1 /* ELF executable support for BFD.
3 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
4 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
5 Free Software Foundation, Inc.
7 This file is part of BFD, the Binary File Descriptor library.
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22 MA 02110-1301, USA. */
29 BFD support for ELF formats is being worked on.
30 Currently, the best supported back ends are for sparc and i386
31 (running svr4 or Solaris 2).
33 Documentation of the internals of the support code still needs
34 to be written. The code is changing quickly enough that we
35 haven't bothered yet. */
37 /* For sparc64-cross-sparc32. */
45 #include "libiberty.h"
46 #include "safe-ctype.h"
48 static int elf_sort_sections (const void *, const void *);
49 static bfd_boolean
assign_file_positions_except_relocs (bfd
*, struct bfd_link_info
*);
50 static bfd_boolean
prep_headers (bfd
*);
51 static bfd_boolean
swap_out_syms (bfd
*, struct bfd_strtab_hash
**, int) ;
52 static bfd_boolean
elf_read_notes (bfd
*, file_ptr
, bfd_size_type
) ;
53 static bfd_boolean
elf_parse_notes (bfd
*abfd
, char *buf
, size_t size
,
56 /* Swap version information in and out. The version information is
57 currently size independent. If that ever changes, this code will
58 need to move into elfcode.h. */
60 /* Swap in a Verdef structure. */
63 _bfd_elf_swap_verdef_in (bfd
*abfd
,
64 const Elf_External_Verdef
*src
,
65 Elf_Internal_Verdef
*dst
)
67 dst
->vd_version
= H_GET_16 (abfd
, src
->vd_version
);
68 dst
->vd_flags
= H_GET_16 (abfd
, src
->vd_flags
);
69 dst
->vd_ndx
= H_GET_16 (abfd
, src
->vd_ndx
);
70 dst
->vd_cnt
= H_GET_16 (abfd
, src
->vd_cnt
);
71 dst
->vd_hash
= H_GET_32 (abfd
, src
->vd_hash
);
72 dst
->vd_aux
= H_GET_32 (abfd
, src
->vd_aux
);
73 dst
->vd_next
= H_GET_32 (abfd
, src
->vd_next
);
76 /* Swap out a Verdef structure. */
79 _bfd_elf_swap_verdef_out (bfd
*abfd
,
80 const Elf_Internal_Verdef
*src
,
81 Elf_External_Verdef
*dst
)
83 H_PUT_16 (abfd
, src
->vd_version
, dst
->vd_version
);
84 H_PUT_16 (abfd
, src
->vd_flags
, dst
->vd_flags
);
85 H_PUT_16 (abfd
, src
->vd_ndx
, dst
->vd_ndx
);
86 H_PUT_16 (abfd
, src
->vd_cnt
, dst
->vd_cnt
);
87 H_PUT_32 (abfd
, src
->vd_hash
, dst
->vd_hash
);
88 H_PUT_32 (abfd
, src
->vd_aux
, dst
->vd_aux
);
89 H_PUT_32 (abfd
, src
->vd_next
, dst
->vd_next
);
92 /* Swap in a Verdaux structure. */
95 _bfd_elf_swap_verdaux_in (bfd
*abfd
,
96 const Elf_External_Verdaux
*src
,
97 Elf_Internal_Verdaux
*dst
)
99 dst
->vda_name
= H_GET_32 (abfd
, src
->vda_name
);
100 dst
->vda_next
= H_GET_32 (abfd
, src
->vda_next
);
103 /* Swap out a Verdaux structure. */
106 _bfd_elf_swap_verdaux_out (bfd
*abfd
,
107 const Elf_Internal_Verdaux
*src
,
108 Elf_External_Verdaux
*dst
)
110 H_PUT_32 (abfd
, src
->vda_name
, dst
->vda_name
);
111 H_PUT_32 (abfd
, src
->vda_next
, dst
->vda_next
);
114 /* Swap in a Verneed structure. */
117 _bfd_elf_swap_verneed_in (bfd
*abfd
,
118 const Elf_External_Verneed
*src
,
119 Elf_Internal_Verneed
*dst
)
121 dst
->vn_version
= H_GET_16 (abfd
, src
->vn_version
);
122 dst
->vn_cnt
= H_GET_16 (abfd
, src
->vn_cnt
);
123 dst
->vn_file
= H_GET_32 (abfd
, src
->vn_file
);
124 dst
->vn_aux
= H_GET_32 (abfd
, src
->vn_aux
);
125 dst
->vn_next
= H_GET_32 (abfd
, src
->vn_next
);
128 /* Swap out a Verneed structure. */
131 _bfd_elf_swap_verneed_out (bfd
*abfd
,
132 const Elf_Internal_Verneed
*src
,
133 Elf_External_Verneed
*dst
)
135 H_PUT_16 (abfd
, src
->vn_version
, dst
->vn_version
);
136 H_PUT_16 (abfd
, src
->vn_cnt
, dst
->vn_cnt
);
137 H_PUT_32 (abfd
, src
->vn_file
, dst
->vn_file
);
138 H_PUT_32 (abfd
, src
->vn_aux
, dst
->vn_aux
);
139 H_PUT_32 (abfd
, src
->vn_next
, dst
->vn_next
);
142 /* Swap in a Vernaux structure. */
145 _bfd_elf_swap_vernaux_in (bfd
*abfd
,
146 const Elf_External_Vernaux
*src
,
147 Elf_Internal_Vernaux
*dst
)
149 dst
->vna_hash
= H_GET_32 (abfd
, src
->vna_hash
);
150 dst
->vna_flags
= H_GET_16 (abfd
, src
->vna_flags
);
151 dst
->vna_other
= H_GET_16 (abfd
, src
->vna_other
);
152 dst
->vna_name
= H_GET_32 (abfd
, src
->vna_name
);
153 dst
->vna_next
= H_GET_32 (abfd
, src
->vna_next
);
156 /* Swap out a Vernaux structure. */
159 _bfd_elf_swap_vernaux_out (bfd
*abfd
,
160 const Elf_Internal_Vernaux
*src
,
161 Elf_External_Vernaux
*dst
)
163 H_PUT_32 (abfd
, src
->vna_hash
, dst
->vna_hash
);
164 H_PUT_16 (abfd
, src
->vna_flags
, dst
->vna_flags
);
165 H_PUT_16 (abfd
, src
->vna_other
, dst
->vna_other
);
166 H_PUT_32 (abfd
, src
->vna_name
, dst
->vna_name
);
167 H_PUT_32 (abfd
, src
->vna_next
, dst
->vna_next
);
170 /* Swap in a Versym structure. */
173 _bfd_elf_swap_versym_in (bfd
*abfd
,
174 const Elf_External_Versym
*src
,
175 Elf_Internal_Versym
*dst
)
177 dst
->vs_vers
= H_GET_16 (abfd
, src
->vs_vers
);
180 /* Swap out a Versym structure. */
183 _bfd_elf_swap_versym_out (bfd
*abfd
,
184 const Elf_Internal_Versym
*src
,
185 Elf_External_Versym
*dst
)
187 H_PUT_16 (abfd
, src
->vs_vers
, dst
->vs_vers
);
190 /* Standard ELF hash function. Do not change this function; you will
191 cause invalid hash tables to be generated. */
194 bfd_elf_hash (const char *namearg
)
196 const unsigned char *name
= (const unsigned char *) namearg
;
201 while ((ch
= *name
++) != '\0')
204 if ((g
= (h
& 0xf0000000)) != 0)
207 /* The ELF ABI says `h &= ~g', but this is equivalent in
208 this case and on some machines one insn instead of two. */
212 return h
& 0xffffffff;
215 /* DT_GNU_HASH hash function. Do not change this function; you will
216 cause invalid hash tables to be generated. */
219 bfd_elf_gnu_hash (const char *namearg
)
221 const unsigned char *name
= (const unsigned char *) namearg
;
222 unsigned long h
= 5381;
225 while ((ch
= *name
++) != '\0')
226 h
= (h
<< 5) + h
+ ch
;
227 return h
& 0xffffffff;
230 /* Create a tdata field OBJECT_SIZE bytes in length, zeroed out and with
231 the object_id field of an elf_obj_tdata field set to OBJECT_ID. */
233 bfd_elf_allocate_object (bfd
*abfd
,
235 enum elf_object_id object_id
)
237 BFD_ASSERT (object_size
>= sizeof (struct elf_obj_tdata
));
238 abfd
->tdata
.any
= bfd_zalloc (abfd
, object_size
);
239 if (abfd
->tdata
.any
== NULL
)
242 elf_object_id (abfd
) = object_id
;
243 elf_program_header_size (abfd
) = (bfd_size_type
) -1;
249 bfd_elf_make_generic_object (bfd
*abfd
)
251 return bfd_elf_allocate_object (abfd
, sizeof (struct elf_obj_tdata
),
256 bfd_elf_mkcorefile (bfd
*abfd
)
258 /* I think this can be done just like an object file. */
259 return bfd_elf_make_generic_object (abfd
);
263 bfd_elf_get_str_section (bfd
*abfd
, unsigned int shindex
)
265 Elf_Internal_Shdr
**i_shdrp
;
266 bfd_byte
*shstrtab
= NULL
;
268 bfd_size_type shstrtabsize
;
270 i_shdrp
= elf_elfsections (abfd
);
272 || shindex
>= elf_numsections (abfd
)
273 || i_shdrp
[shindex
] == 0)
276 shstrtab
= i_shdrp
[shindex
]->contents
;
277 if (shstrtab
== NULL
)
279 /* No cached one, attempt to read, and cache what we read. */
280 offset
= i_shdrp
[shindex
]->sh_offset
;
281 shstrtabsize
= i_shdrp
[shindex
]->sh_size
;
283 /* Allocate and clear an extra byte at the end, to prevent crashes
284 in case the string table is not terminated. */
285 if (shstrtabsize
+ 1 <= 1
286 || (shstrtab
= (bfd_byte
*) bfd_alloc (abfd
, shstrtabsize
+ 1)) == NULL
287 || bfd_seek (abfd
, offset
, SEEK_SET
) != 0)
289 else if (bfd_bread (shstrtab
, shstrtabsize
, abfd
) != shstrtabsize
)
291 if (bfd_get_error () != bfd_error_system_call
)
292 bfd_set_error (bfd_error_file_truncated
);
294 /* Once we've failed to read it, make sure we don't keep
295 trying. Otherwise, we'll keep allocating space for
296 the string table over and over. */
297 i_shdrp
[shindex
]->sh_size
= 0;
300 shstrtab
[shstrtabsize
] = '\0';
301 i_shdrp
[shindex
]->contents
= shstrtab
;
303 return (char *) shstrtab
;
307 bfd_elf_string_from_elf_section (bfd
*abfd
,
308 unsigned int shindex
,
309 unsigned int strindex
)
311 Elf_Internal_Shdr
*hdr
;
316 if (elf_elfsections (abfd
) == NULL
|| shindex
>= elf_numsections (abfd
))
319 hdr
= elf_elfsections (abfd
)[shindex
];
321 if (hdr
->contents
== NULL
322 && bfd_elf_get_str_section (abfd
, shindex
) == NULL
)
325 if (strindex
>= hdr
->sh_size
)
327 unsigned int shstrndx
= elf_elfheader(abfd
)->e_shstrndx
;
328 (*_bfd_error_handler
)
329 (_("%B: invalid string offset %u >= %lu for section `%s'"),
330 abfd
, strindex
, (unsigned long) hdr
->sh_size
,
331 (shindex
== shstrndx
&& strindex
== hdr
->sh_name
333 : bfd_elf_string_from_elf_section (abfd
, shstrndx
, hdr
->sh_name
)));
337 return ((char *) hdr
->contents
) + strindex
;
340 /* Read and convert symbols to internal format.
341 SYMCOUNT specifies the number of symbols to read, starting from
342 symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF
343 are non-NULL, they are used to store the internal symbols, external
344 symbols, and symbol section index extensions, respectively.
345 Returns a pointer to the internal symbol buffer (malloced if necessary)
346 or NULL if there were no symbols or some kind of problem. */
349 bfd_elf_get_elf_syms (bfd
*ibfd
,
350 Elf_Internal_Shdr
*symtab_hdr
,
353 Elf_Internal_Sym
*intsym_buf
,
355 Elf_External_Sym_Shndx
*extshndx_buf
)
357 Elf_Internal_Shdr
*shndx_hdr
;
359 const bfd_byte
*esym
;
360 Elf_External_Sym_Shndx
*alloc_extshndx
;
361 Elf_External_Sym_Shndx
*shndx
;
362 Elf_Internal_Sym
*alloc_intsym
;
363 Elf_Internal_Sym
*isym
;
364 Elf_Internal_Sym
*isymend
;
365 const struct elf_backend_data
*bed
;
370 if (bfd_get_flavour (ibfd
) != bfd_target_elf_flavour
)
376 /* Normal syms might have section extension entries. */
378 if (symtab_hdr
== &elf_tdata (ibfd
)->symtab_hdr
)
379 shndx_hdr
= &elf_tdata (ibfd
)->symtab_shndx_hdr
;
381 /* Read the symbols. */
383 alloc_extshndx
= NULL
;
385 bed
= get_elf_backend_data (ibfd
);
386 extsym_size
= bed
->s
->sizeof_sym
;
387 amt
= symcount
* extsym_size
;
388 pos
= symtab_hdr
->sh_offset
+ symoffset
* extsym_size
;
389 if (extsym_buf
== NULL
)
391 alloc_ext
= bfd_malloc2 (symcount
, extsym_size
);
392 extsym_buf
= alloc_ext
;
394 if (extsym_buf
== NULL
395 || bfd_seek (ibfd
, pos
, SEEK_SET
) != 0
396 || bfd_bread (extsym_buf
, amt
, ibfd
) != amt
)
402 if (shndx_hdr
== NULL
|| shndx_hdr
->sh_size
== 0)
406 amt
= symcount
* sizeof (Elf_External_Sym_Shndx
);
407 pos
= shndx_hdr
->sh_offset
+ symoffset
* sizeof (Elf_External_Sym_Shndx
);
408 if (extshndx_buf
== NULL
)
410 alloc_extshndx
= (Elf_External_Sym_Shndx
*)
411 bfd_malloc2 (symcount
, sizeof (Elf_External_Sym_Shndx
));
412 extshndx_buf
= alloc_extshndx
;
414 if (extshndx_buf
== NULL
415 || bfd_seek (ibfd
, pos
, SEEK_SET
) != 0
416 || bfd_bread (extshndx_buf
, amt
, ibfd
) != amt
)
423 if (intsym_buf
== NULL
)
425 alloc_intsym
= (Elf_Internal_Sym
*)
426 bfd_malloc2 (symcount
, sizeof (Elf_Internal_Sym
));
427 intsym_buf
= alloc_intsym
;
428 if (intsym_buf
== NULL
)
432 /* Convert the symbols to internal form. */
433 isymend
= intsym_buf
+ symcount
;
434 for (esym
= (const bfd_byte
*) extsym_buf
, isym
= intsym_buf
,
435 shndx
= extshndx_buf
;
437 esym
+= extsym_size
, isym
++, shndx
= shndx
!= NULL
? shndx
+ 1 : NULL
)
438 if (!(*bed
->s
->swap_symbol_in
) (ibfd
, esym
, shndx
, isym
))
440 symoffset
+= (esym
- (bfd_byte
*) extsym_buf
) / extsym_size
;
441 (*_bfd_error_handler
) (_("%B symbol number %lu references "
442 "nonexistent SHT_SYMTAB_SHNDX section"),
443 ibfd
, (unsigned long) symoffset
);
444 if (alloc_intsym
!= NULL
)
451 if (alloc_ext
!= NULL
)
453 if (alloc_extshndx
!= NULL
)
454 free (alloc_extshndx
);
459 /* Look up a symbol name. */
461 bfd_elf_sym_name (bfd
*abfd
,
462 Elf_Internal_Shdr
*symtab_hdr
,
463 Elf_Internal_Sym
*isym
,
467 unsigned int iname
= isym
->st_name
;
468 unsigned int shindex
= symtab_hdr
->sh_link
;
470 if (iname
== 0 && ELF_ST_TYPE (isym
->st_info
) == STT_SECTION
471 /* Check for a bogus st_shndx to avoid crashing. */
472 && isym
->st_shndx
< elf_numsections (abfd
))
474 iname
= elf_elfsections (abfd
)[isym
->st_shndx
]->sh_name
;
475 shindex
= elf_elfheader (abfd
)->e_shstrndx
;
478 name
= bfd_elf_string_from_elf_section (abfd
, shindex
, iname
);
481 else if (sym_sec
&& *name
== '\0')
482 name
= bfd_section_name (abfd
, sym_sec
);
487 /* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
488 sections. The first element is the flags, the rest are section
491 typedef union elf_internal_group
{
492 Elf_Internal_Shdr
*shdr
;
494 } Elf_Internal_Group
;
496 /* Return the name of the group signature symbol. Why isn't the
497 signature just a string? */
500 group_signature (bfd
*abfd
, Elf_Internal_Shdr
*ghdr
)
502 Elf_Internal_Shdr
*hdr
;
503 unsigned char esym
[sizeof (Elf64_External_Sym
)];
504 Elf_External_Sym_Shndx eshndx
;
505 Elf_Internal_Sym isym
;
507 /* First we need to ensure the symbol table is available. Make sure
508 that it is a symbol table section. */
509 if (ghdr
->sh_link
>= elf_numsections (abfd
))
511 hdr
= elf_elfsections (abfd
) [ghdr
->sh_link
];
512 if (hdr
->sh_type
!= SHT_SYMTAB
513 || ! bfd_section_from_shdr (abfd
, ghdr
->sh_link
))
516 /* Go read the symbol. */
517 hdr
= &elf_tdata (abfd
)->symtab_hdr
;
518 if (bfd_elf_get_elf_syms (abfd
, hdr
, 1, ghdr
->sh_info
,
519 &isym
, esym
, &eshndx
) == NULL
)
522 return bfd_elf_sym_name (abfd
, hdr
, &isym
, NULL
);
525 /* Set next_in_group list pointer, and group name for NEWSECT. */
528 setup_group (bfd
*abfd
, Elf_Internal_Shdr
*hdr
, asection
*newsect
)
530 unsigned int num_group
= elf_tdata (abfd
)->num_group
;
532 /* If num_group is zero, read in all SHT_GROUP sections. The count
533 is set to -1 if there are no SHT_GROUP sections. */
536 unsigned int i
, shnum
;
538 /* First count the number of groups. If we have a SHT_GROUP
539 section with just a flag word (ie. sh_size is 4), ignore it. */
540 shnum
= elf_numsections (abfd
);
543 #define IS_VALID_GROUP_SECTION_HEADER(shdr) \
544 ( (shdr)->sh_type == SHT_GROUP \
545 && (shdr)->sh_size >= (2 * GRP_ENTRY_SIZE) \
546 && (shdr)->sh_entsize == GRP_ENTRY_SIZE \
547 && ((shdr)->sh_size % GRP_ENTRY_SIZE) == 0)
549 for (i
= 0; i
< shnum
; i
++)
551 Elf_Internal_Shdr
*shdr
= elf_elfsections (abfd
)[i
];
553 if (IS_VALID_GROUP_SECTION_HEADER (shdr
))
559 num_group
= (unsigned) -1;
560 elf_tdata (abfd
)->num_group
= num_group
;
564 /* We keep a list of elf section headers for group sections,
565 so we can find them quickly. */
568 elf_tdata (abfd
)->num_group
= num_group
;
569 elf_tdata (abfd
)->group_sect_ptr
= (Elf_Internal_Shdr
**)
570 bfd_alloc2 (abfd
, num_group
, sizeof (Elf_Internal_Shdr
*));
571 if (elf_tdata (abfd
)->group_sect_ptr
== NULL
)
575 for (i
= 0; i
< shnum
; i
++)
577 Elf_Internal_Shdr
*shdr
= elf_elfsections (abfd
)[i
];
579 if (IS_VALID_GROUP_SECTION_HEADER (shdr
))
582 Elf_Internal_Group
*dest
;
584 /* Add to list of sections. */
585 elf_tdata (abfd
)->group_sect_ptr
[num_group
] = shdr
;
588 /* Read the raw contents. */
589 BFD_ASSERT (sizeof (*dest
) >= 4);
590 amt
= shdr
->sh_size
* sizeof (*dest
) / 4;
591 shdr
->contents
= (unsigned char *)
592 bfd_alloc2 (abfd
, shdr
->sh_size
, sizeof (*dest
) / 4);
593 /* PR binutils/4110: Handle corrupt group headers. */
594 if (shdr
->contents
== NULL
)
597 (_("%B: Corrupt size field in group section header: 0x%lx"), abfd
, shdr
->sh_size
);
598 bfd_set_error (bfd_error_bad_value
);
602 memset (shdr
->contents
, 0, amt
);
604 if (bfd_seek (abfd
, shdr
->sh_offset
, SEEK_SET
) != 0
605 || (bfd_bread (shdr
->contents
, shdr
->sh_size
, abfd
)
609 /* Translate raw contents, a flag word followed by an
610 array of elf section indices all in target byte order,
611 to the flag word followed by an array of elf section
613 src
= shdr
->contents
+ shdr
->sh_size
;
614 dest
= (Elf_Internal_Group
*) (shdr
->contents
+ amt
);
621 idx
= H_GET_32 (abfd
, src
);
622 if (src
== shdr
->contents
)
625 if (shdr
->bfd_section
!= NULL
&& (idx
& GRP_COMDAT
))
626 shdr
->bfd_section
->flags
627 |= SEC_LINK_ONCE
| SEC_LINK_DUPLICATES_DISCARD
;
632 ((*_bfd_error_handler
)
633 (_("%B: invalid SHT_GROUP entry"), abfd
));
636 dest
->shdr
= elf_elfsections (abfd
)[idx
];
643 if (num_group
!= (unsigned) -1)
647 for (i
= 0; i
< num_group
; i
++)
649 Elf_Internal_Shdr
*shdr
= elf_tdata (abfd
)->group_sect_ptr
[i
];
650 Elf_Internal_Group
*idx
= (Elf_Internal_Group
*) shdr
->contents
;
651 unsigned int n_elt
= shdr
->sh_size
/ 4;
653 /* Look through this group's sections to see if current
654 section is a member. */
656 if ((++idx
)->shdr
== hdr
)
660 /* We are a member of this group. Go looking through
661 other members to see if any others are linked via
663 idx
= (Elf_Internal_Group
*) shdr
->contents
;
664 n_elt
= shdr
->sh_size
/ 4;
666 if ((s
= (++idx
)->shdr
->bfd_section
) != NULL
667 && elf_next_in_group (s
) != NULL
)
671 /* Snarf the group name from other member, and
672 insert current section in circular list. */
673 elf_group_name (newsect
) = elf_group_name (s
);
674 elf_next_in_group (newsect
) = elf_next_in_group (s
);
675 elf_next_in_group (s
) = newsect
;
681 gname
= group_signature (abfd
, shdr
);
684 elf_group_name (newsect
) = gname
;
686 /* Start a circular list with one element. */
687 elf_next_in_group (newsect
) = newsect
;
690 /* If the group section has been created, point to the
692 if (shdr
->bfd_section
!= NULL
)
693 elf_next_in_group (shdr
->bfd_section
) = newsect
;
701 if (elf_group_name (newsect
) == NULL
)
703 (*_bfd_error_handler
) (_("%B: no group info for section %A"),
710 _bfd_elf_setup_sections (bfd
*abfd
)
713 unsigned int num_group
= elf_tdata (abfd
)->num_group
;
714 bfd_boolean result
= TRUE
;
717 /* Process SHF_LINK_ORDER. */
718 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
720 Elf_Internal_Shdr
*this_hdr
= &elf_section_data (s
)->this_hdr
;
721 if ((this_hdr
->sh_flags
& SHF_LINK_ORDER
) != 0)
723 unsigned int elfsec
= this_hdr
->sh_link
;
724 /* FIXME: The old Intel compiler and old strip/objcopy may
725 not set the sh_link or sh_info fields. Hence we could
726 get the situation where elfsec is 0. */
729 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
730 if (bed
->link_order_error_handler
)
731 bed
->link_order_error_handler
732 (_("%B: warning: sh_link not set for section `%A'"),
737 asection
*linksec
= NULL
;
739 if (elfsec
< elf_numsections (abfd
))
741 this_hdr
= elf_elfsections (abfd
)[elfsec
];
742 linksec
= this_hdr
->bfd_section
;
746 Some strip/objcopy may leave an incorrect value in
747 sh_link. We don't want to proceed. */
750 (*_bfd_error_handler
)
751 (_("%B: sh_link [%d] in section `%A' is incorrect"),
752 s
->owner
, s
, elfsec
);
756 elf_linked_to_section (s
) = linksec
;
761 /* Process section groups. */
762 if (num_group
== (unsigned) -1)
765 for (i
= 0; i
< num_group
; i
++)
767 Elf_Internal_Shdr
*shdr
= elf_tdata (abfd
)->group_sect_ptr
[i
];
768 Elf_Internal_Group
*idx
= (Elf_Internal_Group
*) shdr
->contents
;
769 unsigned int n_elt
= shdr
->sh_size
/ 4;
772 if ((++idx
)->shdr
->bfd_section
)
773 elf_sec_group (idx
->shdr
->bfd_section
) = shdr
->bfd_section
;
774 else if (idx
->shdr
->sh_type
== SHT_RELA
775 || idx
->shdr
->sh_type
== SHT_REL
)
776 /* We won't include relocation sections in section groups in
777 output object files. We adjust the group section size here
778 so that relocatable link will work correctly when
779 relocation sections are in section group in input object
781 shdr
->bfd_section
->size
-= 4;
784 /* There are some unknown sections in the group. */
785 (*_bfd_error_handler
)
786 (_("%B: unknown [%d] section `%s' in group [%s]"),
788 (unsigned int) idx
->shdr
->sh_type
,
789 bfd_elf_string_from_elf_section (abfd
,
790 (elf_elfheader (abfd
)
793 shdr
->bfd_section
->name
);
801 bfd_elf_is_group_section (bfd
*abfd ATTRIBUTE_UNUSED
, const asection
*sec
)
803 return elf_next_in_group (sec
) != NULL
;
806 /* Make a BFD section from an ELF section. We store a pointer to the
807 BFD section in the bfd_section field of the header. */
810 _bfd_elf_make_section_from_shdr (bfd
*abfd
,
811 Elf_Internal_Shdr
*hdr
,
817 const struct elf_backend_data
*bed
;
819 if (hdr
->bfd_section
!= NULL
)
821 BFD_ASSERT (strcmp (name
,
822 bfd_get_section_name (abfd
, hdr
->bfd_section
)) == 0);
826 newsect
= bfd_make_section_anyway (abfd
, name
);
830 hdr
->bfd_section
= newsect
;
831 elf_section_data (newsect
)->this_hdr
= *hdr
;
832 elf_section_data (newsect
)->this_idx
= shindex
;
834 /* Always use the real type/flags. */
835 elf_section_type (newsect
) = hdr
->sh_type
;
836 elf_section_flags (newsect
) = hdr
->sh_flags
;
838 newsect
->filepos
= hdr
->sh_offset
;
840 if (! bfd_set_section_vma (abfd
, newsect
, hdr
->sh_addr
)
841 || ! bfd_set_section_size (abfd
, newsect
, hdr
->sh_size
)
842 || ! bfd_set_section_alignment (abfd
, newsect
,
843 bfd_log2 (hdr
->sh_addralign
)))
846 flags
= SEC_NO_FLAGS
;
847 if (hdr
->sh_type
!= SHT_NOBITS
)
848 flags
|= SEC_HAS_CONTENTS
;
849 if (hdr
->sh_type
== SHT_GROUP
)
850 flags
|= SEC_GROUP
| SEC_EXCLUDE
;
851 if ((hdr
->sh_flags
& SHF_ALLOC
) != 0)
854 if (hdr
->sh_type
!= SHT_NOBITS
)
857 if ((hdr
->sh_flags
& SHF_WRITE
) == 0)
858 flags
|= SEC_READONLY
;
859 if ((hdr
->sh_flags
& SHF_EXECINSTR
) != 0)
861 else if ((flags
& SEC_LOAD
) != 0)
863 if ((hdr
->sh_flags
& SHF_MERGE
) != 0)
866 newsect
->entsize
= hdr
->sh_entsize
;
867 if ((hdr
->sh_flags
& SHF_STRINGS
) != 0)
868 flags
|= SEC_STRINGS
;
870 if (hdr
->sh_flags
& SHF_GROUP
)
871 if (!setup_group (abfd
, hdr
, newsect
))
873 if ((hdr
->sh_flags
& SHF_TLS
) != 0)
874 flags
|= SEC_THREAD_LOCAL
;
876 if ((flags
& SEC_ALLOC
) == 0)
878 /* The debugging sections appear to be recognized only by name,
879 not any sort of flag. Their SEC_ALLOC bits are cleared. */
884 } debug_sections
[] =
886 { STRING_COMMA_LEN ("debug") }, /* 'd' */
887 { NULL
, 0 }, /* 'e' */
888 { NULL
, 0 }, /* 'f' */
889 { STRING_COMMA_LEN ("gnu.linkonce.wi.") }, /* 'g' */
890 { NULL
, 0 }, /* 'h' */
891 { NULL
, 0 }, /* 'i' */
892 { NULL
, 0 }, /* 'j' */
893 { NULL
, 0 }, /* 'k' */
894 { STRING_COMMA_LEN ("line") }, /* 'l' */
895 { NULL
, 0 }, /* 'm' */
896 { NULL
, 0 }, /* 'n' */
897 { NULL
, 0 }, /* 'o' */
898 { NULL
, 0 }, /* 'p' */
899 { NULL
, 0 }, /* 'q' */
900 { NULL
, 0 }, /* 'r' */
901 { STRING_COMMA_LEN ("stab") }, /* 's' */
902 { NULL
, 0 }, /* 't' */
903 { NULL
, 0 }, /* 'u' */
904 { NULL
, 0 }, /* 'v' */
905 { NULL
, 0 }, /* 'w' */
906 { NULL
, 0 }, /* 'x' */
907 { NULL
, 0 }, /* 'y' */
908 { STRING_COMMA_LEN ("zdebug") } /* 'z' */
913 int i
= name
[1] - 'd';
915 && i
< (int) ARRAY_SIZE (debug_sections
)
916 && debug_sections
[i
].name
!= NULL
917 && strncmp (&name
[1], debug_sections
[i
].name
,
918 debug_sections
[i
].len
) == 0)
919 flags
|= SEC_DEBUGGING
;
923 /* As a GNU extension, if the name begins with .gnu.linkonce, we
924 only link a single copy of the section. This is used to support
925 g++. g++ will emit each template expansion in its own section.
926 The symbols will be defined as weak, so that multiple definitions
927 are permitted. The GNU linker extension is to actually discard
928 all but one of the sections. */
929 if (CONST_STRNEQ (name
, ".gnu.linkonce")
930 && elf_next_in_group (newsect
) == NULL
)
931 flags
|= SEC_LINK_ONCE
| SEC_LINK_DUPLICATES_DISCARD
;
933 bed
= get_elf_backend_data (abfd
);
934 if (bed
->elf_backend_section_flags
)
935 if (! bed
->elf_backend_section_flags (&flags
, hdr
))
938 if (! bfd_set_section_flags (abfd
, newsect
, flags
))
941 /* We do not parse the PT_NOTE segments as we are interested even in the
942 separate debug info files which may have the segments offsets corrupted.
943 PT_NOTEs from the core files are currently not parsed using BFD. */
944 if (hdr
->sh_type
== SHT_NOTE
)
948 if (!bfd_malloc_and_get_section (abfd
, newsect
, &contents
))
951 elf_parse_notes (abfd
, (char *) contents
, hdr
->sh_size
, -1);
955 if ((flags
& SEC_ALLOC
) != 0)
957 Elf_Internal_Phdr
*phdr
;
958 unsigned int i
, nload
;
960 /* Some ELF linkers produce binaries with all the program header
961 p_paddr fields zero. If we have such a binary with more than
962 one PT_LOAD header, then leave the section lma equal to vma
963 so that we don't create sections with overlapping lma. */
964 phdr
= elf_tdata (abfd
)->phdr
;
965 for (nload
= 0, i
= 0; i
< elf_elfheader (abfd
)->e_phnum
; i
++, phdr
++)
966 if (phdr
->p_paddr
!= 0)
968 else if (phdr
->p_type
== PT_LOAD
&& phdr
->p_memsz
!= 0)
970 if (i
>= elf_elfheader (abfd
)->e_phnum
&& nload
> 1)
973 phdr
= elf_tdata (abfd
)->phdr
;
974 for (i
= 0; i
< elf_elfheader (abfd
)->e_phnum
; i
++, phdr
++)
976 if (phdr
->p_type
== PT_LOAD
977 && ELF_IS_SECTION_IN_SEGMENT (hdr
, phdr
))
979 if ((flags
& SEC_LOAD
) == 0)
980 newsect
->lma
= (phdr
->p_paddr
981 + hdr
->sh_addr
- phdr
->p_vaddr
);
983 /* We used to use the same adjustment for SEC_LOAD
984 sections, but that doesn't work if the segment
985 is packed with code from multiple VMAs.
