gdb/
[deliverable/binutils-gdb.git] / bfd / elf-eh-frame.c
1 /* .eh_frame section optimization.
2 Copyright 2001, 2002, 2003, 2004, 2005, 2006, 2007
3 Free Software Foundation, Inc.
4 Written by Jakub Jelinek <jakub@redhat.com>.
5
6 This file is part of BFD, the Binary File Descriptor library.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 MA 02110-1301, USA. */
22
23 #include "sysdep.h"
24 #include "bfd.h"
25 #include "libbfd.h"
26 #include "elf-bfd.h"
27 #include "elf/dwarf2.h"
28
29 #define EH_FRAME_HDR_SIZE 8
30
31 struct cie
32 {
33 unsigned int length;
34 unsigned int hash;
35 unsigned char version;
36 unsigned char local_personality;
37 char augmentation[20];
38 bfd_vma code_align;
39 bfd_signed_vma data_align;
40 bfd_vma ra_column;
41 bfd_vma augmentation_size;
42 union {
43 struct elf_link_hash_entry *h;
44 bfd_vma val;
45 unsigned int reloc_index;
46 } personality;
47 asection *output_sec;
48 struct eh_cie_fde *cie_inf;
49 unsigned char per_encoding;
50 unsigned char lsda_encoding;
51 unsigned char fde_encoding;
52 unsigned char initial_insn_length;
53 unsigned char can_make_lsda_relative;
54 unsigned char initial_instructions[50];
55 };
56
57
58
59 /* If *ITER hasn't reached END yet, read the next byte into *RESULT and
60 move onto the next byte. Return true on success. */
61
62 static inline bfd_boolean
63 read_byte (bfd_byte **iter, bfd_byte *end, unsigned char *result)
64 {
65 if (*iter >= end)
66 return FALSE;
67 *result = *((*iter)++);
68 return TRUE;
69 }
70
71 /* Move *ITER over LENGTH bytes, or up to END, whichever is closer.
72 Return true it was possible to move LENGTH bytes. */
73
74 static inline bfd_boolean
75 skip_bytes (bfd_byte **iter, bfd_byte *end, bfd_size_type length)
76 {
77 if ((bfd_size_type) (end - *iter) < length)
78 {
79 *iter = end;
80 return FALSE;
81 }
82 *iter += length;
83 return TRUE;
84 }
85
86 /* Move *ITER over an leb128, stopping at END. Return true if the end
87 of the leb128 was found. */
88
89 static bfd_boolean
90 skip_leb128 (bfd_byte **iter, bfd_byte *end)
91 {
92 unsigned char byte;
93 do
94 if (!read_byte (iter, end, &byte))
95 return FALSE;
96 while (byte & 0x80);
97 return TRUE;
98 }
99
100 /* Like skip_leb128, but treat the leb128 as an unsigned value and
101 store it in *VALUE. */
102
103 static bfd_boolean
104 read_uleb128 (bfd_byte **iter, bfd_byte *end, bfd_vma *value)
105 {
106 bfd_byte *start, *p;
107
108 start = *iter;
109 if (!skip_leb128 (iter, end))
110 return FALSE;
111
112 p = *iter;
113 *value = *--p;
114 while (p > start)
115 *value = (*value << 7) | (*--p & 0x7f);
116
117 return TRUE;
118 }
119
120 /* Like read_uleb128, but for signed values. */
121
122 static bfd_boolean
123 read_sleb128 (bfd_byte **iter, bfd_byte *end, bfd_signed_vma *value)
124 {
125 bfd_byte *start, *p;
126
127 start = *iter;
128 if (!skip_leb128 (iter, end))
129 return FALSE;
130
131 p = *iter;
132 *value = ((*--p & 0x7f) ^ 0x40) - 0x40;
133 while (p > start)
134 *value = (*value << 7) | (*--p & 0x7f);
135
136 return TRUE;
137 }
138
139 /* Return 0 if either encoding is variable width, or not yet known to bfd. */
140
141 static
142 int get_DW_EH_PE_width (int encoding, int ptr_size)
143 {
144 /* DW_EH_PE_ values of 0x60 and 0x70 weren't defined at the time .eh_frame
145 was added to bfd. */
146 if ((encoding & 0x60) == 0x60)
147 return 0;
148
149 switch (encoding & 7)
150 {
151 case DW_EH_PE_udata2: return 2;
152 case DW_EH_PE_udata4: return 4;
153 case DW_EH_PE_udata8: return 8;
154 case DW_EH_PE_absptr: return ptr_size;
155 default:
156 break;
157 }
158
159 return 0;
160 }
161
162 #define get_DW_EH_PE_signed(encoding) (((encoding) & DW_EH_PE_signed) != 0)
163
164 /* Read a width sized value from memory. */
165
166 static bfd_vma
167 read_value (bfd *abfd, bfd_byte *buf, int width, int is_signed)
168 {
169 bfd_vma value;
170
171 switch (width)
172 {
173 case 2:
174 if (is_signed)
175 value = bfd_get_signed_16 (abfd, buf);
176 else
177 value = bfd_get_16 (abfd, buf);
178 break;
179 case 4:
180 if (is_signed)
181 value = bfd_get_signed_32 (abfd, buf);
182 else
183 value = bfd_get_32 (abfd, buf);
184 break;
185 case 8:
186 if (is_signed)
187 value = bfd_get_signed_64 (abfd, buf);
188 else
189 value = bfd_get_64 (abfd, buf);
190 break;
191 default:
192 BFD_FAIL ();
193 return 0;
194 }
195
196 return value;
197 }
198
199 /* Store a width sized value to memory. */
200
201 static void
202 write_value (bfd *abfd, bfd_byte *buf, bfd_vma value, int width)
203 {
204 switch (width)
205 {
206 case 2: bfd_put_16 (abfd, value, buf); break;
207 case 4: bfd_put_32 (abfd, value, buf); break;
208 case 8: bfd_put_64 (abfd, value, buf); break;
209 default: BFD_FAIL ();
210 }
211 }
212
213 /* Return one if C1 and C2 CIEs can be merged. */
214
215 static int
216 cie_eq (const void *e1, const void *e2)
217 {
218 const struct cie *c1 = e1;
219 const struct cie *c2 = e2;
220
221 if (c1->hash == c2->hash
222 && c1->length == c2->length
223 && c1->version == c2->version
224 && c1->local_personality == c2->local_personality
225 && strcmp (c1->augmentation, c2->augmentation) == 0
226 && strcmp (c1->augmentation, "eh") != 0
227 && c1->code_align == c2->code_align
228 && c1->data_align == c2->data_align
229 && c1->ra_column == c2->ra_column
230 && c1->augmentation_size == c2->augmentation_size
231 && memcmp (&c1->personality, &c2->personality,
232 sizeof (c1->personality)) == 0
233 && c1->output_sec == c2->output_sec
234 && c1->per_encoding == c2->per_encoding
235 && c1->lsda_encoding == c2->lsda_encoding
236 && c1->fde_encoding == c2->fde_encoding
237 && c1->initial_insn_length == c2->initial_insn_length
238 && memcmp (c1->initial_instructions,
239 c2->initial_instructions,
240 c1->initial_insn_length) == 0)
241 return 1;
242
243 return 0;
244 }
245
246 static hashval_t
247 cie_hash (const void *e)
248 {
249 const struct cie *c = e;
250 return c->hash;
251 }
252
253 static hashval_t
254 cie_compute_hash (struct cie *c)
255 {
256 hashval_t h = 0;
257 h = iterative_hash_object (c->length, h);
258 h = iterative_hash_object (c->version, h);
259 h = iterative_hash (c->augmentation, strlen (c->augmentation) + 1, h);
260 h = iterative_hash_object (c->code_align, h);
261 h = iterative_hash_object (c->data_align, h);
262 h = iterative_hash_object (c->ra_column, h);
263 h = iterative_hash_object (c->augmentation_size, h);
264 h = iterative_hash_object (c->personality, h);
265 h = iterative_hash_object (c->output_sec, h);
266 h = iterative_hash_object (c->per_encoding, h);
267 h = iterative_hash_object (c->lsda_encoding, h);
268 h = iterative_hash_object (c->fde_encoding, h);
269 h = iterative_hash_object (c->initial_insn_length, h);
270 h = iterative_hash (c->initial_instructions, c->initial_insn_length, h);
271 c->hash = h;
272 return h;
273 }
274
275 /* Return the number of extra bytes that we'll be inserting into
276 ENTRY's augmentation string. */
277
278 static INLINE unsigned int
279 extra_augmentation_string_bytes (struct eh_cie_fde *entry)
280 {
281 unsigned int size = 0;
282 if (entry->cie)
283 {
284 if (entry->add_augmentation_size)
285 size++;
286 if (entry->u.cie.add_fde_encoding)
287 size++;
288 }
289 return size;
290 }
291
292 /* Likewise ENTRY's augmentation data. */
293
294 static INLINE unsigned int
295 extra_augmentation_data_bytes (struct eh_cie_fde *entry)
296 {
297 unsigned int size = 0;
298 if (entry->add_augmentation_size)
299 size++;
300 if (entry->cie && entry->u.cie.add_fde_encoding)
301 size++;
302 return size;
303 }
304
305 /* Return the size that ENTRY will have in the output. ALIGNMENT is the
306 required alignment of ENTRY in bytes. */
307
308 static unsigned int
309 size_of_output_cie_fde (struct eh_cie_fde *entry, unsigned int alignment)
310 {
311 if (entry->removed)
312 return 0;
313 if (entry->size == 4)
314 return 4;
315 return (entry->size
316 + extra_augmentation_string_bytes (entry)
317 + extra_augmentation_data_bytes (entry)
318 + alignment - 1) & -alignment;
319 }
320
321 /* Assume that the bytes between *ITER and END are CFA instructions.
