* elflink.c (is_reloc_section): New function. Returns true if the
[deliverable/binutils-gdb.git] / bfd / elf-eh-frame.c
1 /* .eh_frame section optimization.
2 Copyright 2001, 2002, 2003, 2004, 2005, 2006, 2007
3 Free Software Foundation, Inc.
4 Written by Jakub Jelinek <jakub@redhat.com>.
5
6 This file is part of BFD, the Binary File Descriptor library.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 MA 02110-1301, USA. */
22
23 #include "sysdep.h"
24 #include "bfd.h"
25 #include "libbfd.h"
26 #include "elf-bfd.h"
27 #include "elf/dwarf2.h"
28
29 #define EH_FRAME_HDR_SIZE 8
30
31 struct cie
32 {
33 unsigned int length;
34 unsigned int hash;
35 unsigned char version;
36 unsigned char local_personality;
37 char augmentation[20];
38 bfd_vma code_align;
39 bfd_signed_vma data_align;
40 bfd_vma ra_column;
41 bfd_vma augmentation_size;
42 union {
43 struct elf_link_hash_entry *h;
44 bfd_vma val;
45 unsigned int reloc_index;
46 } personality;
47 asection *output_sec;
48 struct eh_cie_fde *cie_inf;
49 unsigned char per_encoding;
50 unsigned char lsda_encoding;
51 unsigned char fde_encoding;
52 unsigned char initial_insn_length;
53 unsigned char can_make_lsda_relative;
54 unsigned char initial_instructions[50];
55 };
56
57
58
59 /* If *ITER hasn't reached END yet, read the next byte into *RESULT and
60 move onto the next byte. Return true on success. */
61
62 static inline bfd_boolean
63 read_byte (bfd_byte **iter, bfd_byte *end, unsigned char *result)
64 {
65 if (*iter >= end)
66 return FALSE;
67 *result = *((*iter)++);
68 return TRUE;
69 }
70
71 /* Move *ITER over LENGTH bytes, or up to END, whichever is closer.
72 Return true it was possible to move LENGTH bytes. */
73
74 static inline bfd_boolean
75 skip_bytes (bfd_byte **iter, bfd_byte *end, bfd_size_type length)
76 {
77 if ((bfd_size_type) (end - *iter) < length)
78 {
79 *iter = end;
80 return FALSE;
81 }
82 *iter += length;
83 return TRUE;
84 }
85
86 /* Move *ITER over an leb128, stopping at END. Return true if the end
87 of the leb128 was found. */
88
89 static bfd_boolean
90 skip_leb128 (bfd_byte **iter, bfd_byte *end)
91 {
92 unsigned char byte;
93 do
94 if (!read_byte (iter, end, &byte))
95 return FALSE;
96 while (byte & 0x80);
97 return TRUE;
98 }
99
100 /* Like skip_leb128, but treat the leb128 as an unsigned value and
101 store it in *VALUE. */
102
103 static bfd_boolean
104 read_uleb128 (bfd_byte **iter, bfd_byte *end, bfd_vma *value)
105 {
106 bfd_byte *start, *p;
107
108 start = *iter;
109 if (!skip_leb128 (iter, end))
110 return FALSE;
111
112 p = *iter;
113 *value = *--p;
114 while (p > start)
115 *value = (*value << 7) | (*--p & 0x7f);
116
117 return TRUE;
118 }
119
120 /* Like read_uleb128, but for signed values. */
121
122 static bfd_boolean
123 read_sleb128 (bfd_byte **iter, bfd_byte *end, bfd_signed_vma *value)
124 {
125 bfd_byte *start, *p;
126
127 start = *iter;
128 if (!skip_leb128 (iter, end))
129 return FALSE;
130
131 p = *iter;
132 *value = ((*--p & 0x7f) ^ 0x40) - 0x40;
133 while (p > start)
134 *value = (*value << 7) | (*--p & 0x7f);
135
136 return TRUE;
137 }
138
139 /* Return 0 if either encoding is variable width, or not yet known to bfd. */
140
141 static
142 int get_DW_EH_PE_width (int encoding, int ptr_size)
143 {
144 /* DW_EH_PE_ values of 0x60 and 0x70 weren't defined at the time .eh_frame
145 was added to bfd. */
146 if ((encoding & 0x60) == 0x60)
147 return 0;
148
149 switch (encoding & 7)
150 {
151 case DW_EH_PE_udata2: return 2;
152 case DW_EH_PE_udata4: return 4;
153 case DW_EH_PE_udata8: return 8;
154 case DW_EH_PE_absptr: return ptr_size;
155 default:
156 break;
157 }
158
159 return 0;
160 }
161
162 #define get_DW_EH_PE_signed(encoding) (((encoding) & DW_EH_PE_signed) != 0)
163
164 /* Read a width sized value from memory. */
165
166 static bfd_vma
167 read_value (bfd *abfd, bfd_byte *buf, int width, int is_signed)
168 {
169 bfd_vma value;
170
171 switch (width)
172 {
173 case 2:
174 if (is_signed)
175 value = bfd_get_signed_16 (abfd, buf);
176 else
177 value = bfd_get_16 (abfd, buf);
178 break;
179 case 4:
180 if (is_signed)
181 value = bfd_get_signed_32 (abfd, buf);
182 else
183 value = bfd_get_32 (abfd, buf);
184 break;
185 case 8:
186 if (is_signed)
187 value = bfd_get_signed_64 (abfd, buf);
188 else
189 value = bfd_get_64 (abfd, buf);
190 break;
191 default:
192 BFD_FAIL ();
193 return 0;
194 }
195
196 return value;
197 }
198
199 /* Store a width sized value to memory. */
200
201 static void
202 write_value (bfd *abfd, bfd_byte *buf, bfd_vma value, int width)
203 {
204 switch (width)
205 {
206 case 2: bfd_put_16 (abfd, value, buf); break;
207 case 4: bfd_put_32 (abfd, value, buf); break;
208 case 8: bfd_put_64 (abfd, value, buf); break;
209 default: BFD_FAIL ();
210 }
211 }
212
213 /* Return one if C1 and C2 CIEs can be merged. */
214
215 static int
216 cie_eq (const void *e1, const void *e2)
217 {
218 const struct cie *c1 = e1;
219 const struct cie *c2 = e2;
220
221 if (c1->hash == c2->hash
222 && c1->length == c2->length
223 && c1->version == c2->version
224 && c1->local_personality == c2->local_personality
225 && strcmp (c1->augmentation, c2->augmentation) == 0
226 && strcmp (c1->augmentation, "eh") != 0
227 && c1->code_align == c2->code_align
228 && c1->data_align == c2->data_align
229 && c1->ra_column == c2->ra_column
230 && c1->augmentation_size == c2->augmentation_size
231 && memcmp (&c1->personality, &c2->personality,
232 sizeof (c1->personality)) == 0
233 && c1->output_sec == c2->output_sec
234 && c1->per_encoding == c2->per_encoding
235 && c1->lsda_encoding == c2->lsda_encoding
236 && c1->fde_encoding == c2->fde_encoding
237 && c1->initial_insn_length == c2->initial_insn_length
238 && memcmp (c1->initial_instructions,
239 c2->initial_instructions,
240 c1->initial_insn_length) == 0)
241 return 1;
242
243 return 0;
244 }
245
246 static hashval_t
247 cie_hash (const void *e)
248 {
249 const struct cie *c = e;
250 return c->hash;
251 }
252
253 static hashval_t
254 cie_compute_hash (struct cie *c)
255 {
256 hashval_t h = 0;
257 h = iterative_hash_object (c->length, h);
258 h = iterative_hash_object (c->version, h);
259 h = iterative_hash (c->augmentation, strlen (c->augmentation) + 1, h);
260 h = iterative_hash_object (c->code_align, h);
261 h = iterative_hash_object (c->data_align, h);
262 h = iterative_hash_object (c->ra_column, h);
263 h = iterative_hash_object (c->augmentation_size, h);
264 h = iterative_hash_object (c->personality, h);
265 h = iterative_hash_object (c->output_sec, h);
266 h = iterative_hash_object (c->per_encoding, h);
267 h = iterative_hash_object (c->lsda_encoding, h);
268 h = iterative_hash_object (c->fde_encoding, h);
269 h = iterative_hash_object (c->initial_insn_length, h);
270 h = iterative_hash (c->initial_instructions, c->initial_insn_length, h);
271 c->hash = h;
272 return h;
273 }
274
275 /* Return the number of extra bytes that we'll be inserting into
276 ENTRY's augmentation string. */
277
278 static INLINE unsigned int
279 extra_augmentation_string_bytes (struct eh_cie_fde *entry)
280 {
281 unsigned int size = 0;
282 if (entry->cie)
283 {
284 if (entry->add_augmentation_size)
285 size++;
286 if (entry->u.cie.add_fde_encoding)
287 size++;
288 }
289 return size;
290 }
291
292 /* Likewise ENTRY's augmentation data. */
293
294 static INLINE unsigned int
295 extra_augmentation_data_bytes (struct eh_cie_fde *entry)
296 {
297 unsigned int size = 0;
298 if (entry->add_augmentation_size)
299 size++;
300 if (entry->cie && entry->u.cie.add_fde_encoding)
301 size++;
302 return size;
303 }
304
305 /* Return the size that ENTRY will have in the output. ALIGNMENT is the
306 required alignment of ENTRY in bytes. */
307
308 static unsigned int
309 size_of_output_cie_fde (struct eh_cie_fde *entry, unsigned int alignment)
310 {
311 if (entry->removed)
312 return 0;
313 if (entry->size == 4)
314 return 4;
315 return (entry->size
316 + extra_augmentation_string_bytes (entry)
317 + extra_augmentation_data_bytes (entry)
318 + alignment - 1) & -alignment;
319 }
320
321 /* Assume that the bytes between *ITER and END are CFA instructions.
