Fix buffer read overrun by ensuring that DWARF sections containing strings always...
[deliverable/binutils-gdb.git] / bfd / dwarf2.c
1 /* DWARF 2 support.
2 Copyright (C) 1994-2017 Free Software Foundation, Inc.
3
4 Adapted from gdb/dwarf2read.c by Gavin Koch of Cygnus Solutions
5 (gavin@cygnus.com).
6
7 From the dwarf2read.c header:
8 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
9 Inc. with support from Florida State University (under contract
10 with the Ada Joint Program Office), and Silicon Graphics, Inc.
11 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
12 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
13 support in dwarfread.c
14
15 This file is part of BFD.
16
17 This program is free software; you can redistribute it and/or modify
18 it under the terms of the GNU General Public License as published by
19 the Free Software Foundation; either version 3 of the License, or (at
20 your option) any later version.
21
22 This program is distributed in the hope that it will be useful, but
23 WITHOUT ANY WARRANTY; without even the implied warranty of
24 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
25 General Public License for more details.
26
27 You should have received a copy of the GNU General Public License
28 along with this program; if not, write to the Free Software
29 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
30 MA 02110-1301, USA. */
31
32 #include "sysdep.h"
33 #include "bfd.h"
34 #include "libiberty.h"
35 #include "libbfd.h"
36 #include "elf-bfd.h"
37 #include "dwarf2.h"
38
39 /* The data in the .debug_line statement prologue looks like this. */
40
41 struct line_head
42 {
43 bfd_vma total_length;
44 unsigned short version;
45 bfd_vma prologue_length;
46 unsigned char minimum_instruction_length;
47 unsigned char maximum_ops_per_insn;
48 unsigned char default_is_stmt;
49 int line_base;
50 unsigned char line_range;
51 unsigned char opcode_base;
52 unsigned char *standard_opcode_lengths;
53 };
54
55 /* Attributes have a name and a value. */
56
57 struct attribute
58 {
59 enum dwarf_attribute name;
60 enum dwarf_form form;
61 union
62 {
63 char *str;
64 struct dwarf_block *blk;
65 bfd_uint64_t val;
66 bfd_int64_t sval;
67 }
68 u;
69 };
70
71 /* Blocks are a bunch of untyped bytes. */
72 struct dwarf_block
73 {
74 unsigned int size;
75 bfd_byte *data;
76 };
77
78 struct adjusted_section
79 {
80 asection *section;
81 bfd_vma adj_vma;
82 };
83
84 struct dwarf2_debug
85 {
86 /* A list of all previously read comp_units. */
87 struct comp_unit *all_comp_units;
88
89 /* Last comp unit in list above. */
90 struct comp_unit *last_comp_unit;
91
92 /* Names of the debug sections. */
93 const struct dwarf_debug_section *debug_sections;
94
95 /* The next unread compilation unit within the .debug_info section.
96 Zero indicates that the .debug_info section has not been loaded
97 into a buffer yet. */
98 bfd_byte *info_ptr;
99
100 /* Pointer to the end of the .debug_info section memory buffer. */
101 bfd_byte *info_ptr_end;
102
103 /* Pointer to the original bfd for which debug was loaded. This is what
104 we use to compare and so check that the cached debug data is still
105 valid - it saves having to possibly dereference the gnu_debuglink each
106 time. */
107 bfd *orig_bfd;
108
109 /* Pointer to the bfd, section and address of the beginning of the
110 section. The bfd might be different than expected because of
111 gnu_debuglink sections. */
112 bfd *bfd_ptr;
113 asection *sec;
114 bfd_byte *sec_info_ptr;
115
116 /* Support for alternate debug info sections created by the DWZ utility:
117 This includes a pointer to an alternate bfd which contains *extra*,
118 possibly duplicate debug sections, and pointers to the loaded
119 .debug_str and .debug_info sections from this bfd. */
120 bfd * alt_bfd_ptr;
121 bfd_byte * alt_dwarf_str_buffer;
122 bfd_size_type alt_dwarf_str_size;
123 bfd_byte * alt_dwarf_info_buffer;
124 bfd_size_type alt_dwarf_info_size;
125
126 /* A pointer to the memory block allocated for info_ptr. Neither
127 info_ptr nor sec_info_ptr are guaranteed to stay pointing to the
128 beginning of the malloc block. This is used only to free the
129 memory later. */
130 bfd_byte *info_ptr_memory;
131
132 /* Pointer to the symbol table. */
133 asymbol **syms;
134
135 /* Pointer to the .debug_abbrev section loaded into memory. */
136 bfd_byte *dwarf_abbrev_buffer;
137
138 /* Length of the loaded .debug_abbrev section. */
139 bfd_size_type dwarf_abbrev_size;
140
141 /* Buffer for decode_line_info. */
142 bfd_byte *dwarf_line_buffer;
143
144 /* Length of the loaded .debug_line section. */
145 bfd_size_type dwarf_line_size;
146
147 /* Pointer to the .debug_str section loaded into memory. */
148 bfd_byte *dwarf_str_buffer;
149
150 /* Length of the loaded .debug_str section. */
151 bfd_size_type dwarf_str_size;
152
153 /* Pointer to the .debug_line_str section loaded into memory. */
154 bfd_byte *dwarf_line_str_buffer;
155
156 /* Length of the loaded .debug_line_str section. */
157 bfd_size_type dwarf_line_str_size;
158
159 /* Pointer to the .debug_ranges section loaded into memory. */
160 bfd_byte *dwarf_ranges_buffer;
161
162 /* Length of the loaded .debug_ranges section. */
163 bfd_size_type dwarf_ranges_size;
164
165 /* If the most recent call to bfd_find_nearest_line was given an
166 address in an inlined function, preserve a pointer into the
167 calling chain for subsequent calls to bfd_find_inliner_info to
168 use. */
169 struct funcinfo *inliner_chain;
170
171 /* Section VMAs at the time the stash was built. */
172 bfd_vma *sec_vma;
173
174 /* Number of sections whose VMA we must adjust. */
175 int adjusted_section_count;
176
177 /* Array of sections with adjusted VMA. */
178 struct adjusted_section *adjusted_sections;
179
180 /* Number of times find_line is called. This is used in
181 the heuristic for enabling the info hash tables. */
182 int info_hash_count;
183
184 #define STASH_INFO_HASH_TRIGGER 100
185
186 /* Hash table mapping symbol names to function infos. */
187 struct info_hash_table *funcinfo_hash_table;
188
189 /* Hash table mapping symbol names to variable infos. */
190 struct info_hash_table *varinfo_hash_table;
191
192 /* Head of comp_unit list in the last hash table update. */
193 struct comp_unit *hash_units_head;
194
195 /* Status of info hash. */
196 int info_hash_status;
197 #define STASH_INFO_HASH_OFF 0
198 #define STASH_INFO_HASH_ON 1
199 #define STASH_INFO_HASH_DISABLED 2
200
201 /* True if we opened bfd_ptr. */
202 bfd_boolean close_on_cleanup;
203 };
204
205 struct arange
206 {
207 struct arange *next;
208 bfd_vma low;
209 bfd_vma high;
210 };
211
212 /* A minimal decoding of DWARF2 compilation units. We only decode
213 what's needed to get to the line number information. */
214
215 struct comp_unit
216 {
217 /* Chain the previously read compilation units. */
218 struct comp_unit *next_unit;
219
220 /* Likewise, chain the compilation unit read after this one.
221 The comp units are stored in reversed reading order. */
222 struct comp_unit *prev_unit;
223
224 /* Keep the bfd convenient (for memory allocation). */
225 bfd *abfd;
226
227 /* The lowest and highest addresses contained in this compilation
228 unit as specified in the compilation unit header. */
229 struct arange arange;
230
231 /* The DW_AT_name attribute (for error messages). */
232 char *name;
233
234 /* The abbrev hash table. */
235 struct abbrev_info **abbrevs;
236
237 /* DW_AT_language. */
238 int lang;
239
240 /* Note that an error was found by comp_unit_find_nearest_line. */
241 int error;
242
243 /* The DW_AT_comp_dir attribute. */
244 char *comp_dir;
245
246 /* TRUE if there is a line number table associated with this comp. unit. */
247 int stmtlist;
248
249 /* Pointer to the current comp_unit so that we can find a given entry
250 by its reference. */
251 bfd_byte *info_ptr_unit;
252
253 /* Pointer to the start of the debug section, for DW_FORM_ref_addr. */
254 bfd_byte *sec_info_ptr;
255
256 /* The offset into .debug_line of the line number table. */
257 unsigned long line_offset;
258
259 /* Pointer to the first child die for the comp unit. */
260 bfd_byte *first_child_die_ptr;
261
262 /* The end of the comp unit. */
263 bfd_byte *end_ptr;
264
265 /* The decoded line number, NULL if not yet decoded. */
266 struct line_info_table *line_table;
267
268 /* A list of the functions found in this comp. unit. */
269 struct funcinfo *function_table;
270
271 /* A table of function information references searchable by address. */
272 struct lookup_funcinfo *lookup_funcinfo_table;
273
274 /* Number of functions in the function_table and sorted_function_table. */
275 bfd_size_type number_of_functions;
276
277 /* A list of the variables found in this comp. unit. */
278 struct varinfo *variable_table;
279
280 /* Pointer to dwarf2_debug structure. */
281 struct dwarf2_debug *stash;
282
283 /* DWARF format version for this unit - from unit header. */
284 int version;
285
286 /* Address size for this unit - from unit header. */
287 unsigned char addr_size;
288
289 /* Offset size for this unit - from unit header. */
290 unsigned char offset_size;
291
292 /* Base address for this unit - from DW_AT_low_pc attribute of
293 DW_TAG_compile_unit DIE */
294 bfd_vma base_address;
295
296 /* TRUE if symbols are cached in hash table for faster lookup by name. */
297 bfd_boolean cached;
298 };
299
300 /* This data structure holds the information of an abbrev. */
301 struct abbrev_info
302 {
303 unsigned int number; /* Number identifying abbrev. */
304 enum dwarf_tag tag; /* DWARF tag. */
305 int has_children; /* Boolean. */
306 unsigned int num_attrs; /* Number of attributes. */
307 struct attr_abbrev *attrs; /* An array of attribute descriptions. */
308 struct abbrev_info *next; /* Next in chain. */
309 };
310
311 struct attr_abbrev
312 {
313 enum dwarf_attribute name;
314 enum dwarf_form form;
315 bfd_vma implicit_const;
316 };
317
318 /* Map of uncompressed DWARF debug section name to compressed one. It
319 is terminated by NULL uncompressed_name. */
320
321 const struct dwarf_debug_section dwarf_debug_sections[] =
322 {
323 { ".debug_abbrev", ".zdebug_abbrev" },
324 { ".debug_aranges", ".zdebug_aranges" },
325 { ".debug_frame", ".zdebug_frame" },
326 { ".debug_info", ".zdebug_info" },
327 { ".debug_info", ".zdebug_info" },
328 { ".debug_line", ".zdebug_line" },
329 { ".debug_loc", ".zdebug_loc" },
330 { ".debug_macinfo", ".zdebug_macinfo" },
331 { ".debug_macro", ".zdebug_macro" },
332 { ".debug_pubnames", ".zdebug_pubnames" },
333 { ".debug_pubtypes", ".zdebug_pubtypes" },
334 { ".debug_ranges", ".zdebug_ranges" },
335 { ".debug_static_func", ".zdebug_static_func" },
336 { ".debug_static_vars", ".zdebug_static_vars" },
337 { ".debug_str", ".zdebug_str", },
338 { ".debug_str", ".zdebug_str", },
339 { ".debug_line_str", ".zdebug_line_str", },
340 { ".debug_types", ".zdebug_types" },
341 /* GNU DWARF 1 extensions */
342 { ".debug_sfnames", ".zdebug_sfnames" },
343 { ".debug_srcinfo", ".zebug_srcinfo" },
344 /* SGI/MIPS DWARF 2 extensions */
345 { ".debug_funcnames", ".zdebug_funcnames" },
346 { ".debug_typenames", ".zdebug_typenames" },
347 { ".debug_varnames", ".zdebug_varnames" },
348 { ".debug_weaknames", ".zdebug_weaknames" },
349 { NULL, NULL },
350 };
351
352 /* NB/ Numbers in this enum must match up with indicies
353 into the dwarf_debug_sections[] array above. */
354 enum dwarf_debug_section_enum
355 {
356 debug_abbrev = 0,
357 debug_aranges,
358 debug_frame,
359 debug_info,
360 debug_info_alt,
361 debug_line,
362 debug_loc,
363 debug_macinfo,
364 debug_macro,
365 debug_pubnames,
366 debug_pubtypes,
367 debug_ranges,
368 debug_static_func,
369 debug_static_vars,
370 debug_str,
371 debug_str_alt,
372 debug_line_str,
373 debug_types,
374 debug_sfnames,
375 debug_srcinfo,
376 debug_funcnames,
377 debug_typenames,
378 debug_varnames,
379 debug_weaknames,
380 debug_max
381 };
382
383 /* A static assertion. */
384 extern int dwarf_debug_section_assert[ARRAY_SIZE (dwarf_debug_sections)
385 == debug_max + 1 ? 1 : -1];
386
387 #ifndef ABBREV_HASH_SIZE
388 #define ABBREV_HASH_SIZE 121
389 #endif
390 #ifndef ATTR_ALLOC_CHUNK
391 #define ATTR_ALLOC_CHUNK 4
392 #endif
393
394 /* Variable and function hash tables. This is used to speed up look-up
395 in lookup_symbol_in_var_table() and lookup_symbol_in_function_table().
396 In order to share code between variable and function infos, we use
397 a list of untyped pointer for all variable/function info associated with
398 a symbol. We waste a bit of memory for list with one node but that
399 simplifies the code. */
400
401 struct info_list_node
402 {
403 struct info_list_node *next;
404 void *info;
405 };
406
407 /* Info hash entry. */
408 struct info_hash_entry
409 {
410 struct bfd_hash_entry root;
411 struct info_list_node *head;
412 };
413
414 struct info_hash_table
415 {
416 struct bfd_hash_table base;
417 };
418
419 /* Function to create a new entry in info hash table. */
420
421 static struct bfd_hash_entry *
422 info_hash_table_newfunc (struct bfd_hash_entry *entry,
423 struct bfd_hash_table *table,
424 const char *string)
425 {
426 struct info_hash_entry *ret = (struct info_hash_entry *) entry;
427
428 /* Allocate the structure if it has not already been allocated by a
429 derived class. */
430 if (ret == NULL)
431 {
432 ret = (struct info_hash_entry *) bfd_hash_allocate (table,
433 sizeof (* ret));
434 if (ret == NULL)
435 return NULL;
436 }
437
438 /* Call the allocation method of the base class. */
439 ret = ((struct info_hash_entry *)
440 bfd_hash_newfunc ((struct bfd_hash_entry *) ret, table, string));
441
442 /* Initialize the local fields here. */
443 if (ret)
444 ret->head = NULL;
445
446 return (struct bfd_hash_entry *) ret;
447 }
448
449 /* Function to create a new info hash table. It returns a pointer to the
450 newly created table or NULL if there is any error. We need abfd
451 solely for memory allocation. */
452
453 static struct info_hash_table *
454 create_info_hash_table (bfd *abfd)
455 {
456 struct info_hash_table *hash_table;
457
458 hash_table = ((struct info_hash_table *)
459 bfd_alloc (abfd, sizeof (struct info_hash_table)));
460 if (!hash_table)
461 return hash_table;
462
463 if (!bfd_hash_table_init (&hash_table->base, info_hash_table_newfunc,
464 sizeof (struct info_hash_entry)))
465 {
466 bfd_release (abfd, hash_table);
467 return NULL;
468 }
469
470 return hash_table;
471 }
472
473 /* Insert an info entry into an info hash table. We do not check of
474 duplicate entries. Also, the caller need to guarantee that the
475 right type of info in inserted as info is passed as a void* pointer.
476 This function returns true if there is no error. */
477
478 static bfd_boolean
479 insert_info_hash_table (struct info_hash_table *hash_table,
480 const char *key,
481 void *info,
482 bfd_boolean copy_p)
483 {
484 struct info_hash_entry *entry;
485 struct info_list_node *node;
486
487 entry = (struct info_hash_entry*) bfd_hash_lookup (&hash_table->base,
488 key, TRUE, copy_p);
489 if (!entry)
490 return FALSE;
491
492 node = (struct info_list_node *) bfd_hash_allocate (&hash_table->base,
493 sizeof (*node));
494 if (!node)
495 return FALSE;
496
497 node->info = info;
498 node->next = entry->head;
499 entry->head = node;
500
501 return TRUE;
502 }
503
504 /* Look up an info entry list from an info hash table. Return NULL
505 if there is none. */
506
507 static struct info_list_node *
508 lookup_info_hash_table (struct info_hash_table *hash_table, const char *key)
509 {
510 struct info_hash_entry *entry;
511
512 entry = (struct info_hash_entry*) bfd_hash_lookup (&hash_table->base, key,
513 FALSE, FALSE);
514 return entry ? entry->head : NULL;
515 }
516
517 /* Read a section into its appropriate place in the dwarf2_debug
518 struct (indicated by SECTION_BUFFER and SECTION_SIZE). If SYMS is
519 not NULL, use bfd_simple_get_relocated_section_contents to read the
520 section contents, otherwise use bfd_get_section_contents. Fail if
521 the located section does not contain at least OFFSET bytes. */
522
523 static bfd_boolean
524 read_section (bfd * abfd,
525 const struct dwarf_debug_section *sec,
526 asymbol ** syms,
527 bfd_uint64_t offset,
528 bfd_byte ** section_buffer,
529 bfd_size_type * section_size)
530 {
531 asection *msec;
532 const char *section_name = sec->uncompressed_name;
533
534 /* The section may have already been read. */
535 if (*section_buffer == NULL)
536 {
537 msec = bfd_get_section_by_name (abfd, section_name);
538 if (! msec)
539 {
540 section_name = sec->compressed_name;
541 if (section_name != NULL)
542 msec = bfd_get_section_by_name (abfd, section_name);
543 }
544 if (! msec)
545 {
546 _bfd_error_handler (_("Dwarf Error: Can't find %s section."),
547 sec->uncompressed_name);
548 bfd_set_error (bfd_error_bad_value);
549 return FALSE;
550 }
551
552 *section_size = msec->rawsize ? msec->rawsize : msec->size;
553 if (syms)
554 {
555 *section_buffer
556 = bfd_simple_get_relocated_section_contents (abfd, msec, NULL, syms);
557 if (! *section_buffer)
558 return FALSE;
559 }
560 else
561 {
562 *section_buffer = (bfd_byte *) bfd_malloc (*section_size);
563 if (! *section_buffer)
564 return FALSE;
565 if (! bfd_get_section_contents (abfd, msec, *section_buffer,
566 0, *section_size))
567 return FALSE;
568 }
569
570 /* Paranoia - if we are reading in a string section, make sure that it
571 is NUL terminated. This is to prevent string functions from running
572 off the end of the buffer. Note - knowing the size of the buffer is
573 not enough as some functions, eg strchr, do not have a range limited
574 equivalent.
575
576 FIXME: We ought to use a flag in the dwarf_debug_sections[] table to
577 determine the nature of a debug section, rather than checking the
578 section name as we do here. */
579 if (*section_size > 0
580 && (*section_buffer)[*section_size - 1] != 0
581 && (strstr (section_name, "_str") || strstr (section_name, "names")))
582 {
583 bfd_byte * new_buffer = malloc (*section_size + 1);
584
585 _bfd_error_handler (_("warning: dwarf string section '%s' is not NUL terminated"),
586 section_name);
587 memcpy (new_buffer, *section_buffer, *section_size);
588 new_buffer[*section_size] = 0;
589 free (*section_buffer);
590 *section_buffer = new_buffer;
591 }
592 }
593
594 /* It is possible to get a bad value for the offset into the section
595 that the client wants. Validate it here to avoid trouble later. */
596 if (offset != 0 && offset >= *section_size)
597 {
598 /* xgettext: c-format */
599 _bfd_error_handler (_("Dwarf Error: Offset (%llu)"
600 " greater than or equal to %s size (%Lu)."),
601 (long long) offset, section_name, *section_size);
602 bfd_set_error (bfd_error_bad_value);
603 return FALSE;
604 }
605
606 return TRUE;
607 }
608
609 /* Read dwarf information from a buffer. */
610
611 static unsigned int
612 read_1_byte (bfd *abfd ATTRIBUTE_UNUSED, bfd_byte *buf, bfd_byte *end)
613 {
614 if (buf + 1 > end)
615 return 0;
616 return bfd_get_8 (abfd, buf);
617 }
618
619 static int
620 read_1_signed_byte (bfd *abfd ATTRIBUTE_UNUSED, bfd_byte *buf, bfd_byte *end)
621 {
622 if (buf + 1 > end)
623 return 0;
624 return bfd_get_signed_8 (abfd, buf);
625 }
626
627 static unsigned int
628 read_2_bytes (bfd *abfd, bfd_byte *buf, bfd_byte *end)
629 {
630 if (buf + 2 > end)
631 return 0;
632 return bfd_get_16 (abfd, buf);
633 }
634
635 static unsigned int
636 read_4_bytes (bfd *abfd, bfd_byte *buf, bfd_byte *end)
637 {
638 if (buf + 4 > end)
639 return 0;
640 return bfd_get_32 (abfd, buf);
641 }
642
643 static bfd_uint64_t
644 read_8_bytes (bfd *abfd, bfd_byte *buf, bfd_byte *end)
645 {
646 if (buf + 8 > end)
647 return 0;
648 return bfd_get_64 (abfd, buf);
649 }
650
651 static bfd_byte *
652 read_n_bytes (bfd *abfd ATTRIBUTE_UNUSED,
653 bfd_byte *buf,
654 bfd_byte *end,
655 unsigned int size ATTRIBUTE_UNUSED)
656 {
657 if (buf + size > end)
658 return NULL;
659 return buf;
660 }
661
662 /* Scans a NUL terminated string starting at BUF, returning a pointer to it.
