Don't adjust LOAD segment to match GNU_RELRO segment
[deliverable/binutils-gdb.git] / bfd / elf.c
1 /* ELF executable support for BFD.
2
3 Copyright 1993-2014 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
21
22
23 /*
24 SECTION
25 ELF backends
26
27 BFD support for ELF formats is being worked on.
28 Currently, the best supported back ends are for sparc and i386
29 (running svr4 or Solaris 2).
30
31 Documentation of the internals of the support code still needs
32 to be written. The code is changing quickly enough that we
33 haven't bothered yet. */
34
35 /* For sparc64-cross-sparc32. */
36 #define _SYSCALL32
37 #include "sysdep.h"
38 #include "bfd.h"
39 #include "bfdlink.h"
40 #include "libbfd.h"
41 #define ARCH_SIZE 0
42 #include "elf-bfd.h"
43 #include "libiberty.h"
44 #include "safe-ctype.h"
45 #include "elf-linux-psinfo.h"
46
47 #ifdef CORE_HEADER
48 #include CORE_HEADER
49 #endif
50
51 static int elf_sort_sections (const void *, const void *);
52 static bfd_boolean assign_file_positions_except_relocs (bfd *, struct bfd_link_info *);
53 static bfd_boolean prep_headers (bfd *);
54 static bfd_boolean swap_out_syms (bfd *, struct bfd_strtab_hash **, int) ;
55 static bfd_boolean elf_read_notes (bfd *, file_ptr, bfd_size_type) ;
56 static bfd_boolean elf_parse_notes (bfd *abfd, char *buf, size_t size,
57 file_ptr offset);
58
59 /* Swap version information in and out. The version information is
60 currently size independent. If that ever changes, this code will
61 need to move into elfcode.h. */
62
63 /* Swap in a Verdef structure. */
64
65 void
66 _bfd_elf_swap_verdef_in (bfd *abfd,
67 const Elf_External_Verdef *src,
68 Elf_Internal_Verdef *dst)
69 {
70 dst->vd_version = H_GET_16 (abfd, src->vd_version);
71 dst->vd_flags = H_GET_16 (abfd, src->vd_flags);
72 dst->vd_ndx = H_GET_16 (abfd, src->vd_ndx);
73 dst->vd_cnt = H_GET_16 (abfd, src->vd_cnt);
74 dst->vd_hash = H_GET_32 (abfd, src->vd_hash);
75 dst->vd_aux = H_GET_32 (abfd, src->vd_aux);
76 dst->vd_next = H_GET_32 (abfd, src->vd_next);
77 }
78
79 /* Swap out a Verdef structure. */
80
81 void
82 _bfd_elf_swap_verdef_out (bfd *abfd,
83 const Elf_Internal_Verdef *src,
84 Elf_External_Verdef *dst)
85 {
86 H_PUT_16 (abfd, src->vd_version, dst->vd_version);
87 H_PUT_16 (abfd, src->vd_flags, dst->vd_flags);
88 H_PUT_16 (abfd, src->vd_ndx, dst->vd_ndx);
89 H_PUT_16 (abfd, src->vd_cnt, dst->vd_cnt);
90 H_PUT_32 (abfd, src->vd_hash, dst->vd_hash);
91 H_PUT_32 (abfd, src->vd_aux, dst->vd_aux);
92 H_PUT_32 (abfd, src->vd_next, dst->vd_next);
93 }
94
95 /* Swap in a Verdaux structure. */
96
97 void
98 _bfd_elf_swap_verdaux_in (bfd *abfd,
99 const Elf_External_Verdaux *src,
100 Elf_Internal_Verdaux *dst)
101 {
102 dst->vda_name = H_GET_32 (abfd, src->vda_name);
103 dst->vda_next = H_GET_32 (abfd, src->vda_next);
104 }
105
106 /* Swap out a Verdaux structure. */
107
108 void
109 _bfd_elf_swap_verdaux_out (bfd *abfd,
110 const Elf_Internal_Verdaux *src,
111 Elf_External_Verdaux *dst)
112 {
113 H_PUT_32 (abfd, src->vda_name, dst->vda_name);
114 H_PUT_32 (abfd, src->vda_next, dst->vda_next);
115 }
116
117 /* Swap in a Verneed structure. */
118
119 void
120 _bfd_elf_swap_verneed_in (bfd *abfd,
121 const Elf_External_Verneed *src,
122 Elf_Internal_Verneed *dst)
123 {
124 dst->vn_version = H_GET_16 (abfd, src->vn_version);
125 dst->vn_cnt = H_GET_16 (abfd, src->vn_cnt);
126 dst->vn_file = H_GET_32 (abfd, src->vn_file);
127 dst->vn_aux = H_GET_32 (abfd, src->vn_aux);
128 dst->vn_next = H_GET_32 (abfd, src->vn_next);
129 }
130
131 /* Swap out a Verneed structure. */
132
133 void
134 _bfd_elf_swap_verneed_out (bfd *abfd,
135 const Elf_Internal_Verneed *src,
136 Elf_External_Verneed *dst)
137 {
138 H_PUT_16 (abfd, src->vn_version, dst->vn_version);
139 H_PUT_16 (abfd, src->vn_cnt, dst->vn_cnt);
140 H_PUT_32 (abfd, src->vn_file, dst->vn_file);
141 H_PUT_32 (abfd, src->vn_aux, dst->vn_aux);
142 H_PUT_32 (abfd, src->vn_next, dst->vn_next);
143 }
144
145 /* Swap in a Vernaux structure. */
146
147 void
148 _bfd_elf_swap_vernaux_in (bfd *abfd,
149 const Elf_External_Vernaux *src,
150 Elf_Internal_Vernaux *dst)
151 {
152 dst->vna_hash = H_GET_32 (abfd, src->vna_hash);
153 dst->vna_flags = H_GET_16 (abfd, src->vna_flags);
154 dst->vna_other = H_GET_16 (abfd, src->vna_other);
155 dst->vna_name = H_GET_32 (abfd, src->vna_name);
156 dst->vna_next = H_GET_32 (abfd, src->vna_next);
157 }
158
159 /* Swap out a Vernaux structure. */
160
161 void
162 _bfd_elf_swap_vernaux_out (bfd *abfd,
163 const Elf_Internal_Vernaux *src,
164 Elf_External_Vernaux *dst)
165 {
166 H_PUT_32 (abfd, src->vna_hash, dst->vna_hash);
167 H_PUT_16 (abfd, src->vna_flags, dst->vna_flags);
168 H_PUT_16 (abfd, src->vna_other, dst->vna_other);
169 H_PUT_32 (abfd, src->vna_name, dst->vna_name);
170 H_PUT_32 (abfd, src->vna_next, dst->vna_next);
171 }
172
173 /* Swap in a Versym structure. */
174
175 void
176 _bfd_elf_swap_versym_in (bfd *abfd,
177 const Elf_External_Versym *src,
178 Elf_Internal_Versym *dst)
179 {
180 dst->vs_vers = H_GET_16 (abfd, src->vs_vers);
181 }
182
183 /* Swap out a Versym structure. */
184
185 void
186 _bfd_elf_swap_versym_out (bfd *abfd,
187 const Elf_Internal_Versym *src,
188 Elf_External_Versym *dst)
189 {
190 H_PUT_16 (abfd, src->vs_vers, dst->vs_vers);
191 }
192
193 /* Standard ELF hash function. Do not change this function; you will
194 cause invalid hash tables to be generated. */
195
196 unsigned long
197 bfd_elf_hash (const char *namearg)
198 {
199 const unsigned char *name = (const unsigned char *) namearg;
200 unsigned long h = 0;
201 unsigned long g;
202 int ch;
203
204 while ((ch = *name++) != '\0')
205 {
206 h = (h << 4) + ch;
207 if ((g = (h & 0xf0000000)) != 0)
208 {
209 h ^= g >> 24;
210 /* The ELF ABI says `h &= ~g', but this is equivalent in
211 this case and on some machines one insn instead of two. */
212 h ^= g;
213 }
214 }
215 return h & 0xffffffff;
216 }
217
218 /* DT_GNU_HASH hash function. Do not change this function; you will
219 cause invalid hash tables to be generated. */
220
221 unsigned long
222 bfd_elf_gnu_hash (const char *namearg)
223 {
224 const unsigned char *name = (const unsigned char *) namearg;
225 unsigned long h = 5381;
226 unsigned char ch;
227
228 while ((ch = *name++) != '\0')
229 h = (h << 5) + h + ch;
230 return h & 0xffffffff;
231 }
232
233 /* Create a tdata field OBJECT_SIZE bytes in length, zeroed out and with
234 the object_id field of an elf_obj_tdata field set to OBJECT_ID. */
235 bfd_boolean
236 bfd_elf_allocate_object (bfd *abfd,
237 size_t object_size,
238 enum elf_target_id object_id)
239 {
240 BFD_ASSERT (object_size >= sizeof (struct elf_obj_tdata));
241 abfd->tdata.any = bfd_zalloc (abfd, object_size);
242 if (abfd->tdata.any == NULL)
243 return FALSE;
244
245 elf_object_id (abfd) = object_id;
246 if (abfd->direction != read_direction)
247 {
248 struct output_elf_obj_tdata *o = bfd_zalloc (abfd, sizeof *o);
249 if (o == NULL)
250 return FALSE;
251 elf_tdata (abfd)->o = o;
252 elf_program_header_size (abfd) = (bfd_size_type) -1;
253 }
254 return TRUE;
255 }
256
257
258 bfd_boolean
259 bfd_elf_make_object (bfd *abfd)
260 {
261 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
262 return bfd_elf_allocate_object (abfd, sizeof (struct elf_obj_tdata),
263 bed->target_id);
264 }
265
266 bfd_boolean
267 bfd_elf_mkcorefile (bfd *abfd)
268 {
269 /* I think this can be done just like an object file. */
270 if (!abfd->xvec->_bfd_set_format[(int) bfd_object] (abfd))
271 return FALSE;
272 elf_tdata (abfd)->core = bfd_zalloc (abfd, sizeof (*elf_tdata (abfd)->core));
273 return elf_tdata (abfd)->core != NULL;
274 }
275
276 static char *
277 bfd_elf_get_str_section (bfd *abfd, unsigned int shindex)
278 {
279 Elf_Internal_Shdr **i_shdrp;
280 bfd_byte *shstrtab = NULL;
281 file_ptr offset;
282 bfd_size_type shstrtabsize;
283
284 i_shdrp = elf_elfsections (abfd);
285 if (i_shdrp == 0
286 || shindex >= elf_numsections (abfd)
287 || i_shdrp[shindex] == 0)
288 return NULL;
289
290 shstrtab = i_shdrp[shindex]->contents;
291 if (shstrtab == NULL)
292 {
293 /* No cached one, attempt to read, and cache what we read. */
294 offset = i_shdrp[shindex]->sh_offset;
295 shstrtabsize = i_shdrp[shindex]->sh_size;
296
297 /* Allocate and clear an extra byte at the end, to prevent crashes
298 in case the string table is not terminated. */
299 if (shstrtabsize + 1 <= 1
300 || (shstrtab = (bfd_byte *) bfd_alloc (abfd, shstrtabsize + 1)) == NULL
301 || bfd_seek (abfd, offset, SEEK_SET) != 0)
302 shstrtab = NULL;
303 else if (bfd_bread (shstrtab, shstrtabsize, abfd) != shstrtabsize)
304 {
305 if (bfd_get_error () != bfd_error_system_call)
306 bfd_set_error (bfd_error_file_truncated);
307 shstrtab = NULL;
308 /* Once we've failed to read it, make sure we don't keep
309 trying. Otherwise, we'll keep allocating space for
310 the string table over and over. */
311 i_shdrp[shindex]->sh_size = 0;
312 }
313 else
314 shstrtab[shstrtabsize] = '\0';
315 i_shdrp[shindex]->contents = shstrtab;
316 }
317 return (char *) shstrtab;
318 }
319
320 char *
321 bfd_elf_string_from_elf_section (bfd *abfd,
322 unsigned int shindex,
323 unsigned int strindex)
324 {
325 Elf_Internal_Shdr *hdr;
326
327 if (strindex == 0)
328 return "";
329
330 if (elf_elfsections (abfd) == NULL || shindex >= elf_numsections (abfd))
331 return NULL;
332
333 hdr = elf_elfsections (abfd)[shindex];
334
335 if (hdr->contents == NULL
336 && bfd_elf_get_str_section (abfd, shindex) == NULL)
337 return NULL;
338
339 if (strindex >= hdr->sh_size)
340 {
341 unsigned int shstrndx = elf_elfheader(abfd)->e_shstrndx;
342 (*_bfd_error_handler)
343 (_("%B: invalid string offset %u >= %lu for section `%s'"),
344 abfd, strindex, (unsigned long) hdr->sh_size,
345 (shindex == shstrndx && strindex == hdr->sh_name
346 ? ".shstrtab"
347 : bfd_elf_string_from_elf_section (abfd, shstrndx, hdr->sh_name)));
348 return NULL;
349 }
350
351 return ((char *) hdr->contents) + strindex;
352 }
353
354 /* Read and convert symbols to internal format.
355 SYMCOUNT specifies the number of symbols to read, starting from
356 symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF
357 are non-NULL, they are used to store the internal symbols, external
358 symbols, and symbol section index extensions, respectively.
