections.
4516 ADDR_SIZE is the number of bytes in the initial .debug_info length
4517 field and in the abbreviation offset, or zero to indicate that the
4518 default value should be used. */
4519
4520 bfd_boolean
4521 _bfd_dwarf2_find_nearest_line (bfd *abfd,
4522 asymbol **symbols,
4523 asymbol *symbol,
4524 asection *section,
4525 bfd_vma offset,
4526 const char **filename_ptr,
4527 const char **functionname_ptr,
4528 unsigned int *linenumber_ptr,
4529 unsigned int *discriminator_ptr,
4530 const struct dwarf_debug_section *debug_sections,
4531 unsigned int addr_size,
4532 void **pinfo)
4533 {
4534 /* Read each compilation unit from the section .debug_info, and check
4535 to see if it contains the address we are searching for. If yes,
4536 lookup the address, and return the line number info. If no, go
4537 on to the next compilation unit.
4538
4539 We keep a list of all the previously read compilation units, and
4540 a pointer to the next un-read compilation unit. Check the
4541 previously read units before reading more. */
4542 struct dwarf2_debug *stash;
4543 /* What address are we looking for? */
4544 bfd_vma addr;
4545 struct comp_unit* each;
4546 struct funcinfo *function = NULL;
4547 bfd_boolean found = FALSE;
4548 bfd_boolean do_line;
4549
4550 *filename_ptr = NULL;
4551 if (functionname_ptr != NULL)
4552 *functionname_ptr = NULL;
4553 *linenumber_ptr = 0;
4554 if (discriminator_ptr)
4555 *discriminator_ptr = 0;
4556
4557 if (! _bfd_dwarf2_slurp_debug_info (abfd, NULL, debug_sections,
4558 symbols, pinfo,
4559 (abfd->flags & (EXEC_P | DYNAMIC)) == 0))
4560 return FALSE;
4561
4562 stash = (struct dwarf2_debug *) *pinfo;
4563
4564 do_line = symbol != NULL;
4565 if (do_line)
4566 {
4567 BFD_ASSERT (section == NULL && offset == 0 && functionname_ptr == NULL);
4568 section = bfd_get_section (symbol);
4569 addr = symbol->value;
4570 }
4571 else
4572 {
4573 BFD_ASSERT (section != NULL && functionname_ptr != NULL);
4574 addr = offset;
4575
4576 /* If we have no SYMBOL but the section we're looking at is not a
4577 code section, then take a look through the list of symbols to see
4578 if we have a symbol at the address we're looking for. If we do
4579 then use this to look up line information. This will allow us to
4580 give file and line results for data symbols. We exclude code
4581 symbols here, if we look up a function symbol and then look up the
4582 line information we'll actually return the line number for the
4583 opening '{' rather than the function definition line. This is
4584 because looking up by symbol uses the line table, in which the
4585 first line for a function is usually the opening '{', while
4586 looking up the function by section + offset uses the
4587 DW_AT_decl_line from the function DW_TAG_subprogram for the line,
4588 which will be the line of the function name. */
4589 if (symbols != NULL && (section->flags & SEC_CODE) == 0)
4590 {
4591 asymbol **tmp;
4592
4593 for (tmp = symbols; (*tmp) != NULL; ++tmp)
4594 if ((*tmp)->the_bfd == abfd
4595 && (*tmp)->section == section
4596 && (*tmp)->value == offset
4597 && ((*tmp)->flags & BSF_SECTION_SYM) == 0)
4598 {
4599 symbol = *tmp;
4600 do_line = TRUE;
4601 /* For local symbols, keep going in the hope we find a
4602 global. */
4603 if ((symbol->flags & BSF_GLOBAL) != 0)
4604 break;
4605 }
4606 }
4607 }
4608
4609 if (section->output_section)
