2005-05-02 H.J. Lu <hongjiu.lu@intel.com>
[deliverable/binutils-gdb.git] / bfd / elf.c
1 /* ELF executable support for BFD.
2
3 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
4 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
5
6 This file is part of BFD, the Binary File Descriptor library.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
21
22 /* SECTION
23
24 ELF backends
25
26 BFD support for ELF formats is being worked on.
27 Currently, the best supported back ends are for sparc and i386
28 (running svr4 or Solaris 2).
29
30 Documentation of the internals of the support code still needs
31 to be written. The code is changing quickly enough that we
32 haven't bothered yet. */
33
34 /* For sparc64-cross-sparc32. */
35 #define _SYSCALL32
36 #include "bfd.h"
37 #include "sysdep.h"
38 #include "bfdlink.h"
39 #include "libbfd.h"
40 #define ARCH_SIZE 0
41 #include "elf-bfd.h"
42 #include "libiberty.h"
43
44 static int elf_sort_sections (const void *, const void *);
45 static bfd_boolean assign_file_positions_except_relocs (bfd *, struct bfd_link_info *);
46 static bfd_boolean prep_headers (bfd *);
47 static bfd_boolean swap_out_syms (bfd *, struct bfd_strtab_hash **, int) ;
48 static bfd_boolean elfcore_read_notes (bfd *, file_ptr, bfd_size_type) ;
49
50 /* Swap version information in and out. The version information is
51 currently size independent. If that ever changes, this code will
52 need to move into elfcode.h. */
53
54 /* Swap in a Verdef structure. */
55
56 void
57 _bfd_elf_swap_verdef_in (bfd *abfd,
58 const Elf_External_Verdef *src,
59 Elf_Internal_Verdef *dst)
60 {
61 dst->vd_version = H_GET_16 (abfd, src->vd_version);
62 dst->vd_flags = H_GET_16 (abfd, src->vd_flags);
63 dst->vd_ndx = H_GET_16 (abfd, src->vd_ndx);
64 dst->vd_cnt = H_GET_16 (abfd, src->vd_cnt);
65 dst->vd_hash = H_GET_32 (abfd, src->vd_hash);
66 dst->vd_aux = H_GET_32 (abfd, src->vd_aux);
67 dst->vd_next = H_GET_32 (abfd, src->vd_next);
68 }
69
70 /* Swap out a Verdef structure. */
71
72 void
73 _bfd_elf_swap_verdef_out (bfd *abfd,
74 const Elf_Internal_Verdef *src,
75 Elf_External_Verdef *dst)
76 {
77 H_PUT_16 (abfd, src->vd_version, dst->vd_version);
78 H_PUT_16 (abfd, src->vd_flags, dst->vd_flags);
79 H_PUT_16 (abfd, src->vd_ndx, dst->vd_ndx);
80 H_PUT_16 (abfd, src->vd_cnt, dst->vd_cnt);
81 H_PUT_32 (abfd, src->vd_hash, dst->vd_hash);
82 H_PUT_32 (abfd, src->vd_aux, dst->vd_aux);
83 H_PUT_32 (abfd, src->vd_next, dst->vd_next);
84 }
85
86 /* Swap in a Verdaux structure. */
87
88 void
89 _bfd_elf_swap_verdaux_in (bfd *abfd,
90 const Elf_External_Verdaux *src,
91 Elf_Internal_Verdaux *dst)
92 {
93 dst->vda_name = H_GET_32 (abfd, src->vda_name);
94 dst->vda_next = H_GET_32 (abfd, src->vda_next);
95 }
96
97 /* Swap out a Verdaux structure. */
98
99 void
100 _bfd_elf_swap_verdaux_out (bfd *abfd,
101 const Elf_Internal_Verdaux *src,
102 Elf_External_Verdaux *dst)
103 {
104 H_PUT_32 (abfd, src->vda_name, dst->vda_name);
105 H_PUT_32 (abfd, src->vda_next, dst->vda_next);
106 }
107
108 /* Swap in a Verneed structure. */
109
110 void
111 _bfd_elf_swap_verneed_in (bfd *abfd,
112 const Elf_External_Verneed *src,
113 Elf_Internal_Verneed *dst)
114 {
115 dst->vn_version = H_GET_16 (abfd, src->vn_version);
116 dst->vn_cnt = H_GET_16 (abfd, src->vn_cnt);
117 dst->vn_file = H_GET_32 (abfd, src->vn_file);
118 dst->vn_aux = H_GET_32 (abfd, src->vn_aux);
119 dst->vn_next = H_GET_32 (abfd, src->vn_next);
120 }
121
122 /* Swap out a Verneed structure. */
123
124 void
125 _bfd_elf_swap_verneed_out (bfd *abfd,
126 const Elf_Internal_Verneed *src,
127 Elf_External_Verneed *dst)
128 {
129 H_PUT_16 (abfd, src->vn_version, dst->vn_version);
130 H_PUT_16 (abfd, src->vn_cnt, dst->vn_cnt);
131 H_PUT_32 (abfd, src->vn_file, dst->vn_file);
132 H_PUT_32 (abfd, src->vn_aux, dst->vn_aux);
133 H_PUT_32 (abfd, src->vn_next, dst->vn_next);
134 }
135
136 /* Swap in a Vernaux structure. */
137
138 void
139 _bfd_elf_swap_vernaux_in (bfd *abfd,
140 const Elf_External_Vernaux *src,
141 Elf_Internal_Vernaux *dst)
142 {
143 dst->vna_hash = H_GET_32 (abfd, src->vna_hash);
144 dst->vna_flags = H_GET_16 (abfd, src->vna_flags);
145 dst->vna_other = H_GET_16 (abfd, src->vna_other);
146 dst->vna_name = H_GET_32 (abfd, src->vna_name);
147 dst->vna_next = H_GET_32 (abfd, src->vna_next);
148 }
149
150 /* Swap out a Vernaux structure. */
151
152 void
153 _bfd_elf_swap_vernaux_out (bfd *abfd,
154 const Elf_Internal_Vernaux *src,
155 Elf_External_Vernaux *dst)
156 {
157 H_PUT_32 (abfd, src->vna_hash, dst->vna_hash);
158 H_PUT_16 (abfd, src->vna_flags, dst->vna_flags);
159 H_PUT_16 (abfd, src->vna_other, dst->vna_other);
160 H_PUT_32 (abfd, src->vna_name, dst->vna_name);
161 H_PUT_32 (abfd, src->vna_next, dst->vna_next);
162 }
163
164 /* Swap in a Versym structure. */
165
166 void
167 _bfd_elf_swap_versym_in (bfd *abfd,
168 const Elf_External_Versym *src,
169 Elf_Internal_Versym *dst)
170 {
171 dst->vs_vers = H_GET_16 (abfd, src->vs_vers);
172 }
173
174 /* Swap out a Versym structure. */
175
176 void
177 _bfd_elf_swap_versym_out (bfd *abfd,
178 const Elf_Internal_Versym *src,
179 Elf_External_Versym *dst)
180 {
181 H_PUT_16 (abfd, src->vs_vers, dst->vs_vers);
182 }
183
184 /* Standard ELF hash function. Do not change this function; you will
185 cause invalid hash tables to be generated. */
186
187 unsigned long
188 bfd_elf_hash (const char *namearg)
189 {
190 const unsigned char *name = (const unsigned char *) namearg;
191 unsigned long h = 0;
192 unsigned long g;
193 int ch;
194
195 while ((ch = *name++) != '\0')
196 {
197 h = (h << 4) + ch;
198 if ((g = (h & 0xf0000000)) != 0)
199 {
200 h ^= g >> 24;
201 /* The ELF ABI says `h &= ~g', but this is equivalent in
202 this case and on some machines one insn instead of two. */
203 h ^= g;
204 }
205 }
206 return h & 0xffffffff;
207 }
208
209 /* Read a specified number of bytes at a specified offset in an ELF
210 file, into a newly allocated buffer, and return a pointer to the
211 buffer. */
212
213 static bfd_byte *
214 elf_read (bfd *abfd, file_ptr offset, bfd_size_type size)
215 {
216 bfd_byte *buf;
217
218 if ((buf = bfd_alloc (abfd, size)) == NULL)
219 return NULL;
220 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
221 return NULL;
222 if (bfd_bread (buf, size, abfd) != size)
223 {
224 if (bfd_get_error () != bfd_error_system_call)
225 bfd_set_error (bfd_error_file_truncated);
226 return NULL;
227 }
228 return buf;
229 }
230
231 bfd_boolean
232 bfd_elf_mkobject (bfd *abfd)
233 {
234 /* This just does initialization. */
235 /* coff_mkobject zalloc's space for tdata.coff_obj_data ... */
236 elf_tdata (abfd) = bfd_zalloc (abfd, sizeof (struct elf_obj_tdata));
237 if (elf_tdata (abfd) == 0)
238 return FALSE;
239 /* Since everything is done at close time, do we need any
240 initialization? */
241
242 return TRUE;
243 }
244
245 bfd_boolean
246 bfd_elf_mkcorefile (bfd *abfd)
247 {
248 /* I think this can be done just like an object file. */
249 return bfd_elf_mkobject (abfd);
250 }
251
252 char *
253 bfd_elf_get_str_section (bfd *abfd, unsigned int shindex)
254 {
255 Elf_Internal_Shdr **i_shdrp;
256 bfd_byte *shstrtab = NULL;
257 file_ptr offset;
258 bfd_size_type shstrtabsize;
259
260 i_shdrp = elf_elfsections (abfd);
261 if (i_shdrp == 0 || i_shdrp[shindex] == 0)
262 return NULL;
263
264 shstrtab = i_shdrp[shindex]->contents;
265 if (shstrtab == NULL)
266 {
267 /* No cached one, attempt to read, and cache what we read. */
268 offset = i_shdrp[shindex]->sh_offset;
269 shstrtabsize = i_shdrp[shindex]->sh_size;
270 shstrtab = elf_read (abfd, offset, shstrtabsize);
271 i_shdrp[shindex]->contents = shstrtab;
272 }
273 return (char *) shstrtab;
274 }
275
276 char *
277 bfd_elf_string_from_elf_section (bfd *abfd,
278 unsigned int shindex,
279 unsigned int strindex)
280 {
281 Elf_Internal_Shdr *hdr;
282
283 if (strindex == 0)
284 return "";
285
286 hdr = elf_elfsections (abfd)[shindex];
287
288 if (hdr->contents == NULL
289 && bfd_elf_get_str_section (abfd, shindex) == NULL)
290 return NULL;
291
292 if (strindex >= hdr->sh_size)
293 {
294 unsigned int shstrndx = elf_elfheader(abfd)->e_shstrndx;
295 (*_bfd_error_handler)
296 (_("%B: invalid string offset %u >= %lu for section `%s'"),
297 abfd, strindex, (unsigned long) hdr->sh_size,
298 (shindex == shstrndx && strindex == hdr->sh_name
299 ? ".shstrtab"
300 : bfd_elf_string_from_elf_section (abfd, shstrndx, hdr->sh_name)));
301 return "";
302 }
303
304 return ((char *) hdr->contents) + strindex;
305 }
306
307 /* Read and convert symbols to internal format.
308 SYMCOUNT specifies the number of symbols to read, starting from
309 symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF
310 are non-NULL, they are used to store the internal symbols, external
311 symbols, and symbol section index extensions, respectively. */
312
313 Elf_Internal_Sym *
314 bfd_elf_get_elf_syms (bfd *ibfd,
315 Elf_Internal_Shdr *symtab_hdr,
316 size_t symcount,
317 size_t symoffset,
318 Elf_Internal_Sym *intsym_buf,
319 void *extsym_buf,
320 Elf_External_Sym_Shndx *extshndx_buf)
321 {
322 Elf_Internal_Shdr *shndx_hdr;
323 void *alloc_ext;
324 const bfd_byte *esym;
325 Elf_External_Sym_Shndx *alloc_extshndx;
326 Elf_External_Sym_Shndx *shndx;
327 Elf_Internal_Sym *isym;
328 Elf_Internal_Sym *isymend;
329 const struct elf_backend_data *bed;
330 size_t extsym_size;
331 bfd_size_type amt;
332 file_ptr pos;
333
334 if (symcount == 0)
335 return intsym_buf;
336
337 /* Normal syms might have section extension entries. */
338 shndx_hdr = NULL;
339 if (symtab_hdr == &elf_tdata (ibfd)->symtab_hdr)
340 shndx_hdr = &elf_tdata (ibfd)->symtab_shndx_hdr;
341
342 /* Read the symbols. */
343 alloc_ext = NULL;
344 alloc_extshndx = NULL;
345 bed = get_elf_backend_data (ibfd);
346 extsym_size = bed->s->sizeof_sym;
347 amt = symcount * extsym_size;
348 pos = symtab_hdr->sh_offset + symoffset * extsym_size;
349 if (extsym_buf == NULL)
350 {
351 alloc_ext = bfd_malloc (amt);
352 extsym_buf = alloc_ext;
353 }
354 if (extsym_buf == NULL
355 || bfd_seek (ibfd, pos, SEEK_SET) != 0
356 || bfd_bread (extsym_buf, amt, ibfd) != amt)
357 {
358 intsym_buf = NULL;
359 goto out;
360 }
361
362 if (shndx_hdr == NULL || shndx_hdr->sh_size == 0)
363 extshndx_buf = NULL;
364 else
365 {
366 amt = symcount * sizeof (Elf_External_Sym_Shndx);
367 pos = shndx_hdr->sh_offset + symoffset * sizeof (Elf_External_Sym_Shndx);
368 if (extshndx_buf == NULL)
369 {
370 alloc_extshndx = bfd_malloc (amt);
371 extshndx_buf = alloc_extshndx;
372 }
373 if (extshndx_buf == NULL
374 || bfd_seek (ibfd, pos, SEEK_SET) != 0
375 || bfd_bread (extshndx_buf, amt, ibfd) != amt)
376 {
377 intsym_buf = NULL;
378 goto out;
379 }
380 }
381
382 if (intsym_buf == NULL)
383 {
384 bfd_size_type amt = symcount * sizeof (Elf_Internal_Sym);
385 intsym_buf = bfd_malloc (amt);
386 if (intsym_buf == NULL)
387 goto out;
388 }
389
390 /* Convert the symbols to internal form. */
391 isymend = intsym_buf + symcount;
392 for (esym = extsym_buf, isym = intsym_buf, shndx = extshndx_buf;
393 isym < isymend;
394 esym += extsym_size, isym++, shndx = shndx != NULL ? shndx + 1 : NULL)
395 (*bed->s->swap_symbol_in) (ibfd, esym, shndx, isym);
396
397 out:
398 if (alloc_ext != NULL)
399 free (alloc_ext);
400 if (alloc_extshndx != NULL)
401 free (alloc_extshndx);
402
403 return intsym_buf;
404 }
405
406 /* Look up a symbol name. */
407 const char *
408 bfd_elf_sym_name (bfd *abfd,
409 Elf_Internal_Shdr *symtab_hdr,
410 Elf_Internal_Sym *isym,
411 asection *sym_sec)
412 {
413 const char *name;
414 unsigned int iname = isym->st_name;
415 unsigned int shindex = symtab_hdr->sh_link;
416
417 if (iname == 0 && ELF_ST_TYPE (isym->st_info) == STT_SECTION
418 /* Check for a bogus st_shndx to avoid crashing. */
419 && isym->st_shndx < elf_numsections (abfd)
420 && !(isym->st_shndx >= SHN_LORESERVE && isym->st_shndx <= SHN_HIRESERVE))
421 {
422 iname = elf_elfsections (abfd)[isym->st_shndx]->sh_name;
423 shindex = elf_elfheader (abfd)->e_shstrndx;
424 }
425
426 name = bfd_elf_string_from_elf_section (abfd, shindex, iname);
427 if (name == NULL)
428 name = "(null)";
429 else if (sym_sec && *name == '\0')
430 name = bfd_section_name (abfd, sym_sec);
431
432 return name;
433 }
434
435 /* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
436 sections. The first element is the flags, the rest are section
437 pointers. */
438
439 typedef union elf_internal_group {
440 Elf_Internal_Shdr *shdr;
441 unsigned int flags;
442 } Elf_Internal_Group;
443
444 /* Return the name of the group signature symbol. Why isn't the
445 signature just a string? */
446
447 static const char *
448 group_signature (bfd *abfd, Elf_Internal_Shdr *ghdr)
449 {
450 Elf_Internal_Shdr *hdr;
451 unsigned char esym[sizeof (Elf64_External_Sym)];
452 Elf_External_Sym_Shndx eshndx;
453 Elf_Internal_Sym isym;
454
455 /* First we need to ensure the symbol table is available. */
456 if (! bfd_section_from_shdr (abfd, ghdr->sh_link))
457 return NULL;
458
459 /* Go read the symbol. */
460 hdr = &elf_tdata (abfd)->symtab_hdr;
461 if (bfd_elf_get_elf_syms (abfd, hdr, 1, ghdr->sh_info,
462 &isym, esym, &eshndx) == NULL)
463 return NULL;
464
465 return bfd_elf_sym_name (abfd, hdr, &isym, NULL);
466 }
467
468 /* Set next_in_group list pointer, and group name for NEWSECT. */
469
470 static bfd_boolean
471 setup_group (bfd *abfd, Elf_Internal_Shdr *hdr, asection *newsect)
472 {
473 unsigned int num_group = elf_tdata (abfd)->num_group;
474
475 /* If num_group is zero, read in all SHT_GROUP sections. The count
476 is set to -1 if there are no SHT_GROUP sections. */
477 if (num_group == 0)
478 {
479 unsigned int i, shnum;
480
481 /* First count the number of groups. If we have a SHT_GROUP
482 section with just a flag word (ie. sh_size is 4), ignore it. */
483 shnum = elf_numsections (abfd);
484 num_group = 0;
485 for (i = 0; i < shnum; i++)
486 {
487 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
488 if (shdr->sh_type == SHT_GROUP && shdr->sh_size >= 8)
489 num_group += 1;
490 }
491
492 if (num_group == 0)
493 {
494 num_group = (unsigned) -1;
495 elf_tdata (abfd)->num_group = num_group;
496 }
497 else
498 {
499 /* We keep a list of elf section headers for group sections,
500 so we can find them quickly. */
501 bfd_size_type amt;
502
503 elf_tdata (abfd)->num_group = num_group;
504 amt = num_group * sizeof (Elf_Internal_Shdr *);
505 elf_tdata (abfd)->group_sect_ptr = bfd_alloc (abfd, amt);
506 if (elf_tdata (abfd)->group_sect_ptr == NULL)
507 return FALSE;
508
509 num_group = 0;
510 for (i = 0; i < shnum; i++)
511 {
512 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
513 if (shdr->sh_type == SHT_GROUP && shdr->sh_size >= 8)
514 {
515 unsigned char *src;
516 Elf_Internal_Group *dest;
517
518 /* Add to list of sections. */
519 elf_tdata (abfd)->group_sect_ptr[num_group] = shdr;
520 num_group += 1;
521
522 /* Read the raw contents. */
523 BFD_ASSERT (sizeof (*dest) >= 4);
524 amt = shdr->sh_size * sizeof (*dest) / 4;
525 shdr->contents = bfd_alloc (abfd, amt);
526 if (shdr->contents == NULL
527 || bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0
528 || (bfd_bread (shdr->contents, shdr->sh_size, abfd)
529 != shdr->sh_size))
530 return FALSE;
531
532 /* Translate raw contents, a flag word followed by an
533 array of elf section indices all in target byte order,
534 to the flag word followed by an array of elf section
535 pointers. */
536 src = shdr->contents + shdr->sh_size;
537 dest = (Elf_Internal_Group *) (shdr->contents + amt);
538 while (1)
539 {
540 unsigned int idx;
541
542 src -= 4;
543 --dest;
544 idx = H_GET_32 (abfd, src);
545 if (src == shdr->contents)
546 {
547 dest->flags = idx;
548 if (shdr->bfd_section != NULL && (idx & GRP_COMDAT))
549 shdr->bfd_section->flags
550 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
551 break;
552 }
553 if (idx >= shnum)
554 {
555 ((*_bfd_error_handler)
556 (_("%B: invalid SHT_GROUP entry"), abfd));
557 idx = 0;
558 }
559 dest->shdr = elf_elfsections (abfd)[idx];
560 }
561 }
562 }
563 }
564 }
565
566 if (num_group != (unsigned) -1)
567 {
568 unsigned int i;
569
570 for (i = 0; i < num_group; i++)
571 {
572 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
573 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
574 unsigned int n_elt = shdr->sh_size / 4;
575
576 /* Look through this group's sections to see if current
577 section is a member. */
578 while (--n_elt != 0)
579 if ((++idx)->shdr == hdr)
580 {
581 asection *s = NULL;
582
583 /* We are a member of this group. Go looking through
584 other members to see if any others are linked via
585 next_in_group. */
586 idx = (Elf_Internal_Group *) shdr->contents;
587 n_elt = shdr->sh_size / 4;
588 while (--n_elt != 0)
589 if ((s = (++idx)->shdr->bfd_section) != NULL
590 && elf_next_in_group (s) != NULL)
591 break;
592 if (n_elt != 0)
593 {
594 /* Snarf the group name from other member, and
595 insert current section in circular list. */
596 elf_group_name (newsect) = elf_group_name (s);
597 elf_next_in_group (newsect) = elf_next_in_group (s);
598 elf_next_in_group (s) = newsect;
599 }
600 else
601 {
602 const char *gname;
603
604 gname = group_signature (abfd, shdr);
605 if (gname == NULL)
606 return FALSE;
607 elf_group_name (newsect) = gname;
608
609 /* Start a circular list with one element. */
610 elf_next_in_group (newsect) = newsect;
611 }
612
613 /* If the group section has been created, point to the
614 new member. */
615 if (shdr->bfd_section != NULL)
616 elf_next_in_group (shdr->bfd_section) = newsect;
617
618 i = num_group - 1;
619 break;
620 }
621 }
622 }
623
624 if (elf_group_name (newsect) == NULL)
625 {
626 (*_bfd_error_handler) (_("%B: no group info for section %A"),
627 abfd, newsect);
628 }
629 return TRUE;
630 }
631
632 bfd_boolean
633 _bfd_elf_setup_group_pointers (bfd *abfd)
634 {
635 unsigned int i;
636 unsigned int num_group = elf_tdata (abfd)->num_group;
637 bfd_boolean result = TRUE;
638
639 if (num_group == (unsigned) -1)
640 return result;
641
642 for (i = 0; i < num_group; i++)
643 {
644 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
645 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
646 unsigned int n_elt = shdr->sh_size / 4;
647
648 while (--n_elt != 0)
649 if ((++idx)->shdr->bfd_section)
650 elf_sec_group (idx->shdr->bfd_section) = shdr->bfd_section;
651 else if (idx->shdr->sh_type == SHT_RELA
652 || idx->shdr->sh_type == SHT_REL)
653 /* We won't include relocation sections in section groups in
654 output object files. We adjust the group section size here
655 so that relocatable link will work correctly when
656 relocation sections are in section group in input object
657 files. */
658 shdr->bfd_section->size -= 4;
659 else
660 {
661 /* There are some unknown sections in the group. */
662 (*_bfd_error_handler)
663 (_("%B: unknown [%d] section `%s' in group [%s]"),
664 abfd,
665 (unsigned int) idx->shdr->sh_type,
666 bfd_elf_string_from_elf_section (abfd,
667 (elf_elfheader (abfd)
668 ->e_shstrndx),
669 idx->shdr->sh_name),
670 shdr->bfd_section->name);
671 result = FALSE;
672 }
673 }
674 return result;
675 }
676
677 bfd_boolean
678 bfd_elf_is_group_section (bfd *abfd ATTRIBUTE_UNUSED, const asection *sec)
679 {
680 return elf_next_in_group (sec) != NULL;
681 }
682
683 /* Make a BFD section from an ELF section. We store a pointer to the
684 BFD section in the bfd_section field of the header. */
685
686 bfd_boolean
687 _bfd_elf_make_section_from_shdr (bfd *abfd,
688 Elf_Internal_Shdr *hdr,
689 const char *name,
690 int shindex)
691 {
692 asection *newsect;
693 flagword flags;
694 const struct elf_backend_data *bed;
695
696 if (hdr->bfd_section != NULL)
697 {
698 BFD_ASSERT (strcmp (name,
699 bfd_get_section_name (abfd, hdr->bfd_section)) == 0);
700 return TRUE;
701 }
702
703 newsect = bfd_make_section_anyway (abfd, name);
704 if (newsect == NULL)
705 return FALSE;
706
707 hdr->bfd_section = newsect;
708 elf_section_data (newsect)->this_hdr = *hdr;
709 elf_section_data (newsect)->this_idx = shindex;
710
711 /* Always use the real type/flags. */
712 elf_section_type (newsect) = hdr->sh_type;
713 elf_section_flags (newsect) = hdr->sh_flags;
714
715 newsect->filepos = hdr->sh_offset;
716
717 if (! bfd_set_section_vma (abfd, newsect, hdr->sh_addr)
718 || ! bfd_set_section_size (abfd, newsect, hdr->sh_size)
719 || ! bfd_set_section_alignment (abfd, newsect,
720 bfd_log2 ((bfd_vma) hdr->sh_addralign)))
721 return FALSE;
722
723 flags = SEC_NO_FLAGS;
724 if (hdr->sh_type != SHT_NOBITS)
725 flags |= SEC_HAS_CONTENTS;
726 if (hdr->sh_type == SHT_GROUP)
727 flags |= SEC_GROUP | SEC_EXCLUDE;
728 if ((hdr->sh_flags & SHF_ALLOC) != 0)
729 {
730 flags |= SEC_ALLOC;
731 if (hdr->sh_type != SHT_NOBITS)
732 flags |= SEC_LOAD;
733 }
734 if ((hdr->sh_flags & SHF_WRITE) == 0)
735 flags |= SEC_READONLY;
736 if ((hdr->sh_flags & SHF_EXECINSTR) != 0)
737 flags |= SEC_CODE;
738 else if ((flags & SEC_LOAD) != 0)
739 flags |= SEC_DATA;
740 if ((hdr->sh_flags & SHF_MERGE) != 0)
741 {
742 flags |= SEC_MERGE;
743 newsect->entsize = hdr->sh_entsize;
744 if ((hdr->sh_flags & SHF_STRINGS) != 0)
745 flags |= SEC_STRINGS;
746 }
747 if (hdr->sh_flags & SHF_GROUP)
748 if (!setup_group (abfd, hdr, newsect))
749 return FALSE;
750 if ((hdr->sh_flags & SHF_TLS) != 0)
751 flags |= SEC_THREAD_LOCAL;
752
753 /* The debugging sections appear to be recognized only by name, not
754 any sort of flag. */
755 {
756 static const char *debug_sec_names [] =
757 {
758 ".debug",
759 ".gnu.linkonce.wi.",
760 ".line",
761 ".stab"
762 };
763 int i;
764
765 for (i = ARRAY_SIZE (debug_sec_names); i--;)
766 if (strncmp (name, debug_sec_names[i], strlen (debug_sec_names[i])) == 0)
767 break;
768
769 if (i >= 0)
770 flags |= SEC_DEBUGGING;
771 }
772
773 /* As a GNU extension, if the name begins with .gnu.linkonce, we
774 only link a single copy of the section. This is used to support
775 g++. g++ will emit each template expansion in its own section.
776 The symbols will be defined as weak, so that multiple definitions
777 are permitted. The GNU linker extension is to actually discard
778 all but one of the sections. */
779 if (strncmp (name, ".gnu.linkonce", sizeof ".gnu.linkonce" - 1) == 0
780 && elf_next_in_group (newsect) == NULL)
781 flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
782
783 bed = get_elf_backend_data (abfd);
784 if (bed->elf_backend_section_flags)
785 if (! bed->elf_backend_section_flags (&flags, hdr))
786 return FALSE;
787
788 if (! bfd_set_section_flags (abfd, newsect, flags))
789 return FALSE;
790
791 if ((flags & SEC_ALLOC) != 0)
792 {
793 Elf_Internal_Phdr *phdr;
794 unsigned int i;
795
796 /* Look through the phdrs to see if we need to adjust the lma.
797 If all the p_paddr fields are zero, we ignore them, since
798 some ELF linkers produce such output. */
799 phdr = elf_tdata (abfd)->phdr;
800 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
801 {
802 if (phdr->p_paddr != 0)
803 break;
804 }
805 if (i < elf_elfheader (abfd)->e_phnum)
806 {
807 phdr = elf_tdata (abfd)->phdr;
808 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
809 {
810 /* This section is part of this segment if its file
811 offset plus size lies within the segment's memory
812 span and, if the section is loaded, the extent of the
813 loaded data lies within the extent of the segment.
814
815 Note - we used to check the p_paddr field as well, and
816 refuse to set the LMA if it was 0. This is wrong
817 though, as a perfectly valid initialised segment can
818 have a p_paddr of zero. Some architectures, eg ARM,
819 place special significance on the address 0 and
820 executables need to be able to have a segment which
821 covers this address. */
822 if (phdr->p_type == PT_LOAD
823 && (bfd_vma) hdr->sh_offset >= phdr->p_offset
824 && (hdr->sh_offset + hdr->sh_size
825 <= phdr->p_offset + phdr->p_memsz)
826 && ((flags & SEC_LOAD) == 0
827 || (hdr->sh_offset + hdr->sh_size
828 <= phdr->p_offset + phdr->p_filesz)))
829 {
830 if ((flags & SEC_LOAD) == 0)
831 newsect->lma = (phdr->p_paddr
832 + hdr->sh_addr - phdr->p_vaddr);
833 else
834 /* We used to use the same adjustment for SEC_LOAD
835 sections, but that doesn't work if the segment
836 is packed with code from multiple VMAs.
837 Instead we calculate the section LMA based on
838 the segment LMA. It is assumed that the
839 segment will contain sections with contiguous
840 LMAs, even if the VMAs are not. */
841 newsect->lma = (phdr->p_paddr
842 + hdr->sh_offset - phdr->p_offset);
843
844 /* With contiguous segments, we can't tell from file
845 offsets whether a section with zero size should
846 be placed at the end of one segment or the
847 beginning of the next. Decide based on vaddr. */
848 if (hdr->sh_addr >= phdr->p_vaddr
849 && (hdr->sh_addr + hdr->sh_size
850 <= phdr->p_vaddr + phdr->p_memsz))
851 break;
852 }
853 }
854 }
855 }
856
857 return TRUE;
858 }
859
860 /*
861 INTERNAL_FUNCTION
862 bfd_elf_find_section
863
864 SYNOPSIS
865 struct elf_internal_shdr *bfd_elf_find_section (bfd *abfd, char *name);
866
867 DESCRIPTION
868 Helper functions for GDB to locate the string tables.
869 Since BFD hides string tables from callers, GDB needs to use an
870 internal hook to find them. Sun's .stabstr, in particular,
871 isn't even pointed to by the .stab section, so ordinary
872 mechanisms wouldn't work to find it, even if we had some.
