Add output_type to bfd_link_info
[deliverable/binutils-gdb.git] / bfd / elf-eh-frame.c
1 /* .eh_frame section optimization.
2 Copyright (C) 2001-2015 Free Software Foundation, Inc.
3 Written by Jakub Jelinek <jakub@redhat.com>.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
21
22 #include "sysdep.h"
23 #include "bfd.h"
24 #include "libbfd.h"
25 #include "elf-bfd.h"
26 #include "dwarf2.h"
27
28 #define EH_FRAME_HDR_SIZE 8
29
30 struct cie
31 {
32 unsigned int length;
33 unsigned int hash;
34 unsigned char version;
35 unsigned char local_personality;
36 char augmentation[20];
37 bfd_vma code_align;
38 bfd_signed_vma data_align;
39 bfd_vma ra_column;
40 bfd_vma augmentation_size;
41 union {
42 struct elf_link_hash_entry *h;
43 struct {
44 unsigned int bfd_id;
45 unsigned int index;
46 } sym;
47 unsigned int reloc_index;
48 } personality;
49 struct eh_cie_fde *cie_inf;
50 unsigned char per_encoding;
51 unsigned char lsda_encoding;
52 unsigned char fde_encoding;
53 unsigned char initial_insn_length;
54 unsigned char can_make_lsda_relative;
55 unsigned char initial_instructions[50];
56 };
57
58
59
60 /* If *ITER hasn't reached END yet, read the next byte into *RESULT and
61 move onto the next byte. Return true on success. */
62
63 static inline bfd_boolean
64 read_byte (bfd_byte **iter, bfd_byte *end, unsigned char *result)
65 {
66 if (*iter >= end)
67 return FALSE;
68 *result = *((*iter)++);
69 return TRUE;
70 }
71
72 /* Move *ITER over LENGTH bytes, or up to END, whichever is closer.
73 Return true it was possible to move LENGTH bytes. */
74
75 static inline bfd_boolean
76 skip_bytes (bfd_byte **iter, bfd_byte *end, bfd_size_type length)
77 {
78 if ((bfd_size_type) (end - *iter) < length)
79 {
80 *iter = end;
81 return FALSE;
82 }
83 *iter += length;
84 return TRUE;
85 }
86
87 /* Move *ITER over an leb128, stopping at END. Return true if the end
88 of the leb128 was found. */
89
90 static bfd_boolean
91 skip_leb128 (bfd_byte **iter, bfd_byte *end)
92 {
93 unsigned char byte;
94 do
95 if (!read_byte (iter, end, &byte))
96 return FALSE;
97 while (byte & 0x80);
98 return TRUE;
99 }
100
101 /* Like skip_leb128, but treat the leb128 as an unsigned value and
102 store it in *VALUE. */
103
104 static bfd_boolean
105 read_uleb128 (bfd_byte **iter, bfd_byte *end, bfd_vma *value)
106 {
107 bfd_byte *start, *p;
108
109 start = *iter;
110 if (!skip_leb128 (iter, end))
111 return FALSE;
112
113 p = *iter;
114 *value = *--p;
115 while (p > start)
116 *value = (*value << 7) | (*--p & 0x7f);
117
118 return TRUE;
119 }
120
121 /* Like read_uleb128, but for signed values. */
122
123 static bfd_boolean
124 read_sleb128 (bfd_byte **iter, bfd_byte *end, bfd_signed_vma *value)
125 {
126 bfd_byte *start, *p;
127
128 start = *iter;
129 if (!skip_leb128 (iter, end))
130 return FALSE;
131
132 p = *iter;
133 *value = ((*--p & 0x7f) ^ 0x40) - 0x40;
134 while (p > start)
135 *value = (*value << 7) | (*--p & 0x7f);
136
137 return TRUE;
138 }
139
140 /* Return 0 if either encoding is variable width, or not yet known to bfd. */
141
142 static
143 int get_DW_EH_PE_width (int encoding, int ptr_size)
144 {
145 /* DW_EH_PE_ values of 0x60 and 0x70 weren't defined at the time .eh_frame
146 was added to bfd. */
147 if ((encoding & 0x60) == 0x60)
148 return 0;
149
150 switch (encoding & 7)
151 {
152 case DW_EH_PE_udata2: return 2;
153 case DW_EH_PE_udata4: return 4;
154 case DW_EH_PE_udata8: return 8;
155 case DW_EH_PE_absptr: return ptr_size;
156 default:
157 break;
158 }
159
160 return 0;
161 }
162
163 #define get_DW_EH_PE_signed(encoding) (((encoding) & DW_EH_PE_signed) != 0)
164
165 /* Read a width sized value from memory. */
166
167 static bfd_vma
168 read_value (bfd *abfd, bfd_byte *buf, int width, int is_signed)
169 {
170 bfd_vma value;
171
172 switch (width)
173 {
174 case 2:
175 if (is_signed)
176 value = bfd_get_signed_16 (abfd, buf);
177 else
178 value = bfd_get_16 (abfd, buf);
179 break;
180 case 4:
181 if (is_signed)
182 value = bfd_get_signed_32 (abfd, buf);
183 else
184 value = bfd_get_32 (abfd, buf);
185 break;
186 case 8:
187 if (is_signed)
188 value = bfd_get_signed_64 (abfd, buf);
189 else
190 value = bfd_get_64 (abfd, buf);
191 break;
192 default:
193 BFD_FAIL ();
194 return 0;
195 }
196
197 return value;
198 }
199
200 /* Store a width sized value to memory. */
201
202 static void
203 write_value (bfd *abfd, bfd_byte *buf, bfd_vma value, int width)
204 {
205 switch (width)
206 {
207 case 2: bfd_put_16 (abfd, value, buf); break;
208 case 4: bfd_put_32 (abfd, value, buf); break;
209 case 8: bfd_put_64 (abfd, value, buf); break;
210 default: BFD_FAIL ();
211 }
212 }
213
214 /* Return one if C1 and C2 CIEs can be merged. */
215
216 static int
217 cie_eq (const void *e1, const void *e2)
218 {
219 const struct cie *c1 = (const struct cie *) e1;
220 const struct cie *c2 = (const struct cie *) e2;
221
222 if (c1->hash == c2->hash
223 && c1->length == c2->length
224 && c1->version == c2->version
225 && c1->local_personality == c2->local_personality
226 && strcmp (c1->augmentation, c2->augmentation) == 0
227 && strcmp (c1->augmentation, "eh") != 0
228 && c1->code_align == c2->code_align
229 && c1->data_align == c2->data_align
230 && c1->ra_column == c2->ra_column
231 && c1->augmentation_size == c2->augmentation_size
232 && memcmp (&c1->personality, &c2->personality,
233 sizeof (c1->personality)) == 0
234 && (c1->cie_inf->u.cie.u.sec->output_section
235 == c2->cie_inf->u.cie.u.sec->output_section)
236 && c1->per_encoding == c2->per_encoding
237 && c1->lsda_encoding == c2->lsda_encoding
238 && c1->fde_encoding == c2->fde_encoding
239 && c1->initial_insn_length == c2->initial_insn_length
240 && c1->initial_insn_length <= sizeof (c1->initial_instructions)
241 && memcmp (c1->initial_instructions,
242 c2->initial_instructions,
243 c1->initial_insn_length) == 0)
244 return 1;
245
246 return 0;
247 }
248
249 static hashval_t
250 cie_hash (const void *e)
251 {
252 const struct cie *c = (const struct cie *) e;
253 return c->hash;
254 }
255
256 static hashval_t
257 cie_compute_hash (struct cie *c)
258 {
259 hashval_t h = 0;
260 size_t len;
261 h = iterative_hash_object (c->length, h);
262 h = iterative_hash_object (c->version, h);
263 h = iterative_hash (c->augmentation, strlen (c->augmentation) + 1, h);
264 h = iterative_hash_object (c->code_align, h);
265 h = iterative_hash_object (c->data_align, h);
266 h = iterative_hash_object (c->ra_column, h);
267 h = iterative_hash_object (c->augmentation_size, h);
268 h = iterative_hash_object (c->personality, h);
269 h = iterative_hash_object (c->cie_inf->u.cie.u.sec->output_section, h);
270 h = iterative_hash_object (c->per_encoding, h);
271 h = iterative_hash_object (c->lsda_encoding, h);
272 h = iterative_hash_object (c->fde_encoding, h);
273 h = iterative_hash_object (c->initial_insn_length, h);
274 len = c->initial_insn_length;
275 if (len > sizeof (c->initial_instructions))
276 len = sizeof (c->initial_instructions);
277 h = iterative_hash (c->initial_instructions, len, h);
278 c->hash = h;
279 return h;
280 }
281
282 /* Return the number of extra bytes that we'll be inserting into
283 ENTRY's augmentation string. */
284
285 static INLINE unsigned int
286 extra_augmentation_string_bytes (struct eh_cie_fde *entry)
287 {
288 unsigned int size = 0;
289 if (entry->cie)
290 {
291 if (entry->add_augmentation_size)
292 size++;
293 if (entry->u.cie.add_fde_encoding)
294 size++;
295 }
296 return size;
297 }
298
299 /* Likewise ENTRY's augmentation data. */
300
301 static INLINE unsigned int
302 extra_augmentation_data_bytes (struct eh_cie_fde *entry)
303 {
304 unsigned int size = 0;
305 if (entry->add_augmentation_size)
306 size++;
307 if (entry->cie && entry->u.cie.add_fde_encoding)
308 size++;
309 return size;
310 }
311
312 /* Return the size that ENTRY will have in the output. ALIGNMENT is the
313 required alignment of ENTRY in bytes. */
314
315 static unsigned int
316 size_of_output_cie_fde (struct eh_cie_fde *entry, unsigned int alignment)
317 {
318 if (entry->removed)
319 return 0;
320 if (entry->size == 4)
321 return 4;
322 return (entry->size
323 + extra_augmentation_string_bytes (entry)
324 + extra_augmentation_data_bytes (entry)
325 + alignment - 1) & -alignment;
326 }
327
328 /* Assume that the bytes between *ITER and END are CFA instructions.