4610 addr += section->output_section->vma + section->output_offset;
4611 else
4612 addr += section->vma;
4613
4614 /* A null info_ptr indicates that there is no dwarf2 info
4615 (or that an error occured while setting up the stash). */
4616 if (! stash->info_ptr)
4617 return FALSE;
4618
4619 stash->inliner_chain = NULL;
4620
4621 /* Check the previously read comp. units first. */
4622 if (do_line)
4623 {
4624 /* The info hash tables use quite a bit of memory. We may not want to
4625 always use them. We use some heuristics to decide if and when to
4626 turn it on. */
4627 if (stash->info_hash_status == STASH_INFO_HASH_OFF)
4628 stash_maybe_enable_info_hash_tables (abfd, stash);
4629
4630 /* Keep info hash table up to date if they are available. Note that we
4631 may disable the hash tables if there is any error duing update. */
4632 if (stash->info_hash_status == STASH_INFO_HASH_ON)
4633 stash_maybe_update_info_hash_tables (stash);
4634
4635 if (stash->info_hash_status == STASH_INFO_HASH_ON)
4636 {
4637 found = stash_find_line_fast (stash, symbol, addr, filename_ptr,
4638 linenumber_ptr);
4639 if (found)
4640 goto done;
4641 }
4642 else
4643 {
4644 /* Check the previously read comp. units first. */
4645 for (each = stash->all_comp_units; each; each = each->next_unit)
4646 if ((symbol->flags & BSF_FUNCTION) == 0
4647 || each->arange.high == 0
4648 || comp_unit_contains_address (each, addr))
4649 {
4650 found = comp_unit_find_line (each, symbol, addr, filename_ptr,
4651 linenumber_ptr, stash);
4652 if (found)
4653 goto done;
4654 }
4655 }
4656 }
4657 else
4658 {
4659 bfd_vma min_range = (bfd_vma) -1;
4660 const char * local_filename = NULL;
4661 struct funcinfo *local_function = NULL;
4662 unsigned int local_linenumber = 0;
4663 unsigned int local_discriminator = 0;
4664
4665 for (each = stash->all_comp_units; each; each = each->next_unit)
4666 {
4667 bfd_vma range = (bfd_vma) -1;
4668
4669 found = ((each->arange.high == 0
4670 || comp_unit_contains_address (each, addr))
4671 && (range = comp_unit_find_nearest_line (each, addr,
4672 & local_filename,
4673 & local_function,
4674 & local_linenumber,
4675 & local_discriminator,
4676 stash)) != 0);
4677 if (found)
4678 {
4679 /* PRs 15935 15994: Bogus debug information may have provided us
4680 with an erroneous match. We attempt to counter this by
4681 selecting the match that has the smallest address range
4682 associated with it. (We are assuming that corrupt debug info
4683 will tend to result in extra large address ranges rather than
4684 extra small ranges).
4685
4686 This does mean that we scan through all of the CUs associated
4687 with the bfd each time this function is called. But this does
4688 have the benefit of producing consistent results every time the
4689 function is called. */
4690 if (range <= min_range)
4691 {
4692 if (filename_ptr && local_filename)
4693 * filename_ptr = local_filename;
4694 if (local_function)
4695 function = local_function;
4696 if (discriminator_ptr && local_discriminator)
4697 * discriminator_ptr = local_discriminator;
4698 if (local_linenumber)
4699 * linenumber_ptr = local_linenumber;
4700 min_range = range;
4701 }
4702 }
4703 }
4704
4705 if (* linenumber_ptr)
4706 {
4707 found = TRUE;
4708 goto done;
4709 }
4710 }
4711
4712 /* The DWARF2 spec says that the initial length field, and the
4713 offset of the abbreviation table, should both be 4-byte values.