359 Returns a pointer to the internal symbol buffer (malloced if necessary)
360 or NULL if there were no symbols or some kind of problem. */
361
362 Elf_Internal_Sym *
363 bfd_elf_get_elf_syms (bfd *ibfd,
364 Elf_Internal_Shdr *symtab_hdr,
365 size_t symcount,
366 size_t symoffset,
367 Elf_Internal_Sym *intsym_buf,
368 void *extsym_buf,
369 Elf_External_Sym_Shndx *extshndx_buf)
370 {
371 Elf_Internal_Shdr *shndx_hdr;
372 void *alloc_ext;
373 const bfd_byte *esym;
374 Elf_External_Sym_Shndx *alloc_extshndx;
375 Elf_External_Sym_Shndx *shndx;
376 Elf_Internal_Sym *alloc_intsym;
377 Elf_Internal_Sym *isym;
378 Elf_Internal_Sym *isymend;
379 const struct elf_backend_data *bed;
380 size_t extsym_size;
381 bfd_size_type amt;
382 file_ptr pos;
383
384 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
385 abort ();
386
387 if (symcount == 0)
388 return intsym_buf;
389
390 /* Normal syms might have section extension entries. */
391 shndx_hdr = NULL;
392 if (symtab_hdr == &elf_tdata (ibfd)->symtab_hdr)
393 shndx_hdr = &elf_tdata (ibfd)->symtab_shndx_hdr;
394
395 /* Read the symbols. */
396 alloc_ext = NULL;
397 alloc_extshndx = NULL;
398 alloc_intsym = NULL;
399 bed = get_elf_backend_data (ibfd);
400 extsym_size = bed->s->sizeof_sym;
401 amt = symcount * extsym_size;
402 pos = symtab_hdr->sh_offset + symoffset * extsym_size;
403 if (extsym_buf == NULL)
404 {
405 alloc_ext = bfd_malloc2 (symcount, extsym_size);
406 extsym_buf = alloc_ext;
407 }
408 if (extsym_buf == NULL
409 || bfd_seek (ibfd, pos, SEEK_SET) != 0
410 || bfd_bread (extsym_buf, amt, ibfd) != amt)
411 {
412 intsym_buf = NULL;
413 goto out;
414 }
415
416 if (shndx_hdr == NULL || shndx_hdr->sh_size == 0)
417 extshndx_buf = NULL;
418 else
419 {
420 amt = symcount * sizeof (Elf_External_Sym_Shndx);
421 pos = shndx_hdr->sh_offset + symoffset * sizeof (Elf_External_Sym_Shndx);
422 if (extshndx_buf == NULL)
423 {
424 alloc_extshndx = (Elf_External_Sym_Shndx *)
425 bfd_malloc2 (symcount, sizeof (Elf_External_Sym_Shndx));
426 extshndx_buf = alloc_extshndx;
427 }
428 if (extshndx_buf == NULL
429 || bfd_seek (ibfd, pos, SEEK_SET) != 0
430 || bfd_bread (extshndx_buf, amt, ibfd) != amt)
431 {
432 intsym_buf = NULL;
433 goto out;
434 }
435 }
436
437 if (intsym_buf == NULL)
438 {
439 alloc_intsym = (Elf_Internal_Sym *)
440 bfd_malloc2 (symcount, sizeof (Elf_Internal_Sym));
441 intsym_buf = alloc_intsym;
442 if (intsym_buf == NULL)
443 goto out;
444 }
445
446 /* Convert the symbols to internal form. */
447 isymend = intsym_buf + symcount;
448 for (esym = (const bfd_byte *) extsym_buf, isym = intsym_buf,
449 shndx = extshndx_buf;
450 isym < isymend;
451 esym += extsym_size, isym++, shndx = shndx != NULL ? shndx + 1 : NULL)
452 if (!(*bed->s->swap_symbol_in) (ibfd, esym, shndx, isym))
453 {
454 symoffset += (esym - (bfd_byte *) extsym_buf) / extsym_size;
455 (*_bfd_error_handler) (_("%B symbol number %lu references "
456 "nonexistent SHT_SYMTAB_SHNDX section"),
457 ibfd, (unsigned long) symoffset);
458 if (alloc_intsym != NULL)
459 free (alloc_intsym);
460 intsym_buf = NULL;
461 goto out;
462 }
463
464 out:
465 if (alloc_ext != NULL)
466 free (alloc_ext);
467 if (alloc_extshndx != NULL)
468 free (alloc_extshndx);
469
470 return intsym_buf;
471 }
472
473 /* Look up a symbol name. */
474 const char *
475 bfd_elf_sym_name (bfd *abfd,
476 Elf_Internal_Shdr *symtab_hdr,
477 Elf_Internal_Sym *isym,
478 asection *sym_sec)
479 {
480 const char *name;
481 unsigned int iname = isym->st_name;
482 unsigned int shindex = symtab_hdr->sh_link;
483
484 if (iname == 0 && ELF_ST_TYPE (isym->st_info) == STT_SECTION
485 /* Check for a bogus st_shndx to avoid crashing. */
486 && isym->st_shndx < elf_numsections (abfd))
487 {
488 iname = elf_elfsections (abfd)[isym->st_shndx]->sh_name;
489 shindex = elf_elfheader (abfd)->e_shstrndx;
490 }
491
492 name = bfd_elf_string_from_elf_section (abfd, shindex, iname);
493 if (name == NULL)
494 name = "(null)";
495 else if (sym_sec && *name == '\0')
496 name = bfd_section_name (abfd, sym_sec);
497
498 return name;
499 }
500
501 /* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
502 sections. The first element is the flags, the rest are section
503 pointers. */
504
505 typedef union elf_internal_group {
506 Elf_Internal_Shdr *shdr;
507 unsigned int flags;
508 } Elf_Internal_Group;
509
510 /* Return the name of the group signature symbol. Why isn't the
511 signature just a string? */
512
513 static const char *
514 group_signature (bfd *abfd, Elf_Internal_Shdr *ghdr)
515 {
516 Elf_Internal_Shdr *hdr;
517 unsigned char esym[sizeof (Elf64_External_Sym)];
518 Elf_External_Sym_Shndx eshndx;
519 Elf_Internal_Sym isym;
520
521 /* First we need to ensure the symbol table is available. Make sure
522 that it is a symbol table section. */
523 if (ghdr->sh_link >= elf_numsections (abfd))
524 return NULL;
525 hdr = elf_elfsections (abfd) [ghdr->sh_link];
526 if (hdr->sh_type != SHT_SYMTAB
527 || ! bfd_section_from_shdr (abfd, ghdr->sh_link))
528 return NULL;
529
530 /* Go read the symbol. */
531 hdr = &elf_tdata (abfd)->symtab_hdr;
532 if (bfd_elf_get_elf_syms (abfd, hdr, 1, ghdr->sh_info,
533 &isym, esym, &eshndx) == NULL)
534 return NULL;
535
536 return bfd_elf_sym_name (abfd, hdr, &isym, NULL);
537 }
538
539 /* Set next_in_group list pointer, and group name for NEWSECT. */
540
541 static bfd_boolean
542 setup_group (bfd *abfd, Elf_Internal_Shdr *hdr, asection *newsect)
543 {
544 unsigned int num_group = elf_tdata (abfd)->num_group;
545
546 /* If num_group is zero, read in all SHT_GROUP sections. The count
547 is set to -1 if there are no SHT_GROUP sections. */
548 if (num_group == 0)
549 {
550 unsigned int i, shnum;
551
552 /* First count the number of groups. If we have a SHT_GROUP
553 section with just a flag word (ie. sh_size is 4), ignore it. */
554 shnum = elf_numsections (abfd);
555 num_group = 0;
556
557 #define IS_VALID_GROUP_SECTION_HEADER(shdr, minsize) \
558 ( (shdr)->sh_type == SHT_GROUP \
559 && (shdr)->sh_size >= minsize \
560 && (shdr)->sh_entsize == GRP_ENTRY_SIZE \
561 && ((shdr)->sh_size % GRP_ENTRY_SIZE) == 0)
562
563 for (i = 0; i < shnum; i++)
564 {
565 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
566
567 if (IS_VALID_GROUP_SECTION_HEADER (shdr, 2 * GRP_ENTRY_SIZE))
568 num_group += 1;
569 }
570
571 if (num_group == 0)
572 {
573 num_group = (unsigned) -1;
574 elf_tdata (abfd)->num_group = num_group;
575 }
576 else
577 {
578 /* We keep a list of elf section headers for group sections,
579 so we can find them quickly. */
580 bfd_size_type amt;
581
582 elf_tdata (abfd)->num_group = num_group;
583 elf_tdata (abfd)->group_sect_ptr = (Elf_Internal_Shdr **)
584 bfd_alloc2 (abfd, num_group, sizeof (Elf_Internal_Shdr *));
585 if (elf_tdata (abfd)->group_sect_ptr == NULL)
586 return FALSE;
587
588 num_group = 0;
589 for (i = 0; i < shnum; i++)
590 {
591 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
592
593 if (IS_VALID_GROUP_SECTION_HEADER (shdr, 2 * GRP_ENTRY_SIZE))
594 {
595 unsigned char *src;
596 Elf_Internal_Group *dest;
597
598 /* Add to list of sections. */
599 elf_tdata (abfd)->group_sect_ptr[num_group] = shdr;
600 num_group += 1;
601
602 /* Read the raw contents. */
603 BFD_ASSERT (sizeof (*dest) >= 4);
604 amt = shdr->sh_size * sizeof (*dest) / 4;
605 shdr->contents = (unsigned char *)
606 bfd_alloc2 (abfd, shdr->sh_size, sizeof (*dest) / 4);
607 /* PR binutils/4110: Handle corrupt group headers. */
608 if (shdr->contents == NULL)
609 {
610 _bfd_error_handler
611 (_("%B: Corrupt size field in group section header: 0x%lx"), abfd, shdr->sh_size);
612 bfd_set_error (bfd_error_bad_value);
613 return FALSE;
614 }
615
616 memset (shdr->contents, 0, amt);
617
618 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0
619 || (bfd_bread (shdr->contents, shdr->sh_size, abfd)
620 != shdr->sh_size))
621 return FALSE;
622
623 /* Translate raw contents, a flag word followed by an
624 array of elf section indices all in target byte order,
625 to the flag word followed by an array of elf section
626 pointers. */
627 src = shdr->contents + shdr->sh_size;
628 dest = (Elf_Internal_Group *) (shdr->contents + amt);
629 while (1)
630 {
631 unsigned int idx;
632
633 src -= 4;
634 --dest;
635 idx = H_GET_32 (abfd, src);
636 if (src == shdr->contents)
637 {
638 dest->flags = idx;
639 if (shdr->bfd_section != NULL && (idx & GRP_COMDAT))
640 shdr->bfd_section->flags
641 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
642 break;
643 }
644 if (idx >= shnum)
645 {
646 ((*_bfd_error_handler)
647 (_("%B: invalid SHT_GROUP entry"), abfd));
648 idx = 0;
649 }
650 dest->shdr = elf_elfsections (abfd)[idx];
651 }
652 }
653 }
654 }
655 }
656
657 if (num_group != (unsigned) -1)
658 {
659 unsigned int i;
660
661 for (i = 0; i < num_group; i++)
662 {
663 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
664 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
665 unsigned int n_elt = shdr->sh_size / 4;
666
667 /* Look through this group's sections to see if current
668 section is a member. */
669 while (--n_elt != 0)
670 if ((++idx)->shdr == hdr)
671 {
672 asection *s = NULL;
673
674 /* We are a member of this group. Go looking through
675 other members to see if any others are linked via
676 next_in_group. */
677 idx = (Elf_Internal_Group *) shdr->contents;
678 n_elt = shdr->sh_size / 4;
679 while (--n_elt != 0)
680 if ((s = (++idx)->shdr->bfd_section) != NULL
681 && elf_next_in_group (s) != NULL)
682 break;
683 if (n_elt != 0)
684 {
685 /* Snarf the group name from other member, and
686 insert current section in circular list. */
687 elf_group_name (newsect) = elf_group_name (s);
688 elf_next_in_group (newsect) = elf_next_in_group (s);
689 elf_next_in_group (s) = newsect;
690 }
691 else
692 {
693 const char *gname;
694
695 gname = group_signature (abfd, shdr);
696 if (gname == NULL)
697 return FALSE;
698 elf_group_name (newsect) = gname;
699
700 /* Start a circular list with one element. */
701 elf_next_in_group (newsect) = newsect;
702 }
703
704 /* If the group section has been created, point to the
705 new member. */
706 if (shdr->bfd_section != NULL)
707 elf_next_in_group (shdr->bfd_section) = newsect;
708
709 i = num_group - 1;
710 break;
711 }
712 }
713 }
714
715 if (elf_group_name (newsect) == NULL)
716 {
717 (*_bfd_error_handler) (_("%B: no group info for section %A"),
718 abfd, newsect);
719 }
720 return TRUE;
721 }
722
723 bfd_boolean
724 _bfd_elf_setup_sections (bfd *abfd)
725 {
726 unsigned int i;
727 unsigned int num_group = elf_tdata (abfd)->num_group;
728 bfd_boolean result = TRUE;
729 asection *s;
730
731 /* Process SHF_LINK_ORDER. */
732 for (s = abfd->sections; s != NULL; s = s->next)
733 {
734 Elf_Internal_Shdr *this_hdr = &elf_section_data (s)->this_hdr;
735 if ((this_hdr->sh_flags & SHF_LINK_ORDER) != 0)
736 {
737 unsigned int elfsec = this_hdr->sh_link;
738 /* FIXME: The old Intel compiler and old strip/objcopy may