663 Returns the number of characters in the string, *including* the NUL byte,
664 in BYTES_READ_PTR. This value is set even if the function fails. Bytes
665 at or beyond BUF_END will not be read. Returns NULL if there was a
666 problem, or if the string is empty. */
667
668 static char *
669 read_string (bfd * abfd ATTRIBUTE_UNUSED,
670 bfd_byte * buf,
671 bfd_byte * buf_end,
672 unsigned int * bytes_read_ptr)
673 {
674 bfd_byte *str = buf;
675
676 if (buf >= buf_end)
677 {
678 * bytes_read_ptr = 0;
679 return NULL;
680 }
681
682 if (*str == '\0')
683 {
684 * bytes_read_ptr = 1;
685 return NULL;
686 }
687
688 while (buf < buf_end)
689 if (* buf ++ == 0)
690 {
691 * bytes_read_ptr = buf - str;
692 return (char *) str;
693 }
694
695 * bytes_read_ptr = buf - str;
696 return NULL;
697 }
698
699 /* Reads an offset from BUF and then locates the string at this offset
700 inside the debug string section. Returns a pointer to the string.
701 Returns the number of bytes read from BUF, *not* the length of the string,
702 in BYTES_READ_PTR. This value is set even if the function fails. Bytes
703 at or beyond BUF_END will not be read from BUF. Returns NULL if there was
704 a problem, or if the string is empty. Does not check for NUL termination
705 of the string. */
706
707 static char *
708 read_indirect_string (struct comp_unit * unit,
709 bfd_byte * buf,
710 bfd_byte * buf_end,
711 unsigned int * bytes_read_ptr)
712 {
713 bfd_uint64_t offset;
714 struct dwarf2_debug *stash = unit->stash;
715 char *str;
716
717 if (buf + unit->offset_size > buf_end)
718 {
719 * bytes_read_ptr = 0;
720 return NULL;
721 }
722
723 if (unit->offset_size == 4)
724 offset = read_4_bytes (unit->abfd, buf, buf_end);
725 else
726 offset = read_8_bytes (unit->abfd, buf, buf_end);
727
728 *bytes_read_ptr = unit->offset_size;
729
730 if (! read_section (unit->abfd, &stash->debug_sections[debug_str],
731 stash->syms, offset,
732 &stash->dwarf_str_buffer, &stash->dwarf_str_size))
733 return NULL;
734
735 if (offset >= stash->dwarf_str_size)
736 return NULL;
737 str = (char *) stash->dwarf_str_buffer + offset;
738 if (*str == '\0')
739 return NULL;
740 return str;
741 }
742
743 /* Like read_indirect_string but from .debug_line_str section. */
744
745 static char *
746 read_indirect_line_string (struct comp_unit * unit,
747 bfd_byte * buf,
748 bfd_byte * buf_end,
749 unsigned int * bytes_read_ptr)
750 {
751 bfd_uint64_t offset;
752 struct dwarf2_debug *stash = unit->stash;
753 char *str;
754
755 if (buf + unit->offset_size > buf_end)
756 {
757 * bytes_read_ptr = 0;
758 return NULL;
759 }
760
761 if (unit->offset_size == 4)
762 offset = read_4_bytes (unit->abfd, buf, buf_end);
763 else
764 offset = read_8_bytes (unit->abfd, buf, buf_end);
765
766 *bytes_read_ptr = unit->offset_size;
767
768 if (! read_section (unit->abfd, &stash->debug_sections[debug_line_str],
769 stash->syms, offset,
770 &stash->dwarf_line_str_buffer,
771 &stash->dwarf_line_str_size))
772 return NULL;
773
774 if (offset >= stash->dwarf_line_str_size)
775 return NULL;
776 str = (char *) stash->dwarf_line_str_buffer + offset;
777 if (*str == '\0')
778 return NULL;
779 return str;
780 }
781
782 /* Like read_indirect_string but uses a .debug_str located in
783 an alternate file pointed to by the .gnu_debugaltlink section.
784 Used to impement DW_FORM_GNU_strp_alt. */
785
786 static char *
787 read_alt_indirect_string (struct comp_unit * unit,
788 bfd_byte * buf,
789 bfd_byte * buf_end,
790 unsigned int * bytes_read_ptr)
791 {
792 bfd_uint64_t offset;
793 struct dwarf2_debug *stash = unit->stash;
794 char *str;
795
796 if (buf + unit->offset_size > buf_end)
797 {
798 * bytes_read_ptr = 0;
799 return NULL;
800 }
801
802 if (unit->offset_size == 4)
803 offset = read_4_bytes (unit->abfd, buf, buf_end);
804 else
805 offset = read_8_bytes (unit->abfd, buf, buf_end);
806
807 *bytes_read_ptr = unit->offset_size;
808
809 if (stash->alt_bfd_ptr == NULL)
810 {
811 bfd * debug_bfd;
812 char * debug_filename = bfd_follow_gnu_debugaltlink (unit->abfd, DEBUGDIR);
813
814 if (debug_filename == NULL)
815 return NULL;
816
817 if ((debug_bfd = bfd_openr (debug_filename, NULL)) == NULL
818 || ! bfd_check_format (debug_bfd, bfd_object))
819 {
820 if (debug_bfd)
821 bfd_close (debug_bfd);
822
823 /* FIXME: Should we report our failure to follow the debuglink ? */
824 free (debug_filename);
825 return NULL;
826 }
827 stash->alt_bfd_ptr = debug_bfd;
828 }
829
830 if (! read_section (unit->stash->alt_bfd_ptr,
831 stash->debug_sections + debug_str_alt,
832 NULL, /* FIXME: Do we need to load alternate symbols ? */
833 offset,
834 &stash->alt_dwarf_str_buffer,
835 &stash->alt_dwarf_str_size))
836 return NULL;
837
838 if (offset >= stash->alt_dwarf_str_size)
839 return NULL;
840 str = (char *) stash->alt_dwarf_str_buffer + offset;
841 if (*str == '\0')
842 return NULL;
843
844 return str;
845 }
846
847 /* Resolve an alternate reference from UNIT at OFFSET.
848 Returns a pointer into the loaded alternate CU upon success
849 or NULL upon failure. */
850
851 static bfd_byte *
852 read_alt_indirect_ref (struct comp_unit * unit,
853 bfd_uint64_t offset)
854 {
855 struct dwarf2_debug *stash = unit->stash;
856
857 if (stash->alt_bfd_ptr == NULL)
858 {
859 bfd * debug_bfd;
860 char * debug_filename = bfd_follow_gnu_debugaltlink (unit->abfd, DEBUGDIR);
861
862 if (debug_filename == NULL)
863 return FALSE;
864
865 if ((debug_bfd = bfd_openr (debug_filename, NULL)) == NULL
866 || ! bfd_check_format (debug_bfd, bfd_object))
867 {
868 if (debug_bfd)
869 bfd_close (debug_bfd);
870
871 /* FIXME: Should we report our failure to follow the debuglink ? */
872 free (debug_filename);
873 return NULL;
874 }
875 stash->alt_bfd_ptr = debug_bfd;
876 }
877
878 if (! read_section (unit->stash->alt_bfd_ptr,
879 stash->debug_sections + debug_info_alt,
880 NULL, /* FIXME: Do we need to load alternate symbols ? */
881 offset,
882 &stash->alt_dwarf_info_buffer,
883 &stash->alt_dwarf_info_size))
884 return NULL;
885
886 if (offset >= stash->alt_dwarf_info_size)
887 return NULL;
888 return stash->alt_dwarf_info_buffer + offset;
889 }
890
891 static bfd_uint64_t
892 read_address (struct comp_unit *unit, bfd_byte *buf, bfd_byte * buf_end)
893 {
894 int signed_vma = 0;
895
896 if (bfd_get_flavour (unit->abfd) == bfd_target_elf_flavour)
897 signed_vma = get_elf_backend_data (unit->abfd)->sign_extend_vma;
898
899 if (buf + unit->addr_size > buf_end)
900 return 0;
901
902 if (signed_vma)
903 {
904 switch (unit->addr_size)
905 {
906 case 8:
907 return bfd_get_signed_64 (unit->abfd, buf);
908 case 4:
909 return bfd_get_signed_32 (unit->abfd, buf);
910 case 2:
911 return bfd_get_signed_16 (unit->abfd, buf);
912 default:
913 abort ();
914 }
915 }
916 else
917 {
918 switch (unit->addr_size)
919 {
920 case 8:
921 return bfd_get_64 (unit->abfd, buf);
922 case 4:
923 return bfd_get_32 (unit->abfd, buf);
924 case 2:
925 return bfd_get_16 (unit->abfd, buf);
926 default:
927 abort ();
928 }
929 }
930 }
931
932 /* Lookup an abbrev_info structure in the abbrev hash table. */
933
934 static struct abbrev_info *
935 lookup_abbrev (unsigned int number, struct abbrev_info **abbrevs)
936 {
937 unsigned int hash_number;
938 struct abbrev_info *abbrev;
939
940 hash_number = number % ABBREV_HASH_SIZE;
941 abbrev = abbrevs[hash_number];
942
943 while (abbrev)
944 {
945 if (abbrev->number == number)
946 return abbrev;
947 else
948 abbrev = abbrev->next;
949 }
950
951 return NULL;
952 }
953
954 /* In DWARF version 2, the description of the debugging information is
955 stored in a separate .debug_abbrev section. Before we read any
956 dies from a section we read in all abbreviations and install them
957 in a hash table. */
958
959 static struct abbrev_info**
960 read_abbrevs (bfd *abfd, bfd_uint64_t offset, struct dwarf2_debug *stash)
961 {
962 struct abbrev_info **abbrevs;
963 bfd_byte *abbrev_ptr;
964 bfd_byte *abbrev_end;
965 struct abbrev_info *cur_abbrev;
966 unsigned int abbrev_number, bytes_read, abbrev_name;
967 unsigned int abbrev_form, hash_number;
968 bfd_size_type amt;
969
970 if (! read_section (abfd, &stash->debug_sections[debug_abbrev],
971 stash->syms, offset,
972 &stash->dwarf_abbrev_buffer, &stash->dwarf_abbrev_size))
973 return NULL;
974
975 if (offset >= stash->dwarf_abbrev_size)
976 return NULL;
977
978 amt = sizeof (struct abbrev_info*) * ABBREV_HASH_SIZE;
979 abbrevs = (struct abbrev_info **) bfd_zalloc (abfd, amt);
980 if (abbrevs == NULL)
981 return NULL;
982
983 abbrev_ptr = stash->dwarf_abbrev_buffer + offset;
984 abbrev_end = stash->dwarf_abbrev_buffer + stash->dwarf_abbrev_size;
985 abbrev_number = _bfd_safe_read_leb128 (abfd, abbrev_ptr, &bytes_read,
986 FALSE, abbrev_end);
987 abbrev_ptr += bytes_read;
988
989 /* Loop until we reach an abbrev number of 0. */
990 while (abbrev_number)
991 {
992 amt = sizeof (struct abbrev_info);
993 cur_abbrev = (struct abbrev_info *) bfd_zalloc (abfd, amt);
994 if (cur_abbrev == NULL)
995 return NULL;
996
997 /* Read in abbrev header. */
998 cur_abbrev->number = abbrev_number;
999 cur_abbrev->tag = (enum dwarf_tag)
1000 _bfd_safe_read_leb128 (abfd, abbrev_ptr, &bytes_read,
1001 FALSE, abbrev_end);
1002 abbrev_ptr += bytes_read;
1003 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr, abbrev_end);
1004 abbrev_ptr += 1;
1005
1006 /* Now read in declarations. */
1007 for (;;)
1008 {
1009 /* Initialize it just to avoid a GCC false warning. */
1010 bfd_vma implicit_const = -1;
1011
1012 abbrev_name = _bfd_safe_read_leb128 (abfd, abbrev_ptr, &bytes_read,
1013 FALSE, abbrev_end);
1014 abbrev_ptr += bytes_read;
1015 abbrev_form = _bfd_safe_read_leb128 (abfd, abbrev_ptr, &bytes_read,
1016 FALSE, abbrev_end);
1017 abbrev_ptr += bytes_read;
1018 if (abbrev_form == DW_FORM_implicit_const)
1019 {
1020 implicit_const = _bfd_safe_read_leb128 (abfd, abbrev_ptr,
1021 &bytes_read, TRUE,
1022 abbrev_end);
1023 abbrev_ptr += bytes_read;
1024 }
1025
1026 if (abbrev_name == 0)
1027 break;
1028
1029 if ((cur_abbrev->num_attrs % ATTR_ALLOC_CHUNK) == 0)
1030 {
1031 struct attr_abbrev *tmp;
1032
1033 amt = cur_abbrev->num_attrs + ATTR_ALLOC_CHUNK;
1034 amt *= sizeof (struct attr_abbrev);
1035 tmp = (struct attr_abbrev *) bfd_realloc (cur_abbrev->attrs, amt);
1036 if (tmp == NULL)
1037 {
1038 size_t i;
1039
1040 for (i = 0; i < ABBREV_HASH_SIZE; i++)
1041 {
1042 struct abbrev_info *abbrev = abbrevs[i];
1043
1044 while (abbrev)
1045 {
1046 free (abbrev->attrs);
1047 abbrev = abbrev->next;
1048 }
1049 }
1050 return NULL;
1051 }
1052 cur_abbrev->attrs = tmp;
1053 }
1054
1055 cur_abbrev->attrs[cur_abbrev->num_attrs].name
1056 = (enum dwarf_attribute) abbrev_name;
1057 cur_abbrev->attrs[cur_abbrev->num_attrs].form
1058 = (enum dwarf_form) abbrev_form;
1059 cur_abbrev->attrs[cur_abbrev->num_attrs].implicit_const
1060 = implicit_const;
1061 ++cur_abbrev->num_attrs;
1062 }
1063
1064 hash_number = abbrev_number % ABBREV_HASH_SIZE;
1065 cur_abbrev->next = abbrevs[hash_number];
1066 abbrevs[hash_number] = cur_abbrev;
1067
1068 /* Get next abbreviation.
1069 Under Irix6 the abbreviations for a compilation unit are not
1070 always properly terminated with an abbrev number of 0.
1071 Exit loop if we encounter an abbreviation which we have
1072 already read (which means we are about to read the abbreviations
1073 for the next compile unit) or if the end of the abbreviation
1074 table is reached. */
1075 if ((unsigned int) (abbrev_ptr - stash->dwarf_abbrev_buffer)
1076 >= stash->dwarf_abbrev_size)
1077 break;
1078 abbrev_number = _bfd_safe_read_leb128 (abfd, abbrev_ptr,
1079 &bytes_read, FALSE, abbrev_end);
1080 abbrev_ptr += bytes_read;
1081 if (lookup_abbrev (abbrev_number, abbrevs) != NULL)
1082 break;
1083 }
1084
1085 return abbrevs;
1086 }
1087
1088 /* Returns true if the form is one which has a string value. */
1089
1090 static inline bfd_boolean
1091 is_str_attr (enum dwarf_form form)
1092 {
1093 return (form == DW_FORM_string || form == DW_FORM_strp
1094 || form == DW_FORM_line_strp || form == DW_FORM_GNU_strp_alt);
1095 }
1096
1097 /* Read and fill in the value of attribute ATTR as described by FORM.
1098 Read data starting from INFO_PTR, but never at or beyond INFO_PTR_END.
1099 Returns an updated INFO_PTR taking into account the amount of data read. */
1100
1101 static bfd_byte *
1102 read_attribute_value (struct attribute * attr,
1103 unsigned form,
1104 bfd_vma implicit_const,
1105 struct comp_unit * unit,
1106 bfd_byte * info_ptr,
1107 bfd_byte * info_ptr_end)
1108 {
1109 bfd *abfd = unit->abfd;
1110 unsigned int bytes_read;
1111 struct dwarf_block *blk;
1112 bfd_size_type amt;
1113
1114 if (info_ptr >= info_ptr_end && form != DW_FORM_flag_present)
1115 {
1116 _bfd_error_handler (_("Dwarf Error: Info pointer extends beyond end of attributes"));
1117 bfd_set_error (bfd_error_bad_value);
1118 return info_ptr;
1119 }
1120
1121 attr->form = (enum dwarf_form) form;
1122
1123 switch (form)
1124 {
1125 case DW_FORM_ref_addr:
1126 /* DW_FORM_ref_addr is an address in DWARF2, and an offset in
1127 DWARF3. */
1128 if (unit->version == 3 || unit->version == 4)
1129 {
1130 if (unit->offset_size == 4)
1131 attr->u.val = read_4_bytes (unit->abfd, info_ptr, info_ptr_end);
1132 else
1133 attr->u.val = read_8_bytes (unit->abfd, info_ptr, info_ptr_end);
1134 info_ptr += unit->offset_size;
1135 break;
1136 }
1137 /* FALLTHROUGH */
1138 case DW_FORM_addr:
1139 attr->u.val = read_address (unit, info_ptr, info_ptr_end);
1140 info_ptr += unit->addr_size;
1141 break;
1142 case DW_FORM_GNU_ref_alt:
1143 case DW_FORM_sec_offset:
1144 if (unit->offset_size == 4)
1145 attr->u.val = read_4_bytes (unit->abfd, info_ptr, info_ptr_end);
1146 else
1147 attr->u.val = read_8_bytes (unit->abfd, info_ptr, info_ptr_end);
1148 info_ptr += unit->offset_size;
1149 break;
1150 case DW_FORM_block2:
1151 amt = sizeof (struct dwarf_block);
1152 blk = (struct dwarf_block *) bfd_alloc (abfd, amt);
1153 if (blk == NULL)
1154 return NULL;
1155 blk->size = read_2_bytes (abfd, info_ptr, info_ptr_end);
1156 info_ptr += 2;
1157 blk->data = read_n_bytes (abfd, info_ptr, info_ptr_end, blk->size);
1158 info_ptr += blk->size;
1159 attr->u.blk = blk;
1160 break;
1161 case DW_FORM_block4:
1162 amt = sizeof (struct dwarf_block);
1163 blk = (struct dwarf_block *) bfd_alloc (abfd, amt);
1164 if (blk == NULL)
1165 return NULL;
1166 blk->size = read_4_bytes (abfd, info_ptr, info_ptr_end);
1167 info_ptr += 4;
1168 blk->data = read_n_bytes (abfd, info_ptr, info_ptr_end, blk->size);
1169 info_ptr += blk->size;
1170 attr->u.blk = blk;
1171 break;
1172 case DW_FORM_data2:
1173 attr->u.val = read_2_bytes (abfd, info_ptr, info_ptr_end);
1174 info_ptr += 2;
1175 break;
1176 case DW_FORM_data4:
1177 attr->u.val = read_4_bytes (abfd, info_ptr, info_ptr_end);
1178 info_ptr += 4;
1179 break;
1180 case DW_FORM_data8:
1181 attr->u.val = read_8_bytes (abfd, info_ptr, info_ptr_end);
1182 info_ptr += 8;
1183 break;
1184 case DW_FORM_string:
1185 attr->u.str = read_string (abfd, info_ptr, info_ptr_end, &bytes_read);
1186 info_ptr += bytes_read;
1187 break;
1188 case DW_FORM_strp:
1189 attr->u.str = read_indirect_string (unit, info_ptr, info_ptr_end, &bytes_read);
1190 info_ptr += bytes_read;
1191 break;
1192 case DW_FORM_line_strp:
1193 attr->u.str = read_indirect_line_string (unit, info_ptr, info_ptr_end, &bytes_read);
1194 info_ptr += bytes_read;
1195 break;
1196 case DW_FORM_GNU_strp_alt:
1197 attr->u.str = read_alt_indirect_string (unit, info_ptr, info_ptr_end, &bytes_read);
1198 info_ptr += bytes_read;
1199 break;
1200 case DW_FORM_exprloc:
1201 case DW_FORM_block:
1202 amt = sizeof (struct dwarf_block);
1203 blk = (struct dwarf_block *) bfd_alloc (abfd, amt);
1204 if (blk == NULL)
1205 return NULL;
1206 blk->size = _bfd_safe_read_leb128 (abfd, info_ptr, &bytes_read,
1207 FALSE, info_ptr_end);
1208 info_ptr += bytes_read;
1209 blk->data = read_n_bytes (abfd, info_ptr, info_ptr_end, blk->size);
1210 info_ptr += blk->size;
1211 attr->u.blk = blk;
1212 break;
1213 case DW_FORM_block1:
1214 amt = sizeof (struct dwarf_block);
1215 blk = (struct dwarf_block *) bfd_alloc (abfd, amt);
1216 if (blk == NULL)
1217 return NULL;
1218 blk->size = read_1_byte (abfd, info_ptr, info_ptr_end);
1219 info_ptr += 1;
1220 blk->data = read_n_bytes (abfd, info_ptr, info_ptr_end, blk->size);
1221 info_ptr += blk->size;
1222 attr->u.blk = blk;
1223 break;
1224 case DW_FORM_data1:
1225 attr->u.val = read_1_byte (abfd, info_ptr, info_ptr_end);
1226 info_ptr += 1;
1227 break;
1228 case DW_FORM_flag:
1229 attr->u.val = read_1_byte (abfd, info_ptr, info_ptr_end);
1230 info_ptr += 1;
1231 break;
1232 case DW_FORM_flag_present:
1233 attr->u.val = 1;
1234 break;
1235 case DW_FORM_sdata:
1236 attr->u.sval = _bfd_safe_read_leb128 (abfd, info_ptr, &bytes_read,
1237 TRUE, info_ptr_end);
1238 info_ptr += bytes_read;
1239 break;
1240 case DW_FORM_udata:
1241 attr->u.val = _bfd_safe_read_leb128 (abfd, info_ptr, &bytes_read,
1242 FALSE, info_ptr_end);
1243 info_ptr += bytes_read;
1244 break;
1245 case DW_FORM_ref1:
1246 attr->u.val = read_1_byte (abfd, info_ptr, info_ptr_end);
1247 info_ptr += 1;
1248 break;
1249 case DW_FORM_ref2:
1250 attr->u.val = read_2_bytes (abfd, info_ptr, info_ptr_end);
1251 info_ptr += 2;
1252 break;
1253 case DW_FORM_ref4:
1254 attr->u.val = read_4_bytes (abfd, info_ptr, info_ptr_end);
1255 info_ptr += 4;
1256 break;
1257 case DW_FORM_ref8:
1258 attr->u.val = read_8_bytes (abfd, info_ptr, info_ptr_end);
1259 info_ptr += 8;
1260 break;
1261 case DW_FORM_ref_sig8:
1262 attr->u.val = read_8_bytes (abfd, info_ptr, info_ptr_end);
1263 info_ptr += 8;
1264 break;
1265 case DW_FORM_ref_udata:
1266 attr->u.val = _bfd_safe_read_leb128 (abfd, info_ptr, &bytes_read,
1267 FALSE, info_ptr_end);
1268 info_ptr += bytes_read;
1269 break;
1270 case DW_FORM_indirect:
1271 form = _bfd_safe_read_leb128 (abfd, info_ptr, &bytes_read,
1272 FALSE, info_ptr_end);
1273 info_ptr += bytes_read;
1274 if (form == DW_FORM_implicit_const)
1275 {
1276 implicit_const = _bfd_safe_read_leb128 (abfd, info_ptr, &bytes_read,
1277 TRUE, info_ptr_end);
1278 info_ptr += bytes_read;
1279 }
1280 info_ptr = read_attribute_value (attr, form, implicit_const, unit,
1281 info_ptr, info_ptr_end);
1282 break;
1283 case DW_FORM_implicit_const:
1284 attr->form = DW_FORM_sdata;
1285 attr->u.sval = implicit_const;
1286 break;
1287 default:
1288 _bfd_error_handler (_("Dwarf Error: Invalid or unhandled FORM value: %#x."),
1289 form);
1290 bfd_set_error (bfd_error_bad_value);
1291 return NULL;
1292 }
1293 return info_ptr;
1294 }
1295
1296 /* Read an attribute described by an abbreviated attribute. */
1297
1298 static bfd_byte *
1299 read_attribute (struct attribute * attr,
1300 struct attr_abbrev * abbrev,
1301 struct comp_unit * unit,
1302 bfd_byte * info_ptr,
1303 bfd_byte * info_ptr_end)
1304 {
1305 attr->name = abbrev->name;
1306 info_ptr = read_attribute_value (attr, abbrev->form, abbrev->implicit_const,
1307 unit, info_ptr, info_ptr_end);
1308 return info_ptr;
1309 }
1310
1311 /* Return whether DW_AT_name will return the same as DW_AT_linkage_name
1312 for a function. */
1313
1314 static bfd_boolean
1315 non_mangled (int lang)
1316 {
1317 switch (lang)
1318 {
1319 default:
1320 return FALSE;
1321
1322 case DW_LANG_C89:
1323 case DW_LANG_C:
1324 case DW_LANG_Ada83:
1325 case DW_LANG_Cobol74:
1326 case DW_LANG_Cobol85:
1327 case DW_LANG_Fortran77:
1328 case DW_LANG_Pascal83:
1329 case DW_LANG_C99:
1330 case DW_LANG_Ada95:
1331 case DW_LANG_PLI:
1332 case DW_LANG_UPC:
1333 case DW_LANG_C11:
1334 return TRUE;
1335 }
1336 }
1337
1338 /* Source line information table routines. */
1339
1340 #define FILE_ALLOC_CHUNK 5
1341 #define DIR_ALLOC_CHUNK 5
1342
1343 struct line_info
1344 {
1345 struct line_info * prev_line;
1346 bfd_vma address;
1347 char * filename;
1348 unsigned int line;
1349 unsigned int column;
1350 unsigned int discriminator;
1351 unsigned char op_index;
1352 unsigned char end_sequence; /* End of (sequential) code sequence. */
1353 };
1354
1355 struct fileinfo
1356 {
1357 char * name;
1358 unsigned int dir;
1359 unsigned int time;
1360 unsigned int size;
1361 };
1362
1363 struct line_sequence
1364 {
1365 bfd_vma low_pc;
1366 struct line_sequence* prev_sequence;
1367 struct line_info* last_line; /* Largest VMA. */
1368 struct line_info** line_info_lookup;
1369 bfd_size_type num_lines;
1370 };
1371
1372 struct line_info_table
1373 {
1374 bfd * abfd;
1375 unsigned int num_files;
1376 unsigned int num_dirs;
1377 unsigned int num_sequences;
1378 char * comp_dir;
1379 char ** dirs;
1380 struct fileinfo* files;
1381 struct line_sequence* sequences;
1382 struct line_info* lcl_head; /* Local head; used in 'add_line_info'. */
1383 };
1384
1385 /* Remember some information about each function. If the function is
1386 inlined (DW_TAG_inlined_subroutine) it may have two additional
1387 attributes, DW_AT_call_file and DW_AT_call_line, which specify the
1388 source code location where this function was inlined. */
1389
1390 struct funcinfo
1391 {
1392 /* Pointer to previous function in list of all functions. */
1393 struct funcinfo * prev_func;
1394 /* Pointer to function one scope higher. */
1395 struct funcinfo * caller_func;
1396 /* Source location file name where caller_func inlines this func. */
1397 char * caller_file;
1398 /* Source location file name. */
1399 char * file;
1400 /* Source location line number where caller_func inlines this func. */
1401 int caller_line;
1402 /* Source location line number. */
1403 int line;
1404 int tag;
1405 bfd_boolean is_linkage;
1406 const char * name;
1407 struct arange arange;
1408 /* Where the symbol is defined. */
1409 asection * sec;
1410 };
1411
1412 struct lookup_funcinfo
1413 {
1414 /* Function information corresponding to this lookup table entry. */
1415 struct funcinfo * funcinfo;
1416
1417 /* The lowest address for this specific function. */
1418 bfd_vma low_addr;
1419
1420 /* The highest address of this function before the lookup table is sorted.
