265150d5114acf06459a07194c4db8e9c506f66f
[deliverable/binutils-gdb.git] / bfd / elf.c
1 /* ELF executable support for BFD.
2
3 Copyright (C) 1993-2019 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
21
22
23 /*
24 SECTION
25 ELF backends
26
27 BFD support for ELF formats is being worked on.
28 Currently, the best supported back ends are for sparc and i386
29 (running svr4 or Solaris 2).
30
31 Documentation of the internals of the support code still needs
32 to be written. The code is changing quickly enough that we
33 haven't bothered yet. */
34
35 /* For sparc64-cross-sparc32. */
36 #define _SYSCALL32
37 #include "sysdep.h"
38 #include <limits.h>
39 #include "bfd.h"
40 #include "bfdlink.h"
41 #include "libbfd.h"
42 #define ARCH_SIZE 0
43 #include "elf-bfd.h"
44 #include "libiberty.h"
45 #include "safe-ctype.h"
46 #include "elf-linux-core.h"
47
48 #ifdef CORE_HEADER
49 #include CORE_HEADER
50 #endif
51
52 static int elf_sort_sections (const void *, const void *);
53 static bfd_boolean assign_file_positions_except_relocs (bfd *, struct bfd_link_info *);
54 static bfd_boolean prep_headers (bfd *);
55 static bfd_boolean swap_out_syms (bfd *, struct elf_strtab_hash **, int) ;
56 static bfd_boolean elf_read_notes (bfd *, file_ptr, bfd_size_type,
57 size_t align) ;
58 static bfd_boolean elf_parse_notes (bfd *abfd, char *buf, size_t size,
59 file_ptr offset, size_t align);
60
61 /* Swap version information in and out. The version information is
62 currently size independent. If that ever changes, this code will
63 need to move into elfcode.h. */
64
65 /* Swap in a Verdef structure. */
66
67 void
68 _bfd_elf_swap_verdef_in (bfd *abfd,
69 const Elf_External_Verdef *src,
70 Elf_Internal_Verdef *dst)
71 {
72 dst->vd_version = H_GET_16 (abfd, src->vd_version);
73 dst->vd_flags = H_GET_16 (abfd, src->vd_flags);
74 dst->vd_ndx = H_GET_16 (abfd, src->vd_ndx);
75 dst->vd_cnt = H_GET_16 (abfd, src->vd_cnt);
76 dst->vd_hash = H_GET_32 (abfd, src->vd_hash);
77 dst->vd_aux = H_GET_32 (abfd, src->vd_aux);
78 dst->vd_next = H_GET_32 (abfd, src->vd_next);
79 }
80
81 /* Swap out a Verdef structure. */
82
83 void
84 _bfd_elf_swap_verdef_out (bfd *abfd,
85 const Elf_Internal_Verdef *src,
86 Elf_External_Verdef *dst)
87 {
88 H_PUT_16 (abfd, src->vd_version, dst->vd_version);
89 H_PUT_16 (abfd, src->vd_flags, dst->vd_flags);
90 H_PUT_16 (abfd, src->vd_ndx, dst->vd_ndx);
91 H_PUT_16 (abfd, src->vd_cnt, dst->vd_cnt);
92 H_PUT_32 (abfd, src->vd_hash, dst->vd_hash);
93 H_PUT_32 (abfd, src->vd_aux, dst->vd_aux);
94 H_PUT_32 (abfd, src->vd_next, dst->vd_next);
95 }
96
97 /* Swap in a Verdaux structure. */
98
99 void
100 _bfd_elf_swap_verdaux_in (bfd *abfd,
101 const Elf_External_Verdaux *src,
102 Elf_Internal_Verdaux *dst)
103 {
104 dst->vda_name = H_GET_32 (abfd, src->vda_name);
105 dst->vda_next = H_GET_32 (abfd, src->vda_next);
106 }
107
108 /* Swap out a Verdaux structure. */
109
110 void
111 _bfd_elf_swap_verdaux_out (bfd *abfd,
112 const Elf_Internal_Verdaux *src,
113 Elf_External_Verdaux *dst)
114 {
115 H_PUT_32 (abfd, src->vda_name, dst->vda_name);
116 H_PUT_32 (abfd, src->vda_next, dst->vda_next);
117 }
118
119 /* Swap in a Verneed structure. */
120
121 void
122 _bfd_elf_swap_verneed_in (bfd *abfd,
123 const Elf_External_Verneed *src,
124 Elf_Internal_Verneed *dst)
125 {
126 dst->vn_version = H_GET_16 (abfd, src->vn_version);
127 dst->vn_cnt = H_GET_16 (abfd, src->vn_cnt);
128 dst->vn_file = H_GET_32 (abfd, src->vn_file);
129 dst->vn_aux = H_GET_32 (abfd, src->vn_aux);
130 dst->vn_next = H_GET_32 (abfd, src->vn_next);
131 }
132
133 /* Swap out a Verneed structure. */
134
135 void
136 _bfd_elf_swap_verneed_out (bfd *abfd,
137 const Elf_Internal_Verneed *src,
138 Elf_External_Verneed *dst)
139 {
140 H_PUT_16 (abfd, src->vn_version, dst->vn_version);
141 H_PUT_16 (abfd, src->vn_cnt, dst->vn_cnt);
142 H_PUT_32 (abfd, src->vn_file, dst->vn_file);
143 H_PUT_32 (abfd, src->vn_aux, dst->vn_aux);
144 H_PUT_32 (abfd, src->vn_next, dst->vn_next);
145 }
146
147 /* Swap in a Vernaux structure. */
148
149 void
150 _bfd_elf_swap_vernaux_in (bfd *abfd,
151 const Elf_External_Vernaux *src,
152 Elf_Internal_Vernaux *dst)
153 {
154 dst->vna_hash = H_GET_32 (abfd, src->vna_hash);
155 dst->vna_flags = H_GET_16 (abfd, src->vna_flags);
156 dst->vna_other = H_GET_16 (abfd, src->vna_other);
157 dst->vna_name = H_GET_32 (abfd, src->vna_name);
158 dst->vna_next = H_GET_32 (abfd, src->vna_next);
159 }
160
161 /* Swap out a Vernaux structure. */
162
163 void
164 _bfd_elf_swap_vernaux_out (bfd *abfd,
165 const Elf_Internal_Vernaux *src,
166 Elf_External_Vernaux *dst)
167 {
168 H_PUT_32 (abfd, src->vna_hash, dst->vna_hash);
169 H_PUT_16 (abfd, src->vna_flags, dst->vna_flags);
170 H_PUT_16 (abfd, src->vna_other, dst->vna_other);
171 H_PUT_32 (abfd, src->vna_name, dst->vna_name);
172 H_PUT_32 (abfd, src->vna_next, dst->vna_next);
173 }
174
175 /* Swap in a Versym structure. */
176
177 void
178 _bfd_elf_swap_versym_in (bfd *abfd,
179 const Elf_External_Versym *src,
180 Elf_Internal_Versym *dst)
181 {
182 dst->vs_vers = H_GET_16 (abfd, src->vs_vers);
183 }
184
185 /* Swap out a Versym structure. */
186
187 void
188 _bfd_elf_swap_versym_out (bfd *abfd,
189 const Elf_Internal_Versym *src,
190 Elf_External_Versym *dst)
191 {
192 H_PUT_16 (abfd, src->vs_vers, dst->vs_vers);
193 }
194
195 /* Standard ELF hash function. Do not change this function; you will
196 cause invalid hash tables to be generated. */
197
198 unsigned long
199 bfd_elf_hash (const char *namearg)
200 {
201 const unsigned char *name = (const unsigned char *) namearg;
202 unsigned long h = 0;
203 unsigned long g;
204 int ch;
205
206 while ((ch = *name++) != '\0')
207 {
208 h = (h << 4) + ch;
209 if ((g = (h & 0xf0000000)) != 0)
210 {
211 h ^= g >> 24;
212 /* The ELF ABI says `h &= ~g', but this is equivalent in
213 this case and on some machines one insn instead of two. */
214 h ^= g;
215 }
216 }
217 return h & 0xffffffff;
218 }
219
220 /* DT_GNU_HASH hash function. Do not change this function; you will
221 cause invalid hash tables to be generated. */
222
223 unsigned long
224 bfd_elf_gnu_hash (const char *namearg)
225 {
226 const unsigned char *name = (const unsigned char *) namearg;
227 unsigned long h = 5381;
228 unsigned char ch;
229
230 while ((ch = *name++) != '\0')
231 h = (h << 5) + h + ch;
232 return h & 0xffffffff;
233 }
234
235 /* Create a tdata field OBJECT_SIZE bytes in length, zeroed out and with
236 the object_id field of an elf_obj_tdata field set to OBJECT_ID. */
237 bfd_boolean
238 bfd_elf_allocate_object (bfd *abfd,
239 size_t object_size,
240 enum elf_target_id object_id)
241 {
242 BFD_ASSERT (object_size >= sizeof (struct elf_obj_tdata));
243 abfd->tdata.any = bfd_zalloc (abfd, object_size);
244 if (abfd->tdata.any == NULL)
245 return FALSE;
246
247 elf_object_id (abfd) = object_id;
248 if (abfd->direction != read_direction)
249 {
250 struct output_elf_obj_tdata *o = bfd_zalloc (abfd, sizeof *o);
251 if (o == NULL)
252 return FALSE;
253 elf_tdata (abfd)->o = o;
254 elf_program_header_size (abfd) = (bfd_size_type) -1;
255 }
256 return TRUE;
257 }
258
259
260 bfd_boolean
261 bfd_elf_make_object (bfd *abfd)
262 {
263 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
264 return bfd_elf_allocate_object (abfd, sizeof (struct elf_obj_tdata),
265 bed->target_id);
266 }
267
268 bfd_boolean
269 bfd_elf_mkcorefile (bfd *abfd)
270 {
271 /* I think this can be done just like an object file. */
272 if (!abfd->xvec->_bfd_set_format[(int) bfd_object] (abfd))
273 return FALSE;
274 elf_tdata (abfd)->core = bfd_zalloc (abfd, sizeof (*elf_tdata (abfd)->core));
275 return elf_tdata (abfd)->core != NULL;
276 }
277
278 static char *
279 bfd_elf_get_str_section (bfd *abfd, unsigned int shindex)
280 {
281 Elf_Internal_Shdr **i_shdrp;
282 bfd_byte *shstrtab = NULL;
283 file_ptr offset;
284 bfd_size_type shstrtabsize;
285
286 i_shdrp = elf_elfsections (abfd);
287 if (i_shdrp == 0
288 || shindex >= elf_numsections (abfd)
289 || i_shdrp[shindex] == 0)
290 return NULL;
291
292 shstrtab = i_shdrp[shindex]->contents;
293 if (shstrtab == NULL)
294 {
295 /* No cached one, attempt to read, and cache what we read. */
296 offset = i_shdrp[shindex]->sh_offset;
297 shstrtabsize = i_shdrp[shindex]->sh_size;
298
299 /* Allocate and clear an extra byte at the end, to prevent crashes
300 in case the string table is not terminated. */
301 if (shstrtabsize + 1 <= 1
302 || shstrtabsize > bfd_get_file_size (abfd)
303 || bfd_seek (abfd, offset, SEEK_SET) != 0
304 || (shstrtab = (bfd_byte *) bfd_alloc (abfd, shstrtabsize + 1)) == NULL)
305 shstrtab = NULL;
306 else if (bfd_bread (shstrtab, shstrtabsize, abfd) != shstrtabsize)
307 {
308 if (bfd_get_error () != bfd_error_system_call)
309 bfd_set_error (bfd_error_file_truncated);
310 bfd_release (abfd, shstrtab);
311 shstrtab = NULL;
312 /* Once we've failed to read it, make sure we don't keep
313 trying. Otherwise, we'll keep allocating space for
314 the string table over and over. */
315 i_shdrp[shindex]->sh_size = 0;
316 }
317 else
318 shstrtab[shstrtabsize] = '\0';
319 i_shdrp[shindex]->contents = shstrtab;
320 }
321 return (char *) shstrtab;
322 }
323
324 char *
325 bfd_elf_string_from_elf_section (bfd *abfd,
326 unsigned int shindex,
327 unsigned int strindex)
328 {
329 Elf_Internal_Shdr *hdr;
330
331 if (strindex == 0)
332 return "";
333
334 if (elf_elfsections (abfd) == NULL || shindex >= elf_numsections (abfd))
335 return NULL;
336
337 hdr = elf_elfsections (abfd)[shindex];
338
339 if (hdr->contents == NULL)
340 {
341 if (hdr->sh_type != SHT_STRTAB && hdr->sh_type < SHT_LOOS)
342 {
343 /* PR 17512: file: f057ec89. */
344 /* xgettext:c-format */
345 _bfd_error_handler (_("%pB: attempt to load strings from"
346 " a non-string section (number %d)"),
347 abfd, shindex);
348 return NULL;
349 }
350
351 if (bfd_elf_get_str_section (abfd, shindex) == NULL)
352 return NULL;
353 }
354 else
355 {
356 /* PR 24273: The string section's contents may have already
357 been loaded elsewhere, eg because a corrupt file has the
358 string section index in the ELF header pointing at a group
359 section. So be paranoid, and test that the last byte of
360 the section is zero. */
361 if (hdr->sh_size == 0 || hdr->contents[hdr->sh_size - 1] != 0)
362 return NULL;
363 }
364
365 if (strindex >= hdr->sh_size)
366 {
367 unsigned int shstrndx = elf_elfheader(abfd)->e_shstrndx;
368 _bfd_error_handler
369 /* xgettext:c-format */
370 (_("%pB: invalid string offset %u >= %" PRIu64 " for section `%s'"),
371 abfd, strindex, (uint64_t) hdr->sh_size,
372 (shindex == shstrndx && strindex == hdr->sh_name
373 ? ".shstrtab"
374 : bfd_elf_string_from_elf_section (abfd, shstrndx, hdr->sh_name)));
375 return NULL;
376 }
377
378 return ((char *) hdr->contents) + strindex;
379 }
380
381 /* Read and convert symbols to internal format.
382 SYMCOUNT specifies the number of symbols to read, starting from
383 symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF
384 are non-NULL, they are used to store the internal symbols, external
385 symbols, and symbol section index extensions, respectively.
386 Returns a pointer to the internal symbol buffer (malloced if necessary)
387 or NULL if there were no symbols or some kind of problem. */
388
389 Elf_Internal_Sym *
390 bfd_elf_get_elf_syms (bfd *ibfd,
391 Elf_Internal_Shdr *symtab_hdr,
392 size_t symcount,
393 size_t symoffset,
394 Elf_Internal_Sym *intsym_buf,
395 void *extsym_buf,
396 Elf_External_Sym_Shndx *extshndx_buf)
397 {
398 Elf_Internal_Shdr *shndx_hdr;
399 void *alloc_ext;
400 const bfd_byte *esym;
401 Elf_External_Sym_Shndx *alloc_extshndx;
402 Elf_External_Sym_Shndx *shndx;
403 Elf_Internal_Sym *alloc_intsym;
404 Elf_Internal_Sym *isym;
405 Elf_Internal_Sym *isymend;
406 const struct elf_backend_data *bed;
407 size_t extsym_size;
408 bfd_size_type amt;
409 file_ptr pos;
410
411 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
412 abort ();
413
414 if (symcount == 0)
415 return intsym_buf;
416
417 /* Normal syms might have section extension entries. */
418 shndx_hdr = NULL;
419 if (elf_symtab_shndx_list (ibfd) != NULL)
420 {
421 elf_section_list * entry;
422 Elf_Internal_Shdr **sections = elf_elfsections (ibfd);
423
424 /* Find an index section that is linked to this symtab section. */
425 for (entry = elf_symtab_shndx_list (ibfd); entry != NULL; entry = entry->next)
426 {
427 /* PR 20063. */
428 if (entry->hdr.sh_link >= elf_numsections (ibfd))
429 continue;
430
431 if (sections[entry->hdr.sh_link] == symtab_hdr)
432 {
433 shndx_hdr = & entry->hdr;
434 break;
435 };
436 }
437
438 if (shndx_hdr == NULL)
439 {
440 if (symtab_hdr == & elf_symtab_hdr (ibfd))
441 /* Not really accurate, but this was how the old code used to work. */
442 shndx_hdr = & elf_symtab_shndx_list (ibfd)->hdr;
443 /* Otherwise we do nothing. The assumption is that
444 the index table will not be needed. */
445 }
446 }
447
448 /* Read the symbols. */
449 alloc_ext = NULL;
450 alloc_extshndx = NULL;
451 alloc_intsym = NULL;
452 bed = get_elf_backend_data (ibfd);
453 extsym_size = bed->s->sizeof_sym;
454 amt = (bfd_size_type) symcount * extsym_size;
455 pos = symtab_hdr->sh_offset + symoffset * extsym_size;
456 if (extsym_buf == NULL)
457 {
458 alloc_ext = bfd_malloc2 (symcount, extsym_size);
459 extsym_buf = alloc_ext;
460 }
461 if (extsym_buf == NULL
462 || bfd_seek (ibfd, pos, SEEK_SET) != 0
463 || bfd_bread (extsym_buf, amt, ibfd) != amt)
464 {
465 intsym_buf = NULL;
466 goto out;
467 }
468
469 if (shndx_hdr == NULL || shndx_hdr->sh_size == 0)
470 extshndx_buf = NULL;
471 else
472 {
473 amt = (bfd_size_type) symcount * sizeof (Elf_External_Sym_Shndx);
474 pos = shndx_hdr->sh_offset + symoffset * sizeof (Elf_External_Sym_Shndx);
475 if (extshndx_buf == NULL)
476 {
477 alloc_extshndx = (Elf_External_Sym_Shndx *)
478 bfd_malloc2 (symcount, sizeof (Elf_External_Sym_Shndx));
479 extshndx_buf = alloc_extshndx;
480 }
481 if (extshndx_buf == NULL
482 || bfd_seek (ibfd, pos, SEEK_SET) != 0
483 || bfd_bread (extshndx_buf, amt, ibfd) != amt)
484 {
485 intsym_buf = NULL;
486 goto out;
487 }
488 }
489
490 if (intsym_buf == NULL)
491 {
492 alloc_intsym = (Elf_Internal_Sym *)
493 bfd_malloc2 (symcount, sizeof (Elf_Internal_Sym));
494 intsym_buf = alloc_intsym;
495 if (intsym_buf == NULL)
496 goto out;
497 }
498
499 /* Convert the symbols to internal form. */
500 isymend = intsym_buf + symcount;
501 for (esym = (const bfd_byte *) extsym_buf, isym = intsym_buf,
502 shndx = extshndx_buf;
503 isym < isymend;
504 esym += extsym_size, isym++, shndx = shndx != NULL ? shndx + 1 : NULL)
505 if (!(*bed->s->swap_symbol_in) (ibfd, esym, shndx, isym))
506 {
507 symoffset += (esym - (bfd_byte *) extsym_buf) / extsym_size;
508 /* xgettext:c-format */
509 _bfd_error_handler (_("%pB symbol number %lu references"
510 " nonexistent SHT_SYMTAB_SHNDX section"),
511 ibfd, (unsigned long) symoffset);
512 if (alloc_intsym != NULL)
513 free (alloc_intsym);
514 intsym_buf = NULL;
515 goto out;
516 }
517
518 out:
519 if (alloc_ext != NULL)
520 free (alloc_ext);
521 if (alloc_extshndx != NULL)
522 free (alloc_extshndx);
523
524 return intsym_buf;
525 }
526
527 /* Look up a symbol name. */
528 const char *
529 bfd_elf_sym_name (bfd *abfd,
530 Elf_Internal_Shdr *symtab_hdr,
531 Elf_Internal_Sym *isym,
532 asection *sym_sec)
533 {
534 const char *name;
535 unsigned int iname = isym->st_name;
536 unsigned int shindex = symtab_hdr->sh_link;
537
538 if (iname == 0 && ELF_ST_TYPE (isym->st_info) == STT_SECTION
539 /* Check for a bogus st_shndx to avoid crashing. */
540 && isym->st_shndx < elf_numsections (abfd))
541 {
542 iname = elf_elfsections (abfd)[isym->st_shndx]->sh_name;
543 shindex = elf_elfheader (abfd)->e_shstrndx;
544 }
545
546 name = bfd_elf_string_from_elf_section (abfd, shindex, iname);
547 if (name == NULL)
548 name = "(null)";
549 else if (sym_sec && *name == '\0')
550 name = bfd_section_name (abfd, sym_sec);
551
552 return name;
553 }
554
555 /* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
556 sections. The first element is the flags, the rest are section
557 pointers. */
558
559 typedef union elf_internal_group {
560 Elf_Internal_Shdr *shdr;
561 unsigned int flags;
562 } Elf_Internal_Group;
563
564 /* Return the name of the group signature symbol. Why isn't the
565 signature just a string? */
566
567 static const char *
568 group_signature (bfd *abfd, Elf_Internal_Shdr *ghdr)
569 {
570 Elf_Internal_Shdr *hdr;
571 unsigned char esym[sizeof (Elf64_External_Sym)];
572 Elf_External_Sym_Shndx eshndx;
573 Elf_Internal_Sym isym;
574
575 /* First we need to ensure the symbol table is available. Make sure
576 that it is a symbol table section. */
577 if (ghdr->sh_link >= elf_numsections (abfd))
578 return NULL;
579 hdr = elf_elfsections (abfd) [ghdr->sh_link];
580 if (hdr->sh_type != SHT_SYMTAB
581 || ! bfd_section_from_shdr (abfd, ghdr->sh_link))
582 return NULL;
583
584 /* Go read the symbol. */
585 hdr = &elf_tdata (abfd)->symtab_hdr;
586 if (bfd_elf_get_elf_syms (abfd, hdr, 1, ghdr->sh_info,
587 &isym, esym, &eshndx) == NULL)
588 return NULL;
589
590 return bfd_elf_sym_name (abfd, hdr, &isym, NULL);
591 }
592
593 /* Set next_in_group list pointer, and group name for NEWSECT. */
594
595 static bfd_boolean
596 setup_group (bfd *abfd, Elf_Internal_Shdr *hdr, asection *newsect)
597 {
598 unsigned int num_group = elf_tdata (abfd)->num_group;
599
600 /* If num_group is zero, read in all SHT_GROUP sections. The count
601 is set to -1 if there are no SHT_GROUP sections. */
602 if (num_group == 0)
603 {
604 unsigned int i, shnum;
605
606 /* First count the number of groups. If we have a SHT_GROUP
607 section with just a flag word (ie. sh_size is 4), ignore it. */
608 shnum = elf_numsections (abfd);
609 num_group = 0;
610
611 #define IS_VALID_GROUP_SECTION_HEADER(shdr, minsize) \
612 ( (shdr)->sh_type == SHT_GROUP \
613 && (shdr)->sh_size >= minsize \
614 && (shdr)->sh_entsize == GRP_ENTRY_SIZE \
615 && ((shdr)->sh_size % GRP_ENTRY_SIZE) == 0)
616
617 for (i = 0; i < shnum; i++)
618 {
619 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
620
621 if (IS_VALID_GROUP_SECTION_HEADER (shdr, 2 * GRP_ENTRY_SIZE))
622 num_group += 1;
623 }
624
625 if (num_group == 0)
626 {
627 num_group = (unsigned) -1;
628 elf_tdata (abfd)->num_group = num_group;
629 elf_tdata (abfd)->group_sect_ptr = NULL;
630 }
631 else
632 {
633 /* We keep a list of elf section headers for group sections,
634 so we can find them quickly. */
635 bfd_size_type amt;
636
637 elf_tdata (abfd)->num_group = num_group;
638 elf_tdata (abfd)->group_sect_ptr = (Elf_Internal_Shdr **)
639 bfd_alloc2 (abfd, num_group, sizeof (Elf_Internal_Shdr *));
640 if (elf_tdata (abfd)->group_sect_ptr == NULL)
641 return FALSE;
642 memset (elf_tdata (abfd)->group_sect_ptr, 0,
643 num_group * sizeof (Elf_Internal_Shdr *));
644 num_group = 0;
645
646 for (i = 0; i < shnum; i++)
647 {
648 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
649
650 if (IS_VALID_GROUP_SECTION_HEADER (shdr, 2 * GRP_ENTRY_SIZE))
651 {
652 unsigned char *src;
653 Elf_Internal_Group *dest;
654
655 /* Make sure the group section has a BFD section
656 attached to it. */
657 if (!bfd_section_from_shdr (abfd, i))
658 return FALSE;
659
660 /* Add to list of sections. */
661 elf_tdata (abfd)->group_sect_ptr[num_group] = shdr;
662 num_group += 1;
663
664 /* Read the raw contents. */
665 BFD_ASSERT (sizeof (*dest) >= 4);
666 amt = shdr->sh_size * sizeof (*dest) / 4;
667 shdr->contents = (unsigned char *)
668 bfd_alloc2 (abfd, shdr->sh_size, sizeof (*dest) / 4);
669 /* PR binutils/4110: Handle corrupt group headers. */
670 if (shdr->contents == NULL)
671 {
672 _bfd_error_handler
673 /* xgettext:c-format */
674 (_("%pB: corrupt size field in group section"
675 " header: %#" PRIx64),
676 abfd, (uint64_t) shdr->sh_size);
677 bfd_set_error (bfd_error_bad_value);
678 -- num_group;
679 continue;
680 }
681
682 memset (shdr->contents, 0, amt);
683
684 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0
685 || (bfd_bread (shdr->contents, shdr->sh_size, abfd)
686 != shdr->sh_size))
687 {
688 _bfd_error_handler
689 /* xgettext:c-format */
690 (_("%pB: invalid size field in group section"
691 " header: %#" PRIx64 ""),
692 abfd, (uint64_t) shdr->sh_size);
693 bfd_set_error (bfd_error_bad_value);
694 -- num_group;
695 /* PR 17510: If the group contents are even
696 partially corrupt, do not allow any of the
697 contents to be used. */
698 memset (shdr->contents, 0, amt);
699 continue;
700 }
701
702 /* Translate raw contents, a flag word followed by an
703 array of elf section indices all in target byte order,
704 to the flag word followed by an array of elf section
705 pointers. */
706 src = shdr->contents + shdr->sh_size;
707 dest = (Elf_Internal_Group *) (shdr->contents + amt);
708
709 while (1)
710 {
711 unsigned int idx;
712
713 src -= 4;
714 --dest;
715 idx = H_GET_32 (abfd, src);
716 if (src == shdr->contents)
717 {
718 dest->flags = idx;
719 if (shdr->bfd_section != NULL && (idx & GRP_COMDAT))
720 shdr->bfd_section->flags
721 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
722 break;
723 }
724 if (idx < shnum)
725 {
726 dest->shdr = elf_elfsections (abfd)[idx];
727 /* PR binutils/23199: All sections in a
728 section group should be marked with
729 SHF_GROUP. But some tools generate
730 broken objects without SHF_GROUP. Fix
731 them up here. */
732 dest->shdr->sh_flags |= SHF_GROUP;
733 }
734 if (idx >= shnum
735 || dest->shdr->sh_type == SHT_GROUP)
736 {
737 _bfd_error_handler
738 (_("%pB: invalid entry in SHT_GROUP section [%u]"),
739 abfd, i);
740 dest->shdr = NULL;
741 }
742 }
743 }
744 }
745
746 /* PR 17510: Corrupt binaries might contain invalid groups. */
747 if (num_group != (unsigned) elf_tdata (abfd)->num_group)
748 {
749 elf_tdata (abfd)->num_group = num_group;
750
751 /* If all groups are invalid then fail. */
752 if (num_group == 0)
753 {
754 elf_tdata (abfd)->group_sect_ptr = NULL;
755 elf_tdata (abfd)->num_group = num_group = -1;
756 _bfd_error_handler
757 (_("%pB: no valid group sections found"), abfd);
758 bfd_set_error (bfd_error_bad_value);
759 }
760 }
761 }
762 }
763
764 if (num_group != (unsigned) -1)
765 {
766 unsigned int search_offset = elf_tdata (abfd)->group_search_offset;
767 unsigned int j;
768
769 for (j = 0; j < num_group; j++)
770 {
771 /* Begin search from previous found group. */
772 unsigned i = (j + search_offset) % num_group;
773
774 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
775 Elf_Internal_Group *idx;
776 bfd_size_type n_elt;
777
778 if (shdr == NULL)
779 continue;
780
781 idx = (Elf_Internal_Group *) shdr->contents;
782 if (idx == NULL || shdr->sh_size < 4)
783 {
784 /* See PR 21957 for a reproducer. */
785 /* xgettext:c-format */
786 _bfd_error_handler (_("%pB: group section '%pA' has no contents"),
787 abfd, shdr->bfd_section);
788 elf_tdata (abfd)->group_sect_ptr[i] = NULL;
789 bfd_set_error (bfd_error_bad_value);
790 return FALSE;
791 }
792 n_elt = shdr->sh_size / 4;
793
794 /* Look through this group's sections to see if current
795 section is a member. */
796 while (--n_elt != 0)
797 if ((++idx)->shdr == hdr)
798 {
799 asection *s = NULL;
800
801 /* We are a member of this group. Go looking through
802 other members to see if any others are linked via
803 next_in_group. */
804 idx = (Elf_Internal_Group *) shdr->contents;
805 n_elt = shdr->sh_size / 4;
806 while (--n_elt != 0)
807 if ((++idx)->shdr != NULL
808 && (s = idx->shdr->bfd_section) != NULL
809 && elf_next_in_group (s) != NULL)
810 break;
811 if (n_elt != 0)
812 {
813 /* Snarf the group name from other member, and
814 insert current section in circular list. */
815 elf_group_name (newsect) = elf_group_name (s);
816 elf_next_in_group (newsect) = elf_next_in_group (s);
817 elf_next_in_group (s) = newsect;
818 }
819 else
820 {
821 const char *gname;
822
823 gname = group_signature (abfd, shdr);
824 if (gname == NULL)
825 return FALSE;
826 elf_group_name (newsect) = gname;
827
828 /* Start a circular list with one element. */
829 elf_next_in_group (newsect) = newsect;
830 }
831
832 /* If the group section has been created, point to the
833 new member. */
834 if (shdr->bfd_section != NULL)
835 elf_next_in_group (shdr->bfd_section) = newsect;
836
837 elf_tdata (abfd)->group_search_offset = i;
838 j = num_group - 1;
839 break;
840 }
841 }
842 }
843
844 if (elf_group_name (newsect) == NULL)
845 {
846 /* xgettext:c-format */
847 _bfd_error_handler (_("%pB: no group info for section '%pA'"),
848 abfd, newsect);
849 return FALSE;
850 }
851 return TRUE;
852 }
853
854 bfd_boolean
855 _bfd_elf_setup_sections (bfd *abfd)
856 {
857 unsigned int i;
858 unsigned int num_group = elf_tdata (abfd)->num_group;
859 bfd_boolean result = TRUE;
860 asection *s;
861
862 /* Process SHF_LINK_ORDER. */
863 for (s = abfd->sections; s != NULL; s = s->next)
864 {
865 Elf_Internal_Shdr *this_hdr = &elf_section_data (s)->this_hdr;
866 if ((this_hdr->sh_flags & SHF_LINK_ORDER) != 0)
867 {
868 unsigned int elfsec = this_hdr->sh_link;
869 /* FIXME: The old Intel compiler and old strip/objcopy may
870 not set the sh_link or sh_info fields. Hence we could
871 get the situation where elfsec is 0. */
872 if (elfsec == 0)
873 {
874 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
875 if (bed->link_order_error_handler)
876 bed->link_order_error_handler
877 /* xgettext:c-format */
878 (_("%pB: warning: sh_link not set for section `%pA'"),
879 abfd, s);
880 }
881 else
882 {
883 asection *linksec = NULL;
884
885 if (elfsec < elf_numsections (abfd))
886 {
887 this_hdr = elf_elfsections (abfd)[elfsec];
888 linksec = this_hdr->bfd_section;
889 }
890
891 /* PR 1991, 2008:
892 Some strip/objcopy may leave an incorrect value in
893 sh_link. We don't want to proceed. */
894 if (linksec == NULL)
895 {
896 _bfd_error_handler
897 /* xgettext:c-format */
898 (_("%pB: sh_link [%d] in section `%pA' is incorrect"),
899 s->owner, elfsec, s);
900 result = FALSE;
901 }
902
903 elf_linked_to_section (s) = linksec;
904 }
905 }
906 else if (this_hdr->sh_type == SHT_GROUP
907 && elf_next_in_group (s) == NULL)
908 {
909 _bfd_error_handler
910 /* xgettext:c-format */
911 (_("%pB: SHT_GROUP section [index %d] has no SHF_GROUP sections"),
912 abfd, elf_section_data (s)->this_idx);
913 result = FALSE;
914 }
915 }
916
917 /* Process section groups. */
918 if (num_group == (unsigned) -1)
919 return result;
920
921 for (i = 0; i < num_group; i++)
922 {
923 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
924 Elf_Internal_Group *idx;
925 unsigned int n_elt;
926
927 /* PR binutils/18758: Beware of corrupt binaries with invalid group data. */
928 if (shdr == NULL || shdr->bfd_section == NULL || shdr->contents == NULL)
929 {
930 _bfd_error_handler
931 /* xgettext:c-format */
932 (_("%pB: section group entry number %u is corrupt"),
933 abfd, i);
934 result = FALSE;
935 continue;
936 }
937
938 idx = (Elf_Internal_Group *) shdr->contents;
939 n_elt = shdr->sh_size / 4;
940
941 while (--n_elt != 0)
942 {
943 ++ idx;
944
945 if (idx->shdr == NULL)
946 continue;
947 else if (idx->shdr->bfd_section)
948 elf_sec_group (idx->shdr->bfd_section) = shdr->bfd_section;
949 else if (idx->shdr->sh_type != SHT_RELA
950 && idx->shdr->sh_type != SHT_REL)
951 {
952 /* There are some unknown sections in the group. */
953 _bfd_error_handler
954 /* xgettext:c-format */
955 (_("%pB: unknown type [%#x] section `%s' in group [%pA]"),
956 abfd,
957 idx->shdr->sh_type,
958 bfd_elf_string_from_elf_section (abfd,
959 (elf_elfheader (abfd)
960 ->e_shstrndx),
961 idx->shdr->sh_name),
962 shdr->bfd_section);
963 result = FALSE;
964 }
965 }
966 }
967
968 return result;
969 }
970
971 bfd_boolean
972 bfd_elf_is_group_section (bfd *abfd ATTRIBUTE_UNUSED, const asection *sec)
973 {
974 return elf_next_in_group (sec) != NULL;
975 }
976
977 static char *
978 convert_debug_to_zdebug (bfd *abfd, const char *name)
979 {
980 unsigned int len = strlen (name);
981 char *new_name = bfd_alloc (abfd, len + 2);
982 if (new_name == NULL)
983 return NULL;
984 new_name[0] = '.';
985 new_name[1] = 'z';
986 memcpy (new_name + 2, name + 1, len);
987 return new_name;
988 }
989
990 static char *
991 convert_zdebug_to_debug (bfd *abfd, const char *name)
992 {
993 unsigned int len = strlen (name);
994 char *new_name = bfd_alloc (abfd, len);
995 if (new_name == NULL)
996 return NULL;
997 new_name[0] = '.';
998 memcpy (new_name + 1, name + 2, len - 1);
999 return new_name;
1000 }
1001
1002 /* Make a BFD section from an ELF section. We store a pointer to the
1003 BFD section in the bfd_section field of the header. */
1004
1005 bfd_boolean
1006 _bfd_elf_make_section_from_shdr (bfd *abfd,
1007 Elf_Internal_Shdr *hdr,
1008 const char *name,
1009 int shindex)
1010 {
1011 asection *newsect;
1012 flagword flags;
1013 const struct elf_backend_data *bed;
1014
1015 if (hdr->bfd_section != NULL)
1016 return TRUE;
1017
1018 newsect = bfd_make_section_anyway (abfd, name);
1019 if (newsect == NULL)
1020 return FALSE;
1021
1022 hdr->bfd_section = newsect;
1023 elf_section_data (newsect)->this_hdr = *hdr;
1024 elf_section_data (newsect)->this_idx = shindex;
1025
1026 /* Always use the real type/flags. */
1027 elf_section_type (newsect) = hdr->sh_type;
1028 elf_section_flags (newsect) = hdr->sh_flags;
1029
1030 newsect->filepos = hdr->sh_offset;
1031
1032 if (! bfd_set_section_vma (abfd, newsect, hdr->sh_addr)
1033 || ! bfd_set_section_size (abfd, newsect, hdr->sh_size)
1034 || ! bfd_set_section_alignment (abfd, newsect,
1035 bfd_log2 (hdr->sh_addralign)))
1036 return FALSE;
1037
1038 flags = SEC_NO_FLAGS;
1039 if (hdr->sh_type != SHT_NOBITS)
1040 flags |= SEC_HAS_CONTENTS;
1041 if (hdr->sh_type == SHT_GROUP)
1042 flags |= SEC_GROUP;
1043 if ((hdr->sh_flags & SHF_ALLOC) != 0)
1044 {
1045 flags |= SEC_ALLOC;
1046 if (hdr->sh_type != SHT_NOBITS)
1047 flags |= SEC_LOAD;
1048 }
1049 if ((hdr->sh_flags & SHF_WRITE) == 0)
1050 flags |= SEC_READONLY;
1051 if ((hdr->sh_flags & SHF_EXECINSTR) != 0)
1052 flags |= SEC_CODE;
1053 else if ((flags & SEC_LOAD) != 0)
1054 flags |= SEC_DATA;
1055 if ((hdr->sh_flags & SHF_MERGE) != 0)
1056 {
1057 flags |= SEC_MERGE;
1058 newsect->entsize = hdr->sh_entsize;
1059 }
1060 if ((hdr->sh_flags & SHF_STRINGS) != 0)
1061 flags |= SEC_STRINGS;
1062 if (hdr->sh_flags & SHF_GROUP)
1063 if (!setup_group (abfd, hdr, newsect))
1064 return FALSE;
1065 if ((hdr->sh_flags & SHF_TLS) != 0)
1066 flags |= SEC_THREAD_LOCAL;
1067 if ((hdr->sh_flags & SHF_EXCLUDE) != 0)
1068 flags |= SEC_EXCLUDE;
1069
1070 if ((flags & SEC_ALLOC) == 0)
1071 {
1072 /* The debugging sections appear to be recognized only by name,
1073 not any sort of flag. Their SEC_ALLOC bits are cleared. */
1074 if (name [0] == '.')
1075 {
1076 const char *p;
1077 int n;
1078 if (name[1] == 'd')
1079 p = ".debug", n = 6;
1080 else if (name[1] == 'g' && name[2] == 'n')
1081 p = ".gnu.linkonce.wi.", n = 17;
1082 else if (name[1] == 'g' && name[2] == 'd')
1083 p = ".gdb_index", n = 11; /* yes we really do mean 11. */
1084 else if (name[1] == 'l')
1085 p = ".line", n = 5;
1086 else if (name[1] == 's')
1087 p = ".stab", n = 5;
1088 else if (name[1] == 'z')
1089 p = ".zdebug", n = 7;
1090 else
1091 p = NULL, n = 0;
1092 if (p != NULL && strncmp (name, p, n) == 0)
1093 flags |= SEC_DEBUGGING;
1094 }
1095 }
1096
1097 /* As a GNU extension, if the name begins with .gnu.linkonce, we
1098 only link a single copy of the section. This is used to support
1099 g++. g++ will emit each template expansion in its own section.
1100 The symbols will be defined as weak, so that multiple definitions
1101 are permitted. The GNU linker extension is to actually discard
1102 all but one of the sections. */
1103 if (CONST_STRNEQ (name, ".gnu.linkonce")
1104 && elf_next_in_group (newsect) == NULL)
1105 flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
1106
1107 bed = get_elf_backend_data (abfd);
1108 if (bed->elf_backend_section_flags)
1109 if (! bed->elf_backend_section_flags (&flags, hdr))
1110 return FALSE;
1111
1112 if (! bfd_set_section_flags (abfd, newsect, flags))
1113 return FALSE;
1114
1115 /* We do not parse the PT_NOTE segments as we are interested even in the
1116 separate debug info files which may have the segments offsets corrupted.
1117 PT_NOTEs from the core files are currently not parsed using BFD. */
1118 if (hdr->sh_type == SHT_NOTE)
1119 {
1120 bfd_byte *contents;
1121
1122 if (!bfd_malloc_and_get_section (abfd, newsect, &contents))
1123 return FALSE;
1124
1125 elf_parse_notes (abfd, (char *) contents, hdr->sh_size,
1126 hdr->sh_offset, hdr->sh_addralign);
1127 free (contents);
1128 }
1129
1130 if ((flags & SEC_ALLOC) != 0)
1131 {
1132 Elf_Internal_Phdr *phdr;
1133 unsigned int i, nload;
1134
1135 /* Some ELF linkers produce binaries with all the program header
1136 p_paddr fields zero. If we have such a binary with more than
1137 one PT_LOAD header, then leave the section lma equal to vma
1138 so that we don't create sections with overlapping lma. */
1139 phdr = elf_tdata (abfd)->phdr;
1140 for (nload = 0, i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
1141 if (phdr->p_paddr != 0)
1142 break;
1143 else if (phdr->p_type == PT_LOAD && phdr->p_memsz != 0)
1144 ++nload;
1145 if (i >= elf_elfheader (abfd)->e_phnum && nload > 1)
1146 return TRUE;
1147
1148 phdr = elf_tdata (abfd)->phdr;
1149 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
1150 {
1151 if (((phdr->p_type == PT_LOAD
1152 && (hdr->sh_flags & SHF_TLS) == 0)
1153 || phdr->p_type == PT_TLS)
1154 && ELF_SECTION_IN_SEGMENT (hdr, phdr))
1155 {
1156 if ((flags & SEC_LOAD) == 0)
1157 newsect->lma = (phdr->p_paddr
1158 + hdr->sh_addr - phdr->p_vaddr);
1159 else
1160 /* We used to use the same adjustment for SEC_LOAD
1161 sections, but that doesn't work if the segment
1162 is packed with code from multiple VMAs.
1163 Instead we calculate the section LMA based on
1164 the segment LMA. It is assumed that the
1165 segment will contain sections with contiguous
1166 LMAs, even if the VMAs are not. */
1167 newsect->lma = (phdr->p_paddr
1168 + hdr->sh_offset - phdr->p_offset);
1169
1170 /* With contiguous segments, we can't tell from file
1171 offsets whether a section with zero size should
1172 be placed at the end of one segment or the
1173 beginning of the next. Decide based on vaddr. */
1174 if (hdr->sh_addr >= phdr->p_vaddr
1175 && (hdr->sh_addr + hdr->sh_size
1176 <= phdr->p_vaddr + phdr->p_memsz))
1177 break;
1178 }
1179 }
1180 }
1181
1182 /* Compress/decompress DWARF debug sections with names: .debug_* and
1183 .zdebug_*, after the section flags is set. */
1184 if ((flags & SEC_DEBUGGING)
1185 && ((name[1] == 'd' && name[6] == '_')
1186 || (name[1] == 'z' && name[7] == '_')))
1187 {
1188 enum { nothing, compress, decompress } action = nothing;
1189 int compression_header_size;
1190 bfd_size_type uncompressed_size;
1191 unsigned int uncompressed_align_power;
1192 bfd_boolean compressed
1193 = bfd_is_section_compressed_with_header (abfd, newsect,
1194 &compression_header_size,
1195 &uncompressed_size,
1196 &uncompressed_align_power);
1197 if (compressed)
1198 {
1199 /* Compressed section. Check if we should decompress. */
1200 if ((abfd->flags & BFD_DECOMPRESS))
1201 action = decompress;
1202 }
1203
1204 /* Compress the uncompressed section or convert from/to .zdebug*
1205 section. Check if we should compress. */
1206 if (action == nothing)
1207 {
1208 if (newsect->size != 0
1209 && (abfd->flags & BFD_COMPRESS)
1210 && compression_header_size >= 0
1211 && uncompressed_size > 0
1212 && (!compressed
1213 || ((compression_header_size > 0)
1214 != ((abfd->flags & BFD_COMPRESS_GABI) != 0))))
1215 action = compress;
1216 else
1217 return TRUE;
1218 }
1219
1220 if (action == compress)
1221 {
1222 if (!bfd_init_section_compress_status (abfd, newsect))
1223 {
1224 _bfd_error_handler
1225 /* xgettext:c-format */
1226 (_("%pB: unable to initialize compress status for section %s"),
1227 abfd, name);
1228 return FALSE;
1229 }
1230 }
1231 else
1232 {
1233 if (!bfd_init_section_decompress_status (abfd, newsect))
1234 {
1235 _bfd_error_handler
1236 /* xgettext:c-format */
1237 (_("%pB: unable to initialize decompress status for section %s"),
1238 abfd, name);
1239 return FALSE;
1240 }
1241 }
1242
1243 if (abfd->is_linker_input)
1244 {
1245 if (name[1] == 'z'
1246 && (action == decompress
1247 || (action == compress
1248 && (abfd->flags & BFD_COMPRESS_GABI) != 0)))
1249 {
1250 /* Convert section name from .zdebug_* to .debug_* so
1251 that linker will consider this section as a debug
1252 section. */
1253 char *new_name = convert_zdebug_to_debug (abfd, name);
1254 if (new_name == NULL)
1255 return FALSE;
1256 bfd_rename_section (abfd, newsect, new_name);
1257 }
1258 }
1259 else
1260 /* For objdump, don't rename the section. For objcopy, delay
1261 section rename to elf_fake_sections. */
1262 newsect->flags |= SEC_ELF_RENAME;
1263 }
1264
1265 return TRUE;
1266 }
1267
1268 const char *const bfd_elf_section_type_names[] =
1269 {
1270 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
1271 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
1272 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
1273 };
1274
1275 /* ELF relocs are against symbols. If we are producing relocatable
1276 output, and the reloc is against an external symbol, and nothing
1277 has given us any additional addend, the resulting reloc will also
1278 be against the same symbol. In such a case, we don't want to
1279 change anything about the way the reloc is handled, since it will
1280 all be done at final link time. Rather than put special case code
1281 into bfd_perform_relocation, all the reloc types use this howto
1282 function. It just short circuits the reloc if producing
1283 relocatable output against an external symbol. */
1284
1285 bfd_reloc_status_type
1286 bfd_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED,
1287 arelent *reloc_entry,
1288 asymbol *symbol,
1289 void *data ATTRIBUTE_UNUSED,
1290 asection *input_section,
1291 bfd *output_bfd,
1292 char **error_message ATTRIBUTE_UNUSED)
1293 {
1294 if (output_bfd != NULL
1295 && (symbol->flags & BSF_SECTION_SYM) == 0
1296 && (! reloc_entry->howto->partial_inplace
1297 || reloc_entry->addend == 0))
1298 {
1299 reloc_entry->address += input_section->output_offset;
1300 return bfd_reloc_ok;
1301 }
1302
1303 return bfd_reloc_continue;
1304 }
1305 \f
1306 /* Returns TRUE if section A matches section B.
1307 Names, addresses and links may be different, but everything else
1308 should be the same. */
1309
1310 static bfd_boolean
1311 section_match (const Elf_Internal_Shdr * a,
1312 const Elf_Internal_Shdr * b)
1313 {
1314 if (a->sh_type != b->sh_type
1315 || ((a->sh_flags ^ b->sh_flags) & ~SHF_INFO_LINK) != 0
1316 || a->sh_addralign != b->sh_addralign
1317 || a->sh_entsize != b->sh_entsize)
1318 return FALSE;
1319 if (a->sh_type == SHT_SYMTAB
1320 || a->sh_type == SHT_STRTAB)
1321 return TRUE;
1322 return a->sh_size == b->sh_size;
1323 }
1324
1325 /* Find a section in OBFD that has the same characteristics
1326 as IHEADER. Return the index of this section or SHN_UNDEF if
1327 none can be found. Check's section HINT first, as this is likely
1328 to be the correct section. */
1329
1330 static unsigned int
1331 find_link (const bfd *obfd, const Elf_Internal_Shdr *iheader,
1332 const unsigned int hint)
1333 {
1334 Elf_Internal_Shdr ** oheaders = elf_elfsections (obfd);
1335 unsigned int i;
1336
1337 BFD_ASSERT (iheader != NULL);
1338
1339 /* See PR 20922 for a reproducer of the NULL test. */
1340 if (hint < elf_numsections (obfd)
1341 && oheaders[hint] != NULL
1342 && section_match (oheaders[hint], iheader))
1343 return hint;
1344
1345 for (i = 1; i < elf_numsections (obfd); i++)
1346 {
1347 Elf_Internal_Shdr * oheader = oheaders[i];
1348
1349 if (oheader == NULL)
1350 continue;
1351 if (section_match (oheader, iheader))
1352 /* FIXME: Do we care if there is a potential for
1353 multiple matches ? */
1354 return i;
1355 }
1356
1357 return SHN_UNDEF;
1358 }
1359
1360 /* PR 19938: Attempt to set the ELF section header fields of an OS or
1361 Processor specific section, based upon a matching input section.
1362 Returns TRUE upon success, FALSE otherwise. */
1363
1364 static bfd_boolean
1365 copy_special_section_fields (const bfd *ibfd,
1366 bfd *obfd,
1367 const Elf_Internal_Shdr *iheader,
1368 Elf_Internal_Shdr *oheader,
1369 const unsigned int secnum)
1370 {
1371 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
1372 const Elf_Internal_Shdr **iheaders = (const Elf_Internal_Shdr **) elf_elfsections (ibfd);
1373 bfd_boolean changed = FALSE;
1374 unsigned int sh_link;
1375
1376 if (oheader->sh_type == SHT_NOBITS)
1377 {
1378 /* This is a feature for objcopy --only-keep-debug:
1379 When a section's type is changed to NOBITS, we preserve
1380 the sh_link and sh_info fields so that they can be
1381 matched up with the original.
1382
1383 Note: Strictly speaking these assignments are wrong.
1384 The sh_link and sh_info fields should point to the
1385 relevent sections in the output BFD, which may not be in
1386 the same location as they were in the input BFD. But
1387 the whole point of this action is to preserve the
1388 original values of the sh_link and sh_info fields, so
1389 that they can be matched up with the section headers in
1390 the original file. So strictly speaking we may be
1391 creating an invalid ELF file, but it is only for a file
1392 that just contains debug info and only for sections
1393 without any contents. */
1394 if (oheader->sh_link == 0)
1395 oheader->sh_link = iheader->sh_link;
1396 if (oheader->sh_info == 0)
1397 oheader->sh_info = iheader->sh_info;
1398 return TRUE;
1399 }
1400
1401 /* Allow the target a chance to decide how these fields should be set. */
1402 if (bed->elf_backend_copy_special_section_fields != NULL
1403 && bed->elf_backend_copy_special_section_fields
1404 (ibfd, obfd, iheader, oheader))
1405 return TRUE;
1406
1407 /* We have an iheader which might match oheader, and which has non-zero
1408 sh_info and/or sh_link fields. Attempt to follow those links and find
1409 the section in the output bfd which corresponds to the linked section
1410 in the input bfd. */
1411 if (iheader->sh_link != SHN_UNDEF)
1412 {
1413 /* See PR 20931 for a reproducer. */
1414 if (iheader->sh_link >= elf_numsections (ibfd))
1415 {
1416 _bfd_error_handler
1417 /* xgettext:c-format */
1418 (_("%pB: invalid sh_link field (%d) in section number %d"),
1419 ibfd, iheader->sh_link, secnum);
1420 return FALSE;
1421 }
1422
1423 sh_link = find_link (obfd, iheaders[iheader->sh_link], iheader->sh_link);
1424 if (sh_link != SHN_UNDEF)
1425 {
1426 oheader->sh_link = sh_link;
1427 changed = TRUE;
1428 }
1429 else
1430 /* FIXME: Should we install iheader->sh_link
1431 if we could not find a match ? */
1432 _bfd_error_handler
1433 /* xgettext:c-format */
1434 (_("%pB: failed to find link section for section %d"), obfd, secnum);
1435 }
1436
1437 if (iheader->sh_info)
1438 {
1439 /* The sh_info field can hold arbitrary information, but if the
1440 SHF_LINK_INFO flag is set then it should be interpreted as a
1441 section index. */
1442 if (iheader->sh_flags & SHF_INFO_LINK)
1443 {
1444 sh_link = find_link (obfd, iheaders[iheader->sh_info],
1445 iheader->sh_info);
1446 if (sh_link != SHN_UNDEF)
1447 oheader->sh_flags |= SHF_INFO_LINK;
1448 }
1449 else
1450 /* No idea what it means - just copy it. */
1451 sh_link = iheader->sh_info;
1452
1453 if (sh_link != SHN_UNDEF)
1454 {
1455 oheader->sh_info = sh_link;
1456 changed = TRUE;
1457 }
1458 else
1459 _bfd_error_handler
1460 /* xgettext:c-format */
1461 (_("%pB: failed to find info section for section %d"), obfd, secnum);
1462 }
1463
1464 return changed;
1465 }
1466
1467 /* Copy the program header and other data from one object module to
1468 another. */
1469
1470 bfd_boolean
1471 _bfd_elf_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
1472 {
1473 const Elf_Internal_Shdr **iheaders = (const Elf_Internal_Shdr **) elf_elfsections (ibfd);
1474 Elf_Internal_Shdr **oheaders = elf_elfsections (obfd);
1475 const struct elf_backend_data *bed;
1476 unsigned int i;
1477
1478 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
1479 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
1480 return TRUE;
1481
1482 if (!elf_flags_init (obfd))
1483 {
1484 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
1485 elf_flags_init (obfd) = TRUE;
1486 }
1487
1488 elf_gp (obfd) = elf_gp (ibfd);
1489
1490 /* Also copy the EI_OSABI field. */
1491 elf_elfheader (obfd)->e_ident[EI_OSABI] =
1492 elf_elfheader (ibfd)->e_ident[EI_OSABI];
1493
1494 /* If set, copy the EI_ABIVERSION field. */
1495 if (elf_elfheader (ibfd)->e_ident[EI_ABIVERSION])
1496 elf_elfheader (obfd)->e_ident[EI_ABIVERSION]
1497 = elf_elfheader (ibfd)->e_ident[EI_ABIVERSION];
1498
1499 /* Copy object attributes. */
1500 _bfd_elf_copy_obj_attributes (ibfd, obfd);
1501
1502 if (iheaders == NULL || oheaders == NULL)
1503 return TRUE;
1504
1505 bed = get_elf_backend_data (obfd);
1506
1507 /* Possibly copy other fields in the section header. */
1508 for (i = 1; i < elf_numsections (obfd); i++)
1509 {
1510 unsigned int j;
1511 Elf_Internal_Shdr * oheader = oheaders[i];
1512
1513 /* Ignore ordinary sections. SHT_NOBITS sections are considered however
1514 because of a special case need for generating separate debug info
1515 files. See below for more details. */
1516 if (oheader == NULL
1517 || (oheader->sh_type != SHT_NOBITS
1518 && oheader->sh_type < SHT_LOOS))
1519 continue;
1520
1521 /* Ignore empty sections, and sections whose
1522 fields have already been initialised. */
1523 if (oheader->sh_size == 0
1524 || (oheader->sh_info != 0 && oheader->sh_link != 0))
1525 continue;
1526
1527 /* Scan for the matching section in the input bfd.