986 Instead we calculate the section LMA based on
987 the segment LMA. It is assumed that the
988 segment will contain sections with contiguous
989 LMAs, even if the VMAs are not. */
990 newsect
->lma
= (phdr
->p_paddr
991 + hdr
->sh_offset
- phdr
->p_offset
);
993 /* With contiguous segments, we can't tell from file
994 offsets whether a section with zero size should
995 be placed at the end of one segment or the
996 beginning of the next. Decide based on vaddr. */
997 if (hdr
->sh_addr
>= phdr
->p_vaddr
998 && (hdr
->sh_addr
+ hdr
->sh_size
999 <= phdr
->p_vaddr
+ phdr
->p_memsz
))
1008 const char *const bfd_elf_section_type_names
[] = {
1009 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
1010 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
1011 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
1014 /* ELF relocs are against symbols. If we are producing relocatable
1015 output, and the reloc is against an external symbol, and nothing
1016 has given us any additional addend, the resulting reloc will also
1017 be against the same symbol. In such a case, we don't want to
1018 change anything about the way the reloc is handled, since it will
1019 all be done at final link time. Rather than put special case code
1020 into bfd_perform_relocation, all the reloc types use this howto
1021 function. It just short circuits the reloc if producing
1022 relocatable output against an external symbol. */
1024 bfd_reloc_status_type
1025 bfd_elf_generic_reloc (bfd
*abfd ATTRIBUTE_UNUSED
,
1026 arelent
*reloc_entry
,
1028 void *data ATTRIBUTE_UNUSED
,
1029 asection
*input_section
,
1031 char **error_message ATTRIBUTE_UNUSED
)
1033 if (output_bfd
!= NULL
1034 && (symbol
->flags
& BSF_SECTION_SYM
) == 0
1035 && (! reloc_entry
->howto
->partial_inplace
1036 || reloc_entry
->addend
== 0))
1038 reloc_entry
->address
+= input_section
->output_offset
;
1039 return bfd_reloc_ok
;
1042 return bfd_reloc_continue
;
1045 /* Copy the program header and other data from one object module to
1049 _bfd_elf_copy_private_bfd_data (bfd
*ibfd
, bfd
*obfd
)
1051 if (bfd_get_flavour (ibfd
) != bfd_target_elf_flavour
1052 || bfd_get_flavour (obfd
) != bfd_target_elf_flavour
)
1055 BFD_ASSERT (!elf_flags_init (obfd
)
1056 || (elf_elfheader (obfd
)->e_flags
1057 == elf_elfheader (ibfd
)->e_flags
));
1059 elf_gp (obfd
) = elf_gp (ibfd
);
1060 elf_elfheader (obfd
)->e_flags
= elf_elfheader (ibfd
)->e_flags
;
1061 elf_flags_init (obfd
) = TRUE
;
1063 /* Copy object attributes. */
1064 _bfd_elf_copy_obj_attributes (ibfd
, obfd
);
1070 get_segment_type (unsigned int p_type
)
1075 case PT_NULL
: pt
= "NULL"; break;
1076 case PT_LOAD
: pt
= "LOAD"; break;
1077 case PT_DYNAMIC
: pt
= "DYNAMIC"; break;
1078 case PT_INTERP
: pt
= "INTERP"; break;
1079 case PT_NOTE
: pt
= "NOTE"; break;
1080 case PT_SHLIB
: pt
= "SHLIB"; break;
1081 case PT_PHDR
: pt
= "PHDR"; break;
1082 case PT_TLS
: pt
= "TLS"; break;
1083 case PT_GNU_EH_FRAME
: pt
= "EH_FRAME"; break;
1084 case PT_GNU_STACK
: pt
= "STACK"; break;
1085 case PT_GNU_RELRO
: pt
= "RELRO"; break;
1086 default: pt
= NULL
; break;
1091 /* Print out the program headers. */
1094 _bfd_elf_print_private_bfd_data (bfd
*abfd
, void *farg
)
1096 FILE *f
= (FILE *) farg
;
1097 Elf_Internal_Phdr
*p
;
1099 bfd_byte
*dynbuf
= NULL
;
1101 p
= elf_tdata (abfd
)->phdr
;
1106 fprintf (f
, _("\nProgram Header:\n"));
1107 c
= elf_elfheader (abfd
)->e_phnum
;
1108 for (i
= 0; i
< c
; i
++, p
++)
1110 const char *pt
= get_segment_type (p
->p_type
);
1115 sprintf (buf
, "0x%lx", p
->p_type
);
1118 fprintf (f
, "%8s off 0x", pt
);
1119 bfd_fprintf_vma (abfd
, f
, p
->p_offset
);
1120 fprintf (f
, " vaddr 0x");
1121 bfd_fprintf_vma (abfd
, f
, p
->p_vaddr
);
1122 fprintf (f
, " paddr 0x");
1123 bfd_fprintf_vma (abfd
, f
, p
->p_paddr
);
1124 fprintf (f
, " align 2**%u\n", bfd_log2 (p
->p_align
));
1125 fprintf (f
, " filesz 0x");
1126 bfd_fprintf_vma (abfd
, f
, p
->p_filesz
);
1127 fprintf (f
, " memsz 0x");
1128 bfd_fprintf_vma (abfd
, f
, p
->p_memsz
);
1129 fprintf (f
, " flags %c%c%c",
1130 (p
->p_flags
& PF_R
) != 0 ? 'r' : '-',
1131 (p
->p_flags
& PF_W
) != 0 ? 'w' : '-',
1132 (p
->p_flags
& PF_X
) != 0 ? 'x' : '-');
1133 if ((p
->p_flags
&~ (unsigned) (PF_R
| PF_W
| PF_X
)) != 0)
1134 fprintf (f
, " %lx", p
->p_flags
&~ (unsigned) (PF_R
| PF_W
| PF_X
));
1139 s
= bfd_get_section_by_name (abfd
, ".dynamic");
1142 unsigned int elfsec
;
1143 unsigned long shlink
;
1144 bfd_byte
*extdyn
, *extdynend
;
1146 void (*swap_dyn_in
) (bfd
*, const void *, Elf_Internal_Dyn
*);
1148 fprintf (f
, _("\nDynamic Section:\n"));
1150 if (!bfd_malloc_and_get_section (abfd
, s
, &dynbuf
))
1153 elfsec
= _bfd_elf_section_from_bfd_section (abfd
, s
);
1154 if (elfsec
== SHN_BAD
)
1156 shlink
= elf_elfsections (abfd
)[elfsec
]->sh_link
;
1158 extdynsize
= get_elf_backend_data (abfd
)->s
->sizeof_dyn
;
1159 swap_dyn_in
= get_elf_backend_data (abfd
)->s
->swap_dyn_in
;
1162 extdynend
= extdyn
+ s
->size
;
1163 for (; extdyn
< extdynend
; extdyn
+= extdynsize
)
1165 Elf_Internal_Dyn dyn
;
1166 const char *name
= "";
1168 bfd_boolean stringp
;
1169 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
1171 (*swap_dyn_in
) (abfd
, extdyn
, &dyn
);
1173 if (dyn
.d_tag
== DT_NULL
)
1180 if (bed
->elf_backend_get_target_dtag
)
1181 name
= (*bed
->elf_backend_get_target_dtag
) (dyn
.d_tag
);
1183 if (!strcmp (name
, ""))
1185 sprintf (ab
, "0x%lx", (unsigned long) dyn
.d_tag
);
1190 case DT_NEEDED
: name
= "NEEDED"; stringp
= TRUE
; break;
1191 case DT_PLTRELSZ
: name
= "PLTRELSZ"; break;
1192 case DT_PLTGOT
: name
= "PLTGOT"; break;
1193 case DT_HASH
: name
= "HASH"; break;
1194 case DT_STRTAB
: name
= "STRTAB"; break;
1195 case DT_SYMTAB
: name
= "SYMTAB"; break;
1196 case DT_RELA
: name
= "RELA"; break;
1197 case DT_RELASZ
: name
= "RELASZ"; break;
1198 case DT_RELAENT
: name
= "RELAENT"; break;
1199 case DT_STRSZ
: name
= "STRSZ"; break;
1200 case DT_SYMENT
: name
= "SYMENT"; break;
1201 case DT_INIT
: name
= "INIT"; break;
1202 case DT_FINI
: name
= "FINI"; break;
1203 case DT_SONAME
: name
= "SONAME"; stringp
= TRUE
; break;
1204 case DT_RPATH
: name
= "RPATH"; stringp
= TRUE
; break;
1205 case DT_SYMBOLIC
: name
= "SYMBOLIC"; break;
1206 case DT_REL
: name
= "REL"; break;
1207 case DT_RELSZ
: name
= "RELSZ"; break;
1208 case DT_RELENT
: name
= "RELENT"; break;
1209 case DT_PLTREL
: name
= "PLTREL"; break;
1210 case DT_DEBUG
: name
= "DEBUG"; break;
1211 case DT_TEXTREL
: name
= "TEXTREL"; break;
1212 case DT_JMPREL
: name
= "JMPREL"; break;
1213 case DT_BIND_NOW
: name
= "BIND_NOW"; break;
1214 case DT_INIT_ARRAY
: name
= "INIT_ARRAY"; break;
1215 case DT_FINI_ARRAY
: name
= "FINI_ARRAY"; break;
1216 case DT_INIT_ARRAYSZ
: name
= "INIT_ARRAYSZ"; break;
1217 case DT_FINI_ARRAYSZ
: name
= "FINI_ARRAYSZ"; break;
1218 case DT_RUNPATH
: name
= "RUNPATH"; stringp
= TRUE
; break;
1219 case DT_FLAGS
: name
= "FLAGS"; break;
1220 case DT_PREINIT_ARRAY
: name
= "PREINIT_ARRAY"; break;
1221 case DT_PREINIT_ARRAYSZ
: name
= "PREINIT_ARRAYSZ"; break;
1222 case DT_CHECKSUM
: name
= "CHECKSUM"; break;
1223 case DT_PLTPADSZ
: name
= "PLTPADSZ"; break;
1224 case DT_MOVEENT
: name
= "MOVEENT"; break;
1225 case DT_MOVESZ
: name
= "MOVESZ"; break;
1226 case DT_FEATURE
: name
= "FEATURE"; break;
1227 case DT_POSFLAG_1
: name
= "POSFLAG_1"; break;
1228 case DT_SYMINSZ
: name
= "SYMINSZ"; break;
1229 case DT_SYMINENT
: name
= "SYMINENT"; break;
1230 case DT_CONFIG
: name
= "CONFIG"; stringp
= TRUE
; break;
1231 case DT_DEPAUDIT
: name
= "DEPAUDIT"; stringp
= TRUE
; break;
1232 case DT_AUDIT
: name
= "AUDIT"; stringp
= TRUE
; break;
1233 case DT_PLTPAD
: name
= "PLTPAD"; break;
1234 case DT_MOVETAB
: name
= "MOVETAB"; break;
1235 case DT_SYMINFO
: name
= "SYMINFO"; break;
1236 case DT_RELACOUNT
: name
= "RELACOUNT"; break;
1237 case DT_RELCOUNT
: name
= "RELCOUNT"; break;
1238 case DT_FLAGS_1
: name
= "FLAGS_1"; break;
1239 case DT_VERSYM
: name
= "VERSYM"; break;
1240 case DT_VERDEF
: name
= "VERDEF"; break;
1241 case DT_VERDEFNUM
: name
= "VERDEFNUM"; break;
1242 case DT_VERNEED
: name
= "VERNEED"; break;
1243 case DT_VERNEEDNUM
: name
= "VERNEEDNUM"; break;
1244 case DT_AUXILIARY
: name
= "AUXILIARY"; stringp
= TRUE
; break;
1245 case DT_USED
: name
= "USED"; break;
1246 case DT_FILTER
: name
= "FILTER"; stringp
= TRUE
; break;
1247 case DT_GNU_HASH
: name
= "GNU_HASH"; break;
1250 fprintf (f
, " %-20s ", name
);
1254 bfd_fprintf_vma (abfd
, f
, dyn
.d_un
.d_val
);
1259 unsigned int tagv
= dyn
.d_un
.d_val
;
1261 string
= bfd_elf_string_from_elf_section (abfd
, shlink
, tagv
);
1264 fprintf (f
, "%s", string
);
1273 if ((elf_dynverdef (abfd
) != 0 && elf_tdata (abfd
)->verdef
== NULL
)
1274 || (elf_dynverref (abfd
) != 0 && elf_tdata (abfd
)->verref
== NULL
))
1276 if (! _bfd_elf_slurp_version_tables (abfd
, FALSE
))
1280 if (elf_dynverdef (abfd
) != 0)
1282 Elf_Internal_Verdef
*t
;
1284 fprintf (f
, _("\nVersion definitions:\n"));
1285 for (t
= elf_tdata (abfd
)->verdef
; t
!= NULL
; t
= t
->vd_nextdef
)
1287 fprintf (f
, "%d 0x%2.2x 0x%8.8lx %s\n", t
->vd_ndx
,
1288 t
->vd_flags
, t
->vd_hash
,
1289 t
->vd_nodename
? t
->vd_nodename
: "<corrupt>");
1290 if (t
->vd_auxptr
!= NULL
&& t
->vd_auxptr
->vda_nextptr
!= NULL
)
1292 Elf_Internal_Verdaux
*a
;
1295 for (a
= t
->vd_auxptr
->vda_nextptr
;
1299 a
->vda_nodename
? a
->vda_nodename
: "<corrupt>");
1305 if (elf_dynverref (abfd
) != 0)
1307 Elf_Internal_Verneed
*t
;
1309 fprintf (f
, _("\nVersion References:\n"));
1310 for (t
= elf_tdata (abfd
)->verref
; t
!= NULL
; t
= t
->vn_nextref
)
1312 Elf_Internal_Vernaux
*a
;
1314 fprintf (f
, _(" required from %s:\n"),
1315 t
->vn_filename
? t
->vn_filename
: "<corrupt>");
1316 for (a
= t
->vn_auxptr
; a
!= NULL
; a
= a
->vna_nextptr
)
1317 fprintf (f
, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a
->vna_hash
,
1318 a
->vna_flags
, a
->vna_other
,
1319 a
->vna_nodename
? a
->vna_nodename
: "<corrupt>");
1331 /* Display ELF-specific fields of a symbol. */
1334 bfd_elf_print_symbol (bfd
*abfd
,
1337 bfd_print_symbol_type how
)
1339 FILE *file
= (FILE *) filep
;
1342 case bfd_print_symbol_name
:
1343 fprintf (file
, "%s", symbol
->name
);
1345 case bfd_print_symbol_more
:
1346 fprintf (file
, "elf ");
1347 bfd_fprintf_vma (abfd
, file
, symbol
->value
);
1348 fprintf (file
, " %lx", (unsigned long) symbol
->flags
);
1350 case bfd_print_symbol_all
:
1352 const char *section_name
;
1353 const char *name
= NULL
;
1354 const struct elf_backend_data
*bed
;
1355 unsigned char st_other
;
1358 section_name
= symbol
->section
? symbol
->section
->name
: "(*none*)";
1360 bed
= get_elf_backend_data (abfd
);
1361 if (bed
->elf_backend_print_symbol_all
)
1362 name
= (*bed
->elf_backend_print_symbol_all
) (abfd
, filep
, symbol
);
1366 name
= symbol
->name
;
1367 bfd_print_symbol_vandf (abfd
, file
, symbol
);
1370 fprintf (file
, " %s\t", section_name
);
1371 /* Print the "other" value for a symbol. For common symbols,
1372 we've already printed the size; now print the alignment.
1373 For other symbols, we have no specified alignment, and
1374 we've printed the address; now print the size. */
1375 if (symbol
->section
&& bfd_is_com_section (symbol
->section
))
1376 val
= ((elf_symbol_type
*) symbol
)->internal_elf_sym
.st_value
;
1378 val
= ((elf_symbol_type
*) symbol
)->internal_elf_sym
.st_size
;
1379 bfd_fprintf_vma (abfd
, file
, val
);
1381 /* If we have version information, print it. */
1382 if (elf_tdata (abfd
)->dynversym_section
!= 0
1383 && (elf_tdata (abfd
)->dynverdef_section
!= 0
1384 || elf_tdata (abfd
)->dynverref_section
!= 0))
1386 unsigned int vernum
;
1387 const char *version_string
;
1389 vernum
= ((elf_symbol_type
*) symbol
)->version
& VERSYM_VERSION
;
1392 version_string
= "";
1393 else if (vernum
== 1)
1394 version_string
= "Base";
1395 else if (vernum
<= elf_tdata (abfd
)->cverdefs
)
1397 elf_tdata (abfd
)->verdef
[vernum
- 1].vd_nodename
;
1400 Elf_Internal_Verneed
*t
;
1402 version_string
= "";
1403 for (t
= elf_tdata (abfd
)->verref
;
1407 Elf_Internal_Vernaux
*a
;
1409 for (a
= t
->vn_auxptr
; a
!= NULL
; a
= a
->vna_nextptr
)
1411 if (a
->vna_other
== vernum
)
1413 version_string
= a
->vna_nodename
;
1420 if ((((elf_symbol_type
*) symbol
)->version
& VERSYM_HIDDEN
) == 0)
1421 fprintf (file
, " %-11s", version_string
);
1426 fprintf (file
, " (%s)", version_string
);
1427 for (i
= 10 - strlen (version_string
); i
> 0; --i
)
1432 /* If the st_other field is not zero, print it. */
1433 st_other
= ((elf_symbol_type
*) symbol
)->internal_elf_sym
.st_other
;
1438 case STV_INTERNAL
: fprintf (file
, " .internal"); break;
1439 case STV_HIDDEN
: fprintf (file
, " .hidden"); break;
1440 case STV_PROTECTED
: fprintf (file
, " .protected"); break;
1442 /* Some other non-defined flags are also present, so print
1444 fprintf (file
, " 0x%02x", (unsigned int) st_other
);
1447 fprintf (file
, " %s", name
);
1453 /* Allocate an ELF string table--force the first byte to be zero. */
1455 struct bfd_strtab_hash
*
1456 _bfd_elf_stringtab_init (void)
1458 struct bfd_strtab_hash
*ret
;
1460 ret
= _bfd_stringtab_init ();
1465 loc
= _bfd_stringtab_add (ret
, "", TRUE
, FALSE
);
1466 BFD_ASSERT (loc
== 0 || loc
== (bfd_size_type
) -1);
1467 if (loc
== (bfd_size_type
) -1)
1469 _bfd_stringtab_free (ret
);
1476 /* ELF .o/exec file reading */
1478 /* Create a new bfd section from an ELF section header. */
1481 bfd_section_from_shdr (bfd
*abfd
, unsigned int shindex
)
1483 Elf_Internal_Shdr
*hdr
;
1484 Elf_Internal_Ehdr
*ehdr
;
1485 const struct elf_backend_data
*bed
;
1488 if (shindex
>= elf_numsections (abfd
))
1491 hdr
= elf_elfsections (abfd
)[shindex
];
1492 ehdr
= elf_elfheader (abfd
);
1493 name
= bfd_elf_string_from_elf_section (abfd
, ehdr
->e_shstrndx
,
1498 bed
= get_elf_backend_data (abfd
);
1499 switch (hdr
->sh_type
)
1502 /* Inactive section. Throw it away. */
1505 case SHT_PROGBITS
: /* Normal section with contents. */
1506 case SHT_NOBITS
: /* .bss section. */
1507 case SHT_HASH
: /* .hash section. */
1508 case SHT_NOTE
: /* .note section. */
1509 case SHT_INIT_ARRAY
: /* .init_array section. */
1510 case SHT_FINI_ARRAY
: /* .fini_array section. */
1511 case SHT_PREINIT_ARRAY
: /* .preinit_array section. */
1512 case SHT_GNU_LIBLIST
: /* .gnu.liblist section. */
1513 case SHT_GNU_HASH
: /* .gnu.hash section. */
1514 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
);
1516 case SHT_DYNAMIC
: /* Dynamic linking information. */
1517 if (! _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
))
1519 if (hdr
->sh_link
> elf_numsections (abfd
))
1521 /* PR 10478: Accept Solaris binaries with a sh_link
1522 field set to SHN_BEFORE or SHN_AFTER. */
1523 switch (bfd_get_arch (abfd
))
1526 case bfd_arch_sparc
:
1527 if (hdr
->sh_link
== (SHN_LORESERVE
& 0xffff) /* SHN_BEFORE */
1528 || hdr
->sh_link
== ((SHN_LORESERVE
+ 1) & 0xffff) /* SHN_AFTER */)
1530 /* Otherwise fall through. */
1535 else if (elf_elfsections (abfd
)[hdr
->sh_link
] == NULL
)
1537 else if (elf_elfsections (abfd
)[hdr
->sh_link
]->sh_type
!= SHT_STRTAB
)
1539 Elf_Internal_Shdr
*dynsymhdr
;
1541 /* The shared libraries distributed with hpux11 have a bogus
1542 sh_link field for the ".dynamic" section. Find the
1543 string table for the ".dynsym" section instead. */
1544 if (elf_dynsymtab (abfd
) != 0)
1546 dynsymhdr
= elf_elfsections (abfd
)[elf_dynsymtab (abfd
)];
1547 hdr
->sh_link
= dynsymhdr
->sh_link
;
1551 unsigned int i
, num_sec
;
1553 num_sec
= elf_numsections (abfd
);
1554 for (i
= 1; i
< num_sec
; i
++)
1556 dynsymhdr
= elf_elfsections (abfd
)[i
];
1557 if (dynsymhdr
->sh_type
== SHT_DYNSYM
)
1559 hdr
->sh_link
= dynsymhdr
->sh_link
;
1567 case SHT_SYMTAB
: /* A symbol table */
1568 if (elf_onesymtab (abfd
) == shindex
)
1571 if (hdr
->sh_entsize
!= bed
->s
->sizeof_sym
)
1573 if (hdr
->sh_info
* hdr
->sh_entsize
> hdr
->sh_size
)
1575 BFD_ASSERT (elf_onesymtab (abfd
) == 0);
1576 elf_onesymtab (abfd
) = shindex
;
1577 elf_tdata (abfd
)->symtab_hdr
= *hdr
;
1578 elf_elfsections (abfd
)[shindex
] = hdr
= &elf_tdata (abfd
)->symtab_hdr
;
1579 abfd
->flags
|= HAS_SYMS
;
1581 /* Sometimes a shared object will map in the symbol table. If
1582 SHF_ALLOC is set, and this is a shared object, then we also
1583 treat this section as a BFD section. We can not base the
1584 decision purely on SHF_ALLOC, because that flag is sometimes
1585 set in a relocatable object file, which would confuse the
1587 if ((hdr
->sh_flags
& SHF_ALLOC
) != 0
1588 && (abfd
->flags
& DYNAMIC
) != 0
1589 && ! _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
,
1593 /* Go looking for SHT_SYMTAB_SHNDX too, since if there is one we
1594 can't read symbols without that section loaded as well. It
1595 is most likely specified by the next section header. */
1596 if (elf_elfsections (abfd
)[elf_symtab_shndx (abfd
)]->sh_link
!= shindex
)
1598 unsigned int i
, num_sec
;
1600 num_sec
= elf_numsections (abfd
);
1601 for (i
= shindex
+ 1; i
< num_sec
; i
++)
1603 Elf_Internal_Shdr
*hdr2
= elf_elfsections (abfd
)[i
];
1604 if (hdr2
->sh_type
== SHT_SYMTAB_SHNDX
1605 && hdr2
->sh_link
== shindex
)
1609 for (i
= 1; i
< shindex
; i
++)
1611 Elf_Internal_Shdr
*hdr2
= elf_elfsections (abfd
)[i
];
1612 if (hdr2
->sh_type
== SHT_SYMTAB_SHNDX
1613 && hdr2
->sh_link
== shindex
)
1617 return bfd_section_from_shdr (abfd
, i
);
1621 case SHT_DYNSYM
: /* A dynamic symbol table */
1622 if (elf_dynsymtab (abfd
) == shindex
)
1625 if (hdr
->sh_entsize
!= bed
->s
->sizeof_sym
)
1627 BFD_ASSERT (elf_dynsymtab (abfd
) == 0);
1628 elf_dynsymtab (abfd
) = shindex
;
1629 elf_tdata (abfd
)->dynsymtab_hdr
= *hdr
;
1630 elf_elfsections (abfd
)[shindex
] = hdr
= &elf_tdata (abfd
)->dynsymtab_hdr
;
1631 abfd
->flags
|= HAS_SYMS
;
1633 /* Besides being a symbol table, we also treat this as a regular
1634 section, so that objcopy can handle it. */
1635 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
);
1637 case SHT_SYMTAB_SHNDX
: /* Symbol section indices when >64k sections */
1638 if (elf_symtab_shndx (abfd
) == shindex
)
1641 BFD_ASSERT (elf_symtab_shndx (abfd
) == 0);
1642 elf_symtab_shndx (abfd
) = shindex
;
1643 elf_tdata (abfd
)->symtab_shndx_hdr
= *hdr
;
1644 elf_elfsections (abfd
)[shindex
] = &elf_tdata (abfd
)->symtab_shndx_hdr
;
1647 case SHT_STRTAB
: /* A string table */
1648 if (hdr
->bfd_section
!= NULL
)
1650 if (ehdr
->e_shstrndx
== shindex
)
1652 elf_tdata (abfd
)->shstrtab_hdr
= *hdr
;
1653 elf_elfsections (abfd
)[shindex
] = &elf_tdata (abfd
)->shstrtab_hdr
;
1656 if (elf_elfsections (abfd
)[elf_onesymtab (abfd
)]->sh_link
== shindex
)
1659 elf_tdata (abfd
)->strtab_hdr
= *hdr
;
1660 elf_elfsections (abfd
)[shindex
] = &elf_tdata (abfd
)->strtab_hdr
;
1663 if (elf_elfsections (abfd
)[elf_dynsymtab (abfd
)]->sh_link
== shindex
)
1666 elf_tdata (abfd
)->dynstrtab_hdr
= *hdr
;
1667 hdr
= &elf_tdata (abfd
)->dynstrtab_hdr
;
1668 elf_elfsections (abfd
)[shindex
] = hdr
;
1669 /* We also treat this as a regular section, so that objcopy
1671 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
,
1675 /* If the string table isn't one of the above, then treat it as a
1676 regular section. We need to scan all the headers to be sure,
1677 just in case this strtab section appeared before the above. */
1678 if (elf_onesymtab (abfd
) == 0 || elf_dynsymtab (abfd
) == 0)
1680 unsigned int i
, num_sec
;
1682 num_sec
= elf_numsections (abfd
);
1683 for (i
= 1; i
< num_sec
; i
++)
1685 Elf_Internal_Shdr
*hdr2
= elf_elfsections (abfd
)[i
];
1686 if (hdr2
->sh_link
== shindex
)
1688 /* Prevent endless recursion on broken objects. */
1691 if (! bfd_section_from_shdr (abfd
, i
))
1693 if (elf_onesymtab (abfd
) == i
)
1695 if (elf_dynsymtab (abfd
) == i
)
1696 goto dynsymtab_strtab
;
1700 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
);
1704 /* *These* do a lot of work -- but build no sections! */
1706 asection
*target_sect
;
1707 Elf_Internal_Shdr
*hdr2
;
1708 unsigned int num_sec
= elf_numsections (abfd
);
1711 != (bfd_size_type
) (hdr
->sh_type
== SHT_REL
1712 ? bed
->s
->sizeof_rel
: bed
->s
->sizeof_rela
))
1715 /* Check for a bogus link to avoid crashing. */
1716 if (hdr
->sh_link
>= num_sec
)
1718 ((*_bfd_error_handler
)
1719 (_("%B: invalid link %lu for reloc section %s (index %u)"),
1720 abfd
, hdr
->sh_link
, name
, shindex
));
1721 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
,
1725 /* For some incomprehensible reason Oracle distributes
1726 libraries for Solaris in which some of the objects have
1727 bogus sh_link fields. It would be nice if we could just
1728 reject them, but, unfortunately, some people need to use
1729 them. We scan through the section headers; if we find only
1730 one suitable symbol table, we clobber the sh_link to point
1731 to it. I hope this doesn't break anything.
1733 Don't do it on executable nor shared library. */
1734 if ((abfd
->flags
& (DYNAMIC
| EXEC_P
)) == 0
1735 && elf_elfsections (abfd
)[hdr
->sh_link
]->sh_type
!= SHT_SYMTAB
1736 && elf_elfsections (abfd
)[hdr
->sh_link
]->sh_type
!= SHT_DYNSYM
)
1742 for (scan
= 1; scan
< num_sec
; scan
++)
1744 if (elf_elfsections (abfd
)[scan
]->sh_type
== SHT_SYMTAB
1745 || elf_elfsections (abfd
)[scan
]->sh_type
== SHT_DYNSYM
)
1756 hdr
->sh_link
= found
;
1759 /* Get the symbol table. */
1760 if ((elf_elfsections (abfd
)[hdr
->sh_link
]->sh_type
== SHT_SYMTAB
1761 || elf_elfsections (abfd
)[hdr
->sh_link
]->sh_type
== SHT_DYNSYM
)
1762 && ! bfd_section_from_shdr (abfd
, hdr
->sh_link
))
1765 /* If this reloc section does not use the main symbol table we
1766 don't treat it as a reloc section. BFD can't adequately
1767 represent such a section, so at least for now, we don't
1768 try. We just present it as a normal section. We also
1769 can't use it as a reloc section if it points to the null
1770 section, an invalid section, another reloc section, or its
1771 sh_link points to the null section. */
1772 if (hdr
->sh_link
!= elf_onesymtab (abfd
)
1773 || hdr
->sh_link
== SHN_UNDEF
1774 || hdr
->sh_info
== SHN_UNDEF
1775 || hdr
->sh_info
>= num_sec
1776 || elf_elfsections (abfd
)[hdr
->sh_info
]->sh_type
== SHT_REL
1777 || elf_elfsections (abfd
)[hdr
->sh_info
]->sh_type
== SHT_RELA
)
1778 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
,
1781 if (! bfd_section_from_shdr (abfd
, hdr
->sh_info
))
1783 target_sect
= bfd_section_from_elf_index (abfd
, hdr
->sh_info
);
1784 if (target_sect
== NULL
)
1787 if ((target_sect
->flags
& SEC_RELOC
) == 0
1788 || target_sect
->reloc_count
== 0)
1789 hdr2
= &elf_section_data (target_sect
)->rel_hdr
;
1793 BFD_ASSERT (elf_section_data (target_sect
)->rel_hdr2
== NULL
);
1794 amt
= sizeof (*hdr2
);
1795 hdr2
= (Elf_Internal_Shdr
*) bfd_alloc (abfd
, amt
);
1798 elf_section_data (target_sect
)->rel_hdr2
= hdr2
;
1801 elf_elfsections (abfd
)[shindex
] = hdr2
;
1802 target_sect
->reloc_count
+= NUM_SHDR_ENTRIES (hdr
);
1803 target_sect
->flags
|= SEC_RELOC
;
1804 target_sect
->relocation
= NULL
;
1805 target_sect
->rel_filepos
= hdr
->sh_offset
;
1806 /* In the section to which the relocations apply, mark whether
1807 its relocations are of the REL or RELA variety. */
1808 if (hdr
->sh_size
!= 0)
1809 target_sect
->use_rela_p
= hdr
->sh_type
== SHT_RELA
;
1810 abfd
->flags
|= HAS_RELOC
;
1814 case SHT_GNU_verdef
:
1815 elf_dynverdef (abfd
) = shindex
;
1816 elf_tdata (abfd
)->dynverdef_hdr
= *hdr
;
1817 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
);
1819 case SHT_GNU_versym
:
1820 if (hdr
->sh_entsize
!= sizeof (Elf_External_Versym
))
1822 elf_dynversym (abfd
) = shindex
;
1823 elf_tdata (abfd
)->dynversym_hdr
= *hdr
;
1824 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
);
1826 case SHT_GNU_verneed
:
1827 elf_dynverref (abfd
) = shindex
;
1828 elf_tdata (abfd
)->dynverref_hdr
= *hdr
;
1829 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
);
1835 if (! IS_VALID_GROUP_SECTION_HEADER (hdr
))
1837 if (!_bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
))
1839 if (hdr
->contents
!= NULL
)
1841 Elf_Internal_Group
*idx
= (Elf_Internal_Group
*) hdr
->contents
;
1842 unsigned int n_elt
= hdr
->sh_size
/ GRP_ENTRY_SIZE
;
1845 if (idx
->flags
& GRP_COMDAT
)
1846 hdr
->bfd_section
->flags
1847 |= SEC_LINK_ONCE
| SEC_LINK_DUPLICATES_DISCARD
;
1849 /* We try to keep the same section order as it comes in. */
1851 while (--n_elt
!= 0)
1855 if (idx
->shdr
!= NULL
1856 && (s
= idx
->shdr
->bfd_section
) != NULL
1857 && elf_next_in_group (s
) != NULL
)
1859 elf_next_in_group (hdr
->bfd_section
) = s
;
1867 /* Possibly an attributes section. */
1868 if (hdr
->sh_type
== SHT_GNU_ATTRIBUTES
1869 || hdr
->sh_type
== bed
->obj_attrs_section_type
)
1871 if (! _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
))
1873 _bfd_elf_parse_attributes (abfd
, hdr
);
1877 /* Check for any processor-specific section types. */
1878 if (bed
->elf_backend_section_from_shdr (abfd
, hdr
, name
, shindex
))
1881 if (hdr
->sh_type
>= SHT_LOUSER
&& hdr
->sh_type
<= SHT_HIUSER
)
1883 if ((hdr
->sh_flags
& SHF_ALLOC
) != 0)
1884 /* FIXME: How to properly handle allocated section reserved
1885 for applications? */
1886 (*_bfd_error_handler
)
1887 (_("%B: don't know how to handle allocated, application "
1888 "specific section `%s' [0x%8x]"),
1889 abfd
, name
, hdr
->sh_type
);
1891 /* Allow sections reserved for applications. */
1892 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
,
1895 else if (hdr
->sh_type
>= SHT_LOPROC
1896 && hdr
->sh_type
<= SHT_HIPROC
)
1897 /* FIXME: We should handle this section. */
1898 (*_bfd_error_handler
)
1899 (_("%B: don't know how to handle processor specific section "
1901 abfd
, name
, hdr
->sh_type
);
1902 else if (hdr
->sh_type
>= SHT_LOOS
&& hdr
->sh_type
<= SHT_HIOS
)
1904 /* Unrecognised OS-specific sections. */
1905 if ((hdr
->sh_flags
& SHF_OS_NONCONFORMING
) != 0)
1906 /* SHF_OS_NONCONFORMING indicates that special knowledge is
1907 required to correctly process the section and the file should
1908 be rejected with an error message. */
1909 (*_bfd_error_handler
)
1910 (_("%B: don't know how to handle OS specific section "
1912 abfd
, name
, hdr
->sh_type
);
1914 /* Otherwise it should be processed. */
1915 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
);
1918 /* FIXME: We should handle this section. */
1919 (*_bfd_error_handler
)
1920 (_("%B: don't know how to handle section `%s' [0x%8x]"),
1921 abfd
, name
, hdr
->sh_type
);
1929 /* Return the local symbol specified by ABFD, R_SYMNDX. */
1932 bfd_sym_from_r_symndx (struct sym_cache
*cache
,
1934 unsigned long r_symndx
)
1936 unsigned int ent
= r_symndx
% LOCAL_SYM_CACHE_SIZE
;
1938 if (cache
->abfd
!= abfd
|| cache
->indx
[ent
] != r_symndx
)
1940 Elf_Internal_Shdr
*symtab_hdr
;
1941 unsigned char esym
[sizeof (Elf64_External_Sym
)];
1942 Elf_External_Sym_Shndx eshndx
;
1944 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
1945 if (bfd_elf_get_elf_syms (abfd
, symtab_hdr
, 1, r_symndx
,
1946 &cache
->sym
[ent
], esym
, &eshndx
) == NULL
)
1949 if (cache
->abfd
!= abfd
)
1951 memset (cache
->indx
, -1, sizeof (cache
->indx
));
1954 cache
->indx
[ent
] = r_symndx
;
1957 return &cache
->sym
[ent
];
1960 /* Given an ELF section number, retrieve the corresponding BFD
1964 bfd_section_from_elf_index (bfd
*abfd
, unsigned int sec_index
)
1966 if (sec_index
>= elf_numsections (abfd
))
1968 return elf_elfsections (abfd
)[sec_index
]->bfd_section
;
1971 static const struct bfd_elf_special_section special_sections_b
[] =
1973 { STRING_COMMA_LEN (".bss"), -2, SHT_NOBITS
, SHF_ALLOC
+ SHF_WRITE
},
1974 { NULL
, 0, 0, 0, 0 }
1977 static const struct bfd_elf_special_section special_sections_c
[] =
1979 { STRING_COMMA_LEN (".comment"), 0, SHT_PROGBITS
, 0 },
1980 { NULL
, 0, 0, 0, 0 }
1983 static const struct bfd_elf_special_section special_sections_d
[] =
1985 { STRING_COMMA_LEN (".data"), -2, SHT_PROGBITS
, SHF_ALLOC
+ SHF_WRITE
},
1986 { STRING_COMMA_LEN (".data1"), 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_WRITE
},
1987 { STRING_COMMA_LEN (".debug"), 0, SHT_PROGBITS
, 0 },
1988 { STRING_COMMA_LEN (".debug_line"), 0, SHT_PROGBITS
, 0 },
1989 { STRING_COMMA_LEN (".debug_info"), 0, SHT_PROGBITS
, 0 },
1990 { STRING_COMMA_LEN (".debug_abbrev"), 0, SHT_PROGBITS
, 0 },
1991 { STRING_COMMA_LEN (".debug_aranges"), 0, SHT_PROGBITS
, 0 },
1992 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC
, SHF_ALLOC
},
1993 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB
, SHF_ALLOC
},
1994 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM
, SHF_ALLOC
},
1995 { NULL
, 0, 0, 0, 0 }
1998 static const struct bfd_elf_special_section special_sections_f
[] =
2000 { STRING_COMMA_LEN (".fini"), 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_EXECINSTR
},
2001 { STRING_COMMA_LEN (".fini_array"), 0, SHT_FINI_ARRAY
, SHF_ALLOC
+ SHF_WRITE
},
2002 { NULL
, 0, 0, 0, 0 }
2005 static const struct bfd_elf_special_section special_sections_g
[] =
2007 { STRING_COMMA_LEN (".gnu.linkonce.b"), -2, SHT_NOBITS
, SHF_ALLOC
+ SHF_WRITE
},
2008 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_WRITE
},
2009 { STRING_COMMA_LEN (".gnu.version"), 0, SHT_GNU_versym
, 0 },
2010 { STRING_COMMA_LEN (".gnu.version_d"), 0, SHT_GNU_verdef
, 0 },
2011 { STRING_COMMA_LEN (".gnu.version_r"), 0, SHT_GNU_verneed
, 0 },
2012 { STRING_COMMA_LEN (".gnu.liblist"), 0, SHT_GNU_LIBLIST
, SHF_ALLOC
},
2013 { STRING_COMMA_LEN (".gnu.conflict"), 0, SHT_RELA
, SHF_ALLOC
},
2014 { STRING_COMMA_LEN (".gnu.hash"), 0, SHT_GNU_HASH
, SHF_ALLOC
},
2015 { NULL
, 0, 0, 0, 0 }
2018 static const struct bfd_elf_special_section special_sections_h
[] =
2020 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH
, SHF_ALLOC
},
2021 { NULL
, 0, 0, 0, 0 }
2024 static const struct bfd_elf_special_section special_sections_i
[] =
2026 { STRING_COMMA_LEN (".init"), 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_EXECINSTR
},
2027 { STRING_COMMA_LEN (".init_array"), 0, SHT_INIT_ARRAY
, SHF_ALLOC
+ SHF_WRITE
},
2028 { STRING_COMMA_LEN (".interp"), 0, SHT_PROGBITS
, 0 },
2029 { NULL
, 0, 0, 0, 0 }
2032 static const struct bfd_elf_special_section special_sections_l
[] =
2034 { STRING_COMMA_LEN (".line"), 0, SHT_PROGBITS
, 0 },
2035 { NULL
, 0, 0, 0, 0 }
2038 static const struct bfd_elf_special_section special_sections_n
[] =
2040 { STRING_COMMA_LEN (".note.GNU-stack"), 0, SHT_PROGBITS
, 0 },
2041 { STRING_COMMA_LEN (".note"), -1, SHT_NOTE
, 0 },
2042 { NULL
, 0, 0, 0, 0 }
2045 static const struct bfd_elf_special_section special_sections_p
[] =
2047 { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY
, SHF_ALLOC
+ SHF_WRITE
},
2048 { STRING_COMMA_LEN (".plt"), 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_EXECINSTR
},
2049 { NULL
, 0, 0, 0, 0 }
2052 static const struct bfd_elf_special_section special_sections_r
[] =
2054 { STRING_COMMA_LEN (".rodata"), -2, SHT_PROGBITS
, SHF_ALLOC
},
2055 { STRING_COMMA_LEN (".rodata1"), 0, SHT_PROGBITS
, SHF_ALLOC
},
2056 { STRING_COMMA_LEN (".rela"), -1, SHT_RELA
, 0 },
2057 { STRING_COMMA_LEN (".rel"), -1, SHT_REL
, 0 },
2058 { NULL
, 0, 0, 0, 0 }
2061 static const struct bfd_elf_special_section special_sections_s
[] =
2063 { STRING_COMMA_LEN (".shstrtab"), 0, SHT_STRTAB
, 0 },
2064 { STRING_COMMA_LEN (".strtab"), 0, SHT_STRTAB
, 0 },
2065 { STRING_COMMA_LEN (".symtab"), 0, SHT_SYMTAB
, 0 },
2066 /* See struct bfd_elf_special_section declaration for the semantics of
2067 this special case where .prefix_length != strlen (.prefix). */
2068 { ".stabstr", 5, 3, SHT_STRTAB
, 0 },
2069 { NULL
, 0, 0, 0, 0 }
2072 static const struct bfd_elf_special_section special_sections_t
[] =
2074 { STRING_COMMA_LEN (".text"), -2, SHT_PROGBITS
, SHF_ALLOC
+ SHF_EXECINSTR
},
2075 { STRING_COMMA_LEN (".tbss"), -2, SHT_NOBITS
, SHF_ALLOC
+ SHF_WRITE
+ SHF_TLS
},
2076 { STRING_COMMA_LEN (".tdata"), -2, SHT_PROGBITS
, SHF_ALLOC
+ SHF_WRITE
+ SHF_TLS
},
2077 { NULL
, 0, 0, 0, 0 }
2080 static const struct bfd_elf_special_section special_sections_z
[] =
2082 { STRING_COMMA_LEN (".zdebug_line"), 0, SHT_PROGBITS
, 0 },
2083 { STRING_COMMA_LEN (".zdebug_info"), 0, SHT_PROGBITS
, 0 },
2084 { STRING_COMMA_LEN (".zdebug_abbrev"), 0, SHT_PROGBITS
, 0 },
2085 { STRING_COMMA_LEN (".zdebug_aranges"), 0, SHT_PROGBITS
, 0 },
2086 { NULL
, 0, 0, 0, 0 }
2089 static const struct bfd_elf_special_section
*special_sections
[] =
2091 special_sections_b
, /* 'b' */
2092 special_sections_c
, /* 'c' */
2093 special_sections_d
, /* 'd' */
2095 special_sections_f
, /* 'f' */
2096 special_sections_g
, /* 'g' */
2097 special_sections_h
, /* 'h' */
2098 special_sections_i
, /* 'i' */
2101 special_sections_l
, /* 'l' */
2103 special_sections_n
, /* 'n' */
2105 special_sections_p
, /* 'p' */
2107 special_sections_r
, /* 'r' */
2108 special_sections_s
, /* 's' */
2109 special_sections_t
, /* 't' */
2115 special_sections_z
/* 'z' */
2118 const struct bfd_elf_special_section
*
2119 _bfd_elf_get_special_section (const char *name
,
2120 const struct bfd_elf_special_section
*spec
,
2126 len
= strlen (name
);
2128 for (i
= 0; spec
[i
].prefix
!= NULL
; i
++)
2131 int prefix_len
= spec
[i
].prefix_length
;
2133 if (len
< prefix_len
)
2135 if (memcmp (name
, spec
[i
].prefix
, prefix_len
) != 0)
2138 suffix_len
= spec
[i
].suffix_length
;
2139 if (suffix_len
<= 0)
2141 if (name
[prefix_len
] != 0)
2143 if (suffix_len
== 0)
2145 if (name
[prefix_len
] != '.'