739 not set the sh_link or sh_info fields. Hence we could
740 get the situation where elfsec is 0. */
741 if (elfsec == 0)
742 {
743 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
744 if (bed->link_order_error_handler)
745 bed->link_order_error_handler
746 (_("%B: warning: sh_link not set for section `%A'"),
747 abfd, s);
748 }
749 else
750 {
751 asection *linksec = NULL;
752
753 if (elfsec < elf_numsections (abfd))
754 {
755 this_hdr = elf_elfsections (abfd)[elfsec];
756 linksec = this_hdr->bfd_section;
757 }
758
759 /* PR 1991, 2008:
760 Some strip/objcopy may leave an incorrect value in
761 sh_link. We don't want to proceed. */
762 if (linksec == NULL)
763 {
764 (*_bfd_error_handler)
765 (_("%B: sh_link [%d] in section `%A' is incorrect"),
766 s->owner, s, elfsec);
767 result = FALSE;
768 }
769
770 elf_linked_to_section (s) = linksec;
771 }
772 }
773 }
774
775 /* Process section groups. */
776 if (num_group == (unsigned) -1)
777 return result;
778
779 for (i = 0; i < num_group; i++)
780 {
781 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
782 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
783 unsigned int n_elt = shdr->sh_size / 4;
784
785 while (--n_elt != 0)
786 if ((++idx)->shdr->bfd_section)
787 elf_sec_group (idx->shdr->bfd_section) = shdr->bfd_section;
788 else if (idx->shdr->sh_type == SHT_RELA
789 || idx->shdr->sh_type == SHT_REL)
790 /* We won't include relocation sections in section groups in
791 output object files. We adjust the group section size here
792 so that relocatable link will work correctly when
793 relocation sections are in section group in input object
794 files. */
795 shdr->bfd_section->size -= 4;
796 else
797 {
798 /* There are some unknown sections in the group. */
799 (*_bfd_error_handler)
800 (_("%B: unknown [%d] section `%s' in group [%s]"),
801 abfd,
802 (unsigned int) idx->shdr->sh_type,
803 bfd_elf_string_from_elf_section (abfd,
804 (elf_elfheader (abfd)
805 ->e_shstrndx),
806 idx->shdr->sh_name),
807 shdr->bfd_section->name);
808 result = FALSE;
809 }
810 }
811 return result;
812 }
813
814 bfd_boolean
815 bfd_elf_is_group_section (bfd *abfd ATTRIBUTE_UNUSED, const asection *sec)
816 {
817 return elf_next_in_group (sec) != NULL;
818 }
819
820 /* Make a BFD section from an ELF section. We store a pointer to the
821 BFD section in the bfd_section field of the header. */
822
823 bfd_boolean
824 _bfd_elf_make_section_from_shdr (bfd *abfd,
825 Elf_Internal_Shdr *hdr,
826 const char *name,
827 int shindex)
828 {
829 asection *newsect;
830 flagword flags;
831 const struct elf_backend_data *bed;
832
833 if (hdr->bfd_section != NULL)
834 return TRUE;
835
836 newsect = bfd_make_section_anyway (abfd, name);
837 if (newsect == NULL)
838 return FALSE;
839
840 hdr->bfd_section = newsect;
841 elf_section_data (newsect)->this_hdr = *hdr;
842 elf_section_data (newsect)->this_idx = shindex;
843
844 /* Always use the real type/flags. */
845 elf_section_type (newsect) = hdr->sh_type;
846 elf_section_flags (newsect) = hdr->sh_flags;
847
848 newsect->filepos = hdr->sh_offset;
849
850 if (! bfd_set_section_vma (abfd, newsect, hdr->sh_addr)
851 || ! bfd_set_section_size (abfd, newsect, hdr->sh_size)
852 || ! bfd_set_section_alignment (abfd, newsect,
853 bfd_log2 (hdr->sh_addralign)))
854 return FALSE;
855
856 flags = SEC_NO_FLAGS;
857 if (hdr->sh_type != SHT_NOBITS)
858 flags |= SEC_HAS_CONTENTS;
859 if (hdr->sh_type == SHT_GROUP)
860 flags |= SEC_GROUP | SEC_EXCLUDE;
861 if ((hdr->sh_flags & SHF_ALLOC) != 0)
862 {
863 flags |= SEC_ALLOC;
864 if (hdr->sh_type != SHT_NOBITS)
865 flags |= SEC_LOAD;
866 }
867 if ((hdr->sh_flags & SHF_WRITE) == 0)
868 flags |= SEC_READONLY;
869 if ((hdr->sh_flags & SHF_EXECINSTR) != 0)
870 flags |= SEC_CODE;
871 else if ((flags & SEC_LOAD) != 0)
872 flags |= SEC_DATA;
873 if ((hdr->sh_flags & SHF_MERGE) != 0)
874 {
875 flags |= SEC_MERGE;
876 newsect->entsize = hdr->sh_entsize;
877 if ((hdr->sh_flags & SHF_STRINGS) != 0)
878 flags |= SEC_STRINGS;
879 }
880 if (hdr->sh_flags & SHF_GROUP)
881 if (!setup_group (abfd, hdr, newsect))
882 return FALSE;
883 if ((hdr->sh_flags & SHF_TLS) != 0)
884 flags |= SEC_THREAD_LOCAL;
885 if ((hdr->sh_flags & SHF_EXCLUDE) != 0)
886 flags |= SEC_EXCLUDE;
887
888 if ((flags & SEC_ALLOC) == 0)
889 {
890 /* The debugging sections appear to be recognized only by name,
891 not any sort of flag. Their SEC_ALLOC bits are cleared. */
892 if (name [0] == '.')
893 {
894 const char *p;
895 int n;
896 if (name[1] == 'd')
897 p = ".debug", n = 6;
898 else if (name[1] == 'g' && name[2] == 'n')
899 p = ".gnu.linkonce.wi.", n = 17;
900 else if (name[1] == 'g' && name[2] == 'd')
901 p = ".gdb_index", n = 11; /* yes we really do mean 11. */
902 else if (name[1] == 'l')
903 p = ".line", n = 5;
904 else if (name[1] == 's')
905 p = ".stab", n = 5;
906 else if (name[1] == 'z')
907 p = ".zdebug", n = 7;
908 else
909 p = NULL, n = 0;
910 if (p != NULL && strncmp (name, p, n) == 0)
911 flags |= SEC_DEBUGGING;
912 }
913 }
914
915 /* As a GNU extension, if the name begins with .gnu.linkonce, we
916 only link a single copy of the section. This is used to support
917 g++. g++ will emit each template expansion in its own section.
918 The symbols will be defined as weak, so that multiple definitions
919 are permitted. The GNU linker extension is to actually discard
920 all but one of the sections. */
921 if (CONST_STRNEQ (name, ".gnu.linkonce")
922 && elf_next_in_group (newsect) == NULL)
923 flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
924
925 bed = get_elf_backend_data (abfd);
926 if (bed->elf_backend_section_flags)
927 if (! bed->elf_backend_section_flags (&flags, hdr))
928 return FALSE;
929
930 if (! bfd_set_section_flags (abfd, newsect, flags))
931 return FALSE;
932
933 /* We do not parse the PT_NOTE segments as we are interested even in the
934 separate debug info files which may have the segments offsets corrupted.
935 PT_NOTEs from the core files are currently not parsed using BFD. */
936 if (hdr->sh_type == SHT_NOTE)
937 {
938 bfd_byte *contents;
939
940 if (!bfd_malloc_and_get_section (abfd, newsect, &contents))
941 return FALSE;
942
943 elf_parse_notes (abfd, (char *) contents, hdr->sh_size, -1);
944 free (contents);
945 }
946
947 if ((flags & SEC_ALLOC) != 0)
948 {
949 Elf_Internal_Phdr *phdr;
950 unsigned int i, nload;
951
952 /* Some ELF linkers produce binaries with all the program header
953 p_paddr fields zero. If we have such a binary with more than
954 one PT_LOAD header, then leave the section lma equal to vma
955 so that we don't create sections with overlapping lma. */
956 phdr = elf_tdata (abfd)->phdr;
957 for (nload = 0, i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
958 if (phdr->p_paddr != 0)
959 break;
960 else if (phdr->p_type == PT_LOAD && phdr->p_memsz != 0)
961 ++nload;
962 if (i >= elf_elfheader (abfd)->e_phnum && nload > 1)
963 return TRUE;
964
965 phdr = elf_tdata (abfd)->phdr;
966 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
967 {
968 if (((phdr->p_type == PT_LOAD
969 && (hdr->sh_flags & SHF_TLS) == 0)
970 || phdr->p_type == PT_TLS)
971 && ELF_SECTION_IN_SEGMENT (hdr, phdr))
972 {
973 if ((flags & SEC_LOAD) == 0)
974 newsect->lma = (phdr->p_paddr
975 + hdr->sh_addr - phdr->p_vaddr);
976 else
977 /* We used to use the same adjustment for SEC_LOAD
978 sections, but that doesn't work if the segment
979 is packed with code from multiple VMAs.
980 Instead we calculate the section LMA based on
981 the segment LMA. It is assumed that the
982 segment will contain sections with contiguous
983 LMAs, even if the VMAs are not. */
984 newsect->lma = (phdr->p_paddr
985 + hdr->sh_offset - phdr->p_offset);
986
987 /* With contiguous segments, we can't tell from file
988 offsets whether a section with zero size should
989 be placed at the end of one segment or the
990 beginning of the next. Decide based on vaddr. */
991 if (hdr->sh_addr >= phdr->p_vaddr
992 && (hdr->sh_addr + hdr->sh_size
993 <= phdr->p_vaddr + phdr->p_memsz))
994 break;
995 }
996 }
997 }
998
999 /* Compress/decompress DWARF debug sections with names: .debug_* and
1000 .zdebug_*, after the section flags is set. */
1001 if ((flags & SEC_DEBUGGING)
1002 && ((name[1] == 'd' && name[6] == '_')
1003 || (name[1] == 'z' && name[7] == '_')))
1004 {
1005 enum { nothing, compress, decompress } action = nothing;
1006 char *new_name;
1007
1008 if (bfd_is_section_compressed (abfd, newsect))
1009 {
1010 /* Compressed section. Check if we should decompress. */
1011 if ((abfd->flags & BFD_DECOMPRESS))
1012 action = decompress;
1013 }
1014 else
1015 {
1016 /* Normal section. Check if we should compress. */
1017 if ((abfd->flags & BFD_COMPRESS) && newsect->size != 0)
1018 action = compress;
1019 }
1020
1021 new_name = NULL;
1022 switch (action)
1023 {
1024 case nothing:
1025 break;
1026 case compress:
1027 if (!bfd_init_section_compress_status (abfd, newsect))
1028 {
1029 (*_bfd_error_handler)
1030 (_("%B: unable to initialize compress status for section %s"),
1031 abfd, name);
1032 return FALSE;
1033 }
1034 if (name[1] != 'z')
1035 {
1036 unsigned int len = strlen (name);
1037
1038 new_name = bfd_alloc (abfd, len + 2);
1039 if (new_name == NULL)
1040 return FALSE;
1041 new_name[0] = '.';
1042 new_name[1] = 'z';
1043 memcpy (new_name + 2, name + 1, len);
1044 }
1045 break;
1046 case decompress:
1047 if (!bfd_init_section_decompress_status (abfd, newsect))
1048 {
1049 (*_bfd_error_handler)
1050 (_("%B: unable to initialize decompress status for section %s"),
1051 abfd, name);
1052 return FALSE;
1053 }
1054 if (name[1] == 'z')
1055 {
1056 unsigned int len = strlen (name);
1057
1058 new_name = bfd_alloc (abfd, len);
1059 if (new_name == NULL)
1060 return FALSE;
1061 new_name[0] = '.';
1062 memcpy (new_name + 1, name + 2, len - 1);
1063 }
1064 break;
1065 }
1066 if (new_name != NULL)
1067 bfd_rename_section (abfd, newsect, new_name);
1068 }
1069
1070 return TRUE;
1071 }
1072
1073 const char *const bfd_elf_section_type_names[] = {
1074 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
1075 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
1076 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
1077 };
1078
1079 /* ELF relocs are against symbols. If we are producing relocatable
1080 output, and the reloc is against an external symbol, and nothing
1081 has given us any additional addend, the resulting reloc will also
1082 be against the same symbol. In such a case, we don't want to
1083 change anything about the way the reloc is handled, since it will
1084 all be done at final link time. Rather than put special case code
1085 into bfd_perform_relocation, all the reloc types use this howto
1086 function. It just short circuits the reloc if producing
1087 relocatable output against an external symbol. */
1088
1089 bfd_reloc_status_type
1090 bfd_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED,
1091 arelent *reloc_entry,