4714 However, some compilers do things differently. */
4715 if (addr_size == 0)
4716 addr_size = 4;
4717 BFD_ASSERT (addr_size == 4 || addr_size == 8);
4718
4719 /* Read each remaining comp. units checking each as they are read. */
4720 while (stash->info_ptr < stash->info_ptr_end)
4721 {
4722 bfd_vma length;
4723 unsigned int offset_size = addr_size;
4724 bfd_byte *info_ptr_unit = stash->info_ptr;
4725
4726 length = read_4_bytes (stash->bfd_ptr, stash->info_ptr, stash->info_ptr_end);
4727 /* A 0xffffff length is the DWARF3 way of indicating
4728 we use 64-bit offsets, instead of 32-bit offsets. */
4729 if (length == 0xffffffff)
4730 {
4731 offset_size = 8;
4732 length = read_8_bytes (stash->bfd_ptr, stash->info_ptr + 4, stash->info_ptr_end);
4733 stash->info_ptr += 12;
4734 }
4735 /* A zero length is the IRIX way of indicating 64-bit offsets,
4736 mostly because the 64-bit length will generally fit in 32
4737 bits, and the endianness helps. */
4738 else if (length == 0)
4739 {
4740 offset_size = 8;
4741 length = read_4_bytes (stash->bfd_ptr, stash->info_ptr + 4, stash->info_ptr_end);
4742 stash->info_ptr += 8;
4743 }
4744 /* In the absence of the hints above, we assume 32-bit DWARF2
4745 offsets even for targets with 64-bit addresses, because:
4746 a) most of the time these targets will not have generated
4747 more than 2Gb of debug info and so will not need 64-bit
4748 offsets,
4749 and
4750 b) if they do use 64-bit offsets but they are not using
4751 the size hints that are tested for above then they are
4752 not conforming to the DWARF3 standard anyway. */
4753 else if (addr_size == 8)
4754 {
4755 offset_size = 4;
4756 stash->info_ptr += 4;
4757 }
4758 else
4759 stash->info_ptr += 4;
4760
4761 if (length > 0)
4762 {
4763 bfd_byte * new_ptr;
4764
4765 /* PR 21151 */
4766 if (stash->info_ptr + length > stash->info_ptr_end)
4767 return FALSE;
4768
4769 each = parse_comp_unit (stash, length, info_ptr_unit,
4770 offset_size);
4771 if (!each)
4772 /* The dwarf information is damaged, don't trust it any
4773 more. */
4774 break;
4775
4776 new_ptr = stash->info_ptr + length;
4777 /* PR 17512: file: 1500698c. */
4778 if (new_ptr < stash->info_ptr)
4779 {
4780 /* A corrupt length value - do not trust the info any more. */
4781 found = FALSE;
4782 break;
4783 }
4784 else
4785 stash->info_ptr = new_ptr;
4786
4787 if (stash->all_comp_units)
4788 stash->all_comp_units->prev_unit = each;
4789 else
4790 stash->last_comp_unit = each;
4791
4792 each->next_unit = stash->all_comp_units;
4793 stash->all_comp_units = each;
4794
4795 /* DW_AT_low_pc and DW_AT_high_pc are optional for
4796 compilation units. If we don't have them (i.e.,
4797 unit->high == 0), we need to consult the line info table
4798 to see if a compilation unit contains the given
4799 address. */
4800 if (do_line)
4801 found = (((symbol->flags & BSF_FUNCTION) == 0
4802 || each->arange.high == 0
4803 || comp_unit_contains_address (each, addr))
4804 && comp_unit_find_line (each, symbol, addr,
4805 filename_ptr,
4806 linenumber_ptr,
4807 stash));
4808 else
4809 found = ((each->arange.high == 0
4810 || comp_unit_contains_address (each, addr))
4811 && comp_unit_find_nearest_line (each, addr,
4812 filename_ptr,
4813 &function,
4814 linenumber_ptr,
4815 discriminator_ptr,
4816 stash) != 0);
4817
4818 if ((bfd_vma) (stash->info_ptr - stash->sec_info_ptr)
4819 == stash->sec->size)
4820 {
4821 stash->sec = find_debug_info (stash->bfd_ptr, debug_sections,
4822 stash->sec);
4823 stash->sec_info_ptr = stash->info_ptr;