873 */
874
875 struct elf_internal_shdr *
876 bfd_elf_find_section (bfd *abfd, char *name)
877 {
878 Elf_Internal_Shdr **i_shdrp;
879 char *shstrtab;
880 unsigned int max;
881 unsigned int i;
882
883 i_shdrp = elf_elfsections (abfd);
884 if (i_shdrp != NULL)
885 {
886 shstrtab = bfd_elf_get_str_section (abfd,
887 elf_elfheader (abfd)->e_shstrndx);
888 if (shstrtab != NULL)
889 {
890 max = elf_numsections (abfd);
891 for (i = 1; i < max; i++)
892 if (!strcmp (&shstrtab[i_shdrp[i]->sh_name], name))
893 return i_shdrp[i];
894 }
895 }
896 return 0;
897 }
898
899 const char *const bfd_elf_section_type_names[] = {
900 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
901 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
902 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
903 };
904
905 /* ELF relocs are against symbols. If we are producing relocatable
906 output, and the reloc is against an external symbol, and nothing
907 has given us any additional addend, the resulting reloc will also
908 be against the same symbol. In such a case, we don't want to
909 change anything about the way the reloc is handled, since it will
910 all be done at final link time. Rather than put special case code
911 into bfd_perform_relocation, all the reloc types use this howto
912 function. It just short circuits the reloc if producing
913 relocatable output against an external symbol. */
914
915 bfd_reloc_status_type
916 bfd_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED,
917 arelent *reloc_entry,
918 asymbol *symbol,
919 void *data ATTRIBUTE_UNUSED,
920 asection *input_section,
921 bfd *output_bfd,
922 char **error_message ATTRIBUTE_UNUSED)
923 {
924 if (output_bfd != NULL
925 && (symbol->flags & BSF_SECTION_SYM) == 0
926 && (! reloc_entry->howto->partial_inplace
927 || reloc_entry->addend == 0))
928 {
929 reloc_entry->address += input_section->output_offset;
930 return bfd_reloc_ok;
931 }
932
933 return bfd_reloc_continue;
934 }
935 \f
936 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
937
938 static void
939 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
940 asection *sec)
941 {
942 BFD_ASSERT (sec->sec_info_type == ELF_INFO_TYPE_MERGE);
943 sec->sec_info_type = ELF_INFO_TYPE_NONE;
944 }
945
946 /* Finish SHF_MERGE section merging. */
947
948 bfd_boolean
949 _bfd_elf_merge_sections (bfd *abfd, struct bfd_link_info *info)
950 {
951 bfd *ibfd;
952 asection *sec;
953
954 if (!is_elf_hash_table (info->hash))
955 return FALSE;
956
957 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
958 if ((ibfd->flags & DYNAMIC) == 0)
959 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
960 if ((sec->flags & SEC_MERGE) != 0
961 && !bfd_is_abs_section (sec->output_section))
962 {
963 struct bfd_elf_section_data *secdata;
964
965 secdata = elf_section_data (sec);
966 if (! _bfd_add_merge_section (abfd,
967 &elf_hash_table (info)->merge_info,
968 sec, &secdata->sec_info))
969 return FALSE;
970 else if (secdata->sec_info)
971 sec->sec_info_type = ELF_INFO_TYPE_MERGE;
972 }
973
974 if (elf_hash_table (info)->merge_info != NULL)
975 _bfd_merge_sections (abfd, info, elf_hash_table (info)->merge_info,
976 merge_sections_remove_hook);
977 return TRUE;
978 }
979
980 void
981 _bfd_elf_link_just_syms (asection *sec, struct bfd_link_info *info)
982 {
983 sec->output_section = bfd_abs_section_ptr;
984 sec->output_offset = sec->vma;
985 if (!is_elf_hash_table (info->hash))
986 return;
987
988 sec->sec_info_type = ELF_INFO_TYPE_JUST_SYMS;
989 }
990 \f
991 /* Copy the program header and other data from one object module to
992 another. */
993
994 bfd_boolean
995 _bfd_elf_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
996 {
997 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
998 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
999 return TRUE;
1000
1001 BFD_ASSERT (!elf_flags_init (obfd)
1002 || (elf_elfheader (obfd)->e_flags
1003 == elf_elfheader (ibfd)->e_flags));
1004
1005 elf_gp (obfd) = elf_gp (ibfd);
1006 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
1007 elf_flags_init (obfd) = TRUE;
1008 return TRUE;
1009 }
1010
1011 /* Print out the program headers. */
1012
1013 bfd_boolean
1014 _bfd_elf_print_private_bfd_data (bfd *abfd, void *farg)
1015 {
1016 FILE *f = farg;
1017 Elf_Internal_Phdr *p;
1018 asection *s;
1019 bfd_byte *dynbuf = NULL;
1020
1021 p = elf_tdata (abfd)->phdr;
1022 if (p != NULL)
1023 {
1024 unsigned int i, c;
1025
1026 fprintf (f, _("\nProgram Header:\n"));
1027 c = elf_elfheader (abfd)->e_phnum;
1028 for (i = 0; i < c; i++, p++)
1029 {
1030 const char *pt;
1031 char buf[20];
1032
1033 switch (p->p_type)
1034 {
1035 case PT_NULL: pt = "NULL"; break;
1036 case PT_LOAD: pt = "LOAD"; break;
1037 case PT_DYNAMIC: pt = "DYNAMIC"; break;
1038 case PT_INTERP: pt = "INTERP"; break;
1039 case PT_NOTE: pt = "NOTE"; break;
1040 case PT_SHLIB: pt = "SHLIB"; break;
1041 case PT_PHDR: pt = "PHDR"; break;
1042 case PT_TLS: pt = "TLS"; break;
1043 case PT_GNU_EH_FRAME: pt = "EH_FRAME"; break;
1044 case PT_GNU_STACK: pt = "STACK"; break;
1045 case PT_GNU_RELRO: pt = "RELRO"; break;
1046 default: sprintf (buf, "0x%lx", p->p_type); pt = buf; break;
1047 }
1048 fprintf (f, "%8s off 0x", pt);
1049 bfd_fprintf_vma (abfd, f, p->p_offset);
1050 fprintf (f, " vaddr 0x");
1051 bfd_fprintf_vma (abfd, f, p->p_vaddr);
1052 fprintf (f, " paddr 0x");
1053 bfd_fprintf_vma (abfd, f, p->p_paddr);
1054 fprintf (f, " align 2**%u\n", bfd_log2 (p->p_align));
1055 fprintf (f, " filesz 0x");
1056 bfd_fprintf_vma (abfd, f, p->p_filesz);
1057 fprintf (f, " memsz 0x");
1058 bfd_fprintf_vma (abfd, f, p->p_memsz);
1059 fprintf (f, " flags %c%c%c",
1060 (p->p_flags & PF_R) != 0 ? 'r' : '-',
1061 (p->p_flags & PF_W) != 0 ? 'w' : '-',
1062 (p->p_flags & PF_X) != 0 ? 'x' : '-');
1063 if ((p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X)) != 0)
1064 fprintf (f, " %lx", p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X));
1065 fprintf (f, "\n");
1066 }
1067 }
1068
1069 s = bfd_get_section_by_name (abfd, ".dynamic");
1070 if (s != NULL)
1071 {
1072 int elfsec;
1073 unsigned long shlink;
1074 bfd_byte *extdyn, *extdynend;
1075 size_t extdynsize;
1076 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1077
1078 fprintf (f, _("\nDynamic Section:\n"));
1079
1080 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
1081 goto error_return;
1082
1083 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1084 if (elfsec == -1)
1085 goto error_return;
1086 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1087
1088 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1089 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1090
1091 extdyn = dynbuf;
1092 extdynend = extdyn + s->size;
1093 for (; extdyn < extdynend; extdyn += extdynsize)
1094 {
1095 Elf_Internal_Dyn dyn;
1096 const char *name;
1097 char ab[20];
1098 bfd_boolean stringp;
1099
1100 (*swap_dyn_in) (abfd, extdyn, &dyn);
1101
1102 if (dyn.d_tag == DT_NULL)
1103 break;
1104
1105 stringp = FALSE;
1106 switch (dyn.d_tag)
1107 {
1108 default:
1109 sprintf (ab, "0x%lx", (unsigned long) dyn.d_tag);
1110 name = ab;
1111 break;
1112
1113 case DT_NEEDED: name = "NEEDED"; stringp = TRUE; break;
1114 case DT_PLTRELSZ: name = "PLTRELSZ"; break;
1115 case DT_PLTGOT: name = "PLTGOT"; break;
1116 case DT_HASH: name = "HASH"; break;
1117 case DT_STRTAB: name = "STRTAB"; break;
1118 case DT_SYMTAB: name = "SYMTAB"; break;
1119 case DT_RELA: name = "RELA"; break;
1120 case DT_RELASZ: name = "RELASZ"; break;
1121 case DT_RELAENT: name = "RELAENT"; break;
1122 case DT_STRSZ: name = "STRSZ"; break;
1123 case DT_SYMENT: name = "SYMENT"; break;
1124 case DT_INIT: name = "INIT"; break;
1125 case DT_FINI: name = "FINI"; break;
1126 case DT_SONAME: name = "SONAME"; stringp = TRUE; break;
1127 case DT_RPATH: name = "RPATH"; stringp = TRUE; break;
1128 case DT_SYMBOLIC: name = "SYMBOLIC"; break;
1129 case DT_REL: name = "REL"; break;
1130 case DT_RELSZ: name = "RELSZ"; break;
1131 case DT_RELENT: name = "RELENT"; break;
1132 case DT_PLTREL: name = "PLTREL"; break;
1133 case DT_DEBUG: name = "DEBUG"; break;
1134 case DT_TEXTREL: name = "TEXTREL"; break;
1135 case DT_JMPREL: name = "JMPREL"; break;
1136 case DT_BIND_NOW: name = "BIND_NOW"; break;
1137 case DT_INIT_ARRAY: name = "INIT_ARRAY"; break;
1138 case DT_FINI_ARRAY: name = "FINI_ARRAY"; break;
1139 case DT_INIT_ARRAYSZ: name = "INIT_ARRAYSZ"; break;
1140 case DT_FINI_ARRAYSZ: name = "FINI_ARRAYSZ"; break;
1141 case DT_RUNPATH: name = "RUNPATH"; stringp = TRUE; break;
1142 case DT_FLAGS: name = "FLAGS"; break;
1143 case DT_PREINIT_ARRAY: name = "PREINIT_ARRAY"; break;
1144 case DT_PREINIT_ARRAYSZ: name = "PREINIT_ARRAYSZ"; break;
1145 case DT_CHECKSUM: name = "CHECKSUM"; break;
1146 case DT_PLTPADSZ: name = "PLTPADSZ"; break;
1147 case DT_MOVEENT: name = "MOVEENT"; break;
1148 case DT_MOVESZ: name = "MOVESZ"; break;
1149 case DT_FEATURE: name = "FEATURE"; break;
1150 case DT_POSFLAG_1: name = "POSFLAG_1"; break;
1151 case DT_SYMINSZ: name = "SYMINSZ"; break;
1152 case DT_SYMINENT: name = "SYMINENT"; break;
1153 case DT_CONFIG: name = "CONFIG"; stringp = TRUE; break;
1154 case DT_DEPAUDIT: name = "DEPAUDIT"; stringp = TRUE; break;
1155 case DT_AUDIT: name = "AUDIT"; stringp = TRUE; break;
1156 case DT_PLTPAD: name = "PLTPAD"; break;
1157 case DT_MOVETAB: name = "MOVETAB"; break;
1158 case DT_SYMINFO: name = "SYMINFO"; break;
1159 case DT_RELACOUNT: name = "RELACOUNT"; break;
1160 case DT_RELCOUNT: name = "RELCOUNT"; break;
1161 case DT_FLAGS_1: name = "FLAGS_1"; break;
1162 case DT_VERSYM: name = "VERSYM"; break;
1163 case DT_VERDEF: name = "VERDEF"; break;
1164 case DT_VERDEFNUM: name = "VERDEFNUM"; break;
1165 case DT_VERNEED: name = "VERNEED"; break;
1166 case DT_VERNEEDNUM: name = "VERNEEDNUM"; break;
1167 case DT_AUXILIARY: name = "AUXILIARY"; stringp = TRUE; break;
1168 case DT_USED: name = "USED"; break;
1169 case DT_FILTER: name = "FILTER"; stringp = TRUE; break;
1170 }
1171
1172 fprintf (f, " %-11s ", name);
1173 if (! stringp)
1174 fprintf (f, "0x%lx", (unsigned long) dyn.d_un.d_val);
1175 else
1176 {
1177 const char *string;
1178 unsigned int tagv = dyn.d_un.d_val;
1179
1180 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1181 if (string == NULL)
1182 goto error_return;
1183 fprintf (f, "%s", string);
1184 }
1185 fprintf (f, "\n");
1186 }
1187
1188 free (dynbuf);
1189 dynbuf = NULL;
1190 }
1191
1192 if ((elf_dynverdef (abfd) != 0 && elf_tdata (abfd)->verdef == NULL)
1193 || (elf_dynverref (abfd) != 0 && elf_tdata (abfd)->verref == NULL))
1194 {
1195 if (! _bfd_elf_slurp_version_tables (abfd, FALSE))
1196 return FALSE;
1197 }
1198
1199 if (elf_dynverdef (abfd) != 0)
1200 {
1201 Elf_Internal_Verdef *t;
1202
1203 fprintf (f, _("\nVersion definitions:\n"));
1204 for (t = elf_tdata (abfd)->verdef; t != NULL; t = t->vd_nextdef)
1205 {
1206 fprintf (f, "%d 0x%2.2x 0x%8.8lx %s\n", t->vd_ndx,
1207 t->vd_flags, t->vd_hash, t->vd_nodename);
1208 if (t->vd_auxptr->vda_nextptr != NULL)
1209 {
1210 Elf_Internal_Verdaux *a;
1211
1212 fprintf (f, "\t");
1213 for (a = t->vd_auxptr->vda_nextptr;
1214 a != NULL;
1215 a = a->vda_nextptr)
1216 fprintf (f, "%s ", a->vda_nodename);
1217 fprintf (f, "\n");
1218 }
1219 }
1220 }
1221
1222 if (elf_dynverref (abfd) != 0)
1223 {
1224 Elf_Internal_Verneed *t;
1225
1226 fprintf (f, _("\nVersion References:\n"));
1227 for (t = elf_tdata (abfd)->verref; t != NULL; t = t->vn_nextref)
1228 {
1229 Elf_Internal_Vernaux *a;
1230
1231 fprintf (f, _(" required from %s:\n"), t->vn_filename);
1232 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1233 fprintf (f, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a->vna_hash,
1234 a->vna_flags, a->vna_other, a->vna_nodename);
1235 }
1236 }
1237
1238 return TRUE;
1239
1240 error_return:
1241 if (dynbuf != NULL)
1242 free (dynbuf);
1243 return FALSE;
1244 }
1245
1246 /* Display ELF-specific fields of a symbol. */
1247
1248 void
1249 bfd_elf_print_symbol (bfd *abfd,
1250 void *filep,
1251 asymbol *symbol,
1252 bfd_print_symbol_type how)
1253 {
1254 FILE *file = filep;
1255 switch (how)
1256 {
1257 case bfd_print_symbol_name:
1258 fprintf (file, "%s", symbol->name);
1259 break;
1260 case bfd_print_symbol_more:
1261 fprintf (file, "elf ");
1262 bfd_fprintf_vma (abfd, file, symbol->value);
1263 fprintf (file, " %lx", (long) symbol->flags);
1264 break;
1265 case bfd_print_symbol_all:
1266 {
1267 const char *section_name;
1268 const char *name = NULL;
1269 const struct elf_backend_data *bed;
1270 unsigned char st_other;
1271 bfd_vma val;
1272
1273 section_name = symbol->section ? symbol->section->name : "(*none*)";
1274
1275 bed = get_elf_backend_data (abfd);
1276 if (bed->elf_backend_print_symbol_all)
1277 name = (*bed->elf_backend_print_symbol_all) (abfd, filep, symbol);
1278
1279 if (name == NULL)
1280 {
1281 name = symbol->name;
1282 bfd_print_symbol_vandf (abfd, file, symbol);
1283 }
1284
1285 fprintf (file, " %s\t", section_name);
1286 /* Print the "other" value for a symbol. For common symbols,
1287 we've already printed the size; now print the alignment.
1288 For other symbols, we have no specified alignment, and
1289 we've printed the address; now print the size. */
1290 if (bfd_is_com_section (symbol->section))
1291 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
1292 else
1293 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_size;
1294 bfd_fprintf_vma (abfd, file, val);
1295
1296 /* If we have version information, print it. */
1297 if (elf_tdata (abfd)->dynversym_section != 0
1298 && (elf_tdata (abfd)->dynverdef_section != 0
1299 || elf_tdata (abfd)->dynverref_section != 0))
1300 {
1301 unsigned int vernum;
1302 const char *version_string;
1303
1304 vernum = ((elf_symbol_type *) symbol)->version & VERSYM_VERSION;
1305
1306 if (vernum == 0)
1307 version_string = "";
1308 else if (vernum == 1)
1309 version_string = "Base";
1310 else if (vernum <= elf_tdata (abfd)->cverdefs)
1311 version_string =
1312 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1313 else
1314 {
1315 Elf_Internal_Verneed *t;
1316
1317 version_string = "";
1318 for (t = elf_tdata (abfd)->verref;
1319 t != NULL;
1320 t = t->vn_nextref)
1321 {
1322 Elf_Internal_Vernaux *a;
1323
1324 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1325 {
1326 if (a->vna_other == vernum)
1327 {
1328 version_string = a->vna_nodename;
1329 break;
1330 }
1331 }
1332 }
1333 }
1334
1335 if ((((elf_symbol_type *) symbol)->version & VERSYM_HIDDEN) == 0)
1336 fprintf (file, " %-11s", version_string);
1337 else
1338 {
1339 int i;
1340
1341 fprintf (file, " (%s)", version_string);
1342 for (i = 10 - strlen (version_string); i > 0; --i)
1343 putc (' ', file);
1344 }
1345 }
1346
1347 /* If the st_other field is not zero, print it. */
1348 st_other = ((elf_symbol_type *) symbol)->internal_elf_sym.st_other;
1349
1350 switch (st_other)
1351 {
1352 case 0: break;
1353 case STV_INTERNAL: fprintf (file, " .internal"); break;
1354 case STV_HIDDEN: fprintf (file, " .hidden"); break;
1355 case STV_PROTECTED: fprintf (file, " .protected"); break;
1356 default:
1357 /* Some other non-defined flags are also present, so print
1358 everything hex. */
1359 fprintf (file, " 0x%02x", (unsigned int) st_other);
1360 }
1361
1362 fprintf (file, " %s", name);
1363 }
1364 break;
1365 }
1366 }
1367 \f
1368 /* Create an entry in an ELF linker hash table. */
1369
1370 struct bfd_hash_entry *
1371 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
1372 struct bfd_hash_table *table,
1373 const char *string)
1374 {
1375 /* Allocate the structure if it has not already been allocated by a
1376 subclass. */
1377 if (entry == NULL)
1378 {
1379 entry = bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
1380 if (entry == NULL)
1381 return entry;
1382 }
1383
1384 /* Call the allocation method of the superclass. */
1385 entry = _bfd_link_hash_newfunc (entry, table, string);
1386 if (entry != NULL)
1387 {
1388 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
1389 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
1390
1391 /* Set local fields. */
1392 ret->indx = -1;
1393 ret->dynindx = -1;
1394 ret->got = ret->plt = htab->init_refcount;
1395 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
1396 - offsetof (struct elf_link_hash_entry, size)));
1397 /* Assume that we have been called by a non-ELF symbol reader.
1398 This flag is then reset by the code which reads an ELF input
1399 file. This ensures that a symbol created by a non-ELF symbol
1400 reader will have the flag set correctly. */
1401 ret->non_elf = 1;
1402 }
1403
1404 return entry;
1405 }
1406
1407 /* Copy data from an indirect symbol to its direct symbol, hiding the
1408 old indirect symbol. Also used for copying flags to a weakdef. */
1409
1410 void
1411 _bfd_elf_link_hash_copy_indirect (const struct elf_backend_data *bed,
1412 struct elf_link_hash_entry *dir,
1413 struct elf_link_hash_entry *ind)
1414 {
1415 bfd_signed_vma tmp;
1416 bfd_signed_vma lowest_valid = bed->can_refcount;
1417
1418 /* Copy down any references that we may have already seen to the
1419 symbol which just became indirect. */
1420
1421 dir->ref_dynamic |= ind->ref_dynamic;
1422 dir->ref_regular |= ind->ref_regular;
1423 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
1424 dir->non_got_ref |= ind->non_got_ref;
1425 dir->needs_plt |= ind->needs_plt;
1426 dir->pointer_equality_needed |= ind->pointer_equality_needed;
1427
1428 if (ind->root.type != bfd_link_hash_indirect)
1429 return;
1430
1431 /* Copy over the global and procedure linkage table refcount entries.
1432 These may have been already set up by a check_relocs routine. */
1433 tmp = dir->got.refcount;
1434 if (tmp < lowest_valid)
1435 {
1436 dir->got.refcount = ind->got.refcount;
1437 ind->got.refcount = tmp;
1438 }
1439 else
1440 BFD_ASSERT (ind->got.refcount < lowest_valid);
1441
1442 tmp = dir->plt.refcount;
1443 if (tmp < lowest_valid)
1444 {
1445 dir->plt.refcount = ind->plt.refcount;
1446 ind->plt.refcount = tmp;
1447 }
1448 else
1449 BFD_ASSERT (ind->plt.refcount < lowest_valid);
1450
1451 if (dir->dynindx == -1)
1452 {
1453 dir->dynindx = ind->dynindx;
1454 dir->dynstr_index = ind->dynstr_index;
1455 ind->dynindx = -1;
1456 ind->dynstr_index = 0;
1457 }
1458 else
1459 BFD_ASSERT (ind->dynindx == -1);
1460 }
1461
1462 void
1463 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
1464 struct elf_link_hash_entry *h,
1465 bfd_boolean force_local)
1466 {
1467 h->plt = elf_hash_table (info)->init_offset;
1468 h->needs_plt = 0;
1469 if (force_local)
1470 {
1471 h->forced_local = 1;
1472 if (h->dynindx != -1)
1473 {
1474 h->dynindx = -1;
1475 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1476 h->dynstr_index);
1477 }
1478 }
1479 }
1480
1481 /* Initialize an ELF linker hash table. */
1482
1483 bfd_boolean
1484 _bfd_elf_link_hash_table_init
1485 (struct elf_link_hash_table *table,
1486 bfd *abfd,
1487 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
1488 struct bfd_hash_table *,
1489 const char *))
1490 {
1491 bfd_boolean ret;
1492
1493 table->dynamic_sections_created = FALSE;
1494 table->dynobj = NULL;
1495 /* Make sure can_refcount is extended to the width and signedness of
1496 init_refcount before we subtract one from it. */
1497 table->init_refcount.refcount = get_elf_backend_data (abfd)->can_refcount;
1498 table->init_refcount.refcount -= 1;
1499 table->init_offset.offset = -(bfd_vma) 1;
1500 /* The first dynamic symbol is a dummy. */
1501 table->dynsymcount = 1;
1502 table->dynstr = NULL;
1503 table->bucketcount = 0;
1504 table->needed = NULL;
1505 table->hgot = NULL;
1506 table->merge_info = NULL;
1507 memset (&table->stab_info, 0, sizeof (table->stab_info));
1508 memset (&table->eh_info, 0, sizeof (table->eh_info));
1509 table->dynlocal = NULL;
1510 table->runpath = NULL;
1511 table->tls_sec = NULL;
1512 table->tls_size = 0;
1513 table->loaded = NULL;
1514 table->is_relocatable_executable = FALSE;
1515
1516 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc);
1517 table->root.type = bfd_link_elf_hash_table;
1518
1519 return ret;
1520 }
1521
1522 /* Create an ELF linker hash table. */
1523
1524 struct bfd_link_hash_table *
1525 _bfd_elf_link_hash_table_create (bfd *abfd)
1526 {
1527 struct elf_link_hash_table *ret;
1528 bfd_size_type amt = sizeof (struct elf_link_hash_table);
1529
1530 ret = bfd_malloc (amt);
1531 if (ret == NULL)
1532 return NULL;
1533
1534 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc))
1535 {
1536 free (ret);
1537 return NULL;
1538 }
1539
1540 return &ret->root;
1541 }
1542
1543 /* This is a hook for the ELF emulation code in the generic linker to
1544 tell the backend linker what file name to use for the DT_NEEDED
1545 entry for a dynamic object. */
1546
1547 void
1548 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
1549 {
1550 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1551 && bfd_get_format (abfd) == bfd_object)
1552 elf_dt_name (abfd) = name;
1553 }
1554
1555 int
1556 bfd_elf_get_dyn_lib_class (bfd *abfd)
1557 {
1558 int lib_class;
1559 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1560 && bfd_get_format (abfd) == bfd_object)
1561 lib_class = elf_dyn_lib_class (abfd);
1562 else
1563 lib_class = 0;
1564 return lib_class;
1565 }
1566
1567 void
1568 bfd_elf_set_dyn_lib_class (bfd *abfd, int lib_class)
1569 {
1570 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1571 && bfd_get_format (abfd) == bfd_object)
1572 elf_dyn_lib_class (abfd) = lib_class;
1573 }
1574
1575 /* Get the list of DT_NEEDED entries for a link. This is a hook for
1576 the linker ELF emulation code. */
1577
1578 struct bfd_link_needed_list *
1579 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
1580 struct bfd_link_info *info)
1581 {
1582 if (! is_elf_hash_table (info->hash))
1583 return NULL;
1584 return elf_hash_table (info)->needed;
1585 }
1586
1587 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
1588 hook for the linker ELF emulation code. */
1589
1590 struct bfd_link_needed_list *
1591 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
1592 struct bfd_link_info *info)
1593 {
1594 if (! is_elf_hash_table (info->hash))
1595 return NULL;
1596 return elf_hash_table (info)->runpath;
1597 }
1598
1599 /* Get the name actually used for a dynamic object for a link. This
1600 is the SONAME entry if there is one. Otherwise, it is the string
1601 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
1602
1603 const char *
1604 bfd_elf_get_dt_soname (bfd *abfd)
1605 {
1606 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1607 && bfd_get_format (abfd) == bfd_object)
1608 return elf_dt_name (abfd);
1609 return NULL;
1610 }
1611
1612 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
1613 the ELF linker emulation code. */
1614
1615 bfd_boolean
1616 bfd_elf_get_bfd_needed_list (bfd *abfd,
1617 struct bfd_link_needed_list **pneeded)
1618 {
1619 asection *s;
1620 bfd_byte *dynbuf = NULL;
1621 int elfsec;
1622 unsigned long shlink;
1623 bfd_byte *extdyn, *extdynend;
1624 size_t extdynsize;
1625 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1626
1627 *pneeded = NULL;
1628
1629 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
1630 || bfd_get_format (abfd) != bfd_object)
1631 return TRUE;
1632
1633 s = bfd_get_section_by_name (abfd, ".dynamic");
1634 if (s == NULL || s->size == 0)
1635 return TRUE;
1636
1637 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
1638 goto error_return;
1639
1640 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1641 if (elfsec == -1)
1642 goto error_return;
1643
1644 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1645
1646 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1647 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1648
1649 extdyn = dynbuf;
1650 extdynend = extdyn + s->size;
1651 for (; extdyn < extdynend; extdyn += extdynsize)
1652 {
1653 Elf_Internal_Dyn dyn;
1654
1655 (*swap_dyn_in) (abfd, extdyn, &dyn);
1656
1657 if (dyn.d_tag == DT_NULL)
1658 break;
1659
1660 if (dyn.d_tag == DT_NEEDED)
1661 {
1662 const char *string;
1663 struct bfd_link_needed_list *l;
1664 unsigned int tagv = dyn.d_un.d_val;
1665 bfd_size_type amt;
1666
1667 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1668 if (string == NULL)
1669 goto error_return;
1670
1671 amt = sizeof *l;
1672 l = bfd_alloc (abfd, amt);
1673 if (l == NULL)
1674 goto error_return;
1675
1676 l->by = abfd;
1677 l->name = string;
1678 l->next = *pneeded;
1679 *pneeded = l;
1680 }
1681 }
1682
1683 free (dynbuf);
1684
1685 return TRUE;
1686
1687 error_return:
1688 if (dynbuf != NULL)
1689 free (dynbuf);
1690 return FALSE;
1691 }
1692 \f
1693 /* Allocate an ELF string table--force the first byte to be zero. */
1694
1695 struct bfd_strtab_hash *
1696 _bfd_elf_stringtab_init (void)
1697 {
1698 struct bfd_strtab_hash *ret;
1699
1700 ret = _bfd_stringtab_init ();
1701 if (ret != NULL)
1702 {
1703 bfd_size_type loc;
1704
1705 loc = _bfd_stringtab_add (ret, "", TRUE, FALSE);
1706 BFD_ASSERT (loc == 0 || loc == (bfd_size_type) -1);
1707 if (loc == (bfd_size_type) -1)
1708 {
1709 _bfd_stringtab_free (ret);
1710 ret = NULL;
1711 }
1712 }
1713 return ret;
1714 }
1715 \f
1716 /* ELF .o/exec file reading */
1717
1718 /* Create a new bfd section from an ELF section header. */
1719
1720 bfd_boolean
1721 bfd_section_from_shdr (bfd *abfd, unsigned int shindex)
1722 {
1723 Elf_Internal_Shdr *hdr = elf_elfsections (abfd)[shindex];
1724 Elf_Internal_Ehdr *ehdr = elf_elfheader (abfd);
1725 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1726 const char *name;
1727
1728 name = bfd_elf_string_from_elf_section (abfd,
1729 elf_elfheader (abfd)->e_shstrndx,
1730 hdr->sh_name);
1731
1732 switch (hdr->sh_type)
1733 {
1734 case SHT_NULL:
1735 /* Inactive section. Throw it away. */
1736 return TRUE;
1737
1738 case SHT_PROGBITS: /* Normal section with contents. */
1739 case SHT_NOBITS: /* .bss section. */
1740 case SHT_HASH: /* .hash section. */
1741 case SHT_NOTE: /* .note section. */
1742 case SHT_INIT_ARRAY: /* .init_array section. */
1743 case SHT_FINI_ARRAY: /* .fini_array section. */
1744 case SHT_PREINIT_ARRAY: /* .preinit_array section. */
1745 case SHT_GNU_LIBLIST: /* .gnu.liblist section. */
1746 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1747
1748 case SHT_DYNAMIC: /* Dynamic linking information. */
1749 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1750 return FALSE;
1751 if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_STRTAB)
1752 {
1753 Elf_Internal_Shdr *dynsymhdr;
1754
1755 /* The shared libraries distributed with hpux11 have a bogus
1756 sh_link field for the ".dynamic" section. Find the
1757 string table for the ".dynsym" section instead. */
1758 if (elf_dynsymtab (abfd) != 0)
1759 {
1760 dynsymhdr = elf_elfsections (abfd)[elf_dynsymtab (abfd)];
1761 hdr->sh_link = dynsymhdr->sh_link;
1762 }
1763 else
1764 {
1765 unsigned int i, num_sec;
1766
1767 num_sec = elf_numsections (abfd);
1768 for (i = 1; i < num_sec; i++)
1769 {
1770 dynsymhdr = elf_elfsections (abfd)[i];
1771 if (dynsymhdr->sh_type == SHT_DYNSYM)
1772 {
1773 hdr->sh_link = dynsymhdr->sh_link;
1774 break;
1775 }
1776 }
1777 }
1778 }
1779 break;
1780
1781 case SHT_SYMTAB: /* A symbol table */
1782 if (elf_onesymtab (abfd) == shindex)
1783 return TRUE;
1784
1785 BFD_ASSERT (hdr->sh_entsize == bed->s->sizeof_sym);
1786 BFD_ASSERT (elf_onesymtab (abfd) == 0);
1787 elf_onesymtab (abfd) = shindex;
1788 elf_tdata (abfd)->symtab_hdr = *hdr;
1789 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->symtab_hdr;
1790 abfd->flags |= HAS_SYMS;
1791
1792 /* Sometimes a shared object will map in the symbol table. If
1793 SHF_ALLOC is set, and this is a shared object, then we also
1794 treat this section as a BFD section. We can not base the
1795 decision purely on SHF_ALLOC, because that flag is sometimes
1796 set in a relocatable object file, which would confuse the
1797 linker. */
1798 if ((hdr->sh_flags & SHF_ALLOC) != 0
1799 && (abfd->flags & DYNAMIC) != 0
1800 && ! _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1801 shindex))
1802 return FALSE;
1803
1804 /* Go looking for SHT_SYMTAB_SHNDX too, since if there is one we
1805 can't read symbols without that section loaded as well. It
1806 is most likely specified by the next section header. */
1807 if (elf_elfsections (abfd)[elf_symtab_shndx (abfd)]->sh_link != shindex)
1808 {
1809 unsigned int i, num_sec;
1810
1811 num_sec = elf_numsections (abfd);
1812 for (i = shindex + 1; i < num_sec; i++)
1813 {
1814 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1815 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
1816 && hdr2->sh_link == shindex)
1817 break;
1818 }
1819 if (i == num_sec)
1820 for (i = 1; i < shindex; i++)
1821 {
1822 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1823 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
1824 && hdr2->sh_link == shindex)
1825 break;
1826 }
1827 if (i != shindex)
1828 return bfd_section_from_shdr (abfd, i);
1829 }
1830 return TRUE;
1831
1832 case SHT_DYNSYM: /* A dynamic symbol table */
1833 if (elf_dynsymtab (abfd) == shindex)
1834 return TRUE;
1835
1836 BFD_ASSERT (hdr->sh_entsize == bed->s->sizeof_sym);
1837 BFD_ASSERT (elf_dynsymtab (abfd) == 0);
1838 elf_dynsymtab (abfd) = shindex;
1839 elf_tdata (abfd)->dynsymtab_hdr = *hdr;
1840 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->dynsymtab_hdr;
1841 abfd->flags |= HAS_SYMS;
1842
1843 /* Besides being a symbol table, we also treat this as a regular
1844 section, so that objcopy can handle it. */
1845 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1846
1847 case SHT_SYMTAB_SHNDX: /* Symbol section indices when >64k sections */
1848 if (elf_symtab_shndx (abfd) == shindex)
1849 return TRUE;
1850
1851 BFD_ASSERT (elf_symtab_shndx (abfd) == 0);
1852 elf_symtab_shndx (abfd) = shindex;
1853 elf_tdata (abfd)->symtab_shndx_hdr = *hdr;
1854 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->symtab_shndx_hdr;
1855 return TRUE;
1856
1857 case SHT_STRTAB: /* A string table */
1858 if (hdr->bfd_section != NULL)
1859 return TRUE;
1860 if (ehdr->e_shstrndx == shindex)
1861 {
1862 elf_tdata (abfd)->shstrtab_hdr = *hdr;
1863 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->shstrtab_hdr;
1864 return TRUE;
1865 }
1866 if (elf_elfsections (abfd)[elf_onesymtab (abfd)]->sh_link == shindex)
1867 {
1868 symtab_strtab:
1869 elf_tdata (abfd)->strtab_hdr = *hdr;
1870 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->strtab_hdr;
1871 return TRUE;
1872 }
1873 if (elf_elfsections (abfd)[elf_dynsymtab (abfd)]->sh_link == shindex)
1874 {
1875 dynsymtab_strtab:
1876 elf_tdata (abfd)->dynstrtab_hdr = *hdr;
1877 hdr = &elf_tdata (abfd)->dynstrtab_hdr;
1878 elf_elfsections (abfd)[shindex] = hdr;
1879 /* We also treat this as a regular section, so that objcopy
1880 can handle it. */
1881 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1882 shindex);
1883 }
1884
1885 /* If the string table isn't one of the above, then treat it as a
1886 regular section. We need to scan all the headers to be sure,
1887 just in case this strtab section appeared before the above. */
1888 if (elf_onesymtab (abfd) == 0 || elf_dynsymtab (abfd) == 0)
1889 {
1890 unsigned int i, num_sec;
1891
1892 num_sec = elf_numsections (abfd);
1893 for (i = 1; i < num_sec; i++)
1894 {
1895 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1896 if (hdr2->sh_link == shindex)
1897 {
1898 if (! bfd_section_from_shdr (abfd, i))
1899 return FALSE;
1900 if (elf_onesymtab (abfd) == i)
1901 goto symtab_strtab;
1902 if (elf_dynsymtab (abfd) == i)
1903 goto dynsymtab_strtab;
1904 }
1905 }
1906 }
1907 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1908
1909 case SHT_REL:
1910 case SHT_RELA:
1911 /* *These* do a lot of work -- but build no sections! */
1912 {
1913 asection *target_sect;
1914 Elf_Internal_Shdr *hdr2;
1915 unsigned int num_sec = elf_numsections (abfd);
1916
1917 /* Check for a bogus link to avoid crashing. */
1918 if ((hdr->sh_link >= SHN_LORESERVE && hdr->sh_link <= SHN_HIRESERVE)
1919 || hdr->sh_link >= num_sec)
1920 {
1921 ((*_bfd_error_handler)
1922 (_("%B: invalid link %lu for reloc section %s (index %u)"),
1923 abfd, hdr->sh_link, name, shindex));
1924 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1925 shindex);
1926 }
1927
1928 /* For some incomprehensible reason Oracle distributes
1929 libraries for Solaris in which some of the objects have
1930 bogus sh_link fields. It would be nice if we could just
1931 reject them, but, unfortunately, some people need to use
1932 them. We scan through the section headers; if we find only
1933 one suitable symbol table, we clobber the sh_link to point
1934 to it. I hope this doesn't break anything. */
1935 if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_SYMTAB
1936 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_DYNSYM)
1937 {
1938 unsigned int scan;
1939 int found;
1940
1941 found = 0;
1942 for (scan = 1; scan < num_sec; scan++)
1943 {
1944 if (elf_elfsections (abfd)[scan]->sh_type == SHT_SYMTAB
1945 || elf_elfsections (abfd)[scan]->sh_type == SHT_DYNSYM)
1946 {
1947 if (found != 0)
1948 {
1949 found = 0;
1950 break;
1951 }
1952 found = scan;
1953 }
1954 }
1955 if (found != 0)
1956 hdr->sh_link = found;
1957 }
1958
1959 /* Get the symbol table. */
1960 if ((elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_SYMTAB
1961 || elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_DYNSYM)
1962 && ! bfd_section_from_shdr (abfd, hdr->sh_link))
1963 return FALSE;
1964
1965 /* If this reloc section does not use the main symbol table we
1966 don't treat it as a reloc section. BFD can't adequately
1967 represent such a section, so at least for now, we don't
1968 try. We just present it as a normal section. We also
1969 can't use it as a reloc section if it points to the null
1970 section. */
1971 if (hdr->sh_link != elf_onesymtab (abfd) || hdr->sh_info == SHN_UNDEF)
1972 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1973 shindex);
1974
1975 if (! bfd_section_from_shdr (abfd, hdr->sh_info))
1976 return FALSE;
1977 target_sect = bfd_section_from_elf_index (abfd, hdr->sh_info);
1978 if (target_sect == NULL)
1979 return FALSE;
1980
1981 if ((target_sect->flags & SEC_RELOC) == 0
1982 || target_sect->reloc_count == 0)
1983 hdr2 = &elf_section_data (target_sect)->rel_hdr;
1984 else
1985 {
1986 bfd_size_type amt;
1987 BFD_ASSERT (elf_section_data (target_sect)->rel_hdr2 == NULL);
1988 amt = sizeof (*hdr2);
1989 hdr2 = bfd_alloc (abfd, amt);
1990 elf_section_data (target_sect)->rel_hdr2 = hdr2;
1991 }
1992 *hdr2 = *hdr;
1993 elf_elfsections (abfd)[shindex] = hdr2;
1994 target_sect->reloc_count += NUM_SHDR_ENTRIES (hdr);
1995 target_sect->flags |= SEC_RELOC;
1996 target_sect->relocation = NULL;
1997 target_sect->rel_filepos = hdr->sh_offset;
1998 /* In the section to which the relocations apply, mark whether
1999 its relocations are of the REL or RELA variety. */
2000 if (hdr->sh_size != 0)
2001 target_sect->use_rela_p = hdr->sh_type == SHT_RELA;
2002 abfd->flags |= HAS_RELOC;
2003 return TRUE;
2004 }
2005 break;
2006
2007 case SHT_GNU_verdef:
2008 elf_dynverdef (abfd) = shindex;
2009 elf_tdata (abfd)->dynverdef_hdr = *hdr;
2010 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2011 break;
2012
2013 case SHT_GNU_versym:
2014 elf_dynversym (abfd) = shindex;
2015 elf_tdata (abfd)->dynversym_hdr = *hdr;
2016 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2017 break;
2018
2019 case SHT_GNU_verneed:
2020 elf_dynverref (abfd) = shindex;
2021 elf_tdata (abfd)->dynverref_hdr = *hdr;
2022 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2023 break;
2024
2025 case SHT_SHLIB:
2026 return TRUE;
2027
2028 case SHT_GROUP:
2029 /* We need a BFD section for objcopy and relocatable linking,
2030 and it's handy to have the signature available as the section
2031 name. */
2032 name = group_signature (abfd, hdr);
2033 if (name == NULL)
2034 return FALSE;
2035 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2036 return FALSE;
2037 if (hdr->contents != NULL)
2038 {
2039 Elf_Internal_Group *idx = (Elf_Internal_Group *) hdr->contents;
2040 unsigned int n_elt = hdr->sh_size / 4;
2041 asection *s;
2042
2043 if (idx->flags & GRP_COMDAT)
2044 hdr->bfd_section->flags
2045 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
2046
2047 /* We try to keep the same section order as it comes in. */
2048 idx += n_elt;
2049 while (--n_elt != 0)
2050 if ((s = (--idx)->shdr->bfd_section) != NULL
2051 && elf_next_in_group (s) != NULL)
2052 {
2053 elf_next_in_group (hdr->bfd_section) = s;
2054 break;
2055 }
2056 }
2057 break;
2058
2059 default:
2060 /* Check for any processor-specific section types. */
2061 return bed->elf_backend_section_from_shdr (abfd, hdr, name,
2062 shindex);
2063 }
2064
2065 return TRUE;
2066 }
2067
2068 /* Return the section for the local symbol specified by ABFD, R_SYMNDX.