329 Try to move *ITER past the first instruction and return true on
330 success. ENCODED_PTR_WIDTH gives the width of pointer entries. */
331
332 static bfd_boolean
333 skip_cfa_op (bfd_byte **iter, bfd_byte *end, unsigned int encoded_ptr_width)
334 {
335 bfd_byte op;
336 bfd_vma length;
337
338 if (!read_byte (iter, end, &op))
339 return FALSE;
340
341 switch (op & 0xc0 ? op & 0xc0 : op)
342 {
343 case DW_CFA_nop:
344 case DW_CFA_advance_loc:
345 case DW_CFA_restore:
346 case DW_CFA_remember_state:
347 case DW_CFA_restore_state:
348 case DW_CFA_GNU_window_save:
349 /* No arguments. */
350 return TRUE;
351
352 case DW_CFA_offset:
353 case DW_CFA_restore_extended:
354 case DW_CFA_undefined:
355 case DW_CFA_same_value:
356 case DW_CFA_def_cfa_register:
357 case DW_CFA_def_cfa_offset:
358 case DW_CFA_def_cfa_offset_sf:
359 case DW_CFA_GNU_args_size:
360 /* One leb128 argument. */
361 return skip_leb128 (iter, end);
362
363 case DW_CFA_val_offset:
364 case DW_CFA_val_offset_sf:
365 case DW_CFA_offset_extended:
366 case DW_CFA_register:
367 case DW_CFA_def_cfa:
368 case DW_CFA_offset_extended_sf:
369 case DW_CFA_GNU_negative_offset_extended:
370 case DW_CFA_def_cfa_sf:
371 /* Two leb128 arguments. */
372 return (skip_leb128 (iter, end)
373 && skip_leb128 (iter, end));
374
375 case DW_CFA_def_cfa_expression:
376 /* A variable-length argument. */
377 return (read_uleb128 (iter, end, &length)
378 && skip_bytes (iter, end, length));
379
380 case DW_CFA_expression:
381 case DW_CFA_val_expression:
382 /* A leb128 followed by a variable-length argument. */
383 return (skip_leb128 (iter, end)
384 && read_uleb128 (iter, end, &length)
385 && skip_bytes (iter, end, length));
386
387 case DW_CFA_set_loc:
388 return skip_bytes (iter, end, encoded_ptr_width);
389
390 case DW_CFA_advance_loc1:
391 return skip_bytes (iter, end, 1);
392
393 case DW_CFA_advance_loc2:
394 return skip_bytes (iter, end, 2);
395
396 case DW_CFA_advance_loc4:
397 return skip_bytes (iter, end, 4);
398
399 case DW_CFA_MIPS_advance_loc8:
400 return skip_bytes (iter, end, 8);
401
402 default:
403 return FALSE;
404 }
405 }
406
407 /* Try to interpret the bytes between BUF and END as CFA instructions.
408 If every byte makes sense, return a pointer to the first DW_CFA_nop
409 padding byte, or END if there is no padding. Return null otherwise.
410 ENCODED_PTR_WIDTH is as for skip_cfa_op. */
411
412 static bfd_byte *
413 skip_non_nops (bfd_byte *buf, bfd_byte *end, unsigned int encoded_ptr_width,
414 unsigned int *set_loc_count)
415 {
416 bfd_byte *last;
417
418 last = buf;
419 while (buf < end)
420 if (*buf == DW_CFA_nop)
421 buf++;
422 else
423 {
424 if (*buf == DW_CFA_set_loc)
425 ++*set_loc_count;
426 if (!skip_cfa_op (&buf, end, encoded_ptr_width))
427 return 0;
428 last = buf;
429 }
430 return last;
431 }
432
433 /* Convert absolute encoding ENCODING into PC-relative form.
434 SIZE is the size of a pointer. */
435
436 static unsigned char
437 make_pc_relative (unsigned char encoding, unsigned int ptr_size)
438 {
439 if ((encoding & 0x7f) == DW_EH_PE_absptr)
440 switch (ptr_size)
441 {
442 case 2:
443 encoding |= DW_EH_PE_sdata2;
444 break;
445 case 4:
446 encoding |= DW_EH_PE_sdata4;
447 break;
448 case 8:
449 encoding |= DW_EH_PE_sdata8;
450 break;
451 }
452 return encoding | DW_EH_PE_pcrel;
453 }
454
455 /* Examine each .eh_frame_entry section and discard those
456 those that are marked SEC_EXCLUDE. */
457
458 static void
459 bfd_elf_discard_eh_frame_entry (struct eh_frame_hdr_info *hdr_info)
460 {
461 unsigned int i;
462 for (i = 0; i < hdr_info->array_count; i++)
463 {
464 if (hdr_info->u.compact.entries[i]->flags & SEC_EXCLUDE)
465 {
466 unsigned int j;
467 for (j = i + 1; j < hdr_info->array_count; j++)
468 hdr_info->u.compact.entries[j-1] = hdr_info->u.compact.entries[j];
469
470 hdr_info->array_count--;
471 hdr_info->u.compact.entries[hdr_info->array_count] = NULL;
472 i--;
473 }
474 }
475 }
476
477 /* Add a .eh_frame_entry section. */
478
479 static void
480 bfd_elf_record_eh_frame_entry (struct eh_frame_hdr_info *hdr_info,
481 asection *sec)
482 {
483 if (hdr_info->array_count == hdr_info->u.compact.allocated_entries)
484 {
485 if (hdr_info->u.compact.allocated_entries == 0)
486 {
487 hdr_info->frame_hdr_is_compact = TRUE;
488 hdr_info->u.compact.allocated_entries = 2;
489 hdr_info->u.compact.entries =
490 bfd_malloc (hdr_info->u.compact.allocated_entries
491 * sizeof (hdr_info->u.compact.entries[0]));
492 }
493 else
494 {
495 hdr_info->u.compact.allocated_entries *= 2;
496 hdr_info->u.compact.entries =
497 bfd_realloc (hdr_info->u.compact.entries,
498 hdr_info->u.compact.allocated_entries
499 * sizeof (hdr_info->u.compact.entries[0]));
500 }
501
502 BFD_ASSERT (hdr_info->u.compact.entries);
503 }
504
505 hdr_info->u.compact.entries[hdr_info->array_count++] = sec;
506 }
507
508 /* Parse a .eh_frame_entry section. Figure out which text section it
509 references. */
510
511 bfd_boolean
512 _bfd_elf_parse_eh_frame_entry (struct bfd_link_info *info,
513 asection *sec, struct elf_reloc_cookie *cookie)
514 {
515 struct elf_link_hash_table *htab;
516 struct eh_frame_hdr_info *hdr_info;
517 unsigned long r_symndx;
518 asection *text_sec;
519
520 htab = elf_hash_table (info);
521 hdr_info = &htab->eh_info;
522
523 if (sec->size == 0
524 || sec->sec_info_type != SEC_INFO_TYPE_NONE)
525 {
526 return TRUE;
527 }
528
529 if (sec->output_section && bfd_is_abs_section (sec->output_section))
530 {
531 /* At least one of the sections is being discarded from the
532 link, so we should just ignore them. */
533 return TRUE;
534 }
535
536 if (cookie->rel == cookie->relend)
537 return FALSE;
538
539 /* The first relocation is the function start. */
540 r_symndx = cookie->rel->r_info >> cookie->r_sym_shift;
541 if (r_symndx == STN_UNDEF)
542 return FALSE;
543
544 text_sec = _bfd_elf_section_for_symbol (cookie, r_symndx, FALSE);
545
546 if (text_sec == NULL)
547 return FALSE;
548
549 elf_section_eh_frame_entry (text_sec) = sec;
550 if (text_sec->output_section
551 && bfd_is_abs_section (text_sec->output_section))
552 sec->flags |= SEC_EXCLUDE;
553
554 sec->sec_info_type = SEC_INFO_TYPE_EH_FRAME_ENTRY;
555 elf_section_data (sec)->sec_info = text_sec;
556 bfd_elf_record_eh_frame_entry (hdr_info, sec);
557 return TRUE;
558 }
559
560 /* Try to parse .eh_frame section SEC, which belongs to ABFD. Store the
561 information in the section's sec_info field on success. COOKIE
562 describes the relocations in SEC. */
563
564 void
565 _bfd_elf_parse_eh_frame (bfd *abfd, struct bfd_link_info *info,
566 asection *sec, struct elf_reloc_cookie *cookie)
567 {
568 #define REQUIRE(COND) \
569 do \
570 if (!(COND)) \
571 goto free_no_table; \
572 while (0)
573
574 bfd_byte *ehbuf = NULL, *buf, *end;
575 bfd_byte *last_fde;
576 struct eh_cie_fde *this_inf;
577 unsigned int hdr_length, hdr_id;
578 unsigned int cie_count;
579 struct cie *cie, *local_cies = NULL;
580 struct elf_link_hash_table *htab;
581 struct eh_frame_hdr_info *hdr_info;
582 struct eh_frame_sec_info *sec_info = NULL;
583 unsigned int ptr_size;
584 unsigned int num_cies;
585 unsigned int num_entries;
586 elf_gc_mark_hook_fn gc_mark_hook;
587
588 htab = elf_hash_table (info);
589 hdr_info = &htab->eh_info;
590
591 if (sec->size == 0
592 || sec->sec_info_type != SEC_INFO_TYPE_NONE)
593 {
594 /* This file does not contain .eh_frame information. */
595 return;
596 }
597
598 if (bfd_is_abs_section (sec->output_section))
599 {
600 /* At least one of the sections is being discarded from the
601 link, so we should just ignore them. */
602 return;
603 }
604
605 /* Read the frame unwind information from abfd. */
606
607 REQUIRE (bfd_malloc_and_get_section (abfd, sec, &ehbuf));
608
609 if (sec->size >= 4
610 && bfd_get_32 (abfd, ehbuf) == 0
611 && cookie->rel == cookie->relend)
612 {
613 /* Empty .eh_frame section. */
614 free (ehbuf);
615 return;
616 }
617
618 /* If .eh_frame section size doesn't fit into int, we cannot handle
619 it (it would need to use 64-bit .eh_frame format anyway). */
620 REQUIRE (sec->size == (unsigned int) sec->size);
621
622 ptr_size = (get_elf_backend_data (abfd)
623 ->elf_backend_eh_frame_address_size (abfd, sec));
624 REQUIRE (ptr_size != 0);
625
626 /* Go through the section contents and work out how many FDEs and
627 CIEs there are. */
628 buf = ehbuf;
629 end = ehbuf + sec->size;
630 num_cies = 0;
631 num_entries = 0;
632 while (buf != end)
633 {
634 num_entries++;
635
636 /* Read the length of the entry. */
637 REQUIRE (skip_bytes (&buf, end, 4));
638 hdr_length = bfd_get_32 (abfd, buf - 4);
639
640 /* 64-bit .eh_frame is not supported. */
641 REQUIRE (hdr_length != 0xffffffff);
642 if (hdr_length == 0)
643 break;
644
645 REQUIRE (skip_bytes (&buf, end, 4));
646 hdr_id = bfd_get_32 (abfd, buf - 4);
647 if (hdr_id == 0)
648 num_cies++;
649
650 REQUIRE (skip_bytes (&buf, end, hdr_length - 4));
651 }
652
653 sec_info = (struct eh_frame_sec_info *)
654 bfd_zmalloc (sizeof (struct eh_frame_sec_info)
655 + (num_entries - 1) * sizeof (struct eh_cie_fde));
656 REQUIRE (sec_info);
657
658 /* We need to have a "struct cie" for each CIE in this section. */
659 local_cies = (struct cie *) bfd_zmalloc (num_cies * sizeof (*local_cies));
660 REQUIRE (local_cies);
661
662 /* FIXME: octets_per_byte. */
663 #define ENSURE_NO_RELOCS(buf) \
664 while (cookie->rel < cookie->relend \
665 && (cookie->rel->r_offset \
666 < (bfd_size_type) ((buf) - ehbuf))) \
667 { \
668 REQUIRE (cookie->rel->r_info == 0); \
669 cookie->rel++; \
670 }
671
672 /* FIXME: octets_per_byte. */
673 #define SKIP_RELOCS(buf) \
674 while (cookie->rel < cookie->relend \
675 && (cookie->rel->r_offset \
676 < (bfd_size_type) ((buf) - ehbuf))) \
677 cookie->rel++
678
679 /* FIXME: octets_per_byte. */
680 #define GET_RELOC(buf) \
681 ((cookie->rel < cookie->relend \
682 && (cookie->rel->r_offset \
683 == (bfd_size_type) ((buf) - ehbuf))) \
684 ? cookie->rel : NULL)
685
686 buf = ehbuf;
687 cie_count = 0;
688 gc_mark_hook = get_elf_backend_data (abfd)->gc_mark_hook;
689 while ((bfd_size_type) (buf - ehbuf) != sec->size)
690 {
691 char *aug;
692 bfd_byte *start, *insns, *insns_end;
693 bfd_size_type length;
694 unsigned int set_loc_count;
695
696 this_inf = sec_info->entry + sec_info->count;
697 last_fde = buf;
698
699 /* Read the length of the entry. */
700 REQUIRE (skip_bytes (&buf, ehbuf + sec->size, 4));
701 hdr_length = bfd_get_32 (abfd, buf - 4);
702
703 /* The CIE/FDE must be fully contained in this input section. */
704 REQUIRE ((bfd_size_type) (buf - ehbuf) + hdr_length <= sec->size);
705 end = buf + hdr_length;
706
707 this_inf->offset = last_fde - ehbuf;
708 this_inf->size = 4 + hdr_length;
709 this_inf->reloc_index = cookie->rel - cookie->rels;
710
711 if (hdr_length == 0)
712 {
713 /* A zero-length CIE should only be found at the end of
714 the section. */
715 REQUIRE ((bfd_size_type) (buf - ehbuf) == sec->size);
716 ENSURE_NO_RELOCS (buf);
717 sec_info->count++;
718 break;
719 }
720
721 REQUIRE (skip_bytes (&buf, end, 4));
722 hdr_id = bfd_get_32 (abfd, buf - 4);
723
724 if (hdr_id == 0)
725 {
726 unsigned int initial_insn_length;
727
728 /* CIE */
729 this_inf->cie = 1;
730
731 /* Point CIE to one of the section-local cie structures. */
732 cie = local_cies + cie_count++;
733
734 cie->cie_inf = this_inf;
735 cie->length = hdr_length;
736 start = buf;
737 REQUIRE (read_byte (&buf, end, &cie->version));
738
739 /* Cannot handle unknown versions. */
740 REQUIRE (cie->version == 1
741 || cie->version == 3
742 || cie->version == 4);
743 REQUIRE (strlen ((char *) buf) < sizeof (cie->augmentation));
744
745 strcpy (cie->augmentation, (char *) buf);
746 buf = (bfd_byte *) strchr ((char *) buf, '\0') + 1;
747 ENSURE_NO_RELOCS (buf);
748 if (buf[0] == 'e' && buf[1] == 'h')
749 {
750 /* GCC < 3.0 .eh_frame CIE */
751 /* We cannot merge "eh" CIEs because __EXCEPTION_TABLE__
752 is private to each CIE, so we don't need it for anything.
