* m68klinux-nat.c: Include "gdb_proc_service.h".
[deliverable/binutils-gdb.git] / bfd / elf-eh-frame.c
1 /* .eh_frame section optimization.
2 Copyright 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
3 Free Software Foundation, Inc.
4 Written by Jakub Jelinek <jakub@redhat.com>.
5
6 This file is part of BFD, the Binary File Descriptor library.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 MA 02110-1301, USA. */
22
23 #include "sysdep.h"
24 #include "bfd.h"
25 #include "libbfd.h"
26 #include "elf-bfd.h"
27 #include "dwarf2.h"
28
29 #define EH_FRAME_HDR_SIZE 8
30
31 struct cie
32 {
33 unsigned int length;
34 unsigned int hash;
35 unsigned char version;
36 unsigned char local_personality;
37 char augmentation[20];
38 bfd_vma code_align;
39 bfd_signed_vma data_align;
40 bfd_vma ra_column;
41 bfd_vma augmentation_size;
42 union {
43 struct elf_link_hash_entry *h;
44 bfd_vma val;
45 unsigned int reloc_index;
46 } personality;
47 asection *output_sec;
48 struct eh_cie_fde *cie_inf;
49 unsigned char per_encoding;
50 unsigned char lsda_encoding;
51 unsigned char fde_encoding;
52 unsigned char initial_insn_length;
53 unsigned char can_make_lsda_relative;
54 unsigned char initial_instructions[50];
55 };
56
57
58
59 /* If *ITER hasn't reached END yet, read the next byte into *RESULT and
60 move onto the next byte. Return true on success. */
61
62 static inline bfd_boolean
63 read_byte (bfd_byte **iter, bfd_byte *end, unsigned char *result)
64 {
65 if (*iter >= end)
66 return FALSE;
67 *result = *((*iter)++);
68 return TRUE;
69 }
70
71 /* Move *ITER over LENGTH bytes, or up to END, whichever is closer.
72 Return true it was possible to move LENGTH bytes. */
73
74 static inline bfd_boolean
75 skip_bytes (bfd_byte **iter, bfd_byte *end, bfd_size_type length)
76 {
77 if ((bfd_size_type) (end - *iter) < length)
78 {
79 *iter = end;
80 return FALSE;
81 }
82 *iter += length;
83 return TRUE;
84 }
85
86 /* Move *ITER over an leb128, stopping at END. Return true if the end
87 of the leb128 was found. */
88
89 static bfd_boolean
90 skip_leb128 (bfd_byte **iter, bfd_byte *end)
91 {
92 unsigned char byte;
93 do
94 if (!read_byte (iter, end, &byte))
95 return FALSE;
96 while (byte & 0x80);
97 return TRUE;
98 }
99
100 /* Like skip_leb128, but treat the leb128 as an unsigned value and
101 store it in *VALUE. */
102
103 static bfd_boolean
104 read_uleb128 (bfd_byte **iter, bfd_byte *end, bfd_vma *value)
105 {
106 bfd_byte *start, *p;
107
108 start = *iter;
109 if (!skip_leb128 (iter, end))
110 return FALSE;
111
112 p = *iter;
113 *value = *--p;
114 while (p > start)
115 *value = (*value << 7) | (*--p & 0x7f);
116
117 return TRUE;
118 }
119
120 /* Like read_uleb128, but for signed values. */
121
122 static bfd_boolean
123 read_sleb128 (bfd_byte **iter, bfd_byte *end, bfd_signed_vma *value)
124 {
125 bfd_byte *start, *p;
126
127 start = *iter;
128 if (!skip_leb128 (iter, end))
129 return FALSE;
130
131 p = *iter;
132 *value = ((*--p & 0x7f) ^ 0x40) - 0x40;
133 while (p > start)
134 *value = (*value << 7) | (*--p & 0x7f);
135
136 return TRUE;
137 }
138
139 /* Return 0 if either encoding is variable width, or not yet known to bfd. */
140
141 static
142 int get_DW_EH_PE_width (int encoding, int ptr_size)
143 {
144 /* DW_EH_PE_ values of 0x60 and 0x70 weren't defined at the time .eh_frame
145 was added to bfd. */
146 if ((encoding & 0x60) == 0x60)
147 return 0;
148
149 switch (encoding & 7)
150 {
151 case DW_EH_PE_udata2: return 2;
152 case DW_EH_PE_udata4: return 4;
153 case DW_EH_PE_udata8: return 8;
154 case DW_EH_PE_absptr: return ptr_size;
155 default:
156 break;
157 }
158
159 return 0;
160 }
161
162 #define get_DW_EH_PE_signed(encoding) (((encoding) & DW_EH_PE_signed) != 0)
163
164 /* Read a width sized value from memory. */
165
166 static bfd_vma
167 read_value (bfd *abfd, bfd_byte *buf, int width, int is_signed)
168 {
169 bfd_vma value;
170
171 switch (width)
172 {
173 case 2:
174 if (is_signed)
175 value = bfd_get_signed_16 (abfd, buf);
176 else
177 value = bfd_get_16 (abfd, buf);
178 break;
179 case 4:
180 if (is_signed)
181 value = bfd_get_signed_32 (abfd, buf);
182 else
183 value = bfd_get_32 (abfd, buf);
184 break;
185 case 8:
186 if (is_signed)
187 value = bfd_get_signed_64 (abfd, buf);
188 else
189 value = bfd_get_64 (abfd, buf);
190 break;
191 default:
192 BFD_FAIL ();
193 return 0;
194 }
195
196 return value;
197 }
198
199 /* Store a width sized value to memory. */
200
201 static void
202 write_value (bfd *abfd, bfd_byte *buf, bfd_vma value, int width)
203 {
204 switch (width)
205 {
206 case 2: bfd_put_16 (abfd, value, buf); break;
207 case 4: bfd_put_32 (abfd, value, buf); break;
208 case 8: bfd_put_64 (abfd, value, buf); break;
209 default: BFD_FAIL ();
210 }
211 }
212
213 /* Return one if C1 and C2 CIEs can be merged. */
214
215 static int
216 cie_eq (const void *e1, const void *e2)
217 {
218 const struct cie *c1 = (const struct cie *) e1;
219 const struct cie *c2 = (const struct cie *) e2;
220
221 if (c1->hash == c2->hash
222 && c1->length == c2->length
223 && c1->version == c2->version
224 && c1->local_personality == c2->local_personality
225 && strcmp (c1->augmentation, c2->augmentation) == 0
226 && strcmp (c1->augmentation, "eh") != 0
227 && c1->code_align == c2->code_align
228 && c1->data_align == c2->data_align
229 && c1->ra_column == c2->ra_column
230 && c1->augmentation_size == c2->augmentation_size
231 && memcmp (&c1->personality, &c2->personality,
232 sizeof (c1->personality)) == 0
233 && c1->output_sec == c2->output_sec
234 && c1->per_encoding == c2->per_encoding
235 && c1->lsda_encoding == c2->lsda_encoding
236 && c1->fde_encoding == c2->fde_encoding
237 && c1->initial_insn_length == c2->initial_insn_length
238 && memcmp (c1->initial_instructions,
239 c2->initial_instructions,
240 c1->initial_insn_length) == 0)
241 return 1;
242
243 return 0;
244 }
245
246 static hashval_t
247 cie_hash (const void *e)
248 {
249 const struct cie *c = (const struct cie *) e;
250 return c->hash;
251 }
252
253 static hashval_t
254 cie_compute_hash (struct cie *c)
255 {
256 hashval_t h = 0;
257 h = iterative_hash_object (c->length, h);
258 h = iterative_hash_object (c->version, h);
259 h = iterative_hash (c->augmentation, strlen (c->augmentation) + 1, h);
260 h = iterative_hash_object (c->code_align, h);
261 h = iterative_hash_object (c->data_align, h);
262 h = iterative_hash_object (c->ra_column, h);
263 h = iterative_hash_object (c->augmentation_size, h);
264 h = iterative_hash_object (c->personality, h);
265 h = iterative_hash_object (c->output_sec, h);
266 h = iterative_hash_object (c->per_encoding, h);
267 h = iterative_hash_object (c->lsda_encoding, h);
268 h = iterative_hash_object (c->fde_encoding, h);
269 h = iterative_hash_object (c->initial_insn_length, h);
270 h = iterative_hash (c->initial_instructions, c->initial_insn_length, h);
271 c->hash = h;
272 return h;
273 }
274
275 /* Return the number of extra bytes that we'll be inserting into
276 ENTRY's augmentation string. */
277
278 static INLINE unsigned int
279 extra_augmentation_string_bytes (struct eh_cie_fde *entry)
280 {
281 unsigned int size = 0;
282 if (entry->cie)
283 {
284 if (entry->add_augmentation_size)
285 size++;
286 if (entry->u.cie.add_fde_encoding)
287 size++;
288 }
289 return size;
290 }
291
292 /* Likewise ENTRY's augmentation data. */
293
294 static INLINE unsigned int
295 extra_augmentation_data_bytes (struct eh_cie_fde *entry)
296 {
297 unsigned int size = 0;
298 if (entry->add_augmentation_size)
299 size++;
300 if (entry->cie && entry->u.cie.add_fde_encoding)
301 size++;
302 return size;
303 }
304
305 /* Return the size that ENTRY will have in the output. ALIGNMENT is the
306 required alignment of ENTRY in bytes. */
307
308 static unsigned int
309 size_of_output_cie_fde (struct eh_cie_fde *entry, unsigned int alignment)
310 {
311 if (entry->removed)
312 return 0;
313 if (entry->size == 4)
314 return 4;
315 return (entry->size
316 + extra_augmentation_string_bytes (entry)
317 + extra_augmentation_data_bytes (entry)
318 + alignment - 1) & -alignment;
319 }
320
321 /* Assume that the bytes between *ITER and END are CFA instructions.