2146 && (suffix_len
== -2
2147 || (rela
&& spec
[i
].type
== SHT_REL
)))
2153 if (len
< prefix_len
+ suffix_len
)
2155 if (memcmp (name
+ len
- suffix_len
,
2156 spec
[i
].prefix
+ prefix_len
,
2166 const struct bfd_elf_special_section
*
2167 _bfd_elf_get_sec_type_attr (bfd
*abfd
, asection
*sec
)
2170 const struct bfd_elf_special_section
*spec
;
2171 const struct elf_backend_data
*bed
;
2173 /* See if this is one of the special sections. */
2174 if (sec
->name
== NULL
)
2177 bed
= get_elf_backend_data (abfd
);
2178 spec
= bed
->special_sections
;
2181 spec
= _bfd_elf_get_special_section (sec
->name
,
2182 bed
->special_sections
,
2188 if (sec
->name
[0] != '.')
2191 i
= sec
->name
[1] - 'b';
2192 if (i
< 0 || i
> 'z' - 'b')
2195 spec
= special_sections
[i
];
2200 return _bfd_elf_get_special_section (sec
->name
, spec
, sec
->use_rela_p
);
2204 _bfd_elf_new_section_hook (bfd
*abfd
, asection
*sec
)
2206 struct bfd_elf_section_data
*sdata
;
2207 const struct elf_backend_data
*bed
;
2208 const struct bfd_elf_special_section
*ssect
;
2210 sdata
= (struct bfd_elf_section_data
*) sec
->used_by_bfd
;
2213 sdata
= (struct bfd_elf_section_data
*) bfd_zalloc (abfd
,
2217 sec
->used_by_bfd
= sdata
;
2220 /* Indicate whether or not this section should use RELA relocations. */
2221 bed
= get_elf_backend_data (abfd
);
2222 sec
->use_rela_p
= bed
->default_use_rela_p
;
2224 /* When we read a file, we don't need to set ELF section type and
2225 flags. They will be overridden in _bfd_elf_make_section_from_shdr
2226 anyway. We will set ELF section type and flags for all linker
2227 created sections. If user specifies BFD section flags, we will
2228 set ELF section type and flags based on BFD section flags in
2229 elf_fake_sections. */
2230 if ((!sec
->flags
&& abfd
->direction
!= read_direction
)
2231 || (sec
->flags
& SEC_LINKER_CREATED
) != 0)
2233 ssect
= (*bed
->get_sec_type_attr
) (abfd
, sec
);
2236 elf_section_type (sec
) = ssect
->type
;
2237 elf_section_flags (sec
) = ssect
->attr
;
2241 return _bfd_generic_new_section_hook (abfd
, sec
);
2244 /* Create a new bfd section from an ELF program header.
2246 Since program segments have no names, we generate a synthetic name
2247 of the form segment<NUM>, where NUM is generally the index in the
2248 program header table. For segments that are split (see below) we
2249 generate the names segment<NUM>a and segment<NUM>b.
2251 Note that some program segments may have a file size that is different than
2252 (less than) the memory size. All this means is that at execution the
2253 system must allocate the amount of memory specified by the memory size,
2254 but only initialize it with the first "file size" bytes read from the
2255 file. This would occur for example, with program segments consisting
2256 of combined data+bss.
2258 To handle the above situation, this routine generates TWO bfd sections
2259 for the single program segment. The first has the length specified by
2260 the file size of the segment, and the second has the length specified
2261 by the difference between the two sizes. In effect, the segment is split
2262 into its initialized and uninitialized parts.
2267 _bfd_elf_make_section_from_phdr (bfd
*abfd
,
2268 Elf_Internal_Phdr
*hdr
,
2270 const char *type_name
)
2278 split
= ((hdr
->p_memsz
> 0)
2279 && (hdr
->p_filesz
> 0)
2280 && (hdr
->p_memsz
> hdr
->p_filesz
));
2282 if (hdr
->p_filesz
> 0)
2284 sprintf (namebuf
, "%s%d%s", type_name
, hdr_index
, split
? "a" : "");
2285 len
= strlen (namebuf
) + 1;
2286 name
= (char *) bfd_alloc (abfd
, len
);
2289 memcpy (name
, namebuf
, len
);
2290 newsect
= bfd_make_section (abfd
, name
);
2291 if (newsect
== NULL
)
2293 newsect
->vma
= hdr
->p_vaddr
;
2294 newsect
->lma
= hdr
->p_paddr
;
2295 newsect
->size
= hdr
->p_filesz
;
2296 newsect
->filepos
= hdr
->p_offset
;
2297 newsect
->flags
|= SEC_HAS_CONTENTS
;
2298 newsect
->alignment_power
= bfd_log2 (hdr
->p_align
);
2299 if (hdr
->p_type
== PT_LOAD
)
2301 newsect
->flags
|= SEC_ALLOC
;
2302 newsect
->flags
|= SEC_LOAD
;
2303 if (hdr
->p_flags
& PF_X
)
2305 /* FIXME: all we known is that it has execute PERMISSION,
2307 newsect
->flags
|= SEC_CODE
;
2310 if (!(hdr
->p_flags
& PF_W
))
2312 newsect
->flags
|= SEC_READONLY
;
2316 if (hdr
->p_memsz
> hdr
->p_filesz
)
2320 sprintf (namebuf
, "%s%d%s", type_name
, hdr_index
, split
? "b" : "");
2321 len
= strlen (namebuf
) + 1;
2322 name
= (char *) bfd_alloc (abfd
, len
);
2325 memcpy (name
, namebuf
, len
);
2326 newsect
= bfd_make_section (abfd
, name
);
2327 if (newsect
== NULL
)
2329 newsect
->vma
= hdr
->p_vaddr
+ hdr
->p_filesz
;
2330 newsect
->lma
= hdr
->p_paddr
+ hdr
->p_filesz
;
2331 newsect
->size
= hdr
->p_memsz
- hdr
->p_filesz
;
2332 newsect
->filepos
= hdr
->p_offset
+ hdr
->p_filesz
;
2333 align
= newsect
->vma
& -newsect
->vma
;
2334 if (align
== 0 || align
> hdr
->p_align
)
2335 align
= hdr
->p_align
;
2336 newsect
->alignment_power
= bfd_log2 (align
);
2337 if (hdr
->p_type
== PT_LOAD
)
2339 /* Hack for gdb. Segments that have not been modified do
2340 not have their contents written to a core file, on the
2341 assumption that a debugger can find the contents in the
2342 executable. We flag this case by setting the fake
2343 section size to zero. Note that "real" bss sections will
2344 always have their contents dumped to the core file. */
2345 if (bfd_get_format (abfd
) == bfd_core
)
2347 newsect
->flags
|= SEC_ALLOC
;
2348 if (hdr
->p_flags
& PF_X
)
2349 newsect
->flags
|= SEC_CODE
;
2351 if (!(hdr
->p_flags
& PF_W
))
2352 newsect
->flags
|= SEC_READONLY
;
2359 bfd_section_from_phdr (bfd
*abfd
, Elf_Internal_Phdr
*hdr
, int hdr_index
)
2361 const struct elf_backend_data
*bed
;
2363 switch (hdr
->p_type
)
2366 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, hdr_index
, "null");
2369 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, hdr_index
, "load");
2372 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, hdr_index
, "dynamic");
2375 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, hdr_index
, "interp");
2378 if (! _bfd_elf_make_section_from_phdr (abfd
, hdr
, hdr_index
, "note"))
2380 if (! elf_read_notes (abfd
, hdr
->p_offset
, hdr
->p_filesz
))
2385 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, hdr_index
, "shlib");
2388 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, hdr_index
, "phdr");
2390 case PT_GNU_EH_FRAME
:
2391 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, hdr_index
,
2395 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, hdr_index
, "stack");
2398 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, hdr_index
, "relro");
2401 /* Check for any processor-specific program segment types. */
2402 bed
= get_elf_backend_data (abfd
);
2403 return bed
->elf_backend_section_from_phdr (abfd
, hdr
, hdr_index
, "proc");
2407 /* Initialize REL_HDR, the section-header for new section, containing
2408 relocations against ASECT. If USE_RELA_P is TRUE, we use RELA
2409 relocations; otherwise, we use REL relocations. */
2412 _bfd_elf_init_reloc_shdr (bfd
*abfd
,
2413 Elf_Internal_Shdr
*rel_hdr
,
2415 bfd_boolean use_rela_p
)
2418 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
2419 bfd_size_type amt
= sizeof ".rela" + strlen (asect
->name
);
2421 name
= (char *) bfd_alloc (abfd
, amt
);
2424 sprintf (name
, "%s%s", use_rela_p
? ".rela" : ".rel", asect
->name
);
2426 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd
), name
,
2428 if (rel_hdr
->sh_name
== (unsigned int) -1)
2430 rel_hdr
->sh_type
= use_rela_p
? SHT_RELA
: SHT_REL
;
2431 rel_hdr
->sh_entsize
= (use_rela_p
2432 ? bed
->s
->sizeof_rela
2433 : bed
->s
->sizeof_rel
);
2434 rel_hdr
->sh_addralign
= (bfd_vma
) 1 << bed
->s
->log_file_align
;
2435 rel_hdr
->sh_flags
= 0;
2436 rel_hdr
->sh_addr
= 0;
2437 rel_hdr
->sh_size
= 0;
2438 rel_hdr
->sh_offset
= 0;
2443 /* Return the default section type based on the passed in section flags. */
2446 bfd_elf_get_default_section_type (flagword flags
)
2448 if ((flags
& SEC_ALLOC
) != 0
2449 && ((flags
& (SEC_LOAD
| SEC_HAS_CONTENTS
)) == 0
2450 || (flags
& SEC_NEVER_LOAD
) != 0))
2452 return SHT_PROGBITS
;
2455 /* Set up an ELF internal section header for a section. */
2458 elf_fake_sections (bfd
*abfd
, asection
*asect
, void *failedptrarg
)
2460 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
2461 bfd_boolean
*failedptr
= (bfd_boolean
*) failedptrarg
;
2462 Elf_Internal_Shdr
*this_hdr
;
2463 unsigned int sh_type
;
2467 /* We already failed; just get out of the bfd_map_over_sections
2472 this_hdr
= &elf_section_data (asect
)->this_hdr
;
2474 this_hdr
->sh_name
= (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd
),
2475 asect
->name
, FALSE
);
2476 if (this_hdr
->sh_name
== (unsigned int) -1)
2482 /* Don't clear sh_flags. Assembler may set additional bits. */
2484 if ((asect
->flags
& SEC_ALLOC
) != 0
2485 || asect
->user_set_vma
)
2486 this_hdr
->sh_addr
= asect
->vma
;
2488 this_hdr
->sh_addr
= 0;
2490 this_hdr
->sh_offset
= 0;
2491 this_hdr
->sh_size
= asect
->size
;
2492 this_hdr
->sh_link
= 0;
2493 this_hdr
->sh_addralign
= (bfd_vma
) 1 << asect
->alignment_power
;
2494 /* The sh_entsize and sh_info fields may have been set already by
2495 copy_private_section_data. */
2497 this_hdr
->bfd_section
= asect
;
2498 this_hdr
->contents
= NULL
;
2500 /* If the section type is unspecified, we set it based on
2502 if ((asect
->flags
& SEC_GROUP
) != 0)
2503 sh_type
= SHT_GROUP
;
2505 sh_type
= bfd_elf_get_default_section_type (asect
->flags
);
2507 if (this_hdr
->sh_type
== SHT_NULL
)
2508 this_hdr
->sh_type
= sh_type
;
2509 else if (this_hdr
->sh_type
== SHT_NOBITS
2510 && sh_type
== SHT_PROGBITS
2511 && (asect
->flags
& SEC_ALLOC
) != 0)
2513 /* Warn if we are changing a NOBITS section to PROGBITS, but
2514 allow the link to proceed. This can happen when users link
2515 non-bss input sections to bss output sections, or emit data
2516 to a bss output section via a linker script. */
2517 (*_bfd_error_handler
)
2518 (_("warning: section `%A' type changed to PROGBITS"), asect
);
2519 this_hdr
->sh_type
= sh_type
;
2522 switch (this_hdr
->sh_type
)
2528 case SHT_INIT_ARRAY
:
2529 case SHT_FINI_ARRAY
:
2530 case SHT_PREINIT_ARRAY
:
2537 this_hdr
->sh_entsize
= bed
->s
->sizeof_hash_entry
;
2541 this_hdr
->sh_entsize
= bed
->s
->sizeof_sym
;
2545 this_hdr
->sh_entsize
= bed
->s
->sizeof_dyn
;
2549 if (get_elf_backend_data (abfd
)->may_use_rela_p
)
2550 this_hdr
->sh_entsize
= bed
->s
->sizeof_rela
;
2554 if (get_elf_backend_data (abfd
)->may_use_rel_p
)
2555 this_hdr
->sh_entsize
= bed
->s
->sizeof_rel
;
2558 case SHT_GNU_versym
:
2559 this_hdr
->sh_entsize
= sizeof (Elf_External_Versym
);
2562 case SHT_GNU_verdef
:
2563 this_hdr
->sh_entsize
= 0;
2564 /* objcopy or strip will copy over sh_info, but may not set
2565 cverdefs. The linker will set cverdefs, but sh_info will be
2567 if (this_hdr
->sh_info
== 0)
2568 this_hdr
->sh_info
= elf_tdata (abfd
)->cverdefs
;
2570 BFD_ASSERT (elf_tdata (abfd
)->cverdefs
== 0
2571 || this_hdr
->sh_info
== elf_tdata (abfd
)->cverdefs
);
2574 case SHT_GNU_verneed
:
2575 this_hdr
->sh_entsize
= 0;
2576 /* objcopy or strip will copy over sh_info, but may not set
2577 cverrefs. The linker will set cverrefs, but sh_info will be
2579 if (this_hdr
->sh_info
== 0)
2580 this_hdr
->sh_info
= elf_tdata (abfd
)->cverrefs
;
2582 BFD_ASSERT (elf_tdata (abfd
)->cverrefs
== 0
2583 || this_hdr
->sh_info
== elf_tdata (abfd
)->cverrefs
);
2587 this_hdr
->sh_entsize
= GRP_ENTRY_SIZE
;
2591 this_hdr
->sh_entsize
= bed
->s
->arch_size
== 64 ? 0 : 4;
2595 if ((asect
->flags
& SEC_ALLOC
) != 0)
2596 this_hdr
->sh_flags
|= SHF_ALLOC
;
2597 if ((asect
->flags
& SEC_READONLY
) == 0)
2598 this_hdr
->sh_flags
|= SHF_WRITE
;
2599 if ((asect
->flags
& SEC_CODE
) != 0)
2600 this_hdr
->sh_flags
|= SHF_EXECINSTR
;
2601 if ((asect
->flags
& SEC_MERGE
) != 0)
2603 this_hdr
->sh_flags
|= SHF_MERGE
;
2604 this_hdr
->sh_entsize
= asect
->entsize
;
2605 if ((asect
->flags
& SEC_STRINGS
) != 0)
2606 this_hdr
->sh_flags
|= SHF_STRINGS
;
2608 if ((asect
->flags
& SEC_GROUP
) == 0 && elf_group_name (asect
) != NULL
)
2609 this_hdr
->sh_flags
|= SHF_GROUP
;
2610 if ((asect
->flags
& SEC_THREAD_LOCAL
) != 0)
2612 this_hdr
->sh_flags
|= SHF_TLS
;
2613 if (asect
->size
== 0
2614 && (asect
->flags
& SEC_HAS_CONTENTS
) == 0)
2616 struct bfd_link_order
*o
= asect
->map_tail
.link_order
;
2618 this_hdr
->sh_size
= 0;
2621 this_hdr
->sh_size
= o
->offset
+ o
->size
;
2622 if (this_hdr
->sh_size
!= 0)
2623 this_hdr
->sh_type
= SHT_NOBITS
;
2628 /* Check for processor-specific section types. */
2629 sh_type
= this_hdr
->sh_type
;
2630 if (bed
->elf_backend_fake_sections
2631 && !(*bed
->elf_backend_fake_sections
) (abfd
, this_hdr
, asect
))
2634 if (sh_type
== SHT_NOBITS
&& asect
->size
!= 0)
2636 /* Don't change the header type from NOBITS if we are being
2637 called for objcopy --only-keep-debug. */
2638 this_hdr
->sh_type
= sh_type
;
2641 /* If the section has relocs, set up a section header for the
2642 SHT_REL[A] section. If two relocation sections are required for
2643 this section, it is up to the processor-specific back-end to
2644 create the other. */
2645 if ((asect
->flags
& SEC_RELOC
) != 0
2646 && !_bfd_elf_init_reloc_shdr (abfd
,
2647 &elf_section_data (asect
)->rel_hdr
,
2653 /* Fill in the contents of a SHT_GROUP section. Called from
2654 _bfd_elf_compute_section_file_positions for gas, objcopy, and
2655 when ELF targets use the generic linker, ld. Called for ld -r
2656 from bfd_elf_final_link. */
2659 bfd_elf_set_group_contents (bfd
*abfd
, asection
*sec
, void *failedptrarg
)
2661 bfd_boolean
*failedptr
= (bfd_boolean
*) failedptrarg
;
2662 asection
*elt
, *first
;
2666 /* Ignore linker created group section. See elfNN_ia64_object_p in
2668 if (((sec
->flags
& (SEC_GROUP
| SEC_LINKER_CREATED
)) != SEC_GROUP
)
2672 if (elf_section_data (sec
)->this_hdr
.sh_info
== 0)
2674 unsigned long symindx
= 0;
2676 /* elf_group_id will have been set up by objcopy and the
2678 if (elf_group_id (sec
) != NULL
)
2679 symindx
= elf_group_id (sec
)->udata
.i
;
2683 /* If called from the assembler, swap_out_syms will have set up
2684 elf_section_syms. */
2685 BFD_ASSERT (elf_section_syms (abfd
) != NULL
);
2686 symindx
= elf_section_syms (abfd
)[sec
->index
]->udata
.i
;
2688 elf_section_data (sec
)->this_hdr
.sh_info
= symindx
;
2690 else if (elf_section_data (sec
)->this_hdr
.sh_info
== (unsigned int) -2)
2692 /* The ELF backend linker sets sh_info to -2 when the group
2693 signature symbol is global, and thus the index can't be
2694 set until all local symbols are output. */
2695 asection
*igroup
= elf_sec_group (elf_next_in_group (sec
));
2696 struct bfd_elf_section_data
*sec_data
= elf_section_data (igroup
);
2697 unsigned long symndx
= sec_data
->this_hdr
.sh_info
;
2698 unsigned long extsymoff
= 0;
2699 struct elf_link_hash_entry
*h
;
2701 if (!elf_bad_symtab (igroup
->owner
))
2703 Elf_Internal_Shdr
*symtab_hdr
;
2705 symtab_hdr
= &elf_tdata (igroup
->owner
)->symtab_hdr
;
2706 extsymoff
= symtab_hdr
->sh_info
;
2708 h
= elf_sym_hashes (igroup
->owner
)[symndx
- extsymoff
];
2709 while (h
->root
.type
== bfd_link_hash_indirect
2710 || h
->root
.type
== bfd_link_hash_warning
)
2711 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
2713 elf_section_data (sec
)->this_hdr
.sh_info
= h
->indx
;
2716 /* The contents won't be allocated for "ld -r" or objcopy. */
2718 if (sec
->contents
== NULL
)
2721 sec
->contents
= (unsigned char *) bfd_alloc (abfd
, sec
->size
);
2723 /* Arrange for the section to be written out. */
2724 elf_section_data (sec
)->this_hdr
.contents
= sec
->contents
;
2725 if (sec
->contents
== NULL
)
2732 loc
= sec
->contents
+ sec
->size
;
2734 /* Get the pointer to the first section in the group that gas
2735 squirreled away here. objcopy arranges for this to be set to the
2736 start of the input section group. */
2737 first
= elt
= elf_next_in_group (sec
);
2739 /* First element is a flag word. Rest of section is elf section
2740 indices for all the sections of the group. Write them backwards
2741 just to keep the group in the same order as given in .section
2742 directives, not that it matters. */
2749 if (! elf_discarded_section (s
))
2753 s
= s
->output_section
;
2756 idx
= elf_section_data (s
)->this_idx
;
2757 H_PUT_32 (abfd
, idx
, loc
);
2759 elt
= elf_next_in_group (elt
);
2764 if ((loc
-= 4) != sec
->contents
)
2767 H_PUT_32 (abfd
, sec
->flags
& SEC_LINK_ONCE
? GRP_COMDAT
: 0, loc
);
2770 /* Assign all ELF section numbers. The dummy first section is handled here
2771 too. The link/info pointers for the standard section types are filled
2772 in here too, while we're at it. */
2775 assign_section_numbers (bfd
*abfd
, struct bfd_link_info
*link_info
)
2777 struct elf_obj_tdata
*t
= elf_tdata (abfd
);
2779 unsigned int section_number
, secn
;
2780 Elf_Internal_Shdr
**i_shdrp
;
2781 struct bfd_elf_section_data
*d
;
2782 bfd_boolean need_symtab
;
2786 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd
));
2788 /* SHT_GROUP sections are in relocatable files only. */
2789 if (link_info
== NULL
|| link_info
->relocatable
)
2791 /* Put SHT_GROUP sections first. */
2792 for (sec
= abfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
2794 d
= elf_section_data (sec
);
2796 if (d
->this_hdr
.sh_type
== SHT_GROUP
)
2798 if (sec
->flags
& SEC_LINKER_CREATED
)
2800 /* Remove the linker created SHT_GROUP sections. */
2801 bfd_section_list_remove (abfd
, sec
);
2802 abfd
->section_count
--;
2805 d
->this_idx
= section_number
++;
2810 for (sec
= abfd
->sections
; sec
; sec
= sec
->next
)
2812 d
= elf_section_data (sec
);
2814 if (d
->this_hdr
.sh_type
!= SHT_GROUP
)
2815 d
->this_idx
= section_number
++;
2816 _bfd_elf_strtab_addref (elf_shstrtab (abfd
), d
->this_hdr
.sh_name
);
2817 if ((sec
->flags
& SEC_RELOC
) == 0)
2821 d
->rel_idx
= section_number
++;
2822 _bfd_elf_strtab_addref (elf_shstrtab (abfd
), d
->rel_hdr
.sh_name
);
2827 d
->rel_idx2
= section_number
++;
2828 _bfd_elf_strtab_addref (elf_shstrtab (abfd
), d
->rel_hdr2
->sh_name
);
2834 t
->shstrtab_section
= section_number
++;
2835 _bfd_elf_strtab_addref (elf_shstrtab (abfd
), t
->shstrtab_hdr
.sh_name
);
2836 elf_elfheader (abfd
)->e_shstrndx
= t
->shstrtab_section
;
2838 need_symtab
= (bfd_get_symcount (abfd
) > 0
2839 || (link_info
== NULL
2840 && ((abfd
->flags
& (EXEC_P
| DYNAMIC
| HAS_RELOC
))
2844 t
->symtab_section
= section_number
++;
2845 _bfd_elf_strtab_addref (elf_shstrtab (abfd
), t
->symtab_hdr
.sh_name
);
2846 if (section_number
> ((SHN_LORESERVE
- 2) & 0xFFFF))
2848 t
->symtab_shndx_section
= section_number
++;
2849 t
->symtab_shndx_hdr
.sh_name
2850 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd
),
2851 ".symtab_shndx", FALSE
);
2852 if (t
->symtab_shndx_hdr
.sh_name
== (unsigned int) -1)
2855 t
->strtab_section
= section_number
++;
2856 _bfd_elf_strtab_addref (elf_shstrtab (abfd
), t
->strtab_hdr
.sh_name
);
2859 _bfd_elf_strtab_finalize (elf_shstrtab (abfd
));
2860 t
->shstrtab_hdr
.sh_size
= _bfd_elf_strtab_size (elf_shstrtab (abfd
));
2862 elf_numsections (abfd
) = section_number
;
2863 elf_elfheader (abfd
)->e_shnum
= section_number
;
2865 /* Set up the list of section header pointers, in agreement with the
2867 i_shdrp
= (Elf_Internal_Shdr
**) bfd_zalloc2 (abfd
, section_number
,
2868 sizeof (Elf_Internal_Shdr
*));
2869 if (i_shdrp
== NULL
)
2872 i_shdrp
[0] = (Elf_Internal_Shdr
*) bfd_zalloc (abfd
,
2873 sizeof (Elf_Internal_Shdr
));
2874 if (i_shdrp
[0] == NULL
)
2876 bfd_release (abfd
, i_shdrp
);
2880 elf_elfsections (abfd
) = i_shdrp
;
2882 i_shdrp
[t
->shstrtab_section
] = &t
->shstrtab_hdr
;
2885 i_shdrp
[t
->symtab_section
] = &t
->symtab_hdr
;
2886 if (elf_numsections (abfd
) > (SHN_LORESERVE
& 0xFFFF))
2888 i_shdrp
[t
->symtab_shndx_section
] = &t
->symtab_shndx_hdr
;
2889 t
->symtab_shndx_hdr
.sh_link
= t
->symtab_section
;
2891 i_shdrp
[t
->strtab_section
] = &t
->strtab_hdr
;
2892 t
->symtab_hdr
.sh_link
= t
->strtab_section
;
2895 for (sec
= abfd
->sections
; sec
; sec
= sec
->next
)
2900 d
= elf_section_data (sec
);
2902 i_shdrp
[d
->this_idx
] = &d
->this_hdr
;
2903 if (d
->rel_idx
!= 0)
2904 i_shdrp
[d
->rel_idx
] = &d
->rel_hdr
;
2905 if (d
->rel_idx2
!= 0)
2906 i_shdrp
[d
->rel_idx2
] = d
->rel_hdr2
;
2908 /* Fill in the sh_link and sh_info fields while we're at it. */
2910 /* sh_link of a reloc section is the section index of the symbol
2911 table. sh_info is the section index of the section to which
2912 the relocation entries apply. */
2913 if (d
->rel_idx
!= 0)
2915 d
->rel_hdr
.sh_link
= t
->symtab_section
;
2916 d
->rel_hdr
.sh_info
= d
->this_idx
;
2918 if (d
->rel_idx2
!= 0)
2920 d
->rel_hdr2
->sh_link
= t
->symtab_section
;
2921 d
->rel_hdr2
->sh_info
= d
->this_idx
;
2924 /* We need to set up sh_link for SHF_LINK_ORDER. */
2925 if ((d
->this_hdr
.sh_flags
& SHF_LINK_ORDER
) != 0)
2927 s
= elf_linked_to_section (sec
);
2930 /* elf_linked_to_section points to the input section. */
2931 if (link_info
!= NULL
)
2933 /* Check discarded linkonce section. */
2934 if (elf_discarded_section (s
))
2937 (*_bfd_error_handler
)
2938 (_("%B: sh_link of section `%A' points to discarded section `%A' of `%B'"),
2939 abfd
, d
->this_hdr
.bfd_section
,
2941 /* Point to the kept section if it has the same
2942 size as the discarded one. */
2943 kept
= _bfd_elf_check_kept_section (s
, link_info
);
2946 bfd_set_error (bfd_error_bad_value
);
2952 s
= s
->output_section
;
2953 BFD_ASSERT (s
!= NULL
);
2957 /* Handle objcopy. */
2958 if (s
->output_section
== NULL
)
2960 (*_bfd_error_handler
)
2961 (_("%B: sh_link of section `%A' points to removed section `%A' of `%B'"),
2962 abfd
, d
->this_hdr
.bfd_section
, s
, s
->owner
);
2963 bfd_set_error (bfd_error_bad_value
);
2966 s
= s
->output_section
;
2968 d
->this_hdr
.sh_link
= elf_section_data (s
)->this_idx
;
2973 The Intel C compiler generates SHT_IA_64_UNWIND with
2974 SHF_LINK_ORDER. But it doesn't set the sh_link or
2975 sh_info fields. Hence we could get the situation
2977 const struct elf_backend_data
*bed
2978 = get_elf_backend_data (abfd
);
2979 if (bed
->link_order_error_handler
)
2980 bed
->link_order_error_handler
2981 (_("%B: warning: sh_link not set for section `%A'"),
2986 switch (d
->this_hdr
.sh_type
)
2990 /* A reloc section which we are treating as a normal BFD
2991 section. sh_link is the section index of the symbol
2992 table. sh_info is the section index of the section to
2993 which the relocation entries apply. We assume that an
2994 allocated reloc section uses the dynamic symbol table.