753 Just skip it. */
754 REQUIRE (skip_bytes (&buf, end, ptr_size));
755 SKIP_RELOCS (buf);
756 }
757 if (cie->version >= 4)
758 {
759 REQUIRE (buf + 1 < end);
760 REQUIRE (buf[0] == ptr_size);
761 REQUIRE (buf[1] == 0);
762 buf += 2;
763 }
764 REQUIRE (read_uleb128 (&buf, end, &cie->code_align));
765 REQUIRE (read_sleb128 (&buf, end, &cie->data_align));
766 if (cie->version == 1)
767 {
768 REQUIRE (buf < end);
769 cie->ra_column = *buf++;
770 }
771 else
772 REQUIRE (read_uleb128 (&buf, end, &cie->ra_column));
773 ENSURE_NO_RELOCS (buf);
774 cie->lsda_encoding = DW_EH_PE_omit;
775 cie->fde_encoding = DW_EH_PE_omit;
776 cie->per_encoding = DW_EH_PE_omit;
777 aug = cie->augmentation;
778 if (aug[0] != 'e' || aug[1] != 'h')
779 {
780 if (*aug == 'z')
781 {
782 aug++;
783 REQUIRE (read_uleb128 (&buf, end, &cie->augmentation_size));
784 ENSURE_NO_RELOCS (buf);
785 }
786
787 while (*aug != '\0')
788 switch (*aug++)
789 {
790 case 'L':
791 REQUIRE (read_byte (&buf, end, &cie->lsda_encoding));
792 ENSURE_NO_RELOCS (buf);
793 REQUIRE (get_DW_EH_PE_width (cie->lsda_encoding, ptr_size));
794 break;
795 case 'R':
796 REQUIRE (read_byte (&buf, end, &cie->fde_encoding));
797 ENSURE_NO_RELOCS (buf);
798 REQUIRE (get_DW_EH_PE_width (cie->fde_encoding, ptr_size));
799 break;
800 case 'S':
801 break;
802 case 'P':
803 {
804 int per_width;
805
806 REQUIRE (read_byte (&buf, end, &cie->per_encoding));
807 per_width = get_DW_EH_PE_width (cie->per_encoding,
808 ptr_size);
809 REQUIRE (per_width);
810 if ((cie->per_encoding & 0x70) == DW_EH_PE_aligned)
811 {
812 length = -(buf - ehbuf) & (per_width - 1);
813 REQUIRE (skip_bytes (&buf, end, length));
814 }
815 this_inf->u.cie.personality_offset = buf - start;
816 ENSURE_NO_RELOCS (buf);
817 /* Ensure we have a reloc here. */
818 REQUIRE (GET_RELOC (buf));
819 cie->personality.reloc_index
820 = cookie->rel - cookie->rels;
821 /* Cope with MIPS-style composite relocations. */
822 do
823 cookie->rel++;
824 while (GET_RELOC (buf) != NULL);
825 REQUIRE (skip_bytes (&buf, end, per_width));
826 }
827 break;
828 default:
829 /* Unrecognized augmentation. Better bail out. */
830 goto free_no_table;
831 }
832 }
833
834 /* For shared libraries, try to get rid of as many RELATIVE relocs
835 as possible. */
836 if (bfd_link_pic (info)
837 && (get_elf_backend_data (abfd)
838 ->elf_backend_can_make_relative_eh_frame
839 (abfd, info, sec)))
840 {
841 if ((cie->fde_encoding & 0x70) == DW_EH_PE_absptr)
842 this_inf->make_relative = 1;
843 /* If the CIE doesn't already have an 'R' entry, it's fairly
844 easy to add one, provided that there's no aligned data
845 after the augmentation string. */
846 else if (cie->fde_encoding == DW_EH_PE_omit
847 && (cie->per_encoding & 0x70) != DW_EH_PE_aligned)
848 {
849 if (*cie->augmentation == 0)
850 this_inf->add_augmentation_size = 1;
851 this_inf->u.cie.add_fde_encoding = 1;
852 this_inf->make_relative = 1;
853 }
854
855 if ((cie->lsda_encoding & 0x70) == DW_EH_PE_absptr)
856 cie->can_make_lsda_relative = 1;
857 }
858
859 /* If FDE encoding was not specified, it defaults to
860 DW_EH_absptr. */
861 if (cie->fde_encoding == DW_EH_PE_omit)
862 cie->fde_encoding = DW_EH_PE_absptr;
863
864 initial_insn_length = end - buf;
865 cie->initial_insn_length = initial_insn_length;
866 memcpy (cie->initial_instructions, buf,
867 initial_insn_length <= sizeof (cie->initial_instructions)
868 ? initial_insn_length : sizeof (cie->initial_instructions));
869 insns = buf;
870 buf += initial_insn_length;
871 ENSURE_NO_RELOCS (buf);
872
873 if (!bfd_link_relocatable (info))
874 {
875 /* Keep info for merging cies. */
876 this_inf->u.cie.u.full_cie = cie;
877 this_inf->u.cie.per_encoding_relative
878 = (cie->per_encoding & 0x70) == DW_EH_PE_pcrel;
879 }
880 }
881 else
882 {
883 /* Find the corresponding CIE. */
884 unsigned int cie_offset = this_inf->offset + 4 - hdr_id;
885 for (cie = local_cies; cie < local_cies + cie_count; cie++)
886 if (cie_offset == cie->cie_inf->offset)
887 break;
888
889 /* Ensure this FDE references one of the CIEs in this input
890 section. */
891 REQUIRE (cie != local_cies + cie_count);
892 this_inf->u.fde.cie_inf = cie->cie_inf;
893 this_inf->make_relative = cie->cie_inf->make_relative;
894 this_inf->add_augmentation_size
895 = cie->cie_inf->add_augmentation_size;
896
897 ENSURE_NO_RELOCS (buf);
898 if ((sec->flags & SEC_LINKER_CREATED) == 0 || cookie->rels != NULL)
899 {
900 asection *rsec;
901
902 REQUIRE (GET_RELOC (buf));
903
904 /* Chain together the FDEs for each section. */
905 rsec = _bfd_elf_gc_mark_rsec (info, sec, gc_mark_hook, cookie);
906 /* RSEC will be NULL if FDE was cleared out as it was belonging to
907 a discarded SHT_GROUP. */
908 if (rsec)
909 {
910 REQUIRE (rsec->owner == abfd);
911 this_inf->u.fde.next_for_section = elf_fde_list (rsec);
912 elf_fde_list (rsec) = this_inf;
913 }
914 }
915
916 /* Skip the initial location and address range. */
917 start = buf;
918 length = get_DW_EH_PE_width (cie->fde_encoding, ptr_size);
919 REQUIRE (skip_bytes (&buf, end, 2 * length));
920
921 SKIP_RELOCS (buf - length);
922 if (!GET_RELOC (buf - length)
923 && read_value (abfd, buf - length, length, FALSE) == 0)
924 {
925 (*info->callbacks->minfo)
926 (_("discarding zero address range FDE in %B(%A).\n"),
927 abfd, sec);
928 this_inf->u.fde.cie_inf = NULL;
929 }
930
931 /* Skip the augmentation size, if present. */
932 if (cie->augmentation[0] == 'z')
933 REQUIRE (read_uleb128 (&buf, end, &length));
934 else
935 length = 0;
936
937 /* Of the supported augmentation characters above, only 'L'
938 adds augmentation data to the FDE. This code would need to
939 be adjusted if any future augmentations do the same thing. */
940 if (cie->lsda_encoding != DW_EH_PE_omit)
941 {
942 SKIP_RELOCS (buf);
943 if (cie->can_make_lsda_relative && GET_RELOC (buf))
944 cie->cie_inf->u.cie.make_lsda_relative = 1;
945 this_inf->lsda_offset = buf - start;
946 /* If there's no 'z' augmentation, we don't know where the
947 CFA insns begin. Assume no padding. */
948 if (cie->augmentation[0] != 'z')
949 length = end - buf;
950 }
951
952 /* Skip over the augmentation data. */
953 REQUIRE (skip_bytes (&buf, end, length));
954 insns = buf;
955
956 buf = last_fde + 4 + hdr_length;
957
958 /* For NULL RSEC (cleared FDE belonging to a discarded section)
959 the relocations are commonly cleared. We do not sanity check if
960 all these relocations are cleared as (1) relocations to
961 .gcc_except_table will remain uncleared (they will get dropped
962 with the drop of this unused FDE) and (2) BFD already safely drops
963 relocations of any type to .eh_frame by
964 elf_section_ignore_discarded_relocs.