322 Try to move *ITER past the first instruction and return true on
323 success. ENCODED_PTR_WIDTH gives the width of pointer entries. */
324
325 static bfd_boolean
326 skip_cfa_op (bfd_byte **iter, bfd_byte *end, unsigned int encoded_ptr_width)
327 {
328 bfd_byte op;
329 bfd_vma length;
330
331 if (!read_byte (iter, end, &op))
332 return FALSE;
333
334 switch (op & 0xc0 ? op & 0xc0 : op)
335 {
336 case DW_CFA_nop:
337 case DW_CFA_advance_loc:
338 case DW_CFA_restore:
339 case DW_CFA_remember_state:
340 case DW_CFA_restore_state:
341 case DW_CFA_GNU_window_save:
342 /* No arguments. */
343 return TRUE;
344
345 case DW_CFA_offset:
346 case DW_CFA_restore_extended:
347 case DW_CFA_undefined:
348 case DW_CFA_same_value:
349 case DW_CFA_def_cfa_register:
350 case DW_CFA_def_cfa_offset:
351 case DW_CFA_def_cfa_offset_sf:
352 case DW_CFA_GNU_args_size:
353 /* One leb128 argument. */
354 return skip_leb128 (iter, end);
355
356 case DW_CFA_val_offset:
357 case DW_CFA_val_offset_sf:
358 case DW_CFA_offset_extended:
359 case DW_CFA_register:
360 case DW_CFA_def_cfa:
361 case DW_CFA_offset_extended_sf:
362 case DW_CFA_GNU_negative_offset_extended:
363 case DW_CFA_def_cfa_sf:
364 /* Two leb128 arguments. */
365 return (skip_leb128 (iter, end)
366 && skip_leb128 (iter, end));
367
368 case DW_CFA_def_cfa_expression:
369 /* A variable-length argument. */
370 return (read_uleb128 (iter, end, &length)
371 && skip_bytes (iter, end, length));
372
373 case DW_CFA_expression:
374 case DW_CFA_val_expression:
375 /* A leb128 followed by a variable-length argument. */
376 return (skip_leb128 (iter, end)
377 && read_uleb128 (iter, end, &length)
378 && skip_bytes (iter, end, length));
379
380 case DW_CFA_set_loc:
381 return skip_bytes (iter, end, encoded_ptr_width);
382
383 case DW_CFA_advance_loc1:
384 return skip_bytes (iter, end, 1);
385
386 case DW_CFA_advance_loc2:
387 return skip_bytes (iter, end, 2);
388
389 case DW_CFA_advance_loc4:
390 return skip_bytes (iter, end, 4);
391
392 case DW_CFA_MIPS_advance_loc8:
393 return skip_bytes (iter, end, 8);
394
395 default:
396 return FALSE;
397 }
398 }
399
400 /* Try to interpret the bytes between BUF and END as CFA instructions.
401 If every byte makes sense, return a pointer to the first DW_CFA_nop
402 padding byte, or END if there is no padding. Return null otherwise.
403 ENCODED_PTR_WIDTH is as for skip_cfa_op. */
404
405 static bfd_byte *
406 skip_non_nops (bfd_byte *buf, bfd_byte *end, unsigned int encoded_ptr_width,
407 unsigned int *set_loc_count)
408 {
409 bfd_byte *last;
410
411 last = buf;
412 while (buf < end)
413 if (*buf == DW_CFA_nop)
414 buf++;
415 else
416 {
417 if (*buf == DW_CFA_set_loc)
418 ++*set_loc_count;
419 if (!skip_cfa_op (&buf, end, encoded_ptr_width))
420 return 0;
421 last = buf;
422 }
423 return last;
424 }
425
426 /* Convert absolute encoding ENCODING into PC-relative form.
427 SIZE is the size of a pointer. */
428
429 static unsigned char
430 make_pc_relative (unsigned char encoding, unsigned int ptr_size)
431 {
432 if ((encoding & 0x7f) == DW_EH_PE_absptr)
433 switch (ptr_size)
434 {
435 case 2:
436 encoding |= DW_EH_PE_sdata2;
437 break;
438 case 4:
439 encoding |= DW_EH_PE_sdata4;
440 break;
441 case 8:
442 encoding |= DW_EH_PE_sdata8;
443 break;
444 }
445 return encoding | DW_EH_PE_pcrel;
446 }
447
448 /* Called before calling _bfd_elf_parse_eh_frame on every input bfd's
449 .eh_frame section. */
450
451 void
452 _bfd_elf_begin_eh_frame_parsing (struct bfd_link_info *info)
453 {
454 struct eh_frame_hdr_info *hdr_info;
455
456 hdr_info = &elf_hash_table (info)->eh_info;
457 hdr_info->merge_cies = !info->relocatable;
458 }
459
460 /* Try to parse .eh_frame section SEC, which belongs to ABFD. Store the
461 information in the section's sec_info field on success. COOKIE
462 describes the relocations in SEC. */
463
464 void
465 _bfd_elf_parse_eh_frame (bfd *abfd, struct bfd_link_info *info,
466 asection *sec, struct elf_reloc_cookie *cookie)
467 {
468 #define REQUIRE(COND) \
469 do \
470 if (!(COND)) \
471 goto free_no_table; \
472 while (0)
473
474 bfd_byte *ehbuf = NULL, *buf, *end;
475 bfd_byte *last_fde;
476 struct eh_cie_fde *this_inf;
477 unsigned int hdr_length, hdr_id;
478 unsigned int cie_count;
479 struct cie *cie, *local_cies = NULL;
480 struct elf_link_hash_table *htab;
481 struct eh_frame_hdr_info *hdr_info;
482 struct eh_frame_sec_info *sec_info = NULL;
483 unsigned int ptr_size;
484 unsigned int num_cies;
485 unsigned int num_entries;
486 elf_gc_mark_hook_fn gc_mark_hook;
487
488 htab = elf_hash_table (info);
489 hdr_info = &htab->eh_info;
490 if (hdr_info->parsed_eh_frames)
491 return;
492
493 if (sec->size == 0
494 || sec->sec_info_type != ELF_INFO_TYPE_NONE)
495 {
496 /* This file does not contain .eh_frame information. */
497 return;
498 }
499
500 if (bfd_is_abs_section (sec->output_section))
501 {
502 /* At least one of the sections is being discarded from the
503 link, so we should just ignore them. */
504 return;
505 }
506
507 /* Read the frame unwind information from abfd. */
508
509 REQUIRE (bfd_malloc_and_get_section (abfd, sec, &ehbuf));
510
511 if (sec->size >= 4
512 && bfd_get_32 (abfd, ehbuf) == 0
513 && cookie->rel == cookie->relend)
514 {
515 /* Empty .eh_frame section. */
516 free (ehbuf);
517 return;
518 }
519
520 /* If .eh_frame section size doesn't fit into int, we cannot handle
521 it (it would need to use 64-bit .eh_frame format anyway). */
522 REQUIRE (sec->size == (unsigned int) sec->size);
523
524 ptr_size = (get_elf_backend_data (abfd)
525 ->elf_backend_eh_frame_address_size (abfd, sec));
526 REQUIRE (ptr_size != 0);
527
528 /* Go through the section contents and work out how many FDEs and
529 CIEs there are. */
530 buf = ehbuf;
531 end = ehbuf + sec->size;
532 num_cies = 0;
533 num_entries = 0;
534 while (buf != end)
535 {
536 num_entries++;
537
538 /* Read the length of the entry. */
539 REQUIRE (skip_bytes (&buf, end, 4));
540 hdr_length = bfd_get_32 (abfd, buf - 4);
541
542 /* 64-bit .eh_frame is not supported. */
543 REQUIRE (hdr_length != 0xffffffff);
544 if (hdr_length == 0)
545 break;
546
547 REQUIRE (skip_bytes (&buf, end, 4));
548 hdr_id = bfd_get_32 (abfd, buf - 4);
549 if (hdr_id == 0)
550 num_cies++;
551
552 REQUIRE (skip_bytes (&buf, end, hdr_length - 4));
553 }
554
555 sec_info = (struct eh_frame_sec_info *)
556 bfd_zmalloc (sizeof (struct eh_frame_sec_info)
557 + (num_entries - 1) * sizeof (struct eh_cie_fde));
558 REQUIRE (sec_info);
559
560 /* We need to have a "struct cie" for each CIE in this section. */
561 local_cies = (struct cie *) bfd_zmalloc (num_cies * sizeof (*local_cies));
562 REQUIRE (local_cies);
563
