PR22204, Lack of DW_LNE_end_sequence causes "infinite" loop
[deliverable/binutils-gdb.git] / bfd / dwarf2.c
1 /* DWARF 2 support.
2 Copyright (C) 1994-2017 Free Software Foundation, Inc.
3
4 Adapted from gdb/dwarf2read.c by Gavin Koch of Cygnus Solutions
5 (gavin@cygnus.com).
6
7 From the dwarf2read.c header:
8 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
9 Inc. with support from Florida State University (under contract
10 with the Ada Joint Program Office), and Silicon Graphics, Inc.
11 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
12 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
13 support in dwarfread.c
14
15 This file is part of BFD.
16
17 This program is free software; you can redistribute it and/or modify
18 it under the terms of the GNU General Public License as published by
19 the Free Software Foundation; either version 3 of the License, or (at
20 your option) any later version.
21
22 This program is distributed in the hope that it will be useful, but
23 WITHOUT ANY WARRANTY; without even the implied warranty of
24 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
25 General Public License for more details.
26
27 You should have received a copy of the GNU General Public License
28 along with this program; if not, write to the Free Software
29 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
30 MA 02110-1301, USA. */
31
32 #include "sysdep.h"
33 #include "bfd.h"
34 #include "libiberty.h"
35 #include "libbfd.h"
36 #include "elf-bfd.h"
37 #include "dwarf2.h"
38
39 /* The data in the .debug_line statement prologue looks like this. */
40
41 struct line_head
42 {
43 bfd_vma total_length;
44 unsigned short version;
45 bfd_vma prologue_length;
46 unsigned char minimum_instruction_length;
47 unsigned char maximum_ops_per_insn;
48 unsigned char default_is_stmt;
49 int line_base;
50 unsigned char line_range;
51 unsigned char opcode_base;
52 unsigned char *standard_opcode_lengths;
53 };
54
55 /* Attributes have a name and a value. */
56
57 struct attribute
58 {
59 enum dwarf_attribute name;
60 enum dwarf_form form;
61 union
62 {
63 char *str;
64 struct dwarf_block *blk;
65 bfd_uint64_t val;
66 bfd_int64_t sval;
67 }
68 u;
69 };
70
71 /* Blocks are a bunch of untyped bytes. */
72 struct dwarf_block
73 {
74 unsigned int size;
75 bfd_byte *data;
76 };
77
78 struct adjusted_section
79 {
80 asection *section;
81 bfd_vma adj_vma;
82 };
83
84 struct dwarf2_debug
85 {
86 /* A list of all previously read comp_units. */
87 struct comp_unit *all_comp_units;
88
89 /* Last comp unit in list above. */
90 struct comp_unit *last_comp_unit;
91
92 /* Names of the debug sections. */
93 const struct dwarf_debug_section *debug_sections;
94
95 /* The next unread compilation unit within the .debug_info section.
96 Zero indicates that the .debug_info section has not been loaded
97 into a buffer yet. */
98 bfd_byte *info_ptr;
99
100 /* Pointer to the end of the .debug_info section memory buffer. */
101 bfd_byte *info_ptr_end;
102
103 /* Pointer to the original bfd for which debug was loaded. This is what
104 we use to compare and so check that the cached debug data is still
105 valid - it saves having to possibly dereference the gnu_debuglink each
106 time. */
107 bfd *orig_bfd;
108
109 /* Pointer to the bfd, section and address of the beginning of the
110 section. The bfd might be different than expected because of
111 gnu_debuglink sections. */
112 bfd *bfd_ptr;
113 asection *sec;
114 bfd_byte *sec_info_ptr;
115
116 /* Support for alternate debug info sections created by the DWZ utility:
117 This includes a pointer to an alternate bfd which contains *extra*,
118 possibly duplicate debug sections, and pointers to the loaded
119 .debug_str and .debug_info sections from this bfd. */
120 bfd * alt_bfd_ptr;
121 bfd_byte * alt_dwarf_str_buffer;
122 bfd_size_type alt_dwarf_str_size;
123 bfd_byte * alt_dwarf_info_buffer;
124 bfd_size_type alt_dwarf_info_size;
125
126 /* A pointer to the memory block allocated for info_ptr. Neither
127 info_ptr nor sec_info_ptr are guaranteed to stay pointing to the
128 beginning of the malloc block. This is used only to free the
129 memory later. */
130 bfd_byte *info_ptr_memory;
131
132 /* Pointer to the symbol table. */
133 asymbol **syms;
134
135 /* Pointer to the .debug_abbrev section loaded into memory. */
136 bfd_byte *dwarf_abbrev_buffer;
137
138 /* Length of the loaded .debug_abbrev section. */
139 bfd_size_type dwarf_abbrev_size;
140
141 /* Buffer for decode_line_info. */
142 bfd_byte *dwarf_line_buffer;
143
144 /* Length of the loaded .debug_line section. */
145 bfd_size_type dwarf_line_size;
146
147 /* Pointer to the .debug_str section loaded into memory. */
148 bfd_byte *dwarf_str_buffer;
149
150 /* Length of the loaded .debug_str section. */
151 bfd_size_type dwarf_str_size;
152
153 /* Pointer to the .debug_line_str section loaded into memory. */
154 bfd_byte *dwarf_line_str_buffer;
155
156 /* Length of the loaded .debug_line_str section. */
157 bfd_size_type dwarf_line_str_size;
158
159 /* Pointer to the .debug_ranges section loaded into memory. */
160 bfd_byte *dwarf_ranges_buffer;
161
162 /* Length of the loaded .debug_ranges section. */
163 bfd_size_type dwarf_ranges_size;
164
165 /* If the most recent call to bfd_find_nearest_line was given an
166 address in an inlined function, preserve a pointer into the
167 calling chain for subsequent calls to bfd_find_inliner_info to
168 use. */
169 struct funcinfo *inliner_chain;
170
171 /* Section VMAs at the time the stash was built. */
172 bfd_vma *sec_vma;
173
174 /* Number of sections whose VMA we must adjust. */
175 int adjusted_section_count;
176
177 /* Array of sections with adjusted VMA. */
178 struct adjusted_section *adjusted_sections;
179
180 /* Number of times find_line is called. This is used in
181 the heuristic for enabling the info hash tables. */
182 int info_hash_count;
183
184 #define STASH_INFO_HASH_TRIGGER 100
185
186 /* Hash table mapping symbol names to function infos. */
187 struct info_hash_table *funcinfo_hash_table;
188
189 /* Hash table mapping symbol names to variable infos. */
190 struct info_hash_table *varinfo_hash_table;
191
192 /* Head of comp_unit list in the last hash table update. */
193 struct comp_unit *hash_units_head;
194
195 /* Status of info hash. */
196 int info_hash_status;
197 #define STASH_INFO_HASH_OFF 0
198 #define STASH_INFO_HASH_ON 1
199 #define STASH_INFO_HASH_DISABLED 2
200
201 /* True if we opened bfd_ptr. */
202 bfd_boolean close_on_cleanup;
203 };
204
205 struct arange
206 {
207 struct arange *next;
208 bfd_vma low;
209 bfd_vma high;
210 };
211
212 /* A minimal decoding of DWARF2 compilation units. We only decode
213 what's needed to get to the line number information. */
214
215 struct comp_unit
216 {
217 /* Chain the previously read compilation units. */
218 struct comp_unit *next_unit;
219
220 /* Likewise, chain the compilation unit read after this one.
221 The comp units are stored in reversed reading order. */
222 struct comp_unit *prev_unit;
223
224 /* Keep the bfd convenient (for memory allocation). */
225 bfd *abfd;
226
227 /* The lowest and highest addresses contained in this compilation
228 unit as specified in the compilation unit header. */
229 struct arange arange;
230
231 /* The DW_AT_name attribute (for error messages). */
232 char *name;
233
234 /* The abbrev hash table. */
235 struct abbrev_info **abbrevs;
236
237 /* DW_AT_language. */
238 int lang;
239
240 /* Note that an error was found by comp_unit_find_nearest_line. */
241 int error;
242
243 /* The DW_AT_comp_dir attribute. */
244 char *comp_dir;
245
246 /* TRUE if there is a line number table associated with this comp. unit. */
247 int stmtlist;
248
249 /* Pointer to the current comp_unit so that we can find a given entry
250 by its reference. */
251 bfd_byte *info_ptr_unit;
252
253 /* Pointer to the start of the debug section, for DW_FORM_ref_addr. */
254 bfd_byte *sec_info_ptr;
255
256 /* The offset into .debug_line of the line number table. */
257 unsigned long line_offset;
258
259 /* Pointer to the first child die for the comp unit. */
260 bfd_byte *first_child_die_ptr;
261
262 /* The end of the comp unit. */
263 bfd_byte *end_ptr;
264
265 /* The decoded line number, NULL if not yet decoded. */
266 struct line_info_table *line_table;
267
268 /* A list of the functions found in this comp. unit. */
269 struct funcinfo *function_table;
270
271 /* A table of function information references searchable by address. */
272 struct lookup_funcinfo *lookup_funcinfo_table;
273
274 /* Number of functions in the function_table and sorted_function_table. */
275 bfd_size_type number_of_functions;
276
277 /* A list of the variables found in this comp. unit. */
278 struct varinfo *variable_table;
279
280 /* Pointer to dwarf2_debug structure. */
281 struct dwarf2_debug *stash;
282
283 /* DWARF format version for this unit - from unit header. */
284 int version;
285
286 /* Address size for this unit - from unit header. */
287 unsigned char addr_size;
288
289 /* Offset size for this unit - from unit header. */
290 unsigned char offset_size;
291
292 /* Base address for this unit - from DW_AT_low_pc attribute of
293 DW_TAG_compile_unit DIE */
294 bfd_vma base_address;
295
296 /* TRUE if symbols are cached in hash table for faster lookup by name. */
297 bfd_boolean cached;
298 };
299
300 /* This data structure holds the information of an abbrev. */
301 struct abbrev_info
302 {
303 unsigned int number; /* Number identifying abbrev. */
304 enum dwarf_tag tag; /* DWARF tag. */
305 int has_children; /* Boolean. */
306 unsigned int num_attrs; /* Number of attributes. */
307 struct attr_abbrev *attrs; /* An array of attribute descriptions. */
308 struct abbrev_info *next; /* Next in chain. */
309 };
310
311 struct attr_abbrev
312 {
313 enum dwarf_attribute name;
314 enum dwarf_form form;
315 bfd_vma implicit_const;
316 };
317
318 /* Map of uncompressed DWARF debug section name to compressed one. It
319 is terminated by NULL uncompressed_name. */
320
321 const struct dwarf_debug_section dwarf_debug_sections[] =
322 {
323 { ".debug_abbrev", ".zdebug_abbrev" },
324 { ".debug_aranges", ".zdebug_aranges" },
325 { ".debug_frame", ".zdebug_frame" },
326 { ".debug_info", ".zdebug_info" },
327 { ".debug_info", ".zdebug_info" },
328 { ".debug_line", ".zdebug_line" },
329 { ".debug_loc", ".zdebug_loc" },
330 { ".debug_macinfo", ".zdebug_macinfo" },
331 { ".debug_macro", ".zdebug_macro" },
332 { ".debug_pubnames", ".zdebug_pubnames" },
333 { ".debug_pubtypes", ".zdebug_pubtypes" },
334 { ".debug_ranges", ".zdebug_ranges" },
335 { ".debug_static_func", ".zdebug_static_func" },
336 { ".debug_static_vars", ".zdebug_static_vars" },
337 { ".debug_str", ".zdebug_str", },
338 { ".debug_str", ".zdebug_str", },
339 { ".debug_line_str", ".zdebug_line_str", },
340 { ".debug_types", ".zdebug_types" },
341 /* GNU DWARF 1 extensions */
342 { ".debug_sfnames", ".zdebug_sfnames" },
343 { ".debug_srcinfo", ".zebug_srcinfo" },
344 /* SGI/MIPS DWARF 2 extensions */
345 { ".debug_funcnames", ".zdebug_funcnames" },
346 { ".debug_typenames", ".zdebug_typenames" },
347 { ".debug_varnames", ".zdebug_varnames" },
348 { ".debug_weaknames", ".zdebug_weaknames" },
349 { NULL, NULL },
350 };
351
352 /* NB/ Numbers in this enum must match up with indicies
353 into the dwarf_debug_sections[] array above. */
354 enum dwarf_debug_section_enum
355 {
356 debug_abbrev = 0,
357 debug_aranges,
358 debug_frame,
359 debug_info,
360 debug_info_alt,
361 debug_line,
362 debug_loc,
363 debug_macinfo,
364 debug_macro,
365 debug_pubnames,
366 debug_pubtypes,
367 debug_ranges,
368 debug_static_func,
369 debug_static_vars,
370 debug_str,
371 debug_str_alt,
372 debug_line_str,
373 debug_types,
374 debug_sfnames,
375 debug_srcinfo,
376 debug_funcnames,
377 debug_typenames,
378 debug_varnames,
379 debug_weaknames,
380 debug_max
381 };
382
383 /* A static assertion. */
384 extern int dwarf_debug_section_assert[ARRAY_SIZE (dwarf_debug_sections)
385 == debug_max + 1 ? 1 : -1];
386
387 #ifndef ABBREV_HASH_SIZE
388 #define ABBREV_HASH_SIZE 121
389 #endif
390 #ifndef ATTR_ALLOC_CHUNK
391 #define ATTR_ALLOC_CHUNK 4
392 #endif
393
394 /* Variable and function hash tables. This is used to speed up look-up
395 in lookup_symbol_in_var_table() and lookup_symbol_in_function_table().
396 In order to share code between variable and function infos, we use
397 a list of untyped pointer for all variable/function info associated with
398 a symbol. We waste a bit of memory for list with one node but that
399 simplifies the code. */
400
401 struct info_list_node
402 {
403 struct info_list_node *next;
404 void *info;
405 };
406
407 /* Info hash entry. */
408 struct info_hash_entry
409 {
410 struct bfd_hash_entry root;
411 struct info_list_node *head;
412 };
413
414 struct info_hash_table
415 {
416 struct bfd_hash_table base;
417 };
418
419 /* Function to create a new entry in info hash table. */
420
421 static struct bfd_hash_entry *
422 info_hash_table_newfunc (struct bfd_hash_entry *entry,
423 struct bfd_hash_table *table,
424 const char *string)
425 {
426 struct info_hash_entry *ret = (struct info_hash_entry *) entry;
427
428 /* Allocate the structure if it has not already been allocated by a
429 derived class. */
430 if (ret == NULL)
431 {
432 ret = (struct info_hash_entry *) bfd_hash_allocate (table,
433 sizeof (* ret));
434 if (ret == NULL)
435 return NULL;
436 }
437
438 /* Call the allocation method of the base class. */
439 ret = ((struct info_hash_entry *)
440 bfd_hash_newfunc ((struct bfd_hash_entry *) ret, table, string));
441
442 /* Initialize the local fields here. */
443 if (ret)
444 ret->head = NULL;
445
446 return (struct bfd_hash_entry *) ret;
447 }
448
449 /* Function to create a new info hash table. It returns a pointer to the
450 newly created table or NULL if there is any error. We need abfd
451 solely for memory allocation. */
452
453 static struct info_hash_table *
454 create_info_hash_table (bfd *abfd)
455 {
456 struct info_hash_table *hash_table;
457
458 hash_table = ((struct info_hash_table *)
459 bfd_alloc (abfd, sizeof (struct info_hash_table)));
460 if (!hash_table)
461 return hash_table;
462
463 if (!bfd_hash_table_init (&hash_table->base, info_hash_table_newfunc,
464 sizeof (struct info_hash_entry)))
465 {
466 bfd_release (abfd, hash_table);
467 return NULL;
468 }
469
470 return hash_table;
471 }
472
473 /* Insert an info entry into an info hash table. We do not check of
474 duplicate entries. Also, the caller need to guarantee that the
475 right type of info in inserted as info is passed as a void* pointer.
476 This function returns true if there is no error. */
477
478 static bfd_boolean
479 insert_info_hash_table (struct info_hash_table *hash_table,
480 const char *key,
481 void *info,
482 bfd_boolean copy_p)
483 {
484 struct info_hash_entry *entry;
485 struct info_list_node *node;
486
487 entry = (struct info_hash_entry*) bfd_hash_lookup (&hash_table->base,
488 key, TRUE, copy_p);
489 if (!entry)
490 return FALSE;
491
492 node = (struct info_list_node *) bfd_hash_allocate (&hash_table->base,
493 sizeof (*node));
494 if (!node)
495 return FALSE;
496
497 node->info = info;
498 node->next = entry->head;
499 entry->head = node;
500
501 return TRUE;
502 }
503
504 /* Look up an info entry list from an info hash table. Return NULL
505 if there is none. */
506
507 static struct info_list_node *
508 lookup_info_hash_table (struct info_hash_table *hash_table, const char *key)
509 {
510 struct info_hash_entry *entry;
511
512 entry = (struct info_hash_entry*) bfd_hash_lookup (&hash_table->base, key,
513 FALSE, FALSE);
514 return entry ? entry->head : NULL;
515 }
516
517 /* Read a section into its appropriate place in the dwarf2_debug
518 struct (indicated by SECTION_BUFFER and SECTION_SIZE). If SYMS is
519 not NULL, use bfd_simple_get_relocated_section_contents to read the
520 section contents, otherwise use bfd_get_section_contents. Fail if
521 the located section does not contain at least OFFSET bytes. */
522
523 static bfd_boolean
524 read_section (bfd * abfd,
525 const struct dwarf_debug_section *sec,
526 asymbol ** syms,
527 bfd_uint64_t offset,
528 bfd_byte ** section_buffer,
529 bfd_size_type * section_size)
530 {
531 asection *msec;
532 const char *section_name = sec->uncompressed_name;
533
534 /* The section may have already been read. */
535 if (*section_buffer == NULL)
536 {
537 msec = bfd_get_section_by_name (abfd, section_name);
538 if (! msec)
539 {
540 section_name = sec->compressed_name;
541 if (section_name != NULL)
542 msec = bfd_get_section_by_name (abfd, section_name);
543 }
544 if (! msec)
545 {
546 _bfd_error_handler (_("Dwarf Error: Can't find %s section."),
547 sec->uncompressed_name);
548 bfd_set_error (bfd_error_bad_value);
549 return FALSE;
550 }
551
552 *section_size = msec->rawsize ? msec->rawsize : msec->size;
553 if (syms)
554 {
555 *section_buffer
556 = bfd_simple_get_relocated_section_contents (abfd, msec, NULL, syms);
557 if (! *section_buffer)
558 return FALSE;
559 }
560 else
561 {
562 *section_buffer = (bfd_byte *) bfd_malloc (*section_size);
563 if (! *section_buffer)
564 return FALSE;
565 if (! bfd_get_section_contents (abfd, msec, *section_buffer,
566 0, *section_size))
567 return FALSE;
568 }
569
570 /* Paranoia - if we are reading in a string section, make sure that it
571 is NUL terminated. This is to prevent string functions from running
572 off the end of the buffer. Note - knowing the size of the buffer is
573 not enough as some functions, eg strchr, do not have a range limited
574 equivalent.
575
576 FIXME: We ought to use a flag in the dwarf_debug_sections[] table to
577 determine the nature of a debug section, rather than checking the
578 section name as we do here. */
579 if (*section_size > 0
580 && (*section_buffer)[*section_size - 1] != 0
581 && (strstr (section_name, "_str") || strstr (section_name, "names")))
582 {
583 bfd_byte * new_buffer = malloc (*section_size + 1);
584
585 _bfd_error_handler (_("warning: dwarf string section '%s' is not NUL terminated"),
586 section_name);
587 memcpy (new_buffer, *section_buffer, *section_size);
588 new_buffer[*section_size] = 0;
589 free (*section_buffer);
590 *section_buffer = new_buffer;
591 }
592 }
593
594 /* It is possible to get a bad value for the offset into the section
595 that the client wants. Validate it here to avoid trouble later. */
596 if (offset != 0 && offset >= *section_size)
597 {
598 /* xgettext: c-format */
599 _bfd_error_handler (_("Dwarf Error: Offset (%llu)"
600 " greater than or equal to %s size (%Lu)."),
601 (long long) offset, section_name, *section_size);
602 bfd_set_error (bfd_error_bad_value);
603 return FALSE;
604 }
605
606 return TRUE;
607 }
608
609 /* Read dwarf information from a buffer. */
610
611 static unsigned int
612 read_1_byte (bfd *abfd ATTRIBUTE_UNUSED, bfd_byte *buf, bfd_byte *end)
613 {
614 if (buf + 1 > end)
615 return 0;
616 return bfd_get_8 (abfd, buf);
617 }
618
619 static int
620 read_1_signed_byte (bfd *abfd ATTRIBUTE_UNUSED, bfd_byte *buf, bfd_byte *end)
621 {
622 if (buf + 1 > end)
623 return 0;
624 return bfd_get_signed_8 (abfd, buf);
625 }
626
627 static unsigned int
628 read_2_bytes (bfd *abfd, bfd_byte *buf, bfd_byte *end)
629 {
630 if (buf + 2 > end)
631 return 0;
632 return bfd_get_16 (abfd, buf);
633 }
634
635 static unsigned int
636 read_4_bytes (bfd *abfd, bfd_byte *buf, bfd_byte *end)
637 {
638 if (buf + 4 > end)
639 return 0;
640 return bfd_get_32 (abfd, buf);
641 }
642
643 static bfd_uint64_t
644 read_8_bytes (bfd *abfd, bfd_byte *buf, bfd_byte *end)
645 {
646 if (buf + 8 > end)
647 return 0;
648 return bfd_get_64 (abfd, buf);
649 }
650
651 static bfd_byte *
652 read_n_bytes (bfd *abfd ATTRIBUTE_UNUSED,
653 bfd_byte *buf,
654 bfd_byte *end,
655 unsigned int size ATTRIBUTE_UNUSED)
656 {
657 if (buf + size > end)
658 return NULL;
659 return buf;
660 }
661
662 /* Scans a NUL terminated string starting at BUF, returning a pointer to it.
