bfd/
[deliverable/binutils-gdb.git] / bfd / elf-m10200.c
1 /* Matsushita 10200 specific support for 32-bit ELF
2 Copyright 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004
3 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21 #include "bfd.h"
22 #include "sysdep.h"
23 #include "libbfd.h"
24 #include "elf-bfd.h"
25
26 static reloc_howto_type *bfd_elf32_bfd_reloc_type_lookup
27 PARAMS ((bfd *abfd, bfd_reloc_code_real_type code));
28 static void mn10200_info_to_howto
29 PARAMS ((bfd *, arelent *, Elf_Internal_Rela *));
30 static bfd_boolean mn10200_elf_relax_delete_bytes
31 PARAMS ((bfd *, asection *, bfd_vma, int));
32 static bfd_boolean mn10200_elf_symbol_address_p
33 PARAMS ((bfd *, asection *, Elf_Internal_Sym *, bfd_vma));
34 static bfd_reloc_status_type mn10200_elf_final_link_relocate
35 PARAMS ((reloc_howto_type *, bfd *, bfd *, asection *,
36 bfd_byte *, bfd_vma, bfd_vma, bfd_vma,
37 struct bfd_link_info *, asection *, int));
38 static bfd_boolean mn10200_elf_relocate_section
39 PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *,
40 bfd_byte *, Elf_Internal_Rela *, Elf_Internal_Sym *,
41 asection **));
42 static bfd_boolean mn10200_elf_relax_section
43 PARAMS ((bfd *, asection *, struct bfd_link_info *, bfd_boolean *));
44 static bfd_byte * mn10200_elf_get_relocated_section_contents
45 PARAMS ((bfd *, struct bfd_link_info *, struct bfd_link_order *,
46 bfd_byte *, bfd_boolean, asymbol **));
47
48 enum reloc_type {
49 R_MN10200_NONE = 0,
50 R_MN10200_32,
51 R_MN10200_16,
52 R_MN10200_8,
53 R_MN10200_24,
54 R_MN10200_PCREL8,
55 R_MN10200_PCREL16,
56 R_MN10200_PCREL24,
57 R_MN10200_MAX
58 };
59
60 static reloc_howto_type elf_mn10200_howto_table[] = {
61 /* Dummy relocation. Does nothing. */
62 HOWTO (R_MN10200_NONE,
63 0,
64 2,
65 16,
66 FALSE,
67 0,
68 complain_overflow_bitfield,
69 bfd_elf_generic_reloc,
70 "R_MN10200_NONE",
71 FALSE,
72 0,
73 0,
74 FALSE),
75 /* Standard 32 bit reloc. */
76 HOWTO (R_MN10200_32,
77 0,
78 2,
79 32,
80 FALSE,
81 0,
82 complain_overflow_bitfield,
83 bfd_elf_generic_reloc,
84 "R_MN10200_32",
85 FALSE,
86 0xffffffff,
87 0xffffffff,
88 FALSE),
89 /* Standard 16 bit reloc. */
90 HOWTO (R_MN10200_16,
91 0,
92 1,
93 16,
94 FALSE,
95 0,
96 complain_overflow_bitfield,
97 bfd_elf_generic_reloc,
98 "R_MN10200_16",
99 FALSE,
100 0xffff,
101 0xffff,
102 FALSE),
103 /* Standard 8 bit reloc. */
104 HOWTO (R_MN10200_8,
105 0,
106 0,
107 8,
108 FALSE,
109 0,
110 complain_overflow_bitfield,
111 bfd_elf_generic_reloc,
112 "R_MN10200_8",
113 FALSE,
114 0xff,
115 0xff,
116 FALSE),
117 /* Standard 24 bit reloc. */
118 HOWTO (R_MN10200_24,
119 0,
120 2,
121 24,
122 FALSE,
123 0,
124 complain_overflow_bitfield,
125 bfd_elf_generic_reloc,
126 "R_MN10200_24",
127 FALSE,
128 0xffffff,
129 0xffffff,
130 FALSE),
131 /* Simple 8 pc-relative reloc. */
132 HOWTO (R_MN10200_PCREL8,
133 0,
134 0,
135 8,
136 TRUE,
137 0,
138 complain_overflow_bitfield,
139 bfd_elf_generic_reloc,
140 "R_MN10200_PCREL8",
141 FALSE,
142 0xff,
143 0xff,
144 TRUE),
145 /* Simple 16 pc-relative reloc. */
146 HOWTO (R_MN10200_PCREL16,
147 0,
148 1,
149 16,
150 TRUE,
151 0,
152 complain_overflow_bitfield,
153 bfd_elf_generic_reloc,
154 "R_MN10200_PCREL16",
155 FALSE,
156 0xffff,
157 0xffff,
158 TRUE),
159 /* Simple 32bit pc-relative reloc with a 1 byte adjustment
160 to get the pc-relative offset correct. */
161 HOWTO (R_MN10200_PCREL24,
162 0,
163 2,
164 24,
165 TRUE,
166 0,
167 complain_overflow_bitfield,
168 bfd_elf_generic_reloc,
169 "R_MN10200_PCREL24",
170 FALSE,
171 0xffffff,
172 0xffffff,
173 TRUE),
174 };
175
176 struct mn10200_reloc_map {
177 bfd_reloc_code_real_type bfd_reloc_val;
178 unsigned char elf_reloc_val;
179 };
180
181 static const struct mn10200_reloc_map mn10200_reloc_map[] = {
182 { BFD_RELOC_NONE , R_MN10200_NONE , },
183 { BFD_RELOC_32 , R_MN10200_32 , },
184 { BFD_RELOC_16 , R_MN10200_16 , },
185 { BFD_RELOC_8 , R_MN10200_8 , },
186 { BFD_RELOC_24 , R_MN10200_24 , },
187 { BFD_RELOC_8_PCREL , R_MN10200_PCREL8 , },
188 { BFD_RELOC_16_PCREL, R_MN10200_PCREL16, },
189 { BFD_RELOC_24_PCREL, R_MN10200_PCREL24, },
190 };
191
192 static reloc_howto_type *
193 bfd_elf32_bfd_reloc_type_lookup (abfd, code)
194 bfd *abfd ATTRIBUTE_UNUSED;
195 bfd_reloc_code_real_type code;
196 {
197 unsigned int i;
198
199 for (i = 0;
200 i < sizeof (mn10200_reloc_map) / sizeof (struct mn10200_reloc_map);
201 i++)
202 {
203 if (mn10200_reloc_map[i].bfd_reloc_val == code)
204 return &elf_mn10200_howto_table[mn10200_reloc_map[i].elf_reloc_val];
205 }
206
207 return NULL;
208 }
209
210 /* Set the howto pointer for an MN10200 ELF reloc. */
211
212 static void
213 mn10200_info_to_howto (abfd, cache_ptr, dst)
214 bfd *abfd ATTRIBUTE_UNUSED;
215 arelent *cache_ptr;
216 Elf_Internal_Rela *dst;
217 {
218 unsigned int r_type;
219
220 r_type = ELF32_R_TYPE (dst->r_info);
221 BFD_ASSERT (r_type < (unsigned int) R_MN10200_MAX);
222 cache_ptr->howto = &elf_mn10200_howto_table[r_type];
223 }
224
225 /* Perform a relocation as part of a final link. */
226
227 static bfd_reloc_status_type
228 mn10200_elf_final_link_relocate (howto, input_bfd, output_bfd,
229 input_section, contents, offset, value,
230 addend, info, sym_sec, is_local)