322 Try to move *ITER past the first instruction and return true on
323 success. ENCODED_PTR_WIDTH gives the width of pointer entries. */
324
325 static bfd_boolean
326 skip_cfa_op (bfd_byte **iter, bfd_byte *end, unsigned int encoded_ptr_width)
327 {
328 bfd_byte op;
329 bfd_vma length;
330
331 if (!read_byte (iter, end, &op))
332 return FALSE;
333
334 switch (op & 0xc0 ? op & 0xc0 : op)
335 {
336 case DW_CFA_nop:
337 case DW_CFA_advance_loc:
338 case DW_CFA_restore:
339 case DW_CFA_remember_state:
340 case DW_CFA_restore_state:
341 case DW_CFA_GNU_window_save:
342 /* No arguments. */
343 return TRUE;
344
345 case DW_CFA_offset:
346 case DW_CFA_restore_extended:
347 case DW_CFA_undefined:
348 case DW_CFA_same_value:
349 case DW_CFA_def_cfa_register:
350 case DW_CFA_def_cfa_offset:
351 case DW_CFA_def_cfa_offset_sf:
352 case DW_CFA_GNU_args_size:
353 /* One leb128 argument. */
354 return skip_leb128 (iter, end);
355
356 case DW_CFA_val_offset:
357 case DW_CFA_val_offset_sf:
358 case DW_CFA_offset_extended:
359 case DW_CFA_register:
360 case DW_CFA_def_cfa:
361 case DW_CFA_offset_extended_sf:
362 case DW_CFA_GNU_negative_offset_extended:
363 case DW_CFA_def_cfa_sf:
364 /* Two leb128 arguments. */
365 return (skip_leb128 (iter, end)
366 && skip_leb128 (iter, end));
367
368 case DW_CFA_def_cfa_expression:
369 /* A variable-length argument. */
370 return (read_uleb128 (iter, end, &length)
371 && skip_bytes (iter, end, length));
372
373 case DW_CFA_expression:
374 case DW_CFA_val_expression:
375 /* A leb128 followed by a variable-length argument. */
376 return (skip_leb128 (iter, end)
377 && read_uleb128 (iter, end, &length)
378 && skip_bytes (iter, end, length));
379
380 case DW_CFA_set_loc:
381 return skip_bytes (iter, end, encoded_ptr_width);
382
383 case DW_CFA_advance_loc1:
384 return skip_bytes (iter, end, 1);
385
386 case DW_CFA_advance_loc2:
387 return skip_bytes (iter, end, 2);
388
389 case DW_CFA_advance_loc4:
390 return skip_bytes (iter, end, 4);
391
392 case DW_CFA_MIPS_advance_loc8:
393 return skip_bytes (iter, end, 8);
394
395 default:
396 return FALSE;
397 }
398 }
399
400 /* Try to interpret the bytes between BUF and END as CFA instructions.
401 If every byte makes sense, return a pointer to the first DW_CFA_nop
402 padding byte, or END if there is no padding. Return null otherwise.
403 ENCODED_PTR_WIDTH is as for skip_cfa_op. */
404
405 static bfd_byte *
406 skip_non_nops (bfd_byte *buf, bfd_byte *end, unsigned int encoded_ptr_width,
407 unsigned int *set_loc_count)
408 {
409 bfd_byte *last;
410
411 last = buf;
412 while (buf < end)
413 if (*buf == DW_CFA_nop)
414 buf++;
415 else
416 {
417 if (*buf == DW_CFA_set_loc)
418 ++*set_loc_count;
419 if (!skip_cfa_op (&buf, end, encoded_ptr_width))
420 return 0;
421 last = buf;
422 }
423 return last;
424 }
425
426 /* Called before calling _bfd_elf_parse_eh_frame on every input bfd's
427 .eh_frame section. */
428
429 void
430 _bfd_elf_begin_eh_frame_parsing (struct bfd_link_info *info)
431 {
432 struct eh_frame_hdr_info *hdr_info;
433
434 hdr_info = &elf_hash_table (info)->eh_info;
435 hdr_info->merge_cies = !info->relocatable;
436 }
437
438 /* Try to parse .eh_frame section SEC, which belongs to ABFD. Store the
439 information in the section's sec_info field on success. COOKIE
440 describes the relocations in SEC. */
441
442 void
443 _bfd_elf_parse_eh_frame (bfd *abfd, struct bfd_link_info *info,
444 asection *sec, struct elf_reloc_cookie *cookie)
445 {
446 #define REQUIRE(COND) \
447 do \
448 if (!(COND)) \
449 goto free_no_table; \
450 while (0)
451
452 bfd_byte *ehbuf = NULL, *buf, *end;
453 bfd_byte *last_fde;
454 struct eh_cie_fde *this_inf;
455 unsigned int hdr_length, hdr_id;
456 unsigned int cie_count;
457 struct cie *cie, *local_cies = NULL;
458 struct elf_link_hash_table *htab;
459 struct eh_frame_hdr_info *hdr_info;
460 struct eh_frame_sec_info *sec_info = NULL;
461 unsigned int ptr_size;
462 unsigned int num_cies;
463 unsigned int num_entries;
464 elf_gc_mark_hook_fn gc_mark_hook;
465
466 htab = elf_hash_table (info);
467 hdr_info = &htab->eh_info;
468 if (hdr_info->parsed_eh_frames)
469 return;
470
471 if (sec->size == 0)
472 {
473 /* This file does not contain .eh_frame information. */
474 return;
475 }
476
477 if (bfd_is_abs_section (sec->output_section))
478 {
479 /* At least one of the sections is being discarded from the
480 link, so we should just ignore them. */
481 return;
482 }
483
484 /* Read the frame unwind information from abfd. */
485
486 REQUIRE (bfd_malloc_and_get_section (abfd, sec, &ehbuf));
487
488 if (sec->size >= 4
489 && bfd_get_32 (abfd, ehbuf) == 0
490 && cookie->rel == cookie->relend)
491 {
492 /* Empty .eh_frame section. */
493 free (ehbuf);
494 return;
495 }
496
497 /* If .eh_frame section size doesn't fit into int, we cannot handle
498 it (it would need to use 64-bit .eh_frame format anyway). */
499 REQUIRE (sec->size == (unsigned int) sec->size);
500
501 ptr_size = (get_elf_backend_data (abfd)
502 ->elf_backend_eh_frame_address_size (abfd, sec));
503 REQUIRE (ptr_size != 0);
504
505 /* Go through the section contents and work out how many FDEs and
506 CIEs there are. */
507 buf = ehbuf;
508 end = ehbuf + sec->size;
509 num_cies = 0;
510 num_entries = 0;
511 while (buf != end)
512 {
513 num_entries++;
514
515 /* Read the length of the entry. */
516 REQUIRE (skip_bytes (&buf, end, 4));
517 hdr_length = bfd_get_32 (abfd, buf - 4);
518
519 /* 64-bit .eh_frame is not supported. */
520 REQUIRE (hdr_length != 0xffffffff);
521 if (hdr_length == 0)
522 break;
523
524 REQUIRE (skip_bytes (&buf, end, 4));
525 hdr_id = bfd_get_32 (abfd, buf - 4);
526 if (hdr_id == 0)
527 num_cies++;
528
529 REQUIRE (skip_bytes (&buf, end, hdr_length - 4));
530 }
531
532 sec_info = bfd_zmalloc (sizeof (struct eh_frame_sec_info)
533 + (num_entries - 1) * sizeof (struct eh_cie_fde));
534 REQUIRE (sec_info);
535
536 /* We need to have a "struct cie" for each CIE in this section. */
537 local_cies = bfd_zmalloc (num_cies * sizeof (*local_cies));
538 REQUIRE (local_cies);
539
540 #define ENSURE_NO_RELOCS(buf) \
541 REQUIRE (!(cookie->rel < cookie->relend \
542 && (cookie->rel->r_offset \
543 < (bfd_size_type) ((buf) - ehbuf)) \
544 && cookie->rel->r_info != 0))
545
546 #define SKIP_RELOCS(buf) \
547 while (cookie->rel < cookie->relend \