2995 FIXME: How can we be sure? */
2996 s
= bfd_get_section_by_name (abfd
, ".dynsym");
2998 d
->this_hdr
.sh_link
= elf_section_data (s
)->this_idx
;
3000 /* We look up the section the relocs apply to by name. */
3002 if (d
->this_hdr
.sh_type
== SHT_REL
)
3006 s
= bfd_get_section_by_name (abfd
, name
);
3008 d
->this_hdr
.sh_info
= elf_section_data (s
)->this_idx
;
3012 /* We assume that a section named .stab*str is a stabs
3013 string section. We look for a section with the same name
3014 but without the trailing ``str'', and set its sh_link
3015 field to point to this section. */
3016 if (CONST_STRNEQ (sec
->name
, ".stab")
3017 && strcmp (sec
->name
+ strlen (sec
->name
) - 3, "str") == 0)
3022 len
= strlen (sec
->name
);
3023 alc
= (char *) bfd_malloc (len
- 2);
3026 memcpy (alc
, sec
->name
, len
- 3);
3027 alc
[len
- 3] = '\0';
3028 s
= bfd_get_section_by_name (abfd
, alc
);
3032 elf_section_data (s
)->this_hdr
.sh_link
= d
->this_idx
;
3034 /* This is a .stab section. */
3035 if (elf_section_data (s
)->this_hdr
.sh_entsize
== 0)
3036 elf_section_data (s
)->this_hdr
.sh_entsize
3037 = 4 + 2 * bfd_get_arch_size (abfd
) / 8;
3044 case SHT_GNU_verneed
:
3045 case SHT_GNU_verdef
:
3046 /* sh_link is the section header index of the string table
3047 used for the dynamic entries, or the symbol table, or the
3049 s
= bfd_get_section_by_name (abfd
, ".dynstr");
3051 d
->this_hdr
.sh_link
= elf_section_data (s
)->this_idx
;
3054 case SHT_GNU_LIBLIST
:
3055 /* sh_link is the section header index of the prelink library
3056 list used for the dynamic entries, or the symbol table, or
3057 the version strings. */
3058 s
= bfd_get_section_by_name (abfd
, (sec
->flags
& SEC_ALLOC
)
3059 ? ".dynstr" : ".gnu.libstr");
3061 d
->this_hdr
.sh_link
= elf_section_data (s
)->this_idx
;
3066 case SHT_GNU_versym
:
3067 /* sh_link is the section header index of the symbol table
3068 this hash table or version table is for. */
3069 s
= bfd_get_section_by_name (abfd
, ".dynsym");
3071 d
->this_hdr
.sh_link
= elf_section_data (s
)->this_idx
;
3075 d
->this_hdr
.sh_link
= t
->symtab_section
;
3079 for (secn
= 1; secn
< section_number
; ++secn
)
3080 if (i_shdrp
[secn
] == NULL
)
3081 i_shdrp
[secn
] = i_shdrp
[0];
3083 i_shdrp
[secn
]->sh_name
= _bfd_elf_strtab_offset (elf_shstrtab (abfd
),
3084 i_shdrp
[secn
]->sh_name
);
3088 /* Map symbol from it's internal number to the external number, moving
3089 all local symbols to be at the head of the list. */
3092 sym_is_global (bfd
*abfd
, asymbol
*sym
)
3094 /* If the backend has a special mapping, use it. */
3095 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
3096 if (bed
->elf_backend_sym_is_global
)
3097 return (*bed
->elf_backend_sym_is_global
) (abfd
, sym
);
3099 return ((sym
->flags
& (BSF_GLOBAL
| BSF_WEAK
| BSF_GNU_UNIQUE
)) != 0
3100 || bfd_is_und_section (bfd_get_section (sym
))
3101 || bfd_is_com_section (bfd_get_section (sym
)));
3104 /* Don't output section symbols for sections that are not going to be
3108 ignore_section_sym (bfd
*abfd
, asymbol
*sym
)
3110 return ((sym
->flags
& BSF_SECTION_SYM
) != 0
3111 && !(sym
->section
->owner
== abfd
3112 || (sym
->section
->output_section
->owner
== abfd
3113 && sym
->section
->output_offset
== 0)));
3117 elf_map_symbols (bfd
*abfd
)
3119 unsigned int symcount
= bfd_get_symcount (abfd
);
3120 asymbol
**syms
= bfd_get_outsymbols (abfd
);
3121 asymbol
**sect_syms
;
3122 unsigned int num_locals
= 0;
3123 unsigned int num_globals
= 0;
3124 unsigned int num_locals2
= 0;
3125 unsigned int num_globals2
= 0;
3132 fprintf (stderr
, "elf_map_symbols\n");
3136 for (asect
= abfd
->sections
; asect
; asect
= asect
->next
)
3138 if (max_index
< asect
->index
)
3139 max_index
= asect
->index
;
3143 sect_syms
= (asymbol
**) bfd_zalloc2 (abfd
, max_index
, sizeof (asymbol
*));
3144 if (sect_syms
== NULL
)
3146 elf_section_syms (abfd
) = sect_syms
;
3147 elf_num_section_syms (abfd
) = max_index
;
3149 /* Init sect_syms entries for any section symbols we have already
3150 decided to output. */
3151 for (idx
= 0; idx
< symcount
; idx
++)
3153 asymbol
*sym
= syms
[idx
];
3155 if ((sym
->flags
& BSF_SECTION_SYM
) != 0
3157 && !ignore_section_sym (abfd
, sym
))
3159 asection
*sec
= sym
->section
;
3161 if (sec
->owner
!= abfd
)
3162 sec
= sec
->output_section
;
3164 sect_syms
[sec
->index
] = syms
[idx
];
3168 /* Classify all of the symbols. */
3169 for (idx
= 0; idx
< symcount
; idx
++)
3171 if (ignore_section_sym (abfd
, syms
[idx
]))
3173 if (!sym_is_global (abfd
, syms
[idx
]))
3179 /* We will be adding a section symbol for each normal BFD section. Most
3180 sections will already have a section symbol in outsymbols, but
3181 eg. SHT_GROUP sections will not, and we need the section symbol mapped
3182 at least in that case. */
3183 for (asect
= abfd
->sections
; asect
; asect
= asect
->next
)
3185 if (sect_syms
[asect
->index
] == NULL
)
3187 if (!sym_is_global (abfd
, asect
->symbol
))
3194 /* Now sort the symbols so the local symbols are first. */
3195 new_syms
= (asymbol
**) bfd_alloc2 (abfd
, num_locals
+ num_globals
,
3196 sizeof (asymbol
*));
3198 if (new_syms
== NULL
)
3201 for (idx
= 0; idx
< symcount
; idx
++)
3203 asymbol
*sym
= syms
[idx
];
3206 if (ignore_section_sym (abfd
, sym
))
3208 if (!sym_is_global (abfd
, sym
))
3211 i
= num_locals
+ num_globals2
++;
3213 sym
->udata
.i
= i
+ 1;
3215 for (asect
= abfd
->sections
; asect
; asect
= asect
->next
)
3217 if (sect_syms
[asect
->index
] == NULL
)
3219 asymbol
*sym
= asect
->symbol
;
3222 sect_syms
[asect
->index
] = sym
;
3223 if (!sym_is_global (abfd
, sym
))
3226 i
= num_locals
+ num_globals2
++;
3228 sym
->udata
.i
= i
+ 1;
3232 bfd_set_symtab (abfd
, new_syms
, num_locals
+ num_globals
);
3234 elf_num_locals (abfd
) = num_locals
;
3235 elf_num_globals (abfd
) = num_globals
;
3239 /* Align to the maximum file alignment that could be required for any
3240 ELF data structure. */
3242 static inline file_ptr
3243 align_file_position (file_ptr off
, int align
)
3245 return (off
+ align
- 1) & ~(align
- 1);
3248 /* Assign a file position to a section, optionally aligning to the
3249 required section alignment. */
3252 _bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr
*i_shdrp
,
3256 if (align
&& i_shdrp
->sh_addralign
> 1)
3257 offset
= BFD_ALIGN (offset
, i_shdrp
->sh_addralign
);
3258 i_shdrp
->sh_offset
= offset
;
3259 if (i_shdrp
->bfd_section
!= NULL
)
3260 i_shdrp
->bfd_section
->filepos
= offset
;
3261 if (i_shdrp
->sh_type
!= SHT_NOBITS
)
3262 offset
+= i_shdrp
->sh_size
;
3266 /* Compute the file positions we are going to put the sections at, and
3267 otherwise prepare to begin writing out the ELF file. If LINK_INFO
3268 is not NULL, this is being called by the ELF backend linker. */
3271 _bfd_elf_compute_section_file_positions (bfd
*abfd
,
3272 struct bfd_link_info
*link_info
)
3274 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
3276 struct bfd_strtab_hash
*strtab
= NULL
;
3277 Elf_Internal_Shdr
*shstrtab_hdr
;
3278 bfd_boolean need_symtab
;
3280 if (abfd
->output_has_begun
)
3283 /* Do any elf backend specific processing first. */
3284 if (bed
->elf_backend_begin_write_processing
)
3285 (*bed
->elf_backend_begin_write_processing
) (abfd
, link_info
);
3287 if (! prep_headers (abfd
))
3290 /* Post process the headers if necessary. */
3291 if (bed
->elf_backend_post_process_headers
)
3292 (*bed
->elf_backend_post_process_headers
) (abfd
, link_info
);
3295 bfd_map_over_sections (abfd
, elf_fake_sections
, &failed
);
3299 if (!assign_section_numbers (abfd
, link_info
))
3302 /* The backend linker builds symbol table information itself. */
3303 need_symtab
= (link_info
== NULL
3304 && (bfd_get_symcount (abfd
) > 0
3305 || ((abfd
->flags
& (EXEC_P
| DYNAMIC
| HAS_RELOC
))
3309 /* Non-zero if doing a relocatable link. */
3310 int relocatable_p
= ! (abfd
->flags
& (EXEC_P
| DYNAMIC
));
3312 if (! swap_out_syms (abfd
, &strtab
, relocatable_p
))
3316 if (link_info
== NULL
)
3318 bfd_map_over_sections (abfd
, bfd_elf_set_group_contents
, &failed
);
3323 shstrtab_hdr
= &elf_tdata (abfd
)->shstrtab_hdr
;
3324 /* sh_name was set in prep_headers. */
3325 shstrtab_hdr
->sh_type
= SHT_STRTAB
;
3326 shstrtab_hdr
->sh_flags
= 0;
3327 shstrtab_hdr
->sh_addr
= 0;
3328 shstrtab_hdr
->sh_size
= _bfd_elf_strtab_size (elf_shstrtab (abfd
));
3329 shstrtab_hdr
->sh_entsize
= 0;
3330 shstrtab_hdr
->sh_link
= 0;
3331 shstrtab_hdr
->sh_info
= 0;
3332 /* sh_offset is set in assign_file_positions_except_relocs. */
3333 shstrtab_hdr
->sh_addralign
= 1;
3335 if (!assign_file_positions_except_relocs (abfd
, link_info
))
3341 Elf_Internal_Shdr
*hdr
;
3343 off
= elf_tdata (abfd
)->next_file_pos
;
3345 hdr
= &elf_tdata (abfd
)->symtab_hdr
;
3346 off
= _bfd_elf_assign_file_position_for_section (hdr
, off
, TRUE
);
3348 hdr
= &elf_tdata (abfd
)->symtab_shndx_hdr
;
3349 if (hdr
->sh_size
!= 0)
3350 off
= _bfd_elf_assign_file_position_for_section (hdr
, off
, TRUE
);
3352 hdr
= &elf_tdata (abfd
)->strtab_hdr
;
3353 off
= _bfd_elf_assign_file_position_for_section (hdr
, off
, TRUE
);
3355 elf_tdata (abfd
)->next_file_pos
= off
;
3357 /* Now that we know where the .strtab section goes, write it
3359 if (bfd_seek (abfd
, hdr
->sh_offset
, SEEK_SET
) != 0
3360 || ! _bfd_stringtab_emit (abfd
, strtab
))
3362 _bfd_stringtab_free (strtab
);
3365 abfd
->output_has_begun
= TRUE
;
3370 /* Make an initial estimate of the size of the program header. If we
3371 get the number wrong here, we'll redo section placement. */
3373 static bfd_size_type
3374 get_program_header_size (bfd
*abfd
, struct bfd_link_info
*info
)
3378 const struct elf_backend_data
*bed
;
3380 /* Assume we will need exactly two PT_LOAD segments: one for text
3381 and one for data. */
3384 s
= bfd_get_section_by_name (abfd
, ".interp");
3385 if (s
!= NULL
&& (s
->flags
& SEC_LOAD
) != 0)
3387 /* If we have a loadable interpreter section, we need a
3388 PT_INTERP segment. In this case, assume we also need a
3389 PT_PHDR segment, although that may not be true for all
3394 if (bfd_get_section_by_name (abfd
, ".dynamic") != NULL
)
3396 /* We need a PT_DYNAMIC segment. */
3400 if (info
!= NULL
&& info
->relro
)
3402 /* We need a PT_GNU_RELRO segment. */
3406 if (elf_tdata (abfd
)->eh_frame_hdr
)
3408 /* We need a PT_GNU_EH_FRAME segment. */
3412 if (elf_tdata (abfd
)->stack_flags
)
3414 /* We need a PT_GNU_STACK segment. */
3418 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
3420 if ((s
->flags
& SEC_LOAD
) != 0
3421 && CONST_STRNEQ (s
->name
, ".note"))
3423 /* We need a PT_NOTE segment. */
3425 /* Try to create just one PT_NOTE segment
3426 for all adjacent loadable .note* sections.
3427 gABI requires that within a PT_NOTE segment
3428 (and also inside of each SHT_NOTE section)
3429 each note is padded to a multiple of 4 size,
3430 so we check whether the sections are correctly
3432 if (s
->alignment_power
== 2)
3433 while (s
->next
!= NULL
3434 && s
->next
->alignment_power
== 2
3435 && (s
->next
->flags
& SEC_LOAD
) != 0
3436 && CONST_STRNEQ (s
->next
->name
, ".note"))
3441 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
3443 if (s
->flags
& SEC_THREAD_LOCAL
)
3445 /* We need a PT_TLS segment. */
3451 /* Let the backend count up any program headers it might need. */
3452 bed
= get_elf_backend_data (abfd
);
3453 if (bed
->elf_backend_additional_program_headers
)
3457 a
= (*bed
->elf_backend_additional_program_headers
) (abfd
, info
);
3463 return segs
* bed
->s
->sizeof_phdr
;
3466 /* Find the segment that contains the output_section of section. */
3469 _bfd_elf_find_segment_containing_section (bfd
* abfd
, asection
* section
)
3471 struct elf_segment_map
*m
;
3472 Elf_Internal_Phdr
*p
;
3474 for (m
= elf_tdata (abfd
)->segment_map
,
3475 p
= elf_tdata (abfd
)->phdr
;
3481 for (i
= m
->count
- 1; i
>= 0; i
--)
3482 if (m
->sections
[i
] == section
)
3489 /* Create a mapping from a set of sections to a program segment. */
3491 static struct elf_segment_map
*
3492 make_mapping (bfd
*abfd
,
3493 asection
**sections
,
3498 struct elf_segment_map
*m
;
3503 amt
= sizeof (struct elf_segment_map
);
3504 amt
+= (to
- from
- 1) * sizeof (asection
*);
3505 m
= (struct elf_segment_map
*) bfd_zalloc (abfd
, amt
);
3509 m
->p_type
= PT_LOAD
;
3510 for (i
= from
, hdrpp
= sections
+ from
; i
< to
; i
++, hdrpp
++)
3511 m
->sections
[i
- from
] = *hdrpp
;
3512 m
->count
= to
- from
;
3514 if (from
== 0 && phdr
)
3516 /* Include the headers in the first PT_LOAD segment. */
3517 m
->includes_filehdr
= 1;
3518 m
->includes_phdrs
= 1;
3524 /* Create the PT_DYNAMIC segment, which includes DYNSEC. Returns NULL
3527 struct elf_segment_map
*
3528 _bfd_elf_make_dynamic_segment (bfd
*abfd
, asection
*dynsec
)
3530 struct elf_segment_map
*m
;
3532 m
= (struct elf_segment_map
*) bfd_zalloc (abfd
,
3533 sizeof (struct elf_segment_map
));
3537 m
->p_type
= PT_DYNAMIC
;
3539 m
->sections
[0] = dynsec
;
3544 /* Possibly add or remove segments from the segment map. */
3547 elf_modify_segment_map (bfd
*abfd
,
3548 struct bfd_link_info
*info
,
3549 bfd_boolean remove_empty_load
)
3551 struct elf_segment_map
**m
;
3552 const struct elf_backend_data
*bed
;
3554 /* The placement algorithm assumes that non allocated sections are
3555 not in PT_LOAD segments. We ensure this here by removing such
3556 sections from the segment map. We also remove excluded
3557 sections. Finally, any PT_LOAD segment without sections is
3559 m
= &elf_tdata (abfd
)->segment_map
;
3562 unsigned int i
, new_count
;
3564 for (new_count
= 0, i
= 0; i
< (*m
)->count
; i
++)
3566 if (((*m
)->sections
[i
]->flags
& SEC_EXCLUDE
) == 0
3567 && (((*m
)->sections
[i
]->flags
& SEC_ALLOC
) != 0
3568 || (*m
)->p_type
!= PT_LOAD
))
3570 (*m
)->sections
[new_count
] = (*m
)->sections
[i
];
3574 (*m
)->count
= new_count
;
3576 if (remove_empty_load
&& (*m
)->p_type
== PT_LOAD
&& (*m
)->count
== 0)
3582 bed
= get_elf_backend_data (abfd
);
3583 if (bed
->elf_backend_modify_segment_map
!= NULL
)
3585 if (!(*bed
->elf_backend_modify_segment_map
) (abfd
, info
))
3592 /* Set up a mapping from BFD sections to program segments. */
3595 _bfd_elf_map_sections_to_segments (bfd
*abfd
, struct bfd_link_info
*info
)
3598 struct elf_segment_map
*m
;
3599 asection
**sections
= NULL
;
3600 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
3601 bfd_boolean no_user_phdrs
;
3603 no_user_phdrs
= elf_tdata (abfd
)->segment_map
== NULL
;
3604 if (no_user_phdrs
&& bfd_count_sections (abfd
) != 0)
3608 struct elf_segment_map
*mfirst
;
3609 struct elf_segment_map
**pm
;
3612 unsigned int phdr_index
;
3613 bfd_vma maxpagesize
;
3615 bfd_boolean phdr_in_segment
= TRUE
;
3616 bfd_boolean writable
;
3618 asection
*first_tls
= NULL
;
3619 asection
*dynsec
, *eh_frame_hdr
;
3622 /* Select the allocated sections, and sort them. */
3624 sections
= (asection
**) bfd_malloc2 (bfd_count_sections (abfd
),
3625 sizeof (asection
*));
3626 if (sections
== NULL
)
3630 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
3632 if ((s
->flags
& SEC_ALLOC
) != 0)
3638 BFD_ASSERT (i
<= bfd_count_sections (abfd
));
3641 qsort (sections
, (size_t) count
, sizeof (asection
*), elf_sort_sections
);
3643 /* Build the mapping. */
3648 /* If we have a .interp section, then create a PT_PHDR segment for
3649 the program headers and a PT_INTERP segment for the .interp
3651 s
= bfd_get_section_by_name (abfd
, ".interp");
3652 if (s
!= NULL
&& (s
->flags
& SEC_LOAD
) != 0)
3654 amt
= sizeof (struct elf_segment_map
);
3655 m
= (struct elf_segment_map
*) bfd_zalloc (abfd
, amt
);
3659 m
->p_type
= PT_PHDR
;
3660 /* FIXME: UnixWare and Solaris set PF_X, Irix 5 does not. */
3661 m
->p_flags
= PF_R
| PF_X
;
3662 m
->p_flags_valid
= 1;
3663 m
->includes_phdrs
= 1;
3668 amt
= sizeof (struct elf_segment_map
);
3669 m
= (struct elf_segment_map
*) bfd_zalloc (abfd
, amt
);
3673 m
->p_type
= PT_INTERP
;
3681 /* Look through the sections. We put sections in the same program
3682 segment when the start of the second section can be placed within
3683 a few bytes of the end of the first section. */
3687 maxpagesize
= bed
->maxpagesize
;
3689 dynsec
= bfd_get_section_by_name (abfd
, ".dynamic");
3691 && (dynsec
->flags
& SEC_LOAD
) == 0)
3694 /* Deal with -Ttext or something similar such that the first section
3695 is not adjacent to the program headers. This is an
3696 approximation, since at this point we don't know exactly how many
3697 program headers we will need. */
3700 bfd_size_type phdr_size
= elf_tdata (abfd
)->program_header_size
;
3702 if (phdr_size
== (bfd_size_type
) -1)
3703 phdr_size
= get_program_header_size (abfd
, info
);
3704 if ((abfd
->flags
& D_PAGED
) == 0
3705 || sections
[0]->lma
< phdr_size
3706 || sections
[0]->lma
% maxpagesize
< phdr_size
% maxpagesize
)
3707 phdr_in_segment
= FALSE
;
3710 for (i
= 0, hdrpp
= sections
; i
< count
; i
++, hdrpp
++)
3713 bfd_boolean new_segment
;
3717 /* See if this section and the last one will fit in the same
3720 if (last_hdr
== NULL
)
3722 /* If we don't have a segment yet, then we don't need a new
3723 one (we build the last one after this loop). */
3724 new_segment
= FALSE
;
3726 else if (last_hdr
->lma
- last_hdr
->vma
!= hdr
->lma
- hdr
->vma
)
3728 /* If this section has a different relation between the
3729 virtual address and the load address, then we need a new
3733 /* In the next test we have to be careful when last_hdr->lma is close
3734 to the end of the address space. If the aligned address wraps
3735 around to the start of the address space, then there are no more
3736 pages left in memory and it is OK to assume that the current
3737 section can be included in the current segment. */
3738 else if ((BFD_ALIGN (last_hdr
->lma
+ last_size
, maxpagesize
) + maxpagesize
3740 && (BFD_ALIGN (last_hdr
->lma
+ last_size
, maxpagesize
) + maxpagesize
3743 /* If putting this section in this segment would force us to
3744 skip a page in the segment, then we need a new segment. */
3747 else if ((last_hdr
->flags
& (SEC_LOAD
| SEC_THREAD_LOCAL
)) == 0
3748 && (hdr
->flags
& (SEC_LOAD
| SEC_THREAD_LOCAL
)) != 0)
3750 /* We don't want to put a loadable section after a
3751 nonloadable section in the same segment.
3752 Consider .tbss sections as loadable for this purpose. */
3755 else if ((abfd
->flags
& D_PAGED
) == 0)
3757 /* If the file is not demand paged, which means that we
3758 don't require the sections to be correctly aligned in the
3759 file, then there is no other reason for a new segment. */
3760 new_segment
= FALSE
;
3763 && (hdr
->flags
& SEC_READONLY
) == 0
3764 && (((last_hdr
->lma
+ last_size
- 1)
3765 & ~(maxpagesize
- 1))
3766 != (hdr
->lma
& ~(maxpagesize
- 1))))
3768 /* We don't want to put a writable section in a read only
3769 segment, unless they are on the same page in memory
3770 anyhow. We already know that the last section does not
3771 bring us past the current section on the page, so the
3772 only case in which the new section is not on the same
3773 page as the previous section is when the previous section
3774 ends precisely on a page boundary. */
3779 /* Otherwise, we can use the same segment. */
3780 new_segment
= FALSE
;
3783 /* Allow interested parties a chance to override our decision. */
3784 if (last_hdr
!= NULL
3786 && info
->callbacks
->override_segment_assignment
!= NULL
)
3788 = info
->callbacks
->override_segment_assignment (info
, abfd
, hdr
,
3794 if ((hdr
->flags
& SEC_READONLY
) == 0)
3797 /* .tbss sections effectively have zero size. */
3798 if ((hdr
->flags
& (SEC_THREAD_LOCAL
| SEC_LOAD
))
3799 != SEC_THREAD_LOCAL
)
3800 last_size
= hdr
->size
;
3806 /* We need a new program segment. We must create a new program
3807 header holding all the sections from phdr_index until hdr. */
3809 m
= make_mapping (abfd
, sections
, phdr_index
, i
, phdr_in_segment
);
3816 if ((hdr
->flags
& SEC_READONLY
) == 0)
3822 /* .tbss sections effectively have zero size. */
3823 if ((hdr
->flags
& (SEC_THREAD_LOCAL
| SEC_LOAD
)) != SEC_THREAD_LOCAL
)
3824 last_size
= hdr
->size
;
3828 phdr_in_segment
= FALSE
;
3831 /* Create a final PT_LOAD program segment. */
3832 if (last_hdr
!= NULL
)
3834 m
= make_mapping (abfd
, sections
, phdr_index
, i
, phdr_in_segment
);
3842 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
3845 m
= _bfd_elf_make_dynamic_segment (abfd
, dynsec
);
3852 /* For each batch of consecutive loadable .note sections,
3853 add a PT_NOTE segment. We don't use bfd_get_section_by_name,
3854 because if we link together nonloadable .note sections and
3855 loadable .note sections, we will generate two .note sections
3856 in the output file. FIXME: Using names for section types is
3858 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
3860 if ((s
->flags
& SEC_LOAD
) != 0
3861 && CONST_STRNEQ (s
->name
, ".note"))
3866 amt
= sizeof (struct elf_segment_map
);
3867 if (s
->alignment_power
== 2)
3868 for (s2
= s
; s2
->next
!= NULL
; s2
= s2
->next
)
3870 if (s2
->next
->alignment_power
== 2
3871 && (s2
->next
->flags
& SEC_LOAD
) != 0
3872 && CONST_STRNEQ (s2
->next
->name
, ".note")
3873 && align_power (s2
->vma
+ s2
->size
, 2)
3879 amt
+= (count
- 1) * sizeof (asection
*);
3880 m
= (struct elf_segment_map
*) bfd_zalloc (abfd
, amt
);
3884 m
->p_type
= PT_NOTE
;
3888 m
->sections
[m
->count
- count
--] = s
;
3889 BFD_ASSERT ((s
->flags
& SEC_THREAD_LOCAL
) == 0);
3892 m
->sections
[m
->count
- 1] = s
;
3893 BFD_ASSERT ((s
->flags
& SEC_THREAD_LOCAL
) == 0);
3897 if (s
->flags
& SEC_THREAD_LOCAL
)
3905 /* If there are any SHF_TLS output sections, add PT_TLS segment. */
3908 amt
= sizeof (struct elf_segment_map
);
3909 amt
+= (tls_count
- 1) * sizeof (asection
*);
3910 m
= (struct elf_segment_map
*) bfd_zalloc (abfd
, amt
);
3915 m
->count
= tls_count
;
3916 /* Mandated PF_R. */
3918 m
->p_flags_valid
= 1;
3919 for (i
= 0; i
< (unsigned int) tls_count
; ++i
)
3921 BFD_ASSERT (first_tls
->flags
& SEC_THREAD_LOCAL
);
3922 m
->sections
[i
] = first_tls
;
3923 first_tls
= first_tls
->next
;
3930 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
3932 eh_frame_hdr
= elf_tdata (abfd
)->eh_frame_hdr
;
3933 if (eh_frame_hdr
!= NULL
3934 && (eh_frame_hdr
->output_section
->flags
& SEC_LOAD
) != 0)
3936 amt
= sizeof (struct elf_segment_map
);
3937 m
= (struct elf_segment_map
*) bfd_zalloc (abfd
, amt
);
3941 m
->p_type
= PT_GNU_EH_FRAME
;
3943 m
->sections
[0] = eh_frame_hdr
->output_section
;
3949 if (elf_tdata (abfd
)->stack_flags
)
3951 amt
= sizeof (struct elf_segment_map
);
3952 m
= (struct elf_segment_map
*) bfd_zalloc (abfd
, amt
);
3956 m
->p_type
= PT_GNU_STACK
;
3957 m
->p_flags
= elf_tdata (abfd
)->stack_flags
;
3958 m
->p_flags_valid
= 1;
3964 if (info
!= NULL
&& info
->relro
)
3966 for (m
= mfirst
; m
!= NULL
; m
= m
->next
)
3968 if (m
->p_type
== PT_LOAD
)
3970 asection
*last
= m
->sections
[m
->count
- 1];
3971 bfd_vma vaddr
= m
->sections
[0]->vma
;
3972 bfd_vma filesz
= last
->vma
- vaddr
+ last
->size
;
3974 if (vaddr
< info
->relro_end
3975 && vaddr
>= info
->relro_start
3976 && (vaddr
+ filesz
) >= info
->relro_end
)
3981 /* Make a PT_GNU_RELRO segment only when it isn't empty. */
3984 amt
= sizeof (struct elf_segment_map
);
3985 m
= (struct elf_segment_map
*) bfd_zalloc (abfd
, amt
);
3989 m
->p_type
= PT_GNU_RELRO
;
3991 m
->p_flags_valid
= 1;
3999 elf_tdata (abfd
)->segment_map
= mfirst
;
4002 if (!elf_modify_segment_map (abfd
, info
, no_user_phdrs
))
4005 for (count
= 0, m
= elf_tdata (abfd
)->segment_map
; m
!= NULL
; m
= m
->next
)
4007 elf_tdata (abfd
)->program_header_size
= count
* bed
->s
->sizeof_phdr
;
4012 if (sections
!= NULL
)
4017 /* Sort sections by address. */
4020 elf_sort_sections (const void *arg1
, const void *arg2
)
4022 const asection
*sec1
= *(const asection
**) arg1
;
4023 const asection
*sec2
= *(const asection
**) arg2
;
4024 bfd_size_type size1
, size2
;
4026 /* Sort by LMA first, since this is the address used to
4027 place the section into a segment. */
4028 if (sec1
->lma
< sec2
->lma
)
4030 else if (sec1
->lma
> sec2
->lma
)
4033 /* Then sort by VMA. Normally the LMA and the VMA will be
4034 the same, and this will do nothing. */
4035 if (sec1
->vma
< sec2
->vma
)
4037 else if (sec1
->vma
> sec2
->vma
)
4040 /* Put !SEC_LOAD sections after SEC_LOAD ones. */
4042 #define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0)
4048 /* If the indicies are the same, do not return 0
4049 here, but continue to try the next comparison. */
4050 if (sec1
->target_index
- sec2
->target_index
!= 0)
4051 return sec1
->target_index
- sec2
->target_index
;
4056 else if (TOEND (sec2
))
4061 /* Sort by size, to put zero sized sections
4062 before others at the same address. */
4064 size1
= (sec1
->flags
& SEC_LOAD
) ? sec1
->size
: 0;
4065 size2
= (sec2
->flags
& SEC_LOAD
) ? sec2
->size
: 0;
4072 return sec1
->target_index
- sec2
->target_index
;
4075 /* Ian Lance Taylor writes:
4077 We shouldn't be using % with a negative signed number. That's just
4078 not good. We have to make sure either that the number is not
4079 negative, or that the number has an unsigned type. When the types
4080 are all the same size they wind up as unsigned. When file_ptr is a
4081 larger signed type, the arithmetic winds up as signed long long,
4084 What we're trying to say here is something like ``increase OFF by
4085 the least amount that will cause it to be equal to the VMA modulo
4087 /* In other words, something like:
4089 vma_offset = m->sections[0]->vma % bed->maxpagesize;
4090 off_offset = off % bed->maxpagesize;
4091 if (vma_offset < off_offset)
4092 adjustment = vma_offset + bed->maxpagesize - off_offset;
4094 adjustment = vma_offset - off_offset;
4096 which can can be collapsed into the expression below. */
4099 vma_page_aligned_bias (bfd_vma vma
, ufile_ptr off
, bfd_vma maxpagesize
)
4101 return ((vma
- off
) % maxpagesize
);
4105 print_segment_map (const struct elf_segment_map
*m
)
4108 const char *pt
= get_segment_type (m
->p_type
);
4113 if (m
->p_type
>= PT_LOPROC
&& m
->p_type
<= PT_HIPROC
)
4114 sprintf (buf
, "LOPROC+%7.7x",
4115 (unsigned int) (m
->p_type
- PT_LOPROC
));
4116 else if (m
->p_type
>= PT_LOOS
&& m
->p_type
<= PT_HIOS
)
4117 sprintf (buf
, "LOOS+%7.7x",
4118 (unsigned int) (m
->p_type
- PT_LOOS
));
4120 snprintf (buf
, sizeof (buf
), "%8.8x",
4121 (unsigned int) m
->p_type
);
4124 fprintf (stderr
, "%s:", pt
);
4125 for (j
= 0; j
< m
->count
; j
++)
4126 fprintf (stderr
, " %s", m
->sections
[j
]->name
);
4131 write_zeros (bfd
*abfd
, file_ptr pos
, bfd_size_type len
)
4136 if (bfd_seek (abfd
, pos
, SEEK_SET
) != 0)
4138 buf
= bfd_zmalloc (len
);
4141 ret
= bfd_bwrite (buf
, len
, abfd
) == len
;
4146 /* Assign file positions to the sections based on the mapping from
4147 sections to segments. This function also sets up some fields in
4151 assign_file_positions_for_load_sections (bfd
*abfd
,
4152 struct bfd_link_info
*link_info
)
4154 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
4155 struct elf_segment_map
*m
;
4156 Elf_Internal_Phdr
*phdrs
;
4157 Elf_Internal_Phdr
*p
;
4159 bfd_size_type maxpagesize
;
4162 bfd_vma header_pad
= 0;
4164 if (link_info
== NULL
4165 && !_bfd_elf_map_sections_to_segments (abfd
, link_info
))
4169 for (m
= elf_tdata (abfd
)->segment_map
; m
!= NULL
; m
= m
->next
)
4173 header_pad
= m
->header_size
;
4176 elf_elfheader (abfd
)->e_phoff
= bed
->s
->sizeof_ehdr
;
4177 elf_elfheader (abfd
)->e_phentsize
= bed
->s
->sizeof_phdr
;
4178 elf_elfheader (abfd
)->e_phnum
= alloc
;
4180 if (elf_tdata (abfd
)->program_header_size
== (bfd_size_type
) -1)
4181 elf_tdata (abfd
)->program_header_size
= alloc
* bed
->s
->sizeof_phdr
;
4183 BFD_ASSERT (elf_tdata (abfd
)->program_header_size
4184 >= alloc
* bed
->s
->sizeof_phdr
);
4188 elf_tdata (abfd
)->next_file_pos
= bed
->s
->sizeof_ehdr
;
4192 /* We're writing the size in elf_tdata (abfd)->program_header_size,
4193 see assign_file_positions_except_relocs, so make sure we have
4194 that amount allocated, with trailing space cleared.
4195 The variable alloc contains the computed need, while elf_tdata
4196 (abfd)->program_header_size contains the size used for the
4198 See ld/emultempl/elf-generic.em:gld${EMULATION_NAME}_map_segments
4199 where the layout is forced to according to a larger size in the
4200 last iterations for the testcase ld-elf/header. */
4201 BFD_ASSERT (elf_tdata (abfd
)->program_header_size
% bed
->s
->sizeof_phdr
4203 phdrs
= (Elf_Internal_Phdr
*)
4205 (elf_tdata (abfd
)->program_header_size
/ bed
->s
->sizeof_phdr
),
4206 sizeof (Elf_Internal_Phdr
));
4207 elf_tdata (abfd
)->phdr
= phdrs
;
4212 if ((abfd
->flags
& D_PAGED
) != 0)
4213 maxpagesize
= bed
->maxpagesize
;
4215 off
= bed
->s
->sizeof_ehdr
;
4216 off
+= alloc
* bed
->s
->sizeof_phdr
;
4217 if (header_pad
< (bfd_vma
) off
)
4223 for (m
= elf_tdata (abfd
)->segment_map
, p
= phdrs
, j
= 0;
4225 m
= m
->next
, p
++, j
++)
4229 bfd_boolean no_contents
;
4231 /* If elf_segment_map is not from map_sections_to_segments, the
4232 sections may not be correctly ordered. NOTE: sorting should
4233 not be done to the PT_NOTE section of a corefile, which may
4234 contain several pseudo-sections artificially created by bfd.
4235 Sorting these pseudo-sections breaks things badly. */
4237 && !(elf_elfheader (abfd
)->e_type
== ET_CORE
4238 && m
->p_type
== PT_NOTE
))
4239 qsort (m
->sections
, (size_t) m
->count
, sizeof (asection
*),
4242 /* An ELF segment (described by Elf_Internal_Phdr) may contain a
4243 number of sections with contents contributing to both p_filesz
4244 and p_memsz, followed by a number of sections with no contents
4245 that just contribute to p_memsz. In this loop, OFF tracks next
4246 available file offset for PT_LOAD and PT_NOTE segments. */
4247 p
->p_type
= m
->p_type
;
4248 p
->p_flags
= m
->p_flags
;
4253 p
->p_vaddr
= m
->sections
[0]->vma
- m
->p_vaddr_offset
;
4255 if (m
->p_paddr_valid
)
4256 p
->p_paddr
= m
->p_paddr
;
4257 else if (m
->count
== 0)
4260 p
->p_paddr
= m
->sections
[0]->lma
- m
->p_vaddr_offset
;
4262 if (p
->p_type
== PT_LOAD
4263 && (abfd
->flags
& D_PAGED
) != 0)
4265 /* p_align in demand paged PT_LOAD segments effectively stores
4266 the maximum page size. When copying an executable with
4267 objcopy, we set m->p_align from the input file. Use this
4268 value for maxpagesize rather than bed->maxpagesize, which
4269 may be different. Note that we use maxpagesize for PT_TLS
4270 segment alignment later in this function, so we are relying
4271 on at least one PT_LOAD segment appearing before a PT_TLS
4273 if (m
->p_align_valid
)
4274 maxpagesize
= m
->p_align
;
4276 p
->p_align
= maxpagesize
;
4278 else if (m
->p_align_valid
)
4279 p
->p_align
= m
->p_align
;
4280 else if (m
->count
== 0)
4281 p
->p_align
= 1 << bed
->s
->log_file_align
;
4285 no_contents
= FALSE
;
4287 if (p
->p_type
== PT_LOAD
4290 bfd_size_type align
;
4291 unsigned int align_power
= 0;
4293 if (m
->p_align_valid
)
4297 for (i
= 0, secpp
= m
->sections
; i
< m
->count
; i
++, secpp
++)
4299 unsigned int secalign
;
4301 secalign
= bfd_get_section_alignment (abfd
, *secpp
);
4302 if (secalign
> align_power
)
4303 align_power
= secalign
;
4305 align
= (bfd_size_type
) 1 << align_power
;
4306 if (align
< maxpagesize
)
4307 align
= maxpagesize
;
4310 for (i
= 0; i
< m
->count
; i
++)
4311 if ((m
->sections
[i
]->flags
& (SEC_LOAD
| SEC_HAS_CONTENTS
)) == 0)
4312 /* If we aren't making room for this section, then
4313 it must be SHT_NOBITS regardless of what we've
4314 set via struct bfd_elf_special_section. */
4315 elf_section_type (m
->sections
[i
]) = SHT_NOBITS
;
4317 /* Find out whether this segment contains any loadable
4320 for (i
= 0; i
< m
->count
; i
++)
4321 if (elf_section_type (m
->sections
[i
]) != SHT_NOBITS
)
4323 no_contents
= FALSE
;
4327 off_adjust
= vma_page_aligned_bias (m
->sections
[0]->vma
, off
, align
);
4331 /* We shouldn't need to align the segment on disk since
4332 the segment doesn't need file space, but the gABI
4333 arguably requires the alignment and glibc ld.so
4334 checks it. So to comply with the alignment
4335 requirement but not waste file space, we adjust
4336 p_offset for just this segment. (OFF_ADJUST is
4337 subtracted from OFF later.) This may put p_offset
4338 past the end of file, but that shouldn't matter. */
4343 /* Make sure the .dynamic section is the first section in the
4344 PT_DYNAMIC segment. */
4345 else if (p
->p_type
== PT_DYNAMIC
4347 && strcmp (m
->sections
[0]->name
, ".dynamic") != 0)
4350 (_("%B: The first section in the PT_DYNAMIC segment is not the .dynamic section"),
4352 bfd_set_error (bfd_error_bad_value
);
4355 /* Set the note section type to SHT_NOTE. */
4356 else if (p
->p_type
== PT_NOTE
)
4357 for (i
= 0; i
< m
->count
; i
++)
4358 elf_section_type (m
->sections
[i
]) = SHT_NOTE
;
4364 if (m
->includes_filehdr
)
4366 if (!m
->p_flags_valid
)
4368 p
->p_filesz
= bed
->s
->sizeof_ehdr
;
4369 p
->p_memsz
= bed
->s
->sizeof_ehdr
;
4372 BFD_ASSERT (p
->p_type
== PT_LOAD
);
4374 if (p
->p_vaddr
< (bfd_vma
) off
)
4376 (*_bfd_error_handler
)
4377 (_("%B: Not enough room for program headers, try linking with -N"),
4379 bfd_set_error (bfd_error_bad_value
);
4384 if (!m
->p_paddr_valid
)
4389 if (m
->includes_phdrs
)
4391 if (!m
->p_flags_valid
)
4394 if (!m
->includes_filehdr
)
4396 p
->p_offset
= bed
->s
->sizeof_ehdr
;
4400 BFD_ASSERT (p
->p_type
== PT_LOAD
);
4401 p
->p_vaddr
-= off
- p
->p_offset
;
4402 if (!m
->p_paddr_valid
)
4403 p
->p_paddr
-= off
- p
->p_offset
;
4407 p
->p_filesz
+= alloc
* bed
->s
->sizeof_phdr
;
4408 p
->p_memsz
+= alloc
* bed
->s
->sizeof_phdr
;
4411 p
->p_filesz
+= header_pad
;
4412 p
->p_memsz
+= header_pad
;
4416 if (p
->p_type
== PT_LOAD
4417 || (p
->p_type
== PT_NOTE
&& bfd_get_format (abfd
) == bfd_core
))
4419 if (!m
->includes_filehdr
&& !m
->includes_phdrs
)
4425 adjust
= off
- (p
->p_offset
+ p
->p_filesz
);
4427 p
->p_filesz
+= adjust
;
4428 p
->p_memsz
+= adjust
;
4432 /* Set up p_filesz, p_memsz, p_align and p_flags from the section
4433 maps. Set filepos for sections in PT_LOAD segments, and in
4434 core files, for sections in PT_NOTE segments.