231 reloc_howto_type *howto;
232 bfd *input_bfd;
233 bfd *output_bfd ATTRIBUTE_UNUSED;
234 asection *input_section;
235 bfd_byte *contents;
236 bfd_vma offset;
237 bfd_vma value;
238 bfd_vma addend;
239 struct bfd_link_info *info ATTRIBUTE_UNUSED;
240 asection *sym_sec ATTRIBUTE_UNUSED;
241 int is_local ATTRIBUTE_UNUSED;
242 {
243 unsigned long r_type = howto->type;
244 bfd_byte *hit_data = contents + offset;
245
246 switch (r_type)
247 {
248
249 case R_MN10200_NONE:
250 return bfd_reloc_ok;
251
252 case R_MN10200_32:
253 value += addend;
254 bfd_put_32 (input_bfd, value, hit_data);
255 return bfd_reloc_ok;
256
257 case R_MN10200_16:
258 value += addend;
259
260 if ((long) value > 0x7fff || (long) value < -0x8000)
261 return bfd_reloc_overflow;
262
263 bfd_put_16 (input_bfd, value, hit_data);
264 return bfd_reloc_ok;
265
266 case R_MN10200_8:
267 value += addend;
268
269 if ((long) value > 0x7f || (long) value < -0x80)
270 return bfd_reloc_overflow;
271
272 bfd_put_8 (input_bfd, value, hit_data);
273 return bfd_reloc_ok;
274
275 case R_MN10200_24:
276 value += addend;
277
278 if ((long) value > 0x7fffff || (long) value < -0x800000)
279 return bfd_reloc_overflow;
280
281 value &= 0xffffff;
282 value |= (bfd_get_32 (input_bfd, hit_data) & 0xff000000);
283 bfd_put_32 (input_bfd, value, hit_data);
284 return bfd_reloc_ok;
285
286 case R_MN10200_PCREL8:
287 value -= (input_section->output_section->vma
288 + input_section->output_offset);
289 value -= (offset + 1);
290 value += addend;
291
292 if ((long) value > 0xff || (long) value < -0x100)
293 return bfd_reloc_overflow;
294
295 bfd_put_8 (input_bfd, value, hit_data);
296 return bfd_reloc_ok;
297
298 case R_MN10200_PCREL16:
299 value -= (input_section->output_section->vma
300 + input_section->output_offset);
301 value -= (offset + 2);
302 value += addend;
303
304 if ((long) value > 0xffff || (long) value < -0x10000)
305 return bfd_reloc_overflow;
306
307 bfd_put_16 (input_bfd, value, hit_data);
308 return bfd_reloc_ok;
309
310 case R_MN10200_PCREL24:
311 value -= (input_section->output_section->vma
312 + input_section->output_offset);
313 value -= (offset + 3);
314 value += addend;
315
316 if ((long) value > 0xffffff || (long) value < -0x1000000)
317 return bfd_reloc_overflow;
318
319 value &= 0xffffff;
320 value |= (bfd_get_32 (input_bfd, hit_data) & 0xff000000);
321 bfd_put_32 (input_bfd, value, hit_data);
322 return bfd_reloc_ok;
323
324 default:
325 return bfd_reloc_notsupported;
326 }
327 }
328 \f
329 /* Relocate an MN10200 ELF section. */
330 static bfd_boolean
331 mn10200_elf_relocate_section (output_bfd, info, input_bfd, input_section,
332 contents, relocs, local_syms, local_sections)
333 bfd *output_bfd;
334 struct bfd_link_info *info;
335 bfd *input_bfd;
336 asection *input_section;
337 bfd_byte *contents;
338 Elf_Internal_Rela *relocs;
339 Elf_Internal_Sym *local_syms;
340 asection **local_sections;
341 {
342 Elf_Internal_Shdr *symtab_hdr;
343 struct elf_link_hash_entry **sym_hashes;
344 Elf_Internal_Rela *rel, *relend;
345
346 if (info->relocatable)
347 return TRUE;
348
349 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
350 sym_hashes = elf_sym_hashes (input_bfd);
351
352 rel = relocs;
353 relend = relocs + input_section->reloc_count;
354 for (; rel < relend; rel++)
355 {
356 int r_type;
357 reloc_howto_type *howto;
358 unsigned long r_symndx;
359 Elf_Internal_Sym *sym;
360 asection *sec;
361 struct elf_link_hash_entry *h;
362 bfd_vma relocation;
363 bfd_reloc_status_type r;
364
365 r_symndx = ELF32_R_SYM (rel->r_info);
366 r_type = ELF32_R_TYPE (rel->r_info);
367 howto = elf_mn10200_howto_table + r_type;
368
369 h = NULL;
370 sym = NULL;
371 sec = NULL;
372 if (r_symndx < symtab_hdr->sh_info)
373 {
374 sym = local_syms + r_symndx;
375 sec = local_sections[r_symndx];
376 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
377 }
378 else
379 {
380 bfd_boolean unresolved_reloc, warned;
381
382 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
383 r_symndx, symtab_hdr, sym_hashes,
384 h, sec, relocation,
385 unresolved_reloc, warned);
386 }
387
388 r = mn10200_elf_final_link_relocate (howto, input_bfd, output_bfd,
389 input_section,
390 contents, rel->r_offset,
391 relocation, rel->r_addend,
392 info, sec, h == NULL);
393
394 if (r != bfd_reloc_ok)
395 {
396 const char *name;
397 const char *msg = (const char *) 0;
398
399 if (h != NULL)
400 name = h->root.root.string;
401 else
402 {
403 name = (bfd_elf_string_from_elf_section
404 (input_bfd, symtab_hdr->sh_link, sym->st_name));
405 if (name == NULL || *name == '\0')
406 name = bfd_section_name (input_bfd, sec);
407 }
408
409 switch (r)
410 {
411 case bfd_reloc_overflow:
412 if (! ((*info->callbacks->reloc_overflow)
413 (info, name, howto->name, (bfd_vma) 0,
414 input_bfd, input_section, rel->r_offset)))
415 return FALSE;
416 break;
417
418 case bfd_reloc_undefined:
419 if (! ((*info->callbacks->undefined_symbol)
420 (info, name, input_bfd, input_section,
421 rel->r_offset, TRUE)))
422 return FALSE;
423 break;
424
425 case bfd_reloc_outofrange:
426 msg = _("internal error: out of range error");
427 goto common_error;
428
429 case bfd_reloc_notsupported:
430 msg = _("internal error: unsupported relocation error");
431 goto common_error;
432
433 case bfd_reloc_dangerous:
434 msg = _("internal error: dangerous error");
435 goto common_error;
436
437 default:
438 msg = _("internal error: unknown error");
439 /* fall through */
440
441 common_error:
442 if (!((*info->callbacks->warning)
443 (info, msg, name, input_bfd, input_section,
444 rel->r_offset)))
445 return FALSE;
446 break;
447 }
448 }
449 }
450
451 return TRUE;
452 }
453
454 /* This function handles relaxing for the mn10200.
455
456 There are quite a few relaxing opportunities available on the mn10200:
457
458 * jsr:24 -> jsr:16 2 bytes
459
460 * jmp:24 -> jmp:16 2 bytes
461 * jmp:16 -> bra:8 1 byte
462
463 * If the previous instruction is a conditional branch
464 around the jump/bra, we may be able to reverse its condition
465 and change its target to the jump's target. The jump/bra
466 can then be deleted. 2 bytes
467
468 * mov abs24 -> mov abs16 2 byte savings
469
470 * Most instructions which accept imm24 can relax to imm16 2 bytes
471 - Most instructions which accept imm16 can relax to imm8 1 byte
472
473 * Most instructions which accept d24 can relax to d16 2 bytes
474 - Most instructions which accept d16 can relax to d8 1 byte
475
476 abs24, imm24, d24 all look the same at the reloc level. It
477 might make the code simpler if we had different relocs for
478 the various relaxable operand types.
479
480 We don't handle imm16->imm8 or d16->d8 as they're very rare
481 and somewhat more difficult to support. */
482
483 static bfd_boolean
484 mn10200_elf_relax_section (abfd, sec, link_info, again)
485 bfd *abfd;
486 asection *sec;
487 struct bfd_link_info *link_info;
488 bfd_boolean *again;
489 {
490 Elf_Internal_Shdr *symtab_hdr;
491 Elf_Internal_Rela *internal_relocs;
492 Elf_Internal_Rela *irel, *irelend;
493 bfd_byte *contents = NULL;
494 Elf_Internal_Sym *isymbuf = NULL;
495
496 /* Assume nothing changes. */
497 *again = FALSE;
498
499 /* We don't have to do anything for a relocatable link, if
500 this section does not have relocs, or if this is not a
501 code section. */
502 if (link_info->relocatable
503 || (sec->flags & SEC_RELOC) == 0
504 || sec->reloc_count == 0
505 || (sec->flags & SEC_CODE) == 0)
506 return TRUE;
507
508 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
509
510 /* Get a copy of the native relocations. */
511 internal_relocs = (_bfd_elf_link_read_relocs
512 (abfd, sec, (PTR) NULL, (Elf_Internal_Rela *) NULL,
513 link_info->keep_memory));
514 if (internal_relocs == NULL)
515 goto error_return;
516
517 /* Walk through them looking for relaxing opportunities. */
518 irelend = internal_relocs + sec->reloc_count;
519 for (irel = internal_relocs; irel < irelend; irel++)
520 {
521 bfd_vma symval;
522
523 /* If this isn't something that can be relaxed, then ignore
524 this reloc. */
525 if (ELF32_R_TYPE (irel->r_info) == (int) R_MN10200_NONE
526 || ELF32_R_TYPE (irel->r_info) == (int) R_MN10200_8
527 || ELF32_R_TYPE (irel->r_info) == (int) R_MN10200_MAX)
528 continue;
529
530 /* Get the section contents if we haven't done so already. */
531 if (contents == NULL)
532 {
533 /* Get cached copy if it exists. */
534 if (elf_section_data (sec)->this_hdr.contents != NULL)
535 contents = elf_section_data (sec)->this_hdr.contents;
536 else
537 {
538 /* Go get them off disk. */
539 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
540 goto error_return;
541 }
542 }
543
544 /* Read this BFD's local symbols if we haven't done so already. */
545 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
546 {
547 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
548 if (isymbuf == NULL)
549 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
550 symtab_hdr->sh_info, 0,
551 NULL, NULL, NULL);
552 if (isymbuf == NULL)
553 goto error_return;
554 }
555
556 /* Get the value of the symbol referred to by the reloc. */
557 if (ELF32_R_SYM (irel->r_info) < symtab_hdr->sh_info)
558 {
559 /* A local symbol. */
560 Elf_Internal_Sym *isym;
561 asection *sym_sec;
562
563 isym = isymbuf + ELF32_R_SYM (irel->r_info);
564 if (isym->st_shndx == SHN_UNDEF)
565 sym_sec = bfd_und_section_ptr;
566 else if (isym->st_shndx == SHN_ABS)
567 sym_sec = bfd_abs_section_ptr;
568 else if (isym->st_shndx == SHN_COMMON)
569 sym_sec = bfd_com_section_ptr;
570 else
571 sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
572 symval = (isym->st_value
573 + sym_sec->output_section->vma
574 + sym_sec->output_offset);
575 }
576 else
577 {
578 unsigned long indx;
579 struct elf_link_hash_entry *h;
580
581 /* An external symbol. */
582 indx = ELF32_R_SYM (irel->r_info) - symtab_hdr->sh_info;
583 h = elf_sym_hashes (abfd)[indx];
584 BFD_ASSERT (h != NULL);
585 if (h->root.type != bfd_link_hash_defined
586 && h->root.type != bfd_link_hash_defweak)
587 {
588 /* This appears to be a reference to an undefined
589 symbol. Just ignore it--it will be caught by the
590 regular reloc processing. */
591 continue;
592 }
593
594 symval = (h->root.u.def.value
595 + h->root.u.def.section->output_section->vma
596 + h->root.u.def.section->output_offset);
597 }
598
599 /* For simplicity of coding, we are going to modify the section