548 && (cookie->rel->r_offset \
549 < (bfd_size_type) ((buf) - ehbuf))) \
550 cookie->rel++
551
552 #define REQUIRE_CLEARED_RELOCS(buf) \
553 while (cookie->rel < cookie->relend \
554 && (cookie->rel->r_offset \
555 < (bfd_size_type) ((buf) - ehbuf))) \
556 { \
557 REQUIRE (cookie->rel->r_info == 0); \
558 REQUIRE (cookie->rel->r_addend == 0); \
559 cookie->rel++; \
560 }
561
562 #define GET_RELOC(buf) \
563 ((cookie->rel < cookie->relend \
564 && (cookie->rel->r_offset \
565 == (bfd_size_type) ((buf) - ehbuf))) \
566 ? cookie->rel : NULL)
567
568 buf = ehbuf;
569 cie_count = 0;
570 gc_mark_hook = get_elf_backend_data (abfd)->gc_mark_hook;
571 while ((bfd_size_type) (buf - ehbuf) != sec->size)
572 {
573 char *aug;
574 bfd_byte *start, *insns, *insns_end;
575 bfd_size_type length;
576 unsigned int set_loc_count;
577
578 this_inf = sec_info->entry + sec_info->count;
579 last_fde = buf;
580
581 /* Read the length of the entry. */
582 REQUIRE (skip_bytes (&buf, ehbuf + sec->size, 4));
583 hdr_length = bfd_get_32 (abfd, buf - 4);
584
585 /* The CIE/FDE must be fully contained in this input section. */
586 REQUIRE ((bfd_size_type) (buf - ehbuf) + hdr_length <= sec->size);
587 end = buf + hdr_length;
588
589 this_inf->offset = last_fde - ehbuf;
590 this_inf->size = 4 + hdr_length;
591 this_inf->reloc_index = cookie->rel - cookie->rels;
592
593 if (hdr_length == 0)
594 {
595 /* A zero-length CIE should only be found at the end of
596 the section. */
597 REQUIRE ((bfd_size_type) (buf - ehbuf) == sec->size);
598 ENSURE_NO_RELOCS (buf);
599 sec_info->count++;
600 break;
601 }
602
603 REQUIRE (skip_bytes (&buf, end, 4));
604 hdr_id = bfd_get_32 (abfd, buf - 4);
605
606 if (hdr_id == 0)
607 {
608 unsigned int initial_insn_length;
609
610 /* CIE */
611 this_inf->cie = 1;
612
613 /* Point CIE to one of the section-local cie structures. */
614 cie = local_cies + cie_count++;
615
616 cie->cie_inf = this_inf;
617 cie->length = hdr_length;
618 cie->output_sec = sec->output_section;
619 start = buf;
620 REQUIRE (read_byte (&buf, end, &cie->version));
621
622 /* Cannot handle unknown versions. */
623 REQUIRE (cie->version == 1 || cie->version == 3);
624 REQUIRE (strlen ((char *) buf) < sizeof (cie->augmentation));
625
626 strcpy (cie->augmentation, (char *) buf);
627 buf = (bfd_byte *) strchr ((char *) buf, '\0') + 1;
628 ENSURE_NO_RELOCS (buf);
629 if (buf[0] == 'e' && buf[1] == 'h')
630 {
631 /* GCC < 3.0 .eh_frame CIE */
632 /* We cannot merge "eh" CIEs because __EXCEPTION_TABLE__
633 is private to each CIE, so we don't need it for anything.
634 Just skip it. */
635 REQUIRE (skip_bytes (&buf, end, ptr_size));
636 SKIP_RELOCS (buf);
637 }
638 REQUIRE (read_uleb128 (&buf, end, &cie->code_align));
639 REQUIRE (read_sleb128 (&buf, end, &cie->data_align));
640 if (cie->version == 1)
641 {
642 REQUIRE (buf < end);
643 cie->ra_column = *buf++;
644 }
645 else
646 REQUIRE (read_uleb128 (&buf, end, &cie->ra_column));
647 ENSURE_NO_RELOCS (buf);
648 cie->lsda_encoding = DW_EH_PE_omit;
649 cie->fde_encoding = DW_EH_PE_omit;
650 cie->per_encoding = DW_EH_PE_omit;
651 aug = cie->augmentation;
652 if (aug[0] != 'e' || aug[1] != 'h')
653 {
654 if (*aug == 'z')
655 {
656 aug++;
657 REQUIRE (read_uleb128 (&buf, end, &cie->augmentation_size));
658 ENSURE_NO_RELOCS (buf);
659 }
660
661 while (*aug != '\0')
662 switch (*aug++)
663 {
664 case 'L':
665 REQUIRE (read_byte (&buf, end, &cie->lsda_encoding));
666 ENSURE_NO_RELOCS (buf);
667 REQUIRE (get_DW_EH_PE_width (cie->lsda_encoding, ptr_size));
668 break;
669 case 'R':
670 REQUIRE (read_byte (&buf, end, &cie->fde_encoding));
671 ENSURE_NO_RELOCS (buf);
672 REQUIRE (get_DW_EH_PE_width (cie->fde_encoding, ptr_size));
673 break;
674 case 'S':
675 break;
676 case 'P':
677 {
678 int per_width;
679
680 REQUIRE (read_byte (&buf, end, &cie->per_encoding));
681 per_width = get_DW_EH_PE_width (cie->per_encoding,
682 ptr_size);
683 REQUIRE (per_width);
684 if ((cie->per_encoding & 0xf0) == DW_EH_PE_aligned)
685 {
686 length = -(buf - ehbuf) & (per_width - 1);
687 REQUIRE (skip_bytes (&buf, end, length));
688 }
689 ENSURE_NO_RELOCS (buf);
690 /* Ensure we have a reloc here. */
691 REQUIRE (GET_RELOC (buf));
692 cie->personality.reloc_index
693 = cookie->rel - cookie->rels;
694 /* Cope with MIPS-style composite relocations. */
695 do
696 cookie->rel++;
697 while (GET_RELOC (buf) != NULL);
698 REQUIRE (skip_bytes (&buf, end, per_width));
699 }
700 break;
701 default:
702 /* Unrecognized augmentation. Better bail out. */
703 goto free_no_table;
704 }
705 }
706
707 /* For shared libraries, try to get rid of as many RELATIVE relocs
708 as possible. */
709 if (info->shared
710 && (get_elf_backend_data (abfd)
711 ->elf_backend_can_make_relative_eh_frame
712 (abfd, info, sec)))
713 {
714 if ((cie->fde_encoding & 0xf0) == DW_EH_PE_absptr)
715 this_inf->make_relative = 1;
716 /* If the CIE doesn't already have an 'R' entry, it's fairly
717 easy to add one, provided that there's no aligned data
718 after the augmentation string. */
719 else if (cie->fde_encoding == DW_EH_PE_omit
720 && (cie->per_encoding & 0xf0) != DW_EH_PE_aligned)
721 {
722 if (*cie->augmentation == 0)
723 this_inf->add_augmentation_size = 1;
724 this_inf->u.cie.add_fde_encoding = 1;
725 this_inf->make_relative = 1;
726 }
727 }
728
729 if (info->shared
730 && (get_elf_backend_data (abfd)
731 ->elf_backend_can_make_lsda_relative_eh_frame
732 (abfd, info, sec))
733 && (cie->lsda_encoding & 0xf0) == DW_EH_PE_absptr)
734 cie->can_make_lsda_relative = 1;
735
736 /* If FDE encoding was not specified, it defaults to
737 DW_EH_absptr. */
738 if (cie->fde_encoding == DW_EH_PE_omit)
739 cie->fde_encoding = DW_EH_PE_absptr;
740
741 initial_insn_length = end - buf;
742 if (initial_insn_length <= sizeof (cie->initial_instructions))
743 {
744 cie->initial_insn_length = initial_insn_length;
745 memcpy (cie->initial_instructions, buf, initial_insn_length);
746 }
747 insns = buf;
748 buf += initial_insn_length;
749 ENSURE_NO_RELOCS (buf);
750
751 if (hdr_info->merge_cies)
752 this_inf->u.cie.u.full_cie = cie;
753 this_inf->u.cie.per_encoding_relative
754 = (cie->per_encoding & 0x70) == DW_EH_PE_pcrel;
755 }
756 else
757 {
758 asection *rsec;
759
760 /* Find the corresponding CIE. */
761 unsigned int cie_offset = this_inf->offset + 4 - hdr_id;