965 TODO: The .gcc_except_table entries should be also filtered as
966 .eh_frame entries; or GCC could rather use COMDAT for them. */
967 SKIP_RELOCS (buf);
968 }
969
970 /* Try to interpret the CFA instructions and find the first
971 padding nop. Shrink this_inf's size so that it doesn't
972 include the padding. */
973 length = get_DW_EH_PE_width (cie->fde_encoding, ptr_size);
974 set_loc_count = 0;
975 insns_end = skip_non_nops (insns, end, length, &set_loc_count);
976 /* If we don't understand the CFA instructions, we can't know
977 what needs to be adjusted there. */
978 if (insns_end == NULL
979 /* For the time being we don't support DW_CFA_set_loc in
980 CIE instructions. */
981 || (set_loc_count && this_inf->cie))
982 goto free_no_table;
983 this_inf->size -= end - insns_end;
984 if (insns_end != end && this_inf->cie)
985 {
986 cie->initial_insn_length -= end - insns_end;
987 cie->length -= end - insns_end;
988 }
989 if (set_loc_count
990 && ((cie->fde_encoding & 0x70) == DW_EH_PE_pcrel
991 || this_inf->make_relative))
992 {
993 unsigned int cnt;
994 bfd_byte *p;
995
996 this_inf->set_loc = (unsigned int *)
997 bfd_malloc ((set_loc_count + 1) * sizeof (unsigned int));
998 REQUIRE (this_inf->set_loc);
999 this_inf->set_loc[0] = set_loc_count;
1000 p = insns;
1001 cnt = 0;
1002 while (p < end)
1003 {
1004 if (*p == DW_CFA_set_loc)
1005 this_inf->set_loc[++cnt] = p + 1 - start;
1006 REQUIRE (skip_cfa_op (&p, end, length));
1007 }
1008 }
1009
1010 this_inf->removed = 1;
1011 this_inf->fde_encoding = cie->fde_encoding;
1012 this_inf->lsda_encoding = cie->lsda_encoding;
1013 sec_info->count++;
1014 }
1015 BFD_ASSERT (sec_info->count == num_entries);
1016 BFD_ASSERT (cie_count == num_cies);
1017
1018 elf_section_data (sec)->sec_info = sec_info;
1019 sec->sec_info_type = SEC_INFO_TYPE_EH_FRAME;
1020 if (!bfd_link_relocatable (info))
1021 {
1022 /* Keep info for merging cies. */
1023 sec_info->cies = local_cies;
1024 local_cies = NULL;
1025 }
1026 goto success;
1027
1028 free_no_table:
1029 (*info->callbacks->einfo)
1030 (_("%P: error in %B(%A); no .eh_frame_hdr table will be created.\n"),
1031 abfd, sec);
1032 hdr_info->u.dwarf.table = FALSE;
1033 if (sec_info)
1034 free (sec_info);
1035 success:
1036 if (ehbuf)
1037 free (ehbuf);
1038 if (local_cies)
1039 free (local_cies);
1040 #undef REQUIRE
1041 }
1042
1043 /* Order eh_frame_hdr entries by the VMA of their text section. */
1044
1045 static int
1046 cmp_eh_frame_hdr (const void *a, const void *b)
1047 {
1048 bfd_vma text_a;
1049 bfd_vma text_b;
1050 asection *sec;
1051
1052 sec = *(asection *const *)a;
1053 sec = (asection *) elf_section_data (sec)->sec_info;
1054 text_a = sec->output_section->vma + sec->output_offset;
1055 sec = *(asection *const *)b;
1056 sec = (asection *) elf_section_data (sec)->sec_info;
1057 text_b = sec->output_section->vma + sec->output_offset;
1058
1059 if (text_a < text_b)
1060 return -1;
1061 return text_a > text_b;
1062
1063 }
1064
1065 /* Add space for a CANTUNWIND terminator to SEC if the text sections
1066 referenced by it and NEXT are not contiguous, or NEXT is NULL. */
1067
1068 static void
1069 add_eh_frame_hdr_terminator (asection *sec,
1070 asection *next)
1071 {
1072 bfd_vma end;
1073 bfd_vma next_start;
1074 asection *text_sec;
1075
1076 if (next)
1077 {
1078 /* See if there is a gap (presumably a text section without unwind info)
1079 between these two entries. */
1080 text_sec = (asection *) elf_section_data (sec)->sec_info;
1081 end = text_sec->output_section->vma + text_sec->output_offset
1082 + text_sec->size;
1083 text_sec = (asection *) elf_section_data (next)->sec_info;
1084 next_start = text_sec->output_section->vma + text_sec->output_offset;
1085 if (end == next_start)
1086 return;
1087 }
1088
1089 /* Add space for a CANTUNWIND terminator. */
1090 if (!sec->rawsize)
1091 sec->rawsize = sec->size;
1092
1093 bfd_set_section_size (sec->owner, sec, sec->size + 8);
1094 }
1095
1096 /* Finish a pass over all .eh_frame_entry sections. */
1097
1098 bfd_boolean
1099 _bfd_elf_end_eh_frame_parsing (struct bfd_link_info *info)
1100 {
1101 struct eh_frame_hdr_info *hdr_info;
1102 unsigned int i;
1103
1104 hdr_info = &elf_hash_table (info)->eh_info;
1105
1106 if (info->eh_frame_hdr_type != COMPACT_EH_HDR
1107 || hdr_info->array_count == 0)
1108 return FALSE;
1109
1110 bfd_elf_discard_eh_frame_entry (hdr_info);
1111
1112 qsort (hdr_info->u.compact.entries, hdr_info->array_count,
1113 sizeof (asection *), cmp_eh_frame_hdr);
1114
1115 for (i = 0; i < hdr_info->array_count - 1; i++)
1116 {
1117 add_eh_frame_hdr_terminator (hdr_info->u.compact.entries[i],
1118 hdr_info->u.compact.entries[i + 1]);
1119 }
1120
1121 /* Add a CANTUNWIND terminator after the last entry. */
1122 add_eh_frame_hdr_terminator (hdr_info->u.compact.entries[i], NULL);
1123 return TRUE;
1124 }
1125
1126 /* Mark all relocations against CIE or FDE ENT, which occurs in
1127 .eh_frame section SEC. COOKIE describes the relocations in SEC;
1128 its "rel" field can be changed freely. */
1129
1130 static bfd_boolean
1131 mark_entry (struct bfd_link_info *info, asection *sec,
1132 struct eh_cie_fde *ent, elf_gc_mark_hook_fn gc_mark_hook,
1133 struct elf_reloc_cookie *cookie)
1134 {
1135 /* FIXME: octets_per_byte. */
1136 for (cookie->rel = cookie->rels + ent->reloc_index;
1137 cookie->rel < cookie->relend
1138 && cookie->rel->r_offset < ent->offset + ent->size;
1139 cookie->rel++)
1140 if (!_bfd_elf_gc_mark_reloc (info, sec, gc_mark_hook, cookie))
1141 return FALSE;
1142
1143 return TRUE;
1144 }
1145
1146 /* Mark all the relocations against FDEs that relate to code in input
1147 section SEC. The FDEs belong to .eh_frame section EH_FRAME, whose
1148 relocations are described by COOKIE. */
1149
1150 bfd_boolean
1151 _bfd_elf_gc_mark_fdes (struct bfd_link_info *info, asection *sec,
1152 asection *eh_frame, elf_gc_mark_hook_fn gc_mark_hook,
1153 struct elf_reloc_cookie *cookie)
1154 {
1155 struct eh_cie_fde *fde, *cie;
1156
1157 for (fde = elf_fde_list (sec); fde; fde = fde->u.fde.next_for_section)
1158 {
1159 if (!mark_entry (info, eh_frame, fde, gc_mark_hook, cookie))
1160 return FALSE;
1161
1162 /* At this stage, all cie_inf fields point to local CIEs, so we
1163 can use the same cookie to refer to them. */
1164 cie = fde->u.fde.cie_inf;
1165 if (cie != NULL && !cie->u.cie.gc_mark)
1166 {
1167 cie->u.cie.gc_mark = 1;
1168 if (!mark_entry (info, eh_frame, cie, gc_mark_hook, cookie))
1169 return FALSE;
1170 }
1171 }
1172 return TRUE;
1173 }
1174
1175 /* Input section SEC of ABFD is an .eh_frame section that contains the
1176 CIE described by CIE_INF. Return a version of CIE_INF that is going
1177 to be kept in the output, adding CIE_INF to the output if necessary.