1092 asymbol *symbol,
1093 void *data ATTRIBUTE_UNUSED,
1094 asection *input_section,
1095 bfd *output_bfd,
1096 char **error_message ATTRIBUTE_UNUSED)
1097 {
1098 if (output_bfd != NULL
1099 && (symbol->flags & BSF_SECTION_SYM) == 0
1100 && (! reloc_entry->howto->partial_inplace
1101 || reloc_entry->addend == 0))
1102 {
1103 reloc_entry->address += input_section->output_offset;
1104 return bfd_reloc_ok;
1105 }
1106
1107 return bfd_reloc_continue;
1108 }
1109 \f
1110 /* Copy the program header and other data from one object module to
1111 another. */
1112
1113 bfd_boolean
1114 _bfd_elf_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
1115 {
1116 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
1117 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
1118 return TRUE;
1119
1120 if (!elf_flags_init (obfd))
1121 {
1122 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
1123 elf_flags_init (obfd) = TRUE;
1124 }
1125
1126 elf_gp (obfd) = elf_gp (ibfd);
1127
1128 /* Also copy the EI_OSABI field. */
1129 elf_elfheader (obfd)->e_ident[EI_OSABI] =
1130 elf_elfheader (ibfd)->e_ident[EI_OSABI];
1131
1132 /* Copy object attributes. */
1133 _bfd_elf_copy_obj_attributes (ibfd, obfd);
1134 return TRUE;
1135 }
1136
1137 static const char *
1138 get_segment_type (unsigned int p_type)
1139 {
1140 const char *pt;
1141 switch (p_type)
1142 {
1143 case PT_NULL: pt = "NULL"; break;
1144 case PT_LOAD: pt = "LOAD"; break;
1145 case PT_DYNAMIC: pt = "DYNAMIC"; break;
1146 case PT_INTERP: pt = "INTERP"; break;
1147 case PT_NOTE: pt = "NOTE"; break;
1148 case PT_SHLIB: pt = "SHLIB"; break;
1149 case PT_PHDR: pt = "PHDR"; break;
1150 case PT_TLS: pt = "TLS"; break;
1151 case PT_GNU_EH_FRAME: pt = "EH_FRAME"; break;
1152 case PT_GNU_STACK: pt = "STACK"; break;
1153 case PT_GNU_RELRO: pt = "RELRO"; break;
1154 default: pt = NULL; break;
1155 }
1156 return pt;
1157 }
1158
1159 /* Print out the program headers. */
1160
1161 bfd_boolean
1162 _bfd_elf_print_private_bfd_data (bfd *abfd, void *farg)
1163 {
1164 FILE *f = (FILE *) farg;
1165 Elf_Internal_Phdr *p;
1166 asection *s;
1167 bfd_byte *dynbuf = NULL;
1168
1169 p = elf_tdata (abfd)->phdr;
1170 if (p != NULL)
1171 {
1172 unsigned int i, c;
1173
1174 fprintf (f, _("\nProgram Header:\n"));
1175 c = elf_elfheader (abfd)->e_phnum;
1176 for (i = 0; i < c; i++, p++)
1177 {
1178 const char *pt = get_segment_type (p->p_type);
1179 char buf[20];
1180
1181 if (pt == NULL)
1182 {
1183 sprintf (buf, "0x%lx", p->p_type);
1184 pt = buf;
1185 }
1186 fprintf (f, "%8s off 0x", pt);
1187 bfd_fprintf_vma (abfd, f, p->p_offset);
1188 fprintf (f, " vaddr 0x");
1189 bfd_fprintf_vma (abfd, f, p->p_vaddr);
1190 fprintf (f, " paddr 0x");
1191 bfd_fprintf_vma (abfd, f, p->p_paddr);
1192 fprintf (f, " align 2**%u\n", bfd_log2 (p->p_align));
1193 fprintf (f, " filesz 0x");
1194 bfd_fprintf_vma (abfd, f, p->p_filesz);
1195 fprintf (f, " memsz 0x");
1196 bfd_fprintf_vma (abfd, f, p->p_memsz);
1197 fprintf (f, " flags %c%c%c",
1198 (p->p_flags & PF_R) != 0 ? 'r' : '-',
1199 (p->p_flags & PF_W) != 0 ? 'w' : '-',
1200 (p->p_flags & PF_X) != 0 ? 'x' : '-');
1201 if ((p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X)) != 0)
1202 fprintf (f, " %lx", p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X));
1203 fprintf (f, "\n");
1204 }
1205 }
1206
1207 s = bfd_get_section_by_name (abfd, ".dynamic");
1208 if (s != NULL)
1209 {
1210 unsigned int elfsec;
1211 unsigned long shlink;
1212 bfd_byte *extdyn, *extdynend;
1213 size_t extdynsize;
1214 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1215
1216 fprintf (f, _("\nDynamic Section:\n"));
1217
1218 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
1219 goto error_return;
1220
1221 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1222 if (elfsec == SHN_BAD)
1223 goto error_return;
1224 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1225
1226 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1227 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1228
1229 extdyn = dynbuf;
1230 extdynend = extdyn + s->size;
1231 for (; extdyn < extdynend; extdyn += extdynsize)
1232 {
1233 Elf_Internal_Dyn dyn;
1234 const char *name = "";
1235 char ab[20];
1236 bfd_boolean stringp;
1237 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1238
1239 (*swap_dyn_in) (abfd, extdyn, &dyn);
1240
1241 if (dyn.d_tag == DT_NULL)
1242 break;
1243
1244 stringp = FALSE;
1245 switch (dyn.d_tag)
1246 {
1247 default:
1248 if (bed->elf_backend_get_target_dtag)
1249 name = (*bed->elf_backend_get_target_dtag) (dyn.d_tag);
1250
1251 if (!strcmp (name, ""))
1252 {
1253 sprintf (ab, "0x%lx", (unsigned long) dyn.d_tag);
1254 name = ab;
1255 }
1256 break;
1257
1258 case DT_NEEDED: name = "NEEDED"; stringp = TRUE; break;
1259 case DT_PLTRELSZ: name = "PLTRELSZ"; break;
1260 case DT_PLTGOT: name = "PLTGOT"; break;
1261 case DT_HASH: name = "HASH"; break;
1262 case DT_STRTAB: name = "STRTAB"; break;
1263 case DT_SYMTAB: name = "SYMTAB"; break;
1264 case DT_RELA: name = "RELA"; break;
1265 case DT_RELASZ: name = "RELASZ"; break;
1266 case DT_RELAENT: name = "RELAENT"; break;
1267 case DT_STRSZ: name = "STRSZ"; break;
1268 case DT_SYMENT: name = "SYMENT"; break;
1269 case DT_INIT: name = "INIT"; break;
1270 case DT_FINI: name = "FINI"; break;
1271 case DT_SONAME: name = "SONAME"; stringp = TRUE; break;
1272 case DT_RPATH: name = "RPATH"; stringp = TRUE; break;
1273 case DT_SYMBOLIC: name = "SYMBOLIC"; break;
1274 case DT_REL: name = "REL"; break;
1275 case DT_RELSZ: name = "RELSZ"; break;
1276 case DT_RELENT: name = "RELENT"; break;
1277 case DT_PLTREL: name = "PLTREL"; break;
1278 case DT_DEBUG: name = "DEBUG"; break;
1279 case DT_TEXTREL: name = "TEXTREL"; break;
1280 case DT_JMPREL: name = "JMPREL"; break;
1281 case DT_BIND_NOW: name = "BIND_NOW"; break;
1282 case DT_INIT_ARRAY: name = "INIT_ARRAY"; break;
1283 case DT_FINI_ARRAY: name = "FINI_ARRAY"; break;
1284 case DT_INIT_ARRAYSZ: name = "INIT_ARRAYSZ"; break;
1285 case DT_FINI_ARRAYSZ: name = "FINI_ARRAYSZ"; break;
1286 case DT_RUNPATH: name = "RUNPATH"; stringp = TRUE; break;
1287 case DT_FLAGS: name = "FLAGS"; break;
1288 case DT_PREINIT_ARRAY: name = "PREINIT_ARRAY"; break;
1289 case DT_PREINIT_ARRAYSZ: name = "PREINIT_ARRAYSZ"; break;
1290 case DT_CHECKSUM: name = "CHECKSUM"; break;
1291 case DT_PLTPADSZ: name = "PLTPADSZ"; break;
1292 case DT_MOVEENT: name = "MOVEENT"; break;
1293 case DT_MOVESZ: name = "MOVESZ"; break;
1294 case DT_FEATURE: name = "FEATURE"; break;
1295 case DT_POSFLAG_1: name = "POSFLAG_1"; break;
1296 case DT_SYMINSZ: name = "SYMINSZ"; break;
1297 case DT_SYMINENT: name = "SYMINENT"; break;
1298 case DT_CONFIG: name = "CONFIG"; stringp = TRUE; break;
1299 case DT_DEPAUDIT: name = "DEPAUDIT"; stringp = TRUE; break;
1300 case DT_AUDIT: name = "AUDIT"; stringp = TRUE; break;
1301 case DT_PLTPAD: name = "PLTPAD"; break;
1302 case DT_MOVETAB: name = "MOVETAB"; break;
1303 case DT_SYMINFO: name = "SYMINFO"; break;
1304 case DT_RELACOUNT: name = "RELACOUNT"; break;
1305 case DT_RELCOUNT: name = "RELCOUNT"; break;
1306 case DT_FLAGS_1: name = "FLAGS_1"; break;
1307 case DT_VERSYM: name = "VERSYM"; break;
1308 case DT_VERDEF: name = "VERDEF"; break;
1309 case DT_VERDEFNUM: name = "VERDEFNUM"; break;
1310 case DT_VERNEED: name = "VERNEED"; break;
1311 case DT_VERNEEDNUM: name = "VERNEEDNUM"; break;
1312 case DT_AUXILIARY: name = "AUXILIARY"; stringp = TRUE; break;
1313 case DT_USED: name = "USED"; break;
1314 case DT_FILTER: name = "FILTER"; stringp = TRUE; break;
1315 case DT_GNU_HASH: name = "GNU_HASH"; break;
1316 }
1317
1318 fprintf (f, " %-20s ", name);
1319 if (! stringp)
1320 {
1321 fprintf (f, "0x");
1322 bfd_fprintf_vma (abfd, f, dyn.d_un.d_val);
1323 }
1324 else
1325 {
1326 const char *string;
1327 unsigned int tagv = dyn.d_un.d_val;
1328
1329 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1330 if (string == NULL)
1331 goto error_return;
1332 fprintf (f, "%s", string);
1333 }
1334 fprintf (f, "\n");
1335 }
1336
1337 free (dynbuf);
1338 dynbuf = NULL;
1339 }
1340
1341 if ((elf_dynverdef (abfd) != 0 && elf_tdata (abfd)->verdef == NULL)
1342 || (elf_dynverref (abfd) != 0 && elf_tdata (abfd)->verref == NULL))
1343 {
1344 if (! _bfd_elf_slurp_version_tables (abfd, FALSE))
1345 return FALSE;
1346 }
1347
1348 if (elf_dynverdef (abfd) != 0)
1349 {
1350 Elf_Internal_Verdef *t;
1351
1352 fprintf (f, _("\nVersion definitions:\n"));
1353 for (t = elf_tdata (abfd)->verdef; t != NULL; t = t->vd_nextdef)
1354 {
1355 fprintf (f, "%d 0x%2.2x 0x%8.8lx %s\n", t->vd_ndx,
1356 t->vd_flags, t->vd_hash,
1357 t->vd_nodename ? t->vd_nodename : "<corrupt>");
1358 if (t->vd_auxptr != NULL && t->vd_auxptr->vda_nextptr != NULL)
1359 {
1360 Elf_Internal_Verdaux *a;
1361
1362 fprintf (f, "\t");
1363 for (a = t->vd_auxptr->vda_nextptr;
1364 a != NULL;
1365 a = a->vda_nextptr)
1366 fprintf (f, "%s ",
1367 a->vda_nodename ? a->vda_nodename : "<corrupt>");
1368 fprintf (f, "\n");
1369 }
1370 }
1371 }
1372
1373 if (elf_dynverref (abfd) != 0)
1374 {
1375 Elf_Internal_Verneed *t;
1376
1377 fprintf (f, _("\nVersion References:\n"));
1378 for (t = elf_tdata (abfd)->verref; t != NULL; t = t->vn_nextref)
1379 {
1380 Elf_Internal_Vernaux *a;
1381
1382 fprintf (f, _(" required from %s:\n"),
1383 t->vn_filename ? t->vn_filename : "<corrupt>");
1384 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1385 fprintf (f, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a->vna_hash,
1386 a->vna_flags, a->vna_other,
1387 a->vna_nodename ? a->vna_nodename : "<corrupt>");
1388 }
1389 }
1390
1391 return TRUE;
1392
1393 error_return:
1394 if (dynbuf != NULL)
1395 free (dynbuf);
1396 return FALSE;
1397 }
1398
1399 /* Display ELF-specific fields of a symbol. */
1400
1401 void
1402 bfd_elf_print_symbol (bfd *abfd,
1403 void *filep,
1404 asymbol *symbol,
1405 bfd_print_symbol_type how)
1406 {
1407 FILE *file = (FILE *) filep;
1408 switch (how)
1409 {
1410 case bfd_print_symbol_name:
1411 fprintf (file, "%s", symbol->name);
1412 break;
1413 case bfd_print_symbol_more:
1414 fprintf (file, "elf ");
1415 bfd_fprintf_vma (abfd, file, symbol->value);
1416 fprintf (file, " %lx", (unsigned long) symbol->flags);
1417 break;
1418 case bfd_print_symbol_all:
1419 {
1420 const char *section_name;
1421 const char *name = NULL;
1422 const struct elf_backend_data *bed;
1423 unsigned char st_other;
1424 bfd_vma val;
1425
1426 section_name = symbol->section ? symbol->section->name : "(*none*)";
1427
1428 bed = get_elf_backend_data (abfd);
1429 if (bed->elf_backend_print_symbol_all)
1430 name = (*bed->elf_backend_print_symbol_all) (abfd, filep, symbol);
1431
1432 if (name == NULL)
1433 {
1434 name = symbol->name;
1435 bfd_print_symbol_vandf (abfd, file, symbol);
1436 }
1437
1438 fprintf (file, " %s\t", section_name);
1439 /* Print the "other" value for a symbol. For common symbols,
1440 we've already printed the size; now print the alignment.