1421 The highest address of all prior functions after the lookup table is
1422 sorted, which is used for binary search. */
1423 bfd_vma high_addr;
1424 };
1425
1426 struct varinfo
1427 {
1428 /* Pointer to previous variable in list of all variables */
1429 struct varinfo *prev_var;
1430 /* Source location file name */
1431 char *file;
1432 /* Source location line number */
1433 int line;
1434 int tag;
1435 char *name;
1436 bfd_vma addr;
1437 /* Where the symbol is defined */
1438 asection *sec;
1439 /* Is this a stack variable? */
1440 unsigned int stack: 1;
1441 };
1442
1443 /* Return TRUE if NEW_LINE should sort after LINE. */
1444
1445 static inline bfd_boolean
1446 new_line_sorts_after (struct line_info *new_line, struct line_info *line)
1447 {
1448 return (new_line->address > line->address
1449 || (new_line->address == line->address
1450 && (new_line->op_index > line->op_index
1451 || (new_line->op_index == line->op_index
1452 && new_line->end_sequence < line->end_sequence))));
1453 }
1454
1455
1456 /* Adds a new entry to the line_info list in the line_info_table, ensuring
1457 that the list is sorted. Note that the line_info list is sorted from
1458 highest to lowest VMA (with possible duplicates); that is,
1459 line_info->prev_line always accesses an equal or smaller VMA. */
1460
1461 static bfd_boolean
1462 add_line_info (struct line_info_table *table,
1463 bfd_vma address,
1464 unsigned char op_index,
1465 char *filename,
1466 unsigned int line,
1467 unsigned int column,
1468 unsigned int discriminator,
1469 int end_sequence)
1470 {
1471 bfd_size_type amt = sizeof (struct line_info);
1472 struct line_sequence* seq = table->sequences;
1473 struct line_info* info = (struct line_info *) bfd_alloc (table->abfd, amt);
1474
1475 if (info == NULL)
1476 return FALSE;
1477
1478 /* Set member data of 'info'. */
1479 info->prev_line = NULL;
1480 info->address = address;
1481 info->op_index = op_index;
1482 info->line = line;
1483 info->column = column;
1484 info->discriminator = discriminator;
1485 info->end_sequence = end_sequence;
1486
1487 if (filename && filename[0])
1488 {
1489 info->filename = (char *) bfd_alloc (table->abfd, strlen (filename) + 1);
1490 if (info->filename == NULL)
1491 return FALSE;
1492 strcpy (info->filename, filename);
1493 }
1494 else
1495 info->filename = NULL;
1496
1497 /* Find the correct location for 'info'. Normally we will receive
1498 new line_info data 1) in order and 2) with increasing VMAs.
1499 However some compilers break the rules (cf. decode_line_info) and
1500 so we include some heuristics for quickly finding the correct
1501 location for 'info'. In particular, these heuristics optimize for
1502 the common case in which the VMA sequence that we receive is a
1503 list of locally sorted VMAs such as
1504 p...z a...j (where a < j < p < z)
1505
1506 Note: table->lcl_head is used to head an *actual* or *possible*
1507 sub-sequence within the list (such as a...j) that is not directly
1508 headed by table->last_line
1509
1510 Note: we may receive duplicate entries from 'decode_line_info'. */
1511
1512 if (seq
1513 && seq->last_line->address == address
1514 && seq->last_line->op_index == op_index
1515 && seq->last_line->end_sequence == end_sequence)
1516 {
1517 /* We only keep the last entry with the same address and end
1518 sequence. See PR ld/4986. */
1519 if (table->lcl_head == seq->last_line)
1520 table->lcl_head = info;
1521 info->prev_line = seq->last_line->prev_line;
1522 seq->last_line = info;
1523 }
1524 else if (!seq || seq->last_line->end_sequence)
1525 {
1526 /* Start a new line sequence. */
1527 amt = sizeof (struct line_sequence);
1528 seq = (struct line_sequence *) bfd_malloc (amt);
1529 if (seq == NULL)
1530 return FALSE;
1531 seq->low_pc = address;
1532 seq->prev_sequence = table->sequences;
1533 seq->last_line = info;
1534 table->lcl_head = info;
1535 table->sequences = seq;
1536 table->num_sequences++;
1537 }
1538 else if (new_line_sorts_after (info, seq->last_line))
1539 {
1540 /* Normal case: add 'info' to the beginning of the current sequence. */
1541 info->prev_line = seq->last_line;
1542 seq->last_line = info;
1543
1544 /* lcl_head: initialize to head a *possible* sequence at the end. */
1545 if (!table->lcl_head)
1546 table->lcl_head = info;
1547 }
1548 else if (!new_line_sorts_after (info, table->lcl_head)
1549 && (!table->lcl_head->prev_line
1550 || new_line_sorts_after (info, table->lcl_head->prev_line)))
1551 {
1552 /* Abnormal but easy: lcl_head is the head of 'info'. */
1553 info->prev_line = table->lcl_head->prev_line;
1554 table->lcl_head->prev_line = info;
1555 }
1556 else
1557 {
1558 /* Abnormal and hard: Neither 'last_line' nor 'lcl_head'
1559 are valid heads for 'info'. Reset 'lcl_head'. */
1560 struct line_info* li2 = seq->last_line; /* Always non-NULL. */
1561 struct line_info* li1 = li2->prev_line;
1562
1563 while (li1)
1564 {
1565 if (!new_line_sorts_after (info, li2)
1566 && new_line_sorts_after (info, li1))
1567 break;
1568
1569 li2 = li1; /* always non-NULL */
1570 li1 = li1->prev_line;
1571 }
1572 table->lcl_head = li2;
1573 info->prev_line = table->lcl_head->prev_line;
1574 table->lcl_head->prev_line = info;
1575 if (address < seq->low_pc)
1576 seq->low_pc = address;
1577 }
1578 return TRUE;
1579 }
1580
1581 /* Extract a fully qualified filename from a line info table.
1582 The returned string has been malloc'ed and it is the caller's
1583 responsibility to free it. */
1584
1585 static char *
1586 concat_filename (struct line_info_table *table, unsigned int file)
1587 {
1588 char *filename;
1589
1590 if (file - 1 >= table->num_files)
1591 {
1592 /* FILE == 0 means unknown. */
1593 if (file)
1594 _bfd_error_handler
1595 (_("Dwarf Error: mangled line number section (bad file number)."));
1596 return strdup ("<unknown>");
1597 }
1598
1599 filename = table->files[file - 1].name;
1600
1601 if (!IS_ABSOLUTE_PATH (filename))
1602 {
1603 char *dir_name = NULL;
1604 char *subdir_name = NULL;
1605 char *name;
1606 size_t len;
1607
1608 if (table->files[file - 1].dir
1609 /* PR 17512: file: 0317e960. */
1610 && table->files[file - 1].dir <= table->num_dirs
1611 /* PR 17512: file: 7f3d2e4b. */
1612 && table->dirs != NULL)
1613 subdir_name = table->dirs[table->files[file - 1].dir - 1];
1614
1615 if (!subdir_name || !IS_ABSOLUTE_PATH (subdir_name))
1616 dir_name = table->comp_dir;
1617
1618 if (!dir_name)
1619 {
1620 dir_name = subdir_name;
1621 subdir_name = NULL;
1622 }
1623
1624 if (!dir_name)
1625 return strdup (filename);
1626
1627 len = strlen (dir_name) + strlen (filename) + 2;
1628
1629 if (subdir_name)
1630 {
1631 len += strlen (subdir_name) + 1;
1632 name = (char *) bfd_malloc (len);
1633 if (name)
1634 sprintf (name, "%s/%s/%s", dir_name, subdir_name, filename);
1635 }
1636 else
1637 {
1638 name = (char *) bfd_malloc (len);
1639 if (name)
1640 sprintf (name, "%s/%s", dir_name, filename);
1641 }
1642
1643 return name;
1644 }
1645
1646 return strdup (filename);
1647 }
1648
1649 static bfd_boolean
1650 arange_add (const struct comp_unit *unit, struct arange *first_arange,
1651 bfd_vma low_pc, bfd_vma high_pc)
1652 {
1653 struct arange *arange;
1654
1655 /* Ignore empty ranges. */
1656 if (low_pc == high_pc)
1657 return TRUE;
1658
1659 /* If the first arange is empty, use it. */
1660 if (first_arange->high == 0)
1661 {
1662 first_arange->low = low_pc;
1663 first_arange->high = high_pc;
1664 return TRUE;
1665 }
1666
1667 /* Next see if we can cheaply extend an existing range. */
1668 arange = first_arange;
1669 do
1670 {
1671 if (low_pc == arange->high)
1672 {
1673 arange->high = high_pc;
1674 return TRUE;
1675 }
1676 if (high_pc == arange->low)
1677 {
1678 arange->low = low_pc;
1679 return TRUE;
1680 }
1681 arange = arange->next;
1682 }
1683 while (arange);
1684
1685 /* Need to allocate a new arange and insert it into the arange list.
1686 Order isn't significant, so just insert after the first arange. */
1687 arange = (struct arange *) bfd_alloc (unit->abfd, sizeof (*arange));
1688 if (arange == NULL)
1689 return FALSE;
1690 arange->low = low_pc;
1691 arange->high = high_pc;
1692 arange->next = first_arange->next;
1693 first_arange->next = arange;
1694 return TRUE;
1695 }
1696
1697 /* Compare function for line sequences. */
1698
1699 static int
1700 compare_sequences (const void* a, const void* b)
1701 {
1702 const struct line_sequence* seq1 = a;
1703 const struct line_sequence* seq2 = b;
1704
1705 /* Sort by low_pc as the primary key. */
1706 if (seq1->low_pc < seq2->low_pc)
1707 return -1;
1708 if (seq1->low_pc > seq2->low_pc)
1709 return 1;
1710
1711 /* If low_pc values are equal, sort in reverse order of
1712 high_pc, so that the largest region comes first. */
1713 if (seq1->last_line->address < seq2->last_line->address)
1714 return 1;
1715 if (seq1->last_line->address > seq2->last_line->address)
1716 return -1;
1717
1718 if (seq1->last_line->op_index < seq2->last_line->op_index)
1719 return 1;
1720 if (seq1->last_line->op_index > seq2->last_line->op_index)
1721 return -1;
1722
1723 return 0;
1724 }
1725
1726 /* Construct the line information table for quick lookup. */
1727
1728 static bfd_boolean
1729 build_line_info_table (struct line_info_table * table,
1730 struct line_sequence * seq)
1731 {
1732 bfd_size_type amt;
1733 struct line_info** line_info_lookup;
1734 struct line_info* each_line;
1735 unsigned int num_lines;
1736 unsigned int line_index;
1737
1738 if (seq->line_info_lookup != NULL)
1739 return TRUE;
1740
1741 /* Count the number of line information entries. We could do this while
1742 scanning the debug information, but some entries may be added via
1743 lcl_head without having a sequence handy to increment the number of
1744 lines. */
1745 num_lines = 0;
1746 for (each_line = seq->last_line; each_line; each_line = each_line->prev_line)
1747 num_lines++;
1748
1749 if (num_lines == 0)
1750 return TRUE;
1751
1752 /* Allocate space for the line information lookup table. */
1753 amt = sizeof (struct line_info*) * num_lines;
1754 line_info_lookup = (struct line_info**) bfd_alloc (table->abfd, amt);
1755 if (line_info_lookup == NULL)
1756 return FALSE;
1757
1758 /* Create the line information lookup table. */
1759 line_index = num_lines;
1760 for (each_line = seq->last_line; each_line; each_line = each_line->prev_line)
1761 line_info_lookup[--line_index] = each_line;
1762
1763 BFD_ASSERT (line_index == 0);
1764
1765 seq->num_lines = num_lines;
1766 seq->line_info_lookup = line_info_lookup;
1767
1768 return TRUE;
1769 }
1770
1771 /* Sort the line sequences for quick lookup. */
1772
1773 static bfd_boolean
1774 sort_line_sequences (struct line_info_table* table)
1775 {
1776 bfd_size_type amt;
1777 struct line_sequence* sequences;
1778 struct line_sequence* seq;
1779 unsigned int n = 0;
1780 unsigned int num_sequences = table->num_sequences;
1781 bfd_vma last_high_pc;
1782
1783 if (num_sequences == 0)
1784 return TRUE;
1785
1786 /* Allocate space for an array of sequences. */
1787 amt = sizeof (struct line_sequence) * num_sequences;
1788 sequences = (struct line_sequence *) bfd_alloc (table->abfd, amt);
1789 if (sequences == NULL)
1790 return FALSE;
1791
1792 /* Copy the linked list into the array, freeing the original nodes. */
1793 seq = table->sequences;
1794 for (n = 0; n < num_sequences; n++)
1795 {
1796 struct line_sequence* last_seq = seq;
1797
1798 BFD_ASSERT (seq);
1799 sequences[n].low_pc = seq->low_pc;
1800 sequences[n].prev_sequence = NULL;
1801 sequences[n].last_line = seq->last_line;
1802 sequences[n].line_info_lookup = NULL;
1803 sequences[n].num_lines = 0;
1804 seq = seq->prev_sequence;
1805 free (last_seq);
1806 }
1807 BFD_ASSERT (seq == NULL);
1808
1809 qsort (sequences, n, sizeof (struct line_sequence), compare_sequences);
1810
1811 /* Make the list binary-searchable by trimming overlapping entries
1812 and removing nested entries. */
1813 num_sequences = 1;
1814 last_high_pc = sequences[0].last_line->address;
1815 for (n = 1; n < table->num_sequences; n++)
1816 {
1817 if (sequences[n].low_pc < last_high_pc)
1818 {
1819 if (sequences[n].last_line->address <= last_high_pc)
1820 /* Skip nested entries. */
1821 continue;
1822
1823 /* Trim overlapping entries. */
1824 sequences[n].low_pc = last_high_pc;
1825 }
1826 last_high_pc = sequences[n].last_line->address;
1827 if (n > num_sequences)
1828 {
1829 /* Close up the gap. */
1830 sequences[num_sequences].low_pc = sequences[n].low_pc;
1831 sequences[num_sequences].last_line = sequences[n].last_line;
1832 }
1833 num_sequences++;
1834 }
1835
1836 table->sequences = sequences;
1837 table->num_sequences = num_sequences;
1838 return TRUE;
1839 }
1840
1841 /* Add directory to TABLE. CUR_DIR memory ownership is taken by TABLE. */
1842
1843 static bfd_boolean
1844 line_info_add_include_dir (struct line_info_table *table, char *cur_dir)
1845 {
1846 if ((table->num_dirs % DIR_ALLOC_CHUNK) == 0)
1847 {
1848 char **tmp;
1849 bfd_size_type amt;
1850
1851 amt = table->num_dirs + DIR_ALLOC_CHUNK;
1852 amt *= sizeof (char *);
1853
1854 tmp = (char **) bfd_realloc (table->dirs, amt);
1855 if (tmp == NULL)
1856 return FALSE;
1857 table->dirs = tmp;
1858 }
1859
1860 table->dirs[table->num_dirs++] = cur_dir;
1861 return TRUE;
1862 }
1863
1864 static bfd_boolean
1865 line_info_add_include_dir_stub (struct line_info_table *table, char *cur_dir,
1866 unsigned int dir ATTRIBUTE_UNUSED,
1867 unsigned int xtime ATTRIBUTE_UNUSED,
1868 unsigned int size ATTRIBUTE_UNUSED)
1869 {
1870 return line_info_add_include_dir (table, cur_dir);
1871 }
1872
1873 /* Add file to TABLE. CUR_FILE memory ownership is taken by TABLE. */
1874
1875 static bfd_boolean
1876 line_info_add_file_name (struct line_info_table *table, char *cur_file,
1877 unsigned int dir, unsigned int xtime,
1878 unsigned int size)
1879 {
1880 if ((table->num_files % FILE_ALLOC_CHUNK) == 0)
1881 {
1882 struct fileinfo *tmp;
1883 bfd_size_type amt;
1884
1885 amt = table->num_files + FILE_ALLOC_CHUNK;
1886 amt *= sizeof (struct fileinfo);
1887
1888 tmp = (struct fileinfo *) bfd_realloc (table->files, amt);
1889 if (tmp == NULL)
1890 return FALSE;
1891 table->files = tmp;
1892 }
1893
1894 table->files[table->num_files].name = cur_file;
1895 table->files[table->num_files].dir = dir;
1896 table->files[table->num_files].time = xtime;
1897 table->files[table->num_files].size = size;
1898 table->num_files++;
1899 return TRUE;
1900 }
1901
1902 /* Read directory or file name entry format, starting with byte of
1903 format count entries, ULEB128 pairs of entry formats, ULEB128 of
1904 entries count and the entries themselves in the described entry
1905 format. */
1906
1907 static bfd_boolean
1908 read_formatted_entries (struct comp_unit *unit, bfd_byte **bufp,
1909 bfd_byte *buf_end, struct line_info_table *table,
1910 bfd_boolean (*callback) (struct line_info_table *table,
1911 char *cur_file,
1912 unsigned int dir,
1913 unsigned int time,
1914 unsigned int size))
1915 {
1916 bfd *abfd = unit->abfd;
1917 bfd_byte format_count, formati;
1918 bfd_vma data_count, datai;
1919 bfd_byte *buf = *bufp;
1920 bfd_byte *format_header_data;
1921 unsigned int bytes_read;
1922
1923 format_count = read_1_byte (abfd, buf, buf_end);
1924 buf += 1;
1925 format_header_data = buf;
1926 for (formati = 0; formati < format_count; formati++)
1927 {
1928 _bfd_safe_read_leb128 (abfd, buf, &bytes_read, FALSE, buf_end);
1929 buf += bytes_read;
1930 _bfd_safe_read_leb128 (abfd, buf, &bytes_read, FALSE, buf_end);
1931 buf += bytes_read;
1932 }
1933
1934 data_count = _bfd_safe_read_leb128 (abfd, buf, &bytes_read, FALSE, buf_end);
1935 buf += bytes_read;
1936 for (datai = 0; datai < data_count; datai++)
1937 {
1938 bfd_byte *format = format_header_data;