1178
1179 HDR_INFO is the .eh_frame_hdr information and COOKIE describes the
1180 relocations in REL. */
1181
1182 static struct eh_cie_fde *
1183 find_merged_cie (bfd *abfd, struct bfd_link_info *info, asection *sec,
1184 struct eh_frame_hdr_info *hdr_info,
1185 struct elf_reloc_cookie *cookie,
1186 struct eh_cie_fde *cie_inf)
1187 {
1188 unsigned long r_symndx;
1189 struct cie *cie, *new_cie;
1190 Elf_Internal_Rela *rel;
1191 void **loc;
1192
1193 /* Use CIE_INF if we have already decided to keep it. */
1194 if (!cie_inf->removed)
1195 return cie_inf;
1196
1197 /* If we have merged CIE_INF with another CIE, use that CIE instead. */
1198 if (cie_inf->u.cie.merged)
1199 return cie_inf->u.cie.u.merged_with;
1200
1201 cie = cie_inf->u.cie.u.full_cie;
1202
1203 /* Assume we will need to keep CIE_INF. */
1204 cie_inf->removed = 0;
1205 cie_inf->u.cie.u.sec = sec;
1206
1207 /* If we are not merging CIEs, use CIE_INF. */
1208 if (cie == NULL)
1209 return cie_inf;
1210
1211 if (cie->per_encoding != DW_EH_PE_omit)
1212 {
1213 bfd_boolean per_binds_local;
1214
1215 /* Work out the address of personality routine, or at least
1216 enough info that we could calculate the address had we made a
1217 final section layout. The symbol on the reloc is enough,
1218 either the hash for a global, or (bfd id, index) pair for a
1219 local. The assumption here is that no one uses addends on
1220 the reloc. */
1221 rel = cookie->rels + cie->personality.reloc_index;
1222 memset (&cie->personality, 0, sizeof (cie->personality));
1223 #ifdef BFD64
1224 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
1225 r_symndx = ELF64_R_SYM (rel->r_info);
1226 else
1227 #endif
1228 r_symndx = ELF32_R_SYM (rel->r_info);
1229 if (r_symndx >= cookie->locsymcount
1230 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
1231 {
1232 struct elf_link_hash_entry *h;
1233
1234 r_symndx -= cookie->extsymoff;
1235 h = cookie->sym_hashes[r_symndx];
1236
1237 while (h->root.type == bfd_link_hash_indirect
1238 || h->root.type == bfd_link_hash_warning)
1239 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1240
1241 cie->personality.h = h;
1242 per_binds_local = SYMBOL_REFERENCES_LOCAL (info, h);
1243 }
1244 else
1245 {
1246 Elf_Internal_Sym *sym;
1247 asection *sym_sec;
1248
1249 sym = &cookie->locsyms[r_symndx];
1250 sym_sec = bfd_section_from_elf_index (abfd, sym->st_shndx);
1251 if (sym_sec == NULL)
1252 return cie_inf;
1253
1254 if (sym_sec->kept_section != NULL)
1255 sym_sec = sym_sec->kept_section;
1256 if (sym_sec->output_section == NULL)
1257 return cie_inf;
1258
1259 cie->local_personality = 1;
1260 cie->personality.sym.bfd_id = abfd->id;
1261 cie->personality.sym.index = r_symndx;
1262 per_binds_local = TRUE;
1263 }
1264
1265 if (per_binds_local
1266 && bfd_link_pic (info)
1267 && (cie->per_encoding & 0x70) == DW_EH_PE_absptr
1268 && (get_elf_backend_data (abfd)
1269 ->elf_backend_can_make_relative_eh_frame (abfd, info, sec)))
1270 {
1271 cie_inf->u.cie.make_per_encoding_relative = 1;
1272 cie_inf->u.cie.per_encoding_relative = 1;
1273 }
1274 }
1275
1276 /* See if we can merge this CIE with an earlier one. */
1277 cie_compute_hash (cie);
1278 if (hdr_info->u.dwarf.cies == NULL)
1279 {
1280 hdr_info->u.dwarf.cies = htab_try_create (1, cie_hash, cie_eq, free);
1281 if (hdr_info->u.dwarf.cies == NULL)
1282 return cie_inf;
1283 }
1284 loc = htab_find_slot_with_hash (hdr_info->u.dwarf.cies, cie,
1285 cie->hash, INSERT);
1286 if (loc == NULL)
1287 return cie_inf;
1288
1289 new_cie = (struct cie *) *loc;
1290 if (new_cie == NULL)
1291 {
1292 /* Keep CIE_INF and record it in the hash table. */
1293 new_cie = (struct cie *) malloc (sizeof (struct cie));
1294 if (new_cie == NULL)
1295 return cie_inf;
1296
1297 memcpy (new_cie, cie, sizeof (struct cie));
1298 *loc = new_cie;
1299 }
1300 else
1301 {
1302 /* Merge CIE_INF with NEW_CIE->CIE_INF. */
1303 cie_inf->removed = 1;
1304 cie_inf->u.cie.merged = 1;
1305 cie_inf->u.cie.u.merged_with = new_cie->cie_inf;
1306 if (cie_inf->u.cie.make_lsda_relative)
1307 new_cie->cie_inf->u.cie.make_lsda_relative = 1;
1308 }
1309 return new_cie->cie_inf;
1310 }
1311
1312 /* This function is called for each input file before the .eh_frame
1313 section is relocated. It discards duplicate CIEs and FDEs for discarded
1314 functions. The function returns TRUE iff any entries have been
1315 deleted. */
1316
1317 bfd_boolean
1318 _bfd_elf_discard_section_eh_frame
1319 (bfd *abfd, struct bfd_link_info *info, asection *sec,
1320 bfd_boolean (*reloc_symbol_deleted_p) (bfd_vma, void *),
1321 struct elf_reloc_cookie *cookie)
1322 {
1323 struct eh_cie_fde *ent;
1324 struct eh_frame_sec_info *sec_info;
1325 struct eh_frame_hdr_info *hdr_info;
1326 unsigned int ptr_size, offset;
1327
1328 if (sec->sec_info_type != SEC_INFO_TYPE_EH_FRAME)
1329 return FALSE;
1330
1331 sec_info = (struct eh_frame_sec_info *) elf_section_data (sec)->sec_info;
1332 if (sec_info == NULL)
1333 return FALSE;
1334
1335 ptr_size = (get_elf_backend_data (sec->owner)
1336 ->elf_backend_eh_frame_address_size (sec->owner, sec));
1337
1338 hdr_info = &elf_hash_table (info)->eh_info;
1339 for (ent = sec_info->entry; ent < sec_info->entry + sec_info->count; ++ent)
1340 if (ent->size == 4)
1341 /* There should only be one zero terminator, on the last input
1342 file supplying .eh_frame (crtend.o). Remove any others. */
1343 ent->removed = sec->map_head.s != NULL;
1344 else if (!ent->cie && ent->u.fde.cie_inf != NULL)
1345 {
1346 bfd_boolean keep;
1347 if ((sec->flags & SEC_LINKER_CREATED) != 0 && cookie->rels == NULL)
1348 {
1349 unsigned int width
1350 = get_DW_EH_PE_width (ent->fde_encoding, ptr_size);
1351 bfd_vma value
1352 = read_value (abfd, sec->contents + ent->offset + 8 + width,
1353 width, get_DW_EH_PE_signed (ent->fde_encoding));
1354 keep = value != 0;
1355 }
1356 else
1357 {
1358 cookie->rel = cookie->rels + ent->reloc_index;
1359 /* FIXME: octets_per_byte. */
1360 BFD_ASSERT (cookie->rel < cookie->relend
1361 && cookie->rel->r_offset == ent->offset + 8);
1362 keep = !(*reloc_symbol_deleted_p) (ent->offset + 8, cookie);
1363 }
1364 if (keep)
1365 {
1366 if (bfd_link_pic (info)
1367 && (((ent->fde_encoding & 0x70) == DW_EH_PE_absptr
1368 && ent->make_relative == 0)
1369 || (ent->fde_encoding & 0x70) == DW_EH_PE_aligned))
1370 {
1371 /* If a shared library uses absolute pointers
1372 which we cannot turn into PC relative,
1373 don't create the binary search table,
1374 since it is affected by runtime relocations. */
1375 hdr_info->u.dwarf.table = FALSE;
1376 (*info->callbacks->einfo)
1377 (_("%P: FDE encoding in %B(%A) prevents .eh_frame_hdr"
1378 " table being created.\n"), abfd, sec);
1379 }
1380 ent->removed = 0;
1381 hdr_info->u.dwarf.fde_count++;
1382 ent->u.fde.cie_inf = find_merged_cie (abfd, info, sec, hdr_info,
1383 cookie, ent->u.fde.cie_inf);
1384 }
1385 }
1386
1387 if (sec_info->cies)
1388 {
1389 free (sec_info->cies);
1390 sec_info->cies = NULL;
1391 }
1392
1393 offset = 0;
1394 for (ent = sec_info->entry; ent < sec_info->entry + sec_info->count; ++ent)
1395 if (!ent->removed)
1396 {
1397 ent->new_offset = offset;
1398 offset += size_of_output_cie_fde (ent, ptr_size);
1399 }
1400
1401 sec->rawsize = sec->size;
1402 sec->size = offset;
1403 return offset != sec->rawsize;
1404 }
1405
1406 /* This function is called for .eh_frame_hdr section after
1407 _bfd_elf_discard_section_eh_frame has been called on all .eh_frame
1408 input sections. It finalizes the size of .eh_frame_hdr section. */
1409
1410 bfd_boolean
1411 _bfd_elf_discard_section_eh_frame_hdr (bfd *abfd, struct bfd_link_info *info)
1412 {
1413 struct elf_link_hash_table *htab;
1414 struct eh_frame_hdr_info *hdr_info;
1415 asection *sec;
1416
1417 htab = elf_hash_table (info);
1418 hdr_info = &htab->eh_info;
1419
1420 if (!hdr_info->frame_hdr_is_compact && hdr_info->u.dwarf.cies != NULL)
1421 {
1422 htab_delete (hdr_info->u.dwarf.cies);
1423 hdr_info->u.dwarf.cies = NULL;
1424 }
1425
1426 sec = hdr_info->hdr_sec;
1427 if (sec == NULL)
1428 return FALSE;
1429
1430 if (info->eh_frame_hdr_type == COMPACT_EH_HDR)
1431 {
1432 /* For compact frames we only add the header. The actual table comes
1433 from the .eh_frame_entry sections. */
1434 sec->size = 8;
1435 }
1436 else
1437 {
1438 sec->size = EH_FRAME_HDR_SIZE;
1439 if (hdr_info->u.dwarf.table)
1440 sec->size += 4 + hdr_info->u.dwarf.fde_count * 8;
1441 }
1442
1443 elf_eh_frame_hdr (abfd) = sec;
1444 return TRUE;
1445 }
1446
1447 /* Return true if there is at least one non-empty .eh_frame section in
1448 input files. Can only be called after ld has mapped input to
1449 output sections, and before sections are stripped. */
1450
1451 bfd_boolean
1452 _bfd_elf_eh_frame_present (struct bfd_link_info *info)
1453 {
1454 asection *eh = bfd_get_section_by_name (info->output_bfd, ".eh_frame");
1455
1456 if (eh == NULL)
1457 return FALSE;
1458
1459 /* Count only sections which have at least a single CIE or FDE.
1460 There cannot be any CIE or FDE <= 8 bytes. */
1461 for (eh = eh->map_head.s; eh != NULL; eh = eh->map_head.s)
1462 if (eh->size > 8)
1463 return TRUE;
1464
1465 return FALSE;
1466 }
1467
1468 /* Return true if there is at least one .eh_frame_entry section in
1469 input files. */
1470
1471 bfd_boolean
1472 _bfd_elf_eh_frame_entry_present (struct bfd_link_info *info)
1473 {
1474 asection *o;
1475 bfd *abfd;
1476
1477 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link.next)
1478 {
1479 for (o = abfd->sections; o; o = o->next)
1480 {
1481 const char *name = bfd_get_section_name (abfd, o);
1482
1483 if (strcmp (name, ".eh_frame_entry")
1484 && !bfd_is_abs_section (o->output_section))
1485 return TRUE;
1486 }
1487 }
1488 return FALSE;
1489 }
1490
1491 /* This function is called from size_dynamic_sections.