2069 Return SEC for sections that have no elf section, and NULL on error. */
2070
2071 asection *
2072 bfd_section_from_r_symndx (bfd *abfd,
2073 struct sym_sec_cache *cache,
2074 asection *sec,
2075 unsigned long r_symndx)
2076 {
2077 Elf_Internal_Shdr *symtab_hdr;
2078 unsigned char esym[sizeof (Elf64_External_Sym)];
2079 Elf_External_Sym_Shndx eshndx;
2080 Elf_Internal_Sym isym;
2081 unsigned int ent = r_symndx % LOCAL_SYM_CACHE_SIZE;
2082
2083 if (cache->abfd == abfd && cache->indx[ent] == r_symndx)
2084 return cache->sec[ent];
2085
2086 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2087 if (bfd_elf_get_elf_syms (abfd, symtab_hdr, 1, r_symndx,
2088 &isym, esym, &eshndx) == NULL)
2089 return NULL;
2090
2091 if (cache->abfd != abfd)
2092 {
2093 memset (cache->indx, -1, sizeof (cache->indx));
2094 cache->abfd = abfd;
2095 }
2096 cache->indx[ent] = r_symndx;
2097 cache->sec[ent] = sec;
2098 if ((isym.st_shndx != SHN_UNDEF && isym.st_shndx < SHN_LORESERVE)
2099 || isym.st_shndx > SHN_HIRESERVE)
2100 {
2101 asection *s;
2102 s = bfd_section_from_elf_index (abfd, isym.st_shndx);
2103 if (s != NULL)
2104 cache->sec[ent] = s;
2105 }
2106 return cache->sec[ent];
2107 }
2108
2109 /* Given an ELF section number, retrieve the corresponding BFD
2110 section. */
2111
2112 asection *
2113 bfd_section_from_elf_index (bfd *abfd, unsigned int index)
2114 {
2115 if (index >= elf_numsections (abfd))
2116 return NULL;
2117 return elf_elfsections (abfd)[index]->bfd_section;
2118 }
2119
2120 static struct bfd_elf_special_section const special_sections[] =
2121 {
2122 { ".bss", 4, -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2123 { ".gnu.linkonce.b",15, -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2124 { ".comment", 8, 0, SHT_PROGBITS, 0 },
2125 { ".data", 5, -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2126 { ".data1", 6, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2127 { ".debug", 6, 0, SHT_PROGBITS, 0 },
2128 { ".fini", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2129 { ".init", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2130 { ".line", 5, 0, SHT_PROGBITS, 0 },
2131 { ".rodata", 7, -2, SHT_PROGBITS, SHF_ALLOC },
2132 { ".rodata1", 8, 0, SHT_PROGBITS, SHF_ALLOC },
2133 { ".tbss", 5, -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2134 { ".tdata", 6, -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2135 { ".text", 5, -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2136 { ".init_array", 11, 0, SHT_INIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2137 { ".fini_array", 11, 0, SHT_FINI_ARRAY, SHF_ALLOC + SHF_WRITE },
2138 { ".preinit_array", 14, 0, SHT_PREINIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2139 { ".debug_line", 11, 0, SHT_PROGBITS, 0 },
2140 { ".debug_info", 11, 0, SHT_PROGBITS, 0 },
2141 { ".debug_abbrev", 13, 0, SHT_PROGBITS, 0 },
2142 { ".debug_aranges", 14, 0, SHT_PROGBITS, 0 },
2143 { ".dynamic", 8, 0, SHT_DYNAMIC, SHF_ALLOC },
2144 { ".dynstr", 7, 0, SHT_STRTAB, SHF_ALLOC },
2145 { ".dynsym", 7, 0, SHT_DYNSYM, SHF_ALLOC },
2146 { ".got", 4, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2147 { ".hash", 5, 0, SHT_HASH, SHF_ALLOC },
2148 { ".interp", 7, 0, SHT_PROGBITS, 0 },
2149 { ".plt", 4, 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2150 { ".shstrtab", 9, 0, SHT_STRTAB, 0 },
2151 { ".strtab", 7, 0, SHT_STRTAB, 0 },
2152 { ".symtab", 7, 0, SHT_SYMTAB, 0 },
2153 { ".gnu.version", 12, 0, SHT_GNU_versym, 0 },
2154 { ".gnu.version_d", 14, 0, SHT_GNU_verdef, 0 },
2155 { ".gnu.version_r", 14, 0, SHT_GNU_verneed, 0 },
2156 { ".note.GNU-stack",15, 0, SHT_PROGBITS, 0 },
2157 { ".note", 5, -1, SHT_NOTE, 0 },
2158 { ".rela", 5, -1, SHT_RELA, 0 },
2159 { ".rel", 4, -1, SHT_REL, 0 },
2160 { ".stabstr", 5, 3, SHT_STRTAB, 0 },
2161 { ".gnu.liblist", 12, 0, SHT_GNU_LIBLIST, SHF_ALLOC },
2162 { ".gnu.conflict", 13, 0, SHT_RELA, SHF_ALLOC },
2163 { NULL, 0, 0, 0, 0 }
2164 };
2165
2166 static const struct bfd_elf_special_section *
2167 get_special_section (const char *name,
2168 const struct bfd_elf_special_section *special_sections,
2169 unsigned int rela)
2170 {
2171 int i;
2172 int len = strlen (name);
2173
2174 for (i = 0; special_sections[i].prefix != NULL; i++)
2175 {
2176 int suffix_len;
2177 int prefix_len = special_sections[i].prefix_length;
2178
2179 if (len < prefix_len)
2180 continue;
2181 if (memcmp (name, special_sections[i].prefix, prefix_len) != 0)
2182 continue;
2183
2184 suffix_len = special_sections[i].suffix_length;
2185 if (suffix_len <= 0)
2186 {
2187 if (name[prefix_len] != 0)
2188 {
2189 if (suffix_len == 0)
2190 continue;
2191 if (name[prefix_len] != '.'
2192 && (suffix_len == -2
2193 || (rela && special_sections[i].type == SHT_REL)))
2194 continue;
2195 }
2196 }
2197 else
2198 {
2199 if (len < prefix_len + suffix_len)
2200 continue;
2201 if (memcmp (name + len - suffix_len,
2202 special_sections[i].prefix + prefix_len,
2203 suffix_len) != 0)
2204 continue;
2205 }
2206 return &special_sections[i];
2207 }
2208
2209 return NULL;
2210 }
2211
2212 const struct bfd_elf_special_section *
2213 _bfd_elf_get_sec_type_attr (bfd *abfd, const char *name)
2214 {
2215 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2216 const struct bfd_elf_special_section *ssect = NULL;
2217
2218 /* See if this is one of the special sections. */
2219 if (name)
2220 {
2221 unsigned int rela = bed->default_use_rela_p;
2222
2223 if (bed->special_sections)
2224 ssect = get_special_section (name, bed->special_sections, rela);
2225
2226 if (! ssect)
2227 ssect = get_special_section (name, special_sections, rela);
2228 }
2229
2230 return ssect;
2231 }
2232
2233 bfd_boolean
2234 _bfd_elf_new_section_hook (bfd *abfd, asection *sec)
2235 {
2236 struct bfd_elf_section_data *sdata;
2237 const struct bfd_elf_special_section *ssect;
2238
2239 sdata = (struct bfd_elf_section_data *) sec->used_by_bfd;
2240 if (sdata == NULL)
2241 {
2242 sdata = bfd_zalloc (abfd, sizeof (*sdata));
2243 if (sdata == NULL)
2244 return FALSE;
2245 sec->used_by_bfd = sdata;
2246 }
2247
2248 /* When we read a file, we don't need section type and flags.
2249 They will be overridden in _bfd_elf_make_section_from_shdr
2250 anyway. */
2251 if (abfd->direction != read_direction)
2252 {
2253 ssect = _bfd_elf_get_sec_type_attr (abfd, sec->name);
2254 if (ssect != NULL)
2255 {
2256 elf_section_type (sec) = ssect->type;
2257 elf_section_flags (sec) = ssect->attr;
2258 }
2259 }
2260
2261 /* Indicate whether or not this section should use RELA relocations. */
2262 sec->use_rela_p = get_elf_backend_data (abfd)->default_use_rela_p;
2263
2264 return TRUE;
2265 }
2266
2267 /* Create a new bfd section from an ELF program header.
2268
2269 Since program segments have no names, we generate a synthetic name
2270 of the form segment<NUM>, where NUM is generally the index in the
2271 program header table. For segments that are split (see below) we
2272 generate the names segment<NUM>a and segment<NUM>b.
2273
2274 Note that some program segments may have a file size that is different than
2275 (less than) the memory size. All this means is that at execution the
2276 system must allocate the amount of memory specified by the memory size,
2277 but only initialize it with the first "file size" bytes read from the
2278 file. This would occur for example, with program segments consisting
2279 of combined data+bss.
2280
2281 To handle the above situation, this routine generates TWO bfd sections
2282 for the single program segment. The first has the length specified by
2283 the file size of the segment, and the second has the length specified
2284 by the difference between the two sizes. In effect, the segment is split
2285 into it's initialized and uninitialized parts.
2286
2287 */
2288
2289 bfd_boolean
2290 _bfd_elf_make_section_from_phdr (bfd *abfd,
2291 Elf_Internal_Phdr *hdr,
2292 int index,
2293 const char *typename)
2294 {
2295 asection *newsect;
2296 char *name;
2297 char namebuf[64];
2298 size_t len;
2299 int split;
2300
2301 split = ((hdr->p_memsz > 0)
2302 && (hdr->p_filesz > 0)
2303 && (hdr->p_memsz > hdr->p_filesz));
2304 sprintf (namebuf, "%s%d%s", typename, index, split ? "a" : "");
2305 len = strlen (namebuf) + 1;
2306 name = bfd_alloc (abfd, len);
2307 if (!name)
2308 return FALSE;
2309 memcpy (name, namebuf, len);
2310 newsect = bfd_make_section (abfd, name);
2311 if (newsect == NULL)
2312 return FALSE;
2313 newsect->vma = hdr->p_vaddr;
2314 newsect->lma = hdr->p_paddr;
2315 newsect->size = hdr->p_filesz;
2316 newsect->filepos = hdr->p_offset;
2317 newsect->flags |= SEC_HAS_CONTENTS;
2318 newsect->alignment_power = bfd_log2 (hdr->p_align);
2319 if (hdr->p_type == PT_LOAD)
2320 {
2321 newsect->flags |= SEC_ALLOC;
2322 newsect->flags |= SEC_LOAD;
2323 if (hdr->p_flags & PF_X)
2324 {
2325 /* FIXME: all we known is that it has execute PERMISSION,
2326 may be data. */
2327 newsect->flags |= SEC_CODE;
2328 }
2329 }
2330 if (!(hdr->p_flags & PF_W))
2331 {
2332 newsect->flags |= SEC_READONLY;
2333 }
2334
2335 if (split)
2336 {
2337 sprintf (namebuf, "%s%db", typename, index);
2338 len = strlen (namebuf) + 1;
2339 name = bfd_alloc (abfd, len);
2340 if (!name)
2341 return FALSE;
2342 memcpy (name, namebuf, len);
2343 newsect = bfd_make_section (abfd, name);
2344 if (newsect == NULL)
2345 return FALSE;
2346 newsect->vma = hdr->p_vaddr + hdr->p_filesz;
2347 newsect->lma = hdr->p_paddr + hdr->p_filesz;
2348 newsect->size = hdr->p_memsz - hdr->p_filesz;
2349 if (hdr->p_type == PT_LOAD)
2350 {
2351 newsect->flags |= SEC_ALLOC;
2352 if (hdr->p_flags & PF_X)
2353 newsect->flags |= SEC_CODE;
2354 }
2355 if (!(hdr->p_flags & PF_W))
2356 newsect->flags |= SEC_READONLY;
2357 }
2358
2359 return TRUE;
2360 }
2361
2362 bfd_boolean
2363 bfd_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int index)
2364 {
2365 const struct elf_backend_data *bed;
2366
2367 switch (hdr->p_type)
2368 {
2369 case PT_NULL:
2370 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "null");
2371
2372 case PT_LOAD:
2373 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "load");
2374
2375 case PT_DYNAMIC:
2376 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "dynamic");
2377
2378 case PT_INTERP:
2379 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "interp");
2380
2381 case PT_NOTE:
2382 if (! _bfd_elf_make_section_from_phdr (abfd, hdr, index, "note"))
2383 return FALSE;
2384 if (! elfcore_read_notes (abfd, hdr->p_offset, hdr->p_filesz))
2385 return FALSE;
2386 return TRUE;
2387
2388 case PT_SHLIB:
2389 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "shlib");
2390
2391 case PT_PHDR:
2392 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "phdr");
2393
2394 case PT_GNU_EH_FRAME:
2395 return _bfd_elf_make_section_from_phdr (abfd, hdr, index,
2396 "eh_frame_hdr");
2397
2398 case PT_GNU_STACK:
2399 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "stack");
2400
2401 case PT_GNU_RELRO:
2402 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "relro");
2403
2404 default:
2405 /* Check for any processor-specific program segment types. */
2406 bed = get_elf_backend_data (abfd);
2407 return bed->elf_backend_section_from_phdr (abfd, hdr, index, "proc");
2408 }
2409 }
2410
2411 /* Initialize REL_HDR, the section-header for new section, containing
2412 relocations against ASECT. If USE_RELA_P is TRUE, we use RELA
2413 relocations; otherwise, we use REL relocations. */
2414
2415 bfd_boolean
2416 _bfd_elf_init_reloc_shdr (bfd *abfd,
2417 Elf_Internal_Shdr *rel_hdr,
2418 asection *asect,
2419 bfd_boolean use_rela_p)
2420 {
2421 char *name;
2422 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2423 bfd_size_type amt = sizeof ".rela" + strlen (asect->name);
2424
2425 name = bfd_alloc (abfd, amt);
2426 if (name == NULL)
2427 return FALSE;
2428 sprintf (name, "%s%s", use_rela_p ? ".rela" : ".rel", asect->name);
2429 rel_hdr->sh_name =
2430 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd), name,
2431 FALSE);
2432 if (rel_hdr->sh_name == (unsigned int) -1)
2433 return FALSE;
2434 rel_hdr->sh_type = use_rela_p ? SHT_RELA : SHT_REL;
2435 rel_hdr->sh_entsize = (use_rela_p
2436 ? bed->s->sizeof_rela
2437 : bed->s->sizeof_rel);
2438 rel_hdr->sh_addralign = 1 << bed->s->log_file_align;
2439 rel_hdr->sh_flags = 0;
2440 rel_hdr->sh_addr = 0;
2441 rel_hdr->sh_size = 0;
2442 rel_hdr->sh_offset = 0;
2443
2444 return TRUE;
2445 }
2446
2447 /* Set up an ELF internal section header for a section. */
2448
2449 static void
2450 elf_fake_sections (bfd *abfd, asection *asect, void *failedptrarg)
2451 {
2452 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2453 bfd_boolean *failedptr = failedptrarg;
2454 Elf_Internal_Shdr *this_hdr;
2455
2456 if (*failedptr)
2457 {
2458 /* We already failed; just get out of the bfd_map_over_sections
2459 loop. */
2460 return;
2461 }
2462
2463 this_hdr = &elf_section_data (asect)->this_hdr;
2464
2465 this_hdr->sh_name = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
2466 asect->name, FALSE);
2467 if (this_hdr->sh_name == (unsigned int) -1)
2468 {
2469 *failedptr = TRUE;
2470 return;
2471 }
2472
2473 this_hdr->sh_flags = 0;
2474
2475 if ((asect->flags & SEC_ALLOC) != 0
2476 || asect->user_set_vma)
2477 this_hdr->sh_addr = asect->vma;
2478 else
2479 this_hdr->sh_addr = 0;
2480
2481 this_hdr->sh_offset = 0;
2482 this_hdr->sh_size = asect->size;
2483 this_hdr->sh_link = 0;
2484 this_hdr->sh_addralign = 1 << asect->alignment_power;
2485 /* The sh_entsize and sh_info fields may have been set already by
2486 copy_private_section_data. */
2487
2488 this_hdr->bfd_section = asect;
2489 this_hdr->contents = NULL;
2490
2491 /* If the section type is unspecified, we set it based on
2492 asect->flags. */
2493 if (this_hdr->sh_type == SHT_NULL)
2494 {
2495 if ((asect->flags & SEC_GROUP) != 0)
2496 {
2497 /* We also need to mark SHF_GROUP here for relocatable
2498 link. */
2499 struct bfd_link_order *l;
2500 asection *elt;
2501
2502 for (l = asect->link_order_head; l != NULL; l = l->next)
2503 if (l->type == bfd_indirect_link_order
2504 && (elt = elf_next_in_group (l->u.indirect.section)) != NULL)
2505 do
2506 {
2507 /* The name is not important. Anything will do. */
2508 elf_group_name (elt->output_section) = "G";
2509 elf_section_flags (elt->output_section) |= SHF_GROUP;
2510
2511 elt = elf_next_in_group (elt);
2512 /* During a relocatable link, the lists are
2513 circular. */
2514 }
2515 while (elt != elf_next_in_group (l->u.indirect.section));
2516
2517 this_hdr->sh_type = SHT_GROUP;
2518 }
2519 else if ((asect->flags & SEC_ALLOC) != 0
2520 && (((asect->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
2521 || (asect->flags & SEC_NEVER_LOAD) != 0))
2522 this_hdr->sh_type = SHT_NOBITS;
2523 else
2524 this_hdr->sh_type = SHT_PROGBITS;
2525 }
2526
2527 switch (this_hdr->sh_type)
2528 {
2529 default:
2530 break;
2531
2532 case SHT_STRTAB:
2533 case SHT_INIT_ARRAY:
2534 case SHT_FINI_ARRAY:
2535 case SHT_PREINIT_ARRAY:
2536 case SHT_NOTE:
2537 case SHT_NOBITS:
2538 case SHT_PROGBITS:
2539 break;
2540
2541 case SHT_HASH:
2542 this_hdr->sh_entsize = bed->s->sizeof_hash_entry;
2543 break;
2544
2545 case SHT_DYNSYM:
2546 this_hdr->sh_entsize = bed->s->sizeof_sym;
2547 break;
2548
2549 case SHT_DYNAMIC:
2550 this_hdr->sh_entsize = bed->s->sizeof_dyn;
2551 break;
2552
2553 case SHT_RELA:
2554 if (get_elf_backend_data (abfd)->may_use_rela_p)
2555 this_hdr->sh_entsize = bed->s->sizeof_rela;
2556 break;
2557
2558 case SHT_REL:
2559 if (get_elf_backend_data (abfd)->may_use_rel_p)
2560 this_hdr->sh_entsize = bed->s->sizeof_rel;
2561 break;
2562
2563 case SHT_GNU_versym:
2564 this_hdr->sh_entsize = sizeof (Elf_External_Versym);
2565 break;
2566
2567 case SHT_GNU_verdef:
2568 this_hdr->sh_entsize = 0;
2569 /* objcopy or strip will copy over sh_info, but may not set
2570 cverdefs. The linker will set cverdefs, but sh_info will be
2571 zero. */
2572 if (this_hdr->sh_info == 0)
2573 this_hdr->sh_info = elf_tdata (abfd)->cverdefs;
2574 else
2575 BFD_ASSERT (elf_tdata (abfd)->cverdefs == 0
2576 || this_hdr->sh_info == elf_tdata (abfd)->cverdefs);
2577 break;
2578
2579 case SHT_GNU_verneed:
2580 this_hdr->sh_entsize = 0;
2581 /* objcopy or strip will copy over sh_info, but may not set
2582 cverrefs. The linker will set cverrefs, but sh_info will be
2583 zero. */
2584 if (this_hdr->sh_info == 0)
2585 this_hdr->sh_info = elf_tdata (abfd)->cverrefs;
2586 else
2587 BFD_ASSERT (elf_tdata (abfd)->cverrefs == 0
2588 || this_hdr->sh_info == elf_tdata (abfd)->cverrefs);
2589 break;
2590
2591 case SHT_GROUP:
2592 this_hdr->sh_entsize = 4;
2593 break;
2594 }
2595
2596 if ((asect->flags & SEC_ALLOC) != 0)
2597 this_hdr->sh_flags |= SHF_ALLOC;
2598 if ((asect->flags & SEC_READONLY) == 0)
2599 this_hdr->sh_flags |= SHF_WRITE;
2600 if ((asect->flags & SEC_CODE) != 0)
2601 this_hdr->sh_flags |= SHF_EXECINSTR;
2602 if ((asect->flags & SEC_MERGE) != 0)
2603 {
2604 this_hdr->sh_flags |= SHF_MERGE;
2605 this_hdr->sh_entsize = asect->entsize;
2606 if ((asect->flags & SEC_STRINGS) != 0)
2607 this_hdr->sh_flags |= SHF_STRINGS;
2608 }
2609 if ((asect->flags & SEC_GROUP) == 0 && elf_group_name (asect) != NULL)
2610 this_hdr->sh_flags |= SHF_GROUP;
2611 if ((asect->flags & SEC_THREAD_LOCAL) != 0)
2612 {
2613 this_hdr->sh_flags |= SHF_TLS;
2614 if (asect->size == 0 && (asect->flags & SEC_HAS_CONTENTS) == 0)
2615 {
2616 struct bfd_link_order *o;
2617
2618 this_hdr->sh_size = 0;
2619 for (o = asect->link_order_head; o != NULL; o = o->next)
2620 if (this_hdr->sh_size < o->offset + o->size)
2621 this_hdr->sh_size = o->offset + o->size;
2622 if (this_hdr->sh_size)
2623 this_hdr->sh_type = SHT_NOBITS;
2624 }
2625 }
2626
2627 /* Check for processor-specific section types. */
2628 if (bed->elf_backend_fake_sections
2629 && !(*bed->elf_backend_fake_sections) (abfd, this_hdr, asect))
2630 *failedptr = TRUE;
2631
2632 /* If the section has relocs, set up a section header for the
2633 SHT_REL[A] section. If two relocation sections are required for
2634 this section, it is up to the processor-specific back-end to
2635 create the other. */
2636 if ((asect->flags & SEC_RELOC) != 0
2637 && !_bfd_elf_init_reloc_shdr (abfd,
2638 &elf_section_data (asect)->rel_hdr,
2639 asect,
2640 asect->use_rela_p))
2641 *failedptr = TRUE;
2642 }
2643
2644 /* Fill in the contents of a SHT_GROUP section. */
2645
2646 void
2647 bfd_elf_set_group_contents (bfd *abfd, asection *sec, void *failedptrarg)
2648 {
2649 bfd_boolean *failedptr = failedptrarg;
2650 unsigned long symindx;
2651 asection *elt, *first;
2652 unsigned char *loc;
2653 struct bfd_link_order *l;
2654 bfd_boolean gas;
2655
2656 /* Ignore linker created group section. See elfNN_ia64_object_p in
2657 elfxx-ia64.c. */
2658 if (((sec->flags & (SEC_GROUP | SEC_LINKER_CREATED)) != SEC_GROUP)
2659 || *failedptr)
2660 return;
2661
2662 symindx = 0;
2663 if (elf_group_id (sec) != NULL)
2664 symindx = elf_group_id (sec)->udata.i;
2665
2666 if (symindx == 0)
2667 {
2668 /* If called from the assembler, swap_out_syms will have set up
2669 elf_section_syms; If called for "ld -r", use target_index. */
2670 if (elf_section_syms (abfd) != NULL)
2671 symindx = elf_section_syms (abfd)[sec->index]->udata.i;
2672 else
2673 symindx = sec->target_index;
2674 }
2675 elf_section_data (sec)->this_hdr.sh_info = symindx;
2676
2677 /* The contents won't be allocated for "ld -r" or objcopy. */
2678 gas = TRUE;
2679 if (sec->contents == NULL)
2680 {
2681 gas = FALSE;
2682 sec->contents = bfd_alloc (abfd, sec->size);
2683
2684 /* Arrange for the section to be written out. */
2685 elf_section_data (sec)->this_hdr.contents = sec->contents;
2686 if (sec->contents == NULL)
2687 {
2688 *failedptr = TRUE;
2689 return;
2690 }
2691 }
2692
2693 loc = sec->contents + sec->size;
2694
2695 /* Get the pointer to the first section in the group that gas
2696 squirreled away here. objcopy arranges for this to be set to the
2697 start of the input section group. */
2698 first = elt = elf_next_in_group (sec);
2699
2700 /* First element is a flag word. Rest of section is elf section
2701 indices for all the sections of the group. Write them backwards
2702 just to keep the group in the same order as given in .section
2703 directives, not that it matters. */
2704 while (elt != NULL)
2705 {
2706 asection *s;
2707 unsigned int idx;
2708
2709 loc -= 4;
2710 s = elt;
2711 if (!gas)
2712 s = s->output_section;
2713 idx = 0;
2714 if (s != NULL)
2715 idx = elf_section_data (s)->this_idx;
2716 H_PUT_32 (abfd, idx, loc);
2717 elt = elf_next_in_group (elt);
2718 if (elt == first)
2719 break;
2720 }
2721
2722 /* If this is a relocatable link, then the above did nothing because
2723 SEC is the output section. Look through the input sections
2724 instead. */
2725 for (l = sec->link_order_head; l != NULL; l = l->next)
2726 if (l->type == bfd_indirect_link_order
2727 && (elt = elf_next_in_group (l->u.indirect.section)) != NULL)
2728 do
2729 {
2730 loc -= 4;
2731 H_PUT_32 (abfd,
2732 elf_section_data (elt->output_section)->this_idx, loc);
2733 elt = elf_next_in_group (elt);
2734 /* During a relocatable link, the lists are circular. */
2735 }
2736 while (elt != elf_next_in_group (l->u.indirect.section));
2737
2738 if ((loc -= 4) != sec->contents)
2739 abort ();
2740
2741 H_PUT_32 (abfd, sec->flags & SEC_LINK_ONCE ? GRP_COMDAT : 0, loc);
2742 }
2743
2744 /* Assign all ELF section numbers. The dummy first section is handled here
2745 too. The link/info pointers for the standard section types are filled
2746 in here too, while we're at it. */
2747
2748 static bfd_boolean
2749 assign_section_numbers (bfd *abfd, struct bfd_link_info *link_info)
2750 {
2751 struct elf_obj_tdata *t = elf_tdata (abfd);
2752 asection *sec;
2753 unsigned int section_number, secn;
2754 Elf_Internal_Shdr **i_shdrp;
2755 bfd_size_type amt;
2756 struct bfd_elf_section_data *d;
2757
2758 section_number = 1;
2759
2760 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd));
2761
2762 /* SHT_GROUP sections are in relocatable files only. */
2763 if (link_info == NULL || link_info->relocatable)
2764 {
2765 asection **secp;
2766
2767 /* Put SHT_GROUP sections first. */
2768 secp = &abfd->sections;
2769 while (*secp)
2770 {
2771 d = elf_section_data (*secp);
2772
2773 if (d->this_hdr.sh_type == SHT_GROUP)
2774 {
2775 if ((*secp)->flags & SEC_LINKER_CREATED)
2776 {
2777 /* Remove the linker created SHT_GROUP sections. */
2778 bfd_section_list_remove (abfd, secp);
2779 abfd->section_count--;
2780 continue;
2781 }
2782 else
2783 {
2784 if (section_number == SHN_LORESERVE)
2785 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2786 d->this_idx = section_number++;
2787 }
2788 }
2789
2790 secp = &(*secp)->next;
2791 }
2792 }
2793
2794 for (sec = abfd->sections; sec; sec = sec->next)
2795 {
2796 d = elf_section_data (sec);
2797
2798 if (d->this_hdr.sh_type != SHT_GROUP)
2799 {
2800 if (section_number == SHN_LORESERVE)
2801 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2802 d->this_idx = section_number++;
2803 }
2804 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->this_hdr.sh_name);
2805 if ((sec->flags & SEC_RELOC) == 0)
2806 d->rel_idx = 0;
2807 else
2808 {
2809 if (section_number == SHN_LORESERVE)
2810 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2811 d->rel_idx = section_number++;
2812 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel_hdr.sh_name);
2813 }
2814
2815 if (d->rel_hdr2)
2816 {
2817 if (section_number == SHN_LORESERVE)
2818 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2819 d->rel_idx2 = section_number++;
2820 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel_hdr2->sh_name);
2821 }
2822 else
2823 d->rel_idx2 = 0;
2824 }
2825
2826 if (section_number == SHN_LORESERVE)
2827 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2828 t->shstrtab_section = section_number++;
2829 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->shstrtab_hdr.sh_name);
2830 elf_elfheader (abfd)->e_shstrndx = t->shstrtab_section;
2831
2832 if (bfd_get_symcount (abfd) > 0)
2833 {
2834 if (section_number == SHN_LORESERVE)
2835 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2836 t->symtab_section = section_number++;
2837 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->symtab_hdr.sh_name);
2838 if (section_number > SHN_LORESERVE - 2)
2839 {
2840 if (section_number == SHN_LORESERVE)
2841 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2842 t->symtab_shndx_section = section_number++;
2843 t->symtab_shndx_hdr.sh_name
2844 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
2845 ".symtab_shndx", FALSE);
2846 if (t->symtab_shndx_hdr.sh_name == (unsigned int) -1)
2847 return FALSE;
2848 }
2849 if (section_number == SHN_LORESERVE)
2850 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2851 t->strtab_section = section_number++;
2852 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->strtab_hdr.sh_name);
2853 }
2854
2855 _bfd_elf_strtab_finalize (elf_shstrtab (abfd));
2856 t->shstrtab_hdr.sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
2857
2858 elf_numsections (abfd) = section_number;
2859 elf_elfheader (abfd)->e_shnum = section_number;
2860 if (section_number > SHN_LORESERVE)
2861 elf_elfheader (abfd)->e_shnum -= SHN_HIRESERVE + 1 - SHN_LORESERVE;
2862
2863 /* Set up the list of section header pointers, in agreement with the
2864 indices. */
2865 amt = section_number * sizeof (Elf_Internal_Shdr *);
2866 i_shdrp = bfd_zalloc (abfd, amt);
2867 if (i_shdrp == NULL)
2868 return FALSE;
2869
2870 amt = sizeof (Elf_Internal_Shdr);
2871 i_shdrp[0] = bfd_zalloc (abfd, amt);
2872 if (i_shdrp[0] == NULL)
2873 {
2874 bfd_release (abfd, i_shdrp);
2875 return FALSE;
2876 }
2877
2878 elf_elfsections (abfd) = i_shdrp;
2879
2880 i_shdrp[t->shstrtab_section] = &t->shstrtab_hdr;
2881 if (bfd_get_symcount (abfd) > 0)
2882 {
2883 i_shdrp[t->symtab_section] = &t->symtab_hdr;
2884 if (elf_numsections (abfd) > SHN_LORESERVE)
2885 {
2886 i_shdrp[t->symtab_shndx_section] = &t->symtab_shndx_hdr;
2887 t->symtab_shndx_hdr.sh_link = t->symtab_section;
2888 }
2889 i_shdrp[t->strtab_section] = &t->strtab_hdr;
2890 t->symtab_hdr.sh_link = t->strtab_section;
2891 }
2892
2893 for (sec = abfd->sections; sec; sec = sec->next)
2894 {
2895 struct bfd_elf_section_data *d = elf_section_data (sec);
2896 asection *s;
2897 const char *name;
2898
2899 i_shdrp[d->this_idx] = &d->this_hdr;
2900 if (d->rel_idx != 0)
2901 i_shdrp[d->rel_idx] = &d->rel_hdr;
2902 if (d->rel_idx2 != 0)
2903 i_shdrp[d->rel_idx2] = d->rel_hdr2;
2904
2905 /* Fill in the sh_link and sh_info fields while we're at it. */
2906
2907 /* sh_link of a reloc section is the section index of the symbol
2908 table. sh_info is the section index of the section to which
2909 the relocation entries apply. */
2910 if (d->rel_idx != 0)
2911 {
2912 d->rel_hdr.sh_link = t->symtab_section;
2913 d->rel_hdr.sh_info = d->this_idx;
2914 }
2915 if (d->rel_idx2 != 0)
2916 {
2917 d->rel_hdr2->sh_link = t->symtab_section;
2918 d->rel_hdr2->sh_info = d->this_idx;
2919 }
2920
2921 /* We need to set up sh_link for SHF_LINK_ORDER. */
2922 if ((d->this_hdr.sh_flags & SHF_LINK_ORDER) != 0)
2923 {
2924 s = elf_linked_to_section (sec);
2925 if (s)
2926 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
2927 else
2928 {
2929 struct bfd_link_order *p;
2930
2931 /* Find out what the corresponding section in output
2932 is. */
2933 for (p = sec->link_order_head; p != NULL; p = p->next)
2934 {
2935 s = p->u.indirect.section;
2936 if (p->type == bfd_indirect_link_order
2937 && (bfd_get_flavour (s->owner)
2938 == bfd_target_elf_flavour))
2939 {
2940 Elf_Internal_Shdr ** const elf_shdrp
2941 = elf_elfsections (s->owner);
2942 int elfsec
2943 = _bfd_elf_section_from_bfd_section (s->owner, s);
2944 elfsec = elf_shdrp[elfsec]->sh_link;
2945 /* PR 290:
2946 The Intel C compiler generates SHT_IA_64_UNWIND with
2947 SHF_LINK_ORDER. But it doesn't set the sh_link or
2948 sh_info fields. Hence we could get the situation
2949 where elfsec is 0. */
2950 if (elfsec == 0)
2951 {
2952 const struct elf_backend_data *bed
2953 = get_elf_backend_data (abfd);
2954 if (bed->link_order_error_handler)
2955 bed->link_order_error_handler
2956 (_("%B: warning: sh_link not set for section `%A'"),
2957 abfd, s);
2958 }
2959 else
2960 {
2961 s = elf_shdrp[elfsec]->bfd_section;
2962 if (elf_discarded_section (s))
2963 {
2964 asection *kept;
2965 (*_bfd_error_handler)
2966 (_("%B: sh_link of section `%A' points to discarded section `%A' of `%B'"),
2967 abfd, d->this_hdr.bfd_section,
2968 s, s->owner);
2969 /* Point to the kept section if it has
2970 the same size as the discarded
2971 one. */
2972 kept = _bfd_elf_check_kept_section (s);
2973 if (kept == NULL)
2974 {
2975 bfd_set_error (bfd_error_bad_value);
2976 return FALSE;
2977 }
2978 s = kept;
2979 }
2980 s = s->output_section;
2981 BFD_ASSERT (s != NULL);
2982 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
2983 }
2984 break;
2985 }
2986 }
2987 }
2988 }
2989
2990 switch (d->this_hdr.sh_type)
2991 {
2992 case SHT_REL:
2993 case SHT_RELA:
2994 /* A reloc section which we are treating as a normal BFD
2995 section. sh_link is the section index of the symbol
2996 table. sh_info is the section index of the section to
2997 which the relocation entries apply. We assume that an
2998 allocated reloc section uses the dynamic symbol table.