1939 struct fileinfo fe;
1940
1941 for (formati = 0; formati < format_count; formati++)
1942 {
1943 bfd_vma content_type, form;
1944 char *string_trash;
1945 char **stringp = &string_trash;
1946 unsigned int uint_trash, *uintp = &uint_trash;
1947
1948 content_type = _bfd_safe_read_leb128 (abfd, format, &bytes_read,
1949 FALSE, buf_end);
1950 format += bytes_read;
1951 switch (content_type)
1952 {
1953 case DW_LNCT_path:
1954 stringp = &fe.name;
1955 break;
1956 case DW_LNCT_directory_index:
1957 uintp = &fe.dir;
1958 break;
1959 case DW_LNCT_timestamp:
1960 uintp = &fe.time;
1961 break;
1962 case DW_LNCT_size:
1963 uintp = &fe.size;
1964 break;
1965 case DW_LNCT_MD5:
1966 break;
1967 default:
1968 _bfd_error_handler
1969 (_("Dwarf Error: Unknown format content type %Lu."),
1970 content_type);
1971 bfd_set_error (bfd_error_bad_value);
1972 return FALSE;
1973 }
1974
1975 form = _bfd_safe_read_leb128 (abfd, format, &bytes_read, FALSE,
1976 buf_end);
1977 format += bytes_read;
1978 switch (form)
1979 {
1980 case DW_FORM_string:
1981 *stringp = read_string (abfd, buf, buf_end, &bytes_read);
1982 buf += bytes_read;
1983 break;
1984
1985 case DW_FORM_line_strp:
1986 *stringp = read_indirect_line_string (unit, buf, buf_end, &bytes_read);
1987 buf += bytes_read;
1988 break;
1989
1990 case DW_FORM_data1:
1991 *uintp = read_1_byte (abfd, buf, buf_end);
1992 buf += 1;
1993 break;
1994
1995 case DW_FORM_data2:
1996 *uintp = read_2_bytes (abfd, buf, buf_end);
1997 buf += 2;
1998 break;
1999
2000 case DW_FORM_data4:
2001 *uintp = read_4_bytes (abfd, buf, buf_end);
2002 buf += 4;
2003 break;
2004
2005 case DW_FORM_data8:
2006 *uintp = read_8_bytes (abfd, buf, buf_end);
2007 buf += 8;
2008 break;
2009
2010 case DW_FORM_udata:
2011 *uintp = _bfd_safe_read_leb128 (abfd, buf, &bytes_read, FALSE,
2012 buf_end);
2013 buf += bytes_read;
2014 break;
2015
2016 case DW_FORM_block:
2017 /* It is valid only for DW_LNCT_timestamp which is ignored by
2018 current GDB. */
2019 break;
2020 }
2021 }
2022
2023 if (!callback (table, fe.name, fe.dir, fe.time, fe.size))
2024 return FALSE;
2025 }
2026
2027 *bufp = buf;
2028 return TRUE;
2029 }
2030
2031 /* Decode the line number information for UNIT. */
2032
2033 static struct line_info_table*
2034 decode_line_info (struct comp_unit *unit, struct dwarf2_debug *stash)
2035 {
2036 bfd *abfd = unit->abfd;
2037 struct line_info_table* table;
2038 bfd_byte *line_ptr;
2039 bfd_byte *line_end;
2040 struct line_head lh;
2041 unsigned int i, bytes_read, offset_size;
2042 char *cur_file, *cur_dir;
2043 unsigned char op_code, extended_op, adj_opcode;
2044 unsigned int exop_len;
2045 bfd_size_type amt;
2046
2047 if (! read_section (abfd, &stash->debug_sections[debug_line],
2048 stash->syms, unit->line_offset,
2049 &stash->dwarf_line_buffer, &stash->dwarf_line_size))
2050 return NULL;
2051
2052 amt = sizeof (struct line_info_table);
2053 table = (struct line_info_table *) bfd_alloc (abfd, amt);
2054 if (table == NULL)
2055 return NULL;
2056 table->abfd = abfd;
2057 table->comp_dir = unit->comp_dir;
2058
2059 table->num_files = 0;
2060 table->files = NULL;
2061
2062 table->num_dirs = 0;
2063 table->dirs = NULL;
2064
2065 table->num_sequences = 0;
2066 table->sequences = NULL;
2067
2068 table->lcl_head = NULL;
2069
2070 if (stash->dwarf_line_size < 16)
2071 {
2072 _bfd_error_handler
2073 (_("Dwarf Error: Line info section is too small (%Ld)"),
2074 stash->dwarf_line_size);
2075 bfd_set_error (bfd_error_bad_value);
2076 return NULL;
2077 }
2078 line_ptr = stash->dwarf_line_buffer + unit->line_offset;
2079 line_end = stash->dwarf_line_buffer + stash->dwarf_line_size;
2080
2081 /* Read in the prologue. */
2082 lh.total_length = read_4_bytes (abfd, line_ptr, line_end);
2083 line_ptr += 4;
2084 offset_size = 4;
2085 if (lh.total_length == 0xffffffff)
2086 {
2087 lh.total_length = read_8_bytes (abfd, line_ptr, line_end);
2088 line_ptr += 8;
2089 offset_size = 8;
2090 }
2091 else if (lh.total_length == 0 && unit->addr_size == 8)
2092 {
2093 /* Handle (non-standard) 64-bit DWARF2 formats. */
2094 lh.total_length = read_4_bytes (abfd, line_ptr, line_end);
2095 line_ptr += 4;
2096 offset_size = 8;
2097 }
2098
2099 if (lh.total_length > stash->dwarf_line_size)
2100 {
2101 _bfd_error_handler
2102 /* xgettext: c-format */
2103 (_("Dwarf Error: Line info data is bigger (%#Lx) than the section (%#Lx)"),
2104 lh.total_length, stash->dwarf_line_size);
2105 bfd_set_error (bfd_error_bad_value);
2106 return NULL;
2107 }
2108
2109 line_end = line_ptr + lh.total_length;
2110
2111 lh.version = read_2_bytes (abfd, line_ptr, line_end);
2112 if (lh.version < 2 || lh.version > 5)
2113 {
2114 _bfd_error_handler
2115 (_("Dwarf Error: Unhandled .debug_line version %d."), lh.version);
2116 bfd_set_error (bfd_error_bad_value);
2117 return NULL;
2118 }
2119 line_ptr += 2;
2120
2121 if (line_ptr + offset_size + (lh.version >= 5 ? 8 : (lh.version >= 4 ? 6 : 5))
2122 >= line_end)
2123 {
2124 _bfd_error_handler
2125 (_("Dwarf Error: Ran out of room reading prologue"));
2126 bfd_set_error (bfd_error_bad_value);
2127 return NULL;
2128 }
2129
2130 if (lh.version >= 5)
2131 {
2132 unsigned int segment_selector_size;
2133
2134 /* Skip address size. */
2135 read_1_byte (abfd, line_ptr, line_end);
2136 line_ptr += 1;
2137
2138 segment_selector_size = read_1_byte (abfd, line_ptr, line_end);
2139 line_ptr += 1;
2140 if (segment_selector_size != 0)
2141 {
2142 _bfd_error_handler
2143 (_("Dwarf Error: Line info unsupported segment selector size %u."),
2144 segment_selector_size);
2145 bfd_set_error (bfd_error_bad_value);
2146 return NULL;
2147 }
2148 }
2149
2150 if (offset_size == 4)
2151 lh.prologue_length = read_4_bytes (abfd, line_ptr, line_end);
2152 else
2153 lh.prologue_length = read_8_bytes (abfd, line_ptr, line_end);
2154 line_ptr += offset_size;
2155
2156 lh.minimum_instruction_length = read_1_byte (abfd, line_ptr, line_end);
2157 line_ptr += 1;
2158
2159 if (lh.version >= 4)
2160 {
2161 lh.maximum_ops_per_insn = read_1_byte (abfd, line_ptr, line_end);
2162 line_ptr += 1;
2163 }
2164 else
2165 lh.maximum_ops_per_insn = 1;
2166
2167 if (lh.maximum_ops_per_insn == 0)
2168 {
2169 _bfd_error_handler
2170 (_("Dwarf Error: Invalid maximum operations per instruction."));
2171 bfd_set_error (bfd_error_bad_value);
2172 return NULL;
2173 }
2174
2175 lh.default_is_stmt = read_1_byte (abfd, line_ptr, line_end);
2176 line_ptr += 1;
2177
2178 lh.line_base = read_1_signed_byte (abfd, line_ptr, line_end);
2179 line_ptr += 1;
2180
2181 lh.line_range = read_1_byte (abfd, line_ptr, line_end);
2182 line_ptr += 1;
2183
2184 lh.opcode_base = read_1_byte (abfd, line_ptr, line_end);
2185 line_ptr += 1;
2186
2187 if (line_ptr + (lh.opcode_base - 1) >= line_end)
2188 {
2189 _bfd_error_handler (_("Dwarf Error: Ran out of room reading opcodes"));
2190 bfd_set_error (bfd_error_bad_value);
2191 return NULL;
2192 }
2193
2194 amt = lh.opcode_base * sizeof (unsigned char);
2195 lh.standard_opcode_lengths = (unsigned char *) bfd_alloc (abfd, amt);
2196
2197 lh.standard_opcode_lengths[0] = 1;
2198
2199 for (i = 1; i < lh.opcode_base; ++i)
2200 {
2201 lh.standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr, line_end);
2202 line_ptr += 1;
2203 }
2204
2205 if (lh.version >= 5)
2206 {
2207 /* Read directory table. */
2208 if (!read_formatted_entries (unit, &line_ptr, line_end, table,
2209 line_info_add_include_dir_stub))
2210 goto fail;
2211
2212 /* Read file name table. */
2213 if (!read_formatted_entries (unit, &line_ptr, line_end, table,
2214 line_info_add_file_name))
2215 goto fail;
2216 }
2217 else
2218 {
2219 /* Read directory table. */
2220 while ((cur_dir = read_string (abfd, line_ptr, line_end, &bytes_read)) != NULL)
2221 {
2222 line_ptr += bytes_read;
2223
2224 if (!line_info_add_include_dir (table, cur_dir))
2225 goto fail;
2226 }
2227
2228 line_ptr += bytes_read;
2229
2230 /* Read file name table. */
2231 while ((cur_file = read_string (abfd, line_ptr, line_end, &bytes_read)) != NULL)
2232 {
2233 unsigned int dir, xtime, size;
2234
2235 line_ptr += bytes_read;
2236
2237 dir = _bfd_safe_read_leb128 (abfd, line_ptr, &bytes_read, FALSE, line_end);
2238 line_ptr += bytes_read;
2239 xtime = _bfd_safe_read_leb128 (abfd, line_ptr, &bytes_read, FALSE, line_end);
2240 line_ptr += bytes_read;
2241 size = _bfd_safe_read_leb128 (abfd, line_ptr, &bytes_read, FALSE, line_end);
2242 line_ptr += bytes_read;
2243
2244 if (!line_info_add_file_name (table, cur_file, dir, xtime, size))
2245 goto fail;
2246 }
2247
2248 line_ptr += bytes_read;
2249 }
2250
2251 /* Read the statement sequences until there's nothing left. */
2252 while (line_ptr < line_end)
2253 {
2254 /* State machine registers. */
2255 bfd_vma address = 0;
2256 unsigned char op_index = 0;
2257 char * filename = table->num_files ? concat_filename (table, 1) : NULL;
2258 unsigned int line = 1;
2259 unsigned int column = 0;
2260 unsigned int discriminator = 0;
2261 int is_stmt = lh.default_is_stmt;
2262 int end_sequence = 0;
2263 /* eraxxon@alumni.rice.edu: Against the DWARF2 specs, some
2264 compilers generate address sequences that are wildly out of
2265 order using DW_LNE_set_address (e.g. Intel C++ 6.0 compiler
2266 for ia64-Linux). Thus, to determine the low and high
2267 address, we must compare on every DW_LNS_copy, etc. */
2268 bfd_vma low_pc = (bfd_vma) -1;
2269 bfd_vma high_pc = 0;
2270
2271 /* Decode the table. */
2272 while (! end_sequence)
2273 {
2274 op_code = read_1_byte (abfd, line_ptr, line_end);
2275 line_ptr += 1;
2276
2277 if (op_code >= lh.opcode_base)
2278 {
2279 /* Special operand. */
2280 adj_opcode = op_code - lh.opcode_base;
2281 if (lh.line_range == 0)
2282 goto line_fail;
2283 if (lh.maximum_ops_per_insn == 1)
2284 address += (adj_opcode / lh.line_range
2285 * lh.minimum_instruction_length);
2286 else
2287 {
2288 address += ((op_index + adj_opcode / lh.line_range)
2289 / lh.maximum_ops_per_insn
2290 * lh.minimum_instruction_length);
2291 op_index = ((op_index + adj_opcode / lh.line_range)
2292 % lh.maximum_ops_per_insn);
2293 }
2294 line += lh.line_base + (adj_opcode % lh.line_range);
2295 /* Append row to matrix using current values. */
2296 if (!add_line_info (table, address, op_index, filename,
2297 line, column, discriminator, 0))
2298 goto line_fail;
2299 discriminator = 0;
2300 if (address < low_pc)
2301 low_pc = address;
2302 if (address > high_pc)
2303 high_pc = address;
2304 }
2305 else switch (op_code)
2306 {
2307 case DW_LNS_extended_op:
2308 exop_len = _bfd_safe_read_leb128 (abfd, line_ptr, &bytes_read,
2309 FALSE, line_end);
2310 line_ptr += bytes_read;
2311 extended_op = read_1_byte (abfd, line_ptr, line_end);
2312 line_ptr += 1;
2313
2314 switch (extended_op)
2315 {
2316 case DW_LNE_end_sequence:
2317 end_sequence = 1;
2318 if (!add_line_info (table, address, op_index, filename, line,
2319 column, discriminator, end_sequence))
2320 goto line_fail;
2321 discriminator = 0;
2322 if (address < low_pc)
2323 low_pc = address;
2324 if (address > high_pc)
2325 high_pc = address;
2326 if (!arange_add (unit, &unit->arange, low_pc, high_pc))
2327 goto line_fail;
2328 break;
2329 case DW_LNE_set_address:
2330 address = read_address (unit, line_ptr, line_end);
2331 op_index = 0;
2332 line_ptr += unit->addr_size;
2333 break;
2334 case DW_LNE_define_file:
2335 cur_file = read_string (abfd, line_ptr, line_end, &bytes_read);
2336 line_ptr += bytes_read;
2337 if ((table->num_files % FILE_ALLOC_CHUNK) == 0)
2338 {
2339 struct fileinfo *tmp;
2340
2341 amt = table->num_files + FILE_ALLOC_CHUNK;
2342 amt *= sizeof (struct fileinfo);
2343 tmp = (struct fileinfo *) bfd_realloc (table->files, amt);
2344 if (tmp == NULL)
2345 goto line_fail;
2346 table->files = tmp;
2347 }
2348 table->files[table->num_files].name = cur_file;
2349 table->files[table->num_files].dir =
2350 _bfd_safe_read_leb128 (abfd, line_ptr, &bytes_read,
2351 FALSE, line_end);
2352 line_ptr += bytes_read;
2353 table->files[table->num_files].time =
2354 _bfd_safe_read_leb128 (abfd, line_ptr, &bytes_read,
2355 FALSE, line_end);
2356 line_ptr += bytes_read;
2357 table->files[table->num_files].size =
2358 _bfd_safe_read_leb128 (abfd, line_ptr, &bytes_read,
2359 FALSE, line_end);
2360 line_ptr += bytes_read;
2361 table->num_files++;
2362 break;
2363 case DW_LNE_set_discriminator:
2364 discriminator =
2365 _bfd_safe_read_leb128 (abfd, line_ptr, &bytes_read,
2366 FALSE, line_end);
2367 line_ptr += bytes_read;
2368 break;
2369 case DW_LNE_HP_source_file_correlation:
2370 line_ptr += exop_len - 1;
2371 break;
2372 default:
2373 _bfd_error_handler
2374 (_("Dwarf Error: mangled line number section."));
2375 bfd_set_error (bfd_error_bad_value);
2376 line_fail:
2377 if (filename != NULL)
2378 free (filename);
2379 goto fail;
2380 }
2381 break;
2382 case DW_LNS_copy:
2383 if (!add_line_info (table, address, op_index,
2384 filename, line, column, discriminator, 0))
2385 goto line_fail;
2386 discriminator = 0;
2387 if (address < low_pc)
2388 low_pc = address;
2389 if (address > high_pc)
2390 high_pc = address;
2391 break;
2392 case DW_LNS_advance_pc:
2393 if (lh.maximum_ops_per_insn == 1)
2394 address += (lh.minimum_instruction_length
2395 * _bfd_safe_read_leb128 (abfd, line_ptr,
2396 &bytes_read,
2397 FALSE, line_end));
2398 else
2399 {
2400 bfd_vma adjust = _bfd_safe_read_leb128 (abfd, line_ptr,
2401 &bytes_read,
2402 FALSE, line_end);
2403 address = ((op_index + adjust) / lh.maximum_ops_per_insn
2404 * lh.minimum_instruction_length);
2405 op_index = (op_index + adjust) % lh.maximum_ops_per_insn;
2406 }
2407 line_ptr += bytes_read;
2408 break;
2409 case DW_LNS_advance_line:
2410 line += _bfd_safe_read_leb128 (abfd, line_ptr, &bytes_read,
2411 TRUE, line_end);
2412 line_ptr += bytes_read;
2413 break;
2414 case DW_LNS_set_file:
2415 {
2416 unsigned int file;
2417
2418 /* The file and directory tables are 0
2419 based, the references are 1 based. */
2420 file = _bfd_safe_read_leb128 (abfd, line_ptr, &bytes_read,
2421 FALSE, line_end);
2422 line_ptr += bytes_read;
2423 if (filename)
2424 free (filename);
2425 filename = concat_filename (table, file);
2426 break;
2427 }
2428 case DW_LNS_set_column:
2429 column = _bfd_safe_read_leb128 (abfd, line_ptr, &bytes_read,
2430 FALSE, line_end);
2431 line_ptr += bytes_read;
2432 break;
2433 case DW_LNS_negate_stmt:
2434 is_stmt = (!is_stmt);
2435 break;
2436 case DW_LNS_set_basic_block:
2437 break;
2438 case DW_LNS_const_add_pc:
2439 if (lh.maximum_ops_per_insn == 1)
2440 address += (lh.minimum_instruction_length
2441 * ((255 - lh.opcode_base) / lh.line_range));
2442 else
2443 {
2444 bfd_vma adjust = ((255 - lh.opcode_base) / lh.line_range);
2445 address += (lh.minimum_instruction_length
2446 * ((op_index + adjust)
2447 / lh.maximum_ops_per_insn));
2448 op_index = (op_index + adjust) % lh.maximum_ops_per_insn;
2449 }
2450 break;
2451 case DW_LNS_fixed_advance_pc:
2452 address += read_2_bytes (abfd, line_ptr, line_end);
2453 op_index = 0;
2454 line_ptr += 2;
2455 break;
2456 default:
2457 /* Unknown standard opcode, ignore it. */
2458 for (i = 0; i < lh.standard_opcode_lengths[op_code]; i++)
2459 {
2460 (void) _bfd_safe_read_leb128 (abfd, line_ptr, &bytes_read,
2461 FALSE, line_end);
2462 line_ptr += bytes_read;
2463 }
2464 break;
2465 }
2466 }
2467
2468 if (filename)
2469 free (filename);
2470 }
2471
2472 if (sort_line_sequences (table))
2473 return table;
2474
2475 fail:
2476 if (table->sequences != NULL)
2477 free (table->sequences);
2478 if (table->files != NULL)
2479 free (table->files);
2480 if (table->dirs != NULL)
2481 free (table->dirs);
2482 return NULL;
2483 }
2484
2485 /* If ADDR is within TABLE set the output parameters and return the
2486 range of addresses covered by the entry used to fill them out.