1441 For other symbols, we have no specified alignment, and
1442 we've printed the address; now print the size. */
1443 if (symbol->section && bfd_is_com_section (symbol->section))
1444 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
1445 else
1446 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_size;
1447 bfd_fprintf_vma (abfd, file, val);
1448
1449 /* If we have version information, print it. */
1450 if (elf_dynversym (abfd) != 0
1451 && (elf_dynverdef (abfd) != 0
1452 || elf_dynverref (abfd) != 0))
1453 {
1454 unsigned int vernum;
1455 const char *version_string;
1456
1457 vernum = ((elf_symbol_type *) symbol)->version & VERSYM_VERSION;
1458
1459 if (vernum == 0)
1460 version_string = "";
1461 else if (vernum == 1)
1462 version_string = "Base";
1463 else if (vernum <= elf_tdata (abfd)->cverdefs)
1464 version_string =
1465 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1466 else
1467 {
1468 Elf_Internal_Verneed *t;
1469
1470 version_string = "";
1471 for (t = elf_tdata (abfd)->verref;
1472 t != NULL;
1473 t = t->vn_nextref)
1474 {
1475 Elf_Internal_Vernaux *a;
1476
1477 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1478 {
1479 if (a->vna_other == vernum)
1480 {
1481 version_string = a->vna_nodename;
1482 break;
1483 }
1484 }
1485 }
1486 }
1487
1488 if ((((elf_symbol_type *) symbol)->version & VERSYM_HIDDEN) == 0)
1489 fprintf (file, " %-11s", version_string);
1490 else
1491 {
1492 int i;
1493
1494 fprintf (file, " (%s)", version_string);
1495 for (i = 10 - strlen (version_string); i > 0; --i)
1496 putc (' ', file);
1497 }
1498 }
1499
1500 /* If the st_other field is not zero, print it. */
1501 st_other = ((elf_symbol_type *) symbol)->internal_elf_sym.st_other;
1502
1503 switch (st_other)
1504 {
1505 case 0: break;
1506 case STV_INTERNAL: fprintf (file, " .internal"); break;
1507 case STV_HIDDEN: fprintf (file, " .hidden"); break;
1508 case STV_PROTECTED: fprintf (file, " .protected"); break;
1509 default:
1510 /* Some other non-defined flags are also present, so print
1511 everything hex. */
1512 fprintf (file, " 0x%02x", (unsigned int) st_other);
1513 }
1514
1515 fprintf (file, " %s", name);
1516 }
1517 break;
1518 }
1519 }
1520
1521 /* Allocate an ELF string table--force the first byte to be zero. */
1522
1523 struct bfd_strtab_hash *
1524 _bfd_elf_stringtab_init (void)
1525 {
1526 struct bfd_strtab_hash *ret;
1527
1528 ret = _bfd_stringtab_init ();
1529 if (ret != NULL)
1530 {
1531 bfd_size_type loc;
1532
1533 loc = _bfd_stringtab_add (ret, "", TRUE, FALSE);
1534 BFD_ASSERT (loc == 0 || loc == (bfd_size_type) -1);
1535 if (loc == (bfd_size_type) -1)
1536 {
1537 _bfd_stringtab_free (ret);
1538 ret = NULL;
1539 }
1540 }
1541 return ret;
1542 }
1543 \f
1544 /* ELF .o/exec file reading */
1545
1546 /* Create a new bfd section from an ELF section header. */
1547
1548 bfd_boolean
1549 bfd_section_from_shdr (bfd *abfd, unsigned int shindex)
1550 {
1551 Elf_Internal_Shdr *hdr;
1552 Elf_Internal_Ehdr *ehdr;
1553 const struct elf_backend_data *bed;
1554 const char *name;
1555
1556 if (shindex >= elf_numsections (abfd))
1557 return FALSE;
1558
1559 hdr = elf_elfsections (abfd)[shindex];
1560 ehdr = elf_elfheader (abfd);
1561 name = bfd_elf_string_from_elf_section (abfd, ehdr->e_shstrndx,
1562 hdr->sh_name);
1563 if (name == NULL)
1564 return FALSE;
1565
1566 bed = get_elf_backend_data (abfd);
1567 switch (hdr->sh_type)
1568 {
1569 case SHT_NULL:
1570 /* Inactive section. Throw it away. */
1571 return TRUE;
1572
1573 case SHT_PROGBITS: /* Normal section with contents. */
1574 case SHT_NOBITS: /* .bss section. */
1575 case SHT_HASH: /* .hash section. */
1576 case SHT_NOTE: /* .note section. */
1577 case SHT_INIT_ARRAY: /* .init_array section. */
1578 case SHT_FINI_ARRAY: /* .fini_array section. */
1579 case SHT_PREINIT_ARRAY: /* .preinit_array section. */
1580 case SHT_GNU_LIBLIST: /* .gnu.liblist section. */
1581 case SHT_GNU_HASH: /* .gnu.hash section. */
1582 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1583
1584 case SHT_DYNAMIC: /* Dynamic linking information. */
1585 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1586 return FALSE;
1587 if (hdr->sh_link > elf_numsections (abfd))
1588 {
1589 /* PR 10478: Accept Solaris binaries with a sh_link
1590 field set to SHN_BEFORE or SHN_AFTER. */
1591 switch (bfd_get_arch (abfd))
1592 {
1593 case bfd_arch_i386:
1594 case bfd_arch_sparc:
1595 if (hdr->sh_link == (SHN_LORESERVE & 0xffff) /* SHN_BEFORE */
1596 || hdr->sh_link == ((SHN_LORESERVE + 1) & 0xffff) /* SHN_AFTER */)
1597 break;
1598 /* Otherwise fall through. */
1599 default:
1600 return FALSE;
1601 }
1602 }
1603 else if (elf_elfsections (abfd)[hdr->sh_link] == NULL)
1604 return FALSE;
1605 else if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_STRTAB)
1606 {
1607 Elf_Internal_Shdr *dynsymhdr;
1608
1609 /* The shared libraries distributed with hpux11 have a bogus
1610 sh_link field for the ".dynamic" section. Find the
1611 string table for the ".dynsym" section instead. */
1612 if (elf_dynsymtab (abfd) != 0)
1613 {
1614 dynsymhdr = elf_elfsections (abfd)[elf_dynsymtab (abfd)];
1615 hdr->sh_link = dynsymhdr->sh_link;
1616 }
1617 else
1618 {
1619 unsigned int i, num_sec;
1620
1621 num_sec = elf_numsections (abfd);
1622 for (i = 1; i < num_sec; i++)
1623 {
1624 dynsymhdr = elf_elfsections (abfd)[i];
1625 if (dynsymhdr->sh_type == SHT_DYNSYM)
1626 {
1627 hdr->sh_link = dynsymhdr->sh_link;
1628 break;
1629 }
1630 }
1631 }
1632 }
1633 break;
1634
1635 case SHT_SYMTAB: /* A symbol table */
1636 if (elf_onesymtab (abfd) == shindex)
1637 return TRUE;
1638
1639 if (hdr->sh_entsize != bed->s->sizeof_sym)
1640 return FALSE;
1641 if (hdr->sh_info * hdr->sh_entsize > hdr->sh_size)
1642 {
1643 if (hdr->sh_size != 0)
1644 return FALSE;
1645 /* Some assemblers erroneously set sh_info to one with a
1646 zero sh_size. ld sees this as a global symbol count
1647 of (unsigned) -1. Fix it here. */
1648 hdr->sh_info = 0;
1649 return TRUE;
1650 }
1651 BFD_ASSERT (elf_onesymtab (abfd) == 0);
1652 elf_onesymtab (abfd) = shindex;
1653 elf_tdata (abfd)->symtab_hdr = *hdr;
1654 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->symtab_hdr;
1655 abfd->flags |= HAS_SYMS;
1656
1657 /* Sometimes a shared object will map in the symbol table. If
1658 SHF_ALLOC is set, and this is a shared object, then we also
1659 treat this section as a BFD section. We can not base the
1660 decision purely on SHF_ALLOC, because that flag is sometimes
1661 set in a relocatable object file, which would confuse the
1662 linker. */
1663 if ((hdr->sh_flags & SHF_ALLOC) != 0
1664 && (abfd->flags & DYNAMIC) != 0
1665 && ! _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1666 shindex))
1667 return FALSE;
1668
1669 /* Go looking for SHT_SYMTAB_SHNDX too, since if there is one we
1670 can't read symbols without that section loaded as well. It
1671 is most likely specified by the next section header. */
1672 if (elf_elfsections (abfd)[elf_symtab_shndx (abfd)]->sh_link != shindex)
1673 {
1674 unsigned int i, num_sec;
1675
1676 num_sec = elf_numsections (abfd);
1677 for (i = shindex + 1; i < num_sec; i++)
1678 {
1679 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1680 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
1681 && hdr2->sh_link == shindex)
1682 break;
1683 }
1684 if (i == num_sec)
1685 for (i = 1; i < shindex; i++)
1686 {
1687 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1688 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
1689 && hdr2->sh_link == shindex)
1690 break;
1691 }
1692 if (i != shindex)
1693 return bfd_section_from_shdr (abfd, i);
1694 }
1695 return TRUE;
1696
1697 case SHT_DYNSYM: /* A dynamic symbol table */
1698 if (elf_dynsymtab (abfd) == shindex)
1699 return TRUE;
1700
1701 if (hdr->sh_entsize != bed->s->sizeof_sym)
1702 return FALSE;
1703 if (hdr->sh_info * hdr->sh_entsize > hdr->sh_size)
1704 {
1705 if (hdr->sh_size != 0)
1706 return FALSE;
1707 /* Some linkers erroneously set sh_info to one with a
1708 zero sh_size. ld sees this as a global symbol count
1709 of (unsigned) -1. Fix it here. */
1710 hdr->sh_info = 0;
1711 return TRUE;
1712 }
1713 BFD_ASSERT (elf_dynsymtab (abfd) == 0);
1714 elf_dynsymtab (abfd) = shindex;
1715 elf_tdata (abfd)->dynsymtab_hdr = *hdr;
1716 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->dynsymtab_hdr;
1717 abfd->flags |= HAS_SYMS;
1718
1719 /* Besides being a symbol table, we also treat this as a regular
1720 section, so that objcopy can handle it. */
1721 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1722
1723 case SHT_SYMTAB_SHNDX: /* Symbol section indices when >64k sections */
1724 if (elf_symtab_shndx (abfd) == shindex)
1725 return TRUE;
1726
1727 BFD_ASSERT (elf_symtab_shndx (abfd) == 0);
1728 elf_symtab_shndx (abfd) = shindex;
1729 elf_tdata (abfd)->symtab_shndx_hdr = *hdr;
1730 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->symtab_shndx_hdr;
1731 return TRUE;
1732
1733 case SHT_STRTAB: /* A string table */
1734 if (hdr->bfd_section != NULL)
1735 return TRUE;
1736 if (ehdr->e_shstrndx == shindex)
1737 {
1738 elf_tdata (abfd)->shstrtab_hdr = *hdr;
1739 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->shstrtab_hdr;
1740 return TRUE;
1741 }
1742 if (elf_elfsections (abfd)[elf_onesymtab (abfd)]->sh_link == shindex)
1743 {
1744 symtab_strtab:
1745 elf_tdata (abfd)->strtab_hdr = *hdr;
1746 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->strtab_hdr;
1747 return TRUE;
1748 }
1749 if (elf_elfsections (abfd)[elf_dynsymtab (abfd)]->sh_link == shindex)
1750 {
1751 dynsymtab_strtab:
1752 elf_tdata (abfd)->dynstrtab_hdr = *hdr;
1753 hdr = &elf_tdata (abfd)->dynstrtab_hdr;
1754 elf_elfsections (abfd)[shindex] = hdr;
1755 /* We also treat this as a regular section, so that objcopy
1756 can handle it. */
1757 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1758 shindex);
1759 }
1760
1761 /* If the string table isn't one of the above, then treat it as a
1762 regular section. We need to scan all the headers to be sure,
1763 just in case this strtab section appeared before the above. */
1764 if (elf_onesymtab (abfd) == 0 || elf_dynsymtab (abfd) == 0)
1765 {
1766 unsigned int i, num_sec;
1767
1768 num_sec = elf_numsections (abfd);
1769 for (i = 1; i < num_sec; i++)
1770 {
1771 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1772 if (hdr2->sh_link == shindex)
1773 {
1774 /* Prevent endless recursion on broken objects. */
1775 if (i == shindex)
1776 return FALSE;
1777 if (! bfd_section_from_shdr (abfd, i))
1778 return FALSE;
1779 if (elf_onesymtab (abfd) == i)
1780 goto symtab_strtab;
1781 if (elf_dynsymtab (abfd) == i)
1782 goto dynsymtab_strtab;
1783 }
1784 }
1785 }
1786 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1787
1788 case SHT_REL:
1789 case SHT_RELA:
1790 /* *These* do a lot of work -- but build no sections! */
1791 {
1792 asection *target_sect;
1793 Elf_Internal_Shdr *hdr2, **p_hdr;
1794 unsigned int num_sec = elf_numsections (abfd);
1795 struct bfd_elf_section_data *esdt;
1796 bfd_size_type amt;
1797
1798 if (hdr->sh_entsize
1799 != (bfd_size_type) (hdr->sh_type == SHT_REL
1800 ? bed->s->sizeof_rel : bed->s->sizeof_rela))
1801 return FALSE;
1802
1803 /* Check for a bogus link to avoid crashing. */
1804 if (hdr->sh_link >= num_sec)
1805 {
1806 ((*_bfd_error_handler)
1807 (_("%B: invalid link %lu for reloc section %s (index %u)"),
1808 abfd, hdr->sh_link, name, shindex));
1809 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1810 shindex);
1811 }
1812
1813 /* For some incomprehensible reason Oracle distributes
1814 libraries for Solaris in which some of the objects have
1815 bogus sh_link fields. It would be nice if we could just
1816 reject them, but, unfortunately, some people need to use
1817 them. We scan through the section headers; if we find only
1818 one suitable symbol table, we clobber the sh_link to point
1819 to it. I hope this doesn't break anything.
