4fc91d2c7768082b77cbcaae19601efea9a01c82
[deliverable/binutils-gdb.git] / bfd / elf-eh-frame.c
1 /* .eh_frame section optimization.
2 Copyright 2001, 2002, 2003, 2004, 2005, 2006, 2007
3 Free Software Foundation, Inc.
4 Written by Jakub Jelinek <jakub@redhat.com>.
5
6 This file is part of BFD, the Binary File Descriptor library.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
21
22 #include "sysdep.h"
23 #include "bfd.h"
24 #include "libbfd.h"
25 #include "elf-bfd.h"
26 #include "elf/dwarf2.h"
27
28 #define EH_FRAME_HDR_SIZE 8
29
30 struct cie
31 {
32 unsigned int length;
33 unsigned int hash;
34 unsigned char version;
35 unsigned char local_personality;
36 char augmentation[20];
37 bfd_vma code_align;
38 bfd_signed_vma data_align;
39 bfd_vma ra_column;
40 bfd_vma augmentation_size;
41 union {
42 struct elf_link_hash_entry *h;
43 bfd_vma val;
44 } personality;
45 asection *output_sec;
46 struct eh_cie_fde *cie_inf;
47 unsigned char per_encoding;
48 unsigned char lsda_encoding;
49 unsigned char fde_encoding;
50 unsigned char initial_insn_length;
51 unsigned char make_relative;
52 unsigned char make_lsda_relative;
53 unsigned char initial_instructions[50];
54 };
55
56
57
58 /* If *ITER hasn't reached END yet, read the next byte into *RESULT and
59 move onto the next byte. Return true on success. */
60
61 static inline bfd_boolean
62 read_byte (bfd_byte **iter, bfd_byte *end, unsigned char *result)
63 {
64 if (*iter >= end)
65 return FALSE;
66 *result = *((*iter)++);
67 return TRUE;
68 }
69
70 /* Move *ITER over LENGTH bytes, or up to END, whichever is closer.
71 Return true it was possible to move LENGTH bytes. */
72
73 static inline bfd_boolean
74 skip_bytes (bfd_byte **iter, bfd_byte *end, bfd_size_type length)
75 {
76 if ((bfd_size_type) (end - *iter) < length)
77 {
78 *iter = end;
79 return FALSE;
80 }
81 *iter += length;
82 return TRUE;
83 }
84
85 /* Move *ITER over an leb128, stopping at END. Return true if the end
86 of the leb128 was found. */
87
88 static bfd_boolean
89 skip_leb128 (bfd_byte **iter, bfd_byte *end)
90 {
91 unsigned char byte;
92 do
93 if (!read_byte (iter, end, &byte))
94 return FALSE;
95 while (byte & 0x80);
96 return TRUE;
97 }
98
99 /* Like skip_leb128, but treat the leb128 as an unsigned value and
100 store it in *VALUE. */
101
102 static bfd_boolean
103 read_uleb128 (bfd_byte **iter, bfd_byte *end, bfd_vma *value)
104 {
105 bfd_byte *start, *p;
106
107 start = *iter;
108 if (!skip_leb128 (iter, end))
109 return FALSE;
110
111 p = *iter;
112 *value = *--p;
113 while (p > start)
114 *value = (*value << 7) | (*--p & 0x7f);
115
116 return TRUE;
117 }
118
119 /* Like read_uleb128, but for signed values. */
120
121 static bfd_boolean
122 read_sleb128 (bfd_byte **iter, bfd_byte *end, bfd_signed_vma *value)
123 {
124 bfd_byte *start, *p;
125
126 start = *iter;
127 if (!skip_leb128 (iter, end))
128 return FALSE;
129
130 p = *iter;
131 *value = ((*--p & 0x7f) ^ 0x40) - 0x40;
132 while (p > start)
133 *value = (*value << 7) | (*--p & 0x7f);
134
135 return TRUE;
136 }
137
138 /* Return 0 if either encoding is variable width, or not yet known to bfd. */
139
140 static
141 int get_DW_EH_PE_width (int encoding, int ptr_size)
142 {
143 /* DW_EH_PE_ values of 0x60 and 0x70 weren't defined at the time .eh_frame
144 was added to bfd. */
145 if ((encoding & 0x60) == 0x60)
146 return 0;
147
148 switch (encoding & 7)
149 {
150 case DW_EH_PE_udata2: return 2;
151 case DW_EH_PE_udata4: return 4;
152 case DW_EH_PE_udata8: return 8;
153 case DW_EH_PE_absptr: return ptr_size;
154 default:
155 break;
156 }
157
158 return 0;
159 }
160
161 #define get_DW_EH_PE_signed(encoding) (((encoding) & DW_EH_PE_signed) != 0)
162
163 /* Read a width sized value from memory. */
164
165 static bfd_vma
166 read_value (bfd *abfd, bfd_byte *buf, int width, int is_signed)
167 {
168 bfd_vma value;
169
170 switch (width)
171 {
172 case 2:
173 if (is_signed)
174 value = bfd_get_signed_16 (abfd, buf);
175 else
176 value = bfd_get_16 (abfd, buf);
177 break;
178 case 4:
179 if (is_signed)
180 value = bfd_get_signed_32 (abfd, buf);
181 else
182 value = bfd_get_32 (abfd, buf);
183 break;
184 case 8:
185 if (is_signed)
186 value = bfd_get_signed_64 (abfd, buf);
187 else
188 value = bfd_get_64 (abfd, buf);
189 break;
190 default:
191 BFD_FAIL ();
192 return 0;
193 }
194
195 return value;
196 }
197
198 /* Store a width sized value to memory. */
199
200 static void
201 write_value (bfd *abfd, bfd_byte *buf, bfd_vma value, int width)
202 {
203 switch (width)
204 {
205 case 2: bfd_put_16 (abfd, value, buf); break;
206 case 4: bfd_put_32 (abfd, value, buf); break;
207 case 8: bfd_put_64 (abfd, value, buf); break;
208 default: BFD_FAIL ();
209 }
210 }
211
212 /* Return one if C1 and C2 CIEs can be merged. */
213
214 static int
215 cie_eq (const void *e1, const void *e2)
216 {
217 const struct cie *c1 = e1;
218 const struct cie *c2 = e2;
219
220 if (c1->hash == c2->hash
221 && c1->length == c2->length
222 && c1->version == c2->version
223 && c1->local_personality == c2->local_personality
224 && strcmp (c1->augmentation, c2->augmentation) == 0
225 && strcmp (c1->augmentation, "eh") != 0
226 && c1->code_align == c2->code_align
227 && c1->data_align == c2->data_align