2999 FIXME: How can we be sure? */
3000 s = bfd_get_section_by_name (abfd, ".dynsym");
3001 if (s != NULL)
3002 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3003
3004 /* We look up the section the relocs apply to by name. */
3005 name = sec->name;
3006 if (d->this_hdr.sh_type == SHT_REL)
3007 name += 4;
3008 else
3009 name += 5;
3010 s = bfd_get_section_by_name (abfd, name);
3011 if (s != NULL)
3012 d->this_hdr.sh_info = elf_section_data (s)->this_idx;
3013 break;
3014
3015 case SHT_STRTAB:
3016 /* We assume that a section named .stab*str is a stabs
3017 string section. We look for a section with the same name
3018 but without the trailing ``str'', and set its sh_link
3019 field to point to this section. */
3020 if (strncmp (sec->name, ".stab", sizeof ".stab" - 1) == 0
3021 && strcmp (sec->name + strlen (sec->name) - 3, "str") == 0)
3022 {
3023 size_t len;
3024 char *alc;
3025
3026 len = strlen (sec->name);
3027 alc = bfd_malloc (len - 2);
3028 if (alc == NULL)
3029 return FALSE;
3030 memcpy (alc, sec->name, len - 3);
3031 alc[len - 3] = '\0';
3032 s = bfd_get_section_by_name (abfd, alc);
3033 free (alc);
3034 if (s != NULL)
3035 {
3036 elf_section_data (s)->this_hdr.sh_link = d->this_idx;
3037
3038 /* This is a .stab section. */
3039 if (elf_section_data (s)->this_hdr.sh_entsize == 0)
3040 elf_section_data (s)->this_hdr.sh_entsize
3041 = 4 + 2 * bfd_get_arch_size (abfd) / 8;
3042 }
3043 }
3044 break;
3045
3046 case SHT_DYNAMIC:
3047 case SHT_DYNSYM:
3048 case SHT_GNU_verneed:
3049 case SHT_GNU_verdef:
3050 /* sh_link is the section header index of the string table
3051 used for the dynamic entries, or the symbol table, or the
3052 version strings. */
3053 s = bfd_get_section_by_name (abfd, ".dynstr");
3054 if (s != NULL)
3055 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3056 break;
3057
3058 case SHT_GNU_LIBLIST:
3059 /* sh_link is the section header index of the prelink library
3060 list
3061 used for the dynamic entries, or the symbol table, or the
3062 version strings. */
3063 s = bfd_get_section_by_name (abfd, (sec->flags & SEC_ALLOC)
3064 ? ".dynstr" : ".gnu.libstr");
3065 if (s != NULL)
3066 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3067 break;
3068
3069 case SHT_HASH:
3070 case SHT_GNU_versym:
3071 /* sh_link is the section header index of the symbol table
3072 this hash table or version table is for. */
3073 s = bfd_get_section_by_name (abfd, ".dynsym");
3074 if (s != NULL)
3075 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3076 break;
3077
3078 case SHT_GROUP:
3079 d->this_hdr.sh_link = t->symtab_section;
3080 }
3081 }
3082
3083 for (secn = 1; secn < section_number; ++secn)
3084 if (i_shdrp[secn] == NULL)
3085 i_shdrp[secn] = i_shdrp[0];
3086 else
3087 i_shdrp[secn]->sh_name = _bfd_elf_strtab_offset (elf_shstrtab (abfd),
3088 i_shdrp[secn]->sh_name);
3089 return TRUE;
3090 }
3091
3092 /* Map symbol from it's internal number to the external number, moving
3093 all local symbols to be at the head of the list. */
3094
3095 static int
3096 sym_is_global (bfd *abfd, asymbol *sym)
3097 {
3098 /* If the backend has a special mapping, use it. */
3099 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3100 if (bed->elf_backend_sym_is_global)
3101 return (*bed->elf_backend_sym_is_global) (abfd, sym);
3102
3103 return ((sym->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
3104 || bfd_is_und_section (bfd_get_section (sym))
3105 || bfd_is_com_section (bfd_get_section (sym)));
3106 }
3107
3108 static bfd_boolean
3109 elf_map_symbols (bfd *abfd)
3110 {
3111 unsigned int symcount = bfd_get_symcount (abfd);
3112 asymbol **syms = bfd_get_outsymbols (abfd);
3113 asymbol **sect_syms;
3114 unsigned int num_locals = 0;
3115 unsigned int num_globals = 0;
3116 unsigned int num_locals2 = 0;
3117 unsigned int num_globals2 = 0;
3118 int max_index = 0;
3119 unsigned int idx;
3120 asection *asect;
3121 asymbol **new_syms;
3122 bfd_size_type amt;
3123
3124 #ifdef DEBUG
3125 fprintf (stderr, "elf_map_symbols\n");
3126 fflush (stderr);
3127 #endif
3128
3129 for (asect = abfd->sections; asect; asect = asect->next)
3130 {
3131 if (max_index < asect->index)
3132 max_index = asect->index;
3133 }
3134
3135 max_index++;
3136 amt = max_index * sizeof (asymbol *);
3137 sect_syms = bfd_zalloc (abfd, amt);
3138 if (sect_syms == NULL)
3139 return FALSE;
3140 elf_section_syms (abfd) = sect_syms;
3141 elf_num_section_syms (abfd) = max_index;
3142
3143 /* Init sect_syms entries for any section symbols we have already
3144 decided to output. */
3145 for (idx = 0; idx < symcount; idx++)
3146 {
3147 asymbol *sym = syms[idx];
3148
3149 if ((sym->flags & BSF_SECTION_SYM) != 0
3150 && sym->value == 0)
3151 {
3152 asection *sec;
3153
3154 sec = sym->section;
3155
3156 if (sec->owner != NULL)
3157 {
3158 if (sec->owner != abfd)
3159 {
3160 if (sec->output_offset != 0)
3161 continue;
3162
3163 sec = sec->output_section;
3164
3165 /* Empty sections in the input files may have had a
3166 section symbol created for them. (See the comment
3167 near the end of _bfd_generic_link_output_symbols in
3168 linker.c). If the linker script discards such
3169 sections then we will reach this point. Since we know
3170 that we cannot avoid this case, we detect it and skip
3171 the abort and the assignment to the sect_syms array.
3172 To reproduce this particular case try running the
3173 linker testsuite test ld-scripts/weak.exp for an ELF
3174 port that uses the generic linker. */
3175 if (sec->owner == NULL)
3176 continue;
3177
3178 BFD_ASSERT (sec->owner == abfd);
3179 }
3180 sect_syms[sec->index] = syms[idx];
3181 }
3182 }
3183 }
3184
3185 /* Classify all of the symbols. */
3186 for (idx = 0; idx < symcount; idx++)
3187 {
3188 if (!sym_is_global (abfd, syms[idx]))
3189 num_locals++;
3190 else
3191 num_globals++;
3192 }
3193
3194 /* We will be adding a section symbol for each BFD section. Most normal
3195 sections will already have a section symbol in outsymbols, but
3196 eg. SHT_GROUP sections will not, and we need the section symbol mapped
3197 at least in that case. */
3198 for (asect = abfd->sections; asect; asect = asect->next)
3199 {
3200 if (sect_syms[asect->index] == NULL)
3201 {
3202 if (!sym_is_global (abfd, asect->symbol))
3203 num_locals++;
3204 else
3205 num_globals++;
3206 }
3207 }
3208
3209 /* Now sort the symbols so the local symbols are first. */
3210 amt = (num_locals + num_globals) * sizeof (asymbol *);
3211 new_syms = bfd_alloc (abfd, amt);
3212
3213 if (new_syms == NULL)
3214 return FALSE;
3215
3216 for (idx = 0; idx < symcount; idx++)
3217 {
3218 asymbol *sym = syms[idx];
3219 unsigned int i;
3220
3221 if (!sym_is_global (abfd, sym))
3222 i = num_locals2++;
3223 else
3224 i = num_locals + num_globals2++;
3225 new_syms[i] = sym;
3226 sym->udata.i = i + 1;
3227 }
3228 for (asect = abfd->sections; asect; asect = asect->next)
3229 {
3230 if (sect_syms[asect->index] == NULL)
3231 {
3232 asymbol *sym = asect->symbol;
3233 unsigned int i;
3234
3235 sect_syms[asect->index] = sym;
3236 if (!sym_is_global (abfd, sym))
3237 i = num_locals2++;
3238 else
3239 i = num_locals + num_globals2++;
3240 new_syms[i] = sym;
3241 sym->udata.i = i + 1;
3242 }
3243 }
3244
3245 bfd_set_symtab (abfd, new_syms, num_locals + num_globals);
3246
3247 elf_num_locals (abfd) = num_locals;
3248 elf_num_globals (abfd) = num_globals;
3249 return TRUE;
3250 }
3251
3252 /* Align to the maximum file alignment that could be required for any
3253 ELF data structure. */
3254
3255 static inline file_ptr
3256 align_file_position (file_ptr off, int align)
3257 {
3258 return (off + align - 1) & ~(align - 1);
3259 }
3260
3261 /* Assign a file position to a section, optionally aligning to the
3262 required section alignment. */
3263
3264 file_ptr
3265 _bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr *i_shdrp,
3266 file_ptr offset,
3267 bfd_boolean align)
3268 {
3269 if (align)
3270 {
3271 unsigned int al;
3272
3273 al = i_shdrp->sh_addralign;
3274 if (al > 1)
3275 offset = BFD_ALIGN (offset, al);
3276 }
3277 i_shdrp->sh_offset = offset;
3278 if (i_shdrp->bfd_section != NULL)
3279 i_shdrp->bfd_section->filepos = offset;
3280 if (i_shdrp->sh_type != SHT_NOBITS)
3281 offset += i_shdrp->sh_size;
3282 return offset;
3283 }
3284
3285 /* Compute the file positions we are going to put the sections at, and
3286 otherwise prepare to begin writing out the ELF file. If LINK_INFO
3287 is not NULL, this is being called by the ELF backend linker. */
3288
3289 bfd_boolean
3290 _bfd_elf_compute_section_file_positions (bfd *abfd,
3291 struct bfd_link_info *link_info)
3292 {
3293 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3294 bfd_boolean failed;
3295 struct bfd_strtab_hash *strtab = NULL;
3296 Elf_Internal_Shdr *shstrtab_hdr;
3297
3298 if (abfd->output_has_begun)
3299 return TRUE;
3300
3301 /* Do any elf backend specific processing first. */
3302 if (bed->elf_backend_begin_write_processing)
3303 (*bed->elf_backend_begin_write_processing) (abfd, link_info);
3304
3305 if (! prep_headers (abfd))
3306 return FALSE;
3307
3308 /* Post process the headers if necessary. */
3309 if (bed->elf_backend_post_process_headers)
3310 (*bed->elf_backend_post_process_headers) (abfd, link_info);
3311
3312 failed = FALSE;
3313 bfd_map_over_sections (abfd, elf_fake_sections, &failed);
3314 if (failed)
3315 return FALSE;
3316
3317 if (!assign_section_numbers (abfd, link_info))
3318 return FALSE;
3319
3320 /* The backend linker builds symbol table information itself. */
3321 if (link_info == NULL && bfd_get_symcount (abfd) > 0)
3322 {
3323 /* Non-zero if doing a relocatable link. */
3324 int relocatable_p = ! (abfd->flags & (EXEC_P | DYNAMIC));
3325
3326 if (! swap_out_syms (abfd, &strtab, relocatable_p))
3327 return FALSE;
3328 }
3329
3330 if (link_info == NULL)
3331 {
3332 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
3333 if (failed)
3334 return FALSE;
3335 }
3336
3337 shstrtab_hdr = &elf_tdata (abfd)->shstrtab_hdr;
3338 /* sh_name was set in prep_headers. */
3339 shstrtab_hdr->sh_type = SHT_STRTAB;
3340 shstrtab_hdr->sh_flags = 0;
3341 shstrtab_hdr->sh_addr = 0;
3342 shstrtab_hdr->sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
3343 shstrtab_hdr->sh_entsize = 0;
3344 shstrtab_hdr->sh_link = 0;
3345 shstrtab_hdr->sh_info = 0;
3346 /* sh_offset is set in assign_file_positions_except_relocs. */
3347 shstrtab_hdr->sh_addralign = 1;
3348
3349 if (!assign_file_positions_except_relocs (abfd, link_info))
3350 return FALSE;
3351
3352 if (link_info == NULL && bfd_get_symcount (abfd) > 0)
3353 {
3354 file_ptr off;
3355 Elf_Internal_Shdr *hdr;
3356
3357 off = elf_tdata (abfd)->next_file_pos;
3358
3359 hdr = &elf_tdata (abfd)->symtab_hdr;
3360 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3361
3362 hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
3363 if (hdr->sh_size != 0)
3364 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3365
3366 hdr = &elf_tdata (abfd)->strtab_hdr;
3367 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3368
3369 elf_tdata (abfd)->next_file_pos = off;
3370
3371 /* Now that we know where the .strtab section goes, write it
3372 out. */
3373 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
3374 || ! _bfd_stringtab_emit (abfd, strtab))
3375 return FALSE;
3376 _bfd_stringtab_free (strtab);
3377 }
3378
3379 abfd->output_has_begun = TRUE;
3380
3381 return TRUE;
3382 }
3383
3384 /* Create a mapping from a set of sections to a program segment. */
3385
3386 static struct elf_segment_map *
3387 make_mapping (bfd *abfd,
3388 asection **sections,
3389 unsigned int from,
3390 unsigned int to,
3391 bfd_boolean phdr)
3392 {
3393 struct elf_segment_map *m;
3394 unsigned int i;
3395 asection **hdrpp;
3396 bfd_size_type amt;
3397
3398 amt = sizeof (struct elf_segment_map);
3399 amt += (to - from - 1) * sizeof (asection *);
3400 m = bfd_zalloc (abfd, amt);
3401 if (m == NULL)
3402 return NULL;
3403 m->next = NULL;
3404 m->p_type = PT_LOAD;
3405 for (i = from, hdrpp = sections + from; i < to; i++, hdrpp++)
3406 m->sections[i - from] = *hdrpp;
3407 m->count = to - from;
3408
3409 if (from == 0 && phdr)
3410 {
3411 /* Include the headers in the first PT_LOAD segment. */
3412 m->includes_filehdr = 1;
3413 m->includes_phdrs = 1;
3414 }
3415
3416 return m;
3417 }
3418
3419 /* Create the PT_DYNAMIC segment, which includes DYNSEC. Returns NULL
3420 on failure. */
3421
3422 struct elf_segment_map *
3423 _bfd_elf_make_dynamic_segment (bfd *abfd, asection *dynsec)
3424 {
3425 struct elf_segment_map *m;
3426
3427 m = bfd_zalloc (abfd, sizeof (struct elf_segment_map));
3428 if (m == NULL)
3429 return NULL;
3430 m->next = NULL;
3431 m->p_type = PT_DYNAMIC;
3432 m->count = 1;
3433 m->sections[0] = dynsec;
3434
3435 return m;
3436 }
3437
3438 /* Set up a mapping from BFD sections to program segments. */
3439
3440 static bfd_boolean
3441 map_sections_to_segments (bfd *abfd)
3442 {
3443 asection **sections = NULL;
3444 asection *s;
3445 unsigned int i;
3446 unsigned int count;
3447 struct elf_segment_map *mfirst;
3448 struct elf_segment_map **pm;
3449 struct elf_segment_map *m;
3450 asection *last_hdr;
3451 bfd_vma last_size;
3452 unsigned int phdr_index;
3453 bfd_vma maxpagesize;
3454 asection **hdrpp;
3455 bfd_boolean phdr_in_segment = TRUE;
3456 bfd_boolean writable;
3457 int tls_count = 0;
3458 asection *first_tls = NULL;
3459 asection *dynsec, *eh_frame_hdr;
3460 bfd_size_type amt;
3461
3462 if (elf_tdata (abfd)->segment_map != NULL)
3463 return TRUE;
3464
3465 if (bfd_count_sections (abfd) == 0)
3466 return TRUE;
3467
3468 /* Select the allocated sections, and sort them. */
3469
3470 amt = bfd_count_sections (abfd) * sizeof (asection *);
3471 sections = bfd_malloc (amt);
3472 if (sections == NULL)
3473 goto error_return;
3474
3475 i = 0;
3476 for (s = abfd->sections; s != NULL; s = s->next)
3477 {
3478 if ((s->flags & SEC_ALLOC) != 0)
3479 {
3480 sections[i] = s;
3481 ++i;
3482 }
3483 }
3484 BFD_ASSERT (i <= bfd_count_sections (abfd));
3485 count = i;
3486
3487 qsort (sections, (size_t) count, sizeof (asection *), elf_sort_sections);
3488
3489 /* Build the mapping. */
3490
3491 mfirst = NULL;
3492 pm = &mfirst;
3493
3494 /* If we have a .interp section, then create a PT_PHDR segment for
3495 the program headers and a PT_INTERP segment for the .interp
3496 section. */
3497 s = bfd_get_section_by_name (abfd, ".interp");
3498 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3499 {
3500 amt = sizeof (struct elf_segment_map);
3501 m = bfd_zalloc (abfd, amt);
3502 if (m == NULL)
3503 goto error_return;
3504 m->next = NULL;
3505 m->p_type = PT_PHDR;
3506 /* FIXME: UnixWare and Solaris set PF_X, Irix 5 does not. */
3507 m->p_flags = PF_R | PF_X;
3508 m->p_flags_valid = 1;
3509 m->includes_phdrs = 1;
3510
3511 *pm = m;
3512 pm = &m->next;
3513
3514 amt = sizeof (struct elf_segment_map);
3515 m = bfd_zalloc (abfd, amt);
3516 if (m == NULL)
3517 goto error_return;
3518 m->next = NULL;
3519 m->p_type = PT_INTERP;
3520 m->count = 1;
3521 m->sections[0] = s;
3522
3523 *pm = m;
3524 pm = &m->next;
3525 }
3526
3527 /* Look through the sections. We put sections in the same program
3528 segment when the start of the second section can be placed within
3529 a few bytes of the end of the first section. */
3530 last_hdr = NULL;
3531 last_size = 0;
3532 phdr_index = 0;
3533 maxpagesize = get_elf_backend_data (abfd)->maxpagesize;
3534 writable = FALSE;
3535 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
3536 if (dynsec != NULL
3537 && (dynsec->flags & SEC_LOAD) == 0)
3538 dynsec = NULL;
3539
3540 /* Deal with -Ttext or something similar such that the first section
3541 is not adjacent to the program headers. This is an
3542 approximation, since at this point we don't know exactly how many
3543 program headers we will need. */
3544 if (count > 0)
3545 {
3546 bfd_size_type phdr_size;
3547
3548 phdr_size = elf_tdata (abfd)->program_header_size;
3549 if (phdr_size == 0)
3550 phdr_size = get_elf_backend_data (abfd)->s->sizeof_phdr;
3551 if ((abfd->flags & D_PAGED) == 0
3552 || sections[0]->lma < phdr_size
3553 || sections[0]->lma % maxpagesize < phdr_size % maxpagesize)
3554 phdr_in_segment = FALSE;
3555 }
3556
3557 for (i = 0, hdrpp = sections; i < count; i++, hdrpp++)
3558 {
3559 asection *hdr;
3560 bfd_boolean new_segment;
3561
3562 hdr = *hdrpp;
3563
3564 /* See if this section and the last one will fit in the same
3565 segment. */
3566
3567 if (last_hdr == NULL)
3568 {
3569 /* If we don't have a segment yet, then we don't need a new
3570 one (we build the last one after this loop). */
3571 new_segment = FALSE;
3572 }
3573 else if (last_hdr->lma - last_hdr->vma != hdr->lma - hdr->vma)
3574 {
3575 /* If this section has a different relation between the
3576 virtual address and the load address, then we need a new
3577 segment. */
3578 new_segment = TRUE;
3579 }
3580 else if (BFD_ALIGN (last_hdr->lma + last_size, maxpagesize)
3581 < BFD_ALIGN (hdr->lma, maxpagesize))
3582 {
3583 /* If putting this section in this segment would force us to
3584 skip a page in the segment, then we need a new segment. */
3585 new_segment = TRUE;
3586 }
3587 else if ((last_hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0
3588 && (hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) != 0)
3589 {
3590 /* We don't want to put a loadable section after a
3591 nonloadable section in the same segment.
3592 Consider .tbss sections as loadable for this purpose. */
3593 new_segment = TRUE;
3594 }
3595 else if ((abfd->flags & D_PAGED) == 0)
3596 {
3597 /* If the file is not demand paged, which means that we
3598 don't require the sections to be correctly aligned in the
3599 file, then there is no other reason for a new segment. */
3600 new_segment = FALSE;
3601 }
3602 else if (! writable
3603 && (hdr->flags & SEC_READONLY) == 0
3604 && (((last_hdr->lma + last_size - 1)
3605 & ~(maxpagesize - 1))
3606 != (hdr->lma & ~(maxpagesize - 1))))
3607 {
3608 /* We don't want to put a writable section in a read only
3609 segment, unless they are on the same page in memory
3610 anyhow. We already know that the last section does not
3611 bring us past the current section on the page, so the
3612 only case in which the new section is not on the same
3613 page as the previous section is when the previous section
3614 ends precisely on a page boundary. */
3615 new_segment = TRUE;
3616 }
3617 else
3618 {
3619 /* Otherwise, we can use the same segment. */
3620 new_segment = FALSE;
3621 }
3622
3623 if (! new_segment)
3624 {
3625 if ((hdr->flags & SEC_READONLY) == 0)
3626 writable = TRUE;
3627 last_hdr = hdr;
3628 /* .tbss sections effectively have zero size. */
3629 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) != SEC_THREAD_LOCAL)
3630 last_size = hdr->size;
3631 else
3632 last_size = 0;
3633 continue;
3634 }
3635
3636 /* We need a new program segment. We must create a new program
3637 header holding all the sections from phdr_index until hdr. */
3638
3639 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
3640 if (m == NULL)
3641 goto error_return;
3642
3643 *pm = m;
3644 pm = &m->next;
3645
3646 if ((hdr->flags & SEC_READONLY) == 0)
3647 writable = TRUE;
3648 else
3649 writable = FALSE;
3650
3651 last_hdr = hdr;
3652 /* .tbss sections effectively have zero size. */
3653 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) != SEC_THREAD_LOCAL)
3654 last_size = hdr->size;
3655 else
3656 last_size = 0;
3657 phdr_index = i;
3658 phdr_in_segment = FALSE;
3659 }
3660
3661 /* Create a final PT_LOAD program segment. */
3662 if (last_hdr != NULL)
3663 {
3664 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
3665 if (m == NULL)
3666 goto error_return;
3667
3668 *pm = m;
3669 pm = &m->next;
3670 }
3671
3672 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
3673 if (dynsec != NULL)
3674 {
3675 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
3676 if (m == NULL)
3677 goto error_return;
3678 *pm = m;
3679 pm = &m->next;
3680 }
3681
3682 /* For each loadable .note section, add a PT_NOTE segment. We don't
3683 use bfd_get_section_by_name, because if we link together
3684 nonloadable .note sections and loadable .note sections, we will
3685 generate two .note sections in the output file. FIXME: Using
3686 names for section types is bogus anyhow. */
3687 for (s = abfd->sections; s != NULL; s = s->next)
3688 {
3689 if ((s->flags & SEC_LOAD) != 0
3690 && strncmp (s->name, ".note", 5) == 0)
3691 {
3692 amt = sizeof (struct elf_segment_map);
3693 m = bfd_zalloc (abfd, amt);
3694 if (m == NULL)
3695 goto error_return;
3696 m->next = NULL;
3697 m->p_type = PT_NOTE;
3698 m->count = 1;
3699 m->sections[0] = s;
3700
3701 *pm = m;
3702 pm = &m->next;
3703 }
3704 if (s->flags & SEC_THREAD_LOCAL)
3705 {
3706 if (! tls_count)
3707 first_tls = s;
3708 tls_count++;
3709 }
3710 }
3711
3712 /* If there are any SHF_TLS output sections, add PT_TLS segment. */
3713 if (tls_count > 0)
3714 {
3715 int i;
3716
3717 amt = sizeof (struct elf_segment_map);
3718 amt += (tls_count - 1) * sizeof (asection *);
3719 m = bfd_zalloc (abfd, amt);
3720 if (m == NULL)
3721 goto error_return;
3722 m->next = NULL;
3723 m->p_type = PT_TLS;
3724 m->count = tls_count;
3725 /* Mandated PF_R. */
3726 m->p_flags = PF_R;
3727 m->p_flags_valid = 1;
3728 for (i = 0; i < tls_count; ++i)
3729 {
3730 BFD_ASSERT (first_tls->flags & SEC_THREAD_LOCAL);
3731 m->sections[i] = first_tls;
3732 first_tls = first_tls->next;
3733 }
3734
3735 *pm = m;
3736 pm = &m->next;
3737 }
3738
3739 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
3740 segment. */
3741 eh_frame_hdr = elf_tdata (abfd)->eh_frame_hdr;
3742 if (eh_frame_hdr != NULL
3743 && (eh_frame_hdr->output_section->flags & SEC_LOAD) != 0)
3744 {
3745 amt = sizeof (struct elf_segment_map);
3746 m = bfd_zalloc (abfd, amt);
3747 if (m == NULL)
3748 goto error_return;
3749 m->next = NULL;
3750 m->p_type = PT_GNU_EH_FRAME;
3751 m->count = 1;
3752 m->sections[0] = eh_frame_hdr->output_section;
3753
3754 *pm = m;
3755 pm = &m->next;
3756 }
3757
3758 if (elf_tdata (abfd)->stack_flags)
3759 {
3760 amt = sizeof (struct elf_segment_map);
3761 m = bfd_zalloc (abfd, amt);
3762 if (m == NULL)
3763 goto error_return;
3764 m->next = NULL;
3765 m->p_type = PT_GNU_STACK;
3766 m->p_flags = elf_tdata (abfd)->stack_flags;
3767 m->p_flags_valid = 1;
3768
3769 *pm = m;
3770 pm = &m->next;
3771 }
3772
3773 if (elf_tdata (abfd)->relro)
3774 {
3775 amt = sizeof (struct elf_segment_map);
3776 m = bfd_zalloc (abfd, amt);
3777 if (m == NULL)
3778 goto error_return;
3779 m->next = NULL;
3780 m->p_type = PT_GNU_RELRO;
3781 m->p_flags = PF_R;
3782 m->p_flags_valid = 1;
3783
3784 *pm = m;
3785 pm = &m->next;
3786 }
3787
3788 free (sections);
3789 sections = NULL;
3790
3791 elf_tdata (abfd)->segment_map = mfirst;
3792 return TRUE;
3793
3794 error_return:
3795 if (sections != NULL)
3796 free (sections);
3797 return FALSE;
3798 }
3799
3800 /* Sort sections by address. */
3801
3802 static int
3803 elf_sort_sections (const void *arg1, const void *arg2)
3804 {
3805 const asection *sec1 = *(const asection **) arg1;
3806 const asection *sec2 = *(const asection **) arg2;
3807 bfd_size_type size1, size2;
3808
3809 /* Sort by LMA first, since this is the address used to
3810 place the section into a segment. */
3811 if (sec1->lma < sec2->lma)
3812 return -1;
3813 else if (sec1->lma > sec2->lma)
3814 return 1;
3815
3816 /* Then sort by VMA. Normally the LMA and the VMA will be
3817 the same, and this will do nothing. */
3818 if (sec1->vma < sec2->vma)
3819 return -1;
3820 else if (sec1->vma > sec2->vma)
3821 return 1;
3822
3823 /* Put !SEC_LOAD sections after SEC_LOAD ones. */
3824
3825 #define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0)
3826
3827 if (TOEND (sec1))
3828 {
3829 if (TOEND (sec2))
3830 {
3831 /* If the indicies are the same, do not return 0
3832 here, but continue to try the next comparison. */
3833 if (sec1->target_index - sec2->target_index != 0)
3834 return sec1->target_index - sec2->target_index;
3835 }
3836 else
3837 return 1;
3838 }
3839 else if (TOEND (sec2))
3840 return -1;
3841
3842 #undef TOEND
3843
3844 /* Sort by size, to put zero sized sections
3845 before others at the same address. */
3846
3847 size1 = (sec1->flags & SEC_LOAD) ? sec1->size : 0;
3848 size2 = (sec2->flags & SEC_LOAD) ? sec2->size : 0;
3849
3850 if (size1 < size2)
3851 return -1;
3852 if (size1 > size2)
3853 return 1;
3854
3855 return sec1->target_index - sec2->target_index;
3856 }
3857
3858 /* Ian Lance Taylor writes:
3859
3860 We shouldn't be using % with a negative signed number. That's just
3861 not good. We have to make sure either that the number is not
3862 negative, or that the number has an unsigned type. When the types
3863 are all the same size they wind up as unsigned. When file_ptr is a
3864 larger signed type, the arithmetic winds up as signed long long,
3865 which is wrong.
3866
3867 What we're trying to say here is something like ``increase OFF by
3868 the least amount that will cause it to be equal to the VMA modulo
3869 the page size.'' */
3870 /* In other words, something like:
3871
3872 vma_offset = m->sections[0]->vma % bed->maxpagesize;
3873 off_offset = off % bed->maxpagesize;
3874 if (vma_offset < off_offset)
3875 adjustment = vma_offset + bed->maxpagesize - off_offset;
3876 else
3877 adjustment = vma_offset - off_offset;
3878
3879 which can can be collapsed into the expression below. */
3880
3881 static file_ptr
3882 vma_page_aligned_bias (bfd_vma vma, ufile_ptr off, bfd_vma maxpagesize)
3883 {
3884 return ((vma - off) % maxpagesize);
3885 }
3886
3887 /* Assign file positions to the sections based on the mapping from
3888 sections to segments. This function also sets up some fields in
3889 the file header, and writes out the program headers. */
3890
3891 static bfd_boolean
3892 assign_file_positions_for_segments (bfd *abfd, struct bfd_link_info *link_info)
3893 {
3894 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3895 unsigned int count;
3896 struct elf_segment_map *m;
3897 unsigned int alloc;
3898 Elf_Internal_Phdr *phdrs;
3899 file_ptr off, voff;
3900 bfd_vma filehdr_vaddr, filehdr_paddr;
3901 bfd_vma phdrs_vaddr, phdrs_paddr;
3902 Elf_Internal_Phdr *p;
3903 bfd_size_type amt;
3904
3905 if (elf_tdata (abfd)->segment_map == NULL)
3906 {
3907 if (! map_sections_to_segments (abfd))
3908 return FALSE;
3909 }
3910 else
3911 {
3912 /* The placement algorithm assumes that non allocated sections are
3913 not in PT_LOAD segments. We ensure this here by removing such
3914 sections from the segment map. */
3915 for (m = elf_tdata (abfd)->segment_map;
3916 m != NULL;
3917 m = m->next)
3918 {
3919 unsigned int new_count;
3920 unsigned int i;
3921
3922 if (m->p_type != PT_LOAD)
3923 continue;
3924
3925 new_count = 0;
3926 for (i = 0; i < m->count; i ++)
3927 {
3928 if ((m->sections[i]->flags & SEC_ALLOC) != 0)
3929 {
3930 if (i != new_count)
3931 m->sections[new_count] = m->sections[i];
3932
3933 new_count ++;
3934 }
3935 }
3936
3937 if (new_count != m->count)
3938 m->count = new_count;
3939 }
3940 }
3941
3942 if (bed->elf_backend_modify_segment_map)
3943 {
3944 if (! (*bed->elf_backend_modify_segment_map) (abfd, link_info))
3945 return FALSE;
3946 }
3947
3948 count = 0;
3949 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
3950 ++count;
3951
3952 elf_elfheader (abfd)->e_phoff = bed->s->sizeof_ehdr;
3953 elf_elfheader (abfd)->e_phentsize = bed->s->sizeof_phdr;
3954 elf_elfheader (abfd)->e_phnum = count;
3955
3956 if (count == 0)
3957 {
3958 elf_tdata (abfd)->next_file_pos = bed->s->sizeof_ehdr;
3959 return TRUE;
3960 }
3961
3962 /* If we already counted the number of program segments, make sure
3963 that we allocated enough space. This happens when SIZEOF_HEADERS
3964 is used in a linker script. */
3965 alloc = elf_tdata (abfd)->program_header_size / bed->s->sizeof_phdr;
3966 if (alloc != 0 && count > alloc)
3967 {
3968 ((*_bfd_error_handler)
3969 (_("%B: Not enough room for program headers (allocated %u, need %u)"),
3970 abfd, alloc, count));
3971 bfd_set_error (bfd_error_bad_value);
3972 return FALSE;
3973 }
3974
3975 if (alloc == 0)
3976 alloc = count;
3977
3978 amt = alloc * sizeof (Elf_Internal_Phdr);
3979 phdrs = bfd_alloc (abfd, amt);
3980 if (phdrs == NULL)
3981 return FALSE;
3982
3983 off = bed->s->sizeof_ehdr;
3984 off += alloc * bed->s->sizeof_phdr;
3985
3986 filehdr_vaddr = 0;
3987 filehdr_paddr = 0;
3988 phdrs_vaddr = 0;
3989 phdrs_paddr = 0;
3990
3991 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
3992 m != NULL;
3993 m = m->next, p++)
3994 {
3995 unsigned int i;
3996 asection **secpp;
3997
3998 /* If elf_segment_map is not from map_sections_to_segments, the
3999 sections may not be correctly ordered. NOTE: sorting should
4000 not be done to the PT_NOTE section of a corefile, which may
4001 contain several pseudo-sections artificially created by bfd.
4002 Sorting these pseudo-sections breaks things badly. */
4003 if (m->count > 1
4004 && !(elf_elfheader (abfd)->e_type == ET_CORE
4005 && m->p_type == PT_NOTE))
4006 qsort (m->sections, (size_t) m->count, sizeof (asection *),
4007 elf_sort_sections);
4008
4009 /* An ELF segment (described by Elf_Internal_Phdr) may contain a
4010 number of sections with contents contributing to both p_filesz
4011 and p_memsz, followed by a number of sections with no contents
4012 that just contribute to p_memsz. In this loop, OFF tracks next
4013 available file offset for PT_LOAD and PT_NOTE segments. VOFF is
4014 an adjustment we use for segments that have no file contents
4015 but need zero filled memory allocation. */
4016 voff = 0;
4017 p->p_type = m->p_type;
4018 p->p_flags = m->p_flags;
4019
4020 if (p->p_type == PT_LOAD
4021 && m->count > 0)
4022 {
4023 bfd_size_type align;
4024 bfd_vma adjust;
4025
4026 if ((abfd->flags & D_PAGED) != 0)
4027 align = bed->maxpagesize;
4028 else
4029 {
4030 unsigned int align_power = 0;
4031 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4032 {
4033 unsigned int secalign;
4034
4035 secalign = bfd_get_section_alignment (abfd, *secpp);
4036 if (secalign > align_power)
4037 align_power = secalign;
4038 }
4039 align = (bfd_size_type) 1 << align_power;
4040 }
4041
4042 adjust = vma_page_aligned_bias (m->sections[0]->vma, off, align);
4043 off += adjust;
4044 if (adjust != 0
4045 && !m->includes_filehdr
4046 && !m->includes_phdrs
4047 && (ufile_ptr) off >= align)
4048 {
4049 /* If the first section isn't loadable, the same holds for
4050 any other sections. Since the segment won't need file
4051 space, we can make p_offset overlap some prior segment.