1492 It needs to decide whether .eh_frame_hdr should be output or not,
1493 because when the dynamic symbol table has been sized it is too late
1494 to strip sections. */
1495
1496 bfd_boolean
1497 _bfd_elf_maybe_strip_eh_frame_hdr (struct bfd_link_info *info)
1498 {
1499 struct elf_link_hash_table *htab;
1500 struct eh_frame_hdr_info *hdr_info;
1501 struct bfd_link_hash_entry *bh = NULL;
1502 struct elf_link_hash_entry *h;
1503
1504 htab = elf_hash_table (info);
1505 hdr_info = &htab->eh_info;
1506 if (hdr_info->hdr_sec == NULL)
1507 return TRUE;
1508
1509 if (bfd_is_abs_section (hdr_info->hdr_sec->output_section)
1510 || info->eh_frame_hdr_type == 0
1511 || (info->eh_frame_hdr_type == DWARF2_EH_HDR
1512 && !_bfd_elf_eh_frame_present (info))
1513 || (info->eh_frame_hdr_type == COMPACT_EH_HDR
1514 && !_bfd_elf_eh_frame_entry_present (info)))
1515 {
1516 hdr_info->hdr_sec->flags |= SEC_EXCLUDE;
1517 hdr_info->hdr_sec = NULL;
1518 return TRUE;
1519 }
1520
1521 /* Add a hidden symbol so that systems without access to PHDRs can
1522 find the table. */
1523 if (! (_bfd_generic_link_add_one_symbol
1524 (info, info->output_bfd, "__GNU_EH_FRAME_HDR", BSF_LOCAL,
1525 hdr_info->hdr_sec, 0, NULL, FALSE, FALSE, &bh)))
1526 return FALSE;
1527
1528 h = (struct elf_link_hash_entry *) bh;
1529 h->def_regular = 1;
1530 h->other = STV_HIDDEN;
1531 get_elf_backend_data
1532 (info->output_bfd)->elf_backend_hide_symbol (info, h, TRUE);
1533
1534 if (!hdr_info->frame_hdr_is_compact)
1535 hdr_info->u.dwarf.table = TRUE;
1536 return TRUE;
1537 }
1538
1539 /* Adjust an address in the .eh_frame section. Given OFFSET within
1540 SEC, this returns the new offset in the adjusted .eh_frame section,
1541 or -1 if the address refers to a CIE/FDE which has been removed
1542 or to offset with dynamic relocation which is no longer needed. */
1543
1544 bfd_vma
1545 _bfd_elf_eh_frame_section_offset (bfd *output_bfd ATTRIBUTE_UNUSED,
1546 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1547 asection *sec,
1548 bfd_vma offset)
1549 {
1550 struct eh_frame_sec_info *sec_info;
1551 unsigned int lo, hi, mid;
1552
1553 if (sec->sec_info_type != SEC_INFO_TYPE_EH_FRAME)
1554 return offset;
1555 sec_info = (struct eh_frame_sec_info *) elf_section_data (sec)->sec_info;
1556
1557 if (offset >= sec->rawsize)
1558 return offset - sec->rawsize + sec->size;
1559
1560 lo = 0;
1561 hi = sec_info->count;
1562 mid = 0;
1563 while (lo < hi)
1564 {
1565 mid = (lo + hi) / 2;
1566 if (offset < sec_info->entry[mid].offset)
1567 hi = mid;
1568 else if (offset
1569 >= sec_info->entry[mid].offset + sec_info->entry[mid].size)
1570 lo = mid + 1;
1571 else
1572 break;
1573 }
1574
1575 BFD_ASSERT (lo < hi);
1576
1577 /* FDE or CIE was removed. */
1578 if (sec_info->entry[mid].removed)
1579 return (bfd_vma) -1;
1580
1581 /* If converting personality pointers to DW_EH_PE_pcrel, there will be
1582 no need for run-time relocation against the personality field. */
1583 if (sec_info->entry[mid].cie
1584 && sec_info->entry[mid].u.cie.make_per_encoding_relative
1585 && offset == (sec_info->entry[mid].offset + 8
1586 + sec_info->entry[mid].u.cie.personality_offset))
1587 return (bfd_vma) -2;
1588
1589 /* If converting to DW_EH_PE_pcrel, there will be no need for run-time
1590 relocation against FDE's initial_location field. */
1591 if (!sec_info->entry[mid].cie
1592 && sec_info->entry[mid].make_relative
1593 && offset == sec_info->entry[mid].offset + 8)
1594 return (bfd_vma) -2;
1595
1596 /* If converting LSDA pointers to DW_EH_PE_pcrel, there will be no need
1597 for run-time relocation against LSDA field. */
1598 if (!sec_info->entry[mid].cie
1599 && sec_info->entry[mid].u.fde.cie_inf->u.cie.make_lsda_relative
1600 && offset == (sec_info->entry[mid].offset + 8
1601 + sec_info->entry[mid].lsda_offset))
1602 return (bfd_vma) -2;
1603
1604 /* If converting to DW_EH_PE_pcrel, there will be no need for run-time
1605 relocation against DW_CFA_set_loc's arguments. */
1606 if (sec_info->entry[mid].set_loc
1607 && sec_info->entry[mid].make_relative
1608 && (offset >= sec_info->entry[mid].offset + 8
1609 + sec_info->entry[mid].set_loc[1]))
1610 {
1611 unsigned int cnt;
1612
1613 for (cnt = 1; cnt <= sec_info->entry[mid].set_loc[0]; cnt++)
1614 if (offset == sec_info->entry[mid].offset + 8
1615 + sec_info->entry[mid].set_loc[cnt])
1616 return (bfd_vma) -2;
1617 }
1618
1619 /* Any new augmentation bytes go before the first relocation. */
1620 return (offset + sec_info->entry[mid].new_offset
1621 - sec_info->entry[mid].offset
1622 + extra_augmentation_string_bytes (sec_info->entry + mid)
1623 + extra_augmentation_data_bytes (sec_info->entry + mid));
1624 }
1625
1626 /* Write out .eh_frame_entry section. Add CANTUNWIND terminator if needed.
1627 Also check that the contents look sane. */
1628
1629 bfd_boolean
1630 _bfd_elf_write_section_eh_frame_entry (bfd *abfd, struct bfd_link_info *info,
1631 asection *sec, bfd_byte *contents)
1632 {
1633 const struct elf_backend_data *bed;
1634 bfd_byte cantunwind[8];
1635 bfd_vma addr;
1636 bfd_vma last_addr;
1637 bfd_vma offset;
1638 asection *text_sec = (asection *) elf_section_data (sec)->sec_info;
1639
1640 if (!sec->rawsize)
1641 sec->rawsize = sec->size;
1642
1643 BFD_ASSERT (sec->sec_info_type == SEC_INFO_TYPE_EH_FRAME_ENTRY);
1644
1645 /* Check to make sure that the text section corresponding to this eh_frame_entry
1646 section has not been excluded. In particular, mips16 stub entries will be
1647 excluded outside of the normal process. */
1648 if (sec->flags & SEC_EXCLUDE
1649 || text_sec->flags & SEC_EXCLUDE)
1650 return TRUE;
1651
1652 if (!bfd_set_section_contents (abfd, sec->output_section, contents,
1653 sec->output_offset, sec->rawsize))
1654 return FALSE;
1655
1656 last_addr = bfd_get_signed_32 (abfd, contents);
1657 /* Check that all the entries are in order. */
1658 for (offset = 8; offset < sec->rawsize; offset += 8)
1659 {
1660 addr = bfd_get_signed_32 (abfd, contents + offset) + offset;
1661 if (addr <= last_addr)
1662 {
1663 (*_bfd_error_handler) (_("%B: %s not in order"), sec->owner, sec->name);
1664 return FALSE;
1665 }
1666
1667 last_addr = addr;
1668 }
1669
1670 addr = text_sec->output_section->vma + text_sec->output_offset
1671 + text_sec->size;
1672 addr &= ~1;
1673 addr -= (sec->output_section->vma + sec->output_offset + sec->rawsize);
1674 if (addr & 1)
1675 {
1676 (*_bfd_error_handler) (_("%B: %s invalid input section size"),
1677 sec->owner, sec->name);
1678 bfd_set_error (bfd_error_bad_value);
1679 return FALSE;
1680 }
1681 if (last_addr >= addr + sec->rawsize)
1682 {
1683 (*_bfd_error_handler) (_("%B: %s points past end of text section"),
1684 sec->owner, sec->name);
1685 bfd_set_error (bfd_error_bad_value);
1686 return FALSE;
1687 }
1688
1689 if (sec->size == sec->rawsize)
1690 return TRUE;
1691
1692 bed = get_elf_backend_data (abfd);
1693 BFD_ASSERT (sec->size == sec->rawsize + 8);
1694 BFD_ASSERT ((addr & 1) == 0);
1695 BFD_ASSERT (bed->cant_unwind_opcode);
1696
1697 bfd_put_32 (abfd, addr, cantunwind);
1698 bfd_put_32 (abfd, (*bed->cant_unwind_opcode) (info), cantunwind + 4);
1699 return bfd_set_section_contents (abfd, sec->output_section, cantunwind,
1700 sec->output_offset + sec->rawsize, 8);
1701 }
1702
1703 /* Write out .eh_frame section. This is called with the relocated
1704 contents. */
1705
1706 bfd_boolean
1707 _bfd_elf_write_section_eh_frame (bfd *abfd,
1708 struct bfd_link_info *info,
1709 asection *sec,
1710 bfd_byte *contents)
1711 {
1712 struct eh_frame_sec_info *sec_info;
1713 struct elf_link_hash_table *htab;
1714 struct eh_frame_hdr_info *hdr_info;
1715 unsigned int ptr_size;
1716 struct eh_cie_fde *ent;
1717 bfd_size_type sec_size;
1718
1719 if (sec->sec_info_type != SEC_INFO_TYPE_EH_FRAME)
1720 /* FIXME: octets_per_byte. */
1721 return bfd_set_section_contents (abfd, sec->output_section, contents,
1722 sec->output_offset, sec->size);
1723
1724 ptr_size = (get_elf_backend_data (abfd)
1725 ->elf_backend_eh_frame_address_size (abfd, sec));
1726 BFD_ASSERT (ptr_size != 0);
1727
1728 sec_info = (struct eh_frame_sec_info *) elf_section_data (sec)->sec_info;
1729 htab = elf_hash_table (info);
1730 hdr_info = &htab->eh_info;
1731
1732 if (hdr_info->u.dwarf.table && hdr_info->u.dwarf.array == NULL)
1733 {
1734 hdr_info->frame_hdr_is_compact = FALSE;
1735 hdr_info->u.dwarf.array = (struct eh_frame_array_ent *)
1736 bfd_malloc (hdr_info->u.dwarf.fde_count
1737 * sizeof (*hdr_info->u.dwarf.array));
1738 }
1739 if (hdr_info->u.dwarf.array == NULL)
1740 hdr_info = NULL;
1741
1742 /* The new offsets can be bigger or smaller than the original offsets.
1743 We therefore need to make two passes over the section: one backward
1744 pass to move entries up and one forward pass to move entries down.