228 && c1->ra_column == c2->ra_column
229 && c1->augmentation_size == c2->augmentation_size
230 && memcmp (&c1->personality, &c2->personality,
231 sizeof (c1->personality)) == 0
232 && c1->output_sec == c2->output_sec
233 && c1->per_encoding == c2->per_encoding
234 && c1->lsda_encoding == c2->lsda_encoding
235 && c1->fde_encoding == c2->fde_encoding
236 && c1->initial_insn_length == c2->initial_insn_length
237 && memcmp (c1->initial_instructions,
238 c2->initial_instructions,
239 c1->initial_insn_length) == 0)
240 return 1;
241
242 return 0;
243 }
244
245 static hashval_t
246 cie_hash (const void *e)
247 {
248 const struct cie *c = e;
249 return c->hash;
250 }
251
252 static hashval_t
253 cie_compute_hash (struct cie *c)
254 {
255 hashval_t h = 0;
256 h = iterative_hash_object (c->length, h);
257 h = iterative_hash_object (c->version, h);
258 h = iterative_hash (c->augmentation, strlen (c->augmentation) + 1, h);
259 h = iterative_hash_object (c->code_align, h);
260 h = iterative_hash_object (c->data_align, h);
261 h = iterative_hash_object (c->ra_column, h);
262 h = iterative_hash_object (c->augmentation_size, h);
263 h = iterative_hash_object (c->personality, h);
264 h = iterative_hash_object (c->output_sec, h);
265 h = iterative_hash_object (c->per_encoding, h);
266 h = iterative_hash_object (c->lsda_encoding, h);
267 h = iterative_hash_object (c->fde_encoding, h);
268 h = iterative_hash_object (c->initial_insn_length, h);
269 h = iterative_hash (c->initial_instructions, c->initial_insn_length, h);
270 c->hash = h;
271 return h;
272 }
273
274 /* Return the number of extra bytes that we'll be inserting into
275 ENTRY's augmentation string. */
276
277 static INLINE unsigned int
278 extra_augmentation_string_bytes (struct eh_cie_fde *entry)
279 {
280 unsigned int size = 0;
281 if (entry->cie)
282 {
283 if (entry->add_augmentation_size)
284 size++;
285 if (entry->add_fde_encoding)
286 size++;
287 }
288 return size;
289 }
290
291 /* Likewise ENTRY's augmentation data. */
292
293 static INLINE unsigned int
294 extra_augmentation_data_bytes (struct eh_cie_fde *entry)
295 {
296 unsigned int size = 0;
297 if (entry->cie)
298 {
299 if (entry->add_augmentation_size)
300 size++;
301 if (entry->add_fde_encoding)
302 size++;
303 }
304 else
305 {
306 if (entry->cie_inf->add_augmentation_size)
307 size++;
308 }
309 return size;
310 }
311
312 /* Return the size that ENTRY will have in the output. ALIGNMENT is the
313 required alignment of ENTRY in bytes. */
314
315 static unsigned int
316 size_of_output_cie_fde (struct eh_cie_fde *entry, unsigned int alignment)
317 {
318 if (entry->removed)
319 return 0;
320 if (entry->size == 4)
321 return 4;
322 return (entry->size
323 + extra_augmentation_string_bytes (entry)
324 + extra_augmentation_data_bytes (entry)
325 + alignment - 1) & -alignment;
326 }
327
328 /* Assume that the bytes between *ITER and END are CFA instructions.
329 Try to move *ITER past the first instruction and return true on
330 success. ENCODED_PTR_WIDTH gives the width of pointer entries. */
331
332 static bfd_boolean
333 skip_cfa_op (bfd_byte **iter, bfd_byte *end, unsigned int encoded_ptr_width)
334 {
335 bfd_byte op;
336 bfd_vma length;
337
338 if (!read_byte (iter, end, &op))
339 return FALSE;
340
341 switch (op & 0xc0 ? op & 0xc0 : op)
342 {
343 case DW_CFA_nop:
344 case DW_CFA_advance_loc:
345 case DW_CFA_restore:
346 case DW_CFA_remember_state:
347 case DW_CFA_restore_state:
348 case DW_CFA_GNU_window_save:
349 /* No arguments. */
350 return TRUE;
351
352 case DW_CFA_offset:
353 case DW_CFA_restore_extended:
354 case DW_CFA_undefined:
355 case DW_CFA_same_value:
356 case DW_CFA_def_cfa_register:
357 case DW_CFA_def_cfa_offset:
358 case DW_CFA_def_cfa_offset_sf:
359 case DW_CFA_GNU_args_size:
360 /* One leb128 argument. */
361 return skip_leb128 (iter, end);
362
363 case DW_CFA_val_offset:
364 case DW_CFA_val_offset_sf:
365 case DW_CFA_offset_extended:
366 case DW_CFA_register:
367 case DW_CFA_def_cfa:
368 case DW_CFA_offset_extended_sf:
369 case DW_CFA_GNU_negative_offset_extended:
370 case DW_CFA_def_cfa_sf:
371 /* Two leb128 arguments. */
372 return (skip_leb128 (iter, end)
373 && skip_leb128 (iter, end));
374
375 case DW_CFA_def_cfa_expression:
376 /* A variable-length argument. */
377 return (read_uleb128 (iter, end, &length)
378 && skip_bytes (iter, end, length));
379
380 case DW_CFA_expression:
381 case DW_CFA_val_expression:
382 /* A leb128 followed by a variable-length argument. */
383 return (skip_leb128 (iter, end)
384 && read_uleb128 (iter, end, &length)
385 && skip_bytes (iter, end, length));
386
387 case DW_CFA_set_loc:
388 return skip_bytes (iter, end, encoded_ptr_width);
389
390 case DW_CFA_advance_loc1:
391 return skip_bytes (iter, end, 1);
392
393 case DW_CFA_advance_loc2:
394 return skip_bytes (iter, end, 2);
395
396 case DW_CFA_advance_loc4:
397 return skip_bytes (iter, end, 4);
398
399 case DW_CFA_MIPS_advance_loc8:
400 return skip_bytes (iter, end, 8);
401
402 default:
403 return FALSE;
404 }
405 }
406
407 /* Try to interpret the bytes between BUF and END as CFA instructions.
408 If every byte makes sense, return a pointer to the first DW_CFA_nop
409 padding byte, or END if there is no padding. Return null otherwise.