663 Returns the number of characters in the string, *including* the NUL byte,
664 in BYTES_READ_PTR. This value is set even if the function fails. Bytes
665 at or beyond BUF_END will not be read. Returns NULL if there was a
666 problem, or if the string is empty. */
667
668 static char *
669 read_string (bfd * abfd ATTRIBUTE_UNUSED,
670 bfd_byte * buf,
671 bfd_byte * buf_end,
672 unsigned int * bytes_read_ptr)
673 {
674 bfd_byte *str = buf;
675
676 if (buf >= buf_end)
677 {
678 * bytes_read_ptr = 0;
679 return NULL;
680 }
681
682 if (*str == '\0')
683 {
684 * bytes_read_ptr = 1;
685 return NULL;
686 }
687
688 while (buf < buf_end)
689 if (* buf ++ == 0)
690 {
691 * bytes_read_ptr = buf - str;
692 return (char *) str;
693 }
694
695 * bytes_read_ptr = buf - str;
696 return NULL;
697 }
698
699 /* Reads an offset from BUF and then locates the string at this offset
700 inside the debug string section. Returns a pointer to the string.
701 Returns the number of bytes read from BUF, *not* the length of the string,
702 in BYTES_READ_PTR. This value is set even if the function fails. Bytes
703 at or beyond BUF_END will not be read from BUF. Returns NULL if there was
704 a problem, or if the string is empty. Does not check for NUL termination
705 of the string. */
706
707 static char *
708 read_indirect_string (struct comp_unit * unit,
709 bfd_byte * buf,
710 bfd_byte * buf_end,
711 unsigned int * bytes_read_ptr)
712 {
713 bfd_uint64_t offset;
714 struct dwarf2_debug *stash = unit->stash;
715 char *str;
716
717 if (buf + unit->offset_size > buf_end)
718 {
719 * bytes_read_ptr = 0;
720 return NULL;
721 }
722
723 if (unit->offset_size == 4)
724 offset = read_4_bytes (unit->abfd, buf, buf_end);
725 else
726 offset = read_8_bytes (unit->abfd, buf, buf_end);
727
728 *bytes_read_ptr = unit->offset_size;
729
730 if (! read_section (unit->abfd, &stash->debug_sections[debug_str],
731 stash->syms, offset,
732 &stash->dwarf_str_buffer, &stash->dwarf_str_size))
733 return NULL;
734
735 if (offset >= stash->dwarf_str_size)
736 return NULL;
737 str = (char *) stash->dwarf_str_buffer + offset;
738 if (*str == '\0')
739 return NULL;
740 return str;
741 }
742
743 /* Like read_indirect_string but from .debug_line_str section. */
744
745 static char *
746 read_indirect_line_string (struct comp_unit * unit,
747 bfd_byte * buf,
748 bfd_byte * buf_end,
749 unsigned int * bytes_read_ptr)
750 {
751 bfd_uint64_t offset;
752 struct dwarf2_debug *stash = unit->stash;
753 char *str;
754
755 if (buf + unit->offset_size > buf_end)
756 {
757 * bytes_read_ptr = 0;
758 return NULL;
759 }
760
761 if (unit->offset_size == 4)
762 offset = read_4_bytes (unit->abfd, buf, buf_end);
763 else
764 offset = read_8_bytes (unit->abfd, buf, buf_end);
765
766 *bytes_read_ptr = unit->offset_size;
767
768 if (! read_section (unit->abfd, &stash->debug_sections[debug_line_str],
769 stash->syms, offset,
770 &stash->dwarf_line_str_buffer,
771 &stash->dwarf_line_str_size))
772 return NULL;
773
774 if (offset >= stash->dwarf_line_str_size)
775 return NULL;
776 str = (char *) stash->dwarf_line_str_buffer + offset;
777 if (*str == '\0')
778 return NULL;
779 return str;
780 }
781
782 /* Like read_indirect_string but uses a .debug_str located in
783 an alternate file pointed to by the .gnu_debugaltlink section.
784 Used to impement DW_FORM_GNU_strp_alt. */
785
786 static char *
787 read_alt_indirect_string (struct comp_unit * unit,
788 bfd_byte * buf,
789 bfd_byte * buf_end,
790 unsigned int * bytes_read_ptr)
791 {
792 bfd_uint64_t offset;
793 struct dwarf2_debug *stash = unit->stash;
794 char *str;
795
796 if (buf + unit->offset_size > buf_end)
797 {
798 * bytes_read_ptr = 0;
799 return NULL;
800 }
801
802 if (unit->offset_size == 4)
803 offset = read_4_bytes (unit->abfd, buf, buf_end);
804 else
805 offset = read_8_bytes (unit->abfd, buf, buf_end);
806
807 *bytes_read_ptr = unit->offset_size;
808
809 if (stash->alt_bfd_ptr == NULL)
810 {
811 bfd * debug_bfd;
812 char * debug_filename = bfd_follow_gnu_debugaltlink (unit->abfd, DEBUGDIR);
813
814 if (debug_filename == NULL)
815 return NULL;
816
817 if ((debug_bfd = bfd_openr (debug_filename, NULL)) == NULL
818 || ! bfd_check_format (debug_bfd, bfd_object))
819 {
820 if (debug_bfd)
821 bfd_close (debug_bfd);
822
823 /* FIXME: Should we report our failure to follow the debuglink ? */
824 free (debug_filename);
825 return NULL;
826 }
827 stash->alt_bfd_ptr = debug_bfd;
828 }
829
830 if (! read_section (unit->stash->alt_bfd_ptr,
831 stash->debug_sections + debug_str_alt,
832 NULL, /* FIXME: Do we need to load alternate symbols ? */
833 offset,
834 &stash->alt_dwarf_str_buffer,
835 &stash->alt_dwarf_str_size))
836 return NULL;
837
838 if (offset >= stash->alt_dwarf_str_size)
839 return NULL;
840 str = (char *) stash->alt_dwarf_str_buffer + offset;
841 if (*str == '\0')
842 return NULL;
843
844 return str;
845 }
846
847 /* Resolve an alternate reference from UNIT at OFFSET.
848 Returns a pointer into the loaded alternate CU upon success
849 or NULL upon failure. */
850
851 static bfd_byte *
852 read_alt_indirect_ref (struct comp_unit * unit,
853 bfd_uint64_t offset)
854 {
855 struct dwarf2_debug *stash = unit->stash;
856
857 if (stash->alt_bfd_ptr == NULL)
858 {
859 bfd * debug_bfd;
860 char * debug_filename = bfd_follow_gnu_debugaltlink (unit->abfd, DEBUGDIR);
861
862 if (debug_filename == NULL)
863 return FALSE;
864
865 if ((debug_bfd = bfd_openr (debug_filename, NULL)) == NULL
866 || ! bfd_check_format (debug_bfd, bfd_object))
867 {
868 if (debug_bfd)
869 bfd_close (debug_bfd);
870
871 /* FIXME: Should we report our failure to follow the debuglink ? */
872 free (debug_filename);
873 return NULL;
874 }
875 stash->alt_bfd_ptr = debug_bfd;
876 }
877
878 if (! read_section (unit->stash->alt_bfd_ptr,
879 stash->debug_sections + debug_info_alt,
880 NULL, /* FIXME: Do we need to load alternate symbols ? */
881 offset,
882 &stash->alt_dwarf_info_buffer,
883 &stash->alt_dwarf_info_size))
884 return NULL;
885
886 if (offset >= stash->alt_dwarf_info_size)
887 return NULL;
888 return stash->alt_dwarf_info_buffer + offset;
889 }
890
891 static bfd_uint64_t
892 read_address (struct comp_unit *unit, bfd_byte *buf, bfd_byte * buf_end)
893 {
894 int signed_vma = 0;
895
896 if (bfd_get_flavour (unit->abfd) == bfd_target_elf_flavour)
897 signed_vma = get_elf_backend_data (unit->abfd)->sign_extend_vma;
898
899 if (buf + unit->addr_size > buf_end)
900 return 0;
901
902 if (signed_vma)
903 {
904 switch (unit->addr_size)
905 {
906 case 8:
907 return bfd_get_signed_64 (unit->abfd, buf);
908 case 4:
909 return bfd_get_signed_32 (unit->abfd, buf);
910 case 2:
911 return bfd_get_signed_16 (unit->abfd, buf);
912 default:
913 abort ();
914 }
915 }
916 else
917 {
918 switch (unit->addr_size)
919 {
920 case 8:
921 return bfd_get_64 (unit->abfd, buf);
922 case 4:
923 return bfd_get_32 (unit->abfd, buf);
924 case 2:
925 return bfd_get_16 (unit->abfd, buf);
926 default:
927 abort ();
928 }
929 }
930 }
931
932 /* Lookup an abbrev_info structure in the abbrev hash table. */
933
934 static struct abbrev_info *
935 lookup_abbrev (unsigned int number, struct abbrev_info **abbrevs)
936 {
937 unsigned int hash_number;
938 struct abbrev_info *abbrev;
939
940 hash_number = number % ABBREV_HASH_SIZE;
941 abbrev = abbrevs[hash_number];
942
943 while (abbrev)
944 {
945 if (abbrev->number == number)
946 return abbrev;
947 else
948 abbrev = abbrev->next;
949 }
950
951 return NULL;
952 }
953
954 /* In DWARF version 2, the description of the debugging information is
955 stored in a separate .debug_abbrev section. Before we read any
956 dies from a section we read in all abbreviations and install them
957 in a hash table. */
958
959 static struct abbrev_info**
960 read_abbrevs (bfd *abfd, bfd_uint64_t offset, struct dwarf2_debug *stash)
961 {
962 struct abbrev_info **abbrevs;
963 bfd_byte *abbrev_ptr;
964 bfd_byte *abbrev_end;
965 struct abbrev_info *cur_abbrev;
966 unsigned int abbrev_number, bytes_read, abbrev_name;
967 unsigned int abbrev_form, hash_number;
968 bfd_size_type amt;
969
970 if (! read_section (abfd, &stash->debug_sections[debug_abbrev],
971 stash->syms, offset,
972 &stash->dwarf_abbrev_buffer, &stash->dwarf_abbrev_size))
973 return NULL;
974
975 if (offset >= stash->dwarf_abbrev_size)
976 return NULL;
977
978 amt = sizeof (struct abbrev_info*) * ABBREV_HASH_SIZE;
979 abbrevs = (struct abbrev_info **) bfd_zalloc (abfd, amt);
980 if (abbrevs == NULL)
981 return NULL;
982
983 abbrev_ptr = stash->dwarf_abbrev_buffer + offset;
984 abbrev_end = stash->dwarf_abbrev_buffer + stash->dwarf_abbrev_size;
985 abbrev_number = _bfd_safe_read_leb128 (abfd, abbrev_ptr, &bytes_read,
986 FALSE, abbrev_end);
987 abbrev_ptr += bytes_read;
988
989 /* Loop until we reach an abbrev number of 0. */
990 while (abbrev_number)
991 {
992 amt = sizeof (struct abbrev_info);
993 cur_abbrev = (struct abbrev_info *) bfd_zalloc (abfd, amt);
994 if (cur_abbrev == NULL)
995 return NULL;
996
997 /* Read in abbrev header. */
998 cur_abbrev->number = abbrev_number;
999 cur_abbrev->tag = (enum dwarf_tag)
1000 _bfd_safe_read_leb128 (abfd, abbrev_ptr, &bytes_read,
1001 FALSE, abbrev_end);
1002 abbrev_ptr += bytes_read;
1003 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr, abbrev_end);
1004 abbrev_ptr += 1;
1005
1006 /* Now read in declarations. */
1007 for (;;)
1008 {
1009 /* Initialize it just to avoid a GCC false warning. */
1010 bfd_vma implicit_const = -1;
1011
1012 abbrev_name = _bfd_safe_read_leb128 (abfd, abbrev_ptr, &bytes_read,
1013 FALSE, abbrev_end);
1014 abbrev_ptr += bytes_read;
1015 abbrev_form = _bfd_safe_read_leb128 (abfd, abbrev_ptr, &bytes_read,
1016 FALSE, abbrev_end);
1017 abbrev_ptr += bytes_read;
1018 if (abbrev_form == DW_FORM_implicit_const)
1019 {
1020 implicit_const = _bfd_safe_read_leb128 (abfd, abbrev_ptr,
1021 &bytes_read, TRUE,
1022 abbrev_end);
1023 abbrev_ptr += bytes_read;
1024 }
1025
1026 if (abbrev_name == 0)
1027 break;
1028
1029 if ((cur_abbrev->num_attrs % ATTR_ALLOC_CHUNK) == 0)
1030 {
1031 struct attr_abbrev *tmp;
1032
1033 amt = cur_abbrev->num_attrs + ATTR_ALLOC_CHUNK;
1034 amt *= sizeof (struct attr_abbrev);
1035 tmp = (struct attr_abbrev *) bfd_realloc (cur_abbrev->attrs, amt);
1036 if (tmp == NULL)
1037 {
1038 size_t i;
1039
1040 for (i = 0; i < ABBREV_HASH_SIZE; i++)
1041 {
1042 struct abbrev_info *abbrev = abbrevs[i];
1043
1044 while (abbrev)
1045 {
1046 free (abbrev->attrs);
1047 abbrev = abbrev->next;
1048 }
1049 }
1050 return NULL;
1051 }
1052 cur_abbrev->attrs = tmp;
1053 }
1054
1055 cur_abbrev->attrs[cur_abbrev->num_attrs].name
1056 = (enum dwarf_attribute) abbrev_name;
1057 cur_abbrev->attrs[cur_abbrev->num_attrs].form
1058 = (enum dwarf_form) abbrev_form;
1059 cur_abbrev->attrs[cur_abbrev->num_attrs].implicit_const
1060 = implicit_const;
1061 ++cur_abbrev->num_attrs;
1062 }
1063
1064 hash_number = abbrev_number % ABBREV_HASH_SIZE;
1065 cur_abbrev->next = abbrevs[hash_number];
1066 abbrevs[hash_number] = cur_abbrev;
1067
1068 /* Get next abbreviation.
1069 Under Irix6 the abbreviations for a compilation unit are not
1070 always properly terminated with an abbrev number of 0.
1071 Exit loop if we encounter an abbreviation which we have
1072 already read (which means we are about to read the abbreviations
1073 for the next compile unit) or if the end of the abbreviation
1074 table is reached. */
1075 if ((unsigned int) (abbrev_ptr - stash->dwarf_abbrev_buffer)
1076 >= stash->dwarf_abbrev_size)
1077 break;
1078 abbrev_number = _bfd_safe_read_leb128 (abfd, abbrev_ptr,
1079 &bytes_read, FALSE, abbrev_end);
1080 abbrev_ptr += bytes_read;
1081 if (lookup_abbrev (abbrev_number, abbrevs) != NULL)
1082 break;
1083 }
1084
1085 return abbrevs;
1086 }
1087
1088 /* Returns true if the form is one which has a string value. */
1089
1090 static inline bfd_boolean
1091 is_str_attr (enum dwarf_form form)
1092 {
1093 return (form == DW_FORM_string || form == DW_FORM_strp
1094 || form == DW_FORM_line_strp || form == DW_FORM_GNU_strp_alt);
1095 }
1096
1097 /* Read and fill in the value of attribute ATTR as described by FORM.
1098 Read data starting from INFO_PTR, but never at or beyond INFO_PTR_END.
1099 Returns an updated INFO_PTR taking into account the amount of data read. */
1100
1101 static bfd_byte *
1102 read_attribute_value (struct attribute * attr,
1103 unsigned form,
1104 bfd_vma implicit_const,
1105 struct comp_unit * unit,
1106 bfd_byte * info_ptr,
1107 bfd_byte * info_ptr_end)
1108 {
1109 bfd *abfd = unit->abfd;
1110 unsigned int bytes_read;
1111 struct dwarf_block *blk;
1112 bfd_size_type amt;
1113
1114 if (info_ptr >= info_ptr_end && form != DW_FORM_flag_present)
1115 {
1116 _bfd_error_handler (_("Dwarf Error: Info pointer extends beyond end of attributes"));
1117 bfd_set_error (bfd_error_bad_value);
1118 return info_ptr;
1119 }
1120
1121 attr->form = (enum dwarf_form) form;
1122
1123 switch (form)
1124 {
1125 case DW_FORM_ref_addr:
1126 /* DW_FORM_ref_addr is an address in DWARF2, and an offset in
1127 DWARF3. */
1128 if (unit->version == 3 || unit->version == 4)
1129 {
1130 if (unit->offset_size == 4)
1131 attr->u.val = read_4_bytes (unit->abfd, info_ptr, info_ptr_end);
1132 else
1133 attr->u.val = read_8_bytes (unit->abfd, info_ptr, info_ptr_end);
1134 info_ptr += unit->offset_size;
1135 break;
1136 }
1137 /* FALLTHROUGH */
1138 case DW_FORM_addr:
1139 attr->u.val = read_address (unit, info_ptr, info_ptr_end);
1140 info_ptr += unit->addr_size;
1141 break;
1142 case DW_FORM_GNU_ref_alt:
1143 case DW_FORM_sec_offset:
1144 if (unit->offset_size == 4)
1145 attr->u.val = read_4_bytes (unit->abfd, info_ptr, info_ptr_end);
1146 else
1147 attr->u.val = read_8_bytes (unit->abfd, info_ptr, info_ptr_end);
1148 info_ptr += unit->offset_size;
1149 break;
1150 case DW_FORM_block2:
1151 amt = sizeof (struct dwarf_block);
1152 blk = (struct dwarf_block *) bfd_alloc (abfd, amt);
1153 if (blk == NULL)
1154 return NULL;
1155 blk->size = read_2_bytes (abfd, info_ptr, info_ptr_end);
1156 info_ptr += 2;
1157 blk->data = read_n_bytes (abfd, info_ptr, info_ptr_end, blk->size);
1158 info_ptr += blk->size;
1159 attr->u.blk = blk;
1160 break;
1161 case DW_FORM_block4:
1162 amt = sizeof (struct dwarf_block);
1163 blk = (struct dwarf_block *) bfd_alloc (abfd, amt);
1164 if (blk == NULL)
1165 return NULL;
1166 blk->size = read_4_bytes (abfd, info_ptr, info_ptr_end);
1167 info_ptr += 4;
1168 blk->data = read_n_bytes (abfd, info_ptr, info_ptr_end, blk->size);
1169 info_ptr += blk->size;
1170 attr->u.blk = blk;
1171 break;
1172 case DW_FORM_data2:
1173 attr->u.val = read_2_bytes (abfd, info_ptr, info_ptr_end);
1174 info_ptr += 2;
1175 break;
1176 case DW_FORM_data4:
1177 attr->u.val = read_4_bytes (abfd, info_ptr, info_ptr_end);
1178 info_ptr += 4;
1179 break;
1180 case DW_FORM_data8:
1181 attr->u.val = read_8_bytes (abfd, info_ptr, info_ptr_end);
1182 info_ptr += 8;
1183 break;
1184 case DW_FORM_string:
1185 attr->u.str = read_string (abfd, info_ptr, info_ptr_end, &bytes_read);
1186 info_ptr += bytes_read;
1187 break;
1188 case DW_FORM_strp:
1189 attr->u.str = read_indirect_string (unit, info_ptr, info_ptr_end, &bytes_read);
1190 info_ptr += bytes_read;
1191 break;
1192 case DW_FORM_line_strp:
1193 attr->u.str = read_indirect_line_string (unit, info_ptr, info_ptr_end, &bytes_read);
1194 info_ptr += bytes_read;
1195 break;
1196 case DW_FORM_GNU_strp_alt:
1197 attr->u.str = read_alt_indirect_string (unit, info_ptr, info_ptr_end, &bytes_read);
1198 info_ptr += bytes_read;
1199 break;
1200 case DW_FORM_exprloc:
1201 case DW_FORM_block:
1202 amt = sizeof (struct dwarf_block);
1203 blk = (struct dwarf_block *) bfd_alloc (abfd, amt);
1204 if (blk == NULL)
1205 return NULL;
1206 blk->size = _bfd_safe_read_leb128 (abfd, info_ptr, &bytes_read,
1207 FALSE, info_ptr_end);
1208 info_ptr += bytes_read;
1209 blk->data = read_n_bytes (abfd, info_ptr, info_ptr_end, blk->size);
1210 info_ptr += blk->size;
1211 attr->u.blk = blk;
1212 break;
1213 case DW_FORM_block1:
1214 amt = sizeof (struct dwarf_block);
1215 blk = (struct dwarf_block *) bfd_alloc (abfd, amt);
1216 if (blk == NULL)
1217 return NULL;
1218 blk->size = read_1_byte (abfd, info_ptr, info_ptr_end);
1219 info_ptr += 1;
1220 blk->data = read_n_bytes (abfd, info_ptr, info_ptr_end, blk->size);
1221 info_ptr += blk->size;
1222 attr->u.blk = blk;
1223 break;
1224 case DW_FORM_data1:
1225 attr->u.val = read_1_byte (abfd, info_ptr, info_ptr_end);
1226 info_ptr += 1;
1227 break;
1228 case DW_FORM_flag:
1229 attr->u.val = read_1_byte (abfd, info_ptr, info_ptr_end);
1230 info_ptr += 1;
1231 break;
1232 case DW_FORM_flag_present:
1233 attr->u.val = 1;
1234 break;
1235 case DW_FORM_sdata:
1236 attr->u.sval = _bfd_safe_read_leb128 (abfd, info_ptr, &bytes_read,
1237 TRUE, info_ptr_end);
1238 info_ptr += bytes_read;
1239 break;
1240 case DW_FORM_udata:
1241 attr->u.val = _bfd_safe_read_leb128 (abfd, info_ptr, &bytes_read,
1242 FALSE, info_ptr_end);
1243 info_ptr += bytes_read;
1244 break;
1245 case DW_FORM_ref1:
1246 attr->u.val = read_1_byte (abfd, info_ptr, info_ptr_end);
1247 info_ptr += 1;
1248 break;
1249 case DW_FORM_ref2:
1250 attr->u.val = read_2_bytes (abfd, info_ptr, info_ptr_end);
1251 info_ptr += 2;
1252 break;
1253 case DW_FORM_ref4:
1254 attr->u.val = read_4_bytes (abfd, info_ptr, info_ptr_end);
1255 info_ptr += 4;
1256 break;
1257 case DW_FORM_ref8:
1258 attr->u.val = read_8_bytes (abfd, info_ptr, info_ptr_end);
1259 info_ptr += 8;
1260 break;
1261 case DW_FORM_ref_sig8:
1262 attr->u.val = read_8_bytes (abfd, info_ptr, info_ptr_end);
1263 info_ptr += 8;
1264 break;
1265 case DW_FORM_ref_udata:
1266 attr->u.val = _bfd_safe_read_leb128 (abfd, info_ptr, &bytes_read,
1267 FALSE, info_ptr_end);
1268 info_ptr += bytes_read;
1269 break;
1270 case DW_FORM_indirect:
1271 form = _bfd_safe_read_leb128 (abfd, info_ptr, &bytes_read,
1272 FALSE, info_ptr_end);
1273 info_ptr += bytes_read;
1274 if (form == DW_FORM_implicit_const)
1275 {
1276 implicit_const = _bfd_safe_read_leb128 (abfd, info_ptr, &bytes_read,
1277 TRUE, info_ptr_end);
1278 info_ptr += bytes_read;
1279 }
1280 info_ptr = read_attribute_value (attr, form, implicit_const, unit,
1281 info_ptr, info_ptr_end);
1282 break;
1283 case DW_FORM_implicit_const:
1284 attr->form = DW_FORM_sdata;
1285 attr->u.sval = implicit_const;
1286 break;
1287 default:
1288 _bfd_error_handler (_("Dwarf Error: Invalid or unhandled FORM value: %#x."),
1289 form);
1290 bfd_set_error (bfd_error_bad_value);
1291 return NULL;
1292 }
1293 return info_ptr;
1294 }
1295
1296 /* Read an attribute described by an abbreviated attribute. */
1297
1298 static bfd_byte *
1299 read_attribute (struct attribute * attr,
1300 struct attr_abbrev * abbrev,
1301 struct comp_unit * unit,
1302 bfd_byte * info_ptr,
1303 bfd_byte * info_ptr_end)
1304 {
1305 attr->name = abbrev->name;
1306 info_ptr = read_attribute_value (attr, abbrev->form, abbrev->implicit_const,
1307 unit, info_ptr, info_ptr_end);
1308 return info_ptr;
1309 }
1310
1311 /* Return whether DW_AT_name will return the same as DW_AT_linkage_name
1312 for a function. */
1313
1314 static bfd_boolean
1315 non_mangled (int lang)
1316 {
1317 switch (lang)
1318 {
1319 default:
1320 return FALSE;
1321
1322 case DW_LANG_C89:
1323 case DW_LANG_C:
1324 case DW_LANG_Ada83:
1325 case DW_LANG_Cobol74:
1326 case DW_LANG_Cobol85:
1327 case DW_LANG_Fortran77:
1328 case DW_LANG_Pascal83:
1329 case DW_LANG_C99:
1330 case DW_LANG_Ada95:
1331 case DW_LANG_PLI:
1332 case DW_LANG_UPC:
1333 case DW_LANG_C11:
1334 return TRUE;
1335 }
1336 }
1337
1338 /* Source line information table routines. */
1339
1340 #define FILE_ALLOC_CHUNK 5
1341 #define DIR_ALLOC_CHUNK 5
1342
1343 struct line_info
1344 {
1345 struct line_info * prev_line;
1346 bfd_vma address;
1347 char * filename;
1348 unsigned int line;
1349 unsigned int column;
1350 unsigned int discriminator;
1351 unsigned char op_index;
1352 unsigned char end_sequence; /* End of (sequential) code sequence. */
1353 };
1354
1355 struct fileinfo
1356 {
1357 char * name;
1358 unsigned int dir;
1359 unsigned int time;
1360 unsigned int size;
1361 };
1362
1363 struct line_sequence
1364 {
1365 bfd_vma low_pc;
1366 struct line_sequence* prev_sequence;
1367 struct line_info* last_line; /* Largest VMA. */
1368 struct line_info** line_info_lookup;
1369 bfd_size_type num_lines;
1370 };
1371
1372 struct line_info_table
1373 {
1374 bfd * abfd;
1375 unsigned int num_files;
1376 unsigned int num_dirs;
1377 unsigned int num_sequences;
1378 char * comp_dir;
1379 char ** dirs;
1380 struct fileinfo* files;
1381 struct line_sequence* sequences;
1382 struct line_info* lcl_head; /* Local head; used in 'add_line_info'. */
1383 };
1384
1385 /* Remember some information about each function. If the function is
1386 inlined (DW_TAG_inlined_subroutine) it may have two additional
1387 attributes, DW_AT_call_file and DW_AT_call_line, which specify the
1388 source code location where this function was inlined. */
1389
1390 struct funcinfo
1391 {
1392 /* Pointer to previous function in list of all functions. */
1393 struct funcinfo * prev_func;
1394 /* Pointer to function one scope higher. */
1395 struct funcinfo * caller_func;
1396 /* Source location file name where caller_func inlines this func. */
1397 char * caller_file;
1398 /* Source location file name. */
1399 char * file;
1400 /* Source location line number where caller_func inlines this func. */
1401 int caller_line;
1402 /* Source location line number. */
1403 int line;
1404 int tag;
1405 bfd_boolean is_linkage;
1406 const char * name;
1407 struct arange arange;
1408 /* Where the symbol is defined. */
1409 asection * sec;
1410 };
1411
1412 struct lookup_funcinfo
1413 {
1414 /* Function information corresponding to this lookup table entry. */
1415 struct funcinfo * funcinfo;
1416
1417 /* The lowest address for this specific function. */
1418 bfd_vma low_addr;
1419
1420 /* The highest address of this function before the lookup table is sorted.