564 /* FIXME: octets_per_byte. */
565 #define ENSURE_NO_RELOCS(buf) \
566 REQUIRE (!(cookie->rel < cookie->relend \
567 && (cookie->rel->r_offset \
568 < (bfd_size_type) ((buf) - ehbuf)) \
569 && cookie->rel->r_info != 0))
570
571 /* FIXME: octets_per_byte. */
572 #define SKIP_RELOCS(buf) \
573 while (cookie->rel < cookie->relend \
574 && (cookie->rel->r_offset \
575 < (bfd_size_type) ((buf) - ehbuf))) \
576 cookie->rel++
577
578 /* FIXME: octets_per_byte. */
579 #define GET_RELOC(buf) \
580 ((cookie->rel < cookie->relend \
581 && (cookie->rel->r_offset \
582 == (bfd_size_type) ((buf) - ehbuf))) \
583 ? cookie->rel : NULL)
584
585 buf = ehbuf;
586 cie_count = 0;
587 gc_mark_hook = get_elf_backend_data (abfd)->gc_mark_hook;
588 while ((bfd_size_type) (buf - ehbuf) != sec->size)
589 {
590 char *aug;
591 bfd_byte *start, *insns, *insns_end;
592 bfd_size_type length;
593 unsigned int set_loc_count;
594
595 this_inf = sec_info->entry + sec_info->count;
596 last_fde = buf;
597
598 /* Read the length of the entry. */
599 REQUIRE (skip_bytes (&buf, ehbuf + sec->size, 4));
600 hdr_length = bfd_get_32 (abfd, buf - 4);
601
602 /* The CIE/FDE must be fully contained in this input section. */
603 REQUIRE ((bfd_size_type) (buf - ehbuf) + hdr_length <= sec->size);
604 end = buf + hdr_length;
605
606 this_inf->offset = last_fde - ehbuf;
607 this_inf->size = 4 + hdr_length;
608 this_inf->reloc_index = cookie->rel - cookie->rels;
609
610 if (hdr_length == 0)
611 {
612 /* A zero-length CIE should only be found at the end of
613 the section. */
614 REQUIRE ((bfd_size_type) (buf - ehbuf) == sec->size);
615 ENSURE_NO_RELOCS (buf);
616 sec_info->count++;
617 break;
618 }
619
620 REQUIRE (skip_bytes (&buf, end, 4));
621 hdr_id = bfd_get_32 (abfd, buf - 4);
622
623 if (hdr_id == 0)
624 {
625 unsigned int initial_insn_length;
626
627 /* CIE */
628 this_inf->cie = 1;
629
630 /* Point CIE to one of the section-local cie structures. */
631 cie = local_cies + cie_count++;
632
633 cie->cie_inf = this_inf;
634 cie->length = hdr_length;
635 cie->output_sec = sec->output_section;
636 start = buf;
637 REQUIRE (read_byte (&buf, end, &cie->version));
638
639 /* Cannot handle unknown versions. */
640 REQUIRE (cie->version == 1
641 || cie->version == 3
642 || cie->version == 4);
643 REQUIRE (strlen ((char *) buf) < sizeof (cie->augmentation));
644
645 strcpy (cie->augmentation, (char *) buf);
646 buf = (bfd_byte *) strchr ((char *) buf, '\0') + 1;
647 ENSURE_NO_RELOCS (buf);
648 if (buf[0] == 'e' && buf[1] == 'h')
649 {
650 /* GCC < 3.0 .eh_frame CIE */
651 /* We cannot merge "eh" CIEs because __EXCEPTION_TABLE__
652 is private to each CIE, so we don't need it for anything.
653 Just skip it. */
654 REQUIRE (skip_bytes (&buf, end, ptr_size));
655 SKIP_RELOCS (buf);
656 }
657 if (cie->version >= 4)
658 {
659 REQUIRE (buf + 1 < end);
660 REQUIRE (buf[0] == ptr_size);
661 REQUIRE (buf[1] == 0);
662 buf += 2;
663 }
664 REQUIRE (read_uleb128 (&buf, end, &cie->code_align));
665 REQUIRE (read_sleb128 (&buf, end, &cie->data_align));
666 if (cie->version == 1)
667 {
668 REQUIRE (buf < end);
669 cie->ra_column = *buf++;
670 }
671 else
672 REQUIRE (read_uleb128 (&buf, end, &cie->ra_column));
673 ENSURE_NO_RELOCS (buf);
674 cie->lsda_encoding = DW_EH_PE_omit;
675 cie->fde_encoding = DW_EH_PE_omit;
676 cie->per_encoding = DW_EH_PE_omit;
677 aug = cie->augmentation;
678 if (aug[0] != 'e' || aug[1] != 'h')
679 {
680 if (*aug == 'z')
681 {
682 aug++;
683 REQUIRE (read_uleb128 (&buf, end, &cie->augmentation_size));
684 ENSURE_NO_RELOCS (buf);
685 }
686
687 while (*aug != '\0')
688 switch (*aug++)
689 {
690 case 'L':
691 REQUIRE (read_byte (&buf, end, &cie->lsda_encoding));
692 ENSURE_NO_RELOCS (buf);
693 REQUIRE (get_DW_EH_PE_width (cie->lsda_encoding, ptr_size));
694 break;
695 case 'R':
696 REQUIRE (read_byte (&buf, end, &cie->fde_encoding));
697 ENSURE_NO_RELOCS (buf);
698 REQUIRE (get_DW_EH_PE_width (cie->fde_encoding, ptr_size));
699 break;
700 case 'S':
701 break;
702 case 'P':
703 {
704 int per_width;
705
706 REQUIRE (read_byte (&buf, end, &cie->per_encoding));
707 per_width = get_DW_EH_PE_width (cie->per_encoding,
708 ptr_size);
709 REQUIRE (per_width);
710 if ((cie->per_encoding & 0x70) == DW_EH_PE_aligned)
711 {
712 length = -(buf - ehbuf) & (per_width - 1);
713 REQUIRE (skip_bytes (&buf, end, length));
714 }
715 this_inf->u.cie.personality_offset = buf - start;
716 ENSURE_NO_RELOCS (buf);
717 /* Ensure we have a reloc here. */
718 REQUIRE (GET_RELOC (buf));
719 cie->personality.reloc_index
720 = cookie->rel - cookie->rels;
721 /* Cope with MIPS-style composite relocations. */
722 do
723 cookie->rel++;
724 while (GET_RELOC (buf) != NULL);
725 REQUIRE (skip_bytes (&buf, end, per_width));
726 }
727 break;
728 default:
729 /* Unrecognized augmentation. Better bail out. */
730 goto free_no_table;
731 }
732 }
733
734 /* For shared libraries, try to get rid of as many RELATIVE relocs
735 as possible. */
736 if (info->shared
737 && (get_elf_backend_data (abfd)
738 ->elf_backend_can_make_relative_eh_frame
739 (abfd, info, sec)))
740 {
741 if ((cie->fde_encoding & 0x70) == DW_EH_PE_absptr)
742 this_inf->make_relative = 1;
743 /* If the CIE doesn't already have an 'R' entry, it's fairly
744 easy to add one, provided that there's no aligned data
745 after the augmentation string. */
746 else if (cie->fde_encoding == DW_EH_PE_omit
747 && (cie->per_encoding & 0x70) != DW_EH_PE_aligned)
748 {
749 if (*cie->augmentation == 0)
750 this_inf->add_augmentation_size = 1;
751 this_inf->u.cie.add_fde_encoding = 1;
752 this_inf->make_relative = 1;
753 }
754
755 if ((cie->lsda_encoding & 0x70) == DW_EH_PE_absptr)
756 cie->can_make_lsda_relative = 1;
757 }
758
759 /* If FDE encoding was not specified, it defaults to
760 DW_EH_absptr. */
761 if (cie->fde_encoding == DW_EH_PE_omit)
762 cie->fde_encoding = DW_EH_PE_absptr;
763
764 initial_insn_length = end - buf;
765 if (initial_insn_length <= sizeof (cie->initial_instructions))
766 {
767 cie->initial_insn_length = initial_insn_length;
768 memcpy (cie->initial_instructions, buf, initial_insn_length);
769 }
770 insns = buf;
771 buf += initial_insn_length;
772 ENSURE_NO_RELOCS (buf);
773
774 if (hdr_info->merge_cies)
775 this_inf->u.cie.u.full_cie = cie;
776 this_inf->u.cie.per_encoding_relative
777 = (cie->per_encoding & 0x70) == DW_EH_PE_pcrel;
778 }
779 else
780 {
781 /* Find the corresponding CIE. */
782 unsigned int cie_offset = this_inf->offset + 4 - hdr_id;
783 for (cie = local_cies; cie < local_cies + cie_count; cie++)
784 if (cie_offset == cie->cie_inf->offset)
785 break;
786
787 /* Ensure this FDE references one of the CIEs in this input
788 section. */