1745 The two passes won't interfere with each other because entries are
1746 not reordered */
1747 for (ent = sec_info->entry + sec_info->count; ent-- != sec_info->entry;)
1748 if (!ent->removed && ent->new_offset > ent->offset)
1749 memmove (contents + ent->new_offset, contents + ent->offset, ent->size);
1750
1751 for (ent = sec_info->entry; ent < sec_info->entry + sec_info->count; ++ent)
1752 if (!ent->removed && ent->new_offset < ent->offset)
1753 memmove (contents + ent->new_offset, contents + ent->offset, ent->size);
1754
1755 for (ent = sec_info->entry; ent < sec_info->entry + sec_info->count; ++ent)
1756 {
1757 unsigned char *buf, *end;
1758 unsigned int new_size;
1759
1760 if (ent->removed)
1761 continue;
1762
1763 if (ent->size == 4)
1764 {
1765 /* Any terminating FDE must be at the end of the section. */
1766 BFD_ASSERT (ent == sec_info->entry + sec_info->count - 1);
1767 continue;
1768 }
1769
1770 buf = contents + ent->new_offset;
1771 end = buf + ent->size;
1772 new_size = size_of_output_cie_fde (ent, ptr_size);
1773
1774 /* Update the size. It may be shrinked. */
1775 bfd_put_32 (abfd, new_size - 4, buf);
1776
1777 /* Filling the extra bytes with DW_CFA_nops. */
1778 if (new_size != ent->size)
1779 memset (end, 0, new_size - ent->size);
1780
1781 if (ent->cie)
1782 {
1783 /* CIE */
1784 if (ent->make_relative
1785 || ent->u.cie.make_lsda_relative
1786 || ent->u.cie.per_encoding_relative)
1787 {
1788 char *aug;
1789 unsigned int action, extra_string, extra_data;
1790 unsigned int per_width, per_encoding;
1791
1792 /* Need to find 'R' or 'L' augmentation's argument and modify
1793 DW_EH_PE_* value. */
1794 action = ((ent->make_relative ? 1 : 0)
1795 | (ent->u.cie.make_lsda_relative ? 2 : 0)
1796 | (ent->u.cie.per_encoding_relative ? 4 : 0));
1797 extra_string = extra_augmentation_string_bytes (ent);
1798 extra_data = extra_augmentation_data_bytes (ent);
1799
1800 /* Skip length, id and version. */
1801 buf += 9;
1802 aug = (char *) buf;
1803 buf += strlen (aug) + 1;
1804 skip_leb128 (&buf, end);
1805 skip_leb128 (&buf, end);
1806 skip_leb128 (&buf, end);
1807 if (*aug == 'z')
1808 {
1809 /* The uleb128 will always be a single byte for the kind
1810 of augmentation strings that we're prepared to handle. */
1811 *buf++ += extra_data;
1812 aug++;
1813 }
1814
1815 /* Make room for the new augmentation string and data bytes. */
1816 memmove (buf + extra_string + extra_data, buf, end - buf);
1817 memmove (aug + extra_string, aug, buf - (bfd_byte *) aug);
1818 buf += extra_string;
1819 end += extra_string + extra_data;
1820
1821 if (ent->add_augmentation_size)
1822 {
1823 *aug++ = 'z';
1824 *buf++ = extra_data - 1;
1825 }
1826 if (ent->u.cie.add_fde_encoding)
1827 {
1828 BFD_ASSERT (action & 1);
1829 *aug++ = 'R';
1830 *buf++ = make_pc_relative (DW_EH_PE_absptr, ptr_size);
1831 action &= ~1;
1832 }
1833
1834 while (action)
1835 switch (*aug++)
1836 {
1837 case 'L':
1838 if (action & 2)
1839 {
1840 BFD_ASSERT (*buf == ent->lsda_encoding);
1841 *buf = make_pc_relative (*buf, ptr_size);
1842 action &= ~2;
1843 }
1844 buf++;
1845 break;
1846 case 'P':
1847 if (ent->u.cie.make_per_encoding_relative)
1848 *buf = make_pc_relative (*buf, ptr_size);
1849 per_encoding = *buf++;
1850 per_width = get_DW_EH_PE_width (per_encoding, ptr_size);
1851 BFD_ASSERT (per_width != 0);
1852 BFD_ASSERT (((per_encoding & 0x70) == DW_EH_PE_pcrel)
1853 == ent->u.cie.per_encoding_relative);
1854 if ((per_encoding & 0x70) == DW_EH_PE_aligned)
1855 buf = (contents
1856 + ((buf - contents + per_width - 1)
1857 & ~((bfd_size_type) per_width - 1)));
1858 if (action & 4)
1859 {
1860 bfd_vma val;
1861
1862 val = read_value (abfd, buf, per_width,
1863 get_DW_EH_PE_signed (per_encoding));
1864 if (ent->u.cie.make_per_encoding_relative)
1865 val -= (sec->output_section->vma
1866 + sec->output_offset
1867 + (buf - contents));
1868 else
1869 {
1870 val += (bfd_vma) ent->offset - ent->new_offset;
1871 val -= extra_string + extra_data;
1872 }
1873 write_value (abfd, buf, val, per_width);
1874 action &= ~4;
1875 }
1876 buf += per_width;
1877 break;
1878 case 'R':
1879 if (action & 1)
1880 {
1881 BFD_ASSERT (*buf == ent->fde_encoding);
1882 *buf = make_pc_relative (*buf, ptr_size);
1883 action &= ~1;
1884 }
1885 buf++;
1886 break;
1887 case 'S':
1888 break;
1889 default:
1890 BFD_FAIL ();
1891 }
1892 }
1893 }
1894 else
1895 {
1896 /* FDE */
1897 bfd_vma value, address;
1898 unsigned int width;
1899 bfd_byte *start;
1900 struct eh_cie_fde *cie;
1901
1902 /* Skip length. */
1903 cie = ent->u.fde.cie_inf;
1904 buf += 4;
1905 value = ((ent->new_offset + sec->output_offset + 4)
1906 - (cie->new_offset + cie->u.cie.u.sec->output_offset));
1907 bfd_put_32 (abfd, value, buf);
1908 if (bfd_link_relocatable (info))
1909 continue;
1910 buf += 4;
1911 width = get_DW_EH_PE_width (ent->fde_encoding, ptr_size);
1912 value = read_value (abfd, buf, width,
1913 get_DW_EH_PE_signed (ent->fde_encoding));
1914 address = value;
1915 if (value)
1916 {
1917 switch (ent->fde_encoding & 0x70)
1918 {
1919 case DW_EH_PE_textrel:
1920 BFD_ASSERT (hdr_info == NULL);
1921 break;
1922 case DW_EH_PE_datarel:
1923 {
1924 switch (abfd->arch_info->arch)
1925 {
1926 case bfd_arch_ia64:
1927 BFD_ASSERT (elf_gp (abfd) != 0);
1928 address += elf_gp (abfd);
1929 break;
1930 default:
1931 (*info->callbacks->einfo)
1932 (_("%P: DW_EH_PE_datarel unspecified"
1933 " for this architecture.\n"));
1934 /* Fall thru */
1935 case bfd_arch_frv:
1936 case bfd_arch_i386:
1937 BFD_ASSERT (htab->hgot != NULL
1938 && ((htab->hgot->root.type
1939 == bfd_link_hash_defined)
1940 || (htab->hgot->root.type
1941 == bfd_link_hash_defweak)));
1942 address
1943 += (htab->hgot->root.u.def.value
1944 + htab->hgot->root.u.def.section->output_offset
1945 + (htab->hgot->root.u.def.section->output_section
1946 ->vma));
1947 break;
1948 }
1949 }
1950 break;
1951 case DW_EH_PE_pcrel:
1952 value += (bfd_vma) ent->offset - ent->new_offset;
1953 address += (sec->output_section->vma
1954 + sec->output_offset
1955 + ent->offset + 8);
1956 break;
1957 }
1958 if (ent->make_relative)
1959 value -= (sec->output_section->vma
1960 + sec->output_offset
1961 + ent->new_offset + 8);
1962 write_value (abfd, buf, value, width);
1963 }
1964
1965 start = buf;
1966
1967 if (hdr_info)
1968 {
1969 /* The address calculation may overflow, giving us a
1970 value greater than 4G on a 32-bit target when
1971 dwarf_vma is 64-bit. */
1972 if (sizeof (address) > 4 && ptr_size == 4)
1973 address &= 0xffffffff;
1974 hdr_info->u.dwarf.array[hdr_info->array_count].initial_loc
1975 = address;
1976 hdr_info->u.dwarf.array[hdr_info->array_count].range
1977 = read_value (abfd, buf + width, width, FALSE);
1978 hdr_info->u.dwarf.array[hdr_info->array_count++].fde
1979 = (sec->output_section->vma
1980 + sec->output_offset
1981 + ent->new_offset);
1982 }
1983
1984 if ((ent->lsda_encoding & 0x70) == DW_EH_PE_pcrel
1985 || cie->u.cie.make_lsda_relative)
1986 {
1987 buf += ent->lsda_offset;
1988 width = get_DW_EH_PE_width (ent->lsda_encoding, ptr_size);
1989 value = read_value (abfd, buf, width,
1990 get_DW_EH_PE_signed (ent->lsda_encoding));
1991 if (value)
1992 {
1993 if ((ent->lsda_encoding & 0x70) == DW_EH_PE_pcrel)
1994 value += (bfd_vma) ent->offset - ent->new_offset;
1995 else if (cie->u.cie.make_lsda_relative)
1996 value -= (sec->output_section->vma
1997 + sec->output_offset
1998 + ent->new_offset + 8 + ent->lsda_offset);
1999 write_value (abfd, buf, value, width);
2000 }
2001 }
2002 else if (ent->add_augmentation_size)
2003 {
2004 /* Skip the PC and length and insert a zero byte for the
2005 augmentation size. */
2006 buf += width * 2;
2007 memmove (buf + 1, buf, end - buf);
2008 *buf = 0;
2009 }
2010
2011 if (ent->set_loc)
2012 {
2013 /* Adjust DW_CFA_set_loc. */
2014 unsigned int cnt;
2015 bfd_vma new_offset;
2016
2017 width = get_DW_EH_PE_width (ent->fde_encoding, ptr_size);
2018 new_offset = ent->new_offset + 8
2019 + extra_augmentation_string_bytes (ent)
2020 + extra_augmentation_data_bytes (ent);
2021
2022 for (cnt = 1; cnt <= ent->set_loc[0]; cnt++)
2023 {
2024 buf = start + ent->set_loc[cnt];
2025
2026 value = read_value (abfd, buf, width,
2027 get_DW_EH_PE_signed (ent->fde_encoding));
2028 if (!value)
2029 continue;
2030
2031 if ((ent->fde_encoding & 0x70) == DW_EH_PE_pcrel)
2032 value += (bfd_vma) ent->offset + 8 - new_offset;
2033 if (ent->make_relative)
2034 value -= (sec->output_section->vma
2035 + sec->output_offset
2036 + new_offset + ent->set_loc[cnt]);
2037 write_value (abfd, buf, value, width);
2038 }
2039 }
2040 }
2041 }
2042
2043 /* We don't align the section to its section alignment since the
2044 runtime library only expects all CIE/FDE records aligned at
2045 the pointer size. _bfd_elf_discard_section_eh_frame should
2046 have padded CIE/FDE records to multiple of pointer size with
2047 size_of_output_cie_fde. */
2048 sec_size = sec->size;
2049 if (sec_info->count != 0
2050 && sec_info->entry[sec_info->count - 1].size == 4)
2051 sec_size -= 4;
2052 if ((sec_size % ptr_size) != 0)
2053 abort ();
2054
2055 /* FIXME: octets_per_byte. */
2056 return bfd_set_section_contents (abfd, sec->output_section,
2057 contents, (file_ptr) sec->output_offset,
2058 sec->size);
2059 }
2060
2061 /* Helper function used to sort .eh_frame_hdr search table by increasing
2062 VMA of FDE initial location. */
2063
2064 static int
2065 vma_compare (const void *a, const void *b)
2066 {
2067 const struct eh_frame_array_ent *p = (const struct eh_frame_array_ent *) a;
2068 const struct eh_frame_array_ent *q = (const struct eh_frame_array_ent *) b;
2069 if (p->initial_loc > q->initial_loc)
2070 return 1;
2071 if (p->initial_loc < q->initial_loc)
2072 return -1;
2073 if (p->range > q->range)
2074 return 1;
2075 if (p->range < q->range)
2076 return -1;
2077 return 0;
2078 }
2079
2080 /* Reorder .eh_frame_entry sections to match the associated text sections.
