Add MIPS SB1 machine
[deliverable/binutils-gdb.git] / bfd / elf.c
1 /* ELF executable support for BFD.
2 Copyright 1993, 94, 95, 96, 97, 98, 99, 2000 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
19
20 /*
21
22 SECTION
23 ELF backends
24
25 BFD support for ELF formats is being worked on.
26 Currently, the best supported back ends are for sparc and i386
27 (running svr4 or Solaris 2).
28
29 Documentation of the internals of the support code still needs
30 to be written. The code is changing quickly enough that we
31 haven't bothered yet.
32 */
33
34 /* For sparc64-cross-sparc32. */
35 #define _SYSCALL32
36 #include "bfd.h"
37 #include "sysdep.h"
38 #include "bfdlink.h"
39 #include "libbfd.h"
40 #define ARCH_SIZE 0
41 #include "elf-bfd.h"
42
43 static INLINE struct elf_segment_map *make_mapping
44 PARAMS ((bfd *, asection **, unsigned int, unsigned int, boolean));
45 static boolean map_sections_to_segments PARAMS ((bfd *));
46 static int elf_sort_sections PARAMS ((const PTR, const PTR));
47 static boolean assign_file_positions_for_segments PARAMS ((bfd *));
48 static boolean assign_file_positions_except_relocs PARAMS ((bfd *));
49 static boolean prep_headers PARAMS ((bfd *));
50 static boolean swap_out_syms PARAMS ((bfd *, struct bfd_strtab_hash **, int));
51 static boolean copy_private_bfd_data PARAMS ((bfd *, bfd *));
52 static char *elf_read PARAMS ((bfd *, long, unsigned int));
53 static void elf_fake_sections PARAMS ((bfd *, asection *, PTR));
54 static boolean assign_section_numbers PARAMS ((bfd *));
55 static INLINE int sym_is_global PARAMS ((bfd *, asymbol *));
56 static boolean elf_map_symbols PARAMS ((bfd *));
57 static bfd_size_type get_program_header_size PARAMS ((bfd *));
58 static boolean elfcore_read_notes PARAMS ((bfd *, bfd_vma, bfd_vma));
59
60 /* Swap version information in and out. The version information is
61 currently size independent. If that ever changes, this code will
62 need to move into elfcode.h. */
63
64 /* Swap in a Verdef structure. */
65
66 void
67 _bfd_elf_swap_verdef_in (abfd, src, dst)
68 bfd *abfd;
69 const Elf_External_Verdef *src;
70 Elf_Internal_Verdef *dst;
71 {
72 dst->vd_version = bfd_h_get_16 (abfd, src->vd_version);
73 dst->vd_flags = bfd_h_get_16 (abfd, src->vd_flags);
74 dst->vd_ndx = bfd_h_get_16 (abfd, src->vd_ndx);
75 dst->vd_cnt = bfd_h_get_16 (abfd, src->vd_cnt);
76 dst->vd_hash = bfd_h_get_32 (abfd, src->vd_hash);
77 dst->vd_aux = bfd_h_get_32 (abfd, src->vd_aux);
78 dst->vd_next = bfd_h_get_32 (abfd, src->vd_next);
79 }
80
81 /* Swap out a Verdef structure. */
82
83 void
84 _bfd_elf_swap_verdef_out (abfd, src, dst)
85 bfd *abfd;
86 const Elf_Internal_Verdef *src;
87 Elf_External_Verdef *dst;
88 {
89 bfd_h_put_16 (abfd, src->vd_version, dst->vd_version);
90 bfd_h_put_16 (abfd, src->vd_flags, dst->vd_flags);
91 bfd_h_put_16 (abfd, src->vd_ndx, dst->vd_ndx);
92 bfd_h_put_16 (abfd, src->vd_cnt, dst->vd_cnt);
93 bfd_h_put_32 (abfd, src->vd_hash, dst->vd_hash);
94 bfd_h_put_32 (abfd, src->vd_aux, dst->vd_aux);
95 bfd_h_put_32 (abfd, src->vd_next, dst->vd_next);
96 }
97
98 /* Swap in a Verdaux structure. */
99
100 void
101 _bfd_elf_swap_verdaux_in (abfd, src, dst)
102 bfd *abfd;
103 const Elf_External_Verdaux *src;
104 Elf_Internal_Verdaux *dst;
105 {
106 dst->vda_name = bfd_h_get_32 (abfd, src->vda_name);
107 dst->vda_next = bfd_h_get_32 (abfd, src->vda_next);
108 }
109
110 /* Swap out a Verdaux structure. */
111
112 void
113 _bfd_elf_swap_verdaux_out (abfd, src, dst)
114 bfd *abfd;
115 const Elf_Internal_Verdaux *src;
116 Elf_External_Verdaux *dst;
117 {
118 bfd_h_put_32 (abfd, src->vda_name, dst->vda_name);
119 bfd_h_put_32 (abfd, src->vda_next, dst->vda_next);
120 }
121
122 /* Swap in a Verneed structure. */
123
124 void
125 _bfd_elf_swap_verneed_in (abfd, src, dst)
126 bfd *abfd;
127 const Elf_External_Verneed *src;
128 Elf_Internal_Verneed *dst;
129 {
130 dst->vn_version = bfd_h_get_16 (abfd, src->vn_version);
131 dst->vn_cnt = bfd_h_get_16 (abfd, src->vn_cnt);
132 dst->vn_file = bfd_h_get_32 (abfd, src->vn_file);
133 dst->vn_aux = bfd_h_get_32 (abfd, src->vn_aux);
134 dst->vn_next = bfd_h_get_32 (abfd, src->vn_next);
135 }
136
137 /* Swap out a Verneed structure. */
138
139 void
140 _bfd_elf_swap_verneed_out (abfd, src, dst)
141 bfd *abfd;
142 const Elf_Internal_Verneed *src;
143 Elf_External_Verneed *dst;
144 {
145 bfd_h_put_16 (abfd, src->vn_version, dst->vn_version);
146 bfd_h_put_16 (abfd, src->vn_cnt, dst->vn_cnt);
147 bfd_h_put_32 (abfd, src->vn_file, dst->vn_file);
148 bfd_h_put_32 (abfd, src->vn_aux, dst->vn_aux);
149 bfd_h_put_32 (abfd, src->vn_next, dst->vn_next);
150 }
151
152 /* Swap in a Vernaux structure. */
153
154 void
155 _bfd_elf_swap_vernaux_in (abfd, src, dst)
156 bfd *abfd;
157 const Elf_External_Vernaux *src;
158 Elf_Internal_Vernaux *dst;
159 {
160 dst->vna_hash = bfd_h_get_32 (abfd, src->vna_hash);
161 dst->vna_flags = bfd_h_get_16 (abfd, src->vna_flags);
162 dst->vna_other = bfd_h_get_16 (abfd, src->vna_other);
163 dst->vna_name = bfd_h_get_32 (abfd, src->vna_name);
164 dst->vna_next = bfd_h_get_32 (abfd, src->vna_next);
165 }
166
167 /* Swap out a Vernaux structure. */
168
169 void
170 _bfd_elf_swap_vernaux_out (abfd, src, dst)
171 bfd *abfd;
172 const Elf_Internal_Vernaux *src;
173 Elf_External_Vernaux *dst;
174 {
175 bfd_h_put_32 (abfd, src->vna_hash, dst->vna_hash);
176 bfd_h_put_16 (abfd, src->vna_flags, dst->vna_flags);
177 bfd_h_put_16 (abfd, src->vna_other, dst->vna_other);
178 bfd_h_put_32 (abfd, src->vna_name, dst->vna_name);
179 bfd_h_put_32 (abfd, src->vna_next, dst->vna_next);
180 }
181
182 /* Swap in a Versym structure. */
183
184 void
185 _bfd_elf_swap_versym_in (abfd, src, dst)
186 bfd *abfd;
187 const Elf_External_Versym *src;
188 Elf_Internal_Versym *dst;
189 {
190 dst->vs_vers = bfd_h_get_16 (abfd, src->vs_vers);
191 }
192
193 /* Swap out a Versym structure. */
194
195 void
196 _bfd_elf_swap_versym_out (abfd, src, dst)
197 bfd *abfd;
198 const Elf_Internal_Versym *src;
199 Elf_External_Versym *dst;
200 {
201 bfd_h_put_16 (abfd, src->vs_vers, dst->vs_vers);
202 }
203
204 /* Standard ELF hash function. Do not change this function; you will
205 cause invalid hash tables to be generated. */
206
207 unsigned long
208 bfd_elf_hash (namearg)
209 const char *namearg;
210 {
211 const unsigned char *name = (const unsigned char *) namearg;
212 unsigned long h = 0;
213 unsigned long g;
214 int ch;
215
216 while ((ch = *name++) != '\0')
217 {
218 h = (h << 4) + ch;
219 if ((g = (h & 0xf0000000)) != 0)
220 {
221 h ^= g >> 24;
222 /* The ELF ABI says `h &= ~g', but this is equivalent in
223 this case and on some machines one insn instead of two. */
224 h ^= g;
225 }
226 }
227 return h;
228 }
229
230 /* Read a specified number of bytes at a specified offset in an ELF
231 file, into a newly allocated buffer, and return a pointer to the
232 buffer. */
233
234 static char *
235 elf_read (abfd, offset, size)
236 bfd *abfd;
237 long offset;
238 unsigned int size;
239 {
240 char *buf;
241
242 if ((buf = bfd_alloc (abfd, size)) == NULL)
243 return NULL;
244 if (bfd_seek (abfd, offset, SEEK_SET) == -1)
245 return NULL;
246 if (bfd_read ((PTR) buf, size, 1, abfd) != size)
247 {
248 if (bfd_get_error () != bfd_error_system_call)
249 bfd_set_error (bfd_error_file_truncated);
250 return NULL;
251 }
252 return buf;
253 }
254
255 boolean
256 bfd_elf_mkobject (abfd)
257 bfd *abfd;
258 {
259 /* This just does initialization. */
260 /* coff_mkobject zalloc's space for tdata.coff_obj_data ... */
261 elf_tdata (abfd) = (struct elf_obj_tdata *)
262 bfd_zalloc (abfd, sizeof (struct elf_obj_tdata));
263 if (elf_tdata (abfd) == 0)
264 return false;
265 /* Since everything is done at close time, do we need any
266 initialization? */
267
268 return true;
269 }
270
271 boolean
272 bfd_elf_mkcorefile (abfd)
273 bfd *abfd;
274 {
275 /* I think this can be done just like an object file. */
276 return bfd_elf_mkobject (abfd);
277 }
278
279 char *
280 bfd_elf_get_str_section (abfd, shindex)
281 bfd *abfd;
282 unsigned int shindex;
283 {
284 Elf_Internal_Shdr **i_shdrp;
285 char *shstrtab = NULL;
286 unsigned int offset;
287 unsigned int shstrtabsize;
288
289 i_shdrp = elf_elfsections (abfd);
290 if (i_shdrp == 0 || i_shdrp[shindex] == 0)
291 return 0;
292
293 shstrtab = (char *) i_shdrp[shindex]->contents;
294 if (shstrtab == NULL)
295 {
296 /* No cached one, attempt to read, and cache what we read. */
297 offset = i_shdrp[shindex]->sh_offset;
298 shstrtabsize = i_shdrp[shindex]->sh_size;
299 shstrtab = elf_read (abfd, offset, shstrtabsize);
300 i_shdrp[shindex]->contents = (PTR) shstrtab;
301 }
302 return shstrtab;
303 }
304
305 char *
306 bfd_elf_string_from_elf_section (abfd, shindex, strindex)
307 bfd *abfd;
308 unsigned int shindex;
309 unsigned int strindex;
310 {
311 Elf_Internal_Shdr *hdr;
312
313 if (strindex == 0)
314 return "";
315
316 hdr = elf_elfsections (abfd)[shindex];
317
318 if (hdr->contents == NULL
319 && bfd_elf_get_str_section (abfd, shindex) == NULL)
320 return NULL;
321
322 if (strindex >= hdr->sh_size)
323 {
324 (*_bfd_error_handler)
325 (_("%s: invalid string offset %u >= %lu for section `%s'"),
326 bfd_get_filename (abfd), strindex, (unsigned long) hdr->sh_size,
327 ((shindex == elf_elfheader(abfd)->e_shstrndx
328 && strindex == hdr->sh_name)
329 ? ".shstrtab"
330 : elf_string_from_elf_strtab (abfd, hdr->sh_name)));
331 return "";
332 }
333
334 return ((char *) hdr->contents) + strindex;
335 }
336
337 /* Make a BFD section from an ELF section. We store a pointer to the
338 BFD section in the bfd_section field of the header. */
339
340 boolean
341 _bfd_elf_make_section_from_shdr (abfd, hdr, name)
342 bfd *abfd;
343 Elf_Internal_Shdr *hdr;
344 const char *name;
345 {
346 asection *newsect;
347 flagword flags;
348 struct elf_backend_data *bed;
349
350 if (hdr->bfd_section != NULL)
351 {
352 BFD_ASSERT (strcmp (name,
353 bfd_get_section_name (abfd, hdr->bfd_section)) == 0);
354 return true;
355 }
356
357 newsect = bfd_make_section_anyway (abfd, name);
358 if (newsect == NULL)
359 return false;
360
361 newsect->filepos = hdr->sh_offset;
362
363 if (! bfd_set_section_vma (abfd, newsect, hdr->sh_addr)
364 || ! bfd_set_section_size (abfd, newsect, hdr->sh_size)
365 || ! bfd_set_section_alignment (abfd, newsect,
366 bfd_log2 (hdr->sh_addralign)))
367 return false;
368
369 flags = SEC_NO_FLAGS;
370 if (hdr->sh_type != SHT_NOBITS)
371 flags |= SEC_HAS_CONTENTS;
372 if ((hdr->sh_flags & SHF_ALLOC) != 0)
373 {
374 flags |= SEC_ALLOC;
375 if (hdr->sh_type != SHT_NOBITS)
376 flags |= SEC_LOAD;
377 }
378 if ((hdr->sh_flags & SHF_WRITE) == 0)
379 flags |= SEC_READONLY;
380 if ((hdr->sh_flags & SHF_EXECINSTR) != 0)
381 flags |= SEC_CODE;
382 else if ((flags & SEC_LOAD) != 0)
383 flags |= SEC_DATA;
384
385 /* The debugging sections appear to be recognized only by name, not
386 any sort of flag. */
387 {
388 static const char *debug_sec_names [] =
389 {
390 ".debug",
391 ".gnu.linkonce.wi.",
392 ".line",
393 ".stab"
394 };
395 int i;
396
397 for (i = sizeof (debug_sec_names) / sizeof (debug_sec_names[0]); i--;)
398 if (strncmp (name, debug_sec_names[i], strlen (debug_sec_names[i])) == 0)
399 break;
400
401 if (i >= 0)
402 flags |= SEC_DEBUGGING;
403 }
404
405 /* As a GNU extension, if the name begins with .gnu.linkonce, we
406 only link a single copy of the section. This is used to support
407 g++. g++ will emit each template expansion in its own section.
408 The symbols will be defined as weak, so that multiple definitions
409 are permitted. The GNU linker extension is to actually discard
410 all but one of the sections. */
411 if (strncmp (name, ".gnu.linkonce", sizeof ".gnu.linkonce" - 1) == 0)
412 flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
413
414 bed = get_elf_backend_data (abfd);
415 if (bed->elf_backend_section_flags)
416 if (! bed->elf_backend_section_flags (&flags, hdr))
417 return false;
418
419 if (! bfd_set_section_flags (abfd, newsect, flags))
420 return false;
421
422 if ((flags & SEC_ALLOC) != 0)
423 {
424 Elf_Internal_Phdr *phdr;
425 unsigned int i;
426
427 /* Look through the phdrs to see if we need to adjust the lma.
428 If all the p_paddr fields are zero, we ignore them, since
429 some ELF linkers produce such output. */
430 phdr = elf_tdata (abfd)->phdr;
431 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
432 {
433 if (phdr->p_paddr != 0)
434 break;
435 }
436 if (i < elf_elfheader (abfd)->e_phnum)
437 {
438 phdr = elf_tdata (abfd)->phdr;
439 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
440 {
441 if (phdr->p_type == PT_LOAD
442 && phdr->p_vaddr != phdr->p_paddr
443 && phdr->p_vaddr <= hdr->sh_addr
444 && (phdr->p_vaddr + phdr->p_memsz
445 >= hdr->sh_addr + hdr->sh_size)
446 && ((flags & SEC_LOAD) == 0
447 || (phdr->p_offset <= (bfd_vma) hdr->sh_offset
448 && (phdr->p_offset + phdr->p_filesz
449 >= hdr->sh_offset + hdr->sh_size))))
450 {
451 newsect->lma += phdr->p_paddr - phdr->p_vaddr;
452 break;
453 }
454 }
455 }
456 }
457
458 hdr->bfd_section = newsect;
459 elf_section_data (newsect)->this_hdr = *hdr;
460
461 return true;
462 }
463
464 /*
465 INTERNAL_FUNCTION
466 bfd_elf_find_section
467
468 SYNOPSIS
469 struct elf_internal_shdr *bfd_elf_find_section (bfd *abfd, char *name);
470
471 DESCRIPTION
472 Helper functions for GDB to locate the string tables.
473 Since BFD hides string tables from callers, GDB needs to use an
474 internal hook to find them. Sun's .stabstr, in particular,
475 isn't even pointed to by the .stab section, so ordinary
476 mechanisms wouldn't work to find it, even if we had some.
477 */
478
479 struct elf_internal_shdr *
480 bfd_elf_find_section (abfd, name)
481 bfd *abfd;
482 char *name;
483 {
484 Elf_Internal_Shdr **i_shdrp;
485 char *shstrtab;
486 unsigned int max;
487 unsigned int i;
488
489 i_shdrp = elf_elfsections (abfd);
490 if (i_shdrp != NULL)
491 {
492 shstrtab = bfd_elf_get_str_section
493 (abfd, elf_elfheader (abfd)->e_shstrndx);
494 if (shstrtab != NULL)
495 {
496 max = elf_elfheader (abfd)->e_shnum;
497 for (i = 1; i < max; i++)
498 if (!strcmp (&shstrtab[i_shdrp[i]->sh_name], name))
499 return i_shdrp[i];
500 }
501 }
502 return 0;
503 }
504
505 const char *const bfd_elf_section_type_names[] = {
506 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
507 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
508 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
509 };
510
511 /* ELF relocs are against symbols. If we are producing relocateable
512 output, and the reloc is against an external symbol, and nothing
513 has given us any additional addend, the resulting reloc will also
514 be against the same symbol. In such a case, we don't want to
515 change anything about the way the reloc is handled, since it will
516 all be done at final link time. Rather than put special case code
517 into bfd_perform_relocation, all the reloc types use this howto
518 function. It just short circuits the reloc if producing
519 relocateable output against an external symbol. */
520
521 bfd_reloc_status_type
522 bfd_elf_generic_reloc (abfd,
523 reloc_entry,
524 symbol,
525 data,
526 input_section,
527 output_bfd,
528 error_message)
529 bfd *abfd ATTRIBUTE_UNUSED;
530 arelent *reloc_entry;
531 asymbol *symbol;
532 PTR data ATTRIBUTE_UNUSED;
533 asection *input_section;
534 bfd *output_bfd;
535 char **error_message ATTRIBUTE_UNUSED;
536 {
537 if (output_bfd != (bfd *) NULL
538 && (symbol->flags & BSF_SECTION_SYM) == 0
539 && (! reloc_entry->howto->partial_inplace
540 || reloc_entry->addend == 0))
541 {
542 reloc_entry->address += input_section->output_offset;
543 return bfd_reloc_ok;
544 }
545
546 return bfd_reloc_continue;
547 }
548 \f
549 /* Print out the program headers. */
550
551 boolean
552 _bfd_elf_print_private_bfd_data (abfd, farg)
553 bfd *abfd;
554 PTR farg;
555 {
556 FILE *f = (FILE *) farg;
557 Elf_Internal_Phdr *p;
558 asection *s;
559 bfd_byte *dynbuf = NULL;
560
561 p = elf_tdata (abfd)->phdr;
562 if (p != NULL)
563 {
564 unsigned int i, c;
565
566 fprintf (f, _("\nProgram Header:\n"));
567 c = elf_elfheader (abfd)->e_phnum;
568 for (i = 0; i < c; i++, p++)
569 {
570 const char *s;
571 char buf[20];
572
573 switch (p->p_type)
574 {
575 case PT_NULL: s = "NULL"; break;
576 case PT_LOAD: s = "LOAD"; break;
577 case PT_DYNAMIC: s = "DYNAMIC"; break;
578 case PT_INTERP: s = "INTERP"; break;
579 case PT_NOTE: s = "NOTE"; break;
580 case PT_SHLIB: s = "SHLIB"; break;
581 case PT_PHDR: s = "PHDR"; break;
582 default: sprintf (buf, "0x%lx", p->p_type); s = buf; break;
583 }
584 fprintf (f, "%8s off 0x", s);
585 fprintf_vma (f, p->p_offset);
586 fprintf (f, " vaddr 0x");
587 fprintf_vma (f, p->p_vaddr);
588 fprintf (f, " paddr 0x");
589 fprintf_vma (f, p->p_paddr);
590 fprintf (f, " align 2**%u\n", bfd_log2 (p->p_align));
591 fprintf (f, " filesz 0x");
592 fprintf_vma (f, p->p_filesz);
593 fprintf (f, " memsz 0x");
594 fprintf_vma (f, p->p_memsz);
595 fprintf (f, " flags %c%c%c",
596 (p->p_flags & PF_R) != 0 ? 'r' : '-',
597 (p->p_flags & PF_W) != 0 ? 'w' : '-',
598 (p->p_flags & PF_X) != 0 ? 'x' : '-');
599 if ((p->p_flags &~ (PF_R | PF_W | PF_X)) != 0)
600 fprintf (f, " %lx", p->p_flags &~ (PF_R | PF_W | PF_X));
601 fprintf (f, "\n");
602 }
603 }
604
605 s = bfd_get_section_by_name (abfd, ".dynamic");
606 if (s != NULL)
607 {
608 int elfsec;
609 unsigned long link;
610 bfd_byte *extdyn, *extdynend;
611 size_t extdynsize;
612 void (*swap_dyn_in) PARAMS ((bfd *, const PTR, Elf_Internal_Dyn *));
613
614 fprintf (f, _("\nDynamic Section:\n"));
615
616 dynbuf = (bfd_byte *) bfd_malloc (s->_raw_size);
617 if (dynbuf == NULL)
618 goto error_return;
619 if (! bfd_get_section_contents (abfd, s, (PTR) dynbuf, (file_ptr) 0,
620 s->_raw_size))
621 goto error_return;
622
623 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
624 if (elfsec == -1)
625 goto error_return;
626 link = elf_elfsections (abfd)[elfsec]->sh_link;
627
628 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
629 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
630
631 extdyn = dynbuf;
632 extdynend = extdyn + s->_raw_size;
633 for (; extdyn < extdynend; extdyn += extdynsize)
634 {
635 Elf_Internal_Dyn dyn;
636 const char *name;
637 char ab[20];
638 boolean stringp;
639
640 (*swap_dyn_in) (abfd, (PTR) extdyn, &dyn);
641
642 if (dyn.d_tag == DT_NULL)
643 break;
644
645 stringp = false;
646 switch (dyn.d_tag)
647 {
648 default:
649 sprintf (ab, "0x%lx", (unsigned long) dyn.d_tag);
650 name = ab;
651 break;
652
653 case DT_NEEDED: name = "NEEDED"; stringp = true; break;
654 case DT_PLTRELSZ: name = "PLTRELSZ"; break;
655 case DT_PLTGOT: name = "PLTGOT"; break;
656 case DT_HASH: name = "HASH"; break;
657 case DT_STRTAB: name = "STRTAB"; break;
658 case DT_SYMTAB: name = "SYMTAB"; break;
659 case DT_RELA: name = "RELA"; break;
660 case DT_RELASZ: name = "RELASZ"; break;
661 case DT_RELAENT: name = "RELAENT"; break;
662 case DT_STRSZ: name = "STRSZ"; break;
663 case DT_SYMENT: name = "SYMENT"; break;
664 case DT_INIT: name = "INIT"; break;
665 case DT_FINI: name = "FINI"; break;
666 case DT_SONAME: name = "SONAME"; stringp = true; break;
667 case DT_RPATH: name = "RPATH"; stringp = true; break;
668 case DT_SYMBOLIC: name = "SYMBOLIC"; break;
669 case DT_REL: name = "REL"; break;
670 case DT_RELSZ: name = "RELSZ"; break;
671 case DT_RELENT: name = "RELENT"; break;
672 case DT_PLTREL: name = "PLTREL"; break;
673 case DT_DEBUG: name = "DEBUG"; break;
674 case DT_TEXTREL: name = "TEXTREL"; break;
675 case DT_JMPREL: name = "JMPREL"; break;
676 case DT_BIND_NOW: name = "BIND_NOW"; break;
677 case DT_INIT_ARRAY: name = "INIT_ARRAY"; break;
678 case DT_FINI_ARRAY: name = "FINI_ARRAY"; break;
679 case DT_INIT_ARRAYSZ: name = "INIT_ARRAYSZ"; break;
680 case DT_FINI_ARRAYSZ: name = "FINI_ARRAYSZ"; break;
681 case DT_RUNPATH: name = "RUNPATH"; stringp = true; break;
682 case DT_FLAGS: name = "FLAGS"; break;
683 case DT_PREINIT_ARRAY: name = "PREINIT_ARRAY"; break;
684 case DT_PREINIT_ARRAYSZ: name = "PREINIT_ARRAYSZ"; break;
685 case DT_CHECKSUM: name = "CHECKSUM"; break;
686 case DT_PLTPADSZ: name = "PLTPADSZ"; break;
687 case DT_MOVEENT: name = "MOVEENT"; break;
688 case DT_MOVESZ: name = "MOVESZ"; break;
689 case DT_FEATURE: name = "FEATURE"; break;
690 case DT_POSFLAG_1: name = "POSFLAG_1"; break;
691 case DT_SYMINSZ: name = "SYMINSZ"; break;
692 case DT_SYMINENT: name = "SYMINENT"; break;
693 case DT_CONFIG: name = "CONFIG"; stringp = true; break;
694 case DT_DEPAUDIT: name = "DEPAUDIT"; stringp = true; break;
695 case DT_AUDIT: name = "AUDIT"; stringp = true; break;
696 case DT_PLTPAD: name = "PLTPAD"; break;
697 case DT_MOVETAB: name = "MOVETAB"; break;
698 case DT_SYMINFO: name = "SYMINFO"; break;
699 case DT_RELACOUNT: name = "RELACOUNT"; break;
700 case DT_RELCOUNT: name = "RELCOUNT"; break;
701 case DT_FLAGS_1: name = "FLAGS_1"; break;
702 case DT_VERSYM: name = "VERSYM"; break;
703 case DT_VERDEF: name = "VERDEF"; break;
704 case DT_VERDEFNUM: name = "VERDEFNUM"; break;
705 case DT_VERNEED: name = "VERNEED"; break;
706 case DT_VERNEEDNUM: name = "VERNEEDNUM"; break;
707 case DT_AUXILIARY: name = "AUXILIARY"; stringp = true; break;
708 case DT_USED: name = "USED"; break;
709 case DT_FILTER: name = "FILTER"; stringp = true; break;
710 }
711
712 fprintf (f, " %-11s ", name);
713 if (! stringp)
714 fprintf (f, "0x%lx", (unsigned long) dyn.d_un.d_val);
715 else
716 {
717 const char *string;
718
719 string = bfd_elf_string_from_elf_section (abfd, link,
720 dyn.d_un.d_val);
721 if (string == NULL)
722 goto error_return;
723 fprintf (f, "%s", string);
724 }
725 fprintf (f, "\n");
726 }
727
728 free (dynbuf);
729 dynbuf = NULL;
730 }
731
732 if ((elf_dynverdef (abfd) != 0 && elf_tdata (abfd)->verdef == NULL)
733 || (elf_dynverref (abfd) != 0 && elf_tdata (abfd)->verref == NULL))
734 {
735 if (! _bfd_elf_slurp_version_tables (abfd))
736 return false;
737 }
738
739 if (elf_dynverdef (abfd) != 0)
740 {
741 Elf_Internal_Verdef *t;
742
743 fprintf (f, _("\nVersion definitions:\n"));
744 for (t = elf_tdata (abfd)->verdef; t != NULL; t = t->vd_nextdef)
745 {
746 fprintf (f, "%d 0x%2.2x 0x%8.8lx %s\n", t->vd_ndx,
747 t->vd_flags, t->vd_hash, t->vd_nodename);
748 if (t->vd_auxptr->vda_nextptr != NULL)
749 {
750 Elf_Internal_Verdaux *a;
751
752 fprintf (f, "\t");
753 for (a = t->vd_auxptr->vda_nextptr;
754 a != NULL;
755 a = a->vda_nextptr)
756 fprintf (f, "%s ", a->vda_nodename);
757 fprintf (f, "\n");
758 }
759 }
760 }
761
762 if (elf_dynverref (abfd) != 0)
763 {
764 Elf_Internal_Verneed *t;
765
766 fprintf (f, _("\nVersion References:\n"));
767 for (t = elf_tdata (abfd)->verref; t != NULL; t = t->vn_nextref)
768 {
769 Elf_Internal_Vernaux *a;
770
771 fprintf (f, _(" required from %s:\n"), t->vn_filename);
772 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
773 fprintf (f, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a->vna_hash,
774 a->vna_flags, a->vna_other, a->vna_nodename);
775 }
776 }
777
778 return true;
779
780 error_return:
781 if (dynbuf != NULL)
782 free (dynbuf);
783 return false;
784 }
785
786 /* Display ELF-specific fields of a symbol. */
787
788 void
789 bfd_elf_print_symbol (abfd, filep, symbol, how)
790 bfd *abfd;
791 PTR filep;
792 asymbol *symbol;
793 bfd_print_symbol_type how;
794 {
795 FILE *file = (FILE *) filep;
796 switch (how)
797 {
798 case bfd_print_symbol_name:
799 fprintf (file, "%s", symbol->name);
800 break;
801 case bfd_print_symbol_more:
802 fprintf (file, "elf ");
803 fprintf_vma (file, symbol->value);
804 fprintf (file, " %lx", (long) symbol->flags);
805 break;
806 case bfd_print_symbol_all:
807 {
808 CONST char *section_name;
809 CONST char *name = NULL;
810 struct elf_backend_data *bed;
811 unsigned char st_other;
812
813 section_name = symbol->section ? symbol->section->name : "(*none*)";
814
815 bed = get_elf_backend_data (abfd);
816 if (bed->elf_backend_print_symbol_all)
817 name = (*bed->elf_backend_print_symbol_all) (abfd, filep, symbol);
818
819 if (name == NULL)
820 {
821 name = symbol->name;
822 bfd_print_symbol_vandf ((PTR) file, symbol);
823 }
824
825 fprintf (file, " %s\t", section_name);
826 /* Print the "other" value for a symbol. For common symbols,
827 we've already printed the size; now print the alignment.