789 REQUIRE (cie != local_cies + cie_count);
790 this_inf->u.fde.cie_inf = cie->cie_inf;
791 this_inf->make_relative = cie->cie_inf->make_relative;
792 this_inf->add_augmentation_size
793 = cie->cie_inf->add_augmentation_size;
794
795 ENSURE_NO_RELOCS (buf);
796 if ((sec->flags & SEC_LINKER_CREATED) == 0 || cookie->rels != NULL)
797 {
798 asection *rsec;
799
800 REQUIRE (GET_RELOC (buf));
801
802 /* Chain together the FDEs for each section. */
803 rsec = _bfd_elf_gc_mark_rsec (info, sec, gc_mark_hook, cookie);
804 /* RSEC will be NULL if FDE was cleared out as it was belonging to
805 a discarded SHT_GROUP. */
806 if (rsec)
807 {
808 REQUIRE (rsec->owner == abfd);
809 this_inf->u.fde.next_for_section = elf_fde_list (rsec);
810 elf_fde_list (rsec) = this_inf;
811 }
812 }
813
814 /* Skip the initial location and address range. */
815 start = buf;
816 length = get_DW_EH_PE_width (cie->fde_encoding, ptr_size);
817 REQUIRE (skip_bytes (&buf, end, 2 * length));
818
819 /* Skip the augmentation size, if present. */
820 if (cie->augmentation[0] == 'z')
821 REQUIRE (read_uleb128 (&buf, end, &length));
822 else
823 length = 0;
824
825 /* Of the supported augmentation characters above, only 'L'
826 adds augmentation data to the FDE. This code would need to
827 be adjusted if any future augmentations do the same thing. */
828 if (cie->lsda_encoding != DW_EH_PE_omit)
829 {
830 SKIP_RELOCS (buf);
831 if (cie->can_make_lsda_relative && GET_RELOC (buf))
832 cie->cie_inf->u.cie.make_lsda_relative = 1;
833 this_inf->lsda_offset = buf - start;
834 /* If there's no 'z' augmentation, we don't know where the
835 CFA insns begin. Assume no padding. */
836 if (cie->augmentation[0] != 'z')
837 length = end - buf;
838 }
839
840 /* Skip over the augmentation data. */
841 REQUIRE (skip_bytes (&buf, end, length));
842 insns = buf;
843
844 buf = last_fde + 4 + hdr_length;
845
846 /* For NULL RSEC (cleared FDE belonging to a discarded section)
847 the relocations are commonly cleared. We do not sanity check if
848 all these relocations are cleared as (1) relocations to
849 .gcc_except_table will remain uncleared (they will get dropped
850 with the drop of this unused FDE) and (2) BFD already safely drops
851 relocations of any type to .eh_frame by
852 elf_section_ignore_discarded_relocs.
853 TODO: The .gcc_except_table entries should be also filtered as
854 .eh_frame entries; or GCC could rather use COMDAT for them. */
855 SKIP_RELOCS (buf);
856 }
857
858 /* Try to interpret the CFA instructions and find the first
859 padding nop. Shrink this_inf's size so that it doesn't
860 include the padding. */
861 length = get_DW_EH_PE_width (cie->fde_encoding, ptr_size);
862 set_loc_count = 0;
863 insns_end = skip_non_nops (insns, end, length, &set_loc_count);
864 /* If we don't understand the CFA instructions, we can't know
865 what needs to be adjusted there. */
866 if (insns_end == NULL
867 /* For the time being we don't support DW_CFA_set_loc in
868 CIE instructions. */
869 || (set_loc_count && this_inf->cie))
870 goto free_no_table;
871 this_inf->size -= end - insns_end;
872 if (insns_end != end && this_inf->cie)
873 {
874 cie->initial_insn_length -= end - insns_end;
875 cie->length -= end - insns_end;
876 }
877 if (set_loc_count
878 && ((cie->fde_encoding & 0x70) == DW_EH_PE_pcrel
879 || this_inf->make_relative))
880 {
881 unsigned int cnt;
882 bfd_byte *p;
883
884 this_inf->set_loc = (unsigned int *)
885 bfd_malloc ((set_loc_count + 1) * sizeof (unsigned int));
886 REQUIRE (this_inf->set_loc);
887 this_inf->set_loc[0] = set_loc_count;
888 p = insns;
889 cnt = 0;
890 while (p < end)
891 {
892 if (*p == DW_CFA_set_loc)
893 this_inf->set_loc[++cnt] = p + 1 - start;
894 REQUIRE (skip_cfa_op (&p, end, length));
895 }
896 }
897
898 this_inf->removed = 1;
899 this_inf->fde_encoding = cie->fde_encoding;
900 this_inf->lsda_encoding = cie->lsda_encoding;
901 sec_info->count++;
902 }
903 BFD_ASSERT (sec_info->count == num_entries);
904 BFD_ASSERT (cie_count == num_cies);
905
906 elf_section_data (sec)->sec_info = sec_info;
907 sec->sec_info_type = ELF_INFO_TYPE_EH_FRAME;
908 if (hdr_info->merge_cies)
909 {
910 sec_info->cies = local_cies;
911 local_cies = NULL;
912 }
913 goto success;
914
915 free_no_table:
916 (*info->callbacks->einfo)
917 (_("%P: error in %B(%A); no .eh_frame_hdr table will be created.\n"),
918 abfd, sec);
919 hdr_info->table = FALSE;
920 if (sec_info)
921 free (sec_info);
922 success:
923 if (ehbuf)
924 free (ehbuf);
925 if (local_cies)
926 free (local_cies);
927 #undef REQUIRE
928 }
929
930 /* Finish a pass over all .eh_frame sections. */
931
932 void
933 _bfd_elf_end_eh_frame_parsing (struct bfd_link_info *info)
934 {
935 struct eh_frame_hdr_info *hdr_info;
936
937 hdr_info = &elf_hash_table (info)->eh_info;
938 hdr_info->parsed_eh_frames = TRUE;
939 }
940
941 /* Mark all relocations against CIE or FDE ENT, which occurs in
942 .eh_frame section SEC. COOKIE describes the relocations in SEC;
943 its "rel" field can be changed freely. */
944
945 static bfd_boolean
946 mark_entry (struct bfd_link_info *info, asection *sec,
947 struct eh_cie_fde *ent, elf_gc_mark_hook_fn gc_mark_hook,
948 struct elf_reloc_cookie *cookie)
949 {
950 /* FIXME: octets_per_byte. */
951 for (cookie->rel = cookie->rels + ent->reloc_index;
952 cookie->rel < cookie->relend
953 && cookie->rel->r_offset < ent->offset + ent->size;
954 cookie->rel++)
955 if (!_bfd_elf_gc_mark_reloc (info, sec, gc_mark_hook, cookie))
956 return FALSE;
957
958 return TRUE;
959 }
960
961 /* Mark all the relocations against FDEs that relate to code in input
962 section SEC. The FDEs belong to .eh_frame section EH_FRAME, whose
963 relocations are described by COOKIE. */
964
965 bfd_boolean
966 _bfd_elf_gc_mark_fdes (struct bfd_link_info *info, asection *sec,
967 asection *eh_frame, elf_gc_mark_hook_fn gc_mark_hook,
968 struct elf_reloc_cookie *cookie)
969 {
970 struct eh_cie_fde *fde, *cie;
971
972 for (fde = elf_fde_list (sec); fde; fde = fde->u.fde.next_for_section)
973 {
974 if (!mark_entry (info, eh_frame, fde, gc_mark_hook, cookie))
975 return FALSE;
976
977 /* At this stage, all cie_inf fields point to local CIEs, so we
978 can use the same cookie to refer to them. */
979 cie = fde->u.fde.cie_inf;
980 if (!cie->u.cie.gc_mark)
981 {
982 cie->u.cie.gc_mark = 1;
983 if (!mark_entry (info, eh_frame, cie, gc_mark_hook, cookie))
984 return FALSE;
985 }
986 }
987 return TRUE;
988 }
989
990 /* Input section SEC of ABFD is an .eh_frame section that contains the
991 CIE described by CIE_INF. Return a version of CIE_INF that is going
992 to be kept in the output, adding CIE_INF to the output if necessary.