2487 Otherwise set * FILENAME_PTR to NULL and return 0.
2488 The parameters FILENAME_PTR, LINENUMBER_PTR and DISCRIMINATOR_PTR
2489 are pointers to the objects to be filled in. */
2490
2491 static bfd_vma
2492 lookup_address_in_line_info_table (struct line_info_table *table,
2493 bfd_vma addr,
2494 const char **filename_ptr,
2495 unsigned int *linenumber_ptr,
2496 unsigned int *discriminator_ptr)
2497 {
2498 struct line_sequence *seq = NULL;
2499 struct line_info *info;
2500 int low, high, mid;
2501
2502 /* Binary search the array of sequences. */
2503 low = 0;
2504 high = table->num_sequences;
2505 while (low < high)
2506 {
2507 mid = (low + high) / 2;
2508 seq = &table->sequences[mid];
2509 if (addr < seq->low_pc)
2510 high = mid;
2511 else if (addr >= seq->last_line->address)
2512 low = mid + 1;
2513 else
2514 break;
2515 }
2516
2517 /* Check for a valid sequence. */
2518 if (!seq || addr < seq->low_pc || addr >= seq->last_line->address)
2519 goto fail;
2520
2521 if (!build_line_info_table (table, seq))
2522 goto fail;
2523
2524 /* Binary search the array of line information. */
2525 low = 0;
2526 high = seq->num_lines;
2527 info = NULL;
2528 while (low < high)
2529 {
2530 mid = (low + high) / 2;
2531 info = seq->line_info_lookup[mid];
2532 if (addr < info->address)
2533 high = mid;
2534 else if (addr >= seq->line_info_lookup[mid + 1]->address)
2535 low = mid + 1;
2536 else
2537 break;
2538 }
2539
2540 /* Check for a valid line information entry. */
2541 if (info
2542 && addr >= info->address
2543 && addr < seq->line_info_lookup[mid + 1]->address
2544 && !(info->end_sequence || info == seq->last_line))
2545 {
2546 *filename_ptr = info->filename;
2547 *linenumber_ptr = info->line;
2548 if (discriminator_ptr)
2549 *discriminator_ptr = info->discriminator;
2550 return seq->last_line->address - seq->low_pc;
2551 }
2552
2553 fail:
2554 *filename_ptr = NULL;
2555 return 0;
2556 }
2557
2558 /* Read in the .debug_ranges section for future reference. */
2559
2560 static bfd_boolean
2561 read_debug_ranges (struct comp_unit * unit)
2562 {
2563 struct dwarf2_debug * stash = unit->stash;
2564
2565 return read_section (unit->abfd, &stash->debug_sections[debug_ranges],
2566 stash->syms, 0,
2567 &stash->dwarf_ranges_buffer,
2568 &stash->dwarf_ranges_size);
2569 }
2570
2571 /* Function table functions. */
2572
2573 static int
2574 compare_lookup_funcinfos (const void * a, const void * b)
2575 {
2576 const struct lookup_funcinfo * lookup1 = a;
2577 const struct lookup_funcinfo * lookup2 = b;
2578
2579 if (lookup1->low_addr < lookup2->low_addr)
2580 return -1;
2581 if (lookup1->low_addr > lookup2->low_addr)
2582 return 1;
2583 if (lookup1->high_addr < lookup2->high_addr)
2584 return -1;
2585 if (lookup1->high_addr > lookup2->high_addr)
2586 return 1;
2587
2588 return 0;
2589 }
2590
2591 static bfd_boolean
2592 build_lookup_funcinfo_table (struct comp_unit * unit)
2593 {
2594 struct lookup_funcinfo *lookup_funcinfo_table = unit->lookup_funcinfo_table;
2595 unsigned int number_of_functions = unit->number_of_functions;
2596 struct funcinfo *each;
2597 struct lookup_funcinfo *entry;
2598 size_t func_index;
2599 struct arange *range;
2600 bfd_vma low_addr, high_addr;
2601
2602 if (lookup_funcinfo_table || number_of_functions == 0)
2603 return TRUE;
2604
2605 /* Create the function info lookup table. */
2606 lookup_funcinfo_table = (struct lookup_funcinfo *)
2607 bfd_malloc (number_of_functions * sizeof (struct lookup_funcinfo));
2608 if (lookup_funcinfo_table == NULL)
2609 return FALSE;
2610
2611 /* Populate the function info lookup table. */
2612 func_index = number_of_functions;
2613 for (each = unit->function_table; each; each = each->prev_func)
2614 {
2615 entry = &lookup_funcinfo_table[--func_index];
2616 entry->funcinfo = each;
2617
2618 /* Calculate the lowest and highest address for this function entry. */
2619 low_addr = entry->funcinfo->arange.low;
2620 high_addr = entry->funcinfo->arange.high;
2621
2622 for (range = entry->funcinfo->arange.next; range; range = range->next)
2623 {
2624 if (range->low < low_addr)
2625 low_addr = range->low;
2626 if (range->high > high_addr)
2627 high_addr = range->high;
2628 }
2629
2630 entry->low_addr = low_addr;
2631 entry->high_addr = high_addr;
2632 }
2633
2634 BFD_ASSERT (func_index == 0);
2635
2636 /* Sort the function by address. */
2637 qsort (lookup_funcinfo_table,
2638 number_of_functions,
2639 sizeof (struct lookup_funcinfo),
2640 compare_lookup_funcinfos);
2641
2642 /* Calculate the high watermark for each function in the lookup table. */
2643 high_addr = lookup_funcinfo_table[0].high_addr;
2644 for (func_index = 1; func_index < number_of_functions; func_index++)
2645 {
2646 entry = &lookup_funcinfo_table[func_index];
2647 if (entry->high_addr > high_addr)
2648 high_addr = entry->high_addr;
2649 else
2650 entry->high_addr = high_addr;
2651 }
2652
2653 unit->lookup_funcinfo_table = lookup_funcinfo_table;
2654 return TRUE;
2655 }
2656
2657 /* If ADDR is within UNIT's function tables, set FUNCTION_PTR, and return
2658 TRUE. Note that we need to find the function that has the smallest range
2659 that contains ADDR, to handle inlined functions without depending upon
2660 them being ordered in TABLE by increasing range. */
2661
2662 static bfd_boolean
2663 lookup_address_in_function_table (struct comp_unit *unit,
2664 bfd_vma addr,
2665 struct funcinfo **function_ptr)
2666 {
2667 unsigned int number_of_functions = unit->number_of_functions;
2668 struct lookup_funcinfo* lookup_funcinfo = NULL;
2669 struct funcinfo* funcinfo = NULL;
2670 struct funcinfo* best_fit = NULL;
2671 bfd_vma best_fit_len = 0;
2672 bfd_size_type low, high, mid, first;
2673 struct arange *arange;
2674
2675 if (number_of_functions == 0)
2676 return FALSE;
2677
2678 if (!build_lookup_funcinfo_table (unit))
2679 return FALSE;
2680
2681 if (unit->lookup_funcinfo_table[number_of_functions - 1].high_addr < addr)
2682 return FALSE;
2683
2684 /* Find the first function in the lookup table which may contain the
2685 specified address. */
2686 low = 0;
2687 high = number_of_functions;
2688 first = high;
2689 while (low < high)
2690 {
2691 mid = (low + high) / 2;
2692 lookup_funcinfo = &unit->lookup_funcinfo_table[mid];
2693 if (addr < lookup_funcinfo->low_addr)
2694 high = mid;
2695 else if (addr >= lookup_funcinfo->high_addr)
2696 low = mid + 1;
2697 else
2698 high = first = mid;
2699 }
2700
2701 /* Find the 'best' match for the address. The prior algorithm defined the
2702 best match as the function with the smallest address range containing
2703 the specified address. This definition should probably be changed to the
2704 innermost inline routine containing the address, but right now we want
2705 to get the same results we did before. */
2706 while (first < number_of_functions)
2707 {
2708 if (addr < unit->lookup_funcinfo_table[first].low_addr)
2709 break;
2710 funcinfo = unit->lookup_funcinfo_table[first].funcinfo;
2711
2712 for (arange = &funcinfo->arange; arange; arange = arange->next)
2713 {
2714 if (addr < arange->low || addr >= arange->high)
2715 continue;
2716
2717 if (!best_fit
2718 || arange->high - arange->low < best_fit_len
2719 /* The following comparison is designed to return the same
2720 match as the previous algorithm for routines which have the
2721 same best fit length. */
2722 || (arange->high - arange->low == best_fit_len
2723 && funcinfo > best_fit))
2724 {
2725 best_fit = funcinfo;
2726 best_fit_len = arange->high - arange->low;
2727 }
2728 }
2729
2730 first++;
2731 }
2732
2733 if (!best_fit)
2734 return FALSE;
2735
2736 *function_ptr = best_fit;
2737 return TRUE;
2738 }
2739
2740 /* If SYM at ADDR is within function table of UNIT, set FILENAME_PTR
2741 and LINENUMBER_PTR, and return TRUE. */
2742
2743 static bfd_boolean
2744 lookup_symbol_in_function_table (struct comp_unit *unit,
2745 asymbol *sym,
2746 bfd_vma addr,
2747 const char **filename_ptr,
2748 unsigned int *linenumber_ptr)
2749 {
2750 struct funcinfo* each_func;
2751 struct funcinfo* best_fit = NULL;
2752 bfd_vma best_fit_len = 0;
2753 struct arange *arange;
2754 const char *name = bfd_asymbol_name (sym);
2755 asection *sec = bfd_get_section (sym);
2756
2757 for (each_func = unit->function_table;
2758 each_func;
2759 each_func = each_func->prev_func)
2760 {
2761 for (arange = &each_func->arange;
2762 arange;
2763 arange = arange->next)
2764 {
2765 if ((!each_func->sec || each_func->sec == sec)
2766 && addr >= arange->low
2767 && addr < arange->high
2768 && each_func->name
2769 && strcmp (name, each_func->name) == 0
2770 && (!best_fit
2771 || arange->high - arange->low < best_fit_len))
2772 {
2773 best_fit = each_func;
2774 best_fit_len = arange->high - arange->low;
2775 }
2776 }
2777 }
2778
2779 if (best_fit)
2780 {
2781 best_fit->sec = sec;
2782 *filename_ptr = best_fit->file;
2783 *linenumber_ptr = best_fit->line;
2784 return TRUE;
2785 }
2786 else
2787 return FALSE;
2788 }
2789
2790 /* Variable table functions. */
2791
2792 /* If SYM is within variable table of UNIT, set FILENAME_PTR and
2793 LINENUMBER_PTR, and return TRUE. */
2794
2795 static bfd_boolean
2796 lookup_symbol_in_variable_table (struct comp_unit *unit,
2797 asymbol *sym,
2798 bfd_vma addr,
2799 const char **filename_ptr,
2800 unsigned int *linenumber_ptr)
2801 {
2802 const char *name = bfd_asymbol_name (sym);
2803 asection *sec = bfd_get_section (sym);
2804 struct varinfo* each;
2805
2806 for (each = unit->variable_table; each; each = each->prev_var)
2807 if (each->stack == 0
2808 && each->file != NULL
2809 && each->name != NULL
2810 && each->addr == addr
2811 && (!each->sec || each->sec == sec)
2812 && strcmp (name, each->name) == 0)
2813 break;
2814
2815 if (each)
2816 {
2817 each->sec = sec;
2818 *filename_ptr = each->file;
2819 *linenumber_ptr = each->line;
2820 return TRUE;
2821 }
2822
2823 return FALSE;
2824 }
2825
2826 static char *
2827 find_abstract_instance_name (struct comp_unit *unit,
2828 struct attribute *attr_ptr,
2829 bfd_boolean *is_linkage)
2830 {
2831 bfd *abfd = unit->abfd;
2832 bfd_byte *info_ptr;
2833 bfd_byte *info_ptr_end;
2834 unsigned int abbrev_number, bytes_read, i;
2835 struct abbrev_info *abbrev;
2836 bfd_uint64_t die_ref = attr_ptr->u.val;
2837 struct attribute attr;
2838 char *name = NULL;
2839
2840 /* DW_FORM_ref_addr can reference an entry in a different CU. It
2841 is an offset from the .debug_info section, not the current CU. */
2842 if (attr_ptr->form == DW_FORM_ref_addr)
2843 {
2844 /* We only support DW_FORM_ref_addr within the same file, so
2845 any relocations should be resolved already. */
2846 if (!die_ref)
2847 abort ();
2848
2849 info_ptr = unit->sec_info_ptr + die_ref;
2850 info_ptr_end = unit->end_ptr;
2851
2852 /* Now find the CU containing this pointer. */
2853 if (info_ptr >= unit->info_ptr_unit && info_ptr < unit->end_ptr)
2854 ;
2855 else
2856 {
2857 /* Check other CUs to see if they contain the abbrev. */
2858 struct comp_unit * u;
2859
2860 for (u = unit->prev_unit; u != NULL; u = u->prev_unit)
2861 if (info_ptr >= u->info_ptr_unit && info_ptr < u->end_ptr)
2862 break;
2863
2864 if (u == NULL)
2865 for (u = unit->next_unit; u != NULL; u = u->next_unit)
2866 if (info_ptr >= u->info_ptr_unit && info_ptr < u->end_ptr)
2867 break;
2868
2869 if (u)
2870 unit = u;
2871 /* else FIXME: What do we do now ? */
2872 }
2873 }
2874 else if (attr_ptr->form == DW_FORM_GNU_ref_alt)
2875 {
2876 info_ptr = read_alt_indirect_ref (unit, die_ref);
2877 if (info_ptr == NULL)
2878 {
2879 _bfd_error_handler
2880 (_("Dwarf Error: Unable to read alt ref %llu."),
2881 (long long) die_ref);
2882 bfd_set_error (bfd_error_bad_value);
2883 return NULL;
2884 }
2885 info_ptr_end = unit->stash->alt_dwarf_info_buffer + unit->stash->alt_dwarf_info_size;
2886
2887 /* FIXME: Do we need to locate the correct CU, in a similar
2888 fashion to the code in the DW_FORM_ref_addr case above ? */
2889 }
2890 else
2891 {
2892 info_ptr = unit->info_ptr_unit + die_ref;
2893 info_ptr_end = unit->end_ptr;
2894 }
2895
2896 abbrev_number = _bfd_safe_read_leb128 (abfd, info_ptr, &bytes_read,
2897 FALSE, info_ptr_end);
2898 info_ptr += bytes_read;
2899
2900 if (abbrev_number)
2901 {
2902 abbrev = lookup_abbrev (abbrev_number, unit->abbrevs);
2903 if (! abbrev)
2904 {
2905 _bfd_error_handler
2906 (_("Dwarf Error: Could not find abbrev number %u."), abbrev_number);
2907 bfd_set_error (bfd_error_bad_value);
2908 }
2909 else
2910 {
2911 for (i = 0; i < abbrev->num_attrs; ++i)
2912 {
2913 info_ptr = read_attribute (&attr, &abbrev->attrs[i], unit,
2914 info_ptr, info_ptr_end);
2915 if (info_ptr == NULL)
2916 break;
2917 switch (attr.name)
2918 {
2919 case DW_AT_name:
2920 /* Prefer DW_AT_MIPS_linkage_name or DW_AT_linkage_name
2921 over DW_AT_name. */
2922 if (name == NULL && is_str_attr (attr.form))
2923 {
2924 name = attr.u.str;
2925 if (non_mangled (unit->lang))
2926 *is_linkage = TRUE;
2927 }
2928 break;
2929 case DW_AT_specification:
2930 name = find_abstract_instance_name (unit, &attr, is_linkage);
2931 break;
2932 case DW_AT_linkage_name:
2933 case DW_AT_MIPS_linkage_name:
2934 /* PR 16949: Corrupt debug info can place
2935 non-string forms into these attributes. */
2936 if (is_str_attr (attr.form))
2937 {
2938 name = attr.u.str;
2939 *is_linkage = TRUE;
2940 }
2941 break;
2942 default:
2943 break;
2944 }
2945 }
2946 }
2947 }
2948 return name;
2949 }
2950
2951 static bfd_boolean
2952 read_rangelist (struct comp_unit *unit, struct arange *arange,
2953 bfd_uint64_t offset)
2954 {
2955 bfd_byte *ranges_ptr;
2956 bfd_byte *ranges_end;
2957 bfd_vma base_address = unit->base_address;
2958
2959 if (! unit->stash->dwarf_ranges_buffer)
2960 {
2961 if (! read_debug_ranges (unit))
2962 return FALSE;
2963 }
2964
2965 ranges_ptr = unit->stash->dwarf_ranges_buffer + offset;
2966 if (ranges_ptr < unit->stash->dwarf_ranges_buffer)
2967 return FALSE;
2968 ranges_end = unit->stash->dwarf_ranges_buffer + unit->stash->dwarf_ranges_size;
2969
2970 for (;;)
2971 {
2972 bfd_vma low_pc;
2973 bfd_vma high_pc;
2974
2975 /* PR 17512: file: 62cada7d. */
2976 if (ranges_ptr + 2 * unit->addr_size > ranges_end)
2977 return FALSE;
2978
2979 low_pc = read_address (unit, ranges_ptr, ranges_end);
2980 ranges_ptr += unit->addr_size;
2981 high_pc = read_address (unit, ranges_ptr, ranges_end);
2982 ranges_ptr += unit->addr_size;
2983
2984 if (low_pc == 0 && high_pc == 0)
2985 break;
2986 if (low_pc == -1UL && high_pc != -1UL)
2987 base_address = high_pc;
2988 else
2989 {
2990 if (!arange_add (unit, arange,
2991 base_address + low_pc, base_address + high_pc))
2992 return FALSE;
2993 }
2994 }
2995 return TRUE;
2996 }
2997
2998 /* DWARF2 Compilation unit functions. */
2999
3000 /* Scan over each die in a comp. unit looking for functions to add
3001 to the function table and variables to the variable table. */
3002
3003 static bfd_boolean
3004 scan_unit_for_symbols (struct comp_unit *unit)
3005 {
3006 bfd *abfd = unit->abfd;
3007 bfd_byte *info_ptr = unit->first_child_die_ptr;
3008 bfd_byte *info_ptr_end = unit->stash->info_ptr_end;
3009 int nesting_level = 1;
3010 struct funcinfo **nested_funcs;
3011 int nested_funcs_size;
3012
3013 /* Maintain a stack of in-scope functions and inlined functions, which we
3014 can use to set the caller_func field. */
3015 nested_funcs_size = 32;
3016 nested_funcs = (struct funcinfo **)
3017 bfd_malloc (nested_funcs_size * sizeof (struct funcinfo *));
3018 if (nested_funcs == NULL)
3019 return FALSE;
3020 nested_funcs[nesting_level] = 0;
3021
3022 while (nesting_level)
3023 {
3024 unsigned int abbrev_number, bytes_read, i;
3025 struct abbrev_info *abbrev;
3026 struct attribute attr;
3027 struct funcinfo *func;
3028 struct varinfo *var;
3029 bfd_vma low_pc = 0;
3030 bfd_vma high_pc = 0;
3031 bfd_boolean high_pc_relative = FALSE;
3032
3033 /* PR 17512: file: 9f405d9d. */
3034 if (info_ptr >= info_ptr_end)
3035 goto fail;
3036
3037 abbrev_number = _bfd_safe_read_leb128 (abfd, info_ptr, &bytes_read,
3038 FALSE, info_ptr_end);
3039 info_ptr += bytes_read;
3040
3041 if (! abbrev_number)
3042 {
3043 nesting_level--;
3044 continue;
3045 }
3046
3047 abbrev = lookup_abbrev (abbrev_number, unit->abbrevs);
3048 if (! abbrev)
3049 {
3050 static unsigned int previous_failed_abbrev = -1U;
3051
3052 /* Avoid multiple reports of the same missing abbrev. */
3053 if (abbrev_number != previous_failed_abbrev)
3054 {
3055 _bfd_error_handler
3056 (_("Dwarf Error: Could not find abbrev number %u."),
3057 abbrev_number);
3058 previous_failed_abbrev = abbrev_number;
3059 }
3060 bfd_set_error (bfd_error_bad_value);
3061 goto fail;
3062 }
3063
3064 var = NULL;
3065 if (abbrev->tag == DW_TAG_subprogram
3066 || abbrev->tag == DW_TAG_entry_point
3067 || abbrev->tag == DW_TAG_inlined_subroutine)
3068 {
3069 bfd_size_type amt = sizeof (struct funcinfo);
3070 func = (struct funcinfo *) bfd_zalloc (abfd, amt);
3071 if (func == NULL)
3072 goto fail;
3073 func->tag = abbrev->tag;
3074 func->prev_func = unit->function_table;
3075 unit->function_table = func;
3076 unit->number_of_functions++;
3077 BFD_ASSERT (!unit->cached);
3078
3079 if (func->tag == DW_TAG_inlined_subroutine)
3080 for (i = nesting_level - 1; i >= 1; i--)
3081 if (nested_funcs[i])
3082 {
3083 func->caller_func = nested_funcs[i];
3084 break;
3085 }
3086 nested_funcs[nesting_level] = func;
3087 }
3088 else
3089 {
3090 func = NULL;
3091 if (abbrev->tag == DW_TAG_variable)
3092 {
3093 bfd_size_type amt = sizeof (struct varinfo);
3094 var = (struct varinfo *) bfd_zalloc (abfd, amt);
3095 if (var == NULL)
3096 goto fail;
3097 var->tag = abbrev->tag;
3098 var->stack = 1;
3099 var->prev_var = unit->variable_table;
3100 unit->variable_table = var;
3101 /* PR 18205: Missing debug information can cause this
3102 var to be attached to an already cached unit. */
3103 }
3104
3105 /* No inline function in scope at this nesting level. */
3106 nested_funcs[nesting_level] = 0;
3107 }
3108
3109 for (i = 0; i < abbrev->num_attrs; ++i)
3110 {
3111 info_ptr = read_attribute (&attr, &abbrev->attrs[i], unit, info_ptr, info_ptr_end);
3112 if (info_ptr == NULL)
3113 goto fail;
3114
3115 if (func)
3116 {
3117 switch (attr.name)
3118 {
3119 case DW_AT_call_file:
3120 func->caller_file = concat_filename (unit->line_table,
3121 attr.u.val);
3122 break;
3123
3124 case DW_AT_call_line:
3125 func->caller_line = attr.u.val;
3126 break;
3127
3128 case DW_AT_abstract_origin:
3129 case DW_AT_specification:
3130 func->name = find_abstract_instance_name (unit, &attr,
3131 &func->is_linkage);
3132 break;
3133
3134 case DW_AT_name:
3135 /* Prefer DW_AT_MIPS_linkage_name or DW_AT_linkage_name
3136 over DW_AT_name. */
3137 if (func->name == NULL && is_str_attr (attr.form))
3138 {
3139 func->name = attr.u.str;
3140 if (non_mangled (unit->lang))
3141 func->is_linkage = TRUE;
3142 }
3143 break;
3144
3145 case DW_AT_linkage_name:
3146 case DW_AT_MIPS_linkage_name:
3147 /* PR 16949: Corrupt debug info can place
3148 non-string forms into these attributes. */
3149 if (is_str_attr (attr.form))
3150 {
3151 func->name = attr.u.str;
3152 func->is_linkage = TRUE;
3153 }
3154 break;
3155
3156 case DW_AT_low_pc:
3157 low_pc = attr.u.val;
3158 break;
3159
3160 case DW_AT_high_pc:
3161 high_pc = attr.u.val;
3162 high_pc_relative = attr.form != DW_FORM_addr;
3163 break;
3164
3165 case DW_AT_ranges:
3166 if (!read_rangelist (unit, &func->arange, attr.u.val))
3167 goto fail;
3168 break;
3169
3170 case DW_AT_decl_file:
3171 func->file = concat_filename (unit->line_table,
3172 attr.u.val);
3173 break;
3174
3175 case DW_AT_decl_line:
3176 func->line = attr.u.val;
3177 break;
3178
3179 default:
3180 break;
3181 }
3182 }
3183 else if (var)
3184 {
3185 switch (attr.name)
3186 {
3187 case DW_AT_name:
3188 var->name = attr.u.str;
3189 break;
3190
3191 case DW_AT_decl_file:
3192 var->file = concat_filename (unit->line_table,
3193 attr.u.val);
3194 break;
3195
3196 case DW_AT_decl_line:
3197 var->line = attr.u.val;
3198 break;
3199
3200 case DW_AT_external:
3201 if (attr.u.val != 0)
3202 var->stack = 0;
3203 break;
3204
3205 case DW_AT_location:
3206 switch (attr.form)
3207 {
3208 case DW_FORM_block:
3209 case DW_FORM_block1:
3210 case DW_FORM_block2:
3211 case DW_FORM_block4:
3212 case DW_FORM_exprloc:
3213 if (*attr.u.blk->data == DW_OP_addr)
3214 {
3215 var->stack = 0;
3216
3217 /* Verify that DW_OP_addr is the only opcode in the
3218 location, in which case the block size will be 1
3219 plus the address size. */
3220 /* ??? For TLS variables, gcc can emit
3221 DW_OP_addr <addr> DW_OP_GNU_push_tls_address
3222 which we don't handle here yet. */
3223 if (attr.u.blk->size == unit->addr_size + 1U)
3224 var->addr = bfd_get (unit->addr_size * 8,
3225 unit->abfd,
3226 attr.u.blk->data + 1);
3227 }
3228 break;
3229
3230 default:
3231 break;
3232 }
3233 break;
3234
3235 default:
3236 break;
3237 }
3238 }
3239 }
3240
3241 if (high_pc_relative)
3242 high_pc += low_pc;
3243
3244 if (func && high_pc != 0)
3245 {
3246 if (!arange_add (unit, &func->arange, low_pc, high_pc))
3247 goto fail;
3248 }
3249
3250 if (abbrev->has_children)
3251 {
3252 nesting_level++;
3253
3254 if (nesting_level >= nested_funcs_size)
3255 {
3256 struct funcinfo **tmp;
3257
3258 nested_funcs_size *= 2;
3259 tmp = (struct funcinfo **)
3260 bfd_realloc (nested_funcs,
3261 nested_funcs_size * sizeof (struct funcinfo *));
3262 if (tmp == NULL)
3263 goto fail;
3264 nested_funcs = tmp;
3265 }
3266 nested_funcs[nesting_level] = 0;
3267 }
3268 }
3269
3270 free (nested_funcs);
3271 return TRUE;
3272
3273 fail:
3274 free (nested_funcs);
3275 return FALSE;
3276 }
3277
3278 /* Parse a DWARF2 compilation unit starting at INFO_PTR. This
3279 includes the compilation unit header that proceeds the DIE's, but
3280 does not include the length field that precedes each compilation
3281 unit header. END_PTR points one past the end of this comp unit.