4824 }
4825
4826 if (found)
4827 goto done;
4828 }
4829 }
4830
4831 done:
4832 if (function)
4833 {
4834 if (!function->is_linkage)
4835 {
4836 asymbol *fun;
4837 bfd_vma sec_vma;
4838
4839 fun = _bfd_elf_find_function (abfd, symbols, section, offset,
4840 *filename_ptr ? NULL : filename_ptr,
4841 functionname_ptr);
4842 sec_vma = section->vma;
4843 if (section->output_section != NULL)
4844 sec_vma = section->output_section->vma + section->output_offset;
4845 if (fun != NULL
4846 && fun->value + sec_vma == function->arange.low)
4847 function->name = *functionname_ptr;
4848 /* Even if we didn't find a linkage name, say that we have
4849 to stop a repeated search of symbols. */
4850 function->is_linkage = TRUE;
4851 }
4852 *functionname_ptr = function->name;
4853 }
4854 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0)
4855 unset_sections (stash);
4856
4857 return found;
4858 }
4859
4860 bfd_boolean
4861 _bfd_dwarf2_find_inliner_info (bfd *abfd ATTRIBUTE_UNUSED,
4862 const char **filename_ptr,
4863 const char **functionname_ptr,
4864 unsigned int *linenumber_ptr,
4865 void **pinfo)
4866 {
4867 struct dwarf2_debug *stash;
4868
4869 stash = (struct dwarf2_debug *) *pinfo;
4870 if (stash)
4871 {
4872 struct funcinfo *func = stash->inliner_chain;
4873
4874 if (func && func->caller_func)
4875 {
4876 *filename_ptr = func->caller_file;
4877 *functionname_ptr = func->caller_func->name;
4878 *linenumber_ptr = func->caller_line;
4879 stash->inliner_chain = func->caller_func;
4880 return TRUE;
4881 }
4882 }
4883
4884 return FALSE;
4885 }
4886
4887 void
4888 _bfd_dwarf2_cleanup_debug_info (bfd *abfd, void **pinfo)
4889 {
4890 struct dwarf2_debug *stash = (struct dwarf2_debug *) *pinfo;
4891 struct comp_unit *each;
4892
4893 if (abfd == NULL || stash == NULL)
4894 return;
4895
4896 for (each = stash->all_comp_units; each; each = each->next_unit)
4897 {
4898 struct abbrev_info **abbrevs = each->abbrevs;
4899 struct funcinfo *function_table = each->function_table;
4900 struct varinfo *variable_table = each->variable_table;
4901 size_t i;
4902
4903 for (i = 0; i < ABBREV_HASH_SIZE; i++)
4904 {
4905 struct abbrev_info *abbrev = abbrevs[i];
4906
4907 while (abbrev)
4908 {
4909 free (abbrev->attrs);
4910 abbrev = abbrev->next;
4911 }
4912 }
4913
4914 if (each->line_table)
4915 {
4916 free (each->line_table->dirs);
4917 free (each->line_table->files);
4918 }
4919
4920 while (function_table)
4921 {
4922 if (function_table->file)
4923 {
4924 free (function_table->file);
4925 function_table->file = NULL;
4926 }
4927
4928 if (function_table->caller_file)
4929 {
4930 free (function_table->caller_file);
4931 function_table->caller_file = NULL;
4932 }
4933 function_table = function_table->prev_func;
4934 }
4935
4936 if (each->lookup_funcinfo_table)
4937 {
4938 free (each->lookup_funcinfo_table);
4939 each->lookup_funcinfo_table = NULL;
4940 }
4941
4942 while (variable_table)
4943 {
4944 if (variable_table->file)
4945 {
4946 free (variable_table->file);
4947 variable_table->file = NULL;
4948 }
4949
4950 variable_table = variable_table->prev_var;
4951 }
4952 }
4953
4954 if (stash->dwarf_abbrev_buffer)
4955 free (stash->dwarf_abbrev_buffer);
4956 if (stash->dwarf_line_buffer)
4957 free (stash->dwarf_line_buffer);
4958 if (stash->dwarf_str_buffer)
4959 free (stash->dwarf_str_buffer);
4960 if (stash->dwarf_line_str_buffer)
4961 free (stash->dwarf_line_str_buffer);
4962 if (stash->dwarf_ranges_buffer)
4963 free (stash->dwarf_ranges_buffer);
4964 if (stash->info_ptr_memory)