1528 First we try for a direct mapping between the input and output sections. */
1529 for (j = 1; j < elf_numsections (ibfd); j++)
1530 {
1531 const Elf_Internal_Shdr * iheader = iheaders[j];
1532
1533 if (iheader == NULL)
1534 continue;
1535
1536 if (oheader->bfd_section != NULL
1537 && iheader->bfd_section != NULL
1538 && iheader->bfd_section->output_section != NULL
1539 && iheader->bfd_section->output_section == oheader->bfd_section)
1540 {
1541 /* We have found a connection from the input section to the
1542 output section. Attempt to copy the header fields. If
1543 this fails then do not try any further sections - there
1544 should only be a one-to-one mapping between input and output. */
1545 if (! copy_special_section_fields (ibfd, obfd, iheader, oheader, i))
1546 j = elf_numsections (ibfd);
1547 break;
1548 }
1549 }
1550
1551 if (j < elf_numsections (ibfd))
1552 continue;
1553
1554 /* That failed. So try to deduce the corresponding input section.
1555 Unfortunately we cannot compare names as the output string table
1556 is empty, so instead we check size, address and type. */
1557 for (j = 1; j < elf_numsections (ibfd); j++)
1558 {
1559 const Elf_Internal_Shdr * iheader = iheaders[j];
1560
1561 if (iheader == NULL)
1562 continue;
1563
1564 /* Try matching fields in the input section's header.
1565 Since --only-keep-debug turns all non-debug sections into
1566 SHT_NOBITS sections, the output SHT_NOBITS type matches any
1567 input type. */
1568 if ((oheader->sh_type == SHT_NOBITS
1569 || iheader->sh_type == oheader->sh_type)
1570 && (iheader->sh_flags & ~ SHF_INFO_LINK)
1571 == (oheader->sh_flags & ~ SHF_INFO_LINK)
1572 && iheader->sh_addralign == oheader->sh_addralign
1573 && iheader->sh_entsize == oheader->sh_entsize
1574 && iheader->sh_size == oheader->sh_size
1575 && iheader->sh_addr == oheader->sh_addr
1576 && (iheader->sh_info != oheader->sh_info
1577 || iheader->sh_link != oheader->sh_link))
1578 {
1579 if (copy_special_section_fields (ibfd, obfd, iheader, oheader, i))
1580 break;
1581 }
1582 }
1583
1584 if (j == elf_numsections (ibfd) && oheader->sh_type >= SHT_LOOS)
1585 {
1586 /* Final attempt. Call the backend copy function
1587 with a NULL input section. */
1588 if (bed->elf_backend_copy_special_section_fields != NULL)
1589 bed->elf_backend_copy_special_section_fields (ibfd, obfd, NULL, oheader);
1590 }
1591 }
1592
1593 return TRUE;
1594 }
1595
1596 static const char *
1597 get_segment_type (unsigned int p_type)
1598 {
1599 const char *pt;
1600 switch (p_type)
1601 {
1602 case PT_NULL: pt = "NULL"; break;
1603 case PT_LOAD: pt = "LOAD"; break;
1604 case PT_DYNAMIC: pt = "DYNAMIC"; break;
1605 case PT_INTERP: pt = "INTERP"; break;
1606 case PT_NOTE: pt = "NOTE"; break;
1607 case PT_SHLIB: pt = "SHLIB"; break;
1608 case PT_PHDR: pt = "PHDR"; break;
1609 case PT_TLS: pt = "TLS"; break;
1610 case PT_GNU_EH_FRAME: pt = "EH_FRAME"; break;
1611 case PT_GNU_STACK: pt = "STACK"; break;
1612 case PT_GNU_RELRO: pt = "RELRO"; break;
1613 default: pt = NULL; break;
1614 }
1615 return pt;
1616 }
1617
1618 /* Print out the program headers. */
1619
1620 bfd_boolean
1621 _bfd_elf_print_private_bfd_data (bfd *abfd, void *farg)
1622 {
1623 FILE *f = (FILE *) farg;
1624 Elf_Internal_Phdr *p;
1625 asection *s;
1626 bfd_byte *dynbuf = NULL;
1627
1628 p = elf_tdata (abfd)->phdr;
1629 if (p != NULL)
1630 {
1631 unsigned int i, c;
1632
1633 fprintf (f, _("\nProgram Header:\n"));
1634 c = elf_elfheader (abfd)->e_phnum;
1635 for (i = 0; i < c; i++, p++)
1636 {
1637 const char *pt = get_segment_type (p->p_type);
1638 char buf[20];
1639
1640 if (pt == NULL)
1641 {
1642 sprintf (buf, "0x%lx", p->p_type);
1643 pt = buf;
1644 }
1645 fprintf (f, "%8s off 0x", pt);
1646 bfd_fprintf_vma (abfd, f, p->p_offset);
1647 fprintf (f, " vaddr 0x");
1648 bfd_fprintf_vma (abfd, f, p->p_vaddr);
1649 fprintf (f, " paddr 0x");
1650 bfd_fprintf_vma (abfd, f, p->p_paddr);
1651 fprintf (f, " align 2**%u\n", bfd_log2 (p->p_align));
1652 fprintf (f, " filesz 0x");
1653 bfd_fprintf_vma (abfd, f, p->p_filesz);
1654 fprintf (f, " memsz 0x");
1655 bfd_fprintf_vma (abfd, f, p->p_memsz);
1656 fprintf (f, " flags %c%c%c",
1657 (p->p_flags & PF_R) != 0 ? 'r' : '-',
1658 (p->p_flags & PF_W) != 0 ? 'w' : '-',
1659 (p->p_flags & PF_X) != 0 ? 'x' : '-');
1660 if ((p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X)) != 0)
1661 fprintf (f, " %lx", p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X));
1662 fprintf (f, "\n");
1663 }
1664 }
1665
1666 s = bfd_get_section_by_name (abfd, ".dynamic");
1667 if (s != NULL)
1668 {
1669 unsigned int elfsec;
1670 unsigned long shlink;
1671 bfd_byte *extdyn, *extdynend;
1672 size_t extdynsize;
1673 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1674
1675 fprintf (f, _("\nDynamic Section:\n"));
1676
1677 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
1678 goto error_return;
1679
1680 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1681 if (elfsec == SHN_BAD)
1682 goto error_return;
1683 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1684
1685 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1686 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1687
1688 extdyn = dynbuf;
1689 /* PR 17512: file: 6f427532. */
1690 if (s->size < extdynsize)
1691 goto error_return;
1692 extdynend = extdyn + s->size;
1693 /* PR 17512: file: id:000006,sig:06,src:000000,op:flip4,pos:5664.
1694 Fix range check. */
1695 for (; extdyn <= (extdynend - extdynsize); extdyn += extdynsize)
1696 {
1697 Elf_Internal_Dyn dyn;
1698 const char *name = "";
1699 char ab[20];
1700 bfd_boolean stringp;
1701 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1702
1703 (*swap_dyn_in) (abfd, extdyn, &dyn);
1704
1705 if (dyn.d_tag == DT_NULL)
1706 break;
1707
1708 stringp = FALSE;
1709 switch (dyn.d_tag)
1710 {
1711 default:
1712 if (bed->elf_backend_get_target_dtag)
1713 name = (*bed->elf_backend_get_target_dtag) (dyn.d_tag);
1714
1715 if (!strcmp (name, ""))
1716 {
1717 sprintf (ab, "%#" BFD_VMA_FMT "x", dyn.d_tag);
1718 name = ab;
1719 }
1720 break;
1721
1722 case DT_NEEDED: name = "NEEDED"; stringp = TRUE; break;
1723 case DT_PLTRELSZ: name = "PLTRELSZ"; break;
1724 case DT_PLTGOT: name = "PLTGOT"; break;
1725 case DT_HASH: name = "HASH"; break;
1726 case DT_STRTAB: name = "STRTAB"; break;
1727 case DT_SYMTAB: name = "SYMTAB"; break;
1728 case DT_RELA: name = "RELA"; break;
1729 case DT_RELASZ: name = "RELASZ"; break;
1730 case DT_RELAENT: name = "RELAENT"; break;
1731 case DT_STRSZ: name = "STRSZ"; break;
1732 case DT_SYMENT: name = "SYMENT"; break;
1733 case DT_INIT: name = "INIT"; break;
1734 case DT_FINI: name = "FINI"; break;
1735 case DT_SONAME: name = "SONAME"; stringp = TRUE; break;
1736 case DT_RPATH: name = "RPATH"; stringp = TRUE; break;
1737 case DT_SYMBOLIC: name = "SYMBOLIC"; break;
1738 case DT_REL: name = "REL"; break;
1739 case DT_RELSZ: name = "RELSZ"; break;
1740 case DT_RELENT: name = "RELENT"; break;
1741 case DT_PLTREL: name = "PLTREL"; break;
1742 case DT_DEBUG: name = "DEBUG"; break;
1743 case DT_TEXTREL: name = "TEXTREL"; break;
1744 case DT_JMPREL: name = "JMPREL"; break;
1745 case DT_BIND_NOW: name = "BIND_NOW"; break;
1746 case DT_INIT_ARRAY: name = "INIT_ARRAY"; break;
1747 case DT_FINI_ARRAY: name = "FINI_ARRAY"; break;
1748 case DT_INIT_ARRAYSZ: name = "INIT_ARRAYSZ"; break;
1749 case DT_FINI_ARRAYSZ: name = "FINI_ARRAYSZ"; break;
1750 case DT_RUNPATH: name = "RUNPATH"; stringp = TRUE; break;
1751 case DT_FLAGS: name = "FLAGS"; break;
1752 case DT_PREINIT_ARRAY: name = "PREINIT_ARRAY"; break;
1753 case DT_PREINIT_ARRAYSZ: name = "PREINIT_ARRAYSZ"; break;
1754 case DT_CHECKSUM: name = "CHECKSUM"; break;
1755 case DT_PLTPADSZ: name = "PLTPADSZ"; break;
1756 case DT_MOVEENT: name = "MOVEENT"; break;
1757 case DT_MOVESZ: name = "MOVESZ"; break;
1758 case DT_FEATURE: name = "FEATURE"; break;
1759 case DT_POSFLAG_1: name = "POSFLAG_1"; break;
1760 case DT_SYMINSZ: name = "SYMINSZ"; break;
1761 case DT_SYMINENT: name = "SYMINENT"; break;
1762 case DT_CONFIG: name = "CONFIG"; stringp = TRUE; break;
1763 case DT_DEPAUDIT: name = "DEPAUDIT"; stringp = TRUE; break;
1764 case DT_AUDIT: name = "AUDIT"; stringp = TRUE; break;
1765 case DT_PLTPAD: name = "PLTPAD"; break;
1766 case DT_MOVETAB: name = "MOVETAB"; break;
1767 case DT_SYMINFO: name = "SYMINFO"; break;
1768 case DT_RELACOUNT: name = "RELACOUNT"; break;
1769 case DT_RELCOUNT: name = "RELCOUNT"; break;
1770 case DT_FLAGS_1: name = "FLAGS_1"; break;
1771 case DT_VERSYM: name = "VERSYM"; break;
1772 case DT_VERDEF: name = "VERDEF"; break;
1773 case DT_VERDEFNUM: name = "VERDEFNUM"; break;
1774 case DT_VERNEED: name = "VERNEED"; break;
1775 case DT_VERNEEDNUM: name = "VERNEEDNUM"; break;
1776 case DT_AUXILIARY: name = "AUXILIARY"; stringp = TRUE; break;
1777 case DT_USED: name = "USED"; break;
1778 case DT_FILTER: name = "FILTER"; stringp = TRUE; break;
1779 case DT_GNU_HASH: name = "GNU_HASH"; break;
1780 }
1781
1782 fprintf (f, " %-20s ", name);
1783 if (! stringp)
1784 {
1785 fprintf (f, "0x");
1786 bfd_fprintf_vma (abfd, f, dyn.d_un.d_val);
1787 }
1788 else
1789 {
1790 const char *string;
1791 unsigned int tagv = dyn.d_un.d_val;
1792
1793 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1794 if (string == NULL)
1795 goto error_return;
1796 fprintf (f, "%s", string);
1797 }
1798 fprintf (f, "\n");
1799 }
1800
1801 free (dynbuf);
1802 dynbuf = NULL;
1803 }
1804
1805 if ((elf_dynverdef (abfd) != 0 && elf_tdata (abfd)->verdef == NULL)
1806 || (elf_dynverref (abfd) != 0 && elf_tdata (abfd)->verref == NULL))
1807 {
1808 if (! _bfd_elf_slurp_version_tables (abfd, FALSE))
1809 return FALSE;
1810 }
1811
1812 if (elf_dynverdef (abfd) != 0)
1813 {
1814 Elf_Internal_Verdef *t;
1815
1816 fprintf (f, _("\nVersion definitions:\n"));
1817 for (t = elf_tdata (abfd)->verdef; t != NULL; t = t->vd_nextdef)
1818 {
1819 fprintf (f, "%d 0x%2.2x 0x%8.8lx %s\n", t->vd_ndx,
1820 t->vd_flags, t->vd_hash,
1821 t->vd_nodename ? t->vd_nodename : "<corrupt>");
1822 if (t->vd_auxptr != NULL && t->vd_auxptr->vda_nextptr != NULL)
1823 {
1824 Elf_Internal_Verdaux *a;
1825
1826 fprintf (f, "\t");
1827 for (a = t->vd_auxptr->vda_nextptr;
1828 a != NULL;
1829 a = a->vda_nextptr)
1830 fprintf (f, "%s ",
1831 a->vda_nodename ? a->vda_nodename : "<corrupt>");
1832 fprintf (f, "\n");
1833 }
1834 }
1835 }
1836
1837 if (elf_dynverref (abfd) != 0)
1838 {
1839 Elf_Internal_Verneed *t;
1840
1841 fprintf (f, _("\nVersion References:\n"));
1842 for (t = elf_tdata (abfd)->verref; t != NULL; t = t->vn_nextref)
1843 {
1844 Elf_Internal_Vernaux *a;
1845
1846 fprintf (f, _(" required from %s:\n"),
1847 t->vn_filename ? t->vn_filename : "<corrupt>");
1848 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1849 fprintf (f, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a->vna_hash,
1850 a->vna_flags, a->vna_other,
1851 a->vna_nodename ? a->vna_nodename : "<corrupt>");
1852 }
1853 }
1854
1855 return TRUE;
1856
1857 error_return:
1858 if (dynbuf != NULL)
1859 free (dynbuf);
1860 return FALSE;
1861 }
1862
1863 /* Get version string. */
1864
1865 const char *
1866 _bfd_elf_get_symbol_version_string (bfd *abfd, asymbol *symbol,
1867 bfd_boolean *hidden)
1868 {
1869 const char *version_string = NULL;
1870 if (elf_dynversym (abfd) != 0
1871 && (elf_dynverdef (abfd) != 0 || elf_dynverref (abfd) != 0))
1872 {
1873 unsigned int vernum = ((elf_symbol_type *) symbol)->version;
1874
1875 *hidden = (vernum & VERSYM_HIDDEN) != 0;
1876 vernum &= VERSYM_VERSION;
1877
1878 if (vernum == 0)
1879 version_string = "";
1880 else if (vernum == 1
1881 && (vernum > elf_tdata (abfd)->cverdefs
1882 || (elf_tdata (abfd)->verdef[0].vd_flags
1883 == VER_FLG_BASE)))
1884 version_string = "Base";
1885 else if (vernum <= elf_tdata (abfd)->cverdefs)
1886 version_string =
1887 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1888 else
1889 {
1890 Elf_Internal_Verneed *t;
1891
1892 version_string = _("<corrupt>");
1893 for (t = elf_tdata (abfd)->verref;
1894 t != NULL;
1895 t = t->vn_nextref)
1896 {
1897 Elf_Internal_Vernaux *a;
1898
1899 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1900 {
1901 if (a->vna_other == vernum)
1902 {
1903 version_string = a->vna_nodename;
1904 break;
1905 }
1906 }
1907 }
1908 }
1909 }
1910 return version_string;
1911 }
1912
1913 /* Display ELF-specific fields of a symbol. */
1914
1915 void
1916 bfd_elf_print_symbol (bfd *abfd,
1917 void *filep,
1918 asymbol *symbol,
1919 bfd_print_symbol_type how)
1920 {
1921 FILE *file = (FILE *) filep;
1922 switch (how)
1923 {
1924 case bfd_print_symbol_name:
1925 fprintf (file, "%s", symbol->name);
1926 break;
1927 case bfd_print_symbol_more:
1928 fprintf (file, "elf ");
1929 bfd_fprintf_vma (abfd, file, symbol->value);
1930 fprintf (file, " %x", symbol->flags);
1931 break;
1932 case bfd_print_symbol_all:
1933 {
1934 const char *section_name;
1935 const char *name = NULL;
1936 const struct elf_backend_data *bed;
1937 unsigned char st_other;
1938 bfd_vma val;
1939 const char *version_string;
1940 bfd_boolean hidden;
1941
1942 section_name = symbol->section ? symbol->section->name : "(*none*)";
1943
1944 bed = get_elf_backend_data (abfd);
1945 if (bed->elf_backend_print_symbol_all)
1946 name = (*bed->elf_backend_print_symbol_all) (abfd, filep, symbol);
1947
1948 if (name == NULL)
1949 {
1950 name = symbol->name;
1951 bfd_print_symbol_vandf (abfd, file, symbol);
1952 }
1953
1954 fprintf (file, " %s\t", section_name);
1955 /* Print the "other" value for a symbol. For common symbols,
1956 we've already printed the size; now print the alignment.
1957 For other symbols, we have no specified alignment, and
1958 we've printed the address; now print the size. */
1959 if (symbol->section && bfd_is_com_section (symbol->section))
1960 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
1961 else
1962 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_size;
1963 bfd_fprintf_vma (abfd, file, val);
1964
1965 /* If we have version information, print it. */
1966 version_string = _bfd_elf_get_symbol_version_string (abfd,
1967 symbol,
1968 &hidden);
1969 if (version_string)
1970 {
1971 if (!hidden)
1972 fprintf (file, " %-11s", version_string);
1973 else
1974 {
1975 int i;
1976
1977 fprintf (file, " (%s)", version_string);
1978 for (i = 10 - strlen (version_string); i > 0; --i)
1979 putc (' ', file);
1980 }
1981 }
1982
1983 /* If the st_other field is not zero, print it. */
1984 st_other = ((elf_symbol_type *) symbol)->internal_elf_sym.st_other;
1985
1986 switch (st_other)
1987 {
1988 case 0: break;
1989 case STV_INTERNAL: fprintf (file, " .internal"); break;
1990 case STV_HIDDEN: fprintf (file, " .hidden"); break;
1991 case STV_PROTECTED: fprintf (file, " .protected"); break;
1992 default:
1993 /* Some other non-defined flags are also present, so print
1994 everything hex. */
1995 fprintf (file, " 0x%02x", (unsigned int) st_other);
1996 }
1997
1998 fprintf (file, " %s", name);
1999 }
2000 break;
2001 }
2002 }
2003 \f
2004 /* ELF .o/exec file reading */
2005
2006 /* Create a new bfd section from an ELF section header. */
2007
2008 bfd_boolean
2009 bfd_section_from_shdr (bfd *abfd, unsigned int shindex)
2010 {
2011 Elf_Internal_Shdr *hdr;
2012 Elf_Internal_Ehdr *ehdr;
2013 const struct elf_backend_data *bed;
2014 const char *name;
2015 bfd_boolean ret = TRUE;
2016 static bfd_boolean * sections_being_created = NULL;
2017 static bfd * sections_being_created_abfd = NULL;
2018 static unsigned int nesting = 0;
2019
2020 if (shindex >= elf_numsections (abfd))
2021 return FALSE;
2022
2023 if (++ nesting > 3)
2024 {
2025 /* PR17512: A corrupt ELF binary might contain a recursive group of
2026 sections, with each the string indices pointing to the next in the
2027 loop. Detect this here, by refusing to load a section that we are
2028 already in the process of loading. We only trigger this test if
2029 we have nested at least three sections deep as normal ELF binaries
2030 can expect to recurse at least once.
2031
2032 FIXME: It would be better if this array was attached to the bfd,
2033 rather than being held in a static pointer. */
2034
2035 if (sections_being_created_abfd != abfd)
2036 sections_being_created = NULL;
2037 if (sections_being_created == NULL)
2038 {
2039 sections_being_created = (bfd_boolean *)
2040 bfd_zalloc2 (abfd, elf_numsections (abfd), sizeof (bfd_boolean));
2041 sections_being_created_abfd = abfd;
2042 }
2043 if (sections_being_created [shindex])
2044 {
2045 _bfd_error_handler
2046 (_("%pB: warning: loop in section dependencies detected"), abfd);
2047 return FALSE;
2048 }
2049 sections_being_created [shindex] = TRUE;
2050 }
2051
2052 hdr = elf_elfsections (abfd)[shindex];
2053 ehdr = elf_elfheader (abfd);
2054 name = bfd_elf_string_from_elf_section (abfd, ehdr->e_shstrndx,
2055 hdr->sh_name);
2056 if (name == NULL)
2057 goto fail;
2058
2059 bed = get_elf_backend_data (abfd);
2060 switch (hdr->sh_type)
2061 {
2062 case SHT_NULL:
2063 /* Inactive section. Throw it away. */
2064 goto success;
2065
2066 case SHT_PROGBITS: /* Normal section with contents. */
2067 case SHT_NOBITS: /* .bss section. */
2068 case SHT_HASH: /* .hash section. */
2069 case SHT_NOTE: /* .note section. */
2070 case SHT_INIT_ARRAY: /* .init_array section. */
2071 case SHT_FINI_ARRAY: /* .fini_array section. */
2072 case SHT_PREINIT_ARRAY: /* .preinit_array section. */
2073 case SHT_GNU_LIBLIST: /* .gnu.liblist section. */
2074 case SHT_GNU_HASH: /* .gnu.hash section. */
2075 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2076 goto success;
2077
2078 case SHT_DYNAMIC: /* Dynamic linking information. */
2079 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2080 goto fail;
2081
2082 if (hdr->sh_link > elf_numsections (abfd))
2083 {
2084 /* PR 10478: Accept Solaris binaries with a sh_link
2085 field set to SHN_BEFORE or SHN_AFTER. */
2086 switch (bfd_get_arch (abfd))
2087 {
2088 case bfd_arch_i386:
2089 case bfd_arch_sparc:
2090 if (hdr->sh_link == (SHN_LORESERVE & 0xffff) /* SHN_BEFORE */
2091 || hdr->sh_link == ((SHN_LORESERVE + 1) & 0xffff) /* SHN_AFTER */)
2092 break;
2093 /* Otherwise fall through. */
2094 default:
2095 goto fail;
2096 }
2097 }
2098 else if (elf_elfsections (abfd)[hdr->sh_link] == NULL)
2099 goto fail;
2100 else if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_STRTAB)
2101 {
2102 Elf_Internal_Shdr *dynsymhdr;
2103
2104 /* The shared libraries distributed with hpux11 have a bogus
2105 sh_link field for the ".dynamic" section. Find the
2106 string table for the ".dynsym" section instead. */
2107 if (elf_dynsymtab (abfd) != 0)
2108 {
2109 dynsymhdr = elf_elfsections (abfd)[elf_dynsymtab (abfd)];
2110 hdr->sh_link = dynsymhdr->sh_link;
2111 }
2112 else
2113 {
2114 unsigned int i, num_sec;
2115
2116 num_sec = elf_numsections (abfd);
2117 for (i = 1; i < num_sec; i++)
2118 {
2119 dynsymhdr = elf_elfsections (abfd)[i];
2120 if (dynsymhdr->sh_type == SHT_DYNSYM)
2121 {
2122 hdr->sh_link = dynsymhdr->sh_link;
2123 break;
2124 }
2125 }
2126 }
2127 }
2128 goto success;
2129
2130 case SHT_SYMTAB: /* A symbol table. */
2131 if (elf_onesymtab (abfd) == shindex)
2132 goto success;
2133
2134 if (hdr->sh_entsize != bed->s->sizeof_sym)
2135 goto fail;
2136
2137 if (hdr->sh_info * hdr->sh_entsize > hdr->sh_size)
2138 {
2139 if (hdr->sh_size != 0)
2140 goto fail;
2141 /* Some assemblers erroneously set sh_info to one with a
2142 zero sh_size. ld sees this as a global symbol count
2143 of (unsigned) -1. Fix it here. */
2144 hdr->sh_info = 0;
2145 goto success;
2146 }
2147
2148 /* PR 18854: A binary might contain more than one symbol table.
2149 Unusual, but possible. Warn, but continue. */
2150 if (elf_onesymtab (abfd) != 0)
2151 {
2152 _bfd_error_handler
2153 /* xgettext:c-format */
2154 (_("%pB: warning: multiple symbol tables detected"
2155 " - ignoring the table in section %u"),
2156 abfd, shindex);
2157 goto success;
2158 }
2159 elf_onesymtab (abfd) = shindex;
2160 elf_symtab_hdr (abfd) = *hdr;
2161 elf_elfsections (abfd)[shindex] = hdr = & elf_symtab_hdr (abfd);
2162 abfd->flags |= HAS_SYMS;
2163
2164 /* Sometimes a shared object will map in the symbol table. If
2165 SHF_ALLOC is set, and this is a shared object, then we also
2166 treat this section as a BFD section. We can not base the
2167 decision purely on SHF_ALLOC, because that flag is sometimes
2168 set in a relocatable object file, which would confuse the
2169 linker. */
2170 if ((hdr->sh_flags & SHF_ALLOC) != 0
2171 && (abfd->flags & DYNAMIC) != 0
2172 && ! _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2173 shindex))
2174 goto fail;
2175
2176 /* Go looking for SHT_SYMTAB_SHNDX too, since if there is one we
2177 can't read symbols without that section loaded as well. It
2178 is most likely specified by the next section header. */
2179 {
2180 elf_section_list * entry;
2181 unsigned int i, num_sec;
2182
2183 for (entry = elf_symtab_shndx_list (abfd); entry != NULL; entry = entry->next)
2184 if (entry->hdr.sh_link == shindex)
2185 goto success;
2186
2187 num_sec = elf_numsections (abfd);
2188 for (i = shindex + 1; i < num_sec; i++)
2189 {
2190 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
2191
2192 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
2193 && hdr2->sh_link == shindex)
2194 break;
2195 }
2196
2197 if (i == num_sec)
2198 for (i = 1; i < shindex; i++)
2199 {
2200 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
2201
2202 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
2203 && hdr2->sh_link == shindex)
2204 break;
2205 }
2206
2207 if (i != shindex)
2208 ret = bfd_section_from_shdr (abfd, i);
2209 /* else FIXME: we have failed to find the symbol table - should we issue an error ? */
2210 goto success;
2211 }
2212
2213 case SHT_DYNSYM: /* A dynamic symbol table. */
2214 if (elf_dynsymtab (abfd) == shindex)
2215 goto success;
2216
2217 if (hdr->sh_entsize != bed->s->sizeof_sym)
2218 goto fail;
2219
2220 if (hdr->sh_info * hdr->sh_entsize > hdr->sh_size)
2221 {
2222 if (hdr->sh_size != 0)
2223 goto fail;
2224
2225 /* Some linkers erroneously set sh_info to one with a
2226 zero sh_size. ld sees this as a global symbol count
2227 of (unsigned) -1. Fix it here. */
2228 hdr->sh_info = 0;
2229 goto success;
2230 }
2231
2232 /* PR 18854: A binary might contain more than one dynamic symbol table.
2233 Unusual, but possible. Warn, but continue. */
2234 if (elf_dynsymtab (abfd) != 0)
2235 {
2236 _bfd_error_handler
2237 /* xgettext:c-format */
2238 (_("%pB: warning: multiple dynamic symbol tables detected"
2239 " - ignoring the table in section %u"),
2240 abfd, shindex);
2241 goto success;
2242 }
2243 elf_dynsymtab (abfd) = shindex;
2244 elf_tdata (abfd)->dynsymtab_hdr = *hdr;
2245 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->dynsymtab_hdr;
2246 abfd->flags |= HAS_SYMS;
2247
2248 /* Besides being a symbol table, we also treat this as a regular
2249 section, so that objcopy can handle it. */
2250 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2251 goto success;
2252
2253 case SHT_SYMTAB_SHNDX: /* Symbol section indices when >64k sections. */
2254 {
2255 elf_section_list * entry;
2256
2257 for (entry = elf_symtab_shndx_list (abfd); entry != NULL; entry = entry->next)
2258 if (entry->ndx == shindex)
2259 goto success;
2260
2261 entry = bfd_alloc (abfd, sizeof (*entry));
2262 if (entry == NULL)
2263 goto fail;
2264 entry->ndx = shindex;
2265 entry->hdr = * hdr;
2266 entry->next = elf_symtab_shndx_list (abfd);
2267 elf_symtab_shndx_list (abfd) = entry;
2268 elf_elfsections (abfd)[shindex] = & entry->hdr;
2269 goto success;
2270 }
2271
2272 case SHT_STRTAB: /* A string table. */
2273 if (hdr->bfd_section != NULL)
2274 goto success;
2275
2276 if (ehdr->e_shstrndx == shindex)
2277 {
2278 elf_tdata (abfd)->shstrtab_hdr = *hdr;
2279 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->shstrtab_hdr;
2280 goto success;
2281 }
2282
2283 if (elf_elfsections (abfd)[elf_onesymtab (abfd)]->sh_link == shindex)
2284 {
2285 symtab_strtab:
2286 elf_tdata (abfd)->strtab_hdr = *hdr;
2287 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->strtab_hdr;
2288 goto success;
2289 }
2290
2291 if (elf_elfsections (abfd)[elf_dynsymtab (abfd)]->sh_link == shindex)
2292 {
2293 dynsymtab_strtab:
2294 elf_tdata (abfd)->dynstrtab_hdr = *hdr;
2295 hdr = &elf_tdata (abfd)->dynstrtab_hdr;
2296 elf_elfsections (abfd)[shindex] = hdr;
2297 /* We also treat this as a regular section, so that objcopy
2298 can handle it. */
2299 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2300 shindex);
2301 goto success;
2302 }
2303
2304 /* If the string table isn't one of the above, then treat it as a
2305 regular section. We need to scan all the headers to be sure,
2306 just in case this strtab section appeared before the above. */
2307 if (elf_onesymtab (abfd) == 0 || elf_dynsymtab (abfd) == 0)
2308 {
2309 unsigned int i, num_sec;
2310
2311 num_sec = elf_numsections (abfd);
2312 for (i = 1; i < num_sec; i++)
2313 {
2314 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
2315 if (hdr2->sh_link == shindex)
2316 {
2317 /* Prevent endless recursion on broken objects. */
2318 if (i == shindex)
2319 goto fail;
2320 if (! bfd_section_from_shdr (abfd, i))
2321 goto fail;
2322 if (elf_onesymtab (abfd) == i)
2323 goto symtab_strtab;
2324 if (elf_dynsymtab (abfd) == i)
2325 goto dynsymtab_strtab;
2326 }
2327 }
2328 }
2329 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2330 goto success;
2331
2332 case SHT_REL:
2333 case SHT_RELA:
2334 /* *These* do a lot of work -- but build no sections! */
2335 {
2336 asection *target_sect;
2337 Elf_Internal_Shdr *hdr2, **p_hdr;
2338 unsigned int num_sec = elf_numsections (abfd);
2339 struct bfd_elf_section_data *esdt;
2340
2341 if (hdr->sh_entsize
2342 != (bfd_size_type) (hdr->sh_type == SHT_REL
2343 ? bed->s->sizeof_rel : bed->s->sizeof_rela))
2344 goto fail;
2345
2346 /* Check for a bogus link to avoid crashing. */
2347 if (hdr->sh_link >= num_sec)
2348 {
2349 _bfd_error_handler
2350 /* xgettext:c-format */
2351 (_("%pB: invalid link %u for reloc section %s (index %u)"),
2352 abfd, hdr->sh_link, name, shindex);
2353 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2354 shindex);
2355 goto success;
2356 }
2357
2358 /* For some incomprehensible reason Oracle distributes
2359 libraries for Solaris in which some of the objects have
2360 bogus sh_link fields. It would be nice if we could just
2361 reject them, but, unfortunately, some people need to use
2362 them. We scan through the section headers; if we find only
2363 one suitable symbol table, we clobber the sh_link to point
2364 to it. I hope this doesn't break anything.
2365
2366 Don't do it on executable nor shared library. */
2367 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0
2368 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_SYMTAB
2369 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_DYNSYM)
2370 {
2371 unsigned int scan;
2372 int found;
2373
2374 found = 0;
2375 for (scan = 1; scan < num_sec; scan++)
2376 {
2377 if (elf_elfsections (abfd)[scan]->sh_type == SHT_SYMTAB
2378 || elf_elfsections (abfd)[scan]->sh_type == SHT_DYNSYM)
2379 {
2380 if (found != 0)
2381 {
2382 found = 0;
2383 break;
2384 }
2385 found = scan;
2386 }
2387 }
2388 if (found != 0)
2389 hdr->sh_link = found;
2390 }
2391
2392 /* Get the symbol table. */
2393 if ((elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_SYMTAB
2394 || elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_DYNSYM)
2395 && ! bfd_section_from_shdr (abfd, hdr->sh_link))
2396 goto fail;
2397
2398 /* If this is an alloc section in an executable or shared
2399 library, or the reloc section does not use the main symbol
2400 table we don't treat it as a reloc section. BFD can't
2401 adequately represent such a section, so at least for now,
2402 we don't try. We just present it as a normal section. We
2403 also can't use it as a reloc section if it points to the
2404 null section, an invalid section, another reloc section, or
2405 its sh_link points to the null section. */
2406 if (((abfd->flags & (DYNAMIC | EXEC_P)) != 0
2407 && (hdr->sh_flags & SHF_ALLOC) != 0)
2408 || hdr->sh_link == SHN_UNDEF
2409 || hdr->sh_link != elf_onesymtab (abfd)
2410 || hdr->sh_info == SHN_UNDEF
2411 || hdr->sh_info >= num_sec
2412 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_REL
2413 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_RELA)
2414 {
2415 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2416 shindex);
2417 goto success;
2418 }
2419
2420 if (! bfd_section_from_shdr (abfd, hdr->sh_info))
2421 goto fail;
2422
2423 target_sect = bfd_section_from_elf_index (abfd, hdr->sh_info);
2424 if (target_sect == NULL)
2425 goto fail;
2426
2427 esdt = elf_section_data (target_sect);
2428 if (hdr->sh_type == SHT_RELA)
2429 p_hdr = &esdt->rela.hdr;
2430 else
2431 p_hdr = &esdt->rel.hdr;
2432
2433 /* PR 17512: file: 0b4f81b7. */
2434 if (*p_hdr != NULL)
2435 goto fail;
2436 hdr2 = (Elf_Internal_Shdr *) bfd_alloc (abfd, sizeof (*hdr2));
2437 if (hdr2 == NULL)
2438 goto fail;
2439 *hdr2 = *hdr;
2440 *p_hdr = hdr2;
2441 elf_elfsections (abfd)[shindex] = hdr2;
2442 target_sect->reloc_count += (NUM_SHDR_ENTRIES (hdr)
2443 * bed->s->int_rels_per_ext_rel);
2444 target_sect->flags |= SEC_RELOC;
2445 target_sect->relocation = NULL;
2446 target_sect->rel_filepos = hdr->sh_offset;
2447 /* In the section to which the relocations apply, mark whether
2448 its relocations are of the REL or RELA variety. */
2449 if (hdr->sh_size != 0)
2450 {
2451 if (hdr->sh_type == SHT_RELA)
2452 target_sect->use_rela_p = 1;
2453 }
2454 abfd->flags |= HAS_RELOC;
2455 goto success;
2456 }
2457
2458 case SHT_GNU_verdef:
2459 elf_dynverdef (abfd) = shindex;
2460 elf_tdata (abfd)->dynverdef_hdr = *hdr;
2461 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2462 goto success;
2463
2464 case SHT_GNU_versym:
2465 if (hdr->sh_entsize != sizeof (Elf_External_Versym))
2466 goto fail;
2467
2468 elf_dynversym (abfd) = shindex;
2469 elf_tdata (abfd)->dynversym_hdr = *hdr;
2470 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2471 goto success;
2472
2473 case SHT_GNU_verneed:
2474 elf_dynverref (abfd) = shindex;
2475 elf_tdata (abfd)->dynverref_hdr = *hdr;
2476 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2477 goto success;
2478
2479 case SHT_SHLIB:
2480 goto success;
2481
2482 case SHT_GROUP:
2483 if (! IS_VALID_GROUP_SECTION_HEADER (hdr, GRP_ENTRY_SIZE))
2484 goto fail;
2485
2486 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2487 goto fail;
2488
2489 goto success;
2490
2491 default:
2492 /* Possibly an attributes section. */
2493 if (hdr->sh_type == SHT_GNU_ATTRIBUTES
2494 || hdr->sh_type == bed->obj_attrs_section_type)
2495 {
2496 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2497 goto fail;
2498 _bfd_elf_parse_attributes (abfd, hdr);
2499 goto success;
2500 }
2501
2502 /* Check for any processor-specific section types. */
2503 if (bed->elf_backend_section_from_shdr (abfd, hdr, name, shindex))
2504 goto success;
2505
2506 if (hdr->sh_type >= SHT_LOUSER && hdr->sh_type <= SHT_HIUSER)
2507 {
2508 if ((hdr->sh_flags & SHF_ALLOC) != 0)
2509 /* FIXME: How to properly handle allocated section reserved
2510 for applications? */
2511 _bfd_error_handler
2512 /* xgettext:c-format */
2513 (_("%pB: unknown type [%#x] section `%s'"),
2514 abfd, hdr->sh_type, name);
2515 else
2516 {
2517 /* Allow sections reserved for applications. */
2518 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2519 shindex);
2520 goto success;
2521 }
2522 }
2523 else if (hdr->sh_type >= SHT_LOPROC
2524 && hdr->sh_type <= SHT_HIPROC)
2525 /* FIXME: We should handle this section. */
2526 _bfd_error_handler
2527 /* xgettext:c-format */
2528 (_("%pB: unknown type [%#x] section `%s'"),
2529 abfd, hdr->sh_type, name);
2530 else if (hdr->sh_type >= SHT_LOOS && hdr->sh_type <= SHT_HIOS)
2531 {
2532 /* Unrecognised OS-specific sections. */
2533 if ((hdr->sh_flags & SHF_OS_NONCONFORMING) != 0)
2534 /* SHF_OS_NONCONFORMING indicates that special knowledge is
2535 required to correctly process the section and the file should
2536 be rejected with an error message. */
2537 _bfd_error_handler
2538 /* xgettext:c-format */
2539 (_("%pB: unknown type [%#x] section `%s'"),
2540 abfd, hdr->sh_type, name);
2541 else
2542 {
2543 /* Otherwise it should be processed. */
2544 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2545 goto success;
2546 }
2547 }
2548 else
2549 /* FIXME: We should handle this section. */
2550 _bfd_error_handler
2551 /* xgettext:c-format */
2552 (_("%pB: unknown type [%#x] section `%s'"),
2553 abfd, hdr->sh_type, name);
2554
2555 goto fail;
2556 }
2557
2558 fail:
2559 ret = FALSE;
2560 success:
2561 if (sections_being_created && sections_being_created_abfd == abfd)
2562 sections_being_created [shindex] = FALSE;
2563 if (-- nesting == 0)
2564 {
2565 sections_being_created = NULL;
2566 sections_being_created_abfd = abfd;
2567 }
2568 return ret;
2569 }
2570
2571 /* Return the local symbol specified by ABFD, R_SYMNDX. */
2572
2573 Elf_Internal_Sym *
2574 bfd_sym_from_r_symndx (struct sym_cache *cache,
2575 bfd *abfd,
2576 unsigned long r_symndx)
2577 {
2578 unsigned int ent = r_symndx % LOCAL_SYM_CACHE_SIZE;
2579
2580 if (cache->abfd != abfd || cache->indx[ent] != r_symndx)
2581 {
2582 Elf_Internal_Shdr *symtab_hdr;
2583 unsigned char esym[sizeof (Elf64_External_Sym)];
2584 Elf_External_Sym_Shndx eshndx;
2585
2586 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2587 if (bfd_elf_get_elf_syms (abfd, symtab_hdr, 1, r_symndx,
2588 &cache->sym[ent], esym, &eshndx) == NULL)
2589 return NULL;
2590
2591 if (cache->abfd != abfd)
2592 {
2593 memset (cache->indx, -1, sizeof (cache->indx));
2594 cache->abfd = abfd;
2595 }
2596 cache->indx[ent] = r_symndx;
2597 }
2598
2599 return &cache->sym[ent];
2600 }
2601
2602 /* Given an ELF section number, retrieve the corresponding BFD
2603 section. */
2604
2605 asection *
2606 bfd_section_from_elf_index (bfd *abfd, unsigned int sec_index)
2607 {
2608 if (sec_index >= elf_numsections (abfd))
2609 return NULL;
2610 return elf_elfsections (abfd)[sec_index]->bfd_section;
2611 }
2612
2613 static const struct bfd_elf_special_section special_sections_b[] =
2614 {
2615 { STRING_COMMA_LEN (".bss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2616 { NULL, 0, 0, 0, 0 }
2617 };
2618
2619 static const struct bfd_elf_special_section special_sections_c[] =
2620 {
2621 { STRING_COMMA_LEN (".comment"), 0, SHT_PROGBITS, 0 },
2622 { NULL, 0, 0, 0, 0 }
2623 };
2624
2625 static const struct bfd_elf_special_section special_sections_d[] =
2626 {
2627 { STRING_COMMA_LEN (".data"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2628 { STRING_COMMA_LEN (".data1"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2629 /* There are more DWARF sections than these, but they needn't be added here
2630 unless you have to cope with broken compilers that don't emit section
2631 attributes or you want to help the user writing assembler. */
2632 { STRING_COMMA_LEN (".debug"), 0, SHT_PROGBITS, 0 },
2633 { STRING_COMMA_LEN (".debug_line"), 0, SHT_PROGBITS, 0 },
2634 { STRING_COMMA_LEN (".debug_info"), 0, SHT_PROGBITS, 0 },
2635 { STRING_COMMA_LEN (".debug_abbrev"), 0, SHT_PROGBITS, 0 },
2636 { STRING_COMMA_LEN (".debug_aranges"), 0, SHT_PROGBITS, 0 },
2637 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC, SHF_ALLOC },
2638 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB, SHF_ALLOC },
2639 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM, SHF_ALLOC },
2640 { NULL, 0, 0, 0, 0 }
2641 };
2642
2643 static const struct bfd_elf_special_section special_sections_f[] =
2644 {
2645 { STRING_COMMA_LEN (".fini"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2646 { STRING_COMMA_LEN (".fini_array"), -2, SHT_FINI_ARRAY, SHF_ALLOC + SHF_WRITE },
2647 { NULL, 0 , 0, 0, 0 }
2648 };
2649
2650 static const struct bfd_elf_special_section special_sections_g[] =
2651 {
2652 { STRING_COMMA_LEN (".gnu.linkonce.b"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2653 { STRING_COMMA_LEN (".gnu.lto_"), -1, SHT_PROGBITS, SHF_EXCLUDE },
2654 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2655 { STRING_COMMA_LEN (".gnu.version"), 0, SHT_GNU_versym, 0 },
2656 { STRING_COMMA_LEN (".gnu.version_d"), 0, SHT_GNU_verdef, 0 },
2657 { STRING_COMMA_LEN (".gnu.version_r"), 0, SHT_GNU_verneed, 0 },
2658 { STRING_COMMA_LEN (".gnu.liblist"), 0, SHT_GNU_LIBLIST, SHF_ALLOC },
2659 { STRING_COMMA_LEN (".gnu.conflict"), 0, SHT_RELA, SHF_ALLOC },
2660 { STRING_COMMA_LEN (".gnu.hash"), 0, SHT_GNU_HASH, SHF_ALLOC },
2661 { NULL, 0, 0, 0, 0 }
2662 };
2663
2664 static const struct bfd_elf_special_section special_sections_h[] =
2665 {
2666 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH, SHF_ALLOC },
2667 { NULL, 0, 0, 0, 0 }
2668 };
2669
2670 static const struct bfd_elf_special_section special_sections_i[] =
2671 {
2672 { STRING_COMMA_LEN (".init"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2673 { STRING_COMMA_LEN (".init_array"), -2, SHT_INIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2674 { STRING_COMMA_LEN (".interp"), 0, SHT_PROGBITS, 0 },
2675 { NULL, 0, 0, 0, 0 }
2676 };
2677
2678 static const struct bfd_elf_special_section special_sections_l[] =
2679 {
2680 { STRING_COMMA_LEN (".line"), 0, SHT_PROGBITS, 0 },
2681 { NULL, 0, 0, 0, 0 }
2682 };
2683
2684 static const struct bfd_elf_special_section special_sections_n[] =
2685 {
2686 { STRING_COMMA_LEN (".note.GNU-stack"), 0, SHT_PROGBITS, 0 },
2687 { STRING_COMMA_LEN (".note"), -1, SHT_NOTE, 0 },
2688 { NULL, 0, 0, 0, 0 }
2689 };
2690
2691 static const struct bfd_elf_special_section special_sections_p[] =
2692 {
2693 { STRING_COMMA_LEN (".preinit_array"), -2, SHT_PREINIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2694 { STRING_COMMA_LEN (".plt"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2695 { NULL, 0, 0, 0, 0 }
2696 };
2697
2698 static const struct bfd_elf_special_section special_sections_r[] =
2699 {
2700 { STRING_COMMA_LEN (".rodata"), -2, SHT_PROGBITS, SHF_ALLOC },
2701 { STRING_COMMA_LEN (".rodata1"), 0, SHT_PROGBITS, SHF_ALLOC },
2702 { STRING_COMMA_LEN (".rela"), -1, SHT_RELA, 0 },
2703 { STRING_COMMA_LEN (".rel"), -1, SHT_REL, 0 },
2704 { NULL, 0, 0, 0, 0 }
2705 };
2706
2707 static const struct bfd_elf_special_section special_sections_s[] =
2708 {
2709 { STRING_COMMA_LEN (".shstrtab"), 0, SHT_STRTAB, 0 },
2710 { STRING_COMMA_LEN (".strtab"), 0, SHT_STRTAB, 0 },
2711 { STRING_COMMA_LEN (".symtab"), 0, SHT_SYMTAB, 0 },
2712 /* See struct bfd_elf_special_section declaration for the semantics of
2713 this special case where .prefix_length != strlen (.prefix). */
2714 { ".stabstr", 5, 3, SHT_STRTAB, 0 },
2715 { NULL, 0, 0, 0, 0 }
2716 };
2717
2718 static const struct bfd_elf_special_section special_sections_t[] =
2719 {
2720 { STRING_COMMA_LEN (".text"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2721 { STRING_COMMA_LEN (".tbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2722 { STRING_COMMA_LEN (".tdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2723 { NULL, 0, 0, 0, 0 }
2724 };
2725
2726 static const struct bfd_elf_special_section special_sections_z[] =
2727 {
2728 { STRING_COMMA_LEN (".zdebug_line"), 0, SHT_PROGBITS, 0 },
2729 { STRING_COMMA_LEN (".zdebug_info"), 0, SHT_PROGBITS, 0 },
2730 { STRING_COMMA_LEN (".zdebug_abbrev"), 0, SHT_PROGBITS, 0 },
2731 { STRING_COMMA_LEN (".zdebug_aranges"), 0, SHT_PROGBITS, 0 },
2732 { NULL, 0, 0, 0, 0 }
2733 };
2734
2735 static const struct bfd_elf_special_section * const special_sections[] =
2736 {
2737 special_sections_b, /* 'b' */
2738 special_sections_c, /* 'c' */
2739 special_sections_d, /* 'd' */
2740 NULL, /* 'e' */
2741 special_sections_f, /* 'f' */
2742 special_sections_g, /* 'g' */
2743 special_sections_h, /* 'h' */
2744 special_sections_i, /* 'i' */
2745 NULL, /* 'j' */
2746 NULL, /* 'k' */
2747 special_sections_l, /* 'l' */
2748 NULL, /* 'm' */
2749 special_sections_n, /* 'n' */
2750 NULL, /* 'o' */
2751 special_sections_p, /* 'p' */
2752 NULL, /* 'q' */
2753 special_sections_r, /* 'r' */
2754 special_sections_s, /* 's' */
2755 special_sections_t, /* 't' */
2756 NULL, /* 'u' */
2757 NULL, /* 'v' */
2758 NULL, /* 'w' */
2759 NULL, /* 'x' */
2760 NULL, /* 'y' */
2761 special_sections_z /* 'z' */
2762 };
2763
2764 const struct bfd_elf_special_section *
2765 _bfd_elf_get_special_section (const char *name,
2766 const struct bfd_elf_special_section *spec,
2767 unsigned int rela)
2768 {
2769 int i;
2770 int len;
2771
2772 len = strlen (name);
2773
2774 for (i = 0; spec[i].prefix != NULL; i++)
2775 {
2776 int suffix_len;
2777 int prefix_len = spec[i].prefix_length;
2778
2779 if (len < prefix_len)
2780 continue;
2781 if (memcmp (name, spec[i].prefix, prefix_len) != 0)
2782 continue;
2783
2784 suffix_len = spec[i].suffix_length;
2785 if (suffix_len <= 0)
2786 {
2787 if (name[prefix_len] != 0)
2788 {
2789 if (suffix_len == 0)
2790 continue;
2791 if (name[prefix_len] != '.'
2792 && (suffix_len == -2
2793 || (rela && spec[i].type == SHT_REL)))
2794 continue;
2795 }
2796 }
2797 else
2798 {
2799 if (len < prefix_len + suffix_len)
2800 continue;
2801 if (memcmp (name + len - suffix_len,
2802 spec[i].prefix + prefix_len,
2803 suffix_len) != 0)
2804 continue;
2805 }
2806 return &spec[i];
2807 }
2808
2809 return NULL;
2810 }
2811
2812 const struct bfd_elf_special_section *
2813 _bfd_elf_get_sec_type_attr (bfd *abfd, asection *sec)
2814 {
2815 int i;
2816 const struct bfd_elf_special_section *spec;
2817 const struct elf_backend_data *bed;
2818
2819 /* See if this is one of the special sections. */
2820 if (sec->name == NULL)
2821 return NULL;
2822
2823 bed = get_elf_backend_data (abfd);
2824 spec = bed->special_sections;
2825 if (spec)
2826 {
2827 spec = _bfd_elf_get_special_section (sec->name,
2828 bed->special_sections,
2829 sec->use_rela_p);
2830 if (spec != NULL)
2831 return spec;
2832 }
2833
2834 if (sec->name[0] != '.')
2835 return NULL;
2836
2837 i = sec->name[1] - 'b';
2838 if (i < 0 || i > 'z' - 'b')
2839 return NULL;
2840
2841 spec = special_sections[i];
2842
2843 if (spec == NULL)
2844 return NULL;
2845
2846 return _bfd_elf_get_special_section (sec->name, spec, sec->use_rela_p);
2847 }
2848
2849 bfd_boolean
2850 _bfd_elf_new_section_hook (bfd *abfd, asection *sec)
2851 {
2852 struct bfd_elf_section_data *sdata;
2853 const struct elf_backend_data *bed;
2854 const struct bfd_elf_special_section *ssect;
2855
2856 sdata = (struct bfd_elf_section_data *) sec->used_by_bfd;
2857 if (sdata == NULL)
2858 {
2859 sdata = (struct bfd_elf_section_data *) bfd_zalloc (abfd,
2860 sizeof (*sdata));
2861 if (sdata == NULL)
2862 return FALSE;
2863 sec->used_by_bfd = sdata;
2864 }
2865
2866 /* Indicate whether or not this section should use RELA relocations. */
2867 bed = get_elf_backend_data (abfd);
2868 sec->use_rela_p = bed->default_use_rela_p;
2869
2870 /* When we read a file, we don't need to set ELF section type and
2871 flags. They will be overridden in _bfd_elf_make_section_from_shdr
2872 anyway. We will set ELF section type and flags for all linker
2873 created sections. If user specifies BFD section flags, we will
2874 set ELF section type and flags based on BFD section flags in
2875 elf_fake_sections. Special handling for .init_array/.fini_array
2876 output sections since they may contain .ctors/.dtors input
2877 sections. We don't want _bfd_elf_init_private_section_data to
2878 copy ELF section type from .ctors/.dtors input sections. */
2879 if (abfd->direction != read_direction
2880 || (sec->flags & SEC_LINKER_CREATED) != 0)
2881 {
2882 ssect = (*bed->get_sec_type_attr) (abfd, sec);
2883 if (ssect != NULL
2884 && (!sec->flags
2885 || (sec->flags & SEC_LINKER_CREATED) != 0
2886 || ssect->type == SHT_INIT_ARRAY
2887 || ssect->type == SHT_FINI_ARRAY))
2888 {
2889 elf_section_type (sec) = ssect->type;
2890 elf_section_flags (sec) = ssect->attr;
2891 }
2892 }
2893
2894 return _bfd_generic_new_section_hook (abfd, sec);
2895 }
2896
2897 /* Create a new bfd section from an ELF program header.
2898
2899 Since program segments have no names, we generate a synthetic name
2900 of the form segment<NUM>, where NUM is generally the index in the
2901 program header table. For segments that are split (see below) we
2902 generate the names segment<NUM>a and segment<NUM>b.
2903
2904 Note that some program segments may have a file size that is different than
2905 (less than) the memory size. All this means is that at execution the
2906 system must allocate the amount of memory specified by the memory size,
2907 but only initialize it with the first "file size" bytes read from the
2908 file. This would occur for example, with program segments consisting
2909 of combined data+bss.
2910
2911 To handle the above situation, this routine generates TWO bfd sections
2912 for the single program segment. The first has the length specified by
2913 the file size of the segment, and the second has the length specified
2914 by the difference between the two sizes. In effect, the segment is split
2915 into its initialized and uninitialized parts.