993
994 HDR_INFO is the .eh_frame_hdr information and COOKIE describes the
995 relocations in REL. */
996
997 static struct eh_cie_fde *
998 find_merged_cie (bfd *abfd, struct bfd_link_info *info, asection *sec,
999 struct eh_frame_hdr_info *hdr_info,
1000 struct elf_reloc_cookie *cookie,
1001 struct eh_cie_fde *cie_inf)
1002 {
1003 unsigned long r_symndx;
1004 struct cie *cie, *new_cie;
1005 Elf_Internal_Rela *rel;
1006 void **loc;
1007
1008 /* Use CIE_INF if we have already decided to keep it. */
1009 if (!cie_inf->removed)
1010 return cie_inf;
1011
1012 /* If we have merged CIE_INF with another CIE, use that CIE instead. */
1013 if (cie_inf->u.cie.merged)
1014 return cie_inf->u.cie.u.merged_with;
1015
1016 cie = cie_inf->u.cie.u.full_cie;
1017
1018 /* Assume we will need to keep CIE_INF. */
1019 cie_inf->removed = 0;
1020 cie_inf->u.cie.u.sec = sec;
1021
1022 /* If we are not merging CIEs, use CIE_INF. */
1023 if (cie == NULL)
1024 return cie_inf;
1025
1026 if (cie->per_encoding != DW_EH_PE_omit)
1027 {
1028 bfd_boolean per_binds_local;
1029
1030 /* Work out the address of personality routine, either as an absolute
1031 value or as a symbol. */
1032 rel = cookie->rels + cie->personality.reloc_index;
1033 memset (&cie->personality, 0, sizeof (cie->personality));
1034 #ifdef BFD64
1035 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
1036 r_symndx = ELF64_R_SYM (rel->r_info);
1037 else
1038 #endif
1039 r_symndx = ELF32_R_SYM (rel->r_info);
1040 if (r_symndx >= cookie->locsymcount
1041 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
1042 {
1043 struct elf_link_hash_entry *h;
1044
1045 r_symndx -= cookie->extsymoff;
1046 h = cookie->sym_hashes[r_symndx];
1047
1048 while (h->root.type == bfd_link_hash_indirect
1049 || h->root.type == bfd_link_hash_warning)
1050 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1051
1052 cie->personality.h = h;
1053 per_binds_local = SYMBOL_REFERENCES_LOCAL (info, h);
1054 }
1055 else
1056 {
1057 Elf_Internal_Sym *sym;
1058 asection *sym_sec;
1059
1060 sym = &cookie->locsyms[r_symndx];
1061 sym_sec = bfd_section_from_elf_index (abfd, sym->st_shndx);
1062 if (sym_sec == NULL)
1063 return cie_inf;
1064
1065 if (sym_sec->kept_section != NULL)
1066 sym_sec = sym_sec->kept_section;
1067 if (sym_sec->output_section == NULL)
1068 return cie_inf;
1069
1070 cie->local_personality = 1;
1071 cie->personality.val = (sym->st_value
1072 + sym_sec->output_offset
1073 + sym_sec->output_section->vma);
1074 per_binds_local = TRUE;
1075 }
1076
1077 if (per_binds_local
1078 && info->shared
1079 && (cie->per_encoding & 0x70) == DW_EH_PE_absptr
1080 && (get_elf_backend_data (abfd)
1081 ->elf_backend_can_make_relative_eh_frame (abfd, info, sec)))
1082 {
1083 cie_inf->u.cie.make_per_encoding_relative = 1;
1084 cie_inf->u.cie.per_encoding_relative = 1;
1085 }
1086 }
1087
1088 /* See if we can merge this CIE with an earlier one. */
1089 cie->output_sec = sec->output_section;
1090 cie_compute_hash (cie);
1091 if (hdr_info->cies == NULL)
1092 {
1093 hdr_info->cies = htab_try_create (1, cie_hash, cie_eq, free);
1094 if (hdr_info->cies == NULL)
1095 return cie_inf;
1096 }
1097 loc = htab_find_slot_with_hash (hdr_info->cies, cie, cie->hash, INSERT);
1098 if (loc == NULL)
1099 return cie_inf;
1100
1101 new_cie = (struct cie *) *loc;
1102 if (new_cie == NULL)
1103 {
1104 /* Keep CIE_INF and record it in the hash table. */
1105 new_cie = (struct cie *) malloc (sizeof (struct cie));
1106 if (new_cie == NULL)
1107 return cie_inf;
1108
1109 memcpy (new_cie, cie, sizeof (struct cie));
1110 *loc = new_cie;
1111 }
1112 else
1113 {
1114 /* Merge CIE_INF with NEW_CIE->CIE_INF. */
1115 cie_inf->removed = 1;
1116 cie_inf->u.cie.merged = 1;
1117 cie_inf->u.cie.u.merged_with = new_cie->cie_inf;
1118 if (cie_inf->u.cie.make_lsda_relative)
1119 new_cie->cie_inf->u.cie.make_lsda_relative = 1;
1120 }
1121 return new_cie->cie_inf;
1122 }
1123
1124 /* This function is called for each input file before the .eh_frame
1125 section is relocated. It discards duplicate CIEs and FDEs for discarded
1126 functions. The function returns TRUE iff any entries have been
1127 deleted. */
1128
1129 bfd_boolean
1130 _bfd_elf_discard_section_eh_frame
1131 (bfd *abfd, struct bfd_link_info *info, asection *sec,
1132 bfd_boolean (*reloc_symbol_deleted_p) (bfd_vma, void *),
1133 struct elf_reloc_cookie *cookie)
1134 {
1135 struct eh_cie_fde *ent;
1136 struct eh_frame_sec_info *sec_info;
1137 struct eh_frame_hdr_info *hdr_info;
1138 unsigned int ptr_size, offset;
1139
1140 if (sec->sec_info_type != ELF_INFO_TYPE_EH_FRAME)
1141 return FALSE;
1142
1143 sec_info = (struct eh_frame_sec_info *) elf_section_data (sec)->sec_info;
1144 if (sec_info == NULL)
1145 return FALSE;
1146
1147 ptr_size = (get_elf_backend_data (sec->owner)
1148 ->elf_backend_eh_frame_address_size (sec->owner, sec));
1149
1150 hdr_info = &elf_hash_table (info)->eh_info;
1151 for (ent = sec_info->entry; ent < sec_info->entry + sec_info->count; ++ent)
1152 if (ent->size == 4)
1153 /* There should only be one zero terminator, on the last input
1154 file supplying .eh_frame (crtend.o). Remove any others. */
1155 ent->removed = sec->map_head.s != NULL;
1156 else if (!ent->cie)
1157 {
1158 bfd_boolean keep;
1159 if ((sec->flags & SEC_LINKER_CREATED) != 0 && cookie->rels == NULL)
1160 {
1161 unsigned int width
1162 = get_DW_EH_PE_width (ent->fde_encoding, ptr_size);
1163 bfd_vma value
1164 = read_value (abfd, sec->contents + ent->offset + 8 + width,
1165 width, get_DW_EH_PE_signed (ent->fde_encoding));
1166 keep = value != 0;
1167 }
1168 else
1169 {
1170 cookie->rel = cookie->rels + ent->reloc_index;
1171 /* FIXME: octets_per_byte. */
1172 BFD_ASSERT (cookie->rel < cookie->relend
1173 && cookie->rel->r_offset == ent->offset + 8);
1174 keep = !(*reloc_symbol_deleted_p) (ent->offset + 8, cookie);
1175 }
1176 if (keep)
1177 {
1178 if (info->shared
1179 && (((ent->fde_encoding & 0x70) == DW_EH_PE_absptr
1180 && ent->make_relative == 0)
1181 || (ent->fde_encoding & 0x70) == DW_EH_PE_aligned))
1182 {
1183 /* If a shared library uses absolute pointers
1184 which we cannot turn into PC relative,
1185 don't create the binary search table,
1186 since it is affected by runtime relocations. */
1187 hdr_info->table = FALSE;
1188 (*info->callbacks->einfo)
1189 (_("%P: fde encoding in %B(%A) prevents .eh_frame_hdr"
1190 " table being created.\n"), abfd, sec);
1191 }
1192 ent->removed = 0;
1193 hdr_info->fde_count++;
1194 ent->u.fde.cie_inf = find_merged_cie (abfd, info, sec, hdr_info,
1195 cookie, ent->u.fde.cie_inf);
1196 }
1197 }
1198
1199 if (sec_info->cies)
1200 {
1201 free (sec_info->cies);
1202 sec_info->cies = NULL;
1203 }
1204
1205 offset = 0;
1206 for (ent = sec_info->entry; ent < sec_info->entry + sec_info->count; ++ent)
1207 if (!ent->removed)
1208 {
1209 ent->new_offset = offset;
1210 offset += size_of_output_cie_fde (ent, ptr_size);
1211 }
1212
1213 sec->rawsize = sec->size;
1214 sec->size = offset;
1215 return offset != sec->rawsize;
1216 }
1217
1218 /* This function is called for .eh_frame_hdr section after
1219 _bfd_elf_discard_section_eh_frame has been called on all .eh_frame
1220 input sections. It finalizes the size of .eh_frame_hdr section. */
1221
1222 bfd_boolean
1223 _bfd_elf_discard_section_eh_frame_hdr (bfd *abfd, struct bfd_link_info *info)
1224 {
1225 struct elf_link_hash_table *htab;
1226 struct eh_frame_hdr_info *hdr_info;
1227 asection *sec;
1228
1229 htab = elf_hash_table (info);
1230 hdr_info = &htab->eh_info;
1231
1232 if (hdr_info->cies != NULL)
1233 {
1234 htab_delete (hdr_info->cies);
1235 hdr_info->cies = NULL;
1236 }
1237
1238 sec = hdr_info->hdr_sec;
1239 if (sec == NULL)
1240 return FALSE;
1241
1242 sec->size = EH_FRAME_HDR_SIZE;
1243 if (hdr_info->table)
1244 sec->size += 4 + hdr_info->fde_count * 8;
1245
1246 elf_tdata (abfd)->eh_frame_hdr = sec;
1247 return TRUE;
1248 }
1249
1250 /* This function is called from size_dynamic_sections.