828 For other symbols, we have no specified alignment, and
829 we've printed the address; now print the size. */
830 fprintf_vma (file,
831 (bfd_is_com_section (symbol->section)
832 ? ((elf_symbol_type *) symbol)->internal_elf_sym.st_value
833 : ((elf_symbol_type *) symbol)->internal_elf_sym.st_size));
834
835 /* If we have version information, print it. */
836 if (elf_tdata (abfd)->dynversym_section != 0
837 && (elf_tdata (abfd)->dynverdef_section != 0
838 || elf_tdata (abfd)->dynverref_section != 0))
839 {
840 unsigned int vernum;
841 const char *version_string;
842
843 vernum = ((elf_symbol_type *) symbol)->version & VERSYM_VERSION;
844
845 if (vernum == 0)
846 version_string = "";
847 else if (vernum == 1)
848 version_string = "Base";
849 else if (vernum <= elf_tdata (abfd)->cverdefs)
850 version_string =
851 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
852 else
853 {
854 Elf_Internal_Verneed *t;
855
856 version_string = "";
857 for (t = elf_tdata (abfd)->verref;
858 t != NULL;
859 t = t->vn_nextref)
860 {
861 Elf_Internal_Vernaux *a;
862
863 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
864 {
865 if (a->vna_other == vernum)
866 {
867 version_string = a->vna_nodename;
868 break;
869 }
870 }
871 }
872 }
873
874 if ((((elf_symbol_type *) symbol)->version & VERSYM_HIDDEN) == 0)
875 fprintf (file, " %-11s", version_string);
876 else
877 {
878 int i;
879
880 fprintf (file, " (%s)", version_string);
881 for (i = 10 - strlen (version_string); i > 0; --i)
882 putc (' ', file);
883 }
884 }
885
886 /* If the st_other field is not zero, print it. */
887 st_other = ((elf_symbol_type *) symbol)->internal_elf_sym.st_other;
888
889 switch (st_other)
890 {
891 case 0: break;
892 case STV_INTERNAL: fprintf (file, " .internal"); break;
893 case STV_HIDDEN: fprintf (file, " .hidden"); break;
894 case STV_PROTECTED: fprintf (file, " .protected"); break;
895 default:
896 /* Some other non-defined flags are also present, so print
897 everything hex. */
898 fprintf (file, " 0x%02x", (unsigned int) st_other);
899 }
900
901 fprintf (file, " %s", name);
902 }
903 break;
904 }
905 }
906 \f
907 /* Create an entry in an ELF linker hash table. */
908
909 struct bfd_hash_entry *
910 _bfd_elf_link_hash_newfunc (entry, table, string)
911 struct bfd_hash_entry *entry;
912 struct bfd_hash_table *table;
913 const char *string;
914 {
915 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
916
917 /* Allocate the structure if it has not already been allocated by a
918 subclass. */
919 if (ret == (struct elf_link_hash_entry *) NULL)
920 ret = ((struct elf_link_hash_entry *)
921 bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry)));
922 if (ret == (struct elf_link_hash_entry *) NULL)
923 return (struct bfd_hash_entry *) ret;
924
925 /* Call the allocation method of the superclass. */
926 ret = ((struct elf_link_hash_entry *)
927 _bfd_link_hash_newfunc ((struct bfd_hash_entry *) ret,
928 table, string));
929 if (ret != (struct elf_link_hash_entry *) NULL)
930 {
931 /* Set local fields. */
932 ret->indx = -1;
933 ret->size = 0;
934 ret->dynindx = -1;
935 ret->dynstr_index = 0;
936 ret->weakdef = NULL;
937 ret->got.offset = (bfd_vma) -1;
938 ret->plt.offset = (bfd_vma) -1;
939 ret->linker_section_pointer = (elf_linker_section_pointers_t *)0;
940 ret->verinfo.verdef = NULL;
941 ret->vtable_entries_used = NULL;
942 ret->vtable_entries_size = 0;
943 ret->vtable_parent = NULL;
944 ret->type = STT_NOTYPE;
945 ret->other = 0;
946 /* Assume that we have been called by a non-ELF symbol reader.
947 This flag is then reset by the code which reads an ELF input
948 file. This ensures that a symbol created by a non-ELF symbol
949 reader will have the flag set correctly. */
950 ret->elf_link_hash_flags = ELF_LINK_NON_ELF;
951 }
952
953 return (struct bfd_hash_entry *) ret;
954 }
955
956 /* Copy data from an indirect symbol to its direct symbol, hiding the
957 old indirect symbol. */
958
959 void
960 _bfd_elf_link_hash_copy_indirect (dir, ind)
961 struct elf_link_hash_entry *dir, *ind;
962 {
963 /* Copy down any references that we may have already seen to the
964 symbol which just became indirect. */
965
966 dir->elf_link_hash_flags |=
967 (ind->elf_link_hash_flags
968 & (ELF_LINK_HASH_REF_DYNAMIC
969 | ELF_LINK_HASH_REF_REGULAR
970 | ELF_LINK_HASH_REF_REGULAR_NONWEAK
971 | ELF_LINK_NON_GOT_REF));
972
973 /* Copy over the global and procedure linkage table offset entries.
974 These may have been already set up by a check_relocs routine. */
975 if (dir->got.offset == (bfd_vma) -1)
976 {
977 dir->got.offset = ind->got.offset;
978 ind->got.offset = (bfd_vma) -1;
979 }
980 BFD_ASSERT (ind->got.offset == (bfd_vma) -1);
981
982 if (dir->plt.offset == (bfd_vma) -1)
983 {
984 dir->plt.offset = ind->plt.offset;
985 ind->plt.offset = (bfd_vma) -1;
986 }
987 BFD_ASSERT (ind->plt.offset == (bfd_vma) -1);
988
989 if (dir->dynindx == -1)
990 {
991 dir->dynindx = ind->dynindx;
992 dir->dynstr_index = ind->dynstr_index;
993 ind->dynindx = -1;
994 ind->dynstr_index = 0;
995 }
996 BFD_ASSERT (ind->dynindx == -1);
997 }
998
999 void
1000 _bfd_elf_link_hash_hide_symbol (info, h)
1001 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1002 struct elf_link_hash_entry *h;
1003 {
1004 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
1005 h->dynindx = -1;
1006 h->plt.offset = (bfd_vma) -1;
1007 }
1008
1009 /* Initialize an ELF linker hash table. */
1010
1011 boolean
1012 _bfd_elf_link_hash_table_init (table, abfd, newfunc)
1013 struct elf_link_hash_table *table;
1014 bfd *abfd;
1015 struct bfd_hash_entry *(*newfunc) PARAMS ((struct bfd_hash_entry *,
1016 struct bfd_hash_table *,
1017 const char *));
1018 {
1019 table->dynamic_sections_created = false;
1020 table->dynobj = NULL;
1021 /* The first dynamic symbol is a dummy. */
1022 table->dynsymcount = 1;
1023 table->dynstr = NULL;
1024 table->bucketcount = 0;
1025 table->needed = NULL;
1026 table->runpath = NULL;
1027 table->hgot = NULL;
1028 table->stab_info = NULL;
1029 table->dynlocal = NULL;
1030 return _bfd_link_hash_table_init (&table->root, abfd, newfunc);
1031 }
1032
1033 /* Create an ELF linker hash table. */
1034
1035 struct bfd_link_hash_table *
1036 _bfd_elf_link_hash_table_create (abfd)
1037 bfd *abfd;
1038 {
1039 struct elf_link_hash_table *ret;
1040
1041 ret = ((struct elf_link_hash_table *)
1042 bfd_alloc (abfd, sizeof (struct elf_link_hash_table)));
1043 if (ret == (struct elf_link_hash_table *) NULL)
1044 return NULL;
1045
1046 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc))
1047 {
1048 bfd_release (abfd, ret);
1049 return NULL;
1050 }
1051
1052 return &ret->root;
1053 }
1054
1055 /* This is a hook for the ELF emulation code in the generic linker to
1056 tell the backend linker what file name to use for the DT_NEEDED
1057 entry for a dynamic object. The generic linker passes name as an
1058 empty string to indicate that no DT_NEEDED entry should be made. */
1059
1060 void
1061 bfd_elf_set_dt_needed_name (abfd, name)
1062 bfd *abfd;
1063 const char *name;
1064 {
1065 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1066 && bfd_get_format (abfd) == bfd_object)
1067 elf_dt_name (abfd) = name;
1068 }
1069
1070 void
1071 bfd_elf_set_dt_needed_soname (abfd, name)
1072 bfd *abfd;
1073 const char *name;
1074 {
1075 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1076 && bfd_get_format (abfd) == bfd_object)
1077 elf_dt_soname (abfd) = name;
1078 }
1079
1080 /* Get the list of DT_NEEDED entries for a link. This is a hook for
1081 the linker ELF emulation code. */
1082
1083 struct bfd_link_needed_list *
1084 bfd_elf_get_needed_list (abfd, info)
1085 bfd *abfd ATTRIBUTE_UNUSED;
1086 struct bfd_link_info *info;
1087 {
1088 if (info->hash->creator->flavour != bfd_target_elf_flavour)
1089 return NULL;
1090 return elf_hash_table (info)->needed;
1091 }
1092
1093 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
1094 hook for the linker ELF emulation code. */
1095
1096 struct bfd_link_needed_list *
1097 bfd_elf_get_runpath_list (abfd, info)
1098 bfd *abfd ATTRIBUTE_UNUSED;
1099 struct bfd_link_info *info;
1100 {
1101 if (info->hash->creator->flavour != bfd_target_elf_flavour)
1102 return NULL;
1103 return elf_hash_table (info)->runpath;
1104 }
1105
1106 /* Get the name actually used for a dynamic object for a link. This
1107 is the SONAME entry if there is one. Otherwise, it is the string
1108 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
1109
1110 const char *
1111 bfd_elf_get_dt_soname (abfd)
1112 bfd *abfd;
1113 {
1114 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1115 && bfd_get_format (abfd) == bfd_object)
1116 return elf_dt_name (abfd);
1117 return NULL;
1118 }
1119
1120 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
1121 the ELF linker emulation code. */
1122
1123 boolean
1124 bfd_elf_get_bfd_needed_list (abfd, pneeded)
1125 bfd *abfd;
1126 struct bfd_link_needed_list **pneeded;
1127 {
1128 asection *s;
1129 bfd_byte *dynbuf = NULL;
1130 int elfsec;
1131 unsigned long link;
1132 bfd_byte *extdyn, *extdynend;
1133 size_t extdynsize;
1134 void (*swap_dyn_in) PARAMS ((bfd *, const PTR, Elf_Internal_Dyn *));
1135
1136 *pneeded = NULL;
1137
1138 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
1139 || bfd_get_format (abfd) != bfd_object)
1140 return true;
1141
1142 s = bfd_get_section_by_name (abfd, ".dynamic");
1143 if (s == NULL || s->_raw_size == 0)
1144 return true;
1145
1146 dynbuf = (bfd_byte *) bfd_malloc (s->_raw_size);
1147 if (dynbuf == NULL)
1148 goto error_return;
1149
1150 if (! bfd_get_section_contents (abfd, s, (PTR) dynbuf, (file_ptr) 0,
1151 s->_raw_size))
1152 goto error_return;
1153
1154 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1155 if (elfsec == -1)
1156 goto error_return;
1157
1158 link = elf_elfsections (abfd)[elfsec]->sh_link;
1159
1160 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1161 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1162
1163 extdyn = dynbuf;
1164 extdynend = extdyn + s->_raw_size;
1165 for (; extdyn < extdynend; extdyn += extdynsize)
1166 {
1167 Elf_Internal_Dyn dyn;
1168
1169 (*swap_dyn_in) (abfd, (PTR) extdyn, &dyn);
1170
1171 if (dyn.d_tag == DT_NULL)
1172 break;
1173
1174 if (dyn.d_tag == DT_NEEDED)
1175 {
1176 const char *string;
1177 struct bfd_link_needed_list *l;
1178
1179 string = bfd_elf_string_from_elf_section (abfd, link,
1180 dyn.d_un.d_val);
1181 if (string == NULL)
1182 goto error_return;
1183
1184 l = (struct bfd_link_needed_list *) bfd_alloc (abfd, sizeof *l);
1185 if (l == NULL)
1186 goto error_return;
1187
1188 l->by = abfd;
1189 l->name = string;
1190 l->next = *pneeded;
1191 *pneeded = l;
1192 }
1193 }
1194
1195 free (dynbuf);
1196
1197 return true;
1198
1199 error_return:
1200 if (dynbuf != NULL)
1201 free (dynbuf);
1202 return false;
1203 }
1204 \f
1205 /* Allocate an ELF string table--force the first byte to be zero. */
1206
1207 struct bfd_strtab_hash *
1208 _bfd_elf_stringtab_init ()
1209 {
1210 struct bfd_strtab_hash *ret;
1211
1212 ret = _bfd_stringtab_init ();
1213 if (ret != NULL)
1214 {
1215 bfd_size_type loc;
1216
1217 loc = _bfd_stringtab_add (ret, "", true, false);
1218 BFD_ASSERT (loc == 0 || loc == (bfd_size_type) -1);
1219 if (loc == (bfd_size_type) -1)
1220 {
1221 _bfd_stringtab_free (ret);
1222 ret = NULL;
1223 }
1224 }
1225 return ret;
1226 }
1227 \f
1228 /* ELF .o/exec file reading */
1229
1230 /* Create a new bfd section from an ELF section header. */
1231
1232 boolean
1233 bfd_section_from_shdr (abfd, shindex)
1234 bfd *abfd;
1235 unsigned int shindex;
1236 {
1237 Elf_Internal_Shdr *hdr = elf_elfsections (abfd)[shindex];
1238 Elf_Internal_Ehdr *ehdr = elf_elfheader (abfd);
1239 struct elf_backend_data *bed = get_elf_backend_data (abfd);
1240 char *name;
1241
1242 name = elf_string_from_elf_strtab (abfd, hdr->sh_name);
1243
1244 switch (hdr->sh_type)
1245 {
1246 case SHT_NULL:
1247 /* Inactive section. Throw it away. */
1248 return true;
1249
1250 case SHT_PROGBITS: /* Normal section with contents. */
1251 case SHT_DYNAMIC: /* Dynamic linking information. */
1252 case SHT_NOBITS: /* .bss section. */
1253 case SHT_HASH: /* .hash section. */
1254 case SHT_NOTE: /* .note section. */
1255 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
1256
1257 case SHT_SYMTAB: /* A symbol table */
1258 if (elf_onesymtab (abfd) == shindex)
1259 return true;
1260
1261 BFD_ASSERT (hdr->sh_entsize == bed->s->sizeof_sym);
1262 BFD_ASSERT (elf_onesymtab (abfd) == 0);
1263 elf_onesymtab (abfd) = shindex;
1264 elf_tdata (abfd)->symtab_hdr = *hdr;
1265 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->symtab_hdr;
1266 abfd->flags |= HAS_SYMS;
1267
1268 /* Sometimes a shared object will map in the symbol table. If
1269 SHF_ALLOC is set, and this is a shared object, then we also
1270 treat this section as a BFD section. We can not base the
1271 decision purely on SHF_ALLOC, because that flag is sometimes
1272 set in a relocateable object file, which would confuse the
1273 linker. */
1274 if ((hdr->sh_flags & SHF_ALLOC) != 0
1275 && (abfd->flags & DYNAMIC) != 0
1276 && ! _bfd_elf_make_section_from_shdr (abfd, hdr, name))
1277 return false;
1278
1279 return true;
1280
1281 case SHT_DYNSYM: /* A dynamic symbol table */
1282 if (elf_dynsymtab (abfd) == shindex)
1283 return true;
1284
1285 BFD_ASSERT (hdr->sh_entsize == bed->s->sizeof_sym);
1286 BFD_ASSERT (elf_dynsymtab (abfd) == 0);
1287 elf_dynsymtab (abfd) = shindex;
1288 elf_tdata (abfd)->dynsymtab_hdr = *hdr;
1289 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->dynsymtab_hdr;
1290 abfd->flags |= HAS_SYMS;
1291
1292 /* Besides being a symbol table, we also treat this as a regular
1293 section, so that objcopy can handle it. */
1294 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
1295
1296 case SHT_STRTAB: /* A string table */
1297 if (hdr->bfd_section != NULL)
1298 return true;
1299 if (ehdr->e_shstrndx == shindex)
1300 {
1301 elf_tdata (abfd)->shstrtab_hdr = *hdr;
1302 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->shstrtab_hdr;
1303 return true;
1304 }
1305 {
1306 unsigned int i;
1307
1308 for (i = 1; i < ehdr->e_shnum; i++)
1309 {
1310 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1311 if (hdr2->sh_link == shindex)
1312 {
1313 if (! bfd_section_from_shdr (abfd, i))
1314 return false;
1315 if (elf_onesymtab (abfd) == i)
1316 {
1317 elf_tdata (abfd)->strtab_hdr = *hdr;
1318 elf_elfsections (abfd)[shindex] =
1319 &elf_tdata (abfd)->strtab_hdr;
1320 return true;
1321 }
1322 if (elf_dynsymtab (abfd) == i)
1323 {
1324 elf_tdata (abfd)->dynstrtab_hdr = *hdr;
1325 elf_elfsections (abfd)[shindex] = hdr =
1326 &elf_tdata (abfd)->dynstrtab_hdr;
1327 /* We also treat this as a regular section, so
1328 that objcopy can handle it. */
1329 break;
1330 }
1331 #if 0 /* Not handling other string tables specially right now. */
1332 hdr2 = elf_elfsections (abfd)[i]; /* in case it moved */
1333 /* We have a strtab for some random other section. */
1334 newsect = (asection *) hdr2->bfd_section;
1335 if (!newsect)
1336 break;
1337 hdr->bfd_section = newsect;
1338 hdr2 = &elf_section_data (newsect)->str_hdr;
1339 *hdr2 = *hdr;
1340 elf_elfsections (abfd)[shindex] = hdr2;
1341 #endif
1342 }
1343 }
1344 }
1345
1346 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
1347
1348 case SHT_REL:
1349 case SHT_RELA:
1350 /* *These* do a lot of work -- but build no sections! */
1351 {
1352 asection *target_sect;
1353 Elf_Internal_Shdr *hdr2;
1354
1355 /* Check for a bogus link to avoid crashing. */
1356 if (hdr->sh_link >= ehdr->e_shnum)
1357 {
1358 ((*_bfd_error_handler)
1359 (_("%s: invalid link %lu for reloc section %s (index %u)"),
1360 bfd_get_filename (abfd), hdr->sh_link, name, shindex));
1361 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
1362 }
1363
1364 /* For some incomprehensible reason Oracle distributes
1365 libraries for Solaris in which some of the objects have
1366 bogus sh_link fields. It would be nice if we could just
1367 reject them, but, unfortunately, some people need to use
1368 them. We scan through the section headers; if we find only
1369 one suitable symbol table, we clobber the sh_link to point
1370 to it. I hope this doesn't break anything. */
1371 if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_SYMTAB
1372 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_DYNSYM)
1373 {
1374 int scan;
1375 int found;
1376
1377 found = 0;
1378 for (scan = 1; scan < ehdr->e_shnum; scan++)
1379 {
1380 if (elf_elfsections (abfd)[scan]->sh_type == SHT_SYMTAB
1381 || elf_elfsections (abfd)[scan]->sh_type == SHT_DYNSYM)
1382 {
1383 if (found != 0)
1384 {
1385 found = 0;
1386 break;
1387 }
1388 found = scan;
1389 }
1390 }
1391 if (found != 0)
1392 hdr->sh_link = found;
1393 }
1394
1395 /* Get the symbol table. */
1396 if (elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_SYMTAB
1397 && ! bfd_section_from_shdr (abfd, hdr->sh_link))
1398 return false;
1399
1400 /* If this reloc section does not use the main symbol table we
1401 don't treat it as a reloc section. BFD can't adequately
1402 represent such a section, so at least for now, we don't
1403 try. We just present it as a normal section. We also
1404 can't use it as a reloc section if it points to the null
1405 section. */
1406 if (hdr->sh_link != elf_onesymtab (abfd) || hdr->sh_info == SHN_UNDEF)
1407 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
1408
1409 if (! bfd_section_from_shdr (abfd, hdr->sh_info))
1410 return false;
1411 target_sect = bfd_section_from_elf_index (abfd, hdr->sh_info);
1412 if (target_sect == NULL)
1413 return false;
1414
1415 if ((target_sect->flags & SEC_RELOC) == 0
1416 || target_sect->reloc_count == 0)
1417 hdr2 = &elf_section_data (target_sect)->rel_hdr;
1418 else
1419 {
1420 BFD_ASSERT (elf_section_data (target_sect)->rel_hdr2 == NULL);
1421 hdr2 = (Elf_Internal_Shdr *) bfd_alloc (abfd, sizeof (*hdr2));
1422 elf_section_data (target_sect)->rel_hdr2 = hdr2;
1423 }
1424 *hdr2 = *hdr;
1425 elf_elfsections (abfd)[shindex] = hdr2;
1426 target_sect->reloc_count += hdr->sh_size / hdr->sh_entsize;
1427 target_sect->flags |= SEC_RELOC;
1428 target_sect->relocation = NULL;
1429 target_sect->rel_filepos = hdr->sh_offset;
1430 /* In the section to which the relocations apply, mark whether
1431 its relocations are of the REL or RELA variety. */
1432 if (hdr->sh_size != 0)
1433 elf_section_data (target_sect)->use_rela_p
1434 = (hdr->sh_type == SHT_RELA);
1435 abfd->flags |= HAS_RELOC;
1436 return true;
1437 }
1438 break;
1439
1440 case SHT_GNU_verdef:
1441 elf_dynverdef (abfd) = shindex;
1442 elf_tdata (abfd)->dynverdef_hdr = *hdr;
1443 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
1444 break;
1445
1446 case SHT_GNU_versym:
1447 elf_dynversym (abfd) = shindex;
1448 elf_tdata (abfd)->dynversym_hdr = *hdr;
1449 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
1450 break;
1451
1452 case SHT_GNU_verneed:
1453 elf_dynverref (abfd) = shindex;
1454 elf_tdata (abfd)->dynverref_hdr = *hdr;
1455 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
1456 break;
1457
1458 case SHT_SHLIB:
1459 return true;
1460
1461 default:
1462 /* Check for any processor-specific section types. */
1463 {
1464 if (bed->elf_backend_section_from_shdr)
1465 (*bed->elf_backend_section_from_shdr) (abfd, hdr, name);
1466 }
1467 break;
1468 }
1469
1470 return true;
1471 }
1472
1473 /* Given an ELF section number, retrieve the corresponding BFD
1474 section. */
1475
1476 asection *
1477 bfd_section_from_elf_index (abfd, index)
1478 bfd *abfd;
1479 unsigned int index;
1480 {
1481 BFD_ASSERT (index > 0 && index < SHN_LORESERVE);
1482 if (index >= elf_elfheader (abfd)->e_shnum)
1483 return NULL;
1484 return elf_elfsections (abfd)[index]->bfd_section;
1485 }
1486
1487 boolean
1488 _bfd_elf_new_section_hook (abfd, sec)
1489 bfd *abfd;
1490 asection *sec;
1491 {
1492 struct bfd_elf_section_data *sdata;
1493
1494 sdata = (struct bfd_elf_section_data *) bfd_zalloc (abfd, sizeof (*sdata));
1495 if (!sdata)
1496 return false;
1497 sec->used_by_bfd = (PTR) sdata;
1498
1499 /* Indicate whether or not this section should use RELA relocations. */
1500 sdata->use_rela_p
1501 = get_elf_backend_data (abfd)->default_use_rela_p;
1502
1503 return true;
1504 }
1505
1506 /* Create a new bfd section from an ELF program header.