322 Try to move *ITER past the first instruction and return true on
323 success. ENCODED_PTR_WIDTH gives the width of pointer entries. */
324
325 static bfd_boolean
326 skip_cfa_op (bfd_byte **iter, bfd_byte *end, unsigned int encoded_ptr_width)
327 {
328 bfd_byte op;
329 bfd_vma length;
330
331 if (!read_byte (iter, end, &op))
332 return FALSE;
333
334 switch (op & 0xc0 ? op & 0xc0 : op)
335 {
336 case DW_CFA_nop:
337 case DW_CFA_advance_loc:
338 case DW_CFA_restore:
339 case DW_CFA_remember_state:
340 case DW_CFA_restore_state:
341 case DW_CFA_GNU_window_save:
342 /* No arguments. */
343 return TRUE;
344
345 case DW_CFA_offset:
346 case DW_CFA_restore_extended:
347 case DW_CFA_undefined:
348 case DW_CFA_same_value:
349 case DW_CFA_def_cfa_register:
350 case DW_CFA_def_cfa_offset:
351 case DW_CFA_def_cfa_offset_sf:
352 case DW_CFA_GNU_args_size:
353 /* One leb128 argument. */
354 return skip_leb128 (iter, end);
355
356 case DW_CFA_val_offset:
357 case DW_CFA_val_offset_sf:
358 case DW_CFA_offset_extended:
359 case DW_CFA_register:
360 case DW_CFA_def_cfa:
361 case DW_CFA_offset_extended_sf:
362 case DW_CFA_GNU_negative_offset_extended:
363 case DW_CFA_def_cfa_sf:
364 /* Two leb128 arguments. */
365 return (skip_leb128 (iter, end)
366 && skip_leb128 (iter, end));
367
368 case DW_CFA_def_cfa_expression:
369 /* A variable-length argument. */
370 return (read_uleb128 (iter, end, &length)
371 && skip_bytes (iter, end, length));
372
373 case DW_CFA_expression:
374 case DW_CFA_val_expression:
375 /* A leb128 followed by a variable-length argument. */
376 return (skip_leb128 (iter, end)
377 && read_uleb128 (iter, end, &length)
378 && skip_bytes (iter, end, length));
379
380 case DW_CFA_set_loc:
381 return skip_bytes (iter, end, encoded_ptr_width);
382
383 case DW_CFA_advance_loc1:
384 return skip_bytes (iter, end, 1);
385
386 case DW_CFA_advance_loc2:
387 return skip_bytes (iter, end, 2);
388
389 case DW_CFA_advance_loc4:
390 return skip_bytes (iter, end, 4);
391
392 case DW_CFA_MIPS_advance_loc8:
393 return skip_bytes (iter, end, 8);
394
395 default:
396 return FALSE;
397 }
398 }
399
400 /* Try to interpret the bytes between BUF and END as CFA instructions.
401 If every byte makes sense, return a pointer to the first DW_CFA_nop
402 padding byte, or END if there is no padding. Return null otherwise.
403 ENCODED_PTR_WIDTH is as for skip_cfa_op. */
404
405 static bfd_byte *
406 skip_non_nops (bfd_byte *buf, bfd_byte *end, unsigned int encoded_ptr_width,
407 unsigned int *set_loc_count)
408 {
409 bfd_byte *last;
410
411 last = buf;
412 while (buf < end)
413 if (*buf == DW_CFA_nop)
414 buf++;
415 else
416 {
417 if (*buf == DW_CFA_set_loc)
418 ++*set_loc_count;
419 if (!skip_cfa_op (&buf, end, encoded_ptr_width))
420 return 0;
421 last = buf;
422 }
423 return last;
424 }
425
426 /* Called before calling _bfd_elf_parse_eh_frame on every input bfd's
427 .eh_frame section. */
428
429 void
430 _bfd_elf_begin_eh_frame_parsing (struct bfd_link_info *info)
431 {
432 struct eh_frame_hdr_info *hdr_info;
433
434 hdr_info = &elf_hash_table (info)->eh_info;
435 hdr_info->merge_cies = !info->relocatable;
436 }
437
438 /* Try to parse .eh_frame section SEC, which belongs to ABFD. Store the
439 information in the section's sec_info field on success. COOKIE
440 describes the relocations in SEC. */
441
442 void
443 _bfd_elf_parse_eh_frame (bfd *abfd, struct bfd_link_info *info,
444 asection *sec, struct elf_reloc_cookie *cookie)
445 {
446 #define REQUIRE(COND) \
447 do \
448 if (!(COND)) \
449 goto free_no_table; \
450 while (0)
451
452 bfd_byte *ehbuf = NULL, *buf, *end;
453 bfd_byte *last_fde;
454 struct eh_cie_fde *this_inf;
455 unsigned int hdr_length, hdr_id;
456 unsigned int cie_count;
457 struct cie *cie, *local_cies = NULL;
458 struct elf_link_hash_table *htab;
459 struct eh_frame_hdr_info *hdr_info;
460 struct eh_frame_sec_info *sec_info = NULL;
461 unsigned int ptr_size;
462 unsigned int num_cies;
463 unsigned int num_entries;
464 elf_gc_mark_hook_fn gc_mark_hook;
465
466 htab = elf_hash_table (info);
467 hdr_info = &htab->eh_info;
468 if (hdr_info->parsed_eh_frames)
469 return;
470
471 if (sec->size == 0)
472 {
473 /* This file does not contain .eh_frame information. */
474 return;
475 }
476
477 if (bfd_is_abs_section (sec->output_section))
478 {
479 /* At least one of the sections is being discarded from the
480 link, so we should just ignore them. */
481 return;
482 }
483
484 /* Read the frame unwind information from abfd. */
485
486 REQUIRE (bfd_malloc_and_get_section (abfd, sec, &ehbuf));
487
488 if (sec->size >= 4
489 && bfd_get_32 (abfd, ehbuf) == 0
490 && cookie->rel == cookie->relend)
491 {
492 /* Empty .eh_frame section. */
493 free (ehbuf);
494 return;
495 }
496
497 /* If .eh_frame section size doesn't fit into int, we cannot handle
498 it (it would need to use 64-bit .eh_frame format anyway). */
499 REQUIRE (sec->size == (unsigned int) sec->size);
500
501 ptr_size = (get_elf_backend_data (abfd)
502 ->elf_backend_eh_frame_address_size (abfd, sec));
503 REQUIRE (ptr_size != 0);
504
505 /* Go through the section contents and work out how many FDEs and
506 CIEs there are. */
507 buf = ehbuf;
508 end = ehbuf + sec->size;
509 num_cies = 0;
510 num_entries = 0;
511 while (buf != end)
512 {
513 num_entries++;
514
515 /* Read the length of the entry. */
516 REQUIRE (skip_bytes (&buf, end, 4));
517 hdr_length = bfd_get_32 (abfd, buf - 4);
518
519 /* 64-bit .eh_frame is not supported. */
520 REQUIRE (hdr_length != 0xffffffff);
521 if (hdr_length == 0)
522 break;
523
524 REQUIRE (skip_bytes (&buf, end, 4));
525 hdr_id = bfd_get_32 (abfd, buf - 4);
526 if (hdr_id == 0)
527 num_cies++;
528
529 REQUIRE (skip_bytes (&buf, end, hdr_length - 4));
530 }
531
532 sec_info = bfd_zmalloc (sizeof (struct eh_frame_sec_info)
533 + (num_entries - 1) * sizeof (struct eh_cie_fde));
534 REQUIRE (sec_info);
535
536 /* We need to have a "struct cie" for each CIE in this section. */
537 local_cies = bfd_zmalloc (num_cies * sizeof (*local_cies));
538 REQUIRE (local_cies);
539
540 #define ENSURE_NO_RELOCS(buf) \
541 REQUIRE (!(cookie->rel < cookie->relend \