762 for (cie = local_cies; cie < local_cies + cie_count; cie++)
763 if (cie_offset == cie->cie_inf->offset)
764 break;
765
766 /* Ensure this FDE references one of the CIEs in this input
767 section. */
768 REQUIRE (cie != local_cies + cie_count);
769 this_inf->u.fde.cie_inf = cie->cie_inf;
770 this_inf->make_relative = cie->cie_inf->make_relative;
771 this_inf->add_augmentation_size
772 = cie->cie_inf->add_augmentation_size;
773
774 ENSURE_NO_RELOCS (buf);
775 REQUIRE (GET_RELOC (buf));
776
777 /* Chain together the FDEs for each section. */
778 rsec = _bfd_elf_gc_mark_rsec (info, sec, gc_mark_hook, cookie);
779 /* RSEC will be NULL if FDE was cleared out as it was belonging to
780 a discarded SHT_GROUP. */
781 if (rsec)
782 {
783 REQUIRE (rsec->owner == abfd);
784 this_inf->u.fde.next_for_section = elf_fde_list (rsec);
785 elf_fde_list (rsec) = this_inf;
786 }
787
788 /* Skip the initial location and address range. */
789 start = buf;
790 length = get_DW_EH_PE_width (cie->fde_encoding, ptr_size);
791 REQUIRE (skip_bytes (&buf, end, 2 * length));
792
793 /* Skip the augmentation size, if present. */
794 if (cie->augmentation[0] == 'z')
795 REQUIRE (read_uleb128 (&buf, end, &length));
796 else
797 length = 0;
798
799 /* Of the supported augmentation characters above, only 'L'
800 adds augmentation data to the FDE. This code would need to
801 be adjusted if any future augmentations do the same thing. */
802 if (cie->lsda_encoding != DW_EH_PE_omit)
803 {
804 SKIP_RELOCS (buf);
805 if (cie->can_make_lsda_relative && GET_RELOC (buf))
806 cie->cie_inf->u.cie.make_lsda_relative = 1;
807 this_inf->lsda_offset = buf - start;
808 /* If there's no 'z' augmentation, we don't know where the
809 CFA insns begin. Assume no padding. */
810 if (cie->augmentation[0] != 'z')
811 length = end - buf;
812 }
813
814 /* Skip over the augmentation data. */
815 REQUIRE (skip_bytes (&buf, end, length));
816 insns = buf;
817
818 buf = last_fde + 4 + hdr_length;
819
820 /* Cleared FDE? The instructions will not be cleared but verify all
821 the relocation entries for them are cleared. */
822 if (rsec == NULL)
823 {
824 REQUIRE_CLEARED_RELOCS (buf);
825 }
826 else
827 {
828 SKIP_RELOCS (buf);
829 }
830 }
831
832 /* Try to interpret the CFA instructions and find the first
833 padding nop. Shrink this_inf's size so that it doesn't
834 include the padding. */
835 length = get_DW_EH_PE_width (cie->fde_encoding, ptr_size);
836 set_loc_count = 0;
837 insns_end = skip_non_nops (insns, end, length, &set_loc_count);
838 /* If we don't understand the CFA instructions, we can't know
839 what needs to be adjusted there. */
840 if (insns_end == NULL
841 /* For the time being we don't support DW_CFA_set_loc in
842 CIE instructions. */
843 || (set_loc_count && this_inf->cie))
844 goto free_no_table;
845 this_inf->size -= end - insns_end;
846 if (insns_end != end && this_inf->cie)
847 {
848 cie->initial_insn_length -= end - insns_end;
849 cie->length -= end - insns_end;
850 }
851 if (set_loc_count
852 && ((cie->fde_encoding & 0xf0) == DW_EH_PE_pcrel
853 || this_inf->make_relative))
854 {
855 unsigned int cnt;
856 bfd_byte *p;
857
858 this_inf->set_loc = bfd_malloc ((set_loc_count + 1)
859 * sizeof (unsigned int));
860 REQUIRE (this_inf->set_loc);
861 this_inf->set_loc[0] = set_loc_count;
862 p = insns;
863 cnt = 0;
864 while (p < end)
865 {
866 if (*p == DW_CFA_set_loc)
867 this_inf->set_loc[++cnt] = p + 1 - start;
868 REQUIRE (skip_cfa_op (&p, end, length));
869 }
870 }
871
872 this_inf->removed = 1;
873 this_inf->fde_encoding = cie->fde_encoding;
874 this_inf->lsda_encoding = cie->lsda_encoding;
875 sec_info->count++;
876 }
877 BFD_ASSERT (sec_info->count == num_entries);
878 BFD_ASSERT (cie_count == num_cies);
879
880 elf_section_data (sec)->sec_info = sec_info;
881 sec->sec_info_type = ELF_INFO_TYPE_EH_FRAME;
882 if (hdr_info->merge_cies)
883 {
884 sec_info->cies = local_cies;
885 local_cies = NULL;
886 }
887 goto success;
888
889 free_no_table:
890 (*info->callbacks->einfo)
891 (_("%P: error in %B(%A); no .eh_frame_hdr table will be created.\n"),
892 abfd, sec);
893 hdr_info->table = FALSE;
894 if (sec_info)
895 free (sec_info);
896 success:
897 if (ehbuf)
898 free (ehbuf);
899 if (local_cies)
900 free (local_cies);
901 #undef REQUIRE
902 }
903
904 /* Finish a pass over all .eh_frame sections. */
905
906 void
907 _bfd_elf_end_eh_frame_parsing (struct bfd_link_info *info)
908 {
909 struct eh_frame_hdr_info *hdr_info;
910
911 hdr_info = &elf_hash_table (info)->eh_info;
912 hdr_info->parsed_eh_frames = TRUE;
913 }
914
915 /* Mark all relocations against CIE or FDE ENT, which occurs in
916 .eh_frame section SEC. COOKIE describes the relocations in SEC;
917 its "rel" field can be changed freely. */
918
919 static bfd_boolean
920 mark_entry (struct bfd_link_info *info, asection *sec,
921 struct eh_cie_fde *ent, elf_gc_mark_hook_fn gc_mark_hook,
922 struct elf_reloc_cookie *cookie)
923 {
924 for (cookie->rel = cookie->rels + ent->reloc_index;
925 cookie->rel < cookie->relend
926 && cookie->rel->r_offset < ent->offset + ent->size;
927 cookie->rel++)
928 if (!_bfd_elf_gc_mark_reloc (info, sec, gc_mark_hook, cookie))
929 return FALSE;
930
931 return TRUE;
932 }
933
934 /* Mark all the relocations against FDEs that relate to code in input
935 section SEC. The FDEs belong to .eh_frame section EH_FRAME, whose
936 relocations are described by COOKIE. */
937
938 bfd_boolean
939 _bfd_elf_gc_mark_fdes (struct bfd_link_info *info, asection *sec,
940 asection *eh_frame, elf_gc_mark_hook_fn gc_mark_hook,
941 struct elf_reloc_cookie *cookie)
942 {
943 struct eh_cie_fde *fde, *cie;
944
945 for (fde = elf_fde_list (sec); fde; fde = fde->u.fde.next_for_section)
946 {
947 if (!mark_entry (info, eh_frame, fde, gc_mark_hook, cookie))
948 return FALSE;
949
950 /* At this stage, all cie_inf fields point to local CIEs, so we
951 can use the same cookie to refer to them. */
952 cie = fde->u.fde.cie_inf;
953 if (!cie->u.cie.gc_mark)
954 {
955 cie->u.cie.gc_mark = 1;
956 if (!mark_entry (info, eh_frame, cie, gc_mark_hook, cookie))
957 return FALSE;
958 }
959 }
960 return TRUE;
961 }
962
963 /* Input section SEC of ABFD is an .eh_frame section that contains the
964 CIE described by CIE_INF. Return a version of CIE_INF that is going
965 to be kept in the output, adding CIE_INF to the output if necessary.