2916
2917 */
2918
2919 bfd_boolean
2920 _bfd_elf_make_section_from_phdr (bfd *abfd,
2921 Elf_Internal_Phdr *hdr,
2922 int hdr_index,
2923 const char *type_name)
2924 {
2925 asection *newsect;
2926 char *name;
2927 char namebuf[64];
2928 size_t len;
2929 int split;
2930
2931 split = ((hdr->p_memsz > 0)
2932 && (hdr->p_filesz > 0)
2933 && (hdr->p_memsz > hdr->p_filesz));
2934
2935 if (hdr->p_filesz > 0)
2936 {
2937 sprintf (namebuf, "%s%d%s", type_name, hdr_index, split ? "a" : "");
2938 len = strlen (namebuf) + 1;
2939 name = (char *) bfd_alloc (abfd, len);
2940 if (!name)
2941 return FALSE;
2942 memcpy (name, namebuf, len);
2943 newsect = bfd_make_section (abfd, name);
2944 if (newsect == NULL)
2945 return FALSE;
2946 newsect->vma = hdr->p_vaddr;
2947 newsect->lma = hdr->p_paddr;
2948 newsect->size = hdr->p_filesz;
2949 newsect->filepos = hdr->p_offset;
2950 newsect->flags |= SEC_HAS_CONTENTS;
2951 newsect->alignment_power = bfd_log2 (hdr->p_align);
2952 if (hdr->p_type == PT_LOAD)
2953 {
2954 newsect->flags |= SEC_ALLOC;
2955 newsect->flags |= SEC_LOAD;
2956 if (hdr->p_flags & PF_X)
2957 {
2958 /* FIXME: all we known is that it has execute PERMISSION,
2959 may be data. */
2960 newsect->flags |= SEC_CODE;
2961 }
2962 }
2963 if (!(hdr->p_flags & PF_W))
2964 {
2965 newsect->flags |= SEC_READONLY;
2966 }
2967 }
2968
2969 if (hdr->p_memsz > hdr->p_filesz)
2970 {
2971 bfd_vma align;
2972
2973 sprintf (namebuf, "%s%d%s", type_name, hdr_index, split ? "b" : "");
2974 len = strlen (namebuf) + 1;
2975 name = (char *) bfd_alloc (abfd, len);
2976 if (!name)
2977 return FALSE;
2978 memcpy (name, namebuf, len);
2979 newsect = bfd_make_section (abfd, name);
2980 if (newsect == NULL)
2981 return FALSE;
2982 newsect->vma = hdr->p_vaddr + hdr->p_filesz;
2983 newsect->lma = hdr->p_paddr + hdr->p_filesz;
2984 newsect->size = hdr->p_memsz - hdr->p_filesz;
2985 newsect->filepos = hdr->p_offset + hdr->p_filesz;
2986 align = newsect->vma & -newsect->vma;
2987 if (align == 0 || align > hdr->p_align)
2988 align = hdr->p_align;
2989 newsect->alignment_power = bfd_log2 (align);
2990 if (hdr->p_type == PT_LOAD)
2991 {
2992 /* Hack for gdb. Segments that have not been modified do
2993 not have their contents written to a core file, on the
2994 assumption that a debugger can find the contents in the
2995 executable. We flag this case by setting the fake
2996 section size to zero. Note that "real" bss sections will
2997 always have their contents dumped to the core file. */
2998 if (bfd_get_format (abfd) == bfd_core)
2999 newsect->size = 0;
3000 newsect->flags |= SEC_ALLOC;
3001 if (hdr->p_flags & PF_X)
3002 newsect->flags |= SEC_CODE;
3003 }
3004 if (!(hdr->p_flags & PF_W))
3005 newsect->flags |= SEC_READONLY;
3006 }
3007
3008 return TRUE;
3009 }
3010
3011 bfd_boolean
3012 bfd_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int hdr_index)
3013 {
3014 const struct elf_backend_data *bed;
3015
3016 switch (hdr->p_type)
3017 {
3018 case PT_NULL:
3019 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "null");
3020
3021 case PT_LOAD:
3022 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "load");
3023
3024 case PT_DYNAMIC:
3025 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "dynamic");
3026
3027 case PT_INTERP:
3028 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "interp");
3029
3030 case PT_NOTE:
3031 if (! _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "note"))
3032 return FALSE;
3033 if (! elf_read_notes (abfd, hdr->p_offset, hdr->p_filesz,
3034 hdr->p_align))
3035 return FALSE;
3036 return TRUE;
3037
3038 case PT_SHLIB:
3039 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "shlib");
3040
3041 case PT_PHDR:
3042 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "phdr");
3043
3044 case PT_GNU_EH_FRAME:
3045 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index,
3046 "eh_frame_hdr");
3047
3048 case PT_GNU_STACK:
3049 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "stack");
3050
3051 case PT_GNU_RELRO:
3052 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "relro");
3053
3054 default:
3055 /* Check for any processor-specific program segment types. */
3056 bed = get_elf_backend_data (abfd);
3057 return bed->elf_backend_section_from_phdr (abfd, hdr, hdr_index, "proc");
3058 }
3059 }
3060
3061 /* Return the REL_HDR for SEC, assuming there is only a single one, either
3062 REL or RELA. */
3063
3064 Elf_Internal_Shdr *
3065 _bfd_elf_single_rel_hdr (asection *sec)
3066 {
3067 if (elf_section_data (sec)->rel.hdr)
3068 {
3069 BFD_ASSERT (elf_section_data (sec)->rela.hdr == NULL);
3070 return elf_section_data (sec)->rel.hdr;
3071 }
3072 else
3073 return elf_section_data (sec)->rela.hdr;
3074 }
3075
3076 static bfd_boolean
3077 _bfd_elf_set_reloc_sh_name (bfd *abfd,
3078 Elf_Internal_Shdr *rel_hdr,
3079 const char *sec_name,
3080 bfd_boolean use_rela_p)
3081 {
3082 char *name = (char *) bfd_alloc (abfd,
3083 sizeof ".rela" + strlen (sec_name));
3084 if (name == NULL)
3085 return FALSE;
3086
3087 sprintf (name, "%s%s", use_rela_p ? ".rela" : ".rel", sec_name);
3088 rel_hdr->sh_name =
3089 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd), name,
3090 FALSE);
3091 if (rel_hdr->sh_name == (unsigned int) -1)
3092 return FALSE;
3093
3094 return TRUE;
3095 }
3096
3097 /* Allocate and initialize a section-header for a new reloc section,
3098 containing relocations against ASECT. It is stored in RELDATA. If
3099 USE_RELA_P is TRUE, we use RELA relocations; otherwise, we use REL
3100 relocations. */
3101
3102 static bfd_boolean
3103 _bfd_elf_init_reloc_shdr (bfd *abfd,
3104 struct bfd_elf_section_reloc_data *reldata,
3105 const char *sec_name,
3106 bfd_boolean use_rela_p,
3107 bfd_boolean delay_st_name_p)
3108 {
3109 Elf_Internal_Shdr *rel_hdr;
3110 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3111
3112 BFD_ASSERT (reldata->hdr == NULL);
3113 rel_hdr = bfd_zalloc (abfd, sizeof (*rel_hdr));
3114 reldata->hdr = rel_hdr;
3115
3116 if (delay_st_name_p)
3117 rel_hdr->sh_name = (unsigned int) -1;
3118 else if (!_bfd_elf_set_reloc_sh_name (abfd, rel_hdr, sec_name,
3119 use_rela_p))
3120 return FALSE;
3121 rel_hdr->sh_type = use_rela_p ? SHT_RELA : SHT_REL;
3122 rel_hdr->sh_entsize = (use_rela_p
3123 ? bed->s->sizeof_rela
3124 : bed->s->sizeof_rel);
3125 rel_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
3126 rel_hdr->sh_flags = 0;
3127 rel_hdr->sh_addr = 0;
3128 rel_hdr->sh_size = 0;
3129 rel_hdr->sh_offset = 0;
3130
3131 return TRUE;
3132 }
3133
3134 /* Return the default section type based on the passed in section flags. */
3135
3136 int
3137 bfd_elf_get_default_section_type (flagword flags)
3138 {
3139 if ((flags & (SEC_ALLOC | SEC_IS_COMMON)) != 0
3140 && (flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
3141 return SHT_NOBITS;
3142 return SHT_PROGBITS;
3143 }
3144
3145 struct fake_section_arg
3146 {
3147 struct bfd_link_info *link_info;
3148 bfd_boolean failed;
3149 };
3150
3151 /* Set up an ELF internal section header for a section. */
3152
3153 static void
3154 elf_fake_sections (bfd *abfd, asection *asect, void *fsarg)
3155 {
3156 struct fake_section_arg *arg = (struct fake_section_arg *)fsarg;
3157 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3158 struct bfd_elf_section_data *esd = elf_section_data (asect);
3159 Elf_Internal_Shdr *this_hdr;
3160 unsigned int sh_type;
3161 const char *name = asect->name;
3162 bfd_boolean delay_st_name_p = FALSE;
3163
3164 if (arg->failed)
3165 {
3166 /* We already failed; just get out of the bfd_map_over_sections
3167 loop. */
3168 return;
3169 }
3170
3171 this_hdr = &esd->this_hdr;
3172
3173 if (arg->link_info)
3174 {
3175 /* ld: compress DWARF debug sections with names: .debug_*. */
3176 if ((arg->link_info->compress_debug & COMPRESS_DEBUG)
3177 && (asect->flags & SEC_DEBUGGING)
3178 && name[1] == 'd'
3179 && name[6] == '_')
3180 {
3181 /* Set SEC_ELF_COMPRESS to indicate this section should be
3182 compressed. */
3183 asect->flags |= SEC_ELF_COMPRESS;
3184
3185 /* If this section will be compressed, delay adding section
3186 name to section name section after it is compressed in
3187 _bfd_elf_assign_file_positions_for_non_load. */
3188 delay_st_name_p = TRUE;
3189 }
3190 }
3191 else if ((asect->flags & SEC_ELF_RENAME))
3192 {
3193 /* objcopy: rename output DWARF debug section. */
3194 if ((abfd->flags & (BFD_DECOMPRESS | BFD_COMPRESS_GABI)))
3195 {
3196 /* When we decompress or compress with SHF_COMPRESSED,
3197 convert section name from .zdebug_* to .debug_* if
3198 needed. */
3199 if (name[1] == 'z')
3200 {
3201 char *new_name = convert_zdebug_to_debug (abfd, name);
3202 if (new_name == NULL)
3203 {
3204 arg->failed = TRUE;
3205 return;
3206 }
3207 name = new_name;
3208 }
3209 }
3210 else if (asect->compress_status == COMPRESS_SECTION_DONE)
3211 {
3212 /* PR binutils/18087: Compression does not always make a
3213 section smaller. So only rename the section when
3214 compression has actually taken place. If input section
3215 name is .zdebug_*, we should never compress it again. */
3216 char *new_name = convert_debug_to_zdebug (abfd, name);
3217 if (new_name == NULL)
3218 {
3219 arg->failed = TRUE;
3220 return;
3221 }
3222 BFD_ASSERT (name[1] != 'z');
3223 name = new_name;
3224 }
3225 }
3226
3227 if (delay_st_name_p)
3228 this_hdr->sh_name = (unsigned int) -1;
3229 else
3230 {
3231 this_hdr->sh_name
3232 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
3233 name, FALSE);
3234 if (this_hdr->sh_name == (unsigned int) -1)
3235 {
3236 arg->failed = TRUE;
3237 return;
3238 }
3239 }
3240
3241 /* Don't clear sh_flags. Assembler may set additional bits. */
3242
3243 if ((asect->flags & SEC_ALLOC) != 0
3244 || asect->user_set_vma)
3245 this_hdr->sh_addr = asect->vma;
3246 else
3247 this_hdr->sh_addr = 0;
3248
3249 this_hdr->sh_offset = 0;
3250 this_hdr->sh_size = asect->size;
3251 this_hdr->sh_link = 0;
3252 /* PR 17512: file: 0eb809fe, 8b0535ee. */
3253 if (asect->alignment_power >= (sizeof (bfd_vma) * 8) - 1)
3254 {
3255 _bfd_error_handler
3256 /* xgettext:c-format */
3257 (_("%pB: error: alignment power %d of section `%pA' is too big"),
3258 abfd, asect->alignment_power, asect);
3259 arg->failed = TRUE;
3260 return;
3261 }
3262 this_hdr->sh_addralign = (bfd_vma) 1 << asect->alignment_power;
3263 /* The sh_entsize and sh_info fields may have been set already by
3264 copy_private_section_data. */
3265
3266 this_hdr->bfd_section = asect;
3267 this_hdr->contents = NULL;
3268
3269 /* If the section type is unspecified, we set it based on
3270 asect->flags. */
3271 if ((asect->flags & SEC_GROUP) != 0)
3272 sh_type = SHT_GROUP;
3273 else
3274 sh_type = bfd_elf_get_default_section_type (asect->flags);
3275
3276 if (this_hdr->sh_type == SHT_NULL)
3277 this_hdr->sh_type = sh_type;
3278 else if (this_hdr->sh_type == SHT_NOBITS
3279 && sh_type == SHT_PROGBITS
3280 && (asect->flags & SEC_ALLOC) != 0)
3281 {
3282 /* Warn if we are changing a NOBITS section to PROGBITS, but
3283 allow the link to proceed. This can happen when users link
3284 non-bss input sections to bss output sections, or emit data
3285 to a bss output section via a linker script. */
3286 _bfd_error_handler
3287 (_("warning: section `%pA' type changed to PROGBITS"), asect);
3288 this_hdr->sh_type = sh_type;
3289 }
3290
3291 switch (this_hdr->sh_type)
3292 {
3293 default:
3294 break;
3295
3296 case SHT_STRTAB:
3297 case SHT_NOTE:
3298 case SHT_NOBITS:
3299 case SHT_PROGBITS:
3300 break;
3301
3302 case SHT_INIT_ARRAY:
3303 case SHT_FINI_ARRAY:
3304 case SHT_PREINIT_ARRAY:
3305 this_hdr->sh_entsize = bed->s->arch_size / 8;
3306 break;
3307
3308 case SHT_HASH:
3309 this_hdr->sh_entsize = bed->s->sizeof_hash_entry;
3310 break;
3311
3312 case SHT_DYNSYM:
3313 this_hdr->sh_entsize = bed->s->sizeof_sym;
3314 break;
3315
3316 case SHT_DYNAMIC:
3317 this_hdr->sh_entsize = bed->s->sizeof_dyn;
3318 break;
3319
3320 case SHT_RELA:
3321 if (get_elf_backend_data (abfd)->may_use_rela_p)
3322 this_hdr->sh_entsize = bed->s->sizeof_rela;
3323 break;
3324
3325 case SHT_REL:
3326 if (get_elf_backend_data (abfd)->may_use_rel_p)
3327 this_hdr->sh_entsize = bed->s->sizeof_rel;
3328 break;
3329
3330 case SHT_GNU_versym:
3331 this_hdr->sh_entsize = sizeof (Elf_External_Versym);
3332 break;
3333
3334 case SHT_GNU_verdef:
3335 this_hdr->sh_entsize = 0;
3336 /* objcopy or strip will copy over sh_info, but may not set
3337 cverdefs. The linker will set cverdefs, but sh_info will be
3338 zero. */
3339 if (this_hdr->sh_info == 0)
3340 this_hdr->sh_info = elf_tdata (abfd)->cverdefs;
3341 else
3342 BFD_ASSERT (elf_tdata (abfd)->cverdefs == 0
3343 || this_hdr->sh_info == elf_tdata (abfd)->cverdefs);
3344 break;
3345
3346 case SHT_GNU_verneed:
3347 this_hdr->sh_entsize = 0;
3348 /* objcopy or strip will copy over sh_info, but may not set
3349 cverrefs. The linker will set cverrefs, but sh_info will be
3350 zero. */
3351 if (this_hdr->sh_info == 0)
3352 this_hdr->sh_info = elf_tdata (abfd)->cverrefs;
3353 else
3354 BFD_ASSERT (elf_tdata (abfd)->cverrefs == 0
3355 || this_hdr->sh_info == elf_tdata (abfd)->cverrefs);
3356 break;
3357
3358 case SHT_GROUP:
3359 this_hdr->sh_entsize = GRP_ENTRY_SIZE;
3360 break;
3361
3362 case SHT_GNU_HASH:
3363 this_hdr->sh_entsize = bed->s->arch_size == 64 ? 0 : 4;
3364 break;
3365 }
3366
3367 if ((asect->flags & SEC_ALLOC) != 0)
3368 this_hdr->sh_flags |= SHF_ALLOC;
3369 if ((asect->flags & SEC_READONLY) == 0)
3370 this_hdr->sh_flags |= SHF_WRITE;
3371 if ((asect->flags & SEC_CODE) != 0)
3372 this_hdr->sh_flags |= SHF_EXECINSTR;
3373 if ((asect->flags & SEC_MERGE) != 0)
3374 {
3375 this_hdr->sh_flags |= SHF_MERGE;
3376 this_hdr->sh_entsize = asect->entsize;
3377 }
3378 if ((asect->flags & SEC_STRINGS) != 0)
3379 this_hdr->sh_flags |= SHF_STRINGS;
3380 if ((asect->flags & SEC_GROUP) == 0 && elf_group_name (asect) != NULL)
3381 this_hdr->sh_flags |= SHF_GROUP;
3382 if ((asect->flags & SEC_THREAD_LOCAL) != 0)
3383 {
3384 this_hdr->sh_flags |= SHF_TLS;
3385 if (asect->size == 0
3386 && (asect->flags & SEC_HAS_CONTENTS) == 0)
3387 {
3388 struct bfd_link_order *o = asect->map_tail.link_order;
3389
3390 this_hdr->sh_size = 0;
3391 if (o != NULL)
3392 {
3393 this_hdr->sh_size = o->offset + o->size;
3394 if (this_hdr->sh_size != 0)
3395 this_hdr->sh_type = SHT_NOBITS;
3396 }
3397 }
3398 }
3399 if ((asect->flags & (SEC_GROUP | SEC_EXCLUDE)) == SEC_EXCLUDE)
3400 this_hdr->sh_flags |= SHF_EXCLUDE;
3401
3402 /* If the section has relocs, set up a section header for the
3403 SHT_REL[A] section. If two relocation sections are required for
3404 this section, it is up to the processor-specific back-end to
3405 create the other. */
3406 if ((asect->flags & SEC_RELOC) != 0)
3407 {
3408 /* When doing a relocatable link, create both REL and RELA sections if
3409 needed. */
3410 if (arg->link_info
3411 /* Do the normal setup if we wouldn't create any sections here. */
3412 && esd->rel.count + esd->rela.count > 0
3413 && (bfd_link_relocatable (arg->link_info)
3414 || arg->link_info->emitrelocations))
3415 {
3416 if (esd->rel.count && esd->rel.hdr == NULL
3417 && !_bfd_elf_init_reloc_shdr (abfd, &esd->rel, name,
3418 FALSE, delay_st_name_p))
3419 {
3420 arg->failed = TRUE;
3421 return;
3422 }
3423 if (esd->rela.count && esd->rela.hdr == NULL
3424 && !_bfd_elf_init_reloc_shdr (abfd, &esd->rela, name,
3425 TRUE, delay_st_name_p))
3426 {
3427 arg->failed = TRUE;
3428 return;
3429 }
3430 }
3431 else if (!_bfd_elf_init_reloc_shdr (abfd,
3432 (asect->use_rela_p
3433 ? &esd->rela : &esd->rel),
3434 name,
3435 asect->use_rela_p,
3436 delay_st_name_p))
3437 {
3438 arg->failed = TRUE;
3439 return;
3440 }
3441 }
3442
3443 /* Check for processor-specific section types. */
3444 sh_type = this_hdr->sh_type;
3445 if (bed->elf_backend_fake_sections
3446 && !(*bed->elf_backend_fake_sections) (abfd, this_hdr, asect))
3447 {
3448 arg->failed = TRUE;
3449 return;
3450 }
3451
3452 if (sh_type == SHT_NOBITS && asect->size != 0)
3453 {
3454 /* Don't change the header type from NOBITS if we are being
3455 called for objcopy --only-keep-debug. */
3456 this_hdr->sh_type = sh_type;
3457 }
3458 }
3459
3460 /* Fill in the contents of a SHT_GROUP section. Called from
3461 _bfd_elf_compute_section_file_positions for gas, objcopy, and
3462 when ELF targets use the generic linker, ld. Called for ld -r
3463 from bfd_elf_final_link. */
3464
3465 void
3466 bfd_elf_set_group_contents (bfd *abfd, asection *sec, void *failedptrarg)
3467 {
3468 bfd_boolean *failedptr = (bfd_boolean *) failedptrarg;
3469 asection *elt, *first;
3470 unsigned char *loc;
3471 bfd_boolean gas;
3472
3473 /* Ignore linker created group section. See elfNN_ia64_object_p in
3474 elfxx-ia64.c. */
3475 if ((sec->flags & (SEC_GROUP | SEC_LINKER_CREATED)) != SEC_GROUP
3476 || sec->size == 0
3477 || *failedptr)
3478 return;
3479
3480 if (elf_section_data (sec)->this_hdr.sh_info == 0)
3481 {
3482 unsigned long symindx = 0;
3483
3484 /* elf_group_id will have been set up by objcopy and the
3485 generic linker. */
3486 if (elf_group_id (sec) != NULL)
3487 symindx = elf_group_id (sec)->udata.i;
3488
3489 if (symindx == 0)
3490 {
3491 /* If called from the assembler, swap_out_syms will have set up
3492 elf_section_syms. */
3493 BFD_ASSERT (elf_section_syms (abfd) != NULL);
3494 symindx = elf_section_syms (abfd)[sec->index]->udata.i;
3495 }
3496 elf_section_data (sec)->this_hdr.sh_info = symindx;
3497 }
3498 else if (elf_section_data (sec)->this_hdr.sh_info == (unsigned int) -2)
3499 {
3500 /* The ELF backend linker sets sh_info to -2 when the group
3501 signature symbol is global, and thus the index can't be
3502 set until all local symbols are output. */
3503 asection *igroup;
3504 struct bfd_elf_section_data *sec_data;
3505 unsigned long symndx;
3506 unsigned long extsymoff;
3507 struct elf_link_hash_entry *h;
3508
3509 /* The point of this little dance to the first SHF_GROUP section
3510 then back to the SHT_GROUP section is that this gets us to
3511 the SHT_GROUP in the input object. */
3512 igroup = elf_sec_group (elf_next_in_group (sec));
3513 sec_data = elf_section_data (igroup);
3514 symndx = sec_data->this_hdr.sh_info;
3515 extsymoff = 0;
3516 if (!elf_bad_symtab (igroup->owner))
3517 {
3518 Elf_Internal_Shdr *symtab_hdr;
3519
3520 symtab_hdr = &elf_tdata (igroup->owner)->symtab_hdr;
3521 extsymoff = symtab_hdr->sh_info;
3522 }
3523 h = elf_sym_hashes (igroup->owner)[symndx - extsymoff];
3524 while (h->root.type == bfd_link_hash_indirect
3525 || h->root.type == bfd_link_hash_warning)
3526 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3527
3528 elf_section_data (sec)->this_hdr.sh_info = h->indx;
3529 }
3530
3531 /* The contents won't be allocated for "ld -r" or objcopy. */
3532 gas = TRUE;
3533 if (sec->contents == NULL)
3534 {
3535 gas = FALSE;
3536 sec->contents = (unsigned char *) bfd_alloc (abfd, sec->size);
3537
3538 /* Arrange for the section to be written out. */
3539 elf_section_data (sec)->this_hdr.contents = sec->contents;
3540 if (sec->contents == NULL)
3541 {
3542 *failedptr = TRUE;
3543 return;
3544 }
3545 }
3546
3547 loc = sec->contents + sec->size;
3548
3549 /* Get the pointer to the first section in the group that gas
3550 squirreled away here. objcopy arranges for this to be set to the
3551 start of the input section group. */
3552 first = elt = elf_next_in_group (sec);
3553
3554 /* First element is a flag word. Rest of section is elf section
3555 indices for all the sections of the group. Write them backwards
3556 just to keep the group in the same order as given in .section
3557 directives, not that it matters. */
3558 while (elt != NULL)
3559 {
3560 asection *s;
3561
3562 s = elt;
3563 if (!gas)
3564 s = s->output_section;
3565 if (s != NULL
3566 && !bfd_is_abs_section (s))
3567 {
3568 struct bfd_elf_section_data *elf_sec = elf_section_data (s);
3569 struct bfd_elf_section_data *input_elf_sec = elf_section_data (elt);
3570
3571 if (elf_sec->rel.hdr != NULL
3572 && (gas
3573 || (input_elf_sec->rel.hdr != NULL
3574 && input_elf_sec->rel.hdr->sh_flags & SHF_GROUP) != 0))
3575 {
3576 elf_sec->rel.hdr->sh_flags |= SHF_GROUP;
3577 loc -= 4;
3578 H_PUT_32 (abfd, elf_sec->rel.idx, loc);
3579 }
3580 if (elf_sec->rela.hdr != NULL
3581 && (gas
3582 || (input_elf_sec->rela.hdr != NULL
3583 && input_elf_sec->rela.hdr->sh_flags & SHF_GROUP) != 0))
3584 {
3585 elf_sec->rela.hdr->sh_flags |= SHF_GROUP;
3586 loc -= 4;
3587 H_PUT_32 (abfd, elf_sec->rela.idx, loc);
3588 }
3589 loc -= 4;
3590 H_PUT_32 (abfd, elf_sec->this_idx, loc);
3591 }
3592 elt = elf_next_in_group (elt);
3593 if (elt == first)
3594 break;
3595 }
3596
3597 loc -= 4;
3598 BFD_ASSERT (loc == sec->contents);
3599
3600 H_PUT_32 (abfd, sec->flags & SEC_LINK_ONCE ? GRP_COMDAT : 0, loc);
3601 }
3602
3603 /* Given NAME, the name of a relocation section stripped of its
3604 .rel/.rela prefix, return the section in ABFD to which the
3605 relocations apply. */
3606
3607 asection *
3608 _bfd_elf_plt_get_reloc_section (bfd *abfd, const char *name)
3609 {
3610 /* If a target needs .got.plt section, relocations in rela.plt/rel.plt
3611 section likely apply to .got.plt or .got section. */
3612 if (get_elf_backend_data (abfd)->want_got_plt
3613 && strcmp (name, ".plt") == 0)
3614 {
3615 asection *sec;
3616
3617 name = ".got.plt";
3618 sec = bfd_get_section_by_name (abfd, name);
3619 if (sec != NULL)
3620 return sec;
3621 name = ".got";
3622 }
3623
3624 return bfd_get_section_by_name (abfd, name);
3625 }
3626
3627 /* Return the section to which RELOC_SEC applies. */
3628
3629 static asection *
3630 elf_get_reloc_section (asection *reloc_sec)
3631 {
3632 const char *name;
3633 unsigned int type;
3634 bfd *abfd;
3635 const struct elf_backend_data *bed;
3636
3637 type = elf_section_data (reloc_sec)->this_hdr.sh_type;
3638 if (type != SHT_REL && type != SHT_RELA)
3639 return NULL;
3640
3641 /* We look up the section the relocs apply to by name. */
3642 name = reloc_sec->name;
3643 if (strncmp (name, ".rel", 4) != 0)
3644 return NULL;
3645 name += 4;
3646 if (type == SHT_RELA && *name++ != 'a')
3647 return NULL;
3648
3649 abfd = reloc_sec->owner;
3650 bed = get_elf_backend_data (abfd);
3651 return bed->get_reloc_section (abfd, name);
3652 }
3653
3654 /* Assign all ELF section numbers. The dummy first section is handled here
3655 too. The link/info pointers for the standard section types are filled
3656 in here too, while we're at it. */
3657
3658 static bfd_boolean
3659 assign_section_numbers (bfd *abfd, struct bfd_link_info *link_info)
3660 {
3661 struct elf_obj_tdata *t = elf_tdata (abfd);
3662 asection *sec;
3663 unsigned int section_number;
3664 Elf_Internal_Shdr **i_shdrp;
3665 struct bfd_elf_section_data *d;
3666 bfd_boolean need_symtab;
3667
3668 section_number = 1;
3669
3670 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd));
3671
3672 /* SHT_GROUP sections are in relocatable files only. */
3673 if (link_info == NULL || !link_info->resolve_section_groups)
3674 {
3675 size_t reloc_count = 0;
3676
3677 /* Put SHT_GROUP sections first. */
3678 for (sec = abfd->sections; sec != NULL; sec = sec->next)
3679 {
3680 d = elf_section_data (sec);
3681
3682 if (d->this_hdr.sh_type == SHT_GROUP)
3683 {
3684 if (sec->flags & SEC_LINKER_CREATED)
3685 {
3686 /* Remove the linker created SHT_GROUP sections. */
3687 bfd_section_list_remove (abfd, sec);
3688 abfd->section_count--;
3689 }
3690 else
3691 d->this_idx = section_number++;
3692 }
3693
3694 /* Count relocations. */
3695 reloc_count += sec->reloc_count;
3696 }
3697
3698 /* Clear HAS_RELOC if there are no relocations. */
3699 if (reloc_count == 0)
3700 abfd->flags &= ~HAS_RELOC;
3701 }
3702
3703 for (sec = abfd->sections; sec; sec = sec->next)
3704 {
3705 d = elf_section_data (sec);
3706
3707 if (d->this_hdr.sh_type != SHT_GROUP)
3708 d->this_idx = section_number++;
3709 if (d->this_hdr.sh_name != (unsigned int) -1)
3710 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->this_hdr.sh_name);
3711 if (d->rel.hdr)
3712 {
3713 d->rel.idx = section_number++;
3714 if (d->rel.hdr->sh_name != (unsigned int) -1)
3715 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel.hdr->sh_name);
3716 }
3717 else
3718 d->rel.idx = 0;
3719
3720 if (d->rela.hdr)
3721 {
3722 d->rela.idx = section_number++;
3723 if (d->rela.hdr->sh_name != (unsigned int) -1)
3724 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rela.hdr->sh_name);
3725 }
3726 else
3727 d->rela.idx = 0;
3728 }
3729
3730 need_symtab = (bfd_get_symcount (abfd) > 0
3731 || (link_info == NULL
3732 && ((abfd->flags & (EXEC_P | DYNAMIC | HAS_RELOC))
3733 == HAS_RELOC)));
3734 if (need_symtab)
3735 {
3736 elf_onesymtab (abfd) = section_number++;
3737 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->symtab_hdr.sh_name);
3738 if (section_number > ((SHN_LORESERVE - 2) & 0xFFFF))
3739 {
3740 elf_section_list *entry;
3741
3742 BFD_ASSERT (elf_symtab_shndx_list (abfd) == NULL);
3743
3744 entry = bfd_zalloc (abfd, sizeof (*entry));
3745 entry->ndx = section_number++;
3746 elf_symtab_shndx_list (abfd) = entry;
3747 entry->hdr.sh_name
3748 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
3749 ".symtab_shndx", FALSE);
3750 if (entry->hdr.sh_name == (unsigned int) -1)
3751 return FALSE;
3752 }
3753 elf_strtab_sec (abfd) = section_number++;
3754 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->strtab_hdr.sh_name);
3755 }
3756
3757 elf_shstrtab_sec (abfd) = section_number++;
3758 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->shstrtab_hdr.sh_name);
3759 elf_elfheader (abfd)->e_shstrndx = elf_shstrtab_sec (abfd);
3760
3761 if (section_number >= SHN_LORESERVE)
3762 {
3763 /* xgettext:c-format */
3764 _bfd_error_handler (_("%pB: too many sections: %u"),
3765 abfd, section_number);
3766 return FALSE;
3767 }
3768
3769 elf_numsections (abfd) = section_number;
3770 elf_elfheader (abfd)->e_shnum = section_number;
3771
3772 /* Set up the list of section header pointers, in agreement with the
3773 indices. */
3774 i_shdrp = (Elf_Internal_Shdr **) bfd_zalloc2 (abfd, section_number,
3775 sizeof (Elf_Internal_Shdr *));
3776 if (i_shdrp == NULL)
3777 return FALSE;
3778
3779 i_shdrp[0] = (Elf_Internal_Shdr *) bfd_zalloc (abfd,
3780 sizeof (Elf_Internal_Shdr));
3781 if (i_shdrp[0] == NULL)
3782 {
3783 bfd_release (abfd, i_shdrp);
3784 return FALSE;
3785 }
3786
3787 elf_elfsections (abfd) = i_shdrp;
3788
3789 i_shdrp[elf_shstrtab_sec (abfd)] = &t->shstrtab_hdr;
3790 if (need_symtab)
3791 {
3792 i_shdrp[elf_onesymtab (abfd)] = &t->symtab_hdr;
3793 if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
3794 {
3795 elf_section_list * entry = elf_symtab_shndx_list (abfd);
3796 BFD_ASSERT (entry != NULL);
3797 i_shdrp[entry->ndx] = & entry->hdr;
3798 entry->hdr.sh_link = elf_onesymtab (abfd);
3799 }
3800 i_shdrp[elf_strtab_sec (abfd)] = &t->strtab_hdr;
3801 t->symtab_hdr.sh_link = elf_strtab_sec (abfd);
3802 }
3803
3804 for (sec = abfd->sections; sec; sec = sec->next)
3805 {
3806 asection *s;
3807
3808 d = elf_section_data (sec);
3809
3810 i_shdrp[d->this_idx] = &d->this_hdr;
3811 if (d->rel.idx != 0)
3812 i_shdrp[d->rel.idx] = d->rel.hdr;
3813 if (d->rela.idx != 0)
3814 i_shdrp[d->rela.idx] = d->rela.hdr;
3815
3816 /* Fill in the sh_link and sh_info fields while we're at it. */
3817
3818 /* sh_link of a reloc section is the section index of the symbol
3819 table. sh_info is the section index of the section to which
3820 the relocation entries apply. */
3821 if (d->rel.idx != 0)
3822 {
3823 d->rel.hdr->sh_link = elf_onesymtab (abfd);
3824 d->rel.hdr->sh_info = d->this_idx;
3825 d->rel.hdr->sh_flags |= SHF_INFO_LINK;
3826 }
3827 if (d->rela.idx != 0)
3828 {
3829 d->rela.hdr->sh_link = elf_onesymtab (abfd);
3830 d->rela.hdr->sh_info = d->this_idx;
3831 d->rela.hdr->sh_flags |= SHF_INFO_LINK;
3832 }
3833
3834 /* We need to set up sh_link for SHF_LINK_ORDER. */
3835 if ((d->this_hdr.sh_flags & SHF_LINK_ORDER) != 0)
3836 {
3837 s = elf_linked_to_section (sec);
3838 if (s)
3839 {
3840 /* elf_linked_to_section points to the input section. */
3841 if (link_info != NULL)
3842 {
3843 /* Check discarded linkonce section. */
3844 if (discarded_section (s))
3845 {
3846 asection *kept;
3847 _bfd_error_handler
3848 /* xgettext:c-format */
3849 (_("%pB: sh_link of section `%pA' points to"
3850 " discarded section `%pA' of `%pB'"),
3851 abfd, d->this_hdr.bfd_section,
3852 s, s->owner);
3853 /* Point to the kept section if it has the same
3854 size as the discarded one. */
3855 kept = _bfd_elf_check_kept_section (s, link_info);
3856 if (kept == NULL)
3857 {
3858 bfd_set_error (bfd_error_bad_value);
3859 return FALSE;
3860 }
3861 s = kept;
3862 }
3863
3864 s = s->output_section;
3865 BFD_ASSERT (s != NULL);
3866 }
3867 else
3868 {
3869 /* Handle objcopy. */
3870 if (s->output_section == NULL)
3871 {
3872 _bfd_error_handler
3873 /* xgettext:c-format */
3874 (_("%pB: sh_link of section `%pA' points to"
3875 " removed section `%pA' of `%pB'"),
3876 abfd, d->this_hdr.bfd_section, s, s->owner);
3877 bfd_set_error (bfd_error_bad_value);
3878 return FALSE;
3879 }
3880 s = s->output_section;
3881 }
3882 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3883 }
3884 else
3885 {
3886 /* PR 290:
3887 The Intel C compiler generates SHT_IA_64_UNWIND with
3888 SHF_LINK_ORDER. But it doesn't set the sh_link or
3889 sh_info fields. Hence we could get the situation
3890 where s is NULL. */
3891 const struct elf_backend_data *bed
3892 = get_elf_backend_data (abfd);
3893 if (bed->link_order_error_handler)
3894 bed->link_order_error_handler
3895 /* xgettext:c-format */
3896 (_("%pB: warning: sh_link not set for section `%pA'"),
3897 abfd, sec);
3898 }
3899 }
3900
3901 switch (d->this_hdr.sh_type)
3902 {
3903 case SHT_REL:
3904 case SHT_RELA:
3905 /* A reloc section which we are treating as a normal BFD
3906 section. sh_link is the section index of the symbol
3907 table. sh_info is the section index of the section to
3908 which the relocation entries apply. We assume that an
3909 allocated reloc section uses the dynamic symbol table.
3910 FIXME: How can we be sure? */
3911 s = bfd_get_section_by_name (abfd, ".dynsym");
3912 if (s != NULL)
3913 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3914
3915 s = elf_get_reloc_section (sec);
3916 if (s != NULL)
3917 {
3918 d->this_hdr.sh_info = elf_section_data (s)->this_idx;
3919 d->this_hdr.sh_flags |= SHF_INFO_LINK;
3920 }
3921 break;
3922
3923 case SHT_STRTAB:
3924 /* We assume that a section named .stab*str is a stabs
3925 string section. We look for a section with the same name
3926 but without the trailing ``str'', and set its sh_link
3927 field to point to this section. */
3928 if (CONST_STRNEQ (sec->name, ".stab")
3929 && strcmp (sec->name + strlen (sec->name) - 3, "str") == 0)
3930 {
3931 size_t len;
3932 char *alc;
3933
3934 len = strlen (sec->name);
3935 alc = (char *) bfd_malloc (len - 2);
3936 if (alc == NULL)
3937 return FALSE;
3938 memcpy (alc, sec->name, len - 3);
3939 alc[len - 3] = '\0';
3940 s = bfd_get_section_by_name (abfd, alc);
3941 free (alc);
3942 if (s != NULL)
3943 {
3944 elf_section_data (s)->this_hdr.sh_link = d->this_idx;
3945
3946 /* This is a .stab section. */
3947 if (elf_section_data (s)->this_hdr.sh_entsize == 0)
3948 elf_section_data (s)->this_hdr.sh_entsize
3949 = 4 + 2 * bfd_get_arch_size (abfd) / 8;
3950 }
3951 }
3952 break;
3953
3954 case SHT_DYNAMIC:
3955 case SHT_DYNSYM:
3956 case SHT_GNU_verneed:
3957 case SHT_GNU_verdef:
3958 /* sh_link is the section header index of the string table
3959 used for the dynamic entries, or the symbol table, or the
3960 version strings. */
3961 s = bfd_get_section_by_name (abfd, ".dynstr");
3962 if (s != NULL)
3963 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3964 break;
3965
3966 case SHT_GNU_LIBLIST:
3967 /* sh_link is the section header index of the prelink library
3968 list used for the dynamic entries, or the symbol table, or
3969 the version strings. */
3970 s = bfd_get_section_by_name (abfd, (sec->flags & SEC_ALLOC)
3971 ? ".dynstr" : ".gnu.libstr");
3972 if (s != NULL)
3973 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3974 break;
3975
3976 case SHT_HASH:
3977 case SHT_GNU_HASH:
3978 case SHT_GNU_versym:
3979 /* sh_link is the section header index of the symbol table
3980 this hash table or version table is for. */
3981 s = bfd_get_section_by_name (abfd, ".dynsym");
3982 if (s != NULL)
3983 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3984 break;
3985
3986 case SHT_GROUP:
3987 d->this_hdr.sh_link = elf_onesymtab (abfd);
3988 }
3989 }
3990
3991 /* Delay setting sh_name to _bfd_elf_write_object_contents so that
3992 _bfd_elf_assign_file_positions_for_non_load can convert DWARF
3993 debug section name from .debug_* to .zdebug_* if needed. */
3994
3995 return TRUE;
3996 }
3997
3998 static bfd_boolean
3999 sym_is_global (bfd *abfd, asymbol *sym)
4000 {
4001 /* If the backend has a special mapping, use it. */
4002 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4003 if (bed->elf_backend_sym_is_global)
4004 return (*bed->elf_backend_sym_is_global) (abfd, sym);
4005
4006 return ((sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE)) != 0
4007 || bfd_is_und_section (bfd_get_section (sym))
4008 || bfd_is_com_section (bfd_get_section (sym)));
4009 }
4010
4011 /* Filter global symbols of ABFD to include in the import library. All
4012 SYMCOUNT symbols of ABFD can be examined from their pointers in
4013 SYMS. Pointers of symbols to keep should be stored contiguously at
4014 the beginning of that array.
4015
4016 Returns the number of symbols to keep. */
4017
4018 unsigned int
4019 _bfd_elf_filter_global_symbols (bfd *abfd, struct bfd_link_info *info,
4020 asymbol **syms, long symcount)
4021 {
4022 long src_count, dst_count = 0;
4023
4024 for (src_count = 0; src_count < symcount; src_count++)
4025 {
4026 asymbol *sym = syms[src_count];
4027 char *name = (char *) bfd_asymbol_name (sym);
4028 struct bfd_link_hash_entry *h;
4029
4030 if (!sym_is_global (abfd, sym))
4031 continue;
4032
4033 h = bfd_link_hash_lookup (info->hash, name, FALSE, FALSE, FALSE);
4034 if (h == NULL)
4035 continue;
4036 if (h->type != bfd_link_hash_defined && h->type != bfd_link_hash_defweak)
4037 continue;
4038 if (h->linker_def || h->ldscript_def)
4039 continue;
4040
4041 syms[dst_count++] = sym;
4042 }
4043
4044 syms[dst_count] = NULL;
4045
4046 return dst_count;
4047 }
4048
4049 /* Don't output section symbols for sections that are not going to be
4050 output, that are duplicates or there is no BFD section. */
4051
4052 static bfd_boolean
4053 ignore_section_sym (bfd *abfd, asymbol *sym)
4054 {
4055 elf_symbol_type *type_ptr;
4056
4057 if (sym == NULL)
4058 return FALSE;
4059
4060 if ((sym->flags & BSF_SECTION_SYM) == 0)
4061 return FALSE;
4062
4063 if (sym->section == NULL)
4064 return TRUE;
4065
4066 type_ptr = elf_symbol_from (abfd, sym);
4067 return ((type_ptr != NULL
4068 && type_ptr->internal_elf_sym.st_shndx != 0
4069 && bfd_is_abs_section (sym->section))
4070 || !(sym->section->owner == abfd
4071 || (sym->section->output_section != NULL
4072 && sym->section->output_section->owner == abfd
4073 && sym->section->output_offset == 0)
4074 || bfd_is_abs_section (sym->section)));
4075 }
4076
4077 /* Map symbol from it's internal number to the external number, moving
4078 all local symbols to be at the head of the list. */
4079
4080 static bfd_boolean
4081 elf_map_symbols (bfd *abfd, unsigned int *pnum_locals)
4082 {
4083 unsigned int symcount = bfd_get_symcount (abfd);
4084 asymbol **syms = bfd_get_outsymbols (abfd);
4085 asymbol **sect_syms;
4086 unsigned int num_locals = 0;
4087 unsigned int num_globals = 0;
4088 unsigned int num_locals2 = 0;
4089 unsigned int num_globals2 = 0;
4090 unsigned int max_index = 0;
4091 unsigned int idx;
4092 asection *asect;
4093 asymbol **new_syms;
4094
4095 #ifdef DEBUG
4096 fprintf (stderr, "elf_map_symbols\n");
4097 fflush (stderr);
4098 #endif
4099
4100 for (asect = abfd->sections; asect; asect = asect->next)
4101 {
4102 if (max_index < asect->index)
4103 max_index = asect->index;
4104 }
4105
4106 max_index++;
4107 sect_syms = (asymbol **) bfd_zalloc2 (abfd, max_index, sizeof (asymbol *));
4108 if (sect_syms == NULL)
4109 return FALSE;
4110 elf_section_syms (abfd) = sect_syms;
4111 elf_num_section_syms (abfd) = max_index;
4112
4113 /* Init sect_syms entries for any section symbols we have already
4114 decided to output. */
4115 for (idx = 0; idx < symcount; idx++)
4116 {
4117 asymbol *sym = syms[idx];
4118
4119 if ((sym->flags & BSF_SECTION_SYM) != 0
4120 && sym->value == 0
4121 && !ignore_section_sym (abfd, sym)
4122 && !bfd_is_abs_section (sym->section))
4123 {
4124 asection *sec = sym->section;
4125
4126 if (sec->owner != abfd)
4127 sec = sec->output_section;
4128
4129 sect_syms[sec->index] = syms[idx];
4130 }
4131 }
4132
4133 /* Classify all of the symbols. */
4134 for (idx = 0; idx < symcount; idx++)
4135 {
4136 if (sym_is_global (abfd, syms[idx]))
4137 num_globals++;
4138 else if (!ignore_section_sym (abfd, syms[idx]))
4139 num_locals++;
4140 }
4141
4142 /* We will be adding a section symbol for each normal BFD section. Most
4143 sections will already have a section symbol in outsymbols, but
4144 eg. SHT_GROUP sections will not, and we need the section symbol mapped
4145 at least in that case. */
4146 for (asect = abfd->sections; asect; asect = asect->next)
4147 {
4148 if (sect_syms[asect->index] == NULL)
4149 {
4150 if (!sym_is_global (abfd, asect->symbol))
4151 num_locals++;
4152 else
4153 num_globals++;
4154 }
4155 }
4156
4157 /* Now sort the symbols so the local symbols are first. */
4158 new_syms = (asymbol **) bfd_alloc2 (abfd, num_locals + num_globals,
4159 sizeof (asymbol *));
4160
4161 if (new_syms == NULL)
4162 return FALSE;
4163
4164 for (idx = 0; idx < symcount; idx++)
4165 {
4166 asymbol *sym = syms[idx];
4167 unsigned int i;
4168
4169 if (sym_is_global (abfd, sym))
4170 i = num_locals + num_globals2++;
4171 else if (!ignore_section_sym (abfd, sym))
4172 i = num_locals2++;
4173 else
4174 continue;
4175 new_syms[i] = sym;
4176 sym->udata.i = i + 1;
4177 }
4178 for (asect = abfd->sections; asect; asect = asect->next)
4179 {
4180 if (sect_syms[asect->index] == NULL)
4181 {
4182 asymbol *sym = asect->symbol;
4183 unsigned int i;
4184
4185 sect_syms[asect->index] = sym;
4186 if (!sym_is_global (abfd, sym))
4187 i = num_locals2++;
4188 else
4189 i = num_locals + num_globals2++;
4190 new_syms[i] = sym;
4191 sym->udata.i = i + 1;
4192 }
4193 }
4194
4195 bfd_set_symtab (abfd, new_syms, num_locals + num_globals);
4196
4197 *pnum_locals = num_locals;
4198 return TRUE;
4199 }
4200
4201 /* Align to the maximum file alignment that could be required for any
4202 ELF data structure. */
4203
4204 static inline file_ptr
4205 align_file_position (file_ptr off, int align)
4206 {
4207 return (off + align - 1) & ~(align - 1);
4208 }
4209
4210 /* Assign a file position to a section, optionally aligning to the
4211 required section alignment. */
4212
4213 file_ptr
4214 _bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr *i_shdrp,
4215 file_ptr offset,
4216 bfd_boolean align)
4217 {
4218 if (align && i_shdrp->sh_addralign > 1)
4219 offset = BFD_ALIGN (offset, i_shdrp->sh_addralign);
4220 i_shdrp->sh_offset = offset;
4221 if (i_shdrp->bfd_section != NULL)
4222 i_shdrp->bfd_section->filepos = offset;
4223 if (i_shdrp->sh_type != SHT_NOBITS)
4224 offset += i_shdrp->sh_size;
4225 return offset;
4226 }
4227
4228 /* Compute the file positions we are going to put the sections at, and
4229 otherwise prepare to begin writing out the ELF file. If LINK_INFO
4230 is not NULL, this is being called by the ELF backend linker. */
4231
4232 bfd_boolean
4233 _bfd_elf_compute_section_file_positions (bfd *abfd,
4234 struct bfd_link_info *link_info)
4235 {
4236 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4237 struct fake_section_arg fsargs;
4238 bfd_boolean failed;
4239 struct elf_strtab_hash *strtab = NULL;
4240 Elf_Internal_Shdr *shstrtab_hdr;
4241 bfd_boolean need_symtab;
4242
4243 if (abfd->output_has_begun)
4244 return TRUE;
4245
4246 /* Do any elf backend specific processing first. */
4247 if (bed->elf_backend_begin_write_processing)
4248 (*bed->elf_backend_begin_write_processing) (abfd, link_info);
4249
4250 if (! prep_headers (abfd))
4251 return FALSE;
4252
4253 /* Post process the headers if necessary. */
4254 (*bed->elf_backend_post_process_headers) (abfd, link_info);
4255
4256 fsargs.failed = FALSE;
4257 fsargs.link_info = link_info;
4258 bfd_map_over_sections (abfd, elf_fake_sections, &fsargs);
4259 if (fsargs.failed)
4260 return FALSE;
4261
4262 if (!assign_section_numbers (abfd, link_info))
4263 return FALSE;
4264
4265 /* The backend linker builds symbol table information itself. */
4266 need_symtab = (link_info == NULL
4267 && (bfd_get_symcount (abfd) > 0
4268 || ((abfd->flags & (EXEC_P | DYNAMIC | HAS_RELOC))
4269 == HAS_RELOC)));
4270 if (need_symtab)
4271 {
4272 /* Non-zero if doing a relocatable link. */
4273 int relocatable_p = ! (abfd->flags & (EXEC_P | DYNAMIC));
4274
4275 if (! swap_out_syms (abfd, &strtab, relocatable_p))
4276 return FALSE;
4277 }
4278
4279 failed = FALSE;
4280 if (link_info == NULL)
4281 {
4282 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
4283 if (failed)
4284 return FALSE;
4285 }
4286
4287 shstrtab_hdr = &elf_tdata (abfd)->shstrtab_hdr;
4288 /* sh_name was set in prep_headers. */
4289 shstrtab_hdr->sh_type = SHT_STRTAB;
4290 shstrtab_hdr->sh_flags = bed->elf_strtab_flags;
4291 shstrtab_hdr->sh_addr = 0;
4292 /* sh_size is set in _bfd_elf_assign_file_positions_for_non_load. */
4293 shstrtab_hdr->sh_entsize = 0;
4294 shstrtab_hdr->sh_link = 0;
4295 shstrtab_hdr->sh_info = 0;
4296 /* sh_offset is set in _bfd_elf_assign_file_positions_for_non_load. */
4297 shstrtab_hdr->sh_addralign = 1;
4298
4299 if (!assign_file_positions_except_relocs (abfd, link_info))
4300 return FALSE;
4301
4302 if (need_symtab)
4303 {
4304 file_ptr off;
4305 Elf_Internal_Shdr *hdr;
4306
4307 off = elf_next_file_pos (abfd);
4308
4309 hdr = & elf_symtab_hdr (abfd);
4310 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4311
4312 if (elf_symtab_shndx_list (abfd) != NULL)
4313 {
4314 hdr = & elf_symtab_shndx_list (abfd)->hdr;
4315 if (hdr->sh_size != 0)
4316 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4317 /* FIXME: What about other symtab_shndx sections in the list ? */
4318 }
4319
4320 hdr = &elf_tdata (abfd)->strtab_hdr;
4321 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4322
4323 elf_next_file_pos (abfd) = off;
4324
4325 /* Now that we know where the .strtab section goes, write it
4326 out. */
4327 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
4328 || ! _bfd_elf_strtab_emit (abfd, strtab))
4329 return FALSE;
4330 _bfd_elf_strtab_free (strtab);
4331 }
4332
4333 abfd->output_has_begun = TRUE;
4334
4335 return TRUE;
4336 }
4337
4338 /* Make an initial estimate of the size of the program header. If we
4339 get the number wrong here, we'll redo section placement. */
4340
4341 static bfd_size_type
4342 get_program_header_size (bfd *abfd, struct bfd_link_info *info)
4343 {
4344 size_t segs;
4345 asection *s;
4346 const struct elf_backend_data *bed;
4347
4348 /* Assume we will need exactly two PT_LOAD segments: one for text
4349 and one for data. */
4350 segs = 2;
4351
4352 s = bfd_get_section_by_name (abfd, ".interp");
4353 if (s != NULL && (s->flags & SEC_LOAD) != 0 && s->size != 0)
4354 {
4355 /* If we have a loadable interpreter section, we need a
4356 PT_INTERP segment. In this case, assume we also need a
4357 PT_PHDR segment, although that may not be true for all
4358 targets. */
4359 segs += 2;
4360 }
4361
4362 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
4363 {
4364 /* We need a PT_DYNAMIC segment. */
4365 ++segs;
4366 }
4367
4368 if (info != NULL && info->relro)
4369 {
4370 /* We need a PT_GNU_RELRO segment. */
4371 ++segs;
4372 }
4373
4374 if (elf_eh_frame_hdr (abfd))
4375 {
4376 /* We need a PT_GNU_EH_FRAME segment. */
4377 ++segs;
4378 }
4379
4380 if (elf_stack_flags (abfd))
4381 {
4382 /* We need a PT_GNU_STACK segment. */
4383 ++segs;
4384 }
4385
4386 s = bfd_get_section_by_name (abfd,
4387 NOTE_GNU_PROPERTY_SECTION_NAME);
4388 if (s != NULL && s->size != 0)
4389 {
4390 /* We need a PT_GNU_PROPERTY segment. */
4391 ++segs;
4392 }
4393
4394 for (s = abfd->sections; s != NULL; s = s->next)
4395 {
4396 if ((s->flags & SEC_LOAD) != 0
4397 && elf_section_type (s) == SHT_NOTE)
4398 {
4399 unsigned int alignment_power;
4400 /* We need a PT_NOTE segment. */
4401 ++segs;
4402 /* Try to create just one PT_NOTE segment for all adjacent
4403 loadable SHT_NOTE sections. gABI requires that within a
4404 PT_NOTE segment (and also inside of each SHT_NOTE section)
4405 each note should have the same alignment. So we check
4406 whether the sections are correctly aligned. */
4407 alignment_power = s->alignment_power;
4408 while (s->next != NULL
4409 && s->next->alignment_power == alignment_power
4410 && (s->next->flags & SEC_LOAD) != 0
4411 && elf_section_type (s->next) == SHT_NOTE)
4412 s = s->next;
4413 }
4414 }
4415
4416 for (s = abfd->sections; s != NULL; s = s->next)
4417 {
4418 if (s->flags & SEC_THREAD_LOCAL)
4419 {
4420 /* We need a PT_TLS segment. */
4421 ++segs;
4422 break;
4423 }
4424 }
4425
4426 bed = get_elf_backend_data (abfd);
4427
4428 if ((abfd->flags & D_PAGED) != 0)
4429 {
4430 /* Add a PT_GNU_MBIND segment for each mbind section. */
4431 unsigned int page_align_power = bfd_log2 (bed->commonpagesize);
4432 for (s = abfd->sections; s != NULL; s = s->next)
4433 if (elf_section_flags (s) & SHF_GNU_MBIND)
4434 {
4435 if (elf_section_data (s)->this_hdr.sh_info
4436 > PT_GNU_MBIND_NUM)
4437 {
4438 _bfd_error_handler
4439 /* xgettext:c-format */
4440 (_("%pB: GNU_MBIN section `%pA' has invalid sh_info field: %d"),
4441 abfd, s, elf_section_data (s)->this_hdr.sh_info);
4442 continue;
4443 }
4444 /* Align mbind section to page size. */
4445 if (s->alignment_power < page_align_power)
4446 s->alignment_power = page_align_power;
4447 segs ++;
4448 }
4449 }
4450
4451 /* Let the backend count up any program headers it might need. */
4452 if (bed->elf_backend_additional_program_headers)
4453 {
4454 int a;
4455
4456 a = (*bed->elf_backend_additional_program_headers) (abfd, info);
4457 if (a == -1)
4458 abort ();
4459 segs += a;
4460 }
4461
4462 return segs * bed->s->sizeof_phdr;
4463 }
4464
4465 /* Find the segment that contains the output_section of section. */
4466
4467 Elf_Internal_Phdr *
4468 _bfd_elf_find_segment_containing_section (bfd * abfd, asection * section)
4469 {
4470 struct elf_segment_map *m;
4471 Elf_Internal_Phdr *p;
4472
4473 for (m = elf_seg_map (abfd), p = elf_tdata (abfd)->phdr;
4474 m != NULL;
4475 m = m->next, p++)
4476 {
4477 int i;
4478
4479 for (i = m->count - 1; i >= 0; i--)
4480 if (m->sections[i] == section)
4481 return p;
4482 }
4483
4484 return NULL;
4485 }
4486
4487 /* Create a mapping from a set of sections to a program segment. */
4488
4489 static struct elf_segment_map *
4490 make_mapping (bfd *abfd,
4491 asection **sections,
4492 unsigned int from,
4493 unsigned int to,
4494 bfd_boolean phdr)
4495 {
4496 struct elf_segment_map *m;
4497 unsigned int i;
4498 asection **hdrpp;
4499 bfd_size_type amt;
4500
4501 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
4502 amt += (to - from) * sizeof (asection *);
4503 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4504 if (m == NULL)
4505 return NULL;
4506 m->next = NULL;
4507 m->p_type = PT_LOAD;
4508 for (i = from, hdrpp = sections + from; i < to; i++, hdrpp++)
4509 m->sections[i - from] = *hdrpp;
4510 m->count = to - from;
4511
4512 if (from == 0 && phdr)
4513 {
4514 /* Include the headers in the first PT_LOAD segment. */
4515 m->includes_filehdr = 1;
4516 m->includes_phdrs = 1;
4517 }
4518
4519 return m;
4520 }
4521
4522 /* Create the PT_DYNAMIC segment, which includes DYNSEC. Returns NULL
4523 on failure. */
4524
4525 struct elf_segment_map *
4526 _bfd_elf_make_dynamic_segment (bfd *abfd, asection *dynsec)
4527 {
4528 struct elf_segment_map *m;
4529
4530 m = (struct elf_segment_map *) bfd_zalloc (abfd,
4531 sizeof (struct elf_segment_map));
4532 if (m == NULL)
4533 return NULL;
4534 m->next = NULL;
4535 m->p_type = PT_DYNAMIC;
4536 m->count = 1;
4537 m->sections[0] = dynsec;
4538
4539 return m;
4540 }
4541
4542 /* Possibly add or remove segments from the segment map. */
4543
4544 static bfd_boolean
4545 elf_modify_segment_map (bfd *abfd,
4546 struct bfd_link_info *info,
4547 bfd_boolean remove_empty_load)
4548 {
4549 struct elf_segment_map **m;
4550 const struct elf_backend_data *bed;
4551
4552 /* The placement algorithm assumes that non allocated sections are
4553 not in PT_LOAD segments. We ensure this here by removing such
4554 sections from the segment map. We also remove excluded
4555 sections. Finally, any PT_LOAD segment without sections is
4556 removed. */
4557 m = &elf_seg_map (abfd);
4558 while (*m)
4559 {
4560 unsigned int i, new_count;
4561
4562 for (new_count = 0, i = 0; i < (*m)->count; i++)
4563 {
4564 if (((*m)->sections[i]->flags & SEC_EXCLUDE) == 0
4565 && (((*m)->sections[i]->flags & SEC_ALLOC) != 0
4566 || (*m)->p_type != PT_LOAD))
4567 {
4568 (*m)->sections[new_count] = (*m)->sections[i];
4569 new_count++;
4570 }
4571 }
4572 (*m)->count = new_count;
4573
4574 if (remove_empty_load
4575 && (*m)->p_type == PT_LOAD
4576 && (*m)->count == 0
4577 && !(*m)->includes_phdrs)
4578 *m = (*m)->next;
4579 else
4580 m = &(*m)->next;
4581 }
4582
4583 bed = get_elf_backend_data (abfd);
4584 if (bed->elf_backend_modify_segment_map != NULL)
4585 {
4586 if (!(*bed->elf_backend_modify_segment_map) (abfd, info))
4587 return FALSE;
4588 }
4589
4590 return TRUE;
4591 }
4592
4593 #define IS_TBSS(s) \
4594 ((s->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) == SEC_THREAD_LOCAL)
4595
4596 /* Set up a mapping from BFD sections to program segments. */
4597
4598 bfd_boolean
4599 _bfd_elf_map_sections_to_segments (bfd *abfd, struct bfd_link_info *info)
4600 {
4601 unsigned int count;
4602 struct elf_segment_map *m;
4603 asection **sections = NULL;
4604 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4605 bfd_boolean no_user_phdrs;
4606
4607 no_user_phdrs = elf_seg_map (abfd) == NULL;
4608
4609 if (info != NULL)
4610 info->user_phdrs = !no_user_phdrs;
4611
4612 if (no_user_phdrs && bfd_count_sections (abfd) != 0)
4613 {
4614 asection *s;
4615 unsigned int i;
4616 struct elf_segment_map *mfirst;
4617 struct elf_segment_map **pm;
4618 asection *last_hdr;
4619 bfd_vma last_size;
4620 unsigned int hdr_index;
4621 bfd_vma maxpagesize;
4622 asection **hdrpp;
4623 bfd_boolean phdr_in_segment;
4624 bfd_boolean writable;
4625 bfd_boolean executable;
4626 int tls_count = 0;
4627 asection *first_tls = NULL;
4628 asection *first_mbind = NULL;
4629 asection *dynsec, *eh_frame_hdr;
4630 bfd_size_type amt;
4631 bfd_vma addr_mask, wrap_to = 0;
4632 bfd_size_type phdr_size;
4633
4634 /* Select the allocated sections, and sort them. */
4635
4636 sections = (asection **) bfd_malloc2 (bfd_count_sections (abfd),
4637 sizeof (asection *));
4638 if (sections == NULL)
4639 goto error_return;
4640
4641 /* Calculate top address, avoiding undefined behaviour of shift
4642 left operator when shift count is equal to size of type
4643 being shifted. */
4644 addr_mask = ((bfd_vma) 1 << (bfd_arch_bits_per_address (abfd) - 1)) - 1;
4645 addr_mask = (addr_mask << 1) + 1;
4646
4647 i = 0;
4648 for (s = abfd->sections; s != NULL; s = s->next)
4649 {
4650 if ((s->flags & SEC_ALLOC) != 0)
4651 {
4652 sections[i] = s;
4653 ++i;
4654 /* A wrapping section potentially clashes with header. */
4655 if (((s->lma + s->size) & addr_mask) < (s->lma & addr_mask))
4656 wrap_to = (s->lma + s->size) & addr_mask;
4657 }
4658 }
4659 BFD_ASSERT (i <= bfd_count_sections (abfd));
4660 count = i;
4661
4662 qsort (sections, (size_t) count, sizeof (asection *), elf_sort_sections);
4663
4664 phdr_size = elf_program_header_size (abfd);
4665 if (phdr_size == (bfd_size_type) -1)
4666 phdr_size = get_program_header_size (abfd, info);
4667 phdr_size += bed->s->sizeof_ehdr;
4668 maxpagesize = bed->maxpagesize;
4669 if (maxpagesize == 0)
4670 maxpagesize = 1;
4671 phdr_in_segment = info != NULL && info->load_phdrs;
4672 if (count != 0
4673 && (((sections[0]->lma & addr_mask) & (maxpagesize - 1))
4674 >= (phdr_size & (maxpagesize - 1))))
4675 /* For compatibility with old scripts that may not be using
4676 SIZEOF_HEADERS, add headers when it looks like space has
4677 been left for them. */
4678 phdr_in_segment = TRUE;
4679
4680 /* Build the mapping. */
4681 mfirst = NULL;
4682 pm = &mfirst;
4683
4684 /* If we have a .interp section, then create a PT_PHDR segment for
4685 the program headers and a PT_INTERP segment for the .interp
4686 section. */
4687 s = bfd_get_section_by_name (abfd, ".interp");
4688 if (s != NULL && (s->flags & SEC_LOAD) != 0 && s->size != 0)
4689 {
4690 amt = sizeof (struct elf_segment_map);
4691 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4692 if (m == NULL)
4693 goto error_return;
4694 m->next = NULL;
4695 m->p_type = PT_PHDR;
4696 m->p_flags = PF_R;
4697 m->p_flags_valid = 1;
4698 m->includes_phdrs = 1;
4699 phdr_in_segment = TRUE;
4700 *pm = m;
4701 pm = &m->next;
4702
4703 amt = sizeof (struct elf_segment_map);
4704 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4705 if (m == NULL)
4706 goto error_return;
4707 m->next = NULL;
4708 m->p_type = PT_INTERP;
4709 m->count = 1;
4710 m->sections[0] = s;
4711
4712 *pm = m;
4713 pm = &m->next;
4714 }
4715
4716 /* Look through the sections. We put sections in the same program
4717 segment when the start of the second section can be placed within
4718 a few bytes of the end of the first section. */
4719 last_hdr = NULL;
4720 last_size = 0;
4721 hdr_index = 0;
4722 writable = FALSE;
4723 executable = FALSE;
4724 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
4725 if (dynsec != NULL
4726 && (dynsec->flags & SEC_LOAD) == 0)
4727 dynsec = NULL;
4728
4729 if ((abfd->flags & D_PAGED) == 0)
4730 phdr_in_segment = FALSE;
4731
4732 /* Deal with -Ttext or something similar such that the first section
4733 is not adjacent to the program headers. This is an
4734 approximation, since at this point we don't know exactly how many
4735 program headers we will need. */
4736 if (phdr_in_segment && count > 0)
4737 {
4738 bfd_vma phdr_lma;
4739 bfd_boolean separate_phdr = FALSE;
4740
4741 phdr_lma = (sections[0]->lma - phdr_size) & addr_mask & -maxpagesize;
4742 if (info != NULL
4743 && info->separate_code
4744 && (sections[0]->flags & SEC_CODE) != 0)
4745 {
4746 /* If data sections should be separate from code and
4747 thus not executable, and the first section is
4748 executable then put the file and program headers in
4749 their own PT_LOAD. */
4750 separate_phdr = TRUE;
4751 if ((((phdr_lma + phdr_size - 1) & addr_mask & -maxpagesize)
4752 == (sections[0]->lma & addr_mask & -maxpagesize)))
4753 {
4754 /* The file and program headers are currently on the
4755 same page as the first section. Put them on the
4756 previous page if we can. */
4757 if (phdr_lma >= maxpagesize)
4758 phdr_lma -= maxpagesize;
4759 else
4760 separate_phdr = FALSE;
4761 }
4762 }
4763 if ((sections[0]->lma & addr_mask) < phdr_lma
4764 || (sections[0]->lma & addr_mask) < phdr_size)
4765 /* If file and program headers would be placed at the end
4766 of memory then it's probably better to omit them. */
4767 phdr_in_segment = FALSE;
4768 else if (phdr_lma < wrap_to)
4769 /* If a section wraps around to where we'll be placing
4770 file and program headers, then the headers will be
4771 overwritten. */
4772 phdr_in_segment = FALSE;
4773 else if (separate_phdr)
4774 {
4775 m = make_mapping (abfd, sections, 0, 0, phdr_in_segment);
4776 if (m == NULL)
4777 goto error_return;
4778 m->p_paddr = phdr_lma;
4779 m->p_vaddr_offset
4780 = (sections[0]->vma - phdr_size) & addr_mask & -maxpagesize;
4781 m->p_paddr_valid = 1;
4782 *pm = m;
4783 pm = &m->next;
4784 phdr_in_segment = FALSE;
4785 }
4786 }
4787
4788 for (i = 0, hdrpp = sections; i < count; i++, hdrpp++)
4789 {
4790 asection *hdr;
4791 bfd_boolean new_segment;
4792
4793 hdr = *hdrpp;
4794
4795 /* See if this section and the last one will fit in the same
4796 segment. */
4797
4798 if (last_hdr == NULL)
4799 {
4800 /* If we don't have a segment yet, then we don't need a new
4801 one (we build the last one after this loop). */
4802 new_segment = FALSE;
4803 }
4804 else if (last_hdr->lma - last_hdr->vma != hdr->lma - hdr->vma)
4805 {
4806 /* If this section has a different relation between the
4807 virtual address and the load address, then we need a new
4808 segment. */
4809 new_segment = TRUE;
4810 }
4811 else if (hdr->lma < last_hdr->lma + last_size
4812 || last_hdr->lma + last_size < last_hdr->lma)
4813 {
4814 /* If this section has a load address that makes it overlap
4815 the previous section, then we need a new segment. */
4816 new_segment = TRUE;
4817 }
4818 else if ((abfd->flags & D_PAGED) != 0
4819 && (((last_hdr->lma + last_size - 1) & -maxpagesize)
4820 == (hdr->lma & -maxpagesize)))
4821 {
4822 /* If we are demand paged then we can't map two disk
4823 pages onto the same memory page. */
4824 new_segment = FALSE;
4825 }
4826 /* In the next test we have to be careful when last_hdr->lma is close
4827 to the end of the address space. If the aligned address wraps
4828 around to the start of the address space, then there are no more
4829 pages left in memory and it is OK to assume that the current
4830 section can be included in the current segment. */
4831 else if ((BFD_ALIGN (last_hdr->lma + last_size, maxpagesize)
4832 + maxpagesize > last_hdr->lma)
4833 && (BFD_ALIGN (last_hdr->lma + last_size, maxpagesize)
4834 + maxpagesize <= hdr->lma))
4835 {
4836 /* If putting this section in this segment would force us to
4837 skip a page in the segment, then we need a new segment. */
4838 new_segment = TRUE;
4839 }
4840 else if ((last_hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0
4841 && (hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) != 0)
4842 {
4843 /* We don't want to put a loaded section after a
4844 nonloaded (ie. bss style) section in the same segment
4845 as that will force the non-loaded section to be loaded.