4435 assign_file_positions_for_non_load_sections will set filepos
4436 for other sections and update p_filesz for other segments. */
4437 for (i
= 0, secpp
= m
->sections
; i
< m
->count
; i
++, secpp
++)
4440 bfd_size_type align
;
4441 Elf_Internal_Shdr
*this_hdr
;
4444 this_hdr
= &elf_section_data (sec
)->this_hdr
;
4445 align
= (bfd_size_type
) 1 << bfd_get_section_alignment (abfd
, sec
);
4447 if ((p
->p_type
== PT_LOAD
4448 || p
->p_type
== PT_TLS
)
4449 && (this_hdr
->sh_type
!= SHT_NOBITS
4450 || ((this_hdr
->sh_flags
& SHF_ALLOC
) != 0
4451 && ((this_hdr
->sh_flags
& SHF_TLS
) == 0
4452 || p
->p_type
== PT_TLS
))))
4454 bfd_signed_vma adjust
= sec
->vma
- (p
->p_vaddr
+ p
->p_memsz
);
4458 (*_bfd_error_handler
)
4459 (_("%B: section %A vma 0x%lx overlaps previous sections"),
4460 abfd
, sec
, (unsigned long) sec
->vma
);
4463 p
->p_memsz
+= adjust
;
4465 if (this_hdr
->sh_type
!= SHT_NOBITS
)
4467 if (p
->p_filesz
+ adjust
< p
->p_memsz
)
4469 /* We have a PROGBITS section following NOBITS ones.
4470 Allocate file space for the NOBITS section(s) and
4472 adjust
= p
->p_memsz
- p
->p_filesz
;
4473 if (!write_zeros (abfd
, off
, adjust
))
4477 p
->p_filesz
+= adjust
;
4481 if (p
->p_type
== PT_NOTE
&& bfd_get_format (abfd
) == bfd_core
)
4483 /* The section at i == 0 is the one that actually contains
4487 this_hdr
->sh_offset
= sec
->filepos
= off
;
4488 off
+= this_hdr
->sh_size
;
4489 p
->p_filesz
= this_hdr
->sh_size
;
4495 /* The rest are fake sections that shouldn't be written. */
4504 if (p
->p_type
== PT_LOAD
)
4506 this_hdr
->sh_offset
= sec
->filepos
= off
;
4507 if (this_hdr
->sh_type
!= SHT_NOBITS
)
4508 off
+= this_hdr
->sh_size
;
4511 if (this_hdr
->sh_type
!= SHT_NOBITS
)
4513 p
->p_filesz
+= this_hdr
->sh_size
;
4514 /* A load section without SHF_ALLOC is something like
4515 a note section in a PT_NOTE segment. These take
4516 file space but are not loaded into memory. */
4517 if ((this_hdr
->sh_flags
& SHF_ALLOC
) != 0)
4518 p
->p_memsz
+= this_hdr
->sh_size
;
4520 else if ((this_hdr
->sh_flags
& SHF_ALLOC
) != 0)
4522 if (p
->p_type
== PT_TLS
)
4523 p
->p_memsz
+= this_hdr
->sh_size
;
4525 /* .tbss is special. It doesn't contribute to p_memsz of
4527 else if ((this_hdr
->sh_flags
& SHF_TLS
) == 0)
4528 p
->p_memsz
+= this_hdr
->sh_size
;
4531 if (align
> p
->p_align
4532 && !m
->p_align_valid
4533 && (p
->p_type
!= PT_LOAD
4534 || (abfd
->flags
& D_PAGED
) == 0))
4538 if (!m
->p_flags_valid
)
4541 if ((this_hdr
->sh_flags
& SHF_EXECINSTR
) != 0)
4543 if ((this_hdr
->sh_flags
& SHF_WRITE
) != 0)
4549 /* Check that all sections are in a PT_LOAD segment.
4550 Don't check funky gdb generated core files. */
4551 if (p
->p_type
== PT_LOAD
&& bfd_get_format (abfd
) != bfd_core
)
4552 for (i
= 0, secpp
= m
->sections
; i
< m
->count
; i
++, secpp
++)
4554 Elf_Internal_Shdr
*this_hdr
;
4558 this_hdr
= &(elf_section_data(sec
)->this_hdr
);
4559 if (this_hdr
->sh_size
!= 0
4560 && !ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr
, p
))
4562 (*_bfd_error_handler
)
4563 (_("%B: section `%A' can't be allocated in segment %d"),
4565 print_segment_map (m
);
4566 bfd_set_error (bfd_error_bad_value
);
4572 elf_tdata (abfd
)->next_file_pos
= off
;
4576 /* Assign file positions for the other sections. */
4579 assign_file_positions_for_non_load_sections (bfd
*abfd
,
4580 struct bfd_link_info
*link_info
)
4582 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
4583 Elf_Internal_Shdr
**i_shdrpp
;
4584 Elf_Internal_Shdr
**hdrpp
;
4585 Elf_Internal_Phdr
*phdrs
;
4586 Elf_Internal_Phdr
*p
;
4587 struct elf_segment_map
*m
;
4588 bfd_vma filehdr_vaddr
, filehdr_paddr
;
4589 bfd_vma phdrs_vaddr
, phdrs_paddr
;
4591 unsigned int num_sec
;
4595 i_shdrpp
= elf_elfsections (abfd
);
4596 num_sec
= elf_numsections (abfd
);
4597 off
= elf_tdata (abfd
)->next_file_pos
;
4598 for (i
= 1, hdrpp
= i_shdrpp
+ 1; i
< num_sec
; i
++, hdrpp
++)
4600 struct elf_obj_tdata
*tdata
= elf_tdata (abfd
);
4601 Elf_Internal_Shdr
*hdr
;
4604 if (hdr
->bfd_section
!= NULL
4605 && (hdr
->bfd_section
->filepos
!= 0
4606 || (hdr
->sh_type
== SHT_NOBITS
4607 && hdr
->contents
== NULL
)))
4608 BFD_ASSERT (hdr
->sh_offset
== hdr
->bfd_section
->filepos
);
4609 else if ((hdr
->sh_flags
& SHF_ALLOC
) != 0)
4611 if (hdr
->sh_size
!= 0)
4612 ((*_bfd_error_handler
)
4613 (_("%B: warning: allocated section `%s' not in segment"),
4615 (hdr
->bfd_section
== NULL
4617 : hdr
->bfd_section
->name
)));
4618 /* We don't need to page align empty sections. */
4619 if ((abfd
->flags
& D_PAGED
) != 0 && hdr
->sh_size
!= 0)
4620 off
+= vma_page_aligned_bias (hdr
->sh_addr
, off
,
4623 off
+= vma_page_aligned_bias (hdr
->sh_addr
, off
,
4625 off
= _bfd_elf_assign_file_position_for_section (hdr
, off
,
4628 else if (((hdr
->sh_type
== SHT_REL
|| hdr
->sh_type
== SHT_RELA
)
4629 && hdr
->bfd_section
== NULL
)
4630 || hdr
== i_shdrpp
[tdata
->symtab_section
]
4631 || hdr
== i_shdrpp
[tdata
->symtab_shndx_section
]
4632 || hdr
== i_shdrpp
[tdata
->strtab_section
])
4633 hdr
->sh_offset
= -1;
4635 off
= _bfd_elf_assign_file_position_for_section (hdr
, off
, TRUE
);
4638 /* Now that we have set the section file positions, we can set up
4639 the file positions for the non PT_LOAD segments. */
4643 phdrs_vaddr
= bed
->maxpagesize
+ bed
->s
->sizeof_ehdr
;
4645 phdrs
= elf_tdata (abfd
)->phdr
;
4646 for (m
= elf_tdata (abfd
)->segment_map
, p
= phdrs
;
4651 if (p
->p_type
!= PT_LOAD
)
4654 if (m
->includes_filehdr
)
4656 filehdr_vaddr
= p
->p_vaddr
;
4657 filehdr_paddr
= p
->p_paddr
;
4659 if (m
->includes_phdrs
)
4661 phdrs_vaddr
= p
->p_vaddr
;
4662 phdrs_paddr
= p
->p_paddr
;
4663 if (m
->includes_filehdr
)
4665 phdrs_vaddr
+= bed
->s
->sizeof_ehdr
;
4666 phdrs_paddr
+= bed
->s
->sizeof_ehdr
;
4671 for (m
= elf_tdata (abfd
)->segment_map
, p
= phdrs
;
4675 if (p
->p_type
== PT_GNU_RELRO
)
4677 const Elf_Internal_Phdr
*lp
;
4679 BFD_ASSERT (!m
->includes_filehdr
&& !m
->includes_phdrs
);
4681 if (link_info
!= NULL
)
4683 /* During linking the range of the RELRO segment is passed
4685 for (lp
= phdrs
; lp
< phdrs
+ count
; ++lp
)
4687 if (lp
->p_type
== PT_LOAD
4688 && lp
->p_vaddr
>= link_info
->relro_start
4689 && lp
->p_vaddr
< link_info
->relro_end
4690 && lp
->p_vaddr
+ lp
->p_filesz
>= link_info
->relro_end
)
4696 /* Otherwise we are copying an executable or shared
4697 library, but we need to use the same linker logic. */
4698 for (lp
= phdrs
; lp
< phdrs
+ count
; ++lp
)
4700 if (lp
->p_type
== PT_LOAD
4701 && lp
->p_paddr
== p
->p_paddr
)
4706 if (lp
< phdrs
+ count
)
4708 p
->p_vaddr
= lp
->p_vaddr
;
4709 p
->p_paddr
= lp
->p_paddr
;
4710 p
->p_offset
= lp
->p_offset
;
4711 if (link_info
!= NULL
)
4712 p
->p_filesz
= link_info
->relro_end
- lp
->p_vaddr
;
4713 else if (m
->p_size_valid
)
4714 p
->p_filesz
= m
->p_size
;
4717 p
->p_memsz
= p
->p_filesz
;
4719 p
->p_flags
= (lp
->p_flags
& ~PF_W
);
4723 memset (p
, 0, sizeof *p
);
4724 p
->p_type
= PT_NULL
;
4727 else if (m
->count
!= 0)
4729 if (p
->p_type
!= PT_LOAD
4730 && (p
->p_type
!= PT_NOTE
4731 || bfd_get_format (abfd
) != bfd_core
))
4733 Elf_Internal_Shdr
*hdr
;
4736 BFD_ASSERT (!m
->includes_filehdr
&& !m
->includes_phdrs
);
4738 sect
= m
->sections
[m
->count
- 1];
4739 hdr
= &elf_section_data (sect
)->this_hdr
;
4740 p
->p_filesz
= sect
->filepos
- m
->sections
[0]->filepos
;
4741 if (hdr
->sh_type
!= SHT_NOBITS
)
4742 p
->p_filesz
+= hdr
->sh_size
;
4743 p
->p_offset
= m
->sections
[0]->filepos
;
4746 else if (m
->includes_filehdr
)
4748 p
->p_vaddr
= filehdr_vaddr
;
4749 if (! m
->p_paddr_valid
)
4750 p
->p_paddr
= filehdr_paddr
;
4752 else if (m
->includes_phdrs
)
4754 p
->p_vaddr
= phdrs_vaddr
;
4755 if (! m
->p_paddr_valid
)
4756 p
->p_paddr
= phdrs_paddr
;
4760 elf_tdata (abfd
)->next_file_pos
= off
;
4765 /* Work out the file positions of all the sections. This is called by
4766 _bfd_elf_compute_section_file_positions. All the section sizes and
4767 VMAs must be known before this is called.
4769 Reloc sections come in two flavours: Those processed specially as
4770 "side-channel" data attached to a section to which they apply, and
4771 those that bfd doesn't process as relocations. The latter sort are
4772 stored in a normal bfd section by bfd_section_from_shdr. We don't
4773 consider the former sort here, unless they form part of the loadable
4774 image. Reloc sections not assigned here will be handled later by
4775 assign_file_positions_for_relocs.
4777 We also don't set the positions of the .symtab and .strtab here. */
4780 assign_file_positions_except_relocs (bfd
*abfd
,
4781 struct bfd_link_info
*link_info
)
4783 struct elf_obj_tdata
*tdata
= elf_tdata (abfd
);
4784 Elf_Internal_Ehdr
*i_ehdrp
= elf_elfheader (abfd
);
4786 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
4788 if ((abfd
->flags
& (EXEC_P
| DYNAMIC
)) == 0
4789 && bfd_get_format (abfd
) != bfd_core
)
4791 Elf_Internal_Shdr
** const i_shdrpp
= elf_elfsections (abfd
);
4792 unsigned int num_sec
= elf_numsections (abfd
);
4793 Elf_Internal_Shdr
**hdrpp
;
4796 /* Start after the ELF header. */
4797 off
= i_ehdrp
->e_ehsize
;
4799 /* We are not creating an executable, which means that we are
4800 not creating a program header, and that the actual order of
4801 the sections in the file is unimportant. */
4802 for (i
= 1, hdrpp
= i_shdrpp
+ 1; i
< num_sec
; i
++, hdrpp
++)
4804 Elf_Internal_Shdr
*hdr
;
4807 if (((hdr
->sh_type
== SHT_REL
|| hdr
->sh_type
== SHT_RELA
)
4808 && hdr
->bfd_section
== NULL
)
4809 || i
== tdata
->symtab_section
4810 || i
== tdata
->symtab_shndx_section
4811 || i
== tdata
->strtab_section
)
4813 hdr
->sh_offset
= -1;
4816 off
= _bfd_elf_assign_file_position_for_section (hdr
, off
, TRUE
);
4823 /* Assign file positions for the loaded sections based on the
4824 assignment of sections to segments. */
4825 if (!assign_file_positions_for_load_sections (abfd
, link_info
))
4828 /* And for non-load sections. */
4829 if (!assign_file_positions_for_non_load_sections (abfd
, link_info
))
4832 if (bed
->elf_backend_modify_program_headers
!= NULL
)
4834 if (!(*bed
->elf_backend_modify_program_headers
) (abfd
, link_info
))
4838 /* Write out the program headers. */
4839 alloc
= tdata
->program_header_size
/ bed
->s
->sizeof_phdr
;
4840 if (bfd_seek (abfd
, (bfd_signed_vma
) bed
->s
->sizeof_ehdr
, SEEK_SET
) != 0
4841 || bed
->s
->write_out_phdrs (abfd
, tdata
->phdr
, alloc
) != 0)
4844 off
= tdata
->next_file_pos
;
4847 /* Place the section headers. */
4848 off
= align_file_position (off
, 1 << bed
->s
->log_file_align
);
4849 i_ehdrp
->e_shoff
= off
;
4850 off
+= i_ehdrp
->e_shnum
* i_ehdrp
->e_shentsize
;
4852 tdata
->next_file_pos
= off
;
4858 prep_headers (bfd
*abfd
)
4860 Elf_Internal_Ehdr
*i_ehdrp
; /* Elf file header, internal form */
4861 Elf_Internal_Phdr
*i_phdrp
= 0; /* Program header table, internal form */
4862 struct elf_strtab_hash
*shstrtab
;
4863 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
4865 i_ehdrp
= elf_elfheader (abfd
);
4867 shstrtab
= _bfd_elf_strtab_init ();
4868 if (shstrtab
== NULL
)
4871 elf_shstrtab (abfd
) = shstrtab
;
4873 i_ehdrp
->e_ident
[EI_MAG0
] = ELFMAG0
;
4874 i_ehdrp
->e_ident
[EI_MAG1
] = ELFMAG1
;
4875 i_ehdrp
->e_ident
[EI_MAG2
] = ELFMAG2
;
4876 i_ehdrp
->e_ident
[EI_MAG3
] = ELFMAG3
;
4878 i_ehdrp
->e_ident
[EI_CLASS
] = bed
->s
->elfclass
;
4879 i_ehdrp
->e_ident
[EI_DATA
] =
4880 bfd_big_endian (abfd
) ? ELFDATA2MSB
: ELFDATA2LSB
;
4881 i_ehdrp
->e_ident
[EI_VERSION
] = bed
->s
->ev_current
;
4883 if ((abfd
->flags
& DYNAMIC
) != 0)
4884 i_ehdrp
->e_type
= ET_DYN
;
4885 else if ((abfd
->flags
& EXEC_P
) != 0)
4886 i_ehdrp
->e_type
= ET_EXEC
;
4887 else if (bfd_get_format (abfd
) == bfd_core
)
4888 i_ehdrp
->e_type
= ET_CORE
;
4890 i_ehdrp
->e_type
= ET_REL
;
4892 switch (bfd_get_arch (abfd
))
4894 case bfd_arch_unknown
:
4895 i_ehdrp
->e_machine
= EM_NONE
;
4898 /* There used to be a long list of cases here, each one setting
4899 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
4900 in the corresponding bfd definition. To avoid duplication,
4901 the switch was removed. Machines that need special handling
4902 can generally do it in elf_backend_final_write_processing(),
4903 unless they need the information earlier than the final write.
4904 Such need can generally be supplied by replacing the tests for
4905 e_machine with the conditions used to determine it. */
4907 i_ehdrp
->e_machine
= bed
->elf_machine_code
;
4910 i_ehdrp
->e_version
= bed
->s
->ev_current
;
4911 i_ehdrp
->e_ehsize
= bed
->s
->sizeof_ehdr
;
4913 /* No program header, for now. */
4914 i_ehdrp
->e_phoff
= 0;
4915 i_ehdrp
->e_phentsize
= 0;
4916 i_ehdrp
->e_phnum
= 0;
4918 /* Each bfd section is section header entry. */
4919 i_ehdrp
->e_entry
= bfd_get_start_address (abfd
);
4920 i_ehdrp
->e_shentsize
= bed
->s
->sizeof_shdr
;
4922 /* If we're building an executable, we'll need a program header table. */
4923 if (abfd
->flags
& EXEC_P
)
4924 /* It all happens later. */
4928 i_ehdrp
->e_phentsize
= 0;
4930 i_ehdrp
->e_phoff
= 0;
4933 elf_tdata (abfd
)->symtab_hdr
.sh_name
=
4934 (unsigned int) _bfd_elf_strtab_add (shstrtab
, ".symtab", FALSE
);
4935 elf_tdata (abfd
)->strtab_hdr
.sh_name
=
4936 (unsigned int) _bfd_elf_strtab_add (shstrtab
, ".strtab", FALSE
);
4937 elf_tdata (abfd
)->shstrtab_hdr
.sh_name
=
4938 (unsigned int) _bfd_elf_strtab_add (shstrtab
, ".shstrtab", FALSE
);
4939 if (elf_tdata (abfd
)->symtab_hdr
.sh_name
== (unsigned int) -1
4940 || elf_tdata (abfd
)->symtab_hdr
.sh_name
== (unsigned int) -1
4941 || elf_tdata (abfd
)->shstrtab_hdr
.sh_name
== (unsigned int) -1)
4947 /* Assign file positions for all the reloc sections which are not part
4948 of the loadable file image. */
4951 _bfd_elf_assign_file_positions_for_relocs (bfd
*abfd
)
4954 unsigned int i
, num_sec
;
4955 Elf_Internal_Shdr
**shdrpp
;
4957 off
= elf_tdata (abfd
)->next_file_pos
;
4959 num_sec
= elf_numsections (abfd
);
4960 for (i
= 1, shdrpp
= elf_elfsections (abfd
) + 1; i
< num_sec
; i
++, shdrpp
++)
4962 Elf_Internal_Shdr
*shdrp
;
4965 if ((shdrp
->sh_type
== SHT_REL
|| shdrp
->sh_type
== SHT_RELA
)
4966 && shdrp
->sh_offset
== -1)
4967 off
= _bfd_elf_assign_file_position_for_section (shdrp
, off
, TRUE
);
4970 elf_tdata (abfd
)->next_file_pos
= off
;
4974 _bfd_elf_write_object_contents (bfd
*abfd
)
4976 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
4977 Elf_Internal_Ehdr
*i_ehdrp
;
4978 Elf_Internal_Shdr
**i_shdrp
;
4980 unsigned int count
, num_sec
;
4982 if (! abfd
->output_has_begun
4983 && ! _bfd_elf_compute_section_file_positions (abfd
, NULL
))
4986 i_shdrp
= elf_elfsections (abfd
);
4987 i_ehdrp
= elf_elfheader (abfd
);
4990 bfd_map_over_sections (abfd
, bed
->s
->write_relocs
, &failed
);
4994 _bfd_elf_assign_file_positions_for_relocs (abfd
);
4996 /* After writing the headers, we need to write the sections too... */
4997 num_sec
= elf_numsections (abfd
);
4998 for (count
= 1; count
< num_sec
; count
++)
5000 if (bed
->elf_backend_section_processing
)
5001 (*bed
->elf_backend_section_processing
) (abfd
, i_shdrp
[count
]);
5002 if (i_shdrp
[count
]->contents
)
5004 bfd_size_type amt
= i_shdrp
[count
]->sh_size
;
5006 if (bfd_seek (abfd
, i_shdrp
[count
]->sh_offset
, SEEK_SET
) != 0
5007 || bfd_bwrite (i_shdrp
[count
]->contents
, amt
, abfd
) != amt
)
5012 /* Write out the section header names. */
5013 if (elf_shstrtab (abfd
) != NULL
5014 && (bfd_seek (abfd
, elf_tdata (abfd
)->shstrtab_hdr
.sh_offset
, SEEK_SET
) != 0
5015 || !_bfd_elf_strtab_emit (abfd
, elf_shstrtab (abfd
))))
5018 if (bed
->elf_backend_final_write_processing
)
5019 (*bed
->elf_backend_final_write_processing
) (abfd
,
5020 elf_tdata (abfd
)->linker
);
5022 if (!bed
->s
->write_shdrs_and_ehdr (abfd
))
5025 /* This is last since write_shdrs_and_ehdr can touch i_shdrp[0]. */
5026 if (elf_tdata (abfd
)->after_write_object_contents
)
5027 return (*elf_tdata (abfd
)->after_write_object_contents
) (abfd
);
5033 _bfd_elf_write_corefile_contents (bfd
*abfd
)
5035 /* Hopefully this can be done just like an object file. */
5036 return _bfd_elf_write_object_contents (abfd
);
5039 /* Given a section, search the header to find them. */
5042 _bfd_elf_section_from_bfd_section (bfd
*abfd
, struct bfd_section
*asect
)
5044 const struct elf_backend_data
*bed
;
5045 unsigned int sec_index
;
5047 if (elf_section_data (asect
) != NULL
5048 && elf_section_data (asect
)->this_idx
!= 0)
5049 return elf_section_data (asect
)->this_idx
;
5051 if (bfd_is_abs_section (asect
))
5052 sec_index
= SHN_ABS
;
5053 else if (bfd_is_com_section (asect
))
5054 sec_index
= SHN_COMMON
;
5055 else if (bfd_is_und_section (asect
))
5056 sec_index
= SHN_UNDEF
;
5058 sec_index
= SHN_BAD
;
5060 bed
= get_elf_backend_data (abfd
);
5061 if (bed
->elf_backend_section_from_bfd_section
)
5063 int retval
= sec_index
;
5065 if ((*bed
->elf_backend_section_from_bfd_section
) (abfd
, asect
, &retval
))
5069 if (sec_index
== SHN_BAD
)
5070 bfd_set_error (bfd_error_nonrepresentable_section
);
5075 /* Given a BFD symbol, return the index in the ELF symbol table, or -1
5079 _bfd_elf_symbol_from_bfd_symbol (bfd
*abfd
, asymbol
**asym_ptr_ptr
)
5081 asymbol
*asym_ptr
= *asym_ptr_ptr
;
5083 flagword flags
= asym_ptr
->flags
;
5085 /* When gas creates relocations against local labels, it creates its
5086 own symbol for the section, but does put the symbol into the
5087 symbol chain, so udata is 0. When the linker is generating
5088 relocatable output, this section symbol may be for one of the
5089 input sections rather than the output section. */
5090 if (asym_ptr
->udata
.i
== 0
5091 && (flags
& BSF_SECTION_SYM
)
5092 && asym_ptr
->section
)
5097 sec
= asym_ptr
->section
;
5098 if (sec
->owner
!= abfd
&& sec
->output_section
!= NULL
)
5099 sec
= sec
->output_section
;
5100 if (sec
->owner
== abfd
5101 && (indx
= sec
->index
) < elf_num_section_syms (abfd
)
5102 && elf_section_syms (abfd
)[indx
] != NULL
)
5103 asym_ptr
->udata
.i
= elf_section_syms (abfd
)[indx
]->udata
.i
;
5106 idx
= asym_ptr
->udata
.i
;
5110 /* This case can occur when using --strip-symbol on a symbol
5111 which is used in a relocation entry. */
5112 (*_bfd_error_handler
)
5113 (_("%B: symbol `%s' required but not present"),
5114 abfd
, bfd_asymbol_name (asym_ptr
));
5115 bfd_set_error (bfd_error_no_symbols
);
5122 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8lx%s\n",
5123 (long) asym_ptr
, asym_ptr
->name
, idx
, flags
,
5124 elf_symbol_flags (flags
));
5132 /* Rewrite program header information. */
5135 rewrite_elf_program_header (bfd
*ibfd
, bfd
*obfd
)
5137 Elf_Internal_Ehdr
*iehdr
;
5138 struct elf_segment_map
*map
;
5139 struct elf_segment_map
*map_first
;
5140 struct elf_segment_map
**pointer_to_map
;
5141 Elf_Internal_Phdr
*segment
;
5144 unsigned int num_segments
;
5145 bfd_boolean phdr_included
= FALSE
;
5146 bfd_boolean p_paddr_valid
;
5147 bfd_vma maxpagesize
;
5148 struct elf_segment_map
*phdr_adjust_seg
= NULL
;
5149 unsigned int phdr_adjust_num
= 0;
5150 const struct elf_backend_data
*bed
;
5152 bed
= get_elf_backend_data (ibfd
);
5153 iehdr
= elf_elfheader (ibfd
);
5156 pointer_to_map
= &map_first
;
5158 num_segments
= elf_elfheader (ibfd
)->e_phnum
;
5159 maxpagesize
= get_elf_backend_data (obfd
)->maxpagesize
;
5161 /* Returns the end address of the segment + 1. */
5162 #define SEGMENT_END(segment, start) \
5163 (start + (segment->p_memsz > segment->p_filesz \
5164 ? segment->p_memsz : segment->p_filesz))
5166 #define SECTION_SIZE(section, segment) \
5167 (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL)) \
5168 != SEC_THREAD_LOCAL || segment->p_type == PT_TLS) \
5169 ? section->size : 0)
5171 /* Returns TRUE if the given section is contained within
5172 the given segment. VMA addresses are compared. */
5173 #define IS_CONTAINED_BY_VMA(section, segment) \
5174 (section->vma >= segment->p_vaddr \
5175 && (section->vma + SECTION_SIZE (section, segment) \
5176 <= (SEGMENT_END (segment, segment->p_vaddr))))
5178 /* Returns TRUE if the given section is contained within
5179 the given segment. LMA addresses are compared. */
5180 #define IS_CONTAINED_BY_LMA(section, segment, base) \
5181 (section->lma >= base \
5182 && (section->lma + SECTION_SIZE (section, segment) \
5183 <= SEGMENT_END (segment, base)))
5185 /* Handle PT_NOTE segment. */
5186 #define IS_NOTE(p, s) \
5187 (p->p_type == PT_NOTE \
5188 && elf_section_type (s) == SHT_NOTE \
5189 && (bfd_vma) s->filepos >= p->p_offset \
5190 && ((bfd_vma) s->filepos + s->size \
5191 <= p->p_offset + p->p_filesz))
5193 /* Special case: corefile "NOTE" section containing regs, prpsinfo
5195 #define IS_COREFILE_NOTE(p, s) \
5197 && bfd_get_format (ibfd) == bfd_core \
5201 /* The complicated case when p_vaddr is 0 is to handle the Solaris
5202 linker, which generates a PT_INTERP section with p_vaddr and
5203 p_memsz set to 0. */
5204 #define IS_SOLARIS_PT_INTERP(p, s) \
5206 && p->p_paddr == 0 \
5207 && p->p_memsz == 0 \
5208 && p->p_filesz > 0 \
5209 && (s->flags & SEC_HAS_CONTENTS) != 0 \
5211 && (bfd_vma) s->filepos >= p->p_offset \
5212 && ((bfd_vma) s->filepos + s->size \
5213 <= p->p_offset + p->p_filesz))
5215 /* Decide if the given section should be included in the given segment.
5216 A section will be included if:
5217 1. It is within the address space of the segment -- we use the LMA
5218 if that is set for the segment and the VMA otherwise,
5219 2. It is an allocated section or a NOTE section in a PT_NOTE
5221 3. There is an output section associated with it,
5222 4. The section has not already been allocated to a previous segment.
5223 5. PT_GNU_STACK segments do not include any sections.
5224 6. PT_TLS segment includes only SHF_TLS sections.
5225 7. SHF_TLS sections are only in PT_TLS or PT_LOAD segments.
5226 8. PT_DYNAMIC should not contain empty sections at the beginning
5227 (with the possible exception of .dynamic). */
5228 #define IS_SECTION_IN_INPUT_SEGMENT(section, segment, bed) \
5229 ((((segment->p_paddr \
5230 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr) \
5231 : IS_CONTAINED_BY_VMA (section, segment)) \
5232 && (section->flags & SEC_ALLOC) != 0) \
5233 || IS_NOTE (segment, section)) \
5234 && segment->p_type != PT_GNU_STACK \
5235 && (segment->p_type != PT_TLS \
5236 || (section->flags & SEC_THREAD_LOCAL)) \
5237 && (segment->p_type == PT_LOAD \
5238 || segment->p_type == PT_TLS \
5239 || (section->flags & SEC_THREAD_LOCAL) == 0) \
5240 && (segment->p_type != PT_DYNAMIC \
5241 || SECTION_SIZE (section, segment) > 0 \
5242 || (segment->p_paddr \
5243 ? segment->p_paddr != section->lma \
5244 : segment->p_vaddr != section->vma) \
5245 || (strcmp (bfd_get_section_name (ibfd, section), ".dynamic") \
5247 && !section->segment_mark)
5249 /* If the output section of a section in the input segment is NULL,
5250 it is removed from the corresponding output segment. */
5251 #define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed) \
5252 (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed) \
5253 && section->output_section != NULL)
5255 /* Returns TRUE iff seg1 starts after the end of seg2. */
5256 #define SEGMENT_AFTER_SEGMENT(seg1, seg2, field) \
5257 (seg1->field >= SEGMENT_END (seg2, seg2->field))
5259 /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both
5260 their VMA address ranges and their LMA address ranges overlap.
5261 It is possible to have overlapping VMA ranges without overlapping LMA
5262 ranges. RedBoot images for example can have both .data and .bss mapped
5263 to the same VMA range, but with the .data section mapped to a different
5265 #define SEGMENT_OVERLAPS(seg1, seg2) \
5266 ( !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr) \
5267 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr)) \
5268 && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr) \
5269 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr)))
5271 /* Initialise the segment mark field. */
5272 for (section
= ibfd
->sections
; section
!= NULL
; section
= section
->next
)
5273 section
->segment_mark
= FALSE
;
5275 /* The Solaris linker creates program headers in which all the
5276 p_paddr fields are zero. When we try to objcopy or strip such a
5277 file, we get confused. Check for this case, and if we find it
5278 don't set the p_paddr_valid fields. */
5279 p_paddr_valid
= FALSE
;
5280 for (i
= 0, segment
= elf_tdata (ibfd
)->phdr
;
5283 if (segment
->p_paddr
!= 0)
5285 p_paddr_valid
= TRUE
;
5289 /* Scan through the segments specified in the program header
5290 of the input BFD. For this first scan we look for overlaps
5291 in the loadable segments. These can be created by weird
5292 parameters to objcopy. Also, fix some solaris weirdness. */
5293 for (i
= 0, segment
= elf_tdata (ibfd
)->phdr
;
5298 Elf_Internal_Phdr
*segment2
;
5300 if (segment
->p_type
== PT_INTERP
)
5301 for (section
= ibfd
->sections
; section
; section
= section
->next
)
5302 if (IS_SOLARIS_PT_INTERP (segment
, section
))
5304 /* Mininal change so that the normal section to segment
5305 assignment code will work. */
5306 segment
->p_vaddr
= section
->vma
;
5310 if (segment
->p_type
!= PT_LOAD
)
5312 /* Remove PT_GNU_RELRO segment. */
5313 if (segment
->p_type
== PT_GNU_RELRO
)
5314 segment
->p_type
= PT_NULL
;
5318 /* Determine if this segment overlaps any previous segments. */
5319 for (j
= 0, segment2
= elf_tdata (ibfd
)->phdr
; j
< i
; j
++, segment2
++)
5321 bfd_signed_vma extra_length
;
5323 if (segment2
->p_type
!= PT_LOAD
5324 || !SEGMENT_OVERLAPS (segment
, segment2
))
5327 /* Merge the two segments together. */
5328 if (segment2
->p_vaddr
< segment
->p_vaddr
)
5330 /* Extend SEGMENT2 to include SEGMENT and then delete
5332 extra_length
= (SEGMENT_END (segment
, segment
->p_vaddr
)
5333 - SEGMENT_END (segment2
, segment2
->p_vaddr
));
5335 if (extra_length
> 0)
5337 segment2
->p_memsz
+= extra_length
;
5338 segment2
->p_filesz
+= extra_length
;
5341 segment
->p_type
= PT_NULL
;
5343 /* Since we have deleted P we must restart the outer loop. */
5345 segment
= elf_tdata (ibfd
)->phdr
;
5350 /* Extend SEGMENT to include SEGMENT2 and then delete
5352 extra_length
= (SEGMENT_END (segment2
, segment2
->p_vaddr
)
5353 - SEGMENT_END (segment
, segment
->p_vaddr
));
5355 if (extra_length
> 0)
5357 segment
->p_memsz
+= extra_length
;
5358 segment
->p_filesz
+= extra_length
;
5361 segment2
->p_type
= PT_NULL
;
5366 /* The second scan attempts to assign sections to segments. */
5367 for (i
= 0, segment
= elf_tdata (ibfd
)->phdr
;
5371 unsigned int section_count
;
5372 asection
**sections
;
5373 asection
*output_section
;
5375 bfd_vma matching_lma
;
5376 bfd_vma suggested_lma
;
5379 asection
*first_section
;
5380 bfd_boolean first_matching_lma
;
5381 bfd_boolean first_suggested_lma
;
5383 if (segment
->p_type
== PT_NULL
)
5386 first_section
= NULL
;
5387 /* Compute how many sections might be placed into this segment. */
5388 for (section
= ibfd
->sections
, section_count
= 0;
5390 section
= section
->next
)
5392 /* Find the first section in the input segment, which may be
5393 removed from the corresponding output segment. */
5394 if (IS_SECTION_IN_INPUT_SEGMENT (section
, segment
, bed
))
5396 if (first_section
== NULL
)
5397 first_section
= section
;
5398 if (section
->output_section
!= NULL
)
5403 /* Allocate a segment map big enough to contain
5404 all of the sections we have selected. */
5405 amt
= sizeof (struct elf_segment_map
);
5406 amt
+= ((bfd_size_type
) section_count
- 1) * sizeof (asection
*);
5407 map
= (struct elf_segment_map
*) bfd_zalloc (obfd
, amt
);
5411 /* Initialise the fields of the segment map. Default to
5412 using the physical address of the segment in the input BFD. */
5414 map
->p_type
= segment
->p_type
;
5415 map
->p_flags
= segment
->p_flags
;
5416 map
->p_flags_valid
= 1;
5418 /* If the first section in the input segment is removed, there is
5419 no need to preserve segment physical address in the corresponding
5421 if (!first_section
|| first_section
->output_section
!= NULL
)
5423 map
->p_paddr
= segment
->p_paddr
;
5424 map
->p_paddr_valid
= p_paddr_valid
;
5427 /* Determine if this segment contains the ELF file header
5428 and if it contains the program headers themselves. */
5429 map
->includes_filehdr
= (segment
->p_offset
== 0
5430 && segment
->p_filesz
>= iehdr
->e_ehsize
);
5431 map
->includes_phdrs
= 0;
5433 if (!phdr_included
|| segment
->p_type
!= PT_LOAD
)
5435 map
->includes_phdrs
=
5436 (segment
->p_offset
<= (bfd_vma
) iehdr
->e_phoff
5437 && (segment
->p_offset
+ segment
->p_filesz
5438 >= ((bfd_vma
) iehdr
->e_phoff
5439 + iehdr
->e_phnum
* iehdr
->e_phentsize
)));
5441 if (segment
->p_type
== PT_LOAD
&& map
->includes_phdrs
)
5442 phdr_included
= TRUE
;
5445 if (section_count
== 0)
5447 /* Special segments, such as the PT_PHDR segment, may contain
5448 no sections, but ordinary, loadable segments should contain
5449 something. They are allowed by the ELF spec however, so only
5450 a warning is produced. */
5451 if (segment
->p_type
== PT_LOAD
)
5452 (*_bfd_error_handler
) (_("%B: warning: Empty loadable segment"
5453 " detected, is this intentional ?\n"),
5457 *pointer_to_map
= map
;
5458 pointer_to_map
= &map
->next
;
5463 /* Now scan the sections in the input BFD again and attempt
5464 to add their corresponding output sections to the segment map.
5465 The problem here is how to handle an output section which has
5466 been moved (ie had its LMA changed). There are four possibilities:
5468 1. None of the sections have been moved.
5469 In this case we can continue to use the segment LMA from the
5472 2. All of the sections have been moved by the same amount.
5473 In this case we can change the segment's LMA to match the LMA
5474 of the first section.
5476 3. Some of the sections have been moved, others have not.
5477 In this case those sections which have not been moved can be
5478 placed in the current segment which will have to have its size,
5479 and possibly its LMA changed, and a new segment or segments will
5480 have to be created to contain the other sections.