966
967 HDR_INFO is the .eh_frame_hdr information and COOKIE describes the
968 relocations in REL. */
969
970 static struct eh_cie_fde *
971 find_merged_cie (bfd *abfd, asection *sec,
972 struct eh_frame_hdr_info *hdr_info,
973 struct elf_reloc_cookie *cookie,
974 struct eh_cie_fde *cie_inf)
975 {
976 unsigned long r_symndx;
977 struct cie *cie, *new_cie;
978 Elf_Internal_Rela *rel;
979 void **loc;
980
981 /* Use CIE_INF if we have already decided to keep it. */
982 if (!cie_inf->removed)
983 return cie_inf;
984
985 /* If we have merged CIE_INF with another CIE, use that CIE instead. */
986 if (cie_inf->u.cie.merged)
987 return cie_inf->u.cie.u.merged_with;
988
989 cie = cie_inf->u.cie.u.full_cie;
990
991 /* Assume we will need to keep CIE_INF. */
992 cie_inf->removed = 0;
993 cie_inf->u.cie.u.sec = sec;
994
995 /* If we are not merging CIEs, use CIE_INF. */
996 if (cie == NULL)
997 return cie_inf;
998
999 if (cie->per_encoding != DW_EH_PE_omit)
1000 {
1001 /* Work out the address of personality routine, either as an absolute
1002 value or as a symbol. */
1003 rel = cookie->rels + cie->personality.reloc_index;
1004 memset (&cie->personality, 0, sizeof (cie->personality));
1005 #ifdef BFD64
1006 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
1007 r_symndx = ELF64_R_SYM (rel->r_info);
1008 else
1009 #endif
1010 r_symndx = ELF32_R_SYM (rel->r_info);
1011 if (r_symndx >= cookie->locsymcount
1012 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
1013 {
1014 struct elf_link_hash_entry *h;
1015
1016 r_symndx -= cookie->extsymoff;
1017 h = cookie->sym_hashes[r_symndx];
1018
1019 while (h->root.type == bfd_link_hash_indirect
1020 || h->root.type == bfd_link_hash_warning)
1021 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1022
1023 cie->personality.h = h;
1024 }
1025 else
1026 {
1027 Elf_Internal_Sym *sym;
1028 asection *sym_sec;
1029
1030 sym = &cookie->locsyms[r_symndx];
1031 sym_sec = bfd_section_from_elf_index (abfd, sym->st_shndx);
1032 if (sym_sec == NULL)
1033 return cie_inf;
1034
1035 if (sym_sec->kept_section != NULL)
1036 sym_sec = sym_sec->kept_section;
1037 if (sym_sec->output_section == NULL)
1038 return cie_inf;
1039
1040 cie->local_personality = 1;
1041 cie->personality.val = (sym->st_value
1042 + sym_sec->output_offset
1043 + sym_sec->output_section->vma);
1044 }
1045 }
1046
1047 /* See if we can merge this CIE with an earlier one. */
1048 cie->output_sec = sec->output_section;
1049 cie_compute_hash (cie);
1050 if (hdr_info->cies == NULL)
1051 {
1052 hdr_info->cies = htab_try_create (1, cie_hash, cie_eq, free);
1053 if (hdr_info->cies == NULL)
1054 return cie_inf;
1055 }
1056 loc = htab_find_slot_with_hash (hdr_info->cies, cie, cie->hash, INSERT);
1057 if (loc == NULL)
1058 return cie_inf;
1059
1060 new_cie = (struct cie *) *loc;
1061 if (new_cie == NULL)
1062 {
1063 /* Keep CIE_INF and record it in the hash table. */
1064 new_cie = malloc (sizeof (struct cie));
1065 if (new_cie == NULL)
1066 return cie_inf;
1067
1068 memcpy (new_cie, cie, sizeof (struct cie));
1069 *loc = new_cie;
1070 }
1071 else
1072 {
1073 /* Merge CIE_INF with NEW_CIE->CIE_INF. */
1074 cie_inf->removed = 1;
1075 cie_inf->u.cie.merged = 1;
1076 cie_inf->u.cie.u.merged_with = new_cie->cie_inf;
1077 if (cie_inf->u.cie.make_lsda_relative)
1078 new_cie->cie_inf->u.cie.make_lsda_relative = 1;
1079 }
1080 return new_cie->cie_inf;
1081 }
1082
1083 /* This function is called for each input file before the .eh_frame
1084 section is relocated. It discards duplicate CIEs and FDEs for discarded
1085 functions. The function returns TRUE iff any entries have been
1086 deleted. */
1087
1088 bfd_boolean
1089 _bfd_elf_discard_section_eh_frame
1090 (bfd *abfd, struct bfd_link_info *info, asection *sec,
1091 bfd_boolean (*reloc_symbol_deleted_p) (bfd_vma, void *),
1092 struct elf_reloc_cookie *cookie)
1093 {
1094 struct eh_cie_fde *ent;
1095 struct eh_frame_sec_info *sec_info;
1096 struct eh_frame_hdr_info *hdr_info;
1097 unsigned int ptr_size, offset;
1098
1099 sec_info = (struct eh_frame_sec_info *) elf_section_data (sec)->sec_info;
1100 if (sec_info == NULL)
1101 return FALSE;
1102
1103 hdr_info = &elf_hash_table (info)->eh_info;
1104 for (ent = sec_info->entry; ent < sec_info->entry + sec_info->count; ++ent)
1105 if (ent->size == 4)
1106 /* There should only be one zero terminator, on the last input
1107 file supplying .eh_frame (crtend.o). Remove any others. */
1108 ent->removed = sec->map_head.s != NULL;
1109 else if (!ent->cie)
1110 {
1111 cookie->rel = cookie->rels + ent->reloc_index;
1112 BFD_ASSERT (cookie->rel < cookie->relend
1113 && cookie->rel->r_offset == ent->offset + 8);
1114 if (!(*reloc_symbol_deleted_p) (ent->offset + 8, cookie))
1115 {
1116 if (info->shared
1117 && (((ent->fde_encoding & 0xf0) == DW_EH_PE_absptr
1118 && ent->make_relative == 0)
1119 || (ent->fde_encoding & 0xf0) == DW_EH_PE_aligned))
1120 {
1121 /* If a shared library uses absolute pointers
1122 which we cannot turn into PC relative,
1123 don't create the binary search table,
1124 since it is affected by runtime relocations. */
1125 hdr_info->table = FALSE;
1126 (*info->callbacks->einfo)
1127 (_("%P: fde encoding in %B(%A) prevents .eh_frame_hdr"
1128 " table being created.\n"), abfd, sec);
1129 }
1130 ent->removed = 0;
1131 hdr_info->fde_count++;
1132 ent->u.fde.cie_inf = find_merged_cie (abfd, sec, hdr_info, cookie,
1133 ent->u.fde.cie_inf);
1134 }
1135 }
1136
1137 if (sec_info->cies)
1138 {
1139 free (sec_info->cies);
1140 sec_info->cies = NULL;
1141 }
1142
1143 ptr_size = (get_elf_backend_data (sec->owner)
1144 ->elf_backend_eh_frame_address_size (sec->owner, sec));
1145 offset = 0;
1146 for (ent = sec_info->entry; ent < sec_info->entry + sec_info->count; ++ent)
1147 if (!ent->removed)
1148 {
1149 ent->new_offset = offset;
1150 offset += size_of_output_cie_fde (ent, ptr_size);
1151 }
1152
1153 sec->rawsize = sec->size;
1154 sec->size = offset;
1155 return offset != sec->rawsize;
1156 }
1157
1158 /* This function is called for .eh_frame_hdr section after
1159 _bfd_elf_discard_section_eh_frame has been called on all .eh_frame
1160 input sections. It finalizes the size of .eh_frame_hdr section. */
1161
1162 bfd_boolean
1163 _bfd_elf_discard_section_eh_frame_hdr (bfd *abfd, struct bfd_link_info *info)
1164 {
1165 struct elf_link_hash_table *htab;
1166 struct eh_frame_hdr_info *hdr_info;
1167 asection *sec;
1168
1169 htab = elf_hash_table (info);
1170 hdr_info = &htab->eh_info;
1171
1172 if (hdr_info->cies != NULL)
1173 {
1174 htab_delete (hdr_info->cies);
1175 hdr_info->cies = NULL;
1176 }
1177
1178 sec = hdr_info->hdr_sec;
1179 if (sec == NULL)
1180 return FALSE;
1181
1182 sec->size = EH_FRAME_HDR_SIZE;
1183 if (hdr_info->table)
1184 sec->size += 4 + hdr_info->fde_count * 8;
1185
1186 elf_tdata (abfd)->eh_frame_hdr = sec;
1187 return TRUE;
1188 }
1189
1190 /* This function is called from size_dynamic_sections.