1507
1508 Since program segments have no names, we generate a synthetic name
1509 of the form segment<NUM>, where NUM is generally the index in the
1510 program header table. For segments that are split (see below) we
1511 generate the names segment<NUM>a and segment<NUM>b.
1512
1513 Note that some program segments may have a file size that is different than
1514 (less than) the memory size. All this means is that at execution the
1515 system must allocate the amount of memory specified by the memory size,
1516 but only initialize it with the first "file size" bytes read from the
1517 file. This would occur for example, with program segments consisting
1518 of combined data+bss.
1519
1520 To handle the above situation, this routine generates TWO bfd sections
1521 for the single program segment. The first has the length specified by
1522 the file size of the segment, and the second has the length specified
1523 by the difference between the two sizes. In effect, the segment is split
1524 into it's initialized and uninitialized parts.
1525
1526 */
1527
1528 boolean
1529 _bfd_elf_make_section_from_phdr (abfd, hdr, index, typename)
1530 bfd *abfd;
1531 Elf_Internal_Phdr *hdr;
1532 int index;
1533 const char *typename;
1534 {
1535 asection *newsect;
1536 char *name;
1537 char namebuf[64];
1538 int split;
1539
1540 split = ((hdr->p_memsz > 0)
1541 && (hdr->p_filesz > 0)
1542 && (hdr->p_memsz > hdr->p_filesz));
1543 sprintf (namebuf, "%s%d%s", typename, index, split ? "a" : "");
1544 name = bfd_alloc (abfd, strlen (namebuf) + 1);
1545 if (!name)
1546 return false;
1547 strcpy (name, namebuf);
1548 newsect = bfd_make_section (abfd, name);
1549 if (newsect == NULL)
1550 return false;
1551 newsect->vma = hdr->p_vaddr;
1552 newsect->lma = hdr->p_paddr;
1553 newsect->_raw_size = hdr->p_filesz;
1554 newsect->filepos = hdr->p_offset;
1555 newsect->flags |= SEC_HAS_CONTENTS;
1556 if (hdr->p_type == PT_LOAD)
1557 {
1558 newsect->flags |= SEC_ALLOC;
1559 newsect->flags |= SEC_LOAD;
1560 if (hdr->p_flags & PF_X)
1561 {
1562 /* FIXME: all we known is that it has execute PERMISSION,
1563 may be data. */
1564 newsect->flags |= SEC_CODE;
1565 }
1566 }
1567 if (!(hdr->p_flags & PF_W))
1568 {
1569 newsect->flags |= SEC_READONLY;
1570 }
1571
1572 if (split)
1573 {
1574 sprintf (namebuf, "%s%db", typename, index);
1575 name = bfd_alloc (abfd, strlen (namebuf) + 1);
1576 if (!name)
1577 return false;
1578 strcpy (name, namebuf);
1579 newsect = bfd_make_section (abfd, name);
1580 if (newsect == NULL)
1581 return false;
1582 newsect->vma = hdr->p_vaddr + hdr->p_filesz;
1583 newsect->lma = hdr->p_paddr + hdr->p_filesz;
1584 newsect->_raw_size = hdr->p_memsz - hdr->p_filesz;
1585 if (hdr->p_type == PT_LOAD)
1586 {
1587 newsect->flags |= SEC_ALLOC;
1588 if (hdr->p_flags & PF_X)
1589 newsect->flags |= SEC_CODE;
1590 }
1591 if (!(hdr->p_flags & PF_W))
1592 newsect->flags |= SEC_READONLY;
1593 }
1594
1595 return true;
1596 }
1597
1598 boolean
1599 bfd_section_from_phdr (abfd, hdr, index)
1600 bfd *abfd;
1601 Elf_Internal_Phdr *hdr;
1602 int index;
1603 {
1604 struct elf_backend_data *bed;
1605
1606 switch (hdr->p_type)
1607 {
1608 case PT_NULL:
1609 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "null");
1610
1611 case PT_LOAD:
1612 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "load");
1613
1614 case PT_DYNAMIC:
1615 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "dynamic");
1616
1617 case PT_INTERP:
1618 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "interp");
1619
1620 case PT_NOTE:
1621 if (! _bfd_elf_make_section_from_phdr (abfd, hdr, index, "note"))
1622 return false;
1623 if (! elfcore_read_notes (abfd, hdr->p_offset, hdr->p_filesz))
1624 return false;
1625 return true;
1626
1627 case PT_SHLIB:
1628 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "shlib");
1629
1630 case PT_PHDR:
1631 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "phdr");
1632
1633 default:
1634 /* Check for any processor-specific program segment types.
1635 If no handler for them, default to making "segment" sections. */
1636 bed = get_elf_backend_data (abfd);
1637 if (bed->elf_backend_section_from_phdr)
1638 return (*bed->elf_backend_section_from_phdr) (abfd, hdr, index);
1639 else
1640 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "segment");
1641 }
1642 }
1643
1644 /* Initialize REL_HDR, the section-header for new section, containing
1645 relocations against ASECT. If USE_RELA_P is true, we use RELA
1646 relocations; otherwise, we use REL relocations. */
1647
1648 boolean
1649 _bfd_elf_init_reloc_shdr (abfd, rel_hdr, asect, use_rela_p)
1650 bfd *abfd;
1651 Elf_Internal_Shdr *rel_hdr;
1652 asection *asect;
1653 boolean use_rela_p;
1654 {
1655 char *name;
1656 struct elf_backend_data *bed;
1657
1658 bed = get_elf_backend_data (abfd);
1659 name = bfd_alloc (abfd, sizeof ".rela" + strlen (asect->name));
1660 if (name == NULL)
1661 return false;
1662 sprintf (name, "%s%s", use_rela_p ? ".rela" : ".rel", asect->name);
1663 rel_hdr->sh_name =
1664 (unsigned int) _bfd_stringtab_add (elf_shstrtab (abfd), name,
1665 true, false);
1666 if (rel_hdr->sh_name == (unsigned int) -1)
1667 return false;
1668 rel_hdr->sh_type = use_rela_p ? SHT_RELA : SHT_REL;
1669 rel_hdr->sh_entsize = (use_rela_p
1670 ? bed->s->sizeof_rela
1671 : bed->s->sizeof_rel);
1672 rel_hdr->sh_addralign = bed->s->file_align;
1673 rel_hdr->sh_flags = 0;
1674 rel_hdr->sh_addr = 0;
1675 rel_hdr->sh_size = 0;
1676 rel_hdr->sh_offset = 0;
1677
1678 return true;
1679 }
1680
1681 /* Set up an ELF internal section header for a section. */
1682
1683 static void
1684 elf_fake_sections (abfd, asect, failedptrarg)
1685 bfd *abfd;
1686 asection *asect;
1687 PTR failedptrarg;
1688 {
1689 struct elf_backend_data *bed = get_elf_backend_data (abfd);
1690 boolean *failedptr = (boolean *) failedptrarg;
1691 Elf_Internal_Shdr *this_hdr;
1692
1693 if (*failedptr)
1694 {
1695 /* We already failed; just get out of the bfd_map_over_sections
1696 loop. */
1697 return;
1698 }
1699
1700 this_hdr = &elf_section_data (asect)->this_hdr;
1701
1702 this_hdr->sh_name = (unsigned long) _bfd_stringtab_add (elf_shstrtab (abfd),
1703 asect->name,
1704 true, false);
1705 if (this_hdr->sh_name == (unsigned long) -1)
1706 {
1707 *failedptr = true;
1708 return;
1709 }
1710
1711 this_hdr->sh_flags = 0;
1712
1713 if ((asect->flags & SEC_ALLOC) != 0
1714 || asect->user_set_vma)
1715 this_hdr->sh_addr = asect->vma;
1716 else
1717 this_hdr->sh_addr = 0;
1718
1719 this_hdr->sh_offset = 0;
1720 this_hdr->sh_size = asect->_raw_size;
1721 this_hdr->sh_link = 0;
1722 this_hdr->sh_addralign = 1 << asect->alignment_power;
1723 /* The sh_entsize and sh_info fields may have been set already by
1724 copy_private_section_data. */
1725
1726 this_hdr->bfd_section = asect;
1727 this_hdr->contents = NULL;
1728
1729 /* FIXME: This should not be based on section names. */
1730 if (strcmp (asect->name, ".dynstr") == 0)
1731 this_hdr->sh_type = SHT_STRTAB;
1732 else if (strcmp (asect->name, ".hash") == 0)
1733 {
1734 this_hdr->sh_type = SHT_HASH;
1735 this_hdr->sh_entsize = bed->s->sizeof_hash_entry;
1736 }
1737 else if (strcmp (asect->name, ".dynsym") == 0)
1738 {
1739 this_hdr->sh_type = SHT_DYNSYM;
1740 this_hdr->sh_entsize = bed->s->sizeof_sym;
1741 }
1742 else if (strcmp (asect->name, ".dynamic") == 0)
1743 {
1744 this_hdr->sh_type = SHT_DYNAMIC;
1745 this_hdr->sh_entsize = bed->s->sizeof_dyn;
1746 }
1747 else if (strncmp (asect->name, ".rela", 5) == 0
1748 && get_elf_backend_data (abfd)->may_use_rela_p)
1749 {
1750 this_hdr->sh_type = SHT_RELA;
1751 this_hdr->sh_entsize = bed->s->sizeof_rela;
1752 }
1753 else if (strncmp (asect->name, ".rel", 4) == 0
1754 && get_elf_backend_data (abfd)->may_use_rel_p)
1755 {
1756 this_hdr->sh_type = SHT_REL;
1757 this_hdr->sh_entsize = bed->s->sizeof_rel;
1758 }
1759 else if (strncmp (asect->name, ".note", 5) == 0)
1760 this_hdr->sh_type = SHT_NOTE;
1761 else if (strncmp (asect->name, ".stab", 5) == 0
1762 && strcmp (asect->name + strlen (asect->name) - 3, "str") == 0)
1763 this_hdr->sh_type = SHT_STRTAB;
1764 else if (strcmp (asect->name, ".gnu.version") == 0)
1765 {
1766 this_hdr->sh_type = SHT_GNU_versym;
1767 this_hdr->sh_entsize = sizeof (Elf_External_Versym);
1768 }
1769 else if (strcmp (asect->name, ".gnu.version_d") == 0)
1770 {
1771 this_hdr->sh_type = SHT_GNU_verdef;
1772 this_hdr->sh_entsize = 0;
1773 /* objcopy or strip will copy over sh_info, but may not set
1774 cverdefs. The linker will set cverdefs, but sh_info will be
1775 zero. */
1776 if (this_hdr->sh_info == 0)
1777 this_hdr->sh_info = elf_tdata (abfd)->cverdefs;
1778 else
1779 BFD_ASSERT (elf_tdata (abfd)->cverdefs == 0
1780 || this_hdr->sh_info == elf_tdata (abfd)->cverdefs);
1781 }
1782 else if (strcmp (asect->name, ".gnu.version_r") == 0)
1783 {
1784 this_hdr->sh_type = SHT_GNU_verneed;
1785 this_hdr->sh_entsize = 0;
1786 /* objcopy or strip will copy over sh_info, but may not set
1787 cverrefs. The linker will set cverrefs, but sh_info will be
1788 zero. */
1789 if (this_hdr->sh_info == 0)
1790 this_hdr->sh_info = elf_tdata (abfd)->cverrefs;
1791 else
1792 BFD_ASSERT (elf_tdata (abfd)->cverrefs == 0
1793 || this_hdr->sh_info == elf_tdata (abfd)->cverrefs);
1794 }
1795 else if ((asect->flags & SEC_ALLOC) != 0
1796 && ((asect->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0))
1797 this_hdr->sh_type = SHT_NOBITS;
1798 else
1799 this_hdr->sh_type = SHT_PROGBITS;
1800
1801 if ((asect->flags & SEC_ALLOC) != 0)
1802 this_hdr->sh_flags |= SHF_ALLOC;
1803 if ((asect->flags & SEC_READONLY) == 0)
1804 this_hdr->sh_flags |= SHF_WRITE;
1805 if ((asect->flags & SEC_CODE) != 0)
1806 this_hdr->sh_flags |= SHF_EXECINSTR;
1807
1808 /* Check for processor-specific section types. */
1809 if (bed->elf_backend_fake_sections)
1810 (*bed->elf_backend_fake_sections) (abfd, this_hdr, asect);
1811
1812 /* If the section has relocs, set up a section header for the
1813 SHT_REL[A] section. If two relocation sections are required for
1814 this section, it is up to the processor-specific back-end to
1815 create the other. */
1816 if ((asect->flags & SEC_RELOC) != 0
1817 && !_bfd_elf_init_reloc_shdr (abfd,
1818 &elf_section_data (asect)->rel_hdr,
1819 asect,
1820 elf_section_data (asect)->use_rela_p))
1821 *failedptr = true;
1822 }
1823
1824 /* Assign all ELF section numbers. The dummy first section is handled here
1825 too. The link/info pointers for the standard section types are filled
1826 in here too, while we're at it. */
1827
1828 static boolean
1829 assign_section_numbers (abfd)
1830 bfd *abfd;
1831 {
1832 struct elf_obj_tdata *t = elf_tdata (abfd);
1833 asection *sec;
1834 unsigned int section_number;
1835 Elf_Internal_Shdr **i_shdrp;
1836
1837 section_number = 1;
1838
1839 for (sec = abfd->sections; sec; sec = sec->next)
1840 {
1841 struct bfd_elf_section_data *d = elf_section_data (sec);
1842
1843 d->this_idx = section_number++;
1844 if ((sec->flags & SEC_RELOC) == 0)
1845 d->rel_idx = 0;
1846 else
1847 d->rel_idx = section_number++;
1848
1849 if (d->rel_hdr2)
1850 d->rel_idx2 = section_number++;
1851 else
1852 d->rel_idx2 = 0;
1853 }
1854
1855 t->shstrtab_section = section_number++;
1856 elf_elfheader (abfd)->e_shstrndx = t->shstrtab_section;
1857 t->shstrtab_hdr.sh_size = _bfd_stringtab_size (elf_shstrtab (abfd));
1858
1859 if (bfd_get_symcount (abfd) > 0)
1860 {
1861 t->symtab_section = section_number++;
1862 t->strtab_section = section_number++;
1863 }
1864
1865 elf_elfheader (abfd)->e_shnum = section_number;
1866
1867 /* Set up the list of section header pointers, in agreement with the
1868 indices. */
1869 i_shdrp = ((Elf_Internal_Shdr **)
1870 bfd_alloc (abfd, section_number * sizeof (Elf_Internal_Shdr *)));
1871 if (i_shdrp == NULL)
1872 return false;
1873
1874 i_shdrp[0] = ((Elf_Internal_Shdr *)
1875 bfd_alloc (abfd, sizeof (Elf_Internal_Shdr)));
1876 if (i_shdrp[0] == NULL)
1877 {
1878 bfd_release (abfd, i_shdrp);
1879 return false;
1880 }
1881 memset (i_shdrp[0], 0, sizeof (Elf_Internal_Shdr));
1882
1883 elf_elfsections (abfd) = i_shdrp;
1884
1885 i_shdrp[t->shstrtab_section] = &t->shstrtab_hdr;
1886 if (bfd_get_symcount (abfd) > 0)
1887 {
1888 i_shdrp[t->symtab_section] = &t->symtab_hdr;
1889 i_shdrp[t->strtab_section] = &t->strtab_hdr;
1890 t->symtab_hdr.sh_link = t->strtab_section;
1891 }
1892 for (sec = abfd->sections; sec; sec = sec->next)
1893 {
1894 struct bfd_elf_section_data *d = elf_section_data (sec);
1895 asection *s;
1896 const char *name;
1897
1898 i_shdrp[d->this_idx] = &d->this_hdr;
1899 if (d->rel_idx != 0)
1900 i_shdrp[d->rel_idx] = &d->rel_hdr;
1901 if (d->rel_idx2 != 0)
1902 i_shdrp[d->rel_idx2] = d->rel_hdr2;
1903
1904 /* Fill in the sh_link and sh_info fields while we're at it. */
1905
1906 /* sh_link of a reloc section is the section index of the symbol
1907 table. sh_info is the section index of the section to which
1908 the relocation entries apply. */
1909 if (d->rel_idx != 0)
1910 {
1911 d->rel_hdr.sh_link = t->symtab_section;
1912 d->rel_hdr.sh_info = d->this_idx;
1913 }
1914 if (d->rel_idx2 != 0)
1915 {
1916 d->rel_hdr2->sh_link = t->symtab_section;
1917 d->rel_hdr2->sh_info = d->this_idx;
1918 }
1919
1920 switch (d->this_hdr.sh_type)
1921 {
1922 case SHT_REL:
1923 case SHT_RELA:
1924 /* A reloc section which we are treating as a normal BFD
1925 section. sh_link is the section index of the symbol
1926 table. sh_info is the section index of the section to
1927 which the relocation entries apply. We assume that an
1928 allocated reloc section uses the dynamic symbol table.
1929 FIXME: How can we be sure? */
1930 s = bfd_get_section_by_name (abfd, ".dynsym");
1931 if (s != NULL)
1932 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
1933
1934 /* We look up the section the relocs apply to by name. */
1935 name = sec->name;
1936 if (d->this_hdr.sh_type == SHT_REL)
1937 name += 4;
1938 else
1939 name += 5;
1940 s = bfd_get_section_by_name (abfd, name);
1941 if (s != NULL)
1942 d->this_hdr.sh_info = elf_section_data (s)->this_idx;
1943 break;
1944
1945 case SHT_STRTAB:
1946 /* We assume that a section named .stab*str is a stabs
1947 string section. We look for a section with the same name
1948 but without the trailing ``str'', and set its sh_link
1949 field to point to this section. */
1950 if (strncmp (sec->name, ".stab", sizeof ".stab" - 1) == 0
1951 && strcmp (sec->name + strlen (sec->name) - 3, "str") == 0)
1952 {
1953 size_t len;
1954 char *alc;
1955
1956 len = strlen (sec->name);
1957 alc = (char *) bfd_malloc (len - 2);
1958 if (alc == NULL)
1959 return false;
1960 strncpy (alc, sec->name, len - 3);
1961 alc[len - 3] = '\0';
1962 s = bfd_get_section_by_name (abfd, alc);
1963 free (alc);
1964 if (s != NULL)
1965 {
1966 elf_section_data (s)->this_hdr.sh_link = d->this_idx;
1967
1968 /* This is a .stab section. */
1969 elf_section_data (s)->this_hdr.sh_entsize =
1970 4 + 2 * bfd_get_arch_size (abfd) / 8;
1971 }
1972 }
1973 break;
1974
1975 case SHT_DYNAMIC:
1976 case SHT_DYNSYM:
1977 case SHT_GNU_verneed:
1978 case SHT_GNU_verdef:
1979 /* sh_link is the section header index of the string table
1980 used for the dynamic entries, or the symbol table, or the
1981 version strings. */
1982 s = bfd_get_section_by_name (abfd, ".dynstr");
1983 if (s != NULL)
1984 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
1985 break;
1986
1987 case SHT_HASH:
1988 case SHT_GNU_versym:
1989 /* sh_link is the section header index of the symbol table
1990 this hash table or version table is for. */
1991 s = bfd_get_section_by_name (abfd, ".dynsym");
1992 if (s != NULL)
1993 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
1994 break;
1995 }
1996 }
1997
1998 return true;
1999 }
2000
2001 /* Map symbol from it's internal number to the external number, moving
2002 all local symbols to be at the head of the list. */
2003
2004 static INLINE int
2005 sym_is_global (abfd, sym)
2006 bfd *abfd;
2007 asymbol *sym;
2008 {
2009 /* If the backend has a special mapping, use it. */
2010 if (get_elf_backend_data (abfd)->elf_backend_sym_is_global)
2011 return ((*get_elf_backend_data (abfd)->elf_backend_sym_is_global)
2012 (abfd, sym));
2013
2014 return ((sym->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
2015 || bfd_is_und_section (bfd_get_section (sym))
2016 || bfd_is_com_section (bfd_get_section (sym)));
2017 }
2018
2019 static boolean
2020 elf_map_symbols (abfd)
2021 bfd *abfd;
2022 {
2023 int symcount = bfd_get_symcount (abfd);
2024 asymbol **syms = bfd_get_outsymbols (abfd);
2025 asymbol **sect_syms;
2026 int num_locals = 0;
2027 int num_globals = 0;
2028 int num_locals2 = 0;
2029 int num_globals2 = 0;
2030 int max_index = 0;
2031 int num_sections = 0;
2032 int idx;
2033 asection *asect;
2034 asymbol **new_syms;
2035 asymbol *sym;
2036
2037 #ifdef DEBUG
2038 fprintf (stderr, "elf_map_symbols\n");
2039 fflush (stderr);
2040 #endif
2041
2042 /* Add a section symbol for each BFD section. FIXME: Is this really
2043 necessary? */
2044 for (asect = abfd->sections; asect; asect = asect->next)
2045 {
2046 if (max_index < asect->index)
2047 max_index = asect->index;
2048 }
2049
2050 max_index++;
2051 sect_syms = (asymbol **) bfd_zalloc (abfd, max_index * sizeof (asymbol *));
2052 if (sect_syms == NULL)
2053 return false;
2054 elf_section_syms (abfd) = sect_syms;
2055
2056 for (idx = 0; idx < symcount; idx++)
2057 {
2058 sym = syms[idx];
2059
2060 if ((sym->flags & BSF_SECTION_SYM) != 0
2061 && sym->value == 0)
2062 {
2063 asection *sec;
2064
2065 sec = sym->section;
2066
2067 if (sec->owner != NULL)
2068 {
2069 if (sec->owner != abfd)
2070 {
2071 if (sec->output_offset != 0)
2072 continue;
2073
2074 sec = sec->output_section;
2075
2076 /* Empty sections in the input files may have had a section
2077 symbol created for them. (See the comment near the end of
2078 _bfd_generic_link_output_symbols in linker.c). If the linker
2079 script discards such sections then we will reach this point.
2080 Since we know that we cannot avoid this case, we detect it
2081 and skip the abort and the assignment to the sect_syms array.