410 ENCODED_PTR_WIDTH is as for skip_cfa_op. */
411
412 static bfd_byte *
413 skip_non_nops (bfd_byte *buf, bfd_byte *end, unsigned int encoded_ptr_width,
414 unsigned int *set_loc_count)
415 {
416 bfd_byte *last;
417
418 last = buf;
419 while (buf < end)
420 if (*buf == DW_CFA_nop)
421 buf++;
422 else
423 {
424 if (*buf == DW_CFA_set_loc)
425 ++*set_loc_count;
426 if (!skip_cfa_op (&buf, end, encoded_ptr_width))
427 return 0;
428 last = buf;
429 }
430 return last;
431 }
432
433 /* This function is called for each input file before the .eh_frame
434 section is relocated. It discards duplicate CIEs and FDEs for discarded
435 functions. The function returns TRUE iff any entries have been
436 deleted. */
437
438 bfd_boolean
439 _bfd_elf_discard_section_eh_frame
440 (bfd *abfd, struct bfd_link_info *info, asection *sec,
441 bfd_boolean (*reloc_symbol_deleted_p) (bfd_vma, void *),
442 struct elf_reloc_cookie *cookie)
443 {
444 #define REQUIRE(COND) \
445 do \
446 if (!(COND)) \
447 goto free_no_table; \
448 while (0)
449
450 bfd_byte *ehbuf = NULL, *buf;
451 bfd_byte *last_fde;
452 struct eh_cie_fde *ent, *this_inf;
453 unsigned int hdr_length, hdr_id;
454 struct extended_cie
455 {
456 struct cie cie;
457 unsigned int offset;
458 unsigned int usage_count;
459 unsigned int entry;
460 } *ecies = NULL, *ecie;
461 unsigned int ecie_count = 0, ecie_alloced = 0;
462 struct cie *cie;
463 struct elf_link_hash_table *htab;
464 struct eh_frame_hdr_info *hdr_info;
465 struct eh_frame_sec_info *sec_info = NULL;
466 unsigned int offset;
467 unsigned int ptr_size;
468 unsigned int entry_alloced;
469
470 if (sec->size == 0)
471 {
472 /* This file does not contain .eh_frame information. */
473 return FALSE;
474 }
475
476 if (bfd_is_abs_section (sec->output_section))
477 {
478 /* At least one of the sections is being discarded from the
479 link, so we should just ignore them. */
480 return FALSE;
481 }
482
483 htab = elf_hash_table (info);
484 hdr_info = &htab->eh_info;
485
486 if (hdr_info->cies == NULL && !info->relocatable)
487 hdr_info->cies = htab_try_create (1, cie_hash, cie_eq, free);
488
489 /* Read the frame unwind information from abfd. */
490
491 REQUIRE (bfd_malloc_and_get_section (abfd, sec, &ehbuf));
492
493 if (sec->size >= 4
494 && bfd_get_32 (abfd, ehbuf) == 0
495 && cookie->rel == cookie->relend)
496 {
497 /* Empty .eh_frame section. */
498 free (ehbuf);
499 return FALSE;
500 }
501
502 /* If .eh_frame section size doesn't fit into int, we cannot handle
503 it (it would need to use 64-bit .eh_frame format anyway). */
504 REQUIRE (sec->size == (unsigned int) sec->size);
505
506 ptr_size = (get_elf_backend_data (abfd)
507 ->elf_backend_eh_frame_address_size (abfd, sec));
508 REQUIRE (ptr_size != 0);
509
510 buf = ehbuf;
511 sec_info = bfd_zmalloc (sizeof (struct eh_frame_sec_info)
512 + 99 * sizeof (struct eh_cie_fde));
513 REQUIRE (sec_info);
514
515 entry_alloced = 100;
516
517 #define ENSURE_NO_RELOCS(buf) \
518 REQUIRE (!(cookie->rel < cookie->relend \
519 && (cookie->rel->r_offset \
520 < (bfd_size_type) ((buf) - ehbuf)) \
521 && cookie->rel->r_info != 0))
522
523 #define SKIP_RELOCS(buf) \
524 while (cookie->rel < cookie->relend \
525 && (cookie->rel->r_offset \
526 < (bfd_size_type) ((buf) - ehbuf))) \
527 cookie->rel++
528
529 #define GET_RELOC(buf) \
530 ((cookie->rel < cookie->relend \
531 && (cookie->rel->r_offset \
532 == (bfd_size_type) ((buf) - ehbuf))) \
533 ? cookie->rel : NULL)
534
535 for (;;)
536 {
537 char *aug;
538 bfd_byte *start, *end, *insns, *insns_end;
539 bfd_size_type length;
540 unsigned int set_loc_count;
541
542 if (sec_info->count == entry_alloced)
543 {
544 sec_info = bfd_realloc (sec_info,
545 sizeof (struct eh_frame_sec_info)
546 + ((entry_alloced + 99)
547 * sizeof (struct eh_cie_fde)));
548 REQUIRE (sec_info);
549
550 memset (&sec_info->entry[entry_alloced], 0,
551 100 * sizeof (struct eh_cie_fde));
552 entry_alloced += 100;
553 }
554
555 this_inf = sec_info->entry + sec_info->count;
556 last_fde = buf;
557
558 if ((bfd_size_type) (buf - ehbuf) == sec->size)
559 break;
560
561 /* Read the length of the entry. */
562 REQUIRE (skip_bytes (&buf, ehbuf + sec->size, 4));
563 hdr_length = bfd_get_32 (abfd, buf - 4);
564
565 /* 64-bit .eh_frame is not supported. */
566 REQUIRE (hdr_length != 0xffffffff);
567
568 /* The CIE/FDE must be fully contained in this input section. */
569 REQUIRE ((bfd_size_type) (buf - ehbuf) + hdr_length <= sec->size);
570 end = buf + hdr_length;
571
572 this_inf->offset = last_fde - ehbuf;
573 this_inf->size = 4 + hdr_length;
574
575 if (hdr_length == 0)
576 {
577 /* A zero-length CIE should only be found at the end of
578 the section. */
579 REQUIRE ((bfd_size_type) (buf - ehbuf) == sec->size);
580 ENSURE_NO_RELOCS (buf);
581 sec_info->count++;
582 break;
583 }
584
585 REQUIRE (skip_bytes (&buf, end, 4));
586 hdr_id = bfd_get_32 (abfd, buf - 4);
587
588 if (hdr_id == 0)
589 {
590 unsigned int initial_insn_length;
591
592 /* CIE */
593 this_inf->cie = 1;
594
595 if (ecie_count == ecie_alloced)
596 {
597 ecies = bfd_realloc (ecies,
598 (ecie_alloced + 20) * sizeof (*ecies));
599 REQUIRE (ecies);
600 memset (&ecies[ecie_alloced], 0, 20 * sizeof (*ecies));
601 ecie_alloced += 20;
602 }
603
604 cie = &ecies[ecie_count].cie;
605 ecies[ecie_count].offset = this_inf->offset;
606 ecies[ecie_count++].entry = sec_info->count;
607 cie->length = hdr_length;
608 start = buf;
609 REQUIRE (read_byte (&buf, end, &cie->version));
610
611 /* Cannot handle unknown versions. */
612 REQUIRE (cie->version == 1 || cie->version == 3);
613 REQUIRE (strlen ((char *) buf) < sizeof (cie->augmentation));
614
615 strcpy (cie->augmentation, (char *) buf);
616 buf = (bfd_byte *) strchr ((char *) buf, '\0') + 1;
617 ENSURE_NO_RELOCS (buf);
618 if (buf[0] == 'e' && buf[1] == 'h')
619 {
620 /* GCC < 3.0 .eh_frame CIE */
621 /* We cannot merge "eh" CIEs because __EXCEPTION_TABLE__
622 is private to each CIE, so we don't need it for anything.