600 contents, the section relocs, and the BFD symbol table. We
601 must tell the rest of the code not to free up this
602 information. It would be possible to instead create a table
603 of changes which have to be made, as is done in coff-mips.c;
604 that would be more work, but would require less memory when
605 the linker is run. */
606
607 /* Try to turn a 24bit pc-relative branch/call into a 16bit pc-relative
608 branch/call. */
609 if (ELF32_R_TYPE (irel->r_info) == (int) R_MN10200_PCREL24)
610 {
611 bfd_vma value = symval;
612
613 /* Deal with pc-relative gunk. */
614 value -= (sec->output_section->vma + sec->output_offset);
615 value -= (irel->r_offset + 3);
616 value += irel->r_addend;
617
618 /* See if the value will fit in 16 bits, note the high value is
619 0x7fff + 2 as the target will be two bytes closer if we are
620 able to relax. */
621 if ((long) value < 0x8001 && (long) value > -0x8000)
622 {
623 unsigned char code;
624
625 /* Get the opcode. */
626 code = bfd_get_8 (abfd, contents + irel->r_offset - 1);
627
628 if (code != 0xe0 && code != 0xe1)
629 continue;
630
631 /* Note that we've changed the relocs, section contents, etc. */
632 elf_section_data (sec)->relocs = internal_relocs;
633 elf_section_data (sec)->this_hdr.contents = contents;
634 symtab_hdr->contents = (unsigned char *) isymbuf;
635
636 /* Fix the opcode. */
637 if (code == 0xe0)
638 bfd_put_8 (abfd, 0xfc, contents + irel->r_offset - 2);
639 else if (code == 0xe1)
640 bfd_put_8 (abfd, 0xfd, contents + irel->r_offset - 2);
641
642 /* Fix the relocation's type. */
643 irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info),
644 R_MN10200_PCREL16);
645
646 /* The opcode got shorter too, so we have to fix the offset. */
647 irel->r_offset -= 1;
648
649 /* Delete two bytes of data. */
650 if (!mn10200_elf_relax_delete_bytes (abfd, sec,
651 irel->r_offset + 1, 2))
652 goto error_return;
653
654 /* That will change things, so, we should relax again.
655 Note that this is not required, and it may be slow. */
656 *again = TRUE;
657 }
658 }
659
660 /* Try to turn a 16bit pc-relative branch into a 8bit pc-relative
661 branch. */
662 if (ELF32_R_TYPE (irel->r_info) == (int) R_MN10200_PCREL16)
663 {
664 bfd_vma value = symval;
665
666 /* Deal with pc-relative gunk. */
667 value -= (sec->output_section->vma + sec->output_offset);
668 value -= (irel->r_offset + 2);
669 value += irel->r_addend;
670
671 /* See if the value will fit in 8 bits, note the high value is
672 0x7f + 1 as the target will be one bytes closer if we are
673 able to relax. */
674 if ((long) value < 0x80 && (long) value > -0x80)
675 {
676 unsigned char code;
677
678 /* Get the opcode. */
679 code = bfd_get_8 (abfd, contents + irel->r_offset - 1);
680
681 if (code != 0xfc)
682 continue;
683
684 /* Note that we've changed the relocs, section contents, etc. */
685 elf_section_data (sec)->relocs = internal_relocs;
686 elf_section_data (sec)->this_hdr.contents = contents;
687 symtab_hdr->contents = (unsigned char *) isymbuf;
688
689 /* Fix the opcode. */
690 bfd_put_8 (abfd, 0xea, contents + irel->r_offset - 1);
691
692 /* Fix the relocation's type. */
693 irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info),
694 R_MN10200_PCREL8);
695
696 /* Delete one byte of data. */
697 if (!mn10200_elf_relax_delete_bytes (abfd, sec,
698 irel->r_offset + 1, 1))
699 goto error_return;
700
701 /* That will change things, so, we should relax again.
702 Note that this is not required, and it may be slow. */
703 *again = TRUE;
704 }
705 }
706
707 /* Try to eliminate an unconditional 8 bit pc-relative branch
708 which immediately follows a conditional 8 bit pc-relative
709 branch around the unconditional branch.
710
711 original: new:
712 bCC lab1 bCC' lab2
713 bra lab2
714 lab1: lab1:
715
716 This happens when the bCC can't reach lab2 at assembly time,
717 but due to other relaxations it can reach at link time. */
718 if (ELF32_R_TYPE (irel->r_info) == (int) R_MN10200_PCREL8)
719 {
720 Elf_Internal_Rela *nrel;
721 bfd_vma value = symval;
722 unsigned char code;
723
724 /* Deal with pc-relative gunk. */
725 value -= (sec->output_section->vma + sec->output_offset);
726 value -= (irel->r_offset + 1);
727 value += irel->r_addend;
728
729 /* Do nothing if this reloc is the last byte in the section. */
730 if (irel->r_offset == sec->size)
731 continue;
732
733 /* See if the next instruction is an unconditional pc-relative
734 branch, more often than not this test will fail, so we
735 test it first to speed things up. */
736 code = bfd_get_8 (abfd, contents + irel->r_offset + 1);
737 if (code != 0xea)
738 continue;
739
740 /* Also make sure the next relocation applies to the next
741 instruction and that it's a pc-relative 8 bit branch. */
742 nrel = irel + 1;
743 if (nrel == irelend
744 || irel->r_offset + 2 != nrel->r_offset
745 || ELF32_R_TYPE (nrel->r_info) != (int) R_MN10200_PCREL8)
746 continue;
747
748 /* Make sure our destination immediately follows the
749 unconditional branch. */
750 if (symval != (sec->output_section->vma + sec->output_offset
751 + irel->r_offset + 3))
752 continue;
753
754 /* Now make sure we are a conditional branch. This may not
755 be necessary, but why take the chance.