3282 OFFSET_SIZE is the size of DWARF2 offsets (either 4 or 8 bytes).
3283
3284 This routine does not read the whole compilation unit; only enough
3285 to get to the line number information for the compilation unit. */
3286
3287 static struct comp_unit *
3288 parse_comp_unit (struct dwarf2_debug *stash,
3289 bfd_vma unit_length,
3290 bfd_byte *info_ptr_unit,
3291 unsigned int offset_size)
3292 {
3293 struct comp_unit* unit;
3294 unsigned int version;
3295 bfd_uint64_t abbrev_offset = 0;
3296 /* Initialize it just to avoid a GCC false warning. */
3297 unsigned int addr_size = -1;
3298 struct abbrev_info** abbrevs;
3299 unsigned int abbrev_number, bytes_read, i;
3300 struct abbrev_info *abbrev;
3301 struct attribute attr;
3302 bfd_byte *info_ptr = stash->info_ptr;
3303 bfd_byte *end_ptr = info_ptr + unit_length;
3304 bfd_size_type amt;
3305 bfd_vma low_pc = 0;
3306 bfd_vma high_pc = 0;
3307 bfd *abfd = stash->bfd_ptr;
3308 bfd_boolean high_pc_relative = FALSE;
3309 enum dwarf_unit_type unit_type;
3310
3311 version = read_2_bytes (abfd, info_ptr, end_ptr);
3312 info_ptr += 2;
3313 if (version < 2 || version > 5)
3314 {
3315 /* PR 19872: A version number of 0 probably means that there is padding
3316 at the end of the .debug_info section. Gold puts it there when
3317 performing an incremental link, for example. So do not generate
3318 an error, just return a NULL. */
3319 if (version)
3320 {
3321 _bfd_error_handler
3322 (_("Dwarf Error: found dwarf version '%u', this reader"
3323 " only handles version 2, 3, 4 and 5 information."), version);
3324 bfd_set_error (bfd_error_bad_value);
3325 }
3326 return NULL;
3327 }
3328
3329 if (version < 5)
3330 unit_type = DW_UT_compile;
3331 else
3332 {
3333 unit_type = read_1_byte (abfd, info_ptr, end_ptr);
3334 info_ptr += 1;
3335
3336 addr_size = read_1_byte (abfd, info_ptr, end_ptr);
3337 info_ptr += 1;
3338 }
3339
3340 BFD_ASSERT (offset_size == 4 || offset_size == 8);
3341 if (offset_size == 4)
3342 abbrev_offset = read_4_bytes (abfd, info_ptr, end_ptr);
3343 else
3344 abbrev_offset = read_8_bytes (abfd, info_ptr, end_ptr);
3345 info_ptr += offset_size;
3346
3347 if (version < 5)
3348 {
3349 addr_size = read_1_byte (abfd, info_ptr, end_ptr);
3350 info_ptr += 1;
3351 }
3352
3353 if (unit_type == DW_UT_type)
3354 {
3355 /* Skip type signature. */
3356 info_ptr += 8;
3357
3358 /* Skip type offset. */
3359 info_ptr += offset_size;
3360 }
3361
3362 if (addr_size > sizeof (bfd_vma))
3363 {
3364 _bfd_error_handler
3365 /* xgettext: c-format */
3366 (_("Dwarf Error: found address size '%u', this reader"
3367 " can not handle sizes greater than '%u'."),
3368 addr_size,
3369 (unsigned int) sizeof (bfd_vma));
3370 bfd_set_error (bfd_error_bad_value);
3371 return NULL;
3372 }
3373
3374 if (addr_size != 2 && addr_size != 4 && addr_size != 8)
3375 {
3376 _bfd_error_handler
3377 ("Dwarf Error: found address size '%u', this reader"
3378 " can only handle address sizes '2', '4' and '8'.", addr_size);
3379 bfd_set_error (bfd_error_bad_value);
3380 return NULL;
3381 }
3382
3383 /* Read the abbrevs for this compilation unit into a table. */
3384 abbrevs = read_abbrevs (abfd, abbrev_offset, stash);
3385 if (! abbrevs)
3386 return NULL;
3387
3388 abbrev_number = _bfd_safe_read_leb128 (abfd, info_ptr, &bytes_read,
3389 FALSE, end_ptr);
3390 info_ptr += bytes_read;
3391 if (! abbrev_number)
3392 {
3393 /* PR 19872: An abbrev number of 0 probably means that there is padding
3394 at the end of the .debug_abbrev section. Gold puts it there when
3395 performing an incremental link, for example. So do not generate
3396 an error, just return a NULL. */
3397 return NULL;
3398 }
3399
3400 abbrev = lookup_abbrev (abbrev_number, abbrevs);
3401 if (! abbrev)
3402 {
3403 _bfd_error_handler (_("Dwarf Error: Could not find abbrev number %u."),
3404 abbrev_number);
3405 bfd_set_error (bfd_error_bad_value);
3406 return NULL;
3407 }
3408
3409 amt = sizeof (struct comp_unit);
3410 unit = (struct comp_unit *) bfd_zalloc (abfd, amt);
3411 if (unit == NULL)
3412 return NULL;
3413 unit->abfd = abfd;
3414 unit->version = version;
3415 unit->addr_size = addr_size;
3416 unit->offset_size = offset_size;
3417 unit->abbrevs = abbrevs;
3418 unit->end_ptr = end_ptr;
3419 unit->stash = stash;
3420 unit->info_ptr_unit = info_ptr_unit;
3421 unit->sec_info_ptr = stash->sec_info_ptr;
3422
3423 for (i = 0; i < abbrev->num_attrs; ++i)
3424 {
3425 info_ptr = read_attribute (&attr, &abbrev->attrs[i], unit, info_ptr, end_ptr);
3426 if (info_ptr == NULL)
3427 return NULL;
3428
3429 /* Store the data if it is of an attribute we want to keep in a
3430 partial symbol table. */
3431 switch (attr.name)
3432 {
3433 case DW_AT_stmt_list:
3434 unit->stmtlist = 1;
3435 unit->line_offset = attr.u.val;
3436 break;
3437
3438 case DW_AT_name:
3439 unit->name = attr.u.str;
3440 break;
3441
3442 case DW_AT_low_pc:
3443 low_pc = attr.u.val;
3444 /* If the compilation unit DIE has a DW_AT_low_pc attribute,
3445 this is the base address to use when reading location
3446 lists or range lists. */
3447 if (abbrev->tag == DW_TAG_compile_unit)
3448 unit->base_address = low_pc;
3449 break;
3450
3451 case DW_AT_high_pc:
3452 high_pc = attr.u.val;
3453 high_pc_relative = attr.form != DW_FORM_addr;
3454 break;
3455
3456 case DW_AT_ranges:
3457 if (!read_rangelist (unit, &unit->arange, attr.u.val))
3458 return NULL;
3459 break;
3460
3461 case DW_AT_comp_dir:
3462 {
3463 char *comp_dir = attr.u.str;
3464
3465 /* PR 17512: file: 1fe726be. */
3466 if (! is_str_attr (attr.form))
3467 {
3468 _bfd_error_handler
3469 (_("Dwarf Error: DW_AT_comp_dir attribute encountered with a non-string form."));
3470 comp_dir = NULL;
3471 }
3472
3473 if (comp_dir)
3474 {
3475 /* Irix 6.2 native cc prepends <machine>.: to the compilation
3476 directory, get rid of it. */
3477 char *cp = strchr (comp_dir, ':');
3478
3479 if (cp && cp != comp_dir && cp[-1] == '.' && cp[1] == '/')
3480 comp_dir = cp + 1;
3481 }
3482 unit->comp_dir = comp_dir;
3483 break;
3484 }
3485
3486 case DW_AT_language:
3487 unit->lang = attr.u.val;
3488 break;
3489
3490 default:
3491 break;
3492 }
3493 }
3494 if (high_pc_relative)
3495 high_pc += low_pc;
3496 if (high_pc != 0)
3497 {
3498 if (!arange_add (unit, &unit->arange, low_pc, high_pc))
3499 return NULL;
3500 }
3501
3502 unit->first_child_die_ptr = info_ptr;
3503 return unit;
3504 }
3505
3506 /* Return TRUE if UNIT may contain the address given by ADDR. When
3507 there are functions written entirely with inline asm statements, the
3508 range info in the compilation unit header may not be correct. We
3509 need to consult the line info table to see if a compilation unit
3510 really contains the given address. */
3511
3512 static bfd_boolean
3513 comp_unit_contains_address (struct comp_unit *unit, bfd_vma addr)
3514 {
3515 struct arange *arange;
3516
3517 if (unit->error)
3518 return FALSE;
3519
3520 arange = &unit->arange;
3521 do
3522 {
3523 if (addr >= arange->low && addr < arange->high)
3524 return TRUE;
3525 arange = arange->next;
3526 }
3527 while (arange);
3528
3529 return FALSE;
3530 }
3531
3532 /* If UNIT contains ADDR, set the output parameters to the values for
3533 the line containing ADDR. The output parameters, FILENAME_PTR,
3534 FUNCTION_PTR, and LINENUMBER_PTR, are pointers to the objects
3535 to be filled in.
3536
3537 Returns the range of addresses covered by the entry that was used
3538 to fill in *LINENUMBER_PTR or 0 if it was not filled in. */
3539
3540 static bfd_vma
3541 comp_unit_find_nearest_line (struct comp_unit *unit,
3542 bfd_vma addr,
3543 const char **filename_ptr,
3544 struct funcinfo **function_ptr,
3545 unsigned int *linenumber_ptr,
3546 unsigned int *discriminator_ptr,
3547 struct dwarf2_debug *stash)
3548 {
3549 bfd_boolean func_p;
3550
3551 if (unit->error)
3552 return FALSE;
3553
3554 if (! unit->line_table)
3555 {
3556 if (! unit->stmtlist)
3557 {
3558 unit->error = 1;
3559 return FALSE;
3560 }
3561
3562 unit->line_table = decode_line_info (unit, stash);
3563
3564 if (! unit->line_table)
3565 {
3566 unit->error = 1;
3567 return FALSE;
3568 }
3569
3570 if (unit->first_child_die_ptr < unit->end_ptr
3571 && ! scan_unit_for_symbols (unit))
3572 {
3573 unit->error = 1;
3574 return FALSE;
3575 }
3576 }
3577
3578 *function_ptr = NULL;
3579 func_p = lookup_address_in_function_table (unit, addr, function_ptr);
3580 if (func_p && (*function_ptr)->tag == DW_TAG_inlined_subroutine)
3581 stash->inliner_chain = *function_ptr;
3582
3583 return lookup_address_in_line_info_table (unit->line_table, addr,
3584 filename_ptr,
3585 linenumber_ptr,
3586 discriminator_ptr);
3587 }
3588
3589 /* Check to see if line info is already decoded in a comp_unit.
3590 If not, decode it. Returns TRUE if no errors were encountered;
3591 FALSE otherwise. */
3592
3593 static bfd_boolean
3594 comp_unit_maybe_decode_line_info (struct comp_unit *unit,
3595 struct dwarf2_debug *stash)
3596 {
3597 if (unit->error)
3598 return FALSE;
3599
3600 if (! unit->line_table)
3601 {
3602 if (! unit->stmtlist)
3603 {
3604 unit->error = 1;
3605 return FALSE;
3606 }
3607
3608 unit->line_table = decode_line_info (unit, stash);
3609
3610 if (! unit->line_table)
3611 {
3612 unit->error = 1;
3613 return FALSE;
3614 }
3615
3616 if (unit->first_child_die_ptr < unit->end_ptr
3617 && ! scan_unit_for_symbols (unit))
3618 {
3619 unit->error = 1;
3620 return FALSE;
3621 }
3622 }
3623
3624 return TRUE;
3625 }
3626
3627 /* If UNIT contains SYM at ADDR, set the output parameters to the
3628 values for the line containing SYM. The output parameters,
3629 FILENAME_PTR, and LINENUMBER_PTR, are pointers to the objects to be
3630 filled in.
3631
3632 Return TRUE if UNIT contains SYM, and no errors were encountered;
3633 FALSE otherwise. */
3634
3635 static bfd_boolean
3636 comp_unit_find_line (struct comp_unit *unit,
3637 asymbol *sym,
3638 bfd_vma addr,
3639 const char **filename_ptr,
3640 unsigned int *linenumber_ptr,
3641 struct dwarf2_debug *stash)
3642 {
3643 if (!comp_unit_maybe_decode_line_info (unit, stash))
3644 return FALSE;
3645
3646 if (sym->flags & BSF_FUNCTION)
3647 return lookup_symbol_in_function_table (unit, sym, addr,
3648 filename_ptr,
3649 linenumber_ptr);
3650
3651 return lookup_symbol_in_variable_table (unit, sym, addr,
3652 filename_ptr,
3653 linenumber_ptr);
3654 }
3655
3656 static struct funcinfo *
3657 reverse_funcinfo_list (struct funcinfo *head)
3658 {
3659 struct funcinfo *rhead;
3660 struct funcinfo *temp;
3661
3662 for (rhead = NULL; head; head = temp)
3663 {
3664 temp = head->prev_func;
3665 head->prev_func = rhead;
3666 rhead = head;
3667 }
3668 return rhead;
3669 }
3670
3671 static struct varinfo *
3672 reverse_varinfo_list (struct varinfo *head)
3673 {
3674 struct varinfo *rhead;
3675 struct varinfo *temp;
3676
3677 for (rhead = NULL; head; head = temp)
3678 {
3679 temp = head->prev_var;
3680 head->prev_var = rhead;
3681 rhead = head;
3682 }
3683 return rhead;
3684 }
3685
3686 /* Extract all interesting funcinfos and varinfos of a compilation
3687 unit into hash tables for faster lookup. Returns TRUE if no
3688 errors were enountered; FALSE otherwise. */
3689
3690 static bfd_boolean
3691 comp_unit_hash_info (struct dwarf2_debug *stash,
3692 struct comp_unit *unit,
3693 struct info_hash_table *funcinfo_hash_table,
3694 struct info_hash_table *varinfo_hash_table)
3695 {
3696 struct funcinfo* each_func;
3697 struct varinfo* each_var;
3698 bfd_boolean okay = TRUE;
3699
3700 BFD_ASSERT (stash->info_hash_status != STASH_INFO_HASH_DISABLED);
3701
3702 if (!comp_unit_maybe_decode_line_info (unit, stash))
3703 return FALSE;
3704
3705 BFD_ASSERT (!unit->cached);
3706
3707 /* To preserve the original search order, we went to visit the function
3708 infos in the reversed order of the list. However, making the list
3709 bi-directional use quite a bit of extra memory. So we reverse
3710 the list first, traverse the list in the now reversed order and
3711 finally reverse the list again to get back the original order. */
3712 unit->function_table = reverse_funcinfo_list (unit->function_table);
3713 for (each_func = unit->function_table;
3714 each_func && okay;
3715 each_func = each_func->prev_func)
3716 {
3717 /* Skip nameless functions. */
3718 if (each_func->name)
3719 /* There is no need to copy name string into hash table as
3720 name string is either in the dwarf string buffer or
3721 info in the stash. */
3722 okay = insert_info_hash_table (funcinfo_hash_table, each_func->name,
3723 (void*) each_func, FALSE);
3724 }
3725 unit->function_table = reverse_funcinfo_list (unit->function_table);
3726 if (!okay)
3727 return FALSE;
3728
3729 /* We do the same for variable infos. */
3730 unit->variable_table = reverse_varinfo_list (unit->variable_table);
3731 for (each_var = unit->variable_table;
3732 each_var && okay;
3733 each_var = each_var->prev_var)
3734 {
3735 /* Skip stack vars and vars with no files or names. */
3736 if (each_var->stack == 0
3737 && each_var->file != NULL
3738 && each_var->name != NULL)
3739 /* There is no need to copy name string into hash table as
3740 name string is either in the dwarf string buffer or
3741 info in the stash. */
3742 okay = insert_info_hash_table (varinfo_hash_table, each_var->name,
3743 (void*) each_var, FALSE);
3744 }
3745
3746 unit->variable_table = reverse_varinfo_list (unit->variable_table);
3747 unit->cached = TRUE;
3748 return okay;
3749 }
3750
3751 /* Locate a section in a BFD containing debugging info. The search starts
3752 from the section after AFTER_SEC, or from the first section in the BFD if
3753 AFTER_SEC is NULL. The search works by examining the names of the
3754 sections. There are three permissiable names. The first two are given
3755 by DEBUG_SECTIONS[debug_info] (whose standard DWARF2 names are .debug_info
3756 and .zdebug_info). The third is a prefix .gnu.linkonce.wi.
3757 This is a variation on the .debug_info section which has a checksum
3758 describing the contents appended onto the name. This allows the linker to
3759 identify and discard duplicate debugging sections for different
3760 compilation units. */
3761 #define GNU_LINKONCE_INFO ".gnu.linkonce.wi."