623 Just skip it. */
624 REQUIRE (skip_bytes (&buf, end, ptr_size));
625 SKIP_RELOCS (buf);
626 }
627 REQUIRE (read_uleb128 (&buf, end, &cie->code_align));
628 REQUIRE (read_sleb128 (&buf, end, &cie->data_align));
629 if (cie->version == 1)
630 {
631 REQUIRE (buf < end);
632 cie->ra_column = *buf++;
633 }
634 else
635 REQUIRE (read_uleb128 (&buf, end, &cie->ra_column));
636 ENSURE_NO_RELOCS (buf);
637 cie->lsda_encoding = DW_EH_PE_omit;
638 cie->fde_encoding = DW_EH_PE_omit;
639 cie->per_encoding = DW_EH_PE_omit;
640 aug = cie->augmentation;
641 if (aug[0] != 'e' || aug[1] != 'h')
642 {
643 if (*aug == 'z')
644 {
645 aug++;
646 REQUIRE (read_uleb128 (&buf, end, &cie->augmentation_size));
647 ENSURE_NO_RELOCS (buf);
648 }
649
650 while (*aug != '\0')
651 switch (*aug++)
652 {
653 case 'L':
654 REQUIRE (read_byte (&buf, end, &cie->lsda_encoding));
655 ENSURE_NO_RELOCS (buf);
656 REQUIRE (get_DW_EH_PE_width (cie->lsda_encoding, ptr_size));
657 break;
658 case 'R':
659 REQUIRE (read_byte (&buf, end, &cie->fde_encoding));
660 ENSURE_NO_RELOCS (buf);
661 REQUIRE (get_DW_EH_PE_width (cie->fde_encoding, ptr_size));
662 break;
663 case 'S':
664 break;
665 case 'P':
666 {
667 int per_width;
668
669 REQUIRE (read_byte (&buf, end, &cie->per_encoding));
670 per_width = get_DW_EH_PE_width (cie->per_encoding,
671 ptr_size);
672 REQUIRE (per_width);
673 if ((cie->per_encoding & 0xf0) == DW_EH_PE_aligned)
674 {
675 length = -(buf - ehbuf) & (per_width - 1);
676 REQUIRE (skip_bytes (&buf, end, length));
677 }
678 ENSURE_NO_RELOCS (buf);
679 /* Ensure we have a reloc here. */
680 if (GET_RELOC (buf) != NULL)
681 {
682 unsigned long r_symndx;
683
684 #ifdef BFD64
685 if (ptr_size == 8)
686 r_symndx = ELF64_R_SYM (cookie->rel->r_info);
687 else
688 #endif
689 r_symndx = ELF32_R_SYM (cookie->rel->r_info);
690 if (r_symndx >= cookie->locsymcount
691 || ELF_ST_BIND (cookie->locsyms[r_symndx]
692 .st_info) != STB_LOCAL)
693 {
694 struct elf_link_hash_entry *h;
695
696 r_symndx -= cookie->extsymoff;
697 h = cookie->sym_hashes[r_symndx];
698
699 while (h->root.type == bfd_link_hash_indirect
700 || h->root.type == bfd_link_hash_warning)
701 h = (struct elf_link_hash_entry *)
702 h->root.u.i.link;
703
704 cie->personality.h = h;
705 }
706 else
707 {
708 Elf_Internal_Sym *sym;
709 asection *sym_sec;
710 bfd_vma val;
711
712 sym = &cookie->locsyms[r_symndx];
713 sym_sec = (bfd_section_from_elf_index
714 (abfd, sym->st_shndx));
715 if (sym_sec != NULL
716 && sym_sec->kept_section != NULL)
717 sym_sec = sym_sec->kept_section;
718 if (sym_sec != NULL
719 && sym_sec->output_section != NULL)
720 {
721 val = (sym->st_value
722 + sym_sec->output_offset
723 + sym_sec->output_section->vma);
724 cie->personality.val = val;
725 cie->local_personality = 1;
726 }
727 }
728
729 /* Cope with MIPS-style composite relocations. */
730 do
731 cookie->rel++;
732 while (GET_RELOC (buf) != NULL);
733 }
734 REQUIRE (skip_bytes (&buf, end, per_width));
735 REQUIRE (cie->local_personality || cie->personality.h);
736 }
737 break;
738 default:
739 /* Unrecognized augmentation. Better bail out. */
740 goto free_no_table;
741 }
742 }
743
744 /* For shared libraries, try to get rid of as many RELATIVE relocs
745 as possible. */
746 if (info->shared
747 && (get_elf_backend_data (abfd)
748 ->elf_backend_can_make_relative_eh_frame
749 (abfd, info, sec)))
750 {
751 if ((cie->fde_encoding & 0xf0) == DW_EH_PE_absptr)
752 cie->make_relative = 1;
753 /* If the CIE doesn't already have an 'R' entry, it's fairly
754 easy to add one, provided that there's no aligned data
755 after the augmentation string. */
756 else if (cie->fde_encoding == DW_EH_PE_omit
757 && (cie->per_encoding & 0xf0) != DW_EH_PE_aligned)
758 {
759 if (*cie->augmentation == 0)
760 this_inf->add_augmentation_size = 1;
761 this_inf->add_fde_encoding = 1;
762 cie->make_relative = 1;
763 }
764 }
765
766 if (info->shared
767 && (get_elf_backend_data (abfd)
768 ->elf_backend_can_make_lsda_relative_eh_frame
769 (abfd, info, sec))
770 && (cie->lsda_encoding & 0xf0) == DW_EH_PE_absptr)
771 cie->make_lsda_relative = 1;
772
773 /* If FDE encoding was not specified, it defaults to
774 DW_EH_absptr. */
775 if (cie->fde_encoding == DW_EH_PE_omit)
776 cie->fde_encoding = DW_EH_PE_absptr;
777
778 initial_insn_length = end - buf;
779 if (initial_insn_length <= sizeof (cie->initial_instructions))
780 {
781 cie->initial_insn_length = initial_insn_length;
782 memcpy (cie->initial_instructions, buf, initial_insn_length);
783 }
784 insns = buf;
785 buf += initial_insn_length;
786 ENSURE_NO_RELOCS (buf);
787 }
788 else
789 {
790 /* Find the corresponding CIE. */
791 unsigned int cie_offset = this_inf->offset + 4 - hdr_id;
792 for (ecie = ecies; ecie < ecies + ecie_count; ++ecie)
793 if (cie_offset == ecie->offset)
794 break;
795
796 /* Ensure this FDE references one of the CIEs in this input
797 section. */
798 REQUIRE (ecie != ecies + ecie_count);
799 cie = &ecie->cie;
800
801 ENSURE_NO_RELOCS (buf);
802 REQUIRE (GET_RELOC (buf));
803
804 if ((*reloc_symbol_deleted_p) (buf - ehbuf, cookie))
805 /* This is a FDE against a discarded section. It should
806 be deleted. */
807 this_inf->removed = 1;
808 else
809 {
810 if (info->shared
811 && (((cie->fde_encoding & 0xf0) == DW_EH_PE_absptr
812 && cie->make_relative == 0)
813 || (cie->fde_encoding & 0xf0) == DW_EH_PE_aligned))
814 {
815 /* If a shared library uses absolute pointers
816 which we cannot turn into PC relative,
817 don't create the binary search table,
818 since it is affected by runtime relocations. */
819 hdr_info->table = FALSE;
820 (*info->callbacks->einfo)
821 (_("%P: fde encoding in %B(%A) prevents .eh_frame_hdr"
822 " table being created.\n"), abfd, sec);
823 }
824 ecie->usage_count++;
825 hdr_info->fde_count++;
826 this_inf->cie_inf = (void *) (ecie - ecies);
827 }
828
829 /* Skip the initial location and address range. */
830 start = buf;
831 length = get_DW_EH_PE_width (cie->fde_encoding, ptr_size);
832 REQUIRE (skip_bytes (&buf, end, 2 * length));
833
834 /* Skip the augmentation size, if present. */
835 if (cie->augmentation[0] == 'z')