756
757 Note these checks assume that R_MN10200_PCREL8 relocs
758 only occur on bCC and bCCx insns. If they occured
759 elsewhere, we'd need to know the start of this insn
760 for this check to be accurate. */
761 code = bfd_get_8 (abfd, contents + irel->r_offset - 1);
762 if (code != 0xe0 && code != 0xe1 && code != 0xe2
763 && code != 0xe3 && code != 0xe4 && code != 0xe5
764 && code != 0xe6 && code != 0xe7 && code != 0xe8
765 && code != 0xe9 && code != 0xec && code != 0xed
766 && code != 0xee && code != 0xef && code != 0xfc
767 && code != 0xfd && code != 0xfe && code != 0xff)
768 continue;
769
770 /* We also have to be sure there is no symbol/label
771 at the unconditional branch. */
772 if (mn10200_elf_symbol_address_p (abfd, sec, isymbuf,
773 irel->r_offset + 1))
774 continue;
775
776 /* Note that we've changed the relocs, section contents, etc. */
777 elf_section_data (sec)->relocs = internal_relocs;
778 elf_section_data (sec)->this_hdr.contents = contents;
779 symtab_hdr->contents = (unsigned char *) isymbuf;
780
781 /* Reverse the condition of the first branch. */
782 switch (code)
783 {
784 case 0xfc:
785 code = 0xfd;
786 break;
787 case 0xfd:
788 code = 0xfc;
789 break;
790 case 0xfe:
791 code = 0xff;
792 break;
793 case 0xff:
794 code = 0xfe;
795 break;
796 case 0xe8:
797 code = 0xe9;
798 break;
799 case 0xe9:
800 code = 0xe8;
801 break;
802 case 0xe0:
803 code = 0xe2;
804 break;
805 case 0xe2:
806 code = 0xe0;
807 break;
808 case 0xe3:
809 code = 0xe1;
810 break;
811 case 0xe1:
812 code = 0xe3;
813 break;
814 case 0xe4:
815 code = 0xe6;
816 break;
817 case 0xe6:
818 code = 0xe4;
819 break;
820 case 0xe7:
821 code = 0xe5;
822 break;
823 case 0xe5:
824 code = 0xe7;
825 break;
826 case 0xec:
827 code = 0xed;
828 break;
829 case 0xed:
830 code = 0xec;
831 break;
832 case 0xee:
833 code = 0xef;
834 break;
835 case 0xef:
836 code = 0xee;
837 break;
838 }
839 bfd_put_8 (abfd, code, contents + irel->r_offset - 1);
840
841 /* Set the reloc type and symbol for the first branch
842 from the second branch. */
843 irel->r_info = nrel->r_info;
844
845 /* Make the reloc for the second branch a null reloc. */
846 nrel->r_info = ELF32_R_INFO (ELF32_R_SYM (nrel->r_info),
847 R_MN10200_NONE);
848
849 /* Delete two bytes of data. */
850 if (!mn10200_elf_relax_delete_bytes (abfd, sec,
851 irel->r_offset + 1, 2))
852 goto error_return;
853
854 /* That will change things, so, we should relax again.
855 Note that this is not required, and it may be slow. */
856 *again = TRUE;
857 }
858
859 /* Try to turn a 24bit immediate, displacement or absolute address
860 into a 16bit immediate, displacement or absolute address. */
861 if (ELF32_R_TYPE (irel->r_info) == (int) R_MN10200_24)
862 {
863 bfd_vma value = symval;
864
865 /* See if the value will fit in 16 bits.
866 We allow any 16bit match here. We prune those we can't
867 handle below. */
868 if ((long) value < 0x7fff && (long) value > -0x8000)
869 {
870 unsigned char code;
871
872 /* All insns which have 24bit operands are 5 bytes long,
873 the first byte will always be 0xf4, but we double check
874 it just in case. */
875
876 /* Get the first opcode. */
877 code = bfd_get_8 (abfd, contents + irel->r_offset - 2);
878
879 if (code != 0xf4)
880 continue;
881
882 /* Get the second opcode. */
883 code = bfd_get_8 (abfd, contents + irel->r_offset - 1);
884
885 switch (code & 0xfc)
886 {
887 /* mov imm24,dn -> mov imm16,dn */
888 case 0x70:
889 /* Not safe if the high bit is on as relaxing may
890 move the value out of high mem and thus not fit
891 in a signed 16bit value. */
892 if (value & 0x8000)
893 continue;
894
895 /* Note that we've changed the relocation contents, etc. */
896 elf_section_data (sec)->relocs = internal_relocs;
897 elf_section_data (sec)->this_hdr.contents = contents;
898 symtab_hdr->contents = (unsigned char *) isymbuf;
899
900 /* Fix the opcode. */
901 bfd_put_8 (abfd, 0xf8 + (code & 0x03),
902 contents + irel->r_offset - 2);
903
904 /* Fix the relocation's type. */
905 irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info),
906 R_MN10200_16);
907
908 /* The opcode got shorter too, so we have to fix the
909 offset. */
910 irel->r_offset -= 1;
911
912 /* Delete two bytes of data. */
913 if (!mn10200_elf_relax_delete_bytes (abfd, sec,
914 irel->r_offset + 1, 2))
915 goto error_return;
916
917 /* That will change things, so, we should relax again.