4846 Consider .tbss sections as loaded for this purpose. */
4847 new_segment = TRUE;
4848 }
4849 else if ((abfd->flags & D_PAGED) == 0)
4850 {
4851 /* If the file is not demand paged, which means that we
4852 don't require the sections to be correctly aligned in the
4853 file, then there is no other reason for a new segment. */
4854 new_segment = FALSE;
4855 }
4856 else if (info != NULL
4857 && info->separate_code
4858 && executable != ((hdr->flags & SEC_CODE) != 0))
4859 {
4860 new_segment = TRUE;
4861 }
4862 else if (! writable
4863 && (hdr->flags & SEC_READONLY) == 0)
4864 {
4865 /* We don't want to put a writable section in a read only
4866 segment. */
4867 new_segment = TRUE;
4868 }
4869 else
4870 {
4871 /* Otherwise, we can use the same segment. */
4872 new_segment = FALSE;
4873 }
4874
4875 /* Allow interested parties a chance to override our decision. */
4876 if (last_hdr != NULL
4877 && info != NULL
4878 && info->callbacks->override_segment_assignment != NULL)
4879 new_segment
4880 = info->callbacks->override_segment_assignment (info, abfd, hdr,
4881 last_hdr,
4882 new_segment);
4883
4884 if (! new_segment)
4885 {
4886 if ((hdr->flags & SEC_READONLY) == 0)
4887 writable = TRUE;
4888 if ((hdr->flags & SEC_CODE) != 0)
4889 executable = TRUE;
4890 last_hdr = hdr;
4891 /* .tbss sections effectively have zero size. */
4892 last_size = !IS_TBSS (hdr) ? hdr->size : 0;
4893 continue;
4894 }
4895
4896 /* We need a new program segment. We must create a new program
4897 header holding all the sections from hdr_index until hdr. */
4898
4899 m = make_mapping (abfd, sections, hdr_index, i, phdr_in_segment);
4900 if (m == NULL)
4901 goto error_return;
4902
4903 *pm = m;
4904 pm = &m->next;
4905
4906 if ((hdr->flags & SEC_READONLY) == 0)
4907 writable = TRUE;
4908 else
4909 writable = FALSE;
4910
4911 if ((hdr->flags & SEC_CODE) == 0)
4912 executable = FALSE;
4913 else
4914 executable = TRUE;
4915
4916 last_hdr = hdr;
4917 /* .tbss sections effectively have zero size. */
4918 last_size = !IS_TBSS (hdr) ? hdr->size : 0;
4919 hdr_index = i;
4920 phdr_in_segment = FALSE;
4921 }
4922
4923 /* Create a final PT_LOAD program segment, but not if it's just
4924 for .tbss. */
4925 if (last_hdr != NULL
4926 && (i - hdr_index != 1
4927 || !IS_TBSS (last_hdr)))
4928 {
4929 m = make_mapping (abfd, sections, hdr_index, i, phdr_in_segment);
4930 if (m == NULL)
4931 goto error_return;
4932
4933 *pm = m;
4934 pm = &m->next;
4935 }
4936
4937 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
4938 if (dynsec != NULL)
4939 {
4940 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
4941 if (m == NULL)
4942 goto error_return;
4943 *pm = m;
4944 pm = &m->next;
4945 }
4946
4947 /* For each batch of consecutive loadable SHT_NOTE sections,
4948 add a PT_NOTE segment. We don't use bfd_get_section_by_name,
4949 because if we link together nonloadable .note sections and
4950 loadable .note sections, we will generate two .note sections
4951 in the output file. */
4952 for (s = abfd->sections; s != NULL; s = s->next)
4953 {
4954 if ((s->flags & SEC_LOAD) != 0
4955 && elf_section_type (s) == SHT_NOTE)
4956 {
4957 asection *s2;
4958 unsigned int alignment_power = s->alignment_power;
4959
4960 count = 1;
4961 for (s2 = s; s2->next != NULL; s2 = s2->next)
4962 {
4963 if (s2->next->alignment_power == alignment_power
4964 && (s2->next->flags & SEC_LOAD) != 0
4965 && elf_section_type (s2->next) == SHT_NOTE
4966 && align_power (s2->lma + s2->size,
4967 alignment_power)
4968 == s2->next->lma)
4969 count++;
4970 else
4971 break;
4972 }
4973 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
4974 amt += count * sizeof (asection *);
4975 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4976 if (m == NULL)
4977 goto error_return;
4978 m->next = NULL;
4979 m->p_type = PT_NOTE;
4980 m->count = count;
4981 while (count > 1)
4982 {
4983 m->sections[m->count - count--] = s;
4984 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
4985 s = s->next;
4986 }
4987 m->sections[m->count - 1] = s;
4988 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
4989 *pm = m;
4990 pm = &m->next;
4991 }
4992 if (s->flags & SEC_THREAD_LOCAL)
4993 {
4994 if (! tls_count)
4995 first_tls = s;
4996 tls_count++;
4997 }
4998 if (first_mbind == NULL
4999 && (elf_section_flags (s) & SHF_GNU_MBIND) != 0)
5000 first_mbind = s;
5001 }
5002
5003 /* If there are any SHF_TLS output sections, add PT_TLS segment. */
5004 if (tls_count > 0)
5005 {
5006 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
5007 amt += tls_count * sizeof (asection *);
5008 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
5009 if (m == NULL)
5010 goto error_return;
5011 m->next = NULL;
5012 m->p_type = PT_TLS;
5013 m->count = tls_count;
5014 /* Mandated PF_R. */
5015 m->p_flags = PF_R;
5016 m->p_flags_valid = 1;
5017 s = first_tls;
5018 for (i = 0; i < (unsigned int) tls_count; ++i)
5019 {
5020 if ((s->flags & SEC_THREAD_LOCAL) == 0)
5021 {
5022 _bfd_error_handler
5023 (_("%pB: TLS sections are not adjacent:"), abfd);
5024 s = first_tls;
5025 i = 0;
5026 while (i < (unsigned int) tls_count)
5027 {
5028 if ((s->flags & SEC_THREAD_LOCAL) != 0)
5029 {
5030 _bfd_error_handler (_(" TLS: %pA"), s);
5031 i++;
5032 }
5033 else
5034 _bfd_error_handler (_(" non-TLS: %pA"), s);
5035 s = s->next;
5036 }
5037 bfd_set_error (bfd_error_bad_value);
5038 goto error_return;
5039 }
5040 m->sections[i] = s;
5041 s = s->next;
5042 }
5043
5044 *pm = m;
5045 pm = &m->next;
5046 }
5047
5048 if (first_mbind && (abfd->flags & D_PAGED) != 0)
5049 for (s = first_mbind; s != NULL; s = s->next)
5050 if ((elf_section_flags (s) & SHF_GNU_MBIND) != 0
5051 && (elf_section_data (s)->this_hdr.sh_info
5052 <= PT_GNU_MBIND_NUM))
5053 {
5054 /* Mandated PF_R. */
5055 unsigned long p_flags = PF_R;
5056 if ((s->flags & SEC_READONLY) == 0)
5057 p_flags |= PF_W;
5058 if ((s->flags & SEC_CODE) != 0)
5059 p_flags |= PF_X;
5060
5061 amt = sizeof (struct elf_segment_map) + sizeof (asection *);
5062 m = bfd_zalloc (abfd, amt);
5063 if (m == NULL)
5064 goto error_return;
5065 m->next = NULL;
5066 m->p_type = (PT_GNU_MBIND_LO
5067 + elf_section_data (s)->this_hdr.sh_info);
5068 m->count = 1;
5069 m->p_flags_valid = 1;
5070 m->sections[0] = s;
5071 m->p_flags = p_flags;
5072
5073 *pm = m;
5074 pm = &m->next;
5075 }
5076
5077 s = bfd_get_section_by_name (abfd,
5078 NOTE_GNU_PROPERTY_SECTION_NAME);
5079 if (s != NULL && s->size != 0)
5080 {
5081 amt = sizeof (struct elf_segment_map) + sizeof (asection *);
5082 m = bfd_zalloc (abfd, amt);
5083 if (m == NULL)
5084 goto error_return;
5085 m->next = NULL;
5086 m->p_type = PT_GNU_PROPERTY;
5087 m->count = 1;
5088 m->p_flags_valid = 1;
5089 m->sections[0] = s;
5090 m->p_flags = PF_R;
5091 *pm = m;
5092 pm = &m->next;
5093 }
5094
5095 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
5096 segment. */
5097 eh_frame_hdr = elf_eh_frame_hdr (abfd);
5098 if (eh_frame_hdr != NULL
5099 && (eh_frame_hdr->output_section->flags & SEC_LOAD) != 0)
5100 {
5101 amt = sizeof (struct elf_segment_map);
5102 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
5103 if (m == NULL)
5104 goto error_return;
5105 m->next = NULL;
5106 m->p_type = PT_GNU_EH_FRAME;
5107 m->count = 1;
5108 m->sections[0] = eh_frame_hdr->output_section;
5109
5110 *pm = m;
5111 pm = &m->next;
5112 }
5113
5114 if (elf_stack_flags (abfd))
5115 {
5116 amt = sizeof (struct elf_segment_map);
5117 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
5118 if (m == NULL)
5119 goto error_return;
5120 m->next = NULL;
5121 m->p_type = PT_GNU_STACK;
5122 m->p_flags = elf_stack_flags (abfd);
5123 m->p_align = bed->stack_align;
5124 m->p_flags_valid = 1;
5125 m->p_align_valid = m->p_align != 0;
5126 if (info->stacksize > 0)
5127 {
5128 m->p_size = info->stacksize;
5129 m->p_size_valid = 1;
5130 }
5131
5132 *pm = m;
5133 pm = &m->next;
5134 }
5135
5136 if (info != NULL && info->relro)
5137 {
5138 for (m = mfirst; m != NULL; m = m->next)
5139 {
5140 if (m->p_type == PT_LOAD
5141 && m->count != 0
5142 && m->sections[0]->vma >= info->relro_start
5143 && m->sections[0]->vma < info->relro_end)
5144 {
5145 i = m->count;
5146 while (--i != (unsigned) -1)
5147 if ((m->sections[i]->flags & (SEC_LOAD | SEC_HAS_CONTENTS))
5148 == (SEC_LOAD | SEC_HAS_CONTENTS))
5149 break;
5150
5151 if (i != (unsigned) -1)
5152 break;
5153 }
5154 }
5155
5156 /* Make a PT_GNU_RELRO segment only when it isn't empty. */
5157 if (m != NULL)
5158 {
5159 amt = sizeof (struct elf_segment_map);
5160 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
5161 if (m == NULL)
5162 goto error_return;
5163 m->next = NULL;
5164 m->p_type = PT_GNU_RELRO;
5165 *pm = m;
5166 pm = &m->next;
5167 }
5168 }
5169
5170 free (sections);
5171 elf_seg_map (abfd) = mfirst;
5172 }
5173
5174 if (!elf_modify_segment_map (abfd, info, no_user_phdrs))
5175 return FALSE;
5176
5177 for (count = 0, m = elf_seg_map (abfd); m != NULL; m = m->next)
5178 ++count;
5179 elf_program_header_size (abfd) = count * bed->s->sizeof_phdr;
5180
5181 return TRUE;
5182
5183 error_return:
5184 if (sections != NULL)
5185 free (sections);
5186 return FALSE;
5187 }
5188
5189 /* Sort sections by address. */
5190
5191 static int
5192 elf_sort_sections (const void *arg1, const void *arg2)
5193 {
5194 const asection *sec1 = *(const asection **) arg1;
5195 const asection *sec2 = *(const asection **) arg2;
5196 bfd_size_type size1, size2;
5197
5198 /* Sort by LMA first, since this is the address used to
5199 place the section into a segment. */
5200 if (sec1->lma < sec2->lma)
5201 return -1;
5202 else if (sec1->lma > sec2->lma)
5203 return 1;
5204
5205 /* Then sort by VMA. Normally the LMA and the VMA will be
5206 the same, and this will do nothing. */
5207 if (sec1->vma < sec2->vma)
5208 return -1;
5209 else if (sec1->vma > sec2->vma)
5210 return 1;
5211
5212 /* Put !SEC_LOAD sections after SEC_LOAD ones. */
5213
5214 #define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0)
5215
5216 if (TOEND (sec1))
5217 {
5218 if (TOEND (sec2))
5219 {
5220 /* If the indices are the same, do not return 0
5221 here, but continue to try the next comparison. */
5222 if (sec1->target_index - sec2->target_index != 0)
5223 return sec1->target_index - sec2->target_index;
5224 }
5225 else
5226 return 1;
5227 }
5228 else if (TOEND (sec2))
5229 return -1;
5230
5231 #undef TOEND
5232
5233 /* Sort by size, to put zero sized sections
5234 before others at the same address. */
5235
5236 size1 = (sec1->flags & SEC_LOAD) ? sec1->size : 0;
5237 size2 = (sec2->flags & SEC_LOAD) ? sec2->size : 0;
5238
5239 if (size1 < size2)
5240 return -1;
5241 if (size1 > size2)
5242 return 1;
5243
5244 return sec1->target_index - sec2->target_index;
5245 }
5246
5247 /* Ian Lance Taylor writes:
5248
5249 We shouldn't be using % with a negative signed number. That's just
5250 not good. We have to make sure either that the number is not
5251 negative, or that the number has an unsigned type. When the types
5252 are all the same size they wind up as unsigned. When file_ptr is a
5253 larger signed type, the arithmetic winds up as signed long long,
5254 which is wrong.
5255
5256 What we're trying to say here is something like ``increase OFF by
5257 the least amount that will cause it to be equal to the VMA modulo
5258 the page size.'' */
5259 /* In other words, something like:
5260
5261 vma_offset = m->sections[0]->vma % bed->maxpagesize;
5262 off_offset = off % bed->maxpagesize;
5263 if (vma_offset < off_offset)
5264 adjustment = vma_offset + bed->maxpagesize - off_offset;
5265 else
5266 adjustment = vma_offset - off_offset;
5267
5268 which can be collapsed into the expression below. */
5269
5270 static file_ptr
5271 vma_page_aligned_bias (bfd_vma vma, ufile_ptr off, bfd_vma maxpagesize)
5272 {
5273 /* PR binutils/16199: Handle an alignment of zero. */
5274 if (maxpagesize == 0)
5275 maxpagesize = 1;
5276 return ((vma - off) % maxpagesize);
5277 }
5278
5279 static void
5280 print_segment_map (const struct elf_segment_map *m)
5281 {
5282 unsigned int j;
5283 const char *pt = get_segment_type (m->p_type);
5284 char buf[32];
5285
5286 if (pt == NULL)
5287 {
5288 if (m->p_type >= PT_LOPROC && m->p_type <= PT_HIPROC)
5289 sprintf (buf, "LOPROC+%7.7x",
5290 (unsigned int) (m->p_type - PT_LOPROC));
5291 else if (m->p_type >= PT_LOOS && m->p_type <= PT_HIOS)
5292 sprintf (buf, "LOOS+%7.7x",
5293 (unsigned int) (m->p_type - PT_LOOS));
5294 else
5295 snprintf (buf, sizeof (buf), "%8.8x",
5296 (unsigned int) m->p_type);
5297 pt = buf;
5298 }
5299 fflush (stdout);
5300 fprintf (stderr, "%s:", pt);
5301 for (j = 0; j < m->count; j++)
5302 fprintf (stderr, " %s", m->sections [j]->name);
5303 putc ('\n',stderr);
5304 fflush (stderr);
5305 }
5306
5307 static bfd_boolean
5308 write_zeros (bfd *abfd, file_ptr pos, bfd_size_type len)
5309 {
5310 void *buf;
5311 bfd_boolean ret;
5312
5313 if (bfd_seek (abfd, pos, SEEK_SET) != 0)
5314 return FALSE;
5315 buf = bfd_zmalloc (len);
5316 if (buf == NULL)
5317 return FALSE;
5318 ret = bfd_bwrite (buf, len, abfd) == len;
5319 free (buf);
5320 return ret;
5321 }
5322
5323 /* Assign file positions to the sections based on the mapping from
5324 sections to segments. This function also sets up some fields in
5325 the file header. */
5326
5327 static bfd_boolean
5328 assign_file_positions_for_load_sections (bfd *abfd,
5329 struct bfd_link_info *link_info)
5330 {
5331 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5332 struct elf_segment_map *m;
5333 Elf_Internal_Phdr *phdrs;
5334 Elf_Internal_Phdr *p;
5335 file_ptr off;
5336 bfd_size_type maxpagesize;
5337 unsigned int pt_load_count = 0;
5338 unsigned int alloc;
5339 unsigned int i, j;
5340 bfd_vma header_pad = 0;
5341
5342 if (link_info == NULL
5343 && !_bfd_elf_map_sections_to_segments (abfd, link_info))
5344 return FALSE;
5345
5346 alloc = 0;
5347 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
5348 {
5349 ++alloc;
5350 if (m->header_size)
5351 header_pad = m->header_size;
5352 }
5353
5354 if (alloc)
5355 {
5356 elf_elfheader (abfd)->e_phoff = bed->s->sizeof_ehdr;
5357 elf_elfheader (abfd)->e_phentsize = bed->s->sizeof_phdr;
5358 }
5359 else
5360 {
5361 /* PR binutils/12467. */
5362 elf_elfheader (abfd)->e_phoff = 0;
5363 elf_elfheader (abfd)->e_phentsize = 0;
5364 }
5365
5366 elf_elfheader (abfd)->e_phnum = alloc;
5367
5368 if (elf_program_header_size (abfd) == (bfd_size_type) -1)
5369 elf_program_header_size (abfd) = alloc * bed->s->sizeof_phdr;
5370 else
5371 BFD_ASSERT (elf_program_header_size (abfd)
5372 >= alloc * bed->s->sizeof_phdr);
5373
5374 if (alloc == 0)
5375 {
5376 elf_next_file_pos (abfd) = bed->s->sizeof_ehdr;
5377 return TRUE;
5378 }
5379
5380 /* We're writing the size in elf_program_header_size (abfd),
5381 see assign_file_positions_except_relocs, so make sure we have
5382 that amount allocated, with trailing space cleared.
5383 The variable alloc contains the computed need, while
5384 elf_program_header_size (abfd) contains the size used for the
5385 layout.
5386 See ld/emultempl/elf-generic.em:gld${EMULATION_NAME}_map_segments
5387 where the layout is forced to according to a larger size in the
5388 last iterations for the testcase ld-elf/header. */
5389 BFD_ASSERT (elf_program_header_size (abfd) % bed->s->sizeof_phdr
5390 == 0);
5391 phdrs = (Elf_Internal_Phdr *)
5392 bfd_zalloc2 (abfd,
5393 (elf_program_header_size (abfd) / bed->s->sizeof_phdr),
5394 sizeof (Elf_Internal_Phdr));
5395 elf_tdata (abfd)->phdr = phdrs;
5396 if (phdrs == NULL)
5397 return FALSE;
5398
5399 maxpagesize = 1;
5400 if ((abfd->flags & D_PAGED) != 0)
5401 maxpagesize = bed->maxpagesize;
5402
5403 off = bed->s->sizeof_ehdr;
5404 off += alloc * bed->s->sizeof_phdr;
5405 if (header_pad < (bfd_vma) off)
5406 header_pad = 0;
5407 else
5408 header_pad -= off;
5409 off += header_pad;
5410
5411 for (m = elf_seg_map (abfd), p = phdrs, j = 0;
5412 m != NULL;
5413 m = m->next, p++, j++)
5414 {
5415 asection **secpp;
5416 bfd_vma off_adjust;
5417 bfd_boolean no_contents;
5418
5419 /* If elf_segment_map is not from map_sections_to_segments, the
5420 sections may not be correctly ordered. NOTE: sorting should
5421 not be done to the PT_NOTE section of a corefile, which may
5422 contain several pseudo-sections artificially created by bfd.
5423 Sorting these pseudo-sections breaks things badly. */
5424 if (m->count > 1
5425 && !(elf_elfheader (abfd)->e_type == ET_CORE
5426 && m->p_type == PT_NOTE))
5427 qsort (m->sections, (size_t) m->count, sizeof (asection *),
5428 elf_sort_sections);
5429
5430 /* An ELF segment (described by Elf_Internal_Phdr) may contain a
5431 number of sections with contents contributing to both p_filesz
5432 and p_memsz, followed by a number of sections with no contents
5433 that just contribute to p_memsz. In this loop, OFF tracks next
5434 available file offset for PT_LOAD and PT_NOTE segments. */
5435 p->p_type = m->p_type;
5436 p->p_flags = m->p_flags;
5437
5438 if (m->count == 0)
5439 p->p_vaddr = m->p_vaddr_offset;
5440 else
5441 p->p_vaddr = m->sections[0]->vma + m->p_vaddr_offset;
5442
5443 if (m->p_paddr_valid)
5444 p->p_paddr = m->p_paddr;
5445 else if (m->count == 0)
5446 p->p_paddr = 0;
5447 else
5448 p->p_paddr = m->sections[0]->lma + m->p_vaddr_offset;
5449
5450 if (p->p_type == PT_LOAD
5451 && (abfd->flags & D_PAGED) != 0)
5452 {
5453 /* p_align in demand paged PT_LOAD segments effectively stores
5454 the maximum page size. When copying an executable with
5455 objcopy, we set m->p_align from the input file. Use this
5456 value for maxpagesize rather than bed->maxpagesize, which
5457 may be different. Note that we use maxpagesize for PT_TLS
5458 segment alignment later in this function, so we are relying
5459 on at least one PT_LOAD segment appearing before a PT_TLS
5460 segment. */
5461 if (m->p_align_valid)
5462 maxpagesize = m->p_align;
5463
5464 p->p_align = maxpagesize;
5465 pt_load_count += 1;
5466 }
5467 else if (m->p_align_valid)
5468 p->p_align = m->p_align;
5469 else if (m->count == 0)
5470 p->p_align = 1 << bed->s->log_file_align;
5471 else
5472 p->p_align = 0;
5473
5474 no_contents = FALSE;
5475 off_adjust = 0;
5476 if (p->p_type == PT_LOAD
5477 && m->count > 0)
5478 {
5479 bfd_size_type align;
5480 unsigned int align_power = 0;
5481
5482 if (m->p_align_valid)
5483 align = p->p_align;
5484 else
5485 {
5486 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
5487 {
5488 unsigned int secalign;
5489
5490 secalign = bfd_get_section_alignment (abfd, *secpp);
5491 if (secalign > align_power)
5492 align_power = secalign;
5493 }
5494 align = (bfd_size_type) 1 << align_power;
5495 if (align < maxpagesize)
5496 align = maxpagesize;
5497 }
5498
5499 for (i = 0; i < m->count; i++)
5500 if ((m->sections[i]->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
5501 /* If we aren't making room for this section, then
5502 it must be SHT_NOBITS regardless of what we've
5503 set via struct bfd_elf_special_section. */
5504 elf_section_type (m->sections[i]) = SHT_NOBITS;
5505
5506 /* Find out whether this segment contains any loadable
5507 sections. */
5508 no_contents = TRUE;
5509 for (i = 0; i < m->count; i++)
5510 if (elf_section_type (m->sections[i]) != SHT_NOBITS)
5511 {
5512 no_contents = FALSE;
5513 break;
5514 }
5515
5516 off_adjust = vma_page_aligned_bias (p->p_vaddr, off, align);
5517
5518 /* Broken hardware and/or kernel require that files do not
5519 map the same page with different permissions on some hppa
5520 processors. */
5521 if (pt_load_count > 1
5522 && bed->no_page_alias
5523 && (off & (maxpagesize - 1)) != 0
5524 && (off & -maxpagesize) == ((off + off_adjust) & -maxpagesize))
5525 off_adjust += maxpagesize;
5526 off += off_adjust;
5527 if (no_contents)
5528 {
5529 /* We shouldn't need to align the segment on disk since
5530 the segment doesn't need file space, but the gABI
5531 arguably requires the alignment and glibc ld.so
5532 checks it. So to comply with the alignment
5533 requirement but not waste file space, we adjust
5534 p_offset for just this segment. (OFF_ADJUST is
5535 subtracted from OFF later.) This may put p_offset
5536 past the end of file, but that shouldn't matter. */
5537 }
5538 else
5539 off_adjust = 0;
5540 }
5541 /* Make sure the .dynamic section is the first section in the
5542 PT_DYNAMIC segment. */
5543 else if (p->p_type == PT_DYNAMIC
5544 && m->count > 1
5545 && strcmp (m->sections[0]->name, ".dynamic") != 0)
5546 {
5547 _bfd_error_handler
5548 (_("%pB: The first section in the PT_DYNAMIC segment"
5549 " is not the .dynamic section"),
5550 abfd);
5551 bfd_set_error (bfd_error_bad_value);
5552 return FALSE;
5553 }
5554 /* Set the note section type to SHT_NOTE. */
5555 else if (p->p_type == PT_NOTE)
5556 for (i = 0; i < m->count; i++)
5557 elf_section_type (m->sections[i]) = SHT_NOTE;
5558
5559 p->p_offset = 0;
5560 p->p_filesz = 0;
5561 p->p_memsz = 0;
5562
5563 if (m->includes_filehdr)
5564 {
5565 if (!m->p_flags_valid)
5566 p->p_flags |= PF_R;
5567 p->p_filesz = bed->s->sizeof_ehdr;
5568 p->p_memsz = bed->s->sizeof_ehdr;
5569 if (m->count > 0)
5570 {
5571 if (p->p_vaddr < (bfd_vma) off
5572 || (!m->p_paddr_valid
5573 && p->p_paddr < (bfd_vma) off))
5574 {
5575 _bfd_error_handler
5576 (_("%pB: not enough room for program headers,"
5577 " try linking with -N"),
5578 abfd);
5579 bfd_set_error (bfd_error_bad_value);
5580 return FALSE;
5581 }
5582
5583 p->p_vaddr -= off;
5584 if (!m->p_paddr_valid)
5585 p->p_paddr -= off;
5586 }
5587 }
5588
5589 if (m->includes_phdrs)
5590 {
5591 if (!m->p_flags_valid)
5592 p->p_flags |= PF_R;
5593
5594 if (!m->includes_filehdr)
5595 {
5596 p->p_offset = bed->s->sizeof_ehdr;
5597
5598 if (m->count > 0)
5599 {
5600 p->p_vaddr -= off - p->p_offset;
5601 if (!m->p_paddr_valid)
5602 p->p_paddr -= off - p->p_offset;
5603 }
5604 }
5605
5606 p->p_filesz += alloc * bed->s->sizeof_phdr;
5607 p->p_memsz += alloc * bed->s->sizeof_phdr;
5608 if (m->count)
5609 {
5610 p->p_filesz += header_pad;
5611 p->p_memsz += header_pad;
5612 }
5613 }
5614
5615 if (p->p_type == PT_LOAD
5616 || (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core))
5617 {
5618 if (!m->includes_filehdr && !m->includes_phdrs)
5619 p->p_offset = off;
5620 else
5621 {
5622 file_ptr adjust;
5623
5624 adjust = off - (p->p_offset + p->p_filesz);
5625 if (!no_contents)
5626 p->p_filesz += adjust;
5627 p->p_memsz += adjust;
5628 }
5629 }
5630
5631 /* Set up p_filesz, p_memsz, p_align and p_flags from the section
5632 maps. Set filepos for sections in PT_LOAD segments, and in
5633 core files, for sections in PT_NOTE segments.
5634 assign_file_positions_for_non_load_sections will set filepos
5635 for other sections and update p_filesz for other segments. */
5636 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
5637 {
5638 asection *sec;
5639 bfd_size_type align;
5640 Elf_Internal_Shdr *this_hdr;
5641
5642 sec = *secpp;
5643 this_hdr = &elf_section_data (sec)->this_hdr;
5644 align = (bfd_size_type) 1 << bfd_get_section_alignment (abfd, sec);
5645
5646 if ((p->p_type == PT_LOAD
5647 || p->p_type == PT_TLS)
5648 && (this_hdr->sh_type != SHT_NOBITS
5649 || ((this_hdr->sh_flags & SHF_ALLOC) != 0
5650 && ((this_hdr->sh_flags & SHF_TLS) == 0
5651 || p->p_type == PT_TLS))))
5652 {
5653 bfd_vma p_start = p->p_paddr;
5654 bfd_vma p_end = p_start + p->p_memsz;
5655 bfd_vma s_start = sec->lma;
5656 bfd_vma adjust = s_start - p_end;
5657
5658 if (adjust != 0
5659 && (s_start < p_end
5660 || p_end < p_start))
5661 {
5662 _bfd_error_handler
5663 /* xgettext:c-format */
5664 (_("%pB: section %pA lma %#" PRIx64 " adjusted to %#" PRIx64),
5665 abfd, sec, (uint64_t) s_start, (uint64_t) p_end);
5666 adjust = 0;
5667 sec->lma = p_end;
5668 }
5669 p->p_memsz += adjust;
5670
5671 if (this_hdr->sh_type != SHT_NOBITS)
5672 {
5673 if (p->p_filesz + adjust < p->p_memsz)
5674 {
5675 /* We have a PROGBITS section following NOBITS ones.
5676 Allocate file space for the NOBITS section(s) and
5677 zero it. */
5678 adjust = p->p_memsz - p->p_filesz;
5679 if (!write_zeros (abfd, off, adjust))
5680 return FALSE;
5681 }
5682 off += adjust;
5683 p->p_filesz += adjust;
5684 }
5685 }
5686
5687 if (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core)
5688 {
5689 /* The section at i == 0 is the one that actually contains
5690 everything. */
5691 if (i == 0)
5692 {
5693 this_hdr->sh_offset = sec->filepos = off;
5694 off += this_hdr->sh_size;
5695 p->p_filesz = this_hdr->sh_size;
5696 p->p_memsz = 0;
5697 p->p_align = 1;
5698 }
5699 else
5700 {
5701 /* The rest are fake sections that shouldn't be written. */
5702 sec->filepos = 0;
5703 sec->size = 0;
5704 sec->flags = 0;
5705 continue;
5706 }
5707 }
5708 else
5709 {
5710 if (p->p_type == PT_LOAD)
5711 {
5712 this_hdr->sh_offset = sec->filepos = off;
5713 if (this_hdr->sh_type != SHT_NOBITS)
5714 off += this_hdr->sh_size;
5715 }
5716 else if (this_hdr->sh_type == SHT_NOBITS
5717 && (this_hdr->sh_flags & SHF_TLS) != 0
5718 && this_hdr->sh_offset == 0)
5719 {
5720 /* This is a .tbss section that didn't get a PT_LOAD.
5721 (See _bfd_elf_map_sections_to_segments "Create a
5722 final PT_LOAD".) Set sh_offset to the value it
5723 would have if we had created a zero p_filesz and
5724 p_memsz PT_LOAD header for the section. This
5725 also makes the PT_TLS header have the same
5726 p_offset value. */
5727 bfd_vma adjust = vma_page_aligned_bias (this_hdr->sh_addr,
5728 off, align);
5729 this_hdr->sh_offset = sec->filepos = off + adjust;
5730 }
5731
5732 if (this_hdr->sh_type != SHT_NOBITS)
5733 {
5734 p->p_filesz += this_hdr->sh_size;
5735 /* A load section without SHF_ALLOC is something like
5736 a note section in a PT_NOTE segment. These take
5737 file space but are not loaded into memory. */
5738 if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
5739 p->p_memsz += this_hdr->sh_size;
5740 }
5741 else if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
5742 {
5743 if (p->p_type == PT_TLS)
5744 p->p_memsz += this_hdr->sh_size;
5745
5746 /* .tbss is special. It doesn't contribute to p_memsz of
5747 normal segments. */
5748 else if ((this_hdr->sh_flags & SHF_TLS) == 0)
5749 p->p_memsz += this_hdr->sh_size;
5750 }
5751
5752 if (align > p->p_align
5753 && !m->p_align_valid
5754 && (p->p_type != PT_LOAD
5755 || (abfd->flags & D_PAGED) == 0))
5756 p->p_align = align;
5757 }
5758
5759 if (!m->p_flags_valid)
5760 {
5761 p->p_flags |= PF_R;
5762 if ((this_hdr->sh_flags & SHF_EXECINSTR) != 0)
5763 p->p_flags |= PF_X;
5764 if ((this_hdr->sh_flags & SHF_WRITE) != 0)
5765 p->p_flags |= PF_W;
5766 }
5767 }
5768
5769 off -= off_adjust;
5770
5771 /* Check that all sections are in a PT_LOAD segment.
5772 Don't check funky gdb generated core files. */
5773 if (p->p_type == PT_LOAD && bfd_get_format (abfd) != bfd_core)
5774 {
5775 bfd_boolean check_vma = TRUE;
5776
5777 for (i = 1; i < m->count; i++)
5778 if (m->sections[i]->vma == m->sections[i - 1]->vma
5779 && ELF_SECTION_SIZE (&(elf_section_data (m->sections[i])
5780 ->this_hdr), p) != 0
5781 && ELF_SECTION_SIZE (&(elf_section_data (m->sections[i - 1])
5782 ->this_hdr), p) != 0)
5783 {
5784 /* Looks like we have overlays packed into the segment. */
5785 check_vma = FALSE;
5786 break;
5787 }
5788
5789 for (i = 0; i < m->count; i++)
5790 {
5791 Elf_Internal_Shdr *this_hdr;
5792 asection *sec;
5793
5794 sec = m->sections[i];
5795 this_hdr = &(elf_section_data(sec)->this_hdr);
5796 if (!ELF_SECTION_IN_SEGMENT_1 (this_hdr, p, check_vma, 0)
5797 && !ELF_TBSS_SPECIAL (this_hdr, p))
5798 {
5799 _bfd_error_handler
5800 /* xgettext:c-format */
5801 (_("%pB: section `%pA' can't be allocated in segment %d"),
5802 abfd, sec, j);
5803 print_segment_map (m);
5804 }
5805 }
5806 }
5807 }
5808
5809 elf_next_file_pos (abfd) = off;
5810 return TRUE;
5811 }
5812
5813 /* Determine if a bfd is a debuginfo file. Unfortunately there
5814 is no defined method for detecting such files, so we have to
5815 use heuristics instead. */
5816
5817 bfd_boolean
5818 is_debuginfo_file (bfd *abfd)
5819 {
5820 if (abfd == NULL || bfd_get_flavour (abfd) != bfd_target_elf_flavour)
5821 return FALSE;
5822
5823 Elf_Internal_Shdr **start_headers = elf_elfsections (abfd);
5824 Elf_Internal_Shdr **end_headers = start_headers + elf_numsections (abfd);
5825 Elf_Internal_Shdr **headerp;
5826
5827 for (headerp = start_headers; headerp < end_headers; headerp ++)
5828 {
5829 Elf_Internal_Shdr *header = * headerp;
5830
5831 /* Debuginfo files do not have any allocated SHT_PROGBITS sections.
5832 The only allocated sections are SHT_NOBITS or SHT_NOTES. */
5833 if ((header->sh_flags & SHF_ALLOC) == SHF_ALLOC
5834 && header->sh_type != SHT_NOBITS
5835 && header->sh_type != SHT_NOTE)
5836 return FALSE;
5837 }
5838
5839 return TRUE;
5840 }
5841
5842 /* Assign file positions for the other sections. */
5843
5844 static bfd_boolean
5845 assign_file_positions_for_non_load_sections (bfd *abfd,
5846 struct bfd_link_info *link_info)
5847 {
5848 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5849 Elf_Internal_Shdr **i_shdrpp;
5850 Elf_Internal_Shdr **hdrpp, **end_hdrpp;
5851 Elf_Internal_Phdr *phdrs;
5852 Elf_Internal_Phdr *p;
5853 struct elf_segment_map *m;
5854 struct elf_segment_map *hdrs_segment;
5855 bfd_vma filehdr_vaddr, filehdr_paddr;
5856 bfd_vma phdrs_vaddr, phdrs_paddr;
5857 file_ptr off;
5858 unsigned int count;
5859
5860 i_shdrpp = elf_elfsections (abfd);
5861 end_hdrpp = i_shdrpp + elf_numsections (abfd);
5862 off = elf_next_file_pos (abfd);
5863 for (hdrpp = i_shdrpp + 1; hdrpp < end_hdrpp; hdrpp++)
5864 {
5865 Elf_Internal_Shdr *hdr;
5866
5867 hdr = *hdrpp;
5868 if (hdr->bfd_section != NULL
5869 && (hdr->bfd_section->filepos != 0
5870 || (hdr->sh_type == SHT_NOBITS
5871 && hdr->contents == NULL)))
5872 BFD_ASSERT (hdr->sh_offset == hdr->bfd_section->filepos);
5873 else if ((hdr->sh_flags & SHF_ALLOC) != 0)
5874 {
5875 if (hdr->sh_size != 0
5876 /* PR 24717 - debuginfo files are known to be not strictly
5877 compliant with the ELF standard. In particular they often
5878 have .note.gnu.property sections that are outside of any
5879 loadable segment. This is not a problem for such files,
5880 so do not warn about them. */
5881 && ! is_debuginfo_file (abfd))
5882 _bfd_error_handler
5883 /* xgettext:c-format */
5884 (_("%pB: warning: allocated section `%s' not in segment"),
5885 abfd,
5886 (hdr->bfd_section == NULL
5887 ? "*unknown*"
5888 : hdr->bfd_section->name));
5889 /* We don't need to page align empty sections. */
5890 if ((abfd->flags & D_PAGED) != 0 && hdr->sh_size != 0)
5891 off += vma_page_aligned_bias (hdr->sh_addr, off,
5892 bed->maxpagesize);
5893 else
5894 off += vma_page_aligned_bias (hdr->sh_addr, off,
5895 hdr->sh_addralign);
5896 off = _bfd_elf_assign_file_position_for_section (hdr, off,
5897 FALSE);
5898 }
5899 else if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
5900 && hdr->bfd_section == NULL)
5901 || (hdr->bfd_section != NULL
5902 && (hdr->bfd_section->flags & SEC_ELF_COMPRESS))
5903 /* Compress DWARF debug sections. */
5904 || hdr == i_shdrpp[elf_onesymtab (abfd)]
5905 || (elf_symtab_shndx_list (abfd) != NULL
5906 && hdr == i_shdrpp[elf_symtab_shndx_list (abfd)->ndx])
5907 || hdr == i_shdrpp[elf_strtab_sec (abfd)]
5908 || hdr == i_shdrpp[elf_shstrtab_sec (abfd)])
5909 hdr->sh_offset = -1;
5910 else
5911 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
5912 }
5913
5914 /* Now that we have set the section file positions, we can set up
5915 the file positions for the non PT_LOAD segments. */
5916 count = 0;
5917 filehdr_vaddr = 0;
5918 filehdr_paddr = 0;
5919 phdrs_vaddr = bed->maxpagesize + bed->s->sizeof_ehdr;
5920 phdrs_paddr = 0;
5921 hdrs_segment = NULL;
5922 phdrs = elf_tdata (abfd)->phdr;
5923 for (m = elf_seg_map (abfd), p = phdrs; m != NULL; m = m->next, p++)
5924 {
5925 ++count;
5926 if (p->p_type != PT_LOAD)
5927 continue;
5928
5929 if (m->includes_filehdr)
5930 {
5931 filehdr_vaddr = p->p_vaddr;
5932 filehdr_paddr = p->p_paddr;
5933 }
5934 if (m->includes_phdrs)
5935 {
5936 phdrs_vaddr = p->p_vaddr;
5937 phdrs_paddr = p->p_paddr;
5938 if (m->includes_filehdr)
5939 {
5940 hdrs_segment = m;
5941 phdrs_vaddr += bed->s->sizeof_ehdr;
5942 phdrs_paddr += bed->s->sizeof_ehdr;
5943 }
5944 }
5945 }
5946
5947 if (hdrs_segment != NULL && link_info != NULL)
5948 {
5949 /* There is a segment that contains both the file headers and the
5950 program headers, so provide a symbol __ehdr_start pointing there.
5951 A program can use this to examine itself robustly. */
5952
5953 struct elf_link_hash_entry *hash
5954 = elf_link_hash_lookup (elf_hash_table (link_info), "__ehdr_start",
5955 FALSE, FALSE, TRUE);
5956 /* If the symbol was referenced and not defined, define it. */
5957 if (hash != NULL
5958 && (hash->root.type == bfd_link_hash_new
5959 || hash->root.type == bfd_link_hash_undefined
5960 || hash->root.type == bfd_link_hash_undefweak
5961 || hash->root.type == bfd_link_hash_common))
5962 {
5963 asection *s = NULL;
5964 if (hdrs_segment->count != 0)
5965 /* The segment contains sections, so use the first one. */
5966 s = hdrs_segment->sections[0];
5967 else
5968 /* Use the first (i.e. lowest-addressed) section in any segment. */
5969 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
5970 if (m->count != 0)
5971 {
5972 s = m->sections[0];
5973 break;
5974 }
5975
5976 if (s != NULL)
5977 {
5978 hash->root.u.def.value = filehdr_vaddr - s->vma;
5979 hash->root.u.def.section = s;
5980 }
5981 else
5982 {
5983 hash->root.u.def.value = filehdr_vaddr;
5984 hash->root.u.def.section = bfd_abs_section_ptr;
5985 }
5986
5987 hash->root.type = bfd_link_hash_defined;
5988 hash->def_regular = 1;
5989 hash->non_elf = 0;
5990 }
5991 }
5992
5993 for (m = elf_seg_map (abfd), p = phdrs; m != NULL; m = m->next, p++)
5994 {
5995 if (p->p_type == PT_GNU_RELRO)
5996 {
5997 bfd_vma start, end;
5998 bfd_boolean ok;
5999
6000 if (link_info != NULL)
6001 {
6002 /* During linking the range of the RELRO segment is passed
6003 in link_info. Note that there may be padding between
6004 relro_start and the first RELRO section. */
6005 start = link_info->relro_start;
6006 end = link_info->relro_end;
6007 }
6008 else if (m->count != 0)
6009 {
6010 if (!m->p_size_valid)
6011 abort ();
6012 start = m->sections[0]->vma;
6013 end = start + m->p_size;
6014 }
6015 else
6016 {
6017 start = 0;
6018 end = 0;
6019 }
6020
6021 ok = FALSE;
6022 if (start < end)
6023 {
6024 struct elf_segment_map *lm;
6025 const Elf_Internal_Phdr *lp;
6026 unsigned int i;
6027
6028 /* Find a LOAD segment containing a section in the RELRO
6029 segment. */
6030 for (lm = elf_seg_map (abfd), lp = phdrs;
6031 lm != NULL;
6032 lm = lm->next, lp++)
6033 {
6034 if (lp->p_type == PT_LOAD
6035 && lm->count != 0
6036 && (lm->sections[lm->count - 1]->vma
6037 + (!IS_TBSS (lm->sections[lm->count - 1])
6038 ? lm->sections[lm->count - 1]->size
6039 : 0)) > start
6040 && lm->sections[0]->vma < end)
6041 break;
6042 }
6043
6044 if (lm != NULL)
6045 {
6046 /* Find the section starting the RELRO segment. */
6047 for (i = 0; i < lm->count; i++)
6048 {
6049 asection *s = lm->sections[i];
6050 if (s->vma >= start
6051 && s->vma < end
6052 && s->size != 0)
6053 break;
6054 }
6055
6056 if (i < lm->count)
6057 {
6058 p->p_vaddr = lm->sections[i]->vma;
6059 p->p_paddr = lm->sections[i]->lma;
6060 p->p_offset = lm->sections[i]->filepos;
6061 p->p_memsz = end - p->p_vaddr;
6062 p->p_filesz = p->p_memsz;
6063
6064 /* The RELRO segment typically ends a few bytes
6065 into .got.plt but other layouts are possible.