5482 4. The sections have been moved, but not by the same amount.
5483 In this case we can change the segment's LMA to match the LMA
5484 of the first section and we will have to create a new segment
5485 or segments to contain the other sections.
5487 In order to save time, we allocate an array to hold the section
5488 pointers that we are interested in. As these sections get assigned
5489 to a segment, they are removed from this array. */
5491 sections
= (asection
**) bfd_malloc2 (section_count
, sizeof (asection
*));
5492 if (sections
== NULL
)
5495 /* Step One: Scan for segment vs section LMA conflicts.
5496 Also add the sections to the section array allocated above.
5497 Also add the sections to the current segment. In the common
5498 case, where the sections have not been moved, this means that
5499 we have completely filled the segment, and there is nothing
5504 first_matching_lma
= TRUE
;
5505 first_suggested_lma
= TRUE
;
5507 for (section
= ibfd
->sections
;
5509 section
= section
->next
)
5510 if (section
== first_section
)
5513 for (j
= 0; section
!= NULL
; section
= section
->next
)
5515 if (INCLUDE_SECTION_IN_SEGMENT (section
, segment
, bed
))
5517 output_section
= section
->output_section
;
5519 sections
[j
++] = section
;
5521 /* The Solaris native linker always sets p_paddr to 0.
5522 We try to catch that case here, and set it to the
5523 correct value. Note - some backends require that
5524 p_paddr be left as zero. */
5526 && segment
->p_vaddr
!= 0
5527 && !bed
->want_p_paddr_set_to_zero
5529 && output_section
->lma
!= 0
5530 && output_section
->vma
== (segment
->p_vaddr
5531 + (map
->includes_filehdr
5534 + (map
->includes_phdrs
5536 * iehdr
->e_phentsize
)
5538 map
->p_paddr
= segment
->p_vaddr
;
5540 /* Match up the physical address of the segment with the
5541 LMA address of the output section. */
5542 if (IS_CONTAINED_BY_LMA (output_section
, segment
, map
->p_paddr
)
5543 || IS_COREFILE_NOTE (segment
, section
)
5544 || (bed
->want_p_paddr_set_to_zero
5545 && IS_CONTAINED_BY_VMA (output_section
, segment
)))
5547 if (first_matching_lma
|| output_section
->lma
< matching_lma
)
5549 matching_lma
= output_section
->lma
;
5550 first_matching_lma
= FALSE
;
5553 /* We assume that if the section fits within the segment
5554 then it does not overlap any other section within that
5556 map
->sections
[isec
++] = output_section
;
5558 else if (first_suggested_lma
)
5560 suggested_lma
= output_section
->lma
;
5561 first_suggested_lma
= FALSE
;
5564 if (j
== section_count
)
5569 BFD_ASSERT (j
== section_count
);
5571 /* Step Two: Adjust the physical address of the current segment,
5573 if (isec
== section_count
)
5575 /* All of the sections fitted within the segment as currently
5576 specified. This is the default case. Add the segment to
5577 the list of built segments and carry on to process the next
5578 program header in the input BFD. */
5579 map
->count
= section_count
;
5580 *pointer_to_map
= map
;
5581 pointer_to_map
= &map
->next
;
5584 && !bed
->want_p_paddr_set_to_zero
5585 && matching_lma
!= map
->p_paddr
5586 && !map
->includes_filehdr
5587 && !map
->includes_phdrs
)
5588 /* There is some padding before the first section in the
5589 segment. So, we must account for that in the output
5591 map
->p_vaddr_offset
= matching_lma
- map
->p_paddr
;
5598 if (!first_matching_lma
)
5600 /* At least one section fits inside the current segment.
5601 Keep it, but modify its physical address to match the
5602 LMA of the first section that fitted. */
5603 map
->p_paddr
= matching_lma
;
5607 /* None of the sections fitted inside the current segment.
5608 Change the current segment's physical address to match
5609 the LMA of the first section. */
5610 map
->p_paddr
= suggested_lma
;
5613 /* Offset the segment physical address from the lma
5614 to allow for space taken up by elf headers. */
5615 if (map
->includes_filehdr
)
5617 if (map
->p_paddr
>= iehdr
->e_ehsize
)
5618 map
->p_paddr
-= iehdr
->e_ehsize
;
5621 map
->includes_filehdr
= FALSE
;
5622 map
->includes_phdrs
= FALSE
;
5626 if (map
->includes_phdrs
)
5628 if (map
->p_paddr
>= iehdr
->e_phnum
* iehdr
->e_phentsize
)
5630 map
->p_paddr
-= iehdr
->e_phnum
* iehdr
->e_phentsize
;
5632 /* iehdr->e_phnum is just an estimate of the number
5633 of program headers that we will need. Make a note
5634 here of the number we used and the segment we chose
5635 to hold these headers, so that we can adjust the
5636 offset when we know the correct value. */
5637 phdr_adjust_num
= iehdr
->e_phnum
;
5638 phdr_adjust_seg
= map
;
5641 map
->includes_phdrs
= FALSE
;
5645 /* Step Three: Loop over the sections again, this time assigning
5646 those that fit to the current segment and removing them from the
5647 sections array; but making sure not to leave large gaps. Once all
5648 possible sections have been assigned to the current segment it is
5649 added to the list of built segments and if sections still remain
5650 to be assigned, a new segment is constructed before repeating
5657 first_suggested_lma
= TRUE
;
5659 /* Fill the current segment with sections that fit. */
5660 for (j
= 0; j
< section_count
; j
++)
5662 section
= sections
[j
];
5664 if (section
== NULL
)
5667 output_section
= section
->output_section
;
5669 BFD_ASSERT (output_section
!= NULL
);
5671 if (IS_CONTAINED_BY_LMA (output_section
, segment
, map
->p_paddr
)
5672 || IS_COREFILE_NOTE (segment
, section
))
5674 if (map
->count
== 0)
5676 /* If the first section in a segment does not start at
5677 the beginning of the segment, then something is
5679 if (output_section
->lma
5681 + (map
->includes_filehdr
? iehdr
->e_ehsize
: 0)
5682 + (map
->includes_phdrs
5683 ? iehdr
->e_phnum
* iehdr
->e_phentsize
5691 prev_sec
= map
->sections
[map
->count
- 1];
5693 /* If the gap between the end of the previous section
5694 and the start of this section is more than
5695 maxpagesize then we need to start a new segment. */
5696 if ((BFD_ALIGN (prev_sec
->lma
+ prev_sec
->size
,
5698 < BFD_ALIGN (output_section
->lma
, maxpagesize
))
5699 || (prev_sec
->lma
+ prev_sec
->size
5700 > output_section
->lma
))
5702 if (first_suggested_lma
)
5704 suggested_lma
= output_section
->lma
;
5705 first_suggested_lma
= FALSE
;
5712 map
->sections
[map
->count
++] = output_section
;
5715 section
->segment_mark
= TRUE
;
5717 else if (first_suggested_lma
)
5719 suggested_lma
= output_section
->lma
;
5720 first_suggested_lma
= FALSE
;
5724 BFD_ASSERT (map
->count
> 0);
5726 /* Add the current segment to the list of built segments. */
5727 *pointer_to_map
= map
;
5728 pointer_to_map
= &map
->next
;
5730 if (isec
< section_count
)
5732 /* We still have not allocated all of the sections to
5733 segments. Create a new segment here, initialise it
5734 and carry on looping. */
5735 amt
= sizeof (struct elf_segment_map
);
5736 amt
+= ((bfd_size_type
) section_count
- 1) * sizeof (asection
*);
5737 map
= (struct elf_segment_map
*) bfd_alloc (obfd
, amt
);
5744 /* Initialise the fields of the segment map. Set the physical
5745 physical address to the LMA of the first section that has
5746 not yet been assigned. */
5748 map
->p_type
= segment
->p_type
;
5749 map
->p_flags
= segment
->p_flags
;
5750 map
->p_flags_valid
= 1;
5751 map
->p_paddr
= suggested_lma
;
5752 map
->p_paddr_valid
= p_paddr_valid
;
5753 map
->includes_filehdr
= 0;
5754 map
->includes_phdrs
= 0;
5757 while (isec
< section_count
);
5762 elf_tdata (obfd
)->segment_map
= map_first
;
5764 /* If we had to estimate the number of program headers that were
5765 going to be needed, then check our estimate now and adjust
5766 the offset if necessary. */
5767 if (phdr_adjust_seg
!= NULL
)
5771 for (count
= 0, map
= map_first
; map
!= NULL
; map
= map
->next
)
5774 if (count
> phdr_adjust_num
)
5775 phdr_adjust_seg
->p_paddr
5776 -= (count
- phdr_adjust_num
) * iehdr
->e_phentsize
;
5781 #undef IS_CONTAINED_BY_VMA
5782 #undef IS_CONTAINED_BY_LMA
5784 #undef IS_COREFILE_NOTE
5785 #undef IS_SOLARIS_PT_INTERP
5786 #undef IS_SECTION_IN_INPUT_SEGMENT
5787 #undef INCLUDE_SECTION_IN_SEGMENT
5788 #undef SEGMENT_AFTER_SEGMENT
5789 #undef SEGMENT_OVERLAPS
5793 /* Copy ELF program header information. */
5796 copy_elf_program_header (bfd
*ibfd
, bfd
*obfd
)
5798 Elf_Internal_Ehdr
*iehdr
;
5799 struct elf_segment_map
*map
;
5800 struct elf_segment_map
*map_first
;
5801 struct elf_segment_map
**pointer_to_map
;
5802 Elf_Internal_Phdr
*segment
;
5804 unsigned int num_segments
;
5805 bfd_boolean phdr_included
= FALSE
;
5806 bfd_boolean p_paddr_valid
;
5808 iehdr
= elf_elfheader (ibfd
);
5811 pointer_to_map
= &map_first
;
5813 /* If all the segment p_paddr fields are zero, don't set
5814 map->p_paddr_valid. */
5815 p_paddr_valid
= FALSE
;
5816 num_segments
= elf_elfheader (ibfd
)->e_phnum
;
5817 for (i
= 0, segment
= elf_tdata (ibfd
)->phdr
;
5820 if (segment
->p_paddr
!= 0)
5822 p_paddr_valid
= TRUE
;
5826 for (i
= 0, segment
= elf_tdata (ibfd
)->phdr
;
5831 unsigned int section_count
;
5833 Elf_Internal_Shdr
*this_hdr
;
5834 asection
*first_section
= NULL
;
5835 asection
*lowest_section
= NULL
;
5837 /* Compute how many sections are in this segment. */
5838 for (section
= ibfd
->sections
, section_count
= 0;
5840 section
= section
->next
)
5842 this_hdr
= &(elf_section_data(section
)->this_hdr
);
5843 if (ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr
, segment
))
5846 first_section
= lowest_section
= section
;
5847 if (section
->lma
< lowest_section
->lma
)
5848 lowest_section
= section
;
5853 /* Allocate a segment map big enough to contain
5854 all of the sections we have selected. */
5855 amt
= sizeof (struct elf_segment_map
);
5856 if (section_count
!= 0)
5857 amt
+= ((bfd_size_type
) section_count
- 1) * sizeof (asection
*);
5858 map
= (struct elf_segment_map
*) bfd_zalloc (obfd
, amt
);
5862 /* Initialize the fields of the output segment map with the
5865 map
->p_type
= segment
->p_type
;
5866 map
->p_flags
= segment
->p_flags
;
5867 map
->p_flags_valid
= 1;
5868 map
->p_paddr
= segment
->p_paddr
;
5869 map
->p_paddr_valid
= p_paddr_valid
;
5870 map
->p_align
= segment
->p_align
;
5871 map
->p_align_valid
= 1;
5872 map
->p_vaddr_offset
= 0;
5874 if (map
->p_type
== PT_GNU_RELRO
)
5876 /* The PT_GNU_RELRO segment may contain the first a few
5877 bytes in the .got.plt section even if the whole .got.plt
5878 section isn't in the PT_GNU_RELRO segment. We won't
5879 change the size of the PT_GNU_RELRO segment. */
5880 map
->p_size
= segment
->p_memsz
;
5881 map
->p_size_valid
= 1;
5884 /* Determine if this segment contains the ELF file header
5885 and if it contains the program headers themselves. */
5886 map
->includes_filehdr
= (segment
->p_offset
== 0
5887 && segment
->p_filesz
>= iehdr
->e_ehsize
);
5889 map
->includes_phdrs
= 0;
5890 if (! phdr_included
|| segment
->p_type
!= PT_LOAD
)
5892 map
->includes_phdrs
=
5893 (segment
->p_offset
<= (bfd_vma
) iehdr
->e_phoff
5894 && (segment
->p_offset
+ segment
->p_filesz
5895 >= ((bfd_vma
) iehdr
->e_phoff
5896 + iehdr
->e_phnum
* iehdr
->e_phentsize
)));
5898 if (segment
->p_type
== PT_LOAD
&& map
->includes_phdrs
)
5899 phdr_included
= TRUE
;
5902 if (map
->includes_filehdr
&& first_section
)
5903 /* We need to keep the space used by the headers fixed. */
5904 map
->header_size
= first_section
->vma
- segment
->p_vaddr
;
5906 if (!map
->includes_phdrs
5907 && !map
->includes_filehdr
5908 && map
->p_paddr_valid
)
5909 /* There is some other padding before the first section. */
5910 map
->p_vaddr_offset
= ((lowest_section
? lowest_section
->lma
: 0)
5911 - segment
->p_paddr
);
5913 if (section_count
!= 0)
5915 unsigned int isec
= 0;
5917 for (section
= first_section
;
5919 section
= section
->next
)
5921 this_hdr
= &(elf_section_data(section
)->this_hdr
);
5922 if (ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr
, segment
))
5924 map
->sections
[isec
++] = section
->output_section
;
5925 if (isec
== section_count
)
5931 map
->count
= section_count
;
5932 *pointer_to_map
= map
;
5933 pointer_to_map
= &map
->next
;
5936 elf_tdata (obfd
)->segment_map
= map_first
;
5940 /* Copy private BFD data. This copies or rewrites ELF program header
5944 copy_private_bfd_data (bfd
*ibfd
, bfd
*obfd
)
5946 if (bfd_get_flavour (ibfd
) != bfd_target_elf_flavour
5947 || bfd_get_flavour (obfd
) != bfd_target_elf_flavour
)
5950 if (elf_tdata (ibfd
)->phdr
== NULL
)
5953 if (ibfd
->xvec
== obfd
->xvec
)
5955 /* Check to see if any sections in the input BFD
5956 covered by ELF program header have changed. */
5957 Elf_Internal_Phdr
*segment
;
5958 asection
*section
, *osec
;
5959 unsigned int i
, num_segments
;
5960 Elf_Internal_Shdr
*this_hdr
;
5961 const struct elf_backend_data
*bed
;
5963 bed
= get_elf_backend_data (ibfd
);
5965 /* Regenerate the segment map if p_paddr is set to 0. */
5966 if (bed
->want_p_paddr_set_to_zero
)
5969 /* Initialize the segment mark field. */
5970 for (section
= obfd
->sections
; section
!= NULL
;
5971 section
= section
->next
)
5972 section
->segment_mark
= FALSE
;
5974 num_segments
= elf_elfheader (ibfd
)->e_phnum
;
5975 for (i
= 0, segment
= elf_tdata (ibfd
)->phdr
;
5979 /* PR binutils/3535. The Solaris linker always sets the p_paddr
5980 and p_memsz fields of special segments (DYNAMIC, INTERP) to 0
5981 which severly confuses things, so always regenerate the segment
5982 map in this case. */
5983 if (segment
->p_paddr
== 0
5984 && segment
->p_memsz
== 0
5985 && (segment
->p_type
== PT_INTERP
|| segment
->p_type
== PT_DYNAMIC
))
5988 for (section
= ibfd
->sections
;
5989 section
!= NULL
; section
= section
->next
)
5991 /* We mark the output section so that we know it comes
5992 from the input BFD. */
5993 osec
= section
->output_section
;
5995 osec
->segment_mark
= TRUE
;
5997 /* Check if this section is covered by the segment. */
5998 this_hdr
= &(elf_section_data(section
)->this_hdr
);
5999 if (ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr
, segment
))
6001 /* FIXME: Check if its output section is changed or
6002 removed. What else do we need to check? */
6004 || section
->flags
!= osec
->flags
6005 || section
->lma
!= osec
->lma
6006 || section
->vma
!= osec
->vma
6007 || section
->size
!= osec
->size
6008 || section
->rawsize
!= osec
->rawsize
6009 || section
->alignment_power
!= osec
->alignment_power
)
6015 /* Check to see if any output section do not come from the
6017 for (section
= obfd
->sections
; section
!= NULL
;
6018 section
= section
->next
)
6020 if (section
->segment_mark
== FALSE
)
6023 section
->segment_mark
= FALSE
;
6026 return copy_elf_program_header (ibfd
, obfd
);
6030 return rewrite_elf_program_header (ibfd
, obfd
);
6033 /* Initialize private output section information from input section. */
6036 _bfd_elf_init_private_section_data (bfd
*ibfd
,
6040 struct bfd_link_info
*link_info
)
6043 Elf_Internal_Shdr
*ihdr
, *ohdr
;
6044 bfd_boolean need_group
= link_info
== NULL
|| link_info
->relocatable
;
6046 if (ibfd
->xvec
->flavour
!= bfd_target_elf_flavour
6047 || obfd
->xvec
->flavour
!= bfd_target_elf_flavour
)
6050 /* Don't copy the output ELF section type from input if the
6051 output BFD section flags have been set to something different.
6052 elf_fake_sections will set ELF section type based on BFD
6054 if (elf_section_type (osec
) == SHT_NULL
6055 && (osec
->flags
== isec
->flags
|| !osec
->flags
))
6056 elf_section_type (osec
) = elf_section_type (isec
);
6058 /* FIXME: Is this correct for all OS/PROC specific flags? */
6059 elf_section_flags (osec
) |= (elf_section_flags (isec
)
6060 & (SHF_MASKOS
| SHF_MASKPROC
));
6062 /* Set things up for objcopy and relocatable link. The output
6063 SHT_GROUP section will have its elf_next_in_group pointing back
6064 to the input group members. Ignore linker created group section.
6065 See elfNN_ia64_object_p in elfxx-ia64.c. */
6068 if (elf_sec_group (isec
) == NULL
6069 || (elf_sec_group (isec
)->flags
& SEC_LINKER_CREATED
) == 0)
6071 if (elf_section_flags (isec
) & SHF_GROUP
)
6072 elf_section_flags (osec
) |= SHF_GROUP
;
6073 elf_next_in_group (osec
) = elf_next_in_group (isec
);
6074 elf_section_data (osec
)->group
= elf_section_data (isec
)->group
;
6078 ihdr
= &elf_section_data (isec
)->this_hdr
;
6080 /* We need to handle elf_linked_to_section for SHF_LINK_ORDER. We
6081 don't use the output section of the linked-to section since it
6082 may be NULL at this point. */
6083 if ((ihdr
->sh_flags
& SHF_LINK_ORDER
) != 0)
6085 ohdr
= &elf_section_data (osec
)->this_hdr
;
6086 ohdr
->sh_flags
|= SHF_LINK_ORDER
;
6087 elf_linked_to_section (osec
) = elf_linked_to_section (isec
);
6090 osec
->use_rela_p
= isec
->use_rela_p
;
6095 /* Copy private section information. This copies over the entsize
6096 field, and sometimes the info field. */
6099 _bfd_elf_copy_private_section_data (bfd
*ibfd
,
6104 Elf_Internal_Shdr
*ihdr
, *ohdr
;
6106 if (ibfd
->xvec
->flavour
!= bfd_target_elf_flavour
6107 || obfd
->xvec
->flavour
!= bfd_target_elf_flavour
)
6110 ihdr
= &elf_section_data (isec
)->this_hdr
;
6111 ohdr
= &elf_section_data (osec
)->this_hdr
;
6113 ohdr
->sh_entsize
= ihdr
->sh_entsize
;
6115 if (ihdr
->sh_type
== SHT_SYMTAB
6116 || ihdr
->sh_type
== SHT_DYNSYM
6117 || ihdr
->sh_type
== SHT_GNU_verneed
6118 || ihdr
->sh_type
== SHT_GNU_verdef
)
6119 ohdr
->sh_info
= ihdr
->sh_info
;
6121 return _bfd_elf_init_private_section_data (ibfd
, isec
, obfd
, osec
,
6125 /* Copy private header information. */
6128 _bfd_elf_copy_private_header_data (bfd
*ibfd
, bfd
*obfd
)
6132 if (bfd_get_flavour (ibfd
) != bfd_target_elf_flavour
6133 || bfd_get_flavour (obfd
) != bfd_target_elf_flavour
)
6136 /* Copy over private BFD data if it has not already been copied.
6137 This must be done here, rather than in the copy_private_bfd_data
6138 entry point, because the latter is called after the section
6139 contents have been set, which means that the program headers have
6140 already been worked out. */
6141 if (elf_tdata (obfd
)->segment_map
== NULL
&& elf_tdata (ibfd
)->phdr
!= NULL
)
6143 if (! copy_private_bfd_data (ibfd
, obfd
))
6147 /* _bfd_elf_copy_private_section_data copied over the SHF_GROUP flag
6148 but this might be wrong if we deleted the group section. */
6149 for (isec
= ibfd
->sections
; isec
!= NULL
; isec
= isec
->next
)
6150 if (elf_section_type (isec
) == SHT_GROUP
6151 && isec
->output_section
== NULL
)
6153 asection
*first
= elf_next_in_group (isec
);
6154 asection
*s
= first
;
6157 if (s
->output_section
!= NULL
)
6159 elf_section_flags (s
->output_section
) &= ~SHF_GROUP
;
6160 elf_group_name (s
->output_section
) = NULL
;
6162 s
= elf_next_in_group (s
);
6171 /* Copy private symbol information. If this symbol is in a section
6172 which we did not map into a BFD section, try to map the section
6173 index correctly. We use special macro definitions for the mapped
6174 section indices; these definitions are interpreted by the
6175 swap_out_syms function. */
6177 #define MAP_ONESYMTAB (SHN_HIOS + 1)
6178 #define MAP_DYNSYMTAB (SHN_HIOS + 2)
6179 #define MAP_STRTAB (SHN_HIOS + 3)
6180 #define MAP_SHSTRTAB (SHN_HIOS + 4)
6181 #define MAP_SYM_SHNDX (SHN_HIOS + 5)
6184 _bfd_elf_copy_private_symbol_data (bfd
*ibfd
,
6189 elf_symbol_type
*isym
, *osym
;
6191 if (bfd_get_flavour (ibfd
) != bfd_target_elf_flavour
6192 || bfd_get_flavour (obfd
) != bfd_target_elf_flavour
)
6195 isym
= elf_symbol_from (ibfd
, isymarg
);
6196 osym
= elf_symbol_from (obfd
, osymarg
);
6199 && isym
->internal_elf_sym
.st_shndx
!= 0
6201 && bfd_is_abs_section (isym
->symbol
.section
))
6205 shndx
= isym
->internal_elf_sym
.st_shndx
;
6206 if (shndx
== elf_onesymtab (ibfd
))
6207 shndx
= MAP_ONESYMTAB
;
6208 else if (shndx
== elf_dynsymtab (ibfd
))
6209 shndx
= MAP_DYNSYMTAB
;
6210 else if (shndx
== elf_tdata (ibfd
)->strtab_section
)
6212 else if (shndx
== elf_tdata (ibfd
)->shstrtab_section
)
6213 shndx
= MAP_SHSTRTAB
;
6214 else if (shndx
== elf_tdata (ibfd
)->symtab_shndx_section
)
6215 shndx
= MAP_SYM_SHNDX
;
6216 osym
->internal_elf_sym
.st_shndx
= shndx
;
6222 /* Swap out the symbols. */
6225 swap_out_syms (bfd
*abfd
,
6226 struct bfd_strtab_hash
**sttp
,
6229 const struct elf_backend_data
*bed
;
6232 struct bfd_strtab_hash
*stt
;
6233 Elf_Internal_Shdr
*symtab_hdr
;
6234 Elf_Internal_Shdr
*symtab_shndx_hdr
;
6235 Elf_Internal_Shdr
*symstrtab_hdr
;
6236 bfd_byte
*outbound_syms
;
6237 bfd_byte
*outbound_shndx
;
6240 bfd_boolean name_local_sections
;
6242 if (!elf_map_symbols (abfd
))
6245 /* Dump out the symtabs. */
6246 stt
= _bfd_elf_stringtab_init ();
6250 bed
= get_elf_backend_data (abfd
);
6251 symcount
= bfd_get_symcount (abfd
);
6252 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
6253 symtab_hdr
->sh_type
= SHT_SYMTAB
;
6254 symtab_hdr
->sh_entsize
= bed
->s
->sizeof_sym
;
6255 symtab_hdr
->sh_size
= symtab_hdr
->sh_entsize
* (symcount
+ 1);
6256 symtab_hdr
->sh_info
= elf_num_locals (abfd
) + 1;
6257 symtab_hdr
->sh_addralign
= (bfd_vma
) 1 << bed
->s
->log_file_align
;
6259 symstrtab_hdr
= &elf_tdata (abfd
)->strtab_hdr
;
6260 symstrtab_hdr
->sh_type
= SHT_STRTAB
;
6262 outbound_syms
= (bfd_byte
*) bfd_alloc2 (abfd
, 1 + symcount
,
6263 bed
->s
->sizeof_sym
);
6264 if (outbound_syms
== NULL
)
6266 _bfd_stringtab_free (stt
);
6269 symtab_hdr
->contents
= outbound_syms
;
6271 outbound_shndx
= NULL
;
6272 symtab_shndx_hdr
= &elf_tdata (abfd
)->symtab_shndx_hdr
;
6273 if (symtab_shndx_hdr
->sh_name
!= 0)
6275 amt
= (bfd_size_type
) (1 + symcount
) * sizeof (Elf_External_Sym_Shndx
);
6276 outbound_shndx
= (bfd_byte
*)
6277 bfd_zalloc2 (abfd
, 1 + symcount
, sizeof (Elf_External_Sym_Shndx
));
6278 if (outbound_shndx
== NULL
)
6280 _bfd_stringtab_free (stt
);
6284 symtab_shndx_hdr
->contents
= outbound_shndx
;
6285 symtab_shndx_hdr
->sh_type
= SHT_SYMTAB_SHNDX
;
6286 symtab_shndx_hdr
->sh_size
= amt
;
6287 symtab_shndx_hdr
->sh_addralign
= sizeof (Elf_External_Sym_Shndx
);
6288 symtab_shndx_hdr
->sh_entsize
= sizeof (Elf_External_Sym_Shndx
);
6291 /* Now generate the data (for "contents"). */
6293 /* Fill in zeroth symbol and swap it out. */
6294 Elf_Internal_Sym sym
;
6300 sym
.st_shndx
= SHN_UNDEF
;
6301 bed
->s
->swap_symbol_out (abfd
, &sym
, outbound_syms
, outbound_shndx
);
6302 outbound_syms
+= bed
->s
->sizeof_sym
;
6303 if (outbound_shndx
!= NULL
)
6304 outbound_shndx
+= sizeof (Elf_External_Sym_Shndx
);
6308 = (bed
->elf_backend_name_local_section_symbols
6309 && bed
->elf_backend_name_local_section_symbols (abfd
));
6311 syms
= bfd_get_outsymbols (abfd
);
6312 for (idx
= 0; idx
< symcount
; idx
++)
6314 Elf_Internal_Sym sym
;
6315 bfd_vma value
= syms
[idx
]->value
;
6316 elf_symbol_type
*type_ptr
;
6317 flagword flags
= syms
[idx
]->flags
;
6320 if (!name_local_sections
6321 && (flags
& (BSF_SECTION_SYM
| BSF_GLOBAL
)) == BSF_SECTION_SYM
)
6323 /* Local section symbols have no name. */
6328 sym
.st_name
= (unsigned long) _bfd_stringtab_add (stt
,
6331 if (sym
.st_name
== (unsigned long) -1)
6333 _bfd_stringtab_free (stt
);
6338 type_ptr
= elf_symbol_from (abfd
, syms
[idx
]);
6340 if ((flags
& BSF_SECTION_SYM
) == 0
6341 && bfd_is_com_section (syms
[idx
]->section
))
6343 /* ELF common symbols put the alignment into the `value' field,
6344 and the size into the `size' field. This is backwards from
6345 how BFD handles it, so reverse it here. */
6346 sym
.st_size
= value
;
6347 if (type_ptr
== NULL
6348 || type_ptr
->internal_elf_sym
.st_value
== 0)
6349 sym
.st_value
= value
>= 16 ? 16 : (1 << bfd_log2 (value
));
6351 sym
.st_value
= type_ptr
->internal_elf_sym
.st_value
;
6352 sym
.st_shndx
= _bfd_elf_section_from_bfd_section
6353 (abfd
, syms
[idx
]->section
);
6357 asection
*sec
= syms
[idx
]->section
;
6360 if (sec
->output_section
)
6362 value
+= sec
->output_offset
;
6363 sec
= sec
->output_section
;
6366 /* Don't add in the section vma for relocatable output. */
6367 if (! relocatable_p
)
6369 sym
.st_value
= value
;
6370 sym
.st_size
= type_ptr
? type_ptr
->internal_elf_sym
.st_size
: 0;
6372 if (bfd_is_abs_section (sec
)
6374 && type_ptr
->internal_elf_sym
.st_shndx
!= 0)
6376 /* This symbol is in a real ELF section which we did
6377 not create as a BFD section. Undo the mapping done
6378 by copy_private_symbol_data. */
6379 shndx
= type_ptr
->internal_elf_sym
.st_shndx
;
6383 shndx
= elf_onesymtab (abfd
);
6386 shndx
= elf_dynsymtab (abfd
);
6389 shndx
= elf_tdata (abfd
)->strtab_section
;
6392 shndx
= elf_tdata (abfd
)->shstrtab_section
;
6395 shndx
= elf_tdata (abfd
)->symtab_shndx_section
;
6403 shndx
= _bfd_elf_section_from_bfd_section (abfd
, sec
);
6405 if (shndx
== SHN_BAD
)
6409 /* Writing this would be a hell of a lot easier if
6410 we had some decent documentation on bfd, and
6411 knew what to expect of the library, and what to
6412 demand of applications. For example, it
6413 appears that `objcopy' might not set the
6414 section of a symbol to be a section that is
6415 actually in the output file. */
6416 sec2
= bfd_get_section_by_name (abfd
, sec
->name
);
6419 _bfd_error_handler (_("\
6420 Unable to find equivalent output section for symbol '%s' from section '%s'"),
6421 syms
[idx
]->name
? syms
[idx
]->name
: "<Local sym>",
6423 bfd_set_error (bfd_error_invalid_operation
);
6424 _bfd_stringtab_free (stt
);
6428 shndx
= _bfd_elf_section_from_bfd_section (abfd
, sec2
);
6429 BFD_ASSERT (shndx
!= SHN_BAD
);
6433 sym
.st_shndx
= shndx
;
6436 if ((flags
& BSF_THREAD_LOCAL
) != 0)
6438 else if ((flags
& BSF_GNU_INDIRECT_FUNCTION
) != 0)
6439 type
= STT_GNU_IFUNC
;
6440 else if ((flags
& BSF_FUNCTION
) != 0)
6442 else if ((flags
& BSF_OBJECT
) != 0)
6444 else if ((flags
& BSF_RELC
) != 0)
6446 else if ((flags
& BSF_SRELC
) != 0)
6451 if (syms
[idx
]->section
->flags
& SEC_THREAD_LOCAL
)
6454 /* Processor-specific types. */
6455 if (type_ptr
!= NULL
6456 && bed
->elf_backend_get_symbol_type
)
6457 type
= ((*bed
->elf_backend_get_symbol_type
)
6458 (&type_ptr
->internal_elf_sym
, type
));
6460 if (flags
& BSF_SECTION_SYM
)
6462 if (flags
& BSF_GLOBAL
)
6463 sym
.st_info
= ELF_ST_INFO (STB_GLOBAL
, STT_SECTION
);
6465 sym
.st_info
= ELF_ST_INFO (STB_LOCAL
, STT_SECTION
);
6467 else if (bfd_is_com_section (syms
[idx
]->section
))
6469 #ifdef USE_STT_COMMON
6470 if (type
== STT_OBJECT
)
6471 sym
.st_info
= ELF_ST_INFO (STB_GLOBAL
, STT_COMMON
);
6474 sym
.st_info
= ELF_ST_INFO (STB_GLOBAL
, type
);
6476 else if (bfd_is_und_section (syms
[idx
]->section
))
6477 sym
.st_info
= ELF_ST_INFO (((flags
& BSF_WEAK
)
6481 else if (flags
& BSF_FILE
)
6482 sym
.st_info
= ELF_ST_INFO (STB_LOCAL
, STT_FILE
);
6485 int bind
= STB_LOCAL
;
6487 if (flags
& BSF_LOCAL
)
6489 else if (flags
& BSF_GNU_UNIQUE
)
6490 bind
= STB_GNU_UNIQUE
;
6491 else if (flags
& BSF_WEAK
)
6493 else if (flags
& BSF_GLOBAL
)
6496 sym
.st_info
= ELF_ST_INFO (bind
, type
);
6499 if (type_ptr
!= NULL
)
6500 sym
.st_other
= type_ptr
->internal_elf_sym
.st_other
;
6504 bed
->s
->swap_symbol_out (abfd
, &sym
, outbound_syms
, outbound_shndx
);
6505 outbound_syms
+= bed
->s
->sizeof_sym
;
6506 if (outbound_shndx
!= NULL
)
6507 outbound_shndx
+= sizeof (Elf_External_Sym_Shndx
);
6511 symstrtab_hdr
->sh_size
= _bfd_stringtab_size (stt
);
6512 symstrtab_hdr
->sh_type
= SHT_STRTAB
;
6514 symstrtab_hdr
->sh_flags
= 0;
6515 symstrtab_hdr
->sh_addr
= 0;
6516 symstrtab_hdr
->sh_entsize
= 0;
6517 symstrtab_hdr
->sh_link
= 0;
6518 symstrtab_hdr
->sh_info
= 0;
6519 symstrtab_hdr
->sh_addralign
= 1;
6524 /* Return the number of bytes required to hold the symtab vector.