2081 This routine is called during the final linking step, just before writing
2082 the contents. At this stage, sections in the eh_frame_hdr_info are already
2083 sorted in order of increasing text section address and so we simply need
2084 to make the .eh_frame_entrys follow that same order. Note that it is
2085 invalid for a linker script to try to force a particular order of
2086 .eh_frame_entry sections. */
2087
2088 bfd_boolean
2089 _bfd_elf_fixup_eh_frame_hdr (struct bfd_link_info *info)
2090 {
2091 asection *sec = NULL;
2092 asection *osec;
2093 struct eh_frame_hdr_info *hdr_info;
2094 unsigned int i;
2095 bfd_vma offset;
2096 struct bfd_link_order *p;
2097
2098 hdr_info = &elf_hash_table (info)->eh_info;
2099
2100 if (hdr_info->hdr_sec == NULL
2101 || info->eh_frame_hdr_type != COMPACT_EH_HDR
2102 || hdr_info->array_count == 0)
2103 return TRUE;
2104
2105 /* Change section output offsets to be in text section order. */
2106 offset = 8;
2107 osec = hdr_info->u.compact.entries[0]->output_section;
2108 for (i = 0; i < hdr_info->array_count; i++)
2109 {
2110 sec = hdr_info->u.compact.entries[i];
2111 if (sec->output_section != osec)
2112 {
2113 (*_bfd_error_handler)
2114 (_("Invalid output section for .eh_frame_entry: %s"),
2115 sec->output_section->name);
2116 return FALSE;
2117 }
2118 sec->output_offset = offset;
2119 offset += sec->size;
2120 }
2121
2122
2123 /* Fix the link_order to match. */
2124 for (p = sec->output_section->map_head.link_order; p != NULL; p = p->next)
2125 {
2126 if (p->type != bfd_indirect_link_order)
2127 abort();
2128
2129 p->offset = p->u.indirect.section->output_offset;
2130 if (p->next != NULL)
2131 i--;
2132 }
2133
2134 if (i != 0)
2135 {
2136 (*_bfd_error_handler)
2137 (_("Invalid contents in %s section"), osec->name);
2138 return FALSE;
2139 }
2140
2141 return TRUE;
2142 }
2143
2144 /* The .eh_frame_hdr format for Compact EH frames:
2145 ubyte version (2)
2146 ubyte eh_ref_enc (DW_EH_PE_* encoding of typinfo references)
2147 uint32_t count (Number of entries in table)
2148 [array from .eh_frame_entry sections] */
2149
2150 static bfd_boolean
2151 write_compact_eh_frame_hdr (bfd *abfd, struct bfd_link_info *info)
2152 {
2153 struct elf_link_hash_table *htab;
2154 struct eh_frame_hdr_info *hdr_info;
2155 asection *sec;
2156 const struct elf_backend_data *bed;
2157 bfd_vma count;
2158 bfd_byte contents[8];
2159 unsigned int i;
2160
2161 htab = elf_hash_table (info);
2162 hdr_info = &htab->eh_info;
2163 sec = hdr_info->hdr_sec;
2164
2165 if (sec->size != 8)
2166 abort();
2167
2168 for (i = 0; i < sizeof (contents); i++)
2169 contents[i] = 0;
2170
2171 contents[0] = COMPACT_EH_HDR;
2172 bed = get_elf_backend_data (abfd);
2173
2174 BFD_ASSERT (bed->compact_eh_encoding);
2175 contents[1] = (*bed->compact_eh_encoding) (info);
2176
2177 count = (sec->output_section->size - 8) / 8;
2178 bfd_put_32 (abfd, count, contents + 4);
2179 return bfd_set_section_contents (abfd, sec->output_section, contents,
2180 (file_ptr) sec->output_offset, sec->size);
2181 }
2182
2183 /* The .eh_frame_hdr format for DWARF frames:
2184
2185 ubyte version (currently 1)
2186 ubyte eh_frame_ptr_enc (DW_EH_PE_* encoding of pointer to start of
2187 .eh_frame section)
2188 ubyte fde_count_enc (DW_EH_PE_* encoding of total FDE count
2189 number (or DW_EH_PE_omit if there is no
2190 binary search table computed))
2191 ubyte table_enc (DW_EH_PE_* encoding of binary search table,
2192 or DW_EH_PE_omit if not present.
2193 DW_EH_PE_datarel is using address of
2194 .eh_frame_hdr section start as base)
2195 [encoded] eh_frame_ptr (pointer to start of .eh_frame section)
2196 optionally followed by:
2197 [encoded] fde_count (total number of FDEs in .eh_frame section)
2198 fde_count x [encoded] initial_loc, fde
2199 (array of encoded pairs containing
2200 FDE initial_location field and FDE address,
2201 sorted by increasing initial_loc). */
2202
2203 static bfd_boolean
2204 write_dwarf_eh_frame_hdr (bfd *abfd, struct bfd_link_info *info)
2205 {
2206 struct elf_link_hash_table *htab;
2207 struct eh_frame_hdr_info *hdr_info;
2208 asection *sec;
2209 bfd_boolean retval = TRUE;
2210
2211 htab = elf_hash_table (info);
2212 hdr_info = &htab->eh_info;
2213 sec = hdr_info->hdr_sec;
2214 bfd_byte *contents;
2215 asection *eh_frame_sec;
2216 bfd_size_type size;
2217 bfd_vma encoded_eh_frame;
2218
2219 size = EH_FRAME_HDR_SIZE;
2220 if (hdr_info->u.dwarf.array
2221 && hdr_info->array_count == hdr_info->u.dwarf.fde_count)
2222 size += 4 + hdr_info->u.dwarf.fde_count * 8;
2223 contents = (bfd_byte *) bfd_malloc (size);
2224 if (contents == NULL)
2225 return FALSE;
2226
2227 eh_frame_sec = bfd_get_section_by_name (abfd, ".eh_frame");
2228 if (eh_frame_sec == NULL)
2229 {
2230 free (contents);
2231 return FALSE;
2232 }
2233
2234 memset (contents, 0, EH_FRAME_HDR_SIZE);
2235 /* Version. */
2236 contents[0] = 1;
2237 /* .eh_frame offset. */
2238 contents[1] = get_elf_backend_data (abfd)->elf_backend_encode_eh_address
2239 (abfd, info, eh_frame_sec, 0, sec, 4, &encoded_eh_frame);
2240
2241 if (hdr_info->u.dwarf.array
2242 && hdr_info->array_count == hdr_info->u.dwarf.fde_count)
2243 {
2244 /* FDE count encoding. */
2245 contents[2] = DW_EH_PE_udata4;
2246 /* Search table encoding. */
2247 contents[3] = DW_EH_PE_datarel | DW_EH_PE_sdata4;
2248 }
2249 else
2250 {
2251 contents[2] = DW_EH_PE_omit;
2252 contents[3] = DW_EH_PE_omit;
2253 }
2254 bfd_put_32 (abfd, encoded_eh_frame, contents + 4);
2255
2256 if (contents[2] != DW_EH_PE_omit)
2257 {
2258 unsigned int i;
2259 bfd_boolean overlap, overflow;
2260
2261 bfd_put_32 (abfd, hdr_info->u.dwarf.fde_count,
2262 contents + EH_FRAME_HDR_SIZE);
2263 qsort (hdr_info->u.dwarf.array, hdr_info->u.dwarf.fde_count,
2264 sizeof (*hdr_info->u.dwarf.array), vma_compare);
2265 overlap = FALSE;
2266 overflow = FALSE;
2267 for (i = 0; i < hdr_info->u.dwarf.fde_count; i++)
2268 {
2269 bfd_vma val;
2270
2271 val = hdr_info->u.dwarf.array[i].initial_loc
2272 - sec->output_section->vma;
2273 val = ((val & 0xffffffff) ^ 0x80000000) - 0x80000000;
2274 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64
2275 && (hdr_info->u.dwarf.array[i].initial_loc
2276 != sec->output_section->vma + val))
2277 overflow = TRUE;
2278 bfd_put_32 (abfd, val, contents + EH_FRAME_HDR_SIZE + i * 8 + 4);
2279 val = hdr_info->u.dwarf.array[i].fde - sec->output_section->vma;
2280 val = ((val & 0xffffffff) ^ 0x80000000) - 0x80000000;
2281 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64
2282 && (hdr_info->u.dwarf.array[i].fde
2283 != sec->output_section->vma + val))
2284 overflow = TRUE;
2285 bfd_put_32 (abfd, val, contents + EH_FRAME_HDR_SIZE + i * 8 + 8);
2286 if (i != 0
2287 && (hdr_info->u.dwarf.array[i].initial_loc
2288 < (hdr_info->u.dwarf.array[i - 1].initial_loc
2289 + hdr_info->u.dwarf.array[i - 1].range)))
2290 overlap = TRUE;
2291 }
2292 if (overflow)
2293 (*info->callbacks->einfo) (_("%P: .eh_frame_hdr entry overflow.\n"));
2294 if (overlap)
2295 (*info->callbacks->einfo)
2296 (_("%P: .eh_frame_hdr refers to overlapping FDEs.\n"));
2297 if (overflow || overlap)
2298 {
2299 bfd_set_error (bfd_error_bad_value);
2300 retval = FALSE;
2301 }
2302 }
2303
2304 /* FIXME: octets_per_byte. */
2305 if (!bfd_set_section_contents (abfd, sec->output_section, contents,
2306 (file_ptr) sec->output_offset,
2307 sec->size))
2308 retval = FALSE;
2309 free (contents);
2310
2311 if (hdr_info->u.dwarf.array != NULL)
2312 free (hdr_info->u.dwarf.array);
2313 return retval;
2314 }
2315
2316 /* Write out .eh_frame_hdr section. This must be called after
2317 _bfd_elf_write_section_eh_frame has been called on all input
2318 .eh_frame sections. */
2319
2320 bfd_boolean
2321 _bfd_elf_write_section_eh_frame_hdr (bfd *abfd, struct bfd_link_info *info)
2322 {
2323 struct elf_link_hash_table *htab;
2324 struct eh_frame_hdr_info *hdr_info;
2325 asection *sec;
2326
2327 htab = elf_hash_table (info);
2328 hdr_info = &htab->eh_info;
2329 sec = hdr_info->hdr_sec;
2330
2331 if (info->eh_frame_hdr_type == 0 || sec == NULL)
2332 return TRUE;
2333
2334 if (info->eh_frame_hdr_type == COMPACT_EH_HDR)
2335 return write_compact_eh_frame_hdr (abfd, info);
2336 else
2337 return write_dwarf_eh_frame_hdr (abfd, info);
2338 }
2339
2340 /* Return the width of FDE addresses. This is the default implementation. */
2341
2342 unsigned int
2343 _bfd_elf_eh_frame_address_size (bfd *abfd, asection *sec ATTRIBUTE_UNUSED)
2344 {
2345 return elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64 ? 8 : 4;
2346 }
2347
2348 /* Decide whether we can use a PC-relative encoding within the given
2349 EH frame section. This is the default implementation. */
2350
2351 bfd_boolean
2352 _bfd_elf_can_make_relative (bfd *input_bfd ATTRIBUTE_UNUSED,
2353 struct bfd_link_info *info ATTRIBUTE_UNUSED,
2354 asection *eh_frame_section ATTRIBUTE_UNUSED)
2355 {
2356 return TRUE;
2357 }
2358
2359 /* Select an encoding for the given address. Preference is given to
2360 PC-relative addressing modes. */
2361
2362 bfd_byte
2363 _bfd_elf_encode_eh_address (bfd *abfd ATTRIBUTE_UNUSED,
2364 struct bfd_link_info *info ATTRIBUTE_UNUSED,
2365 asection *osec, bfd_vma offset,
2366 asection *loc_sec, bfd_vma loc_offset,
2367 bfd_vma *encoded)
2368 {
2369 *encoded = osec->vma + offset -
2370 (loc_sec->output_section->vma + loc_sec->output_offset + loc_offset);
2371 return DW_EH_PE_pcrel | DW_EH_PE_sdata4;
2372 }
This page took 0.08015 seconds and 4 git commands to generate.