6066 In cases where the end does not match any
6067 loaded section (for instance is in file
6068 padding), trim p_filesz back to correspond to
6069 the end of loaded section contents. */
6070 if (p->p_filesz > lp->p_vaddr + lp->p_filesz - p->p_vaddr)
6071 p->p_filesz = lp->p_vaddr + lp->p_filesz - p->p_vaddr;
6072
6073 /* Preserve the alignment and flags if they are
6074 valid. The gold linker generates RW/4 for
6075 the PT_GNU_RELRO section. It is better for
6076 objcopy/strip to honor these attributes
6077 otherwise gdb will choke when using separate
6078 debug files. */
6079 if (!m->p_align_valid)
6080 p->p_align = 1;
6081 if (!m->p_flags_valid)
6082 p->p_flags = PF_R;
6083 ok = TRUE;
6084 }
6085 }
6086 }
6087 if (link_info != NULL)
6088 BFD_ASSERT (ok);
6089 if (!ok)
6090 memset (p, 0, sizeof *p);
6091 }
6092 else if (p->p_type == PT_GNU_STACK)
6093 {
6094 if (m->p_size_valid)
6095 p->p_memsz = m->p_size;
6096 }
6097 else if (m->count != 0)
6098 {
6099 unsigned int i;
6100
6101 if (p->p_type != PT_LOAD
6102 && (p->p_type != PT_NOTE
6103 || bfd_get_format (abfd) != bfd_core))
6104 {
6105 /* A user specified segment layout may include a PHDR
6106 segment that overlaps with a LOAD segment... */
6107 if (p->p_type == PT_PHDR)
6108 {
6109 m->count = 0;
6110 continue;
6111 }
6112
6113 if (m->includes_filehdr || m->includes_phdrs)
6114 {
6115 /* PR 17512: file: 2195325e. */
6116 _bfd_error_handler
6117 (_("%pB: error: non-load segment %d includes file header "
6118 "and/or program header"),
6119 abfd, (int) (p - phdrs));
6120 return FALSE;
6121 }
6122
6123 p->p_filesz = 0;
6124 p->p_offset = m->sections[0]->filepos;
6125 for (i = m->count; i-- != 0;)
6126 {
6127 asection *sect = m->sections[i];
6128 Elf_Internal_Shdr *hdr = &elf_section_data (sect)->this_hdr;
6129 if (hdr->sh_type != SHT_NOBITS)
6130 {
6131 p->p_filesz = (sect->filepos - m->sections[0]->filepos
6132 + hdr->sh_size);
6133 break;
6134 }
6135 }
6136 }
6137 }
6138 else if (m->includes_filehdr)
6139 {
6140 p->p_vaddr = filehdr_vaddr;
6141 if (! m->p_paddr_valid)
6142 p->p_paddr = filehdr_paddr;
6143 }
6144 else if (m->includes_phdrs)
6145 {
6146 p->p_vaddr = phdrs_vaddr;
6147 if (! m->p_paddr_valid)
6148 p->p_paddr = phdrs_paddr;
6149 }
6150 }
6151
6152 elf_next_file_pos (abfd) = off;
6153
6154 return TRUE;
6155 }
6156
6157 static elf_section_list *
6158 find_section_in_list (unsigned int i, elf_section_list * list)
6159 {
6160 for (;list != NULL; list = list->next)
6161 if (list->ndx == i)
6162 break;
6163 return list;
6164 }
6165
6166 /* Work out the file positions of all the sections. This is called by
6167 _bfd_elf_compute_section_file_positions. All the section sizes and
6168 VMAs must be known before this is called.
6169
6170 Reloc sections come in two flavours: Those processed specially as
6171 "side-channel" data attached to a section to which they apply, and
6172 those that bfd doesn't process as relocations. The latter sort are
6173 stored in a normal bfd section by bfd_section_from_shdr. We don't
6174 consider the former sort here, unless they form part of the loadable
6175 image. Reloc sections not assigned here will be handled later by
6176 assign_file_positions_for_relocs.
6177
6178 We also don't set the positions of the .symtab and .strtab here. */
6179
6180 static bfd_boolean
6181 assign_file_positions_except_relocs (bfd *abfd,
6182 struct bfd_link_info *link_info)
6183 {
6184 struct elf_obj_tdata *tdata = elf_tdata (abfd);
6185 Elf_Internal_Ehdr *i_ehdrp = elf_elfheader (abfd);
6186 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6187
6188 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
6189 && bfd_get_format (abfd) != bfd_core)
6190 {
6191 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
6192 unsigned int num_sec = elf_numsections (abfd);
6193 Elf_Internal_Shdr **hdrpp;
6194 unsigned int i;
6195 file_ptr off;
6196
6197 /* Start after the ELF header. */
6198 off = i_ehdrp->e_ehsize;
6199
6200 /* We are not creating an executable, which means that we are
6201 not creating a program header, and that the actual order of
6202 the sections in the file is unimportant. */
6203 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
6204 {
6205 Elf_Internal_Shdr *hdr;
6206
6207 hdr = *hdrpp;
6208 if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
6209 && hdr->bfd_section == NULL)
6210 || (hdr->bfd_section != NULL
6211 && (hdr->bfd_section->flags & SEC_ELF_COMPRESS))
6212 /* Compress DWARF debug sections. */
6213 || i == elf_onesymtab (abfd)
6214 || (elf_symtab_shndx_list (abfd) != NULL
6215 && hdr == i_shdrpp[elf_symtab_shndx_list (abfd)->ndx])
6216 || i == elf_strtab_sec (abfd)
6217 || i == elf_shstrtab_sec (abfd))
6218 {
6219 hdr->sh_offset = -1;
6220 }
6221 else
6222 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
6223 }
6224
6225 elf_next_file_pos (abfd) = off;
6226 }
6227 else
6228 {
6229 unsigned int alloc;
6230
6231 /* Assign file positions for the loaded sections based on the
6232 assignment of sections to segments. */
6233 if (!assign_file_positions_for_load_sections (abfd, link_info))
6234 return FALSE;
6235
6236 /* And for non-load sections. */
6237 if (!assign_file_positions_for_non_load_sections (abfd, link_info))
6238 return FALSE;
6239
6240 if (bed->elf_backend_modify_program_headers != NULL)
6241 {
6242 if (!(*bed->elf_backend_modify_program_headers) (abfd, link_info))
6243 return FALSE;
6244 }
6245
6246 /* Set e_type in ELF header to ET_EXEC for -pie -Ttext-segment=. */
6247 if (link_info != NULL && bfd_link_pie (link_info))
6248 {
6249 unsigned int num_segments = elf_elfheader (abfd)->e_phnum;
6250 Elf_Internal_Phdr *segment = elf_tdata (abfd)->phdr;
6251 Elf_Internal_Phdr *end_segment = &segment[num_segments];
6252
6253 /* Find the lowest p_vaddr in PT_LOAD segments. */
6254 bfd_vma p_vaddr = (bfd_vma) -1;
6255 for (; segment < end_segment; segment++)
6256 if (segment->p_type == PT_LOAD && p_vaddr > segment->p_vaddr)
6257 p_vaddr = segment->p_vaddr;
6258
6259 /* Set e_type to ET_EXEC if the lowest p_vaddr in PT_LOAD
6260 segments is non-zero. */
6261 if (p_vaddr)
6262 i_ehdrp->e_type = ET_EXEC;
6263 }
6264
6265 /* Write out the program headers. */
6266 alloc = elf_elfheader (abfd)->e_phnum;
6267 if (alloc == 0)
6268 return TRUE;
6269
6270 /* PR ld/20815 - Check that the program header segment, if present, will
6271 be loaded into memory. FIXME: The check below is not sufficient as
6272 really all PT_LOAD segments should be checked before issuing an error
6273 message. Plus the PHDR segment does not have to be the first segment
6274 in the program header table. But this version of the check should
6275 catch all real world use cases.
6276
6277 FIXME: We used to have code here to sort the PT_LOAD segments into
6278 ascending order, as per the ELF spec. But this breaks some programs,
6279 including the Linux kernel. But really either the spec should be
6280 changed or the programs updated. */
6281 if (alloc > 1
6282 && tdata->phdr[0].p_type == PT_PHDR
6283 && (bed->elf_backend_allow_non_load_phdr == NULL
6284 || !bed->elf_backend_allow_non_load_phdr (abfd, tdata->phdr,
6285 alloc))
6286 && tdata->phdr[1].p_type == PT_LOAD
6287 && (tdata->phdr[1].p_vaddr > tdata->phdr[0].p_vaddr
6288 || (tdata->phdr[1].p_vaddr + tdata->phdr[1].p_memsz
6289 < tdata->phdr[0].p_vaddr + tdata->phdr[0].p_memsz)))
6290 {
6291 /* The fix for this error is usually to edit the linker script being
6292 used and set up the program headers manually. Either that or
6293 leave room for the headers at the start of the SECTIONS. */
6294 _bfd_error_handler (_("%pB: error: PHDR segment not covered"
6295 " by LOAD segment"),
6296 abfd);
6297 return FALSE;
6298 }
6299
6300 if (bfd_seek (abfd, (bfd_signed_vma) bed->s->sizeof_ehdr, SEEK_SET) != 0
6301 || bed->s->write_out_phdrs (abfd, tdata->phdr, alloc) != 0)
6302 return FALSE;
6303 }
6304
6305 return TRUE;
6306 }
6307
6308 static bfd_boolean
6309 prep_headers (bfd *abfd)
6310 {
6311 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form. */
6312 struct elf_strtab_hash *shstrtab;
6313 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6314
6315 i_ehdrp = elf_elfheader (abfd);
6316
6317 shstrtab = _bfd_elf_strtab_init ();
6318 if (shstrtab == NULL)
6319 return FALSE;
6320
6321 elf_shstrtab (abfd) = shstrtab;
6322
6323 i_ehdrp->e_ident[EI_MAG0] = ELFMAG0;
6324 i_ehdrp->e_ident[EI_MAG1] = ELFMAG1;
6325 i_ehdrp->e_ident[EI_MAG2] = ELFMAG2;
6326 i_ehdrp->e_ident[EI_MAG3] = ELFMAG3;
6327
6328 i_ehdrp->e_ident[EI_CLASS] = bed->s->elfclass;
6329 i_ehdrp->e_ident[EI_DATA] =
6330 bfd_big_endian (abfd) ? ELFDATA2MSB : ELFDATA2LSB;
6331 i_ehdrp->e_ident[EI_VERSION] = bed->s->ev_current;
6332
6333 if ((abfd->flags & DYNAMIC) != 0)
6334 i_ehdrp->e_type = ET_DYN;
6335 else if ((abfd->flags & EXEC_P) != 0)
6336 i_ehdrp->e_type = ET_EXEC;
6337 else if (bfd_get_format (abfd) == bfd_core)
6338 i_ehdrp->e_type = ET_CORE;
6339 else
6340 i_ehdrp->e_type = ET_REL;
6341
6342 switch (bfd_get_arch (abfd))
6343 {
6344 case bfd_arch_unknown:
6345 i_ehdrp->e_machine = EM_NONE;
6346 break;
6347
6348 /* There used to be a long list of cases here, each one setting
6349 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
6350 in the corresponding bfd definition. To avoid duplication,
6351 the switch was removed. Machines that need special handling
6352 can generally do it in elf_backend_final_write_processing(),
6353 unless they need the information earlier than the final write.
6354 Such need can generally be supplied by replacing the tests for
6355 e_machine with the conditions used to determine it. */
6356 default:
6357 i_ehdrp->e_machine = bed->elf_machine_code;
6358 }
6359
6360 i_ehdrp->e_version = bed->s->ev_current;
6361 i_ehdrp->e_ehsize = bed->s->sizeof_ehdr;
6362
6363 /* No program header, for now. */
6364 i_ehdrp->e_phoff = 0;
6365 i_ehdrp->e_phentsize = 0;
6366 i_ehdrp->e_phnum = 0;
6367
6368 /* Each bfd section is section header entry. */
6369 i_ehdrp->e_entry = bfd_get_start_address (abfd);
6370 i_ehdrp->e_shentsize = bed->s->sizeof_shdr;
6371
6372 /* If we're building an executable, we'll need a program header table. */
6373 if (abfd->flags & EXEC_P)
6374 /* It all happens later. */
6375 ;
6376 else
6377 {
6378 i_ehdrp->e_phentsize = 0;
6379 i_ehdrp->e_phoff = 0;
6380 }
6381
6382 elf_tdata (abfd)->symtab_hdr.sh_name =
6383 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".symtab", FALSE);
6384 elf_tdata (abfd)->strtab_hdr.sh_name =
6385 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".strtab", FALSE);
6386 elf_tdata (abfd)->shstrtab_hdr.sh_name =
6387 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".shstrtab", FALSE);
6388 if (elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
6389 || elf_tdata (abfd)->strtab_hdr.sh_name == (unsigned int) -1
6390 || elf_tdata (abfd)->shstrtab_hdr.sh_name == (unsigned int) -1)
6391 return FALSE;
6392
6393 return TRUE;
6394 }
6395
6396 /* Assign file positions for all the reloc sections which are not part
6397 of the loadable file image, and the file position of section headers. */
6398
6399 static bfd_boolean
6400 _bfd_elf_assign_file_positions_for_non_load (bfd *abfd)
6401 {
6402 file_ptr off;
6403 Elf_Internal_Shdr **shdrpp, **end_shdrpp;
6404 Elf_Internal_Shdr *shdrp;
6405 Elf_Internal_Ehdr *i_ehdrp;
6406 const struct elf_backend_data *bed;
6407
6408 off = elf_next_file_pos (abfd);
6409
6410 shdrpp = elf_elfsections (abfd);
6411 end_shdrpp = shdrpp + elf_numsections (abfd);
6412 for (shdrpp++; shdrpp < end_shdrpp; shdrpp++)
6413 {
6414 shdrp = *shdrpp;
6415 if (shdrp->sh_offset == -1)
6416 {
6417 asection *sec = shdrp->bfd_section;
6418 bfd_boolean is_rel = (shdrp->sh_type == SHT_REL
6419 || shdrp->sh_type == SHT_RELA);
6420 if (is_rel
6421 || (sec != NULL && (sec->flags & SEC_ELF_COMPRESS)))
6422 {
6423 if (!is_rel)
6424 {
6425 const char *name = sec->name;
6426 struct bfd_elf_section_data *d;
6427
6428 /* Compress DWARF debug sections. */
6429 if (!bfd_compress_section (abfd, sec,
6430 shdrp->contents))
6431 return FALSE;
6432
6433 if (sec->compress_status == COMPRESS_SECTION_DONE
6434 && (abfd->flags & BFD_COMPRESS_GABI) == 0)
6435 {
6436 /* If section is compressed with zlib-gnu, convert
6437 section name from .debug_* to .zdebug_*. */
6438 char *new_name
6439 = convert_debug_to_zdebug (abfd, name);
6440 if (new_name == NULL)
6441 return FALSE;
6442 name = new_name;
6443 }
6444 /* Add section name to section name section. */
6445 if (shdrp->sh_name != (unsigned int) -1)
6446 abort ();
6447 shdrp->sh_name
6448 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
6449 name, FALSE);
6450 d = elf_section_data (sec);
6451
6452 /* Add reloc section name to section name section. */
6453 if (d->rel.hdr
6454 && !_bfd_elf_set_reloc_sh_name (abfd,
6455 d->rel.hdr,
6456 name, FALSE))
6457 return FALSE;
6458 if (d->rela.hdr
6459 && !_bfd_elf_set_reloc_sh_name (abfd,
6460 d->rela.hdr,
6461 name, TRUE))
6462 return FALSE;
6463
6464 /* Update section size and contents. */
6465 shdrp->sh_size = sec->size;
6466 shdrp->contents = sec->contents;
6467 shdrp->bfd_section->contents = NULL;
6468 }
6469 off = _bfd_elf_assign_file_position_for_section (shdrp,
6470 off,
6471 TRUE);
6472 }
6473 }
6474 }
6475
6476 /* Place section name section after DWARF debug sections have been
6477 compressed. */
6478 _bfd_elf_strtab_finalize (elf_shstrtab (abfd));
6479 shdrp = &elf_tdata (abfd)->shstrtab_hdr;
6480 shdrp->sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
6481 off = _bfd_elf_assign_file_position_for_section (shdrp, off, TRUE);
6482
6483 /* Place the section headers. */
6484 i_ehdrp = elf_elfheader (abfd);
6485 bed = get_elf_backend_data (abfd);
6486 off = align_file_position (off, 1 << bed->s->log_file_align);
6487 i_ehdrp->e_shoff = off;
6488 off += i_ehdrp->e_shnum * i_ehdrp->e_shentsize;
6489 elf_next_file_pos (abfd) = off;
6490
6491 return TRUE;
6492 }
6493
6494 bfd_boolean
6495 _bfd_elf_write_object_contents (bfd *abfd)
6496 {
6497 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6498 Elf_Internal_Shdr **i_shdrp;
6499 bfd_boolean failed;
6500 unsigned int count, num_sec;
6501 struct elf_obj_tdata *t;
6502
6503 if (! abfd->output_has_begun
6504 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
6505 return FALSE;
6506 /* Do not rewrite ELF data when the BFD has been opened for update.
6507 abfd->output_has_begun was set to TRUE on opening, so creation of new
6508 sections, and modification of existing section sizes was restricted.
6509 This means the ELF header, program headers and section headers can't have
6510 changed.
6511 If the contents of any sections has been modified, then those changes have
6512 already been written to the BFD. */
6513 else if (abfd->direction == both_direction)
6514 {
6515 BFD_ASSERT (abfd->output_has_begun);
6516 return TRUE;
6517 }
6518
6519 i_shdrp = elf_elfsections (abfd);
6520
6521 failed = FALSE;
6522 bfd_map_over_sections (abfd, bed->s->write_relocs, &failed);
6523 if (failed)
6524 return FALSE;
6525
6526 if (!_bfd_elf_assign_file_positions_for_non_load (abfd))
6527 return FALSE;
6528
6529 /* After writing the headers, we need to write the sections too... */
6530 num_sec = elf_numsections (abfd);
6531 for (count = 1; count < num_sec; count++)
6532 {
6533 i_shdrp[count]->sh_name
6534 = _bfd_elf_strtab_offset (elf_shstrtab (abfd),
6535 i_shdrp[count]->sh_name);
6536 if (bed->elf_backend_section_processing)
6537 if (!(*bed->elf_backend_section_processing) (abfd, i_shdrp[count]))
6538 return FALSE;
6539 if (i_shdrp[count]->contents)
6540 {
6541 bfd_size_type amt = i_shdrp[count]->sh_size;
6542
6543 if (bfd_seek (abfd, i_shdrp[count]->sh_offset, SEEK_SET) != 0
6544 || bfd_bwrite (i_shdrp[count]->contents, amt, abfd) != amt)
6545 return FALSE;
6546 }
6547 }
6548
6549 /* Write out the section header names. */
6550 t = elf_tdata (abfd);
6551 if (elf_shstrtab (abfd) != NULL
6552 && (bfd_seek (abfd, t->shstrtab_hdr.sh_offset, SEEK_SET) != 0
6553 || !_bfd_elf_strtab_emit (abfd, elf_shstrtab (abfd))))
6554 return FALSE;
6555
6556 if (bed->elf_backend_final_write_processing)
6557 (*bed->elf_backend_final_write_processing) (abfd, elf_linker (abfd));
6558
6559 if (!bed->s->write_shdrs_and_ehdr (abfd))
6560 return FALSE;
6561
6562 /* This is last since write_shdrs_and_ehdr can touch i_shdrp[0]. */
6563 if (t->o->build_id.after_write_object_contents != NULL)
6564 return (*t->o->build_id.after_write_object_contents) (abfd);
6565
6566 return TRUE;
6567 }
6568
6569 bfd_boolean
6570 _bfd_elf_write_corefile_contents (bfd *abfd)
6571 {
6572 /* Hopefully this can be done just like an object file. */
6573 return _bfd_elf_write_object_contents (abfd);
6574 }
6575
6576 /* Given a section, search the header to find them. */
6577
6578 unsigned int
6579 _bfd_elf_section_from_bfd_section (bfd *abfd, struct bfd_section *asect)
6580 {
6581 const struct elf_backend_data *bed;
6582 unsigned int sec_index;
6583
6584 if (elf_section_data (asect) != NULL
6585 && elf_section_data (asect)->this_idx != 0)
6586 return elf_section_data (asect)->this_idx;
6587
6588 if (bfd_is_abs_section (asect))
6589 sec_index = SHN_ABS;
6590 else if (bfd_is_com_section (asect))
6591 sec_index = SHN_COMMON;
6592 else if (bfd_is_und_section (asect))
6593 sec_index = SHN_UNDEF;
6594 else
6595 sec_index = SHN_BAD;
6596
6597 bed = get_elf_backend_data (abfd);
6598 if (bed->elf_backend_section_from_bfd_section)
6599 {
6600 int retval = sec_index;
6601
6602 if ((*bed->elf_backend_section_from_bfd_section) (abfd, asect, &retval))
6603 return retval;
6604 }
6605
6606 if (sec_index == SHN_BAD)
6607 bfd_set_error (bfd_error_nonrepresentable_section);
6608
6609 return sec_index;
6610 }
6611
6612 /* Given a BFD symbol, return the index in the ELF symbol table, or -1
6613 on error. */
6614
6615 int
6616 _bfd_elf_symbol_from_bfd_symbol (bfd *abfd, asymbol **asym_ptr_ptr)
6617 {
6618 asymbol *asym_ptr = *asym_ptr_ptr;
6619 int idx;
6620 flagword flags = asym_ptr->flags;
6621
6622 /* When gas creates relocations against local labels, it creates its
6623 own symbol for the section, but does put the symbol into the
6624 symbol chain, so udata is 0. When the linker is generating
6625 relocatable output, this section symbol may be for one of the
6626 input sections rather than the output section. */
6627 if (asym_ptr->udata.i == 0
6628 && (flags & BSF_SECTION_SYM)
6629 && asym_ptr->section)
6630 {
6631 asection *sec;
6632 int indx;
6633
6634 sec = asym_ptr->section;
6635 if (sec->owner != abfd && sec->output_section != NULL)
6636 sec = sec->output_section;
6637 if (sec->owner == abfd
6638 && (indx = sec->index) < elf_num_section_syms (abfd)
6639 && elf_section_syms (abfd)[indx] != NULL)
6640 asym_ptr->udata.i = elf_section_syms (abfd)[indx]->udata.i;
6641 }
6642
6643 idx = asym_ptr->udata.i;
6644
6645 if (idx == 0)
6646 {
6647 /* This case can occur when using --strip-symbol on a symbol
6648 which is used in a relocation entry. */
6649 _bfd_error_handler
6650 /* xgettext:c-format */
6651 (_("%pB: symbol `%s' required but not present"),
6652 abfd, bfd_asymbol_name (asym_ptr));
6653 bfd_set_error (bfd_error_no_symbols);
6654 return -1;
6655 }
6656
6657 #if DEBUG & 4
6658 {
6659 fprintf (stderr,
6660 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8x\n",
6661 (long) asym_ptr, asym_ptr->name, idx, flags);
6662 fflush (stderr);
6663 }
6664 #endif
6665
6666 return idx;
6667 }
6668
6669 /* Rewrite program header information. */
6670
6671 static bfd_boolean
6672 rewrite_elf_program_header (bfd *ibfd, bfd *obfd)
6673 {
6674 Elf_Internal_Ehdr *iehdr;
6675 struct elf_segment_map *map;
6676 struct elf_segment_map *map_first;
6677 struct elf_segment_map **pointer_to_map;
6678 Elf_Internal_Phdr *segment;
6679 asection *section;
6680 unsigned int i;
6681 unsigned int num_segments;
6682 bfd_boolean phdr_included = FALSE;
6683 bfd_boolean p_paddr_valid;
6684 bfd_vma maxpagesize;
6685 struct elf_segment_map *phdr_adjust_seg = NULL;
6686 unsigned int phdr_adjust_num = 0;
6687 const struct elf_backend_data *bed;
6688
6689 bed = get_elf_backend_data (ibfd);
6690 iehdr = elf_elfheader (ibfd);
6691
6692 map_first = NULL;
6693 pointer_to_map = &map_first;
6694
6695 num_segments = elf_elfheader (ibfd)->e_phnum;
6696 maxpagesize = get_elf_backend_data (obfd)->maxpagesize;
6697
6698 /* Returns the end address of the segment + 1. */
6699 #define SEGMENT_END(segment, start) \
6700 (start + (segment->p_memsz > segment->p_filesz \
6701 ? segment->p_memsz : segment->p_filesz))
6702
6703 #define SECTION_SIZE(section, segment) \
6704 (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL)) \
6705 != SEC_THREAD_LOCAL || segment->p_type == PT_TLS) \
6706 ? section->size : 0)
6707
6708 /* Returns TRUE if the given section is contained within
6709 the given segment. VMA addresses are compared. */
6710 #define IS_CONTAINED_BY_VMA(section, segment) \
6711 (section->vma >= segment->p_vaddr \
6712 && (section->vma + SECTION_SIZE (section, segment) \
6713 <= (SEGMENT_END (segment, segment->p_vaddr))))
6714
6715 /* Returns TRUE if the given section is contained within
6716 the given segment. LMA addresses are compared. */
6717 #define IS_CONTAINED_BY_LMA(section, segment, base) \
6718 (section->lma >= base \
6719 && (section->lma + SECTION_SIZE (section, segment) >= section->lma) \
6720 && (section->lma + SECTION_SIZE (section, segment) \
6721 <= SEGMENT_END (segment, base)))
6722
6723 /* Handle PT_NOTE segment. */
6724 #define IS_NOTE(p, s) \
6725 (p->p_type == PT_NOTE \
6726 && elf_section_type (s) == SHT_NOTE \
6727 && (bfd_vma) s->filepos >= p->p_offset \
6728 && ((bfd_vma) s->filepos + s->size \
6729 <= p->p_offset + p->p_filesz))
6730
6731 /* Special case: corefile "NOTE" section containing regs, prpsinfo
6732 etc. */
6733 #define IS_COREFILE_NOTE(p, s) \
6734 (IS_NOTE (p, s) \
6735 && bfd_get_format (ibfd) == bfd_core \
6736 && s->vma == 0 \
6737 && s->lma == 0)
6738
6739 /* The complicated case when p_vaddr is 0 is to handle the Solaris
6740 linker, which generates a PT_INTERP section with p_vaddr and
6741 p_memsz set to 0. */
6742 #define IS_SOLARIS_PT_INTERP(p, s) \
6743 (p->p_vaddr == 0 \
6744 && p->p_paddr == 0 \
6745 && p->p_memsz == 0 \
6746 && p->p_filesz > 0 \
6747 && (s->flags & SEC_HAS_CONTENTS) != 0 \
6748 && s->size > 0 \
6749 && (bfd_vma) s->filepos >= p->p_offset \
6750 && ((bfd_vma) s->filepos + s->size \
6751 <= p->p_offset + p->p_filesz))
6752
6753 /* Decide if the given section should be included in the given segment.
6754 A section will be included if:
6755 1. It is within the address space of the segment -- we use the LMA
6756 if that is set for the segment and the VMA otherwise,
6757 2. It is an allocated section or a NOTE section in a PT_NOTE
6758 segment.
6759 3. There is an output section associated with it,
6760 4. The section has not already been allocated to a previous segment.
6761 5. PT_GNU_STACK segments do not include any sections.
6762 6. PT_TLS segment includes only SHF_TLS sections.
6763 7. SHF_TLS sections are only in PT_TLS or PT_LOAD segments.
6764 8. PT_DYNAMIC should not contain empty sections at the beginning
6765 (with the possible exception of .dynamic). */
6766 #define IS_SECTION_IN_INPUT_SEGMENT(section, segment, bed) \
6767 ((((segment->p_paddr \
6768 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr) \
6769 : IS_CONTAINED_BY_VMA (section, segment)) \
6770 && (section->flags & SEC_ALLOC) != 0) \
6771 || IS_NOTE (segment, section)) \
6772 && segment->p_type != PT_GNU_STACK \
6773 && (segment->p_type != PT_TLS \
6774 || (section->flags & SEC_THREAD_LOCAL)) \
6775 && (segment->p_type == PT_LOAD \
6776 || segment->p_type == PT_TLS \
6777 || (section->flags & SEC_THREAD_LOCAL) == 0) \
6778 && (segment->p_type != PT_DYNAMIC \
6779 || SECTION_SIZE (section, segment) > 0 \
6780 || (segment->p_paddr \
6781 ? segment->p_paddr != section->lma \
6782 : segment->p_vaddr != section->vma) \
6783 || (strcmp (bfd_get_section_name (ibfd, section), ".dynamic") \
6784 == 0)) \
6785 && (segment->p_type != PT_LOAD || !section->segment_mark))
6786
6787 /* If the output section of a section in the input segment is NULL,
6788 it is removed from the corresponding output segment. */
6789 #define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed) \
6790 (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed) \
6791 && section->output_section != NULL)
6792
6793 /* Returns TRUE iff seg1 starts after the end of seg2. */
6794 #define SEGMENT_AFTER_SEGMENT(seg1, seg2, field) \
6795 (seg1->field >= SEGMENT_END (seg2, seg2->field))
6796
6797 /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both
6798 their VMA address ranges and their LMA address ranges overlap.
6799 It is possible to have overlapping VMA ranges without overlapping LMA
6800 ranges. RedBoot images for example can have both .data and .bss mapped
6801 to the same VMA range, but with the .data section mapped to a different
6802 LMA. */
6803 #define SEGMENT_OVERLAPS(seg1, seg2) \
6804 ( !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr) \
6805 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr)) \
6806 && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr) \
6807 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr)))
6808
6809 /* Initialise the segment mark field. */
6810 for (section = ibfd->sections; section != NULL; section = section->next)
6811 section->segment_mark = FALSE;
6812
6813 /* The Solaris linker creates program headers in which all the
6814 p_paddr fields are zero. When we try to objcopy or strip such a
6815 file, we get confused. Check for this case, and if we find it
6816 don't set the p_paddr_valid fields. */
6817 p_paddr_valid = FALSE;
6818 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6819 i < num_segments;
6820 i++, segment++)
6821 if (segment->p_paddr != 0)
6822 {
6823 p_paddr_valid = TRUE;
6824 break;
6825 }
6826
6827 /* Scan through the segments specified in the program header
6828 of the input BFD. For this first scan we look for overlaps
6829 in the loadable segments. These can be created by weird
6830 parameters to objcopy. Also, fix some solaris weirdness. */
6831 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6832 i < num_segments;
6833 i++, segment++)
6834 {
6835 unsigned int j;
6836 Elf_Internal_Phdr *segment2;
6837
6838 if (segment->p_type == PT_INTERP)
6839 for (section = ibfd->sections; section; section = section->next)
6840 if (IS_SOLARIS_PT_INTERP (segment, section))
6841 {
6842 /* Mininal change so that the normal section to segment
6843 assignment code will work. */
6844 segment->p_vaddr = section->vma;
6845 break;
6846 }
6847
6848 if (segment->p_type != PT_LOAD)
6849 {
6850 /* Remove PT_GNU_RELRO segment. */
6851 if (segment->p_type == PT_GNU_RELRO)
6852 segment->p_type = PT_NULL;
6853 continue;
6854 }
6855
6856 /* Determine if this segment overlaps any previous segments. */
6857 for (j = 0, segment2 = elf_tdata (ibfd)->phdr; j < i; j++, segment2++)
6858 {
6859 bfd_signed_vma extra_length;
6860
6861 if (segment2->p_type != PT_LOAD
6862 || !SEGMENT_OVERLAPS (segment, segment2))
6863 continue;
6864
6865 /* Merge the two segments together. */
6866 if (segment2->p_vaddr < segment->p_vaddr)
6867 {
6868 /* Extend SEGMENT2 to include SEGMENT and then delete
6869 SEGMENT. */
6870 extra_length = (SEGMENT_END (segment, segment->p_vaddr)
6871 - SEGMENT_END (segment2, segment2->p_vaddr));
6872
6873 if (extra_length > 0)
6874 {
6875 segment2->p_memsz += extra_length;
6876 segment2->p_filesz += extra_length;
6877 }
6878
6879 segment->p_type = PT_NULL;
6880
6881 /* Since we have deleted P we must restart the outer loop. */
6882 i = 0;
6883 segment = elf_tdata (ibfd)->phdr;
6884 break;
6885 }
6886 else
6887 {
6888 /* Extend SEGMENT to include SEGMENT2 and then delete
6889 SEGMENT2. */
6890 extra_length = (SEGMENT_END (segment2, segment2->p_vaddr)
6891 - SEGMENT_END (segment, segment->p_vaddr));
6892
6893 if (extra_length > 0)
6894 {
6895 segment->p_memsz += extra_length;
6896 segment->p_filesz += extra_length;
6897 }
6898
6899 segment2->p_type = PT_NULL;
6900 }
6901 }
6902 }
6903
6904 /* The second scan attempts to assign sections to segments. */
6905 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6906 i < num_segments;
6907 i++, segment++)
6908 {
6909 unsigned int section_count;
6910 asection **sections;
6911 asection *output_section;
6912 unsigned int isec;
6913 asection *matching_lma;
6914 asection *suggested_lma;
6915 unsigned int j;
6916 bfd_size_type amt;
6917 asection *first_section;
6918
6919 if (segment->p_type == PT_NULL)
6920 continue;
6921
6922 first_section = NULL;
6923 /* Compute how many sections might be placed into this segment. */
6924 for (section = ibfd->sections, section_count = 0;
6925 section != NULL;
6926 section = section->next)
6927 {
6928 /* Find the first section in the input segment, which may be
6929 removed from the corresponding output segment. */
6930 if (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed))
6931 {
6932 if (first_section == NULL)
6933 first_section = section;
6934 if (section->output_section != NULL)
6935 ++section_count;
6936 }
6937 }
6938
6939 /* Allocate a segment map big enough to contain
6940 all of the sections we have selected. */
6941 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
6942 amt += (bfd_size_type) section_count * sizeof (asection *);
6943 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
6944 if (map == NULL)
6945 return FALSE;
6946
6947 /* Initialise the fields of the segment map. Default to
6948 using the physical address of the segment in the input BFD. */
6949 map->next = NULL;
6950 map->p_type = segment->p_type;
6951 map->p_flags = segment->p_flags;
6952 map->p_flags_valid = 1;
6953
6954 /* If the first section in the input segment is removed, there is
6955 no need to preserve segment physical address in the corresponding
6956 output segment. */
6957 if (!first_section || first_section->output_section != NULL)
6958 {
6959 map->p_paddr = segment->p_paddr;
6960 map->p_paddr_valid = p_paddr_valid;
6961 }
6962
6963 /* Determine if this segment contains the ELF file header
6964 and if it contains the program headers themselves. */
6965 map->includes_filehdr = (segment->p_offset == 0
6966 && segment->p_filesz >= iehdr->e_ehsize);
6967 map->includes_phdrs = 0;
6968
6969 if (!phdr_included || segment->p_type != PT_LOAD)
6970 {
6971 map->includes_phdrs =
6972 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
6973 && (segment->p_offset + segment->p_filesz
6974 >= ((bfd_vma) iehdr->e_phoff
6975 + iehdr->e_phnum * iehdr->e_phentsize)));
6976
6977 if (segment->p_type == PT_LOAD && map->includes_phdrs)
6978 phdr_included = TRUE;
6979 }
6980
6981 if (section_count == 0)
6982 {
6983 /* Special segments, such as the PT_PHDR segment, may contain
6984 no sections, but ordinary, loadable segments should contain
6985 something. They are allowed by the ELF spec however, so only
6986 a warning is produced.
6987 There is however the valid use case of embedded systems which
6988 have segments with p_filesz of 0 and a p_memsz > 0 to initialize
6989 flash memory with zeros. No warning is shown for that case. */
6990 if (segment->p_type == PT_LOAD
6991 && (segment->p_filesz > 0 || segment->p_memsz == 0))
6992 /* xgettext:c-format */
6993 _bfd_error_handler
6994 (_("%pB: warning: empty loadable segment detected"
6995 " at vaddr=%#" PRIx64 ", is this intentional?"),
6996 ibfd, (uint64_t) segment->p_vaddr);
6997
6998 map->p_vaddr_offset = segment->p_vaddr;
6999 map->count = 0;
7000 *pointer_to_map = map;
7001 pointer_to_map = &map->next;
7002
7003 continue;
7004 }
7005
7006 /* Now scan the sections in the input BFD again and attempt
7007 to add their corresponding output sections to the segment map.
7008 The problem here is how to handle an output section which has
7009 been moved (ie had its LMA changed). There are four possibilities:
7010
7011 1. None of the sections have been moved.
7012 In this case we can continue to use the segment LMA from the
7013 input BFD.
7014
7015 2. All of the sections have been moved by the same amount.
7016 In this case we can change the segment's LMA to match the LMA
7017 of the first section.
7018
7019 3. Some of the sections have been moved, others have not.
7020 In this case those sections which have not been moved can be
7021 placed in the current segment which will have to have its size,
7022 and possibly its LMA changed, and a new segment or segments will
7023 have to be created to contain the other sections.
7024
7025 4. The sections have been moved, but not by the same amount.
7026 In this case we can change the segment's LMA to match the LMA
7027 of the first section and we will have to create a new segment
7028 or segments to contain the other sections.
7029
7030 In order to save time, we allocate an array to hold the section
7031 pointers that we are interested in. As these sections get assigned
7032 to a segment, they are removed from this array. */
7033
7034 sections = (asection **) bfd_malloc2 (section_count, sizeof (asection *));
7035 if (sections == NULL)
7036 return FALSE;
7037
7038 /* Step One: Scan for segment vs section LMA conflicts.
7039 Also add the sections to the section array allocated above.
7040 Also add the sections to the current segment. In the common
7041 case, where the sections have not been moved, this means that
7042 we have completely filled the segment, and there is nothing
7043 more to do. */
7044 isec = 0;
7045 matching_lma = NULL;
7046 suggested_lma = NULL;
7047
7048 for (section = first_section, j = 0;
7049 section != NULL;
7050 section = section->next)
7051 {
7052 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
7053 {
7054 output_section = section->output_section;
7055
7056 sections[j++] = section;
7057
7058 /* The Solaris native linker always sets p_paddr to 0.
7059 We try to catch that case here, and set it to the
7060 correct value. Note - some backends require that
7061 p_paddr be left as zero. */
7062 if (!p_paddr_valid
7063 && segment->p_vaddr != 0
7064 && !bed->want_p_paddr_set_to_zero
7065 && isec == 0
7066 && output_section->lma != 0
7067 && (align_power (segment->p_vaddr
7068 + (map->includes_filehdr
7069 ? iehdr->e_ehsize : 0)
7070 + (map->includes_phdrs
7071 ? iehdr->e_phnum * iehdr->e_phentsize
7072 : 0),
7073 output_section->alignment_power)
7074 == output_section->vma))
7075 map->p_paddr = segment->p_vaddr;
7076
7077 /* Match up the physical address of the segment with the
7078 LMA address of the output section. */
7079 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
7080 || IS_COREFILE_NOTE (segment, section)
7081 || (bed->want_p_paddr_set_to_zero
7082 && IS_CONTAINED_BY_VMA (output_section, segment)))
7083 {
7084 if (matching_lma == NULL
7085 || output_section->lma < matching_lma->lma)
7086 matching_lma = output_section;
7087
7088 /* We assume that if the section fits within the segment
7089 then it does not overlap any other section within that
7090 segment. */
7091 map->sections[isec++] = output_section;
7092 }
7093 else if (suggested_lma == NULL)
7094 suggested_lma = output_section;
7095
7096 if (j == section_count)
7097 break;
7098 }
7099 }
7100
7101 BFD_ASSERT (j == section_count);
7102
7103 /* Step Two: Adjust the physical address of the current segment,
7104 if necessary. */
7105 if (isec == section_count)
7106 {
7107 /* All of the sections fitted within the segment as currently
7108 specified. This is the default case. Add the segment to
7109 the list of built segments and carry on to process the next
7110 program header in the input BFD. */
7111 map->count = section_count;
7112 *pointer_to_map = map;
7113 pointer_to_map = &map->next;
7114
7115 if (p_paddr_valid
7116 && !bed->want_p_paddr_set_to_zero
7117 && matching_lma->lma != map->p_paddr
7118 && !map->includes_filehdr
7119 && !map->includes_phdrs)
7120 /* There is some padding before the first section in the
7121 segment. So, we must account for that in the output
7122 segment's vma. */
7123 map->p_vaddr_offset = map->p_paddr - matching_lma->lma;
7124
7125 free (sections);
7126 continue;
7127 }
7128 else
7129 {
7130 /* Change the current segment's physical address to match
7131 the LMA of the first section that fitted, or if no
7132 section fitted, the first section. */
7133 if (matching_lma == NULL)
7134 matching_lma = suggested_lma;
7135
7136 map->p_paddr = matching_lma->lma;
7137
7138 /* Offset the segment physical address from the lma
7139 to allow for space taken up by elf headers. */
7140 if (map->includes_phdrs)
7141 {
7142 map->p_paddr -= iehdr->e_phnum * iehdr->e_phentsize;
7143
7144 /* iehdr->e_phnum is just an estimate of the number
7145 of program headers that we will need. Make a note
7146 here of the number we used and the segment we chose
7147 to hold these headers, so that we can adjust the
7148 offset when we know the correct value. */
7149 phdr_adjust_num = iehdr->e_phnum;
7150 phdr_adjust_seg = map;
7151 }
7152
7153 if (map->includes_filehdr)
7154 {
7155 bfd_vma align = (bfd_vma) 1 << matching_lma->alignment_power;
7156 map->p_paddr -= iehdr->e_ehsize;
7157 /* We've subtracted off the size of headers from the
7158 first section lma, but there may have been some
7159 alignment padding before that section too. Try to
7160 account for that by adjusting the segment lma down to
7161 the same alignment. */
7162 if (segment->p_align != 0 && segment->p_align < align)
7163 align = segment->p_align;
7164 map->p_paddr &= -align;
7165 }
7166 }
7167
7168 /* Step Three: Loop over the sections again, this time assigning
7169 those that fit to the current segment and removing them from the
7170 sections array; but making sure not to leave large gaps. Once all
7171 possible sections have been assigned to the current segment it is
7172 added to the list of built segments and if sections still remain
7173 to be assigned, a new segment is constructed before repeating
7174 the loop. */
7175 isec = 0;
7176 do
7177 {
7178 map->count = 0;
7179 suggested_lma = NULL;
7180
7181 /* Fill the current segment with sections that fit. */
7182 for (j = 0; j < section_count; j++)
7183 {
7184 section = sections[j];
7185
7186 if (section == NULL)
7187 continue;
7188
7189 output_section = section->output_section;
7190
7191 BFD_ASSERT (output_section != NULL);
7192
7193 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
7194 || IS_COREFILE_NOTE (segment, section))
7195 {
7196 if (map->count == 0)
7197 {
7198 /* If the first section in a segment does not start at
7199 the beginning of the segment, then something is
7200 wrong. */
7201 if (align_power (map->p_paddr
7202 + (map->includes_filehdr
7203 ? iehdr->e_ehsize : 0)
7204 + (map->includes_phdrs
7205 ? iehdr->e_phnum * iehdr->e_phentsize
7206 : 0),
7207 output_section->alignment_power)
7208 != output_section->lma)
7209 abort ();
7210 }
7211 else
7212 {
7213 asection *prev_sec;
7214
7215 prev_sec = map->sections[map->count - 1];
7216
7217 /* If the gap between the end of the previous section
7218 and the start of this section is more than
7219 maxpagesize then we need to start a new segment. */
7220 if ((BFD_ALIGN (prev_sec->lma + prev_sec->size,
7221 maxpagesize)
7222 < BFD_ALIGN (output_section->lma, maxpagesize))
7223 || (prev_sec->lma + prev_sec->size
7224 > output_section->lma))
7225 {
7226 if (suggested_lma == NULL)
7227 suggested_lma = output_section;
7228
7229 continue;
7230 }
7231 }
7232
7233 map->sections[map->count++] = output_section;
7234 ++isec;
7235 sections[j] = NULL;
7236 if (segment->p_type == PT_LOAD)
7237 section->segment_mark = TRUE;
7238 }
7239 else if (suggested_lma == NULL)
7240 suggested_lma = output_section;
7241 }
7242
7243 /* PR 23932. A corrupt input file may contain sections that cannot
7244 be assigned to any segment - because for example they have a
7245 negative size - or segments that do not contain any sections. */
7246 if (map->count == 0)
7247 {
7248 bfd_set_error (bfd_error_bad_value);
7249 free (sections);
7250 return FALSE;
7251 }
7252
7253 /* Add the current segment to the list of built segments. */
7254 *pointer_to_map = map;
7255 pointer_to_map = &map->next;
7256
7257 if (isec < section_count)
7258 {
7259 /* We still have not allocated all of the sections to
7260 segments. Create a new segment here, initialise it
7261 and carry on looping. */
7262 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
7263 amt += (bfd_size_type) section_count * sizeof (asection *);
7264 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
7265 if (map == NULL)
7266 {
7267 free (sections);
7268 return FALSE;
7269 }
7270
7271 /* Initialise the fields of the segment map. Set the physical
7272 physical address to the LMA of the first section that has
7273 not yet been assigned. */
7274 map->next = NULL;
7275 map->p_type = segment->p_type;
7276 map->p_flags = segment->p_flags;
7277 map->p_flags_valid = 1;
7278 map->p_paddr = suggested_lma->lma;
7279 map->p_paddr_valid = p_paddr_valid;
7280 map->includes_filehdr = 0;
7281 map->includes_phdrs = 0;
7282 }
7283 }
7284 while (isec < section_count);
7285
7286 free (sections);
7287 }
7288
7289 elf_seg_map (obfd) = map_first;
7290
7291 /* If we had to estimate the number of program headers that were
7292 going to be needed, then check our estimate now and adjust
7293 the offset if necessary. */
7294 if (phdr_adjust_seg != NULL)
7295 {
7296 unsigned int count;
7297
7298 for (count = 0, map = map_first; map != NULL; map = map->next)
7299 count++;
7300
7301 if (count > phdr_adjust_num)
7302 phdr_adjust_seg->p_paddr
7303 -= (count - phdr_adjust_num) * iehdr->e_phentsize;
7304
7305 for (map = map_first; map != NULL; map = map->next)
7306 if (map->p_type == PT_PHDR)
7307 {
7308 bfd_vma adjust
7309 = phdr_adjust_seg->includes_filehdr ? iehdr->e_ehsize : 0;
7310 map->p_paddr = phdr_adjust_seg->p_paddr + adjust;
7311 break;
7312 }
7313 }
7314
7315 #undef SEGMENT_END
7316 #undef SECTION_SIZE
7317 #undef IS_CONTAINED_BY_VMA
7318 #undef IS_CONTAINED_BY_LMA
7319 #undef IS_NOTE
7320 #undef IS_COREFILE_NOTE
7321 #undef IS_SOLARIS_PT_INTERP
7322 #undef IS_SECTION_IN_INPUT_SEGMENT
7323 #undef INCLUDE_SECTION_IN_SEGMENT
7324 #undef SEGMENT_AFTER_SEGMENT
7325 #undef SEGMENT_OVERLAPS
7326 return TRUE;
7327 }
7328
7329 /* Copy ELF program header information. */
7330
7331 static bfd_boolean
7332 copy_elf_program_header (bfd *ibfd, bfd *obfd)
7333 {
7334 Elf_Internal_Ehdr *iehdr;
7335 struct elf_segment_map *map;
7336 struct elf_segment_map *map_first;
7337 struct elf_segment_map **pointer_to_map;
7338 Elf_Internal_Phdr *segment;
7339 unsigned int i;
7340 unsigned int num_segments;
7341 bfd_boolean phdr_included = FALSE;
7342 bfd_boolean p_paddr_valid;
7343
7344 iehdr = elf_elfheader (ibfd);
7345
7346 map_first = NULL;
7347 pointer_to_map = &map_first;
7348
7349 /* If all the segment p_paddr fields are zero, don't set
7350 map->p_paddr_valid. */
7351 p_paddr_valid = FALSE;
7352 num_segments = elf_elfheader (ibfd)->e_phnum;
7353 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7354 i < num_segments;
7355 i++, segment++)
7356 if (segment->p_paddr != 0)
7357 {
7358 p_paddr_valid = TRUE;
7359 break;
7360 }
7361
7362 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7363 i < num_segments;
7364 i++, segment++)
7365 {
7366 asection *section;
7367 unsigned int section_count;
7368 bfd_size_type amt;
7369 Elf_Internal_Shdr *this_hdr;
7370 asection *first_section = NULL;
7371 asection *lowest_section;
7372 bfd_boolean no_contents = TRUE;
7373
7374 /* Compute how many sections are in this segment. */
7375 for (section = ibfd->sections, section_count = 0;
7376 section != NULL;
7377 section = section->next)
7378 {
7379 this_hdr = &(elf_section_data(section)->this_hdr);
7380 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
7381 {
7382 if (first_section == NULL)
7383 first_section = section;
7384 if (elf_section_type (section) != SHT_NOBITS)
7385 no_contents = FALSE;
7386 section_count++;
7387 }
7388 }
7389
7390 /* Allocate a segment map big enough to contain
7391 all of the sections we have selected. */
7392 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
7393 amt += (bfd_size_type) section_count * sizeof (asection *);
7394 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
7395 if (map == NULL)
7396 return FALSE;
7397
7398 /* Initialize the fields of the output segment map with the
7399 input segment. */
7400 map->next = NULL;
7401 map->p_type = segment->p_type;
7402 map->p_flags = segment->p_flags;
7403 map->p_flags_valid = 1;
7404 map->p_paddr = segment->p_paddr;
7405 map->p_paddr_valid = p_paddr_valid;
7406 map->p_align = segment->p_align;
7407 map->p_align_valid = 1;
7408 map->p_vaddr_offset = 0;
7409
7410 if (map->p_type == PT_GNU_RELRO
7411 || map->p_type == PT_GNU_STACK)
7412 {
7413 /* The PT_GNU_RELRO segment may contain the first a few
7414 bytes in the .got.plt section even if the whole .got.plt
7415 section isn't in the PT_GNU_RELRO segment. We won't
7416 change the size of the PT_GNU_RELRO segment.
7417 Similarly, PT_GNU_STACK size is significant on uclinux
7418 systems. */
7419 map->p_size = segment->p_memsz;
7420 map->p_size_valid = 1;
7421 }
7422
7423 /* Determine if this segment contains the ELF file header
7424 and if it contains the program headers themselves. */
7425 map->includes_filehdr = (segment->p_offset == 0
7426 && segment->p_filesz >= iehdr->e_ehsize);
7427
7428 map->includes_phdrs = 0;
7429 if (! phdr_included || segment->p_type != PT_LOAD)
7430 {
7431 map->includes_phdrs =
7432 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
7433 && (segment->p_offset + segment->p_filesz
7434 >= ((bfd_vma) iehdr->e_phoff
7435 + iehdr->e_phnum * iehdr->e_phentsize)));
7436
7437 if (segment->p_type == PT_LOAD && map->includes_phdrs)
7438 phdr_included = TRUE;
7439 }
7440
7441 lowest_section = NULL;
7442 if (section_count != 0)
7443 {
7444 unsigned int isec = 0;
7445
7446 for (section = first_section;
7447 section != NULL;
7448 section = section->next)
7449 {
7450 this_hdr = &(elf_section_data(section)->this_hdr);
7451 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
7452 {
7453 map->sections[isec++] = section->output_section;
7454 if ((section->flags & SEC_ALLOC) != 0)
7455 {
7456 bfd_vma seg_off;
7457
7458 if (lowest_section == NULL
7459 || section->lma < lowest_section->lma)
7460 lowest_section = section;
7461
7462 /* Section lmas are set up from PT_LOAD header
7463 p_paddr in _bfd_elf_make_section_from_shdr.