1191 It needs to decide whether .eh_frame_hdr should be output or not,
1192 because when the dynamic symbol table has been sized it is too late
1193 to strip sections. */
1194
1195 bfd_boolean
1196 _bfd_elf_maybe_strip_eh_frame_hdr (struct bfd_link_info *info)
1197 {
1198 asection *o;
1199 bfd *abfd;
1200 struct elf_link_hash_table *htab;
1201 struct eh_frame_hdr_info *hdr_info;
1202
1203 htab = elf_hash_table (info);
1204 hdr_info = &htab->eh_info;
1205 if (hdr_info->hdr_sec == NULL)
1206 return TRUE;
1207
1208 if (bfd_is_abs_section (hdr_info->hdr_sec->output_section))
1209 {
1210 hdr_info->hdr_sec = NULL;
1211 return TRUE;
1212 }
1213
1214 abfd = NULL;
1215 if (info->eh_frame_hdr)
1216 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next)
1217 {
1218 /* Count only sections which have at least a single CIE or FDE.
1219 There cannot be any CIE or FDE <= 8 bytes. */
1220 o = bfd_get_section_by_name (abfd, ".eh_frame");
1221 if (o && o->size > 8 && !bfd_is_abs_section (o->output_section))
1222 break;
1223 }
1224
1225 if (abfd == NULL)
1226 {
1227 hdr_info->hdr_sec->flags |= SEC_EXCLUDE;
1228 hdr_info->hdr_sec = NULL;
1229 return TRUE;
1230 }
1231
1232 hdr_info->table = TRUE;
1233 return TRUE;
1234 }
1235
1236 /* Adjust an address in the .eh_frame section. Given OFFSET within
1237 SEC, this returns the new offset in the adjusted .eh_frame section,
1238 or -1 if the address refers to a CIE/FDE which has been removed
1239 or to offset with dynamic relocation which is no longer needed. */
1240
1241 bfd_vma
1242 _bfd_elf_eh_frame_section_offset (bfd *output_bfd ATTRIBUTE_UNUSED,
1243 struct bfd_link_info *info,
1244 asection *sec,
1245 bfd_vma offset)
1246 {
1247 struct eh_frame_sec_info *sec_info;
1248 struct elf_link_hash_table *htab;
1249 struct eh_frame_hdr_info *hdr_info;
1250 unsigned int lo, hi, mid;
1251
1252 if (sec->sec_info_type != ELF_INFO_TYPE_EH_FRAME)
1253 return offset;
1254 sec_info = elf_section_data (sec)->sec_info;
1255
1256 if (offset >= sec->rawsize)
1257 return offset - sec->rawsize + sec->size;
1258
1259 htab = elf_hash_table (info);
1260 hdr_info = &htab->eh_info;
1261
1262 lo = 0;
1263 hi = sec_info->count;
1264 mid = 0;
1265 while (lo < hi)
1266 {
1267 mid = (lo + hi) / 2;
1268 if (offset < sec_info->entry[mid].offset)
1269 hi = mid;
1270 else if (offset
1271 >= sec_info->entry[mid].offset + sec_info->entry[mid].size)
1272 lo = mid + 1;
1273 else
1274 break;
1275 }
1276
1277 BFD_ASSERT (lo < hi);
1278
1279 /* FDE or CIE was removed. */
1280 if (sec_info->entry[mid].removed)
1281 return (bfd_vma) -1;
1282
1283 /* If converting to DW_EH_PE_pcrel, there will be no need for run-time
1284 relocation against FDE's initial_location field. */
1285 if (!sec_info->entry[mid].cie
1286 && sec_info->entry[mid].make_relative
1287 && offset == sec_info->entry[mid].offset + 8)
1288 return (bfd_vma) -2;
1289
1290 /* If converting LSDA pointers to DW_EH_PE_pcrel, there will be no need
1291 for run-time relocation against LSDA field. */
1292 if (!sec_info->entry[mid].cie
1293 && sec_info->entry[mid].u.fde.cie_inf->u.cie.make_lsda_relative
1294 && offset == (sec_info->entry[mid].offset + 8
1295 + sec_info->entry[mid].lsda_offset))
1296 return (bfd_vma) -2;
1297
1298 /* If converting to DW_EH_PE_pcrel, there will be no need for run-time
1299 relocation against DW_CFA_set_loc's arguments. */
1300 if (sec_info->entry[mid].set_loc
1301 && sec_info->entry[mid].make_relative
1302 && (offset >= sec_info->entry[mid].offset + 8
1303 + sec_info->entry[mid].set_loc[1]))
1304 {
1305 unsigned int cnt;
1306
1307 for (cnt = 1; cnt <= sec_info->entry[mid].set_loc[0]; cnt++)
1308 if (offset == sec_info->entry[mid].offset + 8
1309 + sec_info->entry[mid].set_loc[cnt])
1310 return (bfd_vma) -2;
1311 }
1312
1313 /* Any new augmentation bytes go before the first relocation. */
1314 return (offset + sec_info->entry[mid].new_offset
1315 - sec_info->entry[mid].offset
1316 + extra_augmentation_string_bytes (sec_info->entry + mid)
1317 + extra_augmentation_data_bytes (sec_info->entry + mid));
1318 }
1319
1320 /* Write out .eh_frame section. This is called with the relocated
1321 contents. */
1322
1323 bfd_boolean
1324 _bfd_elf_write_section_eh_frame (bfd *abfd,
1325 struct bfd_link_info *info,
1326 asection *sec,
1327 bfd_byte *contents)
1328 {
1329 struct eh_frame_sec_info *sec_info;
1330 struct elf_link_hash_table *htab;
1331 struct eh_frame_hdr_info *hdr_info;
1332 unsigned int ptr_size;
1333 struct eh_cie_fde *ent;
1334
1335 if (sec->sec_info_type != ELF_INFO_TYPE_EH_FRAME)
1336 return bfd_set_section_contents (abfd, sec->output_section, contents,
1337 sec->output_offset, sec->size);
1338
1339 ptr_size = (get_elf_backend_data (abfd)
1340 ->elf_backend_eh_frame_address_size (abfd, sec));
1341 BFD_ASSERT (ptr_size != 0);
1342
1343 sec_info = elf_section_data (sec)->sec_info;
1344 htab = elf_hash_table (info);
1345 hdr_info = &htab->eh_info;
1346
1347 if (hdr_info->table && hdr_info->array == NULL)
1348 hdr_info->array
1349 = bfd_malloc (hdr_info->fde_count * sizeof(*hdr_info->array));
1350 if (hdr_info->array == NULL)
1351 hdr_info = NULL;
1352
1353 /* The new offsets can be bigger or smaller than the original offsets.