542 && (cookie->rel->r_offset \
543 < (bfd_size_type) ((buf) - ehbuf)) \
544 && cookie->rel->r_info != 0))
545
546 #define SKIP_RELOCS(buf) \
547 while (cookie->rel < cookie->relend \
548 && (cookie->rel->r_offset \
549 < (bfd_size_type) ((buf) - ehbuf))) \
550 cookie->rel++
551
552 #define GET_RELOC(buf) \
553 ((cookie->rel < cookie->relend \
554 && (cookie->rel->r_offset \
555 == (bfd_size_type) ((buf) - ehbuf))) \
556 ? cookie->rel : NULL)
557
558 buf = ehbuf;
559 cie_count = 0;
560 gc_mark_hook = get_elf_backend_data (abfd)->gc_mark_hook;
561 while ((bfd_size_type) (buf - ehbuf) != sec->size)
562 {
563 char *aug;
564 bfd_byte *start, *insns, *insns_end;
565 bfd_size_type length;
566 unsigned int set_loc_count;
567
568 this_inf = sec_info->entry + sec_info->count;
569 last_fde = buf;
570
571 /* Read the length of the entry. */
572 REQUIRE (skip_bytes (&buf, ehbuf + sec->size, 4));
573 hdr_length = bfd_get_32 (abfd, buf - 4);
574
575 /* The CIE/FDE must be fully contained in this input section. */
576 REQUIRE ((bfd_size_type) (buf - ehbuf) + hdr_length <= sec->size);
577 end = buf + hdr_length;
578
579 this_inf->offset = last_fde - ehbuf;
580 this_inf->size = 4 + hdr_length;
581 this_inf->reloc_index = cookie->rel - cookie->rels;
582
583 if (hdr_length == 0)
584 {
585 /* A zero-length CIE should only be found at the end of
586 the section. */
587 REQUIRE ((bfd_size_type) (buf - ehbuf) == sec->size);
588 ENSURE_NO_RELOCS (buf);
589 sec_info->count++;
590 break;
591 }
592
593 REQUIRE (skip_bytes (&buf, end, 4));
594 hdr_id = bfd_get_32 (abfd, buf - 4);
595
596 if (hdr_id == 0)
597 {
598 unsigned int initial_insn_length;
599
600 /* CIE */
601 this_inf->cie = 1;
602
603 /* Point CIE to one of the section-local cie structures. */
604 cie = local_cies + cie_count++;
605
606 cie->cie_inf = this_inf;
607 cie->length = hdr_length;
608 cie->output_sec = sec->output_section;
609 start = buf;
610 REQUIRE (read_byte (&buf, end, &cie->version));
611
612 /* Cannot handle unknown versions. */
613 REQUIRE (cie->version == 1 || cie->version == 3);
614 REQUIRE (strlen ((char *) buf) < sizeof (cie->augmentation));
615
616 strcpy (cie->augmentation, (char *) buf);
617 buf = (bfd_byte *) strchr ((char *) buf, '\0') + 1;
618 ENSURE_NO_RELOCS (buf);
619 if (buf[0] == 'e' && buf[1] == 'h')
620 {
621 /* GCC < 3.0 .eh_frame CIE */
622 /* We cannot merge "eh" CIEs because __EXCEPTION_TABLE__
623 is private to each CIE, so we don't need it for anything.
624 Just skip it. */
625 REQUIRE (skip_bytes (&buf, end, ptr_size));
626 SKIP_RELOCS (buf);
627 }
628 REQUIRE (read_uleb128 (&buf, end, &cie->code_align));
629 REQUIRE (read_sleb128 (&buf, end, &cie->data_align));
630 if (cie->version == 1)
631 {
632 REQUIRE (buf < end);
633 cie->ra_column = *buf++;
634 }
635 else
636 REQUIRE (read_uleb128 (&buf, end, &cie->ra_column));
637 ENSURE_NO_RELOCS (buf);
638 cie->lsda_encoding = DW_EH_PE_omit;
639 cie->fde_encoding = DW_EH_PE_omit;
640 cie->per_encoding = DW_EH_PE_omit;
641 aug = cie->augmentation;
642 if (aug[0] != 'e' || aug[1] != 'h')
643 {
644 if (*aug == 'z')
645 {
646 aug++;
647 REQUIRE (read_uleb128 (&buf, end, &cie->augmentation_size));
648 ENSURE_NO_RELOCS (buf);
649 }
650
651 while (*aug != '\0')
652 switch (*aug++)
653 {
654 case 'L':
655 REQUIRE (read_byte (&buf, end, &cie->lsda_encoding));
656 ENSURE_NO_RELOCS (buf);
657 REQUIRE (get_DW_EH_PE_width (cie->lsda_encoding, ptr_size));
658 break;
659 case 'R':
660 REQUIRE (read_byte (&buf, end, &cie->fde_encoding));
661 ENSURE_NO_RELOCS (buf);
662 REQUIRE (get_DW_EH_PE_width (cie->fde_encoding, ptr_size));
663 break;
664 case 'S':
665 break;
666 case 'P':
667 {
668 int per_width;
669
670 REQUIRE (read_byte (&buf, end, &cie->per_encoding));
671 per_width = get_DW_EH_PE_width (cie->per_encoding,
672 ptr_size);
673 REQUIRE (per_width);
674 if ((cie->per_encoding & 0xf0) == DW_EH_PE_aligned)
675 {
676 length = -(buf - ehbuf) & (per_width - 1);
677 REQUIRE (skip_bytes (&buf, end, length));
678 }
679 ENSURE_NO_RELOCS (buf);
680 /* Ensure we have a reloc here. */
681 REQUIRE (GET_RELOC (buf));
682 cie->personality.reloc_index
683 = cookie->rel - cookie->rels;
684 /* Cope with MIPS-style composite relocations. */
685 do
686 cookie->rel++;
687 while (GET_RELOC (buf) != NULL);
688 REQUIRE (skip_bytes (&buf, end, per_width));
689 }
690 break;
691 default:
692 /* Unrecognized augmentation. Better bail out. */
693 goto free_no_table;
694 }
695 }
696
697 /* For shared libraries, try to get rid of as many RELATIVE relocs
698 as possible. */
699 if (info->shared
700 && (get_elf_backend_data (abfd)
701 ->elf_backend_can_make_relative_eh_frame
702 (abfd, info, sec)))
703 {
704 if ((cie->fde_encoding & 0xf0) == DW_EH_PE_absptr)
705 this_inf->make_relative = 1;
706 /* If the CIE doesn't already have an 'R' entry, it's fairly
707 easy to add one, provided that there's no aligned data
708 after the augmentation string. */
709 else if (cie->fde_encoding == DW_EH_PE_omit
710 && (cie->per_encoding & 0xf0) != DW_EH_PE_aligned)
711 {
712 if (*cie->augmentation == 0)
713 this_inf->add_augmentation_size = 1;
714 this_inf->u.cie.add_fde_encoding = 1;
715 this_inf->make_relative = 1;
716 }
717 }
718
719 if (info->shared
720 && (get_elf_backend_data (abfd)
721 ->elf_backend_can_make_lsda_relative_eh_frame
722 (abfd, info, sec))
723 && (cie->lsda_encoding & 0xf0) == DW_EH_PE_absptr)
724 cie->can_make_lsda_relative = 1;
725
726 /* If FDE encoding was not specified, it defaults to
727 DW_EH_absptr. */
728 if (cie->fde_encoding == DW_EH_PE_omit)
729 cie->fde_encoding = DW_EH_PE_absptr;
730
731 initial_insn_length = end - buf;
732 if (initial_insn_length <= sizeof (cie->initial_instructions))
733 {
734 cie->initial_insn_length = initial_insn_length;
735 memcpy (cie->initial_instructions, buf, initial_insn_length);
736 }
737 insns = buf;
738 buf += initial_insn_length;
739 ENSURE_NO_RELOCS (buf);
740
741 if (hdr_info->merge_cies)
742 this_inf->u.cie.u.full_cie = cie;
743 this_inf->u.cie.per_encoding_relative
744 = (cie->per_encoding & 0x70) == DW_EH_PE_pcrel;
745 }
746 else
747 {
748 asection *rsec;