7464 If this header has a p_paddr that disagrees
7465 with the section lma, flag the p_paddr as
7466 invalid. */
7467 if ((section->flags & SEC_LOAD) != 0)
7468 seg_off = this_hdr->sh_offset - segment->p_offset;
7469 else
7470 seg_off = this_hdr->sh_addr - segment->p_vaddr;
7471 if (section->lma - segment->p_paddr != seg_off)
7472 map->p_paddr_valid = FALSE;
7473 }
7474 if (isec == section_count)
7475 break;
7476 }
7477 }
7478 }
7479
7480 if (map->includes_filehdr && lowest_section != NULL)
7481 {
7482 /* Try to keep the space used by the headers plus any
7483 padding fixed. If there are sections with file contents
7484 in this segment then the lowest sh_offset is the best
7485 guess. Otherwise the segment only has file contents for
7486 the headers, and p_filesz is the best guess. */
7487 if (no_contents)
7488 map->header_size = segment->p_filesz;
7489 else
7490 map->header_size = lowest_section->filepos;
7491 }
7492
7493 if (section_count == 0)
7494 map->p_vaddr_offset = segment->p_vaddr;
7495 else if (!map->includes_phdrs
7496 && !map->includes_filehdr
7497 && map->p_paddr_valid)
7498 /* Account for padding before the first section. */
7499 map->p_vaddr_offset = (segment->p_paddr
7500 - (lowest_section ? lowest_section->lma : 0));
7501
7502 map->count = section_count;
7503 *pointer_to_map = map;
7504 pointer_to_map = &map->next;
7505 }
7506
7507 elf_seg_map (obfd) = map_first;
7508 return TRUE;
7509 }
7510
7511 /* Copy private BFD data. This copies or rewrites ELF program header
7512 information. */
7513
7514 static bfd_boolean
7515 copy_private_bfd_data (bfd *ibfd, bfd *obfd)
7516 {
7517 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
7518 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
7519 return TRUE;
7520
7521 if (elf_tdata (ibfd)->phdr == NULL)
7522 return TRUE;
7523
7524 if (ibfd->xvec == obfd->xvec)
7525 {
7526 /* Check to see if any sections in the input BFD
7527 covered by ELF program header have changed. */
7528 Elf_Internal_Phdr *segment;
7529 asection *section, *osec;
7530 unsigned int i, num_segments;
7531 Elf_Internal_Shdr *this_hdr;
7532 const struct elf_backend_data *bed;
7533
7534 bed = get_elf_backend_data (ibfd);
7535
7536 /* Regenerate the segment map if p_paddr is set to 0. */
7537 if (bed->want_p_paddr_set_to_zero)
7538 goto rewrite;
7539
7540 /* Initialize the segment mark field. */
7541 for (section = obfd->sections; section != NULL;
7542 section = section->next)
7543 section->segment_mark = FALSE;
7544
7545 num_segments = elf_elfheader (ibfd)->e_phnum;
7546 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7547 i < num_segments;
7548 i++, segment++)
7549 {
7550 /* PR binutils/3535. The Solaris linker always sets the p_paddr
7551 and p_memsz fields of special segments (DYNAMIC, INTERP) to 0
7552 which severly confuses things, so always regenerate the segment
7553 map in this case. */
7554 if (segment->p_paddr == 0
7555 && segment->p_memsz == 0
7556 && (segment->p_type == PT_INTERP || segment->p_type == PT_DYNAMIC))
7557 goto rewrite;
7558
7559 for (section = ibfd->sections;
7560 section != NULL; section = section->next)
7561 {
7562 /* We mark the output section so that we know it comes
7563 from the input BFD. */
7564 osec = section->output_section;
7565 if (osec)
7566 osec->segment_mark = TRUE;
7567
7568 /* Check if this section is covered by the segment. */
7569 this_hdr = &(elf_section_data(section)->this_hdr);
7570 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
7571 {
7572 /* FIXME: Check if its output section is changed or
7573 removed. What else do we need to check? */
7574 if (osec == NULL
7575 || section->flags != osec->flags
7576 || section->lma != osec->lma
7577 || section->vma != osec->vma
7578 || section->size != osec->size
7579 || section->rawsize != osec->rawsize
7580 || section->alignment_power != osec->alignment_power)
7581 goto rewrite;
7582 }
7583 }
7584 }
7585
7586 /* Check to see if any output section do not come from the
7587 input BFD. */
7588 for (section = obfd->sections; section != NULL;
7589 section = section->next)
7590 {
7591 if (!section->segment_mark)
7592 goto rewrite;
7593 else
7594 section->segment_mark = FALSE;
7595 }
7596
7597 return copy_elf_program_header (ibfd, obfd);
7598 }
7599
7600 rewrite:
7601 if (ibfd->xvec == obfd->xvec)
7602 {
7603 /* When rewriting program header, set the output maxpagesize to
7604 the maximum alignment of input PT_LOAD segments. */
7605 Elf_Internal_Phdr *segment;
7606 unsigned int i;
7607 unsigned int num_segments = elf_elfheader (ibfd)->e_phnum;
7608 bfd_vma maxpagesize = 0;
7609
7610 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7611 i < num_segments;
7612 i++, segment++)
7613 if (segment->p_type == PT_LOAD
7614 && maxpagesize < segment->p_align)
7615 {
7616 /* PR 17512: file: f17299af. */
7617 if (segment->p_align > (bfd_vma) 1 << ((sizeof (bfd_vma) * 8) - 2))
7618 /* xgettext:c-format */
7619 _bfd_error_handler (_("%pB: warning: segment alignment of %#"
7620 PRIx64 " is too large"),
7621 ibfd, (uint64_t) segment->p_align);
7622 else
7623 maxpagesize = segment->p_align;
7624 }
7625
7626 if (maxpagesize != get_elf_backend_data (obfd)->maxpagesize)
7627 bfd_emul_set_maxpagesize (bfd_get_target (obfd), maxpagesize);
7628 }
7629
7630 return rewrite_elf_program_header (ibfd, obfd);
7631 }
7632
7633 /* Initialize private output section information from input section. */
7634
7635 bfd_boolean
7636 _bfd_elf_init_private_section_data (bfd *ibfd,
7637 asection *isec,
7638 bfd *obfd,
7639 asection *osec,
7640 struct bfd_link_info *link_info)
7641
7642 {
7643 Elf_Internal_Shdr *ihdr, *ohdr;
7644 bfd_boolean final_link = (link_info != NULL
7645 && !bfd_link_relocatable (link_info));
7646
7647 if (ibfd->xvec->flavour != bfd_target_elf_flavour
7648 || obfd->xvec->flavour != bfd_target_elf_flavour)
7649 return TRUE;
7650
7651 BFD_ASSERT (elf_section_data (osec) != NULL);
7652
7653 /* For objcopy and relocatable link, don't copy the output ELF
7654 section type from input if the output BFD section flags have been
7655 set to something different. For a final link allow some flags
7656 that the linker clears to differ. */
7657 if (elf_section_type (osec) == SHT_NULL
7658 && (osec->flags == isec->flags
7659 || (final_link
7660 && ((osec->flags ^ isec->flags)
7661 & ~(SEC_LINK_ONCE | SEC_LINK_DUPLICATES | SEC_RELOC)) == 0)))
7662 elf_section_type (osec) = elf_section_type (isec);
7663
7664 /* FIXME: Is this correct for all OS/PROC specific flags? */
7665 elf_section_flags (osec) |= (elf_section_flags (isec)
7666 & (SHF_MASKOS | SHF_MASKPROC));
7667
7668 /* Copy sh_info from input for mbind section. */
7669 if (elf_section_flags (isec) & SHF_GNU_MBIND)
7670 elf_section_data (osec)->this_hdr.sh_info
7671 = elf_section_data (isec)->this_hdr.sh_info;
7672
7673 /* Set things up for objcopy and relocatable link. The output
7674 SHT_GROUP section will have its elf_next_in_group pointing back
7675 to the input group members. Ignore linker created group section.
7676 See elfNN_ia64_object_p in elfxx-ia64.c. */
7677 if ((link_info == NULL
7678 || !link_info->resolve_section_groups)
7679 && (elf_sec_group (isec) == NULL
7680 || (elf_sec_group (isec)->flags & SEC_LINKER_CREATED) == 0))
7681 {
7682 if (elf_section_flags (isec) & SHF_GROUP)
7683 elf_section_flags (osec) |= SHF_GROUP;
7684 elf_next_in_group (osec) = elf_next_in_group (isec);
7685 elf_section_data (osec)->group = elf_section_data (isec)->group;
7686 }
7687
7688 /* If not decompress, preserve SHF_COMPRESSED. */
7689 if (!final_link && (ibfd->flags & BFD_DECOMPRESS) == 0)
7690 elf_section_flags (osec) |= (elf_section_flags (isec)
7691 & SHF_COMPRESSED);
7692
7693 ihdr = &elf_section_data (isec)->this_hdr;
7694
7695 /* We need to handle elf_linked_to_section for SHF_LINK_ORDER. We
7696 don't use the output section of the linked-to section since it
7697 may be NULL at this point. */
7698 if ((ihdr->sh_flags & SHF_LINK_ORDER) != 0)
7699 {
7700 ohdr = &elf_section_data (osec)->this_hdr;
7701 ohdr->sh_flags |= SHF_LINK_ORDER;
7702 elf_linked_to_section (osec) = elf_linked_to_section (isec);
7703 }
7704
7705 osec->use_rela_p = isec->use_rela_p;
7706
7707 return TRUE;
7708 }
7709
7710 /* Copy private section information. This copies over the entsize
7711 field, and sometimes the info field. */
7712
7713 bfd_boolean
7714 _bfd_elf_copy_private_section_data (bfd *ibfd,
7715 asection *isec,
7716 bfd *obfd,
7717 asection *osec)
7718 {
7719 Elf_Internal_Shdr *ihdr, *ohdr;
7720
7721 if (ibfd->xvec->flavour != bfd_target_elf_flavour
7722 || obfd->xvec->flavour != bfd_target_elf_flavour)
7723 return TRUE;
7724
7725 ihdr = &elf_section_data (isec)->this_hdr;
7726 ohdr = &elf_section_data (osec)->this_hdr;
7727
7728 ohdr->sh_entsize = ihdr->sh_entsize;
7729
7730 if (ihdr->sh_type == SHT_SYMTAB
7731 || ihdr->sh_type == SHT_DYNSYM
7732 || ihdr->sh_type == SHT_GNU_verneed
7733 || ihdr->sh_type == SHT_GNU_verdef)
7734 ohdr->sh_info = ihdr->sh_info;
7735
7736 return _bfd_elf_init_private_section_data (ibfd, isec, obfd, osec,
7737 NULL);
7738 }
7739
7740 /* Look at all the SHT_GROUP sections in IBFD, making any adjustments
7741 necessary if we are removing either the SHT_GROUP section or any of
7742 the group member sections. DISCARDED is the value that a section's
7743 output_section has if the section will be discarded, NULL when this
7744 function is called from objcopy, bfd_abs_section_ptr when called
7745 from the linker. */
7746
7747 bfd_boolean
7748 _bfd_elf_fixup_group_sections (bfd *ibfd, asection *discarded)
7749 {
7750 asection *isec;
7751
7752 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
7753 if (elf_section_type (isec) == SHT_GROUP)
7754 {
7755 asection *first = elf_next_in_group (isec);
7756 asection *s = first;
7757 bfd_size_type removed = 0;
7758
7759 while (s != NULL)
7760 {
7761 /* If this member section is being output but the
7762 SHT_GROUP section is not, then clear the group info
7763 set up by _bfd_elf_copy_private_section_data. */
7764 if (s->output_section != discarded
7765 && isec->output_section == discarded)
7766 {
7767 elf_section_flags (s->output_section) &= ~SHF_GROUP;
7768 elf_group_name (s->output_section) = NULL;
7769 }
7770 /* Conversely, if the member section is not being output
7771 but the SHT_GROUP section is, then adjust its size. */
7772 else if (s->output_section == discarded
7773 && isec->output_section != discarded)
7774 {
7775 struct bfd_elf_section_data *elf_sec = elf_section_data (s);
7776 removed += 4;
7777 if (elf_sec->rel.hdr != NULL
7778 && (elf_sec->rel.hdr->sh_flags & SHF_GROUP) != 0)
7779 removed += 4;
7780 if (elf_sec->rela.hdr != NULL
7781 && (elf_sec->rela.hdr->sh_flags & SHF_GROUP) != 0)
7782 removed += 4;
7783 }
7784 s = elf_next_in_group (s);
7785 if (s == first)
7786 break;
7787 }
7788 if (removed != 0)
7789 {
7790 if (discarded != NULL)
7791 {
7792 /* If we've been called for ld -r, then we need to
7793 adjust the input section size. */
7794 if (isec->rawsize == 0)
7795 isec->rawsize = isec->size;
7796 isec->size = isec->rawsize - removed;
7797 if (isec->size <= 4)
7798 {
7799 isec->size = 0;
7800 isec->flags |= SEC_EXCLUDE;
7801 }
7802 }
7803 else
7804 {
7805 /* Adjust the output section size when called from
7806 objcopy. */
7807 isec->output_section->size -= removed;
7808 if (isec->output_section->size <= 4)
7809 {
7810 isec->output_section->size = 0;
7811 isec->output_section->flags |= SEC_EXCLUDE;
7812 }
7813 }
7814 }
7815 }
7816
7817 return TRUE;
7818 }
7819
7820 /* Copy private header information. */
7821
7822 bfd_boolean
7823 _bfd_elf_copy_private_header_data (bfd *ibfd, bfd *obfd)
7824 {
7825 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
7826 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
7827 return TRUE;
7828
7829 /* Copy over private BFD data if it has not already been copied.
7830 This must be done here, rather than in the copy_private_bfd_data
7831 entry point, because the latter is called after the section
7832 contents have been set, which means that the program headers have
7833 already been worked out. */
7834 if (elf_seg_map (obfd) == NULL && elf_tdata (ibfd)->phdr != NULL)
7835 {
7836 if (! copy_private_bfd_data (ibfd, obfd))
7837 return FALSE;
7838 }
7839
7840 return _bfd_elf_fixup_group_sections (ibfd, NULL);
7841 }
7842
7843 /* Copy private symbol information. If this symbol is in a section
7844 which we did not map into a BFD section, try to map the section
7845 index correctly. We use special macro definitions for the mapped
7846 section indices; these definitions are interpreted by the
7847 swap_out_syms function. */
7848
7849 #define MAP_ONESYMTAB (SHN_HIOS + 1)
7850 #define MAP_DYNSYMTAB (SHN_HIOS + 2)
7851 #define MAP_STRTAB (SHN_HIOS + 3)
7852 #define MAP_SHSTRTAB (SHN_HIOS + 4)
7853 #define MAP_SYM_SHNDX (SHN_HIOS + 5)
7854
7855 bfd_boolean
7856 _bfd_elf_copy_private_symbol_data (bfd *ibfd,
7857 asymbol *isymarg,
7858 bfd *obfd,
7859 asymbol *osymarg)
7860 {
7861 elf_symbol_type *isym, *osym;
7862
7863 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
7864 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
7865 return TRUE;
7866
7867 isym = elf_symbol_from (ibfd, isymarg);
7868 osym = elf_symbol_from (obfd, osymarg);
7869
7870 if (isym != NULL
7871 && isym->internal_elf_sym.st_shndx != 0
7872 && osym != NULL
7873 && bfd_is_abs_section (isym->symbol.section))
7874 {
7875 unsigned int shndx;
7876
7877 shndx = isym->internal_elf_sym.st_shndx;
7878 if (shndx == elf_onesymtab (ibfd))
7879 shndx = MAP_ONESYMTAB;
7880 else if (shndx == elf_dynsymtab (ibfd))
7881 shndx = MAP_DYNSYMTAB;
7882 else if (shndx == elf_strtab_sec (ibfd))
7883 shndx = MAP_STRTAB;
7884 else if (shndx == elf_shstrtab_sec (ibfd))
7885 shndx = MAP_SHSTRTAB;
7886 else if (find_section_in_list (shndx, elf_symtab_shndx_list (ibfd)))
7887 shndx = MAP_SYM_SHNDX;
7888 osym->internal_elf_sym.st_shndx = shndx;
7889 }
7890
7891 return TRUE;
7892 }
7893
7894 /* Swap out the symbols. */
7895
7896 static bfd_boolean
7897 swap_out_syms (bfd *abfd,
7898 struct elf_strtab_hash **sttp,
7899 int relocatable_p)
7900 {
7901 const struct elf_backend_data *bed;
7902 int symcount;
7903 asymbol **syms;
7904 struct elf_strtab_hash *stt;
7905 Elf_Internal_Shdr *symtab_hdr;
7906 Elf_Internal_Shdr *symtab_shndx_hdr;
7907 Elf_Internal_Shdr *symstrtab_hdr;
7908 struct elf_sym_strtab *symstrtab;
7909 bfd_byte *outbound_syms;
7910 bfd_byte *outbound_shndx;
7911 unsigned long outbound_syms_index;
7912 unsigned long outbound_shndx_index;
7913 int idx;
7914 unsigned int num_locals;
7915 bfd_size_type amt;
7916 bfd_boolean name_local_sections;
7917
7918 if (!elf_map_symbols (abfd, &num_locals))
7919 return FALSE;
7920
7921 /* Dump out the symtabs. */
7922 stt = _bfd_elf_strtab_init ();
7923 if (stt == NULL)
7924 return FALSE;
7925
7926 bed = get_elf_backend_data (abfd);
7927 symcount = bfd_get_symcount (abfd);
7928 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7929 symtab_hdr->sh_type = SHT_SYMTAB;
7930 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
7931 symtab_hdr->sh_size = symtab_hdr->sh_entsize * (symcount + 1);
7932 symtab_hdr->sh_info = num_locals + 1;
7933 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
7934
7935 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
7936 symstrtab_hdr->sh_type = SHT_STRTAB;
7937
7938 /* Allocate buffer to swap out the .strtab section. */
7939 symstrtab = (struct elf_sym_strtab *) bfd_malloc2 (symcount + 1,
7940 sizeof (*symstrtab));
7941 if (symstrtab == NULL)
7942 {
7943 _bfd_elf_strtab_free (stt);
7944 return FALSE;
7945 }
7946
7947 outbound_syms = (bfd_byte *) bfd_alloc2 (abfd, 1 + symcount,
7948 bed->s->sizeof_sym);
7949 if (outbound_syms == NULL)
7950 {
7951 error_return:
7952 _bfd_elf_strtab_free (stt);
7953 free (symstrtab);
7954 return FALSE;
7955 }
7956 symtab_hdr->contents = outbound_syms;
7957 outbound_syms_index = 0;
7958
7959 outbound_shndx = NULL;
7960 outbound_shndx_index = 0;
7961
7962 if (elf_symtab_shndx_list (abfd))
7963 {
7964 symtab_shndx_hdr = & elf_symtab_shndx_list (abfd)->hdr;
7965 if (symtab_shndx_hdr->sh_name != 0)
7966 {
7967 amt = (bfd_size_type) (1 + symcount) * sizeof (Elf_External_Sym_Shndx);
7968 outbound_shndx = (bfd_byte *)
7969 bfd_zalloc2 (abfd, 1 + symcount, sizeof (Elf_External_Sym_Shndx));
7970 if (outbound_shndx == NULL)
7971 goto error_return;
7972
7973 symtab_shndx_hdr->contents = outbound_shndx;
7974 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
7975 symtab_shndx_hdr->sh_size = amt;
7976 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
7977 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
7978 }
7979 /* FIXME: What about any other headers in the list ? */
7980 }
7981
7982 /* Now generate the data (for "contents"). */
7983 {
7984 /* Fill in zeroth symbol and swap it out. */
7985 Elf_Internal_Sym sym;
7986 sym.st_name = 0;
7987 sym.st_value = 0;
7988 sym.st_size = 0;
7989 sym.st_info = 0;
7990 sym.st_other = 0;
7991 sym.st_shndx = SHN_UNDEF;
7992 sym.st_target_internal = 0;
7993 symstrtab[0].sym = sym;
7994 symstrtab[0].dest_index = outbound_syms_index;
7995 symstrtab[0].destshndx_index = outbound_shndx_index;
7996 outbound_syms_index++;
7997 if (outbound_shndx != NULL)
7998 outbound_shndx_index++;
7999 }
8000
8001 name_local_sections
8002 = (bed->elf_backend_name_local_section_symbols
8003 && bed->elf_backend_name_local_section_symbols (abfd));
8004
8005 syms = bfd_get_outsymbols (abfd);
8006 for (idx = 0; idx < symcount;)
8007 {
8008 Elf_Internal_Sym sym;
8009 bfd_vma value = syms[idx]->value;
8010 elf_symbol_type *type_ptr;
8011 flagword flags = syms[idx]->flags;
8012 int type;
8013
8014 if (!name_local_sections
8015 && (flags & (BSF_SECTION_SYM | BSF_GLOBAL)) == BSF_SECTION_SYM)
8016 {
8017 /* Local section symbols have no name. */
8018 sym.st_name = (unsigned long) -1;
8019 }
8020 else
8021 {
8022 /* Call _bfd_elf_strtab_offset after _bfd_elf_strtab_finalize
8023 to get the final offset for st_name. */
8024 sym.st_name
8025 = (unsigned long) _bfd_elf_strtab_add (stt, syms[idx]->name,
8026 FALSE);
8027 if (sym.st_name == (unsigned long) -1)
8028 goto error_return;
8029 }
8030
8031 type_ptr = elf_symbol_from (abfd, syms[idx]);
8032
8033 if ((flags & BSF_SECTION_SYM) == 0
8034 && bfd_is_com_section (syms[idx]->section))
8035 {
8036 /* ELF common symbols put the alignment into the `value' field,
8037 and the size into the `size' field. This is backwards from
8038 how BFD handles it, so reverse it here. */
8039 sym.st_size = value;
8040 if (type_ptr == NULL
8041 || type_ptr->internal_elf_sym.st_value == 0)
8042 sym.st_value = value >= 16 ? 16 : (1 << bfd_log2 (value));
8043 else
8044 sym.st_value = type_ptr->internal_elf_sym.st_value;
8045 sym.st_shndx = _bfd_elf_section_from_bfd_section
8046 (abfd, syms[idx]->section);
8047 }
8048 else
8049 {
8050 asection *sec = syms[idx]->section;
8051 unsigned int shndx;
8052
8053 if (sec->output_section)
8054 {
8055 value += sec->output_offset;
8056 sec = sec->output_section;
8057 }
8058
8059 /* Don't add in the section vma for relocatable output. */
8060 if (! relocatable_p)
8061 value += sec->vma;
8062 sym.st_value = value;
8063 sym.st_size = type_ptr ? type_ptr->internal_elf_sym.st_size : 0;
8064
8065 if (bfd_is_abs_section (sec)
8066 && type_ptr != NULL
8067 && type_ptr->internal_elf_sym.st_shndx != 0)
8068 {
8069 /* This symbol is in a real ELF section which we did
8070 not create as a BFD section. Undo the mapping done
8071 by copy_private_symbol_data. */
8072 shndx = type_ptr->internal_elf_sym.st_shndx;
8073 switch (shndx)
8074 {
8075 case MAP_ONESYMTAB:
8076 shndx = elf_onesymtab (abfd);
8077 break;
8078 case MAP_DYNSYMTAB:
8079 shndx = elf_dynsymtab (abfd);
8080 break;
8081 case MAP_STRTAB:
8082 shndx = elf_strtab_sec (abfd);
8083 break;
8084 case MAP_SHSTRTAB:
8085 shndx = elf_shstrtab_sec (abfd);
8086 break;
8087 case MAP_SYM_SHNDX:
8088 if (elf_symtab_shndx_list (abfd))
8089 shndx = elf_symtab_shndx_list (abfd)->ndx;
8090 break;
8091 default:
8092 shndx = SHN_ABS;
8093 break;
8094 }
8095 }
8096 else
8097 {
8098 shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
8099
8100 if (shndx == SHN_BAD)
8101 {
8102 asection *sec2;
8103
8104 /* Writing this would be a hell of a lot easier if
8105 we had some decent documentation on bfd, and
8106 knew what to expect of the library, and what to
8107 demand of applications. For example, it
8108 appears that `objcopy' might not set the
8109 section of a symbol to be a section that is
8110 actually in the output file. */
8111 sec2 = bfd_get_section_by_name (abfd, sec->name);
8112 if (sec2 != NULL)
8113 shndx = _bfd_elf_section_from_bfd_section (abfd, sec2);
8114 if (shndx == SHN_BAD)
8115 {
8116 /* xgettext:c-format */
8117 _bfd_error_handler
8118 (_("unable to find equivalent output section"
8119 " for symbol '%s' from section '%s'"),
8120 syms[idx]->name ? syms[idx]->name : "<Local sym>",
8121 sec->name);
8122 bfd_set_error (bfd_error_invalid_operation);
8123 goto error_return;
8124 }
8125 }
8126 }
8127
8128 sym.st_shndx = shndx;
8129 }
8130
8131 if ((flags & BSF_THREAD_LOCAL) != 0)
8132 type = STT_TLS;
8133 else if ((flags & BSF_GNU_INDIRECT_FUNCTION) != 0)
8134 type = STT_GNU_IFUNC;
8135 else if ((flags & BSF_FUNCTION) != 0)
8136 type = STT_FUNC;
8137 else if ((flags & BSF_OBJECT) != 0)
8138 type = STT_OBJECT;
8139 else if ((flags & BSF_RELC) != 0)
8140 type = STT_RELC;
8141 else if ((flags & BSF_SRELC) != 0)
8142 type = STT_SRELC;
8143 else
8144 type = STT_NOTYPE;
8145
8146 if (syms[idx]->section->flags & SEC_THREAD_LOCAL)
8147 type = STT_TLS;
8148
8149 /* Processor-specific types. */
8150 if (type_ptr != NULL
8151 && bed->elf_backend_get_symbol_type)
8152 type = ((*bed->elf_backend_get_symbol_type)
8153 (&type_ptr->internal_elf_sym, type));
8154
8155 if (flags & BSF_SECTION_SYM)
8156 {
8157 if (flags & BSF_GLOBAL)
8158 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8159 else
8160 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
8161 }
8162 else if (bfd_is_com_section (syms[idx]->section))
8163 {
8164 if (type != STT_TLS)
8165 {
8166 if ((abfd->flags & BFD_CONVERT_ELF_COMMON))
8167 type = ((abfd->flags & BFD_USE_ELF_STT_COMMON)
8168 ? STT_COMMON : STT_OBJECT);
8169 else
8170 type = ((flags & BSF_ELF_COMMON) != 0
8171 ? STT_COMMON : STT_OBJECT);
8172 }
8173 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
8174 }
8175 else if (bfd_is_und_section (syms[idx]->section))
8176 sym.st_info = ELF_ST_INFO (((flags & BSF_WEAK)
8177 ? STB_WEAK
8178 : STB_GLOBAL),
8179 type);
8180 else if (flags & BSF_FILE)
8181 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
8182 else
8183 {
8184 int bind = STB_LOCAL;
8185
8186 if (flags & BSF_LOCAL)
8187 bind = STB_LOCAL;
8188 else if (flags & BSF_GNU_UNIQUE)
8189 bind = STB_GNU_UNIQUE;
8190 else if (flags & BSF_WEAK)
8191 bind = STB_WEAK;
8192 else if (flags & BSF_GLOBAL)
8193 bind = STB_GLOBAL;
8194
8195 sym.st_info = ELF_ST_INFO (bind, type);
8196 }
8197
8198 if (type_ptr != NULL)
8199 {
8200 sym.st_other = type_ptr->internal_elf_sym.st_other;
8201 sym.st_target_internal
8202 = type_ptr->internal_elf_sym.st_target_internal;
8203 }
8204 else
8205 {
8206 sym.st_other = 0;
8207 sym.st_target_internal = 0;
8208 }
8209
8210 idx++;
8211 symstrtab[idx].sym = sym;
8212 symstrtab[idx].dest_index = outbound_syms_index;
8213 symstrtab[idx].destshndx_index = outbound_shndx_index;
8214
8215 outbound_syms_index++;
8216 if (outbound_shndx != NULL)
8217 outbound_shndx_index++;
8218 }
8219
8220 /* Finalize the .strtab section. */
8221 _bfd_elf_strtab_finalize (stt);
8222
8223 /* Swap out the .strtab section. */
8224 for (idx = 0; idx <= symcount; idx++)
8225 {
8226 struct elf_sym_strtab *elfsym = &symstrtab[idx];
8227 if (elfsym->sym.st_name == (unsigned long) -1)
8228 elfsym->sym.st_name = 0;
8229 else
8230 elfsym->sym.st_name = _bfd_elf_strtab_offset (stt,
8231 elfsym->sym.st_name);
8232 bed->s->swap_symbol_out (abfd, &elfsym->sym,
8233 (outbound_syms
8234 + (elfsym->dest_index
8235 * bed->s->sizeof_sym)),
8236 (outbound_shndx
8237 + (elfsym->destshndx_index
8238 * sizeof (Elf_External_Sym_Shndx))));
8239 }
8240 free (symstrtab);
8241
8242 *sttp = stt;
8243 symstrtab_hdr->sh_size = _bfd_elf_strtab_size (stt);
8244 symstrtab_hdr->sh_type = SHT_STRTAB;
8245 symstrtab_hdr->sh_flags = bed->elf_strtab_flags;
8246 symstrtab_hdr->sh_addr = 0;
8247 symstrtab_hdr->sh_entsize = 0;
8248 symstrtab_hdr->sh_link = 0;
8249 symstrtab_hdr->sh_info = 0;
8250 symstrtab_hdr->sh_addralign = 1;
8251
8252 return TRUE;
8253 }
8254
8255 /* Return the number of bytes required to hold the symtab vector.
8256
8257 Note that we base it on the count plus 1, since we will null terminate
8258 the vector allocated based on this size. However, the ELF symbol table
8259 always has a dummy entry as symbol #0, so it ends up even. */
8260
8261 long
8262 _bfd_elf_get_symtab_upper_bound (bfd *abfd)
8263 {
8264 bfd_size_type symcount;
8265 long symtab_size;
8266 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->symtab_hdr;
8267
8268 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
8269 if (symcount >= LONG_MAX / sizeof (asymbol *))
8270 {
8271 bfd_set_error (bfd_error_file_too_big);
8272 return -1;
8273 }
8274 symtab_size = (symcount + 1) * (sizeof (asymbol *));
8275 if (symcount > 0)
8276 symtab_size -= sizeof (asymbol *);
8277
8278 return symtab_size;
8279 }
8280
8281 long
8282 _bfd_elf_get_dynamic_symtab_upper_bound (bfd *abfd)
8283 {
8284 bfd_size_type symcount;
8285 long symtab_size;
8286 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->dynsymtab_hdr;
8287
8288 if (elf_dynsymtab (abfd) == 0)
8289 {
8290 bfd_set_error (bfd_error_invalid_operation);
8291 return -1;
8292 }
8293
8294 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
8295 if (symcount >= LONG_MAX / sizeof (asymbol *))
8296 {
8297 bfd_set_error (bfd_error_file_too_big);
8298 return -1;
8299 }
8300 symtab_size = (symcount + 1) * (sizeof (asymbol *));
8301 if (symcount > 0)
8302 symtab_size -= sizeof (asymbol *);
8303
8304 return symtab_size;
8305 }
8306
8307 long
8308 _bfd_elf_get_reloc_upper_bound (bfd *abfd ATTRIBUTE_UNUSED,
8309 sec_ptr asect)
8310 {
8311 #if SIZEOF_LONG == SIZEOF_INT
8312 if (asect->reloc_count >= LONG_MAX / sizeof (arelent *))
8313 {
8314 bfd_set_error (bfd_error_file_too_big);
8315 return -1;
8316 }
8317 #endif
8318 return (asect->reloc_count + 1) * sizeof (arelent *);
8319 }
8320
8321 /* Canonicalize the relocs. */
8322
8323 long
8324 _bfd_elf_canonicalize_reloc (bfd *abfd,
8325 sec_ptr section,
8326 arelent **relptr,
8327 asymbol **symbols)
8328 {
8329 arelent *tblptr;
8330 unsigned int i;
8331 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8332
8333 if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE))
8334 return -1;
8335
8336 tblptr = section->relocation;
8337 for (i = 0; i < section->reloc_count; i++)
8338 *relptr++ = tblptr++;
8339
8340 *relptr = NULL;
8341
8342 return section->reloc_count;
8343 }
8344
8345 long
8346 _bfd_elf_canonicalize_symtab (bfd *abfd, asymbol **allocation)
8347 {
8348 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8349 long symcount = bed->s->slurp_symbol_table (abfd, allocation, FALSE);
8350
8351 if (symcount >= 0)
8352 bfd_get_symcount (abfd) = symcount;
8353 return symcount;
8354 }
8355
8356 long
8357 _bfd_elf_canonicalize_dynamic_symtab (bfd *abfd,
8358 asymbol **allocation)
8359 {
8360 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8361 long symcount = bed->s->slurp_symbol_table (abfd, allocation, TRUE);
8362
8363 if (symcount >= 0)
8364 bfd_get_dynamic_symcount (abfd) = symcount;
8365 return symcount;
8366 }
8367
8368 /* Return the size required for the dynamic reloc entries. Any loadable
8369 section that was actually installed in the BFD, and has type SHT_REL
8370 or SHT_RELA, and uses the dynamic symbol table, is considered to be a
8371 dynamic reloc section. */
8372
8373 long
8374 _bfd_elf_get_dynamic_reloc_upper_bound (bfd *abfd)
8375 {
8376 bfd_size_type count;
8377 asection *s;
8378
8379 if (elf_dynsymtab (abfd) == 0)
8380 {
8381 bfd_set_error (bfd_error_invalid_operation);
8382 return -1;
8383 }
8384
8385 count = 1;
8386 for (s = abfd->sections; s != NULL; s = s->next)
8387 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
8388 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
8389 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
8390 {
8391 count += s->size / elf_section_data (s)->this_hdr.sh_entsize;
8392 if (count > LONG_MAX / sizeof (arelent *))
8393 {
8394 bfd_set_error (bfd_error_file_too_big);
8395 return -1;
8396 }
8397 }
8398 return count * sizeof (arelent *);
8399 }
8400
8401 /* Canonicalize the dynamic relocation entries. Note that we return the
8402 dynamic relocations as a single block, although they are actually
8403 associated with particular sections; the interface, which was
8404 designed for SunOS style shared libraries, expects that there is only
8405 one set of dynamic relocs. Any loadable section that was actually
8406 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses the
8407 dynamic symbol table, is considered to be a dynamic reloc section. */
8408
8409 long
8410 _bfd_elf_canonicalize_dynamic_reloc (bfd *abfd,
8411 arelent **storage,
8412 asymbol **syms)
8413 {
8414 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
8415 asection *s;
8416 long ret;
8417
8418 if (elf_dynsymtab (abfd) == 0)
8419 {
8420 bfd_set_error (bfd_error_invalid_operation);
8421 return -1;
8422 }
8423
8424 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
8425 ret = 0;
8426 for (s = abfd->sections; s != NULL; s = s->next)
8427 {
8428 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
8429 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
8430 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
8431 {
8432 arelent *p;
8433 long count, i;
8434
8435 if (! (*slurp_relocs) (abfd, s, syms, TRUE))
8436 return -1;
8437 count = s->size / elf_section_data (s)->this_hdr.sh_entsize;
8438 p = s->relocation;
8439 for (i = 0; i < count; i++)
8440 *storage++ = p++;
8441 ret += count;
8442 }
8443 }
8444
8445 *storage = NULL;
8446
8447 return ret;
8448 }
8449 \f
8450 /* Read in the version information. */
8451
8452 bfd_boolean
8453 _bfd_elf_slurp_version_tables (bfd *abfd, bfd_boolean default_imported_symver)
8454 {
8455 bfd_byte *contents = NULL;
8456 unsigned int freeidx = 0;
8457
8458 if (elf_dynverref (abfd) != 0)
8459 {
8460 Elf_Internal_Shdr *hdr;
8461 Elf_External_Verneed *everneed;
8462 Elf_Internal_Verneed *iverneed;
8463 unsigned int i;
8464 bfd_byte *contents_end;
8465
8466 hdr = &elf_tdata (abfd)->dynverref_hdr;
8467
8468 if (hdr->sh_info == 0
8469 || hdr->sh_info > hdr->sh_size / sizeof (Elf_External_Verneed))
8470 {
8471 error_return_bad_verref:
8472 _bfd_error_handler
8473 (_("%pB: .gnu.version_r invalid entry"), abfd);
8474 bfd_set_error (bfd_error_bad_value);
8475 error_return_verref:
8476 elf_tdata (abfd)->verref = NULL;
8477 elf_tdata (abfd)->cverrefs = 0;
8478 goto error_return;
8479 }
8480
8481 ufile_ptr filesize = bfd_get_file_size (abfd);
8482 if (filesize > 0 && filesize < hdr->sh_size)
8483 {
8484 /* PR 24708: Avoid attempts to allocate a ridiculous amount
8485 of memory. */
8486 bfd_set_error (bfd_error_no_memory);
8487 _bfd_error_handler
8488 /* xgettext:c-format */
8489 (_("error: %pB version reference section is too large (%#" PRIx64 " bytes)"),
8490 abfd, (uint64_t) hdr->sh_size);
8491 goto error_return_verref;
8492 }
8493 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
8494 if (contents == NULL)
8495 goto error_return_verref;
8496
8497 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
8498 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
8499 goto error_return_verref;
8500
8501 elf_tdata (abfd)->verref = (Elf_Internal_Verneed *)
8502 bfd_alloc2 (abfd, hdr->sh_info, sizeof (Elf_Internal_Verneed));
8503
8504 if (elf_tdata (abfd)->verref == NULL)
8505 goto error_return_verref;
8506
8507 BFD_ASSERT (sizeof (Elf_External_Verneed)
8508 == sizeof (Elf_External_Vernaux));
8509 contents_end = contents + hdr->sh_size - sizeof (Elf_External_Verneed);
8510 everneed = (Elf_External_Verneed *) contents;
8511 iverneed = elf_tdata (abfd)->verref;
8512 for (i = 0; i < hdr->sh_info; i++, iverneed++)
8513 {
8514 Elf_External_Vernaux *evernaux;
8515 Elf_Internal_Vernaux *ivernaux;
8516 unsigned int j;
8517
8518 _bfd_elf_swap_verneed_in (abfd, everneed, iverneed);
8519
8520 iverneed->vn_bfd = abfd;
8521
8522 iverneed->vn_filename =
8523 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
8524 iverneed->vn_file);
8525 if (iverneed->vn_filename == NULL)
8526 goto error_return_bad_verref;
8527
8528 if (iverneed->vn_cnt == 0)
8529 iverneed->vn_auxptr = NULL;
8530 else
8531 {
8532 iverneed->vn_auxptr = (struct elf_internal_vernaux *)
8533 bfd_alloc2 (abfd, iverneed->vn_cnt,
8534 sizeof (Elf_Internal_Vernaux));
8535 if (iverneed->vn_auxptr == NULL)
8536 goto error_return_verref;
8537 }
8538
8539 if (iverneed->vn_aux
8540 > (size_t) (contents_end - (bfd_byte *) everneed))
8541 goto error_return_bad_verref;
8542
8543 evernaux = ((Elf_External_Vernaux *)
8544 ((bfd_byte *) everneed + iverneed->vn_aux));
8545 ivernaux = iverneed->vn_auxptr;
8546 for (j = 0; j < iverneed->vn_cnt; j++, ivernaux++)
8547 {
8548 _bfd_elf_swap_vernaux_in (abfd, evernaux, ivernaux);
8549
8550 ivernaux->vna_nodename =
8551 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
8552 ivernaux->vna_name);
8553 if (ivernaux->vna_nodename == NULL)
8554 goto error_return_bad_verref;
8555
8556 if (ivernaux->vna_other > freeidx)
8557 freeidx = ivernaux->vna_other;
8558
8559 ivernaux->vna_nextptr = NULL;
8560 if (ivernaux->vna_next == 0)
8561 {
8562 iverneed->vn_cnt = j + 1;
8563 break;
8564 }
8565 if (j + 1 < iverneed->vn_cnt)
8566 ivernaux->vna_nextptr = ivernaux + 1;
8567
8568 if (ivernaux->vna_next
8569 > (size_t) (contents_end - (bfd_byte *) evernaux))
8570 goto error_return_bad_verref;
8571
8572 evernaux = ((Elf_External_Vernaux *)
8573 ((bfd_byte *) evernaux + ivernaux->vna_next));
8574 }
8575
8576 iverneed->vn_nextref = NULL;
8577 if (iverneed->vn_next == 0)
8578 break;
8579 if (i + 1 < hdr->sh_info)
8580 iverneed->vn_nextref = iverneed + 1;
8581
8582 if (iverneed->vn_next
8583 > (size_t) (contents_end - (bfd_byte *) everneed))
8584 goto error_return_bad_verref;
8585
8586 everneed = ((Elf_External_Verneed *)
8587 ((bfd_byte *) everneed + iverneed->vn_next));
8588 }
8589 elf_tdata (abfd)->cverrefs = i;
8590
8591 free (contents);
8592 contents = NULL;
8593 }
8594
8595 if (elf_dynverdef (abfd) != 0)
8596 {
8597 Elf_Internal_Shdr *hdr;
8598 Elf_External_Verdef *everdef;
8599 Elf_Internal_Verdef *iverdef;
8600 Elf_Internal_Verdef *iverdefarr;
8601 Elf_Internal_Verdef iverdefmem;
8602 unsigned int i;
8603 unsigned int maxidx;
8604 bfd_byte *contents_end_def, *contents_end_aux;
8605
8606 hdr = &elf_tdata (abfd)->dynverdef_hdr;
8607
8608 if (hdr->sh_info == 0 || hdr->sh_size < sizeof (Elf_External_Verdef))
8609 {
8610 error_return_bad_verdef:
8611 _bfd_error_handler
8612 (_("%pB: .gnu.version_d invalid entry"), abfd);
8613 bfd_set_error (bfd_error_bad_value);
8614 error_return_verdef:
8615 elf_tdata (abfd)->verdef = NULL;
8616 elf_tdata (abfd)->cverdefs = 0;
8617 goto error_return;
8618 }
8619
8620 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
8621 if (contents == NULL)
8622 goto error_return_verdef;
8623 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
8624 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
8625 goto error_return_verdef;
8626
8627 BFD_ASSERT (sizeof (Elf_External_Verdef)
8628 >= sizeof (Elf_External_Verdaux));
8629 contents_end_def = contents + hdr->sh_size
8630 - sizeof (Elf_External_Verdef);
8631 contents_end_aux = contents + hdr->sh_size
8632 - sizeof (Elf_External_Verdaux);
8633
8634 /* We know the number of entries in the section but not the maximum
8635 index. Therefore we have to run through all entries and find
8636 the maximum. */
8637 everdef = (Elf_External_Verdef *) contents;
8638 maxidx = 0;
8639 for (i = 0; i < hdr->sh_info; ++i)
8640 {
8641 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
8642
8643 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) == 0)
8644 goto error_return_bad_verdef;
8645 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) > maxidx)
8646 maxidx = iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION);
8647
8648 if (iverdefmem.vd_next == 0)
8649 break;
8650
8651 if (iverdefmem.vd_next
8652 > (size_t) (contents_end_def - (bfd_byte *) everdef))
8653 goto error_return_bad_verdef;
8654
8655 everdef = ((Elf_External_Verdef *)
8656 ((bfd_byte *) everdef + iverdefmem.vd_next));
8657 }
8658
8659 if (default_imported_symver)
8660 {
8661 if (freeidx > maxidx)
8662 maxidx = ++freeidx;
8663 else
8664 freeidx = ++maxidx;
8665 }
8666
8667 elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *)
8668 bfd_zalloc2 (abfd, maxidx, sizeof (Elf_Internal_Verdef));
8669 if (elf_tdata (abfd)->verdef == NULL)
8670 goto error_return_verdef;
8671
8672 elf_tdata (abfd)->cverdefs = maxidx;
8673
8674 everdef = (Elf_External_Verdef *) contents;
8675 iverdefarr = elf_tdata (abfd)->verdef;
8676 for (i = 0; i < hdr->sh_info; i++)
8677 {
8678 Elf_External_Verdaux *everdaux;
8679 Elf_Internal_Verdaux *iverdaux;
8680 unsigned int j;
8681
8682 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
8683
8684 if ((iverdefmem.vd_ndx & VERSYM_VERSION) == 0)
8685 goto error_return_bad_verdef;
8686
8687 iverdef = &iverdefarr[(iverdefmem.vd_ndx & VERSYM_VERSION) - 1];
8688 memcpy (iverdef, &iverdefmem, offsetof (Elf_Internal_Verdef, vd_bfd));
8689
8690 iverdef->vd_bfd = abfd;
8691
8692 if (iverdef->vd_cnt == 0)
8693 iverdef->vd_auxptr = NULL;
8694 else
8695 {
8696 iverdef->vd_auxptr = (struct elf_internal_verdaux *)
8697 bfd_alloc2 (abfd, iverdef->vd_cnt,
8698 sizeof (Elf_Internal_Verdaux));
8699 if (iverdef->vd_auxptr == NULL)
8700 goto error_return_verdef;
8701 }
8702
8703 if (iverdef->vd_aux
8704 > (size_t) (contents_end_aux - (bfd_byte *) everdef))
8705 goto error_return_bad_verdef;
8706
8707 everdaux = ((Elf_External_Verdaux *)
8708 ((bfd_byte *) everdef + iverdef->vd_aux));
8709 iverdaux = iverdef->vd_auxptr;
8710 for (j = 0; j < iverdef->vd_cnt; j++, iverdaux++)
8711 {
8712 _bfd_elf_swap_verdaux_in (abfd, everdaux, iverdaux);
8713
8714 iverdaux->vda_nodename =
8715 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
8716 iverdaux->vda_name);
8717 if (iverdaux->vda_nodename == NULL)
8718 goto error_return_bad_verdef;
8719
8720 iverdaux->vda_nextptr = NULL;
8721 if (iverdaux->vda_next == 0)
8722 {
8723 iverdef->vd_cnt = j + 1;
8724 break;
8725 }
8726 if (j + 1 < iverdef->vd_cnt)
8727 iverdaux->vda_nextptr = iverdaux + 1;
8728
8729 if (iverdaux->vda_next
8730 > (size_t) (contents_end_aux - (bfd_byte *) everdaux))
8731 goto error_return_bad_verdef;
8732
8733 everdaux = ((Elf_External_Verdaux *)
8734 ((bfd_byte *) everdaux + iverdaux->vda_next));
8735 }
8736
8737 iverdef->vd_nodename = NULL;
8738 if (iverdef->vd_cnt)
8739 iverdef->vd_nodename = iverdef->vd_auxptr->vda_nodename;
8740
8741 iverdef->vd_nextdef = NULL;
8742 if (iverdef->vd_next == 0)
8743 break;
8744 if ((size_t) (iverdef - iverdefarr) + 1 < maxidx)
8745 iverdef->vd_nextdef = iverdef + 1;
8746
8747 everdef = ((Elf_External_Verdef *)
8748 ((bfd_byte *) everdef + iverdef->vd_next));
8749 }
8750
8751 free (contents);
8752 contents = NULL;
8753 }
8754 else if (default_imported_symver)
8755 {
8756 if (freeidx < 3)
8757 freeidx = 3;
8758 else
8759 freeidx++;
8760
8761 elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *)
8762 bfd_zalloc2 (abfd, freeidx, sizeof (Elf_Internal_Verdef));
8763 if (elf_tdata (abfd)->verdef == NULL)
8764 goto error_return;
8765
8766 elf_tdata (abfd)->cverdefs = freeidx;
8767 }
8768
8769 /* Create a default version based on the soname. */
8770 if (default_imported_symver)
8771 {
8772 Elf_Internal_Verdef *iverdef;
8773 Elf_Internal_Verdaux *iverdaux;
8774
8775 iverdef = &elf_tdata (abfd)->verdef[freeidx - 1];
8776
8777 iverdef->vd_version = VER_DEF_CURRENT;
8778 iverdef->vd_flags = 0;
8779 iverdef->vd_ndx = freeidx;
8780 iverdef->vd_cnt = 1;
8781
8782 iverdef->vd_bfd = abfd;
8783
8784 iverdef->vd_nodename = bfd_elf_get_dt_soname (abfd);
8785 if (iverdef->vd_nodename == NULL)
8786 goto error_return_verdef;
8787 iverdef->vd_nextdef = NULL;
8788 iverdef->vd_auxptr = ((struct elf_internal_verdaux *)
8789 bfd_zalloc (abfd, sizeof (Elf_Internal_Verdaux)));
8790 if (iverdef->vd_auxptr == NULL)
8791 goto error_return_verdef;
8792
8793 iverdaux = iverdef->vd_auxptr;
8794 iverdaux->vda_nodename = iverdef->vd_nodename;
8795 }
8796
8797 return TRUE;
8798
8799 error_return:
8800 if (contents != NULL)
8801 free (contents);
8802 return FALSE;
8803 }
8804 \f
8805 asymbol *
8806 _bfd_elf_make_empty_symbol (bfd *abfd)
8807 {
8808 elf_symbol_type *newsym;
8809
8810 newsym = (elf_symbol_type *) bfd_zalloc (abfd, sizeof (*newsym));
8811 if (!newsym)
8812 return NULL;
8813 newsym->symbol.the_bfd = abfd;
8814 return &newsym->symbol;
8815 }
8816
8817 void
8818 _bfd_elf_get_symbol_info (bfd *abfd ATTRIBUTE_UNUSED,
8819 asymbol *symbol,
8820 symbol_info *ret)
8821 {
8822 bfd_symbol_info (symbol, ret);
8823 }
8824
8825 /* Return whether a symbol name implies a local symbol. Most targets
8826 use this function for the is_local_label_name entry point, but some
8827 override it. */
8828
8829 bfd_boolean
8830 _bfd_elf_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED,
8831 const char *name)
8832 {
8833 /* Normal local symbols start with ``.L''. */
8834 if (name[0] == '.' && name[1] == 'L')
8835 return TRUE;
8836
8837 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
8838 DWARF debugging symbols starting with ``..''. */
8839 if (name[0] == '.' && name[1] == '.')
8840 return TRUE;
8841
8842 /* gcc will sometimes generate symbols beginning with ``_.L_'' when
8843 emitting DWARF debugging output. I suspect this is actually a
8844 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
8845 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
8846 underscore to be emitted on some ELF targets). For ease of use,
8847 we treat such symbols as local. */
8848 if (name[0] == '_' && name[1] == '.' && name[2] == 'L' && name[3] == '_')
8849 return TRUE;
8850
8851 /* Treat assembler generated fake symbols, dollar local labels and
8852 forward-backward labels (aka local labels) as locals.