1421 The highest address of all prior functions after the lookup table is
1422 sorted, which is used for binary search. */
1423 bfd_vma high_addr;
1424 };
1425
1426 struct varinfo
1427 {
1428 /* Pointer to previous variable in list of all variables */
1429 struct varinfo *prev_var;
1430 /* Source location file name */
1431 char *file;
1432 /* Source location line number */
1433 int line;
1434 int tag;
1435 char *name;
1436 bfd_vma addr;
1437 /* Where the symbol is defined */
1438 asection *sec;
1439 /* Is this a stack variable? */
1440 unsigned int stack: 1;
1441 };
1442
1443 /* Return TRUE if NEW_LINE should sort after LINE. */
1444
1445 static inline bfd_boolean
1446 new_line_sorts_after (struct line_info *new_line, struct line_info *line)
1447 {
1448 return (new_line->address > line->address
1449 || (new_line->address == line->address
1450 && (new_line->op_index > line->op_index
1451 || (new_line->op_index == line->op_index
1452 && new_line->end_sequence < line->end_sequence))));
1453 }
1454
1455
1456 /* Adds a new entry to the line_info list in the line_info_table, ensuring
1457 that the list is sorted. Note that the line_info list is sorted from
1458 highest to lowest VMA (with possible duplicates); that is,
1459 line_info->prev_line always accesses an equal or smaller VMA. */
1460
1461 static bfd_boolean
1462 add_line_info (struct line_info_table *table,
1463 bfd_vma address,
1464 unsigned char op_index,
1465 char *filename,
1466 unsigned int line,
1467 unsigned int column,
1468 unsigned int discriminator,
1469 int end_sequence)
1470 {
1471 bfd_size_type amt = sizeof (struct line_info);
1472 struct line_sequence* seq = table->sequences;
1473 struct line_info* info = (struct line_info *) bfd_alloc (table->abfd, amt);
1474
1475 if (info == NULL)
1476 return FALSE;
1477
1478 /* Set member data of 'info'. */
1479 info->prev_line = NULL;
1480 info->address = address;
1481 info->op_index = op_index;
1482 info->line = line;
1483 info->column = column;
1484 info->discriminator = discriminator;
1485 info->end_sequence = end_sequence;
1486
1487 if (filename && filename[0])
1488 {
1489 info->filename = (char *) bfd_alloc (table->abfd, strlen (filename) + 1);
1490 if (info->filename == NULL)
1491 return FALSE;
1492 strcpy (info->filename, filename);
1493 }
1494 else
1495 info->filename = NULL;
1496
1497 /* Find the correct location for 'info'. Normally we will receive
1498 new line_info data 1) in order and 2) with increasing VMAs.
1499 However some compilers break the rules (cf. decode_line_info) and
1500 so we include some heuristics for quickly finding the correct
1501 location for 'info'. In particular, these heuristics optimize for
1502 the common case in which the VMA sequence that we receive is a
1503 list of locally sorted VMAs such as
1504 p...z a...j (where a < j < p < z)
1505
1506 Note: table->lcl_head is used to head an *actual* or *possible*
1507 sub-sequence within the list (such as a...j) that is not directly
1508 headed by table->last_line
1509
1510 Note: we may receive duplicate entries from 'decode_line_info'. */
1511
1512 if (seq
1513 && seq->last_line->address == address
1514 && seq->last_line->op_index == op_index
1515 && seq->last_line->end_sequence == end_sequence)
1516 {
1517 /* We only keep the last entry with the same address and end
1518 sequence. See PR ld/4986. */
1519 if (table->lcl_head == seq->last_line)
1520 table->lcl_head = info;
1521 info->prev_line = seq->last_line->prev_line;
1522 seq->last_line = info;
1523 }
1524 else if (!seq || seq->last_line->end_sequence)
1525 {
1526 /* Start a new line sequence. */
1527 amt = sizeof (struct line_sequence);
1528 seq = (struct line_sequence *) bfd_malloc (amt);
1529 if (seq == NULL)
1530 return FALSE;
1531 seq->low_pc = address;
1532 seq->prev_sequence = table->sequences;
1533 seq->last_line = info;
1534 table->lcl_head = info;
1535 table->sequences = seq;
1536 table->num_sequences++;
1537 }
1538 else if (new_line_sorts_after (info, seq->last_line))
1539 {
1540 /* Normal case: add 'info' to the beginning of the current sequence. */
1541 info->prev_line = seq->last_line;
1542 seq->last_line = info;
1543
1544 /* lcl_head: initialize to head a *possible* sequence at the end. */
1545 if (!table->lcl_head)
1546 table->lcl_head = info;
1547 }
1548 else if (!new_line_sorts_after (info, table->lcl_head)
1549 && (!table->lcl_head->prev_line
1550 || new_line_sorts_after (info, table->lcl_head->prev_line)))
1551 {
1552 /* Abnormal but easy: lcl_head is the head of 'info'. */
1553 info->prev_line = table->lcl_head->prev_line;
1554 table->lcl_head->prev_line = info;
1555 }
1556 else
1557 {
1558 /* Abnormal and hard: Neither 'last_line' nor 'lcl_head'
1559 are valid heads for 'info'. Reset 'lcl_head'. */
1560 struct line_info* li2 = seq->last_line; /* Always non-NULL. */
1561 struct line_info* li1 = li2->prev_line;
1562
1563 while (li1)
1564 {
1565 if (!new_line_sorts_after (info, li2)
1566 && new_line_sorts_after (info, li1))
1567 break;
1568
1569 li2 = li1; /* always non-NULL */
1570 li1 = li1->prev_line;
1571 }
1572 table->lcl_head = li2;
1573 info->prev_line = table->lcl_head->prev_line;
1574 table->lcl_head->prev_line = info;
1575 if (address < seq->low_pc)
1576 seq->low_pc = address;
1577 }
1578 return TRUE;
1579 }
1580
1581 /* Extract a fully qualified filename from a line info table.
1582 The returned string has been malloc'ed and it is the caller's
1583 responsibility to free it. */
1584
1585 static char *
1586 concat_filename (struct line_info_table *table, unsigned int file)
1587 {
1588 char *filename;
1589
1590 if (file - 1 >= table->num_files)
1591 {
1592 /* FILE == 0 means unknown. */
1593 if (file)
1594 _bfd_error_handler
1595 (_("Dwarf Error: mangled line number section (bad file number)."));
1596 return strdup ("<unknown>");
1597 }
1598
1599 filename = table->files[file - 1].name;
1600
1601 if (!IS_ABSOLUTE_PATH (filename))
1602 {
1603 char *dir_name = NULL;
1604 char *subdir_name = NULL;
1605 char *name;
1606 size_t len;
1607
1608 if (table->files[file - 1].dir
1609 /* PR 17512: file: 0317e960. */
1610 && table->files[file - 1].dir <= table->num_dirs
1611 /* PR 17512: file: 7f3d2e4b. */
1612 && table->dirs != NULL)
1613 subdir_name = table->dirs[table->files[file - 1].dir - 1];
1614
1615 if (!subdir_name || !IS_ABSOLUTE_PATH (subdir_name))
1616 dir_name = table->comp_dir;
1617
1618 if (!dir_name)
1619 {
1620 dir_name = subdir_name;
1621 subdir_name = NULL;
1622 }
1623
1624 if (!dir_name)
1625 return strdup (filename);
1626
1627 len = strlen (dir_name) + strlen (filename) + 2;
1628
1629 if (subdir_name)
1630 {
1631 len += strlen (subdir_name) + 1;
1632 name = (char *) bfd_malloc (len);
1633 if (name)
1634 sprintf (name, "%s/%s/%s", dir_name, subdir_name, filename);
1635 }
1636 else
1637 {
1638 name = (char *) bfd_malloc (len);
1639 if (name)
1640 sprintf (name, "%s/%s", dir_name, filename);
1641 }
1642
1643 return name;
1644 }
1645
1646 return strdup (filename);
1647 }
1648
1649 static bfd_boolean
1650 arange_add (const struct comp_unit *unit, struct arange *first_arange,
1651 bfd_vma low_pc, bfd_vma high_pc)
1652 {
1653 struct arange *arange;
1654
1655 /* Ignore empty ranges. */
1656 if (low_pc == high_pc)
1657 return TRUE;
1658
1659 /* If the first arange is empty, use it. */
1660 if (first_arange->high == 0)
1661 {
1662 first_arange->low = low_pc;
1663 first_arange->high = high_pc;
1664 return TRUE;
1665 }
1666
1667 /* Next see if we can cheaply extend an existing range. */
1668 arange = first_arange;
1669 do
1670 {
1671 if (low_pc == arange->high)
1672 {
1673 arange->high = high_pc;
1674 return TRUE;
1675 }
1676 if (high_pc == arange->low)
1677 {
1678 arange->low = low_pc;
1679 return TRUE;
1680 }
1681 arange = arange->next;
1682 }
1683 while (arange);
1684
1685 /* Need to allocate a new arange and insert it into the arange list.
1686 Order isn't significant, so just insert after the first arange. */
1687 arange = (struct arange *) bfd_alloc (unit->abfd, sizeof (*arange));
1688 if (arange == NULL)
1689 return FALSE;
1690 arange->low = low_pc;
1691 arange->high = high_pc;
1692 arange->next = first_arange->next;
1693 first_arange->next = arange;
1694 return TRUE;
1695 }
1696
1697 /* Compare function for line sequences. */
1698
1699 static int
1700 compare_sequences (const void* a, const void* b)
1701 {
1702 const struct line_sequence* seq1 = a;
1703 const struct line_sequence* seq2 = b;
1704
1705 /* Sort by low_pc as the primary key. */
1706 if (seq1->low_pc < seq2->low_pc)
1707 return -1;
1708 if (seq1->low_pc > seq2->low_pc)
1709 return 1;
1710
1711 /* If low_pc values are equal, sort in reverse order of
1712 high_pc, so that the largest region comes first. */
1713 if (seq1->last_line->address < seq2->last_line->address)
1714 return 1;
1715 if (seq1->last_line->address > seq2->last_line->address)
1716 return -1;
1717
1718 if (seq1->last_line->op_index < seq2->last_line->op_index)
1719 return 1;
1720 if (seq1->last_line->op_index > seq2->last_line->op_index)
1721 return -1;
1722
1723 return 0;
1724 }
1725
1726 /* Construct the line information table for quick lookup. */
1727
1728 static bfd_boolean
1729 build_line_info_table (struct line_info_table * table,
1730 struct line_sequence * seq)
1731 {
1732 bfd_size_type amt;
1733 struct line_info** line_info_lookup;
1734 struct line_info* each_line;
1735 unsigned int num_lines;
1736 unsigned int line_index;
1737
1738 if (seq->line_info_lookup != NULL)
1739 return TRUE;
1740
1741 /* Count the number of line information entries. We could do this while
1742 scanning the debug information, but some entries may be added via
1743 lcl_head without having a sequence handy to increment the number of
1744 lines. */
1745 num_lines = 0;
1746 for (each_line = seq->last_line; each_line; each_line = each_line->prev_line)
1747 num_lines++;
1748
1749 if (num_lines == 0)
1750 return TRUE;
1751
1752 /* Allocate space for the line information lookup table. */
1753 amt = sizeof (struct line_info*) * num_lines;
1754 line_info_lookup = (struct line_info**) bfd_alloc (table->abfd, amt);
1755 if (line_info_lookup == NULL)
1756 return FALSE;
1757
1758 /* Create the line information lookup table. */
1759 line_index = num_lines;
1760 for (each_line = seq->last_line; each_line; each_line = each_line->prev_line)
1761 line_info_lookup[--line_index] = each_line;
1762
1763 BFD_ASSERT (line_index == 0);
1764
1765 seq->num_lines = num_lines;
1766 seq->line_info_lookup = line_info_lookup;
1767
1768 return TRUE;
1769 }
1770
1771 /* Sort the line sequences for quick lookup. */
1772
1773 static bfd_boolean
1774 sort_line_sequences (struct line_info_table* table)
1775 {
1776 bfd_size_type amt;
1777 struct line_sequence* sequences;
1778 struct line_sequence* seq;
1779 unsigned int n = 0;
1780 unsigned int num_sequences = table->num_sequences;
1781 bfd_vma last_high_pc;
1782
1783 if (num_sequences == 0)
1784 return TRUE;
1785
1786 /* Allocate space for an array of sequences. */
1787 amt = sizeof (struct line_sequence) * num_sequences;
1788 sequences = (struct line_sequence *) bfd_alloc (table->abfd, amt);
1789 if (sequences == NULL)
1790 return FALSE;
1791
1792 /* Copy the linked list into the array, freeing the original nodes. */
1793 seq = table->sequences;
1794 for (n = 0; n < num_sequences; n++)
1795 {
1796 struct line_sequence* last_seq = seq;
1797
1798 BFD_ASSERT (seq);
1799 sequences[n].low_pc = seq->low_pc;
1800 sequences[n].prev_sequence = NULL;
1801 sequences[n].last_line = seq->last_line;
1802 sequences[n].line_info_lookup = NULL;
1803 sequences[n].num_lines = 0;
1804 seq = seq->prev_sequence;
1805 free (last_seq);
1806 }
1807 BFD_ASSERT (seq == NULL);
1808
1809 qsort (sequences, n, sizeof (struct line_sequence), compare_sequences);
1810
1811 /* Make the list binary-searchable by trimming overlapping entries
1812 and removing nested entries. */
1813 num_sequences = 1;
1814 last_high_pc = sequences[0].last_line->address;
1815 for (n = 1; n < table->num_sequences; n++)
1816 {
1817 if (sequences[n].low_pc < last_high_pc)
1818 {
1819 if (sequences[n].last_line->address <= last_high_pc)
1820 /* Skip nested entries. */
1821 continue;
1822
1823 /* Trim overlapping entries. */
1824 sequences[n].low_pc = last_high_pc;
1825 }
1826 last_high_pc = sequences[n].last_line->address;
1827 if (n > num_sequences)
1828 {
1829 /* Close up the gap. */
1830 sequences[num_sequences].low_pc = sequences[n].low_pc;
1831 sequences[num_sequences].last_line = sequences[n].last_line;
1832 }
1833 num_sequences++;
1834 }
1835
1836 table->sequences = sequences;
1837 table->num_sequences = num_sequences;
1838 return TRUE;
1839 }
1840
1841 /* Add directory to TABLE. CUR_DIR memory ownership is taken by TABLE. */
1842
1843 static bfd_boolean
1844 line_info_add_include_dir (struct line_info_table *table, char *cur_dir)
1845 {
1846 if ((table->num_dirs % DIR_ALLOC_CHUNK) == 0)
1847 {
1848 char **tmp;
1849 bfd_size_type amt;
1850
1851 amt = table->num_dirs + DIR_ALLOC_CHUNK;
1852 amt *= sizeof (char *);
1853
1854 tmp = (char **) bfd_realloc (table->dirs, amt);
1855 if (tmp == NULL)
1856 return FALSE;
1857 table->dirs = tmp;
1858 }
1859
1860 table->dirs[table->num_dirs++] = cur_dir;
1861 return TRUE;
1862 }
1863
1864 static bfd_boolean
1865 line_info_add_include_dir_stub (struct line_info_table *table, char *cur_dir,
1866 unsigned int dir ATTRIBUTE_UNUSED,
1867 unsigned int xtime ATTRIBUTE_UNUSED,
1868 unsigned int size ATTRIBUTE_UNUSED)
1869 {
1870 return line_info_add_include_dir (table, cur_dir);
1871 }
1872
1873 /* Add file to TABLE. CUR_FILE memory ownership is taken by TABLE. */
1874
1875 static bfd_boolean
1876 line_info_add_file_name (struct line_info_table *table, char *cur_file,
1877 unsigned int dir, unsigned int xtime,
1878 unsigned int size)
1879 {
1880 if ((table->num_files % FILE_ALLOC_CHUNK) == 0)
1881 {
1882 struct fileinfo *tmp;
1883 bfd_size_type amt;
1884
1885 amt = table->num_files + FILE_ALLOC_CHUNK;
1886 amt *= sizeof (struct fileinfo);
1887
1888 tmp = (struct fileinfo *) bfd_realloc (table->files, amt);
1889 if (tmp == NULL)
1890 return FALSE;
1891 table->files = tmp;
1892 }
1893
1894 table->files[table->num_files].name = cur_file;
1895 table->files[table->num_files].dir = dir;
1896 table->files[table->num_files].time = xtime;
1897 table->files[table->num_files].size = size;
1898 table->num_files++;
1899 return TRUE;
1900 }
1901
1902 /* Read directory or file name entry format, starting with byte of
1903 format count entries, ULEB128 pairs of entry formats, ULEB128 of
1904 entries count and the entries themselves in the described entry
1905 format. */
1906
1907 static bfd_boolean
1908 read_formatted_entries (struct comp_unit *unit, bfd_byte **bufp,
1909 bfd_byte *buf_end, struct line_info_table *table,
1910 bfd_boolean (*callback) (struct line_info_table *table,
1911 char *cur_file,
1912 unsigned int dir,
1913 unsigned int time,
1914 unsigned int size))
1915 {
1916 bfd *abfd = unit->abfd;
1917 bfd_byte format_count, formati;
1918 bfd_vma data_count, datai;
1919 bfd_byte *buf = *bufp;
1920 bfd_byte *format_header_data;
1921 unsigned int bytes_read;
1922
1923 format_count = read_1_byte (abfd, buf, buf_end);
1924 buf += 1;
1925 format_header_data = buf;
1926 for (formati = 0; formati < format_count; formati++)
1927 {
1928 _bfd_safe_read_leb128 (abfd, buf, &bytes_read, FALSE, buf_end);
1929 buf += bytes_read;
1930 _bfd_safe_read_leb128 (abfd, buf, &bytes_read, FALSE, buf_end);
1931 buf += bytes_read;
1932 }
1933
1934 data_count = _bfd_safe_read_leb128 (abfd, buf, &bytes_read, FALSE, buf_end);
1935 buf += bytes_read;
1936 if (format_count == 0 && data_count != 0)
1937 {
1938 _bfd_error_handler (_("Dwarf Error: Zero format count."));
1939 bfd_set_error (bfd_error_bad_value);
1940 return FALSE;
1941 }
1942
1943 for (datai = 0; datai < data_count; datai++)
1944 {
1945 bfd_byte *format = format_header_data;
1946 struct fileinfo fe;
1947