1251 It needs to decide whether .eh_frame_hdr should be output or not,
1252 because when the dynamic symbol table has been sized it is too late
1253 to strip sections. */
1254
1255 bfd_boolean
1256 _bfd_elf_maybe_strip_eh_frame_hdr (struct bfd_link_info *info)
1257 {
1258 asection *o;
1259 bfd *abfd;
1260 struct elf_link_hash_table *htab;
1261 struct eh_frame_hdr_info *hdr_info;
1262
1263 htab = elf_hash_table (info);
1264 hdr_info = &htab->eh_info;
1265 if (hdr_info->hdr_sec == NULL)
1266 return TRUE;
1267
1268 if (bfd_is_abs_section (hdr_info->hdr_sec->output_section))
1269 {
1270 hdr_info->hdr_sec = NULL;
1271 return TRUE;
1272 }
1273
1274 abfd = NULL;
1275 if (info->eh_frame_hdr)
1276 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next)
1277 {
1278 /* Count only sections which have at least a single CIE or FDE.
1279 There cannot be any CIE or FDE <= 8 bytes. */
1280 o = bfd_get_section_by_name (abfd, ".eh_frame");
1281 if (o && o->size > 8 && !bfd_is_abs_section (o->output_section))
1282 break;
1283 }
1284
1285 if (abfd == NULL)
1286 {
1287 hdr_info->hdr_sec->flags |= SEC_EXCLUDE;
1288 hdr_info->hdr_sec = NULL;
1289 return TRUE;
1290 }
1291
1292 hdr_info->table = TRUE;
1293 return TRUE;
1294 }
1295
1296 /* Adjust an address in the .eh_frame section. Given OFFSET within
1297 SEC, this returns the new offset in the adjusted .eh_frame section,
1298 or -1 if the address refers to a CIE/FDE which has been removed
1299 or to offset with dynamic relocation which is no longer needed. */
1300
1301 bfd_vma
1302 _bfd_elf_eh_frame_section_offset (bfd *output_bfd ATTRIBUTE_UNUSED,
1303 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1304 asection *sec,
1305 bfd_vma offset)
1306 {
1307 struct eh_frame_sec_info *sec_info;
1308 unsigned int lo, hi, mid;
1309
1310 if (sec->sec_info_type != ELF_INFO_TYPE_EH_FRAME)
1311 return offset;
1312 sec_info = (struct eh_frame_sec_info *) elf_section_data (sec)->sec_info;
1313
1314 if (offset >= sec->rawsize)
1315 return offset - sec->rawsize + sec->size;
1316
1317 lo = 0;
1318 hi = sec_info->count;
1319 mid = 0;
1320 while (lo < hi)
1321 {
1322 mid = (lo + hi) / 2;
1323 if (offset < sec_info->entry[mid].offset)
1324 hi = mid;
1325 else if (offset
1326 >= sec_info->entry[mid].offset + sec_info->entry[mid].size)
1327 lo = mid + 1;
1328 else
1329 break;
1330 }
1331
1332 BFD_ASSERT (lo < hi);
1333
1334 /* FDE or CIE was removed. */
1335 if (sec_info->entry[mid].removed)
1336 return (bfd_vma) -1;
1337
1338 /* If converting personality pointers to DW_EH_PE_pcrel, there will be
1339 no need for run-time relocation against the personality field. */
1340 if (sec_info->entry[mid].cie
1341 && sec_info->entry[mid].u.cie.make_per_encoding_relative
1342 && offset == (sec_info->entry[mid].offset + 8
1343 + sec_info->entry[mid].u.cie.personality_offset))
1344 return (bfd_vma) -2;
1345
1346 /* If converting to DW_EH_PE_pcrel, there will be no need for run-time
1347 relocation against FDE's initial_location field. */
1348 if (!sec_info->entry[mid].cie
1349 && sec_info->entry[mid].make_relative
1350 && offset == sec_info->entry[mid].offset + 8)
1351 return (bfd_vma) -2;
1352
1353 /* If converting LSDA pointers to DW_EH_PE_pcrel, there will be no need
1354 for run-time relocation against LSDA field. */
1355 if (!sec_info->entry[mid].cie
1356 && sec_info->entry[mid].u.fde.cie_inf->u.cie.make_lsda_relative
1357 && offset == (sec_info->entry[mid].offset + 8
1358 + sec_info->entry[mid].lsda_offset))
1359 return (bfd_vma) -2;
1360
1361 /* If converting to DW_EH_PE_pcrel, there will be no need for run-time
1362 relocation against DW_CFA_set_loc's arguments. */
1363 if (sec_info->entry[mid].set_loc
1364 && sec_info->entry[mid].make_relative
1365 && (offset >= sec_info->entry[mid].offset + 8
1366 + sec_info->entry[mid].set_loc[1]))
1367 {
1368 unsigned int cnt;
1369
1370 for (cnt = 1; cnt <= sec_info->entry[mid].set_loc[0]; cnt++)
1371 if (offset == sec_info->entry[mid].offset + 8
1372 + sec_info->entry[mid].set_loc[cnt])
1373 return (bfd_vma) -2;
1374 }
1375
1376 /* Any new augmentation bytes go before the first relocation. */
1377 return (offset + sec_info->entry[mid].new_offset
1378 - sec_info->entry[mid].offset
1379 + extra_augmentation_string_bytes (sec_info->entry + mid)
1380 + extra_augmentation_data_bytes (sec_info->entry + mid));
1381 }
1382
1383 /* Write out .eh_frame section. This is called with the relocated
1384 contents. */
1385
1386 bfd_boolean
1387 _bfd_elf_write_section_eh_frame (bfd *abfd,
1388 struct bfd_link_info *info,
1389 asection *sec,
1390 bfd_byte *contents)
1391 {
1392 struct eh_frame_sec_info *sec_info;
1393 struct elf_link_hash_table *htab;
1394 struct eh_frame_hdr_info *hdr_info;
1395 unsigned int ptr_size;
1396 struct eh_cie_fde *ent;
1397
1398 if (sec->sec_info_type != ELF_INFO_TYPE_EH_FRAME)
1399 /* FIXME: octets_per_byte. */
1400 return bfd_set_section_contents (abfd, sec->output_section, contents,
1401 sec->output_offset, sec->size);
1402
1403 ptr_size = (get_elf_backend_data (abfd)
1404 ->elf_backend_eh_frame_address_size (abfd, sec));
1405 BFD_ASSERT (ptr_size != 0);
1406
1407 sec_info = (struct eh_frame_sec_info *) elf_section_data (sec)->sec_info;
1408 htab = elf_hash_table (info);
1409 hdr_info = &htab->eh_info;
1410
1411 if (hdr_info->table && hdr_info->array == NULL)
1412 hdr_info->array = (struct eh_frame_array_ent *)
1413 bfd_malloc (hdr_info->fde_count * sizeof(*hdr_info->array));
1414 if (hdr_info->array == NULL)
1415 hdr_info = NULL;
1416
1417 /* The new offsets can be bigger or smaller than the original offsets.
1418 We therefore need to make two passes over the section: one backward
1419 pass to move entries up and one forward pass to move entries down.