4965 free (stash->info_ptr_memory);
4966 if (stash->close_on_cleanup)
4967 bfd_close (stash->bfd_ptr);
4968 if (stash->alt_dwarf_str_buffer)
4969 free (stash->alt_dwarf_str_buffer);
4970 if (stash->alt_dwarf_info_buffer)
4971 free (stash->alt_dwarf_info_buffer);
4972 if (stash->sec_vma)
4973 free (stash->sec_vma);
4974 if (stash->adjusted_sections)
4975 free (stash->adjusted_sections);
4976 if (stash->alt_bfd_ptr)
4977 bfd_close (stash->alt_bfd_ptr);
4978 }
4979
4980 /* Find the function to a particular section and offset,
4981 for error reporting. */
4982
4983 asymbol *
4984 _bfd_elf_find_function (bfd *abfd,
4985 asymbol **symbols,
4986 asection *section,
4987 bfd_vma offset,
4988 const char **filename_ptr,
4989 const char **functionname_ptr)
4990 {
4991 struct elf_find_function_cache
4992 {
4993 asection *last_section;
4994 asymbol *func;
4995 const char *filename;
4996 bfd_size_type func_size;
4997 } *cache;
4998
4999 if (symbols == NULL)
5000 return NULL;
5001
5002 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
5003 return NULL;
5004
5005 cache = elf_tdata (abfd)->elf_find_function_cache;
5006 if (cache == NULL)
5007 {
5008 cache = bfd_zalloc (abfd, sizeof (*cache));
5009 elf_tdata (abfd)->elf_find_function_cache = cache;
5010 if (cache == NULL)
5011 return NULL;
5012 }
5013 if (cache->last_section != section
5014 || cache->func == NULL
5015 || offset < cache->func->value
5016 || offset >= cache->func->value + cache->func_size)
5017 {
5018 asymbol *file;
5019 bfd_vma low_func;
5020 asymbol **p;
5021 /* ??? Given multiple file symbols, it is impossible to reliably
5022 choose the right file name for global symbols. File symbols are
5023 local symbols, and thus all file symbols must sort before any
5024 global symbols. The ELF spec may be interpreted to say that a
5025 file symbol must sort before other local symbols, but currently
5026 ld -r doesn't do this. So, for ld -r output, it is possible to
5027 make a better choice of file name for local symbols by ignoring
5028 file symbols appearing after a given local symbol. */
5029 enum { nothing_seen, symbol_seen, file_after_symbol_seen } state;
5030 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5031
5032 file = NULL;
5033 low_func = 0;
5034 state = nothing_seen;
5035 cache->filename = NULL;
5036 cache->func = NULL;
5037 cache->func_size = 0;
5038 cache->last_section = section;
5039
5040 for (p = symbols; *p != NULL; p++)
5041 {
5042 asymbol *sym = *p;
5043 bfd_vma code_off;
5044 bfd_size_type size;
5045
5046 if ((sym->flags & BSF_FILE) != 0)
5047 {
5048 file = sym;
5049 if (state == symbol_seen)
5050 state = file_after_symbol_seen;
5051 continue;
5052 }
5053
5054 size = bed->maybe_function_sym (sym, section, &code_off);
5055 if (size != 0
5056 && code_off <= offset
5057 && (code_off > low_func
5058 || (code_off == low_func
5059 && size > cache->func_size)))
5060 {
5061 cache->func = sym;
5062 cache->func_size = size;
5063 cache->filename = NULL;
5064 low_func = code_off;
5065 if (file != NULL
5066 && ((sym->flags & BSF_LOCAL) != 0
5067 || state != file_after_symbol_seen))
5068 cache->filename = bfd_asymbol_name (file);
5069 }
5070 if (state == nothing_seen)
5071 state = symbol_seen;
5072 }
5073 }
5074
5075 if (cache->func == NULL)
5076 return NULL;
5077
5078 if (filename_ptr)
5079 *filename_ptr = cache->filename;
5080 if (functionname_ptr)
5081 *functionname_ptr = bfd_asymbol_name (cache->func);
5082
5083 return cache->func;
5084 }
This page took 0.126872 seconds and 5 git commands to generate.