1948 for (formati = 0; formati < format_count; formati++)
1949 {
1950 bfd_vma content_type, form;
1951 char *string_trash;
1952 char **stringp = &string_trash;
1953 unsigned int uint_trash, *uintp = &uint_trash;
1954
1955 content_type = _bfd_safe_read_leb128 (abfd, format, &bytes_read,
1956 FALSE, buf_end);
1957 format += bytes_read;
1958 switch (content_type)
1959 {
1960 case DW_LNCT_path:
1961 stringp = &fe.name;
1962 break;
1963 case DW_LNCT_directory_index:
1964 uintp = &fe.dir;
1965 break;
1966 case DW_LNCT_timestamp:
1967 uintp = &fe.time;
1968 break;
1969 case DW_LNCT_size:
1970 uintp = &fe.size;
1971 break;
1972 case DW_LNCT_MD5:
1973 break;
1974 default:
1975 _bfd_error_handler
1976 (_("Dwarf Error: Unknown format content type %Lu."),
1977 content_type);
1978 bfd_set_error (bfd_error_bad_value);
1979 return FALSE;
1980 }
1981
1982 form = _bfd_safe_read_leb128 (abfd, format, &bytes_read, FALSE,
1983 buf_end);
1984 format += bytes_read;
1985 switch (form)
1986 {
1987 case DW_FORM_string:
1988 *stringp = read_string (abfd, buf, buf_end, &bytes_read);
1989 buf += bytes_read;
1990 break;
1991
1992 case DW_FORM_line_strp:
1993 *stringp = read_indirect_line_string (unit, buf, buf_end, &bytes_read);
1994 buf += bytes_read;
1995 break;
1996
1997 case DW_FORM_data1:
1998 *uintp = read_1_byte (abfd, buf, buf_end);
1999 buf += 1;
2000 break;
2001
2002 case DW_FORM_data2:
2003 *uintp = read_2_bytes (abfd, buf, buf_end);
2004 buf += 2;
2005 break;
2006
2007 case DW_FORM_data4:
2008 *uintp = read_4_bytes (abfd, buf, buf_end);
2009 buf += 4;
2010 break;
2011
2012 case DW_FORM_data8:
2013 *uintp = read_8_bytes (abfd, buf, buf_end);
2014 buf += 8;
2015 break;
2016
2017 case DW_FORM_udata:
2018 *uintp = _bfd_safe_read_leb128 (abfd, buf, &bytes_read, FALSE,
2019 buf_end);
2020 buf += bytes_read;
2021 break;
2022
2023 case DW_FORM_block:
2024 /* It is valid only for DW_LNCT_timestamp which is ignored by
2025 current GDB. */
2026 break;
2027 }
2028 }
2029
2030 if (!callback (table, fe.name, fe.dir, fe.time, fe.size))
2031 return FALSE;
2032 }
2033
2034 *bufp = buf;
2035 return TRUE;
2036 }
2037
2038 /* Decode the line number information for UNIT. */
2039
2040 static struct line_info_table*
2041 decode_line_info (struct comp_unit *unit, struct dwarf2_debug *stash)
2042 {
2043 bfd *abfd = unit->abfd;
2044 struct line_info_table* table;
2045 bfd_byte *line_ptr;
2046 bfd_byte *line_end;
2047 struct line_head lh;
2048 unsigned int i, bytes_read, offset_size;
2049 char *cur_file, *cur_dir;
2050 unsigned char op_code, extended_op, adj_opcode;
2051 unsigned int exop_len;
2052 bfd_size_type amt;
2053
2054 if (! read_section (abfd, &stash->debug_sections[debug_line],
2055 stash->syms, unit->line_offset,
2056 &stash->dwarf_line_buffer, &stash->dwarf_line_size))
2057 return NULL;
2058
2059 amt = sizeof (struct line_info_table);
2060 table = (struct line_info_table *) bfd_alloc (abfd, amt);
2061 if (table == NULL)
2062 return NULL;
2063 table->abfd = abfd;
2064 table->comp_dir = unit->comp_dir;
2065
2066 table->num_files = 0;
2067 table->files = NULL;
2068
2069 table->num_dirs = 0;
2070 table->dirs = NULL;
2071
2072 table->num_sequences = 0;
2073 table->sequences = NULL;
2074
2075 table->lcl_head = NULL;
2076
2077 if (stash->dwarf_line_size < 16)
2078 {
2079 _bfd_error_handler
2080 (_("Dwarf Error: Line info section is too small (%Ld)"),
2081 stash->dwarf_line_size);
2082 bfd_set_error (bfd_error_bad_value);
2083 return NULL;
2084 }
2085 line_ptr = stash->dwarf_line_buffer + unit->line_offset;
2086 line_end = stash->dwarf_line_buffer + stash->dwarf_line_size;
2087
2088 /* Read in the prologue. */
2089 lh.total_length = read_4_bytes (abfd, line_ptr, line_end);
2090 line_ptr += 4;
2091 offset_size = 4;
2092 if (lh.total_length == 0xffffffff)
2093 {
2094 lh.total_length = read_8_bytes (abfd, line_ptr, line_end);
2095 line_ptr += 8;
2096 offset_size = 8;
2097 }
2098 else if (lh.total_length == 0 && unit->addr_size == 8)
2099 {
2100 /* Handle (non-standard) 64-bit DWARF2 formats. */
2101 lh.total_length = read_4_bytes (abfd, line_ptr, line_end);
2102 line_ptr += 4;
2103 offset_size = 8;
2104 }
2105
2106 if (lh.total_length > (size_t) (line_end - line_ptr))
2107 {
2108 _bfd_error_handler
2109 /* xgettext: c-format */
2110 (_("Dwarf Error: Line info data is bigger (%#Lx)"
2111 " than the space remaining in the section (%#lx)"),
2112 lh.total_length, (unsigned long) (line_end - line_ptr));
2113 bfd_set_error (bfd_error_bad_value);
2114 return NULL;
2115 }
2116
2117 line_end = line_ptr + lh.total_length;
2118
2119 lh.version = read_2_bytes (abfd, line_ptr, line_end);
2120 if (lh.version < 2 || lh.version > 5)
2121 {
2122 _bfd_error_handler
2123 (_("Dwarf Error: Unhandled .debug_line version %d."), lh.version);
2124 bfd_set_error (bfd_error_bad_value);
2125 return NULL;
2126 }
2127 line_ptr += 2;
2128
2129 if (line_ptr + offset_size + (lh.version >= 5 ? 8 : (lh.version >= 4 ? 6 : 5))
2130 >= line_end)
2131 {
2132 _bfd_error_handler
2133 (_("Dwarf Error: Ran out of room reading prologue"));
2134 bfd_set_error (bfd_error_bad_value);
2135 return NULL;
2136 }
2137
2138 if (lh.version >= 5)
2139 {
2140 unsigned int segment_selector_size;
2141
2142 /* Skip address size. */
2143 read_1_byte (abfd, line_ptr, line_end);
2144 line_ptr += 1;
2145
2146 segment_selector_size = read_1_byte (abfd, line_ptr, line_end);
2147 line_ptr += 1;
2148 if (segment_selector_size != 0)
2149 {
2150 _bfd_error_handler
2151 (_("Dwarf Error: Line info unsupported segment selector size %u."),
2152 segment_selector_size);
2153 bfd_set_error (bfd_error_bad_value);
2154 return NULL;
2155 }
2156 }
2157
2158 if (offset_size == 4)
2159 lh.prologue_length = read_4_bytes (abfd, line_ptr, line_end);
2160 else
2161 lh.prologue_length = read_8_bytes (abfd, line_ptr, line_end);
2162 line_ptr += offset_size;
2163
2164 lh.minimum_instruction_length = read_1_byte (abfd, line_ptr, line_end);
2165 line_ptr += 1;
2166
2167 if (lh.version >= 4)
2168 {
2169 lh.maximum_ops_per_insn = read_1_byte (abfd, line_ptr, line_end);
2170 line_ptr += 1;
2171 }
2172 else
2173 lh.maximum_ops_per_insn = 1;
2174
2175 if (lh.maximum_ops_per_insn == 0)
2176 {
2177 _bfd_error_handler
2178 (_("Dwarf Error: Invalid maximum operations per instruction."));
2179 bfd_set_error (bfd_error_bad_value);
2180 return NULL;
2181 }
2182
2183 lh.default_is_stmt = read_1_byte (abfd, line_ptr, line_end);
2184 line_ptr += 1;
2185
2186 lh.line_base = read_1_signed_byte (abfd, line_ptr, line_end);
2187 line_ptr += 1;
2188
2189 lh.line_range = read_1_byte (abfd, line_ptr, line_end);
2190 line_ptr += 1;
2191
2192 lh.opcode_base = read_1_byte (abfd, line_ptr, line_end);
2193 line_ptr += 1;
2194
2195 if (line_ptr + (lh.opcode_base - 1) >= line_end)
2196 {
2197 _bfd_error_handler (_("Dwarf Error: Ran out of room reading opcodes"));
2198 bfd_set_error (bfd_error_bad_value);
2199 return NULL;
2200 }
2201
2202 amt = lh.opcode_base * sizeof (unsigned char);
2203 lh.standard_opcode_lengths = (unsigned char *) bfd_alloc (abfd, amt);
2204
2205 lh.standard_opcode_lengths[0] = 1;
2206
2207 for (i = 1; i < lh.opcode_base; ++i)
2208 {
2209 lh.standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr, line_end);
2210 line_ptr += 1;
2211 }
2212
2213 if (lh.version >= 5)
2214 {
2215 /* Read directory table. */
2216 if (!read_formatted_entries (unit, &line_ptr, line_end, table,
2217 line_info_add_include_dir_stub))
2218 goto fail;
2219
2220 /* Read file name table. */
2221 if (!read_formatted_entries (unit, &line_ptr, line_end, table,
2222 line_info_add_file_name))
2223 goto fail;
2224 }
2225 else
2226 {
2227 /* Read directory table. */
2228 while ((cur_dir = read_string (abfd, line_ptr, line_end, &bytes_read)) != NULL)
2229 {
2230 line_ptr += bytes_read;
2231
2232 if (!line_info_add_include_dir (table, cur_dir))
2233 goto fail;
2234 }
2235
2236 line_ptr += bytes_read;
2237
2238 /* Read file name table. */
2239 while ((cur_file = read_string (abfd, line_ptr, line_end, &bytes_read)) != NULL)
2240 {
2241 unsigned int dir, xtime, size;
2242
2243 line_ptr += bytes_read;
2244
2245 dir = _bfd_safe_read_leb128 (abfd, line_ptr, &bytes_read, FALSE, line_end);
2246 line_ptr += bytes_read;
2247 xtime = _bfd_safe_read_leb128 (abfd, line_ptr, &bytes_read, FALSE, line_end);
2248 line_ptr += bytes_read;
2249 size = _bfd_safe_read_leb128 (abfd, line_ptr, &bytes_read, FALSE, line_end);
2250 line_ptr += bytes_read;
2251
2252 if (!line_info_add_file_name (table, cur_file, dir, xtime, size))
2253 goto fail;
2254 }
2255
2256 line_ptr += bytes_read;
2257 }
2258
2259 /* Read the statement sequences until there's nothing left. */
2260 while (line_ptr < line_end)
2261 {
2262 /* State machine registers. */
2263 bfd_vma address = 0;
2264 unsigned char op_index = 0;
2265 char * filename = table->num_files ? concat_filename (table, 1) : NULL;
2266 unsigned int line = 1;
2267 unsigned int column = 0;
2268 unsigned int discriminator = 0;
2269 int is_stmt = lh.default_is_stmt;
2270 int end_sequence = 0;
2271 /* eraxxon@alumni.rice.edu: Against the DWARF2 specs, some
2272 compilers generate address sequences that are wildly out of
2273 order using DW_LNE_set_address (e.g. Intel C++ 6.0 compiler
2274 for ia64-Linux). Thus, to determine the low and high
2275 address, we must compare on every DW_LNS_copy, etc. */
2276 bfd_vma low_pc = (bfd_vma) -1;
2277 bfd_vma high_pc = 0;
2278
2279 /* Decode the table. */
2280 while (!end_sequence && line_ptr < line_end)
2281 {
2282 op_code = read_1_byte (abfd, line_ptr, line_end);
2283 line_ptr += 1;
2284
2285 if (op_code >= lh.opcode_base)
2286 {
2287 /* Special operand. */
2288 adj_opcode = op_code - lh.opcode_base;
2289 if (lh.line_range == 0)
2290 goto line_fail;
2291 if (lh.maximum_ops_per_insn == 1)
2292 address += (adj_opcode / lh.line_range
2293 * lh.minimum_instruction_length);
2294 else
2295 {
2296 address += ((op_index + adj_opcode / lh.line_range)
2297 / lh.maximum_ops_per_insn
2298 * lh.minimum_instruction_length);
2299 op_index = ((op_index + adj_opcode / lh.line_range)
2300 % lh.maximum_ops_per_insn);
2301 }
2302 line += lh.line_base + (adj_opcode % lh.line_range);
2303 /* Append row to matrix using current values. */
2304 if (!add_line_info (table, address, op_index, filename,
2305 line, column, discriminator, 0))
2306 goto line_fail;
2307 discriminator = 0;
2308 if (address < low_pc)
2309 low_pc = address;
2310 if (address > high_pc)
2311 high_pc = address;
2312 }
2313 else switch (op_code)
2314 {
2315 case DW_LNS_extended_op:
2316 exop_len = _bfd_safe_read_leb128 (abfd, line_ptr, &bytes_read,
2317 FALSE, line_end);
2318 line_ptr += bytes_read;
2319 extended_op = read_1_byte (abfd, line_ptr, line_end);
2320 line_ptr += 1;
2321
2322 switch (extended_op)
2323 {
2324 case DW_LNE_end_sequence:
2325 end_sequence = 1;
2326 if (!add_line_info (table, address, op_index, filename, line,
2327 column, discriminator, end_sequence))
2328 goto line_fail;
2329 discriminator = 0;
2330 if (address < low_pc)
2331 low_pc = address;
2332 if (address > high_pc)
2333 high_pc = address;
2334 if (!arange_add (unit, &unit->arange, low_pc, high_pc))
2335 goto line_fail;
2336 break;
2337 case DW_LNE_set_address:
2338 address = read_address (unit, line_ptr, line_end);
2339 op_index = 0;
2340 line_ptr += unit->addr_size;
2341 break;
2342 case DW_LNE_define_file:
2343 cur_file = read_string (abfd, line_ptr, line_end, &bytes_read);
2344 line_ptr += bytes_read;
2345 if ((table->num_files % FILE_ALLOC_CHUNK) == 0)
2346 {
2347 struct fileinfo *tmp;
2348
2349 amt = table->num_files + FILE_ALLOC_CHUNK;
2350 amt *= sizeof (struct fileinfo);
2351 tmp = (struct fileinfo *) bfd_realloc (table->files, amt);
2352 if (tmp == NULL)
2353 goto line_fail;
2354 table->files = tmp;
2355 }
2356 table->files[table->num_files].name = cur_file;
2357 table->files[table->num_files].dir =
2358 _bfd_safe_read_leb128 (abfd, line_ptr, &bytes_read,
2359 FALSE, line_end);
2360 line_ptr += bytes_read;
2361 table->files[table->num_files].time =
2362 _bfd_safe_read_leb128 (abfd, line_ptr, &bytes_read,
2363 FALSE, line_end);
2364 line_ptr += bytes_read;
2365 table->files[table->num_files].size =
2366 _bfd_safe_read_leb128 (abfd, line_ptr, &bytes_read,
2367 FALSE, line_end);
2368 line_ptr += bytes_read;
2369 table->num_files++;
2370 break;
2371 case DW_LNE_set_discriminator:
2372 discriminator =
2373 _bfd_safe_read_leb128 (abfd, line_ptr, &bytes_read,
2374 FALSE, line_end);
2375 line_ptr += bytes_read;
2376 break;
2377 case DW_LNE_HP_source_file_correlation:
2378 line_ptr += exop_len - 1;
2379 break;
2380 default:
2381 _bfd_error_handler
2382 (_("Dwarf Error: mangled line number section."));
2383 bfd_set_error (bfd_error_bad_value);
2384 line_fail:
2385 if (filename != NULL)
2386 free (filename);
2387 goto fail;
2388 }
2389 break;
2390 case DW_LNS_copy:
2391 if (!add_line_info (table, address, op_index,
2392 filename, line, column, discriminator, 0))
2393 goto line_fail;
2394 discriminator = 0;
2395 if (address < low_pc)
2396 low_pc = address;
2397 if (address > high_pc)
2398 high_pc = address;
2399 break;
2400 case DW_LNS_advance_pc:
2401 if (lh.maximum_ops_per_insn == 1)
2402 address += (lh.minimum_instruction_length
2403 * _bfd_safe_read_leb128 (abfd, line_ptr,
2404 &bytes_read,
2405 FALSE, line_end));
2406 else
2407 {
2408 bfd_vma adjust = _bfd_safe_read_leb128 (abfd, line_ptr,
2409 &bytes_read,
2410 FALSE, line_end);
2411 address = ((op_index + adjust) / lh.maximum_ops_per_insn
2412 * lh.minimum_instruction_length);
2413 op_index = (op_index + adjust) % lh.maximum_ops_per_insn;
2414 }
2415 line_ptr += bytes_read;
2416 break;
2417 case DW_LNS_advance_line:
2418 line += _bfd_safe_read_leb128 (abfd, line_ptr, &bytes_read,
2419 TRUE, line_end);
2420 line_ptr += bytes_read;
2421 break;
2422 case DW_LNS_set_file:
2423 {
2424 unsigned int file;
2425
2426 /* The file and directory tables are 0
2427 based, the references are 1 based. */
2428 file = _bfd_safe_read_leb128 (abfd, line_ptr, &bytes_read,
2429 FALSE, line_end);
2430 line_ptr += bytes_read;
2431 if (filename)
2432 free (filename);
2433 filename = concat_filename (table, file);
2434 break;
2435 }
2436 case DW_LNS_set_column:
2437 column = _bfd_safe_read_leb128 (abfd, line_ptr, &bytes_read,
2438 FALSE, line_end);
2439 line_ptr += bytes_read;
2440 break;
2441 case DW_LNS_negate_stmt:
2442 is_stmt = (!is_stmt);
2443 break;
2444 case DW_LNS_set_basic_block:
2445 break;
2446 case DW_LNS_const_add_pc:
2447 if (lh.line_range == 0)
2448 goto line_fail;
2449 if (lh.maximum_ops_per_insn == 1)
2450 address += (lh.minimum_instruction_length
2451 * ((255 - lh.opcode_base) / lh.line_range));
2452 else
2453 {
2454 bfd_vma adjust = ((255 - lh.opcode_base) / lh.line_range);
2455 address += (lh.minimum_instruction_length
2456 * ((op_index + adjust)
2457 / lh.maximum_ops_per_insn));
2458 op_index = (op_index + adjust) % lh.maximum_ops_per_insn;
2459 }
2460 break;
2461 case DW_LNS_fixed_advance_pc:
2462 address += read_2_bytes (abfd, line_ptr, line_end);
2463 op_index = 0;
2464 line_ptr += 2;
2465 break;
2466 default:
2467 /* Unknown standard opcode, ignore it. */
2468 for (i = 0; i < lh.standard_opcode_lengths[op_code]; i++)
2469 {
2470 (void) _bfd_safe_read_leb128 (abfd, line_ptr, &bytes_read,
2471 FALSE, line_end);
2472 line_ptr += bytes_read;
2473 }
2474 break;
2475 }
2476 }
2477
2478 if (filename)
2479 free (filename);
2480 }
2481
2482 if (sort_line_sequences (table))
2483 return table;
2484
2485 fail:
2486 while (table->sequences != NULL)
2487 {
2488 struct line_sequence* seq = table->sequences;
2489 table->sequences = table->sequences->prev_sequence;
2490 free (seq);
2491 }
2492 if (table->files != NULL)
2493 free (table->files);
2494 if (table->dirs != NULL)
2495 free (table->dirs);
2496 return NULL;
2497 }
2498
2499 /* If ADDR is within TABLE set the output parameters and return the
2500 range of addresses covered by the entry used to fill them out.