1420 The two passes won't interfere with each other because entries are
1421 not reordered */
1422 for (ent = sec_info->entry + sec_info->count; ent-- != sec_info->entry;)
1423 if (!ent->removed && ent->new_offset > ent->offset)
1424 memmove (contents + ent->new_offset, contents + ent->offset, ent->size);
1425
1426 for (ent = sec_info->entry; ent < sec_info->entry + sec_info->count; ++ent)
1427 if (!ent->removed && ent->new_offset < ent->offset)
1428 memmove (contents + ent->new_offset, contents + ent->offset, ent->size);
1429
1430 for (ent = sec_info->entry; ent < sec_info->entry + sec_info->count; ++ent)
1431 {
1432 unsigned char *buf, *end;
1433 unsigned int new_size;
1434
1435 if (ent->removed)
1436 continue;
1437
1438 if (ent->size == 4)
1439 {
1440 /* Any terminating FDE must be at the end of the section. */
1441 BFD_ASSERT (ent == sec_info->entry + sec_info->count - 1);
1442 continue;
1443 }
1444
1445 buf = contents + ent->new_offset;
1446 end = buf + ent->size;
1447 new_size = size_of_output_cie_fde (ent, ptr_size);
1448
1449 /* Update the size. It may be shrinked. */
1450 bfd_put_32 (abfd, new_size - 4, buf);
1451
1452 /* Filling the extra bytes with DW_CFA_nops. */
1453 if (new_size != ent->size)
1454 memset (end, 0, new_size - ent->size);
1455
1456 if (ent->cie)
1457 {
1458 /* CIE */
1459 if (ent->make_relative
1460 || ent->u.cie.make_lsda_relative
1461 || ent->u.cie.per_encoding_relative)
1462 {
1463 char *aug;
1464 unsigned int action, extra_string, extra_data;
1465 unsigned int per_width, per_encoding;
1466
1467 /* Need to find 'R' or 'L' augmentation's argument and modify
1468 DW_EH_PE_* value. */
1469 action = ((ent->make_relative ? 1 : 0)
1470 | (ent->u.cie.make_lsda_relative ? 2 : 0)
1471 | (ent->u.cie.per_encoding_relative ? 4 : 0));
1472 extra_string = extra_augmentation_string_bytes (ent);
1473 extra_data = extra_augmentation_data_bytes (ent);
1474
1475 /* Skip length, id and version. */
1476 buf += 9;
1477 aug = (char *) buf;
1478 buf += strlen (aug) + 1;
1479 skip_leb128 (&buf, end);
1480 skip_leb128 (&buf, end);
1481 skip_leb128 (&buf, end);
1482 if (*aug == 'z')
1483 {
1484 /* The uleb128 will always be a single byte for the kind
1485 of augmentation strings that we're prepared to handle. */
1486 *buf++ += extra_data;
1487 aug++;
1488 }
1489
1490 /* Make room for the new augmentation string and data bytes. */
1491 memmove (buf + extra_string + extra_data, buf, end - buf);
1492 memmove (aug + extra_string, aug, buf - (bfd_byte *) aug);
1493 buf += extra_string;
1494 end += extra_string + extra_data;
1495
1496 if (ent->add_augmentation_size)
1497 {
1498 *aug++ = 'z';
1499 *buf++ = extra_data - 1;
1500 }
1501 if (ent->u.cie.add_fde_encoding)
1502 {
1503 BFD_ASSERT (action & 1);
1504 *aug++ = 'R';
1505 *buf++ = make_pc_relative (DW_EH_PE_absptr, ptr_size);
1506 action &= ~1;
1507 }
1508
1509 while (action)
1510 switch (*aug++)
1511 {
1512 case 'L':
1513 if (action & 2)
1514 {
1515 BFD_ASSERT (*buf == ent->lsda_encoding);
1516 *buf = make_pc_relative (*buf, ptr_size);
1517 action &= ~2;
1518 }
1519 buf++;
1520 break;
1521 case 'P':
1522 if (ent->u.cie.make_per_encoding_relative)
1523 *buf = make_pc_relative (*buf, ptr_size);
1524 per_encoding = *buf++;
1525 per_width = get_DW_EH_PE_width (per_encoding, ptr_size);
1526 BFD_ASSERT (per_width != 0);
1527 BFD_ASSERT (((per_encoding & 0x70) == DW_EH_PE_pcrel)
1528 == ent->u.cie.per_encoding_relative);
1529 if ((per_encoding & 0x70) == DW_EH_PE_aligned)
1530 buf = (contents
1531 + ((buf - contents + per_width - 1)
1532 & ~((bfd_size_type) per_width - 1)));
1533 if (action & 4)
1534 {
1535 bfd_vma val;
1536
1537 val = read_value (abfd, buf, per_width,
1538 get_DW_EH_PE_signed (per_encoding));
1539 if (ent->u.cie.make_per_encoding_relative)
1540 val -= (sec->output_section->vma
1541 + sec->output_offset
1542 + (buf - contents));
1543 else
1544 {
1545 val += (bfd_vma) ent->offset - ent->new_offset;
1546 val -= extra_string + extra_data;
1547 }
1548 write_value (abfd, buf, val, per_width);
1549 action &= ~4;
1550 }
1551 buf += per_width;
1552 break;
1553 case 'R':
1554 if (action & 1)
1555 {
1556 BFD_ASSERT (*buf == ent->fde_encoding);
1557 *buf = make_pc_relative (*buf, ptr_size);
1558 action &= ~1;
1559 }
1560 buf++;
1561 break;
1562 case 'S':
1563 break;
1564 default:
1565 BFD_FAIL ();
1566 }
1567 }
1568 }
1569 else
1570 {
1571 /* FDE */
1572 bfd_vma value, address;
1573 unsigned int width;
1574 bfd_byte *start;
1575 struct eh_cie_fde *cie;
1576
1577 /* Skip length. */
1578 cie = ent->u.fde.cie_inf;
1579 buf += 4;
1580 value = ((ent->new_offset + sec->output_offset + 4)
1581 - (cie->new_offset + cie->u.cie.u.sec->output_offset));
1582 bfd_put_32 (abfd, value, buf);
1583 buf += 4;
1584 width = get_DW_EH_PE_width (ent->fde_encoding, ptr_size);
1585 value = read_value (abfd, buf, width,
1586 get_DW_EH_PE_signed (ent->fde_encoding));
1587 address = value;
1588 if (value)
1589 {
1590 switch (ent->fde_encoding & 0x70)
1591 {
1592 case DW_EH_PE_textrel:
1593 BFD_ASSERT (hdr_info == NULL);
1594 break;
1595 case DW_EH_PE_datarel:
1596 {
1597 switch (abfd->arch_info->arch)
1598 {
1599 case bfd_arch_ia64:
1600 BFD_ASSERT (elf_gp (abfd) != 0);
1601 address += elf_gp (abfd);
1602 break;
1603 default:
1604 (*info->callbacks->einfo)
1605 (_("%P: DW_EH_PE_datarel unspecified"
1606 " for this architecture.\n"));
1607 /* Fall thru */
1608 case bfd_arch_frv:
1609 case bfd_arch_i386:
1610 BFD_ASSERT (htab->hgot != NULL
1611 && ((htab->hgot->root.type
1612 == bfd_link_hash_defined)
1613 || (htab->hgot->root.type
1614 == bfd_link_hash_defweak)));
1615 address
1616 += (htab->hgot->root.u.def.value
1617 + htab->hgot->root.u.def.section->output_offset
1618 + (htab->hgot->root.u.def.section->output_section
1619 ->vma));
1620 break;
1621 }
1622 }
1623 break;
1624 case DW_EH_PE_pcrel:
1625 value += (bfd_vma) ent->offset - ent->new_offset;
1626 address += (sec->output_section->vma
1627 + sec->output_offset
1628 + ent->offset + 8);
1629 break;
1630 }
1631 if (ent->make_relative)
1632 value -= (sec->output_section->vma
1633 + sec->output_offset
1634 + ent->new_offset + 8);
1635 write_value (abfd, buf, value, width);
1636 }
1637
1638 start = buf;
1639
1640 if (hdr_info)
1641 {
1642 /* The address calculation may overflow, giving us a
1643 value greater than 4G on a 32-bit target when
1644 dwarf_vma is 64-bit. */
1645 if (sizeof (address) > 4 && ptr_size == 4)
1646 address &= 0xffffffff;
1647 hdr_info->array[hdr_info->array_count].initial_loc = address;
1648 hdr_info->array[hdr_info->array_count++].fde
1649 = (sec->output_section->vma
1650 + sec->output_offset
1651 + ent->new_offset);
1652 }
1653
1654 if ((ent->lsda_encoding & 0x70) == DW_EH_PE_pcrel
1655 || cie->u.cie.make_lsda_relative)
1656 {
1657 buf += ent->lsda_offset;
1658 width = get_DW_EH_PE_width (ent->lsda_encoding, ptr_size);
1659 value = read_value (abfd, buf, width,
1660 get_DW_EH_PE_signed (ent->lsda_encoding));
1661 if (value)
1662 {