918 Note that this is not required, and it may be slow. */
919 *again = TRUE;
920 break;
921
922 /* mov imm24,an -> mov imm16,an
923 cmp imm24,an -> cmp imm16,an
924 mov (abs24),dn -> mov (abs16),dn
925 mov dn,(abs24) -> mov dn,(abs16)
926 movb dn,(abs24) -> movb dn,(abs16)
927 movbu (abs24),dn -> movbu (abs16),dn */
928 case 0x74:
929 case 0x7c:
930 case 0xc0:
931 case 0x40:
932 case 0x44:
933 case 0xc8:
934 /* Note that we've changed the relocation contents, etc. */
935 elf_section_data (sec)->relocs = internal_relocs;
936 elf_section_data (sec)->this_hdr.contents = contents;
937 symtab_hdr->contents = (unsigned char *) isymbuf;
938
939 if ((code & 0xfc) == 0x74)
940 code = 0xdc + (code & 0x03);
941 else if ((code & 0xfc) == 0x7c)
942 code = 0xec + (code & 0x03);
943 else if ((code & 0xfc) == 0xc0)
944 code = 0xc8 + (code & 0x03);
945 else if ((code & 0xfc) == 0x40)
946 code = 0xc0 + (code & 0x03);
947 else if ((code & 0xfc) == 0x44)
948 code = 0xc4 + (code & 0x03);
949 else if ((code & 0xfc) == 0xc8)
950 code = 0xcc + (code & 0x03);
951
952 /* Fix the opcode. */
953 bfd_put_8 (abfd, code, contents + irel->r_offset - 2);
954
955 /* Fix the relocation's type. */
956 irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info),
957 R_MN10200_16);
958
959 /* The opcode got shorter too, so we have to fix the
960 offset. */
961 irel->r_offset -= 1;
962
963 /* Delete two bytes of data. */
964 if (!mn10200_elf_relax_delete_bytes (abfd, sec,
965 irel->r_offset + 1, 2))
966 goto error_return;
967
968 /* That will change things, so, we should relax again.
969 Note that this is not required, and it may be slow. */
970 *again = TRUE;
971 break;
972
973 /* cmp imm24,dn -> cmp imm16,dn
974 mov (abs24),an -> mov (abs16),an
975 mov an,(abs24) -> mov an,(abs16)
976 add imm24,dn -> add imm16,dn
977 add imm24,an -> add imm16,an
978 sub imm24,dn -> sub imm16,dn
979 sub imm24,an -> sub imm16,an
980 And all d24->d16 in memory ops. */
981 case 0x78:
982 case 0xd0:
983 case 0x50:
984 case 0x60:
985 case 0x64:
986 case 0x68:
987 case 0x6c:
988 case 0x80:
989 case 0xf0:
990 case 0x00:
991 case 0x10:
992 case 0xb0:
993 case 0x30:
994 case 0xa0:
995 case 0x20:
996 case 0x90:
997 /* Not safe if the high bit is on as relaxing may
998 move the value out of high mem and thus not fit
999 in a signed 16bit value. */
1000 if (((code & 0xfc) == 0x78
1001 || (code & 0xfc) == 0x60
1002 || (code & 0xfc) == 0x64
1003 || (code & 0xfc) == 0x68
1004 || (code & 0xfc) == 0x6c
1005 || (code & 0xfc) == 0x80
1006 || (code & 0xfc) == 0xf0
1007 || (code & 0xfc) == 0x00
1008 || (code & 0xfc) == 0x10
1009 || (code & 0xfc) == 0xb0
1010 || (code & 0xfc) == 0x30
1011 || (code & 0xfc) == 0xa0
1012 || (code & 0xfc) == 0x20
1013 || (code & 0xfc) == 0x90)
1014 && (value & 0x8000) != 0)
1015 continue;
1016
1017 /* Note that we've changed the relocation contents, etc. */
1018 elf_section_data (sec)->relocs = internal_relocs;
1019 elf_section_data (sec)->this_hdr.contents = contents;
1020 symtab_hdr->contents = (unsigned char *) isymbuf;
1021
1022 /* Fix the opcode. */
1023 bfd_put_8 (abfd, 0xf7, contents + irel->r_offset - 2);
1024
1025 if ((code & 0xfc) == 0x78)
1026 code = 0x48 + (code & 0x03);
1027 else if ((code & 0xfc) == 0xd0)
1028 code = 0x30 + (code & 0x03);
1029 else if ((code & 0xfc) == 0x50)
1030 code = 0x20 + (code & 0x03);
1031 else if ((code & 0xfc) == 0x60)
1032 code = 0x18 + (code & 0x03);
1033 else if ((code & 0xfc) == 0x64)
1034 code = 0x08 + (code & 0x03);
1035 else if ((code & 0xfc) == 0x68)
1036 code = 0x1c + (code & 0x03);
1037 else if ((code & 0xfc) == 0x6c)
1038 code = 0x0c + (code & 0x03);
1039 else if ((code & 0xfc) == 0x80)
1040 code = 0xc0 + (code & 0x07);
1041 else if ((code & 0xfc) == 0xf0)
1042 code = 0xb0 + (code & 0x07);
1043 else if ((code & 0xfc) == 0x00)
1044 code = 0x80 + (code & 0x07);
1045 else if ((code & 0xfc) == 0x10)
1046 code = 0xa0 + (code & 0x07);
1047 else if ((code & 0xfc) == 0xb0)
1048 code = 0x70 + (code & 0x07);
1049 else if ((code & 0xfc) == 0x30)
1050 code = 0x60 + (code & 0x07);
1051 else if ((code & 0xfc) == 0xa0)
1052 code = 0xd0 + (code & 0x07);
1053 else if ((code & 0xfc) == 0x20)
1054 code = 0x90 + (code & 0x07);
1055 else if ((code & 0xfc) == 0x90)
1056 code = 0x50 + (code & 0x07);
1057
1058 bfd_put_8 (abfd, code, contents + irel->r_offset - 1);
1059
1060 /* Fix the relocation's type. */
1061 irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info),
1062 R_MN10200_16);
1063
1064 /* Delete one bytes of data. */
1065 if (!mn10200_elf_relax_delete_bytes (abfd, sec,
1066 irel->r_offset + 2, 1))
1067 goto error_return;
1068
1069 /* That will change things, so, we should relax again.