2501 Otherwise set * FILENAME_PTR to NULL and return 0.
2502 The parameters FILENAME_PTR, LINENUMBER_PTR and DISCRIMINATOR_PTR
2503 are pointers to the objects to be filled in. */
2504
2505 static bfd_vma
2506 lookup_address_in_line_info_table (struct line_info_table *table,
2507 bfd_vma addr,
2508 const char **filename_ptr,
2509 unsigned int *linenumber_ptr,
2510 unsigned int *discriminator_ptr)
2511 {
2512 struct line_sequence *seq = NULL;
2513 struct line_info *info;
2514 int low, high, mid;
2515
2516 /* Binary search the array of sequences. */
2517 low = 0;
2518 high = table->num_sequences;
2519 while (low < high)
2520 {
2521 mid = (low + high) / 2;
2522 seq = &table->sequences[mid];
2523 if (addr < seq->low_pc)
2524 high = mid;
2525 else if (addr >= seq->last_line->address)
2526 low = mid + 1;
2527 else
2528 break;
2529 }
2530
2531 /* Check for a valid sequence. */
2532 if (!seq || addr < seq->low_pc || addr >= seq->last_line->address)
2533 goto fail;
2534
2535 if (!build_line_info_table (table, seq))
2536 goto fail;
2537
2538 /* Binary search the array of line information. */
2539 low = 0;
2540 high = seq->num_lines;
2541 info = NULL;
2542 while (low < high)
2543 {
2544 mid = (low + high) / 2;
2545 info = seq->line_info_lookup[mid];
2546 if (addr < info->address)
2547 high = mid;
2548 else if (addr >= seq->line_info_lookup[mid + 1]->address)
2549 low = mid + 1;
2550 else
2551 break;
2552 }
2553
2554 /* Check for a valid line information entry. */
2555 if (info
2556 && addr >= info->address
2557 && addr < seq->line_info_lookup[mid + 1]->address
2558 && !(info->end_sequence || info == seq->last_line))
2559 {
2560 *filename_ptr = info->filename;
2561 *linenumber_ptr = info->line;
2562 if (discriminator_ptr)
2563 *discriminator_ptr = info->discriminator;
2564 return seq->last_line->address - seq->low_pc;
2565 }
2566
2567 fail:
2568 *filename_ptr = NULL;
2569 return 0;
2570 }
2571
2572 /* Read in the .debug_ranges section for future reference. */
2573
2574 static bfd_boolean
2575 read_debug_ranges (struct comp_unit * unit)
2576 {
2577 struct dwarf2_debug * stash = unit->stash;
2578
2579 return read_section (unit->abfd, &stash->debug_sections[debug_ranges],
2580 stash->syms, 0,
2581 &stash->dwarf_ranges_buffer,
2582 &stash->dwarf_ranges_size);
2583 }
2584
2585 /* Function table functions. */
2586
2587 static int
2588 compare_lookup_funcinfos (const void * a, const void * b)
2589 {
2590 const struct lookup_funcinfo * lookup1 = a;
2591 const struct lookup_funcinfo * lookup2 = b;
2592
2593 if (lookup1->low_addr < lookup2->low_addr)
2594 return -1;
2595 if (lookup1->low_addr > lookup2->low_addr)
2596 return 1;
2597 if (lookup1->high_addr < lookup2->high_addr)
2598 return -1;
2599 if (lookup1->high_addr > lookup2->high_addr)
2600 return 1;
2601
2602 return 0;
2603 }
2604
2605 static bfd_boolean
2606 build_lookup_funcinfo_table (struct comp_unit * unit)
2607 {
2608 struct lookup_funcinfo *lookup_funcinfo_table = unit->lookup_funcinfo_table;
2609 unsigned int number_of_functions = unit->number_of_functions;
2610 struct funcinfo *each;
2611 struct lookup_funcinfo *entry;
2612 size_t func_index;
2613 struct arange *range;
2614 bfd_vma low_addr, high_addr;
2615
2616 if (lookup_funcinfo_table || number_of_functions == 0)
2617 return TRUE;
2618
2619 /* Create the function info lookup table. */
2620 lookup_funcinfo_table = (struct lookup_funcinfo *)
2621 bfd_malloc (number_of_functions * sizeof (struct lookup_funcinfo));
2622 if (lookup_funcinfo_table == NULL)
2623 return FALSE;
2624
2625 /* Populate the function info lookup table. */
2626 func_index = number_of_functions;
2627 for (each = unit->function_table; each; each = each->prev_func)
2628 {
2629 entry = &lookup_funcinfo_table[--func_index];
2630 entry->funcinfo = each;
2631
2632 /* Calculate the lowest and highest address for this function entry. */
2633 low_addr = entry->funcinfo->arange.low;
2634 high_addr = entry->funcinfo->arange.high;
2635
2636 for (range = entry->funcinfo->arange.next; range; range = range->next)
2637 {
2638 if (range->low < low_addr)
2639 low_addr = range->low;
2640 if (range->high > high_addr)
2641 high_addr = range->high;
2642 }
2643
2644 entry->low_addr = low_addr;
2645 entry->high_addr = high_addr;
2646 }
2647
2648 BFD_ASSERT (func_index == 0);
2649
2650 /* Sort the function by address. */
2651 qsort (lookup_funcinfo_table,
2652 number_of_functions,
2653 sizeof (struct lookup_funcinfo),
2654 compare_lookup_funcinfos);
2655
2656 /* Calculate the high watermark for each function in the lookup table. */
2657 high_addr = lookup_funcinfo_table[0].high_addr;
2658 for (func_index = 1; func_index < number_of_functions; func_index++)
2659 {
2660 entry = &lookup_funcinfo_table[func_index];
2661 if (entry->high_addr > high_addr)
2662 high_addr = entry->high_addr;
2663 else
2664 entry->high_addr = high_addr;
2665 }
2666
2667 unit->lookup_funcinfo_table = lookup_funcinfo_table;
2668 return TRUE;
2669 }
2670
2671 /* If ADDR is within UNIT's function tables, set FUNCTION_PTR, and return
2672 TRUE. Note that we need to find the function that has the smallest range
2673 that contains ADDR, to handle inlined functions without depending upon
2674 them being ordered in TABLE by increasing range. */
2675
2676 static bfd_boolean
2677 lookup_address_in_function_table (struct comp_unit *unit,
2678 bfd_vma addr,
2679 struct funcinfo **function_ptr)
2680 {
2681 unsigned int number_of_functions = unit->number_of_functions;
2682 struct lookup_funcinfo* lookup_funcinfo = NULL;
2683 struct funcinfo* funcinfo = NULL;
2684 struct funcinfo* best_fit = NULL;
2685 bfd_vma best_fit_len = 0;
2686 bfd_size_type low, high, mid, first;
2687 struct arange *arange;
2688
2689 if (number_of_functions == 0)
2690 return FALSE;
2691
2692 if (!build_lookup_funcinfo_table (unit))
2693 return FALSE;
2694
2695 if (unit->lookup_funcinfo_table[number_of_functions - 1].high_addr < addr)
2696 return FALSE;
2697
2698 /* Find the first function in the lookup table which may contain the
2699 specified address. */
2700 low = 0;
2701 high = number_of_functions;
2702 first = high;
2703 while (low < high)
2704 {
2705 mid = (low + high) / 2;
2706 lookup_funcinfo = &unit->lookup_funcinfo_table[mid];
2707 if (addr < lookup_funcinfo->low_addr)
2708 high = mid;
2709 else if (addr >= lookup_funcinfo->high_addr)
2710 low = mid + 1;
2711 else
2712 high = first = mid;
2713 }
2714
2715 /* Find the 'best' match for the address. The prior algorithm defined the
2716 best match as the function with the smallest address range containing
2717 the specified address. This definition should probably be changed to the
2718 innermost inline routine containing the address, but right now we want
2719 to get the same results we did before. */
2720 while (first < number_of_functions)
2721 {
2722 if (addr < unit->lookup_funcinfo_table[first].low_addr)
2723 break;
2724 funcinfo = unit->lookup_funcinfo_table[first].funcinfo;
2725
2726 for (arange = &funcinfo->arange; arange; arange = arange->next)
2727 {
2728 if (addr < arange->low || addr >= arange->high)
2729 continue;
2730
2731 if (!best_fit
2732 || arange->high - arange->low < best_fit_len
2733 /* The following comparison is designed to return the same
2734 match as the previous algorithm for routines which have the
2735 same best fit length. */
2736 || (arange->high - arange->low == best_fit_len
2737 && funcinfo > best_fit))
2738 {
2739 best_fit = funcinfo;
2740 best_fit_len = arange->high - arange->low;
2741 }
2742 }
2743
2744 first++;
2745 }
2746
2747 if (!best_fit)
2748 return FALSE;
2749
2750 *function_ptr = best_fit;
2751 return TRUE;
2752 }
2753
2754 /* If SYM at ADDR is within function table of UNIT, set FILENAME_PTR
2755 and LINENUMBER_PTR, and return TRUE. */
2756
2757 static bfd_boolean
2758 lookup_symbol_in_function_table (struct comp_unit *unit,
2759 asymbol *sym,
2760 bfd_vma addr,
2761 const char **filename_ptr,
2762 unsigned int *linenumber_ptr)
2763 {
2764 struct funcinfo* each_func;
2765 struct funcinfo* best_fit = NULL;
2766 bfd_vma best_fit_len = 0;
2767 struct arange *arange;
2768 const char *name = bfd_asymbol_name (sym);
2769 asection *sec = bfd_get_section (sym);
2770
2771 for (each_func = unit->function_table;
2772 each_func;
2773 each_func = each_func->prev_func)
2774 {
2775 for (arange = &each_func->arange;
2776 arange;
2777 arange = arange->next)
2778 {
2779 if ((!each_func->sec || each_func->sec == sec)
2780 && addr >= arange->low
2781 && addr < arange->high
2782 && each_func->name
2783 && strcmp (name, each_func->name) == 0
2784 && (!best_fit
2785 || arange->high - arange->low < best_fit_len))
2786 {
2787 best_fit = each_func;
2788 best_fit_len = arange->high - arange->low;
2789 }
2790 }
2791 }
2792
2793 if (best_fit)
2794 {
2795 best_fit->sec = sec;
2796 *filename_ptr = best_fit->file;
2797 *linenumber_ptr = best_fit->line;
2798 return TRUE;
2799 }
2800 else
2801 return FALSE;
2802 }
2803
2804 /* Variable table functions. */
2805
2806 /* If SYM is within variable table of UNIT, set FILENAME_PTR and
2807 LINENUMBER_PTR, and return TRUE. */
2808
2809 static bfd_boolean
2810 lookup_symbol_in_variable_table (struct comp_unit *unit,
2811 asymbol *sym,
2812 bfd_vma addr,
2813 const char **filename_ptr,
2814 unsigned int *linenumber_ptr)
2815 {
2816 const char *name = bfd_asymbol_name (sym);
2817 asection *sec = bfd_get_section (sym);
2818 struct varinfo* each;
2819
2820 for (each = unit->variable_table; each; each = each->prev_var)
2821 if (each->stack == 0
2822 && each->file != NULL
2823 && each->name != NULL
2824 && each->addr == addr
2825 && (!each->sec || each->sec == sec)
2826 && strcmp (name, each->name) == 0)
2827 break;
2828
2829 if (each)
2830 {
2831 each->sec = sec;
2832 *filename_ptr = each->file;
2833 *linenumber_ptr = each->line;
2834 return TRUE;
2835 }
2836
2837 return FALSE;
2838 }
2839
2840 static bfd_boolean
2841 find_abstract_instance_name (struct comp_unit *unit,
2842 bfd_byte *orig_info_ptr,
2843 struct attribute *attr_ptr,
2844 const char **pname,
2845 bfd_boolean *is_linkage)
2846 {
2847 bfd *abfd = unit->abfd;
2848 bfd_byte *info_ptr;
2849 bfd_byte *info_ptr_end;
2850 unsigned int abbrev_number, bytes_read, i;
2851 struct abbrev_info *abbrev;
2852 bfd_uint64_t die_ref = attr_ptr->u.val;
2853 struct attribute attr;
2854 const char *name = NULL;
2855
2856 /* DW_FORM_ref_addr can reference an entry in a different CU. It
2857 is an offset from the .debug_info section, not the current CU. */
2858 if (attr_ptr->form == DW_FORM_ref_addr)
2859 {
2860 /* We only support DW_FORM_ref_addr within the same file, so
2861 any relocations should be resolved already. */
2862 if (!die_ref)
2863 {
2864 _bfd_error_handler
2865 (_("Dwarf Error: Abstract instance DIE ref zero."));
2866 bfd_set_error (bfd_error_bad_value);
2867 return FALSE;
2868 }
2869
2870 info_ptr = unit->sec_info_ptr + die_ref;
2871 info_ptr_end = unit->end_ptr;
2872
2873 /* Now find the CU containing this pointer. */
2874 if (info_ptr >= unit->info_ptr_unit && info_ptr < unit->end_ptr)
2875 ;
2876 else
2877 {
2878 /* Check other CUs to see if they contain the abbrev. */
2879 struct comp_unit * u;
2880
2881 for (u = unit->prev_unit; u != NULL; u = u->prev_unit)
2882 if (info_ptr >= u->info_ptr_unit && info_ptr < u->end_ptr)
2883 break;
2884
2885 if (u == NULL)
2886 for (u = unit->next_unit; u != NULL; u = u->next_unit)
2887 if (info_ptr >= u->info_ptr_unit && info_ptr < u->end_ptr)
2888 break;
2889
2890 if (u)
2891 unit = u;
2892 /* else FIXME: What do we do now ? */
2893 }
2894 }
2895 else if (attr_ptr->form == DW_FORM_GNU_ref_alt)
2896 {
2897 info_ptr = read_alt_indirect_ref (unit, die_ref);
2898 if (info_ptr == NULL)
2899 {
2900 _bfd_error_handler
2901 (_("Dwarf Error: Unable to read alt ref %llu."),
2902 (long long) die_ref);
2903 bfd_set_error (bfd_error_bad_value);
2904 return FALSE;
2905 }
2906 info_ptr_end = (unit->stash->alt_dwarf_info_buffer
2907 + unit->stash->alt_dwarf_info_size);
2908
2909 /* FIXME: Do we need to locate the correct CU, in a similar
2910 fashion to the code in the DW_FORM_ref_addr case above ? */
2911 }
2912 else
2913 {
2914 info_ptr = unit->info_ptr_unit + die_ref;
2915 info_ptr_end = unit->end_ptr;
2916 }
2917
2918 abbrev_number = _bfd_safe_read_leb128 (abfd, info_ptr, &bytes_read,
2919 FALSE, info_ptr_end);
2920 info_ptr += bytes_read;
2921
2922 if (abbrev_number)
2923 {
2924 abbrev = lookup_abbrev (abbrev_number, unit->abbrevs);
2925 if (! abbrev)
2926 {
2927 _bfd_error_handler
2928 (_("Dwarf Error: Could not find abbrev number %u."), abbrev_number);
2929 bfd_set_error (bfd_error_bad_value);
2930 return FALSE;
2931 }
2932 else
2933 {
2934 for (i = 0; i < abbrev->num_attrs; ++i)
2935 {
2936 info_ptr = read_attribute (&attr, &abbrev->attrs[i], unit,
2937 info_ptr, info_ptr_end);
2938 if (info_ptr == NULL)
2939 break;
2940 /* It doesn't ever make sense for DW_AT_specification to
2941 refer to the same DIE. Stop simple recursion. */
2942 if (info_ptr == orig_info_ptr)
2943 {
2944 _bfd_error_handler
2945 (_("Dwarf Error: Abstract instance recursion detected."));
2946 bfd_set_error (bfd_error_bad_value);
2947 return FALSE;
2948 }
2949 switch (attr.name)
2950 {
2951 case DW_AT_name:
2952 /* Prefer DW_AT_MIPS_linkage_name or DW_AT_linkage_name
2953 over DW_AT_name. */
2954 if (name == NULL && is_str_attr (attr.form))
2955 {
2956 name = attr.u.str;
2957 if (non_mangled (unit->lang))
2958 *is_linkage = TRUE;
2959 }
2960 break;
2961 case DW_AT_specification:
2962 if (!find_abstract_instance_name (unit, info_ptr, &attr,
2963 pname, is_linkage))
2964 return FALSE;
2965 break;
2966 case DW_AT_linkage_name:
2967 case DW_AT_MIPS_linkage_name:
2968 /* PR 16949: Corrupt debug info can place
2969 non-string forms into these attributes. */
2970 if (is_str_attr (attr.form))
2971 {
2972 name = attr.u.str;
2973 *is_linkage = TRUE;
2974 }
2975 break;
2976 default:
2977 break;
2978 }
2979 }
2980 }
2981 }
2982 *pname = name;
2983 return TRUE;
2984 }
2985
2986 static bfd_boolean
2987 read_rangelist (struct comp_unit *unit, struct arange *arange,
2988 bfd_uint64_t offset)
2989 {
2990 bfd_byte *ranges_ptr;
2991 bfd_byte *ranges_end;
2992 bfd_vma base_address = unit->base_address;
2993
2994 if (! unit->stash->dwarf_ranges_buffer)
2995 {
2996 if (! read_debug_ranges (unit))
2997 return FALSE;
2998 }
2999
3000 ranges_ptr = unit->stash->dwarf_ranges_buffer + offset;
3001 if (ranges_ptr < unit->stash->dwarf_ranges_buffer)
3002 return FALSE;
3003 ranges_end = unit->stash->dwarf_ranges_buffer + unit->stash->dwarf_ranges_size;
3004
3005 for (;;)
3006 {
3007 bfd_vma low_pc;
3008 bfd_vma high_pc;
3009
3010 /* PR 17512: file: 62cada7d. */
3011 if (ranges_ptr + 2 * unit->addr_size > ranges_end)
3012 return FALSE;
3013
3014 low_pc = read_address (unit, ranges_ptr, ranges_end);
3015 ranges_ptr += unit->addr_size;
3016 high_pc = read_address (unit, ranges_ptr, ranges_end);
3017 ranges_ptr += unit->addr_size;
3018
3019 if (low_pc == 0 && high_pc == 0)
3020 break;
3021 if (low_pc == -1UL && high_pc != -1UL)
3022 base_address = high_pc;
3023 else
3024 {
3025 if (!arange_add (unit, arange,
3026 base_address + low_pc, base_address + high_pc))
3027 return FALSE;
3028 }
3029 }
3030 return TRUE;
3031 }
3032
3033 /* DWARF2 Compilation unit functions. */
3034
3035 /* Scan over each die in a comp. unit looking for functions to add
3036 to the function table and variables to the variable table. */
3037
3038 static bfd_boolean
3039 scan_unit_for_symbols (struct comp_unit *unit)
3040 {
3041 bfd *abfd = unit->abfd;
3042 bfd_byte *info_ptr = unit->first_child_die_ptr;
3043 bfd_byte *info_ptr_end = unit->stash->info_ptr_end;
3044 int nesting_level = 0;
3045 struct nest_funcinfo {
3046 struct funcinfo *func;
3047 } *nested_funcs;
3048 int nested_funcs_size;
3049
3050 /* Maintain a stack of in-scope functions and inlined functions, which we
3051 can use to set the caller_func field. */
3052 nested_funcs_size = 32;
3053 nested_funcs = (struct nest_funcinfo *)
3054 bfd_malloc (nested_funcs_size * sizeof (*nested_funcs));
3055 if (nested_funcs == NULL)
3056 return FALSE;
3057 nested_funcs[nesting_level].func = 0;
3058
3059 while (nesting_level >= 0)
3060 {
3061 unsigned int abbrev_number, bytes_read, i;
3062 struct abbrev_info *abbrev;
3063 struct attribute attr;
3064 struct funcinfo *func;
3065 struct varinfo *var;
3066 bfd_vma low_pc = 0;
3067 bfd_vma high_pc = 0;
3068 bfd_boolean high_pc_relative = FALSE;
3069
3070 /* PR 17512: file: 9f405d9d. */
3071 if (info_ptr >= info_ptr_end)
3072 goto fail;
3073
3074 abbrev_number = _bfd_safe_read_leb128 (abfd, info_ptr, &bytes_read,
3075 FALSE, info_ptr_end);
3076 info_ptr += bytes_read;
3077
3078 if (! abbrev_number)
3079 {
3080 nesting_level--;
3081 continue;
3082 }
3083
3084 abbrev = lookup_abbrev (abbrev_number, unit->abbrevs);
3085 if (! abbrev)
3086 {
3087 static unsigned int previous_failed_abbrev = -1U;
3088
3089 /* Avoid multiple reports of the same missing abbrev. */
3090 if (abbrev_number != previous_failed_abbrev)
3091 {
3092 _bfd_error_handler
3093 (_("Dwarf Error: Could not find abbrev number %u."),
3094 abbrev_number);
3095 previous_failed_abbrev = abbrev_number;
3096 }
3097 bfd_set_error (bfd_error_bad_value);
3098 goto fail;
3099 }
3100
3101 var = NULL;
3102 if (abbrev->tag == DW_TAG_subprogram
3103 || abbrev->tag == DW_TAG_entry_point
3104 || abbrev->tag == DW_TAG_inlined_subroutine)
3105 {
3106 bfd_size_type amt = sizeof (struct funcinfo);
3107 func = (struct funcinfo *) bfd_zalloc (abfd, amt);
3108 if (func == NULL)
3109 goto fail;
3110 func->tag = abbrev->tag;
3111 func->prev_func = unit->function_table;
3112 unit->function_table = func;
3113 unit->number_of_functions++;
3114 BFD_ASSERT (!unit->cached);
3115
3116 if (func->tag == DW_TAG_inlined_subroutine)
3117 for (i = nesting_level; i-- != 0; )
3118 if (nested_funcs[i].func)
3119 {
3120 func->caller_func = nested_funcs[i].func;
3121 break;
3122 }
3123 nested_funcs[nesting_level].func = func;
3124 }
3125 else
3126 {
3127 func = NULL;
3128 if (abbrev->tag == DW_TAG_variable)
3129 {
3130 bfd_size_type amt = sizeof (struct varinfo);
3131 var = (struct varinfo *) bfd_zalloc (abfd, amt);
3132 if (var == NULL)
3133 goto fail;
3134 var->tag = abbrev->tag;
3135 var->stack = 1;
3136 var->prev_var = unit->variable_table;
3137 unit->variable_table = var;
3138 /* PR 18205: Missing debug information can cause this
3139 var to be attached to an already cached unit. */
3140 }
3141
3142 /* No inline function in scope at this nesting level. */
3143 nested_funcs[nesting_level].func = 0;
3144 }
3145
3146 for (i = 0; i < abbrev->num_attrs; ++i)
3147 {
3148 info_ptr = read_attribute (&attr, &abbrev->attrs[i],
3149 unit, info_ptr, info_ptr_end);
3150 if (info_ptr == NULL)
3151 goto fail;
3152
3153 if (func)
3154 {
3155 switch (attr.name)
3156 {
3157 case DW_AT_call_file:
3158 func->caller_file = concat_filename (unit->line_table,
3159 attr.u.val);
3160 break;
3161
3162 case DW_AT_call_line:
3163 func->caller_line = attr.u.val;
3164 break;
3165
3166 case DW_AT_abstract_origin:
3167 case DW_AT_specification:
3168 if (!find_abstract_instance_name (unit, info_ptr, &attr,
3169 &func->name,
3170 &func->is_linkage))
3171 goto fail;
3172 break;
3173
3174 case DW_AT_name:
3175 /* Prefer DW_AT_MIPS_linkage_name or DW_AT_linkage_name
3176 over DW_AT_name. */
3177 if (func->name == NULL && is_str_attr (attr.form))
3178 {
3179 func->name = attr.u.str;
3180 if (non_mangled (unit->lang))
3181 func->is_linkage = TRUE;
3182 }
3183 break;
3184
3185 case DW_AT_linkage_name:
3186 case DW_AT_MIPS_linkage_name:
3187 /* PR 16949: Corrupt debug info can place
3188 non-string forms into these attributes. */
3189 if (is_str_attr (attr.form))
3190 {
3191 func->name = attr.u.str;
3192 func->is_linkage = TRUE;
3193 }
3194 break;
3195
3196 case DW_AT_low_pc:
3197 low_pc = attr.u.val;
3198 break;
3199
3200 case DW_AT_high_pc:
3201 high_pc = attr.u.val;
3202 high_pc_relative = attr.form != DW_FORM_addr;
3203 break;
3204
3205 case DW_AT_ranges:
3206 if (!read_rangelist (unit, &func->arange, attr.u.val))
3207 goto fail;
3208 break;
3209
3210 case DW_AT_decl_file:
3211 func->file = concat_filename (unit->line_table,
3212 attr.u.val);
3213 break;
3214
3215 case DW_AT_decl_line:
3216 func->line = attr.u.val;
3217 break;
3218
3219 default:
3220 break;
3221 }
3222 }
3223 else if (var)
3224 {
3225 switch (attr.name)
3226 {
3227 case DW_AT_name:
3228 if (is_str_attr (attr.form))
3229 var->name = attr.u.str;
3230 break;
3231
3232 case DW_AT_decl_file:
3233 var->file = concat_filename (unit->line_table,
3234 attr.u.val);
3235 break;
3236
3237 case DW_AT_decl_line:
3238 var->line = attr.u.val;
3239 break;
3240
3241 case DW_AT_external:
3242 if (attr.u.val != 0)
3243 var->stack = 0;
3244 break;
3245
3246 case DW_AT_location:
3247 switch (attr.form)
3248 {
3249 case DW_FORM_block:
3250 case DW_FORM_block1:
3251 case DW_FORM_block2:
3252 case DW_FORM_block4:
3253 case DW_FORM_exprloc:
3254 if (attr.u.blk->data != NULL
3255 && *attr.u.blk->data == DW_OP_addr)
3256 {
3257 var->stack = 0;
3258
3259 /* Verify that DW_OP_addr is the only opcode in the
3260 location, in which case the block size will be 1
3261 plus the address size. */
3262 /* ??? For TLS variables, gcc can emit
3263 DW_OP_addr <addr> DW_OP_GNU_push_tls_address
3264 which we don't handle here yet. */
3265 if (attr.u.blk->size == unit->addr_size + 1U)
3266 var->addr = bfd_get (unit->addr_size * 8,
3267 unit->abfd,
3268 attr.u.blk->data + 1);
3269 }
3270 break;
3271
3272 default:
3273 break;
3274 }
3275 break;
3276
3277 default:
3278 break;
3279 }
3280 }
3281 }
3282
3283 if (high_pc_relative)
3284 high_pc += low_pc;
3285
3286 if (func && high_pc != 0)
3287 {
3288 if (!arange_add (unit, &func->arange, low_pc, high_pc))
3289 goto fail;
3290 }
3291
3292 if (abbrev->has_children)
3293 {
3294 nesting_level++;
3295
3296 if (nesting_level >= nested_funcs_size)
3297 {
3298 struct nest_funcinfo *tmp;
3299
3300 nested_funcs_size *= 2;
3301 tmp = (struct nest_funcinfo *)
3302 bfd_realloc (nested_funcs,
3303 nested_funcs_size * sizeof (*nested_funcs));
3304 if (tmp == NULL)
3305 goto fail;
3306 nested_funcs = tmp;
3307 }
3308 nested_funcs[nesting_level].func = 0;
3309 }
3310 }
3311
3312 free (nested_funcs);
3313 return TRUE;
3314
3315 fail:
3316 free (nested_funcs);
3317 return FALSE;
3318 }
3319
3320 /* Parse a DWARF2 compilation unit starting at INFO_PTR. This
3321 includes the compilation unit header that proceeds the DIE's, but
3322 does not include the length field that precedes each compilation
3323 unit header. END_PTR points one past the end of this comp unit.