1820
1821 Don't do it on executable nor shared library. */
1822 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0
1823 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_SYMTAB
1824 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_DYNSYM)
1825 {
1826 unsigned int scan;
1827 int found;
1828
1829 found = 0;
1830 for (scan = 1; scan < num_sec; scan++)
1831 {
1832 if (elf_elfsections (abfd)[scan]->sh_type == SHT_SYMTAB
1833 || elf_elfsections (abfd)[scan]->sh_type == SHT_DYNSYM)
1834 {
1835 if (found != 0)
1836 {
1837 found = 0;
1838 break;
1839 }
1840 found = scan;
1841 }
1842 }
1843 if (found != 0)
1844 hdr->sh_link = found;
1845 }
1846
1847 /* Get the symbol table. */
1848 if ((elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_SYMTAB
1849 || elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_DYNSYM)
1850 && ! bfd_section_from_shdr (abfd, hdr->sh_link))
1851 return FALSE;
1852
1853 /* If this reloc section does not use the main symbol table we
1854 don't treat it as a reloc section. BFD can't adequately
1855 represent such a section, so at least for now, we don't
1856 try. We just present it as a normal section. We also
1857 can't use it as a reloc section if it points to the null
1858 section, an invalid section, another reloc section, or its
1859 sh_link points to the null section. */
1860 if (hdr->sh_link != elf_onesymtab (abfd)
1861 || hdr->sh_link == SHN_UNDEF
1862 || hdr->sh_info == SHN_UNDEF
1863 || hdr->sh_info >= num_sec
1864 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_REL
1865 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_RELA)
1866 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1867 shindex);
1868
1869 if (! bfd_section_from_shdr (abfd, hdr->sh_info))
1870 return FALSE;
1871 target_sect = bfd_section_from_elf_index (abfd, hdr->sh_info);
1872 if (target_sect == NULL)
1873 return FALSE;
1874
1875 esdt = elf_section_data (target_sect);
1876 if (hdr->sh_type == SHT_RELA)
1877 p_hdr = &esdt->rela.hdr;
1878 else
1879 p_hdr = &esdt->rel.hdr;
1880
1881 BFD_ASSERT (*p_hdr == NULL);
1882 amt = sizeof (*hdr2);
1883 hdr2 = (Elf_Internal_Shdr *) bfd_alloc (abfd, amt);
1884 if (hdr2 == NULL)
1885 return FALSE;
1886 *hdr2 = *hdr;
1887 *p_hdr = hdr2;
1888 elf_elfsections (abfd)[shindex] = hdr2;
1889 target_sect->reloc_count += NUM_SHDR_ENTRIES (hdr);
1890 target_sect->flags |= SEC_RELOC;
1891 target_sect->relocation = NULL;
1892 target_sect->rel_filepos = hdr->sh_offset;
1893 /* In the section to which the relocations apply, mark whether
1894 its relocations are of the REL or RELA variety. */
1895 if (hdr->sh_size != 0)
1896 {
1897 if (hdr->sh_type == SHT_RELA)
1898 target_sect->use_rela_p = 1;
1899 }
1900 abfd->flags |= HAS_RELOC;
1901 return TRUE;
1902 }
1903
1904 case SHT_GNU_verdef:
1905 elf_dynverdef (abfd) = shindex;
1906 elf_tdata (abfd)->dynverdef_hdr = *hdr;
1907 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1908
1909 case SHT_GNU_versym:
1910 if (hdr->sh_entsize != sizeof (Elf_External_Versym))
1911 return FALSE;
1912 elf_dynversym (abfd) = shindex;
1913 elf_tdata (abfd)->dynversym_hdr = *hdr;
1914 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1915
1916 case SHT_GNU_verneed:
1917 elf_dynverref (abfd) = shindex;
1918 elf_tdata (abfd)->dynverref_hdr = *hdr;
1919 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1920
1921 case SHT_SHLIB:
1922 return TRUE;
1923
1924 case SHT_GROUP:
1925 if (! IS_VALID_GROUP_SECTION_HEADER (hdr, GRP_ENTRY_SIZE))
1926 return FALSE;
1927 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1928 return FALSE;
1929 if (hdr->contents != NULL)
1930 {
1931 Elf_Internal_Group *idx = (Elf_Internal_Group *) hdr->contents;
1932 unsigned int n_elt = hdr->sh_size / GRP_ENTRY_SIZE;
1933 asection *s;
1934
1935 if (idx->flags & GRP_COMDAT)
1936 hdr->bfd_section->flags
1937 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
1938
1939 /* We try to keep the same section order as it comes in. */
1940 idx += n_elt;
1941 while (--n_elt != 0)
1942 {
1943 --idx;
1944
1945 if (idx->shdr != NULL
1946 && (s = idx->shdr->bfd_section) != NULL
1947 && elf_next_in_group (s) != NULL)
1948 {
1949 elf_next_in_group (hdr->bfd_section) = s;
1950 break;
1951 }
1952 }
1953 }
1954 break;
1955
1956 default:
1957 /* Possibly an attributes section. */
1958 if (hdr->sh_type == SHT_GNU_ATTRIBUTES
1959 || hdr->sh_type == bed->obj_attrs_section_type)
1960 {
1961 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1962 return FALSE;
1963 _bfd_elf_parse_attributes (abfd, hdr);
1964 return TRUE;
1965 }
1966
1967 /* Check for any processor-specific section types. */
1968 if (bed->elf_backend_section_from_shdr (abfd, hdr, name, shindex))
1969 return TRUE;
1970
1971 if (hdr->sh_type >= SHT_LOUSER && hdr->sh_type <= SHT_HIUSER)
1972 {
1973 if ((hdr->sh_flags & SHF_ALLOC) != 0)
1974 /* FIXME: How to properly handle allocated section reserved
1975 for applications? */
1976 (*_bfd_error_handler)
1977 (_("%B: don't know how to handle allocated, application "
1978 "specific section `%s' [0x%8x]"),
1979 abfd, name, hdr->sh_type);
1980 else
1981 /* Allow sections reserved for applications. */
1982 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1983 shindex);
1984 }
1985 else if (hdr->sh_type >= SHT_LOPROC
1986 && hdr->sh_type <= SHT_HIPROC)
1987 /* FIXME: We should handle this section. */
1988 (*_bfd_error_handler)
1989 (_("%B: don't know how to handle processor specific section "
1990 "`%s' [0x%8x]"),
1991 abfd, name, hdr->sh_type);
1992 else if (hdr->sh_type >= SHT_LOOS && hdr->sh_type <= SHT_HIOS)
1993 {
1994 /* Unrecognised OS-specific sections. */
1995 if ((hdr->sh_flags & SHF_OS_NONCONFORMING) != 0)
1996 /* SHF_OS_NONCONFORMING indicates that special knowledge is
1997 required to correctly process the section and the file should
1998 be rejected with an error message. */
1999 (*_bfd_error_handler)
2000 (_("%B: don't know how to handle OS specific section "
2001 "`%s' [0x%8x]"),
2002 abfd, name, hdr->sh_type);
2003 else
2004 /* Otherwise it should be processed. */
2005 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2006 }
2007 else
2008 /* FIXME: We should handle this section. */
2009 (*_bfd_error_handler)
2010 (_("%B: don't know how to handle section `%s' [0x%8x]"),
2011 abfd, name, hdr->sh_type);
2012
2013 return FALSE;
2014 }
2015
2016 return TRUE;
2017 }
2018
2019 /* Return the local symbol specified by ABFD, R_SYMNDX. */
2020
2021 Elf_Internal_Sym *
2022 bfd_sym_from_r_symndx (struct sym_cache *cache,
2023 bfd *abfd,
2024 unsigned long r_symndx)
2025 {
2026 unsigned int ent = r_symndx % LOCAL_SYM_CACHE_SIZE;
2027
2028 if (cache->abfd != abfd || cache->indx[ent] != r_symndx)
2029 {
2030 Elf_Internal_Shdr *symtab_hdr;
2031 unsigned char esym[sizeof (Elf64_External_Sym)];
2032 Elf_External_Sym_Shndx eshndx;
2033
2034 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2035 if (bfd_elf_get_elf_syms (abfd, symtab_hdr, 1, r_symndx,
2036 &cache->sym[ent], esym, &eshndx) == NULL)
2037 return NULL;
2038
2039 if (cache->abfd != abfd)
2040 {
2041 memset (cache->indx, -1, sizeof (cache->indx));
2042 cache->abfd = abfd;
2043 }
2044 cache->indx[ent] = r_symndx;
2045 }
2046
2047 return &cache->sym[ent];
2048 }
2049
2050 /* Given an ELF section number, retrieve the corresponding BFD
2051 section. */
2052
2053 asection *
2054 bfd_section_from_elf_index (bfd *abfd, unsigned int sec_index)
2055 {
2056 if (sec_index >= elf_numsections (abfd))
2057 return NULL;
2058 return elf_elfsections (abfd)[sec_index]->bfd_section;
2059 }
2060
2061 static const struct bfd_elf_special_section special_sections_b[] =
2062 {
2063 { STRING_COMMA_LEN (".bss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2064 { NULL, 0, 0, 0, 0 }
2065 };
2066
2067 static const struct bfd_elf_special_section special_sections_c[] =
2068 {
2069 { STRING_COMMA_LEN (".comment"), 0, SHT_PROGBITS, 0 },
2070 { NULL, 0, 0, 0, 0 }
2071 };
2072
2073 static const struct bfd_elf_special_section special_sections_d[] =
2074 {
2075 { STRING_COMMA_LEN (".data"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2076 { STRING_COMMA_LEN (".data1"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2077 /* There are more DWARF sections than these, but they needn't be added here
2078 unless you have to cope with broken compilers that don't emit section
2079 attributes or you want to help the user writing assembler. */
2080 { STRING_COMMA_LEN (".debug"), 0, SHT_PROGBITS, 0 },
2081 { STRING_COMMA_LEN (".debug_line"), 0, SHT_PROGBITS, 0 },
2082 { STRING_COMMA_LEN (".debug_info"), 0, SHT_PROGBITS, 0 },
2083 { STRING_COMMA_LEN (".debug_abbrev"), 0, SHT_PROGBITS, 0 },
2084 { STRING_COMMA_LEN (".debug_aranges"), 0, SHT_PROGBITS, 0 },
2085 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC, SHF_ALLOC },
2086 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB, SHF_ALLOC },
2087 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM, SHF_ALLOC },
2088 { NULL, 0, 0, 0, 0 }
2089 };
2090
2091 static const struct bfd_elf_special_section special_sections_f[] =
2092 {
2093 { STRING_COMMA_LEN (".fini"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2094 { STRING_COMMA_LEN (".fini_array"), 0, SHT_FINI_ARRAY, SHF_ALLOC + SHF_WRITE },
2095 { NULL, 0, 0, 0, 0 }
2096 };
2097
2098 static const struct bfd_elf_special_section special_sections_g[] =
2099 {
2100 { STRING_COMMA_LEN (".gnu.linkonce.b"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2101 { STRING_COMMA_LEN (".gnu.lto_"), -1, SHT_PROGBITS, SHF_EXCLUDE },
2102 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2103 { STRING_COMMA_LEN (".gnu.version"), 0, SHT_GNU_versym, 0 },
2104 { STRING_COMMA_LEN (".gnu.version_d"), 0, SHT_GNU_verdef, 0 },
2105 { STRING_COMMA_LEN (".gnu.version_r"), 0, SHT_GNU_verneed, 0 },
2106 { STRING_COMMA_LEN (".gnu.liblist"), 0, SHT_GNU_LIBLIST, SHF_ALLOC },
2107 { STRING_COMMA_LEN (".gnu.conflict"), 0, SHT_RELA, SHF_ALLOC },
2108 { STRING_COMMA_LEN (".gnu.hash"), 0, SHT_GNU_HASH, SHF_ALLOC },
2109 { NULL, 0, 0, 0, 0 }
2110 };
2111
2112 static const struct bfd_elf_special_section special_sections_h[] =
2113 {
2114 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH, SHF_ALLOC },
2115 { NULL, 0, 0, 0, 0 }
2116 };
2117
2118 static const struct bfd_elf_special_section special_sections_i[] =
2119 {
2120 { STRING_COMMA_LEN (".init"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2121 { STRING_COMMA_LEN (".init_array"), 0, SHT_INIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2122 { STRING_COMMA_LEN (".interp"), 0, SHT_PROGBITS, 0 },
2123 { NULL, 0, 0, 0, 0 }
2124 };
2125
2126 static const struct bfd_elf_special_section special_sections_l[] =
2127 {
2128 { STRING_COMMA_LEN (".line"), 0, SHT_PROGBITS, 0 },
2129 { NULL, 0, 0, 0, 0 }
2130 };
2131
2132 static const struct bfd_elf_special_section special_sections_n[] =
2133 {
2134 { STRING_COMMA_LEN (".note.GNU-stack"), 0, SHT_PROGBITS, 0 },
2135 { STRING_COMMA_LEN (".note"), -1, SHT_NOTE, 0 },
2136 { NULL, 0, 0, 0, 0 }
2137 };
2138
2139 static const struct bfd_elf_special_section special_sections_p[] =
2140 {
2141 { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2142 { STRING_COMMA_LEN (".plt"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2143 { NULL, 0, 0, 0, 0 }
2144 };
2145
2146 static const struct bfd_elf_special_section special_sections_r[] =
2147 {
2148 { STRING_COMMA_LEN (".rodata"), -2, SHT_PROGBITS, SHF_ALLOC },
2149 { STRING_COMMA_LEN (".rodata1"), 0, SHT_PROGBITS, SHF_ALLOC },
2150 { STRING_COMMA_LEN (".rela"), -1, SHT_RELA, 0 },
2151 { STRING_COMMA_LEN (".rel"), -1, SHT_REL, 0 },
2152 { NULL, 0, 0, 0, 0 }
2153 };
2154
2155 static const struct bfd_elf_special_section special_sections_s[] =
2156 {
2157 { STRING_COMMA_LEN (".shstrtab"), 0, SHT_STRTAB, 0 },
2158 { STRING_COMMA_LEN (".strtab"), 0, SHT_STRTAB, 0 },
2159 { STRING_COMMA_LEN (".symtab"), 0, SHT_SYMTAB, 0 },
2160 /* See struct bfd_elf_special_section declaration for the semantics of
2161 this special case where .prefix_length != strlen (.prefix). */
2162 { ".stabstr", 5, 3, SHT_STRTAB, 0 },
2163 { NULL, 0, 0, 0, 0 }
2164 };
2165
2166 static const struct bfd_elf_special_section special_sections_t[] =
2167 {
2168 { STRING_COMMA_LEN (".text"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2169 { STRING_COMMA_LEN (".tbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2170 { STRING_COMMA_LEN (".tdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2171 { NULL, 0, 0, 0, 0 }
2172 };
2173
2174 static const struct bfd_elf_special_section special_sections_z[] =
2175 {
2176 { STRING_COMMA_LEN (".zdebug_line"), 0, SHT_PROGBITS, 0 },
2177 { STRING_COMMA_LEN (".zdebug_info"), 0, SHT_PROGBITS, 0 },
2178 { STRING_COMMA_LEN (".zdebug_abbrev"), 0, SHT_PROGBITS, 0 },
2179 { STRING_COMMA_LEN (".zdebug_aranges"), 0, SHT_PROGBITS, 0 },
2180 { NULL, 0, 0, 0, 0 }
2181 };
2182
2183 static const struct bfd_elf_special_section * const special_sections[] =
2184 {
2185 special_sections_b, /* 'b' */
2186 special_sections_c, /* 'c' */
2187 special_sections_d, /* 'd' */
2188 NULL, /* 'e' */
2189 special_sections_f, /* 'f' */
2190 special_sections_g, /* 'g' */
2191 special_sections_h, /* 'h' */
2192 special_sections_i, /* 'i' */
2193 NULL, /* 'j' */
2194 NULL, /* 'k' */
2195 special_sections_l, /* 'l' */
2196 NULL, /* 'm' */
2197 special_sections_n, /* 'n' */
2198 NULL, /* 'o' */
2199 special_sections_p, /* 'p' */
2200 NULL, /* 'q' */
2201 special_sections_r, /* 'r' */
2202 special_sections_s, /* 's' */
2203 special_sections_t, /* 't' */
2204 NULL, /* 'u' */
2205 NULL, /* 'v' */
2206 NULL, /* 'w' */
2207 NULL, /* 'x' */
2208 NULL, /* 'y' */
2209 special_sections_z /* 'z' */
2210 };
2211
2212 const struct bfd_elf_special_section *
2213 _bfd_elf_get_special_section (const char *name,
2214 const struct bfd_elf_special_section *spec,
2215 unsigned int rela)
2216 {
2217 int i;
2218 int len;
2219
2220 len = strlen (name);
2221
2222 for (i = 0; spec[i].prefix != NULL; i++)
2223 {
2224 int suffix_len;
2225 int prefix_len = spec[i].prefix_length;
2226
2227 if (len < prefix_len)
2228 continue;
2229 if (memcmp (name, spec[i].prefix, prefix_len) != 0)
2230 continue;
2231
2232 suffix_len = spec[i].suffix_length;
2233 if (suffix_len <= 0)
2234 {
2235 if (name[prefix_len] != 0)
2236 {
2237 if (suffix_len == 0)
2238 continue;
2239 if (name[prefix_len] != '.'