836 REQUIRE (read_uleb128 (&buf, end, &length));
837 else
838 length = 0;
839
840 /* Of the supported augmentation characters above, only 'L'
841 adds augmentation data to the FDE. This code would need to
842 be adjusted if any future augmentations do the same thing. */
843 if (cie->lsda_encoding != DW_EH_PE_omit)
844 {
845 this_inf->lsda_offset = buf - start;
846 /* If there's no 'z' augmentation, we don't know where the
847 CFA insns begin. Assume no padding. */
848 if (cie->augmentation[0] != 'z')
849 length = end - buf;
850 }
851
852 /* Skip over the augmentation data. */
853 REQUIRE (skip_bytes (&buf, end, length));
854 insns = buf;
855
856 buf = last_fde + 4 + hdr_length;
857 SKIP_RELOCS (buf);
858 }
859
860 /* Try to interpret the CFA instructions and find the first
861 padding nop. Shrink this_inf's size so that it doesn't
862 include the padding. */
863 length = get_DW_EH_PE_width (cie->fde_encoding, ptr_size);
864 set_loc_count = 0;
865 insns_end = skip_non_nops (insns, end, length, &set_loc_count);
866 /* If we don't understand the CFA instructions, we can't know
867 what needs to be adjusted there. */
868 if (insns_end == NULL
869 /* For the time being we don't support DW_CFA_set_loc in
870 CIE instructions. */
871 || (set_loc_count && this_inf->cie))
872 goto free_no_table;
873 this_inf->size -= end - insns_end;
874 if (insns_end != end && this_inf->cie)
875 {
876 cie->initial_insn_length -= end - insns_end;
877 cie->length -= end - insns_end;
878 }
879 if (set_loc_count
880 && ((cie->fde_encoding & 0xf0) == DW_EH_PE_pcrel
881 || cie->make_relative))
882 {
883 unsigned int cnt;
884 bfd_byte *p;
885
886 this_inf->set_loc = bfd_malloc ((set_loc_count + 1)
887 * sizeof (unsigned int));
888 REQUIRE (this_inf->set_loc);
889 this_inf->set_loc[0] = set_loc_count;
890 p = insns;
891 cnt = 0;
892 while (p < end)
893 {
894 if (*p == DW_CFA_set_loc)
895 this_inf->set_loc[++cnt] = p + 1 - start;
896 REQUIRE (skip_cfa_op (&p, end, length));
897 }
898 }
899
900 this_inf->fde_encoding = cie->fde_encoding;
901 this_inf->lsda_encoding = cie->lsda_encoding;
902 sec_info->count++;
903 }
904
905 elf_section_data (sec)->sec_info = sec_info;
906 sec->sec_info_type = ELF_INFO_TYPE_EH_FRAME;
907
908 /* Look at all CIEs in this section and determine which can be
909 removed as unused, which can be merged with previous duplicate
910 CIEs and which need to be kept. */
911 for (ecie = ecies; ecie < ecies + ecie_count; ++ecie)
912 {
913 if (ecie->usage_count == 0)
914 {
915 sec_info->entry[ecie->entry].removed = 1;
916 continue;
917 }
918 ecie->cie.output_sec = sec->output_section;
919 ecie->cie.cie_inf = sec_info->entry + ecie->entry;
920 cie_compute_hash (&ecie->cie);
921 if (hdr_info->cies != NULL)
922 {
923 void **loc = htab_find_slot_with_hash (hdr_info->cies, &ecie->cie,
924 ecie->cie.hash, INSERT);
925 if (loc != NULL)
926 {
927 if (*loc != HTAB_EMPTY_ENTRY)
928 {
929 sec_info->entry[ecie->entry].removed = 1;
930 ecie->cie.cie_inf = ((struct cie *) *loc)->cie_inf;
931 continue;
932 }
933
934 *loc = malloc (sizeof (struct cie));
935 if (*loc == NULL)
936 *loc = HTAB_DELETED_ENTRY;
937 else
938 memcpy (*loc, &ecie->cie, sizeof (struct cie));
939 }
940 }
941 ecie->cie.cie_inf->make_relative = ecie->cie.make_relative;
942 ecie->cie.cie_inf->make_lsda_relative = ecie->cie.make_lsda_relative;
943 ecie->cie.cie_inf->per_encoding_relative
944 = (ecie->cie.per_encoding & 0x70) == DW_EH_PE_pcrel;
945 }
946
947 /* Ok, now we can assign new offsets. */
948 offset = 0;
949 for (ent = sec_info->entry; ent < sec_info->entry + sec_info->count; ++ent)
950 if (!ent->removed)
951 {
952 if (!ent->cie)
953 {
954 ecie = ecies + (unsigned long) ent->cie_inf;
955 ent->cie_inf = ecie->cie.cie_inf;
956 }
957 ent->new_offset = offset;
958 offset += size_of_output_cie_fde (ent, ptr_size);
959 }
960
961 /* Resize the sec as needed. */
962 sec->rawsize = sec->size;
963 sec->size = offset;
964
965 free (ehbuf);
966 if (ecies)
967 free (ecies);
968 return offset != sec->rawsize;
969
970 free_no_table:
971 (*info->callbacks->einfo)
972 (_("%P: error in %B(%A); no .eh_frame_hdr table will be created.\n"),
973 abfd, sec);
974 if (ehbuf)
975 free (ehbuf);
976 if (sec_info)
977 free (sec_info);
978 if (ecies)
979 free (ecies);
980 hdr_info->table = FALSE;
981 return FALSE;
982
983 #undef REQUIRE
984 }
985
986 /* This function is called for .eh_frame_hdr section after
987 _bfd_elf_discard_section_eh_frame has been called on all .eh_frame
988 input sections. It finalizes the size of .eh_frame_hdr section. */
989
990 bfd_boolean
991 _bfd_elf_discard_section_eh_frame_hdr (bfd *abfd, struct bfd_link_info *info)
992 {
993 struct elf_link_hash_table *htab;
994 struct eh_frame_hdr_info *hdr_info;
995 asection *sec;
996
997 htab = elf_hash_table (info);
998 hdr_info = &htab->eh_info;
999
1000 if (hdr_info->cies != NULL)
1001 {
1002 htab_delete (hdr_info->cies);
1003 hdr_info->cies = NULL;
1004 }
1005
1006 sec = hdr_info->hdr_sec;
1007 if (sec == NULL)
1008 return FALSE;
1009
1010 sec->size = EH_FRAME_HDR_SIZE;
1011 if (hdr_info->table)
1012 sec->size += 4 + hdr_info->fde_count * 8;
1013
1014 elf_tdata (abfd)->eh_frame_hdr = sec;
1015 return TRUE;
1016 }
1017
1018 /* This function is called from size_dynamic_sections.
1019 It needs to decide whether .eh_frame_hdr should be output or not,
1020 because when the dynamic symbol table has been sized it is too late
1021 to strip sections. */
1022
1023 bfd_boolean
1024 _bfd_elf_maybe_strip_eh_frame_hdr (struct bfd_link_info *info)
1025 {
1026 asection *o;
1027 bfd *abfd;
1028 struct elf_link_hash_table *htab;
1029 struct eh_frame_hdr_info *hdr_info;
1030
1031 htab = elf_hash_table (info);
1032 hdr_info = &htab->eh_info;
1033 if (hdr_info->hdr_sec == NULL)
1034 return TRUE;
1035
1036 if (bfd_is_abs_section (hdr_info->hdr_sec->output_section))
1037 {
1038 hdr_info->hdr_sec = NULL;
1039 return TRUE;
1040 }
1041
1042 abfd = NULL;
1043 if (info->eh_frame_hdr)
1044 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next)
1045 {
1046 /* Count only sections which have at least a single CIE or FDE.