2082 To reproduce this particular case try running the linker
2083 testsuite test ld-scripts/weak.exp for an ELF port that uses
2084 the generic linker. */
2085 if (sec->owner == NULL)
2086 continue;
2087
2088 BFD_ASSERT (sec->owner == abfd);
2089 }
2090 sect_syms[sec->index] = syms[idx];
2091 }
2092 }
2093 }
2094
2095 for (asect = abfd->sections; asect; asect = asect->next)
2096 {
2097 if (sect_syms[asect->index] != NULL)
2098 continue;
2099
2100 sym = bfd_make_empty_symbol (abfd);
2101 if (sym == NULL)
2102 return false;
2103 sym->the_bfd = abfd;
2104 sym->name = asect->name;
2105 sym->value = 0;
2106 /* Set the flags to 0 to indicate that this one was newly added. */
2107 sym->flags = 0;
2108 sym->section = asect;
2109 sect_syms[asect->index] = sym;
2110 num_sections++;
2111 #ifdef DEBUG
2112 fprintf (stderr,
2113 _("creating section symbol, name = %s, value = 0x%.8lx, index = %d, section = 0x%.8lx\n"),
2114 asect->name, (long) asect->vma, asect->index, (long) asect);
2115 #endif
2116 }
2117
2118 /* Classify all of the symbols. */
2119 for (idx = 0; idx < symcount; idx++)
2120 {
2121 if (!sym_is_global (abfd, syms[idx]))
2122 num_locals++;
2123 else
2124 num_globals++;
2125 }
2126 for (asect = abfd->sections; asect; asect = asect->next)
2127 {
2128 if (sect_syms[asect->index] != NULL
2129 && sect_syms[asect->index]->flags == 0)
2130 {
2131 sect_syms[asect->index]->flags = BSF_SECTION_SYM;
2132 if (!sym_is_global (abfd, sect_syms[asect->index]))
2133 num_locals++;
2134 else
2135 num_globals++;
2136 sect_syms[asect->index]->flags = 0;
2137 }
2138 }
2139
2140 /* Now sort the symbols so the local symbols are first. */
2141 new_syms = ((asymbol **)
2142 bfd_alloc (abfd,
2143 (num_locals + num_globals) * sizeof (asymbol *)));
2144 if (new_syms == NULL)
2145 return false;
2146
2147 for (idx = 0; idx < symcount; idx++)
2148 {
2149 asymbol *sym = syms[idx];
2150 int i;
2151
2152 if (!sym_is_global (abfd, sym))
2153 i = num_locals2++;
2154 else
2155 i = num_locals + num_globals2++;
2156 new_syms[i] = sym;
2157 sym->udata.i = i + 1;
2158 }
2159 for (asect = abfd->sections; asect; asect = asect->next)
2160 {
2161 if (sect_syms[asect->index] != NULL
2162 && sect_syms[asect->index]->flags == 0)
2163 {
2164 asymbol *sym = sect_syms[asect->index];
2165 int i;
2166
2167 sym->flags = BSF_SECTION_SYM;
2168 if (!sym_is_global (abfd, sym))
2169 i = num_locals2++;
2170 else
2171 i = num_locals + num_globals2++;
2172 new_syms[i] = sym;
2173 sym->udata.i = i + 1;
2174 }
2175 }
2176
2177 bfd_set_symtab (abfd, new_syms, num_locals + num_globals);
2178
2179 elf_num_locals (abfd) = num_locals;
2180 elf_num_globals (abfd) = num_globals;
2181 return true;
2182 }
2183
2184 /* Align to the maximum file alignment that could be required for any
2185 ELF data structure. */
2186
2187 static INLINE file_ptr align_file_position PARAMS ((file_ptr, int));
2188 static INLINE file_ptr
2189 align_file_position (off, align)
2190 file_ptr off;
2191 int align;
2192 {
2193 return (off + align - 1) & ~(align - 1);
2194 }
2195
2196 /* Assign a file position to a section, optionally aligning to the
2197 required section alignment. */
2198
2199 INLINE file_ptr
2200 _bfd_elf_assign_file_position_for_section (i_shdrp, offset, align)
2201 Elf_Internal_Shdr *i_shdrp;
2202 file_ptr offset;
2203 boolean align;
2204 {
2205 if (align)
2206 {
2207 unsigned int al;
2208
2209 al = i_shdrp->sh_addralign;
2210 if (al > 1)
2211 offset = BFD_ALIGN (offset, al);
2212 }
2213 i_shdrp->sh_offset = offset;
2214 if (i_shdrp->bfd_section != NULL)
2215 i_shdrp->bfd_section->filepos = offset;
2216 if (i_shdrp->sh_type != SHT_NOBITS)
2217 offset += i_shdrp->sh_size;
2218 return offset;
2219 }
2220
2221 /* Compute the file positions we are going to put the sections at, and
2222 otherwise prepare to begin writing out the ELF file. If LINK_INFO
2223 is not NULL, this is being called by the ELF backend linker. */
2224
2225 boolean
2226 _bfd_elf_compute_section_file_positions (abfd, link_info)
2227 bfd *abfd;
2228 struct bfd_link_info *link_info;
2229 {
2230 struct elf_backend_data *bed = get_elf_backend_data (abfd);
2231 boolean failed;
2232 struct bfd_strtab_hash *strtab;
2233 Elf_Internal_Shdr *shstrtab_hdr;
2234
2235 if (abfd->output_has_begun)
2236 return true;
2237
2238 /* Do any elf backend specific processing first. */
2239 if (bed->elf_backend_begin_write_processing)
2240 (*bed->elf_backend_begin_write_processing) (abfd, link_info);
2241
2242 if (! prep_headers (abfd))
2243 return false;
2244
2245 /* Post process the headers if necessary. */
2246 if (bed->elf_backend_post_process_headers)
2247 (*bed->elf_backend_post_process_headers) (abfd, link_info);
2248
2249 failed = false;
2250 bfd_map_over_sections (abfd, elf_fake_sections, &failed);
2251 if (failed)
2252 return false;
2253
2254 if (!assign_section_numbers (abfd))
2255 return false;
2256
2257 /* The backend linker builds symbol table information itself. */
2258 if (link_info == NULL && bfd_get_symcount (abfd) > 0)
2259 {
2260 /* Non-zero if doing a relocatable link. */
2261 int relocatable_p = ! (abfd->flags & (EXEC_P | DYNAMIC));
2262
2263 if (! swap_out_syms (abfd, &strtab, relocatable_p))
2264 return false;
2265 }
2266
2267 shstrtab_hdr = &elf_tdata (abfd)->shstrtab_hdr;
2268 /* sh_name was set in prep_headers. */
2269 shstrtab_hdr->sh_type = SHT_STRTAB;
2270 shstrtab_hdr->sh_flags = 0;
2271 shstrtab_hdr->sh_addr = 0;
2272 shstrtab_hdr->sh_size = _bfd_stringtab_size (elf_shstrtab (abfd));
2273 shstrtab_hdr->sh_entsize = 0;
2274 shstrtab_hdr->sh_link = 0;
2275 shstrtab_hdr->sh_info = 0;
2276 /* sh_offset is set in assign_file_positions_except_relocs. */
2277 shstrtab_hdr->sh_addralign = 1;
2278
2279 if (!assign_file_positions_except_relocs (abfd))
2280 return false;
2281
2282 if (link_info == NULL && bfd_get_symcount (abfd) > 0)
2283 {
2284 file_ptr off;
2285 Elf_Internal_Shdr *hdr;
2286
2287 off = elf_tdata (abfd)->next_file_pos;
2288
2289 hdr = &elf_tdata (abfd)->symtab_hdr;
2290 off = _bfd_elf_assign_file_position_for_section (hdr, off, true);
2291
2292 hdr = &elf_tdata (abfd)->strtab_hdr;
2293 off = _bfd_elf_assign_file_position_for_section (hdr, off, true);
2294
2295 elf_tdata (abfd)->next_file_pos = off;
2296
2297 /* Now that we know where the .strtab section goes, write it
2298 out. */
2299 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
2300 || ! _bfd_stringtab_emit (abfd, strtab))
2301 return false;
2302 _bfd_stringtab_free (strtab);
2303 }
2304
2305 abfd->output_has_begun = true;
2306
2307 return true;
2308 }
2309
2310 /* Create a mapping from a set of sections to a program segment. */
2311
2312 static INLINE struct elf_segment_map *
2313 make_mapping (abfd, sections, from, to, phdr)
2314 bfd *abfd;
2315 asection **sections;
2316 unsigned int from;
2317 unsigned int to;
2318 boolean phdr;
2319 {
2320 struct elf_segment_map *m;
2321 unsigned int i;
2322 asection **hdrpp;
2323
2324 m = ((struct elf_segment_map *)
2325 bfd_zalloc (abfd,
2326 (sizeof (struct elf_segment_map)
2327 + (to - from - 1) * sizeof (asection *))));
2328 if (m == NULL)
2329 return NULL;
2330 m->next = NULL;
2331 m->p_type = PT_LOAD;
2332 for (i = from, hdrpp = sections + from; i < to; i++, hdrpp++)
2333 m->sections[i - from] = *hdrpp;
2334 m->count = to - from;
2335
2336 if (from == 0 && phdr)
2337 {
2338 /* Include the headers in the first PT_LOAD segment. */
2339 m->includes_filehdr = 1;
2340 m->includes_phdrs = 1;
2341 }
2342
2343 return m;
2344 }
2345
2346 /* Set up a mapping from BFD sections to program segments. */
2347
2348 static boolean
2349 map_sections_to_segments (abfd)
2350 bfd *abfd;
2351 {
2352 asection **sections = NULL;
2353 asection *s;
2354 unsigned int i;
2355 unsigned int count;
2356 struct elf_segment_map *mfirst;
2357 struct elf_segment_map **pm;
2358 struct elf_segment_map *m;
2359 asection *last_hdr;
2360 unsigned int phdr_index;
2361 bfd_vma maxpagesize;
2362 asection **hdrpp;
2363 boolean phdr_in_segment = true;
2364 boolean writable;
2365 asection *dynsec;
2366
2367 if (elf_tdata (abfd)->segment_map != NULL)
2368 return true;
2369
2370 if (bfd_count_sections (abfd) == 0)
2371 return true;
2372
2373 /* Select the allocated sections, and sort them. */
2374
2375 sections = (asection **) bfd_malloc (bfd_count_sections (abfd)
2376 * sizeof (asection *));
2377 if (sections == NULL)
2378 goto error_return;
2379
2380 i = 0;
2381 for (s = abfd->sections; s != NULL; s = s->next)
2382 {
2383 if ((s->flags & SEC_ALLOC) != 0)
2384 {
2385 sections[i] = s;
2386 ++i;
2387 }
2388 }
2389 BFD_ASSERT (i <= bfd_count_sections (abfd));
2390 count = i;
2391
2392 qsort (sections, (size_t) count, sizeof (asection *), elf_sort_sections);
2393
2394 /* Build the mapping. */
2395
2396 mfirst = NULL;
2397 pm = &mfirst;
2398
2399 /* If we have a .interp section, then create a PT_PHDR segment for
2400 the program headers and a PT_INTERP segment for the .interp
2401 section. */
2402 s = bfd_get_section_by_name (abfd, ".interp");
2403 if (s != NULL && (s->flags & SEC_LOAD) != 0)
2404 {
2405 m = ((struct elf_segment_map *)
2406 bfd_zalloc (abfd, sizeof (struct elf_segment_map)));
2407 if (m == NULL)
2408 goto error_return;
2409 m->next = NULL;
2410 m->p_type = PT_PHDR;
2411 /* FIXME: UnixWare and Solaris set PF_X, Irix 5 does not. */
2412 m->p_flags = PF_R | PF_X;
2413 m->p_flags_valid = 1;
2414 m->includes_phdrs = 1;
2415
2416 *pm = m;
2417 pm = &m->next;
2418
2419 m = ((struct elf_segment_map *)
2420 bfd_zalloc (abfd, sizeof (struct elf_segment_map)));
2421 if (m == NULL)
2422 goto error_return;
2423 m->next = NULL;
2424 m->p_type = PT_INTERP;
2425 m->count = 1;
2426 m->sections[0] = s;
2427
2428 *pm = m;
2429 pm = &m->next;
2430 }
2431
2432 /* Look through the sections. We put sections in the same program
2433 segment when the start of the second section can be placed within
2434 a few bytes of the end of the first section. */
2435 last_hdr = NULL;
2436 phdr_index = 0;
2437 maxpagesize = get_elf_backend_data (abfd)->maxpagesize;
2438 writable = false;
2439 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
2440 if (dynsec != NULL
2441 && (dynsec->flags & SEC_LOAD) == 0)
2442 dynsec = NULL;
2443
2444 /* Deal with -Ttext or something similar such that the first section
2445 is not adjacent to the program headers. This is an
2446 approximation, since at this point we don't know exactly how many
2447 program headers we will need. */
2448 if (count > 0)
2449 {
2450 bfd_size_type phdr_size;
2451
2452 phdr_size = elf_tdata (abfd)->program_header_size;
2453 if (phdr_size == 0)
2454 phdr_size = get_elf_backend_data (abfd)->s->sizeof_phdr;
2455 if ((abfd->flags & D_PAGED) == 0
2456 || sections[0]->lma < phdr_size
2457 || sections[0]->lma % maxpagesize < phdr_size % maxpagesize)
2458 phdr_in_segment = false;
2459 }
2460
2461 for (i = 0, hdrpp = sections; i < count; i++, hdrpp++)
2462 {
2463 asection *hdr;
2464 boolean new_segment;
2465
2466 hdr = *hdrpp;
2467
2468 /* See if this section and the last one will fit in the same
2469 segment. */
2470
2471 if (last_hdr == NULL)
2472 {
2473 /* If we don't have a segment yet, then we don't need a new
2474 one (we build the last one after this loop). */
2475 new_segment = false;
2476 }
2477 else if (last_hdr->lma - last_hdr->vma != hdr->lma - hdr->vma)
2478 {
2479 /* If this section has a different relation between the
2480 virtual address and the load address, then we need a new
2481 segment. */
2482 new_segment = true;
2483 }
2484 else if (BFD_ALIGN (last_hdr->lma + last_hdr->_raw_size, maxpagesize)
2485 < BFD_ALIGN (hdr->lma, maxpagesize))
2486 {
2487 /* If putting this section in this segment would force us to
2488 skip a page in the segment, then we need a new segment. */
2489 new_segment = true;
2490 }
2491 else if ((last_hdr->flags & SEC_LOAD) == 0
2492 && (hdr->flags & SEC_LOAD) != 0)
2493 {
2494 /* We don't want to put a loadable section after a
2495 nonloadable section in the same segment. */
2496 new_segment = true;
2497 }
2498 else if ((abfd->flags & D_PAGED) == 0)
2499 {
2500 /* If the file is not demand paged, which means that we
2501 don't require the sections to be correctly aligned in the
2502 file, then there is no other reason for a new segment. */
2503 new_segment = false;
2504 }
2505 else if (! writable
2506 && (hdr->flags & SEC_READONLY) == 0
2507 && (BFD_ALIGN (last_hdr->lma + last_hdr->_raw_size, maxpagesize)
2508 == hdr->lma))
2509 {
2510 /* We don't want to put a writable section in a read only
2511 segment, unless they are on the same page in memory
2512 anyhow. We already know that the last section does not
2513 bring us past the current section on the page, so the
2514 only case in which the new section is not on the same
2515 page as the previous section is when the previous section
2516 ends precisely on a page boundary. */
2517 new_segment = true;
2518 }
2519 else
2520 {
2521 /* Otherwise, we can use the same segment. */
2522 new_segment = false;
2523 }
2524
2525 if (! new_segment)
2526 {
2527 if ((hdr->flags & SEC_READONLY) == 0)
2528 writable = true;
2529 last_hdr = hdr;
2530 continue;
2531 }
2532
2533 /* We need a new program segment. We must create a new program
2534 header holding all the sections from phdr_index until hdr. */
2535
2536 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
2537 if (m == NULL)
2538 goto error_return;
2539
2540 *pm = m;
2541 pm = &m->next;
2542
2543 if ((hdr->flags & SEC_READONLY) == 0)
2544 writable = true;
2545 else
2546 writable = false;
2547
2548 last_hdr = hdr;
2549 phdr_index = i;
2550 phdr_in_segment = false;
2551 }
2552
2553 /* Create a final PT_LOAD program segment. */
2554 if (last_hdr != NULL)
2555 {
2556 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
2557 if (m == NULL)
2558 goto error_return;
2559
2560 *pm = m;
2561 pm = &m->next;
2562 }
2563
2564 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
2565 if (dynsec != NULL)
2566 {
2567 m = ((struct elf_segment_map *)
2568 bfd_zalloc (abfd, sizeof (struct elf_segment_map)));
2569 if (m == NULL)
2570 goto error_return;
2571 m->next = NULL;
2572 m->p_type = PT_DYNAMIC;
2573 m->count = 1;
2574 m->sections[0] = dynsec;
2575
2576 *pm = m;
2577 pm = &m->next;
2578 }
2579
2580 /* For each loadable .note section, add a PT_NOTE segment. We don't
2581 use bfd_get_section_by_name, because if we link together
2582 nonloadable .note sections and loadable .note sections, we will
2583 generate two .note sections in the output file. FIXME: Using
2584 names for section types is bogus anyhow. */
2585 for (s = abfd->sections; s != NULL; s = s->next)
2586 {
2587 if ((s->flags & SEC_LOAD) != 0
2588 && strncmp (s->name, ".note", 5) == 0)
2589 {
2590 m = ((struct elf_segment_map *)
2591 bfd_zalloc (abfd, sizeof (struct elf_segment_map)));
2592 if (m == NULL)
2593 goto error_return;
2594 m->next = NULL;
2595 m->p_type = PT_NOTE;
2596 m->count = 1;
2597 m->sections[0] = s;
2598
2599 *pm = m;
2600 pm = &m->next;
2601 }
2602 }
2603
2604 free (sections);
2605 sections = NULL;
2606
2607 elf_tdata (abfd)->segment_map = mfirst;
2608 return true;
2609
2610 error_return:
2611 if (sections != NULL)
2612 free (sections);
2613 return false;
2614 }
2615
2616 /* Sort sections by address. */
2617
2618 static int
2619 elf_sort_sections (arg1, arg2)
2620 const PTR arg1;
2621 const PTR arg2;
2622 {
2623 const asection *sec1 = *(const asection **) arg1;
2624 const asection *sec2 = *(const asection **) arg2;
2625
2626 /* Sort by LMA first, since this is the address used to
2627 place the section into a segment. */
2628 if (sec1->lma < sec2->lma)
2629 return -1;
2630 else if (sec1->lma > sec2->lma)
2631 return 1;
2632
2633 /* Then sort by VMA. Normally the LMA and the VMA will be
2634 the same, and this will do nothing. */
2635 if (sec1->vma < sec2->vma)
2636 return -1;
2637 else if (sec1->vma > sec2->vma)
2638 return 1;
2639
2640 /* Put !SEC_LOAD sections after SEC_LOAD ones. */
2641
2642 #define TOEND(x) (((x)->flags & SEC_LOAD) == 0)
2643
2644 if (TOEND (sec1))
2645 {
2646 if (TOEND (sec2))
2647 return sec1->target_index - sec2->target_index;
2648 else
2649 return 1;
2650 }
2651
2652 if (TOEND (sec2))
2653 return -1;
2654
2655 #undef TOEND
2656
2657 /* Sort by size, to put zero sized sections before others at the
2658 same address. */
2659
2660 if (sec1->_raw_size < sec2->_raw_size)
2661 return -1;
2662 if (sec1->_raw_size > sec2->_raw_size)
2663 return 1;
2664
2665 return sec1->target_index - sec2->target_index;
2666 }
2667
2668 /* Assign file positions to the sections based on the mapping from
2669 sections to segments. This function also sets up some fields in
2670 the file header, and writes out the program headers. */
2671
2672 static boolean
2673 assign_file_positions_for_segments (abfd)
2674 bfd *abfd;
2675 {
2676 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2677 unsigned int count;
2678 struct elf_segment_map *m;
2679 unsigned int alloc;
2680 Elf_Internal_Phdr *phdrs;
2681 file_ptr off, voff;
2682 bfd_vma filehdr_vaddr, filehdr_paddr;
2683 bfd_vma phdrs_vaddr, phdrs_paddr;
2684 Elf_Internal_Phdr *p;
2685
2686 if (elf_tdata (abfd)->segment_map == NULL)
2687 {
2688 if (! map_sections_to_segments (abfd))
2689 return false;
2690 }
2691
2692 if (bed->elf_backend_modify_segment_map)
2693 {
2694 if (! (*bed->elf_backend_modify_segment_map) (abfd))
2695 return false;
2696 }
2697
2698 count = 0;
2699 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
2700 ++count;
2701
2702 elf_elfheader (abfd)->e_phoff = bed->s->sizeof_ehdr;
2703 elf_elfheader (abfd)->e_phentsize = bed->s->sizeof_phdr;
2704 elf_elfheader (abfd)->e_phnum = count;
2705
2706 if (count == 0)
2707 return true;
2708
2709 /* If we already counted the number of program segments, make sure
2710 that we allocated enough space. This happens when SIZEOF_HEADERS
2711 is used in a linker script. */
2712 alloc = elf_tdata (abfd)->program_header_size / bed->s->sizeof_phdr;
2713 if (alloc != 0 && count > alloc)
2714 {
2715 ((*_bfd_error_handler)
2716 (_("%s: Not enough room for program headers (allocated %u, need %u)"),
2717 bfd_get_filename (abfd), alloc, count));
2718 bfd_set_error (bfd_error_bad_value);
2719 return false;
2720 }
2721
2722 if (alloc == 0)
2723 alloc = count;
2724
2725 phdrs = ((Elf_Internal_Phdr *)
2726 bfd_alloc (abfd, alloc * sizeof (Elf_Internal_Phdr)));
2727 if (phdrs == NULL)
2728 return false;
2729
2730 off = bed->s->sizeof_ehdr;
2731 off += alloc * bed->s->sizeof_phdr;
2732
2733 filehdr_vaddr = 0;
2734 filehdr_paddr = 0;
2735 phdrs_vaddr = 0;
2736 phdrs_paddr = 0;
2737
2738 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
2739 m != NULL;
2740 m = m->next, p++)
2741 {
2742 unsigned int i;
2743 asection **secpp;
2744
2745 /* If elf_segment_map is not from map_sections_to_segments, the
2746 sections may not be correctly ordered. */
2747 if (m->count > 0)
2748 qsort (m->sections, (size_t) m->count, sizeof (asection *),
2749 elf_sort_sections);
2750
2751 p->p_type = m->p_type;
2752 p->p_flags = m->p_flags;
2753
2754 if (p->p_type == PT_LOAD
2755 && m->count > 0
2756 && (m->sections[0]->flags & SEC_ALLOC) != 0)
2757 {
2758 if ((abfd->flags & D_PAGED) != 0)
2759 off += (m->sections[0]->vma - off) % bed->maxpagesize;
2760 else
2761 {
2762 bfd_size_type align;
2763
2764 align = 0;
2765 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
2766 {
2767 bfd_size_type secalign;
2768
2769 secalign = bfd_get_section_alignment (abfd, *secpp);
2770 if (secalign > align)
2771 align = secalign;
2772 }
2773
2774 off += (m->sections[0]->vma - off) % (1 << align);
2775 }
2776 }
2777
2778 if (m->count == 0)
2779 p->p_vaddr = 0;
2780 else
2781 p->p_vaddr = m->sections[0]->vma;
2782
2783 if (m->p_paddr_valid)
2784 p->p_paddr = m->p_paddr;
2785 else if (m->count == 0)
2786 p->p_paddr = 0;
2787 else
2788 p->p_paddr = m->sections[0]->lma;
2789
2790 if (p->p_type == PT_LOAD
2791 && (abfd->flags & D_PAGED) != 0)
2792 p->p_align = bed->maxpagesize;
2793 else if (m->count == 0)
2794 p->p_align = bed->s->file_align;
2795 else
2796 p->p_align = 0;
2797
2798 p->p_offset = 0;
2799 p->p_filesz = 0;
2800 p->p_memsz = 0;
2801
2802 if (m->includes_filehdr)
2803 {
2804 if (! m->p_flags_valid)
2805 p->p_flags |= PF_R;
2806 p->p_offset = 0;
2807 p->p_filesz = bed->s->sizeof_ehdr;
2808 p->p_memsz = bed->s->sizeof_ehdr;
2809 if (m->count > 0)
2810 {
2811 BFD_ASSERT (p->p_type == PT_LOAD);
2812
2813 if (p->p_vaddr < (bfd_vma) off)
2814 {
2815 _bfd_error_handler (_("%s: Not enough room for program headers, try linking with -N"),
2816 bfd_get_filename (abfd));
2817 bfd_set_error (bfd_error_bad_value);
2818 return false;
2819 }
2820
2821 p->p_vaddr -= off;
2822 if (! m->p_paddr_valid)
2823 p->p_paddr -= off;
2824 }
2825 if (p->p_type == PT_LOAD)
2826 {
2827 filehdr_vaddr = p->p_vaddr;
2828 filehdr_paddr = p->p_paddr;
2829 }
2830 }
2831
2832 if (m->includes_phdrs)
2833 {
2834 if (! m->p_flags_valid)
2835 p->p_flags |= PF_R;
2836
2837 if (m->includes_filehdr)
2838 {
2839 if (p->p_type == PT_LOAD)
2840 {
2841 phdrs_vaddr = p->p_vaddr + bed->s->sizeof_ehdr;
2842 phdrs_paddr = p->p_paddr + bed->s->sizeof_ehdr;
2843 }
2844 }
2845 else
2846 {
2847 p->p_offset = bed->s->sizeof_ehdr;
2848
2849 if (m->count > 0)
2850 {
2851 BFD_ASSERT (p->p_type == PT_LOAD);
2852 p->p_vaddr -= off - p->p_offset;
2853 if (! m->p_paddr_valid)
2854 p->p_paddr -= off - p->p_offset;
2855 }
2856
2857 if (p->p_type == PT_LOAD)
2858 {
2859 phdrs_vaddr = p->p_vaddr;
2860 phdrs_paddr = p->p_paddr;
2861 }
2862 else
2863 phdrs_vaddr = bed->maxpagesize + bed->s->sizeof_ehdr;
2864 }
2865
2866 p->p_filesz += alloc * bed->s->sizeof_phdr;
2867 p->p_memsz += alloc * bed->s->sizeof_phdr;
2868 }
2869
2870 if (p->p_type == PT_LOAD
2871 || (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core))
2872 {
2873 if (! m->includes_filehdr && ! m->includes_phdrs)
2874 p->p_offset = off;
2875 else
2876 {
2877 file_ptr adjust;
2878
2879 adjust = off - (p->p_offset + p->p_filesz);
2880 p->p_filesz += adjust;
2881 p->p_memsz += adjust;
2882 }
2883 }
2884
2885 voff = off;
2886
2887 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
2888 {
2889 asection *sec;
2890 flagword flags;
2891 bfd_size_type align;
2892
2893 sec = *secpp;
2894 flags = sec->flags;
2895 align = 1 << bfd_get_section_alignment (abfd, sec);
2896
2897 /* The section may have artificial alignment forced by a
2898 link script. Notice this case by the gap between the
2899 cumulative phdr vma and the section's vma. */
2900 if (p->p_vaddr + p->p_memsz < sec->vma)
2901 {
2902 bfd_vma adjust = sec->vma - (p->p_vaddr + p->p_memsz);
2903
2904 p->p_memsz += adjust;
2905 off += adjust;
2906 voff += adjust;
2907 if ((flags & SEC_LOAD) != 0)
2908 p->p_filesz += adjust;
2909 }
2910
2911 if (p->p_type == PT_LOAD)
2912 {
2913 bfd_signed_vma adjust;
2914
2915 if ((flags & SEC_LOAD) != 0)
2916 {
2917 adjust = sec->lma - (p->p_paddr + p->p_memsz);
2918 if (adjust < 0)
2919 adjust = 0;
2920 }
2921 else if ((flags & SEC_ALLOC) != 0)
2922 {
2923 /* The section VMA must equal the file position
2924 modulo the page size. FIXME: I'm not sure if
2925 this adjustment is really necessary. We used to
2926 not have the SEC_LOAD case just above, and then
2927 this was necessary, but now I'm not sure. */
2928 if ((abfd->flags & D_PAGED) != 0)
2929 adjust = (sec->vma - voff) % bed->maxpagesize;
2930 else
2931 adjust = (sec->vma - voff) % align;
2932 }
2933 else
2934 adjust = 0;
2935
2936 if (adjust != 0)
2937 {
2938 if (i == 0)
2939 {
2940 (* _bfd_error_handler)
2941 (_("Error: First section in segment (%s) starts at 0x%x"),
2942 bfd_section_name (abfd, sec), sec->lma);
2943 (* _bfd_error_handler)
2944 (_(" whereas segment starts at 0x%x"),
2945 p->p_paddr);
2946
2947 return false;
2948 }
2949 p->p_memsz += adjust;
2950 off += adjust;
2951 voff += adjust;
2952 if ((flags & SEC_LOAD) != 0)
2953 p->p_filesz += adjust;
2954 }
2955
2956 sec->filepos = off;
2957
2958 /* We check SEC_HAS_CONTENTS here because if NOLOAD is
2959 used in a linker script we may have a section with
2960 SEC_LOAD clear but which is supposed to have
2961 contents. */
2962 if ((flags & SEC_LOAD) != 0
2963 || (flags & SEC_HAS_CONTENTS) != 0)
2964 off += sec->_raw_size;
2965
2966 if ((flags & SEC_ALLOC) != 0)
2967 voff += sec->_raw_size;
2968 }
2969
2970 if (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core)
2971 {
2972 /* The actual "note" segment has i == 0.