2240 && (suffix_len == -2
2241 || (rela && spec[i].type == SHT_REL)))
2242 continue;
2243 }
2244 }
2245 else
2246 {
2247 if (len < prefix_len + suffix_len)
2248 continue;
2249 if (memcmp (name + len - suffix_len,
2250 spec[i].prefix + prefix_len,
2251 suffix_len) != 0)
2252 continue;
2253 }
2254 return &spec[i];
2255 }
2256
2257 return NULL;
2258 }
2259
2260 const struct bfd_elf_special_section *
2261 _bfd_elf_get_sec_type_attr (bfd *abfd, asection *sec)
2262 {
2263 int i;
2264 const struct bfd_elf_special_section *spec;
2265 const struct elf_backend_data *bed;
2266
2267 /* See if this is one of the special sections. */
2268 if (sec->name == NULL)
2269 return NULL;
2270
2271 bed = get_elf_backend_data (abfd);
2272 spec = bed->special_sections;
2273 if (spec)
2274 {
2275 spec = _bfd_elf_get_special_section (sec->name,
2276 bed->special_sections,
2277 sec->use_rela_p);
2278 if (spec != NULL)
2279 return spec;
2280 }
2281
2282 if (sec->name[0] != '.')
2283 return NULL;
2284
2285 i = sec->name[1] - 'b';
2286 if (i < 0 || i > 'z' - 'b')
2287 return NULL;
2288
2289 spec = special_sections[i];
2290
2291 if (spec == NULL)
2292 return NULL;
2293
2294 return _bfd_elf_get_special_section (sec->name, spec, sec->use_rela_p);
2295 }
2296
2297 bfd_boolean
2298 _bfd_elf_new_section_hook (bfd *abfd, asection *sec)
2299 {
2300 struct bfd_elf_section_data *sdata;
2301 const struct elf_backend_data *bed;
2302 const struct bfd_elf_special_section *ssect;
2303
2304 sdata = (struct bfd_elf_section_data *) sec->used_by_bfd;
2305 if (sdata == NULL)
2306 {
2307 sdata = (struct bfd_elf_section_data *) bfd_zalloc (abfd,
2308 sizeof (*sdata));
2309 if (sdata == NULL)
2310 return FALSE;
2311 sec->used_by_bfd = sdata;
2312 }
2313
2314 /* Indicate whether or not this section should use RELA relocations. */
2315 bed = get_elf_backend_data (abfd);
2316 sec->use_rela_p = bed->default_use_rela_p;
2317
2318 /* When we read a file, we don't need to set ELF section type and
2319 flags. They will be overridden in _bfd_elf_make_section_from_shdr
2320 anyway. We will set ELF section type and flags for all linker
2321 created sections. If user specifies BFD section flags, we will
2322 set ELF section type and flags based on BFD section flags in
2323 elf_fake_sections. Special handling for .init_array/.fini_array
2324 output sections since they may contain .ctors/.dtors input
2325 sections. We don't want _bfd_elf_init_private_section_data to
2326 copy ELF section type from .ctors/.dtors input sections. */
2327 if (abfd->direction != read_direction
2328 || (sec->flags & SEC_LINKER_CREATED) != 0)
2329 {
2330 ssect = (*bed->get_sec_type_attr) (abfd, sec);
2331 if (ssect != NULL
2332 && (!sec->flags
2333 || (sec->flags & SEC_LINKER_CREATED) != 0
2334 || ssect->type == SHT_INIT_ARRAY
2335 || ssect->type == SHT_FINI_ARRAY))
2336 {
2337 elf_section_type (sec) = ssect->type;
2338 elf_section_flags (sec) = ssect->attr;
2339 }
2340 }
2341
2342 return _bfd_generic_new_section_hook (abfd, sec);
2343 }
2344
2345 /* Create a new bfd section from an ELF program header.
2346
2347 Since program segments have no names, we generate a synthetic name
2348 of the form segment<NUM>, where NUM is generally the index in the
2349 program header table. For segments that are split (see below) we
2350 generate the names segment<NUM>a and segment<NUM>b.
2351
2352 Note that some program segments may have a file size that is different than
2353 (less than) the memory size. All this means is that at execution the
2354 system must allocate the amount of memory specified by the memory size,
2355 but only initialize it with the first "file size" bytes read from the
2356 file. This would occur for example, with program segments consisting
2357 of combined data+bss.
2358
2359 To handle the above situation, this routine generates TWO bfd sections
2360 for the single program segment. The first has the length specified by
2361 the file size of the segment, and the second has the length specified
2362 by the difference between the two sizes. In effect, the segment is split
2363 into its initialized and uninitialized parts.
2364
2365 */
2366
2367 bfd_boolean
2368 _bfd_elf_make_section_from_phdr (bfd *abfd,
2369 Elf_Internal_Phdr *hdr,
2370 int hdr_index,
2371 const char *type_name)
2372 {
2373 asection *newsect;
2374 char *name;
2375 char namebuf[64];
2376 size_t len;
2377 int split;
2378
2379 split = ((hdr->p_memsz > 0)
2380 && (hdr->p_filesz > 0)
2381 && (hdr->p_memsz > hdr->p_filesz));
2382
2383 if (hdr->p_filesz > 0)
2384 {
2385 sprintf (namebuf, "%s%d%s", type_name, hdr_index, split ? "a" : "");
2386 len = strlen (namebuf) + 1;
2387 name = (char *) bfd_alloc (abfd, len);
2388 if (!name)
2389 return FALSE;
2390 memcpy (name, namebuf, len);
2391 newsect = bfd_make_section (abfd, name);
2392 if (newsect == NULL)
2393 return FALSE;
2394 newsect->vma = hdr->p_vaddr;
2395 newsect->lma = hdr->p_paddr;
2396 newsect->size = hdr->p_filesz;
2397 newsect->filepos = hdr->p_offset;
2398 newsect->flags |= SEC_HAS_CONTENTS;
2399 newsect->alignment_power = bfd_log2 (hdr->p_align);
2400 if (hdr->p_type == PT_LOAD)
2401 {
2402 newsect->flags |= SEC_ALLOC;
2403 newsect->flags |= SEC_LOAD;
2404 if (hdr->p_flags & PF_X)
2405 {
2406 /* FIXME: all we known is that it has execute PERMISSION,
2407 may be data. */
2408 newsect->flags |= SEC_CODE;
2409 }
2410 }
2411 if (!(hdr->p_flags & PF_W))
2412 {
2413 newsect->flags |= SEC_READONLY;
2414 }
2415 }
2416
2417 if (hdr->p_memsz > hdr->p_filesz)
2418 {
2419 bfd_vma align;
2420
2421 sprintf (namebuf, "%s%d%s", type_name, hdr_index, split ? "b" : "");
2422 len = strlen (namebuf) + 1;
2423 name = (char *) bfd_alloc (abfd, len);
2424 if (!name)
2425 return FALSE;
2426 memcpy (name, namebuf, len);
2427 newsect = bfd_make_section (abfd, name);
2428 if (newsect == NULL)
2429 return FALSE;
2430 newsect->vma = hdr->p_vaddr + hdr->p_filesz;
2431 newsect->lma = hdr->p_paddr + hdr->p_filesz;
2432 newsect->size = hdr->p_memsz - hdr->p_filesz;
2433 newsect->filepos = hdr->p_offset + hdr->p_filesz;
2434 align = newsect->vma & -newsect->vma;
2435 if (align == 0 || align > hdr->p_align)
2436 align = hdr->p_align;
2437 newsect->alignment_power = bfd_log2 (align);
2438 if (hdr->p_type == PT_LOAD)
2439 {
2440 /* Hack for gdb. Segments that have not been modified do
2441 not have their contents written to a core file, on the
2442 assumption that a debugger can find the contents in the
2443 executable. We flag this case by setting the fake
2444 section size to zero. Note that "real" bss sections will
2445 always have their contents dumped to the core file. */
2446 if (bfd_get_format (abfd) == bfd_core)
2447 newsect->size = 0;
2448 newsect->flags |= SEC_ALLOC;
2449 if (hdr->p_flags & PF_X)
2450 newsect->flags |= SEC_CODE;
2451 }
2452 if (!(hdr->p_flags & PF_W))
2453 newsect->flags |= SEC_READONLY;
2454 }
2455
2456 return TRUE;
2457 }
2458
2459 bfd_boolean
2460 bfd_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int hdr_index)
2461 {
2462 const struct elf_backend_data *bed;
2463
2464 switch (hdr->p_type)
2465 {
2466 case PT_NULL:
2467 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "null");
2468
2469 case PT_LOAD:
2470 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "load");
2471
2472 case PT_DYNAMIC:
2473 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "dynamic");
2474
2475 case PT_INTERP:
2476 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "interp");
2477
2478 case PT_NOTE:
2479 if (! _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "note"))
2480 return FALSE;
2481 if (! elf_read_notes (abfd, hdr->p_offset, hdr->p_filesz))
2482 return FALSE;
2483 return TRUE;
2484
2485 case PT_SHLIB:
2486 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "shlib");
2487
2488 case PT_PHDR:
2489 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "phdr");
2490
2491 case PT_GNU_EH_FRAME:
2492 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index,
2493 "eh_frame_hdr");
2494
2495 case PT_GNU_STACK:
2496 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "stack");
2497
2498 case PT_GNU_RELRO:
2499 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "relro");
2500
2501 default:
2502 /* Check for any processor-specific program segment types. */
2503 bed = get_elf_backend_data (abfd);
2504 return bed->elf_backend_section_from_phdr (abfd, hdr, hdr_index, "proc");
2505 }
2506 }
2507
2508 /* Return the REL_HDR for SEC, assuming there is only a single one, either
2509 REL or RELA. */
2510
2511 Elf_Internal_Shdr *
2512 _bfd_elf_single_rel_hdr (asection *sec)
2513 {
2514 if (elf_section_data (sec)->rel.hdr)
2515 {
2516 BFD_ASSERT (elf_section_data (sec)->rela.hdr == NULL);
2517 return elf_section_data (sec)->rel.hdr;
2518 }
2519 else
2520 return elf_section_data (sec)->rela.hdr;
2521 }
2522
2523 /* Allocate and initialize a section-header for a new reloc section,
2524 containing relocations against ASECT. It is stored in RELDATA. If
2525 USE_RELA_P is TRUE, we use RELA relocations; otherwise, we use REL
2526 relocations. */
2527
2528 static bfd_boolean
2529 _bfd_elf_init_reloc_shdr (bfd *abfd,
2530 struct bfd_elf_section_reloc_data *reldata,
2531 asection *asect,
2532 bfd_boolean use_rela_p)
2533 {
2534 Elf_Internal_Shdr *rel_hdr;
2535 char *name;
2536 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2537 bfd_size_type amt;
2538
2539 amt = sizeof (Elf_Internal_Shdr);
2540 BFD_ASSERT (reldata->hdr == NULL);