1663 if ((ent->lsda_encoding & 0x70) == DW_EH_PE_pcrel)
1664 value += (bfd_vma) ent->offset - ent->new_offset;
1665 else if (cie->u.cie.make_lsda_relative)
1666 value -= (sec->output_section->vma
1667 + sec->output_offset
1668 + ent->new_offset + 8 + ent->lsda_offset);
1669 write_value (abfd, buf, value, width);
1670 }
1671 }
1672 else if (ent->add_augmentation_size)
1673 {
1674 /* Skip the PC and length and insert a zero byte for the
1675 augmentation size. */
1676 buf += width * 2;
1677 memmove (buf + 1, buf, end - buf);
1678 *buf = 0;
1679 }
1680
1681 if (ent->set_loc)
1682 {
1683 /* Adjust DW_CFA_set_loc. */
1684 unsigned int cnt;
1685 bfd_vma new_offset;
1686
1687 width = get_DW_EH_PE_width (ent->fde_encoding, ptr_size);
1688 new_offset = ent->new_offset + 8
1689 + extra_augmentation_string_bytes (ent)
1690 + extra_augmentation_data_bytes (ent);
1691
1692 for (cnt = 1; cnt <= ent->set_loc[0]; cnt++)
1693 {
1694 buf = start + ent->set_loc[cnt];
1695
1696 value = read_value (abfd, buf, width,
1697 get_DW_EH_PE_signed (ent->fde_encoding));
1698 if (!value)
1699 continue;
1700
1701 if ((ent->fde_encoding & 0x70) == DW_EH_PE_pcrel)
1702 value += (bfd_vma) ent->offset + 8 - new_offset;
1703 if (ent->make_relative)
1704 value -= (sec->output_section->vma
1705 + sec->output_offset
1706 + new_offset + ent->set_loc[cnt]);
1707 write_value (abfd, buf, value, width);
1708 }
1709 }
1710 }
1711 }
1712
1713 /* We don't align the section to its section alignment since the
1714 runtime library only expects all CIE/FDE records aligned at
1715 the pointer size. _bfd_elf_discard_section_eh_frame should
1716 have padded CIE/FDE records to multiple of pointer size with
1717 size_of_output_cie_fde. */
1718 if ((sec->size % ptr_size) != 0)
1719 abort ();
1720
1721 /* FIXME: octets_per_byte. */
1722 return bfd_set_section_contents (abfd, sec->output_section,
1723 contents, (file_ptr) sec->output_offset,
1724 sec->size);
1725 }
1726
1727 /* Helper function used to sort .eh_frame_hdr search table by increasing
1728 VMA of FDE initial location. */
1729
1730 static int
1731 vma_compare (const void *a, const void *b)
1732 {
1733 const struct eh_frame_array_ent *p = (const struct eh_frame_array_ent *) a;
1734 const struct eh_frame_array_ent *q = (const struct eh_frame_array_ent *) b;
1735 if (p->initial_loc > q->initial_loc)
1736 return 1;
1737 if (p->initial_loc < q->initial_loc)
1738 return -1;
1739 return 0;
1740 }
1741
1742 /* Write out .eh_frame_hdr section. This must be called after
1743 _bfd_elf_write_section_eh_frame has been called on all input
1744 .eh_frame sections.
1745 .eh_frame_hdr format:
1746 ubyte version (currently 1)
1747 ubyte eh_frame_ptr_enc (DW_EH_PE_* encoding of pointer to start of
1748 .eh_frame section)
1749 ubyte fde_count_enc (DW_EH_PE_* encoding of total FDE count
1750 number (or DW_EH_PE_omit if there is no
1751 binary search table computed))
1752 ubyte table_enc (DW_EH_PE_* encoding of binary search table,
1753 or DW_EH_PE_omit if not present.
1754 DW_EH_PE_datarel is using address of
1755 .eh_frame_hdr section start as base)
1756 [encoded] eh_frame_ptr (pointer to start of .eh_frame section)
1757 optionally followed by:
1758 [encoded] fde_count (total number of FDEs in .eh_frame section)
1759 fde_count x [encoded] initial_loc, fde
1760 (array of encoded pairs containing
1761 FDE initial_location field and FDE address,
1762 sorted by increasing initial_loc). */
1763
1764 bfd_boolean
1765 _bfd_elf_write_section_eh_frame_hdr (bfd *abfd, struct bfd_link_info *info)
1766 {
1767 struct elf_link_hash_table *htab;
1768 struct eh_frame_hdr_info *hdr_info;
1769 asection *sec;
1770 bfd_byte *contents;
1771 asection *eh_frame_sec;
1772 bfd_size_type size;
1773 bfd_boolean retval;
1774 bfd_vma encoded_eh_frame;
1775
1776 htab = elf_hash_table (info);
1777 hdr_info = &htab->eh_info;
1778 sec = hdr_info->hdr_sec;
1779 if (sec == NULL)
1780 return TRUE;
1781
1782 size = EH_FRAME_HDR_SIZE;
1783 if (hdr_info->array && hdr_info->array_count == hdr_info->fde_count)
1784 size += 4 + hdr_info->fde_count * 8;
1785 contents = (bfd_byte *) bfd_malloc (size);
1786 if (contents == NULL)
1787 return FALSE;
1788
1789 eh_frame_sec = bfd_get_section_by_name (abfd, ".eh_frame");
1790 if (eh_frame_sec == NULL)
1791 {
1792 free (contents);
1793 return FALSE;
1794 }
1795
1796 memset (contents, 0, EH_FRAME_HDR_SIZE);
1797 contents[0] = 1; /* Version. */
1798 contents[1] = get_elf_backend_data (abfd)->elf_backend_encode_eh_address
1799 (abfd, info, eh_frame_sec, 0, sec, 4,
1800 &encoded_eh_frame); /* .eh_frame offset. */
1801
1802 if (hdr_info->array && hdr_info->array_count == hdr_info->fde_count)
1803 {
1804 contents[2] = DW_EH_PE_udata4; /* FDE count encoding. */
1805 contents[3] = DW_EH_PE_datarel | DW_EH_PE_sdata4; /* Search table enc. */
1806 }
1807 else
1808 {
1809 contents[2] = DW_EH_PE_omit;
1810 contents[3] = DW_EH_PE_omit;
1811 }
1812 bfd_put_32 (abfd, encoded_eh_frame, contents + 4);
1813
1814 if (contents[2] != DW_EH_PE_omit)
1815 {
1816 unsigned int i;
1817
1818 bfd_put_32 (abfd, hdr_info->fde_count, contents + EH_FRAME_HDR_SIZE);
1819 qsort (hdr_info->array, hdr_info->fde_count, sizeof (*hdr_info->array),
1820 vma_compare);
1821 for (i = 0; i < hdr_info->fde_count; i++)
1822 {
1823 bfd_put_32 (abfd,
1824 hdr_info->array[i].initial_loc
1825 - sec->output_section->vma,
1826 contents + EH_FRAME_HDR_SIZE + i * 8 + 4);
1827 bfd_put_32 (abfd,
1828 hdr_info->array[i].fde - sec->output_section->vma,
1829 contents + EH_FRAME_HDR_SIZE + i * 8 + 8);
1830 }
1831 }
1832
1833 /* FIXME: octets_per_byte. */
1834 retval = bfd_set_section_contents (abfd, sec->output_section,
1835 contents, (file_ptr) sec->output_offset,
1836 sec->size);
1837 free (contents);
1838 return retval;
1839 }
1840
1841 /* Return the width of FDE addresses. This is the default implementation. */
1842
1843 unsigned int
1844 _bfd_elf_eh_frame_address_size (bfd *abfd, asection *sec ATTRIBUTE_UNUSED)
1845 {
1846 return elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64 ? 8 : 4;
1847 }
1848
1849 /* Decide whether we can use a PC-relative encoding within the given
1850 EH frame section. This is the default implementation. */
1851
1852 bfd_boolean
1853 _bfd_elf_can_make_relative (bfd *input_bfd ATTRIBUTE_UNUSED,
1854 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1855 asection *eh_frame_section ATTRIBUTE_UNUSED)
1856 {
1857 return TRUE;
1858 }
1859
1860 /* Select an encoding for the given address. Preference is given to
1861 PC-relative addressing modes. */
1862
1863 bfd_byte
1864 _bfd_elf_encode_eh_address (bfd *abfd ATTRIBUTE_UNUSED,
1865 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1866 asection *osec, bfd_vma offset,
1867 asection *loc_sec, bfd_vma loc_offset,
1868 bfd_vma *encoded)
1869 {
1870 *encoded = osec->vma + offset -
1871 (loc_sec->output_section->vma + loc_sec->output_offset + loc_offset);
1872 return DW_EH_PE_pcrel | DW_EH_PE_sdata4;
1873 }
This page took 0.069834 seconds and 4 git commands to generate.