3762
3763 static asection *
3764 find_debug_info (bfd *abfd, const struct dwarf_debug_section *debug_sections,
3765 asection *after_sec)
3766 {
3767 asection *msec;
3768 const char *look;
3769
3770 if (after_sec == NULL)
3771 {
3772 look = debug_sections[debug_info].uncompressed_name;
3773 msec = bfd_get_section_by_name (abfd, look);
3774 if (msec != NULL)
3775 return msec;
3776
3777 look = debug_sections[debug_info].compressed_name;
3778 if (look != NULL)
3779 {
3780 msec = bfd_get_section_by_name (abfd, look);
3781 if (msec != NULL)
3782 return msec;
3783 }
3784
3785 for (msec = abfd->sections; msec != NULL; msec = msec->next)
3786 if (CONST_STRNEQ (msec->name, GNU_LINKONCE_INFO))
3787 return msec;
3788
3789 return NULL;
3790 }
3791
3792 for (msec = after_sec->next; msec != NULL; msec = msec->next)
3793 {
3794 look = debug_sections[debug_info].uncompressed_name;
3795 if (strcmp (msec->name, look) == 0)
3796 return msec;
3797
3798 look = debug_sections[debug_info].compressed_name;
3799 if (look != NULL && strcmp (msec->name, look) == 0)
3800 return msec;
3801
3802 if (CONST_STRNEQ (msec->name, GNU_LINKONCE_INFO))
3803 return msec;
3804 }
3805
3806 return NULL;
3807 }
3808
3809 /* Transfer VMAs from object file to separate debug file. */
3810
3811 static void
3812 set_debug_vma (bfd *orig_bfd, bfd *debug_bfd)
3813 {
3814 asection *s, *d;
3815
3816 for (s = orig_bfd->sections, d = debug_bfd->sections;
3817 s != NULL && d != NULL;
3818 s = s->next, d = d->next)
3819 {
3820 if ((d->flags & SEC_DEBUGGING) != 0)
3821 break;
3822 /* ??? Assumes 1-1 correspondence between sections in the
3823 two files. */
3824 if (strcmp (s->name, d->name) == 0)
3825 {
3826 d->output_section = s->output_section;
3827 d->output_offset = s->output_offset;
3828 d->vma = s->vma;
3829 }
3830 }
3831 }
3832
3833 /* Unset vmas for adjusted sections in STASH. */
3834
3835 static void
3836 unset_sections (struct dwarf2_debug *stash)
3837 {
3838 int i;
3839 struct adjusted_section *p;
3840
3841 i = stash->adjusted_section_count;
3842 p = stash->adjusted_sections;
3843 for (; i > 0; i--, p++)
3844 p->section->vma = 0;
3845 }
3846
3847 /* Set VMAs for allocated and .debug_info sections in ORIG_BFD, a
3848 relocatable object file. VMAs are normally all zero in relocatable
3849 object files, so if we want to distinguish locations in sections by
3850 address we need to set VMAs so the sections do not overlap. We
3851 also set VMA on .debug_info so that when we have multiple
3852 .debug_info sections (or the linkonce variant) they also do not
3853 overlap. The multiple .debug_info sections make up a single
3854 logical section. ??? We should probably do the same for other
3855 debug sections. */
3856
3857 static bfd_boolean
3858 place_sections (bfd *orig_bfd, struct dwarf2_debug *stash)
3859 {
3860 bfd *abfd;
3861 struct adjusted_section *p;
3862 int i;
3863 const char *debug_info_name;
3864
3865 if (stash->adjusted_section_count != 0)
3866 {
3867 i = stash->adjusted_section_count;
3868 p = stash->adjusted_sections;
3869 for (; i > 0; i--, p++)
3870 p->section->vma = p->adj_vma;
3871 return TRUE;
3872 }
3873
3874 debug_info_name = stash->debug_sections[debug_info].uncompressed_name;
3875 i = 0;
3876 abfd = orig_bfd;
3877 while (1)
3878 {
3879 asection *sect;
3880
3881 for (sect = abfd->sections; sect != NULL; sect = sect->next)
3882 {
3883 int is_debug_info;
3884
3885 if ((sect->output_section != NULL
3886 && sect->output_section != sect
3887 && (sect->flags & SEC_DEBUGGING) == 0)
3888 || sect->vma != 0)
3889 continue;
3890
3891 is_debug_info = (strcmp (sect->name, debug_info_name) == 0
3892 || CONST_STRNEQ (sect->name, GNU_LINKONCE_INFO));
3893
3894 if (!((sect->flags & SEC_ALLOC) != 0 && abfd == orig_bfd)
3895 && !is_debug_info)
3896 continue;
3897
3898 i++;
3899 }
3900 if (abfd == stash->bfd_ptr)
3901 break;
3902 abfd = stash->bfd_ptr;
3903 }
3904
3905 if (i <= 1)
3906 stash->adjusted_section_count = -1;
3907 else
3908 {
3909 bfd_vma last_vma = 0, last_dwarf = 0;
3910 bfd_size_type amt = i * sizeof (struct adjusted_section);
3911
3912 p = (struct adjusted_section *) bfd_malloc (amt);
3913 if (p == NULL)
3914 return FALSE;
3915
3916 stash->adjusted_sections = p;
3917 stash->adjusted_section_count = i;
3918
3919 abfd = orig_bfd;
3920 while (1)
3921 {
3922 asection *sect;
3923
3924 for (sect = abfd->sections; sect != NULL; sect = sect->next)
3925 {
3926 bfd_size_type sz;
3927 int is_debug_info;
3928
3929 if ((sect->output_section != NULL
3930 && sect->output_section != sect
3931 && (sect->flags & SEC_DEBUGGING) == 0)
3932 || sect->vma != 0)
3933 continue;
3934
3935 is_debug_info = (strcmp (sect->name, debug_info_name) == 0
3936 || CONST_STRNEQ (sect->name, GNU_LINKONCE_INFO));
3937
3938 if (!((sect->flags & SEC_ALLOC) != 0 && abfd == orig_bfd)
3939 && !is_debug_info)
3940 continue;
3941
3942 sz = sect->rawsize ? sect->rawsize : sect->size;
3943
3944 if (is_debug_info)
3945 {
3946 BFD_ASSERT (sect->alignment_power == 0);
3947 sect->vma = last_dwarf;
3948 last_dwarf += sz;
3949 }
3950 else
3951 {
3952 /* Align the new address to the current section
3953 alignment. */
3954 last_vma = ((last_vma
3955 + ~(-((bfd_vma) 1 << sect->alignment_power)))
3956 & (-((bfd_vma) 1 << sect->alignment_power)));
3957 sect->vma = last_vma;
3958 last_vma += sz;
3959 }
3960
3961 p->section = sect;
3962 p->adj_vma = sect->vma;
3963 p++;
3964 }
3965 if (abfd == stash->bfd_ptr)
3966 break;
3967 abfd = stash->bfd_ptr;
3968 }
3969 }
3970
3971 if (orig_bfd != stash->bfd_ptr)
3972 set_debug_vma (orig_bfd, stash->bfd_ptr);
3973
3974 return TRUE;
3975 }
3976
3977 /* Look up a funcinfo by name using the given info hash table. If found,
3978 also update the locations pointed to by filename_ptr and linenumber_ptr.
3979
3980 This function returns TRUE if a funcinfo that matches the given symbol
3981 and address is found with any error; otherwise it returns FALSE. */
3982
3983 static bfd_boolean
3984 info_hash_lookup_funcinfo (struct info_hash_table *hash_table,
3985 asymbol *sym,
3986 bfd_vma addr,
3987 const char **filename_ptr,
3988 unsigned int *linenumber_ptr)
3989 {
3990 struct funcinfo* each_func;
3991 struct funcinfo* best_fit = NULL;
3992 bfd_vma best_fit_len = 0;
3993 struct info_list_node *node;
3994 struct arange *arange;
3995 const char *name = bfd_asymbol_name (sym);
3996 asection *sec = bfd_get_section (sym);
3997
3998 for (node = lookup_info_hash_table (hash_table, name);
3999 node;
4000 node = node->next)
4001 {
4002 each_func = (struct funcinfo *) node->info;
4003 for (arange = &each_func->arange;
4004 arange;
4005 arange = arange->next)
4006 {
4007 if ((!each_func->sec || each_func->sec == sec)
4008 && addr >= arange->low
4009 && addr < arange->high
4010 && (!best_fit
4011 || arange->high - arange->low < best_fit_len))
4012 {
4013 best_fit = each_func;
4014 best_fit_len = arange->high - arange->low;
4015 }
4016 }
4017 }
4018
4019 if (best_fit)
4020 {
4021 best_fit->sec = sec;
4022 *filename_ptr = best_fit->file;
4023 *linenumber_ptr = best_fit->line;
4024 return TRUE;
4025 }
4026
4027 return FALSE;
4028 }
4029
4030 /* Look up a varinfo by name using the given info hash table. If found,
4031 also update the locations pointed to by filename_ptr and linenumber_ptr.
4032
4033 This function returns TRUE if a varinfo that matches the given symbol
4034 and address is found with any error; otherwise it returns FALSE. */
4035
4036 static bfd_boolean
4037 info_hash_lookup_varinfo (struct info_hash_table *hash_table,
4038 asymbol *sym,
4039 bfd_vma addr,
4040 const char **filename_ptr,
4041 unsigned int *linenumber_ptr)
4042 {
4043 const char *name = bfd_asymbol_name (sym);
4044 asection *sec = bfd_get_section (sym);
4045 struct varinfo* each;
4046 struct info_list_node *node;
4047
4048 for (node = lookup_info_hash_table (hash_table, name);
4049 node;
4050 node = node->next)
4051 {
4052 each = (struct varinfo *) node->info;
4053 if (each->addr == addr
4054 && (!each->sec || each->sec == sec))
4055 {
4056 each->sec = sec;
4057 *filename_ptr = each->file;
4058 *linenumber_ptr = each->line;
4059 return TRUE;
4060 }
4061 }
4062
4063 return FALSE;
4064 }
4065
4066 /* Update the funcinfo and varinfo info hash tables if they are
4067 not up to date. Returns TRUE if there is no error; otherwise
4068 returns FALSE and disable the info hash tables. */
4069
4070 static bfd_boolean
4071 stash_maybe_update_info_hash_tables (struct dwarf2_debug *stash)
4072 {
4073 struct comp_unit *each;
4074
4075 /* Exit if hash tables are up-to-date. */
4076 if (stash->all_comp_units == stash->hash_units_head)
4077 return TRUE;
4078
4079 if (stash->hash_units_head)
4080 each = stash->hash_units_head->prev_unit;
4081 else
4082 each = stash->last_comp_unit;
4083
4084 while (each)
4085 {
4086 if (!comp_unit_hash_info (stash, each, stash->funcinfo_hash_table,
4087 stash->varinfo_hash_table))
4088 {
4089 stash->info_hash_status = STASH_INFO_HASH_DISABLED;
4090 return FALSE;
4091 }
4092 each = each->prev_unit;
4093 }
4094
4095 stash->hash_units_head = stash->all_comp_units;
4096 return TRUE;
4097 }
4098
4099 /* Check consistency of info hash tables. This is for debugging only. */
4100
4101 static void ATTRIBUTE_UNUSED
4102 stash_verify_info_hash_table (struct dwarf2_debug *stash)
4103 {
4104 struct comp_unit *each_unit;
4105 struct funcinfo *each_func;
4106 struct varinfo *each_var;
4107 struct info_list_node *node;
4108 bfd_boolean found;
4109
4110 for (each_unit = stash->all_comp_units;
4111 each_unit;
4112 each_unit = each_unit->next_unit)
4113 {
4114 for (each_func = each_unit->function_table;
4115 each_func;
4116 each_func = each_func->prev_func)
4117 {
4118 if (!each_func->name)
4119 continue;
4120 node = lookup_info_hash_table (stash->funcinfo_hash_table,
4121 each_func->name);
4122 BFD_ASSERT (node);
4123 found = FALSE;
4124 while (node && !found)
4125 {
4126 found = node->info == each_func;
4127 node = node->next;
4128 }
4129 BFD_ASSERT (found);
4130 }
4131
4132 for (each_var = each_unit->variable_table;
4133 each_var;
4134 each_var = each_var->prev_var)
4135 {
4136 if (!each_var->name || !each_var->file || each_var->stack)
4137 continue;
4138 node = lookup_info_hash_table (stash->varinfo_hash_table,
4139 each_var->name);
4140 BFD_ASSERT (node);
4141 found = FALSE;
4142 while (node && !found)
4143 {
4144 found = node->info == each_var;
4145 node = node->next;
4146 }
4147 BFD_ASSERT (found);
4148 }
4149 }
4150 }
4151
4152 /* Check to see if we want to enable the info hash tables, which consume
4153 quite a bit of memory. Currently we only check the number times
4154 bfd_dwarf2_find_line is called. In the future, we may also want to
4155 take the number of symbols into account. */
4156
4157 static void
4158 stash_maybe_enable_info_hash_tables (bfd *abfd, struct dwarf2_debug *stash)
4159 {
4160 BFD_ASSERT (stash->info_hash_status == STASH_INFO_HASH_OFF);
4161
4162 if (stash->info_hash_count++ < STASH_INFO_HASH_TRIGGER)
4163 return;
4164
4165 /* FIXME: Maybe we should check the reduce_memory_overheads
4166 and optimize fields in the bfd_link_info structure ? */
4167
4168 /* Create hash tables. */
4169 stash->funcinfo_hash_table = create_info_hash_table (abfd);
4170 stash->varinfo_hash_table = create_info_hash_table (abfd);
4171 if (!stash->funcinfo_hash_table || !stash->varinfo_hash_table)
4172 {
4173 /* Turn off info hashes if any allocation above fails. */
4174 stash->info_hash_status = STASH_INFO_HASH_DISABLED;
4175 return;
4176 }
4177 /* We need a forced update so that the info hash tables will
4178 be created even though there is no compilation unit. That
4179 happens if STASH_INFO_HASH_TRIGGER is 0. */
4180 stash_maybe_update_info_hash_tables (stash);
4181 stash->info_hash_status = STASH_INFO_HASH_ON;
4182 }
4183
4184 /* Find the file and line associated with a symbol and address using the
4185 info hash tables of a stash. If there is a match, the function returns
4186 TRUE and update the locations pointed to by filename_ptr and linenumber_ptr;
4187 otherwise it returns FALSE. */
4188
4189 static bfd_boolean
4190 stash_find_line_fast (struct dwarf2_debug *stash,
4191 asymbol *sym,
4192 bfd_vma addr,
4193 const char **filename_ptr,
4194 unsigned int *linenumber_ptr)
4195 {
4196 BFD_ASSERT (stash->info_hash_status == STASH_INFO_HASH_ON);
4197
4198 if (sym->flags & BSF_FUNCTION)
4199 return info_hash_lookup_funcinfo (stash->funcinfo_hash_table, sym, addr,
4200 filename_ptr, linenumber_ptr);
4201 return info_hash_lookup_varinfo (stash->varinfo_hash_table, sym, addr,
4202 filename_ptr, linenumber_ptr);
4203 }
4204
4205 /* Save current section VMAs. */
4206
4207 static bfd_boolean
4208 save_section_vma (const bfd *abfd, struct dwarf2_debug *stash)
4209 {
4210 asection *s;
4211 unsigned int i;
4212
4213 if (abfd->section_count == 0)
4214 return TRUE;
4215 stash->sec_vma = bfd_malloc (sizeof (*stash->sec_vma) * abfd->section_count);
4216 if (stash->sec_vma == NULL)
4217 return FALSE;
4218 for (i = 0, s = abfd->sections; i < abfd->section_count; i++, s = s->next)
4219 {
4220 if (s->output_section != NULL)
4221 stash->sec_vma[i] = s->output_section->vma + s->output_offset;
4222 else
4223 stash->sec_vma[i] = s->vma;
4224 }
4225 return TRUE;
4226 }
4227
4228 /* Compare current section VMAs against those at the time the stash
4229 was created. If find_nearest_line is used in linker warnings or
4230 errors early in the link process, the debug info stash will be
4231 invalid for later calls. This is because we relocate debug info
4232 sections, so the stashed section contents depend on symbol values,
4233 which in turn depend on section VMAs. */
4234
4235 static bfd_boolean
4236 section_vma_same (const bfd *abfd, const struct dwarf2_debug *stash)
4237 {
4238 asection *s;
4239 unsigned int i;
4240
4241 for (i = 0, s = abfd->sections; i < abfd->section_count; i++, s = s->next)
4242 {
4243 bfd_vma vma;
4244
4245 if (s->output_section != NULL)
4246 vma = s->output_section->vma + s->output_offset;
4247 else
4248 vma = s->vma;
4249 if (vma != stash->sec_vma[i])
4250 return FALSE;
4251 }
4252 return TRUE;
4253 }
4254
4255 /* Read debug information from DEBUG_BFD when DEBUG_BFD is specified.
4256 If DEBUG_BFD is not specified, we read debug information from ABFD
4257 or its gnu_debuglink. The results will be stored in PINFO.
4258 The function returns TRUE iff debug information is ready. */
4259
4260 bfd_boolean
4261 _bfd_dwarf2_slurp_debug_info (bfd *abfd, bfd *debug_bfd,
4262 const struct dwarf_debug_section *debug_sections,
4263 asymbol **symbols,
4264 void **pinfo,
4265 bfd_boolean do_place)
4266 {
4267 bfd_size_type amt = sizeof (struct dwarf2_debug);
4268 bfd_size_type total_size;
4269 asection *msec;
4270 struct dwarf2_debug *stash = (struct dwarf2_debug *) *pinfo;
4271
4272 if (stash != NULL)
4273 {
4274 if (stash->orig_bfd == abfd
4275 && section_vma_same (abfd, stash))
4276 {
4277 /* Check that we did previously find some debug information
4278 before attempting to make use of it. */
4279 if (stash->bfd_ptr != NULL)
4280 {
4281 if (do_place && !place_sections (abfd, stash))
4282 return FALSE;
4283 return TRUE;
4284 }
4285
4286 return FALSE;
4287 }
4288 _bfd_dwarf2_cleanup_debug_info (abfd, pinfo);
4289 memset (stash, 0, amt);
4290 }
4291 else
4292 {
4293 stash = (struct dwarf2_debug *) bfd_zalloc (abfd, amt);
4294 if (! stash)
4295 return FALSE;
4296 }
4297 stash->orig_bfd = abfd;
4298 stash->debug_sections = debug_sections;
4299 stash->syms = symbols;
4300 if (!save_section_vma (abfd, stash))
4301 return FALSE;
4302
4303 *pinfo = stash;
4304
4305 if (debug_bfd == NULL)
4306 debug_bfd = abfd;
4307
4308 msec = find_debug_info (debug_bfd, debug_sections, NULL);
4309 if (msec == NULL && abfd == debug_bfd)
4310 {
4311 char * debug_filename;
4312
4313 debug_filename = bfd_follow_build_id_debuglink (abfd, DEBUGDIR);
4314 if (debug_filename == NULL)
4315 debug_filename = bfd_follow_gnu_debuglink (abfd, DEBUGDIR);
4316
4317 if (debug_filename == NULL)
4318 /* No dwarf2 info, and no gnu_debuglink to follow.
4319 Note that at this point the stash has been allocated, but
4320 contains zeros. This lets future calls to this function
4321 fail more quickly. */
4322 return FALSE;
4323
4324 /* Set BFD_DECOMPRESS to decompress debug sections. */
4325 if ((debug_bfd = bfd_openr (debug_filename, NULL)) == NULL
4326 || !(debug_bfd->flags |= BFD_DECOMPRESS,
4327 bfd_check_format (debug_bfd, bfd_object))
4328 || (msec = find_debug_info (debug_bfd,
4329 debug_sections, NULL)) == NULL
4330 || !bfd_generic_link_read_symbols (debug_bfd))
4331 {
4332 if (debug_bfd)
4333 bfd_close (debug_bfd);
4334 /* FIXME: Should we report our failure to follow the debuglink ? */
4335 free (debug_filename);
4336 return FALSE;
4337 }
4338
4339 symbols = bfd_get_outsymbols (debug_bfd);
4340 stash->syms = symbols;
4341 stash->close_on_cleanup = TRUE;
4342 }
4343 stash->bfd_ptr = debug_bfd;
4344
4345 if (do_place
4346 && !place_sections (abfd, stash))
4347 return FALSE;
4348
4349 /* There can be more than one DWARF2 info section in a BFD these
4350 days. First handle the easy case when there's only one. If
4351 there's more than one, try case two: none of the sections is
4352 compressed. In that case, read them all in and produce one
4353 large stash. We do this in two passes - in the first pass we
4354 just accumulate the section sizes, and in the second pass we
4355 read in the section's contents. (The allows us to avoid
4356 reallocing the data as we add sections to the stash.) If
4357 some or all sections are compressed, then do things the slow
4358 way, with a bunch of reallocs. */
4359
4360 if (! find_debug_info (debug_bfd, debug_sections, msec))
4361 {
4362 /* Case 1: only one info section. */
4363 total_size = msec->size;
4364 if (! read_section (debug_bfd, &stash->debug_sections[debug_info],
4365 symbols, 0,
4366 &stash->info_ptr_memory, &total_size))
4367 return FALSE;
4368 }
4369 else
4370 {
4371 /* Case 2: multiple sections. */
4372 for (total_size = 0;
4373 msec;
4374 msec = find_debug_info (debug_bfd, debug_sections, msec))
4375 total_size += msec->size;
4376
4377 stash->info_ptr_memory = (bfd_byte *) bfd_malloc (total_size);
4378 if (stash->info_ptr_memory == NULL)
4379 return FALSE;
4380
4381 total_size = 0;
4382 for (msec = find_debug_info (debug_bfd, debug_sections, NULL);
4383 msec;
4384 msec = find_debug_info (debug_bfd, debug_sections, msec))
4385 {
4386 bfd_size_type size;
4387
4388 size = msec->size;
4389 if (size == 0)
4390 continue;
4391
4392 if (!(bfd_simple_get_relocated_section_contents
4393 (debug_bfd, msec, stash->info_ptr_memory + total_size,
4394 symbols)))
4395 return FALSE;
4396
4397 total_size += size;
4398 }
4399 }
4400
4401 stash->info_ptr = stash->info_ptr_memory;
4402 stash->info_ptr_end = stash->info_ptr + total_size;
4403 stash->sec = find_debug_info (debug_bfd, debug_sections, NULL);
4404 stash->sec_info_ptr = stash->info_ptr;
4405 return TRUE;
4406 }
4407
4408 /* Scan the debug information in PINFO looking for a DW_TAG_subprogram
4409 abbrev with a DW_AT_low_pc attached to it. Then lookup that same
4410 symbol in SYMBOLS and return the difference between the low_pc and
4411 the symbol's address. Returns 0 if no suitable symbol could be found. */
4412
4413 bfd_signed_vma
4414 _bfd_dwarf2_find_symbol_bias (asymbol ** symbols, void ** pinfo)
4415 {
4416 struct dwarf2_debug *stash;
4417 struct comp_unit * unit;
4418
4419 stash = (struct dwarf2_debug *) *pinfo;
4420
4421 if (stash == NULL)
4422 return 0;
4423
4424 for (unit = stash->all_comp_units; unit; unit = unit->next_unit)
4425 {
4426 struct funcinfo * func;
4427
4428 if (unit->function_table == NULL)
4429 {
4430 if (unit->line_table == NULL)
4431 unit->line_table = decode_line_info (unit, stash);
4432 if (unit->line_table != NULL)
4433 scan_unit_for_symbols (unit);
4434 }
4435
4436 for (func = unit->function_table; func != NULL; func = func->prev_func)
4437 if (func->name && func->arange.low)
4438 {
4439 asymbol ** psym;
4440
4441 /* FIXME: Do we need to scan the aranges looking for the lowest pc value ? */
4442
4443 for (psym = symbols; * psym != NULL; psym++)
4444 {
4445 asymbol * sym = * psym;
4446
4447 if (sym->flags & BSF_FUNCTION
4448 && sym->section != NULL
4449 && strcmp (sym->name, func->name) == 0)
4450 return ((bfd_signed_vma) func->arange.low) -
4451 ((bfd_signed_vma) (sym->value + sym->section->vma));
4452 }
4453 }
4454 }
4455
4456 return 0;
4457 }
4458
4459 /* Find the source code location of SYMBOL. If SYMBOL is NULL
4460 then find the nearest source code location corresponding to
4461 the address SECTION + OFFSET.