3324 OFFSET_SIZE is the size of DWARF2 offsets (either 4 or 8 bytes).
3325
3326 This routine does not read the whole compilation unit; only enough
3327 to get to the line number information for the compilation unit. */
3328
3329 static struct comp_unit *
3330 parse_comp_unit (struct dwarf2_debug *stash,
3331 bfd_vma unit_length,
3332 bfd_byte *info_ptr_unit,
3333 unsigned int offset_size)
3334 {
3335 struct comp_unit* unit;
3336 unsigned int version;
3337 bfd_uint64_t abbrev_offset = 0;
3338 /* Initialize it just to avoid a GCC false warning. */
3339 unsigned int addr_size = -1;
3340 struct abbrev_info** abbrevs;
3341 unsigned int abbrev_number, bytes_read, i;
3342 struct abbrev_info *abbrev;
3343 struct attribute attr;
3344 bfd_byte *info_ptr = stash->info_ptr;
3345 bfd_byte *end_ptr = info_ptr + unit_length;
3346 bfd_size_type amt;
3347 bfd_vma low_pc = 0;
3348 bfd_vma high_pc = 0;
3349 bfd *abfd = stash->bfd_ptr;
3350 bfd_boolean high_pc_relative = FALSE;
3351 enum dwarf_unit_type unit_type;
3352
3353 version = read_2_bytes (abfd, info_ptr, end_ptr);
3354 info_ptr += 2;
3355 if (version < 2 || version > 5)
3356 {
3357 /* PR 19872: A version number of 0 probably means that there is padding
3358 at the end of the .debug_info section. Gold puts it there when
3359 performing an incremental link, for example. So do not generate
3360 an error, just return a NULL. */
3361 if (version)
3362 {
3363 _bfd_error_handler
3364 (_("Dwarf Error: found dwarf version '%u', this reader"
3365 " only handles version 2, 3, 4 and 5 information."), version);
3366 bfd_set_error (bfd_error_bad_value);
3367 }
3368 return NULL;
3369 }
3370
3371 if (version < 5)
3372 unit_type = DW_UT_compile;
3373 else
3374 {
3375 unit_type = read_1_byte (abfd, info_ptr, end_ptr);
3376 info_ptr += 1;
3377
3378 addr_size = read_1_byte (abfd, info_ptr, end_ptr);
3379 info_ptr += 1;
3380 }
3381
3382 BFD_ASSERT (offset_size == 4 || offset_size == 8);
3383 if (offset_size == 4)
3384 abbrev_offset = read_4_bytes (abfd, info_ptr, end_ptr);
3385 else
3386 abbrev_offset = read_8_bytes (abfd, info_ptr, end_ptr);
3387 info_ptr += offset_size;
3388
3389 if (version < 5)
3390 {
3391 addr_size = read_1_byte (abfd, info_ptr, end_ptr);
3392 info_ptr += 1;
3393 }
3394
3395 if (unit_type == DW_UT_type)
3396 {
3397 /* Skip type signature. */
3398 info_ptr += 8;
3399
3400 /* Skip type offset. */
3401 info_ptr += offset_size;
3402 }
3403
3404 if (addr_size > sizeof (bfd_vma))
3405 {
3406 _bfd_error_handler
3407 /* xgettext: c-format */
3408 (_("Dwarf Error: found address size '%u', this reader"
3409 " can not handle sizes greater than '%u'."),
3410 addr_size,
3411 (unsigned int) sizeof (bfd_vma));
3412 bfd_set_error (bfd_error_bad_value);
3413 return NULL;
3414 }
3415
3416 if (addr_size != 2 && addr_size != 4 && addr_size != 8)
3417 {
3418 _bfd_error_handler
3419 ("Dwarf Error: found address size '%u', this reader"
3420 " can only handle address sizes '2', '4' and '8'.", addr_size);
3421 bfd_set_error (bfd_error_bad_value);
3422 return NULL;
3423 }
3424
3425 /* Read the abbrevs for this compilation unit into a table. */
3426 abbrevs = read_abbrevs (abfd, abbrev_offset, stash);
3427 if (! abbrevs)
3428 return NULL;
3429
3430 abbrev_number = _bfd_safe_read_leb128 (abfd, info_ptr, &bytes_read,
3431 FALSE, end_ptr);
3432 info_ptr += bytes_read;
3433 if (! abbrev_number)
3434 {
3435 /* PR 19872: An abbrev number of 0 probably means that there is padding
3436 at the end of the .debug_abbrev section. Gold puts it there when
3437 performing an incremental link, for example. So do not generate
3438 an error, just return a NULL. */
3439 return NULL;
3440 }
3441
3442 abbrev = lookup_abbrev (abbrev_number, abbrevs);
3443 if (! abbrev)
3444 {
3445 _bfd_error_handler (_("Dwarf Error: Could not find abbrev number %u."),
3446 abbrev_number);
3447 bfd_set_error (bfd_error_bad_value);
3448 return NULL;
3449 }
3450
3451 amt = sizeof (struct comp_unit);
3452 unit = (struct comp_unit *) bfd_zalloc (abfd, amt);
3453 if (unit == NULL)
3454 return NULL;
3455 unit->abfd = abfd;
3456 unit->version = version;
3457 unit->addr_size = addr_size;
3458 unit->offset_size = offset_size;
3459 unit->abbrevs = abbrevs;
3460 unit->end_ptr = end_ptr;
3461 unit->stash = stash;
3462 unit->info_ptr_unit = info_ptr_unit;
3463 unit->sec_info_ptr = stash->sec_info_ptr;
3464
3465 for (i = 0; i < abbrev->num_attrs; ++i)
3466 {
3467 info_ptr = read_attribute (&attr, &abbrev->attrs[i], unit, info_ptr, end_ptr);
3468 if (info_ptr == NULL)
3469 return NULL;
3470
3471 /* Store the data if it is of an attribute we want to keep in a
3472 partial symbol table. */
3473 switch (attr.name)
3474 {
3475 case DW_AT_stmt_list:
3476 unit->stmtlist = 1;
3477 unit->line_offset = attr.u.val;
3478 break;
3479
3480 case DW_AT_name:
3481 if (is_str_attr (attr.form))
3482 unit->name = attr.u.str;
3483 break;
3484
3485 case DW_AT_low_pc:
3486 low_pc = attr.u.val;
3487 /* If the compilation unit DIE has a DW_AT_low_pc attribute,
3488 this is the base address to use when reading location
3489 lists or range lists. */
3490 if (abbrev->tag == DW_TAG_compile_unit)
3491 unit->base_address = low_pc;
3492 break;
3493
3494 case DW_AT_high_pc:
3495 high_pc = attr.u.val;
3496 high_pc_relative = attr.form != DW_FORM_addr;
3497 break;
3498
3499 case DW_AT_ranges:
3500 if (!read_rangelist (unit, &unit->arange, attr.u.val))
3501 return NULL;
3502 break;
3503
3504 case DW_AT_comp_dir:
3505 {
3506 char *comp_dir = attr.u.str;
3507
3508 /* PR 17512: file: 1fe726be. */
3509 if (! is_str_attr (attr.form))
3510 {
3511 _bfd_error_handler
3512 (_("Dwarf Error: DW_AT_comp_dir attribute encountered with a non-string form."));
3513 comp_dir = NULL;
3514 }
3515
3516 if (comp_dir)
3517 {
3518 /* Irix 6.2 native cc prepends <machine>.: to the compilation
3519 directory, get rid of it. */
3520 char *cp = strchr (comp_dir, ':');
3521
3522 if (cp && cp != comp_dir && cp[-1] == '.' && cp[1] == '/')
3523 comp_dir = cp + 1;
3524 }
3525 unit->comp_dir = comp_dir;
3526 break;
3527 }
3528
3529 case DW_AT_language:
3530 unit->lang = attr.u.val;
3531 break;
3532
3533 default:
3534 break;
3535 }
3536 }
3537 if (high_pc_relative)
3538 high_pc += low_pc;
3539 if (high_pc != 0)
3540 {
3541 if (!arange_add (unit, &unit->arange, low_pc, high_pc))
3542 return NULL;
3543 }
3544
3545 unit->first_child_die_ptr = info_ptr;
3546 return unit;
3547 }
3548
3549 /* Return TRUE if UNIT may contain the address given by ADDR. When
3550 there are functions written entirely with inline asm statements, the
3551 range info in the compilation unit header may not be correct. We
3552 need to consult the line info table to see if a compilation unit
3553 really contains the given address. */
3554
3555 static bfd_boolean
3556 comp_unit_contains_address (struct comp_unit *unit, bfd_vma addr)
3557 {
3558 struct arange *arange;
3559
3560 if (unit->error)
3561 return FALSE;
3562
3563 arange = &unit->arange;
3564 do
3565 {
3566 if (addr >= arange->low && addr < arange->high)
3567 return TRUE;
3568 arange = arange->next;
3569 }
3570 while (arange);
3571
3572 return FALSE;
3573 }
3574
3575 /* If UNIT contains ADDR, set the output parameters to the values for
3576 the line containing ADDR. The output parameters, FILENAME_PTR,
3577 FUNCTION_PTR, and LINENUMBER_PTR, are pointers to the objects
3578 to be filled in.
3579
3580 Returns the range of addresses covered by the entry that was used
3581 to fill in *LINENUMBER_PTR or 0 if it was not filled in. */
3582
3583 static bfd_vma
3584 comp_unit_find_nearest_line (struct comp_unit *unit,
3585 bfd_vma addr,
3586 const char **filename_ptr,
3587 struct funcinfo **function_ptr,
3588 unsigned int *linenumber_ptr,
3589 unsigned int *discriminator_ptr,
3590 struct dwarf2_debug *stash)
3591 {
3592 bfd_boolean func_p;
3593
3594 if (unit->error)
3595 return FALSE;
3596
3597 if (! unit->line_table)
3598 {
3599 if (! unit->stmtlist)
3600 {
3601 unit->error = 1;
3602 return FALSE;
3603 }
3604
3605 unit->line_table = decode_line_info (unit, stash);
3606
3607 if (! unit->line_table)
3608 {
3609 unit->error = 1;
3610 return FALSE;
3611 }
3612
3613 if (unit->first_child_die_ptr < unit->end_ptr
3614 && ! scan_unit_for_symbols (unit))
3615 {
3616 unit->error = 1;
3617 return FALSE;
3618 }
3619 }
3620
3621 *function_ptr = NULL;
3622 func_p = lookup_address_in_function_table (unit, addr, function_ptr);
3623 if (func_p && (*function_ptr)->tag == DW_TAG_inlined_subroutine)
3624 stash->inliner_chain = *function_ptr;
3625
3626 return lookup_address_in_line_info_table (unit->line_table, addr,
3627 filename_ptr,
3628 linenumber_ptr,
3629 discriminator_ptr);
3630 }
3631
3632 /* Check to see if line info is already decoded in a comp_unit.
3633 If not, decode it. Returns TRUE if no errors were encountered;
3634 FALSE otherwise. */
3635
3636 static bfd_boolean
3637 comp_unit_maybe_decode_line_info (struct comp_unit *unit,
3638 struct dwarf2_debug *stash)
3639 {
3640 if (unit->error)
3641 return FALSE;
3642
3643 if (! unit->line_table)
3644 {
3645 if (! unit->stmtlist)
3646 {
3647 unit->error = 1;
3648 return FALSE;
3649 }
3650
3651 unit->line_table = decode_line_info (unit, stash);
3652
3653 if (! unit->line_table)
3654 {
3655 unit->error = 1;
3656 return FALSE;
3657 }
3658
3659 if (unit->first_child_die_ptr < unit->end_ptr
3660 && ! scan_unit_for_symbols (unit))
3661 {
3662 unit->error = 1;
3663 return FALSE;
3664 }
3665 }
3666
3667 return TRUE;
3668 }
3669
3670 /* If UNIT contains SYM at ADDR, set the output parameters to the
3671 values for the line containing SYM. The output parameters,
3672 FILENAME_PTR, and LINENUMBER_PTR, are pointers to the objects to be
3673 filled in.
3674
3675 Return TRUE if UNIT contains SYM, and no errors were encountered;
3676 FALSE otherwise. */
3677
3678 static bfd_boolean
3679 comp_unit_find_line (struct comp_unit *unit,
3680 asymbol *sym,
3681 bfd_vma addr,
3682 const char **filename_ptr,
3683 unsigned int *linenumber_ptr,
3684 struct dwarf2_debug *stash)
3685 {
3686 if (!comp_unit_maybe_decode_line_info (unit, stash))
3687 return FALSE;
3688
3689 if (sym->flags & BSF_FUNCTION)
3690 return lookup_symbol_in_function_table (unit, sym, addr,
3691 filename_ptr,
3692 linenumber_ptr);
3693
3694 return lookup_symbol_in_variable_table (unit, sym, addr,
3695 filename_ptr,
3696 linenumber_ptr);
3697 }
3698
3699 static struct funcinfo *
3700 reverse_funcinfo_list (struct funcinfo *head)
3701 {
3702 struct funcinfo *rhead;
3703 struct funcinfo *temp;
3704
3705 for (rhead = NULL; head; head = temp)
3706 {
3707 temp = head->prev_func;
3708 head->prev_func = rhead;
3709 rhead = head;
3710 }
3711 return rhead;
3712 }
3713
3714 static struct varinfo *
3715 reverse_varinfo_list (struct varinfo *head)
3716 {
3717 struct varinfo *rhead;
3718 struct varinfo *temp;
3719
3720 for (rhead = NULL; head; head = temp)
3721 {
3722 temp = head->prev_var;
3723 head->prev_var = rhead;
3724 rhead = head;
3725 }
3726 return rhead;
3727 }
3728
3729 /* Extract all interesting funcinfos and varinfos of a compilation
3730 unit into hash tables for faster lookup. Returns TRUE if no
3731 errors were enountered; FALSE otherwise. */
3732
3733 static bfd_boolean
3734 comp_unit_hash_info (struct dwarf2_debug *stash,
3735 struct comp_unit *unit,
3736 struct info_hash_table *funcinfo_hash_table,
3737 struct info_hash_table *varinfo_hash_table)
3738 {
3739 struct funcinfo* each_func;
3740 struct varinfo* each_var;
3741 bfd_boolean okay = TRUE;
3742
3743 BFD_ASSERT (stash->info_hash_status != STASH_INFO_HASH_DISABLED);
3744
3745 if (!comp_unit_maybe_decode_line_info (unit, stash))
3746 return FALSE;
3747
3748 BFD_ASSERT (!unit->cached);
3749
3750 /* To preserve the original search order, we went to visit the function
3751 infos in the reversed order of the list. However, making the list
3752 bi-directional use quite a bit of extra memory. So we reverse
3753 the list first, traverse the list in the now reversed order and
3754 finally reverse the list again to get back the original order. */
3755 unit->function_table = reverse_funcinfo_list (unit->function_table);
3756 for (each_func = unit->function_table;
3757 each_func && okay;
3758 each_func = each_func->prev_func)
3759 {
3760 /* Skip nameless functions. */
3761 if (each_func->name)
3762 /* There is no need to copy name string into hash table as
3763 name string is either in the dwarf string buffer or
3764 info in the stash. */
3765 okay = insert_info_hash_table (funcinfo_hash_table, each_func->name,
3766 (void*) each_func, FALSE);
3767 }
3768 unit->function_table = reverse_funcinfo_list (unit->function_table);
3769 if (!okay)
3770 return FALSE;
3771
3772 /* We do the same for variable infos. */
3773 unit->variable_table = reverse_varinfo_list (unit->variable_table);
3774 for (each_var = unit->variable_table;
3775 each_var && okay;
3776 each_var = each_var->prev_var)
3777 {
3778 /* Skip stack vars and vars with no files or names. */
3779 if (each_var->stack == 0
3780 && each_var->file != NULL
3781 && each_var->name != NULL)
3782 /* There is no need to copy name string into hash table as
3783 name string is either in the dwarf string buffer or
3784 info in the stash. */
3785 okay = insert_info_hash_table (varinfo_hash_table, each_var->name,
3786 (void*) each_var, FALSE);
3787 }
3788
3789 unit->variable_table = reverse_varinfo_list (unit->variable_table);
3790 unit->cached = TRUE;
3791 return okay;
3792 }
3793
3794 /* Locate a section in a BFD containing debugging info. The search starts
3795 from the section after AFTER_SEC, or from the first section in the BFD if
3796 AFTER_SEC is NULL. The search works by examining the names of the
3797 sections. There are three permissiable names. The first two are given
3798 by DEBUG_SECTIONS[debug_info] (whose standard DWARF2 names are .debug_info
3799 and .zdebug_info). The third is a prefix .gnu.linkonce.wi.
3800 This is a variation on the .debug_info section which has a checksum
3801 describing the contents appended onto the name. This allows the linker to
3802 identify and discard duplicate debugging sections for different
3803 compilation units. */
3804 #define GNU_LINKONCE_INFO ".gnu.linkonce.wi."