749
750 /* Find the corresponding CIE. */
751 unsigned int cie_offset = this_inf->offset + 4 - hdr_id;
752 for (cie = local_cies; cie < local_cies + cie_count; cie++)
753 if (cie_offset == cie->cie_inf->offset)
754 break;
755
756 /* Ensure this FDE references one of the CIEs in this input
757 section. */
758 REQUIRE (cie != local_cies + cie_count);
759 this_inf->u.fde.cie_inf = cie->cie_inf;
760 this_inf->make_relative = cie->cie_inf->make_relative;
761 this_inf->add_augmentation_size
762 = cie->cie_inf->add_augmentation_size;
763
764 ENSURE_NO_RELOCS (buf);
765 REQUIRE (GET_RELOC (buf));
766
767 /* Chain together the FDEs for each section. */
768 rsec = _bfd_elf_gc_mark_rsec (info, sec, gc_mark_hook, cookie);
769 REQUIRE (rsec && rsec->owner == abfd);
770 this_inf->u.fde.next_for_section = elf_fde_list (rsec);
771 elf_fde_list (rsec) = this_inf;
772
773 /* Skip the initial location and address range. */
774 start = buf;
775 length = get_DW_EH_PE_width (cie->fde_encoding, ptr_size);
776 REQUIRE (skip_bytes (&buf, end, 2 * length));
777
778 /* Skip the augmentation size, if present. */
779 if (cie->augmentation[0] == 'z')
780 REQUIRE (read_uleb128 (&buf, end, &length));
781 else
782 length = 0;
783
784 /* Of the supported augmentation characters above, only 'L'
785 adds augmentation data to the FDE. This code would need to
786 be adjusted if any future augmentations do the same thing. */
787 if (cie->lsda_encoding != DW_EH_PE_omit)
788 {
789 SKIP_RELOCS (buf);
790 if (cie->can_make_lsda_relative && GET_RELOC (buf))
791 cie->cie_inf->u.cie.make_lsda_relative = 1;
792 this_inf->lsda_offset = buf - start;
793 /* If there's no 'z' augmentation, we don't know where the
794 CFA insns begin. Assume no padding. */
795 if (cie->augmentation[0] != 'z')
796 length = end - buf;
797 }
798
799 /* Skip over the augmentation data. */
800 REQUIRE (skip_bytes (&buf, end, length));
801 insns = buf;
802
803 buf = last_fde + 4 + hdr_length;
804 SKIP_RELOCS (buf);
805 }
806
807 /* Try to interpret the CFA instructions and find the first
808 padding nop. Shrink this_inf's size so that it doesn't
809 include the padding. */
810 length = get_DW_EH_PE_width (cie->fde_encoding, ptr_size);
811 set_loc_count = 0;
812 insns_end = skip_non_nops (insns, end, length, &set_loc_count);
813 /* If we don't understand the CFA instructions, we can't know
814 what needs to be adjusted there. */
815 if (insns_end == NULL
816 /* For the time being we don't support DW_CFA_set_loc in
817 CIE instructions. */
818 || (set_loc_count && this_inf->cie))
819 goto free_no_table;
820 this_inf->size -= end - insns_end;
821 if (insns_end != end && this_inf->cie)
822 {
823 cie->initial_insn_length -= end - insns_end;
824 cie->length -= end - insns_end;
825 }
826 if (set_loc_count
827 && ((cie->fde_encoding & 0xf0) == DW_EH_PE_pcrel
828 || this_inf->make_relative))
829 {
830 unsigned int cnt;
831 bfd_byte *p;
832
833 this_inf->set_loc = bfd_malloc ((set_loc_count + 1)
834 * sizeof (unsigned int));
835 REQUIRE (this_inf->set_loc);
836 this_inf->set_loc[0] = set_loc_count;
837 p = insns;
838 cnt = 0;
839 while (p < end)
840 {
841 if (*p == DW_CFA_set_loc)
842 this_inf->set_loc[++cnt] = p + 1 - start;
843 REQUIRE (skip_cfa_op (&p, end, length));
844 }
845 }
846
847 this_inf->removed = 1;
848 this_inf->fde_encoding = cie->fde_encoding;
849 this_inf->lsda_encoding = cie->lsda_encoding;
850 sec_info->count++;
851 }
852 BFD_ASSERT (sec_info->count == num_entries);
853 BFD_ASSERT (cie_count == num_cies);
854
855 elf_section_data (sec)->sec_info = sec_info;
856 sec->sec_info_type = ELF_INFO_TYPE_EH_FRAME;
857 if (hdr_info->merge_cies)
858 {
859 sec_info->cies = local_cies;
860 local_cies = NULL;
861 }
862 goto success;
863
864 free_no_table:
865 (*info->callbacks->einfo)
866 (_("%P: error in %B(%A); no .eh_frame_hdr table will be created.\n"),
867 abfd, sec);
868 hdr_info->table = FALSE;
869 if (sec_info)
870 free (sec_info);
871 success:
872 if (ehbuf)
873 free (ehbuf);
874 if (local_cies)
875 free (local_cies);
876 #undef REQUIRE
877 }
878
879 /* Finish a pass over all .eh_frame sections. */
880
881 void
882 _bfd_elf_end_eh_frame_parsing (struct bfd_link_info *info)
883 {
884 struct eh_frame_hdr_info *hdr_info;
885
886 hdr_info = &elf_hash_table (info)->eh_info;
887 hdr_info->parsed_eh_frames = TRUE;
888 }
889
890 /* Mark all relocations against CIE or FDE ENT, which occurs in
891 .eh_frame section SEC. COOKIE describes the relocations in SEC;
892 its "rel" field can be changed freely. */
893
894 static bfd_boolean
895 mark_entry (struct bfd_link_info *info, asection *sec,
896 struct eh_cie_fde *ent, elf_gc_mark_hook_fn gc_mark_hook,
897 struct elf_reloc_cookie *cookie)
898 {
899 for (cookie->rel = cookie->rels + ent->reloc_index;
900 cookie->rel < cookie->relend
901 && cookie->rel->r_offset < ent->offset + ent->size;
902 cookie->rel++)
903 if (!_bfd_elf_gc_mark_reloc (info, sec, gc_mark_hook, cookie))
904 return FALSE;
905
906 return TRUE;
907 }
908
909 /* Mark all the relocations against FDEs that relate to code in input
910 section SEC. The FDEs belong to .eh_frame section EH_FRAME, whose
911 relocations are described by COOKIE. */
912
913 bfd_boolean
914 _bfd_elf_gc_mark_fdes (struct bfd_link_info *info, asection *sec,
915 asection *eh_frame, elf_gc_mark_hook_fn gc_mark_hook,
916 struct elf_reloc_cookie *cookie)
917 {
918 struct eh_cie_fde *fde, *cie;
919
920 for (fde = elf_fde_list (sec); fde; fde = fde->u.fde.next_for_section)
921 {
922 if (!mark_entry (info, eh_frame, fde, gc_mark_hook, cookie))
923 return FALSE;
924
925 /* At this stage, all cie_inf fields point to local CIEs, so we
926 can use the same cookie to refer to them. */
927 cie = fde->u.fde.cie_inf;
928 if (!cie->u.cie.gc_mark)
929 {
930 cie->u.cie.gc_mark = 1;
931 if (!mark_entry (info, eh_frame, cie, gc_mark_hook, cookie))
932 return FALSE;
933 }
934 }
935 return TRUE;
936 }
937
938 /* Input section SEC of ABFD is an .eh_frame section that contains the
939 CIE described by CIE_INF. Return a version of CIE_INF that is going
940 to be kept in the output, adding CIE_INF to the output if necessary.