4052 However, .tbss is special. If a segment starts with
4053 .tbss, we need to look at the next section to decide
4054 whether the segment has any loadable sections. */
4055 i = 0;
4056 while ((m->sections[i]->flags & SEC_LOAD) == 0)
4057 {
4058 if ((m->sections[i]->flags & SEC_THREAD_LOCAL) == 0
4059 || ++i >= m->count)
4060 {
4061 off -= adjust;
4062 voff = adjust - align;
4063 break;
4064 }
4065 }
4066 }
4067 }
4068 /* Make sure the .dynamic section is the first section in the
4069 PT_DYNAMIC segment. */
4070 else if (p->p_type == PT_DYNAMIC
4071 && m->count > 1
4072 && strcmp (m->sections[0]->name, ".dynamic") != 0)
4073 {
4074 _bfd_error_handler
4075 (_("%B: The first section in the PT_DYNAMIC segment is not the .dynamic section"),
4076 abfd);
4077 bfd_set_error (bfd_error_bad_value);
4078 return FALSE;
4079 }
4080
4081 if (m->count == 0)
4082 p->p_vaddr = 0;
4083 else
4084 p->p_vaddr = m->sections[0]->vma;
4085
4086 if (m->p_paddr_valid)
4087 p->p_paddr = m->p_paddr;
4088 else if (m->count == 0)
4089 p->p_paddr = 0;
4090 else
4091 p->p_paddr = m->sections[0]->lma;
4092
4093 if (p->p_type == PT_LOAD
4094 && (abfd->flags & D_PAGED) != 0)
4095 p->p_align = bed->maxpagesize;
4096 else if (m->count == 0)
4097 p->p_align = 1 << bed->s->log_file_align;
4098 else
4099 p->p_align = 0;
4100
4101 p->p_offset = 0;
4102 p->p_filesz = 0;
4103 p->p_memsz = 0;
4104
4105 if (m->includes_filehdr)
4106 {
4107 if (! m->p_flags_valid)
4108 p->p_flags |= PF_R;
4109 p->p_offset = 0;
4110 p->p_filesz = bed->s->sizeof_ehdr;
4111 p->p_memsz = bed->s->sizeof_ehdr;
4112 if (m->count > 0)
4113 {
4114 BFD_ASSERT (p->p_type == PT_LOAD);
4115
4116 if (p->p_vaddr < (bfd_vma) off)
4117 {
4118 (*_bfd_error_handler)
4119 (_("%B: Not enough room for program headers, try linking with -N"),
4120 abfd);
4121 bfd_set_error (bfd_error_bad_value);
4122 return FALSE;
4123 }
4124
4125 p->p_vaddr -= off;
4126 if (! m->p_paddr_valid)
4127 p->p_paddr -= off;
4128 }
4129 if (p->p_type == PT_LOAD)
4130 {
4131 filehdr_vaddr = p->p_vaddr;
4132 filehdr_paddr = p->p_paddr;
4133 }
4134 }
4135
4136 if (m->includes_phdrs)
4137 {
4138 if (! m->p_flags_valid)
4139 p->p_flags |= PF_R;
4140
4141 if (m->includes_filehdr)
4142 {
4143 if (p->p_type == PT_LOAD)
4144 {
4145 phdrs_vaddr = p->p_vaddr + bed->s->sizeof_ehdr;
4146 phdrs_paddr = p->p_paddr + bed->s->sizeof_ehdr;
4147 }
4148 }
4149 else
4150 {
4151 p->p_offset = bed->s->sizeof_ehdr;
4152
4153 if (m->count > 0)
4154 {
4155 BFD_ASSERT (p->p_type == PT_LOAD);
4156 p->p_vaddr -= off - p->p_offset;
4157 if (! m->p_paddr_valid)
4158 p->p_paddr -= off - p->p_offset;
4159 }
4160
4161 if (p->p_type == PT_LOAD)
4162 {
4163 phdrs_vaddr = p->p_vaddr;
4164 phdrs_paddr = p->p_paddr;
4165 }
4166 else
4167 phdrs_vaddr = bed->maxpagesize + bed->s->sizeof_ehdr;
4168 }
4169
4170 p->p_filesz += alloc * bed->s->sizeof_phdr;
4171 p->p_memsz += alloc * bed->s->sizeof_phdr;
4172 }
4173
4174 if (p->p_type == PT_LOAD
4175 || (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core))
4176 {
4177 if (! m->includes_filehdr && ! m->includes_phdrs)
4178 p->p_offset = off + voff;
4179 else
4180 {
4181 file_ptr adjust;
4182
4183 adjust = off - (p->p_offset + p->p_filesz);
4184 p->p_filesz += adjust;
4185 p->p_memsz += adjust;
4186 }
4187 }
4188
4189 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4190 {
4191 asection *sec;
4192 flagword flags;
4193 bfd_size_type align;
4194
4195 sec = *secpp;
4196 flags = sec->flags;
4197 align = 1 << bfd_get_section_alignment (abfd, sec);
4198
4199 if (p->p_type == PT_LOAD
4200 || p->p_type == PT_TLS)
4201 {
4202 bfd_signed_vma adjust;
4203
4204 if ((flags & SEC_LOAD) != 0)
4205 {
4206 adjust = sec->lma - (p->p_paddr + p->p_filesz);
4207 if (adjust < 0)
4208 {
4209 (*_bfd_error_handler)
4210 (_("%B: section %A lma 0x%lx overlaps previous sections"),
4211 abfd, sec, (unsigned long) sec->lma);
4212 adjust = 0;
4213 }
4214 off += adjust;
4215 p->p_filesz += adjust;
4216 p->p_memsz += adjust;
4217 }
4218 /* .tbss is special. It doesn't contribute to p_memsz of
4219 normal segments. */
4220 else if ((flags & SEC_THREAD_LOCAL) == 0
4221 || p->p_type == PT_TLS)
4222 {
4223 /* The section VMA must equal the file position
4224 modulo the page size. */
4225 bfd_size_type page = align;
4226 if ((abfd->flags & D_PAGED) != 0)
4227 page = bed->maxpagesize;
4228 adjust = vma_page_aligned_bias (sec->vma,
4229 p->p_vaddr + p->p_memsz,
4230 page);
4231 p->p_memsz += adjust;
4232 }
4233 }
4234
4235 if (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core)
4236 {
4237 /* The section at i == 0 is the one that actually contains
4238 everything. */
4239 if (i == 0)
4240 {
4241 sec->filepos = off;
4242 off += sec->size;
4243 p->p_filesz = sec->size;
4244 p->p_memsz = 0;
4245 p->p_align = 1;
4246 }
4247 else
4248 {
4249 /* The rest are fake sections that shouldn't be written. */
4250 sec->filepos = 0;
4251 sec->size = 0;
4252 sec->flags = 0;
4253 continue;
4254 }
4255 }
4256 else
4257 {
4258 if (p->p_type == PT_LOAD)
4259 {
4260 sec->filepos = off;
4261 /* FIXME: The SEC_HAS_CONTENTS test here dates back to
4262 1997, and the exact reason for it isn't clear. One
4263 plausible explanation is that it is to work around
4264 a problem we have with linker scripts using data
4265 statements in NOLOAD sections. I don't think it
4266 makes a great deal of sense to have such a section
4267 assigned to a PT_LOAD segment, but apparently
4268 people do this. The data statement results in a
4269 bfd_data_link_order being built, and these need
4270 section contents to write into. Eventually, we get
4271 to _bfd_elf_write_object_contents which writes any
4272 section with contents to the output. Make room
4273 here for the write, so that following segments are
4274 not trashed. */
4275 if ((flags & SEC_LOAD) != 0
4276 || (flags & SEC_HAS_CONTENTS) != 0)
4277 off += sec->size;
4278 }
4279
4280 if ((flags & SEC_LOAD) != 0)
4281 {
4282 p->p_filesz += sec->size;
4283 p->p_memsz += sec->size;
4284 }
4285 /* PR ld/594: Sections in note segments which are not loaded
4286 contribute to the file size but not the in-memory size. */
4287 else if (p->p_type == PT_NOTE
4288 && (flags & SEC_HAS_CONTENTS) != 0)
4289 p->p_filesz += sec->size;
4290
4291 /* .tbss is special. It doesn't contribute to p_memsz of
4292 normal segments. */
4293 else if ((flags & SEC_THREAD_LOCAL) == 0
4294 || p->p_type == PT_TLS)
4295 p->p_memsz += sec->size;
4296
4297 if (p->p_type == PT_TLS
4298 && sec->size == 0
4299 && (sec->flags & SEC_HAS_CONTENTS) == 0)
4300 {
4301 struct bfd_link_order *o;
4302 bfd_vma tbss_size = 0;
4303
4304 for (o = sec->link_order_head; o != NULL; o = o->next)
4305 if (tbss_size < o->offset + o->size)
4306 tbss_size = o->offset + o->size;
4307
4308 p->p_memsz += tbss_size;
4309 }
4310
4311 if (align > p->p_align
4312 && (p->p_type != PT_LOAD || (abfd->flags & D_PAGED) == 0))
4313 p->p_align = align;
4314 }
4315
4316 if (! m->p_flags_valid)
4317 {
4318 p->p_flags |= PF_R;
4319 if ((flags & SEC_CODE) != 0)
4320 p->p_flags |= PF_X;
4321 if ((flags & SEC_READONLY) == 0)
4322 p->p_flags |= PF_W;
4323 }
4324 }
4325 }
4326
4327 /* Now that we have set the section file positions, we can set up
4328 the file positions for the non PT_LOAD segments. */
4329 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
4330 m != NULL;
4331 m = m->next, p++)
4332 {
4333 if (p->p_type != PT_LOAD && m->count > 0)
4334 {
4335 BFD_ASSERT (! m->includes_filehdr && ! m->includes_phdrs);
4336 /* If the section has not yet been assigned a file position,
4337 do so now. The ARM BPABI requires that .dynamic section
4338 not be marked SEC_ALLOC because it is not part of any
4339 PT_LOAD segment, so it will not be processed above. */
4340 if (p->p_type == PT_DYNAMIC && m->sections[0]->filepos == 0)
4341 {
4342 unsigned int i;
4343 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
4344
4345 i = 1;
4346 while (i_shdrpp[i]->bfd_section != m->sections[0])
4347 ++i;
4348 off = (_bfd_elf_assign_file_position_for_section
4349 (i_shdrpp[i], off, TRUE));
4350 p->p_filesz = m->sections[0]->size;
4351 }
4352 p->p_offset = m->sections[0]->filepos;
4353 }
4354 if (m->count == 0)
4355 {
4356 if (m->includes_filehdr)
4357 {
4358 p->p_vaddr = filehdr_vaddr;
4359 if (! m->p_paddr_valid)
4360 p->p_paddr = filehdr_paddr;
4361 }
4362 else if (m->includes_phdrs)
4363 {
4364 p->p_vaddr = phdrs_vaddr;
4365 if (! m->p_paddr_valid)
4366 p->p_paddr = phdrs_paddr;
4367 }
4368 else if (p->p_type == PT_GNU_RELRO)
4369 {
4370 Elf_Internal_Phdr *lp;
4371
4372 for (lp = phdrs; lp < phdrs + count; ++lp)
4373 {
4374 if (lp->p_type == PT_LOAD
4375 && lp->p_vaddr <= link_info->relro_end
4376 && lp->p_vaddr >= link_info->relro_start
4377 && lp->p_vaddr + lp->p_filesz
4378 >= link_info->relro_end)
4379 break;
4380 }
4381
4382 if (lp < phdrs + count
4383 && link_info->relro_end > lp->p_vaddr)
4384 {
4385 p->p_vaddr = lp->p_vaddr;
4386 p->p_paddr = lp->p_paddr;
4387 p->p_offset = lp->p_offset;
4388 p->p_filesz = link_info->relro_end - lp->p_vaddr;
4389 p->p_memsz = p->p_filesz;
4390 p->p_align = 1;
4391 p->p_flags = (lp->p_flags & ~PF_W);
4392 }
4393 else
4394 {
4395 memset (p, 0, sizeof *p);
4396 p->p_type = PT_NULL;
4397 }
4398 }
4399 }
4400 }
4401
4402 /* Clear out any program headers we allocated but did not use. */
4403 for (; count < alloc; count++, p++)
4404 {
4405 memset (p, 0, sizeof *p);
4406 p->p_type = PT_NULL;
4407 }
4408
4409 elf_tdata (abfd)->phdr = phdrs;
4410
4411 elf_tdata (abfd)->next_file_pos = off;
4412
4413 /* Write out the program headers. */
4414 if (bfd_seek (abfd, (bfd_signed_vma) bed->s->sizeof_ehdr, SEEK_SET) != 0
4415 || bed->s->write_out_phdrs (abfd, phdrs, alloc) != 0)
4416 return FALSE;
4417
4418 return TRUE;
4419 }
4420
4421 /* Get the size of the program header.
4422
4423 If this is called by the linker before any of the section VMA's are set, it
4424 can't calculate the correct value for a strange memory layout. This only
4425 happens when SIZEOF_HEADERS is used in a linker script. In this case,
4426 SORTED_HDRS is NULL and we assume the normal scenario of one text and one
4427 data segment (exclusive of .interp and .dynamic).
4428
4429 ??? User written scripts must either not use SIZEOF_HEADERS, or assume there
4430 will be two segments. */
4431
4432 static bfd_size_type
4433 get_program_header_size (bfd *abfd)
4434 {
4435 size_t segs;
4436 asection *s;
4437 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4438
4439 /* We can't return a different result each time we're called. */
4440 if (elf_tdata (abfd)->program_header_size != 0)
4441 return elf_tdata (abfd)->program_header_size;
4442
4443 if (elf_tdata (abfd)->segment_map != NULL)
4444 {
4445 struct elf_segment_map *m;
4446
4447 segs = 0;
4448 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
4449 ++segs;
4450 elf_tdata (abfd)->program_header_size = segs * bed->s->sizeof_phdr;
4451 return elf_tdata (abfd)->program_header_size;
4452 }
4453
4454 /* Assume we will need exactly two PT_LOAD segments: one for text
4455 and one for data. */
4456 segs = 2;
4457
4458 s = bfd_get_section_by_name (abfd, ".interp");
4459 if (s != NULL && (s->flags & SEC_LOAD) != 0)
4460 {
4461 /* If we have a loadable interpreter section, we need a
4462 PT_INTERP segment. In this case, assume we also need a
4463 PT_PHDR segment, although that may not be true for all
4464 targets. */
4465 segs += 2;
4466 }
4467
4468 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
4469 {
4470 /* We need a PT_DYNAMIC segment. */
4471 ++segs;
4472 }
4473
4474 if (elf_tdata (abfd)->eh_frame_hdr)
4475 {
4476 /* We need a PT_GNU_EH_FRAME segment. */
4477 ++segs;
4478 }
4479
4480 if (elf_tdata (abfd)->stack_flags)
4481 {
4482 /* We need a PT_GNU_STACK segment. */
4483 ++segs;
4484 }
4485
4486 if (elf_tdata (abfd)->relro)
4487 {
4488 /* We need a PT_GNU_RELRO segment. */
4489 ++segs;
4490 }
4491
4492 for (s = abfd->sections; s != NULL; s = s->next)
4493 {
4494 if ((s->flags & SEC_LOAD) != 0
4495 && strncmp (s->name, ".note", 5) == 0)
4496 {
4497 /* We need a PT_NOTE segment. */
4498 ++segs;
4499 }
4500 }
4501
4502 for (s = abfd->sections; s != NULL; s = s->next)
4503 {
4504 if (s->flags & SEC_THREAD_LOCAL)
4505 {
4506 /* We need a PT_TLS segment. */
4507 ++segs;
4508 break;
4509 }
4510 }
4511
4512 /* Let the backend count up any program headers it might need. */
4513 if (bed->elf_backend_additional_program_headers)
4514 {
4515 int a;
4516
4517 a = (*bed->elf_backend_additional_program_headers) (abfd);
4518 if (a == -1)
4519 abort ();
4520 segs += a;
4521 }
4522
4523 elf_tdata (abfd)->program_header_size = segs * bed->s->sizeof_phdr;
4524 return elf_tdata (abfd)->program_header_size;
4525 }
4526
4527 /* Work out the file positions of all the sections. This is called by
4528 _bfd_elf_compute_section_file_positions. All the section sizes and
4529 VMAs must be known before this is called.
4530
4531 Reloc sections come in two flavours: Those processed specially as
4532 "side-channel" data attached to a section to which they apply, and
4533 those that bfd doesn't process as relocations. The latter sort are
4534 stored in a normal bfd section by bfd_section_from_shdr. We don't
4535 consider the former sort here, unless they form part of the loadable
4536 image. Reloc sections not assigned here will be handled later by
4537 assign_file_positions_for_relocs.
4538
4539 We also don't set the positions of the .symtab and .strtab here. */
4540
4541 static bfd_boolean
4542 assign_file_positions_except_relocs (bfd *abfd,
4543 struct bfd_link_info *link_info)
4544 {
4545 struct elf_obj_tdata * const tdata = elf_tdata (abfd);
4546 Elf_Internal_Ehdr * const i_ehdrp = elf_elfheader (abfd);
4547 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
4548 unsigned int num_sec = elf_numsections (abfd);
4549 file_ptr off;
4550 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4551
4552 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
4553 && bfd_get_format (abfd) != bfd_core)
4554 {
4555 Elf_Internal_Shdr **hdrpp;
4556 unsigned int i;
4557
4558 /* Start after the ELF header. */
4559 off = i_ehdrp->e_ehsize;
4560
4561 /* We are not creating an executable, which means that we are
4562 not creating a program header, and that the actual order of
4563 the sections in the file is unimportant. */
4564 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
4565 {
4566 Elf_Internal_Shdr *hdr;
4567
4568 hdr = *hdrpp;
4569 if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
4570 && hdr->bfd_section == NULL)
4571 || i == tdata->symtab_section
4572 || i == tdata->symtab_shndx_section
4573 || i == tdata->strtab_section)
4574 {
4575 hdr->sh_offset = -1;
4576 }
4577 else
4578 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4579
4580 if (i == SHN_LORESERVE - 1)
4581 {
4582 i += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4583 hdrpp += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4584 }
4585 }
4586 }
4587 else
4588 {
4589 unsigned int i;
4590 Elf_Internal_Shdr **hdrpp;
4591
4592 /* Assign file positions for the loaded sections based on the
4593 assignment of sections to segments. */
4594 if (! assign_file_positions_for_segments (abfd, link_info))
4595 return FALSE;
4596
4597 /* Assign file positions for the other sections. */
4598
4599 off = elf_tdata (abfd)->next_file_pos;
4600 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
4601 {
4602 Elf_Internal_Shdr *hdr;
4603
4604 hdr = *hdrpp;
4605 if (hdr->bfd_section != NULL
4606 && hdr->bfd_section->filepos != 0)
4607 hdr->sh_offset = hdr->bfd_section->filepos;
4608 else if ((hdr->sh_flags & SHF_ALLOC) != 0)
4609 {
4610 ((*_bfd_error_handler)
4611 (_("%B: warning: allocated section `%s' not in segment"),
4612 abfd,
4613 (hdr->bfd_section == NULL
4614 ? "*unknown*"
4615 : hdr->bfd_section->name)));
4616 if ((abfd->flags & D_PAGED) != 0)
4617 off += vma_page_aligned_bias (hdr->sh_addr, off,
4618 bed->maxpagesize);
4619 else
4620 off += vma_page_aligned_bias (hdr->sh_addr, off,
4621 hdr->sh_addralign);
4622 off = _bfd_elf_assign_file_position_for_section (hdr, off,
4623 FALSE);
4624 }
4625 else if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
4626 && hdr->bfd_section == NULL)
4627 || hdr == i_shdrpp[tdata->symtab_section]
4628 || hdr == i_shdrpp[tdata->symtab_shndx_section]
4629 || hdr == i_shdrpp[tdata->strtab_section])
4630 hdr->sh_offset = -1;
4631 else
4632 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4633
4634 if (i == SHN_LORESERVE - 1)
4635 {
4636 i += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4637 hdrpp += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4638 }
4639 }
4640 }
4641
4642 /* Place the section headers. */
4643 off = align_file_position (off, 1 << bed->s->log_file_align);
4644 i_ehdrp->e_shoff = off;
4645 off += i_ehdrp->e_shnum * i_ehdrp->e_shentsize;
4646
4647 elf_tdata (abfd)->next_file_pos = off;
4648
4649 return TRUE;
4650 }
4651
4652 static bfd_boolean
4653 prep_headers (bfd *abfd)
4654 {
4655 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
4656 Elf_Internal_Phdr *i_phdrp = 0; /* Program header table, internal form */
4657 Elf_Internal_Shdr **i_shdrp; /* Section header table, internal form */
4658 struct elf_strtab_hash *shstrtab;
4659 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4660
4661 i_ehdrp = elf_elfheader (abfd);
4662 i_shdrp = elf_elfsections (abfd);
4663
4664 shstrtab = _bfd_elf_strtab_init ();
4665 if (shstrtab == NULL)
4666 return FALSE;
4667
4668 elf_shstrtab (abfd) = shstrtab;
4669
4670 i_ehdrp->e_ident[EI_MAG0] = ELFMAG0;
4671 i_ehdrp->e_ident[EI_MAG1] = ELFMAG1;
4672 i_ehdrp->e_ident[EI_MAG2] = ELFMAG2;
4673 i_ehdrp->e_ident[EI_MAG3] = ELFMAG3;
4674
4675 i_ehdrp->e_ident[EI_CLASS] = bed->s->elfclass;
4676 i_ehdrp->e_ident[EI_DATA] =
4677 bfd_big_endian (abfd) ? ELFDATA2MSB : ELFDATA2LSB;
4678 i_ehdrp->e_ident[EI_VERSION] = bed->s->ev_current;
4679
4680 if ((abfd->flags & DYNAMIC) != 0)
4681 i_ehdrp->e_type = ET_DYN;
4682 else if ((abfd->flags & EXEC_P) != 0)
4683 i_ehdrp->e_type = ET_EXEC;
4684 else if (bfd_get_format (abfd) == bfd_core)
4685 i_ehdrp->e_type = ET_CORE;
4686 else
4687 i_ehdrp->e_type = ET_REL;
4688
4689 switch (bfd_get_arch (abfd))
4690 {
4691 case bfd_arch_unknown:
4692 i_ehdrp->e_machine = EM_NONE;
4693 break;
4694
4695 /* There used to be a long list of cases here, each one setting
4696 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
4697 in the corresponding bfd definition. To avoid duplication,
4698 the switch was removed. Machines that need special handling
4699 can generally do it in elf_backend_final_write_processing(),
4700 unless they need the information earlier than the final write.
4701 Such need can generally be supplied by replacing the tests for
4702 e_machine with the conditions used to determine it. */
4703 default:
4704 i_ehdrp->e_machine = bed->elf_machine_code;
4705 }
4706
4707 i_ehdrp->e_version = bed->s->ev_current;
4708 i_ehdrp->e_ehsize = bed->s->sizeof_ehdr;
4709
4710 /* No program header, for now. */
4711 i_ehdrp->e_phoff = 0;
4712 i_ehdrp->e_phentsize = 0;
4713 i_ehdrp->e_phnum = 0;
4714
4715 /* Each bfd section is section header entry. */
4716 i_ehdrp->e_entry = bfd_get_start_address (abfd);
4717 i_ehdrp->e_shentsize = bed->s->sizeof_shdr;
4718
4719 /* If we're building an executable, we'll need a program header table. */
4720 if (abfd->flags & EXEC_P)
4721 /* It all happens later. */
4722 ;
4723 else
4724 {
4725 i_ehdrp->e_phentsize = 0;
4726 i_phdrp = 0;
4727 i_ehdrp->e_phoff = 0;
4728 }
4729
4730 elf_tdata (abfd)->symtab_hdr.sh_name =
4731 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".symtab", FALSE);
4732 elf_tdata (abfd)->strtab_hdr.sh_name =
4733 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".strtab", FALSE);
4734 elf_tdata (abfd)->shstrtab_hdr.sh_name =
4735 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".shstrtab", FALSE);
4736 if (elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
4737 || elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
4738 || elf_tdata (abfd)->shstrtab_hdr.sh_name == (unsigned int) -1)
4739 return FALSE;
4740
4741 return TRUE;
4742 }
4743
4744 /* Assign file positions for all the reloc sections which are not part
4745 of the loadable file image. */
4746
4747 void
4748 _bfd_elf_assign_file_positions_for_relocs (bfd *abfd)
4749 {
4750 file_ptr off;
4751 unsigned int i, num_sec;
4752 Elf_Internal_Shdr **shdrpp;
4753
4754 off = elf_tdata (abfd)->next_file_pos;
4755
4756 num_sec = elf_numsections (abfd);
4757 for (i = 1, shdrpp = elf_elfsections (abfd) + 1; i < num_sec; i++, shdrpp++)
4758 {
4759 Elf_Internal_Shdr *shdrp;
4760
4761 shdrp = *shdrpp;
4762 if ((shdrp->sh_type == SHT_REL || shdrp->sh_type == SHT_RELA)
4763 && shdrp->sh_offset == -1)
4764 off = _bfd_elf_assign_file_position_for_section (shdrp, off, TRUE);
4765 }
4766
4767 elf_tdata (abfd)->next_file_pos = off;
4768 }
4769
4770 bfd_boolean
4771 _bfd_elf_write_object_contents (bfd *abfd)
4772 {
4773 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4774 Elf_Internal_Ehdr *i_ehdrp;
4775 Elf_Internal_Shdr **i_shdrp;
4776 bfd_boolean failed;
4777 unsigned int count, num_sec;
4778
4779 if (! abfd->output_has_begun
4780 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
4781 return FALSE;
4782
4783 i_shdrp = elf_elfsections (abfd);
4784 i_ehdrp = elf_elfheader (abfd);
4785
4786 failed = FALSE;
4787 bfd_map_over_sections (abfd, bed->s->write_relocs, &failed);
4788 if (failed)
4789 return FALSE;
4790
4791 _bfd_elf_assign_file_positions_for_relocs (abfd);
4792
4793 /* After writing the headers, we need to write the sections too... */
4794 num_sec = elf_numsections (abfd);
4795 for (count = 1; count < num_sec; count++)
4796 {
4797 if (bed->elf_backend_section_processing)
4798 (*bed->elf_backend_section_processing) (abfd, i_shdrp[count]);
4799 if (i_shdrp[count]->contents)
4800 {
4801 bfd_size_type amt = i_shdrp[count]->sh_size;
4802
4803 if (bfd_seek (abfd, i_shdrp[count]->sh_offset, SEEK_SET) != 0
4804 || bfd_bwrite (i_shdrp[count]->contents, amt, abfd) != amt)
4805 return FALSE;
4806 }
4807 if (count == SHN_LORESERVE - 1)
4808 count += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4809 }
4810
4811 /* Write out the section header names. */
4812 if (bfd_seek (abfd, elf_tdata (abfd)->shstrtab_hdr.sh_offset, SEEK_SET) != 0
4813 || ! _bfd_elf_strtab_emit (abfd, elf_shstrtab (abfd)))
4814 return FALSE;
4815
4816 if (bed->elf_backend_final_write_processing)
4817 (*bed->elf_backend_final_write_processing) (abfd,
4818 elf_tdata (abfd)->linker);
4819
4820 return bed->s->write_shdrs_and_ehdr (abfd);
4821 }
4822
4823 bfd_boolean
4824 _bfd_elf_write_corefile_contents (bfd *abfd)
4825 {
4826 /* Hopefully this can be done just like an object file. */
4827 return _bfd_elf_write_object_contents (abfd);
4828 }
4829
4830 /* Given a section, search the header to find them. */
4831
4832 int
4833 _bfd_elf_section_from_bfd_section (bfd *abfd, struct bfd_section *asect)
4834 {
4835 const struct elf_backend_data *bed;
4836 int index;
4837
4838 if (elf_section_data (asect) != NULL
4839 && elf_section_data (asect)->this_idx != 0)
4840 return elf_section_data (asect)->this_idx;
4841
4842 if (bfd_is_abs_section (asect))
4843 index = SHN_ABS;
4844 else if (bfd_is_com_section (asect))
4845 index = SHN_COMMON;
4846 else if (bfd_is_und_section (asect))
4847 index = SHN_UNDEF;
4848 else
4849 index = -1;
4850
4851 bed = get_elf_backend_data (abfd);
4852 if (bed->elf_backend_section_from_bfd_section)
4853 {
4854 int retval = index;
4855
4856 if ((*bed->elf_backend_section_from_bfd_section) (abfd, asect, &retval))
4857 return retval;
4858 }
4859
4860 if (index == -1)
4861 bfd_set_error (bfd_error_nonrepresentable_section);
4862
4863 return index;
4864 }
4865
4866 /* Given a BFD symbol, return the index in the ELF symbol table, or -1
4867 on error. */
4868
4869 int
4870 _bfd_elf_symbol_from_bfd_symbol (bfd *abfd, asymbol **asym_ptr_ptr)
4871 {
4872 asymbol *asym_ptr = *asym_ptr_ptr;
4873 int idx;
4874 flagword flags = asym_ptr->flags;
4875
4876 /* When gas creates relocations against local labels, it creates its
4877 own symbol for the section, but does put the symbol into the
4878 symbol chain, so udata is 0. When the linker is generating
4879 relocatable output, this section symbol may be for one of the
4880 input sections rather than the output section. */
4881 if (asym_ptr->udata.i == 0
4882 && (flags & BSF_SECTION_SYM)
4883 && asym_ptr->section)
4884 {
4885 int indx;
4886
4887 if (asym_ptr->section->output_section != NULL)
4888 indx = asym_ptr->section->output_section->index;
4889 else
4890 indx = asym_ptr->section->index;
4891 if (indx < elf_num_section_syms (abfd)
4892 && elf_section_syms (abfd)[indx] != NULL)
4893 asym_ptr->udata.i = elf_section_syms (abfd)[indx]->udata.i;
4894 }
4895
4896 idx = asym_ptr->udata.i;
4897
4898 if (idx == 0)
4899 {
4900 /* This case can occur when using --strip-symbol on a symbol
4901 which is used in a relocation entry. */
4902 (*_bfd_error_handler)
4903 (_("%B: symbol `%s' required but not present"),
4904 abfd, bfd_asymbol_name (asym_ptr));
4905 bfd_set_error (bfd_error_no_symbols);
4906 return -1;
4907 }
4908
4909 #if DEBUG & 4
4910 {
4911 fprintf (stderr,
4912 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8lx%s\n",
4913 (long) asym_ptr, asym_ptr->name, idx, flags,
4914 elf_symbol_flags (flags));
4915 fflush (stderr);
4916 }
4917 #endif
4918
4919 return idx;
4920 }
4921
4922 /* Copy private BFD data. This copies any program header information. */
4923
4924 static bfd_boolean
4925 copy_private_bfd_data (bfd *ibfd, bfd *obfd)
4926 {
4927 Elf_Internal_Ehdr *iehdr;
4928 struct elf_segment_map *map;
4929 struct elf_segment_map *map_first;
4930 struct elf_segment_map **pointer_to_map;
4931 Elf_Internal_Phdr *segment;
4932 asection *section;
4933 unsigned int i;
4934 unsigned int num_segments;
4935 bfd_boolean phdr_included = FALSE;
4936 bfd_vma maxpagesize;
4937 struct elf_segment_map *phdr_adjust_seg = NULL;
4938 unsigned int phdr_adjust_num = 0;
4939 const struct elf_backend_data *bed;
4940
4941 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
4942 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
4943 return TRUE;
4944
4945 if (elf_tdata (ibfd)->phdr == NULL)
4946 return TRUE;
4947
4948 bed = get_elf_backend_data (ibfd);
4949 iehdr = elf_elfheader (ibfd);
4950
4951 map_first = NULL;
4952 pointer_to_map = &map_first;
4953
4954 num_segments = elf_elfheader (ibfd)->e_phnum;
4955 maxpagesize = get_elf_backend_data (obfd)->maxpagesize;
4956
4957 /* Returns the end address of the segment + 1. */
4958 #define SEGMENT_END(segment, start) \
4959 (start + (segment->p_memsz > segment->p_filesz \
4960 ? segment->p_memsz : segment->p_filesz))
4961
4962 #define SECTION_SIZE(section, segment) \
4963 (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL)) \
4964 != SEC_THREAD_LOCAL || segment->p_type == PT_TLS) \
4965 ? section->size : 0)
4966
4967 /* Returns TRUE if the given section is contained within
4968 the given segment. VMA addresses are compared. */
4969 #define IS_CONTAINED_BY_VMA(section, segment) \
4970 (section->vma >= segment->p_vaddr \
4971 && (section->vma + SECTION_SIZE (section, segment) \
4972 <= (SEGMENT_END (segment, segment->p_vaddr))))
4973
4974 /* Returns TRUE if the given section is contained within
4975 the given segment. LMA addresses are compared. */
4976 #define IS_CONTAINED_BY_LMA(section, segment, base) \
4977 (section->lma >= base \
4978 && (section->lma + SECTION_SIZE (section, segment) \
4979 <= SEGMENT_END (segment, base)))
4980
4981 /* Special case: corefile "NOTE" section containing regs, prpsinfo etc. */
4982 #define IS_COREFILE_NOTE(p, s) \
4983 (p->p_type == PT_NOTE \
4984 && bfd_get_format (ibfd) == bfd_core \
4985 && s->vma == 0 && s->lma == 0 \
4986 && (bfd_vma) s->filepos >= p->p_offset \
4987 && ((bfd_vma) s->filepos + s->size \
4988 <= p->p_offset + p->p_filesz))
4989
4990 /* The complicated case when p_vaddr is 0 is to handle the Solaris
4991 linker, which generates a PT_INTERP section with p_vaddr and
4992 p_memsz set to 0. */
4993 #define IS_SOLARIS_PT_INTERP(p, s) \
4994 (p->p_vaddr == 0 \
4995 && p->p_paddr == 0 \
4996 && p->p_memsz == 0 \
4997 && p->p_filesz > 0 \
4998 && (s->flags & SEC_HAS_CONTENTS) != 0 \
4999 && s->size > 0 \
5000 && (bfd_vma) s->filepos >= p->p_offset \
5001 && ((bfd_vma) s->filepos + s->size \
5002 <= p->p_offset + p->p_filesz))
5003
5004 /* Decide if the given section should be included in the given segment.
5005 A section will be included if:
5006 1. It is within the address space of the segment -- we use the LMA
5007 if that is set for the segment and the VMA otherwise,
5008 2. It is an allocated segment,
5009 3. There is an output section associated with it,
5010 4. The section has not already been allocated to a previous segment.
5011 5. PT_GNU_STACK segments do not include any sections.
5012 6. PT_TLS segment includes only SHF_TLS sections.
5013 7. SHF_TLS sections are only in PT_TLS or PT_LOAD segments.
5014 8. PT_DYNAMIC should not contain empty sections at the beginning
5015 (with the possible exception of .dynamic). */
5016 #define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed) \
5017 ((((segment->p_paddr \
5018 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr) \
5019 : IS_CONTAINED_BY_VMA (section, segment)) \
5020 && (section->flags & SEC_ALLOC) != 0) \
5021 || IS_COREFILE_NOTE (segment, section)) \
5022 && section->output_section != NULL \
5023 && segment->p_type != PT_GNU_STACK \
5024 && (segment->p_type != PT_TLS \
5025 || (section->flags & SEC_THREAD_LOCAL)) \
5026 && (segment->p_type == PT_LOAD \
5027 || segment->p_type == PT_TLS \
5028 || (section->flags & SEC_THREAD_LOCAL) == 0) \
5029 && (segment->p_type != PT_DYNAMIC \
5030 || SECTION_SIZE (section, segment) > 0 \
5031 || (segment->p_paddr \
5032 ? segment->p_paddr != section->lma \
5033 : segment->p_vaddr != section->vma) \
5034 || (strcmp (bfd_get_section_name (ibfd, section), ".dynamic") \
5035 == 0)) \
5036 && ! section->segment_mark)
5037
5038 /* Returns TRUE iff seg1 starts after the end of seg2. */
5039 #define SEGMENT_AFTER_SEGMENT(seg1, seg2, field) \
5040 (seg1->field >= SEGMENT_END (seg2, seg2->field))
5041
5042 /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both
5043 their VMA address ranges and their LMA address ranges overlap.