1047 There cannot be any CIE or FDE <= 8 bytes. */
1048 o = bfd_get_section_by_name (abfd, ".eh_frame");
1049 if (o && o->size > 8 && !bfd_is_abs_section (o->output_section))
1050 break;
1051 }
1052
1053 if (abfd == NULL)
1054 {
1055 hdr_info->hdr_sec->flags |= SEC_EXCLUDE;
1056 hdr_info->hdr_sec = NULL;
1057 return TRUE;
1058 }
1059
1060 hdr_info->table = TRUE;
1061 return TRUE;
1062 }
1063
1064 /* Adjust an address in the .eh_frame section. Given OFFSET within
1065 SEC, this returns the new offset in the adjusted .eh_frame section,
1066 or -1 if the address refers to a CIE/FDE which has been removed
1067 or to offset with dynamic relocation which is no longer needed. */
1068
1069 bfd_vma
1070 _bfd_elf_eh_frame_section_offset (bfd *output_bfd ATTRIBUTE_UNUSED,
1071 struct bfd_link_info *info,
1072 asection *sec,
1073 bfd_vma offset)
1074 {
1075 struct eh_frame_sec_info *sec_info;
1076 struct elf_link_hash_table *htab;
1077 struct eh_frame_hdr_info *hdr_info;
1078 unsigned int lo, hi, mid;
1079
1080 if (sec->sec_info_type != ELF_INFO_TYPE_EH_FRAME)
1081 return offset;
1082 sec_info = elf_section_data (sec)->sec_info;
1083
1084 if (offset >= sec->rawsize)
1085 return offset - sec->rawsize + sec->size;
1086
1087 htab = elf_hash_table (info);
1088 hdr_info = &htab->eh_info;
1089 if (hdr_info->offsets_adjusted)
1090 offset += sec->output_offset;
1091
1092 lo = 0;
1093 hi = sec_info->count;
1094 mid = 0;
1095 while (lo < hi)
1096 {
1097 mid = (lo + hi) / 2;
1098 if (offset < sec_info->entry[mid].offset)
1099 hi = mid;
1100 else if (offset
1101 >= sec_info->entry[mid].offset + sec_info->entry[mid].size)
1102 lo = mid + 1;
1103 else
1104 break;
1105 }
1106
1107 BFD_ASSERT (lo < hi);
1108
1109 /* FDE or CIE was removed. */
1110 if (sec_info->entry[mid].removed)
1111 return (bfd_vma) -1;
1112
1113 /* If converting to DW_EH_PE_pcrel, there will be no need for run-time
1114 relocation against FDE's initial_location field. */
1115 if (!sec_info->entry[mid].cie
1116 && sec_info->entry[mid].cie_inf->make_relative
1117 && offset == sec_info->entry[mid].offset + 8)
1118 return (bfd_vma) -2;
1119
1120 /* If converting LSDA pointers to DW_EH_PE_pcrel, there will be no need
1121 for run-time relocation against LSDA field. */
1122 if (!sec_info->entry[mid].cie
1123 && sec_info->entry[mid].cie_inf->make_lsda_relative
1124 && (offset == (sec_info->entry[mid].offset + 8
1125 + sec_info->entry[mid].lsda_offset))
1126 && (sec_info->entry[mid].cie_inf->need_lsda_relative
1127 || !hdr_info->offsets_adjusted))
1128 {
1129 sec_info->entry[mid].cie_inf->need_lsda_relative = 1;
1130 return (bfd_vma) -2;
1131 }
1132
1133 /* If converting to DW_EH_PE_pcrel, there will be no need for run-time
1134 relocation against DW_CFA_set_loc's arguments. */
1135 if (sec_info->entry[mid].set_loc
1136 && (sec_info->entry[mid].cie
1137 ? sec_info->entry[mid].make_relative
1138 : sec_info->entry[mid].cie_inf->make_relative)
1139 && (offset >= sec_info->entry[mid].offset + 8
1140 + sec_info->entry[mid].set_loc[1]))
1141 {
1142 unsigned int cnt;
1143
1144 for (cnt = 1; cnt <= sec_info->entry[mid].set_loc[0]; cnt++)
1145 if (offset == sec_info->entry[mid].offset + 8
1146 + sec_info->entry[mid].set_loc[cnt])
1147 return (bfd_vma) -2;
1148 }
1149
1150 if (hdr_info->offsets_adjusted)
1151 offset -= sec->output_offset;
1152 /* Any new augmentation bytes go before the first relocation. */
1153 return (offset + sec_info->entry[mid].new_offset
1154 - sec_info->entry[mid].offset
1155 + extra_augmentation_string_bytes (sec_info->entry + mid)
1156 + extra_augmentation_data_bytes (sec_info->entry + mid));
1157 }
1158
1159 /* Write out .eh_frame section. This is called with the relocated
1160 contents. */
1161
1162 bfd_boolean
1163 _bfd_elf_write_section_eh_frame (bfd *abfd,
1164 struct bfd_link_info *info,
1165 asection *sec,
1166 bfd_byte *contents)
1167 {
1168 struct eh_frame_sec_info *sec_info;
1169 struct elf_link_hash_table *htab;
1170 struct eh_frame_hdr_info *hdr_info;
1171 unsigned int ptr_size;
1172 struct eh_cie_fde *ent;
1173
1174 if (sec->sec_info_type != ELF_INFO_TYPE_EH_FRAME)
1175 return bfd_set_section_contents (abfd, sec->output_section, contents,
1176 sec->output_offset, sec->size);
1177
1178 ptr_size = (get_elf_backend_data (abfd)
1179 ->elf_backend_eh_frame_address_size (abfd, sec));
1180 BFD_ASSERT (ptr_size != 0);
1181
1182 sec_info = elf_section_data (sec)->sec_info;
1183 htab = elf_hash_table (info);
1184 hdr_info = &htab->eh_info;
1185
1186 /* First convert all offsets to output section offsets, so that a
1187 CIE offset is valid if the CIE is used by a FDE from some other
1188 section. This can happen when duplicate CIEs are deleted in
1189 _bfd_elf_discard_section_eh_frame. We do all sections here because
1190 this function might not be called on sections in the same order as
1191 _bfd_elf_discard_section_eh_frame. */
1192 if (!hdr_info->offsets_adjusted)
1193 {
1194 bfd *ibfd;
1195 asection *eh;
1196 struct eh_frame_sec_info *eh_inf;
1197
1198 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
1199 {
1200 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
1201 || (ibfd->flags & DYNAMIC) != 0)
1202 continue;
1203
1204 eh = bfd_get_section_by_name (ibfd, ".eh_frame");
1205 if (eh == NULL || eh->sec_info_type != ELF_INFO_TYPE_EH_FRAME)
1206 continue;
1207
1208 eh_inf = elf_section_data (eh)->sec_info;
1209 for (ent = eh_inf->entry; ent < eh_inf->entry + eh_inf->count; ++ent)
1210 {
1211 ent->offset += eh->output_offset;
1212 ent->new_offset += eh->output_offset;
1213 }
1214 }
1215 hdr_info->offsets_adjusted = TRUE;
1216 }
1217
1218 if (hdr_info->table && hdr_info->array == NULL)
1219 hdr_info->array
1220 = bfd_malloc (hdr_info->fde_count * sizeof(*hdr_info->array));
1221 if (hdr_info->array == NULL)
1222 hdr_info = NULL;
1223
1224 /* The new offsets can be bigger or smaller than the original offsets.
1225 We therefore need to make two passes over the section: one backward
1226 pass to move entries up and one forward pass to move entries down.