6526 Note that we base it on the count plus 1, since we will null terminate
6527 the vector allocated based on this size. However, the ELF symbol table
6528 always has a dummy entry as symbol #0, so it ends up even. */
6531 _bfd_elf_get_symtab_upper_bound (bfd
*abfd
)
6535 Elf_Internal_Shdr
*hdr
= &elf_tdata (abfd
)->symtab_hdr
;
6537 symcount
= hdr
->sh_size
/ get_elf_backend_data (abfd
)->s
->sizeof_sym
;
6538 symtab_size
= (symcount
+ 1) * (sizeof (asymbol
*));
6540 symtab_size
-= sizeof (asymbol
*);
6546 _bfd_elf_get_dynamic_symtab_upper_bound (bfd
*abfd
)
6550 Elf_Internal_Shdr
*hdr
= &elf_tdata (abfd
)->dynsymtab_hdr
;
6552 if (elf_dynsymtab (abfd
) == 0)
6554 bfd_set_error (bfd_error_invalid_operation
);
6558 symcount
= hdr
->sh_size
/ get_elf_backend_data (abfd
)->s
->sizeof_sym
;
6559 symtab_size
= (symcount
+ 1) * (sizeof (asymbol
*));
6561 symtab_size
-= sizeof (asymbol
*);
6567 _bfd_elf_get_reloc_upper_bound (bfd
*abfd ATTRIBUTE_UNUSED
,
6570 return (asect
->reloc_count
+ 1) * sizeof (arelent
*);
6573 /* Canonicalize the relocs. */
6576 _bfd_elf_canonicalize_reloc (bfd
*abfd
,
6583 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
6585 if (! bed
->s
->slurp_reloc_table (abfd
, section
, symbols
, FALSE
))
6588 tblptr
= section
->relocation
;
6589 for (i
= 0; i
< section
->reloc_count
; i
++)
6590 *relptr
++ = tblptr
++;
6594 return section
->reloc_count
;
6598 _bfd_elf_canonicalize_symtab (bfd
*abfd
, asymbol
**allocation
)
6600 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
6601 long symcount
= bed
->s
->slurp_symbol_table (abfd
, allocation
, FALSE
);
6604 bfd_get_symcount (abfd
) = symcount
;
6609 _bfd_elf_canonicalize_dynamic_symtab (bfd
*abfd
,
6610 asymbol
**allocation
)
6612 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
6613 long symcount
= bed
->s
->slurp_symbol_table (abfd
, allocation
, TRUE
);
6616 bfd_get_dynamic_symcount (abfd
) = symcount
;
6620 /* Return the size required for the dynamic reloc entries. Any loadable
6621 section that was actually installed in the BFD, and has type SHT_REL
6622 or SHT_RELA, and uses the dynamic symbol table, is considered to be a
6623 dynamic reloc section. */
6626 _bfd_elf_get_dynamic_reloc_upper_bound (bfd
*abfd
)
6631 if (elf_dynsymtab (abfd
) == 0)
6633 bfd_set_error (bfd_error_invalid_operation
);
6637 ret
= sizeof (arelent
*);
6638 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
6639 if (elf_section_data (s
)->this_hdr
.sh_link
== elf_dynsymtab (abfd
)
6640 && (elf_section_data (s
)->this_hdr
.sh_type
== SHT_REL
6641 || elf_section_data (s
)->this_hdr
.sh_type
== SHT_RELA
))
6642 ret
+= ((s
->size
/ elf_section_data (s
)->this_hdr
.sh_entsize
)
6643 * sizeof (arelent
*));
6648 /* Canonicalize the dynamic relocation entries. Note that we return the
6649 dynamic relocations as a single block, although they are actually
6650 associated with particular sections; the interface, which was
6651 designed for SunOS style shared libraries, expects that there is only
6652 one set of dynamic relocs. Any loadable section that was actually
6653 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses the
6654 dynamic symbol table, is considered to be a dynamic reloc section. */
6657 _bfd_elf_canonicalize_dynamic_reloc (bfd
*abfd
,
6661 bfd_boolean (*slurp_relocs
) (bfd
*, asection
*, asymbol
**, bfd_boolean
);
6665 if (elf_dynsymtab (abfd
) == 0)
6667 bfd_set_error (bfd_error_invalid_operation
);
6671 slurp_relocs
= get_elf_backend_data (abfd
)->s
->slurp_reloc_table
;
6673 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
6675 if (elf_section_data (s
)->this_hdr
.sh_link
== elf_dynsymtab (abfd
)
6676 && (elf_section_data (s
)->this_hdr
.sh_type
== SHT_REL
6677 || elf_section_data (s
)->this_hdr
.sh_type
== SHT_RELA
))
6682 if (! (*slurp_relocs
) (abfd
, s
, syms
, TRUE
))
6684 count
= s
->size
/ elf_section_data (s
)->this_hdr
.sh_entsize
;
6686 for (i
= 0; i
< count
; i
++)
6697 /* Read in the version information. */
6700 _bfd_elf_slurp_version_tables (bfd
*abfd
, bfd_boolean default_imported_symver
)
6702 bfd_byte
*contents
= NULL
;
6703 unsigned int freeidx
= 0;
6705 if (elf_dynverref (abfd
) != 0)
6707 Elf_Internal_Shdr
*hdr
;
6708 Elf_External_Verneed
*everneed
;
6709 Elf_Internal_Verneed
*iverneed
;
6711 bfd_byte
*contents_end
;
6713 hdr
= &elf_tdata (abfd
)->dynverref_hdr
;
6715 elf_tdata (abfd
)->verref
= (Elf_Internal_Verneed
*)
6716 bfd_zalloc2 (abfd
, hdr
->sh_info
, sizeof (Elf_Internal_Verneed
));
6717 if (elf_tdata (abfd
)->verref
== NULL
)
6720 elf_tdata (abfd
)->cverrefs
= hdr
->sh_info
;
6722 contents
= (bfd_byte
*) bfd_malloc (hdr
->sh_size
);
6723 if (contents
== NULL
)
6725 error_return_verref
:
6726 elf_tdata (abfd
)->verref
= NULL
;
6727 elf_tdata (abfd
)->cverrefs
= 0;
6730 if (bfd_seek (abfd
, hdr
->sh_offset
, SEEK_SET
) != 0
6731 || bfd_bread (contents
, hdr
->sh_size
, abfd
) != hdr
->sh_size
)
6732 goto error_return_verref
;
6734 if (hdr
->sh_info
&& hdr
->sh_size
< sizeof (Elf_External_Verneed
))
6735 goto error_return_verref
;
6737 BFD_ASSERT (sizeof (Elf_External_Verneed
)
6738 == sizeof (Elf_External_Vernaux
));
6739 contents_end
= contents
+ hdr
->sh_size
- sizeof (Elf_External_Verneed
);
6740 everneed
= (Elf_External_Verneed
*) contents
;
6741 iverneed
= elf_tdata (abfd
)->verref
;
6742 for (i
= 0; i
< hdr
->sh_info
; i
++, iverneed
++)
6744 Elf_External_Vernaux
*evernaux
;
6745 Elf_Internal_Vernaux
*ivernaux
;
6748 _bfd_elf_swap_verneed_in (abfd
, everneed
, iverneed
);
6750 iverneed
->vn_bfd
= abfd
;
6752 iverneed
->vn_filename
=
6753 bfd_elf_string_from_elf_section (abfd
, hdr
->sh_link
,
6755 if (iverneed
->vn_filename
== NULL
)
6756 goto error_return_verref
;
6758 if (iverneed
->vn_cnt
== 0)
6759 iverneed
->vn_auxptr
= NULL
;
6762 iverneed
->vn_auxptr
= (struct elf_internal_vernaux
*)
6763 bfd_alloc2 (abfd
, iverneed
->vn_cnt
,
6764 sizeof (Elf_Internal_Vernaux
));
6765 if (iverneed
->vn_auxptr
== NULL
)
6766 goto error_return_verref
;
6769 if (iverneed
->vn_aux
6770 > (size_t) (contents_end
- (bfd_byte
*) everneed
))
6771 goto error_return_verref
;
6773 evernaux
= ((Elf_External_Vernaux
*)
6774 ((bfd_byte
*) everneed
+ iverneed
->vn_aux
));
6775 ivernaux
= iverneed
->vn_auxptr
;
6776 for (j
= 0; j
< iverneed
->vn_cnt
; j
++, ivernaux
++)
6778 _bfd_elf_swap_vernaux_in (abfd
, evernaux
, ivernaux
);
6780 ivernaux
->vna_nodename
=
6781 bfd_elf_string_from_elf_section (abfd
, hdr
->sh_link
,
6782 ivernaux
->vna_name
);
6783 if (ivernaux
->vna_nodename
== NULL
)
6784 goto error_return_verref
;
6786 if (j
+ 1 < iverneed
->vn_cnt
)
6787 ivernaux
->vna_nextptr
= ivernaux
+ 1;
6789 ivernaux
->vna_nextptr
= NULL
;
6791 if (ivernaux
->vna_next
6792 > (size_t) (contents_end
- (bfd_byte
*) evernaux
))
6793 goto error_return_verref
;
6795 evernaux
= ((Elf_External_Vernaux
*)
6796 ((bfd_byte
*) evernaux
+ ivernaux
->vna_next
));
6798 if (ivernaux
->vna_other
> freeidx
)
6799 freeidx
= ivernaux
->vna_other
;
6802 if (i
+ 1 < hdr
->sh_info
)
6803 iverneed
->vn_nextref
= iverneed
+ 1;
6805 iverneed
->vn_nextref
= NULL
;
6807 if (iverneed
->vn_next
6808 > (size_t) (contents_end
- (bfd_byte
*) everneed
))
6809 goto error_return_verref
;
6811 everneed
= ((Elf_External_Verneed
*)
6812 ((bfd_byte
*) everneed
+ iverneed
->vn_next
));
6819 if (elf_dynverdef (abfd
) != 0)
6821 Elf_Internal_Shdr
*hdr
;
6822 Elf_External_Verdef
*everdef
;
6823 Elf_Internal_Verdef
*iverdef
;
6824 Elf_Internal_Verdef
*iverdefarr
;
6825 Elf_Internal_Verdef iverdefmem
;
6827 unsigned int maxidx
;
6828 bfd_byte
*contents_end_def
, *contents_end_aux
;
6830 hdr
= &elf_tdata (abfd
)->dynverdef_hdr
;
6832 contents
= (bfd_byte
*) bfd_malloc (hdr
->sh_size
);
6833 if (contents
== NULL
)
6835 if (bfd_seek (abfd
, hdr
->sh_offset
, SEEK_SET
) != 0
6836 || bfd_bread (contents
, hdr
->sh_size
, abfd
) != hdr
->sh_size
)
6839 if (hdr
->sh_info
&& hdr
->sh_size
< sizeof (Elf_External_Verdef
))
6842 BFD_ASSERT (sizeof (Elf_External_Verdef
)
6843 >= sizeof (Elf_External_Verdaux
));
6844 contents_end_def
= contents
+ hdr
->sh_size
6845 - sizeof (Elf_External_Verdef
);
6846 contents_end_aux
= contents
+ hdr
->sh_size
6847 - sizeof (Elf_External_Verdaux
);
6849 /* We know the number of entries in the section but not the maximum
6850 index. Therefore we have to run through all entries and find
6852 everdef
= (Elf_External_Verdef
*) contents
;
6854 for (i
= 0; i
< hdr
->sh_info
; ++i
)
6856 _bfd_elf_swap_verdef_in (abfd
, everdef
, &iverdefmem
);
6858 if ((iverdefmem
.vd_ndx
& ((unsigned) VERSYM_VERSION
)) > maxidx
)
6859 maxidx
= iverdefmem
.vd_ndx
& ((unsigned) VERSYM_VERSION
);
6861 if (iverdefmem
.vd_next
6862 > (size_t) (contents_end_def
- (bfd_byte
*) everdef
))
6865 everdef
= ((Elf_External_Verdef
*)
6866 ((bfd_byte
*) everdef
+ iverdefmem
.vd_next
));
6869 if (default_imported_symver
)
6871 if (freeidx
> maxidx
)
6876 elf_tdata (abfd
)->verdef
= (Elf_Internal_Verdef
*)
6877 bfd_zalloc2 (abfd
, maxidx
, sizeof (Elf_Internal_Verdef
));
6878 if (elf_tdata (abfd
)->verdef
== NULL
)
6881 elf_tdata (abfd
)->cverdefs
= maxidx
;
6883 everdef
= (Elf_External_Verdef
*) contents
;
6884 iverdefarr
= elf_tdata (abfd
)->verdef
;
6885 for (i
= 0; i
< hdr
->sh_info
; i
++)
6887 Elf_External_Verdaux
*everdaux
;
6888 Elf_Internal_Verdaux
*iverdaux
;
6891 _bfd_elf_swap_verdef_in (abfd
, everdef
, &iverdefmem
);
6893 if ((iverdefmem
.vd_ndx
& VERSYM_VERSION
) == 0)
6895 error_return_verdef
:
6896 elf_tdata (abfd
)->verdef
= NULL
;
6897 elf_tdata (abfd
)->cverdefs
= 0;
6901 iverdef
= &iverdefarr
[(iverdefmem
.vd_ndx
& VERSYM_VERSION
) - 1];
6902 memcpy (iverdef
, &iverdefmem
, sizeof (Elf_Internal_Verdef
));
6904 iverdef
->vd_bfd
= abfd
;
6906 if (iverdef
->vd_cnt
== 0)
6907 iverdef
->vd_auxptr
= NULL
;
6910 iverdef
->vd_auxptr
= (struct elf_internal_verdaux
*)
6911 bfd_alloc2 (abfd
, iverdef
->vd_cnt
,
6912 sizeof (Elf_Internal_Verdaux
));
6913 if (iverdef
->vd_auxptr
== NULL
)
6914 goto error_return_verdef
;
6918 > (size_t) (contents_end_aux
- (bfd_byte
*) everdef
))
6919 goto error_return_verdef
;
6921 everdaux
= ((Elf_External_Verdaux
*)
6922 ((bfd_byte
*) everdef
+ iverdef
->vd_aux
));
6923 iverdaux
= iverdef
->vd_auxptr
;
6924 for (j
= 0; j
< iverdef
->vd_cnt
; j
++, iverdaux
++)
6926 _bfd_elf_swap_verdaux_in (abfd
, everdaux
, iverdaux
);
6928 iverdaux
->vda_nodename
=
6929 bfd_elf_string_from_elf_section (abfd
, hdr
->sh_link
,
6930 iverdaux
->vda_name
);
6931 if (iverdaux
->vda_nodename
== NULL
)
6932 goto error_return_verdef
;
6934 if (j
+ 1 < iverdef
->vd_cnt
)
6935 iverdaux
->vda_nextptr
= iverdaux
+ 1;
6937 iverdaux
->vda_nextptr
= NULL
;
6939 if (iverdaux
->vda_next
6940 > (size_t) (contents_end_aux
- (bfd_byte
*) everdaux
))
6941 goto error_return_verdef
;
6943 everdaux
= ((Elf_External_Verdaux
*)
6944 ((bfd_byte
*) everdaux
+ iverdaux
->vda_next
));
6947 if (iverdef
->vd_cnt
)
6948 iverdef
->vd_nodename
= iverdef
->vd_auxptr
->vda_nodename
;
6950 if ((size_t) (iverdef
- iverdefarr
) + 1 < maxidx
)
6951 iverdef
->vd_nextdef
= iverdef
+ 1;
6953 iverdef
->vd_nextdef
= NULL
;
6955 everdef
= ((Elf_External_Verdef
*)
6956 ((bfd_byte
*) everdef
+ iverdef
->vd_next
));
6962 else if (default_imported_symver
)
6969 elf_tdata (abfd
)->verdef
= (Elf_Internal_Verdef
*)
6970 bfd_zalloc2 (abfd
, freeidx
, sizeof (Elf_Internal_Verdef
));
6971 if (elf_tdata (abfd
)->verdef
== NULL
)
6974 elf_tdata (abfd
)->cverdefs
= freeidx
;
6977 /* Create a default version based on the soname. */
6978 if (default_imported_symver
)
6980 Elf_Internal_Verdef
*iverdef
;
6981 Elf_Internal_Verdaux
*iverdaux
;
6983 iverdef
= &elf_tdata (abfd
)->verdef
[freeidx
- 1];;
6985 iverdef
->vd_version
= VER_DEF_CURRENT
;
6986 iverdef
->vd_flags
= 0;
6987 iverdef
->vd_ndx
= freeidx
;
6988 iverdef
->vd_cnt
= 1;
6990 iverdef
->vd_bfd
= abfd
;
6992 iverdef
->vd_nodename
= bfd_elf_get_dt_soname (abfd
);
6993 if (iverdef
->vd_nodename
== NULL
)
6994 goto error_return_verdef
;
6995 iverdef
->vd_nextdef
= NULL
;
6996 iverdef
->vd_auxptr
= (struct elf_internal_verdaux
*)
6997 bfd_alloc (abfd
, sizeof (Elf_Internal_Verdaux
));
6998 if (iverdef
->vd_auxptr
== NULL
)
6999 goto error_return_verdef
;
7001 iverdaux
= iverdef
->vd_auxptr
;
7002 iverdaux
->vda_nodename
= iverdef
->vd_nodename
;
7003 iverdaux
->vda_nextptr
= NULL
;
7009 if (contents
!= NULL
)
7015 _bfd_elf_make_empty_symbol (bfd
*abfd
)
7017 elf_symbol_type
*newsym
;
7018 bfd_size_type amt
= sizeof (elf_symbol_type
);
7020 newsym
= (elf_symbol_type
*) bfd_zalloc (abfd
, amt
);
7025 newsym
->symbol
.the_bfd
= abfd
;
7026 return &newsym
->symbol
;
7031 _bfd_elf_get_symbol_info (bfd
*abfd ATTRIBUTE_UNUSED
,
7035 bfd_symbol_info (symbol
, ret
);
7038 /* Return whether a symbol name implies a local symbol. Most targets
7039 use this function for the is_local_label_name entry point, but some
7043 _bfd_elf_is_local_label_name (bfd
*abfd ATTRIBUTE_UNUSED
,
7046 /* Normal local symbols start with ``.L''. */
7047 if (name
[0] == '.' && name
[1] == 'L')
7050 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
7051 DWARF debugging symbols starting with ``..''. */
7052 if (name
[0] == '.' && name
[1] == '.')
7055 /* gcc will sometimes generate symbols beginning with ``_.L_'' when
7056 emitting DWARF debugging output. I suspect this is actually a
7057 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
7058 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
7059 underscore to be emitted on some ELF targets). For ease of use,
7060 we treat such symbols as local. */
7061 if (name
[0] == '_' && name
[1] == '.' && name
[2] == 'L' && name
[3] == '_')
7068 _bfd_elf_get_lineno (bfd
*abfd ATTRIBUTE_UNUSED
,
7069 asymbol
*symbol ATTRIBUTE_UNUSED
)
7076 _bfd_elf_set_arch_mach (bfd
*abfd
,
7077 enum bfd_architecture arch
,
7078 unsigned long machine
)
7080 /* If this isn't the right architecture for this backend, and this
7081 isn't the generic backend, fail. */
7082 if (arch
!= get_elf_backend_data (abfd
)->arch
7083 && arch
!= bfd_arch_unknown
7084 && get_elf_backend_data (abfd
)->arch
!= bfd_arch_unknown
)
7087 return bfd_default_set_arch_mach (abfd
, arch
, machine
);
7090 /* Find the function to a particular section and offset,
7091 for error reporting. */
7094 elf_find_function (bfd
*abfd
,
7098 const char **filename_ptr
,
7099 const char **functionname_ptr
)
7101 const char *filename
;
7102 asymbol
*func
, *file
;
7105 /* ??? Given multiple file symbols, it is impossible to reliably
7106 choose the right file name for global symbols. File symbols are
7107 local symbols, and thus all file symbols must sort before any
7108 global symbols. The ELF spec may be interpreted to say that a
7109 file symbol must sort before other local symbols, but currently
7110 ld -r doesn't do this. So, for ld -r output, it is possible to
7111 make a better choice of file name for local symbols by ignoring
7112 file symbols appearing after a given local symbol. */
7113 enum { nothing_seen
, symbol_seen
, file_after_symbol_seen
} state
;
7114 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
7120 state
= nothing_seen
;
7122 for (p
= symbols
; *p
!= NULL
; p
++)
7127 q
= (elf_symbol_type
*) *p
;
7129 type
= ELF_ST_TYPE (q
->internal_elf_sym
.st_info
);
7134 if (state
== symbol_seen
)
7135 state
= file_after_symbol_seen
;
7138 if (!bed
->is_function_type (type
))
7141 if (bfd_get_section (&q
->symbol
) == section
7142 && q
->symbol
.value
>= low_func
7143 && q
->symbol
.value
<= offset
)
7145 func
= (asymbol
*) q
;
7146 low_func
= q
->symbol
.value
;
7149 && (ELF_ST_BIND (q
->internal_elf_sym
.st_info
) == STB_LOCAL
7150 || state
!= file_after_symbol_seen
))
7151 filename
= bfd_asymbol_name (file
);
7155 if (state
== nothing_seen
)
7156 state
= symbol_seen
;
7163 *filename_ptr
= filename
;
7164 if (functionname_ptr
)
7165 *functionname_ptr
= bfd_asymbol_name (func
);
7170 /* Find the nearest line to a particular section and offset,
7171 for error reporting. */
7174 _bfd_elf_find_nearest_line (bfd
*abfd
,
7178 const char **filename_ptr
,
7179 const char **functionname_ptr
,
7180 unsigned int *line_ptr
)
7184 if (_bfd_dwarf1_find_nearest_line (abfd
, section
, symbols
, offset
,
7185 filename_ptr
, functionname_ptr
,
7188 if (!*functionname_ptr
)
7189 elf_find_function (abfd
, section
, symbols
, offset
,
7190 *filename_ptr
? NULL
: filename_ptr
,
7196 if (_bfd_dwarf2_find_nearest_line (abfd
, section
, symbols
, offset
,
7197 filename_ptr
, functionname_ptr
,
7199 &elf_tdata (abfd
)->dwarf2_find_line_info
))
7201 if (!*functionname_ptr
)
7202 elf_find_function (abfd
, section
, symbols
, offset
,
7203 *filename_ptr
? NULL
: filename_ptr
,
7209 if (! _bfd_stab_section_find_nearest_line (abfd
, symbols
, section
, offset
,
7210 &found
, filename_ptr
,
7211 functionname_ptr
, line_ptr
,
7212 &elf_tdata (abfd
)->line_info
))
7214 if (found
&& (*functionname_ptr
|| *line_ptr
))
7217 if (symbols
== NULL
)
7220 if (! elf_find_function (abfd
, section
, symbols
, offset
,
7221 filename_ptr
, functionname_ptr
))
7228 /* Find the line for a symbol. */
7231 _bfd_elf_find_line (bfd
*abfd
, asymbol
**symbols
, asymbol
*symbol
,
7232 const char **filename_ptr
, unsigned int *line_ptr
)
7234 return _bfd_dwarf2_find_line (abfd
, symbols
, symbol
,
7235 filename_ptr
, line_ptr
, 0,
7236 &elf_tdata (abfd
)->dwarf2_find_line_info
);
7239 /* After a call to bfd_find_nearest_line, successive calls to
7240 bfd_find_inliner_info can be used to get source information about
7241 each level of function inlining that terminated at the address
7242 passed to bfd_find_nearest_line. Currently this is only supported
7243 for DWARF2 with appropriate DWARF3 extensions. */
7246 _bfd_elf_find_inliner_info (bfd
*abfd
,
7247 const char **filename_ptr
,
7248 const char **functionname_ptr
,
7249 unsigned int *line_ptr
)
7252 found
= _bfd_dwarf2_find_inliner_info (abfd
, filename_ptr
,
7253 functionname_ptr
, line_ptr
,
7254 & elf_tdata (abfd
)->dwarf2_find_line_info
);
7259 _bfd_elf_sizeof_headers (bfd
*abfd
, struct bfd_link_info
*info
)
7261 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
7262 int ret
= bed
->s
->sizeof_ehdr
;
7264 if (!info
->relocatable
)
7266 bfd_size_type phdr_size
= elf_tdata (abfd
)->program_header_size
;
7268 if (phdr_size
== (bfd_size_type
) -1)
7270 struct elf_segment_map
*m
;
7273 for (m
= elf_tdata (abfd
)->segment_map
; m
!= NULL
; m
= m
->next
)
7274 phdr_size
+= bed
->s
->sizeof_phdr
;
7277 phdr_size
= get_program_header_size (abfd
, info
);
7280 elf_tdata (abfd
)->program_header_size
= phdr_size
;
7288 _bfd_elf_set_section_contents (bfd
*abfd
,
7290 const void *location
,
7292 bfd_size_type count
)
7294 Elf_Internal_Shdr
*hdr
;
7297 if (! abfd
->output_has_begun
7298 && ! _bfd_elf_compute_section_file_positions (abfd
, NULL
))
7301 hdr
= &elf_section_data (section
)->this_hdr
;
7302 pos
= hdr
->sh_offset
+ offset
;
7303 if (bfd_seek (abfd
, pos
, SEEK_SET
) != 0
7304 || bfd_bwrite (location
, count
, abfd
) != count
)
7311 _bfd_elf_no_info_to_howto (bfd
*abfd ATTRIBUTE_UNUSED
,
7312 arelent
*cache_ptr ATTRIBUTE_UNUSED
,
7313 Elf_Internal_Rela
*dst ATTRIBUTE_UNUSED
)
7318 /* Try to convert a non-ELF reloc into an ELF one. */
7321 _bfd_elf_validate_reloc (bfd
*abfd
, arelent
*areloc
)
7323 /* Check whether we really have an ELF howto. */
7325 if ((*areloc
->sym_ptr_ptr
)->the_bfd
->xvec
!= abfd
->xvec
)
7327 bfd_reloc_code_real_type code
;
7328 reloc_howto_type
*howto
;
7330 /* Alien reloc: Try to determine its type to replace it with an
7331 equivalent ELF reloc. */
7333 if (areloc
->howto
->pc_relative
)
7335 switch (areloc
->howto
->bitsize
)
7338 code
= BFD_RELOC_8_PCREL
;
7341 code
= BFD_RELOC_12_PCREL
;
7344 code
= BFD_RELOC_16_PCREL
;
7347 code
= BFD_RELOC_24_PCREL
;
7350 code
= BFD_RELOC_32_PCREL
;
7353 code
= BFD_RELOC_64_PCREL
;
7359 howto
= bfd_reloc_type_lookup (abfd
, code
);
7361 if (areloc
->howto
->pcrel_offset
!= howto
->pcrel_offset
)
7363 if (howto
->pcrel_offset
)
7364 areloc
->addend
+= areloc
->address
;
7366 areloc
->addend
-= areloc
->address
; /* addend is unsigned!! */
7371 switch (areloc
->howto
->bitsize
)
7377 code
= BFD_RELOC_14
;
7380 code
= BFD_RELOC_16
;
7383 code
= BFD_RELOC_26
;
7386 code
= BFD_RELOC_32
;
7389 code
= BFD_RELOC_64
;
7395 howto
= bfd_reloc_type_lookup (abfd
, code
);
7399 areloc
->howto
= howto
;
7407 (*_bfd_error_handler
)
7408 (_("%B: unsupported relocation type %s"),
7409 abfd
, areloc
->howto
->name
);
7410 bfd_set_error (bfd_error_bad_value
);
7415 _bfd_elf_close_and_cleanup (bfd
*abfd
)
7417 if (bfd_get_format (abfd
) == bfd_object
)
7419 if (elf_tdata (abfd
) != NULL
&& elf_shstrtab (abfd
) != NULL
)
7420 _bfd_elf_strtab_free (elf_shstrtab (abfd
));
7421 _bfd_dwarf2_cleanup_debug_info (abfd
);
7424 return _bfd_generic_close_and_cleanup (abfd
);
7427 /* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
7428 in the relocation's offset. Thus we cannot allow any sort of sanity
7429 range-checking to interfere. There is nothing else to do in processing
7432 bfd_reloc_status_type
7433 _bfd_elf_rel_vtable_reloc_fn
7434 (bfd
*abfd ATTRIBUTE_UNUSED
, arelent
*re ATTRIBUTE_UNUSED
,
7435 struct bfd_symbol
*symbol ATTRIBUTE_UNUSED
,
7436 void *data ATTRIBUTE_UNUSED
, asection
*is ATTRIBUTE_UNUSED
,
7437 bfd
*obfd ATTRIBUTE_UNUSED
, char **errmsg ATTRIBUTE_UNUSED
)
7439 return bfd_reloc_ok
;
7442 /* Elf core file support. Much of this only works on native
7443 toolchains, since we rely on knowing the
7444 machine-dependent procfs structure in order to pick
7445 out details about the corefile. */
7447 #ifdef HAVE_SYS_PROCFS_H
7448 /* Needed for new procfs interface on sparc-solaris. */
7449 # define _STRUCTURED_PROC 1
7450 # include <sys/procfs.h>
7453 /* FIXME: this is kinda wrong, but it's what gdb wants. */
7456 elfcore_make_pid (bfd
*abfd
)
7458 return ((elf_tdata (abfd
)->core_lwpid
<< 16)
7459 + (elf_tdata (abfd
)->core_pid
));
7462 /* If there isn't a section called NAME, make one, using
7463 data from SECT. Note, this function will generate a
7464 reference to NAME, so you shouldn't deallocate or
7468 elfcore_maybe_make_sect (bfd
*abfd
, char *name
, asection
*sect
)
7472 if (bfd_get_section_by_name (abfd
, name
) != NULL
)
7475 sect2
= bfd_make_section_with_flags (abfd
, name
, sect
->flags
);
7479 sect2
->size
= sect
->size
;
7480 sect2
->filepos
= sect
->filepos
;
7481 sect2
->alignment_power
= sect
->alignment_power
;
7485 /* Create a pseudosection containing SIZE bytes at FILEPOS. This
7486 actually creates up to two pseudosections:
7487 - For the single-threaded case, a section named NAME, unless
7488 such a section already exists.
7489 - For the multi-threaded case, a section named "NAME/PID", where
7490 PID is elfcore_make_pid (abfd).
7491 Both pseudosections have identical contents. */
7493 _bfd_elfcore_make_pseudosection (bfd
*abfd
,
7499 char *threaded_name
;
7503 /* Build the section name. */
7505 sprintf (buf
, "%s/%d", name
, elfcore_make_pid (abfd
));
7506 len
= strlen (buf
) + 1;
7507 threaded_name
= (char *) bfd_alloc (abfd
, len
);
7508 if (threaded_name
== NULL
)
7510 memcpy (threaded_name
, buf
, len
);
7512 sect
= bfd_make_section_anyway_with_flags (abfd
, threaded_name
,
7517 sect
->filepos
= filepos
;
7518 sect
->alignment_power
= 2;
7520 return elfcore_maybe_make_sect (abfd
, name
, sect
);
7523 /* prstatus_t exists on:
7525 linux 2.[01] + glibc
7529 #if defined (HAVE_PRSTATUS_T)
7532 elfcore_grok_prstatus (bfd
*abfd
, Elf_Internal_Note
*note
)
7537 if (note
->descsz
== sizeof (prstatus_t
))
7541 size
= sizeof (prstat
.pr_reg
);
7542 offset
= offsetof (prstatus_t
, pr_reg
);
7543 memcpy (&prstat
, note
->descdata
, sizeof (prstat
));
7545 /* Do not overwrite the core signal if it
7546 has already been set by another thread. */
7547 if (elf_tdata (abfd
)->core_signal
== 0)
7548 elf_tdata (abfd
)->core_signal
= prstat
.pr_cursig
;
7549 elf_tdata (abfd
)->core_pid
= prstat
.pr_pid
;
7551 /* pr_who exists on:
7554 pr_who doesn't exist on:
7557 #if defined (HAVE_PRSTATUS_T_PR_WHO)
7558 elf_tdata (abfd
)->core_lwpid
= prstat
.pr_who
;
7561 #if defined (HAVE_PRSTATUS32_T)
7562 else if (note
->descsz
== sizeof (prstatus32_t
))
7564 /* 64-bit host, 32-bit corefile */
7565 prstatus32_t prstat
;
7567 size
= sizeof (prstat
.pr_reg
);
7568 offset
= offsetof (prstatus32_t
, pr_reg
);
7569 memcpy (&prstat
, note
->descdata
, sizeof (prstat
));
7571 /* Do not overwrite the core signal if it
7572 has already been set by another thread. */
7573 if (elf_tdata (abfd
)->core_signal
== 0)
7574 elf_tdata (abfd
)->core_signal
= prstat
.pr_cursig
;
7575 elf_tdata (abfd
)->core_pid
= prstat
.pr_pid
;
7577 /* pr_who exists on:
7580 pr_who doesn't exist on:
7583 #if defined (HAVE_PRSTATUS32_T_PR_WHO)
7584 elf_tdata (abfd
)->core_lwpid
= prstat
.pr_who
;
7587 #endif /* HAVE_PRSTATUS32_T */
7590 /* Fail - we don't know how to handle any other
7591 note size (ie. data object type). */
7595 /* Make a ".reg/999" section and a ".reg" section. */
7596 return _bfd_elfcore_make_pseudosection (abfd
, ".reg",
7597 size
, note
->descpos
+ offset
);
7599 #endif /* defined (HAVE_PRSTATUS_T) */
7601 /* Create a pseudosection containing the exact contents of NOTE. */
7603 elfcore_make_note_pseudosection (bfd
*abfd
,
7605 Elf_Internal_Note
*note
)
7607 return _bfd_elfcore_make_pseudosection (abfd
, name
,
7608 note
->descsz
, note
->descpos
);
7611 /* There isn't a consistent prfpregset_t across platforms,
7612 but it doesn't matter, because we don't have to pick this
7613 data structure apart. */
7616 elfcore_grok_prfpreg (bfd
*abfd
, Elf_Internal_Note
*note
)
7618 return elfcore_make_note_pseudosection (abfd
, ".reg2", note
);
7621 /* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
7622 type of NT_PRXFPREG. Just include the whole note's contents
7626 elfcore_grok_prxfpreg (bfd
*abfd
, Elf_Internal_Note
*note
)
7628 return elfcore_make_note_pseudosection (abfd
, ".reg-xfp", note
);
7632 elfcore_grok_ppc_vmx (bfd
*abfd
, Elf_Internal_Note
*note
)
7634 return elfcore_make_note_pseudosection (abfd
, ".reg-ppc-vmx", note
);
7638 elfcore_grok_ppc_vsx (bfd
*abfd
, Elf_Internal_Note
*note
)
7640 return elfcore_make_note_pseudosection (abfd
, ".reg-ppc-vsx", note
);
7644 elfcore_grok_s390_high_gprs (bfd
*abfd
, Elf_Internal_Note
*note
)
7646 return elfcore_make_note_pseudosection (abfd
, ".reg-s390-high-gprs", note
);
7649 #if defined (HAVE_PRPSINFO_T)
7650 typedef prpsinfo_t elfcore_psinfo_t
;
7651 #if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
7652 typedef prpsinfo32_t elfcore_psinfo32_t
;
7656 #if defined (HAVE_PSINFO_T)
7657 typedef psinfo_t elfcore_psinfo_t
;
7658 #if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
7659 typedef psinfo32_t elfcore_psinfo32_t
;
7663 /* return a malloc'ed copy of a string at START which is at
7664 most MAX bytes long, possibly without a terminating '\0'.