2973 This is the one that actually contains everything. */
2974 if (i == 0)
2975 {
2976 sec->filepos = off;
2977 p->p_filesz = sec->_raw_size;
2978 off += sec->_raw_size;
2979 voff = off;
2980 }
2981 else
2982 {
2983 /* Fake sections -- don't need to be written. */
2984 sec->filepos = 0;
2985 sec->_raw_size = 0;
2986 flags = sec->flags = 0;
2987 }
2988 p->p_memsz = 0;
2989 p->p_align = 1;
2990 }
2991 else
2992 {
2993 p->p_memsz += sec->_raw_size;
2994
2995 if ((flags & SEC_LOAD) != 0)
2996 p->p_filesz += sec->_raw_size;
2997
2998 if (align > p->p_align
2999 && (p->p_type != PT_LOAD || (abfd->flags & D_PAGED) == 0))
3000 p->p_align = align;
3001 }
3002
3003 if (! m->p_flags_valid)
3004 {
3005 p->p_flags |= PF_R;
3006 if ((flags & SEC_CODE) != 0)
3007 p->p_flags |= PF_X;
3008 if ((flags & SEC_READONLY) == 0)
3009 p->p_flags |= PF_W;
3010 }
3011 }
3012 }
3013
3014 /* Now that we have set the section file positions, we can set up
3015 the file positions for the non PT_LOAD segments. */
3016 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
3017 m != NULL;
3018 m = m->next, p++)
3019 {
3020 if (p->p_type != PT_LOAD && m->count > 0)
3021 {
3022 BFD_ASSERT (! m->includes_filehdr && ! m->includes_phdrs);
3023 p->p_offset = m->sections[0]->filepos;
3024 }
3025 if (m->count == 0)
3026 {
3027 if (m->includes_filehdr)
3028 {
3029 p->p_vaddr = filehdr_vaddr;
3030 if (! m->p_paddr_valid)
3031 p->p_paddr = filehdr_paddr;
3032 }
3033 else if (m->includes_phdrs)
3034 {
3035 p->p_vaddr = phdrs_vaddr;
3036 if (! m->p_paddr_valid)
3037 p->p_paddr = phdrs_paddr;
3038 }
3039 }
3040 }
3041
3042 /* Clear out any program headers we allocated but did not use. */
3043 for (; count < alloc; count++, p++)
3044 {
3045 memset (p, 0, sizeof *p);
3046 p->p_type = PT_NULL;
3047 }
3048
3049 elf_tdata (abfd)->phdr = phdrs;
3050
3051 elf_tdata (abfd)->next_file_pos = off;
3052
3053 /* Write out the program headers. */
3054 if (bfd_seek (abfd, bed->s->sizeof_ehdr, SEEK_SET) != 0
3055 || bed->s->write_out_phdrs (abfd, phdrs, alloc) != 0)
3056 return false;
3057
3058 return true;
3059 }
3060
3061 /* Get the size of the program header.
3062
3063 If this is called by the linker before any of the section VMA's are set, it
3064 can't calculate the correct value for a strange memory layout. This only
3065 happens when SIZEOF_HEADERS is used in a linker script. In this case,
3066 SORTED_HDRS is NULL and we assume the normal scenario of one text and one
3067 data segment (exclusive of .interp and .dynamic).
3068
3069 ??? User written scripts must either not use SIZEOF_HEADERS, or assume there
3070 will be two segments. */
3071
3072 static bfd_size_type
3073 get_program_header_size (abfd)
3074 bfd *abfd;
3075 {
3076 size_t segs;
3077 asection *s;
3078 struct elf_backend_data *bed = get_elf_backend_data (abfd);
3079
3080 /* We can't return a different result each time we're called. */
3081 if (elf_tdata (abfd)->program_header_size != 0)
3082 return elf_tdata (abfd)->program_header_size;
3083
3084 if (elf_tdata (abfd)->segment_map != NULL)
3085 {
3086 struct elf_segment_map *m;
3087
3088 segs = 0;
3089 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
3090 ++segs;
3091 elf_tdata (abfd)->program_header_size = segs * bed->s->sizeof_phdr;
3092 return elf_tdata (abfd)->program_header_size;
3093 }
3094
3095 /* Assume we will need exactly two PT_LOAD segments: one for text
3096 and one for data. */
3097 segs = 2;
3098
3099 s = bfd_get_section_by_name (abfd, ".interp");
3100 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3101 {
3102 /* If we have a loadable interpreter section, we need a
3103 PT_INTERP segment. In this case, assume we also need a
3104 PT_PHDR segment, although that may not be true for all
3105 targets. */
3106 segs += 2;
3107 }
3108
3109 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
3110 {
3111 /* We need a PT_DYNAMIC segment. */
3112 ++segs;
3113 }
3114
3115 for (s = abfd->sections; s != NULL; s = s->next)
3116 {
3117 if ((s->flags & SEC_LOAD) != 0
3118 && strncmp (s->name, ".note", 5) == 0)
3119 {
3120 /* We need a PT_NOTE segment. */
3121 ++segs;
3122 }
3123 }
3124
3125 /* Let the backend count up any program headers it might need. */
3126 if (bed->elf_backend_additional_program_headers)
3127 {
3128 int a;
3129
3130 a = (*bed->elf_backend_additional_program_headers) (abfd);
3131 if (a == -1)
3132 abort ();
3133 segs += a;
3134 }
3135
3136 elf_tdata (abfd)->program_header_size = segs * bed->s->sizeof_phdr;
3137 return elf_tdata (abfd)->program_header_size;
3138 }
3139
3140 /* Work out the file positions of all the sections. This is called by
3141 _bfd_elf_compute_section_file_positions. All the section sizes and
3142 VMAs must be known before this is called.
3143
3144 We do not consider reloc sections at this point, unless they form
3145 part of the loadable image. Reloc sections are assigned file
3146 positions in assign_file_positions_for_relocs, which is called by
3147 write_object_contents and final_link.
3148
3149 We also don't set the positions of the .symtab and .strtab here. */
3150
3151 static boolean
3152 assign_file_positions_except_relocs (abfd)
3153 bfd *abfd;
3154 {
3155 struct elf_obj_tdata * const tdata = elf_tdata (abfd);
3156 Elf_Internal_Ehdr * const i_ehdrp = elf_elfheader (abfd);
3157 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
3158 file_ptr off;
3159 struct elf_backend_data *bed = get_elf_backend_data (abfd);
3160
3161 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
3162 && bfd_get_format (abfd) != bfd_core)
3163 {
3164 Elf_Internal_Shdr **hdrpp;
3165 unsigned int i;
3166
3167 /* Start after the ELF header. */
3168 off = i_ehdrp->e_ehsize;
3169
3170 /* We are not creating an executable, which means that we are
3171 not creating a program header, and that the actual order of
3172 the sections in the file is unimportant. */
3173 for (i = 1, hdrpp = i_shdrpp + 1; i < i_ehdrp->e_shnum; i++, hdrpp++)
3174 {
3175 Elf_Internal_Shdr *hdr;
3176
3177 hdr = *hdrpp;
3178 if (hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
3179 {
3180 hdr->sh_offset = -1;
3181 continue;
3182 }
3183 if (i == tdata->symtab_section
3184 || i == tdata->strtab_section)
3185 {
3186 hdr->sh_offset = -1;
3187 continue;
3188 }
3189
3190 off = _bfd_elf_assign_file_position_for_section (hdr, off, true);
3191 }
3192 }
3193 else
3194 {
3195 unsigned int i;
3196 Elf_Internal_Shdr **hdrpp;
3197
3198 /* Assign file positions for the loaded sections based on the
3199 assignment of sections to segments. */
3200 if (! assign_file_positions_for_segments (abfd))
3201 return false;
3202
3203 /* Assign file positions for the other sections. */
3204
3205 off = elf_tdata (abfd)->next_file_pos;
3206 for (i = 1, hdrpp = i_shdrpp + 1; i < i_ehdrp->e_shnum; i++, hdrpp++)
3207 {
3208 Elf_Internal_Shdr *hdr;
3209
3210 hdr = *hdrpp;
3211 if (hdr->bfd_section != NULL
3212 && hdr->bfd_section->filepos != 0)
3213 hdr->sh_offset = hdr->bfd_section->filepos;
3214 else if ((hdr->sh_flags & SHF_ALLOC) != 0)
3215 {
3216 ((*_bfd_error_handler)
3217 (_("%s: warning: allocated section `%s' not in segment"),
3218 bfd_get_filename (abfd),
3219 (hdr->bfd_section == NULL
3220 ? "*unknown*"
3221 : hdr->bfd_section->name)));
3222 if ((abfd->flags & D_PAGED) != 0)
3223 off += (hdr->sh_addr - off) % bed->maxpagesize;
3224 else
3225 off += (hdr->sh_addr - off) % hdr->sh_addralign;
3226 off = _bfd_elf_assign_file_position_for_section (hdr, off,
3227 false);
3228 }
3229 else if (hdr->sh_type == SHT_REL
3230 || hdr->sh_type == SHT_RELA
3231 || hdr == i_shdrpp[tdata->symtab_section]
3232 || hdr == i_shdrpp[tdata->strtab_section])
3233 hdr->sh_offset = -1;
3234 else
3235 off = _bfd_elf_assign_file_position_for_section (hdr, off, true);
3236 }
3237 }
3238
3239 /* Place the section headers. */
3240 off = align_file_position (off, bed->s->file_align);
3241 i_ehdrp->e_shoff = off;
3242 off += i_ehdrp->e_shnum * i_ehdrp->e_shentsize;
3243
3244 elf_tdata (abfd)->next_file_pos = off;
3245
3246 return true;
3247 }
3248
3249 static boolean
3250 prep_headers (abfd)
3251 bfd *abfd;
3252 {
3253 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
3254 Elf_Internal_Phdr *i_phdrp = 0; /* Program header table, internal form */
3255 Elf_Internal_Shdr **i_shdrp; /* Section header table, internal form */
3256 int count;
3257 struct bfd_strtab_hash *shstrtab;
3258 struct elf_backend_data *bed = get_elf_backend_data (abfd);
3259
3260 i_ehdrp = elf_elfheader (abfd);
3261 i_shdrp = elf_elfsections (abfd);
3262
3263 shstrtab = _bfd_elf_stringtab_init ();
3264 if (shstrtab == NULL)
3265 return false;
3266
3267 elf_shstrtab (abfd) = shstrtab;
3268
3269 i_ehdrp->e_ident[EI_MAG0] = ELFMAG0;
3270 i_ehdrp->e_ident[EI_MAG1] = ELFMAG1;
3271 i_ehdrp->e_ident[EI_MAG2] = ELFMAG2;
3272 i_ehdrp->e_ident[EI_MAG3] = ELFMAG3;
3273
3274 i_ehdrp->e_ident[EI_CLASS] = bed->s->elfclass;
3275 i_ehdrp->e_ident[EI_DATA] =
3276 bfd_big_endian (abfd) ? ELFDATA2MSB : ELFDATA2LSB;
3277 i_ehdrp->e_ident[EI_VERSION] = bed->s->ev_current;
3278
3279 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_NONE;
3280 i_ehdrp->e_ident[EI_ABIVERSION] = 0;
3281
3282 for (count = EI_PAD; count < EI_NIDENT; count++)
3283 i_ehdrp->e_ident[count] = 0;
3284
3285 if ((abfd->flags & DYNAMIC) != 0)
3286 i_ehdrp->e_type = ET_DYN;
3287 else if ((abfd->flags & EXEC_P) != 0)
3288 i_ehdrp->e_type = ET_EXEC;
3289 else if (bfd_get_format (abfd) == bfd_core)
3290 i_ehdrp->e_type = ET_CORE;
3291 else
3292 i_ehdrp->e_type = ET_REL;
3293
3294 switch (bfd_get_arch (abfd))
3295 {
3296 case bfd_arch_unknown:
3297 i_ehdrp->e_machine = EM_NONE;
3298 break;
3299 case bfd_arch_sparc:
3300 if (bfd_get_arch_size (abfd) == 64)
3301 i_ehdrp->e_machine = EM_SPARCV9;
3302 else
3303 i_ehdrp->e_machine = EM_SPARC;
3304 break;
3305 case bfd_arch_i370:
3306 i_ehdrp->e_machine = EM_S370;
3307 break;
3308 case bfd_arch_i386:
3309 if (bfd_get_arch_size (abfd) == 64)
3310 i_ehdrp->e_machine = EM_X86_64;
3311 else
3312 i_ehdrp->e_machine = EM_386;
3313 break;
3314 case bfd_arch_ia64:
3315 i_ehdrp->e_machine = EM_IA_64;
3316 break;
3317 case bfd_arch_m68hc11:
3318 i_ehdrp->e_machine = EM_68HC11;
3319 break;
3320 case bfd_arch_m68hc12:
3321 i_ehdrp->e_machine = EM_68HC12;
3322 break;
3323 case bfd_arch_m68k:
3324 i_ehdrp->e_machine = EM_68K;
3325 break;
3326 case bfd_arch_m88k:
3327 i_ehdrp->e_machine = EM_88K;
3328 break;
3329 case bfd_arch_i860:
3330 i_ehdrp->e_machine = EM_860;
3331 break;
3332 case bfd_arch_i960:
3333 i_ehdrp->e_machine = EM_960;
3334 break;
3335 case bfd_arch_mips: /* MIPS Rxxxx */
3336 i_ehdrp->e_machine = EM_MIPS; /* only MIPS R3000 */
3337 break;
3338 case bfd_arch_hppa:
3339 i_ehdrp->e_machine = EM_PARISC;
3340 break;
3341 case bfd_arch_powerpc:
3342 i_ehdrp->e_machine = EM_PPC;
3343 break;
3344 case bfd_arch_alpha:
3345 i_ehdrp->e_machine = EM_ALPHA;
3346 break;
3347 case bfd_arch_sh:
3348 i_ehdrp->e_machine = EM_SH;
3349 break;
3350 case bfd_arch_d10v:
3351 i_ehdrp->e_machine = EM_CYGNUS_D10V;
3352 break;
3353 case bfd_arch_d30v:
3354 i_ehdrp->e_machine = EM_CYGNUS_D30V;
3355 break;
3356 case bfd_arch_fr30:
3357 i_ehdrp->e_machine = EM_CYGNUS_FR30;
3358 break;
3359 case bfd_arch_mcore:
3360 i_ehdrp->e_machine = EM_MCORE;
3361 break;
3362 case bfd_arch_avr:
3363 i_ehdrp->e_machine = EM_AVR;
3364 break;
3365 case bfd_arch_v850:
3366 switch (bfd_get_mach (abfd))
3367 {
3368 default:
3369 case 0: i_ehdrp->e_machine = EM_CYGNUS_V850; break;
3370 }
3371 break;
3372 case bfd_arch_arc:
3373 i_ehdrp->e_machine = EM_CYGNUS_ARC;
3374 break;
3375 case bfd_arch_arm:
3376 i_ehdrp->e_machine = EM_ARM;
3377 break;
3378 case bfd_arch_m32r:
3379 i_ehdrp->e_machine = EM_CYGNUS_M32R;
3380 break;
3381 case bfd_arch_mn10200:
3382 i_ehdrp->e_machine = EM_CYGNUS_MN10200;
3383 break;
3384 case bfd_arch_mn10300:
3385 i_ehdrp->e_machine = EM_CYGNUS_MN10300;
3386 break;
3387 case bfd_arch_pj:
3388 i_ehdrp->e_machine = EM_PJ;
3389 break;
3390 case bfd_arch_cris:
3391 i_ehdrp->e_machine = EM_CRIS;
3392 break;
3393 /* also note that EM_M32, AT&T WE32100 is unknown to bfd */
3394 default:
3395 i_ehdrp->e_machine = EM_NONE;
3396 }
3397 i_ehdrp->e_version = bed->s->ev_current;
3398 i_ehdrp->e_ehsize = bed->s->sizeof_ehdr;
3399
3400 /* No program header, for now. */
3401 i_ehdrp->e_phoff = 0;
3402 i_ehdrp->e_phentsize = 0;
3403 i_ehdrp->e_phnum = 0;
3404
3405 /* Each bfd section is section header entry. */
3406 i_ehdrp->e_entry = bfd_get_start_address (abfd);
3407 i_ehdrp->e_shentsize = bed->s->sizeof_shdr;
3408
3409 /* If we're building an executable, we'll need a program header table. */
3410 if (abfd->flags & EXEC_P)
3411 {
3412 /* It all happens later. */
3413 #if 0
3414 i_ehdrp->e_phentsize = sizeof (Elf_External_Phdr);
3415
3416 /* elf_build_phdrs() returns a (NULL-terminated) array of
3417 Elf_Internal_Phdrs. */
3418 i_phdrp = elf_build_phdrs (abfd, i_ehdrp, i_shdrp, &i_ehdrp->e_phnum);
3419 i_ehdrp->e_phoff = outbase;
3420 outbase += i_ehdrp->e_phentsize * i_ehdrp->e_phnum;
3421 #endif
3422 }
3423 else
3424 {
3425 i_ehdrp->e_phentsize = 0;
3426 i_phdrp = 0;
3427 i_ehdrp->e_phoff = 0;
3428 }
3429
3430 elf_tdata (abfd)->symtab_hdr.sh_name =
3431 (unsigned int) _bfd_stringtab_add (shstrtab, ".symtab", true, false);
3432 elf_tdata (abfd)->strtab_hdr.sh_name =
3433 (unsigned int) _bfd_stringtab_add (shstrtab, ".strtab", true, false);
3434 elf_tdata (abfd)->shstrtab_hdr.sh_name =
3435 (unsigned int) _bfd_stringtab_add (shstrtab, ".shstrtab", true, false);
3436 if (elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
3437 || elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
3438 || elf_tdata (abfd)->shstrtab_hdr.sh_name == (unsigned int) -1)
3439 return false;
3440
3441 return true;
3442 }
3443
3444 /* Assign file positions for all the reloc sections which are not part
3445 of the loadable file image. */
3446
3447 void
3448 _bfd_elf_assign_file_positions_for_relocs (abfd)
3449 bfd *abfd;
3450 {
3451 file_ptr off;
3452 unsigned int i;
3453 Elf_Internal_Shdr **shdrpp;
3454
3455 off = elf_tdata (abfd)->next_file_pos;
3456
3457 for (i = 1, shdrpp = elf_elfsections (abfd) + 1;
3458 i < elf_elfheader (abfd)->e_shnum;
3459 i++, shdrpp++)
3460 {
3461 Elf_Internal_Shdr *shdrp;
3462
3463 shdrp = *shdrpp;
3464 if ((shdrp->sh_type == SHT_REL || shdrp->sh_type == SHT_RELA)
3465 && shdrp->sh_offset == -1)
3466 off = _bfd_elf_assign_file_position_for_section (shdrp, off, true);
3467 }
3468
3469 elf_tdata (abfd)->next_file_pos = off;
3470 }
3471
3472 boolean
3473 _bfd_elf_write_object_contents (abfd)
3474 bfd *abfd;
3475 {
3476 struct elf_backend_data *bed = get_elf_backend_data (abfd);
3477 Elf_Internal_Ehdr *i_ehdrp;
3478 Elf_Internal_Shdr **i_shdrp;
3479 boolean failed;
3480 unsigned int count;
3481
3482 if (! abfd->output_has_begun
3483 && ! _bfd_elf_compute_section_file_positions
3484 (abfd, (struct bfd_link_info *) NULL))
3485 return false;
3486
3487 i_shdrp = elf_elfsections (abfd);
3488 i_ehdrp = elf_elfheader (abfd);
3489
3490 failed = false;
3491 bfd_map_over_sections (abfd, bed->s->write_relocs, &failed);
3492 if (failed)
3493 return false;
3494
3495 _bfd_elf_assign_file_positions_for_relocs (abfd);
3496
3497 /* After writing the headers, we need to write the sections too... */
3498 for (count = 1; count < i_ehdrp->e_shnum; count++)
3499 {
3500 if (bed->elf_backend_section_processing)
3501 (*bed->elf_backend_section_processing) (abfd, i_shdrp[count]);
3502 if (i_shdrp[count]->contents)
3503 {
3504 if (bfd_seek (abfd, i_shdrp[count]->sh_offset, SEEK_SET) != 0
3505 || (bfd_write (i_shdrp[count]->contents, i_shdrp[count]->sh_size,
3506 1, abfd)
3507 != i_shdrp[count]->sh_size))
3508 return false;
3509 }
3510 }
3511
3512 /* Write out the section header names. */
3513 if (bfd_seek (abfd, elf_tdata (abfd)->shstrtab_hdr.sh_offset, SEEK_SET) != 0
3514 || ! _bfd_stringtab_emit (abfd, elf_shstrtab (abfd)))
3515 return false;
3516
3517 if (bed->elf_backend_final_write_processing)
3518 (*bed->elf_backend_final_write_processing) (abfd,
3519 elf_tdata (abfd)->linker);
3520
3521 return bed->s->write_shdrs_and_ehdr (abfd);
3522 }
3523
3524 boolean
3525 _bfd_elf_write_corefile_contents (abfd)
3526 bfd *abfd;
3527 {
3528 /* Hopefully this can be done just like an object file. */
3529 return _bfd_elf_write_object_contents (abfd);
3530 }
3531
3532 /* Given a section, search the header to find them. */
3533
3534 int
3535 _bfd_elf_section_from_bfd_section (abfd, asect)
3536 bfd *abfd;
3537 struct sec *asect;
3538 {
3539 struct elf_backend_data *bed = get_elf_backend_data (abfd);
3540 Elf_Internal_Shdr **i_shdrp = elf_elfsections (abfd);
3541 int index;
3542 Elf_Internal_Shdr *hdr;
3543 int maxindex = elf_elfheader (abfd)->e_shnum;
3544
3545 for (index = 0; index < maxindex; index++)
3546 {
3547 hdr = i_shdrp[index];
3548 if (hdr->bfd_section == asect)
3549 return index;
3550 }
3551
3552 if (bed->elf_backend_section_from_bfd_section)
3553 {
3554 for (index = 0; index < maxindex; index++)
3555 {
3556 int retval;
3557
3558 hdr = i_shdrp[index];
3559 retval = index;
3560 if ((*bed->elf_backend_section_from_bfd_section)
3561 (abfd, hdr, asect, &retval))
3562 return retval;
3563 }
3564 }
3565
3566 if (bfd_is_abs_section (asect))
3567 return SHN_ABS;
3568 if (bfd_is_com_section (asect))
3569 return SHN_COMMON;
3570 if (bfd_is_und_section (asect))
3571 return SHN_UNDEF;
3572
3573 bfd_set_error (bfd_error_nonrepresentable_section);
3574
3575 return -1;
3576 }
3577
3578 /* Given a BFD symbol, return the index in the ELF symbol table, or -1
3579 on error. */
3580
3581 int
3582 _bfd_elf_symbol_from_bfd_symbol (abfd, asym_ptr_ptr)
3583 bfd *abfd;
3584 asymbol **asym_ptr_ptr;
3585 {
3586 asymbol *asym_ptr = *asym_ptr_ptr;
3587 int idx;
3588 flagword flags = asym_ptr->flags;
3589
3590 /* When gas creates relocations against local labels, it creates its
3591 own symbol for the section, but does put the symbol into the
3592 symbol chain, so udata is 0. When the linker is generating
3593 relocatable output, this section symbol may be for one of the
3594 input sections rather than the output section. */
3595 if (asym_ptr->udata.i == 0
3596 && (flags & BSF_SECTION_SYM)
3597 && asym_ptr->section)
3598 {
3599 int indx;
3600
3601 if (asym_ptr->section->output_section != NULL)
3602 indx = asym_ptr->section->output_section->index;
3603 else
3604 indx = asym_ptr->section->index;
3605 if (elf_section_syms (abfd)[indx])
3606 asym_ptr->udata.i = elf_section_syms (abfd)[indx]->udata.i;
3607 }
3608
3609 idx = asym_ptr->udata.i;
3610
3611 if (idx == 0)
3612 {
3613 /* This case can occur when using --strip-symbol on a symbol
3614 which is used in a relocation entry. */
3615 (*_bfd_error_handler)
3616 (_("%s: symbol `%s' required but not present"),
3617 bfd_get_filename (abfd), bfd_asymbol_name (asym_ptr));
3618 bfd_set_error (bfd_error_no_symbols);
3619 return -1;
3620 }
3621
3622 #if DEBUG & 4
3623 {
3624 fprintf (stderr,
3625 _("elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8lx%s\n"),
3626 (long) asym_ptr, asym_ptr->name, idx, flags,
3627 elf_symbol_flags (flags));
3628 fflush (stderr);
3629 }
3630 #endif
3631
3632 return idx;
3633 }
3634
3635 /* Copy private BFD data. This copies any program header information. */
3636
3637 static boolean
3638 copy_private_bfd_data (ibfd, obfd)
3639 bfd *ibfd;
3640 bfd *obfd;
3641 {
3642 Elf_Internal_Ehdr * iehdr;
3643 struct elf_segment_map * map;
3644 struct elf_segment_map * map_first;
3645 struct elf_segment_map ** pointer_to_map;
3646 Elf_Internal_Phdr * segment;
3647 asection * section;
3648 unsigned int i;
3649 unsigned int num_segments;
3650 boolean phdr_included = false;
3651 bfd_vma maxpagesize;
3652 struct elf_segment_map * phdr_adjust_seg = NULL;
3653 unsigned int phdr_adjust_num = 0;
3654
3655 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
3656 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
3657 return true;
3658
3659 if (elf_tdata (ibfd)->phdr == NULL)
3660 return true;
3661
3662 iehdr = elf_elfheader (ibfd);
3663
3664 map_first = NULL;
3665 pointer_to_map = &map_first;
3666
3667 num_segments = elf_elfheader (ibfd)->e_phnum;
3668 maxpagesize = get_elf_backend_data (obfd)->maxpagesize;
3669
3670 /* Returns the end address of the segment + 1. */
3671 #define SEGMENT_END(segment, start) \
3672 (start + (segment->p_memsz > segment->p_filesz \
3673 ? segment->p_memsz : segment->p_filesz))
3674
3675 /* Returns true if the given section is contained within
3676 the given segment. VMA addresses are compared. */
3677 #define IS_CONTAINED_BY_VMA(section, segment) \
3678 (section->vma >= segment->p_vaddr \
3679 && (section->vma + section->_raw_size) \
3680 <= (SEGMENT_END (segment, segment->p_vaddr)))
3681
3682 /* Returns true if the given section is contained within
3683 the given segment. LMA addresses are compared. */
3684 #define IS_CONTAINED_BY_LMA(section, segment, base) \
3685 (section->lma >= base \
3686 && (section->lma + section->_raw_size) \
3687 <= SEGMENT_END (segment, base))
3688
3689 /* Special case: corefile "NOTE" section containing regs, prpsinfo etc. */
3690 #define IS_COREFILE_NOTE(p, s) \
3691 (p->p_type == PT_NOTE \
3692 && bfd_get_format (ibfd) == bfd_core \
3693 && s->vma == 0 && s->lma == 0 \
3694 && (bfd_vma) s->filepos >= p->p_offset \
3695 && (bfd_vma) s->filepos + s->_raw_size \
3696 <= p->p_offset + p->p_filesz)
3697
3698 /* The complicated case when p_vaddr is 0 is to handle the Solaris
3699 linker, which generates a PT_INTERP section with p_vaddr and
3700 p_memsz set to 0. */
3701 #define IS_SOLARIS_PT_INTERP(p, s) \
3702 ( p->p_vaddr == 0 \
3703 && p->p_filesz > 0 \
3704 && (s->flags & SEC_HAS_CONTENTS) != 0 \
3705 && s->_raw_size > 0 \
3706 && (bfd_vma) s->filepos >= p->p_offset \
3707 && ((bfd_vma) s->filepos + s->_raw_size \
3708 <= p->p_offset + p->p_filesz))
3709
3710 /* Decide if the given section should be included in the given segment.