5044 It is possible to have overlapping VMA ranges without overlapping LMA
5045 ranges. RedBoot images for example can have both .data and .bss mapped
5046 to the same VMA range, but with the .data section mapped to a different
5047 LMA. */
5048 #define SEGMENT_OVERLAPS(seg1, seg2) \
5049 ( !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr) \
5050 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr)) \
5051 && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr) \
5052 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr)))
5053
5054 /* Initialise the segment mark field. */
5055 for (section = ibfd->sections; section != NULL; section = section->next)
5056 section->segment_mark = FALSE;
5057
5058 /* Scan through the segments specified in the program header
5059 of the input BFD. For this first scan we look for overlaps
5060 in the loadable segments. These can be created by weird
5061 parameters to objcopy. Also, fix some solaris weirdness. */
5062 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5063 i < num_segments;
5064 i++, segment++)
5065 {
5066 unsigned int j;
5067 Elf_Internal_Phdr *segment2;
5068
5069 if (segment->p_type == PT_INTERP)
5070 for (section = ibfd->sections; section; section = section->next)
5071 if (IS_SOLARIS_PT_INTERP (segment, section))
5072 {
5073 /* Mininal change so that the normal section to segment
5074 assignment code will work. */
5075 segment->p_vaddr = section->vma;
5076 break;
5077 }
5078
5079 if (segment->p_type != PT_LOAD)
5080 continue;
5081
5082 /* Determine if this segment overlaps any previous segments. */
5083 for (j = 0, segment2 = elf_tdata (ibfd)->phdr; j < i; j++, segment2 ++)
5084 {
5085 bfd_signed_vma extra_length;
5086
5087 if (segment2->p_type != PT_LOAD
5088 || ! SEGMENT_OVERLAPS (segment, segment2))
5089 continue;
5090
5091 /* Merge the two segments together. */
5092 if (segment2->p_vaddr < segment->p_vaddr)
5093 {
5094 /* Extend SEGMENT2 to include SEGMENT and then delete
5095 SEGMENT. */
5096 extra_length =
5097 SEGMENT_END (segment, segment->p_vaddr)
5098 - SEGMENT_END (segment2, segment2->p_vaddr);
5099
5100 if (extra_length > 0)
5101 {
5102 segment2->p_memsz += extra_length;
5103 segment2->p_filesz += extra_length;
5104 }
5105
5106 segment->p_type = PT_NULL;
5107
5108 /* Since we have deleted P we must restart the outer loop. */
5109 i = 0;
5110 segment = elf_tdata (ibfd)->phdr;
5111 break;
5112 }
5113 else
5114 {
5115 /* Extend SEGMENT to include SEGMENT2 and then delete
5116 SEGMENT2. */
5117 extra_length =
5118 SEGMENT_END (segment2, segment2->p_vaddr)
5119 - SEGMENT_END (segment, segment->p_vaddr);
5120
5121 if (extra_length > 0)
5122 {
5123 segment->p_memsz += extra_length;
5124 segment->p_filesz += extra_length;
5125 }
5126
5127 segment2->p_type = PT_NULL;
5128 }
5129 }
5130 }
5131
5132 /* The second scan attempts to assign sections to segments. */
5133 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5134 i < num_segments;
5135 i ++, segment ++)
5136 {
5137 unsigned int section_count;
5138 asection ** sections;
5139 asection * output_section;
5140 unsigned int isec;
5141 bfd_vma matching_lma;
5142 bfd_vma suggested_lma;
5143 unsigned int j;
5144 bfd_size_type amt;
5145
5146 if (segment->p_type == PT_NULL)
5147 continue;
5148
5149 /* Compute how many sections might be placed into this segment. */
5150 for (section = ibfd->sections, section_count = 0;
5151 section != NULL;
5152 section = section->next)
5153 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
5154 ++section_count;
5155
5156 /* Allocate a segment map big enough to contain
5157 all of the sections we have selected. */
5158 amt = sizeof (struct elf_segment_map);
5159 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5160 map = bfd_alloc (obfd, amt);
5161 if (map == NULL)
5162 return FALSE;
5163
5164 /* Initialise the fields of the segment map. Default to
5165 using the physical address of the segment in the input BFD. */
5166 map->next = NULL;
5167 map->p_type = segment->p_type;
5168 map->p_flags = segment->p_flags;
5169 map->p_flags_valid = 1;
5170 map->p_paddr = segment->p_paddr;
5171 map->p_paddr_valid = 1;
5172
5173 /* Determine if this segment contains the ELF file header
5174 and if it contains the program headers themselves. */
5175 map->includes_filehdr = (segment->p_offset == 0
5176 && segment->p_filesz >= iehdr->e_ehsize);
5177
5178 map->includes_phdrs = 0;
5179
5180 if (! phdr_included || segment->p_type != PT_LOAD)
5181 {
5182 map->includes_phdrs =
5183 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
5184 && (segment->p_offset + segment->p_filesz
5185 >= ((bfd_vma) iehdr->e_phoff
5186 + iehdr->e_phnum * iehdr->e_phentsize)));
5187
5188 if (segment->p_type == PT_LOAD && map->includes_phdrs)
5189 phdr_included = TRUE;
5190 }
5191
5192 if (section_count == 0)
5193 {
5194 /* Special segments, such as the PT_PHDR segment, may contain
5195 no sections, but ordinary, loadable segments should contain
5196 something. They are allowed by the ELF spec however, so only
5197 a warning is produced. */
5198 if (segment->p_type == PT_LOAD)
5199 (*_bfd_error_handler)
5200 (_("%B: warning: Empty loadable segment detected, is this intentional ?\n"),
5201 ibfd);
5202
5203 map->count = 0;
5204 *pointer_to_map = map;
5205 pointer_to_map = &map->next;
5206
5207 continue;
5208 }
5209
5210 /* Now scan the sections in the input BFD again and attempt
5211 to add their corresponding output sections to the segment map.
5212 The problem here is how to handle an output section which has
5213 been moved (ie had its LMA changed). There are four possibilities:
5214
5215 1. None of the sections have been moved.
5216 In this case we can continue to use the segment LMA from the
5217 input BFD.
5218
5219 2. All of the sections have been moved by the same amount.
5220 In this case we can change the segment's LMA to match the LMA
5221 of the first section.
5222
5223 3. Some of the sections have been moved, others have not.
5224 In this case those sections which have not been moved can be
5225 placed in the current segment which will have to have its size,
5226 and possibly its LMA changed, and a new segment or segments will
5227 have to be created to contain the other sections.
5228
5229 4. The sections have been moved, but not by the same amount.
5230 In this case we can change the segment's LMA to match the LMA
5231 of the first section and we will have to create a new segment
5232 or segments to contain the other sections.
5233
5234 In order to save time, we allocate an array to hold the section
5235 pointers that we are interested in. As these sections get assigned
5236 to a segment, they are removed from this array. */
5237
5238 /* Gcc 2.96 miscompiles this code on mips. Don't do casting here
5239 to work around this long long bug. */
5240 amt = section_count * sizeof (asection *);
5241 sections = bfd_malloc (amt);
5242 if (sections == NULL)
5243 return FALSE;
5244
5245 /* Step One: Scan for segment vs section LMA conflicts.
5246 Also add the sections to the section array allocated above.
5247 Also add the sections to the current segment. In the common
5248 case, where the sections have not been moved, this means that
5249 we have completely filled the segment, and there is nothing
5250 more to do. */
5251 isec = 0;
5252 matching_lma = 0;
5253 suggested_lma = 0;
5254
5255 for (j = 0, section = ibfd->sections;
5256 section != NULL;
5257 section = section->next)
5258 {
5259 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
5260 {
5261 output_section = section->output_section;
5262
5263 sections[j ++] = section;
5264
5265 /* The Solaris native linker always sets p_paddr to 0.
5266 We try to catch that case here, and set it to the
5267 correct value. Note - some backends require that
5268 p_paddr be left as zero. */
5269 if (segment->p_paddr == 0
5270 && segment->p_vaddr != 0
5271 && (! bed->want_p_paddr_set_to_zero)
5272 && isec == 0
5273 && output_section->lma != 0
5274 && (output_section->vma == (segment->p_vaddr
5275 + (map->includes_filehdr
5276 ? iehdr->e_ehsize
5277 : 0)
5278 + (map->includes_phdrs
5279 ? (iehdr->e_phnum
5280 * iehdr->e_phentsize)
5281 : 0))))
5282 map->p_paddr = segment->p_vaddr;
5283
5284 /* Match up the physical address of the segment with the
5285 LMA address of the output section. */
5286 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
5287 || IS_COREFILE_NOTE (segment, section)
5288 || (bed->want_p_paddr_set_to_zero &&
5289 IS_CONTAINED_BY_VMA (output_section, segment))
5290 )
5291 {
5292 if (matching_lma == 0)
5293 matching_lma = output_section->lma;
5294
5295 /* We assume that if the section fits within the segment
5296 then it does not overlap any other section within that
5297 segment. */
5298 map->sections[isec ++] = output_section;
5299 }
5300 else if (suggested_lma == 0)
5301 suggested_lma = output_section->lma;
5302 }
5303 }
5304
5305 BFD_ASSERT (j == section_count);
5306
5307 /* Step Two: Adjust the physical address of the current segment,
5308 if necessary. */
5309 if (isec == section_count)
5310 {
5311 /* All of the sections fitted within the segment as currently
5312 specified. This is the default case. Add the segment to
5313 the list of built segments and carry on to process the next
5314 program header in the input BFD. */
5315 map->count = section_count;
5316 *pointer_to_map = map;
5317 pointer_to_map = &map->next;
5318
5319 free (sections);
5320 continue;
5321 }
5322 else
5323 {
5324 if (matching_lma != 0)
5325 {
5326 /* At least one section fits inside the current segment.
5327 Keep it, but modify its physical address to match the
5328 LMA of the first section that fitted. */
5329 map->p_paddr = matching_lma;
5330 }
5331 else
5332 {
5333 /* None of the sections fitted inside the current segment.
5334 Change the current segment's physical address to match
5335 the LMA of the first section. */
5336 map->p_paddr = suggested_lma;
5337 }
5338
5339 /* Offset the segment physical address from the lma
5340 to allow for space taken up by elf headers. */
5341 if (map->includes_filehdr)
5342 map->p_paddr -= iehdr->e_ehsize;
5343
5344 if (map->includes_phdrs)
5345 {
5346 map->p_paddr -= iehdr->e_phnum * iehdr->e_phentsize;
5347
5348 /* iehdr->e_phnum is just an estimate of the number
5349 of program headers that we will need. Make a note
5350 here of the number we used and the segment we chose
5351 to hold these headers, so that we can adjust the
5352 offset when we know the correct value. */
5353 phdr_adjust_num = iehdr->e_phnum;
5354 phdr_adjust_seg = map;
5355 }
5356 }
5357
5358 /* Step Three: Loop over the sections again, this time assigning
5359 those that fit to the current segment and removing them from the
5360 sections array; but making sure not to leave large gaps. Once all
5361 possible sections have been assigned to the current segment it is
5362 added to the list of built segments and if sections still remain
5363 to be assigned, a new segment is constructed before repeating
5364 the loop. */
5365 isec = 0;
5366 do
5367 {
5368 map->count = 0;
5369 suggested_lma = 0;
5370
5371 /* Fill the current segment with sections that fit. */
5372 for (j = 0; j < section_count; j++)
5373 {
5374 section = sections[j];
5375
5376 if (section == NULL)
5377 continue;
5378
5379 output_section = section->output_section;
5380
5381 BFD_ASSERT (output_section != NULL);
5382
5383 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
5384 || IS_COREFILE_NOTE (segment, section))
5385 {
5386 if (map->count == 0)
5387 {
5388 /* If the first section in a segment does not start at
5389 the beginning of the segment, then something is
5390 wrong. */
5391 if (output_section->lma !=
5392 (map->p_paddr
5393 + (map->includes_filehdr ? iehdr->e_ehsize : 0)
5394 + (map->includes_phdrs
5395 ? iehdr->e_phnum * iehdr->e_phentsize
5396 : 0)))
5397 abort ();
5398 }
5399 else
5400 {
5401 asection * prev_sec;
5402
5403 prev_sec = map->sections[map->count - 1];
5404
5405 /* If the gap between the end of the previous section
5406 and the start of this section is more than
5407 maxpagesize then we need to start a new segment. */
5408 if ((BFD_ALIGN (prev_sec->lma + prev_sec->size,
5409 maxpagesize)
5410 < BFD_ALIGN (output_section->lma, maxpagesize))
5411 || ((prev_sec->lma + prev_sec->size)
5412 > output_section->lma))
5413 {
5414 if (suggested_lma == 0)
5415 suggested_lma = output_section->lma;
5416
5417 continue;
5418 }
5419 }
5420
5421 map->sections[map->count++] = output_section;
5422 ++isec;
5423 sections[j] = NULL;
5424 section->segment_mark = TRUE;
5425 }
5426 else if (suggested_lma == 0)
5427 suggested_lma = output_section->lma;
5428 }
5429
5430 BFD_ASSERT (map->count > 0);
5431
5432 /* Add the current segment to the list of built segments. */
5433 *pointer_to_map = map;
5434 pointer_to_map = &map->next;
5435
5436 if (isec < section_count)
5437 {
5438 /* We still have not allocated all of the sections to
5439 segments. Create a new segment here, initialise it
5440 and carry on looping. */
5441 amt = sizeof (struct elf_segment_map);
5442 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5443 map = bfd_alloc (obfd, amt);
5444 if (map == NULL)
5445 {
5446 free (sections);
5447 return FALSE;
5448 }
5449
5450 /* Initialise the fields of the segment map. Set the physical
5451 physical address to the LMA of the first section that has
5452 not yet been assigned. */
5453 map->next = NULL;
5454 map->p_type = segment->p_type;
5455 map->p_flags = segment->p_flags;
5456 map->p_flags_valid = 1;
5457 map->p_paddr = suggested_lma;
5458 map->p_paddr_valid = 1;
5459 map->includes_filehdr = 0;
5460 map->includes_phdrs = 0;
5461 }
5462 }
5463 while (isec < section_count);
5464
5465 free (sections);
5466 }
5467
5468 /* The Solaris linker creates program headers in which all the
5469 p_paddr fields are zero. When we try to objcopy or strip such a
5470 file, we get confused. Check for this case, and if we find it
5471 reset the p_paddr_valid fields. */
5472 for (map = map_first; map != NULL; map = map->next)
5473 if (map->p_paddr != 0)
5474 break;
5475 if (map == NULL)
5476 for (map = map_first; map != NULL; map = map->next)
5477 map->p_paddr_valid = 0;
5478
5479 elf_tdata (obfd)->segment_map = map_first;
5480
5481 /* If we had to estimate the number of program headers that were
5482 going to be needed, then check our estimate now and adjust
5483 the offset if necessary. */
5484 if (phdr_adjust_seg != NULL)
5485 {
5486 unsigned int count;
5487
5488 for (count = 0, map = map_first; map != NULL; map = map->next)
5489 count++;
5490
5491 if (count > phdr_adjust_num)
5492 phdr_adjust_seg->p_paddr
5493 -= (count - phdr_adjust_num) * iehdr->e_phentsize;
5494 }
5495
5496 #undef SEGMENT_END
5497 #undef SECTION_SIZE
5498 #undef IS_CONTAINED_BY_VMA
5499 #undef IS_CONTAINED_BY_LMA
5500 #undef IS_COREFILE_NOTE
5501 #undef IS_SOLARIS_PT_INTERP
5502 #undef INCLUDE_SECTION_IN_SEGMENT
5503 #undef SEGMENT_AFTER_SEGMENT
5504 #undef SEGMENT_OVERLAPS
5505 return TRUE;
5506 }
5507
5508 /* Copy private section information. This copies over the entsize
5509 field, and sometimes the info field. */
5510
5511 bfd_boolean
5512 _bfd_elf_copy_private_section_data (bfd *ibfd,
5513 asection *isec,
5514 bfd *obfd,
5515 asection *osec)
5516 {
5517 Elf_Internal_Shdr *ihdr, *ohdr;
5518
5519 if (ibfd->xvec->flavour != bfd_target_elf_flavour
5520 || obfd->xvec->flavour != bfd_target_elf_flavour)
5521 return TRUE;
5522
5523 ihdr = &elf_section_data (isec)->this_hdr;
5524 ohdr = &elf_section_data (osec)->this_hdr;
5525
5526 ohdr->sh_entsize = ihdr->sh_entsize;
5527
5528 if (ihdr->sh_type == SHT_SYMTAB
5529 || ihdr->sh_type == SHT_DYNSYM
5530 || ihdr->sh_type == SHT_GNU_verneed
5531 || ihdr->sh_type == SHT_GNU_verdef)
5532 ohdr->sh_info = ihdr->sh_info;
5533
5534 /* Set things up for objcopy. The output SHT_GROUP section will
5535 have its elf_next_in_group pointing back to the input group
5536 members. Ignore linker created group section. See
5537 elfNN_ia64_object_p in elfxx-ia64.c. */
5538 if (elf_sec_group (isec) == NULL
5539 || (elf_sec_group (isec)->flags & SEC_LINKER_CREATED) == 0)
5540 {
5541 elf_next_in_group (osec) = elf_next_in_group (isec);
5542 elf_group_name (osec) = elf_group_name (isec);
5543 }
5544
5545 osec->use_rela_p = isec->use_rela_p;
5546
5547 return TRUE;
5548 }
5549
5550 /* Copy private header information. */
5551
5552 bfd_boolean
5553 _bfd_elf_copy_private_header_data (bfd *ibfd, bfd *obfd)
5554 {
5555 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
5556 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
5557 return TRUE;
5558
5559 /* Copy over private BFD data if it has not already been copied.
5560 This must be done here, rather than in the copy_private_bfd_data
5561 entry point, because the latter is called after the section
5562 contents have been set, which means that the program headers have
5563 already been worked out. */
5564 if (elf_tdata (obfd)->segment_map == NULL && elf_tdata (ibfd)->phdr != NULL)
5565 {
5566 if (! copy_private_bfd_data (ibfd, obfd))
5567 return FALSE;
5568 }
5569
5570 return TRUE;
5571 }
5572
5573 /* Copy private symbol information. If this symbol is in a section
5574 which we did not map into a BFD section, try to map the section
5575 index correctly. We use special macro definitions for the mapped
5576 section indices; these definitions are interpreted by the
5577 swap_out_syms function. */
5578
5579 #define MAP_ONESYMTAB (SHN_HIOS + 1)
5580 #define MAP_DYNSYMTAB (SHN_HIOS + 2)
5581 #define MAP_STRTAB (SHN_HIOS + 3)
5582 #define MAP_SHSTRTAB (SHN_HIOS + 4)
5583 #define MAP_SYM_SHNDX (SHN_HIOS + 5)
5584
5585 bfd_boolean
5586 _bfd_elf_copy_private_symbol_data (bfd *ibfd,
5587 asymbol *isymarg,
5588 bfd *obfd,
5589 asymbol *osymarg)
5590 {
5591 elf_symbol_type *isym, *osym;
5592
5593 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
5594 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
5595 return TRUE;
5596
5597 isym = elf_symbol_from (ibfd, isymarg);
5598 osym = elf_symbol_from (obfd, osymarg);
5599
5600 if (isym != NULL
5601 && osym != NULL
5602 && bfd_is_abs_section (isym->symbol.section))
5603 {
5604 unsigned int shndx;
5605
5606 shndx = isym->internal_elf_sym.st_shndx;
5607 if (shndx == elf_onesymtab (ibfd))
5608 shndx = MAP_ONESYMTAB;
5609 else if (shndx == elf_dynsymtab (ibfd))
5610 shndx = MAP_DYNSYMTAB;
5611 else if (shndx == elf_tdata (ibfd)->strtab_section)
5612 shndx = MAP_STRTAB;
5613 else if (shndx == elf_tdata (ibfd)->shstrtab_section)
5614 shndx = MAP_SHSTRTAB;
5615 else if (shndx == elf_tdata (ibfd)->symtab_shndx_section)
5616 shndx = MAP_SYM_SHNDX;
5617 osym->internal_elf_sym.st_shndx = shndx;
5618 }
5619
5620 return TRUE;
5621 }
5622
5623 /* Swap out the symbols. */
5624
5625 static bfd_boolean
5626 swap_out_syms (bfd *abfd,
5627 struct bfd_strtab_hash **sttp,
5628 int relocatable_p)
5629 {
5630 const struct elf_backend_data *bed;
5631 int symcount;
5632 asymbol **syms;
5633 struct bfd_strtab_hash *stt;
5634 Elf_Internal_Shdr *symtab_hdr;
5635 Elf_Internal_Shdr *symtab_shndx_hdr;
5636 Elf_Internal_Shdr *symstrtab_hdr;
5637 bfd_byte *outbound_syms;
5638 bfd_byte *outbound_shndx;
5639 int idx;
5640 bfd_size_type amt;
5641 bfd_boolean name_local_sections;
5642
5643 if (!elf_map_symbols (abfd))
5644 return FALSE;
5645
5646 /* Dump out the symtabs. */
5647 stt = _bfd_elf_stringtab_init ();
5648 if (stt == NULL)
5649 return FALSE;
5650
5651 bed = get_elf_backend_data (abfd);
5652 symcount = bfd_get_symcount (abfd);
5653 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
5654 symtab_hdr->sh_type = SHT_SYMTAB;
5655 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
5656 symtab_hdr->sh_size = symtab_hdr->sh_entsize * (symcount + 1);
5657 symtab_hdr->sh_info = elf_num_locals (abfd) + 1;
5658 symtab_hdr->sh_addralign = 1 << bed->s->log_file_align;
5659
5660 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
5661 symstrtab_hdr->sh_type = SHT_STRTAB;
5662
5663 amt = (bfd_size_type) (1 + symcount) * bed->s->sizeof_sym;
5664 outbound_syms = bfd_alloc (abfd, amt);
5665 if (outbound_syms == NULL)
5666 {
5667 _bfd_stringtab_free (stt);
5668 return FALSE;
5669 }
5670 symtab_hdr->contents = outbound_syms;
5671
5672 outbound_shndx = NULL;
5673 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
5674 if (symtab_shndx_hdr->sh_name != 0)
5675 {
5676 amt = (bfd_size_type) (1 + symcount) * sizeof (Elf_External_Sym_Shndx);
5677 outbound_shndx = bfd_zalloc (abfd, amt);
5678 if (outbound_shndx == NULL)
5679 {
5680 _bfd_stringtab_free (stt);
5681 return FALSE;
5682 }
5683
5684 symtab_shndx_hdr->contents = outbound_shndx;
5685 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
5686 symtab_shndx_hdr->sh_size = amt;
5687 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
5688 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
5689 }
5690
5691 /* Now generate the data (for "contents"). */
5692 {
5693 /* Fill in zeroth symbol and swap it out. */
5694 Elf_Internal_Sym sym;
5695 sym.st_name = 0;
5696 sym.st_value = 0;
5697 sym.st_size = 0;
5698 sym.st_info = 0;
5699 sym.st_other = 0;
5700 sym.st_shndx = SHN_UNDEF;
5701 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
5702 outbound_syms += bed->s->sizeof_sym;
5703 if (outbound_shndx != NULL)
5704 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
5705 }
5706
5707 name_local_sections
5708 = (bed->elf_backend_name_local_section_symbols
5709 && bed->elf_backend_name_local_section_symbols (abfd));
5710
5711 syms = bfd_get_outsymbols (abfd);
5712 for (idx = 0; idx < symcount; idx++)
5713 {
5714 Elf_Internal_Sym sym;
5715 bfd_vma value = syms[idx]->value;
5716 elf_symbol_type *type_ptr;
5717 flagword flags = syms[idx]->flags;
5718 int type;
5719
5720 if (!name_local_sections
5721 && (flags & (BSF_SECTION_SYM | BSF_GLOBAL)) == BSF_SECTION_SYM)
5722 {
5723 /* Local section symbols have no name. */
5724 sym.st_name = 0;
5725 }
5726 else
5727 {
5728 sym.st_name = (unsigned long) _bfd_stringtab_add (stt,
5729 syms[idx]->name,
5730 TRUE, FALSE);
5731 if (sym.st_name == (unsigned long) -1)
5732 {
5733 _bfd_stringtab_free (stt);
5734 return FALSE;
5735 }
5736 }
5737
5738 type_ptr = elf_symbol_from (abfd, syms[idx]);
5739
5740 if ((flags & BSF_SECTION_SYM) == 0
5741 && bfd_is_com_section (syms[idx]->section))
5742 {
5743 /* ELF common symbols put the alignment into the `value' field,
5744 and the size into the `size' field. This is backwards from
5745 how BFD handles it, so reverse it here. */
5746 sym.st_size = value;
5747 if (type_ptr == NULL
5748 || type_ptr->internal_elf_sym.st_value == 0)
5749 sym.st_value = value >= 16 ? 16 : (1 << bfd_log2 (value));
5750 else
5751 sym.st_value = type_ptr->internal_elf_sym.st_value;
5752 sym.st_shndx = _bfd_elf_section_from_bfd_section
5753 (abfd, syms[idx]->section);
5754 }
5755 else
5756 {
5757 asection *sec = syms[idx]->section;
5758 int shndx;
5759
5760 if (sec->output_section)
5761 {
5762 value += sec->output_offset;
5763 sec = sec->output_section;
5764 }
5765
5766 /* Don't add in the section vma for relocatable output. */
5767 if (! relocatable_p)
5768 value += sec->vma;
5769 sym.st_value = value;
5770 sym.st_size = type_ptr ? type_ptr->internal_elf_sym.st_size : 0;
5771
5772 if (bfd_is_abs_section (sec)
5773 && type_ptr != NULL
5774 && type_ptr->internal_elf_sym.st_shndx != 0)
5775 {
5776 /* This symbol is in a real ELF section which we did
5777 not create as a BFD section. Undo the mapping done
5778 by copy_private_symbol_data. */
5779 shndx = type_ptr->internal_elf_sym.st_shndx;
5780 switch (shndx)
5781 {
5782 case MAP_ONESYMTAB:
5783 shndx = elf_onesymtab (abfd);
5784 break;
5785 case MAP_DYNSYMTAB:
5786 shndx = elf_dynsymtab (abfd);
5787 break;
5788 case MAP_STRTAB:
5789 shndx = elf_tdata (abfd)->strtab_section;
5790 break;
5791 case MAP_SHSTRTAB:
5792 shndx = elf_tdata (abfd)->shstrtab_section;
5793 break;
5794 case MAP_SYM_SHNDX:
5795 shndx = elf_tdata (abfd)->symtab_shndx_section;
5796 break;
5797 default:
5798 break;
5799 }
5800 }
5801 else
5802 {
5803 shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
5804
5805 if (shndx == -1)
5806 {
5807 asection *sec2;
5808
5809 /* Writing this would be a hell of a lot easier if
5810 we had some decent documentation on bfd, and
5811 knew what to expect of the library, and what to
5812 demand of applications. For example, it
5813 appears that `objcopy' might not set the
5814 section of a symbol to be a section that is
5815 actually in the output file. */
5816 sec2 = bfd_get_section_by_name (abfd, sec->name);
5817 if (sec2 == NULL)
5818 {
5819 _bfd_error_handler (_("\
5820 Unable to find equivalent output section for symbol '%s' from section '%s'"),
5821 syms[idx]->name ? syms[idx]->name : "<Local sym>",
5822 sec->name);
5823 bfd_set_error (bfd_error_invalid_operation);
5824 _bfd_stringtab_free (stt);
5825 return FALSE;
5826 }
5827
5828 shndx = _bfd_elf_section_from_bfd_section (abfd, sec2);
5829 BFD_ASSERT (shndx != -1);
5830 }
5831 }
5832
5833 sym.st_shndx = shndx;
5834 }
5835
5836 if ((flags & BSF_THREAD_LOCAL) != 0)
5837 type = STT_TLS;
5838 else if ((flags & BSF_FUNCTION) != 0)
5839 type = STT_FUNC;
5840 else if ((flags & BSF_OBJECT) != 0)
5841 type = STT_OBJECT;
5842 else
5843 type = STT_NOTYPE;
5844
5845 if (syms[idx]->section->flags & SEC_THREAD_LOCAL)
5846 type = STT_TLS;
5847
5848 /* Processor-specific types. */
5849 if (type_ptr != NULL
5850 && bed->elf_backend_get_symbol_type)
5851 type = ((*bed->elf_backend_get_symbol_type)
5852 (&type_ptr->internal_elf_sym, type));
5853
5854 if (flags & BSF_SECTION_SYM)
5855 {
5856 if (flags & BSF_GLOBAL)
5857 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
5858 else
5859 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
5860 }
5861 else if (bfd_is_com_section (syms[idx]->section))
5862 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
5863 else if (bfd_is_und_section (syms[idx]->section))
5864 sym.st_info = ELF_ST_INFO (((flags & BSF_WEAK)
5865 ? STB_WEAK
5866 : STB_GLOBAL),
5867 type);
5868 else if (flags & BSF_FILE)
5869 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
5870 else
5871 {
5872 int bind = STB_LOCAL;
5873
5874 if (flags & BSF_LOCAL)
5875 bind = STB_LOCAL;
5876 else if (flags & BSF_WEAK)
5877 bind = STB_WEAK;
5878 else if (flags & BSF_GLOBAL)
5879 bind = STB_GLOBAL;
5880
5881 sym.st_info = ELF_ST_INFO (bind, type);
5882 }
5883
5884 if (type_ptr != NULL)
5885 sym.st_other = type_ptr->internal_elf_sym.st_other;
5886 else
5887 sym.st_other = 0;
5888
5889 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
5890 outbound_syms += bed->s->sizeof_sym;
5891 if (outbound_shndx != NULL)
5892 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
5893 }
5894
5895 *sttp = stt;
5896 symstrtab_hdr->sh_size = _bfd_stringtab_size (stt);
5897 symstrtab_hdr->sh_type = SHT_STRTAB;
5898
5899 symstrtab_hdr->sh_flags = 0;
5900 symstrtab_hdr->sh_addr = 0;
5901 symstrtab_hdr->sh_entsize = 0;
5902 symstrtab_hdr->sh_link = 0;
5903 symstrtab_hdr->sh_info = 0;
5904 symstrtab_hdr->sh_addralign = 1;
5905
5906 return TRUE;
5907 }
5908
5909 /* Return the number of bytes required to hold the symtab vector.