1070 Note that this is not required, and it may be slow. */
1071 *again = TRUE;
1072 break;
1073
1074 /* movb (abs24),dn ->movbu (abs16),dn extxb bn */
1075 case 0xc4:
1076 /* Note that we've changed the reldection contents, etc. */
1077 elf_section_data (sec)->relocs = internal_relocs;
1078 elf_section_data (sec)->this_hdr.contents = contents;
1079 symtab_hdr->contents = (unsigned char *) isymbuf;
1080
1081 bfd_put_8 (abfd, 0xcc + (code & 0x03),
1082 contents + irel->r_offset - 2);
1083
1084 bfd_put_8 (abfd, 0xb8 + (code & 0x03),
1085 contents + irel->r_offset - 1);
1086
1087 /* Fix the relocation's type. */
1088 irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info),
1089 R_MN10200_16);
1090
1091 /* The reloc will be applied one byte in front of its
1092 current location. */
1093 irel->r_offset -= 1;
1094
1095 /* Delete one bytes of data. */
1096 if (!mn10200_elf_relax_delete_bytes (abfd, sec,
1097 irel->r_offset + 2, 1))
1098 goto error_return;
1099
1100 /* That will change things, so, we should relax again.
1101 Note that this is not required, and it may be slow. */
1102 *again = TRUE;
1103 break;
1104 }
1105 }
1106 }
1107 }
1108
1109 if (isymbuf != NULL
1110 && symtab_hdr->contents != (unsigned char *) isymbuf)
1111 {
1112 if (! link_info->keep_memory)
1113 free (isymbuf);
1114 else
1115 {
1116 /* Cache the symbols for elf_link_input_bfd. */
1117 symtab_hdr->contents = (unsigned char *) isymbuf;
1118 }
1119 }
1120
1121 if (contents != NULL
1122 && elf_section_data (sec)->this_hdr.contents != contents)
1123 {
1124 if (! link_info->keep_memory)
1125 free (contents);
1126 else
1127 {
1128 /* Cache the section contents for elf_link_input_bfd. */
1129 elf_section_data (sec)->this_hdr.contents = contents;
1130 }
1131 }
1132
1133 if (internal_relocs != NULL
1134 && elf_section_data (sec)->relocs != internal_relocs)
1135 free (internal_relocs);
1136
1137 return TRUE;
1138
1139 error_return:
1140 if (isymbuf != NULL
1141 && symtab_hdr->contents != (unsigned char *) isymbuf)
1142 free (isymbuf);
1143 if (contents != NULL
1144 && elf_section_data (sec)->this_hdr.contents != contents)
1145 free (contents);
1146 if (internal_relocs != NULL
1147 && elf_section_data (sec)->relocs != internal_relocs)
1148 free (internal_relocs);
1149
1150 return FALSE;
1151 }
1152
1153 /* Delete some bytes from a section while relaxing. */
1154
1155 static bfd_boolean
1156 mn10200_elf_relax_delete_bytes (abfd, sec, addr, count)
1157 bfd *abfd;
1158 asection *sec;
1159 bfd_vma addr;
1160 int count;
1161 {
1162 Elf_Internal_Shdr *symtab_hdr;
1163 unsigned int sec_shndx;
1164 bfd_byte *contents;
1165 Elf_Internal_Rela *irel, *irelend;
1166 Elf_Internal_Rela *irelalign;
1167 bfd_vma toaddr;
1168 Elf_Internal_Sym *isym;
1169 Elf_Internal_Sym *isymend;
1170 struct elf_link_hash_entry **sym_hashes;
1171 struct elf_link_hash_entry **end_hashes;
1172 unsigned int symcount;
1173
1174 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
1175
1176 contents = elf_section_data (sec)->this_hdr.contents;
1177
1178 /* The deletion must stop at the next ALIGN reloc for an aligment
1179 power larger than the number of bytes we are deleting. */
1180
1181 irelalign = NULL;
1182 toaddr = sec->size;
1183
1184 irel = elf_section_data (sec)->relocs;
1185 irelend = irel + sec->reloc_count;
1186
1187 /* Actually delete the bytes. */
1188 memmove (contents + addr, contents + addr + count,
1189 (size_t) (toaddr - addr - count));
1190 sec->size -= count;
1191
1192 /* Adjust all the relocs. */
1193 for (irel = elf_section_data (sec)->relocs; irel < irelend; irel++)
1194 {
1195 /* Get the new reloc address. */
1196 if ((irel->r_offset > addr
1197 && irel->r_offset < toaddr))
1198 irel->r_offset -= count;
1199 }
1200
1201 /* Adjust the local symbols defined in this section. */
1202 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1203 isym = (Elf_Internal_Sym *) symtab_hdr->contents;
1204 for (isymend = isym + symtab_hdr->sh_info; isym < isymend; isym++)
1205 {
1206 if (isym->st_shndx == sec_shndx
1207 && isym->st_value > addr
1208 && isym->st_value < toaddr)
1209 isym->st_value -= count;
1210 }
1211
1212 /* Now adjust the global symbols defined in this section. */
1213 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
1214 - symtab_hdr->sh_info);
1215 sym_hashes = elf_sym_hashes (abfd);
1216 end_hashes = sym_hashes + symcount;
1217 for (; sym_hashes < end_hashes; sym_hashes++)
1218 {
1219 struct elf_link_hash_entry *sym_hash = *sym_hashes;
1220 if ((sym_hash->root.type == bfd_link_hash_defined
1221 || sym_hash->root.type == bfd_link_hash_defweak)
1222 && sym_hash->root.u.def.section == sec
1223 && sym_hash->root.u.def.value > addr
1224 && sym_hash->root.u.def.value < toaddr)
1225 {
1226 sym_hash->root.u.def.value -= count;
1227 }
1228 }
1229
1230 return TRUE;
1231 }
1232
1233 /* Return TRUE if a symbol exists at the given address, else return
1234 FALSE. */
1235 static bfd_boolean
1236 mn10200_elf_symbol_address_p (abfd, sec, isym, addr)
1237 bfd *abfd;
1238 asection *sec;
1239 Elf_Internal_Sym *isym;
1240 bfd_vma addr;
1241 {
1242 Elf_Internal_Shdr *symtab_hdr;
1243 unsigned int sec_shndx;
1244 Elf_Internal_Sym *isymend;