3805
3806 static asection *
3807 find_debug_info (bfd *abfd, const struct dwarf_debug_section *debug_sections,
3808 asection *after_sec)
3809 {
3810 asection *msec;
3811 const char *look;
3812
3813 if (after_sec == NULL)
3814 {
3815 look = debug_sections[debug_info].uncompressed_name;
3816 msec = bfd_get_section_by_name (abfd, look);
3817 if (msec != NULL)
3818 return msec;
3819
3820 look = debug_sections[debug_info].compressed_name;
3821 if (look != NULL)
3822 {
3823 msec = bfd_get_section_by_name (abfd, look);
3824 if (msec != NULL)
3825 return msec;
3826 }
3827
3828 for (msec = abfd->sections; msec != NULL; msec = msec->next)
3829 if (CONST_STRNEQ (msec->name, GNU_LINKONCE_INFO))
3830 return msec;
3831
3832 return NULL;
3833 }
3834
3835 for (msec = after_sec->next; msec != NULL; msec = msec->next)
3836 {
3837 look = debug_sections[debug_info].uncompressed_name;
3838 if (strcmp (msec->name, look) == 0)
3839 return msec;
3840
3841 look = debug_sections[debug_info].compressed_name;
3842 if (look != NULL && strcmp (msec->name, look) == 0)
3843 return msec;
3844
3845 if (CONST_STRNEQ (msec->name, GNU_LINKONCE_INFO))
3846 return msec;
3847 }
3848
3849 return NULL;
3850 }
3851
3852 /* Transfer VMAs from object file to separate debug file. */
3853
3854 static void
3855 set_debug_vma (bfd *orig_bfd, bfd *debug_bfd)
3856 {
3857 asection *s, *d;
3858
3859 for (s = orig_bfd->sections, d = debug_bfd->sections;
3860 s != NULL && d != NULL;
3861 s = s->next, d = d->next)
3862 {
3863 if ((d->flags & SEC_DEBUGGING) != 0)
3864 break;
3865 /* ??? Assumes 1-1 correspondence between sections in the
3866 two files. */
3867 if (strcmp (s->name, d->name) == 0)
3868 {
3869 d->output_section = s->output_section;
3870 d->output_offset = s->output_offset;
3871 d->vma = s->vma;
3872 }
3873 }
3874 }
3875
3876 /* Unset vmas for adjusted sections in STASH. */
3877
3878 static void
3879 unset_sections (struct dwarf2_debug *stash)
3880 {
3881 int i;
3882 struct adjusted_section *p;
3883
3884 i = stash->adjusted_section_count;
3885 p = stash->adjusted_sections;
3886 for (; i > 0; i--, p++)
3887 p->section->vma = 0;
3888 }
3889
3890 /* Set VMAs for allocated and .debug_info sections in ORIG_BFD, a
3891 relocatable object file. VMAs are normally all zero in relocatable
3892 object files, so if we want to distinguish locations in sections by
3893 address we need to set VMAs so the sections do not overlap. We
3894 also set VMA on .debug_info so that when we have multiple
3895 .debug_info sections (or the linkonce variant) they also do not
3896 overlap. The multiple .debug_info sections make up a single
3897 logical section. ??? We should probably do the same for other
3898 debug sections. */
3899
3900 static bfd_boolean
3901 place_sections (bfd *orig_bfd, struct dwarf2_debug *stash)
3902 {
3903 bfd *abfd;
3904 struct adjusted_section *p;
3905 int i;
3906 const char *debug_info_name;
3907
3908 if (stash->adjusted_section_count != 0)
3909 {
3910 i = stash->adjusted_section_count;
3911 p = stash->adjusted_sections;
3912 for (; i > 0; i--, p++)
3913 p->section->vma = p->adj_vma;
3914 return TRUE;
3915 }
3916
3917 debug_info_name = stash->debug_sections[debug_info].uncompressed_name;
3918 i = 0;
3919 abfd = orig_bfd;
3920 while (1)
3921 {
3922 asection *sect;
3923
3924 for (sect = abfd->sections; sect != NULL; sect = sect->next)
3925 {
3926 int is_debug_info;
3927
3928 if ((sect->output_section != NULL
3929 && sect->output_section != sect
3930 && (sect->flags & SEC_DEBUGGING) == 0)
3931 || sect->vma != 0)
3932 continue;
3933
3934 is_debug_info = (strcmp (sect->name, debug_info_name) == 0
3935 || CONST_STRNEQ (sect->name, GNU_LINKONCE_INFO));
3936
3937 if (!((sect->flags & SEC_ALLOC) != 0 && abfd == orig_bfd)
3938 && !is_debug_info)
3939 continue;
3940
3941 i++;
3942 }
3943 if (abfd == stash->bfd_ptr)
3944 break;
3945 abfd = stash->bfd_ptr;
3946 }
3947
3948 if (i <= 1)
3949 stash->adjusted_section_count = -1;
3950 else
3951 {
3952 bfd_vma last_vma = 0, last_dwarf = 0;
3953 bfd_size_type amt = i * sizeof (struct adjusted_section);
3954
3955 p = (struct adjusted_section *) bfd_malloc (amt);
3956 if (p == NULL)
3957 return FALSE;
3958
3959 stash->adjusted_sections = p;
3960 stash->adjusted_section_count = i;
3961
3962 abfd = orig_bfd;
3963 while (1)
3964 {
3965 asection *sect;
3966
3967 for (sect = abfd->sections; sect != NULL; sect = sect->next)
3968 {
3969 bfd_size_type sz;
3970 int is_debug_info;
3971
3972 if ((sect->output_section != NULL
3973 && sect->output_section != sect
3974 && (sect->flags & SEC_DEBUGGING) == 0)
3975 || sect->vma != 0)
3976 continue;
3977
3978 is_debug_info = (strcmp (sect->name, debug_info_name) == 0
3979 || CONST_STRNEQ (sect->name, GNU_LINKONCE_INFO));
3980
3981 if (!((sect->flags & SEC_ALLOC) != 0 && abfd == orig_bfd)
3982 && !is_debug_info)
3983 continue;
3984
3985 sz = sect->rawsize ? sect->rawsize : sect->size;
3986
3987 if (is_debug_info)
3988 {
3989 BFD_ASSERT (sect->alignment_power == 0);
3990 sect->vma = last_dwarf;
3991 last_dwarf += sz;
3992 }
3993 else
3994 {
3995 /* Align the new address to the current section
3996 alignment. */
3997 last_vma = ((last_vma
3998 + ~(-((bfd_vma) 1 << sect->alignment_power)))
3999 & (-((bfd_vma) 1 << sect->alignment_power)));
4000 sect->vma = last_vma;
4001 last_vma += sz;
4002 }
4003
4004 p->section = sect;
4005 p->adj_vma = sect->vma;
4006 p++;
4007 }
4008 if (abfd == stash->bfd_ptr)
4009 break;
4010 abfd = stash->bfd_ptr;
4011 }
4012 }
4013
4014 if (orig_bfd != stash->bfd_ptr)
4015 set_debug_vma (orig_bfd, stash->bfd_ptr);
4016
4017 return TRUE;
4018 }
4019
4020 /* Look up a funcinfo by name using the given info hash table. If found,
4021 also update the locations pointed to by filename_ptr and linenumber_ptr.
4022
4023 This function returns TRUE if a funcinfo that matches the given symbol
4024 and address is found with any error; otherwise it returns FALSE. */
4025
4026 static bfd_boolean
4027 info_hash_lookup_funcinfo (struct info_hash_table *hash_table,
4028 asymbol *sym,
4029 bfd_vma addr,
4030 const char **filename_ptr,
4031 unsigned int *linenumber_ptr)
4032 {
4033 struct funcinfo* each_func;
4034 struct funcinfo* best_fit = NULL;
4035 bfd_vma best_fit_len = 0;
4036 struct info_list_node *node;
4037 struct arange *arange;
4038 const char *name = bfd_asymbol_name (sym);
4039 asection *sec = bfd_get_section (sym);
4040
4041 for (node = lookup_info_hash_table (hash_table, name);
4042 node;
4043 node = node->next)
4044 {
4045 each_func = (struct funcinfo *) node->info;
4046 for (arange = &each_func->arange;
4047 arange;
4048 arange = arange->next)
4049 {
4050 if ((!each_func->sec || each_func->sec == sec)
4051 && addr >= arange->low
4052 && addr < arange->high
4053 && (!best_fit
4054 || arange->high - arange->low < best_fit_len))
4055 {
4056 best_fit = each_func;
4057 best_fit_len = arange->high - arange->low;
4058 }
4059 }
4060 }
4061
4062 if (best_fit)
4063 {
4064 best_fit->sec = sec;
4065 *filename_ptr = best_fit->file;
4066 *linenumber_ptr = best_fit->line;
4067 return TRUE;
4068 }
4069
4070 return FALSE;
4071 }
4072
4073 /* Look up a varinfo by name using the given info hash table. If found,
4074 also update the locations pointed to by filename_ptr and linenumber_ptr.
4075
4076 This function returns TRUE if a varinfo that matches the given symbol
4077 and address is found with any error; otherwise it returns FALSE. */
4078
4079 static bfd_boolean
4080 info_hash_lookup_varinfo (struct info_hash_table *hash_table,
4081 asymbol *sym,
4082 bfd_vma addr,
4083 const char **filename_ptr,
4084 unsigned int *linenumber_ptr)
4085 {
4086 const char *name = bfd_asymbol_name (sym);
4087 asection *sec = bfd_get_section (sym);
4088 struct varinfo* each;
4089 struct info_list_node *node;
4090
4091 for (node = lookup_info_hash_table (hash_table, name);
4092 node;
4093 node = node->next)
4094 {
4095 each = (struct varinfo *) node->info;
4096 if (each->addr == addr
4097 && (!each->sec || each->sec == sec))
4098 {
4099 each->sec = sec;
4100 *filename_ptr = each->file;
4101 *linenumber_ptr = each->line;
4102 return TRUE;
4103 }
4104 }
4105
4106 return FALSE;
4107 }
4108
4109 /* Update the funcinfo and varinfo info hash tables if they are
4110 not up to date. Returns TRUE if there is no error; otherwise
4111 returns FALSE and disable the info hash tables. */
4112
4113 static bfd_boolean
4114 stash_maybe_update_info_hash_tables (struct dwarf2_debug *stash)
4115 {
4116 struct comp_unit *each;
4117
4118 /* Exit if hash tables are up-to-date. */
4119 if (stash->all_comp_units == stash->hash_units_head)
4120 return TRUE;
4121
4122 if (stash->hash_units_head)
4123 each = stash->hash_units_head->prev_unit;
4124 else
4125 each = stash->last_comp_unit;
4126
4127 while (each)
4128 {
4129 if (!comp_unit_hash_info (stash, each, stash->funcinfo_hash_table,
4130 stash->varinfo_hash_table))
4131 {
4132 stash->info_hash_status = STASH_INFO_HASH_DISABLED;
4133 return FALSE;
4134 }
4135 each = each->prev_unit;
4136 }
4137
4138 stash->hash_units_head = stash->all_comp_units;
4139 return TRUE;
4140 }
4141
4142 /* Check consistency of info hash tables. This is for debugging only. */
4143
4144 static void ATTRIBUTE_UNUSED
4145 stash_verify_info_hash_table (struct dwarf2_debug *stash)
4146 {
4147 struct comp_unit *each_unit;
4148 struct funcinfo *each_func;
4149 struct varinfo *each_var;
4150 struct info_list_node *node;
4151 bfd_boolean found;
4152
4153 for (each_unit = stash->all_comp_units;
4154 each_unit;
4155 each_unit = each_unit->next_unit)
4156 {
4157 for (each_func = each_unit->function_table;
4158 each_func;
4159 each_func = each_func->prev_func)
4160 {
4161 if (!each_func->name)
4162 continue;
4163 node = lookup_info_hash_table (stash->funcinfo_hash_table,
4164 each_func->name);
4165 BFD_ASSERT (node);
4166 found = FALSE;
4167 while (node && !found)
4168 {
4169 found = node->info == each_func;
4170 node = node->next;
4171 }
4172 BFD_ASSERT (found);
4173 }
4174
4175 for (each_var = each_unit->variable_table;
4176 each_var;
4177 each_var = each_var->prev_var)
4178 {
4179 if (!each_var->name || !each_var->file || each_var->stack)
4180 continue;
4181 node = lookup_info_hash_table (stash->varinfo_hash_table,
4182 each_var->name);
4183 BFD_ASSERT (node);
4184 found = FALSE;
4185 while (node && !found)
4186 {
4187 found = node->info == each_var;
4188 node = node->next;
4189 }
4190 BFD_ASSERT (found);
4191 }
4192 }
4193 }
4194
4195 /* Check to see if we want to enable the info hash tables, which consume
4196 quite a bit of memory. Currently we only check the number times
4197 bfd_dwarf2_find_line is called. In the future, we may also want to
4198 take the number of symbols into account. */
4199
4200 static void
4201 stash_maybe_enable_info_hash_tables (bfd *abfd, struct dwarf2_debug *stash)
4202 {
4203 BFD_ASSERT (stash->info_hash_status == STASH_INFO_HASH_OFF);
4204
4205 if (stash->info_hash_count++ < STASH_INFO_HASH_TRIGGER)
4206 return;
4207
4208 /* FIXME: Maybe we should check the reduce_memory_overheads
4209 and optimize fields in the bfd_link_info structure ? */
4210
4211 /* Create hash tables. */
4212 stash->funcinfo_hash_table = create_info_hash_table (abfd);
4213 stash->varinfo_hash_table = create_info_hash_table (abfd);
4214 if (!stash->funcinfo_hash_table || !stash->varinfo_hash_table)
4215 {
4216 /* Turn off info hashes if any allocation above fails. */
4217 stash->info_hash_status = STASH_INFO_HASH_DISABLED;
4218 return;
4219 }
4220 /* We need a forced update so that the info hash tables will
4221 be created even though there is no compilation unit. That
4222 happens if STASH_INFO_HASH_TRIGGER is 0. */
4223 stash_maybe_update_info_hash_tables (stash);
4224 stash->info_hash_status = STASH_INFO_HASH_ON;
4225 }
4226
4227 /* Find the file and line associated with a symbol and address using the
4228 info hash tables of a stash. If there is a match, the function returns
4229 TRUE and update the locations pointed to by filename_ptr and linenumber_ptr;
4230 otherwise it returns FALSE. */
4231
4232 static bfd_boolean
4233 stash_find_line_fast (struct dwarf2_debug *stash,
4234 asymbol *sym,
4235 bfd_vma addr,
4236 const char **filename_ptr,
4237 unsigned int *linenumber_ptr)
4238 {
4239 BFD_ASSERT (stash->info_hash_status == STASH_INFO_HASH_ON);
4240
4241 if (sym->flags & BSF_FUNCTION)
4242 return info_hash_lookup_funcinfo (stash->funcinfo_hash_table, sym, addr,
4243 filename_ptr, linenumber_ptr);
4244 return info_hash_lookup_varinfo (stash->varinfo_hash_table, sym, addr,
4245 filename_ptr, linenumber_ptr);
4246 }
4247
4248 /* Save current section VMAs. */
4249
4250 static bfd_boolean
4251 save_section_vma (const bfd *abfd, struct dwarf2_debug *stash)
4252 {
4253 asection *s;
4254 unsigned int i;
4255
4256 if (abfd->section_count == 0)
4257 return TRUE;
4258 stash->sec_vma = bfd_malloc (sizeof (*stash->sec_vma) * abfd->section_count);
4259 if (stash->sec_vma == NULL)
4260 return FALSE;
4261 for (i = 0, s = abfd->sections; i < abfd->section_count; i++, s = s->next)
4262 {
4263 if (s->output_section != NULL)
4264 stash->sec_vma[i] = s->output_section->vma + s->output_offset;
4265 else
4266 stash->sec_vma[i] = s->vma;
4267 }
4268 return TRUE;
4269 }
4270
4271 /* Compare current section VMAs against those at the time the stash
4272 was created. If find_nearest_line is used in linker warnings or
4273 errors early in the link process, the debug info stash will be
4274 invalid for later calls. This is because we relocate debug info
4275 sections, so the stashed section contents depend on symbol values,
4276 which in turn depend on section VMAs. */
4277
4278 static bfd_boolean
4279 section_vma_same (const bfd *abfd, const struct dwarf2_debug *stash)
4280 {
4281 asection *s;
4282 unsigned int i;
4283
4284 for (i = 0, s = abfd->sections; i < abfd->section_count; i++, s = s->next)
4285 {
4286 bfd_vma vma;
4287
4288 if (s->output_section != NULL)
4289 vma = s->output_section->vma + s->output_offset;
4290 else
4291 vma = s->vma;
4292 if (vma != stash->sec_vma[i])
4293 return FALSE;
4294 }
4295 return TRUE;
4296 }
4297
4298 /* Read debug information from DEBUG_BFD when DEBUG_BFD is specified.
4299 If DEBUG_BFD is not specified, we read debug information from ABFD
4300 or its gnu_debuglink. The results will be stored in PINFO.
4301 The function returns TRUE iff debug information is ready. */
4302
4303 bfd_boolean
4304 _bfd_dwarf2_slurp_debug_info (bfd *abfd, bfd *debug_bfd,
4305 const struct dwarf_debug_section *debug_sections,
4306 asymbol **symbols,
4307 void **pinfo,
4308 bfd_boolean do_place)
4309 {
4310 bfd_size_type amt = sizeof (struct dwarf2_debug);
4311 bfd_size_type total_size;
4312 asection *msec;
4313 struct dwarf2_debug *stash = (struct dwarf2_debug *) *pinfo;
4314
4315 if (stash != NULL)
4316 {
4317 if (stash->orig_bfd == abfd
4318 && section_vma_same (abfd, stash))
4319 {
4320 /* Check that we did previously find some debug information
4321 before attempting to make use of it. */
4322 if (stash->bfd_ptr != NULL)
4323 {
4324 if (do_place && !place_sections (abfd, stash))
4325 return FALSE;
4326 return TRUE;
4327 }
4328
4329 return FALSE;
4330 }
4331 _bfd_dwarf2_cleanup_debug_info (abfd, pinfo);
4332 memset (stash, 0, amt);
4333 }
4334 else
4335 {
4336 stash = (struct dwarf2_debug *) bfd_zalloc (abfd, amt);
4337 if (! stash)
4338 return FALSE;
4339 }
4340 stash->orig_bfd = abfd;
4341 stash->debug_sections = debug_sections;
4342 stash->syms = symbols;
4343 if (!save_section_vma (abfd, stash))
4344 return FALSE;
4345
4346 *pinfo = stash;
4347
4348 if (debug_bfd == NULL)
4349 debug_bfd = abfd;
4350
4351 msec = find_debug_info (debug_bfd, debug_sections, NULL);
4352 if (msec == NULL && abfd == debug_bfd)
4353 {
4354 char * debug_filename;
4355
4356 debug_filename = bfd_follow_build_id_debuglink (abfd, DEBUGDIR);
4357 if (debug_filename == NULL)
4358 debug_filename = bfd_follow_gnu_debuglink (abfd, DEBUGDIR);
4359
4360 if (debug_filename == NULL)
4361 /* No dwarf2 info, and no gnu_debuglink to follow.
4362 Note that at this point the stash has been allocated, but
4363 contains zeros. This lets future calls to this function
4364 fail more quickly. */
4365 return FALSE;
4366
4367 /* Set BFD_DECOMPRESS to decompress debug sections. */
4368 if ((debug_bfd = bfd_openr (debug_filename, NULL)) == NULL
4369 || !(debug_bfd->flags |= BFD_DECOMPRESS,
4370 bfd_check_format (debug_bfd, bfd_object))
4371 || (msec = find_debug_info (debug_bfd,
4372 debug_sections, NULL)) == NULL
4373 || !bfd_generic_link_read_symbols (debug_bfd))
4374 {
4375 if (debug_bfd)
4376 bfd_close (debug_bfd);
4377 /* FIXME: Should we report our failure to follow the debuglink ? */
4378 free (debug_filename);
4379 return FALSE;
4380 }
4381
4382 symbols = bfd_get_outsymbols (debug_bfd);
4383 stash->syms = symbols;
4384 stash->close_on_cleanup = TRUE;
4385 }
4386 stash->bfd_ptr = debug_bfd;
4387
4388 if (do_place
4389 && !place_sections (abfd, stash))
4390 return FALSE;
4391
4392 /* There can be more than one DWARF2 info section in a BFD these
4393 days. First handle the easy case when there's only one. If
4394 there's more than one, try case two: none of the sections is
4395 compressed. In that case, read them all in and produce one
4396 large stash. We do this in two passes - in the first pass we
4397 just accumulate the section sizes, and in the second pass we
4398 read in the section's contents. (The allows us to avoid
4399 reallocing the data as we add sections to the stash.) If
4400 some or all sections are compressed, then do things the slow
4401 way, with a bunch of reallocs. */
4402
4403 if (! find_debug_info (debug_bfd, debug_sections, msec))
4404 {
4405 /* Case 1: only one info section. */
4406 total_size = msec->size;
4407 if (! read_section (debug_bfd, &stash->debug_sections[debug_info],
4408 symbols, 0,
4409 &stash->info_ptr_memory, &total_size))
4410 return FALSE;
4411 }
4412 else
4413 {
4414 /* Case 2: multiple sections. */
4415 for (total_size = 0;
4416 msec;
4417 msec = find_debug_info (debug_bfd, debug_sections, msec))
4418 total_size += msec->size;
4419
4420 stash->info_ptr_memory = (bfd_byte *) bfd_malloc (total_size);
4421 if (stash->info_ptr_memory == NULL)
4422 return FALSE;
4423
4424 total_size = 0;
4425 for (msec = find_debug_info (debug_bfd, debug_sections, NULL);
4426 msec;
4427 msec = find_debug_info (debug_bfd, debug_sections, msec))
4428 {
4429 bfd_size_type size;
4430
4431 size = msec->size;
4432 if (size == 0)
4433 continue;
4434
4435 if (!(bfd_simple_get_relocated_section_contents
4436 (debug_bfd, msec, stash->info_ptr_memory + total_size,
4437 symbols)))
4438 return FALSE;
4439
4440 total_size += size;
4441 }
4442 }
4443
4444 stash->info_ptr = stash->info_ptr_memory;
4445 stash->info_ptr_end = stash->info_ptr + total_size;
4446 stash->sec = find_debug_info (debug_bfd, debug_sections, NULL);
4447 stash->sec_info_ptr = stash->info_ptr;
4448 return TRUE;
4449 }
4450
4451 /* Scan the debug information in PINFO looking for a DW_TAG_subprogram
4452 abbrev with a DW_AT_low_pc attached to it. Then lookup that same
4453 symbol in SYMBOLS and return the difference between the low_pc and
4454 the symbol's address. Returns 0 if no suitable symbol could be found. */
4455
4456 bfd_signed_vma
4457 _bfd_dwarf2_find_symbol_bias (asymbol ** symbols, void ** pinfo)
4458 {
4459 struct dwarf2_debug *stash;
4460 struct comp_unit * unit;
4461
4462 stash = (struct dwarf2_debug *) *pinfo;
4463
4464 if (stash == NULL)
4465 return 0;
4466
4467 for (unit = stash->all_comp_units; unit; unit = unit->next_unit)
4468 {
4469 struct funcinfo * func;
4470
4471 if (unit->function_table == NULL)
4472 {
4473 if (unit->line_table == NULL)
4474 unit->line_table = decode_line_info (unit, stash);
4475 if (unit->line_table != NULL)
4476 scan_unit_for_symbols (unit);
4477 }
4478
4479 for (func = unit->function_table; func != NULL; func = func->prev_func)
4480 if (func->name && func->arange.low)
4481 {
4482 asymbol ** psym;
4483
4484 /* FIXME: Do we need to scan the aranges looking for the lowest pc value ? */
4485
4486 for (psym = symbols; * psym != NULL; psym++)
4487 {
4488 asymbol * sym = * psym;
4489
4490 if (sym->flags & BSF_FUNCTION
4491 && sym->section != NULL
4492 && strcmp (sym->name, func->name) == 0)
4493 return ((bfd_signed_vma) func->arange.low) -
4494 ((bfd_signed_vma) (sym->value + sym->section->vma));
4495 }
4496 }
4497 }
4498
4499 return 0;
4500 }
4501
4502 /* Find the source code location of SYMBOL. If SYMBOL is NULL
4503 then find the nearest source code location corresponding to
4504 the address SECTION + OFFSET.