5910
5911 Note that we base it on the count plus 1, since we will null terminate
5912 the vector allocated based on this size. However, the ELF symbol table
5913 always has a dummy entry as symbol #0, so it ends up even. */
5914
5915 long
5916 _bfd_elf_get_symtab_upper_bound (bfd *abfd)
5917 {
5918 long symcount;
5919 long symtab_size;
5920 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->symtab_hdr;
5921
5922 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
5923 symtab_size = (symcount + 1) * (sizeof (asymbol *));
5924 if (symcount > 0)
5925 symtab_size -= sizeof (asymbol *);
5926
5927 return symtab_size;
5928 }
5929
5930 long
5931 _bfd_elf_get_dynamic_symtab_upper_bound (bfd *abfd)
5932 {
5933 long symcount;
5934 long symtab_size;
5935 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->dynsymtab_hdr;
5936
5937 if (elf_dynsymtab (abfd) == 0)
5938 {
5939 bfd_set_error (bfd_error_invalid_operation);
5940 return -1;
5941 }
5942
5943 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
5944 symtab_size = (symcount + 1) * (sizeof (asymbol *));
5945 if (symcount > 0)
5946 symtab_size -= sizeof (asymbol *);
5947
5948 return symtab_size;
5949 }
5950
5951 long
5952 _bfd_elf_get_reloc_upper_bound (bfd *abfd ATTRIBUTE_UNUSED,
5953 sec_ptr asect)
5954 {
5955 return (asect->reloc_count + 1) * sizeof (arelent *);
5956 }
5957
5958 /* Canonicalize the relocs. */
5959
5960 long
5961 _bfd_elf_canonicalize_reloc (bfd *abfd,
5962 sec_ptr section,
5963 arelent **relptr,
5964 asymbol **symbols)
5965 {
5966 arelent *tblptr;
5967 unsigned int i;
5968 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5969
5970 if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE))
5971 return -1;
5972
5973 tblptr = section->relocation;
5974 for (i = 0; i < section->reloc_count; i++)
5975 *relptr++ = tblptr++;
5976
5977 *relptr = NULL;
5978
5979 return section->reloc_count;
5980 }
5981
5982 long
5983 _bfd_elf_canonicalize_symtab (bfd *abfd, asymbol **allocation)
5984 {
5985 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5986 long symcount = bed->s->slurp_symbol_table (abfd, allocation, FALSE);
5987
5988 if (symcount >= 0)
5989 bfd_get_symcount (abfd) = symcount;
5990 return symcount;
5991 }
5992
5993 long
5994 _bfd_elf_canonicalize_dynamic_symtab (bfd *abfd,
5995 asymbol **allocation)
5996 {
5997 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5998 long symcount = bed->s->slurp_symbol_table (abfd, allocation, TRUE);
5999
6000 if (symcount >= 0)
6001 bfd_get_dynamic_symcount (abfd) = symcount;
6002 return symcount;
6003 }
6004
6005 /* Return the size required for the dynamic reloc entries. Any loadable
6006 section that was actually installed in the BFD, and has type SHT_REL
6007 or SHT_RELA, and uses the dynamic symbol table, is considered to be a
6008 dynamic reloc section. */
6009
6010 long
6011 _bfd_elf_get_dynamic_reloc_upper_bound (bfd *abfd)
6012 {
6013 long ret;
6014 asection *s;
6015
6016 if (elf_dynsymtab (abfd) == 0)
6017 {
6018 bfd_set_error (bfd_error_invalid_operation);
6019 return -1;
6020 }
6021
6022 ret = sizeof (arelent *);
6023 for (s = abfd->sections; s != NULL; s = s->next)
6024 if ((s->flags & SEC_LOAD) != 0
6025 && elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
6026 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
6027 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
6028 ret += ((s->size / elf_section_data (s)->this_hdr.sh_entsize)
6029 * sizeof (arelent *));
6030
6031 return ret;
6032 }
6033
6034 /* Canonicalize the dynamic relocation entries. Note that we return the
6035 dynamic relocations as a single block, although they are actually
6036 associated with particular sections; the interface, which was
6037 designed for SunOS style shared libraries, expects that there is only
6038 one set of dynamic relocs. Any loadable section that was actually
6039 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses the
6040 dynamic symbol table, is considered to be a dynamic reloc section. */
6041
6042 long
6043 _bfd_elf_canonicalize_dynamic_reloc (bfd *abfd,
6044 arelent **storage,
6045 asymbol **syms)
6046 {
6047 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
6048 asection *s;
6049 long ret;
6050
6051 if (elf_dynsymtab (abfd) == 0)
6052 {
6053 bfd_set_error (bfd_error_invalid_operation);
6054 return -1;
6055 }
6056
6057 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
6058 ret = 0;
6059 for (s = abfd->sections; s != NULL; s = s->next)
6060 {
6061 if ((s->flags & SEC_LOAD) != 0
6062 && elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
6063 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
6064 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
6065 {
6066 arelent *p;
6067 long count, i;
6068
6069 if (! (*slurp_relocs) (abfd, s, syms, TRUE))
6070 return -1;
6071 count = s->size / elf_section_data (s)->this_hdr.sh_entsize;
6072 p = s->relocation;
6073 for (i = 0; i < count; i++)
6074 *storage++ = p++;
6075 ret += count;
6076 }
6077 }
6078
6079 *storage = NULL;
6080
6081 return ret;
6082 }
6083 \f
6084 /* Read in the version information. */
6085
6086 bfd_boolean
6087 _bfd_elf_slurp_version_tables (bfd *abfd, bfd_boolean default_imported_symver)
6088 {
6089 bfd_byte *contents = NULL;
6090 bfd_size_type amt;
6091 unsigned int freeidx = 0;
6092
6093 if (elf_dynverref (abfd) != 0)
6094 {
6095 Elf_Internal_Shdr *hdr;
6096 Elf_External_Verneed *everneed;
6097 Elf_Internal_Verneed *iverneed;
6098 unsigned int i;
6099
6100 hdr = &elf_tdata (abfd)->dynverref_hdr;
6101
6102 amt = (bfd_size_type) hdr->sh_info * sizeof (Elf_Internal_Verneed);
6103 elf_tdata (abfd)->verref = bfd_zalloc (abfd, amt);
6104 if (elf_tdata (abfd)->verref == NULL)
6105 goto error_return;
6106
6107 elf_tdata (abfd)->cverrefs = hdr->sh_info;
6108
6109 contents = bfd_malloc (hdr->sh_size);
6110 if (contents == NULL)
6111 goto error_return;
6112 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
6113 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
6114 goto error_return;
6115
6116 everneed = (Elf_External_Verneed *) contents;
6117 iverneed = elf_tdata (abfd)->verref;
6118 for (i = 0; i < hdr->sh_info; i++, iverneed++)
6119 {
6120 Elf_External_Vernaux *evernaux;
6121 Elf_Internal_Vernaux *ivernaux;
6122 unsigned int j;
6123
6124 _bfd_elf_swap_verneed_in (abfd, everneed, iverneed);
6125
6126 iverneed->vn_bfd = abfd;
6127
6128 iverneed->vn_filename =
6129 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
6130 iverneed->vn_file);
6131 if (iverneed->vn_filename == NULL)
6132 goto error_return;
6133
6134 amt = iverneed->vn_cnt;
6135 amt *= sizeof (Elf_Internal_Vernaux);
6136 iverneed->vn_auxptr = bfd_alloc (abfd, amt);
6137
6138 evernaux = ((Elf_External_Vernaux *)
6139 ((bfd_byte *) everneed + iverneed->vn_aux));
6140 ivernaux = iverneed->vn_auxptr;
6141 for (j = 0; j < iverneed->vn_cnt; j++, ivernaux++)
6142 {
6143 _bfd_elf_swap_vernaux_in (abfd, evernaux, ivernaux);
6144
6145 ivernaux->vna_nodename =
6146 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
6147 ivernaux->vna_name);
6148 if (ivernaux->vna_nodename == NULL)
6149 goto error_return;
6150
6151 if (j + 1 < iverneed->vn_cnt)
6152 ivernaux->vna_nextptr = ivernaux + 1;
6153 else
6154 ivernaux->vna_nextptr = NULL;
6155
6156 evernaux = ((Elf_External_Vernaux *)
6157 ((bfd_byte *) evernaux + ivernaux->vna_next));
6158
6159 if (ivernaux->vna_other > freeidx)
6160 freeidx = ivernaux->vna_other;
6161 }
6162
6163 if (i + 1 < hdr->sh_info)
6164 iverneed->vn_nextref = iverneed + 1;
6165 else
6166 iverneed->vn_nextref = NULL;
6167
6168 everneed = ((Elf_External_Verneed *)
6169 ((bfd_byte *) everneed + iverneed->vn_next));
6170 }
6171
6172 free (contents);
6173 contents = NULL;
6174 }
6175
6176 if (elf_dynverdef (abfd) != 0)
6177 {
6178 Elf_Internal_Shdr *hdr;
6179 Elf_External_Verdef *everdef;
6180 Elf_Internal_Verdef *iverdef;
6181 Elf_Internal_Verdef *iverdefarr;
6182 Elf_Internal_Verdef iverdefmem;
6183 unsigned int i;
6184 unsigned int maxidx;
6185
6186 hdr = &elf_tdata (abfd)->dynverdef_hdr;
6187
6188 contents = bfd_malloc (hdr->sh_size);
6189 if (contents == NULL)
6190 goto error_return;
6191 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
6192 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
6193 goto error_return;
6194
6195 /* We know the number of entries in the section but not the maximum
6196 index. Therefore we have to run through all entries and find
6197 the maximum. */
6198 everdef = (Elf_External_Verdef *) contents;
6199 maxidx = 0;
6200 for (i = 0; i < hdr->sh_info; ++i)
6201 {
6202 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
6203
6204 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) > maxidx)
6205 maxidx = iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION);
6206
6207 everdef = ((Elf_External_Verdef *)
6208 ((bfd_byte *) everdef + iverdefmem.vd_next));
6209 }
6210
6211 if (default_imported_symver)
6212 {
6213 if (freeidx > maxidx)
6214 maxidx = ++freeidx;
6215 else
6216 freeidx = ++maxidx;
6217 }
6218 amt = (bfd_size_type) maxidx * sizeof (Elf_Internal_Verdef);
6219 elf_tdata (abfd)->verdef = bfd_zalloc (abfd, amt);
6220 if (elf_tdata (abfd)->verdef == NULL)
6221 goto error_return;
6222
6223 elf_tdata (abfd)->cverdefs = maxidx;
6224
6225 everdef = (Elf_External_Verdef *) contents;
6226 iverdefarr = elf_tdata (abfd)->verdef;
6227 for (i = 0; i < hdr->sh_info; i++)
6228 {
6229 Elf_External_Verdaux *everdaux;
6230 Elf_Internal_Verdaux *iverdaux;
6231 unsigned int j;
6232
6233 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
6234
6235 iverdef = &iverdefarr[(iverdefmem.vd_ndx & VERSYM_VERSION) - 1];
6236 memcpy (iverdef, &iverdefmem, sizeof (Elf_Internal_Verdef));
6237
6238 iverdef->vd_bfd = abfd;
6239
6240 amt = (bfd_size_type) iverdef->vd_cnt * sizeof (Elf_Internal_Verdaux);
6241 iverdef->vd_auxptr = bfd_alloc (abfd, amt);
6242 if (iverdef->vd_auxptr == NULL)
6243 goto error_return;
6244
6245 everdaux = ((Elf_External_Verdaux *)
6246 ((bfd_byte *) everdef + iverdef->vd_aux));
6247 iverdaux = iverdef->vd_auxptr;
6248 for (j = 0; j < iverdef->vd_cnt; j++, iverdaux++)
6249 {
6250 _bfd_elf_swap_verdaux_in (abfd, everdaux, iverdaux);
6251
6252 iverdaux->vda_nodename =
6253 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
6254 iverdaux->vda_name);
6255 if (iverdaux->vda_nodename == NULL)
6256 goto error_return;
6257
6258 if (j + 1 < iverdef->vd_cnt)
6259 iverdaux->vda_nextptr = iverdaux + 1;
6260 else
6261 iverdaux->vda_nextptr = NULL;
6262
6263 everdaux = ((Elf_External_Verdaux *)
6264 ((bfd_byte *) everdaux + iverdaux->vda_next));
6265 }
6266
6267 iverdef->vd_nodename = iverdef->vd_auxptr->vda_nodename;
6268
6269 if (i + 1 < hdr->sh_info)
6270 iverdef->vd_nextdef = iverdef + 1;
6271 else
6272 iverdef->vd_nextdef = NULL;
6273
6274 everdef = ((Elf_External_Verdef *)
6275 ((bfd_byte *) everdef + iverdef->vd_next));
6276 }
6277
6278 free (contents);
6279 contents = NULL;
6280 }
6281 else if (default_imported_symver)
6282 {
6283 if (freeidx < 3)
6284 freeidx = 3;
6285 else
6286 freeidx++;
6287
6288 amt = (bfd_size_type) freeidx * sizeof (Elf_Internal_Verdef);
6289 elf_tdata (abfd)->verdef = bfd_zalloc (abfd, amt);
6290 if (elf_tdata (abfd)->verdef == NULL)
6291 goto error_return;
6292
6293 elf_tdata (abfd)->cverdefs = freeidx;
6294 }
6295
6296 /* Create a default version based on the soname. */
6297 if (default_imported_symver)
6298 {
6299 Elf_Internal_Verdef *iverdef;
6300 Elf_Internal_Verdaux *iverdaux;
6301
6302 iverdef = &elf_tdata (abfd)->verdef[freeidx - 1];;
6303
6304 iverdef->vd_version = VER_DEF_CURRENT;
6305 iverdef->vd_flags = 0;
6306 iverdef->vd_ndx = freeidx;
6307 iverdef->vd_cnt = 1;
6308
6309 iverdef->vd_bfd = abfd;
6310
6311 iverdef->vd_nodename = bfd_elf_get_dt_soname (abfd);
6312 if (iverdef->vd_nodename == NULL)
6313 goto error_return;
6314 iverdef->vd_nextdef = NULL;
6315 amt = (bfd_size_type) sizeof (Elf_Internal_Verdaux);
6316 iverdef->vd_auxptr = bfd_alloc (abfd, amt);
6317
6318 iverdaux = iverdef->vd_auxptr;
6319 iverdaux->vda_nodename = iverdef->vd_nodename;
6320 iverdaux->vda_nextptr = NULL;
6321 }
6322
6323 return TRUE;
6324
6325 error_return:
6326 if (contents != NULL)
6327 free (contents);
6328 return FALSE;
6329 }
6330 \f
6331 asymbol *
6332 _bfd_elf_make_empty_symbol (bfd *abfd)
6333 {
6334 elf_symbol_type *newsym;
6335 bfd_size_type amt = sizeof (elf_symbol_type);
6336
6337 newsym = bfd_zalloc (abfd, amt);
6338 if (!newsym)
6339 return NULL;
6340 else
6341 {
6342 newsym->symbol.the_bfd = abfd;
6343 return &newsym->symbol;
6344 }
6345 }
6346
6347 void
6348 _bfd_elf_get_symbol_info (bfd *abfd ATTRIBUTE_UNUSED,
6349 asymbol *symbol,
6350 symbol_info *ret)
6351 {
6352 bfd_symbol_info (symbol, ret);
6353 }
6354
6355 /* Return whether a symbol name implies a local symbol. Most targets
6356 use this function for the is_local_label_name entry point, but some
6357 override it. */
6358
6359 bfd_boolean
6360 _bfd_elf_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED,
6361 const char *name)
6362 {
6363 /* Normal local symbols start with ``.L''. */
6364 if (name[0] == '.' && name[1] == 'L')
6365 return TRUE;
6366
6367 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
6368 DWARF debugging symbols starting with ``..''. */
6369 if (name[0] == '.' && name[1] == '.')
6370 return TRUE;
6371
6372 /* gcc will sometimes generate symbols beginning with ``_.L_'' when
6373 emitting DWARF debugging output. I suspect this is actually a
6374 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
6375 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
6376 underscore to be emitted on some ELF targets). For ease of use,
6377 we treat such symbols as local. */
6378 if (name[0] == '_' && name[1] == '.' && name[2] == 'L' && name[3] == '_')
6379 return TRUE;
6380
6381 return FALSE;
6382 }
6383
6384 alent *
6385 _bfd_elf_get_lineno (bfd *abfd ATTRIBUTE_UNUSED,
6386 asymbol *symbol ATTRIBUTE_UNUSED)
6387 {
6388 abort ();
6389 return NULL;
6390 }
6391
6392 bfd_boolean
6393 _bfd_elf_set_arch_mach (bfd *abfd,
6394 enum bfd_architecture arch,
6395 unsigned long machine)
6396 {
6397 /* If this isn't the right architecture for this backend, and this
6398 isn't the generic backend, fail. */
6399 if (arch != get_elf_backend_data (abfd)->arch
6400 && arch != bfd_arch_unknown
6401 && get_elf_backend_data (abfd)->arch != bfd_arch_unknown)
6402 return FALSE;
6403
6404 return bfd_default_set_arch_mach (abfd, arch, machine);
6405 }
6406
6407 /* Find the function to a particular section and offset,
6408 for error reporting. */
6409
6410 static bfd_boolean
6411 elf_find_function (bfd *abfd ATTRIBUTE_UNUSED,
6412 asection *section,
6413 asymbol **symbols,
6414 bfd_vma offset,
6415 const char **filename_ptr,
6416 const char **functionname_ptr)
6417 {
6418 const char *filename;
6419 asymbol *func, *file;
6420 bfd_vma low_func;
6421 asymbol **p;
6422 /* ??? Given multiple file symbols, it is impossible to reliably
6423 choose the right file name for global symbols. File symbols are
6424 local symbols, and thus all file symbols must sort before any
6425 global symbols. The ELF spec may be interpreted to say that a
6426 file symbol must sort before other local symbols, but currently
6427 ld -r doesn't do this. So, for ld -r output, it is possible to
6428 make a better choice of file name for local symbols by ignoring
6429 file symbols appearing after a given local symbol. */
6430 enum { nothing_seen, symbol_seen, file_after_symbol_seen } state;
6431
6432 filename = NULL;
6433 func = NULL;
6434 file = NULL;
6435 low_func = 0;
6436 state = nothing_seen;
6437
6438 for (p = symbols; *p != NULL; p++)
6439 {
6440 elf_symbol_type *q;
6441
6442 q = (elf_symbol_type *) *p;
6443
6444 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
6445 {
6446 default:
6447 break;
6448 case STT_FILE:
6449 file = &q->symbol;
6450 if (state == symbol_seen)
6451 state = file_after_symbol_seen;
6452 continue;
6453 case STT_SECTION:
6454 continue;
6455 case STT_NOTYPE:
6456 case STT_FUNC:
6457 if (bfd_get_section (&q->symbol) == section
6458 && q->symbol.value >= low_func
6459 && q->symbol.value <= offset)
6460 {
6461 func = (asymbol *) q;
6462 low_func = q->symbol.value;
6463 if (file == NULL)
6464 filename = NULL;
6465 else if (ELF_ST_BIND (q->internal_elf_sym.st_info) != STB_LOCAL
6466 && state == file_after_symbol_seen)
6467 filename = NULL;
6468 else
6469 filename = bfd_asymbol_name (file);
6470 }
6471 break;
6472 }
6473 if (state == nothing_seen)
6474 state = symbol_seen;
6475 }
6476
6477 if (func == NULL)
6478 return FALSE;
6479
6480 if (filename_ptr)
6481 *filename_ptr = filename;
6482 if (functionname_ptr)
6483 *functionname_ptr = bfd_asymbol_name (func);
6484
6485 return TRUE;
6486 }
6487
6488 /* Find the nearest line to a particular section and offset,
6489 for error reporting. */
6490
6491 bfd_boolean
6492 _bfd_elf_find_nearest_line (bfd *abfd,
6493 asection *section,
6494 asymbol **symbols,
6495 bfd_vma offset,
6496 const char **filename_ptr,
6497 const char **functionname_ptr,
6498 unsigned int *line_ptr)
6499 {
6500 bfd_boolean found;
6501
6502 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
6503 filename_ptr, functionname_ptr,
6504 line_ptr))
6505 {
6506 if (!*functionname_ptr)
6507 elf_find_function (abfd, section, symbols, offset,
6508 *filename_ptr ? NULL : filename_ptr,
6509 functionname_ptr);
6510
6511 return TRUE;
6512 }
6513
6514 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
6515 filename_ptr, functionname_ptr,
6516 line_ptr, 0,
6517 &elf_tdata (abfd)->dwarf2_find_line_info))
6518 {
6519 if (!*functionname_ptr)
6520 elf_find_function (abfd, section, symbols, offset,
6521 *filename_ptr ? NULL : filename_ptr,
6522 functionname_ptr);
6523
6524 return TRUE;
6525 }
6526
6527 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
6528 &found, filename_ptr,
6529 functionname_ptr, line_ptr,
6530 &elf_tdata (abfd)->line_info))
6531 return FALSE;
6532 if (found && (*functionname_ptr || *line_ptr))
6533 return TRUE;
6534
6535 if (symbols == NULL)
6536 return FALSE;
6537
6538 if (! elf_find_function (abfd, section, symbols, offset,
6539 filename_ptr, functionname_ptr))
6540 return FALSE;
6541
6542 *line_ptr = 0;
6543 return TRUE;
6544 }
6545
6546 int
6547 _bfd_elf_sizeof_headers (bfd *abfd, bfd_boolean reloc)
6548 {
6549 int ret;
6550
6551 ret = get_elf_backend_data (abfd)->s->sizeof_ehdr;
6552 if (! reloc)
6553 ret += get_program_header_size (abfd);
6554 return ret;
6555 }
6556
6557 bfd_boolean
6558 _bfd_elf_set_section_contents (bfd *abfd,
6559 sec_ptr section,
6560 const void *location,
6561 file_ptr offset,
6562 bfd_size_type count)
6563 {
6564 Elf_Internal_Shdr *hdr;
6565 bfd_signed_vma pos;
6566
6567 if (! abfd->output_has_begun
6568 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
6569 return FALSE;
6570
6571 hdr = &elf_section_data (section)->this_hdr;
6572 pos = hdr->sh_offset + offset;
6573 if (bfd_seek (abfd, pos, SEEK_SET) != 0
6574 || bfd_bwrite (location, count, abfd) != count)
6575 return FALSE;
6576
6577 return TRUE;
6578 }
6579
6580 void
6581 _bfd_elf_no_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED,
6582 arelent *cache_ptr ATTRIBUTE_UNUSED,
6583 Elf_Internal_Rela *dst ATTRIBUTE_UNUSED)
6584 {
6585 abort ();
6586 }
6587
6588 /* Try to convert a non-ELF reloc into an ELF one. */
6589
6590 bfd_boolean
6591 _bfd_elf_validate_reloc (bfd *abfd, arelent *areloc)
6592 {
6593 /* Check whether we really have an ELF howto. */
6594
6595 if ((*areloc->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec)
6596 {
6597 bfd_reloc_code_real_type code;
6598 reloc_howto_type *howto;
6599
6600 /* Alien reloc: Try to determine its type to replace it with an
6601 equivalent ELF reloc. */
6602
6603 if (areloc->howto->pc_relative)
6604 {
6605 switch (areloc->howto->bitsize)
6606 {
6607 case 8:
6608 code = BFD_RELOC_8_PCREL;
6609 break;
6610 case 12:
6611 code = BFD_RELOC_12_PCREL;
6612 break;
6613 case 16:
6614 code = BFD_RELOC_16_PCREL;
6615 break;
6616 case 24:
6617 code = BFD_RELOC_24_PCREL;
6618 break;
6619 case 32:
6620 code = BFD_RELOC_32_PCREL;
6621 break;
6622 case 64:
6623 code = BFD_RELOC_64_PCREL;
6624 break;
6625 default:
6626 goto fail;
6627 }
6628
6629 howto = bfd_reloc_type_lookup (abfd, code);
6630
6631 if (areloc->howto->pcrel_offset != howto->pcrel_offset)
6632 {
6633 if (howto->pcrel_offset)
6634 areloc->addend += areloc->address;
6635 else
6636 areloc->addend -= areloc->address; /* addend is unsigned!! */
6637 }
6638 }
6639 else
6640 {
6641 switch (areloc->howto->bitsize)
6642 {
6643 case 8:
6644 code = BFD_RELOC_8;
6645 break;
6646 case 14:
6647 code = BFD_RELOC_14;
6648 break;
6649 case 16:
6650 code = BFD_RELOC_16;
6651 break;
6652 case 26:
6653 code = BFD_RELOC_26;
6654 break;
6655 case 32:
6656 code = BFD_RELOC_32;
6657 break;
6658 case 64:
6659 code = BFD_RELOC_64;
6660 break;
6661 default:
6662 goto fail;
6663 }
6664
6665 howto = bfd_reloc_type_lookup (abfd, code);
6666 }
6667
6668 if (howto)
6669 areloc->howto = howto;
6670 else
6671 goto fail;
6672 }
6673
6674 return TRUE;
6675
6676 fail:
6677 (*_bfd_error_handler)
6678 (_("%B: unsupported relocation type %s"),
6679 abfd, areloc->howto->name);
6680 bfd_set_error (bfd_error_bad_value);
6681 return FALSE;
6682 }
6683
6684 bfd_boolean
6685 _bfd_elf_close_and_cleanup (bfd *abfd)
6686 {
6687 if (bfd_get_format (abfd) == bfd_object)
6688 {
6689 if (elf_shstrtab (abfd) != NULL)
6690 _bfd_elf_strtab_free (elf_shstrtab (abfd));
6691 }
6692
6693 return _bfd_generic_close_and_cleanup (abfd);
6694 }
6695
6696 /* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
6697 in the relocation's offset. Thus we cannot allow any sort of sanity
6698 range-checking to interfere. There is nothing else to do in processing
6699 this reloc. */
6700
6701 bfd_reloc_status_type
6702 _bfd_elf_rel_vtable_reloc_fn
6703 (bfd *abfd ATTRIBUTE_UNUSED, arelent *re ATTRIBUTE_UNUSED,
6704 struct bfd_symbol *symbol ATTRIBUTE_UNUSED,
6705 void *data ATTRIBUTE_UNUSED, asection *is ATTRIBUTE_UNUSED,
6706 bfd *obfd ATTRIBUTE_UNUSED, char **errmsg ATTRIBUTE_UNUSED)
6707 {
6708 return bfd_reloc_ok;
6709 }
6710 \f
6711 /* Elf core file support. Much of this only works on native
6712 toolchains, since we rely on knowing the
6713 machine-dependent procfs structure in order to pick
6714 out details about the corefile. */
6715
6716 #ifdef HAVE_SYS_PROCFS_H
6717 # include <sys/procfs.h>
6718 #endif
6719
6720 /* FIXME: this is kinda wrong, but it's what gdb wants. */
6721
6722 static int
6723 elfcore_make_pid (bfd *abfd)
6724 {
6725 return ((elf_tdata (abfd)->core_lwpid << 16)
6726 + (elf_tdata (abfd)->core_pid));
6727 }
6728
6729 /* If there isn't a section called NAME, make one, using
6730 data from SECT. Note, this function will generate a
6731 reference to NAME, so you shouldn't deallocate or
6732 overwrite it. */
6733
6734 static bfd_boolean
6735 elfcore_maybe_make_sect (bfd *abfd, char *name, asection *sect)
6736 {
6737 asection *sect2;
6738
6739 if (bfd_get_section_by_name (abfd, name) != NULL)
6740 return TRUE;
6741
6742 sect2 = bfd_make_section (abfd, name);
6743 if (sect2 == NULL)
6744 return FALSE;
6745
6746 sect2->size = sect->size;
6747 sect2->filepos = sect->filepos;
6748 sect2->flags = sect->flags;
6749 sect2->alignment_power = sect->alignment_power;
6750 return TRUE;
6751 }
6752
6753 /* Create a pseudosection containing SIZE bytes at FILEPOS. This
6754 actually creates up to two pseudosections:
6755 - For the single-threaded case, a section named NAME, unless
6756 such a section already exists.
6757 - For the multi-threaded case, a section named "NAME/PID", where
6758 PID is elfcore_make_pid (abfd).
6759 Both pseudosections have identical contents. */
6760 bfd_boolean
6761 _bfd_elfcore_make_pseudosection (bfd *abfd,
6762 char *name,
6763 size_t size,
6764 ufile_ptr filepos)
6765 {
6766 char buf[100];
6767 char *threaded_name;
6768 size_t len;
6769 asection *sect;
6770
6771 /* Build the section name. */
6772
6773 sprintf (buf, "%s/%d", name, elfcore_make_pid (abfd));
6774 len = strlen (buf) + 1;
6775 threaded_name = bfd_alloc (abfd, len);
6776 if (threaded_name == NULL)
6777 return FALSE;
6778 memcpy (threaded_name, buf, len);
6779
6780 sect = bfd_make_section_anyway (abfd, threaded_name);
6781 if (sect == NULL)
6782 return FALSE;
6783 sect->size = size;
6784 sect->filepos = filepos;
6785 sect->flags = SEC_HAS_CONTENTS;
6786 sect->alignment_power = 2;
6787
6788 return elfcore_maybe_make_sect (abfd, name, sect);
6789 }
6790
6791 /* prstatus_t exists on:
6792 solaris 2.5+
6793 linux 2.[01] + glibc
6794 unixware 4.2
6795 */
6796
6797 #if defined (HAVE_PRSTATUS_T)
6798
6799 static bfd_boolean
6800 elfcore_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
6801 {
6802 size_t size;
6803 int offset;
6804
6805 if (note->descsz == sizeof (prstatus_t))
6806 {
6807 prstatus_t prstat;
6808
6809 size = sizeof (prstat.pr_reg);
6810 offset = offsetof (prstatus_t, pr_reg);
6811 memcpy (&prstat, note->descdata, sizeof (prstat));
6812
6813 /* Do not overwrite the core signal if it
6814 has already been set by another thread. */
6815 if (elf_tdata (abfd)->core_signal == 0)
6816 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
6817 elf_tdata (abfd)->core_pid = prstat.pr_pid;
6818
6819 /* pr_who exists on:
6820 solaris 2.5+
6821 unixware 4.2
6822 pr_who doesn't exist on:
6823 linux 2.[01]
6824 */
6825 #if defined (HAVE_PRSTATUS_T_PR_WHO)
6826 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
6827 #endif
6828 }
6829 #if defined (HAVE_PRSTATUS32_T)
6830 else if (note->descsz == sizeof (prstatus32_t))
6831 {
6832 /* 64-bit host, 32-bit corefile */
6833 prstatus32_t prstat;
6834
6835 size = sizeof (prstat.pr_reg);
6836 offset = offsetof (prstatus32_t, pr_reg);
6837 memcpy (&prstat, note->descdata, sizeof (prstat));
6838
6839 /* Do not overwrite the core signal if it
6840 has already been set by another thread. */
6841 if (elf_tdata (abfd)->core_signal == 0)
6842 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
6843 elf_tdata (abfd)->core_pid = prstat.pr_pid;
6844
6845 /* pr_who exists on:
6846 solaris 2.5+
6847 unixware 4.2
6848 pr_who doesn't exist on:
6849 linux 2.[01]
6850 */
6851 #if defined (HAVE_PRSTATUS32_T_PR_WHO)
6852 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
6853 #endif
6854 }
6855 #endif /* HAVE_PRSTATUS32_T */
6856 else
6857 {
6858 /* Fail - we don't know how to handle any other
6859 note size (ie. data object type). */
6860 return TRUE;
6861 }
6862
6863 /* Make a ".reg/999" section and a ".reg" section. */
6864 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
6865 size, note->descpos + offset);
6866 }
6867 #endif /* defined (HAVE_PRSTATUS_T) */
6868
6869 /* Create a pseudosection containing the exact contents of NOTE. */
6870 static bfd_boolean
6871 elfcore_make_note_pseudosection (bfd *abfd,
6872 char *name,
6873 Elf_Internal_Note *note)
6874 {
6875 return _bfd_elfcore_make_pseudosection (abfd, name,
6876 note->descsz, note->descpos);
6877 }
6878
6879 /* There isn't a consistent prfpregset_t across platforms,
6880 but it doesn't matter, because we don't have to pick this
6881 data structure apart. */
6882
6883 static bfd_boolean
6884 elfcore_grok_prfpreg (bfd *abfd, Elf_Internal_Note *note)
6885 {
6886 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
6887 }
6888
6889 /* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
6890 type of 5 (NT_PRXFPREG). Just include the whole note's contents
6891 literally. */
6892
6893 static bfd_boolean
6894 elfcore_grok_prxfpreg (bfd *abfd, Elf_Internal_Note *note)
6895 {
6896 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
6897 }
6898
6899 #if defined (HAVE_PRPSINFO_T)
6900 typedef prpsinfo_t elfcore_psinfo_t;
6901 #if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
6902 typedef prpsinfo32_t elfcore_psinfo32_t;
6903 #endif
6904 #endif
6905
6906 #if defined (HAVE_PSINFO_T)
6907 typedef psinfo_t elfcore_psinfo_t;
6908 #if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
6909 typedef psinfo32_t elfcore_psinfo32_t;
6910 #endif
6911 #endif
6912
6913 /* return a malloc'ed copy of a string at START which is at
6914 most MAX bytes long, possibly without a terminating '\0'.