3711 A section will be included if:
3712 1. It is within the address space of the segment,
3713 2. It is an allocated segment,
3714 3. There is an output section associated with it,
3715 4. The section has not already been allocated to a previous segment. */
3716 #define INCLUDE_SECTION_IN_SEGMENT(section, segment) \
3717 ((((IS_CONTAINED_BY_VMA (section, segment) \
3718 || IS_SOLARIS_PT_INTERP (segment, section)) \
3719 && (section->flags & SEC_ALLOC) != 0) \
3720 || IS_COREFILE_NOTE (segment, section)) \
3721 && section->output_section != NULL \
3722 && section->segment_mark == false)
3723
3724 /* Returns true iff seg1 starts after the end of seg2. */
3725 #define SEGMENT_AFTER_SEGMENT(seg1, seg2) \
3726 (seg1->p_vaddr >= SEGMENT_END (seg2, seg2->p_vaddr))
3727
3728 /* Returns true iff seg1 and seg2 overlap. */
3729 #define SEGMENT_OVERLAPS(seg1, seg2) \
3730 (!(SEGMENT_AFTER_SEGMENT (seg1, seg2) || SEGMENT_AFTER_SEGMENT (seg2, seg1)))
3731
3732 /* Initialise the segment mark field. */
3733 for (section = ibfd->sections; section != NULL; section = section->next)
3734 section->segment_mark = false;
3735
3736 /* Scan through the segments specified in the program header
3737 of the input BFD. For this first scan we look for overlaps
3738 in the loadable segments. These can be created by wierd
3739 parameters to objcopy. */
3740 for (i = 0, segment = elf_tdata (ibfd)->phdr;
3741 i < num_segments;
3742 i++, segment++)
3743 {
3744 unsigned int j;
3745 Elf_Internal_Phdr *segment2;
3746
3747 if (segment->p_type != PT_LOAD)
3748 continue;
3749
3750 /* Determine if this segment overlaps any previous segments. */
3751 for (j = 0, segment2 = elf_tdata (ibfd)->phdr; j < i; j++, segment2 ++)
3752 {
3753 bfd_signed_vma extra_length;
3754
3755 if (segment2->p_type != PT_LOAD
3756 || ! SEGMENT_OVERLAPS (segment, segment2))
3757 continue;
3758
3759 /* Merge the two segments together. */
3760 if (segment2->p_vaddr < segment->p_vaddr)
3761 {
3762 /* Extend SEGMENT2 to include SEGMENT and then delete
3763 SEGMENT. */
3764 extra_length =
3765 SEGMENT_END (segment, segment->p_vaddr)
3766 - SEGMENT_END (segment2, segment2->p_vaddr);
3767
3768 if (extra_length > 0)
3769 {
3770 segment2->p_memsz += extra_length;
3771 segment2->p_filesz += extra_length;
3772 }
3773
3774 segment->p_type = PT_NULL;
3775
3776 /* Since we have deleted P we must restart the outer loop. */
3777 i = 0;
3778 segment = elf_tdata (ibfd)->phdr;
3779 break;
3780 }
3781 else
3782 {
3783 /* Extend SEGMENT to include SEGMENT2 and then delete
3784 SEGMENT2. */
3785 extra_length =
3786 SEGMENT_END (segment2, segment2->p_vaddr)
3787 - SEGMENT_END (segment, segment->p_vaddr);
3788
3789 if (extra_length > 0)
3790 {
3791 segment->p_memsz += extra_length;
3792 segment->p_filesz += extra_length;
3793 }
3794
3795 segment2->p_type = PT_NULL;
3796 }
3797 }
3798 }
3799
3800 /* The second scan attempts to assign sections to segments. */
3801 for (i = 0, segment = elf_tdata (ibfd)->phdr;
3802 i < num_segments;
3803 i ++, segment ++)
3804 {
3805 unsigned int section_count;
3806 asection ** sections;
3807 asection * output_section;
3808 unsigned int isec;
3809 bfd_vma matching_lma;
3810 bfd_vma suggested_lma;
3811 unsigned int j;
3812
3813 if (segment->p_type == PT_NULL)
3814 continue;
3815
3816 /* Compute how many sections might be placed into this segment. */
3817 section_count = 0;
3818 for (section = ibfd->sections; section != NULL; section = section->next)
3819 if (INCLUDE_SECTION_IN_SEGMENT (section, segment))
3820 ++section_count;
3821
3822 /* Allocate a segment map big enough to contain all of the
3823 sections we have selected. */
3824 map = ((struct elf_segment_map *)
3825 bfd_alloc (obfd,
3826 (sizeof (struct elf_segment_map)
3827 + ((size_t) section_count - 1) * sizeof (asection *))));
3828 if (map == NULL)
3829 return false;
3830
3831 /* Initialise the fields of the segment map. Default to
3832 using the physical address of the segment in the input BFD. */
3833 map->next = NULL;
3834 map->p_type = segment->p_type;
3835 map->p_flags = segment->p_flags;
3836 map->p_flags_valid = 1;
3837 map->p_paddr = segment->p_paddr;
3838 map->p_paddr_valid = 1;
3839
3840 /* Determine if this segment contains the ELF file header
3841 and if it contains the program headers themselves. */
3842 map->includes_filehdr = (segment->p_offset == 0
3843 && segment->p_filesz >= iehdr->e_ehsize);
3844
3845 map->includes_phdrs = 0;
3846
3847 if (! phdr_included || segment->p_type != PT_LOAD)
3848 {
3849 map->includes_phdrs =
3850 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
3851 && (segment->p_offset + segment->p_filesz
3852 >= ((bfd_vma) iehdr->e_phoff
3853 + iehdr->e_phnum * iehdr->e_phentsize)));
3854
3855 if (segment->p_type == PT_LOAD && map->includes_phdrs)
3856 phdr_included = true;
3857 }
3858
3859 if (section_count == 0)
3860 {
3861 /* Special segments, such as the PT_PHDR segment, may contain
3862 no sections, but ordinary, loadable segments should contain
3863 something. */
3864 if (segment->p_type == PT_LOAD)
3865 _bfd_error_handler
3866 (_("%s: warning: Empty loadable segment detected\n"),
3867 bfd_get_filename (ibfd));
3868
3869 map->count = 0;
3870 *pointer_to_map = map;
3871 pointer_to_map = &map->next;
3872
3873 continue;
3874 }
3875
3876 /* Now scan the sections in the input BFD again and attempt
3877 to add their corresponding output sections to the segment map.
3878 The problem here is how to handle an output section which has
3879 been moved (ie had its LMA changed). There are four possibilities:
3880
3881 1. None of the sections have been moved.
3882 In this case we can continue to use the segment LMA from the
3883 input BFD.
3884
3885 2. All of the sections have been moved by the same amount.
3886 In this case we can change the segment's LMA to match the LMA
3887 of the first section.
3888
3889 3. Some of the sections have been moved, others have not.
3890 In this case those sections which have not been moved can be
3891 placed in the current segment which will have to have its size,
3892 and possibly its LMA changed, and a new segment or segments will
3893 have to be created to contain the other sections.
3894
3895 4. The sections have been moved, but not be the same amount.
3896 In this case we can change the segment's LMA to match the LMA
3897 of the first section and we will have to create a new segment
3898 or segments to contain the other sections.
3899
3900 In order to save time, we allocate an array to hold the section
3901 pointers that we are interested in. As these sections get assigned
3902 to a segment, they are removed from this array. */
3903
3904 sections = (asection **) bfd_malloc
3905 (sizeof (asection *) * section_count);
3906 if (sections == NULL)
3907 return false;
3908
3909 /* Step One: Scan for segment vs section LMA conflicts.
3910 Also add the sections to the section array allocated above.
3911 Also add the sections to the current segment. In the common
3912 case, where the sections have not been moved, this means that
3913 we have completely filled the segment, and there is nothing
3914 more to do. */
3915 isec = 0;
3916 matching_lma = 0;
3917 suggested_lma = 0;
3918
3919 for (j = 0, section = ibfd->sections;
3920 section != NULL;
3921 section = section->next)
3922 {
3923 if (INCLUDE_SECTION_IN_SEGMENT (section, segment))
3924 {
3925 output_section = section->output_section;
3926
3927 sections[j ++] = section;
3928
3929 /* The Solaris native linker always sets p_paddr to 0.
3930 We try to catch that case here, and set it to the
3931 correct value. */
3932 if (segment->p_paddr == 0
3933 && segment->p_vaddr != 0
3934 && isec == 0
3935 && output_section->lma != 0
3936 && (output_section->vma == (segment->p_vaddr
3937 + (map->includes_filehdr
3938 ? iehdr->e_ehsize
3939 : 0)
3940 + (map->includes_phdrs
3941 ? iehdr->e_phnum * iehdr->e_phentsize
3942 : 0))))
3943 map->p_paddr = segment->p_vaddr;
3944
3945 /* Match up the physical address of the segment with the
3946 LMA address of the output section. */
3947 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
3948 || IS_COREFILE_NOTE (segment, section))
3949 {
3950 if (matching_lma == 0)
3951 matching_lma = output_section->lma;
3952
3953 /* We assume that if the section fits within the segment
3954 then it does not overlap any other section within that
3955 segment. */
3956 map->sections[isec ++] = output_section;
3957 }
3958 else if (suggested_lma == 0)
3959 suggested_lma = output_section->lma;
3960 }
3961 }
3962
3963 BFD_ASSERT (j == section_count);
3964
3965 /* Step Two: Adjust the physical address of the current segment,
3966 if necessary. */
3967 if (isec == section_count)
3968 {
3969 /* All of the sections fitted within the segment as currently
3970 specified. This is the default case. Add the segment to
3971 the list of built segments and carry on to process the next
3972 program header in the input BFD. */
3973 map->count = section_count;
3974 *pointer_to_map = map;
3975 pointer_to_map = &map->next;
3976
3977 free (sections);
3978 continue;
3979 }
3980 else
3981 {
3982 if (matching_lma != 0)
3983 {
3984 /* At least one section fits inside the current segment.
3985 Keep it, but modify its physical address to match the
3986 LMA of the first section that fitted. */
3987 map->p_paddr = matching_lma;
3988 }
3989 else
3990 {
3991 /* None of the sections fitted inside the current segment.
3992 Change the current segment's physical address to match
3993 the LMA of the first section. */
3994 map->p_paddr = suggested_lma;
3995 }
3996
3997 /* Offset the segment physical address from the lma
3998 to allow for space taken up by elf headers. */
3999 if (map->includes_filehdr)
4000 map->p_paddr -= iehdr->e_ehsize;
4001
4002 if (map->includes_phdrs)
4003 {
4004 map->p_paddr -= iehdr->e_phnum * iehdr->e_phentsize;
4005
4006 /* iehdr->e_phnum is just an estimate of the number
4007 of program headers that we will need. Make a note
4008 here of the number we used and the segment we chose
4009 to hold these headers, so that we can adjust the
4010 offset when we know the correct value. */
4011 phdr_adjust_num = iehdr->e_phnum;
4012 phdr_adjust_seg = map;
4013 }
4014 }
4015
4016 /* Step Three: Loop over the sections again, this time assigning
4017 those that fit to the current segment and remvoing them from the
4018 sections array; but making sure not to leave large gaps. Once all
4019 possible sections have been assigned to the current segment it is
4020 added to the list of built segments and if sections still remain
4021 to be assigned, a new segment is constructed before repeating
4022 the loop. */
4023 isec = 0;
4024 do
4025 {
4026 map->count = 0;
4027 suggested_lma = 0;
4028
4029 /* Fill the current segment with sections that fit. */
4030 for (j = 0; j < section_count; j++)
4031 {
4032 section = sections[j];
4033
4034 if (section == NULL)
4035 continue;
4036
4037 output_section = section->output_section;
4038
4039 BFD_ASSERT (output_section != NULL);
4040
4041 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
4042 || IS_COREFILE_NOTE (segment, section))
4043 {
4044 if (map->count == 0)
4045 {
4046 /* If the first section in a segment does not start at
4047 the beginning of the segment, then something is
4048 wrong. */
4049 if (output_section->lma !=
4050 (map->p_paddr
4051 + (map->includes_filehdr ? iehdr->e_ehsize : 0)
4052 + (map->includes_phdrs
4053 ? iehdr->e_phnum * iehdr->e_phentsize
4054 : 0)))
4055 abort ();
4056 }
4057 else
4058 {
4059 asection * prev_sec;
4060
4061 prev_sec = map->sections[map->count - 1];
4062
4063 /* If the gap between the end of the previous section
4064 and the start of this section is more than
4065 maxpagesize then we need to start a new segment. */
4066 if ((BFD_ALIGN (prev_sec->lma + prev_sec->_raw_size, maxpagesize)
4067 < BFD_ALIGN (output_section->lma, maxpagesize))
4068 || ((prev_sec->lma + prev_sec->_raw_size) > output_section->lma))
4069 {
4070 if (suggested_lma == 0)
4071 suggested_lma = output_section->lma;
4072
4073 continue;
4074 }
4075 }
4076
4077 map->sections[map->count++] = output_section;
4078 ++isec;
4079 sections[j] = NULL;
4080 section->segment_mark = true;
4081 }
4082 else if (suggested_lma == 0)
4083 suggested_lma = output_section->lma;
4084 }
4085
4086 BFD_ASSERT (map->count > 0);
4087
4088 /* Add the current segment to the list of built segments. */
4089 *pointer_to_map = map;
4090 pointer_to_map = &map->next;
4091
4092 if (isec < section_count)
4093 {
4094 /* We still have not allocated all of the sections to
4095 segments. Create a new segment here, initialise it
4096 and carry on looping. */
4097 map = ((struct elf_segment_map *)
4098 bfd_alloc (obfd,
4099 (sizeof (struct elf_segment_map)
4100 + ((size_t) section_count - 1)
4101 * sizeof (asection *))));
4102 if (map == NULL)
4103 return false;
4104
4105 /* Initialise the fields of the segment map. Set the physical
4106 physical address to the LMA of the first section that has
4107 not yet been assigned. */
4108 map->next = NULL;
4109 map->p_type = segment->p_type;
4110 map->p_flags = segment->p_flags;
4111 map->p_flags_valid = 1;
4112 map->p_paddr = suggested_lma;
4113 map->p_paddr_valid = 1;
4114 map->includes_filehdr = 0;
4115 map->includes_phdrs = 0;
4116 }
4117 }
4118 while (isec < section_count);
4119
4120 free (sections);
4121 }
4122
4123 /* The Solaris linker creates program headers in which all the
4124 p_paddr fields are zero. When we try to objcopy or strip such a
4125 file, we get confused. Check for this case, and if we find it
4126 reset the p_paddr_valid fields. */
4127 for (map = map_first; map != NULL; map = map->next)
4128 if (map->p_paddr != 0)
4129 break;
4130 if (map == NULL)
4131 {
4132 for (map = map_first; map != NULL; map = map->next)
4133 map->p_paddr_valid = 0;
4134 }
4135
4136 elf_tdata (obfd)->segment_map = map_first;
4137
4138 /* If we had to estimate the number of program headers that were
4139 going to be needed, then check our estimate know and adjust
4140 the offset if necessary. */
4141 if (phdr_adjust_seg != NULL)
4142 {
4143 unsigned int count;
4144
4145 for (count = 0, map = map_first; map != NULL; map = map->next)
4146 count++;
4147
4148 if (count > phdr_adjust_num)
4149 phdr_adjust_seg->p_paddr
4150 -= (count - phdr_adjust_num) * iehdr->e_phentsize;
4151 }
4152
4153 #if 0
4154 /* Final Step: Sort the segments into ascending order of physical
4155 address. */
4156 if (map_first != NULL)
4157 {
4158 struct elf_segment_map *prev;
4159
4160 prev = map_first;
4161 for (map = map_first->next; map != NULL; prev = map, map = map->next)
4162 {
4163 /* Yes I know - its a bubble sort.... */
4164 if (map->next != NULL && (map->next->p_paddr < map->p_paddr))
4165 {
4166 /* Swap map and map->next. */
4167 prev->next = map->next;
4168 map->next = map->next->next;
4169 prev->next->next = map;
4170
4171 /* Restart loop. */
4172 map = map_first;
4173 }
4174 }
4175 }
4176 #endif
4177
4178 #undef SEGMENT_END
4179 #undef IS_CONTAINED_BY_VMA
4180 #undef IS_CONTAINED_BY_LMA
4181 #undef IS_COREFILE_NOTE
4182 #undef IS_SOLARIS_PT_INTERP
4183 #undef INCLUDE_SECTION_IN_SEGMENT
4184 #undef SEGMENT_AFTER_SEGMENT
4185 #undef SEGMENT_OVERLAPS
4186 return true;
4187 }
4188
4189 /* Copy private section information. This copies over the entsize
4190 field, and sometimes the info field. */
4191
4192 boolean
4193 _bfd_elf_copy_private_section_data (ibfd, isec, obfd, osec)
4194 bfd *ibfd;
4195 asection *isec;
4196 bfd *obfd;
4197 asection *osec;
4198 {
4199 Elf_Internal_Shdr *ihdr, *ohdr;
4200
4201 if (ibfd->xvec->flavour != bfd_target_elf_flavour
4202 || obfd->xvec->flavour != bfd_target_elf_flavour)
4203 return true;
4204
4205 /* Copy over private BFD data if it has not already been copied.