7665 the copy will always have a terminating '\0'. */
7668 _bfd_elfcore_strndup (bfd
*abfd
, char *start
, size_t max
)
7671 char *end
= (char *) memchr (start
, '\0', max
);
7679 dups
= (char *) bfd_alloc (abfd
, len
+ 1);
7683 memcpy (dups
, start
, len
);
7689 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7691 elfcore_grok_psinfo (bfd
*abfd
, Elf_Internal_Note
*note
)
7693 if (note
->descsz
== sizeof (elfcore_psinfo_t
))
7695 elfcore_psinfo_t psinfo
;
7697 memcpy (&psinfo
, note
->descdata
, sizeof (psinfo
));
7699 elf_tdata (abfd
)->core_program
7700 = _bfd_elfcore_strndup (abfd
, psinfo
.pr_fname
,
7701 sizeof (psinfo
.pr_fname
));
7703 elf_tdata (abfd
)->core_command
7704 = _bfd_elfcore_strndup (abfd
, psinfo
.pr_psargs
,
7705 sizeof (psinfo
.pr_psargs
));
7707 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
7708 else if (note
->descsz
== sizeof (elfcore_psinfo32_t
))
7710 /* 64-bit host, 32-bit corefile */
7711 elfcore_psinfo32_t psinfo
;
7713 memcpy (&psinfo
, note
->descdata
, sizeof (psinfo
));
7715 elf_tdata (abfd
)->core_program
7716 = _bfd_elfcore_strndup (abfd
, psinfo
.pr_fname
,
7717 sizeof (psinfo
.pr_fname
));
7719 elf_tdata (abfd
)->core_command
7720 = _bfd_elfcore_strndup (abfd
, psinfo
.pr_psargs
,
7721 sizeof (psinfo
.pr_psargs
));
7727 /* Fail - we don't know how to handle any other
7728 note size (ie. data object type). */
7732 /* Note that for some reason, a spurious space is tacked
7733 onto the end of the args in some (at least one anyway)
7734 implementations, so strip it off if it exists. */
7737 char *command
= elf_tdata (abfd
)->core_command
;
7738 int n
= strlen (command
);
7740 if (0 < n
&& command
[n
- 1] == ' ')
7741 command
[n
- 1] = '\0';
7746 #endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
7748 #if defined (HAVE_PSTATUS_T)
7750 elfcore_grok_pstatus (bfd
*abfd
, Elf_Internal_Note
*note
)
7752 if (note
->descsz
== sizeof (pstatus_t
)
7753 #if defined (HAVE_PXSTATUS_T)
7754 || note
->descsz
== sizeof (pxstatus_t
)
7760 memcpy (&pstat
, note
->descdata
, sizeof (pstat
));
7762 elf_tdata (abfd
)->core_pid
= pstat
.pr_pid
;
7764 #if defined (HAVE_PSTATUS32_T)
7765 else if (note
->descsz
== sizeof (pstatus32_t
))
7767 /* 64-bit host, 32-bit corefile */
7770 memcpy (&pstat
, note
->descdata
, sizeof (pstat
));
7772 elf_tdata (abfd
)->core_pid
= pstat
.pr_pid
;
7775 /* Could grab some more details from the "representative"
7776 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
7777 NT_LWPSTATUS note, presumably. */
7781 #endif /* defined (HAVE_PSTATUS_T) */
7783 #if defined (HAVE_LWPSTATUS_T)
7785 elfcore_grok_lwpstatus (bfd
*abfd
, Elf_Internal_Note
*note
)
7787 lwpstatus_t lwpstat
;
7793 if (note
->descsz
!= sizeof (lwpstat
)
7794 #if defined (HAVE_LWPXSTATUS_T)
7795 && note
->descsz
!= sizeof (lwpxstatus_t
)
7800 memcpy (&lwpstat
, note
->descdata
, sizeof (lwpstat
));
7802 elf_tdata (abfd
)->core_lwpid
= lwpstat
.pr_lwpid
;
7803 /* Do not overwrite the core signal if it has already been set by
7805 if (elf_tdata (abfd
)->core_signal
== 0)
7806 elf_tdata (abfd
)->core_signal
= lwpstat
.pr_cursig
;
7808 /* Make a ".reg/999" section. */
7810 sprintf (buf
, ".reg/%d", elfcore_make_pid (abfd
));
7811 len
= strlen (buf
) + 1;
7812 name
= bfd_alloc (abfd
, len
);
7815 memcpy (name
, buf
, len
);
7817 sect
= bfd_make_section_anyway_with_flags (abfd
, name
, SEC_HAS_CONTENTS
);
7821 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7822 sect
->size
= sizeof (lwpstat
.pr_context
.uc_mcontext
.gregs
);
7823 sect
->filepos
= note
->descpos
7824 + offsetof (lwpstatus_t
, pr_context
.uc_mcontext
.gregs
);
7827 #if defined (HAVE_LWPSTATUS_T_PR_REG)
7828 sect
->size
= sizeof (lwpstat
.pr_reg
);
7829 sect
->filepos
= note
->descpos
+ offsetof (lwpstatus_t
, pr_reg
);
7832 sect
->alignment_power
= 2;
7834 if (!elfcore_maybe_make_sect (abfd
, ".reg", sect
))
7837 /* Make a ".reg2/999" section */
7839 sprintf (buf
, ".reg2/%d", elfcore_make_pid (abfd
));
7840 len
= strlen (buf
) + 1;
7841 name
= bfd_alloc (abfd
, len
);
7844 memcpy (name
, buf
, len
);
7846 sect
= bfd_make_section_anyway_with_flags (abfd
, name
, SEC_HAS_CONTENTS
);
7850 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7851 sect
->size
= sizeof (lwpstat
.pr_context
.uc_mcontext
.fpregs
);
7852 sect
->filepos
= note
->descpos
7853 + offsetof (lwpstatus_t
, pr_context
.uc_mcontext
.fpregs
);
7856 #if defined (HAVE_LWPSTATUS_T_PR_FPREG)
7857 sect
->size
= sizeof (lwpstat
.pr_fpreg
);
7858 sect
->filepos
= note
->descpos
+ offsetof (lwpstatus_t
, pr_fpreg
);
7861 sect
->alignment_power
= 2;
7863 return elfcore_maybe_make_sect (abfd
, ".reg2", sect
);
7865 #endif /* defined (HAVE_LWPSTATUS_T) */
7868 elfcore_grok_win32pstatus (bfd
*abfd
, Elf_Internal_Note
*note
)
7875 int is_active_thread
;
7878 if (note
->descsz
< 728)
7881 if (! CONST_STRNEQ (note
->namedata
, "win32"))
7884 type
= bfd_get_32 (abfd
, note
->descdata
);
7888 case 1 /* NOTE_INFO_PROCESS */:
7889 /* FIXME: need to add ->core_command. */
7890 /* process_info.pid */
7891 elf_tdata (abfd
)->core_pid
= bfd_get_32 (abfd
, note
->descdata
+ 8);
7892 /* process_info.signal */
7893 elf_tdata (abfd
)->core_signal
= bfd_get_32 (abfd
, note
->descdata
+ 12);
7896 case 2 /* NOTE_INFO_THREAD */:
7897 /* Make a ".reg/999" section. */
7898 /* thread_info.tid */
7899 sprintf (buf
, ".reg/%ld", (long) bfd_get_32 (abfd
, note
->descdata
+ 8));
7901 len
= strlen (buf
) + 1;
7902 name
= (char *) bfd_alloc (abfd
, len
);
7906 memcpy (name
, buf
, len
);
7908 sect
= bfd_make_section_anyway_with_flags (abfd
, name
, SEC_HAS_CONTENTS
);
7912 /* sizeof (thread_info.thread_context) */
7914 /* offsetof (thread_info.thread_context) */
7915 sect
->filepos
= note
->descpos
+ 12;
7916 sect
->alignment_power
= 2;
7918 /* thread_info.is_active_thread */
7919 is_active_thread
= bfd_get_32 (abfd
, note
->descdata
+ 8);
7921 if (is_active_thread
)
7922 if (! elfcore_maybe_make_sect (abfd
, ".reg", sect
))
7926 case 3 /* NOTE_INFO_MODULE */:
7927 /* Make a ".module/xxxxxxxx" section. */
7928 /* module_info.base_address */
7929 base_addr
= bfd_get_32 (abfd
, note
->descdata
+ 4);
7930 sprintf (buf
, ".module/%08lx", (unsigned long) base_addr
);
7932 len
= strlen (buf
) + 1;
7933 name
= (char *) bfd_alloc (abfd
, len
);
7937 memcpy (name
, buf
, len
);
7939 sect
= bfd_make_section_anyway_with_flags (abfd
, name
, SEC_HAS_CONTENTS
);
7944 sect
->size
= note
->descsz
;
7945 sect
->filepos
= note
->descpos
;
7946 sect
->alignment_power
= 2;
7957 elfcore_grok_note (bfd
*abfd
, Elf_Internal_Note
*note
)
7959 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
7967 if (bed
->elf_backend_grok_prstatus
)
7968 if ((*bed
->elf_backend_grok_prstatus
) (abfd
, note
))
7970 #if defined (HAVE_PRSTATUS_T)
7971 return elfcore_grok_prstatus (abfd
, note
);
7976 #if defined (HAVE_PSTATUS_T)
7978 return elfcore_grok_pstatus (abfd
, note
);
7981 #if defined (HAVE_LWPSTATUS_T)
7983 return elfcore_grok_lwpstatus (abfd
, note
);
7986 case NT_FPREGSET
: /* FIXME: rename to NT_PRFPREG */
7987 return elfcore_grok_prfpreg (abfd
, note
);
7989 case NT_WIN32PSTATUS
:
7990 return elfcore_grok_win32pstatus (abfd
, note
);
7992 case NT_PRXFPREG
: /* Linux SSE extension */
7993 if (note
->namesz
== 6
7994 && strcmp (note
->namedata
, "LINUX") == 0)
7995 return elfcore_grok_prxfpreg (abfd
, note
);
8000 if (note
->namesz
== 6
8001 && strcmp (note
->namedata
, "LINUX") == 0)
8002 return elfcore_grok_ppc_vmx (abfd
, note
);
8007 if (note
->namesz
== 6
8008 && strcmp (note
->namedata
, "LINUX") == 0)
8009 return elfcore_grok_ppc_vsx (abfd
, note
);
8013 case NT_S390_HIGH_GPRS
:
8014 if (note
->namesz
== 6
8015 && strcmp (note
->namedata
, "LINUX") == 0)
8016 return elfcore_grok_s390_high_gprs (abfd
, note
);
8022 if (bed
->elf_backend_grok_psinfo
)
8023 if ((*bed
->elf_backend_grok_psinfo
) (abfd
, note
))
8025 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
8026 return elfcore_grok_psinfo (abfd
, note
);
8033 asection
*sect
= bfd_make_section_anyway_with_flags (abfd
, ".auxv",
8038 sect
->size
= note
->descsz
;
8039 sect
->filepos
= note
->descpos
;
8040 sect
->alignment_power
= 1 + bfd_get_arch_size (abfd
) / 32;
8048 elfobj_grok_gnu_build_id (bfd
*abfd
, Elf_Internal_Note
*note
)
8050 elf_tdata (abfd
)->build_id_size
= note
->descsz
;
8051 elf_tdata (abfd
)->build_id
= (bfd_byte
*) bfd_alloc (abfd
, note
->descsz
);
8052 if (elf_tdata (abfd
)->build_id
== NULL
)
8055 memcpy (elf_tdata (abfd
)->build_id
, note
->descdata
, note
->descsz
);
8061 elfobj_grok_gnu_note (bfd
*abfd
, Elf_Internal_Note
*note
)
8068 case NT_GNU_BUILD_ID
:
8069 return elfobj_grok_gnu_build_id (abfd
, note
);
8074 elfcore_netbsd_get_lwpid (Elf_Internal_Note
*note
, int *lwpidp
)
8078 cp
= strchr (note
->namedata
, '@');
8081 *lwpidp
= atoi(cp
+ 1);
8088 elfcore_grok_netbsd_procinfo (bfd
*abfd
, Elf_Internal_Note
*note
)
8090 /* Signal number at offset 0x08. */
8091 elf_tdata (abfd
)->core_signal
8092 = bfd_h_get_32 (abfd
, (bfd_byte
*) note
->descdata
+ 0x08);
8094 /* Process ID at offset 0x50. */
8095 elf_tdata (abfd
)->core_pid
8096 = bfd_h_get_32 (abfd
, (bfd_byte
*) note
->descdata
+ 0x50);
8098 /* Command name at 0x7c (max 32 bytes, including nul). */
8099 elf_tdata (abfd
)->core_command
8100 = _bfd_elfcore_strndup (abfd
, note
->descdata
+ 0x7c, 31);
8102 return elfcore_make_note_pseudosection (abfd
, ".note.netbsdcore.procinfo",
8107 elfcore_grok_netbsd_note (bfd
*abfd
, Elf_Internal_Note
*note
)
8111 if (elfcore_netbsd_get_lwpid (note
, &lwp
))
8112 elf_tdata (abfd
)->core_lwpid
= lwp
;
8114 if (note
->type
== NT_NETBSDCORE_PROCINFO
)
8116 /* NetBSD-specific core "procinfo". Note that we expect to
8117 find this note before any of the others, which is fine,
8118 since the kernel writes this note out first when it
8119 creates a core file. */
8121 return elfcore_grok_netbsd_procinfo (abfd
, note
);
8124 /* As of Jan 2002 there are no other machine-independent notes
8125 defined for NetBSD core files. If the note type is less
8126 than the start of the machine-dependent note types, we don't
8129 if (note
->type
< NT_NETBSDCORE_FIRSTMACH
)
8133 switch (bfd_get_arch (abfd
))
8135 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
8136 PT_GETFPREGS == mach+2. */
8138 case bfd_arch_alpha
:
8139 case bfd_arch_sparc
:
8142 case NT_NETBSDCORE_FIRSTMACH
+0:
8143 return elfcore_make_note_pseudosection (abfd
, ".reg", note
);
8145 case NT_NETBSDCORE_FIRSTMACH
+2:
8146 return elfcore_make_note_pseudosection (abfd
, ".reg2", note
);
8152 /* On all other arch's, PT_GETREGS == mach+1 and
8153 PT_GETFPREGS == mach+3. */
8158 case NT_NETBSDCORE_FIRSTMACH
+1:
8159 return elfcore_make_note_pseudosection (abfd
, ".reg", note
);
8161 case NT_NETBSDCORE_FIRSTMACH
+3:
8162 return elfcore_make_note_pseudosection (abfd
, ".reg2", note
);
8172 elfcore_grok_openbsd_procinfo (bfd
*abfd
, Elf_Internal_Note
*note
)
8174 /* Signal number at offset 0x08. */
8175 elf_tdata (abfd
)->core_signal
8176 = bfd_h_get_32 (abfd
, (bfd_byte
*) note
->descdata
+ 0x08);
8178 /* Process ID at offset 0x20. */
8179 elf_tdata (abfd
)->core_pid
8180 = bfd_h_get_32 (abfd
, (bfd_byte
*) note
->descdata
+ 0x20);
8182 /* Command name at 0x48 (max 32 bytes, including nul). */
8183 elf_tdata (abfd
)->core_command
8184 = _bfd_elfcore_strndup (abfd
, note
->descdata
+ 0x48, 31);
8190 elfcore_grok_openbsd_note (bfd
*abfd
, Elf_Internal_Note
*note
)
8192 if (note
->type
== NT_OPENBSD_PROCINFO
)
8193 return elfcore_grok_openbsd_procinfo (abfd
, note
);
8195 if (note
->type
== NT_OPENBSD_REGS
)
8196 return elfcore_make_note_pseudosection (abfd
, ".reg", note
);
8198 if (note
->type
== NT_OPENBSD_FPREGS
)
8199 return elfcore_make_note_pseudosection (abfd
, ".reg2", note
);
8201 if (note
->type
== NT_OPENBSD_XFPREGS
)
8202 return elfcore_make_note_pseudosection (abfd
, ".reg-xfp", note
);
8204 if (note
->type
== NT_OPENBSD_AUXV
)
8206 asection
*sect
= bfd_make_section_anyway_with_flags (abfd
, ".auxv",
8211 sect
->size
= note
->descsz
;
8212 sect
->filepos
= note
->descpos
;
8213 sect
->alignment_power
= 1 + bfd_get_arch_size (abfd
) / 32;
8218 if (note
->type
== NT_OPENBSD_WCOOKIE
)
8220 asection
*sect
= bfd_make_section_anyway_with_flags (abfd
, ".wcookie",
8225 sect
->size
= note
->descsz
;
8226 sect
->filepos
= note
->descpos
;
8227 sect
->alignment_power
= 1 + bfd_get_arch_size (abfd
) / 32;
8236 elfcore_grok_nto_status (bfd
*abfd
, Elf_Internal_Note
*note
, long *tid
)
8238 void *ddata
= note
->descdata
;
8245 /* nto_procfs_status 'pid' field is at offset 0. */
8246 elf_tdata (abfd
)->core_pid
= bfd_get_32 (abfd
, (bfd_byte
*) ddata
);
8248 /* nto_procfs_status 'tid' field is at offset 4. Pass it back. */
8249 *tid
= bfd_get_32 (abfd
, (bfd_byte
*) ddata
+ 4);
8251 /* nto_procfs_status 'flags' field is at offset 8. */
8252 flags
= bfd_get_32 (abfd
, (bfd_byte
*) ddata
+ 8);
8254 /* nto_procfs_status 'what' field is at offset 14. */
8255 if ((sig
= bfd_get_16 (abfd
, (bfd_byte
*) ddata
+ 14)) > 0)
8257 elf_tdata (abfd
)->core_signal
= sig
;
8258 elf_tdata (abfd
)->core_lwpid
= *tid
;
8261 /* _DEBUG_FLAG_CURTID (current thread) is 0x80. Some cores
8262 do not come from signals so we make sure we set the current
8263 thread just in case. */
8264 if (flags
& 0x00000080)
8265 elf_tdata (abfd
)->core_lwpid
= *tid
;
8267 /* Make a ".qnx_core_status/%d" section. */
8268 sprintf (buf
, ".qnx_core_status/%ld", *tid
);
8270 name
= (char *) bfd_alloc (abfd
, strlen (buf
) + 1);
8275 sect
= bfd_make_section_anyway_with_flags (abfd
, name
, SEC_HAS_CONTENTS
);
8279 sect
->size
= note
->descsz
;
8280 sect
->filepos
= note
->descpos
;
8281 sect
->alignment_power
= 2;
8283 return (elfcore_maybe_make_sect (abfd
, ".qnx_core_status", sect
));
8287 elfcore_grok_nto_regs (bfd
*abfd
,
8288 Elf_Internal_Note
*note
,
8296 /* Make a "(base)/%d" section. */
8297 sprintf (buf
, "%s/%ld", base
, tid
);
8299 name
= (char *) bfd_alloc (abfd
, strlen (buf
) + 1);
8304 sect
= bfd_make_section_anyway_with_flags (abfd
, name
, SEC_HAS_CONTENTS
);
8308 sect
->size
= note
->descsz
;
8309 sect
->filepos
= note
->descpos
;
8310 sect
->alignment_power
= 2;
8312 /* This is the current thread. */
8313 if (elf_tdata (abfd
)->core_lwpid
== tid
)
8314 return elfcore_maybe_make_sect (abfd
, base
, sect
);
8319 #define BFD_QNT_CORE_INFO 7
8320 #define BFD_QNT_CORE_STATUS 8
8321 #define BFD_QNT_CORE_GREG 9
8322 #define BFD_QNT_CORE_FPREG 10
8325 elfcore_grok_nto_note (bfd
*abfd
, Elf_Internal_Note
*note
)
8327 /* Every GREG section has a STATUS section before it. Store the
8328 tid from the previous call to pass down to the next gregs
8330 static long tid
= 1;
8334 case BFD_QNT_CORE_INFO
:
8335 return elfcore_make_note_pseudosection (abfd
, ".qnx_core_info", note
);
8336 case BFD_QNT_CORE_STATUS
:
8337 return elfcore_grok_nto_status (abfd
, note
, &tid
);
8338 case BFD_QNT_CORE_GREG
:
8339 return elfcore_grok_nto_regs (abfd
, note
, tid
, ".reg");
8340 case BFD_QNT_CORE_FPREG
:
8341 return elfcore_grok_nto_regs (abfd
, note
, tid
, ".reg2");
8348 elfcore_grok_spu_note (bfd
*abfd
, Elf_Internal_Note
*note
)
8354 /* Use note name as section name. */
8356 name
= (char *) bfd_alloc (abfd
, len
);
8359 memcpy (name
, note
->namedata
, len
);
8360 name
[len
- 1] = '\0';
8362 sect
= bfd_make_section_anyway_with_flags (abfd
, name
, SEC_HAS_CONTENTS
);
8366 sect
->size
= note
->descsz
;
8367 sect
->filepos
= note
->descpos
;
8368 sect
->alignment_power
= 1;
8373 /* Function: elfcore_write_note
8376 buffer to hold note, and current size of buffer
8380 size of data for note
8382 Writes note to end of buffer. ELF64 notes are written exactly as
8383 for ELF32, despite the current (as of 2006) ELF gabi specifying
8384 that they ought to have 8-byte namesz and descsz field, and have
8385 8-byte alignment. Other writers, eg. Linux kernel, do the same.
8388 Pointer to realloc'd buffer, *BUFSIZ updated. */
8391 elfcore_write_note (bfd
*abfd
,
8399 Elf_External_Note
*xnp
;
8406 namesz
= strlen (name
) + 1;
8408 newspace
= 12 + ((namesz
+ 3) & -4) + ((size
+ 3) & -4);
8410 buf
= (char *) realloc (buf
, *bufsiz
+ newspace
);
8413 dest
= buf
+ *bufsiz
;
8414 *bufsiz
+= newspace
;
8415 xnp
= (Elf_External_Note
*) dest
;
8416 H_PUT_32 (abfd
, namesz
, xnp
->namesz
);
8417 H_PUT_32 (abfd
, size
, xnp
->descsz
);
8418 H_PUT_32 (abfd
, type
, xnp
->type
);
8422 memcpy (dest
, name
, namesz
);
8430 memcpy (dest
, input
, size
);
8440 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
8442 elfcore_write_prpsinfo (bfd
*abfd
,
8448 const char *note_name
= "CORE";
8449 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
8451 if (bed
->elf_backend_write_core_note
!= NULL
)
8454 ret
= (*bed
->elf_backend_write_core_note
) (abfd
, buf
, bufsiz
,
8455 NT_PRPSINFO
, fname
, psargs
);
8460 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
8461 if (bed
->s
->elfclass
== ELFCLASS32
)
8463 #if defined (HAVE_PSINFO32_T)
8465 int note_type
= NT_PSINFO
;
8468 int note_type
= NT_PRPSINFO
;
8471 memset (&data
, 0, sizeof (data
));
8472 strncpy (data
.pr_fname
, fname
, sizeof (data
.pr_fname
));
8473 strncpy (data
.pr_psargs
, psargs
, sizeof (data
.pr_psargs
));
8474 return elfcore_write_note (abfd
, buf
, bufsiz
,
8475 note_name
, note_type
, &data
, sizeof (data
));
8480 #if defined (HAVE_PSINFO_T)
8482 int note_type
= NT_PSINFO
;
8485 int note_type
= NT_PRPSINFO
;
8488 memset (&data
, 0, sizeof (data
));
8489 strncpy (data
.pr_fname
, fname
, sizeof (data
.pr_fname
));
8490 strncpy (data
.pr_psargs
, psargs
, sizeof (data
.pr_psargs
));
8491 return elfcore_write_note (abfd
, buf
, bufsiz
,
8492 note_name
, note_type
, &data
, sizeof (data
));
8495 #endif /* PSINFO_T or PRPSINFO_T */
8497 #if defined (HAVE_PRSTATUS_T)
8499 elfcore_write_prstatus (bfd
*abfd
,
8506 const char *note_name
= "CORE";
8507 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
8509 if (bed
->elf_backend_write_core_note
!= NULL
)
8512 ret
= (*bed
->elf_backend_write_core_note
) (abfd
, buf
, bufsiz
,
8514 pid
, cursig
, gregs
);
8519 #if defined (HAVE_PRSTATUS32_T)
8520 if (bed
->s
->elfclass
== ELFCLASS32
)
8522 prstatus32_t prstat
;
8524 memset (&prstat
, 0, sizeof (prstat
));
8525 prstat
.pr_pid
= pid
;
8526 prstat
.pr_cursig
= cursig
;
8527 memcpy (&prstat
.pr_reg
, gregs
, sizeof (prstat
.pr_reg
));
8528 return elfcore_write_note (abfd
, buf
, bufsiz
, note_name
,
8529 NT_PRSTATUS
, &prstat
, sizeof (prstat
));
8536 memset (&prstat
, 0, sizeof (prstat
));
8537 prstat
.pr_pid
= pid
;
8538 prstat
.pr_cursig
= cursig
;
8539 memcpy (&prstat
.pr_reg
, gregs
, sizeof (prstat
.pr_reg
));
8540 return elfcore_write_note (abfd
, buf
, bufsiz
, note_name
,
8541 NT_PRSTATUS
, &prstat
, sizeof (prstat
));
8544 #endif /* HAVE_PRSTATUS_T */
8546 #if defined (HAVE_LWPSTATUS_T)
8548 elfcore_write_lwpstatus (bfd
*abfd
,
8555 lwpstatus_t lwpstat
;
8556 const char *note_name
= "CORE";
8558 memset (&lwpstat
, 0, sizeof (lwpstat
));
8559 lwpstat
.pr_lwpid
= pid
>> 16;
8560 lwpstat
.pr_cursig
= cursig
;
8561 #if defined (HAVE_LWPSTATUS_T_PR_REG)
8562 memcpy (lwpstat
.pr_reg
, gregs
, sizeof (lwpstat
.pr_reg
));
8563 #elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
8565 memcpy (lwpstat
.pr_context
.uc_mcontext
.gregs
,
8566 gregs
, sizeof (lwpstat
.pr_context
.uc_mcontext
.gregs
));
8568 memcpy (lwpstat
.pr_context
.uc_mcontext
.__gregs
,
8569 gregs
, sizeof (lwpstat
.pr_context
.uc_mcontext
.__gregs
));
8572 return elfcore_write_note (abfd
, buf
, bufsiz
, note_name
,
8573 NT_LWPSTATUS
, &lwpstat
, sizeof (lwpstat
));
8575 #endif /* HAVE_LWPSTATUS_T */
8577 #if defined (HAVE_PSTATUS_T)
8579 elfcore_write_pstatus (bfd
*abfd
,
8583 int cursig ATTRIBUTE_UNUSED
,
8584 const void *gregs ATTRIBUTE_UNUSED
)
8586 const char *note_name
= "CORE";
8587 #if defined (HAVE_PSTATUS32_T)
8588 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
8590 if (bed
->s
->elfclass
== ELFCLASS32
)
8594 memset (&pstat
, 0, sizeof (pstat
));
8595 pstat
.pr_pid
= pid
& 0xffff;
8596 buf
= elfcore_write_note (abfd
, buf
, bufsiz
, note_name
,
8597 NT_PSTATUS
, &pstat
, sizeof (pstat
));
8605 memset (&pstat
, 0, sizeof (pstat
));
8606 pstat
.pr_pid
= pid
& 0xffff;
8607 buf
= elfcore_write_note (abfd
, buf
, bufsiz
, note_name
,
8608 NT_PSTATUS
, &pstat
, sizeof (pstat
));
8612 #endif /* HAVE_PSTATUS_T */
8615 elfcore_write_prfpreg (bfd
*abfd
,
8621 const char *note_name
= "CORE";
8622 return elfcore_write_note (abfd
, buf
, bufsiz
,
8623 note_name
, NT_FPREGSET
, fpregs
, size
);
8627 elfcore_write_prxfpreg (bfd
*abfd
,
8630 const void *xfpregs
,
8633 char *note_name
= "LINUX";
8634 return elfcore_write_note (abfd
, buf
, bufsiz
,
8635 note_name
, NT_PRXFPREG
, xfpregs
, size
);
8639 elfcore_write_ppc_vmx (bfd
*abfd
,
8642 const void *ppc_vmx
,
8645 char *note_name
= "LINUX";
8646 return elfcore_write_note (abfd
, buf
, bufsiz
,
8647 note_name
, NT_PPC_VMX
, ppc_vmx
, size
);
8651 elfcore_write_ppc_vsx (bfd
*abfd
,
8654 const void *ppc_vsx
,
8657 char *note_name
= "LINUX";
8658 return elfcore_write_note (abfd
, buf
, bufsiz
,
8659 note_name
, NT_PPC_VSX
, ppc_vsx
, size
);
8663 elfcore_write_s390_high_gprs (bfd
*abfd
,
8666 const void *s390_high_gprs
,
8669 char *note_name
= "LINUX";
8670 return elfcore_write_note (abfd
, buf
, bufsiz
,
8671 note_name
, NT_S390_HIGH_GPRS
,
8672 s390_high_gprs
, size
);
8676 elfcore_write_register_note (bfd
*abfd
,
8679 const char *section
,
8683 if (strcmp (section
, ".reg2") == 0)
8684 return elfcore_write_prfpreg (abfd
, buf
, bufsiz
, data
, size
);
8685 if (strcmp (section
, ".reg-xfp") == 0)
8686 return elfcore_write_prxfpreg (abfd
, buf
, bufsiz
, data
, size
);
8687 if (strcmp (section
, ".reg-ppc-vmx") == 0)
8688 return elfcore_write_ppc_vmx (abfd
, buf
, bufsiz
, data
, size
);
8689 if (strcmp (section
, ".reg-ppc-vsx") == 0)
8690 return elfcore_write_ppc_vsx (abfd
, buf
, bufsiz
, data
, size
);
8691 if (strcmp (section
, ".reg-s390-high-gprs") == 0)
8692 return elfcore_write_s390_high_gprs (abfd
, buf
, bufsiz
, data
, size
);
8697 elf_parse_notes (bfd
*abfd
, char *buf
, size_t size
, file_ptr offset
)
8702 while (p
< buf
+ size
)
8704 /* FIXME: bad alignment assumption. */
8705 Elf_External_Note
*xnp
= (Elf_External_Note
*) p
;
8706 Elf_Internal_Note in
;
8708 if (offsetof (Elf_External_Note
, name
) > buf
- p
+ size
)
8711 in
.type
= H_GET_32 (abfd
, xnp
->type
);
8713 in
.namesz
= H_GET_32 (abfd
, xnp
->namesz
);
8714 in
.namedata
= xnp
->name
;
8715 if (in
.namesz
> buf
- in
.namedata
+ size
)
8718 in
.descsz
= H_GET_32 (abfd
, xnp
->descsz
);
8719 in
.descdata
= in
.namedata
+ BFD_ALIGN (in
.namesz
, 4);
8720 in
.descpos
= offset
+ (in
.descdata
- buf
);
8722 && (in
.descdata
>= buf
+ size
8723 || in
.descsz
> buf
- in
.descdata
+ size
))
8726 switch (bfd_get_format (abfd
))
8732 if (CONST_STRNEQ (in
.namedata
, "NetBSD-CORE"))
8734 if (! elfcore_grok_netbsd_note (abfd
, &in
))
8737 else if (CONST_STRNEQ (in
.namedata
, "OpenBSD"))
8739 if (! elfcore_grok_openbsd_note (abfd
, &in
))
8742 else if (CONST_STRNEQ (in
.namedata
, "QNX"))
8744 if (! elfcore_grok_nto_note (abfd
, &in
))
8747 else if (CONST_STRNEQ (in
.namedata
, "SPU/"))
8749 if (! elfcore_grok_spu_note (abfd
, &in
))
8754 if (! elfcore_grok_note (abfd
, &in
))
8760 if (in
.namesz
== sizeof "GNU" && strcmp (in
.namedata
, "GNU") == 0)
8762 if (! elfobj_grok_gnu_note (abfd
, &in
))
8768 p
= in
.descdata
+ BFD_ALIGN (in
.descsz
, 4);
8775 elf_read_notes (bfd
*abfd
, file_ptr offset
, bfd_size_type size
)
8782 if (bfd_seek (abfd
, offset
, SEEK_SET
) != 0)
8785 buf
= (char *) bfd_malloc (size
);
8789 if (bfd_bread (buf
, size
, abfd
) != size
8790 || !elf_parse_notes (abfd
, buf
, size
, offset
))
8800 /* Providing external access to the ELF program header table. */
8802 /* Return an upper bound on the number of bytes required to store a
8803 copy of ABFD's program header table entries. Return -1 if an error
8804 occurs; bfd_get_error will return an appropriate code. */
8807 bfd_get_elf_phdr_upper_bound (bfd
*abfd
)
8809 if (abfd
->xvec
->flavour
!= bfd_target_elf_flavour
)
8811 bfd_set_error (bfd_error_wrong_format
);
8815 return elf_elfheader (abfd
)->e_phnum
* sizeof (Elf_Internal_Phdr
);
8818 /* Copy ABFD's program header table entries to *PHDRS. The entries
8819 will be stored as an array of Elf_Internal_Phdr structures, as
8820 defined in include/elf/internal.h. To find out how large the
8821 buffer needs to be, call bfd_get_elf_phdr_upper_bound.
8823 Return the number of program header table entries read, or -1 if an
8824 error occurs; bfd_get_error will return an appropriate code. */
8827 bfd_get_elf_phdrs (bfd
*abfd
, void *phdrs
)
8831 if (abfd
->xvec
->flavour
!= bfd_target_elf_flavour
)
8833 bfd_set_error (bfd_error_wrong_format
);
8837 num_phdrs
= elf_elfheader (abfd
)->e_phnum
;
8838 memcpy (phdrs
, elf_tdata (abfd
)->phdr
,
8839 num_phdrs
* sizeof (Elf_Internal_Phdr
));
8844 enum elf_reloc_type_class
8845 _bfd_elf_reloc_type_class (const Elf_Internal_Rela
*rela ATTRIBUTE_UNUSED
)
8847 return reloc_class_normal
;
8850 /* For RELA architectures, return the relocation value for a
8851 relocation against a local symbol. */
8854 _bfd_elf_rela_local_sym (bfd
*abfd
,
8855 Elf_Internal_Sym
*sym
,
8857 Elf_Internal_Rela
*rel
)
8859 asection
*sec
= *psec
;
8862 relocation
= (sec
->output_section
->vma
8863 + sec
->output_offset
8865 if ((sec
->flags
& SEC_MERGE
)
8866 && ELF_ST_TYPE (sym
->st_info
) == STT_SECTION
8867 && sec
->sec_info_type
== ELF_INFO_TYPE_MERGE
)
8870 _bfd_merged_section_offset (abfd
, psec
,
8871 elf_section_data (sec
)->sec_info
,
8872 sym
->st_value
+ rel
->r_addend
);
8875 /* If we have changed the section, and our original section is
8876 marked with SEC_EXCLUDE, it means that the original
8877 SEC_MERGE section has been completely subsumed in some
8878 other SEC_MERGE section. In this case, we need to leave
8879 some info around for --emit-relocs. */
8880 if ((sec
->flags
& SEC_EXCLUDE
) != 0)
8881 sec
->kept_section
= *psec
;
8884 rel
->r_addend
-= relocation
;
8885 rel
->r_addend
+= sec
->output_section
->vma
+ sec
->output_offset
;
8891 _bfd_elf_rel_local_sym (bfd
*abfd
,
8892 Elf_Internal_Sym
*sym
,
8896 asection
*sec
= *psec
;
8898 if (sec
->sec_info_type
!= ELF_INFO_TYPE_MERGE
)
8899 return sym
->st_value
+ addend
;
8901 return _bfd_merged_section_offset (abfd
, psec
,
8902 elf_section_data (sec
)->sec_info
,
8903 sym
->st_value
+ addend
);
8907 _bfd_elf_section_offset (bfd
*abfd
,
8908 struct bfd_link_info
*info
,
8912 switch (sec
->sec_info_type
)
8914 case ELF_INFO_TYPE_STABS
:
8915 return _bfd_stab_section_offset (sec
, elf_section_data (sec
)->sec_info
,
8917 case ELF_INFO_TYPE_EH_FRAME
:
8918 return _bfd_elf_eh_frame_section_offset (abfd
, info
, sec
, offset
);
8924 /* Create a new BFD as if by bfd_openr. Rather than opening a file,
8925 reconstruct an ELF file by reading the segments out of remote memory
8926 based on the ELF file header at EHDR_VMA and the ELF program headers it
8927 points to. If not null, *LOADBASEP is filled in with the difference
8928 between the VMAs from which the segments were read, and the VMAs the
8929 file headers (and hence BFD's idea of each section's VMA) put them at.
8931 The function TARGET_READ_MEMORY is called to copy LEN bytes from the
8932 remote memory at target address VMA into the local buffer at MYADDR; it
8933 should return zero on success or an `errno' code on failure. TEMPL must
8934 be a BFD for an ELF target with the word size and byte order found in
8935 the remote memory. */
8938 bfd_elf_bfd_from_remote_memory
8942 int (*target_read_memory
) (bfd_vma
, bfd_byte
*, int))
8944 return (*get_elf_backend_data (templ
)->elf_backend_bfd_from_remote_memory
)
8945 (templ
, ehdr_vma
, loadbasep
, target_read_memory
);
8949 _bfd_elf_get_synthetic_symtab (bfd
*abfd
,
8950 long symcount ATTRIBUTE_UNUSED
,
8951 asymbol
**syms ATTRIBUTE_UNUSED
,
8956 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
8959 const char *relplt_name
;
8960 bfd_boolean (*slurp_relocs
) (bfd
*, asection
*, asymbol
**, bfd_boolean
);
8964 Elf_Internal_Shdr
*hdr
;
8970 if ((abfd
->flags
& (DYNAMIC
| EXEC_P
)) == 0)
8973 if (dynsymcount
<= 0)
8976 if (!bed
->plt_sym_val
)
8979 relplt_name
= bed
->relplt_name
;
8980 if (relplt_name
== NULL
)
8981 relplt_name
= bed
->rela_plts_and_copies_p
? ".rela.plt" : ".rel.plt";
8982 relplt
= bfd_get_section_by_name (abfd
, relplt_name
);
8986 hdr
= &elf_section_data (relplt
)->this_hdr
;
8987 if (hdr
->sh_link
!= elf_dynsymtab (abfd
)
8988 || (hdr
->sh_type
!= SHT_REL
&& hdr
->sh_type
!= SHT_RELA
))
8991 plt
= bfd_get_section_by_name (abfd
, ".plt");
8995 slurp_relocs
= get_elf_backend_data (abfd
)->s
->slurp_reloc_table
;
8996 if (! (*slurp_relocs
) (abfd
, relplt
, dynsyms
, TRUE
))
8999 count
= relplt
->size
/ hdr
->sh_entsize
;
9000 size
= count
* sizeof (asymbol
);
9001 p
= relplt
->relocation
;
9002 for (i
= 0; i
< count
; i
++, p
+= bed
->s
->int_rels_per_ext_rel
)
9004 size
+= strlen ((*p
->sym_ptr_ptr
)->name
) + sizeof ("@plt");
9008 size
+= sizeof ("+0x") - 1 + 8 + 8 * (bed
->s
->elfclass
== ELFCLASS64
);
9010 size
+= sizeof ("+0x") - 1 + 8;
9015 s
= *ret
= (asymbol
*) bfd_malloc (size
);
9019 names
= (char *) (s
+ count
);
9020 p
= relplt
->relocation
;
9022 for (i
= 0; i
< count
; i
++, p
+= bed
->s
->int_rels_per_ext_rel
)
9027 addr
= bed
->plt_sym_val (i
, plt
, p
);
9028 if (addr
== (bfd_vma
) -1)
9031 *s
= **p
->sym_ptr_ptr
;
9032 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
9033 we are defining a symbol, ensure one of them is set. */
9034 if ((s
->flags
& BSF_LOCAL
) == 0)
9035 s
->flags
|= BSF_GLOBAL
;
9036 s
->flags
|= BSF_SYNTHETIC
;
9038 s
->value
= addr
- plt
->vma
;
9041 len
= strlen ((*p
->sym_ptr_ptr
)->name
);
9042 memcpy (names
, (*p
->sym_ptr_ptr
)->name
, len
);
9048 memcpy (names
, "+0x", sizeof ("+0x") - 1);
9049 names
+= sizeof ("+0x") - 1;
9050 bfd_sprintf_vma (abfd
, buf
, p
->addend
);
9051 for (a
= buf
; *a
== '0'; ++a
)
9054 memcpy (names
, a
, len
);
9057 memcpy (names
, "@plt", sizeof ("@plt"));
9058 names
+= sizeof ("@plt");
9065 /* It is only used by x86-64 so far. */
9066 asection _bfd_elf_large_com_section
9067 = BFD_FAKE_SECTION (_bfd_elf_large_com_section
,
9068 SEC_IS_COMMON
, NULL
, "LARGE_COMMON", 0);
9071 _bfd_elf_set_osabi (bfd
* abfd
,
9072 struct bfd_link_info
* link_info ATTRIBUTE_UNUSED
)
9074 Elf_Internal_Ehdr
* i_ehdrp
; /* ELF file header, internal form. */
9076 i_ehdrp
= elf_elfheader (abfd
);
9078 i_ehdrp
->e_ident
[EI_OSABI
] = get_elf_backend_data (abfd
)->elf_osabi
;
9080 /* To make things simpler for the loader on Linux systems we set the
9081 osabi field to ELFOSABI_LINUX if the binary contains symbols of
9082 the STT_GNU_IFUNC type. */
9083 if (i_ehdrp
->e_ident
[EI_OSABI
] == ELFOSABI_NONE
9084 && elf_tdata (abfd
)->has_ifunc_symbols
)
9085 i_ehdrp
->e_ident
[EI_OSABI
] = ELFOSABI_LINUX
;
9089 /* Return TRUE for ELF symbol types that represent functions.
9090 This is the default version of this function, which is sufficient for
9091 most targets. It returns true if TYPE is STT_FUNC or STT_GNU_IFUNC. */
9094 _bfd_elf_is_function_type (unsigned int type
)
9096 return (type
== STT_FUNC
9097 || type
== STT_GNU_IFUNC
);