8853 These labels have the form:
8854
8855 L0^A.* (fake symbols)
8856
8857 [.]?L[0123456789]+{^A|^B}[0123456789]* (local labels)
8858
8859 Versions which start with .L will have already been matched above,
8860 so we only need to match the rest. */
8861 if (name[0] == 'L' && ISDIGIT (name[1]))
8862 {
8863 bfd_boolean ret = FALSE;
8864 const char * p;
8865 char c;
8866
8867 for (p = name + 2; (c = *p); p++)
8868 {
8869 if (c == 1 || c == 2)
8870 {
8871 if (c == 1 && p == name + 2)
8872 /* A fake symbol. */
8873 return TRUE;
8874
8875 /* FIXME: We are being paranoid here and treating symbols like
8876 L0^Bfoo as if there were non-local, on the grounds that the
8877 assembler will never generate them. But can any symbol
8878 containing an ASCII value in the range 1-31 ever be anything
8879 other than some kind of local ? */
8880 ret = TRUE;
8881 }
8882
8883 if (! ISDIGIT (c))
8884 {
8885 ret = FALSE;
8886 break;
8887 }
8888 }
8889 return ret;
8890 }
8891
8892 return FALSE;
8893 }
8894
8895 alent *
8896 _bfd_elf_get_lineno (bfd *abfd ATTRIBUTE_UNUSED,
8897 asymbol *symbol ATTRIBUTE_UNUSED)
8898 {
8899 abort ();
8900 return NULL;
8901 }
8902
8903 bfd_boolean
8904 _bfd_elf_set_arch_mach (bfd *abfd,
8905 enum bfd_architecture arch,
8906 unsigned long machine)
8907 {
8908 /* If this isn't the right architecture for this backend, and this
8909 isn't the generic backend, fail. */
8910 if (arch != get_elf_backend_data (abfd)->arch
8911 && arch != bfd_arch_unknown
8912 && get_elf_backend_data (abfd)->arch != bfd_arch_unknown)
8913 return FALSE;
8914
8915 return bfd_default_set_arch_mach (abfd, arch, machine);
8916 }
8917
8918 /* Find the nearest line to a particular section and offset,
8919 for error reporting. */
8920
8921 bfd_boolean
8922 _bfd_elf_find_nearest_line (bfd *abfd,
8923 asymbol **symbols,
8924 asection *section,
8925 bfd_vma offset,
8926 const char **filename_ptr,
8927 const char **functionname_ptr,
8928 unsigned int *line_ptr,
8929 unsigned int *discriminator_ptr)
8930 {
8931 bfd_boolean found;
8932
8933 if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset,
8934 filename_ptr, functionname_ptr,
8935 line_ptr, discriminator_ptr,
8936 dwarf_debug_sections, 0,
8937 &elf_tdata (abfd)->dwarf2_find_line_info)
8938 || _bfd_dwarf1_find_nearest_line (abfd, symbols, section, offset,
8939 filename_ptr, functionname_ptr,
8940 line_ptr))
8941 {
8942 if (!*functionname_ptr)
8943 _bfd_elf_find_function (abfd, symbols, section, offset,
8944 *filename_ptr ? NULL : filename_ptr,
8945 functionname_ptr);
8946 return TRUE;
8947 }
8948
8949 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
8950 &found, filename_ptr,
8951 functionname_ptr, line_ptr,
8952 &elf_tdata (abfd)->line_info))
8953 return FALSE;
8954 if (found && (*functionname_ptr || *line_ptr))
8955 return TRUE;
8956
8957 if (symbols == NULL)
8958 return FALSE;
8959
8960 if (! _bfd_elf_find_function (abfd, symbols, section, offset,
8961 filename_ptr, functionname_ptr))
8962 return FALSE;
8963
8964 *line_ptr = 0;
8965 return TRUE;
8966 }
8967
8968 /* Find the line for a symbol. */
8969
8970 bfd_boolean
8971 _bfd_elf_find_line (bfd *abfd, asymbol **symbols, asymbol *symbol,
8972 const char **filename_ptr, unsigned int *line_ptr)
8973 {
8974 return _bfd_dwarf2_find_nearest_line (abfd, symbols, symbol, NULL, 0,
8975 filename_ptr, NULL, line_ptr, NULL,
8976 dwarf_debug_sections, 0,
8977 &elf_tdata (abfd)->dwarf2_find_line_info);
8978 }
8979
8980 /* After a call to bfd_find_nearest_line, successive calls to
8981 bfd_find_inliner_info can be used to get source information about
8982 each level of function inlining that terminated at the address
8983 passed to bfd_find_nearest_line. Currently this is only supported
8984 for DWARF2 with appropriate DWARF3 extensions. */
8985
8986 bfd_boolean
8987 _bfd_elf_find_inliner_info (bfd *abfd,
8988 const char **filename_ptr,
8989 const char **functionname_ptr,
8990 unsigned int *line_ptr)
8991 {
8992 bfd_boolean found;
8993 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
8994 functionname_ptr, line_ptr,
8995 & elf_tdata (abfd)->dwarf2_find_line_info);
8996 return found;
8997 }
8998
8999 int
9000 _bfd_elf_sizeof_headers (bfd *abfd, struct bfd_link_info *info)
9001 {
9002 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9003 int ret = bed->s->sizeof_ehdr;
9004
9005 if (!bfd_link_relocatable (info))
9006 {
9007 bfd_size_type phdr_size = elf_program_header_size (abfd);
9008
9009 if (phdr_size == (bfd_size_type) -1)
9010 {
9011 struct elf_segment_map *m;
9012
9013 phdr_size = 0;
9014 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
9015 phdr_size += bed->s->sizeof_phdr;
9016
9017 if (phdr_size == 0)
9018 phdr_size = get_program_header_size (abfd, info);
9019 }
9020
9021 elf_program_header_size (abfd) = phdr_size;
9022 ret += phdr_size;
9023 }
9024
9025 return ret;
9026 }
9027
9028 bfd_boolean
9029 _bfd_elf_set_section_contents (bfd *abfd,
9030 sec_ptr section,
9031 const void *location,
9032 file_ptr offset,
9033 bfd_size_type count)
9034 {
9035 Elf_Internal_Shdr *hdr;
9036 file_ptr pos;
9037
9038 if (! abfd->output_has_begun
9039 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
9040 return FALSE;
9041
9042 if (!count)
9043 return TRUE;
9044
9045 hdr = &elf_section_data (section)->this_hdr;
9046 if (hdr->sh_offset == (file_ptr) -1)
9047 {
9048 /* We must compress this section. Write output to the buffer. */
9049 unsigned char *contents = hdr->contents;
9050 if ((offset + count) > hdr->sh_size
9051 || (section->flags & SEC_ELF_COMPRESS) == 0
9052 || contents == NULL)
9053 abort ();
9054 memcpy (contents + offset, location, count);
9055 return TRUE;
9056 }
9057 pos = hdr->sh_offset + offset;
9058 if (bfd_seek (abfd, pos, SEEK_SET) != 0
9059 || bfd_bwrite (location, count, abfd) != count)
9060 return FALSE;
9061
9062 return TRUE;
9063 }
9064
9065 bfd_boolean
9066 _bfd_elf_no_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED,
9067 arelent *cache_ptr ATTRIBUTE_UNUSED,
9068 Elf_Internal_Rela *dst ATTRIBUTE_UNUSED)
9069 {
9070 abort ();
9071 return FALSE;
9072 }
9073
9074 /* Try to convert a non-ELF reloc into an ELF one. */
9075
9076 bfd_boolean
9077 _bfd_elf_validate_reloc (bfd *abfd, arelent *areloc)
9078 {
9079 /* Check whether we really have an ELF howto. */
9080
9081 if ((*areloc->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec)
9082 {
9083 bfd_reloc_code_real_type code;
9084 reloc_howto_type *howto;
9085
9086 /* Alien reloc: Try to determine its type to replace it with an
9087 equivalent ELF reloc. */
9088
9089 if (areloc->howto->pc_relative)
9090 {
9091 switch (areloc->howto->bitsize)
9092 {
9093 case 8:
9094 code = BFD_RELOC_8_PCREL;
9095 break;
9096 case 12:
9097 code = BFD_RELOC_12_PCREL;
9098 break;
9099 case 16:
9100 code = BFD_RELOC_16_PCREL;
9101 break;
9102 case 24:
9103 code = BFD_RELOC_24_PCREL;
9104 break;
9105 case 32:
9106 code = BFD_RELOC_32_PCREL;
9107 break;
9108 case 64:
9109 code = BFD_RELOC_64_PCREL;
9110 break;
9111 default:
9112 goto fail;
9113 }
9114
9115 howto = bfd_reloc_type_lookup (abfd, code);
9116
9117 if (areloc->howto->pcrel_offset != howto->pcrel_offset)
9118 {
9119 if (howto->pcrel_offset)
9120 areloc->addend += areloc->address;
9121 else
9122 areloc->addend -= areloc->address; /* addend is unsigned!! */
9123 }
9124 }
9125 else
9126 {
9127 switch (areloc->howto->bitsize)
9128 {
9129 case 8:
9130 code = BFD_RELOC_8;
9131 break;
9132 case 14:
9133 code = BFD_RELOC_14;
9134 break;
9135 case 16:
9136 code = BFD_RELOC_16;
9137 break;
9138 case 26:
9139 code = BFD_RELOC_26;
9140 break;
9141 case 32:
9142 code = BFD_RELOC_32;
9143 break;
9144 case 64:
9145 code = BFD_RELOC_64;
9146 break;
9147 default:
9148 goto fail;
9149 }
9150
9151 howto = bfd_reloc_type_lookup (abfd, code);
9152 }
9153
9154 if (howto)
9155 areloc->howto = howto;
9156 else
9157 goto fail;
9158 }
9159
9160 return TRUE;
9161
9162 fail:
9163 /* xgettext:c-format */
9164 _bfd_error_handler (_("%pB: %s unsupported"),
9165 abfd, areloc->howto->name);
9166 bfd_set_error (bfd_error_bad_value);
9167 return FALSE;
9168 }
9169
9170 bfd_boolean
9171 _bfd_elf_close_and_cleanup (bfd *abfd)
9172 {
9173 struct elf_obj_tdata *tdata = elf_tdata (abfd);
9174 if (bfd_get_format (abfd) == bfd_object && tdata != NULL)
9175 {
9176 if (elf_tdata (abfd)->o != NULL && elf_shstrtab (abfd) != NULL)
9177 _bfd_elf_strtab_free (elf_shstrtab (abfd));
9178 _bfd_dwarf2_cleanup_debug_info (abfd, &tdata->dwarf2_find_line_info);
9179 }
9180
9181 return _bfd_generic_close_and_cleanup (abfd);
9182 }
9183
9184 /* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
9185 in the relocation's offset. Thus we cannot allow any sort of sanity
9186 range-checking to interfere. There is nothing else to do in processing
9187 this reloc. */
9188
9189 bfd_reloc_status_type
9190 _bfd_elf_rel_vtable_reloc_fn
9191 (bfd *abfd ATTRIBUTE_UNUSED, arelent *re ATTRIBUTE_UNUSED,
9192 struct bfd_symbol *symbol ATTRIBUTE_UNUSED,
9193 void *data ATTRIBUTE_UNUSED, asection *is ATTRIBUTE_UNUSED,
9194 bfd *obfd ATTRIBUTE_UNUSED, char **errmsg ATTRIBUTE_UNUSED)
9195 {
9196 return bfd_reloc_ok;
9197 }
9198 \f
9199 /* Elf core file support. Much of this only works on native
9200 toolchains, since we rely on knowing the
9201 machine-dependent procfs structure in order to pick
9202 out details about the corefile. */
9203
9204 #ifdef HAVE_SYS_PROCFS_H
9205 /* Needed for new procfs interface on sparc-solaris. */
9206 # define _STRUCTURED_PROC 1
9207 # include <sys/procfs.h>
9208 #endif
9209
9210 /* Return a PID that identifies a "thread" for threaded cores, or the
9211 PID of the main process for non-threaded cores. */
9212
9213 static int
9214 elfcore_make_pid (bfd *abfd)
9215 {
9216 int pid;
9217
9218 pid = elf_tdata (abfd)->core->lwpid;
9219 if (pid == 0)
9220 pid = elf_tdata (abfd)->core->pid;
9221
9222 return pid;
9223 }
9224
9225 /* If there isn't a section called NAME, make one, using
9226 data from SECT. Note, this function will generate a
9227 reference to NAME, so you shouldn't deallocate or
9228 overwrite it. */
9229
9230 static bfd_boolean
9231 elfcore_maybe_make_sect (bfd *abfd, char *name, asection *sect)
9232 {
9233 asection *sect2;
9234
9235 if (bfd_get_section_by_name (abfd, name) != NULL)
9236 return TRUE;
9237
9238 sect2 = bfd_make_section_with_flags (abfd, name, sect->flags);
9239 if (sect2 == NULL)
9240 return FALSE;
9241
9242 sect2->size = sect->size;
9243 sect2->filepos = sect->filepos;
9244 sect2->alignment_power = sect->alignment_power;
9245 return TRUE;
9246 }
9247
9248 /* Create a pseudosection containing SIZE bytes at FILEPOS. This
9249 actually creates up to two pseudosections:
9250 - For the single-threaded case, a section named NAME, unless
9251 such a section already exists.
9252 - For the multi-threaded case, a section named "NAME/PID", where
9253 PID is elfcore_make_pid (abfd).
9254 Both pseudosections have identical contents. */
9255 bfd_boolean
9256 _bfd_elfcore_make_pseudosection (bfd *abfd,
9257 char *name,
9258 size_t size,
9259 ufile_ptr filepos)
9260 {
9261 char buf[100];
9262 char *threaded_name;
9263 size_t len;
9264 asection *sect;
9265
9266 /* Build the section name. */
9267
9268 sprintf (buf, "%s/%d", name, elfcore_make_pid (abfd));
9269 len = strlen (buf) + 1;
9270 threaded_name = (char *) bfd_alloc (abfd, len);
9271 if (threaded_name == NULL)
9272 return FALSE;
9273 memcpy (threaded_name, buf, len);
9274
9275 sect = bfd_make_section_anyway_with_flags (abfd, threaded_name,
9276 SEC_HAS_CONTENTS);
9277 if (sect == NULL)
9278 return FALSE;
9279 sect->size = size;
9280 sect->filepos = filepos;
9281 sect->alignment_power = 2;
9282
9283 return elfcore_maybe_make_sect (abfd, name, sect);
9284 }
9285
9286 static bfd_boolean
9287 elfcore_make_auxv_note_section (bfd *abfd, Elf_Internal_Note *note,
9288 size_t offs)
9289 {
9290 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
9291 SEC_HAS_CONTENTS);
9292
9293 if (sect == NULL)
9294 return FALSE;
9295
9296 sect->size = note->descsz - offs;
9297 sect->filepos = note->descpos + offs;
9298 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
9299
9300 return TRUE;
9301 }
9302
9303 /* prstatus_t exists on:
9304 solaris 2.5+
9305 linux 2.[01] + glibc
9306 unixware 4.2
9307 */
9308
9309 #if defined (HAVE_PRSTATUS_T)
9310
9311 static bfd_boolean
9312 elfcore_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
9313 {
9314 size_t size;
9315 int offset;
9316
9317 if (note->descsz == sizeof (prstatus_t))
9318 {
9319 prstatus_t prstat;
9320
9321 size = sizeof (prstat.pr_reg);
9322 offset = offsetof (prstatus_t, pr_reg);
9323 memcpy (&prstat, note->descdata, sizeof (prstat));
9324
9325 /* Do not overwrite the core signal if it
9326 has already been set by another thread. */
9327 if (elf_tdata (abfd)->core->signal == 0)
9328 elf_tdata (abfd)->core->signal = prstat.pr_cursig;
9329 if (elf_tdata (abfd)->core->pid == 0)
9330 elf_tdata (abfd)->core->pid = prstat.pr_pid;
9331
9332 /* pr_who exists on:
9333 solaris 2.5+
9334 unixware 4.2
9335 pr_who doesn't exist on:
9336 linux 2.[01]
9337 */
9338 #if defined (HAVE_PRSTATUS_T_PR_WHO)
9339 elf_tdata (abfd)->core->lwpid = prstat.pr_who;
9340 #else
9341 elf_tdata (abfd)->core->lwpid = prstat.pr_pid;
9342 #endif
9343 }
9344 #if defined (HAVE_PRSTATUS32_T)
9345 else if (note->descsz == sizeof (prstatus32_t))
9346 {
9347 /* 64-bit host, 32-bit corefile */
9348 prstatus32_t prstat;
9349
9350 size = sizeof (prstat.pr_reg);
9351 offset = offsetof (prstatus32_t, pr_reg);
9352 memcpy (&prstat, note->descdata, sizeof (prstat));
9353
9354 /* Do not overwrite the core signal if it
9355 has already been set by another thread. */
9356 if (elf_tdata (abfd)->core->signal == 0)
9357 elf_tdata (abfd)->core->signal = prstat.pr_cursig;
9358 if (elf_tdata (abfd)->core->pid == 0)
9359 elf_tdata (abfd)->core->pid = prstat.pr_pid;
9360
9361 /* pr_who exists on:
9362 solaris 2.5+
9363 unixware 4.2
9364 pr_who doesn't exist on:
9365 linux 2.[01]
9366 */
9367 #if defined (HAVE_PRSTATUS32_T_PR_WHO)
9368 elf_tdata (abfd)->core->lwpid = prstat.pr_who;
9369 #else
9370 elf_tdata (abfd)->core->lwpid = prstat.pr_pid;
9371 #endif
9372 }
9373 #endif /* HAVE_PRSTATUS32_T */
9374 else
9375 {
9376 /* Fail - we don't know how to handle any other
9377 note size (ie. data object type). */
9378 return TRUE;
9379 }
9380
9381 /* Make a ".reg/999" section and a ".reg" section. */
9382 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
9383 size, note->descpos + offset);
9384 }
9385 #endif /* defined (HAVE_PRSTATUS_T) */
9386
9387 /* Create a pseudosection containing the exact contents of NOTE. */
9388 static bfd_boolean
9389 elfcore_make_note_pseudosection (bfd *abfd,
9390 char *name,
9391 Elf_Internal_Note *note)
9392 {
9393 return _bfd_elfcore_make_pseudosection (abfd, name,
9394 note->descsz, note->descpos);
9395 }
9396
9397 /* There isn't a consistent prfpregset_t across platforms,
9398 but it doesn't matter, because we don't have to pick this
9399 data structure apart. */
9400
9401 static bfd_boolean
9402 elfcore_grok_prfpreg (bfd *abfd, Elf_Internal_Note *note)
9403 {
9404 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
9405 }
9406
9407 /* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
9408 type of NT_PRXFPREG. Just include the whole note's contents
9409 literally. */
9410
9411 static bfd_boolean
9412 elfcore_grok_prxfpreg (bfd *abfd, Elf_Internal_Note *note)
9413 {
9414 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
9415 }
9416
9417 /* Linux dumps the Intel XSAVE extended state in a note named "LINUX"
9418 with a note type of NT_X86_XSTATE. Just include the whole note's
9419 contents literally. */
9420
9421 static bfd_boolean
9422 elfcore_grok_xstatereg (bfd *abfd, Elf_Internal_Note *note)
9423 {
9424 return elfcore_make_note_pseudosection (abfd, ".reg-xstate", note);
9425 }
9426
9427 static bfd_boolean
9428 elfcore_grok_ppc_vmx (bfd *abfd, Elf_Internal_Note *note)
9429 {
9430 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vmx", note);
9431 }
9432
9433 static bfd_boolean
9434 elfcore_grok_ppc_vsx (bfd *abfd, Elf_Internal_Note *note)
9435 {
9436 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vsx", note);
9437 }
9438
9439 static bfd_boolean
9440 elfcore_grok_ppc_tar (bfd *abfd, Elf_Internal_Note *note)
9441 {
9442 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tar", note);
9443 }
9444
9445 static bfd_boolean
9446 elfcore_grok_ppc_ppr (bfd *abfd, Elf_Internal_Note *note)
9447 {
9448 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-ppr", note);
9449 }
9450
9451 static bfd_boolean
9452 elfcore_grok_ppc_dscr (bfd *abfd, Elf_Internal_Note *note)
9453 {
9454 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-dscr", note);
9455 }
9456
9457 static bfd_boolean
9458 elfcore_grok_ppc_ebb (bfd *abfd, Elf_Internal_Note *note)
9459 {
9460 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-ebb", note);
9461 }
9462
9463 static bfd_boolean
9464 elfcore_grok_ppc_pmu (bfd *abfd, Elf_Internal_Note *note)
9465 {
9466 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-pmu", note);
9467 }
9468
9469 static bfd_boolean
9470 elfcore_grok_ppc_tm_cgpr (bfd *abfd, Elf_Internal_Note *note)
9471 {
9472 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cgpr", note);
9473 }
9474
9475 static bfd_boolean
9476 elfcore_grok_ppc_tm_cfpr (bfd *abfd, Elf_Internal_Note *note)
9477 {
9478 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cfpr", note);
9479 }
9480
9481 static bfd_boolean
9482 elfcore_grok_ppc_tm_cvmx (bfd *abfd, Elf_Internal_Note *note)
9483 {
9484 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cvmx", note);
9485 }
9486
9487 static bfd_boolean
9488 elfcore_grok_ppc_tm_cvsx (bfd *abfd, Elf_Internal_Note *note)
9489 {
9490 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cvsx", note);
9491 }
9492
9493 static bfd_boolean
9494 elfcore_grok_ppc_tm_spr (bfd *abfd, Elf_Internal_Note *note)
9495 {
9496 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-spr", note);
9497 }
9498
9499 static bfd_boolean
9500 elfcore_grok_ppc_tm_ctar (bfd *abfd, Elf_Internal_Note *note)
9501 {
9502 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-ctar", note);
9503 }
9504
9505 static bfd_boolean
9506 elfcore_grok_ppc_tm_cppr (bfd *abfd, Elf_Internal_Note *note)
9507 {
9508 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cppr", note);
9509 }
9510
9511 static bfd_boolean
9512 elfcore_grok_ppc_tm_cdscr (bfd *abfd, Elf_Internal_Note *note)
9513 {
9514 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cdscr", note);
9515 }
9516
9517 static bfd_boolean
9518 elfcore_grok_s390_high_gprs (bfd *abfd, Elf_Internal_Note *note)
9519 {
9520 return elfcore_make_note_pseudosection (abfd, ".reg-s390-high-gprs", note);
9521 }
9522
9523 static bfd_boolean
9524 elfcore_grok_s390_timer (bfd *abfd, Elf_Internal_Note *note)
9525 {
9526 return elfcore_make_note_pseudosection (abfd, ".reg-s390-timer", note);
9527 }
9528
9529 static bfd_boolean
9530 elfcore_grok_s390_todcmp (bfd *abfd, Elf_Internal_Note *note)
9531 {
9532 return elfcore_make_note_pseudosection (abfd, ".reg-s390-todcmp", note);
9533 }
9534
9535 static bfd_boolean
9536 elfcore_grok_s390_todpreg (bfd *abfd, Elf_Internal_Note *note)
9537 {
9538 return elfcore_make_note_pseudosection (abfd, ".reg-s390-todpreg", note);
9539 }
9540
9541 static bfd_boolean
9542 elfcore_grok_s390_ctrs (bfd *abfd, Elf_Internal_Note *note)
9543 {
9544 return elfcore_make_note_pseudosection (abfd, ".reg-s390-ctrs", note);
9545 }
9546
9547 static bfd_boolean
9548 elfcore_grok_s390_prefix (bfd *abfd, Elf_Internal_Note *note)
9549 {
9550 return elfcore_make_note_pseudosection (abfd, ".reg-s390-prefix", note);
9551 }
9552
9553 static bfd_boolean
9554 elfcore_grok_s390_last_break (bfd *abfd, Elf_Internal_Note *note)
9555 {
9556 return elfcore_make_note_pseudosection (abfd, ".reg-s390-last-break", note);
9557 }
9558
9559 static bfd_boolean
9560 elfcore_grok_s390_system_call (bfd *abfd, Elf_Internal_Note *note)
9561 {
9562 return elfcore_make_note_pseudosection (abfd, ".reg-s390-system-call", note);
9563 }
9564
9565 static bfd_boolean
9566 elfcore_grok_s390_tdb (bfd *abfd, Elf_Internal_Note *note)
9567 {
9568 return elfcore_make_note_pseudosection (abfd, ".reg-s390-tdb", note);
9569 }
9570
9571 static bfd_boolean
9572 elfcore_grok_s390_vxrs_low (bfd *abfd, Elf_Internal_Note *note)
9573 {
9574 return elfcore_make_note_pseudosection (abfd, ".reg-s390-vxrs-low", note);
9575 }
9576
9577 static bfd_boolean
9578 elfcore_grok_s390_vxrs_high (bfd *abfd, Elf_Internal_Note *note)
9579 {
9580 return elfcore_make_note_pseudosection (abfd, ".reg-s390-vxrs-high", note);
9581 }
9582
9583 static bfd_boolean
9584 elfcore_grok_s390_gs_cb (bfd *abfd, Elf_Internal_Note *note)
9585 {
9586 return elfcore_make_note_pseudosection (abfd, ".reg-s390-gs-cb", note);
9587 }
9588
9589 static bfd_boolean
9590 elfcore_grok_s390_gs_bc (bfd *abfd, Elf_Internal_Note *note)
9591 {
9592 return elfcore_make_note_pseudosection (abfd, ".reg-s390-gs-bc", note);
9593 }
9594
9595 static bfd_boolean
9596 elfcore_grok_arm_vfp (bfd *abfd, Elf_Internal_Note *note)
9597 {
9598 return elfcore_make_note_pseudosection (abfd, ".reg-arm-vfp", note);
9599 }
9600
9601 static bfd_boolean
9602 elfcore_grok_aarch_tls (bfd *abfd, Elf_Internal_Note *note)
9603 {
9604 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-tls", note);
9605 }
9606
9607 static bfd_boolean
9608 elfcore_grok_aarch_hw_break (bfd *abfd, Elf_Internal_Note *note)
9609 {
9610 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-hw-break", note);
9611 }
9612
9613 static bfd_boolean
9614 elfcore_grok_aarch_hw_watch (bfd *abfd, Elf_Internal_Note *note)
9615 {
9616 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-hw-watch", note);
9617 }
9618
9619 static bfd_boolean
9620 elfcore_grok_aarch_sve (bfd *abfd, Elf_Internal_Note *note)
9621 {
9622 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-sve", note);
9623 }
9624
9625 static bfd_boolean
9626 elfcore_grok_aarch_pauth (bfd *abfd, Elf_Internal_Note *note)
9627 {
9628 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-pauth", note);
9629 }
9630
9631 #if defined (HAVE_PRPSINFO_T)
9632 typedef prpsinfo_t elfcore_psinfo_t;
9633 #if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
9634 typedef prpsinfo32_t elfcore_psinfo32_t;
9635 #endif
9636 #endif
9637
9638 #if defined (HAVE_PSINFO_T)
9639 typedef psinfo_t elfcore_psinfo_t;
9640 #if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
9641 typedef psinfo32_t elfcore_psinfo32_t;
9642 #endif
9643 #endif
9644
9645 /* return a malloc'ed copy of a string at START which is at
9646 most MAX bytes long, possibly without a terminating '\0'.
9647 the copy will always have a terminating '\0'. */
9648
9649 char *
9650 _bfd_elfcore_strndup (bfd *abfd, char *start, size_t max)
9651 {
9652 char *dups;
9653 char *end = (char *) memchr (start, '\0', max);
9654 size_t len;
9655
9656 if (end == NULL)
9657 len = max;
9658 else
9659 len = end - start;
9660
9661 dups = (char *) bfd_alloc (abfd, len + 1);
9662 if (dups == NULL)
9663 return NULL;
9664
9665 memcpy (dups, start, len);
9666 dups[len] = '\0';
9667
9668 return dups;
9669 }
9670
9671 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
9672 static bfd_boolean
9673 elfcore_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
9674 {
9675 if (note->descsz == sizeof (elfcore_psinfo_t))
9676 {
9677 elfcore_psinfo_t psinfo;
9678
9679 memcpy (&psinfo, note->descdata, sizeof (psinfo));
9680
9681 #if defined (HAVE_PSINFO_T_PR_PID) || defined (HAVE_PRPSINFO_T_PR_PID)
9682 elf_tdata (abfd)->core->pid = psinfo.pr_pid;
9683 #endif
9684 elf_tdata (abfd)->core->program
9685 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
9686 sizeof (psinfo.pr_fname));
9687
9688 elf_tdata (abfd)->core->command
9689 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
9690 sizeof (psinfo.pr_psargs));
9691 }
9692 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
9693 else if (note->descsz == sizeof (elfcore_psinfo32_t))
9694 {
9695 /* 64-bit host, 32-bit corefile */
9696 elfcore_psinfo32_t psinfo;
9697
9698 memcpy (&psinfo, note->descdata, sizeof (psinfo));
9699
9700 #if defined (HAVE_PSINFO32_T_PR_PID) || defined (HAVE_PRPSINFO32_T_PR_PID)
9701 elf_tdata (abfd)->core->pid = psinfo.pr_pid;
9702 #endif
9703 elf_tdata (abfd)->core->program
9704 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
9705 sizeof (psinfo.pr_fname));
9706
9707 elf_tdata (abfd)->core->command
9708 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
9709 sizeof (psinfo.pr_psargs));
9710 }
9711 #endif
9712
9713 else
9714 {
9715 /* Fail - we don't know how to handle any other
9716 note size (ie. data object type). */
9717 return TRUE;
9718 }
9719
9720 /* Note that for some reason, a spurious space is tacked
9721 onto the end of the args in some (at least one anyway)
9722 implementations, so strip it off if it exists. */
9723
9724 {
9725 char *command = elf_tdata (abfd)->core->command;
9726 int n = strlen (command);
9727
9728 if (0 < n && command[n - 1] == ' ')
9729 command[n - 1] = '\0';
9730 }
9731
9732 return TRUE;
9733 }
9734 #endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
9735
9736 #if defined (HAVE_PSTATUS_T)
9737 static bfd_boolean
9738 elfcore_grok_pstatus (bfd *abfd, Elf_Internal_Note *note)
9739 {
9740 if (note->descsz == sizeof (pstatus_t)
9741 #if defined (HAVE_PXSTATUS_T)
9742 || note->descsz == sizeof (pxstatus_t)
9743 #endif
9744 )
9745 {
9746 pstatus_t pstat;
9747
9748 memcpy (&pstat, note->descdata, sizeof (pstat));
9749
9750 elf_tdata (abfd)->core->pid = pstat.pr_pid;
9751 }
9752 #if defined (HAVE_PSTATUS32_T)
9753 else if (note->descsz == sizeof (pstatus32_t))
9754 {
9755 /* 64-bit host, 32-bit corefile */
9756 pstatus32_t pstat;
9757
9758 memcpy (&pstat, note->descdata, sizeof (pstat));
9759
9760 elf_tdata (abfd)->core->pid = pstat.pr_pid;
9761 }
9762 #endif
9763 /* Could grab some more details from the "representative"
9764 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
9765 NT_LWPSTATUS note, presumably. */
9766
9767 return TRUE;
9768 }
9769 #endif /* defined (HAVE_PSTATUS_T) */
9770
9771 #if defined (HAVE_LWPSTATUS_T)
9772 static bfd_boolean
9773 elfcore_grok_lwpstatus (bfd *abfd, Elf_Internal_Note *note)
9774 {
9775 lwpstatus_t lwpstat;
9776 char buf[100];
9777 char *name;
9778 size_t len;
9779 asection *sect;
9780
9781 if (note->descsz != sizeof (lwpstat)
9782 #if defined (HAVE_LWPXSTATUS_T)
9783 && note->descsz != sizeof (lwpxstatus_t)
9784 #endif
9785 )
9786 return TRUE;
9787
9788 memcpy (&lwpstat, note->descdata, sizeof (lwpstat));
9789
9790 elf_tdata (abfd)->core->lwpid = lwpstat.pr_lwpid;
9791 /* Do not overwrite the core signal if it has already been set by
9792 another thread. */
9793 if (elf_tdata (abfd)->core->signal == 0)
9794 elf_tdata (abfd)->core->signal = lwpstat.pr_cursig;
9795
9796 /* Make a ".reg/999" section. */
9797
9798 sprintf (buf, ".reg/%d", elfcore_make_pid (abfd));
9799 len = strlen (buf) + 1;
9800 name = bfd_alloc (abfd, len);
9801 if (name == NULL)
9802 return FALSE;
9803 memcpy (name, buf, len);
9804
9805 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
9806 if (sect == NULL)
9807 return FALSE;
9808
9809 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
9810 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.gregs);
9811 sect->filepos = note->descpos
9812 + offsetof (lwpstatus_t, pr_context.uc_mcontext.gregs);
9813 #endif
9814
9815 #if defined (HAVE_LWPSTATUS_T_PR_REG)
9816 sect->size = sizeof (lwpstat.pr_reg);
9817 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_reg);
9818 #endif
9819
9820 sect->alignment_power = 2;
9821
9822 if (!elfcore_maybe_make_sect (abfd, ".reg", sect))
9823 return FALSE;
9824
9825 /* Make a ".reg2/999" section */
9826
9827 sprintf (buf, ".reg2/%d", elfcore_make_pid (abfd));
9828 len = strlen (buf) + 1;
9829 name = bfd_alloc (abfd, len);
9830 if (name == NULL)
9831 return FALSE;
9832 memcpy (name, buf, len);
9833
9834 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
9835 if (sect == NULL)
9836 return FALSE;
9837
9838 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
9839 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.fpregs);
9840 sect->filepos = note->descpos
9841 + offsetof (lwpstatus_t, pr_context.uc_mcontext.fpregs);
9842 #endif
9843
9844 #if defined (HAVE_LWPSTATUS_T_PR_FPREG)
9845 sect->size = sizeof (lwpstat.pr_fpreg);
9846 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_fpreg);
9847 #endif
9848
9849 sect->alignment_power = 2;
9850
9851 return elfcore_maybe_make_sect (abfd, ".reg2", sect);
9852 }
9853 #endif /* defined (HAVE_LWPSTATUS_T) */
9854
9855 static bfd_boolean
9856 elfcore_grok_win32pstatus (bfd *abfd, Elf_Internal_Note *note)
9857 {
9858 char buf[30];
9859 char *name;
9860 size_t len;
9861 asection *sect;
9862 int type;
9863 int is_active_thread;
9864 bfd_vma base_addr;
9865
9866 if (note->descsz < 728)
9867 return TRUE;
9868
9869 if (! CONST_STRNEQ (note->namedata, "win32"))
9870 return TRUE;
9871
9872 type = bfd_get_32 (abfd, note->descdata);
9873
9874 switch (type)
9875 {
9876 case 1 /* NOTE_INFO_PROCESS */:
9877 /* FIXME: need to add ->core->command. */
9878 /* process_info.pid */
9879 elf_tdata (abfd)->core->pid = bfd_get_32 (abfd, note->descdata + 8);
9880 /* process_info.signal */
9881 elf_tdata (abfd)->core->signal = bfd_get_32 (abfd, note->descdata + 12);
9882 break;
9883
9884 case 2 /* NOTE_INFO_THREAD */:
9885 /* Make a ".reg/999" section. */
9886 /* thread_info.tid */
9887 sprintf (buf, ".reg/%ld", (long) bfd_get_32 (abfd, note->descdata + 8));
9888
9889 len = strlen (buf) + 1;
9890 name = (char *) bfd_alloc (abfd, len);
9891 if (name == NULL)
9892 return FALSE;
9893
9894 memcpy (name, buf, len);
9895
9896 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
9897 if (sect == NULL)
9898 return FALSE;
9899
9900 /* sizeof (thread_info.thread_context) */
9901 sect->size = 716;
9902 /* offsetof (thread_info.thread_context) */
9903 sect->filepos = note->descpos + 12;
9904 sect->alignment_power = 2;
9905
9906 /* thread_info.is_active_thread */
9907 is_active_thread = bfd_get_32 (abfd, note->descdata + 8);
9908
9909 if (is_active_thread)
9910 if (! elfcore_maybe_make_sect (abfd, ".reg", sect))
9911 return FALSE;
9912 break;
9913
9914 case 3 /* NOTE_INFO_MODULE */:
9915 /* Make a ".module/xxxxxxxx" section. */
9916 /* module_info.base_address */
9917 base_addr = bfd_get_32 (abfd, note->descdata + 4);
9918 sprintf (buf, ".module/%08lx", (unsigned long) base_addr);
9919
9920 len = strlen (buf) + 1;
9921 name = (char *) bfd_alloc (abfd, len);
9922 if (name == NULL)
9923 return FALSE;
9924
9925 memcpy (name, buf, len);
9926
9927 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
9928
9929 if (sect == NULL)
9930 return FALSE;
9931
9932 sect->size = note->descsz;
9933 sect->filepos = note->descpos;
9934 sect->alignment_power = 2;
9935 break;
9936
9937 default:
9938 return TRUE;
9939 }
9940
9941 return TRUE;
9942 }
9943
9944 static bfd_boolean
9945 elfcore_grok_note (bfd *abfd, Elf_Internal_Note *note)
9946 {
9947 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9948
9949 switch (note->type)
9950 {
9951 default:
9952 return TRUE;
9953
9954 case NT_PRSTATUS:
9955 if (bed->elf_backend_grok_prstatus)
9956 if ((*bed->elf_backend_grok_prstatus) (abfd, note))
9957 return TRUE;
9958 #if defined (HAVE_PRSTATUS_T)
9959 return elfcore_grok_prstatus (abfd, note);
9960 #else
9961 return TRUE;
9962 #endif
9963
9964 #if defined (HAVE_PSTATUS_T)
9965 case NT_PSTATUS:
9966 return elfcore_grok_pstatus (abfd, note);
9967 #endif
9968
9969 #if defined (HAVE_LWPSTATUS_T)
9970 case NT_LWPSTATUS:
9971 return elfcore_grok_lwpstatus (abfd, note);
9972 #endif
9973
9974 case NT_FPREGSET: /* FIXME: rename to NT_PRFPREG */
9975 return elfcore_grok_prfpreg (abfd, note);
9976
9977 case NT_WIN32PSTATUS:
9978 return elfcore_grok_win32pstatus (abfd, note);
9979
9980 case NT_PRXFPREG: /* Linux SSE extension */
9981 if (note->namesz == 6
9982 && strcmp (note->namedata, "LINUX") == 0)
9983 return elfcore_grok_prxfpreg (abfd, note);
9984 else
9985 return TRUE;
9986
9987 case NT_X86_XSTATE: /* Linux XSAVE extension */
9988 if (note->namesz == 6
9989 && strcmp (note->namedata, "LINUX") == 0)
9990 return elfcore_grok_xstatereg (abfd, note);
9991 else
9992 return TRUE;
9993
9994 case NT_PPC_VMX:
9995 if (note->namesz == 6
9996 && strcmp (note->namedata, "LINUX") == 0)
9997 return elfcore_grok_ppc_vmx (abfd, note);
9998 else
9999 return TRUE;
10000
10001 case NT_PPC_VSX:
10002 if (note->namesz == 6
10003 && strcmp (note->namedata, "LINUX") == 0)
10004 return elfcore_grok_ppc_vsx (abfd, note);
10005 else
10006 return TRUE;
10007
10008 case NT_PPC_TAR:
10009 if (note->namesz == 6
10010 && strcmp (note->namedata, "LINUX") == 0)
10011 return elfcore_grok_ppc_tar (abfd, note);
10012 else
10013 return TRUE;
10014
10015 case NT_PPC_PPR:
10016 if (note->namesz == 6
10017 && strcmp (note->namedata, "LINUX") == 0)
10018 return elfcore_grok_ppc_ppr (abfd, note);
10019 else
10020 return TRUE;
10021
10022 case NT_PPC_DSCR:
10023 if (note->namesz == 6
10024 && strcmp (note->namedata, "LINUX") == 0)
10025 return elfcore_grok_ppc_dscr (abfd, note);
10026 else
10027 return TRUE;
10028
10029 case NT_PPC_EBB:
10030 if (note->namesz == 6
10031 && strcmp (note->namedata, "LINUX") == 0)
10032 return elfcore_grok_ppc_ebb (abfd, note);
10033 else
10034 return TRUE;
10035
10036 case NT_PPC_PMU:
10037 if (note->namesz == 6
10038 && strcmp (note->namedata, "LINUX") == 0)
10039 return elfcore_grok_ppc_pmu (abfd, note);
10040 else
10041 return TRUE;
10042
10043 case NT_PPC_TM_CGPR:
10044 if (note->namesz == 6
10045 && strcmp (note->namedata, "LINUX") == 0)
10046 return elfcore_grok_ppc_tm_cgpr (abfd, note);
10047 else
10048 return TRUE;
10049
10050 case NT_PPC_TM_CFPR:
10051 if (note->namesz == 6
10052 && strcmp (note->namedata, "LINUX") == 0)
10053 return elfcore_grok_ppc_tm_cfpr (abfd, note);
10054 else
10055 return TRUE;
10056
10057 case NT_PPC_TM_CVMX:
10058 if (note->namesz == 6
10059 && strcmp (note->namedata, "LINUX") == 0)
10060 return elfcore_grok_ppc_tm_cvmx (abfd, note);
10061 else
10062 return TRUE;
10063
10064 case NT_PPC_TM_CVSX:
10065 if (note->namesz == 6
10066 && strcmp (note->namedata, "LINUX") == 0)
10067 return elfcore_grok_ppc_tm_cvsx (abfd, note);
10068 else
10069 return TRUE;
10070
10071 case NT_PPC_TM_SPR:
10072 if (note->namesz == 6
10073 && strcmp (note->namedata, "LINUX") == 0)
10074 return elfcore_grok_ppc_tm_spr (abfd, note);
10075 else
10076 return TRUE;
10077
10078 case NT_PPC_TM_CTAR:
10079 if (note->namesz == 6
10080 && strcmp (note->namedata, "LINUX") == 0)
10081 return elfcore_grok_ppc_tm_ctar (abfd, note);
10082 else
10083 return TRUE;
10084
10085 case NT_PPC_TM_CPPR:
10086 if (note->namesz == 6
10087 && strcmp (note->namedata, "LINUX") == 0)
10088 return elfcore_grok_ppc_tm_cppr (abfd, note);
10089 else
10090 return TRUE;
10091
10092 case NT_PPC_TM_CDSCR:
10093 if (note->namesz == 6
10094 && strcmp (note->namedata, "LINUX") == 0)
10095 return elfcore_grok_ppc_tm_cdscr (abfd, note);
10096 else
10097 return TRUE;
10098
10099 case NT_S390_HIGH_GPRS:
10100 if (note->namesz == 6
10101 && strcmp (note->namedata, "LINUX") == 0)
10102 return elfcore_grok_s390_high_gprs (abfd, note);
10103 else
10104 return TRUE;
10105
10106 case NT_S390_TIMER:
10107 if (note->namesz == 6
10108 && strcmp (note->namedata, "LINUX") == 0)
10109 return elfcore_grok_s390_timer (abfd, note);
10110 else
10111 return TRUE;
10112
10113 case NT_S390_TODCMP:
10114 if (note->namesz == 6
10115 && strcmp (note->namedata, "LINUX") == 0)
10116 return elfcore_grok_s390_todcmp (abfd, note);
10117 else
10118 return TRUE;
10119
10120 case NT_S390_TODPREG:
10121 if (note->namesz == 6
10122 && strcmp (note->namedata, "LINUX") == 0)
10123 return elfcore_grok_s390_todpreg (abfd, note);
10124 else
10125 return TRUE;
10126
10127 case NT_S390_CTRS:
10128 if (note->namesz == 6
10129 && strcmp (note->namedata, "LINUX") == 0)
10130 return elfcore_grok_s390_ctrs (abfd, note);
10131 else
10132 return TRUE;
10133
10134 case NT_S390_PREFIX:
10135 if (note->namesz == 6
10136 && strcmp (note->namedata, "LINUX") == 0)
10137 return elfcore_grok_s390_prefix (abfd, note);
10138 else
10139 return TRUE;
10140
10141 case NT_S390_LAST_BREAK:
10142 if (note->namesz == 6
10143 && strcmp (note->namedata, "LINUX") == 0)
10144 return elfcore_grok_s390_last_break (abfd, note);
10145 else
10146 return TRUE;
10147
10148 case NT_S390_SYSTEM_CALL:
10149 if (note->namesz == 6
10150 && strcmp (note->namedata, "LINUX") == 0)
10151 return elfcore_grok_s390_system_call (abfd, note);
10152 else
10153 return TRUE;
10154
10155 case NT_S390_TDB:
10156 if (note->namesz == 6
10157 && strcmp (note->namedata, "LINUX") == 0)
10158 return elfcore_grok_s390_tdb (abfd, note);
10159 else
10160 return TRUE;
10161
10162 case NT_S390_VXRS_LOW:
10163 if (note->namesz == 6
10164 && strcmp (note->namedata, "LINUX") == 0)
10165 return elfcore_grok_s390_vxrs_low (abfd, note);
10166 else
10167 return TRUE;
10168
10169 case NT_S390_VXRS_HIGH:
10170 if (note->namesz == 6
10171 && strcmp (note->namedata, "LINUX") == 0)
10172 return elfcore_grok_s390_vxrs_high (abfd, note);
10173 else
10174 return TRUE;
10175
10176 case NT_S390_GS_CB:
10177 if (note->namesz == 6
10178 && strcmp (note->namedata, "LINUX") == 0)
10179 return elfcore_grok_s390_gs_cb (abfd, note);
10180 else
10181 return TRUE;
10182
10183 case NT_S390_GS_BC:
10184 if (note->namesz == 6
10185 && strcmp (note->namedata, "LINUX") == 0)
10186 return elfcore_grok_s390_gs_bc (abfd, note);
10187 else
10188 return TRUE;
10189
10190 case NT_ARM_VFP:
10191 if (note->namesz == 6
10192 && strcmp (note->namedata, "LINUX") == 0)
10193 return elfcore_grok_arm_vfp (abfd, note);
10194 else
10195 return TRUE;
10196
10197 case NT_ARM_TLS:
10198 if (note->namesz == 6
10199 && strcmp (note->namedata, "LINUX") == 0)
10200 return elfcore_grok_aarch_tls (abfd, note);
10201 else
10202 return TRUE;
10203
10204 case NT_ARM_HW_BREAK:
10205 if (note->namesz == 6
10206 && strcmp (note->namedata, "LINUX") == 0)
10207 return elfcore_grok_aarch_hw_break (abfd, note);
10208 else
10209 return TRUE;
10210
10211 case NT_ARM_HW_WATCH:
10212 if (note->namesz == 6
10213 && strcmp (note->namedata, "LINUX") == 0)
10214 return elfcore_grok_aarch_hw_watch (abfd, note);
10215 else
10216 return TRUE;
10217
10218 case NT_ARM_SVE:
10219 if (note->namesz == 6
10220 && strcmp (note->namedata, "LINUX") == 0)
10221 return elfcore_grok_aarch_sve (abfd, note);
10222 else
10223 return TRUE;
10224
10225 case NT_ARM_PAC_MASK:
10226 if (note->namesz == 6
10227 && strcmp (note->namedata, "LINUX") == 0)
10228 return elfcore_grok_aarch_pauth (abfd, note);
10229 else
10230 return TRUE;
10231
10232 case NT_PRPSINFO:
10233 case NT_PSINFO:
10234 if (bed->elf_backend_grok_psinfo)
10235 if ((*bed->elf_backend_grok_psinfo) (abfd, note))
10236 return TRUE;
10237 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
10238 return elfcore_grok_psinfo (abfd, note);
10239 #else
10240 return TRUE;
10241 #endif
10242
10243 case NT_AUXV:
10244 return elfcore_make_auxv_note_section (abfd, note, 0);
10245
10246 case NT_FILE:
10247 return elfcore_make_note_pseudosection (abfd, ".note.linuxcore.file",
10248 note);
10249
10250 case NT_SIGINFO:
10251 return elfcore_make_note_pseudosection (abfd, ".note.linuxcore.siginfo",
10252 note);
10253
10254 }
10255 }
10256
10257 static bfd_boolean
10258 elfobj_grok_gnu_build_id (bfd *abfd, Elf_Internal_Note *note)
10259 {
10260 struct bfd_build_id* build_id;
10261
10262 if (note->descsz == 0)
10263 return FALSE;
10264
10265 build_id = bfd_alloc (abfd, sizeof (struct bfd_build_id) - 1 + note->descsz);
10266 if (build_id == NULL)
10267 return FALSE;
10268
10269 build_id->size = note->descsz;
10270 memcpy (build_id->data, note->descdata, note->descsz);
10271 abfd->build_id = build_id;
10272
10273 return TRUE;
10274 }
10275
10276 static bfd_boolean
10277 elfobj_grok_gnu_note (bfd *abfd, Elf_Internal_Note *note)
10278 {
10279 switch (note->type)
10280 {
10281 default:
10282 return TRUE;
10283
10284 case NT_GNU_PROPERTY_TYPE_0:
10285 return _bfd_elf_parse_gnu_properties (abfd, note);
10286
10287 case NT_GNU_BUILD_ID:
10288 return elfobj_grok_gnu_build_id (abfd, note);
10289 }
10290 }
10291
10292 static bfd_boolean
10293 elfobj_grok_stapsdt_note_1 (bfd *abfd, Elf_Internal_Note *note)
10294 {
10295 struct sdt_note *cur =
10296 (struct sdt_note *) bfd_alloc (abfd,
10297 sizeof (struct sdt_note) + note->descsz);
10298
10299 cur->next = (struct sdt_note *) (elf_tdata (abfd))->sdt_note_head;
10300 cur->size = (bfd_size_type) note->descsz;
10301 memcpy (cur->data, note->descdata, note->descsz);
10302
10303 elf_tdata (abfd)->sdt_note_head = cur;
10304
10305 return TRUE;
10306 }
10307
10308 static bfd_boolean
10309 elfobj_grok_stapsdt_note (bfd *abfd, Elf_Internal_Note *note)
10310 {
10311 switch (note->type)
10312 {
10313 case NT_STAPSDT:
10314 return elfobj_grok_stapsdt_note_1 (abfd, note);
10315
10316 default:
10317 return TRUE;
10318 }
10319 }
10320
10321 static bfd_boolean
10322 elfcore_grok_freebsd_psinfo (bfd *abfd, Elf_Internal_Note *note)
10323 {
10324 size_t offset;
10325
10326 switch (elf_elfheader (abfd)->e_ident[EI_CLASS])
10327 {
10328 case ELFCLASS32:
10329 if (note->descsz < 108)
10330 return FALSE;
10331 break;
10332
10333 case ELFCLASS64:
10334 if (note->descsz < 120)
10335 return FALSE;
10336 break;
10337
10338 default:
10339 return FALSE;
10340 }
10341
10342 /* Check for version 1 in pr_version. */
10343 if (bfd_h_get_32 (abfd, (bfd_byte *) note->descdata) != 1)
10344 return FALSE;
10345
10346 offset = 4;
10347
10348 /* Skip over pr_psinfosz. */
10349 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS32)
10350 offset += 4;
10351 else
10352 {
10353 offset += 4; /* Padding before pr_psinfosz. */
10354 offset += 8;
10355 }
10356
10357 /* pr_fname is PRFNAMESZ (16) + 1 bytes in size. */
10358 elf_tdata (abfd)->core->program
10359 = _bfd_elfcore_strndup (abfd, note->descdata + offset, 17);
10360 offset += 17;
10361
10362 /* pr_psargs is PRARGSZ (80) + 1 bytes in size. */
10363 elf_tdata (abfd)->core->command
10364 = _bfd_elfcore_strndup (abfd, note->descdata + offset, 81);
10365 offset += 81;
10366
10367 /* Padding before pr_pid. */
10368 offset += 2;
10369
10370 /* The pr_pid field was added in version "1a". */
10371 if (note->descsz < offset + 4)
10372 return TRUE;
10373
10374 elf_tdata (abfd)->core->pid
10375 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset);
10376
10377 return TRUE;
10378 }
10379
10380 static bfd_boolean
10381 elfcore_grok_freebsd_prstatus (bfd *abfd, Elf_Internal_Note *note)
10382 {
10383 size_t offset;
10384 size_t size;
10385 size_t min_size;
10386
10387 /* Compute offset of pr_getregsz, skipping over pr_statussz.
10388 Also compute minimum size of this note. */
10389 switch (elf_elfheader (abfd)->e_ident[EI_CLASS])
10390 {
10391 case ELFCLASS32:
10392 offset = 4 + 4;
10393 min_size = offset + (4 * 2) + 4 + 4 + 4;
10394 break;
10395
10396 case ELFCLASS64:
10397 offset = 4 + 4 + 8; /* Includes padding before pr_statussz. */
10398 min_size = offset + (8 * 2) + 4 + 4 + 4 + 4;
10399 break;
10400
10401 default:
10402 return FALSE;
10403 }
10404
10405 if (note->descsz < min_size)
10406 return FALSE;
10407
10408 /* Check for version 1 in pr_version. */
10409 if (bfd_h_get_32 (abfd, (bfd_byte *) note->descdata) != 1)
10410 return FALSE;
10411
10412 /* Extract size of pr_reg from pr_gregsetsz. */
10413 /* Skip over pr_gregsetsz and pr_fpregsetsz. */
10414 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS32)
10415 {
10416 size = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset);
10417 offset += 4 * 2;
10418 }
10419 else
10420 {
10421 size = bfd_h_get_64 (abfd, (bfd_byte *) note->descdata + offset);
10422 offset += 8 * 2;
10423 }
10424
10425 /* Skip over pr_osreldate. */
10426 offset += 4;
10427
10428 /* Read signal from pr_cursig. */
10429 if (elf_tdata (abfd)->core->signal == 0)
10430 elf_tdata (abfd)->core->signal
10431 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset);
10432 offset += 4;
10433
10434 /* Read TID from pr_pid. */
10435 elf_tdata (abfd)->core->lwpid
10436 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset);
10437 offset += 4;
10438
10439 /* Padding before pr_reg. */
10440 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
10441 offset += 4;
10442
10443 /* Make sure that there is enough data remaining in the note. */
10444 if ((note->descsz - offset) < size)
10445 return FALSE;
10446
10447 /* Make a ".reg/999" section and a ".reg" section. */
10448 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
10449 size, note->descpos + offset);
10450 }
10451
10452 static bfd_boolean
10453 elfcore_grok_freebsd_note (bfd *abfd, Elf_Internal_Note *note)
10454 {
10455 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10456
10457 switch (note->type)
10458 {
10459 case NT_PRSTATUS:
10460 if (bed->elf_backend_grok_freebsd_prstatus)
10461 if ((*bed->elf_backend_grok_freebsd_prstatus) (abfd, note))
10462 return TRUE;
10463 return elfcore_grok_freebsd_prstatus (abfd, note);
10464
10465 case NT_FPREGSET:
10466 return elfcore_grok_prfpreg (abfd, note);
10467
10468 case NT_PRPSINFO:
10469 return elfcore_grok_freebsd_psinfo (abfd, note);
10470
10471 case NT_FREEBSD_THRMISC:
10472 if (note->namesz == 8)
10473 return elfcore_make_note_pseudosection (abfd, ".thrmisc", note);
10474 else
10475 return TRUE;
10476
10477 case NT_FREEBSD_PROCSTAT_PROC:
10478 return elfcore_make_note_pseudosection (abfd, ".note.freebsdcore.proc",
10479 note);
10480
10481 case NT_FREEBSD_PROCSTAT_FILES:
10482 return elfcore_make_note_pseudosection (abfd, ".note.freebsdcore.files",
10483 note);
10484
10485 case NT_FREEBSD_PROCSTAT_VMMAP:
10486 return elfcore_make_note_pseudosection (abfd, ".note.freebsdcore.vmmap",
10487 note);
10488
10489 case NT_FREEBSD_PROCSTAT_AUXV:
10490 return elfcore_make_auxv_note_section (abfd, note, 4);
10491
10492 case NT_X86_XSTATE:
10493 if (note->namesz == 8)
10494 return elfcore_grok_xstatereg (abfd, note);
10495 else
10496 return TRUE;
10497
10498 case NT_FREEBSD_PTLWPINFO:
10499 return elfcore_make_note_pseudosection (abfd, ".note.freebsdcore.lwpinfo",
10500 note);
10501
10502 case NT_ARM_VFP:
10503 return elfcore_grok_arm_vfp (abfd, note);
10504
10505 default:
10506 return TRUE;
10507 }
10508 }
10509
10510 static bfd_boolean
10511 elfcore_netbsd_get_lwpid (Elf_Internal_Note *note, int *lwpidp)
10512 {
10513 char *cp;
10514
10515 cp = strchr (note->namedata, '@');
10516 if (cp != NULL)
10517 {
10518 *lwpidp = atoi(cp + 1);
10519 return TRUE;
10520 }
10521 return FALSE;
10522 }
10523
10524 static bfd_boolean
10525 elfcore_grok_netbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
10526 {
10527 if (note->descsz <= 0x7c + 31)
10528 return FALSE;
10529
10530 /* Signal number at offset 0x08. */
10531 elf_tdata (abfd)->core->signal
10532 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
10533
10534 /* Process ID at offset 0x50. */
10535 elf_tdata (abfd)->core->pid
10536 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x50);
10537
10538 /* Command name at 0x7c (max 32 bytes, including nul). */
10539 elf_tdata (abfd)->core->command
10540 = _bfd_elfcore_strndup (abfd, note->descdata + 0x7c, 31);
10541
10542 return elfcore_make_note_pseudosection (abfd, ".note.netbsdcore.procinfo",
10543 note);
10544 }
10545
10546 static bfd_boolean
10547 elfcore_grok_netbsd_note (bfd *abfd, Elf_Internal_Note *note)
10548 {
10549 int lwp;
10550
10551 if (elfcore_netbsd_get_lwpid (note, &lwp))
10552 elf_tdata (abfd)->core->lwpid = lwp;
10553
10554 switch (note->type)
10555 {
10556 case NT_NETBSDCORE_PROCINFO:
10557 /* NetBSD-specific core "procinfo". Note that we expect to
10558 find this note before any of the others, which is fine,
10559 since the kernel writes this note out first when it
10560 creates a core file. */
10561 return elfcore_grok_netbsd_procinfo (abfd, note);
10562 #ifdef NT_NETBSDCORE_AUXV
10563 case NT_NETBSDCORE_AUXV:
10564 /* NetBSD-specific Elf Auxiliary Vector data. */
10565 return elfcore_make_auxv_note_section (abfd, note, 4);
10566 #endif
10567 default:
10568 break;
10569 }
10570
10571 /* As of March 2017 there are no other machine-independent notes
10572 defined for NetBSD core files. If the note type is less
10573 than the start of the machine-dependent note types, we don't
10574 understand it. */
10575
10576 if (note->type < NT_NETBSDCORE_FIRSTMACH)
10577 return TRUE;
10578
10579
10580 switch (bfd_get_arch (abfd))
10581 {
10582 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
10583 PT_GETFPREGS == mach+2. */
10584
10585 case bfd_arch_alpha:
10586 case bfd_arch_sparc:
10587 switch (note->type)
10588 {
10589 case NT_NETBSDCORE_FIRSTMACH+0:
10590 return elfcore_make_note_pseudosection (abfd, ".reg", note);
10591
10592 case NT_NETBSDCORE_FIRSTMACH+2:
10593 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
10594
10595 default:
10596 return TRUE;
10597 }
10598
10599 /* On SuperH, PT_GETREGS == mach+3 and PT_GETFPREGS == mach+5.