1227 The two passes won't interfere with each other because entries are
1228 not reordered */
1229 for (ent = sec_info->entry + sec_info->count; ent-- != sec_info->entry;)
1230 if (!ent->removed && ent->new_offset > ent->offset)
1231 memmove (contents + ent->new_offset - sec->output_offset,
1232 contents + ent->offset - sec->output_offset, ent->size);
1233
1234 for (ent = sec_info->entry; ent < sec_info->entry + sec_info->count; ++ent)
1235 if (!ent->removed && ent->new_offset < ent->offset)
1236 memmove (contents + ent->new_offset - sec->output_offset,
1237 contents + ent->offset - sec->output_offset, ent->size);
1238
1239 for (ent = sec_info->entry; ent < sec_info->entry + sec_info->count; ++ent)
1240 {
1241 unsigned char *buf, *end;
1242 unsigned int new_size;
1243
1244 if (ent->removed)
1245 continue;
1246
1247 if (ent->size == 4)
1248 {
1249 /* Any terminating FDE must be at the end of the section. */
1250 BFD_ASSERT (ent == sec_info->entry + sec_info->count - 1);
1251 continue;
1252 }
1253
1254 buf = contents + ent->new_offset - sec->output_offset;
1255 end = buf + ent->size;
1256 new_size = size_of_output_cie_fde (ent, ptr_size);
1257
1258 /* Update the size. It may be shrinked. */
1259 bfd_put_32 (abfd, new_size - 4, buf);
1260
1261 /* Filling the extra bytes with DW_CFA_nops. */
1262 if (new_size != ent->size)
1263 memset (end, 0, new_size - ent->size);
1264
1265 if (ent->cie)
1266 {
1267 /* CIE */
1268 if (ent->make_relative
1269 || ent->need_lsda_relative
1270 || ent->per_encoding_relative)
1271 {
1272 char *aug;
1273 unsigned int action, extra_string, extra_data;
1274 unsigned int per_width, per_encoding;
1275
1276 /* Need to find 'R' or 'L' augmentation's argument and modify
1277 DW_EH_PE_* value. */
1278 action = ((ent->make_relative ? 1 : 0)
1279 | (ent->need_lsda_relative ? 2 : 0)
1280 | (ent->per_encoding_relative ? 4 : 0));
1281 extra_string = extra_augmentation_string_bytes (ent);
1282 extra_data = extra_augmentation_data_bytes (ent);
1283
1284 /* Skip length, id and version. */
1285 buf += 9;
1286 aug = (char *) buf;
1287 buf += strlen (aug) + 1;
1288 skip_leb128 (&buf, end);
1289 skip_leb128 (&buf, end);
1290 skip_leb128 (&buf, end);
1291 if (*aug == 'z')
1292 {
1293 /* The uleb128 will always be a single byte for the kind
1294 of augmentation strings that we're prepared to handle. */
1295 *buf++ += extra_data;
1296 aug++;
1297 }
1298
1299 /* Make room for the new augmentation string and data bytes. */
1300 memmove (buf + extra_string + extra_data, buf, end - buf);
1301 memmove (aug + extra_string, aug, buf - (bfd_byte *) aug);
1302 buf += extra_string;
1303 end += extra_string + extra_data;
1304
1305 if (ent->add_augmentation_size)
1306 {
1307 *aug++ = 'z';
1308 *buf++ = extra_data - 1;
1309 }
1310 if (ent->add_fde_encoding)
1311 {
1312 BFD_ASSERT (action & 1);
1313 *aug++ = 'R';
1314 *buf++ = DW_EH_PE_pcrel;
1315 action &= ~1;
1316 }
1317
1318 while (action)
1319 switch (*aug++)
1320 {
1321 case 'L':
1322 if (action & 2)
1323 {
1324 BFD_ASSERT (*buf == ent->lsda_encoding);
1325 *buf |= DW_EH_PE_pcrel;
1326 action &= ~2;
1327 }
1328 buf++;
1329 break;
1330 case 'P':
1331 per_encoding = *buf++;
1332 per_width = get_DW_EH_PE_width (per_encoding, ptr_size);
1333 BFD_ASSERT (per_width != 0);
1334 BFD_ASSERT (((per_encoding & 0x70) == DW_EH_PE_pcrel)
1335 == ent->per_encoding_relative);
1336 if ((per_encoding & 0xf0) == DW_EH_PE_aligned)
1337 buf = (contents
1338 + ((buf - contents + per_width - 1)
1339 & ~((bfd_size_type) per_width - 1)));
1340 if (action & 4)
1341 {
1342 bfd_vma val;
1343
1344 val = read_value (abfd, buf, per_width,
1345 get_DW_EH_PE_signed (per_encoding));
1346 val += ent->offset - ent->new_offset;
1347 val -= extra_string + extra_data;
1348 write_value (abfd, buf, val, per_width);
1349 action &= ~4;
1350 }
1351 buf += per_width;
1352 break;
1353 case 'R':
1354 if (action & 1)
1355 {
1356 BFD_ASSERT (*buf == ent->fde_encoding);
1357 *buf |= DW_EH_PE_pcrel;
1358 action &= ~1;
1359 }
1360 buf++;
1361 break;
1362 case 'S':
1363 break;
1364 default:
1365 BFD_FAIL ();
1366 }
1367 }
1368 }
1369 else
1370 {
1371 /* FDE */
1372 bfd_vma value, address;
1373 unsigned int width;
1374 bfd_byte *start;
1375
1376 /* Skip length. */
1377 buf += 4;
1378 value = ent->new_offset + 4 - ent->cie_inf->new_offset;
1379 bfd_put_32 (abfd, value, buf);
1380 buf += 4;
1381 width = get_DW_EH_PE_width (ent->fde_encoding, ptr_size);
1382 value = read_value (abfd, buf, width,
1383 get_DW_EH_PE_signed (ent->fde_encoding));
1384 address = value;
1385 if (value)
1386 {
1387 switch (ent->fde_encoding & 0xf0)
1388 {
1389 case DW_EH_PE_indirect:
1390 case DW_EH_PE_textrel:
1391 BFD_ASSERT (hdr_info == NULL);
1392 break;
1393 case DW_EH_PE_datarel:
1394 {
1395 asection *got = bfd_get_section_by_name (abfd, ".got");
1396
1397 BFD_ASSERT (got != NULL);
1398 address += got->vma;
1399 }
1400 break;
1401 case DW_EH_PE_pcrel:
1402 value += ent->offset - ent->new_offset;
1403 address += sec->output_section->vma + ent->offset + 8;
1404 break;
1405 }
1406 if (ent->cie_inf->make_relative)
1407 value -= sec->output_section->vma + ent->new_offset + 8;
1408 write_value (abfd, buf, value, width);
1409 }
1410
1411 start = buf;
1412
1413 if (hdr_info)
1414 {
1415 hdr_info->array[hdr_info->array_count].initial_loc = address;
1416 hdr_info->array[hdr_info->array_count++].fde
1417 = sec->output_section->vma + ent->new_offset;
1418 }
1419
1420 if ((ent->lsda_encoding & 0xf0) == DW_EH_PE_pcrel
1421 || ent->cie_inf->need_lsda_relative)
1422 {
1423 buf += ent->lsda_offset;
1424 width = get_DW_EH_PE_width (ent->lsda_encoding, ptr_size);
1425 value = read_value (abfd, buf, width,
1426 get_DW_EH_PE_signed (ent->lsda_encoding));
1427 if (value)
1428 {
1429 if ((ent->lsda_encoding & 0xf0) == DW_EH_PE_pcrel)
1430 value += ent->offset - ent->new_offset;
1431 else if (ent->cie_inf->need_lsda_relative)
1432 value -= (sec->output_section->vma + ent->new_offset + 8
1433 + ent->lsda_offset);
1434 write_value (abfd, buf, value, width);
1435 }
1436 }
1437 else if (ent->cie_inf->add_augmentation_size)
1438 {
1439 /* Skip the PC and length and insert a zero byte for the
1440 augmentation size. */
1441 buf += width * 2;
1442 memmove (buf + 1, buf, end - buf);
1443 *buf = 0;
1444 }
1445
1446 if (ent->set_loc)
1447 {
1448 /* Adjust DW_CFA_set_loc. */
1449 unsigned int cnt, width;
1450 bfd_vma new_offset;
1451
1452 width = get_DW_EH_PE_width (ent->fde_encoding, ptr_size);
1453 new_offset = ent->new_offset + 8
1454 + extra_augmentation_string_bytes (ent)
1455 + extra_augmentation_data_bytes (ent);
1456
1457 for (cnt = 1; cnt <= ent->set_loc[0]; cnt++)
1458 {
1459 bfd_vma value;
1460 buf = start + ent->set_loc[cnt];
1461
1462 value = read_value (abfd, buf, width,
1463 get_DW_EH_PE_signed (ent->fde_encoding));
1464 if (!value)
1465 continue;
1466
1467 if ((ent->fde_encoding & 0xf0) == DW_EH_PE_pcrel)
1468 value += ent->offset + 8 - new_offset;
1469 if (ent->cie_inf->make_relative)
1470 value -= sec->output_section->vma + new_offset
1471 + ent->set_loc[cnt];
1472 write_value (abfd, buf, value, width);
1473 }
1474 }
1475 }
1476 }
1477
1478 /* We don't align the section to its section alignment since the
1479 runtime library only expects all CIE/FDE records aligned at
1480 the pointer size. _bfd_elf_discard_section_eh_frame should
1481 have padded CIE/FDE records to multiple of pointer size with
1482 size_of_output_cie_fde. */
1483 if ((sec->size % ptr_size) != 0)
1484 abort ();
1485
1486 return bfd_set_section_contents (abfd, sec->output_section,
1487 contents, (file_ptr) sec->output_offset,
1488 sec->size);
1489 }
1490
1491 /* Helper function used to sort .eh_frame_hdr search table by increasing
1492 VMA of FDE initial location. */
1493
1494 static int
1495 vma_compare (const void *a, const void *b)
1496 {
1497 const struct eh_frame_array_ent *p = a;
1498 const struct eh_frame_array_ent *q = b;
1499 if (p->initial_loc > q->initial_loc)
1500 return 1;
1501 if (p->initial_loc < q->initial_loc)
1502 return -1;
1503 return 0;
1504 }
1505
1506 /* Write out .eh_frame_hdr section. This must be called after
1507 _bfd_elf_write_section_eh_frame has been called on all input
1508 .eh_frame sections.