941
942 HDR_INFO is the .eh_frame_hdr information and COOKIE describes the
943 relocations in REL. */
944
945 static struct eh_cie_fde *
946 find_merged_cie (bfd *abfd, asection *sec,
947 struct eh_frame_hdr_info *hdr_info,
948 struct elf_reloc_cookie *cookie,
949 struct eh_cie_fde *cie_inf)
950 {
951 unsigned long r_symndx;
952 struct cie *cie, *new_cie;
953 Elf_Internal_Rela *rel;
954 void **loc;
955
956 /* Use CIE_INF if we have already decided to keep it. */
957 if (!cie_inf->removed)
958 return cie_inf;
959
960 /* If we have merged CIE_INF with another CIE, use that CIE instead. */
961 if (cie_inf->u.cie.merged)
962 return cie_inf->u.cie.u.merged_with;
963
964 cie = cie_inf->u.cie.u.full_cie;
965
966 /* Assume we will need to keep CIE_INF. */
967 cie_inf->removed = 0;
968 cie_inf->u.cie.u.sec = sec;
969
970 /* If we are not merging CIEs, use CIE_INF. */
971 if (cie == NULL)
972 return cie_inf;
973
974 if (cie->per_encoding != DW_EH_PE_omit)
975 {
976 /* Work out the address of personality routine, either as an absolute
977 value or as a symbol. */
978 rel = cookie->rels + cie->personality.reloc_index;
979 memset (&cie->personality, 0, sizeof (cie->personality));
980 #ifdef BFD64
981 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
982 r_symndx = ELF64_R_SYM (rel->r_info);
983 else
984 #endif
985 r_symndx = ELF32_R_SYM (rel->r_info);
986 if (r_symndx >= cookie->locsymcount
987 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
988 {
989 struct elf_link_hash_entry *h;
990
991 r_symndx -= cookie->extsymoff;
992 h = cookie->sym_hashes[r_symndx];
993
994 while (h->root.type == bfd_link_hash_indirect
995 || h->root.type == bfd_link_hash_warning)
996 h = (struct elf_link_hash_entry *) h->root.u.i.link;
997
998 cie->personality.h = h;
999 }
1000 else
1001 {
1002 Elf_Internal_Sym *sym;
1003 asection *sym_sec;
1004
1005 sym = &cookie->locsyms[r_symndx];
1006 sym_sec = bfd_section_from_elf_index (abfd, sym->st_shndx);
1007 if (sym_sec == NULL)
1008 return cie_inf;
1009
1010 if (sym_sec->kept_section != NULL)
1011 sym_sec = sym_sec->kept_section;
1012 if (sym_sec->output_section == NULL)
1013 return cie_inf;
1014
1015 cie->local_personality = 1;
1016 cie->personality.val = (sym->st_value
1017 + sym_sec->output_offset
1018 + sym_sec->output_section->vma);
1019 }
1020 }
1021
1022 /* See if we can merge this CIE with an earlier one. */
1023 cie->output_sec = sec->output_section;
1024 cie_compute_hash (cie);
1025 if (hdr_info->cies == NULL)
1026 {
1027 hdr_info->cies = htab_try_create (1, cie_hash, cie_eq, free);
1028 if (hdr_info->cies == NULL)
1029 return cie_inf;
1030 }
1031 loc = htab_find_slot_with_hash (hdr_info->cies, cie, cie->hash, INSERT);
1032 if (loc == NULL)
1033 return cie_inf;
1034
1035 new_cie = (struct cie *) *loc;
1036 if (new_cie == NULL)
1037 {
1038 /* Keep CIE_INF and record it in the hash table. */
1039 new_cie = malloc (sizeof (struct cie));
1040 if (new_cie == NULL)
1041 return cie_inf;
1042
1043 memcpy (new_cie, cie, sizeof (struct cie));
1044 *loc = new_cie;
1045 }
1046 else
1047 {
1048 /* Merge CIE_INF with NEW_CIE->CIE_INF. */
1049 cie_inf->removed = 1;
1050 cie_inf->u.cie.merged = 1;
1051 cie_inf->u.cie.u.merged_with = new_cie->cie_inf;
1052 if (cie_inf->u.cie.make_lsda_relative)
1053 new_cie->cie_inf->u.cie.make_lsda_relative = 1;
1054 }
1055 return new_cie->cie_inf;
1056 }
1057
1058 /* This function is called for each input file before the .eh_frame
1059 section is relocated. It discards duplicate CIEs and FDEs for discarded
1060 functions. The function returns TRUE iff any entries have been
1061 deleted. */
1062
1063 bfd_boolean
1064 _bfd_elf_discard_section_eh_frame
1065 (bfd *abfd, struct bfd_link_info *info, asection *sec,
1066 bfd_boolean (*reloc_symbol_deleted_p) (bfd_vma, void *),
1067 struct elf_reloc_cookie *cookie)
1068 {
1069 struct eh_cie_fde *ent;
1070 struct eh_frame_sec_info *sec_info;
1071 struct eh_frame_hdr_info *hdr_info;
1072 unsigned int ptr_size, offset;
1073
1074 sec_info = (struct eh_frame_sec_info *) elf_section_data (sec)->sec_info;
1075 if (sec_info == NULL)
1076 return FALSE;
1077
1078 hdr_info = &elf_hash_table (info)->eh_info;
1079 for (ent = sec_info->entry; ent < sec_info->entry + sec_info->count; ++ent)
1080 if (!ent->cie)
1081 {
1082 cookie->rel = cookie->rels + ent->reloc_index;
1083 BFD_ASSERT (cookie->rel < cookie->relend
1084 && cookie->rel->r_offset == ent->offset + 8);
1085 if (!(*reloc_symbol_deleted_p) (ent->offset + 8, cookie))
1086 {
1087 if (info->shared
1088 && (((ent->fde_encoding & 0xf0) == DW_EH_PE_absptr
1089 && ent->make_relative == 0)
1090 || (ent->fde_encoding & 0xf0) == DW_EH_PE_aligned))
1091 {
1092 /* If a shared library uses absolute pointers
1093 which we cannot turn into PC relative,
1094 don't create the binary search table,
1095 since it is affected by runtime relocations. */
1096 hdr_info->table = FALSE;
1097 (*info->callbacks->einfo)
1098 (_("%P: fde encoding in %B(%A) prevents .eh_frame_hdr"
1099 " table being created.\n"), abfd, sec);
1100 }
1101 ent->removed = 0;
1102 hdr_info->fde_count++;
1103 ent->u.fde.cie_inf = find_merged_cie (abfd, sec, hdr_info, cookie,
1104 ent->u.fde.cie_inf);
1105 }
1106 }
1107
1108 if (sec_info->cies)
1109 {
1110 free (sec_info->cies);
1111 sec_info->cies = NULL;
1112 }
1113
1114 ptr_size = (get_elf_backend_data (sec->owner)
1115 ->elf_backend_eh_frame_address_size (sec->owner, sec));
1116 offset = 0;
1117 for (ent = sec_info->entry; ent < sec_info->entry + sec_info->count; ++ent)
1118 if (!ent->removed)
1119 {
1120 ent->new_offset = offset;
1121 offset += size_of_output_cie_fde (ent, ptr_size);
1122 }
1123
1124 sec->rawsize = sec->size;
1125 sec->size = offset;
1126 return offset != sec->rawsize;
1127 }
1128
1129 /* This function is called for .eh_frame_hdr section after
1130 _bfd_elf_discard_section_eh_frame has been called on all .eh_frame
1131 input sections. It finalizes the size of .eh_frame_hdr section. */
1132
1133 bfd_boolean
1134 _bfd_elf_discard_section_eh_frame_hdr (bfd *abfd, struct bfd_link_info *info)
1135 {
1136 struct elf_link_hash_table *htab;
1137 struct eh_frame_hdr_info *hdr_info;
1138 asection *sec;
1139
1140 htab = elf_hash_table (info);
1141 hdr_info = &htab->eh_info;
1142
1143 if (hdr_info->cies != NULL)
1144 {
1145 htab_delete (hdr_info->cies);
1146 hdr_info->cies = NULL;
1147 }
1148
1149 sec = hdr_info->hdr_sec;
1150 if (sec == NULL)
1151 return FALSE;
1152
1153 sec->size = EH_FRAME_HDR_SIZE;
1154 if (hdr_info->table)
1155 sec->size += 4 + hdr_info->fde_count * 8;
1156
1157 elf_tdata (abfd)->eh_frame_hdr = sec;
1158 return TRUE;
1159 }
1160
1161 /* This function is called from size_dynamic_sections.