1245 struct elf_link_hash_entry **sym_hashes;
1246 struct elf_link_hash_entry **end_hashes;
1247 unsigned int symcount;
1248
1249 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
1250
1251 /* Examine all the local symbols. */
1252 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1253 for (isymend = isym + symtab_hdr->sh_info; isym < isymend; isym++)
1254 {
1255 if (isym->st_shndx == sec_shndx
1256 && isym->st_value == addr)
1257 return TRUE;
1258 }
1259
1260 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
1261 - symtab_hdr->sh_info);
1262 sym_hashes = elf_sym_hashes (abfd);
1263 end_hashes = sym_hashes + symcount;
1264 for (; sym_hashes < end_hashes; sym_hashes++)
1265 {
1266 struct elf_link_hash_entry *sym_hash = *sym_hashes;
1267 if ((sym_hash->root.type == bfd_link_hash_defined
1268 || sym_hash->root.type == bfd_link_hash_defweak)
1269 && sym_hash->root.u.def.section == sec
1270 && sym_hash->root.u.def.value == addr)
1271 return TRUE;
1272 }
1273
1274 return FALSE;
1275 }
1276
1277 /* This is a version of bfd_generic_get_relocated_section_contents
1278 which uses mn10200_elf_relocate_section. */
1279
1280 static bfd_byte *
1281 mn10200_elf_get_relocated_section_contents (output_bfd, link_info, link_order,
1282 data, relocatable, symbols)
1283 bfd *output_bfd;
1284 struct bfd_link_info *link_info;
1285 struct bfd_link_order *link_order;
1286 bfd_byte *data;
1287 bfd_boolean relocatable;
1288 asymbol **symbols;
1289 {
1290 Elf_Internal_Shdr *symtab_hdr;
1291 asection *input_section = link_order->u.indirect.section;
1292 bfd *input_bfd = input_section->owner;
1293 asection **sections = NULL;
1294 Elf_Internal_Rela *internal_relocs = NULL;
1295 Elf_Internal_Sym *isymbuf = NULL;
1296
1297 /* We only need to handle the case of relaxing, or of having a
1298 particular set of section contents, specially. */
1299 if (relocatable
1300 || elf_section_data (input_section)->this_hdr.contents == NULL)
1301 return bfd_generic_get_relocated_section_contents (output_bfd, link_info,
1302 link_order, data,
1303 relocatable,
1304 symbols);
1305
1306 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
1307
1308 memcpy (data, elf_section_data (input_section)->this_hdr.contents,
1309 (size_t) input_section->size);
1310
1311 if ((input_section->flags & SEC_RELOC) != 0
1312 && input_section->reloc_count > 0)
1313 {
1314 Elf_Internal_Sym *isym;
1315 Elf_Internal_Sym *isymend;
1316 asection **secpp;
1317 bfd_size_type amt;
1318
1319 internal_relocs = (_bfd_elf_link_read_relocs
1320 (input_bfd, input_section, (PTR) NULL,
1321 (Elf_Internal_Rela *) NULL, FALSE));
1322 if (internal_relocs == NULL)
1323 goto error_return;
1324
1325 if (symtab_hdr->sh_info != 0)
1326 {
1327 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
1328 if (isymbuf == NULL)
1329 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
1330 symtab_hdr->sh_info, 0,
1331 NULL, NULL, NULL);
1332 if (isymbuf == NULL)
1333 goto error_return;
1334 }
1335
1336 amt = symtab_hdr->sh_info;
1337 amt *= sizeof (asection *);
1338 sections = (asection **) bfd_malloc (amt);
1339 if (sections == NULL && amt != 0)
1340 goto error_return;
1341
1342 isymend = isymbuf + symtab_hdr->sh_info;
1343 for (isym = isymbuf, secpp = sections; isym < isymend; ++isym, ++secpp)
1344 {
1345 asection *isec;
1346
1347 if (isym->st_shndx == SHN_UNDEF)
1348 isec = bfd_und_section_ptr;
1349 else if (isym->st_shndx == SHN_ABS)
1350 isec = bfd_abs_section_ptr;
1351 else if (isym->st_shndx == SHN_COMMON)
1352 isec = bfd_com_section_ptr;
1353 else
1354 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
1355
1356 *secpp = isec;
1357 }
1358
1359 if (! mn10200_elf_relocate_section (output_bfd, link_info, input_bfd,
1360 input_section, data, internal_relocs,
1361 isymbuf, sections))
1362 goto error_return;
1363
1364 if (sections != NULL)
1365 free (sections);
1366 if (isymbuf != NULL
1367 && symtab_hdr->contents != (unsigned char *) isymbuf)
1368 free (isymbuf);
1369 if (elf_section_data (input_section)->relocs != internal_relocs)
1370 free (internal_relocs);
1371 }
1372
1373 return data;
1374
1375 error_return:
1376 if (sections != NULL)
1377 free (sections);
1378 if (isymbuf != NULL
1379 && symtab_hdr->contents != (unsigned char *) isymbuf)
1380 free (isymbuf);
1381 if (internal_relocs != NULL
1382 && elf_section_data (input_section)->relocs != internal_relocs)
1383 free (internal_relocs);
1384 return NULL;
1385 }
1386
1387 #define TARGET_LITTLE_SYM bfd_elf32_mn10200_vec
1388 #define TARGET_LITTLE_NAME "elf32-mn10200"
1389 #define ELF_ARCH bfd_arch_mn10200
1390 #define ELF_MACHINE_CODE EM_MN10200
1391 #define ELF_MACHINE_ALT1 EM_CYGNUS_MN10200
1392 #define ELF_MAXPAGESIZE 0x1000
1393
1394 #define elf_backend_rela_normal 1
1395 #define elf_info_to_howto mn10200_info_to_howto
1396 #define elf_info_to_howto_rel 0
1397 #define elf_backend_relocate_section mn10200_elf_relocate_section
1398 #define bfd_elf32_bfd_relax_section mn10200_elf_relax_section
1399 #define bfd_elf32_bfd_get_relocated_section_contents \
1400 mn10200_elf_get_relocated_section_contents
1401
1402 #define elf_symbol_leading_char '_'
1403
1404 #include "elf32-target.h"
This page took 0.060127 seconds and 5 git commands to generate.