1509 .eh_frame_hdr format:
1510 ubyte version (currently 1)
1511 ubyte eh_frame_ptr_enc (DW_EH_PE_* encoding of pointer to start of
1512 .eh_frame section)
1513 ubyte fde_count_enc (DW_EH_PE_* encoding of total FDE count
1514 number (or DW_EH_PE_omit if there is no
1515 binary search table computed))
1516 ubyte table_enc (DW_EH_PE_* encoding of binary search table,
1517 or DW_EH_PE_omit if not present.
1518 DW_EH_PE_datarel is using address of
1519 .eh_frame_hdr section start as base)
1520 [encoded] eh_frame_ptr (pointer to start of .eh_frame section)
1521 optionally followed by:
1522 [encoded] fde_count (total number of FDEs in .eh_frame section)
1523 fde_count x [encoded] initial_loc, fde
1524 (array of encoded pairs containing
1525 FDE initial_location field and FDE address,
1526 sorted by increasing initial_loc). */
1527
1528 bfd_boolean
1529 _bfd_elf_write_section_eh_frame_hdr (bfd *abfd, struct bfd_link_info *info)
1530 {
1531 struct elf_link_hash_table *htab;
1532 struct eh_frame_hdr_info *hdr_info;
1533 asection *sec;
1534 bfd_byte *contents;
1535 asection *eh_frame_sec;
1536 bfd_size_type size;
1537 bfd_boolean retval;
1538 bfd_vma encoded_eh_frame;
1539
1540 htab = elf_hash_table (info);
1541 hdr_info = &htab->eh_info;
1542 sec = hdr_info->hdr_sec;
1543 if (sec == NULL)
1544 return TRUE;
1545
1546 size = EH_FRAME_HDR_SIZE;
1547 if (hdr_info->array && hdr_info->array_count == hdr_info->fde_count)
1548 size += 4 + hdr_info->fde_count * 8;
1549 contents = bfd_malloc (size);
1550 if (contents == NULL)
1551 return FALSE;
1552
1553 eh_frame_sec = bfd_get_section_by_name (abfd, ".eh_frame");
1554 if (eh_frame_sec == NULL)
1555 {
1556 free (contents);
1557 return FALSE;
1558 }
1559
1560 memset (contents, 0, EH_FRAME_HDR_SIZE);
1561 contents[0] = 1; /* Version. */
1562 contents[1] = get_elf_backend_data (abfd)->elf_backend_encode_eh_address
1563 (abfd, info, eh_frame_sec, 0, sec, 4,
1564 &encoded_eh_frame); /* .eh_frame offset. */
1565
1566 if (hdr_info->array && hdr_info->array_count == hdr_info->fde_count)
1567 {
1568 contents[2] = DW_EH_PE_udata4; /* FDE count encoding. */
1569 contents[3] = DW_EH_PE_datarel | DW_EH_PE_sdata4; /* Search table enc. */
1570 }
1571 else
1572 {
1573 contents[2] = DW_EH_PE_omit;
1574 contents[3] = DW_EH_PE_omit;
1575 }
1576 bfd_put_32 (abfd, encoded_eh_frame, contents + 4);
1577
1578 if (contents[2] != DW_EH_PE_omit)
1579 {
1580 unsigned int i;
1581
1582 bfd_put_32 (abfd, hdr_info->fde_count, contents + EH_FRAME_HDR_SIZE);
1583 qsort (hdr_info->array, hdr_info->fde_count, sizeof (*hdr_info->array),
1584 vma_compare);
1585 for (i = 0; i < hdr_info->fde_count; i++)
1586 {
1587 bfd_put_32 (abfd,
1588 hdr_info->array[i].initial_loc
1589 - sec->output_section->vma,
1590 contents + EH_FRAME_HDR_SIZE + i * 8 + 4);
1591 bfd_put_32 (abfd,
1592 hdr_info->array[i].fde - sec->output_section->vma,
1593 contents + EH_FRAME_HDR_SIZE + i * 8 + 8);
1594 }
1595 }
1596
1597 retval = bfd_set_section_contents (abfd, sec->output_section,
1598 contents, (file_ptr) sec->output_offset,
1599 sec->size);
1600 free (contents);
1601 return retval;
1602 }
1603
1604 /* Return the width of FDE addresses. This is the default implementation. */
1605
1606 unsigned int
1607 _bfd_elf_eh_frame_address_size (bfd *abfd, asection *sec ATTRIBUTE_UNUSED)
1608 {
1609 return elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64 ? 8 : 4;
1610 }
1611
1612 /* Decide whether we can use a PC-relative encoding within the given
1613 EH frame section. This is the default implementation. */
1614
1615 bfd_boolean
1616 _bfd_elf_can_make_relative (bfd *input_bfd ATTRIBUTE_UNUSED,
1617 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1618 asection *eh_frame_section ATTRIBUTE_UNUSED)
1619 {
1620 return TRUE;
1621 }
1622
1623 /* Select an encoding for the given address. Preference is given to
1624 PC-relative addressing modes. */
1625
1626 bfd_byte
1627 _bfd_elf_encode_eh_address (bfd *abfd ATTRIBUTE_UNUSED,
1628 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1629 asection *osec, bfd_vma offset,
1630 asection *loc_sec, bfd_vma loc_offset,
1631 bfd_vma *encoded)
1632 {
1633 *encoded = osec->vma + offset -
1634 (loc_sec->output_section->vma + loc_sec->output_offset + loc_offset);
1635 return DW_EH_PE_pcrel | DW_EH_PE_sdata4;
1636 }
This page took 0.0814 seconds and 4 git commands to generate.