4462 Returns TRUE if the line is found without error and fills in
4463 FILENAME_PTR and LINENUMBER_PTR. In the case where SYMBOL was
4464 NULL the FUNCTIONNAME_PTR is also filled in.
4465 SYMBOLS contains the symbol table for ABFD.
4466 DEBUG_SECTIONS contains the name of the dwarf debug sections.
4467 ADDR_SIZE is the number of bytes in the initial .debug_info length
4468 field and in the abbreviation offset, or zero to indicate that the
4469 default value should be used. */
4470
4471 bfd_boolean
4472 _bfd_dwarf2_find_nearest_line (bfd *abfd,
4473 asymbol **symbols,
4474 asymbol *symbol,
4475 asection *section,
4476 bfd_vma offset,
4477 const char **filename_ptr,
4478 const char **functionname_ptr,
4479 unsigned int *linenumber_ptr,
4480 unsigned int *discriminator_ptr,
4481 const struct dwarf_debug_section *debug_sections,
4482 unsigned int addr_size,
4483 void **pinfo)
4484 {
4485 /* Read each compilation unit from the section .debug_info, and check
4486 to see if it contains the address we are searching for. If yes,
4487 lookup the address, and return the line number info. If no, go
4488 on to the next compilation unit.
4489
4490 We keep a list of all the previously read compilation units, and
4491 a pointer to the next un-read compilation unit. Check the
4492 previously read units before reading more. */
4493 struct dwarf2_debug *stash;
4494 /* What address are we looking for? */
4495 bfd_vma addr;
4496 struct comp_unit* each;
4497 struct funcinfo *function = NULL;
4498 bfd_boolean found = FALSE;
4499 bfd_boolean do_line;
4500
4501 *filename_ptr = NULL;
4502 if (functionname_ptr != NULL)
4503 *functionname_ptr = NULL;
4504 *linenumber_ptr = 0;
4505 if (discriminator_ptr)
4506 *discriminator_ptr = 0;
4507
4508 if (! _bfd_dwarf2_slurp_debug_info (abfd, NULL, debug_sections,
4509 symbols, pinfo,
4510 (abfd->flags & (EXEC_P | DYNAMIC)) == 0))
4511 return FALSE;
4512
4513 stash = (struct dwarf2_debug *) *pinfo;
4514
4515 do_line = symbol != NULL;
4516 if (do_line)
4517 {
4518 BFD_ASSERT (section == NULL && offset == 0 && functionname_ptr == NULL);
4519 section = bfd_get_section (symbol);
4520 addr = symbol->value;
4521 }
4522 else
4523 {
4524 BFD_ASSERT (section != NULL && functionname_ptr != NULL);
4525 addr = offset;
4526
4527 /* If we have no SYMBOL but the section we're looking at is not a
4528 code section, then take a look through the list of symbols to see
4529 if we have a symbol at the address we're looking for. If we do
4530 then use this to look up line information. This will allow us to
4531 give file and line results for data symbols. We exclude code
4532 symbols here, if we look up a function symbol and then look up the
4533 line information we'll actually return the line number for the
4534 opening '{' rather than the function definition line. This is
4535 because looking up by symbol uses the line table, in which the
4536 first line for a function is usually the opening '{', while
4537 looking up the function by section + offset uses the
4538 DW_AT_decl_line from the function DW_TAG_subprogram for the line,
4539 which will be the line of the function name. */
4540 if (symbols != NULL && (section->flags & SEC_CODE) == 0)
4541 {
4542 asymbol **tmp;
4543
4544 for (tmp = symbols; (*tmp) != NULL; ++tmp)
4545 if ((*tmp)->the_bfd == abfd
4546 && (*tmp)->section == section
4547 && (*tmp)->value == offset
4548 && ((*tmp)->flags & BSF_SECTION_SYM) == 0)
4549 {
4550 symbol = *tmp;
4551 do_line = TRUE;
4552 /* For local symbols, keep going in the hope we find a
4553 global. */
4554 if ((symbol->flags & BSF_GLOBAL) != 0)
4555 break;
4556 }
4557 }
4558 }
4559
4560 if (section->output_section)
4561 addr += section->output_section->vma + section->output_offset;
4562 else
4563 addr += section->vma;
4564
4565 /* A null info_ptr indicates that there is no dwarf2 info
4566 (or that an error occured while setting up the stash). */
4567 if (! stash->info_ptr)
4568 return FALSE;
4569
4570 stash->inliner_chain = NULL;
4571
4572 /* Check the previously read comp. units first. */
4573 if (do_line)
4574 {
4575 /* The info hash tables use quite a bit of memory. We may not want to
4576 always use them. We use some heuristics to decide if and when to
4577 turn it on. */
4578 if (stash->info_hash_status == STASH_INFO_HASH_OFF)
4579 stash_maybe_enable_info_hash_tables (abfd, stash);
4580
4581 /* Keep info hash table up to date if they are available. Note that we
4582 may disable the hash tables if there is any error duing update. */
4583 if (stash->info_hash_status == STASH_INFO_HASH_ON)
4584 stash_maybe_update_info_hash_tables (stash);
4585
4586 if (stash->info_hash_status == STASH_INFO_HASH_ON)
4587 {
4588 found = stash_find_line_fast (stash, symbol, addr, filename_ptr,
4589 linenumber_ptr);
4590 if (found)
4591 goto done;
4592 }
4593 else
4594 {
4595 /* Check the previously read comp. units first. */
4596 for (each = stash->all_comp_units; each; each = each->next_unit)
4597 if ((symbol->flags & BSF_FUNCTION) == 0
4598 || each->arange.high == 0
4599 || comp_unit_contains_address (each, addr))
4600 {
4601 found = comp_unit_find_line (each, symbol, addr, filename_ptr,
4602 linenumber_ptr, stash);
4603 if (found)
4604 goto done;
4605 }
4606 }
4607 }
4608 else
4609 {
4610 bfd_vma min_range = (bfd_vma) -1;
4611 const char * local_filename = NULL;
4612 struct funcinfo *local_function = NULL;
4613 unsigned int local_linenumber = 0;
4614 unsigned int local_discriminator = 0;
4615
4616 for (each = stash->all_comp_units; each; each = each->next_unit)
4617 {
4618 bfd_vma range = (bfd_vma) -1;
4619
4620 found = ((each->arange.high == 0
4621 || comp_unit_contains_address (each, addr))
4622 && (range = comp_unit_find_nearest_line (each, addr,
4623 & local_filename,
4624 & local_function,
4625 & local_linenumber,
4626 & local_discriminator,
4627 stash)) != 0);
4628 if (found)
4629 {
4630 /* PRs 15935 15994: Bogus debug information may have provided us
4631 with an erroneous match. We attempt to counter this by
4632 selecting the match that has the smallest address range
4633 associated with it. (We are assuming that corrupt debug info
4634 will tend to result in extra large address ranges rather than
4635 extra small ranges).
4636
4637 This does mean that we scan through all of the CUs associated
4638 with the bfd each time this function is called. But this does
4639 have the benefit of producing consistent results every time the
4640 function is called. */
4641 if (range <= min_range)
4642 {
4643 if (filename_ptr && local_filename)
4644 * filename_ptr = local_filename;
4645 if (local_function)
4646 function = local_function;
4647 if (discriminator_ptr && local_discriminator)
4648 * discriminator_ptr = local_discriminator;
4649 if (local_linenumber)
4650 * linenumber_ptr = local_linenumber;
4651 min_range = range;
4652 }
4653 }
4654 }
4655
4656 if (* linenumber_ptr)
4657 {
4658 found = TRUE;
4659 goto done;
4660 }
4661 }
4662
4663 /* The DWARF2 spec says that the initial length field, and the
4664 offset of the abbreviation table, should both be 4-byte values.
4665 However, some compilers do things differently. */
4666 if (addr_size == 0)
4667 addr_size = 4;
4668 BFD_ASSERT (addr_size == 4 || addr_size == 8);
4669
4670 /* Read each remaining comp. units checking each as they are read. */
4671 while (stash->info_ptr < stash->info_ptr_end)
4672 {
4673 bfd_vma length;
4674 unsigned int offset_size = addr_size;
4675 bfd_byte *info_ptr_unit = stash->info_ptr;
4676
4677 length = read_4_bytes (stash->bfd_ptr, stash->info_ptr, stash->info_ptr_end);
4678 /* A 0xffffff length is the DWARF3 way of indicating
4679 we use 64-bit offsets, instead of 32-bit offsets. */
4680 if (length == 0xffffffff)
4681 {
4682 offset_size = 8;
4683 length = read_8_bytes (stash->bfd_ptr, stash->info_ptr + 4, stash->info_ptr_end);
4684 stash->info_ptr += 12;
4685 }
4686 /* A zero length is the IRIX way of indicating 64-bit offsets,
4687 mostly because the 64-bit length will generally fit in 32
4688 bits, and the endianness helps. */
4689 else if (length == 0)
4690 {
4691 offset_size = 8;
4692 length = read_4_bytes (stash->bfd_ptr, stash->info_ptr + 4, stash->info_ptr_end);
4693 stash->info_ptr += 8;
4694 }
4695 /* In the absence of the hints above, we assume 32-bit DWARF2
4696 offsets even for targets with 64-bit addresses, because:
4697 a) most of the time these targets will not have generated
4698 more than 2Gb of debug info and so will not need 64-bit
4699 offsets,
4700 and
4701 b) if they do use 64-bit offsets but they are not using
4702 the size hints that are tested for above then they are
4703 not conforming to the DWARF3 standard anyway. */
4704 else if (addr_size == 8)
4705 {
4706 offset_size = 4;
4707 stash->info_ptr += 4;
4708 }
4709 else
4710 stash->info_ptr += 4;
4711
4712 if (length > 0)
4713 {
4714 bfd_byte * new_ptr;
4715
4716 /* PR 21151 */
4717 if (stash->info_ptr + length > stash->info_ptr_end)
4718 return FALSE;
4719
4720 each = parse_comp_unit (stash, length, info_ptr_unit,
4721 offset_size);
4722 if (!each)
4723 /* The dwarf information is damaged, don't trust it any
4724 more. */
4725 break;
4726
4727 new_ptr = stash->info_ptr + length;
4728 /* PR 17512: file: 1500698c. */
4729 if (new_ptr < stash->info_ptr)
4730 {
4731 /* A corrupt length value - do not trust the info any more. */
4732 found = FALSE;
4733 break;
4734 }
4735 else
4736 stash->info_ptr = new_ptr;
4737
4738 if (stash->all_comp_units)
4739 stash->all_comp_units->prev_unit = each;
4740 else
4741 stash->last_comp_unit = each;
4742
4743 each->next_unit = stash->all_comp_units;
4744 stash->all_comp_units = each;
4745
4746 /* DW_AT_low_pc and DW_AT_high_pc are optional for
4747 compilation units. If we don't have them (i.e.,
4748 unit->high == 0), we need to consult the line info table
4749 to see if a compilation unit contains the given
4750 address. */
4751 if (do_line)
4752 found = (((symbol->flags & BSF_FUNCTION) == 0
4753 || each->arange.high == 0
4754 || comp_unit_contains_address (each, addr))
4755 && comp_unit_find_line (each, symbol, addr,
4756 filename_ptr,
4757 linenumber_ptr,
4758 stash));
4759 else
4760 found = ((each->arange.high == 0
4761 || comp_unit_contains_address (each, addr))
4762 && comp_unit_find_nearest_line (each, addr,
4763 filename_ptr,
4764 &function,
4765 linenumber_ptr,
4766 discriminator_ptr,
4767 stash) != 0);
4768
4769 if ((bfd_vma) (stash->info_ptr - stash->sec_info_ptr)
4770 == stash->sec->size)
4771 {
4772 stash->sec = find_debug_info (stash->bfd_ptr, debug_sections,
4773 stash->sec);
4774 stash->sec_info_ptr = stash->info_ptr;
4775 }
4776
4777 if (found)
4778 goto done;
4779 }
4780 }
4781
4782 done:
4783 if (function)
4784 {
4785 if (!function->is_linkage)
4786 {
4787 asymbol *fun;
4788 bfd_vma sec_vma;
4789
4790 fun = _bfd_elf_find_function (abfd, symbols, section, offset,
4791 *filename_ptr ? NULL : filename_ptr,
4792 functionname_ptr);
4793 sec_vma = section->vma;
4794 if (section->output_section != NULL)
4795 sec_vma = section->output_section->vma + section->output_offset;
4796 if (fun != NULL
4797 && fun->value + sec_vma == function->arange.low)
4798 function->name = *functionname_ptr;
4799 /* Even if we didn't find a linkage name, say that we have
4800 to stop a repeated search of symbols. */
4801 function->is_linkage = TRUE;
4802 }
4803 *functionname_ptr = function->name;
4804 }
4805 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0)
4806 unset_sections (stash);
4807
4808 return found;
4809 }
4810
4811 bfd_boolean
4812 _bfd_dwarf2_find_inliner_info (bfd *abfd ATTRIBUTE_UNUSED,
4813 const char **filename_ptr,
4814 const char **functionname_ptr,
4815 unsigned int *linenumber_ptr,
4816 void **pinfo)
4817 {
4818 struct dwarf2_debug *stash;
4819
4820 stash = (struct dwarf2_debug *) *pinfo;
4821 if (stash)
4822 {
4823 struct funcinfo *func = stash->inliner_chain;
4824
4825 if (func && func->caller_func)
4826 {
4827 *filename_ptr = func->caller_file;
4828 *functionname_ptr = func->caller_func->name;
4829 *linenumber_ptr = func->caller_line;
4830 stash->inliner_chain = func->caller_func;
4831 return TRUE;
4832 }
4833 }
4834
4835 return FALSE;
4836 }
4837
4838 void
4839 _bfd_dwarf2_cleanup_debug_info (bfd *abfd, void **pinfo)
4840 {
4841 struct dwarf2_debug *stash = (struct dwarf2_debug *) *pinfo;
4842 struct comp_unit *each;
4843
4844 if (abfd == NULL || stash == NULL)
4845 return;
4846
4847 for (each = stash->all_comp_units; each; each = each->next_unit)
4848 {
4849 struct abbrev_info **abbrevs = each->abbrevs;
4850 struct funcinfo *function_table = each->function_table;
4851 struct varinfo *variable_table = each->variable_table;
4852 size_t i;
4853
4854 for (i = 0; i < ABBREV_HASH_SIZE; i++)
4855 {
4856 struct abbrev_info *abbrev = abbrevs[i];
4857
4858 while (abbrev)
4859 {
4860 free (abbrev->attrs);
4861 abbrev = abbrev->next;
4862 }
4863 }
4864
4865 if (each->line_table)
4866 {
4867 free (each->line_table->dirs);
4868 free (each->line_table->files);
4869 }
4870
4871 while (function_table)
4872 {
4873 if (function_table->file)
4874 {
4875 free (function_table->file);
4876 function_table->file = NULL;
4877 }
4878
4879 if (function_table->caller_file)
4880 {
4881 free (function_table->caller_file);
4882 function_table->caller_file = NULL;
4883 }
4884 function_table = function_table->prev_func;
4885 }
4886
4887 if (each->lookup_funcinfo_table)
4888 {
4889 free (each->lookup_funcinfo_table);
4890 each->lookup_funcinfo_table = NULL;
4891 }
4892
4893 while (variable_table)
4894 {
4895 if (variable_table->file)
4896 {
4897 free (variable_table->file);
4898 variable_table->file = NULL;
4899 }
4900
4901 variable_table = variable_table->prev_var;
4902 }
4903 }
4904
4905 if (stash->dwarf_abbrev_buffer)
4906 free (stash->dwarf_abbrev_buffer);
4907 if (stash->dwarf_line_buffer)
4908 free (stash->dwarf_line_buffer);
4909 if (stash->dwarf_str_buffer)
4910 free (stash->dwarf_str_buffer);
4911 if (stash->dwarf_line_str_buffer)
4912 free (stash->dwarf_line_str_buffer);
4913 if (stash->dwarf_ranges_buffer)
4914 free (stash->dwarf_ranges_buffer);
4915 if (stash->info_ptr_memory)
4916 free (stash->info_ptr_memory);
4917 if (stash->close_on_cleanup)
4918 bfd_close (stash->bfd_ptr);
4919 if (stash->alt_dwarf_str_buffer)
4920 free (stash->alt_dwarf_str_buffer);
4921 if (stash->alt_dwarf_info_buffer)
4922 free (stash->alt_dwarf_info_buffer);
4923 if (stash->sec_vma)
4924 free (stash->sec_vma);
4925 if (stash->adjusted_sections)
4926 free (stash->adjusted_sections);
4927 if (stash->alt_bfd_ptr)
4928 bfd_close (stash->alt_bfd_ptr);
4929 }
4930
4931 /* Find the function to a particular section and offset,
4932 for error reporting. */
4933
4934 asymbol *
4935 _bfd_elf_find_function (bfd *abfd,
4936 asymbol **symbols,
4937 asection *section,
4938 bfd_vma offset,
4939 const char **filename_ptr,
4940 const char **functionname_ptr)
4941 {
4942 struct elf_find_function_cache
4943 {
4944 asection *last_section;
4945 asymbol *func;
4946 const char *filename;
4947 bfd_size_type func_size;
4948 } *cache;
4949
4950 if (symbols == NULL)
4951 return NULL;
4952
4953 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
4954 return NULL;
4955
4956 cache = elf_tdata (abfd)->elf_find_function_cache;
4957 if (cache == NULL)
4958 {
4959 cache = bfd_zalloc (abfd, sizeof (*cache));
4960 elf_tdata (abfd)->elf_find_function_cache = cache;
4961 if (cache == NULL)
4962 return NULL;
4963 }
4964 if (cache->last_section != section
4965 || cache->func == NULL
4966 || offset < cache->func->value
4967 || offset >= cache->func->value + cache->func_size)
4968 {
4969 asymbol *file;
4970 bfd_vma low_func;
4971 asymbol **p;
4972 /* ??? Given multiple file symbols, it is impossible to reliably
4973 choose the right file name for global symbols. File symbols are
4974 local symbols, and thus all file symbols must sort before any
4975 global symbols. The ELF spec may be interpreted to say that a
4976 file symbol must sort before other local symbols, but currently
4977 ld -r doesn't do this. So, for ld -r output, it is possible to
4978 make a better choice of file name for local symbols by ignoring
4979 file symbols appearing after a given local symbol. */
4980 enum { nothing_seen, symbol_seen, file_after_symbol_seen } state;
4981 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4982
4983 file = NULL;
4984 low_func = 0;
4985 state = nothing_seen;
4986 cache->filename = NULL;
4987 cache->func = NULL;
4988 cache->func_size = 0;
4989 cache->last_section = section;
4990
4991 for (p = symbols; *p != NULL; p++)
4992 {
4993 asymbol *sym = *p;
4994 bfd_vma code_off;
4995 bfd_size_type size;
4996
4997 if ((sym->flags & BSF_FILE) != 0)
4998 {
4999 file = sym;
5000 if (state == symbol_seen)
5001 state = file_after_symbol_seen;
5002 continue;
5003 }
5004
5005 size = bed->maybe_function_sym (sym, section, &code_off);
5006 if (size != 0
5007 && code_off <= offset
5008 && (code_off > low_func
5009 || (code_off == low_func
5010 && size > cache->func_size)))
5011 {
5012 cache->func = sym;
5013 cache->func_size = size;
5014 cache->filename = NULL;
5015 low_func = code_off;
5016 if (file != NULL
5017 && ((sym->flags & BSF_LOCAL) != 0
5018 || state != file_after_symbol_seen))
5019 cache->filename = bfd_asymbol_name (file);
5020 }
5021 if (state == nothing_seen)
5022 state = symbol_seen;
5023 }
5024 }
5025
5026 if (cache->func == NULL)
5027 return NULL;
5028
5029 if (filename_ptr)
5030 *filename_ptr = cache->filename;
5031 if (functionname_ptr)
5032 *functionname_ptr = bfd_asymbol_name (cache->func);
5033
5034 return cache->func;
5035 }
This page took 0.126796 seconds and 5 git commands to generate.