1162 It needs to decide whether .eh_frame_hdr should be output or not,
1163 because when the dynamic symbol table has been sized it is too late
1164 to strip sections. */
1165
1166 bfd_boolean
1167 _bfd_elf_maybe_strip_eh_frame_hdr (struct bfd_link_info *info)
1168 {
1169 asection *o;
1170 bfd *abfd;
1171 struct elf_link_hash_table *htab;
1172 struct eh_frame_hdr_info *hdr_info;
1173
1174 htab = elf_hash_table (info);
1175 hdr_info = &htab->eh_info;
1176 if (hdr_info->hdr_sec == NULL)
1177 return TRUE;
1178
1179 if (bfd_is_abs_section (hdr_info->hdr_sec->output_section))
1180 {
1181 hdr_info->hdr_sec = NULL;
1182 return TRUE;
1183 }
1184
1185 abfd = NULL;
1186 if (info->eh_frame_hdr)
1187 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next)
1188 {
1189 /* Count only sections which have at least a single CIE or FDE.
1190 There cannot be any CIE or FDE <= 8 bytes. */
1191 o = bfd_get_section_by_name (abfd, ".eh_frame");
1192 if (o && o->size > 8 && !bfd_is_abs_section (o->output_section))
1193 break;
1194 }
1195
1196 if (abfd == NULL)
1197 {
1198 hdr_info->hdr_sec->flags |= SEC_EXCLUDE;
1199 hdr_info->hdr_sec = NULL;
1200 return TRUE;
1201 }
1202
1203 hdr_info->table = TRUE;
1204 return TRUE;
1205 }
1206
1207 /* Adjust an address in the .eh_frame section. Given OFFSET within
1208 SEC, this returns the new offset in the adjusted .eh_frame section,
1209 or -1 if the address refers to a CIE/FDE which has been removed
1210 or to offset with dynamic relocation which is no longer needed. */
1211
1212 bfd_vma
1213 _bfd_elf_eh_frame_section_offset (bfd *output_bfd ATTRIBUTE_UNUSED,
1214 struct bfd_link_info *info,
1215 asection *sec,
1216 bfd_vma offset)
1217 {
1218 struct eh_frame_sec_info *sec_info;
1219 struct elf_link_hash_table *htab;
1220 struct eh_frame_hdr_info *hdr_info;
1221 unsigned int lo, hi, mid;
1222
1223 if (sec->sec_info_type != ELF_INFO_TYPE_EH_FRAME)
1224 return offset;
1225 sec_info = elf_section_data (sec)->sec_info;
1226
1227 if (offset >= sec->rawsize)
1228 return offset - sec->rawsize + sec->size;
1229
1230 htab = elf_hash_table (info);
1231 hdr_info = &htab->eh_info;
1232
1233 lo = 0;
1234 hi = sec_info->count;
1235 mid = 0;
1236 while (lo < hi)
1237 {
1238 mid = (lo + hi) / 2;
1239 if (offset < sec_info->entry[mid].offset)
1240 hi = mid;
1241 else if (offset
1242 >= sec_info->entry[mid].offset + sec_info->entry[mid].size)
1243 lo = mid + 1;
1244 else
1245 break;
1246 }
1247
1248 BFD_ASSERT (lo < hi);
1249
1250 /* FDE or CIE was removed. */
1251 if (sec_info->entry[mid].removed)
1252 return (bfd_vma) -1;
1253
1254 /* If converting to DW_EH_PE_pcrel, there will be no need for run-time
1255 relocation against FDE's initial_location field. */
1256 if (!sec_info->entry[mid].cie
1257 && sec_info->entry[mid].make_relative
1258 && offset == sec_info->entry[mid].offset + 8)
1259 return (bfd_vma) -2;
1260
1261 /* If converting LSDA pointers to DW_EH_PE_pcrel, there will be no need
1262 for run-time relocation against LSDA field. */
1263 if (!sec_info->entry[mid].cie
1264 && sec_info->entry[mid].u.fde.cie_inf->u.cie.make_lsda_relative
1265 && offset == (sec_info->entry[mid].offset + 8
1266 + sec_info->entry[mid].lsda_offset))
1267 return (bfd_vma) -2;
1268
1269 /* If converting to DW_EH_PE_pcrel, there will be no need for run-time
1270 relocation against DW_CFA_set_loc's arguments. */
1271 if (sec_info->entry[mid].set_loc
1272 && sec_info->entry[mid].make_relative
1273 && (offset >= sec_info->entry[mid].offset + 8
1274 + sec_info->entry[mid].set_loc[1]))
1275 {
1276 unsigned int cnt;
1277
1278 for (cnt = 1; cnt <= sec_info->entry[mid].set_loc[0]; cnt++)
1279 if (offset == sec_info->entry[mid].offset + 8
1280 + sec_info->entry[mid].set_loc[cnt])
1281 return (bfd_vma) -2;
1282 }
1283
1284 /* Any new augmentation bytes go before the first relocation. */
1285 return (offset + sec_info->entry[mid].new_offset
1286 - sec_info->entry[mid].offset
1287 + extra_augmentation_string_bytes (sec_info->entry + mid)
1288 + extra_augmentation_data_bytes (sec_info->entry + mid));
1289 }
1290
1291 /* Write out .eh_frame section. This is called with the relocated
1292 contents. */
1293
1294 bfd_boolean
1295 _bfd_elf_write_section_eh_frame (bfd *abfd,
1296 struct bfd_link_info *info,
1297 asection *sec,
1298 bfd_byte *contents)
1299 {
1300 struct eh_frame_sec_info *sec_info;
1301 struct elf_link_hash_table *htab;
1302 struct eh_frame_hdr_info *hdr_info;
1303 unsigned int ptr_size;
1304 struct eh_cie_fde *ent;
1305
1306 if (sec->sec_info_type != ELF_INFO_TYPE_EH_FRAME)
1307 return bfd_set_section_contents (abfd, sec->output_section, contents,
1308 sec->output_offset, sec->size);
1309
1310 ptr_size = (get_elf_backend_data (abfd)
1311 ->elf_backend_eh_frame_address_size (abfd, sec));
1312 BFD_ASSERT (ptr_size != 0);
1313
1314 sec_info = elf_section_data (sec)->sec_info;
1315 htab = elf_hash_table (info);
1316 hdr_info = &htab->eh_info;
1317
1318 if (hdr_info->table && hdr_info->array == NULL)
1319 hdr_info->array
1320 = bfd_malloc (hdr_info->fde_count * sizeof(*hdr_info->array));
1321 if (hdr_info->array == NULL)
1322 hdr_info = NULL;
1323
1324 /* The new offsets can be bigger or smaller than the original offsets.
1325 We therefore need to make two passes over the section: one backward
1326 pass to move entries up and one forward pass to move entries down.