1354 We therefore need to make two passes over the section: one backward
1355 pass to move entries up and one forward pass to move entries down.
1356 The two passes won't interfere with each other because entries are
1357 not reordered */
1358 for (ent = sec_info->entry + sec_info->count; ent-- != sec_info->entry;)
1359 if (!ent->removed && ent->new_offset > ent->offset)
1360 memmove (contents + ent->new_offset, contents + ent->offset, ent->size);
1361
1362 for (ent = sec_info->entry; ent < sec_info->entry + sec_info->count; ++ent)
1363 if (!ent->removed && ent->new_offset < ent->offset)
1364 memmove (contents + ent->new_offset, contents + ent->offset, ent->size);
1365
1366 for (ent = sec_info->entry; ent < sec_info->entry + sec_info->count; ++ent)
1367 {
1368 unsigned char *buf, *end;
1369 unsigned int new_size;
1370
1371 if (ent->removed)
1372 continue;
1373
1374 if (ent->size == 4)
1375 {
1376 /* Any terminating FDE must be at the end of the section. */
1377 BFD_ASSERT (ent == sec_info->entry + sec_info->count - 1);
1378 continue;
1379 }
1380
1381 buf = contents + ent->new_offset;
1382 end = buf + ent->size;
1383 new_size = size_of_output_cie_fde (ent, ptr_size);
1384
1385 /* Update the size. It may be shrinked. */
1386 bfd_put_32 (abfd, new_size - 4, buf);
1387
1388 /* Filling the extra bytes with DW_CFA_nops. */
1389 if (new_size != ent->size)
1390 memset (end, 0, new_size - ent->size);
1391
1392 if (ent->cie)
1393 {
1394 /* CIE */
1395 if (ent->make_relative
1396 || ent->u.cie.make_lsda_relative
1397 || ent->u.cie.per_encoding_relative)
1398 {
1399 char *aug;
1400 unsigned int action, extra_string, extra_data;
1401 unsigned int per_width, per_encoding;
1402
1403 /* Need to find 'R' or 'L' augmentation's argument and modify
1404 DW_EH_PE_* value. */
1405 action = ((ent->make_relative ? 1 : 0)
1406 | (ent->u.cie.make_lsda_relative ? 2 : 0)
1407 | (ent->u.cie.per_encoding_relative ? 4 : 0));
1408 extra_string = extra_augmentation_string_bytes (ent);
1409 extra_data = extra_augmentation_data_bytes (ent);
1410
1411 /* Skip length, id and version. */
1412 buf += 9;
1413 aug = (char *) buf;
1414 buf += strlen (aug) + 1;
1415 skip_leb128 (&buf, end);
1416 skip_leb128 (&buf, end);
1417 skip_leb128 (&buf, end);
1418 if (*aug == 'z')
1419 {
1420 /* The uleb128 will always be a single byte for the kind
1421 of augmentation strings that we're prepared to handle. */
1422 *buf++ += extra_data;
1423 aug++;
1424 }
1425
1426 /* Make room for the new augmentation string and data bytes. */
1427 memmove (buf + extra_string + extra_data, buf, end - buf);
1428 memmove (aug + extra_string, aug, buf - (bfd_byte *) aug);
1429 buf += extra_string;
1430 end += extra_string + extra_data;
1431
1432 if (ent->add_augmentation_size)
1433 {
1434 *aug++ = 'z';
1435 *buf++ = extra_data - 1;
1436 }
1437 if (ent->u.cie.add_fde_encoding)
1438 {
1439 BFD_ASSERT (action & 1);
1440 *aug++ = 'R';
1441 *buf++ = DW_EH_PE_pcrel;
1442 action &= ~1;
1443 }
1444
1445 while (action)
1446 switch (*aug++)
1447 {
1448 case 'L':
1449 if (action & 2)
1450 {
1451 BFD_ASSERT (*buf == ent->lsda_encoding);
1452 *buf |= DW_EH_PE_pcrel;
1453 action &= ~2;
1454 }
1455 buf++;
1456 break;
1457 case 'P':
1458 per_encoding = *buf++;
1459 per_width = get_DW_EH_PE_width (per_encoding, ptr_size);
1460 BFD_ASSERT (per_width != 0);
1461 BFD_ASSERT (((per_encoding & 0x70) == DW_EH_PE_pcrel)
1462 == ent->u.cie.per_encoding_relative);
1463 if ((per_encoding & 0xf0) == DW_EH_PE_aligned)
1464 buf = (contents
1465 + ((buf - contents + per_width - 1)
1466 & ~((bfd_size_type) per_width - 1)));
1467 if (action & 4)
1468 {
1469 bfd_vma val;
1470
1471 val = read_value (abfd, buf, per_width,
1472 get_DW_EH_PE_signed (per_encoding));
1473 val += (bfd_vma) ent->offset - ent->new_offset;
1474 val -= extra_string + extra_data;
1475 write_value (abfd, buf, val, per_width);
1476 action &= ~4;
1477 }
1478 buf += per_width;
1479 break;
1480 case 'R':
1481 if (action & 1)
1482 {
1483 BFD_ASSERT (*buf == ent->fde_encoding);
1484 *buf |= DW_EH_PE_pcrel;
1485 action &= ~1;
1486 }
1487 buf++;
1488 break;
1489 case 'S':
1490 break;
1491 default:
1492 BFD_FAIL ();
1493 }
1494 }
1495 }
1496 else
1497 {
1498 /* FDE */
1499 bfd_vma value, address;
1500 unsigned int width;
1501 bfd_byte *start;
1502 struct eh_cie_fde *cie;
1503
1504 /* Skip length. */
1505 cie = ent->u.fde.cie_inf;
1506 buf += 4;
1507 value = ((ent->new_offset + sec->output_offset + 4)
1508 - (cie->new_offset + cie->u.cie.u.sec->output_offset));
1509 bfd_put_32 (abfd, value, buf);
1510 buf += 4;
1511 width = get_DW_EH_PE_width (ent->fde_encoding, ptr_size);
1512 value = read_value (abfd, buf, width,
1513 get_DW_EH_PE_signed (ent->fde_encoding));
1514 address = value;
1515 if (value)
1516 {
1517 switch (ent->fde_encoding & 0xf0)
1518 {
1519 case DW_EH_PE_indirect:
1520 case DW_EH_PE_textrel:
1521 BFD_ASSERT (hdr_info == NULL);
1522 break;
1523 case DW_EH_PE_datarel:
1524 {
1525 asection *got = bfd_get_section_by_name (abfd, ".got");
1526
1527 BFD_ASSERT (got != NULL);
1528 address += got->vma;
1529 }
1530 break;
1531 case DW_EH_PE_pcrel:
1532 value += (bfd_vma) ent->offset - ent->new_offset;
1533 address += (sec->output_section->vma
1534 + sec->output_offset
1535 + ent->offset + 8);
1536 break;
1537 }
1538 if (ent->make_relative)
1539 value -= (sec->output_section->vma
1540 + sec->output_offset
1541 + ent->new_offset + 8);
1542 write_value (abfd, buf, value, width);
1543 }
1544
1545 start = buf;
1546
1547 if (hdr_info)
1548 {
1549 hdr_info->array[hdr_info->array_count].initial_loc = address;
1550 hdr_info->array[hdr_info->array_count++].fde
1551 = (sec->output_section->vma
1552 + sec->output_offset
1553 + ent->new_offset);
1554 }
1555
1556 if ((ent->lsda_encoding & 0xf0) == DW_EH_PE_pcrel
1557 || cie->u.cie.make_lsda_relative)
1558 {
1559 buf += ent->lsda_offset;
1560 width = get_DW_EH_PE_width (ent->lsda_encoding, ptr_size);
1561 value = read_value (abfd, buf, width,
1562 get_DW_EH_PE_signed (ent->lsda_encoding));
1563 if (value)
1564 {
1565 if ((ent->lsda_encoding & 0xf0) == DW_EH_PE_pcrel)
1566 value += (bfd_vma) ent->offset - ent->new_offset;
1567 else if (cie->u.cie.make_lsda_relative)
1568 value -= (sec->output_section->vma
1569 + sec->output_offset
1570 + ent->new_offset + 8 + ent->lsda_offset);
1571 write_value (abfd, buf, value, width);
1572 }
1573 }
1574 else if (ent->add_augmentation_size)
1575 {
1576 /* Skip the PC and length and insert a zero byte for the