6915 the copy will always have a terminating '\0'. */
6916
6917 char *
6918 _bfd_elfcore_strndup (bfd *abfd, char *start, size_t max)
6919 {
6920 char *dups;
6921 char *end = memchr (start, '\0', max);
6922 size_t len;
6923
6924 if (end == NULL)
6925 len = max;
6926 else
6927 len = end - start;
6928
6929 dups = bfd_alloc (abfd, len + 1);
6930 if (dups == NULL)
6931 return NULL;
6932
6933 memcpy (dups, start, len);
6934 dups[len] = '\0';
6935
6936 return dups;
6937 }
6938
6939 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
6940 static bfd_boolean
6941 elfcore_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
6942 {
6943 if (note->descsz == sizeof (elfcore_psinfo_t))
6944 {
6945 elfcore_psinfo_t psinfo;
6946
6947 memcpy (&psinfo, note->descdata, sizeof (psinfo));
6948
6949 elf_tdata (abfd)->core_program
6950 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
6951 sizeof (psinfo.pr_fname));
6952
6953 elf_tdata (abfd)->core_command
6954 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
6955 sizeof (psinfo.pr_psargs));
6956 }
6957 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
6958 else if (note->descsz == sizeof (elfcore_psinfo32_t))
6959 {
6960 /* 64-bit host, 32-bit corefile */
6961 elfcore_psinfo32_t psinfo;
6962
6963 memcpy (&psinfo, note->descdata, sizeof (psinfo));
6964
6965 elf_tdata (abfd)->core_program
6966 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
6967 sizeof (psinfo.pr_fname));
6968
6969 elf_tdata (abfd)->core_command
6970 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
6971 sizeof (psinfo.pr_psargs));
6972 }
6973 #endif
6974
6975 else
6976 {
6977 /* Fail - we don't know how to handle any other
6978 note size (ie. data object type). */
6979 return TRUE;
6980 }
6981
6982 /* Note that for some reason, a spurious space is tacked
6983 onto the end of the args in some (at least one anyway)
6984 implementations, so strip it off if it exists. */
6985
6986 {
6987 char *command = elf_tdata (abfd)->core_command;
6988 int n = strlen (command);
6989
6990 if (0 < n && command[n - 1] == ' ')
6991 command[n - 1] = '\0';
6992 }
6993
6994 return TRUE;
6995 }
6996 #endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
6997
6998 #if defined (HAVE_PSTATUS_T)
6999 static bfd_boolean
7000 elfcore_grok_pstatus (bfd *abfd, Elf_Internal_Note *note)
7001 {
7002 if (note->descsz == sizeof (pstatus_t)
7003 #if defined (HAVE_PXSTATUS_T)
7004 || note->descsz == sizeof (pxstatus_t)
7005 #endif
7006 )
7007 {
7008 pstatus_t pstat;
7009
7010 memcpy (&pstat, note->descdata, sizeof (pstat));
7011
7012 elf_tdata (abfd)->core_pid = pstat.pr_pid;
7013 }
7014 #if defined (HAVE_PSTATUS32_T)
7015 else if (note->descsz == sizeof (pstatus32_t))
7016 {
7017 /* 64-bit host, 32-bit corefile */
7018 pstatus32_t pstat;
7019
7020 memcpy (&pstat, note->descdata, sizeof (pstat));
7021
7022 elf_tdata (abfd)->core_pid = pstat.pr_pid;
7023 }
7024 #endif
7025 /* Could grab some more details from the "representative"
7026 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
7027 NT_LWPSTATUS note, presumably. */
7028
7029 return TRUE;
7030 }
7031 #endif /* defined (HAVE_PSTATUS_T) */
7032
7033 #if defined (HAVE_LWPSTATUS_T)
7034 static bfd_boolean
7035 elfcore_grok_lwpstatus (bfd *abfd, Elf_Internal_Note *note)
7036 {
7037 lwpstatus_t lwpstat;
7038 char buf[100];
7039 char *name;
7040 size_t len;
7041 asection *sect;
7042
7043 if (note->descsz != sizeof (lwpstat)
7044 #if defined (HAVE_LWPXSTATUS_T)
7045 && note->descsz != sizeof (lwpxstatus_t)
7046 #endif
7047 )
7048 return TRUE;
7049
7050 memcpy (&lwpstat, note->descdata, sizeof (lwpstat));
7051
7052 elf_tdata (abfd)->core_lwpid = lwpstat.pr_lwpid;
7053 elf_tdata (abfd)->core_signal = lwpstat.pr_cursig;
7054
7055 /* Make a ".reg/999" section. */
7056
7057 sprintf (buf, ".reg/%d", elfcore_make_pid (abfd));
7058 len = strlen (buf) + 1;
7059 name = bfd_alloc (abfd, len);
7060 if (name == NULL)
7061 return FALSE;
7062 memcpy (name, buf, len);
7063
7064 sect = bfd_make_section_anyway (abfd, name);
7065 if (sect == NULL)
7066 return FALSE;
7067
7068 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7069 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.gregs);
7070 sect->filepos = note->descpos
7071 + offsetof (lwpstatus_t, pr_context.uc_mcontext.gregs);
7072 #endif
7073
7074 #if defined (HAVE_LWPSTATUS_T_PR_REG)
7075 sect->size = sizeof (lwpstat.pr_reg);
7076 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_reg);
7077 #endif
7078
7079 sect->flags = SEC_HAS_CONTENTS;
7080 sect->alignment_power = 2;
7081
7082 if (!elfcore_maybe_make_sect (abfd, ".reg", sect))
7083 return FALSE;
7084
7085 /* Make a ".reg2/999" section */
7086
7087 sprintf (buf, ".reg2/%d", elfcore_make_pid (abfd));
7088 len = strlen (buf) + 1;
7089 name = bfd_alloc (abfd, len);
7090 if (name == NULL)
7091 return FALSE;
7092 memcpy (name, buf, len);
7093
7094 sect = bfd_make_section_anyway (abfd, name);
7095 if (sect == NULL)
7096 return FALSE;
7097
7098 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7099 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.fpregs);
7100 sect->filepos = note->descpos
7101 + offsetof (lwpstatus_t, pr_context.uc_mcontext.fpregs);
7102 #endif
7103
7104 #if defined (HAVE_LWPSTATUS_T_PR_FPREG)
7105 sect->size = sizeof (lwpstat.pr_fpreg);
7106 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_fpreg);
7107 #endif
7108
7109 sect->flags = SEC_HAS_CONTENTS;
7110 sect->alignment_power = 2;
7111
7112 return elfcore_maybe_make_sect (abfd, ".reg2", sect);
7113 }
7114 #endif /* defined (HAVE_LWPSTATUS_T) */
7115
7116 #if defined (HAVE_WIN32_PSTATUS_T)
7117 static bfd_boolean
7118 elfcore_grok_win32pstatus (bfd *abfd, Elf_Internal_Note *note)
7119 {
7120 char buf[30];
7121 char *name;
7122 size_t len;
7123 asection *sect;
7124 win32_pstatus_t pstatus;
7125
7126 if (note->descsz < sizeof (pstatus))
7127 return TRUE;
7128
7129 memcpy (&pstatus, note->descdata, sizeof (pstatus));
7130
7131 switch (pstatus.data_type)
7132 {
7133 case NOTE_INFO_PROCESS:
7134 /* FIXME: need to add ->core_command. */
7135 elf_tdata (abfd)->core_signal = pstatus.data.process_info.signal;
7136 elf_tdata (abfd)->core_pid = pstatus.data.process_info.pid;
7137 break;
7138
7139 case NOTE_INFO_THREAD:
7140 /* Make a ".reg/999" section. */
7141 sprintf (buf, ".reg/%ld", (long) pstatus.data.thread_info.tid);
7142
7143 len = strlen (buf) + 1;
7144 name = bfd_alloc (abfd, len);
7145 if (name == NULL)
7146 return FALSE;
7147
7148 memcpy (name, buf, len);
7149
7150 sect = bfd_make_section_anyway (abfd, name);
7151 if (sect == NULL)
7152 return FALSE;
7153
7154 sect->size = sizeof (pstatus.data.thread_info.thread_context);
7155 sect->filepos = (note->descpos
7156 + offsetof (struct win32_pstatus,
7157 data.thread_info.thread_context));
7158 sect->flags = SEC_HAS_CONTENTS;
7159 sect->alignment_power = 2;
7160
7161 if (pstatus.data.thread_info.is_active_thread)
7162 if (! elfcore_maybe_make_sect (abfd, ".reg", sect))
7163 return FALSE;
7164 break;
7165
7166 case NOTE_INFO_MODULE:
7167 /* Make a ".module/xxxxxxxx" section. */
7168 sprintf (buf, ".module/%08lx",
7169 (long) pstatus.data.module_info.base_address);
7170
7171 len = strlen (buf) + 1;
7172 name = bfd_alloc (abfd, len);
7173 if (name == NULL)
7174 return FALSE;
7175
7176 memcpy (name, buf, len);
7177
7178 sect = bfd_make_section_anyway (abfd, name);
7179
7180 if (sect == NULL)
7181 return FALSE;
7182
7183 sect->size = note->descsz;
7184 sect->filepos = note->descpos;
7185 sect->flags = SEC_HAS_CONTENTS;
7186 sect->alignment_power = 2;
7187 break;
7188
7189 default:
7190 return TRUE;
7191 }
7192
7193 return TRUE;
7194 }
7195 #endif /* HAVE_WIN32_PSTATUS_T */
7196
7197 static bfd_boolean
7198 elfcore_grok_note (bfd *abfd, Elf_Internal_Note *note)
7199 {
7200 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7201
7202 switch (note->type)
7203 {
7204 default:
7205 return TRUE;
7206
7207 case NT_PRSTATUS:
7208 if (bed->elf_backend_grok_prstatus)
7209 if ((*bed->elf_backend_grok_prstatus) (abfd, note))
7210 return TRUE;
7211 #if defined (HAVE_PRSTATUS_T)
7212 return elfcore_grok_prstatus (abfd, note);
7213 #else
7214 return TRUE;
7215 #endif
7216
7217 #if defined (HAVE_PSTATUS_T)
7218 case NT_PSTATUS:
7219 return elfcore_grok_pstatus (abfd, note);
7220 #endif
7221
7222 #if defined (HAVE_LWPSTATUS_T)
7223 case NT_LWPSTATUS:
7224 return elfcore_grok_lwpstatus (abfd, note);
7225 #endif
7226
7227 case NT_FPREGSET: /* FIXME: rename to NT_PRFPREG */
7228 return elfcore_grok_prfpreg (abfd, note);
7229
7230 #if defined (HAVE_WIN32_PSTATUS_T)
7231 case NT_WIN32PSTATUS:
7232 return elfcore_grok_win32pstatus (abfd, note);
7233 #endif
7234
7235 case NT_PRXFPREG: /* Linux SSE extension */
7236 if (note->namesz == 6
7237 && strcmp (note->namedata, "LINUX") == 0)
7238 return elfcore_grok_prxfpreg (abfd, note);
7239 else
7240 return TRUE;
7241
7242 case NT_PRPSINFO:
7243 case NT_PSINFO:
7244 if (bed->elf_backend_grok_psinfo)
7245 if ((*bed->elf_backend_grok_psinfo) (abfd, note))
7246 return TRUE;
7247 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7248 return elfcore_grok_psinfo (abfd, note);
7249 #else
7250 return TRUE;
7251 #endif
7252
7253 case NT_AUXV:
7254 {
7255 asection *sect = bfd_make_section_anyway (abfd, ".auxv");
7256
7257 if (sect == NULL)
7258 return FALSE;
7259 sect->size = note->descsz;
7260 sect->filepos = note->descpos;
7261 sect->flags = SEC_HAS_CONTENTS;
7262 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
7263
7264 return TRUE;
7265 }
7266 }
7267 }
7268
7269 static bfd_boolean
7270 elfcore_netbsd_get_lwpid (Elf_Internal_Note *note, int *lwpidp)
7271 {
7272 char *cp;
7273
7274 cp = strchr (note->namedata, '@');
7275 if (cp != NULL)
7276 {
7277 *lwpidp = atoi(cp + 1);
7278 return TRUE;
7279 }
7280 return FALSE;
7281 }
7282
7283 static bfd_boolean
7284 elfcore_grok_netbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
7285 {
7286
7287 /* Signal number at offset 0x08. */
7288 elf_tdata (abfd)->core_signal
7289 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
7290
7291 /* Process ID at offset 0x50. */
7292 elf_tdata (abfd)->core_pid
7293 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x50);
7294
7295 /* Command name at 0x7c (max 32 bytes, including nul). */
7296 elf_tdata (abfd)->core_command
7297 = _bfd_elfcore_strndup (abfd, note->descdata + 0x7c, 31);
7298
7299 return elfcore_make_note_pseudosection (abfd, ".note.netbsdcore.procinfo",
7300 note);
7301 }
7302
7303 static bfd_boolean
7304 elfcore_grok_netbsd_note (bfd *abfd, Elf_Internal_Note *note)
7305 {
7306 int lwp;
7307
7308 if (elfcore_netbsd_get_lwpid (note, &lwp))
7309 elf_tdata (abfd)->core_lwpid = lwp;
7310
7311 if (note->type == NT_NETBSDCORE_PROCINFO)
7312 {
7313 /* NetBSD-specific core "procinfo". Note that we expect to
7314 find this note before any of the others, which is fine,
7315 since the kernel writes this note out first when it
7316 creates a core file. */
7317
7318 return elfcore_grok_netbsd_procinfo (abfd, note);
7319 }
7320
7321 /* As of Jan 2002 there are no other machine-independent notes
7322 defined for NetBSD core files. If the note type is less
7323 than the start of the machine-dependent note types, we don't
7324 understand it. */
7325
7326 if (note->type < NT_NETBSDCORE_FIRSTMACH)
7327 return TRUE;
7328
7329
7330 switch (bfd_get_arch (abfd))
7331 {
7332 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
7333 PT_GETFPREGS == mach+2. */
7334
7335 case bfd_arch_alpha:
7336 case bfd_arch_sparc:
7337 switch (note->type)
7338 {
7339 case NT_NETBSDCORE_FIRSTMACH+0:
7340 return elfcore_make_note_pseudosection (abfd, ".reg", note);
7341
7342 case NT_NETBSDCORE_FIRSTMACH+2:
7343 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
7344
7345 default:
7346 return TRUE;
7347 }
7348
7349 /* On all other arch's, PT_GETREGS == mach+1 and
7350 PT_GETFPREGS == mach+3. */
7351
7352 default:
7353 switch (note->type)
7354 {
7355 case NT_NETBSDCORE_FIRSTMACH+1:
7356 return elfcore_make_note_pseudosection (abfd, ".reg", note);
7357
7358 case NT_NETBSDCORE_FIRSTMACH+3:
7359 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
7360
7361 default:
7362 return TRUE;
7363 }
7364 }
7365 /* NOTREACHED */
7366 }
7367
7368 static bfd_boolean
7369 elfcore_grok_nto_status (bfd *abfd, Elf_Internal_Note *note, pid_t *tid)
7370 {
7371 void *ddata = note->descdata;
7372 char buf[100];
7373 char *name;
7374 asection *sect;
7375 short sig;
7376 unsigned flags;
7377
7378 /* nto_procfs_status 'pid' field is at offset 0. */
7379 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, (bfd_byte *) ddata);
7380
7381 /* nto_procfs_status 'tid' field is at offset 4. Pass it back. */
7382 *tid = bfd_get_32 (abfd, (bfd_byte *) ddata + 4);
7383
7384 /* nto_procfs_status 'flags' field is at offset 8. */
7385 flags = bfd_get_32 (abfd, (bfd_byte *) ddata + 8);
7386
7387 /* nto_procfs_status 'what' field is at offset 14. */
7388 if ((sig = bfd_get_16 (abfd, (bfd_byte *) ddata + 14)) > 0)
7389 {
7390 elf_tdata (abfd)->core_signal = sig;
7391 elf_tdata (abfd)->core_lwpid = *tid;
7392 }
7393
7394 /* _DEBUG_FLAG_CURTID (current thread) is 0x80. Some cores
7395 do not come from signals so we make sure we set the current
7396 thread just in case. */
7397 if (flags & 0x00000080)
7398 elf_tdata (abfd)->core_lwpid = *tid;
7399
7400 /* Make a ".qnx_core_status/%d" section. */
7401 sprintf (buf, ".qnx_core_status/%ld", (long) *tid);
7402
7403 name = bfd_alloc (abfd, strlen (buf) + 1);
7404 if (name == NULL)
7405 return FALSE;
7406 strcpy (name, buf);
7407
7408 sect = bfd_make_section_anyway (abfd, name);
7409 if (sect == NULL)
7410 return FALSE;
7411
7412 sect->size = note->descsz;
7413 sect->filepos = note->descpos;
7414 sect->flags = SEC_HAS_CONTENTS;
7415 sect->alignment_power = 2;
7416
7417 return (elfcore_maybe_make_sect (abfd, ".qnx_core_status", sect));
7418 }
7419
7420 static bfd_boolean
7421 elfcore_grok_nto_regs (bfd *abfd,
7422 Elf_Internal_Note *note,
7423 pid_t tid,
7424 char *base)
7425 {
7426 char buf[100];
7427 char *name;
7428 asection *sect;
7429
7430 /* Make a "(base)/%d" section. */
7431 sprintf (buf, "%s/%ld", base, (long) tid);
7432
7433 name = bfd_alloc (abfd, strlen (buf) + 1);
7434 if (name == NULL)
7435 return FALSE;
7436 strcpy (name, buf);
7437
7438 sect = bfd_make_section_anyway (abfd, name);
7439 if (sect == NULL)
7440 return FALSE;
7441
7442 sect->size = note->descsz;
7443 sect->filepos = note->descpos;
7444 sect->flags = SEC_HAS_CONTENTS;
7445 sect->alignment_power = 2;
7446
7447 /* This is the current thread. */
7448 if (elf_tdata (abfd)->core_lwpid == tid)
7449 return elfcore_maybe_make_sect (abfd, base, sect);
7450
7451 return TRUE;
7452 }
7453
7454 #define BFD_QNT_CORE_INFO 7
7455 #define BFD_QNT_CORE_STATUS 8
7456 #define BFD_QNT_CORE_GREG 9
7457 #define BFD_QNT_CORE_FPREG 10
7458
7459 static bfd_boolean
7460 elfcore_grok_nto_note (bfd *abfd, Elf_Internal_Note *note)
7461 {
7462 /* Every GREG section has a STATUS section before it. Store the
7463 tid from the previous call to pass down to the next gregs
7464 function. */
7465 static pid_t tid = 1;
7466
7467 switch (note->type)
7468 {
7469 case BFD_QNT_CORE_INFO:
7470 return elfcore_make_note_pseudosection (abfd, ".qnx_core_info", note);
7471 case BFD_QNT_CORE_STATUS:
7472 return elfcore_grok_nto_status (abfd, note, &tid);
7473 case BFD_QNT_CORE_GREG:
7474 return elfcore_grok_nto_regs (abfd, note, tid, ".reg");
7475 case BFD_QNT_CORE_FPREG:
7476 return elfcore_grok_nto_regs (abfd, note, tid, ".reg2");
7477 default:
7478 return TRUE;
7479 }
7480 }
7481
7482 /* Function: elfcore_write_note
7483
7484 Inputs:
7485 buffer to hold note
7486 name of note
7487 type of note
7488 data for note
7489 size of data for note
7490
7491 Return:
7492 End of buffer containing note. */
7493
7494 char *
7495 elfcore_write_note (bfd *abfd,
7496 char *buf,
7497 int *bufsiz,
7498 const char *name,
7499 int type,
7500 const void *input,
7501 int size)
7502 {
7503 Elf_External_Note *xnp;
7504 size_t namesz;
7505 size_t pad;
7506 size_t newspace;
7507 char *p, *dest;
7508
7509 namesz = 0;
7510 pad = 0;
7511 if (name != NULL)
7512 {
7513 const struct elf_backend_data *bed;
7514
7515 namesz = strlen (name) + 1;
7516 bed = get_elf_backend_data (abfd);
7517 pad = -namesz & ((1 << bed->s->log_file_align) - 1);
7518 }
7519
7520 newspace = 12 + namesz + pad + size;
7521
7522 p = realloc (buf, *bufsiz + newspace);
7523 dest = p + *bufsiz;
7524 *bufsiz += newspace;
7525 xnp = (Elf_External_Note *) dest;
7526 H_PUT_32 (abfd, namesz, xnp->namesz);
7527 H_PUT_32 (abfd, size, xnp->descsz);
7528 H_PUT_32 (abfd, type, xnp->type);
7529 dest = xnp->name;
7530 if (name != NULL)
7531 {
7532 memcpy (dest, name, namesz);
7533 dest += namesz;
7534 while (pad != 0)
7535 {
7536 *dest++ = '\0';
7537 --pad;
7538 }
7539 }
7540 memcpy (dest, input, size);
7541 return p;
7542 }
7543
7544 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7545 char *
7546 elfcore_write_prpsinfo (bfd *abfd,
7547 char *buf,
7548 int *bufsiz,
7549 const char *fname,
7550 const char *psargs)
7551 {
7552 int note_type;
7553 char *note_name = "CORE";
7554
7555 #if defined (HAVE_PSINFO_T)
7556 psinfo_t data;
7557 note_type = NT_PSINFO;
7558 #else
7559 prpsinfo_t data;
7560 note_type = NT_PRPSINFO;
7561 #endif
7562
7563 memset (&data, 0, sizeof (data));
7564 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
7565 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
7566 return elfcore_write_note (abfd, buf, bufsiz,
7567 note_name, note_type, &data, sizeof (data));
7568 }
7569 #endif /* PSINFO_T or PRPSINFO_T */
7570
7571 #if defined (HAVE_PRSTATUS_T)
7572 char *
7573 elfcore_write_prstatus (bfd *abfd,
7574 char *buf,
7575 int *bufsiz,
7576 long pid,
7577 int cursig,
7578 const void *gregs)
7579 {
7580 prstatus_t prstat;
7581 char *note_name = "CORE";
7582
7583 memset (&prstat, 0, sizeof (prstat));
7584 prstat.pr_pid = pid;
7585 prstat.pr_cursig = cursig;
7586 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
7587 return elfcore_write_note (abfd, buf, bufsiz,
7588 note_name, NT_PRSTATUS, &prstat, sizeof (prstat));
7589 }
7590 #endif /* HAVE_PRSTATUS_T */
7591
7592 #if defined (HAVE_LWPSTATUS_T)
7593 char *
7594 elfcore_write_lwpstatus (bfd *abfd,
7595 char *buf,
7596 int *bufsiz,
7597 long pid,
7598 int cursig,
7599 const void *gregs)
7600 {
7601 lwpstatus_t lwpstat;
7602 char *note_name = "CORE";
7603
7604 memset (&lwpstat, 0, sizeof (lwpstat));
7605 lwpstat.pr_lwpid = pid >> 16;
7606 lwpstat.pr_cursig = cursig;
7607 #if defined (HAVE_LWPSTATUS_T_PR_REG)
7608 memcpy (lwpstat.pr_reg, gregs, sizeof (lwpstat.pr_reg));
7609 #elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7610 #if !defined(gregs)
7611 memcpy (lwpstat.pr_context.uc_mcontext.gregs,
7612 gregs, sizeof (lwpstat.pr_context.uc_mcontext.gregs));
7613 #else
7614 memcpy (lwpstat.pr_context.uc_mcontext.__gregs,
7615 gregs, sizeof (lwpstat.pr_context.uc_mcontext.__gregs));
7616 #endif
7617 #endif
7618 return elfcore_write_note (abfd, buf, bufsiz, note_name,
7619 NT_LWPSTATUS, &lwpstat, sizeof (lwpstat));
7620 }
7621 #endif /* HAVE_LWPSTATUS_T */
7622
7623 #if defined (HAVE_PSTATUS_T)
7624 char *
7625 elfcore_write_pstatus (bfd *abfd,
7626 char *buf,
7627 int *bufsiz,
7628 long pid,
7629 int cursig,
7630 const void *gregs)
7631 {
7632 pstatus_t pstat;
7633 char *note_name = "CORE";
7634
7635 memset (&pstat, 0, sizeof (pstat));
7636 pstat.pr_pid = pid & 0xffff;
7637 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
7638 NT_PSTATUS, &pstat, sizeof (pstat));
7639 return buf;
7640 }
7641 #endif /* HAVE_PSTATUS_T */
7642
7643 char *
7644 elfcore_write_prfpreg (bfd *abfd,
7645 char *buf,
7646 int *bufsiz,
7647 const void *fpregs,
7648 int size)
7649 {
7650 char *note_name = "CORE";
7651 return elfcore_write_note (abfd, buf, bufsiz,
7652 note_name, NT_FPREGSET, fpregs, size);
7653 }
7654
7655 char *
7656 elfcore_write_prxfpreg (bfd *abfd,
7657 char *buf,
7658 int *bufsiz,
7659 const void *xfpregs,
7660 int size)
7661 {
7662 char *note_name = "LINUX";
7663 return elfcore_write_note (abfd, buf, bufsiz,
7664 note_name, NT_PRXFPREG, xfpregs, size);
7665 }
7666
7667 static bfd_boolean
7668 elfcore_read_notes (bfd *abfd, file_ptr offset, bfd_size_type size)
7669 {
7670 char *buf;
7671 char *p;
7672
7673 if (size <= 0)
7674 return TRUE;
7675
7676 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
7677 return FALSE;
7678
7679 buf = bfd_malloc (size);
7680 if (buf == NULL)
7681 return FALSE;
7682
7683 if (bfd_bread (buf, size, abfd) != size)
7684 {
7685 error:
7686 free (buf);
7687 return FALSE;
7688 }
7689
7690 p = buf;
7691 while (p < buf + size)
7692 {
7693 /* FIXME: bad alignment assumption. */
7694 Elf_External_Note *xnp = (Elf_External_Note *) p;
7695 Elf_Internal_Note in;
7696
7697 in.type = H_GET_32 (abfd, xnp->type);
7698
7699 in.namesz = H_GET_32 (abfd, xnp->namesz);
7700 in.namedata = xnp->name;
7701
7702 in.descsz = H_GET_32 (abfd, xnp->descsz);
7703 in.descdata = in.namedata + BFD_ALIGN (in.namesz, 4);
7704 in.descpos = offset + (in.descdata - buf);
7705
7706 if (strncmp (in.namedata, "NetBSD-CORE", 11) == 0)
7707 {
7708 if (! elfcore_grok_netbsd_note (abfd, &in))
7709 goto error;
7710 }
7711 else if (strncmp (in.namedata, "QNX", 3) == 0)
7712 {
7713 if (! elfcore_grok_nto_note (abfd, &in))
7714 goto error;
7715 }
7716 else
7717 {
7718 if (! elfcore_grok_note (abfd, &in))
7719 goto error;
7720 }
7721
7722 p = in.descdata + BFD_ALIGN (in.descsz, 4);
7723 }
7724
7725 free (buf);
7726 return TRUE;
7727 }
7728 \f
7729 /* Providing external access to the ELF program header table. */
7730
7731 /* Return an upper bound on the number of bytes required to store a
7732 copy of ABFD's program header table entries. Return -1 if an error
7733 occurs; bfd_get_error will return an appropriate code. */
7734
7735 long
7736 bfd_get_elf_phdr_upper_bound (bfd *abfd)
7737 {
7738 if (abfd->xvec->flavour != bfd_target_elf_flavour)
7739 {
7740 bfd_set_error (bfd_error_wrong_format);
7741 return -1;
7742 }
7743
7744 return elf_elfheader (abfd)->e_phnum * sizeof (Elf_Internal_Phdr);
7745 }
7746
7747 /* Copy ABFD's program header table entries to *PHDRS. The entries
7748 will be stored as an array of Elf_Internal_Phdr structures, as
7749 defined in include/elf/internal.h. To find out how large the
7750 buffer needs to be, call bfd_get_elf_phdr_upper_bound.
7751
7752 Return the number of program header table entries read, or -1 if an
7753 error occurs; bfd_get_error will return an appropriate code. */
7754
7755 int
7756 bfd_get_elf_phdrs (bfd *abfd, void *phdrs)
7757 {
7758 int num_phdrs;
7759
7760 if (abfd->xvec->flavour != bfd_target_elf_flavour)
7761 {
7762 bfd_set_error (bfd_error_wrong_format);
7763 return -1;
7764 }
7765
7766 num_phdrs = elf_elfheader (abfd)->e_phnum;
7767 memcpy (phdrs, elf_tdata (abfd)->phdr,
7768 num_phdrs * sizeof (Elf_Internal_Phdr));
7769
7770 return num_phdrs;
7771 }
7772
7773 void
7774 _bfd_elf_sprintf_vma (bfd *abfd ATTRIBUTE_UNUSED, char *buf, bfd_vma value)
7775 {
7776 #ifdef BFD64
7777 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
7778
7779 i_ehdrp = elf_elfheader (abfd);
7780 if (i_ehdrp == NULL)
7781 sprintf_vma (buf, value);
7782 else
7783 {
7784 if (i_ehdrp->e_ident[EI_CLASS] == ELFCLASS64)
7785 {
7786 #if BFD_HOST_64BIT_LONG
7787 sprintf (buf, "%016lx", value);
7788 #else
7789 sprintf (buf, "%08lx%08lx", _bfd_int64_high (value),
7790 _bfd_int64_low (value));
7791 #endif
7792 }
7793 else
7794 sprintf (buf, "%08lx", (unsigned long) (value & 0xffffffff));
7795 }
7796 #else
7797 sprintf_vma (buf, value);
7798 #endif
7799 }
7800
7801 void
7802 _bfd_elf_fprintf_vma (bfd *abfd ATTRIBUTE_UNUSED, void *stream, bfd_vma value)
7803 {
7804 #ifdef BFD64
7805 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
7806
7807 i_ehdrp = elf_elfheader (abfd);
7808 if (i_ehdrp == NULL)
7809 fprintf_vma ((FILE *) stream, value);
7810 else
7811 {
7812 if (i_ehdrp->e_ident[EI_CLASS] == ELFCLASS64)
7813 {
7814 #if BFD_HOST_64BIT_LONG
7815 fprintf ((FILE *) stream, "%016lx", value);
7816 #else
7817 fprintf ((FILE *) stream, "%08lx%08lx",
7818 _bfd_int64_high (value), _bfd_int64_low (value));
7819 #endif
7820 }
7821 else
7822 fprintf ((FILE *) stream, "%08lx",
7823 (unsigned long) (value & 0xffffffff));
7824 }
7825 #else
7826 fprintf_vma ((FILE *) stream, value);
7827 #endif
7828 }
7829
7830 enum elf_reloc_type_class
7831 _bfd_elf_reloc_type_class (const Elf_Internal_Rela *rela ATTRIBUTE_UNUSED)
7832 {
7833 return reloc_class_normal;
7834 }
7835
7836 /* For RELA architectures, return the relocation value for a
7837 relocation against a local symbol. */
7838
7839 bfd_vma
7840 _bfd_elf_rela_local_sym (bfd *abfd,
7841 Elf_Internal_Sym *sym,
7842 asection **psec,
7843 Elf_Internal_Rela *rel)
7844 {
7845 asection *sec = *psec;
7846 bfd_vma relocation;
7847
7848 relocation = (sec->output_section->vma
7849 + sec->output_offset
7850 + sym->st_value);
7851 if ((sec->flags & SEC_MERGE)
7852 && ELF_ST_TYPE (sym->st_info) == STT_SECTION
7853 && sec->sec_info_type == ELF_INFO_TYPE_MERGE)
7854 {
7855 rel->r_addend =
7856 _bfd_merged_section_offset (abfd, psec,
7857 elf_section_data (sec)->sec_info,
7858 sym->st_value + rel->r_addend);
7859 if (sec != *psec)
7860 {
7861 /* If we have changed the section, and our original section is
7862 marked with SEC_EXCLUDE, it means that the original
7863 SEC_MERGE section has been completely subsumed in some
7864 other SEC_MERGE section. In this case, we need to leave
7865 some info around for --emit-relocs. */
7866 if ((sec->flags & SEC_EXCLUDE) != 0)
7867 sec->kept_section = *psec;
7868 sec = *psec;
7869 }
7870 rel->r_addend -= relocation;
7871 rel->r_addend += sec->output_section->vma + sec->output_offset;
7872 }
7873 return relocation;
7874 }
7875
7876 bfd_vma
7877 _bfd_elf_rel_local_sym (bfd *abfd,
7878 Elf_Internal_Sym *sym,
7879 asection **psec,
7880 bfd_vma addend)
7881 {
7882 asection *sec = *psec;
7883
7884 if (sec->sec_info_type != ELF_INFO_TYPE_MERGE)
7885 return sym->st_value + addend;
7886
7887 return _bfd_merged_section_offset (abfd, psec,
7888 elf_section_data (sec)->sec_info,
7889 sym->st_value + addend);
7890 }
7891
7892 bfd_vma
7893 _bfd_elf_section_offset (bfd *abfd,
7894 struct bfd_link_info *info,
7895 asection *sec,
7896 bfd_vma offset)
7897 {
7898 switch (sec->sec_info_type)
7899 {
7900 case ELF_INFO_TYPE_STABS:
7901 return _bfd_stab_section_offset (sec, elf_section_data (sec)->sec_info,
7902 offset);
7903 case ELF_INFO_TYPE_EH_FRAME:
7904 return _bfd_elf_eh_frame_section_offset (abfd, info, sec, offset);
7905 default:
7906 return offset;
7907 }
7908 }
7909 \f
7910 /* Create a new BFD as if by bfd_openr. Rather than opening a file,
7911 reconstruct an ELF file by reading the segments out of remote memory
7912 based on the ELF file header at EHDR_VMA and the ELF program headers it
7913 points to. If not null, *LOADBASEP is filled in with the difference
7914 between the VMAs from which the segments were read, and the VMAs the
7915 file headers (and hence BFD's idea of each section's VMA) put them at.
7916
7917 The function TARGET_READ_MEMORY is called to copy LEN bytes from the
7918 remote memory at target address VMA into the local buffer at MYADDR; it
7919 should return zero on success or an `errno' code on failure. TEMPL must
7920 be a BFD for an ELF target with the word size and byte order found in
7921 the remote memory. */
7922
7923 bfd *
7924 bfd_elf_bfd_from_remote_memory
7925 (bfd *templ,
7926 bfd_vma ehdr_vma,
7927 bfd_vma *loadbasep,
7928 int (*target_read_memory) (bfd_vma, bfd_byte *, int))
7929 {
7930 return (*get_elf_backend_data (templ)->elf_backend_bfd_from_remote_memory)
7931 (templ, ehdr_vma, loadbasep, target_read_memory);
7932 }
7933 \f
7934 long
7935 _bfd_elf_get_synthetic_symtab (bfd *abfd,
7936 long symcount ATTRIBUTE_UNUSED,
7937 asymbol **syms ATTRIBUTE_UNUSED,
7938 long dynsymcount,
7939 asymbol **dynsyms,
7940 asymbol **ret)
7941 {
7942 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7943 asection *relplt;
7944 asymbol *s;
7945 const char *relplt_name;
7946 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
7947 arelent *p;
7948 long count, i, n;
7949 size_t size;
7950 Elf_Internal_Shdr *hdr;
7951 char *names;
7952 asection *plt;
7953
7954 *ret = NULL;
7955
7956 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0)
7957 return 0;
7958
7959 if (dynsymcount <= 0)
7960 return 0;
7961
7962 if (!bed->plt_sym_val)
7963 return 0;
7964
7965 relplt_name = bed->relplt_name;
7966 if (relplt_name == NULL)
7967 relplt_name = bed->default_use_rela_p ? ".rela.plt" : ".rel.plt";
7968 relplt = bfd_get_section_by_name (abfd, relplt_name);
7969 if (relplt == NULL)
7970 return 0;
7971
7972 hdr = &elf_section_data (relplt)->this_hdr;
7973 if (hdr->sh_link != elf_dynsymtab (abfd)
7974 || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA))
7975 return 0;
7976
7977 plt = bfd_get_section_by_name (abfd, ".plt");
7978 if (plt == NULL)
7979 return 0;
7980
7981 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
7982 if (! (*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
7983 return -1;
7984
7985 count = relplt->size / hdr->sh_entsize;
7986 size = count * sizeof (asymbol);
7987 p = relplt->relocation;
7988 for (i = 0; i < count; i++, s++, p++)
7989 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
7990
7991 s = *ret = bfd_malloc (size);
7992 if (s == NULL)
7993 return -1;
7994
7995 names = (char *) (s + count);
7996 p = relplt->relocation;
7997 n = 0;
7998 for (i = 0; i < count; i++, s++, p++)
7999 {
8000 size_t len;
8001 bfd_vma addr;
8002
8003 addr = bed->plt_sym_val (i, plt, p);
8004 if (addr == (bfd_vma) -1)
8005 continue;
8006
8007 *s = **p->sym_ptr_ptr;
8008 s->section = plt;
8009 s->value = addr - plt->vma;
8010 s->name = names;
8011 len = strlen ((*p->sym_ptr_ptr)->name);
8012 memcpy (names, (*p->sym_ptr_ptr)->name, len);
8013 names += len;
8014 memcpy (names, "@plt", sizeof ("@plt"));
8015 names += sizeof ("@plt");
8016 ++n;
8017 }
8018
8019 return n;
8020 }
8021
8022 /* Sort symbol by binding and section. We want to put definitions
8023 sorted by section at the beginning. */
8024
8025 static int
8026 elf_sort_elf_symbol (const void *arg1, const void *arg2)
8027 {
8028 const Elf_Internal_Sym *s1;
8029 const Elf_Internal_Sym *s2;
8030 int shndx;
8031
8032 /* Make sure that undefined symbols are at the end. */
8033 s1 = (const Elf_Internal_Sym *) arg1;
8034 if (s1->st_shndx == SHN_UNDEF)
8035 return 1;
8036 s2 = (const Elf_Internal_Sym *) arg2;
8037 if (s2->st_shndx == SHN_UNDEF)
8038 return -1;
8039
8040 /* Sorted by section index. */
8041 shndx = s1->st_shndx - s2->st_shndx;
8042 if (shndx != 0)
8043 return shndx;
8044
8045 /* Sorted by binding. */
8046 return ELF_ST_BIND (s1->st_info) - ELF_ST_BIND (s2->st_info);
8047 }
8048
8049 struct elf_symbol
8050 {
8051 Elf_Internal_Sym *sym;
8052 const char *name;
8053 };
8054
8055 static int
8056 elf_sym_name_compare (const void *arg1, const void *arg2)
8057 {
8058 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
8059 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
8060 return strcmp (s1->name, s2->name);
8061 }
8062
8063 /* Check if 2 sections define the same set of local and global
8064 symbols. */
8065
8066 bfd_boolean
8067 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2)
8068 {
8069 bfd *bfd1, *bfd2;
8070 const struct elf_backend_data *bed1, *bed2;
8071 Elf_Internal_Shdr *hdr1, *hdr2;
8072 bfd_size_type symcount1, symcount2;
8073 Elf_Internal_Sym *isymbuf1, *isymbuf2;
8074 Elf_Internal_Sym *isymstart1 = NULL, *isymstart2 = NULL, *isym;
8075 Elf_Internal_Sym *isymend;
8076 struct elf_symbol *symp, *symtable1 = NULL, *symtable2 = NULL;
8077 bfd_size_type count1, count2, i;
8078 int shndx1, shndx2;
8079 bfd_boolean result;
8080
8081 bfd1 = sec1->owner;
8082 bfd2 = sec2->owner;
8083
8084 /* If both are .gnu.linkonce sections, they have to have the same
8085 section name. */
8086 if (strncmp (sec1->name, ".gnu.linkonce",
8087 sizeof ".gnu.linkonce" - 1) == 0
8088 && strncmp (sec2->name, ".gnu.linkonce",
8089 sizeof ".gnu.linkonce" - 1) == 0)
8090 return strcmp (sec1->name + sizeof ".gnu.linkonce",
8091 sec2->name + sizeof ".gnu.linkonce") == 0;
8092
8093 /* Both sections have to be in ELF. */
8094 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
8095 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
8096 return FALSE;
8097
8098 if (elf_section_type (sec1) != elf_section_type (sec2))
8099 return FALSE;
8100
8101 if ((elf_section_flags (sec1) & SHF_GROUP) != 0
8102 && (elf_section_flags (sec2) & SHF_GROUP) != 0)
8103 {
8104 /* If both are members of section groups, they have to have the
8105 same group name. */
8106 if (strcmp (elf_group_name (sec1), elf_group_name (sec2)) != 0)
8107 return FALSE;
8108 }
8109
8110 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
8111 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
8112 if (shndx1 == -1 || shndx2 == -1)
8113 return FALSE;
8114
8115 bed1 = get_elf_backend_data (bfd1);
8116 bed2 = get_elf_backend_data (bfd2);
8117 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
8118 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
8119 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
8120 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
8121
8122 if (symcount1 == 0 || symcount2 == 0)
8123 return FALSE;
8124
8125 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
8126 NULL, NULL, NULL);
8127 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
8128 NULL, NULL, NULL);
8129
8130 result = FALSE;
8131 if (isymbuf1 == NULL || isymbuf2 == NULL)
8132 goto done;
8133
8134 /* Sort symbols by binding and section. Global definitions are at
8135 the beginning. */
8136 qsort (isymbuf1, symcount1, sizeof (Elf_Internal_Sym),
8137 elf_sort_elf_symbol);
8138 qsort (isymbuf2, symcount2, sizeof (Elf_Internal_Sym),
8139 elf_sort_elf_symbol);
8140
8141 /* Count definitions in the section. */
8142 count1 = 0;
8143 for (isym = isymbuf1, isymend = isym + symcount1;
8144 isym < isymend; isym++)
8145 {
8146 if (isym->st_shndx == (unsigned int) shndx1)
8147 {
8148 if (count1 == 0)
8149 isymstart1 = isym;
8150 count1++;
8151 }
8152
8153 if (count1 && isym->st_shndx != (unsigned int) shndx1)
8154 break;
8155 }
8156
8157 count2 = 0;
8158 for (isym = isymbuf2, isymend = isym + symcount2;
8159 isym < isymend; isym++)
8160 {
8161 if (isym->st_shndx == (unsigned int) shndx2)
8162 {
8163 if (count2 == 0)
8164 isymstart2 = isym;
8165 count2++;
8166 }
8167
8168 if (count2 && isym->st_shndx != (unsigned int) shndx2)
8169 break;
8170 }
8171
8172 if (count1 == 0 || count2 == 0 || count1 != count2)
8173 goto done;
8174
8175 symtable1 = bfd_malloc (count1 * sizeof (struct elf_symbol));
8176 symtable2 = bfd_malloc (count1 * sizeof (struct elf_symbol));
8177
8178 if (symtable1 == NULL || symtable2 == NULL)
8179 goto done;
8180
8181 symp = symtable1;
8182 for (isym = isymstart1, isymend = isym + count1;
8183 isym < isymend; isym++)
8184 {
8185 symp->sym = isym;
8186 symp->name = bfd_elf_string_from_elf_section (bfd1,
8187 hdr1->sh_link,
8188 isym->st_name);
8189 symp++;
8190 }
8191
8192 symp = symtable2;
8193 for (isym = isymstart2, isymend = isym + count1;
8194 isym < isymend; isym++)
8195 {
8196 symp->sym = isym;
8197 symp->name = bfd_elf_string_from_elf_section (bfd2,
8198 hdr2->sh_link,
8199 isym->st_name);
8200 symp++;
8201 }
8202
8203 /* Sort symbol by name. */
8204 qsort (symtable1, count1, sizeof (struct elf_symbol),
8205 elf_sym_name_compare);
8206 qsort (symtable2, count1, sizeof (struct elf_symbol),
8207 elf_sym_name_compare);
8208
8209 for (i = 0; i < count1; i++)
8210 /* Two symbols must have the same binding, type and name. */
8211 if (symtable1 [i].sym->st_info != symtable2 [i].sym->st_info
8212 || symtable1 [i].sym->st_other != symtable2 [i].sym->st_other
8213 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
8214 goto done;
8215
8216 result = TRUE;
8217
8218 done:
8219 if (symtable1)
8220 free (symtable1);
8221 if (symtable2)
8222 free (symtable2);
8223 if (isymbuf1)
8224 free (isymbuf1);
8225 if (isymbuf2)
8226 free (isymbuf2);
8227
8228 return result;
8229 }
This page took 0.208056 seconds and 4 git commands to generate.