1327 The two passes won't interfere with each other because entries are
1328 not reordered */
1329 for (ent = sec_info->entry + sec_info->count; ent-- != sec_info->entry;)
1330 if (!ent->removed && ent->new_offset > ent->offset)
1331 memmove (contents + ent->new_offset, contents + ent->offset, ent->size);
1332
1333 for (ent = sec_info->entry; ent < sec_info->entry + sec_info->count; ++ent)
1334 if (!ent->removed && ent->new_offset < ent->offset)
1335 memmove (contents + ent->new_offset, contents + ent->offset, ent->size);
1336
1337 for (ent = sec_info->entry; ent < sec_info->entry + sec_info->count; ++ent)
1338 {
1339 unsigned char *buf, *end;
1340 unsigned int new_size;
1341
1342 if (ent->removed)
1343 continue;
1344
1345 if (ent->size == 4)
1346 {
1347 /* Any terminating FDE must be at the end of the section. */
1348 BFD_ASSERT (ent == sec_info->entry + sec_info->count - 1);
1349 continue;
1350 }
1351
1352 buf = contents + ent->new_offset;
1353 end = buf + ent->size;
1354 new_size = size_of_output_cie_fde (ent, ptr_size);
1355
1356 /* Update the size. It may be shrinked. */
1357 bfd_put_32 (abfd, new_size - 4, buf);
1358
1359 /* Filling the extra bytes with DW_CFA_nops. */
1360 if (new_size != ent->size)
1361 memset (end, 0, new_size - ent->size);
1362
1363 if (ent->cie)
1364 {
1365 /* CIE */
1366 if (ent->make_relative
1367 || ent->u.cie.make_lsda_relative
1368 || ent->u.cie.per_encoding_relative)
1369 {
1370 char *aug;
1371 unsigned int action, extra_string, extra_data;
1372 unsigned int per_width, per_encoding;
1373
1374 /* Need to find 'R' or 'L' augmentation's argument and modify
1375 DW_EH_PE_* value. */
1376 action = ((ent->make_relative ? 1 : 0)
1377 | (ent->u.cie.make_lsda_relative ? 2 : 0)
1378 | (ent->u.cie.per_encoding_relative ? 4 : 0));
1379 extra_string = extra_augmentation_string_bytes (ent);
1380 extra_data = extra_augmentation_data_bytes (ent);
1381
1382 /* Skip length, id and version. */
1383 buf += 9;
1384 aug = (char *) buf;
1385 buf += strlen (aug) + 1;
1386 skip_leb128 (&buf, end);
1387 skip_leb128 (&buf, end);
1388 skip_leb128 (&buf, end);
1389 if (*aug == 'z')
1390 {
1391 /* The uleb128 will always be a single byte for the kind
1392 of augmentation strings that we're prepared to handle. */
1393 *buf++ += extra_data;
1394 aug++;
1395 }
1396
1397 /* Make room for the new augmentation string and data bytes. */
1398 memmove (buf + extra_string + extra_data, buf, end - buf);
1399 memmove (aug + extra_string, aug, buf - (bfd_byte *) aug);
1400 buf += extra_string;
1401 end += extra_string + extra_data;
1402
1403 if (ent->add_augmentation_size)
1404 {
1405 *aug++ = 'z';
1406 *buf++ = extra_data - 1;
1407 }
1408 if (ent->u.cie.add_fde_encoding)
1409 {
1410 BFD_ASSERT (action & 1);
1411 *aug++ = 'R';
1412 *buf++ = DW_EH_PE_pcrel;
1413 action &= ~1;
1414 }
1415
1416 while (action)
1417 switch (*aug++)
1418 {
1419 case 'L':
1420 if (action & 2)
1421 {
1422 BFD_ASSERT (*buf == ent->lsda_encoding);
1423 *buf |= DW_EH_PE_pcrel;
1424 action &= ~2;
1425 }
1426 buf++;
1427 break;
1428 case 'P':
1429 per_encoding = *buf++;
1430 per_width = get_DW_EH_PE_width (per_encoding, ptr_size);
1431 BFD_ASSERT (per_width != 0);
1432 BFD_ASSERT (((per_encoding & 0x70) == DW_EH_PE_pcrel)
1433 == ent->u.cie.per_encoding_relative);
1434 if ((per_encoding & 0xf0) == DW_EH_PE_aligned)
1435 buf = (contents
1436 + ((buf - contents + per_width - 1)
1437 & ~((bfd_size_type) per_width - 1)));
1438 if (action & 4)
1439 {
1440 bfd_vma val;
1441
1442 val = read_value (abfd, buf, per_width,
1443 get_DW_EH_PE_signed (per_encoding));
1444 val += ent->offset - ent->new_offset;
1445 val -= extra_string + extra_data;
1446 write_value (abfd, buf, val, per_width);
1447 action &= ~4;
1448 }
1449 buf += per_width;
1450 break;
1451 case 'R':
1452 if (action & 1)
1453 {
1454 BFD_ASSERT (*buf == ent->fde_encoding);
1455 *buf |= DW_EH_PE_pcrel;
1456 action &= ~1;
1457 }
1458 buf++;
1459 break;
1460 case 'S':
1461 break;
1462 default:
1463 BFD_FAIL ();
1464 }
1465 }
1466 }
1467 else
1468 {
1469 /* FDE */
1470 bfd_vma value, address;
1471 unsigned int width;
1472 bfd_byte *start;
1473 struct eh_cie_fde *cie;
1474
1475 /* Skip length. */
1476 cie = ent->u.fde.cie_inf;
1477 buf += 4;
1478 value = ((ent->new_offset + sec->output_offset + 4)
1479 - (cie->new_offset + cie->u.cie.u.sec->output_offset));
1480 bfd_put_32 (abfd, value, buf);
1481 buf += 4;
1482 width = get_DW_EH_PE_width (ent->fde_encoding, ptr_size);
1483 value = read_value (abfd, buf, width,
1484 get_DW_EH_PE_signed (ent->fde_encoding));
1485 address = value;
1486 if (value)
1487 {
1488 switch (ent->fde_encoding & 0xf0)
1489 {
1490 case DW_EH_PE_indirect:
1491 case DW_EH_PE_textrel:
1492 BFD_ASSERT (hdr_info == NULL);
1493 break;
1494 case DW_EH_PE_datarel:
1495 {
1496 asection *got = bfd_get_section_by_name (abfd, ".got");
1497
1498 BFD_ASSERT (got != NULL);
1499 address += got->vma;
1500 }
1501 break;
1502 case DW_EH_PE_pcrel:
1503 value += ent->offset - ent->new_offset;
1504 address += (sec->output_section->vma
1505 + sec->output_offset
1506 + ent->offset + 8);
1507 break;
1508 }
1509 if (ent->make_relative)
1510 value -= (sec->output_section->vma
1511 + sec->output_offset
1512 + ent->new_offset + 8);
1513 write_value (abfd, buf, value, width);
1514 }
1515
1516 start = buf;
1517
1518 if (hdr_info)
1519 {
1520 hdr_info->array[hdr_info->array_count].initial_loc = address;
1521 hdr_info->array[hdr_info->array_count++].fde
1522 = (sec->output_section->vma
1523 + sec->output_offset
1524 + ent->new_offset);
1525 }
1526
1527 if ((ent->lsda_encoding & 0xf0) == DW_EH_PE_pcrel
1528 || cie->u.cie.make_lsda_relative)
1529 {
1530 buf += ent->lsda_offset;
1531 width = get_DW_EH_PE_width (ent->lsda_encoding, ptr_size);
1532 value = read_value (abfd, buf, width,
1533 get_DW_EH_PE_signed (ent->lsda_encoding));
1534 if (value)
1535 {
1536 if ((ent->lsda_encoding & 0xf0) == DW_EH_PE_pcrel)
1537 value += ent->offset - ent->new_offset;
1538 else if (cie->u.cie.make_lsda_relative)
1539 value -= (sec->output_section->vma
1540 + sec->output_offset
1541 + ent->new_offset + 8 + ent->lsda_offset);
1542 write_value (abfd, buf, value, width);
1543 }
1544 }
1545 else if (ent->add_augmentation_size)
1546 {
1547 /* Skip the PC and length and insert a zero byte for the
1548 augmentation size. */
1549 buf += width * 2;
1550 memmove (buf + 1, buf, end - buf);