10600 There's also old PT___GETREGS40 == mach + 1 for old reg
10601 structure which lacks GBR. */
10602
10603 case bfd_arch_sh:
10604 switch (note->type)
10605 {
10606 case NT_NETBSDCORE_FIRSTMACH+3:
10607 return elfcore_make_note_pseudosection (abfd, ".reg", note);
10608
10609 case NT_NETBSDCORE_FIRSTMACH+5:
10610 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
10611
10612 default:
10613 return TRUE;
10614 }
10615
10616 /* On all other arch's, PT_GETREGS == mach+1 and
10617 PT_GETFPREGS == mach+3. */
10618
10619 default:
10620 switch (note->type)
10621 {
10622 case NT_NETBSDCORE_FIRSTMACH+1:
10623 return elfcore_make_note_pseudosection (abfd, ".reg", note);
10624
10625 case NT_NETBSDCORE_FIRSTMACH+3:
10626 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
10627
10628 default:
10629 return TRUE;
10630 }
10631 }
10632 /* NOTREACHED */
10633 }
10634
10635 static bfd_boolean
10636 elfcore_grok_openbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
10637 {
10638 if (note->descsz <= 0x48 + 31)
10639 return FALSE;
10640
10641 /* Signal number at offset 0x08. */
10642 elf_tdata (abfd)->core->signal
10643 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
10644
10645 /* Process ID at offset 0x20. */
10646 elf_tdata (abfd)->core->pid
10647 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x20);
10648
10649 /* Command name at 0x48 (max 32 bytes, including nul). */
10650 elf_tdata (abfd)->core->command
10651 = _bfd_elfcore_strndup (abfd, note->descdata + 0x48, 31);
10652
10653 return TRUE;
10654 }
10655
10656 static bfd_boolean
10657 elfcore_grok_openbsd_note (bfd *abfd, Elf_Internal_Note *note)
10658 {
10659 if (note->type == NT_OPENBSD_PROCINFO)
10660 return elfcore_grok_openbsd_procinfo (abfd, note);
10661
10662 if (note->type == NT_OPENBSD_REGS)
10663 return elfcore_make_note_pseudosection (abfd, ".reg", note);
10664
10665 if (note->type == NT_OPENBSD_FPREGS)
10666 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
10667
10668 if (note->type == NT_OPENBSD_XFPREGS)
10669 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
10670
10671 if (note->type == NT_OPENBSD_AUXV)
10672 return elfcore_make_auxv_note_section (abfd, note, 0);
10673
10674 if (note->type == NT_OPENBSD_WCOOKIE)
10675 {
10676 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".wcookie",
10677 SEC_HAS_CONTENTS);
10678
10679 if (sect == NULL)
10680 return FALSE;
10681 sect->size = note->descsz;
10682 sect->filepos = note->descpos;
10683 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
10684
10685 return TRUE;
10686 }
10687
10688 return TRUE;
10689 }
10690
10691 static bfd_boolean
10692 elfcore_grok_nto_status (bfd *abfd, Elf_Internal_Note *note, long *tid)
10693 {
10694 void *ddata = note->descdata;
10695 char buf[100];
10696 char *name;
10697 asection *sect;
10698 short sig;
10699 unsigned flags;
10700
10701 if (note->descsz < 16)
10702 return FALSE;
10703
10704 /* nto_procfs_status 'pid' field is at offset 0. */
10705 elf_tdata (abfd)->core->pid = bfd_get_32 (abfd, (bfd_byte *) ddata);
10706
10707 /* nto_procfs_status 'tid' field is at offset 4. Pass it back. */
10708 *tid = bfd_get_32 (abfd, (bfd_byte *) ddata + 4);
10709
10710 /* nto_procfs_status 'flags' field is at offset 8. */
10711 flags = bfd_get_32 (abfd, (bfd_byte *) ddata + 8);
10712
10713 /* nto_procfs_status 'what' field is at offset 14. */
10714 if ((sig = bfd_get_16 (abfd, (bfd_byte *) ddata + 14)) > 0)
10715 {
10716 elf_tdata (abfd)->core->signal = sig;
10717 elf_tdata (abfd)->core->lwpid = *tid;
10718 }
10719
10720 /* _DEBUG_FLAG_CURTID (current thread) is 0x80. Some cores
10721 do not come from signals so we make sure we set the current
10722 thread just in case. */
10723 if (flags & 0x00000080)
10724 elf_tdata (abfd)->core->lwpid = *tid;
10725
10726 /* Make a ".qnx_core_status/%d" section. */
10727 sprintf (buf, ".qnx_core_status/%ld", *tid);
10728
10729 name = (char *) bfd_alloc (abfd, strlen (buf) + 1);
10730 if (name == NULL)
10731 return FALSE;
10732 strcpy (name, buf);
10733
10734 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
10735 if (sect == NULL)
10736 return FALSE;
10737
10738 sect->size = note->descsz;
10739 sect->filepos = note->descpos;
10740 sect->alignment_power = 2;
10741
10742 return (elfcore_maybe_make_sect (abfd, ".qnx_core_status", sect));
10743 }
10744
10745 static bfd_boolean
10746 elfcore_grok_nto_regs (bfd *abfd,
10747 Elf_Internal_Note *note,
10748 long tid,
10749 char *base)
10750 {
10751 char buf[100];
10752 char *name;
10753 asection *sect;
10754
10755 /* Make a "(base)/%d" section. */
10756 sprintf (buf, "%s/%ld", base, tid);
10757
10758 name = (char *) bfd_alloc (abfd, strlen (buf) + 1);
10759 if (name == NULL)
10760 return FALSE;
10761 strcpy (name, buf);
10762
10763 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
10764 if (sect == NULL)
10765 return FALSE;
10766
10767 sect->size = note->descsz;
10768 sect->filepos = note->descpos;
10769 sect->alignment_power = 2;
10770
10771 /* This is the current thread. */
10772 if (elf_tdata (abfd)->core->lwpid == tid)
10773 return elfcore_maybe_make_sect (abfd, base, sect);
10774
10775 return TRUE;
10776 }
10777
10778 #define BFD_QNT_CORE_INFO 7
10779 #define BFD_QNT_CORE_STATUS 8
10780 #define BFD_QNT_CORE_GREG 9
10781 #define BFD_QNT_CORE_FPREG 10
10782
10783 static bfd_boolean
10784 elfcore_grok_nto_note (bfd *abfd, Elf_Internal_Note *note)
10785 {
10786 /* Every GREG section has a STATUS section before it. Store the
10787 tid from the previous call to pass down to the next gregs
10788 function. */
10789 static long tid = 1;
10790
10791 switch (note->type)
10792 {
10793 case BFD_QNT_CORE_INFO:
10794 return elfcore_make_note_pseudosection (abfd, ".qnx_core_info", note);
10795 case BFD_QNT_CORE_STATUS:
10796 return elfcore_grok_nto_status (abfd, note, &tid);
10797 case BFD_QNT_CORE_GREG:
10798 return elfcore_grok_nto_regs (abfd, note, tid, ".reg");
10799 case BFD_QNT_CORE_FPREG:
10800 return elfcore_grok_nto_regs (abfd, note, tid, ".reg2");
10801 default:
10802 return TRUE;
10803 }
10804 }
10805
10806 static bfd_boolean
10807 elfcore_grok_spu_note (bfd *abfd, Elf_Internal_Note *note)
10808 {
10809 char *name;
10810 asection *sect;
10811 size_t len;
10812
10813 /* Use note name as section name. */
10814 len = note->namesz;
10815 name = (char *) bfd_alloc (abfd, len);
10816 if (name == NULL)
10817 return FALSE;
10818 memcpy (name, note->namedata, len);
10819 name[len - 1] = '\0';
10820
10821 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
10822 if (sect == NULL)
10823 return FALSE;
10824
10825 sect->size = note->descsz;
10826 sect->filepos = note->descpos;
10827 sect->alignment_power = 1;
10828
10829 return TRUE;
10830 }
10831
10832 /* Function: elfcore_write_note
10833
10834 Inputs:
10835 buffer to hold note, and current size of buffer
10836 name of note
10837 type of note
10838 data for note
10839 size of data for note
10840
10841 Writes note to end of buffer. ELF64 notes are written exactly as
10842 for ELF32, despite the current (as of 2006) ELF gabi specifying
10843 that they ought to have 8-byte namesz and descsz field, and have
10844 8-byte alignment. Other writers, eg. Linux kernel, do the same.
10845
10846 Return:
10847 Pointer to realloc'd buffer, *BUFSIZ updated. */
10848
10849 char *
10850 elfcore_write_note (bfd *abfd,
10851 char *buf,
10852 int *bufsiz,
10853 const char *name,
10854 int type,
10855 const void *input,
10856 int size)
10857 {
10858 Elf_External_Note *xnp;
10859 size_t namesz;
10860 size_t newspace;
10861 char *dest;
10862
10863 namesz = 0;
10864 if (name != NULL)
10865 namesz = strlen (name) + 1;
10866
10867 newspace = 12 + ((namesz + 3) & -4) + ((size + 3) & -4);
10868
10869 buf = (char *) realloc (buf, *bufsiz + newspace);
10870 if (buf == NULL)
10871 return buf;
10872 dest = buf + *bufsiz;
10873 *bufsiz += newspace;
10874 xnp = (Elf_External_Note *) dest;
10875 H_PUT_32 (abfd, namesz, xnp->namesz);
10876 H_PUT_32 (abfd, size, xnp->descsz);
10877 H_PUT_32 (abfd, type, xnp->type);
10878 dest = xnp->name;
10879 if (name != NULL)
10880 {
10881 memcpy (dest, name, namesz);
10882 dest += namesz;
10883 while (namesz & 3)
10884 {
10885 *dest++ = '\0';
10886 ++namesz;
10887 }
10888 }
10889 memcpy (dest, input, size);
10890 dest += size;
10891 while (size & 3)
10892 {
10893 *dest++ = '\0';
10894 ++size;
10895 }
10896 return buf;
10897 }
10898
10899 /* gcc-8 warns (*) on all the strncpy calls in this function about
10900 possible string truncation. The "truncation" is not a bug. We
10901 have an external representation of structs with fields that are not
10902 necessarily NULL terminated and corresponding internal
10903 representation fields that are one larger so that they can always
10904 be NULL terminated.
10905 gcc versions between 4.2 and 4.6 do not allow pragma control of
10906 diagnostics inside functions, giving a hard error if you try to use
10907 the finer control available with later versions.
10908 gcc prior to 4.2 warns about diagnostic push and pop.
10909 gcc-5, gcc-6 and gcc-7 warn that -Wstringop-truncation is unknown,
10910 unless you also add #pragma GCC diagnostic ignored "-Wpragma".
10911 (*) Depending on your system header files! */
10912 #if GCC_VERSION >= 8000
10913 # pragma GCC diagnostic push
10914 # pragma GCC diagnostic ignored "-Wstringop-truncation"
10915 #endif
10916 char *
10917 elfcore_write_prpsinfo (bfd *abfd,
10918 char *buf,
10919 int *bufsiz,
10920 const char *fname,
10921 const char *psargs)
10922 {
10923 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10924
10925 if (bed->elf_backend_write_core_note != NULL)
10926 {
10927 char *ret;
10928 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
10929 NT_PRPSINFO, fname, psargs);
10930 if (ret != NULL)
10931 return ret;
10932 }
10933
10934 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
10935 # if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
10936 if (bed->s->elfclass == ELFCLASS32)
10937 {
10938 # if defined (HAVE_PSINFO32_T)
10939 psinfo32_t data;
10940 int note_type = NT_PSINFO;
10941 # else
10942 prpsinfo32_t data;
10943 int note_type = NT_PRPSINFO;
10944 # endif
10945
10946 memset (&data, 0, sizeof (data));
10947 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
10948 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
10949 return elfcore_write_note (abfd, buf, bufsiz,
10950 "CORE", note_type, &data, sizeof (data));
10951 }
10952 else
10953 # endif
10954 {
10955 # if defined (HAVE_PSINFO_T)
10956 psinfo_t data;
10957 int note_type = NT_PSINFO;
10958 # else
10959 prpsinfo_t data;
10960 int note_type = NT_PRPSINFO;
10961 # endif
10962
10963 memset (&data, 0, sizeof (data));
10964 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
10965 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
10966 return elfcore_write_note (abfd, buf, bufsiz,
10967 "CORE", note_type, &data, sizeof (data));
10968 }
10969 #endif /* PSINFO_T or PRPSINFO_T */
10970
10971 free (buf);
10972 return NULL;
10973 }
10974 #if GCC_VERSION >= 8000
10975 # pragma GCC diagnostic pop
10976 #endif
10977
10978 char *
10979 elfcore_write_linux_prpsinfo32
10980 (bfd *abfd, char *buf, int *bufsiz,
10981 const struct elf_internal_linux_prpsinfo *prpsinfo)
10982 {
10983 if (get_elf_backend_data (abfd)->linux_prpsinfo32_ugid16)
10984 {
10985 struct elf_external_linux_prpsinfo32_ugid16 data;
10986
10987 swap_linux_prpsinfo32_ugid16_out (abfd, prpsinfo, &data);
10988 return elfcore_write_note (abfd, buf, bufsiz, "CORE", NT_PRPSINFO,
10989 &data, sizeof (data));
10990 }
10991 else
10992 {
10993 struct elf_external_linux_prpsinfo32_ugid32 data;
10994
10995 swap_linux_prpsinfo32_ugid32_out (abfd, prpsinfo, &data);
10996 return elfcore_write_note (abfd, buf, bufsiz, "CORE", NT_PRPSINFO,
10997 &data, sizeof (data));
10998 }
10999 }
11000
11001 char *
11002 elfcore_write_linux_prpsinfo64
11003 (bfd *abfd, char *buf, int *bufsiz,
11004 const struct elf_internal_linux_prpsinfo *prpsinfo)
11005 {
11006 if (get_elf_backend_data (abfd)->linux_prpsinfo64_ugid16)
11007 {
11008 struct elf_external_linux_prpsinfo64_ugid16 data;
11009
11010 swap_linux_prpsinfo64_ugid16_out (abfd, prpsinfo, &data);
11011 return elfcore_write_note (abfd, buf, bufsiz,
11012 "CORE", NT_PRPSINFO, &data, sizeof (data));
11013 }
11014 else
11015 {
11016 struct elf_external_linux_prpsinfo64_ugid32 data;
11017
11018 swap_linux_prpsinfo64_ugid32_out (abfd, prpsinfo, &data);
11019 return elfcore_write_note (abfd, buf, bufsiz,
11020 "CORE", NT_PRPSINFO, &data, sizeof (data));
11021 }
11022 }
11023
11024 char *
11025 elfcore_write_prstatus (bfd *abfd,
11026 char *buf,
11027 int *bufsiz,
11028 long pid,
11029 int cursig,
11030 const void *gregs)
11031 {
11032 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11033
11034 if (bed->elf_backend_write_core_note != NULL)
11035 {
11036 char *ret;
11037 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
11038 NT_PRSTATUS,
11039 pid, cursig, gregs);
11040 if (ret != NULL)
11041 return ret;
11042 }
11043
11044 #if defined (HAVE_PRSTATUS_T)
11045 #if defined (HAVE_PRSTATUS32_T)
11046 if (bed->s->elfclass == ELFCLASS32)
11047 {
11048 prstatus32_t prstat;
11049
11050 memset (&prstat, 0, sizeof (prstat));
11051 prstat.pr_pid = pid;
11052 prstat.pr_cursig = cursig;
11053 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
11054 return elfcore_write_note (abfd, buf, bufsiz, "CORE",
11055 NT_PRSTATUS, &prstat, sizeof (prstat));
11056 }
11057 else
11058 #endif
11059 {
11060 prstatus_t prstat;
11061
11062 memset (&prstat, 0, sizeof (prstat));
11063 prstat.pr_pid = pid;
11064 prstat.pr_cursig = cursig;
11065 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
11066 return elfcore_write_note (abfd, buf, bufsiz, "CORE",
11067 NT_PRSTATUS, &prstat, sizeof (prstat));
11068 }
11069 #endif /* HAVE_PRSTATUS_T */
11070
11071 free (buf);
11072 return NULL;
11073 }
11074
11075 #if defined (HAVE_LWPSTATUS_T)
11076 char *
11077 elfcore_write_lwpstatus (bfd *abfd,
11078 char *buf,
11079 int *bufsiz,
11080 long pid,
11081 int cursig,
11082 const void *gregs)
11083 {
11084 lwpstatus_t lwpstat;
11085 const char *note_name = "CORE";
11086
11087 memset (&lwpstat, 0, sizeof (lwpstat));
11088 lwpstat.pr_lwpid = pid >> 16;
11089 lwpstat.pr_cursig = cursig;
11090 #if defined (HAVE_LWPSTATUS_T_PR_REG)
11091 memcpy (&lwpstat.pr_reg, gregs, sizeof (lwpstat.pr_reg));
11092 #elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
11093 #if !defined(gregs)
11094 memcpy (lwpstat.pr_context.uc_mcontext.gregs,
11095 gregs, sizeof (lwpstat.pr_context.uc_mcontext.gregs));
11096 #else
11097 memcpy (lwpstat.pr_context.uc_mcontext.__gregs,
11098 gregs, sizeof (lwpstat.pr_context.uc_mcontext.__gregs));
11099 #endif
11100 #endif
11101 return elfcore_write_note (abfd, buf, bufsiz, note_name,
11102 NT_LWPSTATUS, &lwpstat, sizeof (lwpstat));
11103 }
11104 #endif /* HAVE_LWPSTATUS_T */
11105
11106 #if defined (HAVE_PSTATUS_T)
11107 char *
11108 elfcore_write_pstatus (bfd *abfd,
11109 char *buf,
11110 int *bufsiz,
11111 long pid,
11112 int cursig ATTRIBUTE_UNUSED,
11113 const void *gregs ATTRIBUTE_UNUSED)
11114 {
11115 const char *note_name = "CORE";
11116 #if defined (HAVE_PSTATUS32_T)
11117 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11118
11119 if (bed->s->elfclass == ELFCLASS32)
11120 {
11121 pstatus32_t pstat;
11122
11123 memset (&pstat, 0, sizeof (pstat));
11124 pstat.pr_pid = pid & 0xffff;
11125 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
11126 NT_PSTATUS, &pstat, sizeof (pstat));
11127 return buf;
11128 }
11129 else
11130 #endif
11131 {
11132 pstatus_t pstat;
11133
11134 memset (&pstat, 0, sizeof (pstat));
11135 pstat.pr_pid = pid & 0xffff;
11136 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
11137 NT_PSTATUS, &pstat, sizeof (pstat));
11138 return buf;
11139 }
11140 }
11141 #endif /* HAVE_PSTATUS_T */
11142
11143 char *
11144 elfcore_write_prfpreg (bfd *abfd,
11145 char *buf,
11146 int *bufsiz,
11147 const void *fpregs,
11148 int size)
11149 {
11150 const char *note_name = "CORE";
11151 return elfcore_write_note (abfd, buf, bufsiz,
11152 note_name, NT_FPREGSET, fpregs, size);
11153 }
11154
11155 char *
11156 elfcore_write_prxfpreg (bfd *abfd,
11157 char *buf,
11158 int *bufsiz,
11159 const void *xfpregs,
11160 int size)
11161 {
11162 char *note_name = "LINUX";
11163 return elfcore_write_note (abfd, buf, bufsiz,
11164 note_name, NT_PRXFPREG, xfpregs, size);
11165 }
11166
11167 char *
11168 elfcore_write_xstatereg (bfd *abfd, char *buf, int *bufsiz,
11169 const void *xfpregs, int size)
11170 {
11171 char *note_name;
11172 if (get_elf_backend_data (abfd)->elf_osabi == ELFOSABI_FREEBSD)
11173 note_name = "FreeBSD";
11174 else
11175 note_name = "LINUX";
11176 return elfcore_write_note (abfd, buf, bufsiz,
11177 note_name, NT_X86_XSTATE, xfpregs, size);
11178 }
11179
11180 char *
11181 elfcore_write_ppc_vmx (bfd *abfd,
11182 char *buf,
11183 int *bufsiz,
11184 const void *ppc_vmx,
11185 int size)
11186 {
11187 char *note_name = "LINUX";
11188 return elfcore_write_note (abfd, buf, bufsiz,
11189 note_name, NT_PPC_VMX, ppc_vmx, size);
11190 }
11191
11192 char *
11193 elfcore_write_ppc_vsx (bfd *abfd,
11194 char *buf,
11195 int *bufsiz,
11196 const void *ppc_vsx,
11197 int size)
11198 {
11199 char *note_name = "LINUX";
11200 return elfcore_write_note (abfd, buf, bufsiz,
11201 note_name, NT_PPC_VSX, ppc_vsx, size);
11202 }
11203
11204 char *
11205 elfcore_write_ppc_tar (bfd *abfd,
11206 char *buf,
11207 int *bufsiz,
11208 const void *ppc_tar,
11209 int size)
11210 {
11211 char *note_name = "LINUX";
11212 return elfcore_write_note (abfd, buf, bufsiz,
11213 note_name, NT_PPC_TAR, ppc_tar, size);
11214 }
11215
11216 char *
11217 elfcore_write_ppc_ppr (bfd *abfd,
11218 char *buf,
11219 int *bufsiz,
11220 const void *ppc_ppr,
11221 int size)
11222 {
11223 char *note_name = "LINUX";
11224 return elfcore_write_note (abfd, buf, bufsiz,
11225 note_name, NT_PPC_PPR, ppc_ppr, size);
11226 }
11227
11228 char *
11229 elfcore_write_ppc_dscr (bfd *abfd,
11230 char *buf,
11231 int *bufsiz,
11232 const void *ppc_dscr,
11233 int size)
11234 {
11235 char *note_name = "LINUX";
11236 return elfcore_write_note (abfd, buf, bufsiz,
11237 note_name, NT_PPC_DSCR, ppc_dscr, size);
11238 }
11239
11240 char *
11241 elfcore_write_ppc_ebb (bfd *abfd,
11242 char *buf,
11243 int *bufsiz,
11244 const void *ppc_ebb,
11245 int size)
11246 {
11247 char *note_name = "LINUX";
11248 return elfcore_write_note (abfd, buf, bufsiz,
11249 note_name, NT_PPC_EBB, ppc_ebb, size);
11250 }
11251
11252 char *
11253 elfcore_write_ppc_pmu (bfd *abfd,
11254 char *buf,
11255 int *bufsiz,
11256 const void *ppc_pmu,
11257 int size)
11258 {
11259 char *note_name = "LINUX";
11260 return elfcore_write_note (abfd, buf, bufsiz,
11261 note_name, NT_PPC_PMU, ppc_pmu, size);
11262 }
11263
11264 char *
11265 elfcore_write_ppc_tm_cgpr (bfd *abfd,
11266 char *buf,
11267 int *bufsiz,
11268 const void *ppc_tm_cgpr,
11269 int size)
11270 {
11271 char *note_name = "LINUX";
11272 return elfcore_write_note (abfd, buf, bufsiz,
11273 note_name, NT_PPC_TM_CGPR, ppc_tm_cgpr, size);
11274 }
11275
11276 char *
11277 elfcore_write_ppc_tm_cfpr (bfd *abfd,
11278 char *buf,
11279 int *bufsiz,
11280 const void *ppc_tm_cfpr,
11281 int size)
11282 {
11283 char *note_name = "LINUX";
11284 return elfcore_write_note (abfd, buf, bufsiz,
11285 note_name, NT_PPC_TM_CFPR, ppc_tm_cfpr, size);
11286 }
11287
11288 char *
11289 elfcore_write_ppc_tm_cvmx (bfd *abfd,
11290 char *buf,
11291 int *bufsiz,
11292 const void *ppc_tm_cvmx,
11293 int size)
11294 {
11295 char *note_name = "LINUX";
11296 return elfcore_write_note (abfd, buf, bufsiz,
11297 note_name, NT_PPC_TM_CVMX, ppc_tm_cvmx, size);
11298 }
11299
11300 char *
11301 elfcore_write_ppc_tm_cvsx (bfd *abfd,
11302 char *buf,
11303 int *bufsiz,
11304 const void *ppc_tm_cvsx,
11305 int size)
11306 {
11307 char *note_name = "LINUX";
11308 return elfcore_write_note (abfd, buf, bufsiz,
11309 note_name, NT_PPC_TM_CVSX, ppc_tm_cvsx, size);
11310 }
11311
11312 char *
11313 elfcore_write_ppc_tm_spr (bfd *abfd,
11314 char *buf,
11315 int *bufsiz,
11316 const void *ppc_tm_spr,
11317 int size)
11318 {
11319 char *note_name = "LINUX";
11320 return elfcore_write_note (abfd, buf, bufsiz,
11321 note_name, NT_PPC_TM_SPR, ppc_tm_spr, size);
11322 }
11323
11324 char *
11325 elfcore_write_ppc_tm_ctar (bfd *abfd,
11326 char *buf,
11327 int *bufsiz,
11328 const void *ppc_tm_ctar,
11329 int size)
11330 {
11331 char *note_name = "LINUX";
11332 return elfcore_write_note (abfd, buf, bufsiz,
11333 note_name, NT_PPC_TM_CTAR, ppc_tm_ctar, size);
11334 }
11335
11336 char *
11337 elfcore_write_ppc_tm_cppr (bfd *abfd,
11338 char *buf,
11339 int *bufsiz,
11340 const void *ppc_tm_cppr,
11341 int size)
11342 {
11343 char *note_name = "LINUX";
11344 return elfcore_write_note (abfd, buf, bufsiz,
11345 note_name, NT_PPC_TM_CPPR, ppc_tm_cppr, size);
11346 }
11347
11348 char *
11349 elfcore_write_ppc_tm_cdscr (bfd *abfd,
11350 char *buf,
11351 int *bufsiz,
11352 const void *ppc_tm_cdscr,
11353 int size)
11354 {
11355 char *note_name = "LINUX";
11356 return elfcore_write_note (abfd, buf, bufsiz,
11357 note_name, NT_PPC_TM_CDSCR, ppc_tm_cdscr, size);
11358 }
11359
11360 static char *
11361 elfcore_write_s390_high_gprs (bfd *abfd,
11362 char *buf,
11363 int *bufsiz,
11364 const void *s390_high_gprs,
11365 int size)
11366 {
11367 char *note_name = "LINUX";
11368 return elfcore_write_note (abfd, buf, bufsiz,
11369 note_name, NT_S390_HIGH_GPRS,
11370 s390_high_gprs, size);
11371 }
11372
11373 char *
11374 elfcore_write_s390_timer (bfd *abfd,
11375 char *buf,
11376 int *bufsiz,
11377 const void *s390_timer,
11378 int size)
11379 {
11380 char *note_name = "LINUX";
11381 return elfcore_write_note (abfd, buf, bufsiz,
11382 note_name, NT_S390_TIMER, s390_timer, size);
11383 }
11384
11385 char *
11386 elfcore_write_s390_todcmp (bfd *abfd,
11387 char *buf,
11388 int *bufsiz,
11389 const void *s390_todcmp,
11390 int size)
11391 {
11392 char *note_name = "LINUX";
11393 return elfcore_write_note (abfd, buf, bufsiz,
11394 note_name, NT_S390_TODCMP, s390_todcmp, size);
11395 }
11396
11397 char *
11398 elfcore_write_s390_todpreg (bfd *abfd,
11399 char *buf,
11400 int *bufsiz,
11401 const void *s390_todpreg,
11402 int size)
11403 {
11404 char *note_name = "LINUX";
11405 return elfcore_write_note (abfd, buf, bufsiz,
11406 note_name, NT_S390_TODPREG, s390_todpreg, size);
11407 }
11408
11409 char *
11410 elfcore_write_s390_ctrs (bfd *abfd,
11411 char *buf,
11412 int *bufsiz,
11413 const void *s390_ctrs,
11414 int size)
11415 {
11416 char *note_name = "LINUX";
11417 return elfcore_write_note (abfd, buf, bufsiz,
11418 note_name, NT_S390_CTRS, s390_ctrs, size);
11419 }
11420
11421 char *
11422 elfcore_write_s390_prefix (bfd *abfd,
11423 char *buf,
11424 int *bufsiz,
11425 const void *s390_prefix,
11426 int size)
11427 {
11428 char *note_name = "LINUX";
11429 return elfcore_write_note (abfd, buf, bufsiz,
11430 note_name, NT_S390_PREFIX, s390_prefix, size);
11431 }
11432
11433 char *
11434 elfcore_write_s390_last_break (bfd *abfd,
11435 char *buf,
11436 int *bufsiz,
11437 const void *s390_last_break,
11438 int size)
11439 {
11440 char *note_name = "LINUX";
11441 return elfcore_write_note (abfd, buf, bufsiz,
11442 note_name, NT_S390_LAST_BREAK,
11443 s390_last_break, size);
11444 }
11445
11446 char *
11447 elfcore_write_s390_system_call (bfd *abfd,
11448 char *buf,
11449 int *bufsiz,
11450 const void *s390_system_call,
11451 int size)
11452 {
11453 char *note_name = "LINUX";
11454 return elfcore_write_note (abfd, buf, bufsiz,
11455 note_name, NT_S390_SYSTEM_CALL,
11456 s390_system_call, size);
11457 }
11458
11459 char *
11460 elfcore_write_s390_tdb (bfd *abfd,
11461 char *buf,
11462 int *bufsiz,
11463 const void *s390_tdb,
11464 int size)
11465 {
11466 char *note_name = "LINUX";
11467 return elfcore_write_note (abfd, buf, bufsiz,
11468 note_name, NT_S390_TDB, s390_tdb, size);
11469 }
11470
11471 char *
11472 elfcore_write_s390_vxrs_low (bfd *abfd,
11473 char *buf,
11474 int *bufsiz,
11475 const void *s390_vxrs_low,
11476 int size)
11477 {
11478 char *note_name = "LINUX";
11479 return elfcore_write_note (abfd, buf, bufsiz,
11480 note_name, NT_S390_VXRS_LOW, s390_vxrs_low, size);
11481 }
11482
11483 char *
11484 elfcore_write_s390_vxrs_high (bfd *abfd,
11485 char *buf,
11486 int *bufsiz,
11487 const void *s390_vxrs_high,
11488 int size)
11489 {
11490 char *note_name = "LINUX";
11491 return elfcore_write_note (abfd, buf, bufsiz,
11492 note_name, NT_S390_VXRS_HIGH,
11493 s390_vxrs_high, size);
11494 }
11495
11496 char *
11497 elfcore_write_s390_gs_cb (bfd *abfd,
11498 char *buf,
11499 int *bufsiz,
11500 const void *s390_gs_cb,
11501 int size)
11502 {
11503 char *note_name = "LINUX";
11504 return elfcore_write_note (abfd, buf, bufsiz,
11505 note_name, NT_S390_GS_CB,
11506 s390_gs_cb, size);
11507 }
11508
11509 char *
11510 elfcore_write_s390_gs_bc (bfd *abfd,
11511 char *buf,
11512 int *bufsiz,
11513 const void *s390_gs_bc,
11514 int size)
11515 {
11516 char *note_name = "LINUX";
11517 return elfcore_write_note (abfd, buf, bufsiz,
11518 note_name, NT_S390_GS_BC,
11519 s390_gs_bc, size);
11520 }
11521
11522 char *
11523 elfcore_write_arm_vfp (bfd *abfd,
11524 char *buf,
11525 int *bufsiz,
11526 const void *arm_vfp,
11527 int size)
11528 {
11529 char *note_name = "LINUX";
11530 return elfcore_write_note (abfd, buf, bufsiz,
11531 note_name, NT_ARM_VFP, arm_vfp, size);
11532 }
11533
11534 char *
11535 elfcore_write_aarch_tls (bfd *abfd,
11536 char *buf,
11537 int *bufsiz,
11538 const void *aarch_tls,
11539 int size)
11540 {
11541 char *note_name = "LINUX";
11542 return elfcore_write_note (abfd, buf, bufsiz,
11543 note_name, NT_ARM_TLS, aarch_tls, size);
11544 }
11545
11546 char *
11547 elfcore_write_aarch_hw_break (bfd *abfd,
11548 char *buf,
11549 int *bufsiz,
11550 const void *aarch_hw_break,
11551 int size)
11552 {
11553 char *note_name = "LINUX";
11554 return elfcore_write_note (abfd, buf, bufsiz,
11555 note_name, NT_ARM_HW_BREAK, aarch_hw_break, size);
11556 }
11557
11558 char *
11559 elfcore_write_aarch_hw_watch (bfd *abfd,
11560 char *buf,
11561 int *bufsiz,
11562 const void *aarch_hw_watch,
11563 int size)
11564 {
11565 char *note_name = "LINUX";
11566 return elfcore_write_note (abfd, buf, bufsiz,
11567 note_name, NT_ARM_HW_WATCH, aarch_hw_watch, size);
11568 }
11569
11570 char *
11571 elfcore_write_aarch_sve (bfd *abfd,
11572 char *buf,
11573 int *bufsiz,
11574 const void *aarch_sve,
11575 int size)
11576 {
11577 char *note_name = "LINUX";
11578 return elfcore_write_note (abfd, buf, bufsiz,
11579 note_name, NT_ARM_SVE, aarch_sve, size);
11580 }
11581
11582 char *
11583 elfcore_write_aarch_pauth (bfd *abfd,
11584 char *buf,
11585 int *bufsiz,
11586 const void *aarch_pauth,
11587 int size)
11588 {
11589 char *note_name = "LINUX";
11590 return elfcore_write_note (abfd, buf, bufsiz,
11591 note_name, NT_ARM_PAC_MASK, aarch_pauth, size);
11592 }
11593
11594 char *
11595 elfcore_write_register_note (bfd *abfd,
11596 char *buf,
11597 int *bufsiz,
11598 const char *section,
11599 const void *data,
11600 int size)
11601 {
11602 if (strcmp (section, ".reg2") == 0)
11603 return elfcore_write_prfpreg (abfd, buf, bufsiz, data, size);
11604 if (strcmp (section, ".reg-xfp") == 0)
11605 return elfcore_write_prxfpreg (abfd, buf, bufsiz, data, size);
11606 if (strcmp (section, ".reg-xstate") == 0)
11607 return elfcore_write_xstatereg (abfd, buf, bufsiz, data, size);
11608 if (strcmp (section, ".reg-ppc-vmx") == 0)
11609 return elfcore_write_ppc_vmx (abfd, buf, bufsiz, data, size);
11610 if (strcmp (section, ".reg-ppc-vsx") == 0)
11611 return elfcore_write_ppc_vsx (abfd, buf, bufsiz, data, size);
11612 if (strcmp (section, ".reg-ppc-tar") == 0)
11613 return elfcore_write_ppc_tar (abfd, buf, bufsiz, data, size);
11614 if (strcmp (section, ".reg-ppc-ppr") == 0)
11615 return elfcore_write_ppc_ppr (abfd, buf, bufsiz, data, size);
11616 if (strcmp (section, ".reg-ppc-dscr") == 0)
11617 return elfcore_write_ppc_dscr (abfd, buf, bufsiz, data, size);
11618 if (strcmp (section, ".reg-ppc-ebb") == 0)
11619 return elfcore_write_ppc_ebb (abfd, buf, bufsiz, data, size);
11620 if (strcmp (section, ".reg-ppc-pmu") == 0)
11621 return elfcore_write_ppc_pmu (abfd, buf, bufsiz, data, size);
11622 if (strcmp (section, ".reg-ppc-tm-cgpr") == 0)
11623 return elfcore_write_ppc_tm_cgpr (abfd, buf, bufsiz, data, size);
11624 if (strcmp (section, ".reg-ppc-tm-cfpr") == 0)
11625 return elfcore_write_ppc_tm_cfpr (abfd, buf, bufsiz, data, size);
11626 if (strcmp (section, ".reg-ppc-tm-cvmx") == 0)
11627 return elfcore_write_ppc_tm_cvmx (abfd, buf, bufsiz, data, size);
11628 if (strcmp (section, ".reg-ppc-tm-cvsx") == 0)
11629 return elfcore_write_ppc_tm_cvsx (abfd, buf, bufsiz, data, size);
11630 if (strcmp (section, ".reg-ppc-tm-spr") == 0)
11631 return elfcore_write_ppc_tm_spr (abfd, buf, bufsiz, data, size);
11632 if (strcmp (section, ".reg-ppc-tm-ctar") == 0)
11633 return elfcore_write_ppc_tm_ctar (abfd, buf, bufsiz, data, size);
11634 if (strcmp (section, ".reg-ppc-tm-cppr") == 0)
11635 return elfcore_write_ppc_tm_cppr (abfd, buf, bufsiz, data, size);
11636 if (strcmp (section, ".reg-ppc-tm-cdscr") == 0)
11637 return elfcore_write_ppc_tm_cdscr (abfd, buf, bufsiz, data, size);
11638 if (strcmp (section, ".reg-s390-high-gprs") == 0)
11639 return elfcore_write_s390_high_gprs (abfd, buf, bufsiz, data, size);
11640 if (strcmp (section, ".reg-s390-timer") == 0)
11641 return elfcore_write_s390_timer (abfd, buf, bufsiz, data, size);
11642 if (strcmp (section, ".reg-s390-todcmp") == 0)
11643 return elfcore_write_s390_todcmp (abfd, buf, bufsiz, data, size);
11644 if (strcmp (section, ".reg-s390-todpreg") == 0)
11645 return elfcore_write_s390_todpreg (abfd, buf, bufsiz, data, size);
11646 if (strcmp (section, ".reg-s390-ctrs") == 0)
11647 return elfcore_write_s390_ctrs (abfd, buf, bufsiz, data, size);
11648 if (strcmp (section, ".reg-s390-prefix") == 0)
11649 return elfcore_write_s390_prefix (abfd, buf, bufsiz, data, size);
11650 if (strcmp (section, ".reg-s390-last-break") == 0)
11651 return elfcore_write_s390_last_break (abfd, buf, bufsiz, data, size);
11652 if (strcmp (section, ".reg-s390-system-call") == 0)
11653 return elfcore_write_s390_system_call (abfd, buf, bufsiz, data, size);
11654 if (strcmp (section, ".reg-s390-tdb") == 0)
11655 return elfcore_write_s390_tdb (abfd, buf, bufsiz, data, size);
11656 if (strcmp (section, ".reg-s390-vxrs-low") == 0)
11657 return elfcore_write_s390_vxrs_low (abfd, buf, bufsiz, data, size);
11658 if (strcmp (section, ".reg-s390-vxrs-high") == 0)
11659 return elfcore_write_s390_vxrs_high (abfd, buf, bufsiz, data, size);
11660 if (strcmp (section, ".reg-s390-gs-cb") == 0)
11661 return elfcore_write_s390_gs_cb (abfd, buf, bufsiz, data, size);
11662 if (strcmp (section, ".reg-s390-gs-bc") == 0)
11663 return elfcore_write_s390_gs_bc (abfd, buf, bufsiz, data, size);
11664 if (strcmp (section, ".reg-arm-vfp") == 0)
11665 return elfcore_write_arm_vfp (abfd, buf, bufsiz, data, size);
11666 if (strcmp (section, ".reg-aarch-tls") == 0)
11667 return elfcore_write_aarch_tls (abfd, buf, bufsiz, data, size);
11668 if (strcmp (section, ".reg-aarch-hw-break") == 0)
11669 return elfcore_write_aarch_hw_break (abfd, buf, bufsiz, data, size);
11670 if (strcmp (section, ".reg-aarch-hw-watch") == 0)
11671 return elfcore_write_aarch_hw_watch (abfd, buf, bufsiz, data, size);
11672 if (strcmp (section, ".reg-aarch-sve") == 0)
11673 return elfcore_write_aarch_sve (abfd, buf, bufsiz, data, size);
11674 if (strcmp (section, ".reg-aarch-pauth") == 0)
11675 return elfcore_write_aarch_pauth (abfd, buf, bufsiz, data, size);
11676 return NULL;
11677 }
11678
11679 static bfd_boolean
11680 elf_parse_notes (bfd *abfd, char *buf, size_t size, file_ptr offset,
11681 size_t align)
11682 {
11683 char *p;
11684
11685 /* NB: CORE PT_NOTE segments may have p_align values of 0 or 1.
11686 gABI specifies that PT_NOTE alignment should be aligned to 4
11687 bytes for 32-bit objects and to 8 bytes for 64-bit objects. If
11688 align is less than 4, we use 4 byte alignment. */
11689 if (align < 4)
11690 align = 4;
11691 if (align != 4 && align != 8)
11692 return FALSE;
11693
11694 p = buf;
11695 while (p < buf + size)
11696 {
11697 Elf_External_Note *xnp = (Elf_External_Note *) p;
11698 Elf_Internal_Note in;
11699
11700 if (offsetof (Elf_External_Note, name) > buf - p + size)
11701 return FALSE;
11702
11703 in.type = H_GET_32 (abfd, xnp->type);
11704
11705 in.namesz = H_GET_32 (abfd, xnp->namesz);
11706 in.namedata = xnp->name;
11707 if (in.namesz > buf - in.namedata + size)
11708 return FALSE;
11709
11710 in.descsz = H_GET_32 (abfd, xnp->descsz);
11711 in.descdata = p + ELF_NOTE_DESC_OFFSET (in.namesz, align);
11712 in.descpos = offset + (in.descdata - buf);
11713 if (in.descsz != 0
11714 && (in.descdata >= buf + size
11715 || in.descsz > buf - in.descdata + size))
11716 return FALSE;
11717
11718 switch (bfd_get_format (abfd))
11719 {
11720 default:
11721 return TRUE;
11722
11723 case bfd_core:
11724 {
11725 #define GROKER_ELEMENT(S,F) {S, sizeof (S) - 1, F}
11726 struct
11727 {
11728 const char * string;
11729 size_t len;
11730 bfd_boolean (* func)(bfd *, Elf_Internal_Note *);
11731 }
11732 grokers[] =
11733 {
11734 GROKER_ELEMENT ("", elfcore_grok_note),
11735 GROKER_ELEMENT ("FreeBSD", elfcore_grok_freebsd_note),
11736 GROKER_ELEMENT ("NetBSD-CORE", elfcore_grok_netbsd_note),
11737 GROKER_ELEMENT ( "OpenBSD", elfcore_grok_openbsd_note),
11738 GROKER_ELEMENT ("QNX", elfcore_grok_nto_note),
11739 GROKER_ELEMENT ("SPU/", elfcore_grok_spu_note)
11740 };
11741 #undef GROKER_ELEMENT
11742 int i;
11743
11744 for (i = ARRAY_SIZE (grokers); i--;)
11745 {
11746 if (in.namesz >= grokers[i].len
11747 && strncmp (in.namedata, grokers[i].string,
11748 grokers[i].len) == 0)
11749 {
11750 if (! grokers[i].func (abfd, & in))
11751 return FALSE;
11752 break;
11753 }
11754 }
11755 break;
11756 }
11757
11758 case bfd_object:
11759 if (in.namesz == sizeof "GNU" && strcmp (in.namedata, "GNU") == 0)
11760 {
11761 if (! elfobj_grok_gnu_note (abfd, &in))
11762 return FALSE;
11763 }
11764 else if (in.namesz == sizeof "stapsdt"
11765 && strcmp (in.namedata, "stapsdt") == 0)
11766 {
11767 if (! elfobj_grok_stapsdt_note (abfd, &in))
11768 return FALSE;
11769 }
11770 break;
11771 }
11772
11773 p += ELF_NOTE_NEXT_OFFSET (in.namesz, in.descsz, align);
11774 }
11775
11776 return TRUE;
11777 }
11778
11779 static bfd_boolean
11780 elf_read_notes (bfd *abfd, file_ptr offset, bfd_size_type size,
11781 size_t align)
11782 {
11783 char *buf;
11784
11785 if (size == 0 || (size + 1) == 0)
11786 return TRUE;
11787
11788 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
11789 return FALSE;
11790
11791 buf = (char *) bfd_malloc (size + 1);
11792 if (buf == NULL)
11793 return FALSE;
11794
11795 /* PR 17512: file: ec08f814
11796 0-termintate the buffer so that string searches will not overflow. */
11797 buf[size] = 0;
11798
11799 if (bfd_bread (buf, size, abfd) != size
11800 || !elf_parse_notes (abfd, buf, size, offset, align))
11801 {
11802 free (buf);
11803 return FALSE;
11804 }
11805
11806 free (buf);
11807 return TRUE;
11808 }
11809 \f
11810 /* Providing external access to the ELF program header table. */
11811
11812 /* Return an upper bound on the number of bytes required to store a
11813 copy of ABFD's program header table entries. Return -1 if an error
11814 occurs; bfd_get_error will return an appropriate code. */
11815
11816 long
11817 bfd_get_elf_phdr_upper_bound (bfd *abfd)
11818 {
11819 if (abfd->xvec->flavour != bfd_target_elf_flavour)
11820 {
11821 bfd_set_error (bfd_error_wrong_format);
11822 return -1;
11823 }
11824
11825 return elf_elfheader (abfd)->e_phnum * sizeof (Elf_Internal_Phdr);
11826 }
11827
11828 /* Copy ABFD's program header table entries to *PHDRS. The entries
11829 will be stored as an array of Elf_Internal_Phdr structures, as
11830 defined in include/elf/internal.h. To find out how large the
11831 buffer needs to be, call bfd_get_elf_phdr_upper_bound.
11832
11833 Return the number of program header table entries read, or -1 if an
11834 error occurs; bfd_get_error will return an appropriate code. */
11835
11836 int
11837 bfd_get_elf_phdrs (bfd *abfd, void *phdrs)
11838 {
11839 int num_phdrs;
11840
11841 if (abfd->xvec->flavour != bfd_target_elf_flavour)
11842 {
11843 bfd_set_error (bfd_error_wrong_format);
11844 return -1;
11845 }
11846
11847 num_phdrs = elf_elfheader (abfd)->e_phnum;
11848 if (num_phdrs != 0)
11849 memcpy (phdrs, elf_tdata (abfd)->phdr,
11850 num_phdrs * sizeof (Elf_Internal_Phdr));
11851
11852 return num_phdrs;
11853 }
11854
11855 enum elf_reloc_type_class
11856 _bfd_elf_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
11857 const asection *rel_sec ATTRIBUTE_UNUSED,
11858 const Elf_Internal_Rela *rela ATTRIBUTE_UNUSED)
11859 {
11860 return reloc_class_normal;
11861 }
11862
11863 /* For RELA architectures, return the relocation value for a
11864 relocation against a local symbol. */
11865
11866 bfd_vma
11867 _bfd_elf_rela_local_sym (bfd *abfd,
11868 Elf_Internal_Sym *sym,
11869 asection **psec,
11870 Elf_Internal_Rela *rel)
11871 {
11872 asection *sec = *psec;
11873 bfd_vma relocation;
11874
11875 relocation = (sec->output_section->vma
11876 + sec->output_offset
11877 + sym->st_value);
11878 if ((sec->flags & SEC_MERGE)
11879 && ELF_ST_TYPE (sym->st_info) == STT_SECTION
11880 && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
11881 {
11882 rel->r_addend =
11883 _bfd_merged_section_offset (abfd, psec,
11884 elf_section_data (sec)->sec_info,
11885 sym->st_value + rel->r_addend);
11886 if (sec != *psec)
11887 {
11888 /* If we have changed the section, and our original section is
11889 marked with SEC_EXCLUDE, it means that the original
11890 SEC_MERGE section has been completely subsumed in some
11891 other SEC_MERGE section. In this case, we need to leave
11892 some info around for --emit-relocs. */
11893 if ((sec->flags & SEC_EXCLUDE) != 0)
11894 sec->kept_section = *psec;
11895 sec = *psec;
11896 }
11897 rel->r_addend -= relocation;
11898 rel->r_addend += sec->output_section->vma + sec->output_offset;
11899 }
11900 return relocation;
11901 }
11902
11903 bfd_vma
11904 _bfd_elf_rel_local_sym (bfd *abfd,
11905 Elf_Internal_Sym *sym,
11906 asection **psec,
11907 bfd_vma addend)
11908 {
11909 asection *sec = *psec;
11910
11911 if (sec->sec_info_type != SEC_INFO_TYPE_MERGE)
11912 return sym->st_value + addend;
11913
11914 return _bfd_merged_section_offset (abfd, psec,
11915 elf_section_data (sec)->sec_info,
11916 sym->st_value + addend);
11917 }
11918
11919 /* Adjust an address within a section. Given OFFSET within SEC, return
11920 the new offset within the section, based upon changes made to the
11921 section. Returns -1 if the offset is now invalid.
11922 The offset (in abnd out) is in target sized bytes, however big a
11923 byte may be. */
11924
11925 bfd_vma
11926 _bfd_elf_section_offset (bfd *abfd,
11927 struct bfd_link_info *info,
11928 asection *sec,
11929 bfd_vma offset)
11930 {
11931 switch (sec->sec_info_type)
11932 {
11933 case SEC_INFO_TYPE_STABS:
11934 return _bfd_stab_section_offset (sec, elf_section_data (sec)->sec_info,
11935 offset);
11936 case SEC_INFO_TYPE_EH_FRAME:
11937 return _bfd_elf_eh_frame_section_offset (abfd, info, sec, offset);
11938
11939 default:
11940 if ((sec->flags & SEC_ELF_REVERSE_COPY) != 0)
11941 {
11942 /* Reverse the offset. */
11943 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11944 bfd_size_type address_size = bed->s->arch_size / 8;
11945
11946 /* address_size and sec->size are in octets. Convert
11947 to bytes before subtracting the original offset. */
11948 offset = (sec->size - address_size) / bfd_octets_per_byte (abfd) - offset;
11949 }
11950 return offset;
11951 }
11952 }
11953 \f
11954 /* Create a new BFD as if by bfd_openr. Rather than opening a file,
11955 reconstruct an ELF file by reading the segments out of remote memory
11956 based on the ELF file header at EHDR_VMA and the ELF program headers it
11957 points to. If not null, *LOADBASEP is filled in with the difference
11958 between the VMAs from which the segments were read, and the VMAs the
11959 file headers (and hence BFD's idea of each section's VMA) put them at.
11960
11961 The function TARGET_READ_MEMORY is called to copy LEN bytes from the
11962 remote memory at target address VMA into the local buffer at MYADDR; it
11963 should return zero on success or an `errno' code on failure. TEMPL must
11964 be a BFD for an ELF target with the word size and byte order found in
11965 the remote memory. */
11966
11967 bfd *
11968 bfd_elf_bfd_from_remote_memory
11969 (bfd *templ,
11970 bfd_vma ehdr_vma,
11971 bfd_size_type size,
11972 bfd_vma *loadbasep,
11973 int (*target_read_memory) (bfd_vma, bfd_byte *, bfd_size_type))
11974 {
11975 return (*get_elf_backend_data (templ)->elf_backend_bfd_from_remote_memory)
11976 (templ, ehdr_vma, size, loadbasep, target_read_memory);
11977 }
11978 \f
11979 long
11980 _bfd_elf_get_synthetic_symtab (bfd *abfd,
11981 long symcount ATTRIBUTE_UNUSED,
11982 asymbol **syms ATTRIBUTE_UNUSED,
11983 long dynsymcount,
11984 asymbol **dynsyms,
11985 asymbol **ret)
11986 {
11987 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11988 asection *relplt;
11989 asymbol *s;
11990 const char *relplt_name;
11991 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
11992 arelent *p;
11993 long count, i, n;
11994 size_t size;
11995 Elf_Internal_Shdr *hdr;
11996 char *names;
11997 asection *plt;
11998
11999 *ret = NULL;
12000
12001 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0)
12002 return 0;
12003
12004 if (dynsymcount <= 0)
12005 return 0;
12006
12007 if (!bed->plt_sym_val)
12008 return 0;
12009
12010 relplt_name = bed->relplt_name;
12011 if (relplt_name == NULL)
12012 relplt_name = bed->rela_plts_and_copies_p ? ".rela.plt" : ".rel.plt";
12013 relplt = bfd_get_section_by_name (abfd, relplt_name);
12014 if (relplt == NULL)
12015 return 0;
12016
12017 hdr = &elf_section_data (relplt)->this_hdr;
12018 if (hdr->sh_link != elf_dynsymtab (abfd)
12019 || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA))
12020 return 0;
12021
12022 plt = bfd_get_section_by_name (abfd, ".plt");
12023 if (plt == NULL)
12024 return 0;
12025
12026 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
12027 if (! (*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
12028 return -1;
12029
12030 count = relplt->size / hdr->sh_entsize;
12031 size = count * sizeof (asymbol);
12032 p = relplt->relocation;
12033 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
12034 {
12035 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
12036 if (p->addend != 0)
12037 {
12038 #ifdef BFD64
12039 size += sizeof ("+0x") - 1 + 8 + 8 * (bed->s->elfclass == ELFCLASS64);
12040 #else
12041 size += sizeof ("+0x") - 1 + 8;
12042 #endif
12043 }
12044 }
12045
12046 s = *ret = (asymbol *) bfd_malloc (size);
12047 if (s == NULL)
12048 return -1;
12049
12050 names = (char *) (s + count);
12051 p = relplt->relocation;
12052 n = 0;
12053 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
12054 {
12055 size_t len;
12056 bfd_vma addr;
12057
12058 addr = bed->plt_sym_val (i, plt, p);
12059 if (addr == (bfd_vma) -1)
12060 continue;
12061
12062 *s = **p->sym_ptr_ptr;
12063 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
12064 we are defining a symbol, ensure one of them is set. */
12065 if ((s->flags & BSF_LOCAL) == 0)
12066 s->flags |= BSF_GLOBAL;
12067 s->flags |= BSF_SYNTHETIC;
12068 s->section = plt;
12069 s->value = addr - plt->vma;
12070 s->name = names;
12071 s->udata.p = NULL;
12072 len = strlen ((*p->sym_ptr_ptr)->name);
12073 memcpy (names, (*p->sym_ptr_ptr)->name, len);
12074 names += len;
12075 if (p->addend != 0)
12076 {
12077 char buf[30], *a;
12078
12079 memcpy (names, "+0x", sizeof ("+0x") - 1);
12080 names += sizeof ("+0x") - 1;
12081 bfd_sprintf_vma (abfd, buf, p->addend);
12082 for (a = buf; *a == '0'; ++a)
12083 ;
12084 len = strlen (a);
12085 memcpy (names, a, len);
12086 names += len;
12087 }
12088 memcpy (names, "@plt", sizeof ("@plt"));
12089 names += sizeof ("@plt");
12090 ++s, ++n;
12091 }
12092
12093 return n;
12094 }
12095
12096 /* It is only used by x86-64 so far.
12097 ??? This repeats *COM* id of zero. sec->id is supposed to be unique,
12098 but current usage would allow all of _bfd_std_section to be zero. */
12099 static const asymbol lcomm_sym
12100 = GLOBAL_SYM_INIT ("LARGE_COMMON", &_bfd_elf_large_com_section);
12101 asection _bfd_elf_large_com_section
12102 = BFD_FAKE_SECTION (_bfd_elf_large_com_section, &lcomm_sym,
12103 "LARGE_COMMON", 0, SEC_IS_COMMON);
12104
12105 void
12106 _bfd_elf_post_process_headers (bfd * abfd,
12107 struct bfd_link_info * link_info ATTRIBUTE_UNUSED)
12108 {
12109 Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */
12110
12111 i_ehdrp = elf_elfheader (abfd);
12112
12113 i_ehdrp->e_ident[EI_OSABI] = get_elf_backend_data (abfd)->elf_osabi;
12114
12115 /* To make things simpler for the loader on Linux systems we set the
12116 osabi field to ELFOSABI_GNU if the binary contains symbols of
12117 the STT_GNU_IFUNC type or STB_GNU_UNIQUE binding. */
12118 if (i_ehdrp->e_ident[EI_OSABI] == ELFOSABI_NONE
12119 && elf_tdata (abfd)->has_gnu_symbols)
12120 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_GNU;
12121 }
12122
12123
12124 /* Return TRUE for ELF symbol types that represent functions.
12125 This is the default version of this function, which is sufficient for
12126 most targets. It returns true if TYPE is STT_FUNC or STT_GNU_IFUNC. */
12127
12128 bfd_boolean
12129 _bfd_elf_is_function_type (unsigned int type)
12130 {
12131 return (type == STT_FUNC
12132 || type == STT_GNU_IFUNC);
12133 }
12134
12135 /* If the ELF symbol SYM might be a function in SEC, return the
12136 function size and set *CODE_OFF to the function's entry point,
12137 otherwise return zero. */
12138
12139 bfd_size_type
12140 _bfd_elf_maybe_function_sym (const asymbol *sym, asection *sec,
12141 bfd_vma *code_off)
12142 {
12143 bfd_size_type size;
12144
12145 if ((sym->flags & (BSF_SECTION_SYM | BSF_FILE | BSF_OBJECT
12146 | BSF_THREAD_LOCAL | BSF_RELC | BSF_SRELC)) != 0
12147 || sym->section != sec)
12148 return 0;
12149
12150 *code_off = sym->value;
12151 size = 0;
12152 if (!(sym->flags & BSF_SYNTHETIC))
12153 size = ((elf_symbol_type *) sym)->internal_elf_sym.st_size;
12154 if (size == 0)
12155 size = 1;
12156 return size;
12157 }
This page took 0.272296 seconds and 3 git commands to generate.