4505 Returns TRUE if the line is found without error and fills in
4506 FILENAME_PTR and LINENUMBER_PTR. In the case where SYMBOL was
4507 NULL the FUNCTIONNAME_PTR is also filled in.
4508 SYMBOLS contains the symbol table for ABFD.
4509 DEBUG_SECTIONS contains the name of the dwarf debug sections.
4510 ADDR_SIZE is the number of bytes in the initial .debug_info length
4511 field and in the abbreviation offset, or zero to indicate that the
4512 default value should be used. */
4513
4514 bfd_boolean
4515 _bfd_dwarf2_find_nearest_line (bfd *abfd,
4516 asymbol **symbols,
4517 asymbol *symbol,
4518 asection *section,
4519 bfd_vma offset,
4520 const char **filename_ptr,
4521 const char **functionname_ptr,
4522 unsigned int *linenumber_ptr,
4523 unsigned int *discriminator_ptr,
4524 const struct dwarf_debug_section *debug_sections,
4525 unsigned int addr_size,
4526 void **pinfo)
4527 {
4528 /* Read each compilation unit from the section .debug_info, and check
4529 to see if it contains the address we are searching for. If yes,
4530 lookup the address, and return the line number info. If no, go
4531 on to the next compilation unit.
4532
4533 We keep a list of all the previously read compilation units, and
4534 a pointer to the next un-read compilation unit. Check the
4535 previously read units before reading more. */
4536 struct dwarf2_debug *stash;
4537 /* What address are we looking for? */
4538 bfd_vma addr;
4539 struct comp_unit* each;
4540 struct funcinfo *function = NULL;
4541 bfd_boolean found = FALSE;
4542 bfd_boolean do_line;
4543
4544 *filename_ptr = NULL;
4545 if (functionname_ptr != NULL)
4546 *functionname_ptr = NULL;
4547 *linenumber_ptr = 0;
4548 if (discriminator_ptr)
4549 *discriminator_ptr = 0;
4550
4551 if (! _bfd_dwarf2_slurp_debug_info (abfd, NULL, debug_sections,
4552 symbols, pinfo,
4553 (abfd->flags & (EXEC_P | DYNAMIC)) == 0))
4554 return FALSE;
4555
4556 stash = (struct dwarf2_debug *) *pinfo;
4557
4558 do_line = symbol != NULL;
4559 if (do_line)
4560 {
4561 BFD_ASSERT (section == NULL && offset == 0 && functionname_ptr == NULL);
4562 section = bfd_get_section (symbol);
4563 addr = symbol->value;
4564 }
4565 else
4566 {
4567 BFD_ASSERT (section != NULL && functionname_ptr != NULL);
4568 addr = offset;
4569
4570 /* If we have no SYMBOL but the section we're looking at is not a
4571 code section, then take a look through the list of symbols to see
4572 if we have a symbol at the address we're looking for. If we do
4573 then use this to look up line information. This will allow us to
4574 give file and line results for data symbols. We exclude code
4575 symbols here, if we look up a function symbol and then look up the
4576 line information we'll actually return the line number for the
4577 opening '{' rather than the function definition line. This is
4578 because looking up by symbol uses the line table, in which the
4579 first line for a function is usually the opening '{', while
4580 looking up the function by section + offset uses the
4581 DW_AT_decl_line from the function DW_TAG_subprogram for the line,
4582 which will be the line of the function name. */
4583 if (symbols != NULL && (section->flags & SEC_CODE) == 0)
4584 {
4585 asymbol **tmp;
4586
4587 for (tmp = symbols; (*tmp) != NULL; ++tmp)
4588 if ((*tmp)->the_bfd == abfd
4589 && (*tmp)->section == section
4590 && (*tmp)->value == offset
4591 && ((*tmp)->flags & BSF_SECTION_SYM) == 0)
4592 {
4593 symbol = *tmp;
4594 do_line = TRUE;
4595 /* For local symbols, keep going in the hope we find a
4596 global. */
4597 if ((symbol->flags & BSF_GLOBAL) != 0)
4598 break;
4599 }
4600 }
4601 }
4602
4603 if (section->output_section)
4604 addr += section->output_section->vma + section->output_offset;
4605 else
4606 addr += section->vma;
4607
4608 /* A null info_ptr indicates that there is no dwarf2 info
4609 (or that an error occured while setting up the stash). */
4610 if (! stash->info_ptr)
4611 return FALSE;
4612
4613 stash->inliner_chain = NULL;
4614
4615 /* Check the previously read comp. units first. */
4616 if (do_line)
4617 {
4618 /* The info hash tables use quite a bit of memory. We may not want to
4619 always use them. We use some heuristics to decide if and when to
4620 turn it on. */
4621 if (stash->info_hash_status == STASH_INFO_HASH_OFF)
4622 stash_maybe_enable_info_hash_tables (abfd, stash);
4623
4624 /* Keep info hash table up to date if they are available. Note that we
4625 may disable the hash tables if there is any error duing update. */
4626 if (stash->info_hash_status == STASH_INFO_HASH_ON)
4627 stash_maybe_update_info_hash_tables (stash);
4628
4629 if (stash->info_hash_status == STASH_INFO_HASH_ON)
4630 {
4631 found = stash_find_line_fast (stash, symbol, addr, filename_ptr,
4632 linenumber_ptr);
4633 if (found)
4634 goto done;
4635 }
4636 else
4637 {
4638 /* Check the previously read comp. units first. */
4639 for (each = stash->all_comp_units; each; each = each->next_unit)
4640 if ((symbol->flags & BSF_FUNCTION) == 0
4641 || each->arange.high == 0
4642 || comp_unit_contains_address (each, addr))
4643 {
4644 found = comp_unit_find_line (each, symbol, addr, filename_ptr,
4645 linenumber_ptr, stash);
4646 if (found)
4647 goto done;
4648 }
4649 }
4650 }
4651 else
4652 {
4653 bfd_vma min_range = (bfd_vma) -1;
4654 const char * local_filename = NULL;
4655 struct funcinfo *local_function = NULL;
4656 unsigned int local_linenumber = 0;
4657 unsigned int local_discriminator = 0;
4658
4659 for (each = stash->all_comp_units; each; each = each->next_unit)
4660 {
4661 bfd_vma range = (bfd_vma) -1;
4662
4663 found = ((each->arange.high == 0
4664 || comp_unit_contains_address (each, addr))
4665 && (range = comp_unit_find_nearest_line (each, addr,
4666 & local_filename,
4667 & local_function,
4668 & local_linenumber,
4669 & local_discriminator,
4670 stash)) != 0);
4671 if (found)
4672 {
4673 /* PRs 15935 15994: Bogus debug information may have provided us
4674 with an erroneous match. We attempt to counter this by
4675 selecting the match that has the smallest address range
4676 associated with it. (We are assuming that corrupt debug info
4677 will tend to result in extra large address ranges rather than
4678 extra small ranges).
4679
4680 This does mean that we scan through all of the CUs associated
4681 with the bfd each time this function is called. But this does
4682 have the benefit of producing consistent results every time the
4683 function is called. */
4684 if (range <= min_range)
4685 {
4686 if (filename_ptr && local_filename)
4687 * filename_ptr = local_filename;
4688 if (local_function)
4689 function = local_function;
4690 if (discriminator_ptr && local_discriminator)
4691 * discriminator_ptr = local_discriminator;
4692 if (local_linenumber)
4693 * linenumber_ptr = local_linenumber;
4694 min_range = range;
4695 }
4696 }
4697 }
4698
4699 if (* linenumber_ptr)
4700 {
4701 found = TRUE;
4702 goto done;
4703 }
4704 }
4705
4706 /* The DWARF2 spec says that the initial length field, and the
4707 offset of the abbreviation table, should both be 4-byte values.
4708 However, some compilers do things differently. */
4709 if (addr_size == 0)
4710 addr_size = 4;
4711 BFD_ASSERT (addr_size == 4 || addr_size == 8);
4712
4713 /* Read each remaining comp. units checking each as they are read. */
4714 while (stash->info_ptr < stash->info_ptr_end)
4715 {
4716 bfd_vma length;
4717 unsigned int offset_size = addr_size;
4718 bfd_byte *info_ptr_unit = stash->info_ptr;
4719
4720 length = read_4_bytes (stash->bfd_ptr, stash->info_ptr, stash->info_ptr_end);
4721 /* A 0xffffff length is the DWARF3 way of indicating
4722 we use 64-bit offsets, instead of 32-bit offsets. */
4723 if (length == 0xffffffff)
4724 {
4725 offset_size = 8;
4726 length = read_8_bytes (stash->bfd_ptr, stash->info_ptr + 4, stash->info_ptr_end);
4727 stash->info_ptr += 12;
4728 }
4729 /* A zero length is the IRIX way of indicating 64-bit offsets,
4730 mostly because the 64-bit length will generally fit in 32
4731 bits, and the endianness helps. */
4732 else if (length == 0)
4733 {
4734 offset_size = 8;
4735 length = read_4_bytes (stash->bfd_ptr, stash->info_ptr + 4, stash->info_ptr_end);
4736 stash->info_ptr += 8;
4737 }
4738 /* In the absence of the hints above, we assume 32-bit DWARF2
4739 offsets even for targets with 64-bit addresses, because:
4740 a) most of the time these targets will not have generated
4741 more than 2Gb of debug info and so will not need 64-bit
4742 offsets,
4743 and
4744 b) if they do use 64-bit offsets but they are not using
4745 the size hints that are tested for above then they are
4746 not conforming to the DWARF3 standard anyway. */
4747 else if (addr_size == 8)
4748 {
4749 offset_size = 4;
4750 stash->info_ptr += 4;
4751 }
4752 else
4753 stash->info_ptr += 4;
4754
4755 if (length > 0)
4756 {
4757 bfd_byte * new_ptr;
4758
4759 /* PR 21151 */
4760 if (stash->info_ptr + length > stash->info_ptr_end)
4761 return FALSE;
4762
4763 each = parse_comp_unit (stash, length, info_ptr_unit,
4764 offset_size);
4765 if (!each)
4766 /* The dwarf information is damaged, don't trust it any
4767 more. */
4768 break;
4769
4770 new_ptr = stash->info_ptr + length;
4771 /* PR 17512: file: 1500698c. */
4772 if (new_ptr < stash->info_ptr)
4773 {
4774 /* A corrupt length value - do not trust the info any more. */
4775 found = FALSE;
4776 break;
4777 }
4778 else
4779 stash->info_ptr = new_ptr;
4780
4781 if (stash->all_comp_units)
4782 stash->all_comp_units->prev_unit = each;
4783 else
4784 stash->last_comp_unit = each;
4785
4786 each->next_unit = stash->all_comp_units;
4787 stash->all_comp_units = each;
4788
4789 /* DW_AT_low_pc and DW_AT_high_pc are optional for
4790 compilation units. If we don't have them (i.e.,
4791 unit->high == 0), we need to consult the line info table
4792 to see if a compilation unit contains the given
4793 address. */
4794 if (do_line)
4795 found = (((symbol->flags & BSF_FUNCTION) == 0
4796 || each->arange.high == 0
4797 || comp_unit_contains_address (each, addr))
4798 && comp_unit_find_line (each, symbol, addr,
4799 filename_ptr,
4800 linenumber_ptr,
4801 stash));
4802 else
4803 found = ((each->arange.high == 0
4804 || comp_unit_contains_address (each, addr))
4805 && comp_unit_find_nearest_line (each, addr,
4806 filename_ptr,
4807 &function,
4808 linenumber_ptr,
4809 discriminator_ptr,
4810 stash) != 0);
4811
4812 if ((bfd_vma) (stash->info_ptr - stash->sec_info_ptr)
4813 == stash->sec->size)
4814 {
4815 stash->sec = find_debug_info (stash->bfd_ptr, debug_sections,
4816 stash->sec);
4817 stash->sec_info_ptr = stash->info_ptr;
4818 }
4819
4820 if (found)
4821 goto done;
4822 }
4823 }
4824
4825 done:
4826 if (function)
4827 {
4828 if (!function->is_linkage)
4829 {
4830 asymbol *fun;
4831 bfd_vma sec_vma;
4832
4833 fun = _bfd_elf_find_function (abfd, symbols, section, offset,
4834 *filename_ptr ? NULL : filename_ptr,
4835 functionname_ptr);
4836 sec_vma = section->vma;
4837 if (section->output_section != NULL)
4838 sec_vma = section->output_section->vma + section->output_offset;
4839 if (fun != NULL
4840 && fun->value + sec_vma == function->arange.low)
4841 function->name = *functionname_ptr;
4842 /* Even if we didn't find a linkage name, say that we have
4843 to stop a repeated search of symbols. */
4844 function->is_linkage = TRUE;
4845 }
4846 *functionname_ptr = function->name;
4847 }
4848 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0)
4849 unset_sections (stash);
4850
4851 return found;
4852 }
4853
4854 bfd_boolean
4855 _bfd_dwarf2_find_inliner_info (bfd *abfd ATTRIBUTE_UNUSED,
4856 const char **filename_ptr,
4857 const char **functionname_ptr,
4858 unsigned int *linenumber_ptr,
4859 void **pinfo)
4860 {
4861 struct dwarf2_debug *stash;
4862
4863 stash = (struct dwarf2_debug *) *pinfo;
4864 if (stash)
4865 {
4866 struct funcinfo *func = stash->inliner_chain;
4867
4868 if (func && func->caller_func)
4869 {
4870 *filename_ptr = func->caller_file;
4871 *functionname_ptr = func->caller_func->name;
4872 *linenumber_ptr = func->caller_line;
4873 stash->inliner_chain = func->caller_func;
4874 return TRUE;
4875 }
4876 }
4877
4878 return FALSE;
4879 }
4880
4881 void
4882 _bfd_dwarf2_cleanup_debug_info (bfd *abfd, void **pinfo)
4883 {
4884 struct dwarf2_debug *stash = (struct dwarf2_debug *) *pinfo;
4885 struct comp_unit *each;
4886
4887 if (abfd == NULL || stash == NULL)
4888 return;
4889
4890 for (each = stash->all_comp_units; each; each = each->next_unit)
4891 {
4892 struct abbrev_info **abbrevs = each->abbrevs;
4893 struct funcinfo *function_table = each->function_table;
4894 struct varinfo *variable_table = each->variable_table;
4895 size_t i;
4896
4897 for (i = 0; i < ABBREV_HASH_SIZE; i++)
4898 {
4899 struct abbrev_info *abbrev = abbrevs[i];
4900
4901 while (abbrev)
4902 {
4903 free (abbrev->attrs);
4904 abbrev = abbrev->next;
4905 }
4906 }
4907
4908 if (each->line_table)
4909 {
4910 free (each->line_table->dirs);
4911 free (each->line_table->files);
4912 }
4913
4914 while (function_table)
4915 {
4916 if (function_table->file)
4917 {
4918 free (function_table->file);
4919 function_table->file = NULL;
4920 }
4921
4922 if (function_table->caller_file)
4923 {
4924 free (function_table->caller_file);
4925 function_table->caller_file = NULL;
4926 }
4927 function_table = function_table->prev_func;
4928 }
4929
4930 if (each->lookup_funcinfo_table)
4931 {
4932 free (each->lookup_funcinfo_table);
4933 each->lookup_funcinfo_table = NULL;
4934 }
4935
4936 while (variable_table)
4937 {
4938 if (variable_table->file)
4939 {
4940 free (variable_table->file);
4941 variable_table->file = NULL;
4942 }
4943
4944 variable_table = variable_table->prev_var;
4945 }
4946 }
4947
4948 if (stash->dwarf_abbrev_buffer)
4949 free (stash->dwarf_abbrev_buffer);
4950 if (stash->dwarf_line_buffer)
4951 free (stash->dwarf_line_buffer);
4952 if (stash->dwarf_str_buffer)
4953 free (stash->dwarf_str_buffer);
4954 if (stash->dwarf_line_str_buffer)
4955 free (stash->dwarf_line_str_buffer);
4956 if (stash->dwarf_ranges_buffer)
4957 free (stash->dwarf_ranges_buffer);
4958 if (stash->info_ptr_memory)
4959 free (stash->info_ptr_memory);
4960 if (stash->close_on_cleanup)
4961 bfd_close (stash->bfd_ptr);
4962 if (stash->alt_dwarf_str_buffer)
4963 free (stash->alt_dwarf_str_buffer);
4964 if (stash->alt_dwarf_info_buffer)
4965 free (stash->alt_dwarf_info_buffer);
4966 if (stash->sec_vma)
4967 free (stash->sec_vma);
4968 if (stash->adjusted_sections)
4969 free (stash->adjusted_sections);
4970 if (stash->alt_bfd_ptr)
4971 bfd_close (stash->alt_bfd_ptr);
4972 }
4973
4974 /* Find the function to a particular section and offset,
4975 for error reporting. */
4976
4977 asymbol *
4978 _bfd_elf_find_function (bfd *abfd,
4979 asymbol **symbols,
4980 asection *section,
4981 bfd_vma offset,
4982 const char **filename_ptr,
4983 const char **functionname_ptr)
4984 {
4985 struct elf_find_function_cache
4986 {
4987 asection *last_section;
4988 asymbol *func;
4989 const char *filename;
4990 bfd_size_type func_size;
4991 } *cache;
4992
4993 if (symbols == NULL)
4994 return NULL;
4995
4996 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
4997 return NULL;
4998
4999 cache = elf_tdata (abfd)->elf_find_function_cache;
5000 if (cache == NULL)
5001 {
5002 cache = bfd_zalloc (abfd, sizeof (*cache));
5003 elf_tdata (abfd)->elf_find_function_cache = cache;
5004 if (cache == NULL)
5005 return NULL;
5006 }
5007 if (cache->last_section != section
5008 || cache->func == NULL
5009 || offset < cache->func->value
5010 || offset >= cache->func->value + cache->func_size)
5011 {
5012 asymbol *file;
5013 bfd_vma low_func;
5014 asymbol **p;
5015 /* ??? Given multiple file symbols, it is impossible to reliably
5016 choose the right file name for global symbols. File symbols are
5017 local symbols, and thus all file symbols must sort before any
5018 global symbols. The ELF spec may be interpreted to say that a
5019 file symbol must sort before other local symbols, but currently
5020 ld -r doesn't do this. So, for ld -r output, it is possible to
5021 make a better choice of file name for local symbols by ignoring
5022 file symbols appearing after a given local symbol. */
5023 enum { nothing_seen, symbol_seen, file_after_symbol_seen } state;
5024 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5025
5026 file = NULL;
5027 low_func = 0;
5028 state = nothing_seen;
5029 cache->filename = NULL;
5030 cache->func = NULL;
5031 cache->func_size = 0;
5032 cache->last_section = section;
5033
5034 for (p = symbols; *p != NULL; p++)
5035 {
5036 asymbol *sym = *p;
5037 bfd_vma code_off;
5038 bfd_size_type size;
5039
5040 if ((sym->flags & BSF_FILE) != 0)
5041 {
5042 file = sym;
5043 if (state == symbol_seen)
5044 state = file_after_symbol_seen;
5045 continue;
5046 }
5047
5048 size = bed->maybe_function_sym (sym, section, &code_off);
5049 if (size != 0
5050 && code_off <= offset
5051 && (code_off > low_func
5052 || (code_off == low_func
5053 && size > cache->func_size)))
5054 {
5055 cache->func = sym;
5056 cache->func_size = size;
5057 cache->filename = NULL;
5058 low_func = code_off;
5059 if (file != NULL
5060 && ((sym->flags & BSF_LOCAL) != 0
5061 || state != file_after_symbol_seen))
5062 cache->filename = bfd_asymbol_name (file);
5063 }
5064 if (state == nothing_seen)
5065 state = symbol_seen;
5066 }
5067 }
5068
5069 if (cache->func == NULL)
5070 return NULL;
5071
5072 if (filename_ptr)
5073 *filename_ptr = cache->filename;
5074 if (functionname_ptr)
5075 *functionname_ptr = bfd_asymbol_name (cache->func);
5076
5077 return cache->func;
5078 }
This page took 0.124242 seconds and 5 git commands to generate.