1551 *buf = 0;
1552 }
1553
1554 if (ent->set_loc)
1555 {
1556 /* Adjust DW_CFA_set_loc. */
1557 unsigned int cnt, width;
1558 bfd_vma new_offset;
1559
1560 width = get_DW_EH_PE_width (ent->fde_encoding, ptr_size);
1561 new_offset = ent->new_offset + 8
1562 + extra_augmentation_string_bytes (ent)
1563 + extra_augmentation_data_bytes (ent);
1564
1565 for (cnt = 1; cnt <= ent->set_loc[0]; cnt++)
1566 {
1567 bfd_vma value;
1568 buf = start + ent->set_loc[cnt];
1569
1570 value = read_value (abfd, buf, width,
1571 get_DW_EH_PE_signed (ent->fde_encoding));
1572 if (!value)
1573 continue;
1574
1575 if ((ent->fde_encoding & 0xf0) == DW_EH_PE_pcrel)
1576 value += ent->offset + 8 - new_offset;
1577 if (ent->make_relative)
1578 value -= (sec->output_section->vma
1579 + sec->output_offset
1580 + new_offset + ent->set_loc[cnt]);
1581 write_value (abfd, buf, value, width);
1582 }
1583 }
1584 }
1585 }
1586
1587 /* We don't align the section to its section alignment since the
1588 runtime library only expects all CIE/FDE records aligned at
1589 the pointer size. _bfd_elf_discard_section_eh_frame should
1590 have padded CIE/FDE records to multiple of pointer size with
1591 size_of_output_cie_fde. */
1592 if ((sec->size % ptr_size) != 0)
1593 abort ();
1594
1595 return bfd_set_section_contents (abfd, sec->output_section,
1596 contents, (file_ptr) sec->output_offset,
1597 sec->size);
1598 }
1599
1600 /* Helper function used to sort .eh_frame_hdr search table by increasing
1601 VMA of FDE initial location. */
1602
1603 static int
1604 vma_compare (const void *a, const void *b)
1605 {
1606 const struct eh_frame_array_ent *p = a;
1607 const struct eh_frame_array_ent *q = b;
1608 if (p->initial_loc > q->initial_loc)
1609 return 1;
1610 if (p->initial_loc < q->initial_loc)
1611 return -1;
1612 return 0;
1613 }
1614
1615 /* Write out .eh_frame_hdr section. This must be called after
1616 _bfd_elf_write_section_eh_frame has been called on all input
1617 .eh_frame sections.
1618 .eh_frame_hdr format:
1619 ubyte version (currently 1)
1620 ubyte eh_frame_ptr_enc (DW_EH_PE_* encoding of pointer to start of
1621 .eh_frame section)
1622 ubyte fde_count_enc (DW_EH_PE_* encoding of total FDE count
1623 number (or DW_EH_PE_omit if there is no
1624 binary search table computed))
1625 ubyte table_enc (DW_EH_PE_* encoding of binary search table,
1626 or DW_EH_PE_omit if not present.
1627 DW_EH_PE_datarel is using address of
1628 .eh_frame_hdr section start as base)
1629 [encoded] eh_frame_ptr (pointer to start of .eh_frame section)
1630 optionally followed by:
1631 [encoded] fde_count (total number of FDEs in .eh_frame section)
1632 fde_count x [encoded] initial_loc, fde
1633 (array of encoded pairs containing
1634 FDE initial_location field and FDE address,
1635 sorted by increasing initial_loc). */
1636
1637 bfd_boolean
1638 _bfd_elf_write_section_eh_frame_hdr (bfd *abfd, struct bfd_link_info *info)
1639 {
1640 struct elf_link_hash_table *htab;
1641 struct eh_frame_hdr_info *hdr_info;
1642 asection *sec;
1643 bfd_byte *contents;
1644 asection *eh_frame_sec;
1645 bfd_size_type size;
1646 bfd_boolean retval;
1647 bfd_vma encoded_eh_frame;
1648
1649 htab = elf_hash_table (info);
1650 hdr_info = &htab->eh_info;
1651 sec = hdr_info->hdr_sec;
1652 if (sec == NULL)
1653 return TRUE;
1654
1655 size = EH_FRAME_HDR_SIZE;
1656 if (hdr_info->array && hdr_info->array_count == hdr_info->fde_count)
1657 size += 4 + hdr_info->fde_count * 8;
1658 contents = bfd_malloc (size);
1659 if (contents == NULL)
1660 return FALSE;
1661
1662 eh_frame_sec = bfd_get_section_by_name (abfd, ".eh_frame");
1663 if (eh_frame_sec == NULL)
1664 {
1665 free (contents);
1666 return FALSE;
1667 }
1668
1669 memset (contents, 0, EH_FRAME_HDR_SIZE);
1670 contents[0] = 1; /* Version. */
1671 contents[1] = get_elf_backend_data (abfd)->elf_backend_encode_eh_address
1672 (abfd, info, eh_frame_sec, 0, sec, 4,
1673 &encoded_eh_frame); /* .eh_frame offset. */
1674
1675 if (hdr_info->array && hdr_info->array_count == hdr_info->fde_count)
1676 {
1677 contents[2] = DW_EH_PE_udata4; /* FDE count encoding. */
1678 contents[3] = DW_EH_PE_datarel | DW_EH_PE_sdata4; /* Search table enc. */
1679 }
1680 else
1681 {
1682 contents[2] = DW_EH_PE_omit;
1683 contents[3] = DW_EH_PE_omit;
1684 }
1685 bfd_put_32 (abfd, encoded_eh_frame, contents + 4);
1686
1687 if (contents[2] != DW_EH_PE_omit)
1688 {
1689 unsigned int i;
1690
1691 bfd_put_32 (abfd, hdr_info->fde_count, contents + EH_FRAME_HDR_SIZE);
1692 qsort (hdr_info->array, hdr_info->fde_count, sizeof (*hdr_info->array),
1693 vma_compare);
1694 for (i = 0; i < hdr_info->fde_count; i++)
1695 {
1696 bfd_put_32 (abfd,
1697 hdr_info->array[i].initial_loc
1698 - sec->output_section->vma,
1699 contents + EH_FRAME_HDR_SIZE + i * 8 + 4);
1700 bfd_put_32 (abfd,
1701 hdr_info->array[i].fde - sec->output_section->vma,
1702 contents + EH_FRAME_HDR_SIZE + i * 8 + 8);
1703 }
1704 }
1705
1706 retval = bfd_set_section_contents (abfd, sec->output_section,
1707 contents, (file_ptr) sec->output_offset,
1708 sec->size);
1709 free (contents);
1710 return retval;
1711 }
1712
1713 /* Return the width of FDE addresses. This is the default implementation. */
1714
1715 unsigned int
1716 _bfd_elf_eh_frame_address_size (bfd *abfd, asection *sec ATTRIBUTE_UNUSED)
1717 {
1718 return elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64 ? 8 : 4;
1719 }
1720
1721 /* Decide whether we can use a PC-relative encoding within the given
1722 EH frame section. This is the default implementation. */
1723
1724 bfd_boolean
1725 _bfd_elf_can_make_relative (bfd *input_bfd ATTRIBUTE_UNUSED,
1726 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1727 asection *eh_frame_section ATTRIBUTE_UNUSED)
1728 {
1729 return TRUE;
1730 }
1731
1732 /* Select an encoding for the given address. Preference is given to
1733 PC-relative addressing modes. */
1734
1735 bfd_byte
1736 _bfd_elf_encode_eh_address (bfd *abfd ATTRIBUTE_UNUSED,
1737 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1738 asection *osec, bfd_vma offset,
1739 asection *loc_sec, bfd_vma loc_offset,
1740 bfd_vma *encoded)
1741 {
1742 *encoded = osec->vma + offset -
1743 (loc_sec->output_section->vma + loc_sec->output_offset + loc_offset);
1744 return DW_EH_PE_pcrel | DW_EH_PE_sdata4;
1745 }
This page took 0.073969 seconds and 4 git commands to generate.