4206 This must be done here, rather than in the copy_private_bfd_data
4207 entry point, because the latter is called after the section
4208 contents have been set, which means that the program headers have
4209 already been worked out. */
4210 if (elf_tdata (obfd)->segment_map == NULL
4211 && elf_tdata (ibfd)->phdr != NULL)
4212 {
4213 asection *s;
4214
4215 /* Only set up the segments if there are no more SEC_ALLOC
4216 sections. FIXME: This won't do the right thing if objcopy is
4217 used to remove the last SEC_ALLOC section, since objcopy
4218 won't call this routine in that case. */
4219 for (s = isec->next; s != NULL; s = s->next)
4220 if ((s->flags & SEC_ALLOC) != 0)
4221 break;
4222 if (s == NULL)
4223 {
4224 if (! copy_private_bfd_data (ibfd, obfd))
4225 return false;
4226 }
4227 }
4228
4229 ihdr = &elf_section_data (isec)->this_hdr;
4230 ohdr = &elf_section_data (osec)->this_hdr;
4231
4232 ohdr->sh_entsize = ihdr->sh_entsize;
4233
4234 if (ihdr->sh_type == SHT_SYMTAB
4235 || ihdr->sh_type == SHT_DYNSYM
4236 || ihdr->sh_type == SHT_GNU_verneed
4237 || ihdr->sh_type == SHT_GNU_verdef)
4238 ohdr->sh_info = ihdr->sh_info;
4239
4240 elf_section_data (osec)->use_rela_p
4241 = elf_section_data (isec)->use_rela_p;
4242
4243 return true;
4244 }
4245
4246 /* Copy private symbol information. If this symbol is in a section
4247 which we did not map into a BFD section, try to map the section
4248 index correctly. We use special macro definitions for the mapped
4249 section indices; these definitions are interpreted by the
4250 swap_out_syms function. */
4251
4252 #define MAP_ONESYMTAB (SHN_LORESERVE - 1)
4253 #define MAP_DYNSYMTAB (SHN_LORESERVE - 2)
4254 #define MAP_STRTAB (SHN_LORESERVE - 3)
4255 #define MAP_SHSTRTAB (SHN_LORESERVE - 4)
4256
4257 boolean
4258 _bfd_elf_copy_private_symbol_data (ibfd, isymarg, obfd, osymarg)
4259 bfd *ibfd;
4260 asymbol *isymarg;
4261 bfd *obfd;
4262 asymbol *osymarg;
4263 {
4264 elf_symbol_type *isym, *osym;
4265
4266 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
4267 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
4268 return true;
4269
4270 isym = elf_symbol_from (ibfd, isymarg);
4271 osym = elf_symbol_from (obfd, osymarg);
4272
4273 if (isym != NULL
4274 && osym != NULL
4275 && bfd_is_abs_section (isym->symbol.section))
4276 {
4277 unsigned int shndx;
4278
4279 shndx = isym->internal_elf_sym.st_shndx;
4280 if (shndx == elf_onesymtab (ibfd))
4281 shndx = MAP_ONESYMTAB;
4282 else if (shndx == elf_dynsymtab (ibfd))
4283 shndx = MAP_DYNSYMTAB;
4284 else if (shndx == elf_tdata (ibfd)->strtab_section)
4285 shndx = MAP_STRTAB;
4286 else if (shndx == elf_tdata (ibfd)->shstrtab_section)
4287 shndx = MAP_SHSTRTAB;
4288 osym->internal_elf_sym.st_shndx = shndx;
4289 }
4290
4291 return true;
4292 }
4293
4294 /* Swap out the symbols. */
4295
4296 static boolean
4297 swap_out_syms (abfd, sttp, relocatable_p)
4298 bfd *abfd;
4299 struct bfd_strtab_hash **sttp;
4300 int relocatable_p;
4301 {
4302 struct elf_backend_data *bed = get_elf_backend_data (abfd);
4303
4304 if (!elf_map_symbols (abfd))
4305 return false;
4306
4307 /* Dump out the symtabs. */
4308 {
4309 int symcount = bfd_get_symcount (abfd);
4310 asymbol **syms = bfd_get_outsymbols (abfd);
4311 struct bfd_strtab_hash *stt;
4312 Elf_Internal_Shdr *symtab_hdr;
4313 Elf_Internal_Shdr *symstrtab_hdr;
4314 char *outbound_syms;
4315 int idx;
4316
4317 stt = _bfd_elf_stringtab_init ();
4318 if (stt == NULL)
4319 return false;
4320
4321 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
4322 symtab_hdr->sh_type = SHT_SYMTAB;
4323 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
4324 symtab_hdr->sh_size = symtab_hdr->sh_entsize * (symcount + 1);
4325 symtab_hdr->sh_info = elf_num_locals (abfd) + 1;
4326 symtab_hdr->sh_addralign = bed->s->file_align;
4327
4328 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
4329 symstrtab_hdr->sh_type = SHT_STRTAB;
4330
4331 outbound_syms = bfd_alloc (abfd,
4332 (1 + symcount) * bed->s->sizeof_sym);
4333 if (outbound_syms == NULL)
4334 return false;
4335 symtab_hdr->contents = (PTR) outbound_syms;
4336
4337 /* now generate the data (for "contents") */
4338 {
4339 /* Fill in zeroth symbol and swap it out. */
4340 Elf_Internal_Sym sym;
4341 sym.st_name = 0;
4342 sym.st_value = 0;
4343 sym.st_size = 0;
4344 sym.st_info = 0;
4345 sym.st_other = 0;
4346 sym.st_shndx = SHN_UNDEF;
4347 bed->s->swap_symbol_out (abfd, &sym, (PTR) outbound_syms);
4348 outbound_syms += bed->s->sizeof_sym;
4349 }
4350 for (idx = 0; idx < symcount; idx++)
4351 {
4352 Elf_Internal_Sym sym;
4353 bfd_vma value = syms[idx]->value;
4354 elf_symbol_type *type_ptr;
4355 flagword flags = syms[idx]->flags;
4356 int type;
4357
4358 if ((flags & BSF_SECTION_SYM) != 0)
4359 {
4360 /* Section symbols have no name. */
4361 sym.st_name = 0;
4362 }
4363 else
4364 {
4365 sym.st_name = (unsigned long) _bfd_stringtab_add (stt,
4366 syms[idx]->name,
4367 true, false);
4368 if (sym.st_name == (unsigned long) -1)
4369 return false;
4370 }
4371
4372 type_ptr = elf_symbol_from (abfd, syms[idx]);
4373
4374 if ((flags & BSF_SECTION_SYM) == 0
4375 && bfd_is_com_section (syms[idx]->section))
4376 {
4377 /* ELF common symbols put the alignment into the `value' field,
4378 and the size into the `size' field. This is backwards from
4379 how BFD handles it, so reverse it here. */
4380 sym.st_size = value;
4381 if (type_ptr == NULL
4382 || type_ptr->internal_elf_sym.st_value == 0)
4383 sym.st_value = value >= 16 ? 16 : (1 << bfd_log2 (value));
4384 else
4385 sym.st_value = type_ptr->internal_elf_sym.st_value;
4386 sym.st_shndx = _bfd_elf_section_from_bfd_section
4387 (abfd, syms[idx]->section);
4388 }
4389 else
4390 {
4391 asection *sec = syms[idx]->section;
4392 int shndx;
4393
4394 if (sec->output_section)
4395 {
4396 value += sec->output_offset;
4397 sec = sec->output_section;
4398 }
4399 /* Don't add in the section vma for relocatable output. */
4400 if (! relocatable_p)
4401 value += sec->vma;
4402 sym.st_value = value;
4403 sym.st_size = type_ptr ? type_ptr->internal_elf_sym.st_size : 0;
4404
4405 if (bfd_is_abs_section (sec)
4406 && type_ptr != NULL
4407 && type_ptr->internal_elf_sym.st_shndx != 0)
4408 {
4409 /* This symbol is in a real ELF section which we did
4410 not create as a BFD section. Undo the mapping done
4411 by copy_private_symbol_data. */
4412 shndx = type_ptr->internal_elf_sym.st_shndx;
4413 switch (shndx)
4414 {
4415 case MAP_ONESYMTAB:
4416 shndx = elf_onesymtab (abfd);
4417 break;
4418 case MAP_DYNSYMTAB:
4419 shndx = elf_dynsymtab (abfd);
4420 break;
4421 case MAP_STRTAB:
4422 shndx = elf_tdata (abfd)->strtab_section;
4423 break;
4424 case MAP_SHSTRTAB:
4425 shndx = elf_tdata (abfd)->shstrtab_section;
4426 break;
4427 default:
4428 break;
4429 }
4430 }
4431 else
4432 {
4433 shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
4434
4435 if (shndx == -1)
4436 {
4437 asection *sec2;
4438
4439 /* Writing this would be a hell of a lot easier if
4440 we had some decent documentation on bfd, and
4441 knew what to expect of the library, and what to
4442 demand of applications. For example, it
4443 appears that `objcopy' might not set the
4444 section of a symbol to be a section that is
4445 actually in the output file. */
4446 sec2 = bfd_get_section_by_name (abfd, sec->name);
4447 BFD_ASSERT (sec2 != 0);
4448 shndx = _bfd_elf_section_from_bfd_section (abfd, sec2);
4449 BFD_ASSERT (shndx != -1);
4450 }
4451 }
4452
4453 sym.st_shndx = shndx;
4454 }
4455
4456 if ((flags & BSF_FUNCTION) != 0)
4457 type = STT_FUNC;
4458 else if ((flags & BSF_OBJECT) != 0)
4459 type = STT_OBJECT;
4460 else
4461 type = STT_NOTYPE;
4462
4463 /* Processor-specific types */
4464 if (type_ptr != NULL
4465 && bed->elf_backend_get_symbol_type)
4466 type = (*bed->elf_backend_get_symbol_type) (&type_ptr->internal_elf_sym, type);
4467
4468 if (flags & BSF_SECTION_SYM)
4469 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
4470 else if (bfd_is_com_section (syms[idx]->section))
4471 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
4472 else if (bfd_is_und_section (syms[idx]->section))
4473 sym.st_info = ELF_ST_INFO (((flags & BSF_WEAK)
4474 ? STB_WEAK
4475 : STB_GLOBAL),
4476 type);
4477 else if (flags & BSF_FILE)
4478 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
4479 else
4480 {
4481 int bind = STB_LOCAL;
4482
4483 if (flags & BSF_LOCAL)
4484 bind = STB_LOCAL;
4485 else if (flags & BSF_WEAK)
4486 bind = STB_WEAK;
4487 else if (flags & BSF_GLOBAL)
4488 bind = STB_GLOBAL;
4489
4490 sym.st_info = ELF_ST_INFO (bind, type);
4491 }
4492
4493 if (type_ptr != NULL)
4494 sym.st_other = type_ptr->internal_elf_sym.st_other;
4495 else
4496 sym.st_other = 0;
4497
4498 bed->s->swap_symbol_out (abfd, &sym, (PTR) outbound_syms);
4499 outbound_syms += bed->s->sizeof_sym;
4500 }
4501
4502 *sttp = stt;
4503 symstrtab_hdr->sh_size = _bfd_stringtab_size (stt);
4504 symstrtab_hdr->sh_type = SHT_STRTAB;
4505
4506 symstrtab_hdr->sh_flags = 0;
4507 symstrtab_hdr->sh_addr = 0;
4508 symstrtab_hdr->sh_entsize = 0;
4509 symstrtab_hdr->sh_link = 0;
4510 symstrtab_hdr->sh_info = 0;
4511 symstrtab_hdr->sh_addralign = 1;
4512 }
4513
4514 return true;
4515 }
4516
4517 /* Return the number of bytes required to hold the symtab vector.
4518
4519 Note that we base it on the count plus 1, since we will null terminate
4520 the vector allocated based on this size. However, the ELF symbol table
4521 always has a dummy entry as symbol #0, so it ends up even. */
4522
4523 long
4524 _bfd_elf_get_symtab_upper_bound (abfd)
4525 bfd *abfd;
4526 {
4527 long symcount;
4528 long symtab_size;
4529 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->symtab_hdr;
4530
4531 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
4532 symtab_size = (symcount - 1 + 1) * (sizeof (asymbol *));
4533
4534 return symtab_size;
4535 }
4536
4537 long
4538 _bfd_elf_get_dynamic_symtab_upper_bound (abfd)
4539 bfd *abfd;
4540 {
4541 long symcount;
4542 long symtab_size;
4543 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->dynsymtab_hdr;
4544
4545 if (elf_dynsymtab (abfd) == 0)
4546 {
4547 bfd_set_error (bfd_error_invalid_operation);
4548 return -1;
4549 }
4550
4551 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
4552 symtab_size = (symcount - 1 + 1) * (sizeof (asymbol *));
4553
4554 return symtab_size;
4555 }
4556
4557 long
4558 _bfd_elf_get_reloc_upper_bound (abfd, asect)
4559 bfd *abfd ATTRIBUTE_UNUSED;
4560 sec_ptr asect;
4561 {
4562 return (asect->reloc_count + 1) * sizeof (arelent *);
4563 }
4564
4565 /* Canonicalize the relocs. */
4566
4567 long
4568 _bfd_elf_canonicalize_reloc (abfd, section, relptr, symbols)
4569 bfd *abfd;
4570 sec_ptr section;
4571 arelent **relptr;
4572 asymbol **symbols;
4573 {
4574 arelent *tblptr;
4575 unsigned int i;
4576
4577 if (! get_elf_backend_data (abfd)->s->slurp_reloc_table (abfd,
4578 section,
4579 symbols,
4580 false))
4581 return -1;
4582
4583 tblptr = section->relocation;
4584 for (i = 0; i < section->reloc_count; i++)
4585 *relptr++ = tblptr++;
4586
4587 *relptr = NULL;
4588
4589 return section->reloc_count;
4590 }
4591
4592 long
4593 _bfd_elf_get_symtab (abfd, alocation)
4594 bfd *abfd;
4595 asymbol **alocation;
4596 {
4597 long symcount = get_elf_backend_data (abfd)->s->slurp_symbol_table
4598 (abfd, alocation, false);
4599
4600 if (symcount >= 0)
4601 bfd_get_symcount (abfd) = symcount;
4602 return symcount;
4603 }
4604
4605 long
4606 _bfd_elf_canonicalize_dynamic_symtab (abfd, alocation)
4607 bfd *abfd;
4608 asymbol **alocation;
4609 {
4610 return get_elf_backend_data (abfd)->s->slurp_symbol_table
4611 (abfd, alocation, true);
4612 }
4613
4614 /* Return the size required for the dynamic reloc entries. Any
4615 section that was actually installed in the BFD, and has type
4616 SHT_REL or SHT_RELA, and uses the dynamic symbol table, is
4617 considered to be a dynamic reloc section. */
4618
4619 long
4620 _bfd_elf_get_dynamic_reloc_upper_bound (abfd)
4621 bfd *abfd;
4622 {
4623 long ret;
4624 asection *s;
4625
4626 if (elf_dynsymtab (abfd) == 0)
4627 {
4628 bfd_set_error (bfd_error_invalid_operation);
4629 return -1;
4630 }
4631
4632 ret = sizeof (arelent *);
4633 for (s = abfd->sections; s != NULL; s = s->next)
4634 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
4635 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
4636 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
4637 ret += ((s->_raw_size / elf_section_data (s)->this_hdr.sh_entsize)
4638 * sizeof (arelent *));
4639
4640 return ret;
4641 }
4642
4643 /* Canonicalize the dynamic relocation entries. Note that we return
4644 the dynamic relocations as a single block, although they are
4645 actually associated with particular sections; the interface, which
4646 was designed for SunOS style shared libraries, expects that there
4647 is only one set of dynamic relocs. Any section that was actually
4648 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses
4649 the dynamic symbol table, is considered to be a dynamic reloc
4650 section. */
4651
4652 long
4653 _bfd_elf_canonicalize_dynamic_reloc (abfd, storage, syms)
4654 bfd *abfd;
4655 arelent **storage;
4656 asymbol **syms;
4657 {
4658 boolean (*slurp_relocs) PARAMS ((bfd *, asection *, asymbol **, boolean));
4659 asection *s;
4660 long ret;
4661
4662 if (elf_dynsymtab (abfd) == 0)
4663 {
4664 bfd_set_error (bfd_error_invalid_operation);
4665 return -1;
4666 }
4667
4668 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
4669 ret = 0;
4670 for (s = abfd->sections; s != NULL; s = s->next)
4671 {
4672 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
4673 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
4674 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
4675 {
4676 arelent *p;
4677 long count, i;
4678
4679 if (! (*slurp_relocs) (abfd, s, syms, true))
4680 return -1;
4681 count = s->_raw_size / elf_section_data (s)->this_hdr.sh_entsize;
4682 p = s->relocation;
4683 for (i = 0; i < count; i++)
4684 *storage++ = p++;
4685 ret += count;
4686 }
4687 }
4688
4689 *storage = NULL;
4690
4691 return ret;
4692 }
4693 \f
4694 /* Read in the version information. */
4695
4696 boolean
4697 _bfd_elf_slurp_version_tables (abfd)
4698 bfd *abfd;
4699 {
4700 bfd_byte *contents = NULL;
4701
4702 if (elf_dynverdef (abfd) != 0)
4703 {
4704 Elf_Internal_Shdr *hdr;
4705 Elf_External_Verdef *everdef;
4706 Elf_Internal_Verdef *iverdef;
4707 Elf_Internal_Verdef *iverdefarr;
4708 Elf_Internal_Verdef iverdefmem;
4709 unsigned int i;
4710 unsigned int maxidx;
4711
4712 hdr = &elf_tdata (abfd)->dynverdef_hdr;
4713
4714 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
4715 if (contents == NULL)
4716 goto error_return;
4717 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
4718 || bfd_read ((PTR) contents, 1, hdr->sh_size, abfd) != hdr->sh_size)
4719 goto error_return;
4720
4721 /* We know the number of entries in the section but not the maximum
4722 index. Therefore we have to run through all entries and find
4723 the maximum. */
4724 everdef = (Elf_External_Verdef *) contents;
4725 maxidx = 0;
4726 for (i = 0; i < hdr->sh_info; ++i)
4727 {
4728 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
4729
4730 if ((iverdefmem.vd_ndx & VERSYM_VERSION) > maxidx)
4731 maxidx = iverdefmem.vd_ndx & VERSYM_VERSION;
4732
4733 everdef = ((Elf_External_Verdef *)
4734 ((bfd_byte *) everdef + iverdefmem.vd_next));
4735 }
4736
4737 elf_tdata (abfd)->verdef =
4738 ((Elf_Internal_Verdef *)
4739 bfd_zalloc (abfd, maxidx * sizeof (Elf_Internal_Verdef)));
4740 if (elf_tdata (abfd)->verdef == NULL)
4741 goto error_return;
4742
4743 elf_tdata (abfd)->cverdefs = maxidx;
4744
4745 everdef = (Elf_External_Verdef *) contents;
4746 iverdefarr = elf_tdata (abfd)->verdef;
4747 for (i = 0; i < hdr->sh_info; i++)
4748 {
4749 Elf_External_Verdaux *everdaux;
4750 Elf_Internal_Verdaux *iverdaux;
4751 unsigned int j;
4752
4753 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
4754
4755 iverdef = &iverdefarr[(iverdefmem.vd_ndx & VERSYM_VERSION) - 1];
4756 memcpy (iverdef, &iverdefmem, sizeof (Elf_Internal_Verdef));
4757
4758 iverdef->vd_bfd = abfd;
4759
4760 iverdef->vd_auxptr = ((Elf_Internal_Verdaux *)
4761 bfd_alloc (abfd,
4762 (iverdef->vd_cnt
4763 * sizeof (Elf_Internal_Verdaux))));
4764 if (iverdef->vd_auxptr == NULL)
4765 goto error_return;
4766
4767 everdaux = ((Elf_External_Verdaux *)
4768 ((bfd_byte *) everdef + iverdef->vd_aux));
4769 iverdaux = iverdef->vd_auxptr;
4770 for (j = 0; j < iverdef->vd_cnt; j++, iverdaux++)
4771 {
4772 _bfd_elf_swap_verdaux_in (abfd, everdaux, iverdaux);
4773
4774 iverdaux->vda_nodename =
4775 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
4776 iverdaux->vda_name);
4777 if (iverdaux->vda_nodename == NULL)
4778 goto error_return;
4779
4780 if (j + 1 < iverdef->vd_cnt)
4781 iverdaux->vda_nextptr = iverdaux + 1;
4782 else
4783 iverdaux->vda_nextptr = NULL;
4784
4785 everdaux = ((Elf_External_Verdaux *)
4786 ((bfd_byte *) everdaux + iverdaux->vda_next));
4787 }
4788
4789 iverdef->vd_nodename = iverdef->vd_auxptr->vda_nodename;
4790
4791 if (i + 1 < hdr->sh_info)
4792 iverdef->vd_nextdef = iverdef + 1;
4793 else
4794 iverdef->vd_nextdef = NULL;
4795
4796 everdef = ((Elf_External_Verdef *)
4797 ((bfd_byte *) everdef + iverdef->vd_next));
4798 }
4799
4800 free (contents);
4801 contents = NULL;
4802 }
4803
4804 if (elf_dynverref (abfd) != 0)
4805 {
4806 Elf_Internal_Shdr *hdr;
4807 Elf_External_Verneed *everneed;
4808 Elf_Internal_Verneed *iverneed;
4809 unsigned int i;
4810
4811 hdr = &elf_tdata (abfd)->dynverref_hdr;
4812
4813 elf_tdata (abfd)->verref =
4814 ((Elf_Internal_Verneed *)
4815 bfd_zalloc (abfd, hdr->sh_info * sizeof (Elf_Internal_Verneed)));
4816 if (elf_tdata (abfd)->verref == NULL)
4817 goto error_return;
4818
4819 elf_tdata (abfd)->cverrefs = hdr->sh_info;
4820
4821 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
4822 if (contents == NULL)
4823 goto error_return;
4824 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
4825 || bfd_read ((PTR) contents, 1, hdr->sh_size, abfd) != hdr->sh_size)
4826 goto error_return;
4827
4828 everneed = (Elf_External_Verneed *) contents;
4829 iverneed = elf_tdata (abfd)->verref;
4830 for (i = 0; i < hdr->sh_info; i++, iverneed++)
4831 {
4832 Elf_External_Vernaux *evernaux;
4833 Elf_Internal_Vernaux *ivernaux;
4834 unsigned int j;
4835
4836 _bfd_elf_swap_verneed_in (abfd, everneed, iverneed);
4837
4838 iverneed->vn_bfd = abfd;
4839
4840 iverneed->vn_filename =
4841 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
4842 iverneed->vn_file);
4843 if (iverneed->vn_filename == NULL)
4844 goto error_return;
4845
4846 iverneed->vn_auxptr =
4847 ((Elf_Internal_Vernaux *)
4848 bfd_alloc (abfd,
4849 iverneed->vn_cnt * sizeof (Elf_Internal_Vernaux)));
4850
4851 evernaux = ((Elf_External_Vernaux *)
4852 ((bfd_byte *) everneed + iverneed->vn_aux));
4853 ivernaux = iverneed->vn_auxptr;
4854 for (j = 0; j < iverneed->vn_cnt; j++, ivernaux++)
4855 {
4856 _bfd_elf_swap_vernaux_in (abfd, evernaux, ivernaux);
4857
4858 ivernaux->vna_nodename =
4859 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
4860 ivernaux->vna_name);
4861 if (ivernaux->vna_nodename == NULL)
4862 goto error_return;
4863
4864 if (j + 1 < iverneed->vn_cnt)
4865 ivernaux->vna_nextptr = ivernaux + 1;
4866 else
4867 ivernaux->vna_nextptr = NULL;
4868
4869 evernaux = ((Elf_External_Vernaux *)
4870 ((bfd_byte *) evernaux + ivernaux->vna_next));
4871 }
4872
4873 if (i + 1 < hdr->sh_info)
4874 iverneed->vn_nextref = iverneed + 1;
4875 else
4876 iverneed->vn_nextref = NULL;
4877
4878 everneed = ((Elf_External_Verneed *)
4879 ((bfd_byte *) everneed + iverneed->vn_next));
4880 }
4881
4882 free (contents);
4883 contents = NULL;
4884 }
4885
4886 return true;
4887
4888 error_return:
4889 if (contents == NULL)
4890 free (contents);
4891 return false;
4892 }
4893 \f
4894 asymbol *
4895 _bfd_elf_make_empty_symbol (abfd)
4896 bfd *abfd;
4897 {
4898 elf_symbol_type *newsym;
4899
4900 newsym = (elf_symbol_type *) bfd_zalloc (abfd, sizeof (elf_symbol_type));
4901 if (!newsym)
4902 return NULL;
4903 else
4904 {
4905 newsym->symbol.the_bfd = abfd;
4906 return &newsym->symbol;
4907 }
4908 }
4909
4910 void
4911 _bfd_elf_get_symbol_info (ignore_abfd, symbol, ret)
4912 bfd *ignore_abfd ATTRIBUTE_UNUSED;
4913 asymbol *symbol;
4914 symbol_info *ret;
4915 {
4916 bfd_symbol_info (symbol, ret);
4917 }
4918
4919 /* Return whether a symbol name implies a local symbol. Most targets
4920 use this function for the is_local_label_name entry point, but some
4921 override it. */
4922
4923 boolean
4924 _bfd_elf_is_local_label_name (abfd, name)
4925 bfd *abfd ATTRIBUTE_UNUSED;
4926 const char *name;
4927 {
4928 /* Normal local symbols start with ``.L''. */
4929 if (name[0] == '.' && name[1] == 'L')
4930 return true;
4931
4932 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
4933 DWARF debugging symbols starting with ``..''. */
4934 if (name[0] == '.' && name[1] == '.')