1577 augmentation size. */
1578 buf += width * 2;
1579 memmove (buf + 1, buf, end - buf);
1580 *buf = 0;
1581 }
1582
1583 if (ent->set_loc)
1584 {
1585 /* Adjust DW_CFA_set_loc. */
1586 unsigned int cnt, width;
1587 bfd_vma new_offset;
1588
1589 width = get_DW_EH_PE_width (ent->fde_encoding, ptr_size);
1590 new_offset = ent->new_offset + 8
1591 + extra_augmentation_string_bytes (ent)
1592 + extra_augmentation_data_bytes (ent);
1593
1594 for (cnt = 1; cnt <= ent->set_loc[0]; cnt++)
1595 {
1596 bfd_vma value;
1597 buf = start + ent->set_loc[cnt];
1598
1599 value = read_value (abfd, buf, width,
1600 get_DW_EH_PE_signed (ent->fde_encoding));
1601 if (!value)
1602 continue;
1603
1604 if ((ent->fde_encoding & 0xf0) == DW_EH_PE_pcrel)
1605 value += (bfd_vma) ent->offset + 8 - new_offset;
1606 if (ent->make_relative)
1607 value -= (sec->output_section->vma
1608 + sec->output_offset
1609 + new_offset + ent->set_loc[cnt]);
1610 write_value (abfd, buf, value, width);
1611 }
1612 }
1613 }
1614 }
1615
1616 /* We don't align the section to its section alignment since the
1617 runtime library only expects all CIE/FDE records aligned at
1618 the pointer size. _bfd_elf_discard_section_eh_frame should
1619 have padded CIE/FDE records to multiple of pointer size with
1620 size_of_output_cie_fde. */
1621 if ((sec->size % ptr_size) != 0)
1622 abort ();
1623
1624 return bfd_set_section_contents (abfd, sec->output_section,
1625 contents, (file_ptr) sec->output_offset,
1626 sec->size);
1627 }
1628
1629 /* Helper function used to sort .eh_frame_hdr search table by increasing
1630 VMA of FDE initial location. */
1631
1632 static int
1633 vma_compare (const void *a, const void *b)
1634 {
1635 const struct eh_frame_array_ent *p = a;
1636 const struct eh_frame_array_ent *q = b;
1637 if (p->initial_loc > q->initial_loc)
1638 return 1;
1639 if (p->initial_loc < q->initial_loc)
1640 return -1;
1641 return 0;
1642 }
1643
1644 /* Write out .eh_frame_hdr section. This must be called after
1645 _bfd_elf_write_section_eh_frame has been called on all input
1646 .eh_frame sections.
1647 .eh_frame_hdr format:
1648 ubyte version (currently 1)
1649 ubyte eh_frame_ptr_enc (DW_EH_PE_* encoding of pointer to start of
1650 .eh_frame section)
1651 ubyte fde_count_enc (DW_EH_PE_* encoding of total FDE count
1652 number (or DW_EH_PE_omit if there is no
1653 binary search table computed))
1654 ubyte table_enc (DW_EH_PE_* encoding of binary search table,
1655 or DW_EH_PE_omit if not present.
1656 DW_EH_PE_datarel is using address of
1657 .eh_frame_hdr section start as base)
1658 [encoded] eh_frame_ptr (pointer to start of .eh_frame section)
1659 optionally followed by:
1660 [encoded] fde_count (total number of FDEs in .eh_frame section)
1661 fde_count x [encoded] initial_loc, fde
1662 (array of encoded pairs containing
1663 FDE initial_location field and FDE address,
1664 sorted by increasing initial_loc). */
1665
1666 bfd_boolean
1667 _bfd_elf_write_section_eh_frame_hdr (bfd *abfd, struct bfd_link_info *info)
1668 {
1669 struct elf_link_hash_table *htab;
1670 struct eh_frame_hdr_info *hdr_info;
1671 asection *sec;
1672 bfd_byte *contents;
1673 asection *eh_frame_sec;
1674 bfd_size_type size;
1675 bfd_boolean retval;
1676 bfd_vma encoded_eh_frame;
1677
1678 htab = elf_hash_table (info);
1679 hdr_info = &htab->eh_info;
1680 sec = hdr_info->hdr_sec;
1681 if (sec == NULL)
1682 return TRUE;
1683
1684 size = EH_FRAME_HDR_SIZE;
1685 if (hdr_info->array && hdr_info->array_count == hdr_info->fde_count)
1686 size += 4 + hdr_info->fde_count * 8;
1687 contents = bfd_malloc (size);
1688 if (contents == NULL)
1689 return FALSE;
1690
1691 eh_frame_sec = bfd_get_section_by_name (abfd, ".eh_frame");
1692 if (eh_frame_sec == NULL)
1693 {
1694 free (contents);
1695 return FALSE;
1696 }
1697
1698 memset (contents, 0, EH_FRAME_HDR_SIZE);
1699 contents[0] = 1; /* Version. */
1700 contents[1] = get_elf_backend_data (abfd)->elf_backend_encode_eh_address
1701 (abfd, info, eh_frame_sec, 0, sec, 4,
1702 &encoded_eh_frame); /* .eh_frame offset. */
1703
1704 if (hdr_info->array && hdr_info->array_count == hdr_info->fde_count)
1705 {
1706 contents[2] = DW_EH_PE_udata4; /* FDE count encoding. */
1707 contents[3] = DW_EH_PE_datarel | DW_EH_PE_sdata4; /* Search table enc. */
1708 }
1709 else
1710 {
1711 contents[2] = DW_EH_PE_omit;
1712 contents[3] = DW_EH_PE_omit;
1713 }
1714 bfd_put_32 (abfd, encoded_eh_frame, contents + 4);
1715
1716 if (contents[2] != DW_EH_PE_omit)
1717 {
1718 unsigned int i;
1719
1720 bfd_put_32 (abfd, hdr_info->fde_count, contents + EH_FRAME_HDR_SIZE);
1721 qsort (hdr_info->array, hdr_info->fde_count, sizeof (*hdr_info->array),
1722 vma_compare);
1723 for (i = 0; i < hdr_info->fde_count; i++)
1724 {
1725 bfd_put_32 (abfd,
1726 hdr_info->array[i].initial_loc
1727 - sec->output_section->vma,
1728 contents + EH_FRAME_HDR_SIZE + i * 8 + 4);
1729 bfd_put_32 (abfd,
1730 hdr_info->array[i].fde - sec->output_section->vma,
1731 contents + EH_FRAME_HDR_SIZE + i * 8 + 8);
1732 }
1733 }
1734
1735 retval = bfd_set_section_contents (abfd, sec->output_section,
1736 contents, (file_ptr) sec->output_offset,
1737 sec->size);
1738 free (contents);
1739 return retval;
1740 }
1741
1742 /* Return the width of FDE addresses. This is the default implementation. */
1743
1744 unsigned int
1745 _bfd_elf_eh_frame_address_size (bfd *abfd, asection *sec ATTRIBUTE_UNUSED)
1746 {
1747 return elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64 ? 8 : 4;
1748 }
1749
1750 /* Decide whether we can use a PC-relative encoding within the given
1751 EH frame section. This is the default implementation. */
1752
1753 bfd_boolean
1754 _bfd_elf_can_make_relative (bfd *input_bfd ATTRIBUTE_UNUSED,
1755 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1756 asection *eh_frame_section ATTRIBUTE_UNUSED)
1757 {
1758 return TRUE;
1759 }
1760
1761 /* Select an encoding for the given address. Preference is given to
1762 PC-relative addressing modes. */
1763
1764 bfd_byte
1765 _bfd_elf_encode_eh_address (bfd *abfd ATTRIBUTE_UNUSED,
1766 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1767 asection *osec, bfd_vma offset,
1768 asection *loc_sec, bfd_vma loc_offset,
1769 bfd_vma *encoded)
1770 {
1771 *encoded = osec->vma + offset -
1772 (loc_sec->output_section->vma + loc_sec->output_offset + loc_offset);
1773 return DW_EH_PE_pcrel | DW_EH_PE_sdata4;
1774 }
This page took 0.065419 seconds and 4 git commands to generate.