4935 return true;
4936
4937 /* gcc will sometimes generate symbols beginning with ``_.L_'' when
4938 emitting DWARF debugging output. I suspect this is actually a
4939 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
4940 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
4941 underscore to be emitted on some ELF targets). For ease of use,
4942 we treat such symbols as local. */
4943 if (name[0] == '_' && name[1] == '.' && name[2] == 'L' && name[3] == '_')
4944 return true;
4945
4946 return false;
4947 }
4948
4949 alent *
4950 _bfd_elf_get_lineno (ignore_abfd, symbol)
4951 bfd *ignore_abfd ATTRIBUTE_UNUSED;
4952 asymbol *symbol ATTRIBUTE_UNUSED;
4953 {
4954 abort ();
4955 return NULL;
4956 }
4957
4958 boolean
4959 _bfd_elf_set_arch_mach (abfd, arch, machine)
4960 bfd *abfd;
4961 enum bfd_architecture arch;
4962 unsigned long machine;
4963 {
4964 /* If this isn't the right architecture for this backend, and this
4965 isn't the generic backend, fail. */
4966 if (arch != get_elf_backend_data (abfd)->arch
4967 && arch != bfd_arch_unknown
4968 && get_elf_backend_data (abfd)->arch != bfd_arch_unknown)
4969 return false;
4970
4971 return bfd_default_set_arch_mach (abfd, arch, machine);
4972 }
4973
4974 /* Find the nearest line to a particular section and offset, for error
4975 reporting. */
4976
4977 boolean
4978 _bfd_elf_find_nearest_line (abfd,
4979 section,
4980 symbols,
4981 offset,
4982 filename_ptr,
4983 functionname_ptr,
4984 line_ptr)
4985 bfd *abfd;
4986 asection *section;
4987 asymbol **symbols;
4988 bfd_vma offset;
4989 CONST char **filename_ptr;
4990 CONST char **functionname_ptr;
4991 unsigned int *line_ptr;
4992 {
4993 boolean found;
4994 const char *filename;
4995 asymbol *func;
4996 bfd_vma low_func;
4997 asymbol **p;
4998
4999 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
5000 filename_ptr, functionname_ptr,
5001 line_ptr))
5002 return true;
5003
5004 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
5005 filename_ptr, functionname_ptr,
5006 line_ptr, 0))
5007 return true;
5008
5009 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
5010 &found, filename_ptr,
5011 functionname_ptr, line_ptr,
5012 &elf_tdata (abfd)->line_info))
5013 return false;
5014 if (found)
5015 return true;
5016
5017 if (symbols == NULL)
5018 return false;
5019
5020 filename = NULL;
5021 func = NULL;
5022 low_func = 0;
5023
5024 for (p = symbols; *p != NULL; p++)
5025 {
5026 elf_symbol_type *q;
5027
5028 q = (elf_symbol_type *) *p;
5029
5030 if (bfd_get_section (&q->symbol) != section)
5031 continue;
5032
5033 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
5034 {
5035 default:
5036 break;
5037 case STT_FILE:
5038 filename = bfd_asymbol_name (&q->symbol);
5039 break;
5040 case STT_NOTYPE:
5041 case STT_FUNC:
5042 if (q->symbol.section == section
5043 && q->symbol.value >= low_func
5044 && q->symbol.value <= offset)
5045 {
5046 func = (asymbol *) q;
5047 low_func = q->symbol.value;
5048 }
5049 break;
5050 }
5051 }
5052
5053 if (func == NULL)
5054 return false;
5055
5056 *filename_ptr = filename;
5057 *functionname_ptr = bfd_asymbol_name (func);
5058 *line_ptr = 0;
5059 return true;
5060 }
5061
5062 int
5063 _bfd_elf_sizeof_headers (abfd, reloc)
5064 bfd *abfd;
5065 boolean reloc;
5066 {
5067 int ret;
5068
5069 ret = get_elf_backend_data (abfd)->s->sizeof_ehdr;
5070 if (! reloc)
5071 ret += get_program_header_size (abfd);
5072 return ret;
5073 }
5074
5075 boolean
5076 _bfd_elf_set_section_contents (abfd, section, location, offset, count)
5077 bfd *abfd;
5078 sec_ptr section;
5079 PTR location;
5080 file_ptr offset;
5081 bfd_size_type count;
5082 {
5083 Elf_Internal_Shdr *hdr;
5084
5085 if (! abfd->output_has_begun
5086 && ! _bfd_elf_compute_section_file_positions
5087 (abfd, (struct bfd_link_info *) NULL))
5088 return false;
5089
5090 hdr = &elf_section_data (section)->this_hdr;
5091
5092 if (bfd_seek (abfd, hdr->sh_offset + offset, SEEK_SET) == -1)
5093 return false;
5094 if (bfd_write (location, 1, count, abfd) != count)
5095 return false;
5096
5097 return true;
5098 }
5099
5100 void
5101 _bfd_elf_no_info_to_howto (abfd, cache_ptr, dst)
5102 bfd *abfd ATTRIBUTE_UNUSED;
5103 arelent *cache_ptr ATTRIBUTE_UNUSED;
5104 Elf_Internal_Rela *dst ATTRIBUTE_UNUSED;
5105 {
5106 abort ();
5107 }
5108
5109 #if 0
5110 void
5111 _bfd_elf_no_info_to_howto_rel (abfd, cache_ptr, dst)
5112 bfd *abfd;
5113 arelent *cache_ptr;
5114 Elf_Internal_Rel *dst;
5115 {
5116 abort ();
5117 }
5118 #endif
5119
5120 /* Try to convert a non-ELF reloc into an ELF one. */
5121
5122 boolean
5123 _bfd_elf_validate_reloc (abfd, areloc)
5124 bfd *abfd;
5125 arelent *areloc;
5126 {
5127 /* Check whether we really have an ELF howto. */
5128
5129 if ((*areloc->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec)
5130 {
5131 bfd_reloc_code_real_type code;
5132 reloc_howto_type *howto;
5133
5134 /* Alien reloc: Try to determine its type to replace it with an
5135 equivalent ELF reloc. */
5136
5137 if (areloc->howto->pc_relative)
5138 {
5139 switch (areloc->howto->bitsize)
5140 {
5141 case 8:
5142 code = BFD_RELOC_8_PCREL;
5143 break;
5144 case 12:
5145 code = BFD_RELOC_12_PCREL;
5146 break;
5147 case 16:
5148 code = BFD_RELOC_16_PCREL;
5149 break;
5150 case 24:
5151 code = BFD_RELOC_24_PCREL;
5152 break;
5153 case 32:
5154 code = BFD_RELOC_32_PCREL;
5155 break;
5156 case 64:
5157 code = BFD_RELOC_64_PCREL;
5158 break;
5159 default:
5160 goto fail;
5161 }
5162
5163 howto = bfd_reloc_type_lookup (abfd, code);
5164
5165 if (areloc->howto->pcrel_offset != howto->pcrel_offset)
5166 {
5167 if (howto->pcrel_offset)
5168 areloc->addend += areloc->address;
5169 else
5170 areloc->addend -= areloc->address; /* addend is unsigned!! */
5171 }
5172 }
5173 else
5174 {
5175 switch (areloc->howto->bitsize)
5176 {
5177 case 8:
5178 code = BFD_RELOC_8;
5179 break;
5180 case 14:
5181 code = BFD_RELOC_14;
5182 break;
5183 case 16:
5184 code = BFD_RELOC_16;
5185 break;
5186 case 26:
5187 code = BFD_RELOC_26;
5188 break;
5189 case 32:
5190 code = BFD_RELOC_32;
5191 break;
5192 case 64:
5193 code = BFD_RELOC_64;
5194 break;
5195 default:
5196 goto fail;
5197 }
5198
5199 howto = bfd_reloc_type_lookup (abfd, code);
5200 }
5201
5202 if (howto)
5203 areloc->howto = howto;
5204 else
5205 goto fail;
5206 }
5207
5208 return true;
5209
5210 fail:
5211 (*_bfd_error_handler)
5212 (_("%s: unsupported relocation type %s"),
5213 bfd_get_filename (abfd), areloc->howto->name);
5214 bfd_set_error (bfd_error_bad_value);
5215 return false;
5216 }
5217
5218 boolean
5219 _bfd_elf_close_and_cleanup (abfd)
5220 bfd *abfd;
5221 {
5222 if (bfd_get_format (abfd) == bfd_object)
5223 {
5224 if (elf_shstrtab (abfd) != NULL)
5225 _bfd_stringtab_free (elf_shstrtab (abfd));
5226 }
5227
5228 return _bfd_generic_close_and_cleanup (abfd);
5229 }
5230
5231 /* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
5232 in the relocation's offset. Thus we cannot allow any sort of sanity
5233 range-checking to interfere. There is nothing else to do in processing
5234 this reloc. */
5235
5236 bfd_reloc_status_type
5237 _bfd_elf_rel_vtable_reloc_fn (abfd, re, symbol, data, is, obfd, errmsg)
5238 bfd *abfd ATTRIBUTE_UNUSED;
5239 arelent *re ATTRIBUTE_UNUSED;
5240 struct symbol_cache_entry *symbol ATTRIBUTE_UNUSED;
5241 PTR data ATTRIBUTE_UNUSED;
5242 asection *is ATTRIBUTE_UNUSED;
5243 bfd *obfd ATTRIBUTE_UNUSED;
5244 char **errmsg ATTRIBUTE_UNUSED;
5245 {
5246 return bfd_reloc_ok;
5247 }
5248 \f
5249 /* Elf core file support. Much of this only works on native
5250 toolchains, since we rely on knowing the
5251 machine-dependent procfs structure in order to pick
5252 out details about the corefile. */
5253
5254 #ifdef HAVE_SYS_PROCFS_H
5255 # include <sys/procfs.h>
5256 #endif
5257
5258 /* Define offsetof for those systems which lack it. */
5259
5260 #ifndef offsetof
5261 # define offsetof(TYPE, MEMBER) ((unsigned long) &((TYPE *)0)->MEMBER)
5262 #endif
5263
5264 /* FIXME: this is kinda wrong, but it's what gdb wants. */
5265
5266 static int
5267 elfcore_make_pid (abfd)
5268 bfd *abfd;
5269 {
5270 return ((elf_tdata (abfd)->core_lwpid << 16)
5271 + (elf_tdata (abfd)->core_pid));
5272 }
5273
5274 /* If there isn't a section called NAME, make one, using
5275 data from SECT. Note, this function will generate a
5276 reference to NAME, so you shouldn't deallocate or
5277 overwrite it. */
5278
5279 static boolean
5280 elfcore_maybe_make_sect (abfd, name, sect)
5281 bfd *abfd;
5282 char *name;
5283 asection *sect;
5284 {
5285 asection *sect2;
5286
5287 if (bfd_get_section_by_name (abfd, name) != NULL)
5288 return true;
5289
5290 sect2 = bfd_make_section (abfd, name);
5291 if (sect2 == NULL)
5292 return false;
5293
5294 sect2->_raw_size = sect->_raw_size;
5295 sect2->filepos = sect->filepos;
5296 sect2->flags = sect->flags;
5297 sect2->alignment_power = sect->alignment_power;
5298 return true;
5299 }
5300
5301 /* prstatus_t exists on:
5302 solaris 2.5+
5303 linux 2.[01] + glibc
5304 unixware 4.2
5305 */
5306
5307 #if defined (HAVE_PRSTATUS_T)
5308 static boolean
5309 elfcore_grok_prstatus (abfd, note)
5310 bfd *abfd;
5311 Elf_Internal_Note *note;
5312 {
5313 char buf[100];
5314 char *name;
5315 asection *sect;
5316 int raw_size;
5317 int offset;
5318
5319 if (note->descsz == sizeof (prstatus_t))
5320 {
5321 prstatus_t prstat;
5322
5323 raw_size = sizeof (prstat.pr_reg);
5324 offset = offsetof (prstatus_t, pr_reg);
5325 memcpy (&prstat, note->descdata, sizeof (prstat));
5326
5327 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
5328 elf_tdata (abfd)->core_pid = prstat.pr_pid;
5329
5330 /* pr_who exists on:
5331 solaris 2.5+
5332 unixware 4.2
5333 pr_who doesn't exist on:
5334 linux 2.[01]
5335 */
5336 #if defined (HAVE_PRSTATUS_T_PR_WHO)
5337 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
5338 #endif
5339 }
5340 #if defined (HAVE_PRSTATUS32_T)
5341 else if (note->descsz == sizeof (prstatus32_t))
5342 {
5343 /* 64-bit host, 32-bit corefile */
5344 prstatus32_t prstat;
5345
5346 raw_size = sizeof (prstat.pr_reg);
5347 offset = offsetof (prstatus32_t, pr_reg);
5348 memcpy (&prstat, note->descdata, sizeof (prstat));
5349
5350 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
5351 elf_tdata (abfd)->core_pid = prstat.pr_pid;
5352
5353 /* pr_who exists on:
5354 solaris 2.5+
5355 unixware 4.2
5356 pr_who doesn't exist on:
5357 linux 2.[01]
5358 */
5359 #if defined (HAVE_PRSTATUS32_T_PR_WHO)
5360 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
5361 #endif
5362 }
5363 #endif /* HAVE_PRSTATUS32_T */
5364 else
5365 {
5366 /* Fail - we don't know how to handle any other
5367 note size (ie. data object type). */
5368 return true;
5369 }
5370
5371 /* Make a ".reg/999" section. */
5372
5373 sprintf (buf, ".reg/%d", elfcore_make_pid (abfd));
5374 name = bfd_alloc (abfd, strlen (buf) + 1);
5375 if (name == NULL)
5376 return false;
5377 strcpy (name, buf);
5378
5379 sect = bfd_make_section (abfd, name);
5380 if (sect == NULL)
5381 return false;
5382
5383 sect->_raw_size = raw_size;
5384 sect->filepos = note->descpos + offset;
5385
5386 sect->flags = SEC_HAS_CONTENTS;
5387 sect->alignment_power = 2;
5388
5389 if (! elfcore_maybe_make_sect (abfd, ".reg", sect))
5390 return false;
5391
5392 return true;
5393 }
5394 #endif /* defined (HAVE_PRSTATUS_T) */
5395
5396 /* Create a pseudosection containing the exact contents of NOTE. This
5397 actually creates up to two pseudosections:
5398 - For the single-threaded case, a section named NAME, unless
5399 such a section already exists.
5400 - For the multi-threaded case, a section named "NAME/PID", where
5401 PID is elfcore_make_pid (abfd).
5402 Both pseudosections have identical contents: the contents of NOTE. */
5403
5404 static boolean
5405 elfcore_make_note_pseudosection (abfd, name, note)
5406 bfd *abfd;
5407 char *name;
5408 Elf_Internal_Note *note;
5409 {
5410 char buf[100];
5411 char *threaded_name;
5412 asection *sect;
5413
5414 /* Build the section name. */
5415
5416 sprintf (buf, "%s/%d", name, elfcore_make_pid (abfd));
5417 threaded_name = bfd_alloc (abfd, strlen (buf) + 1);
5418 if (threaded_name == NULL)
5419 return false;
5420 strcpy (threaded_name, buf);
5421
5422 sect = bfd_make_section (abfd, threaded_name);
5423 if (sect == NULL)
5424 return false;
5425 sect->_raw_size = note->descsz;
5426 sect->filepos = note->descpos;
5427 sect->flags = SEC_HAS_CONTENTS;
5428 sect->alignment_power = 2;
5429
5430 if (! elfcore_maybe_make_sect (abfd, name, sect))
5431 return false;
5432
5433 return true;
5434 }
5435
5436 /* There isn't a consistent prfpregset_t across platforms,
5437 but it doesn't matter, because we don't have to pick this
5438 data structure apart. */
5439
5440 static boolean
5441 elfcore_grok_prfpreg (abfd, note)
5442 bfd *abfd;
5443 Elf_Internal_Note *note;
5444 {
5445 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
5446 }
5447
5448 /* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
5449 type of 5 (NT_PRXFPREG). Just include the whole note's contents
5450 literally. */
5451
5452 static boolean
5453 elfcore_grok_prxfpreg (abfd, note)
5454 bfd *abfd;
5455 Elf_Internal_Note *note;
5456 {
5457 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
5458 }
5459
5460 #if defined (HAVE_PRPSINFO_T)
5461 typedef prpsinfo_t elfcore_psinfo_t;
5462 #if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
5463 typedef prpsinfo32_t elfcore_psinfo32_t;
5464 #endif
5465 #endif
5466
5467 #if defined (HAVE_PSINFO_T)
5468 typedef psinfo_t elfcore_psinfo_t;
5469 #if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
5470 typedef psinfo32_t elfcore_psinfo32_t;
5471 #endif
5472 #endif
5473
5474 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
5475
5476 /* return a malloc'ed copy of a string at START which is at
5477 most MAX bytes long, possibly without a terminating '\0'.
5478 the copy will always have a terminating '\0'. */
5479
5480 static char*
5481 elfcore_strndup (abfd, start, max)
5482 bfd *abfd;
5483 char *start;
5484 int max;
5485 {
5486 char *dup;
5487 char *end = memchr (start, '\0', max);
5488 int len;
5489
5490 if (end == NULL)
5491 len = max;
5492 else
5493 len = end - start;
5494
5495 dup = bfd_alloc (abfd, len + 1);
5496 if (dup == NULL)
5497 return NULL;
5498
5499 memcpy (dup, start, len);
5500 dup[len] = '\0';
5501
5502 return dup;
5503 }
5504
5505 static boolean
5506 elfcore_grok_psinfo (abfd, note)
5507 bfd *abfd;
5508 Elf_Internal_Note *note;
5509 {
5510 if (note->descsz == sizeof (elfcore_psinfo_t))
5511 {
5512 elfcore_psinfo_t psinfo;
5513
5514 memcpy (&psinfo, note->descdata, sizeof (psinfo));
5515
5516 elf_tdata (abfd)->core_program
5517 = elfcore_strndup (abfd, psinfo.pr_fname, sizeof (psinfo.pr_fname));
5518
5519 elf_tdata (abfd)->core_command
5520 = elfcore_strndup (abfd, psinfo.pr_psargs, sizeof (psinfo.pr_psargs));
5521 }
5522 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
5523 else if (note->descsz == sizeof (elfcore_psinfo32_t))
5524 {
5525 /* 64-bit host, 32-bit corefile */
5526 elfcore_psinfo32_t psinfo;
5527
5528 memcpy (&psinfo, note->descdata, sizeof (psinfo));
5529
5530 elf_tdata (abfd)->core_program
5531 = elfcore_strndup (abfd, psinfo.pr_fname, sizeof (psinfo.pr_fname));
5532
5533 elf_tdata (abfd)->core_command
5534 = elfcore_strndup (abfd, psinfo.pr_psargs, sizeof (psinfo.pr_psargs));
5535 }
5536 #endif
5537
5538 else
5539 {
5540 /* Fail - we don't know how to handle any other
5541 note size (ie. data object type). */
5542 return true;
5543 }
5544
5545 /* Note that for some reason, a spurious space is tacked
5546 onto the end of the args in some (at least one anyway)
5547 implementations, so strip it off if it exists. */
5548
5549 {
5550 char *command = elf_tdata (abfd)->core_command;
5551 int n = strlen (command);
5552
5553 if (0 < n && command[n - 1] == ' ')
5554 command[n - 1] = '\0';
5555 }
5556
5557 return true;
5558 }
5559 #endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
5560
5561 #if defined (HAVE_PSTATUS_T)
5562 static boolean
5563 elfcore_grok_pstatus (abfd, note)
5564 bfd *abfd;
5565 Elf_Internal_Note *note;
5566 {
5567 if (note->descsz == sizeof (pstatus_t)
5568 #if defined (HAVE_PXSTATUS_T)
5569 || note->descsz == sizeof (pxstatus_t)
5570 #endif
5571 )
5572 {
5573 pstatus_t pstat;
5574
5575 memcpy (&pstat, note->descdata, sizeof (pstat));
5576
5577 elf_tdata (abfd)->core_pid = pstat.pr_pid;
5578 }
5579 #if defined (HAVE_PSTATUS32_T)
5580 else if (note->descsz == sizeof (pstatus32_t))
5581 {
5582 /* 64-bit host, 32-bit corefile */
5583 pstatus32_t pstat;
5584
5585 memcpy (&pstat, note->descdata, sizeof (pstat));
5586
5587 elf_tdata (abfd)->core_pid = pstat.pr_pid;
5588 }
5589 #endif
5590 /* Could grab some more details from the "representative"
5591 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
5592 NT_LWPSTATUS note, presumably. */
5593
5594 return true;
5595 }
5596 #endif /* defined (HAVE_PSTATUS_T) */
5597
5598 #if defined (HAVE_LWPSTATUS_T)
5599 static boolean
5600 elfcore_grok_lwpstatus (abfd, note)
5601 bfd *abfd;
5602 Elf_Internal_Note *note;
5603 {
5604 lwpstatus_t lwpstat;
5605 char buf[100];
5606 char *name;
5607 asection *sect;
5608
5609 if (note->descsz != sizeof (lwpstat)
5610 #if defined (HAVE_LWPXSTATUS_T)
5611 && note->descsz != sizeof (lwpxstatus_t)
5612 #endif
5613 )
5614 return true;
5615
5616 memcpy (&lwpstat, note->descdata, sizeof (lwpstat));
5617
5618 elf_tdata (abfd)->core_lwpid = lwpstat.pr_lwpid;
5619 elf_tdata (abfd)->core_signal = lwpstat.pr_cursig;
5620
5621 /* Make a ".reg/999" section. */
5622
5623 sprintf (buf, ".reg/%d", elfcore_make_pid (abfd));
5624 name = bfd_alloc (abfd, strlen (buf) + 1);
5625 if (name == NULL)
5626 return false;
5627 strcpy (name, buf);
5628
5629 sect = bfd_make_section (abfd, name);
5630 if (sect == NULL)
5631 return false;
5632
5633 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
5634 sect->_raw_size = sizeof (lwpstat.pr_context.uc_mcontext.gregs);
5635 sect->filepos = note->descpos
5636 + offsetof (lwpstatus_t, pr_context.uc_mcontext.gregs);
5637 #endif
5638
5639 #if defined (HAVE_LWPSTATUS_T_PR_REG)
5640 sect->_raw_size = sizeof (lwpstat.pr_reg);
5641 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_reg);
5642 #endif
5643
5644 sect->flags = SEC_HAS_CONTENTS;
5645 sect->alignment_power = 2;
5646
5647 if (!elfcore_maybe_make_sect (abfd, ".reg", sect))
5648 return false;
5649
5650 /* Make a ".reg2/999" section */
5651
5652 sprintf (buf, ".reg2/%d", elfcore_make_pid (abfd));
5653 name = bfd_alloc (abfd, strlen (buf) + 1);
5654 if (name == NULL)
5655 return false;
5656 strcpy (name, buf);
5657
5658 sect = bfd_make_section (abfd, name);
5659 if (sect == NULL)
5660 return false;
5661
5662 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
5663 sect->_raw_size = sizeof (lwpstat.pr_context.uc_mcontext.fpregs);
5664 sect->filepos = note->descpos
5665 + offsetof (lwpstatus_t, pr_context.uc_mcontext.fpregs);
5666 #endif
5667
5668 #if defined (HAVE_LWPSTATUS_T_PR_FPREG)
5669 sect->_raw_size = sizeof (lwpstat.pr_fpreg);
5670 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_fpreg);
5671 #endif
5672
5673 sect->flags = SEC_HAS_CONTENTS;
5674 sect->alignment_power = 2;
5675
5676 if (!elfcore_maybe_make_sect (abfd, ".reg2", sect))
5677 return false;
5678
5679 return true;
5680 }
5681 #endif /* defined (HAVE_LWPSTATUS_T) */
5682
5683 #if defined (HAVE_WIN32_PSTATUS_T)
5684 static boolean
5685 elfcore_grok_win32pstatus (abfd, note)
5686 bfd *abfd;
5687 Elf_Internal_Note *note;
5688 {
5689 char buf[30];
5690 char *name;
5691 asection *sect;
5692 win32_pstatus_t pstatus;
5693
5694 if (note->descsz < sizeof (pstatus))
5695 return true;
5696
5697 memcpy (&pstatus, note->descdata, note->descsz);
5698
5699 switch (pstatus.data_type)
5700 {
5701 case NOTE_INFO_PROCESS:
5702 /* FIXME: need to add ->core_command. */
5703 elf_tdata (abfd)->core_signal = pstatus.data.process_info.signal;
5704 elf_tdata (abfd)->core_pid = pstatus.data.process_info.pid;
5705 break;
5706
5707 case NOTE_INFO_THREAD:
5708 /* Make a ".reg/999" section. */
5709 sprintf (buf, ".reg/%d", pstatus.data.thread_info.tid);
5710
5711 name = bfd_alloc (abfd, strlen (buf) + 1);
5712 if (name == NULL)
5713 return false;
5714
5715 strcpy (name, buf);
5716
5717 sect = bfd_make_section (abfd, name);
5718 if (sect == NULL)
5719 return false;
5720
5721 sect->_raw_size = sizeof (pstatus.data.thread_info.thread_context);
5722 sect->filepos = note->descpos + offsetof (struct win32_pstatus,
5723 data.thread_info.thread_context);
5724 sect->flags = SEC_HAS_CONTENTS;
5725 sect->alignment_power = 2;
5726
5727 if (pstatus.data.thread_info.is_active_thread)
5728 if (! elfcore_maybe_make_sect (abfd, ".reg", sect))
5729 return false;
5730 break;
5731
5732 case NOTE_INFO_MODULE:
5733 /* Make a ".module/xxxxxxxx" section. */
5734 sprintf (buf, ".module/%08x", pstatus.data.module_info.base_address);
5735
5736 name = bfd_alloc (abfd, strlen (buf) + 1);
5737 if (name == NULL)
5738 return false;
5739
5740 strcpy (name, buf);
5741
5742 sect = bfd_make_section (abfd, name);
5743
5744 if (sect == NULL)
5745 return false;
5746
5747 sect->_raw_size = note->descsz;
5748 sect->filepos = note->descpos;
5749 sect->flags = SEC_HAS_CONTENTS;
5750 sect->alignment_power = 2;
5751 break;
5752
5753 default:
5754 return true;
5755 }
5756
5757 return true;
5758 }
5759 #endif /* HAVE_WIN32_PSTATUS_T */
5760
5761 static boolean
5762 elfcore_grok_note (abfd, note)
5763 bfd *abfd;
5764 Elf_Internal_Note *note;
5765 {
5766 switch (note->type)
5767 {
5768 default:
5769 return true;
5770
5771 #if defined (HAVE_PRSTATUS_T)
5772 case NT_PRSTATUS:
5773 return elfcore_grok_prstatus (abfd, note);
5774 #endif
5775
5776 #if defined (HAVE_PSTATUS_T)
5777 case NT_PSTATUS:
5778 return elfcore_grok_pstatus (abfd, note);
5779 #endif
5780
5781 #if defined (HAVE_LWPSTATUS_T)
5782 case NT_LWPSTATUS:
5783 return elfcore_grok_lwpstatus (abfd, note);
5784 #endif
5785
5786 case NT_FPREGSET: /* FIXME: rename to NT_PRFPREG */
5787 return elfcore_grok_prfpreg (abfd, note);
5788
5789 #if defined (HAVE_WIN32_PSTATUS_T)
5790 case NT_WIN32PSTATUS:
5791 return elfcore_grok_win32pstatus (abfd, note);
5792 #endif
5793
5794 case NT_PRXFPREG: /* Linux SSE extension */
5795 if (note->namesz == 5
5796 && ! strcmp (note->namedata, "LINUX"))
5797 return elfcore_grok_prxfpreg (abfd, note);
5798 else
5799 return true;
5800
5801 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
5802 case NT_PRPSINFO:
5803 case NT_PSINFO:
5804 return elfcore_grok_psinfo (abfd, note);
5805 #endif
5806 }
5807 }
5808
5809 static boolean
5810 elfcore_read_notes (abfd, offset, size)
5811 bfd *abfd;
5812 bfd_vma offset;
5813 bfd_vma size;
5814 {
5815 char *buf;
5816 char *p;
5817
5818 if (size <= 0)
5819 return true;
5820
5821 if (bfd_seek (abfd, offset, SEEK_SET) == -1)
5822 return false;
5823
5824 buf = bfd_malloc ((size_t) size);
5825 if (buf == NULL)
5826 return false;
5827
5828 if (bfd_read (buf, size, 1, abfd) != size)
5829 {
5830 error:
5831 free (buf);
5832 return false;
5833 }
5834
5835 p = buf;
5836 while (p < buf + size)
5837 {
5838 /* FIXME: bad alignment assumption. */
5839 Elf_External_Note *xnp = (Elf_External_Note *) p;
5840 Elf_Internal_Note in;
5841
5842 in.type = bfd_h_get_32 (abfd, (bfd_byte *) xnp->type);
5843
5844 in.namesz = bfd_h_get_32 (abfd, (bfd_byte *) xnp->namesz);
5845 in.namedata = xnp->name;
5846
5847 in.descsz = bfd_h_get_32 (abfd, (bfd_byte *) xnp->descsz);
5848 in.descdata = in.namedata + BFD_ALIGN (in.namesz, 4);
5849 in.descpos = offset + (in.descdata - buf);
5850
5851 if (! elfcore_grok_note (abfd, &in))
5852 goto error;
5853
5854 p = in.descdata + BFD_ALIGN (in.descsz, 4);
5855 }
5856
5857 free (buf);
5858 return true;
5859 }
5860
5861 /* FIXME: This function is now unnecessary. Callers can just call
5862 bfd_section_from_phdr directly. */
5863
5864 boolean
5865 _bfd_elfcore_section_from_phdr (abfd, phdr, sec_num)
5866 bfd *abfd;
5867 Elf_Internal_Phdr* phdr;
5868 int sec_num;
5869 {
5870 if (! bfd_section_from_phdr (abfd, phdr, sec_num))
5871 return false;
5872
5873 return true;
5874 }
5875 \f
5876 /* Providing external access to the ELF program header table. */
5877
5878 /* Return an upper bound on the number of bytes required to store a
5879 copy of ABFD's program header table entries. Return -1 if an error
5880 occurs; bfd_get_error will return an appropriate code. */
5881
5882 long
5883 bfd_get_elf_phdr_upper_bound (abfd)
5884 bfd *abfd;
5885 {
5886 if (abfd->xvec->flavour != bfd_target_elf_flavour)
5887 {
5888 bfd_set_error (bfd_error_wrong_format);
5889 return -1;
5890 }
5891
5892 return (elf_elfheader (abfd)->e_phnum
5893 * sizeof (Elf_Internal_Phdr));
5894 }
5895
5896 /* Copy ABFD's program header table entries to *PHDRS. The entries
5897 will be stored as an array of Elf_Internal_Phdr structures, as
5898 defined in include/elf/internal.h. To find out how large the
5899 buffer needs to be, call bfd_get_elf_phdr_upper_bound.
5900
5901 Return the number of program header table entries read, or -1 if an
5902 error occurs; bfd_get_error will return an appropriate code. */
5903
5904 int
5905 bfd_get_elf_phdrs (abfd, phdrs)
5906 bfd *abfd;
5907 void *phdrs;
5908 {
5909 int num_phdrs;
5910
5911 if (abfd->xvec->flavour != bfd_target_elf_flavour)
5912 {
5913 bfd_set_error (bfd_error_wrong_format);
5914 return -1;
5915 }
5916
5917 num_phdrs = elf_elfheader (abfd)->e_phnum;
5918 memcpy (phdrs, elf_tdata (abfd)->phdr,
5919 num_phdrs * sizeof (Elf_Internal_Phdr));
5920
5921 return num_phdrs;
5922 }
This page took 0.153619 seconds and 4 git commands to generate.