2541 rel_hdr = bfd_zalloc (abfd, amt);
2542 reldata->hdr = rel_hdr;
2543
2544 amt = sizeof ".rela" + strlen (asect->name);
2545 name = (char *) bfd_alloc (abfd, amt);
2546 if (name == NULL)
2547 return FALSE;
2548 sprintf (name, "%s%s", use_rela_p ? ".rela" : ".rel", asect->name);
2549 rel_hdr->sh_name =
2550 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd), name,
2551 FALSE);
2552 if (rel_hdr->sh_name == (unsigned int) -1)
2553 return FALSE;
2554 rel_hdr->sh_type = use_rela_p ? SHT_RELA : SHT_REL;
2555 rel_hdr->sh_entsize = (use_rela_p
2556 ? bed->s->sizeof_rela
2557 : bed->s->sizeof_rel);
2558 rel_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
2559 rel_hdr->sh_flags = 0;
2560 rel_hdr->sh_addr = 0;
2561 rel_hdr->sh_size = 0;
2562 rel_hdr->sh_offset = 0;
2563
2564 return TRUE;
2565 }
2566
2567 /* Return the default section type based on the passed in section flags. */
2568
2569 int
2570 bfd_elf_get_default_section_type (flagword flags)
2571 {
2572 if ((flags & SEC_ALLOC) != 0
2573 && (flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
2574 return SHT_NOBITS;
2575 return SHT_PROGBITS;
2576 }
2577
2578 struct fake_section_arg
2579 {
2580 struct bfd_link_info *link_info;
2581 bfd_boolean failed;
2582 };
2583
2584 /* Set up an ELF internal section header for a section. */
2585
2586 static void
2587 elf_fake_sections (bfd *abfd, asection *asect, void *fsarg)
2588 {
2589 struct fake_section_arg *arg = (struct fake_section_arg *)fsarg;
2590 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2591 struct bfd_elf_section_data *esd = elf_section_data (asect);
2592 Elf_Internal_Shdr *this_hdr;
2593 unsigned int sh_type;
2594
2595 if (arg->failed)
2596 {
2597 /* We already failed; just get out of the bfd_map_over_sections
2598 loop. */
2599 return;
2600 }
2601
2602 this_hdr = &esd->this_hdr;
2603
2604 this_hdr->sh_name = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
2605 asect->name, FALSE);
2606 if (this_hdr->sh_name == (unsigned int) -1)
2607 {
2608 arg->failed = TRUE;
2609 return;
2610 }
2611
2612 /* Don't clear sh_flags. Assembler may set additional bits. */
2613
2614 if ((asect->flags & SEC_ALLOC) != 0
2615 || asect->user_set_vma)
2616 this_hdr->sh_addr = asect->vma;
2617 else
2618 this_hdr->sh_addr = 0;
2619
2620 this_hdr->sh_offset = 0;
2621 this_hdr->sh_size = asect->size;
2622 this_hdr->sh_link = 0;
2623 this_hdr->sh_addralign = (bfd_vma) 1 << asect->alignment_power;
2624 /* The sh_entsize and sh_info fields may have been set already by
2625 copy_private_section_data. */
2626
2627 this_hdr->bfd_section = asect;
2628 this_hdr->contents = NULL;
2629
2630 /* If the section type is unspecified, we set it based on
2631 asect->flags. */
2632 if ((asect->flags & SEC_GROUP) != 0)
2633 sh_type = SHT_GROUP;
2634 else
2635 sh_type = bfd_elf_get_default_section_type (asect->flags);
2636
2637 if (this_hdr->sh_type == SHT_NULL)
2638 this_hdr->sh_type = sh_type;
2639 else if (this_hdr->sh_type == SHT_NOBITS
2640 && sh_type == SHT_PROGBITS
2641 && (asect->flags & SEC_ALLOC) != 0)
2642 {
2643 /* Warn if we are changing a NOBITS section to PROGBITS, but
2644 allow the link to proceed. This can happen when users link
2645 non-bss input sections to bss output sections, or emit data
2646 to a bss output section via a linker script. */
2647 (*_bfd_error_handler)
2648 (_("warning: section `%A' type changed to PROGBITS"), asect);
2649 this_hdr->sh_type = sh_type;
2650 }
2651
2652 switch (this_hdr->sh_type)
2653 {
2654 default:
2655 break;
2656
2657 case SHT_STRTAB:
2658 case SHT_INIT_ARRAY:
2659 case SHT_FINI_ARRAY:
2660 case SHT_PREINIT_ARRAY:
2661 case SHT_NOTE:
2662 case SHT_NOBITS:
2663 case SHT_PROGBITS:
2664 break;
2665
2666 case SHT_HASH:
2667 this_hdr->sh_entsize = bed->s->sizeof_hash_entry;
2668 break;
2669
2670 case SHT_DYNSYM:
2671 this_hdr->sh_entsize = bed->s->sizeof_sym;
2672 break;
2673
2674 case SHT_DYNAMIC:
2675 this_hdr->sh_entsize = bed->s->sizeof_dyn;
2676 break;
2677
2678 case SHT_RELA:
2679 if (get_elf_backend_data (abfd)->may_use_rela_p)
2680 this_hdr->sh_entsize = bed->s->sizeof_rela;
2681 break;
2682
2683 case SHT_REL:
2684 if (get_elf_backend_data (abfd)->may_use_rel_p)
2685 this_hdr->sh_entsize = bed->s->sizeof_rel;
2686 break;
2687
2688 case SHT_GNU_versym:
2689 this_hdr->sh_entsize = sizeof (Elf_External_Versym);
2690 break;
2691
2692 case SHT_GNU_verdef:
2693 this_hdr->sh_entsize = 0;
2694 /* objcopy or strip will copy over sh_info, but may not set
2695 cverdefs. The linker will set cverdefs, but sh_info will be
2696 zero. */
2697 if (this_hdr->sh_info == 0)
2698 this_hdr->sh_info = elf_tdata (abfd)->cverdefs;
2699 else
2700 BFD_ASSERT (elf_tdata (abfd)->cverdefs == 0
2701 || this_hdr->sh_info == elf_tdata (abfd)->cverdefs);
2702 break;
2703
2704 case SHT_GNU_verneed:
2705 this_hdr->sh_entsize = 0;
2706 /* objcopy or strip will copy over sh_info, but may not set
2707 cverrefs. The linker will set cverrefs, but sh_info will be
2708 zero. */
2709 if (this_hdr->sh_info == 0)
2710 this_hdr->sh_info = elf_tdata (abfd)->cverrefs;
2711 else
2712 BFD_ASSERT (elf_tdata (abfd)->cverrefs == 0
2713 || this_hdr->sh_info == elf_tdata (abfd)->cverrefs);
2714 break;
2715
2716 case SHT_GROUP:
2717 this_hdr->sh_entsize = GRP_ENTRY_SIZE;
2718 break;
2719
2720 case SHT_GNU_HASH:
2721 this_hdr->sh_entsize = bed->s->arch_size == 64 ? 0 : 4;
2722 break;
2723 }
2724
2725 if ((asect->flags & SEC_ALLOC) != 0)
2726 this_hdr->sh_flags |= SHF_ALLOC;
2727 if ((asect->flags & SEC_READONLY) == 0)
2728 this_hdr->sh_flags |= SHF_WRITE;
2729 if ((asect->flags & SEC_CODE) != 0)
2730 this_hdr->sh_flags |= SHF_EXECINSTR;
2731 if ((asect->flags & SEC_MERGE) != 0)
2732 {
2733 this_hdr->sh_flags |= SHF_MERGE;
2734 this_hdr->sh_entsize = asect->entsize;
2735 if ((asect->flags & SEC_STRINGS) != 0)
2736 this_hdr->sh_flags |= SHF_STRINGS;
2737 }
2738 if ((asect->flags & SEC_GROUP) == 0 && elf_group_name (asect) != NULL)
2739 this_hdr->sh_flags |= SHF_GROUP;
2740 if ((asect->flags & SEC_THREAD_LOCAL) != 0)
2741 {
2742 this_hdr->sh_flags |= SHF_TLS;
2743 if (asect->size == 0
2744 && (asect->flags & SEC_HAS_CONTENTS) == 0)
2745 {
2746 struct bfd_link_order *o = asect->map_tail.link_order;
2747
2748 this_hdr->sh_size = 0;
2749 if (o != NULL)
2750 {
2751 this_hdr->sh_size = o->offset + o->size;
2752 if (this_hdr->sh_size != 0)
2753 this_hdr->sh_type = SHT_NOBITS;
2754 }
2755 }
2756 }
2757 if ((asect->flags & (SEC_GROUP | SEC_EXCLUDE)) == SEC_EXCLUDE)
2758 this_hdr->sh_flags |= SHF_EXCLUDE;
2759
2760 /* If the section has relocs, set up a section header for the
2761 SHT_REL[A] section. If two relocation sections are required for
2762 this section, it is up to the processor-specific back-end to
2763 create the other. */
2764 if ((asect->flags & SEC_RELOC) != 0)
2765 {
2766 /* When doing a relocatable link, create both REL and RELA sections if
2767 needed. */
2768 if (arg->link_info
2769 /* Do the normal setup if we wouldn't create any sections here. */
2770 && esd->rel.count + esd->rela.count > 0
2771 && (arg->link_info->relocatable || arg->link_info->emitrelocations))
2772 {
2773 if (esd->rel.count && esd->rel.hdr == NULL
2774 && !_bfd_elf_init_reloc_shdr (abfd, &esd->rel, asect, FALSE))
2775 {
2776 arg->failed = TRUE;
2777 return;
2778 }
2779 if (esd->rela.count && esd->rela.hdr == NULL
2780 && !_bfd_elf_init_reloc_shdr (abfd, &esd->rela, asect, TRUE))
2781 {
2782 arg->failed = TRUE;
2783 return;
2784 }
2785 }
2786 else if (!_bfd_elf_init_reloc_shdr (abfd,
2787 (asect->use_rela_p
2788 ? &esd->rela : &esd->rel),
2789 asect,
2790 asect->use_rela_p))
2791 arg->failed = TRUE;
2792 }
2793
2794 /* Check for processor-specific section types. */
2795 sh_type = this_hdr->sh_type;
2796 if (bed->elf_backend_fake_sections
2797 && !(*bed->elf_backend_fake_sections) (abfd, this_hdr, asect))
2798 arg->failed = TRUE;
2799
2800 if (sh_type == SHT_NOBITS && asect->size != 0)
2801 {
2802 /* Don't change the header type from NOBITS if we are being
2803 called for objcopy --only-keep-debug. */
2804 this_hdr->sh_type = sh_type;
2805 }
2806 }
2807
2808 /* Fill in the contents of a SHT_GROUP section. Called from
2809 _bfd_elf_compute_section_file_positions for gas, objcopy, and
2810 when ELF targets use the generic linker, ld. Called for ld -r
2811 from bfd_elf_final_link. */
2812
2813 void
2814 bfd_elf_set_group_contents (bfd *abfd, asection *sec, void *failedptrarg)
2815 {
2816 bfd_boolean *failedptr = (bfd_boolean *) failedptrarg;
2817 asection *elt, *first;
2818 unsigned char *loc;
2819 bfd_boolean gas;
2820
2821 /* Ignore linker created group section. See elfNN_ia64_object_p in
2822 elfxx-ia64.c. */
2823 if (((sec->flags & (SEC_GROUP | SEC_LINKER_CREATED)) != SEC_GROUP)
2824 || *failedptr)
2825 return;
2826
2827 if (elf_section_data (sec)->this_hdr.sh_info == 0)
2828 {
2829 unsigned long symindx = 0;
2830
2831 /* elf_group_id will have been set up by objcopy and the
2832 generic linker. */
2833 if (elf_group_id (sec) != NULL)
2834 symindx = elf_group_id (sec)->udata.i;
2835
2836 if (symindx == 0)
2837 {
2838 /* If called from the assembler, swap_out_syms will have set up
2839 elf_section_syms. */
2840 BFD_ASSERT (elf_section_syms (abfd) != NULL);
2841 symindx = elf_section_syms (abfd)[sec->index]->udata.i;
2842 }
2843 elf_section_data (sec)->this_hdr.sh_info = symindx;
2844 }
2845 else if (elf_section_data (sec)->this_hdr.sh_info == (unsigned int) -2)
2846 {
2847 /* The ELF backend linker sets sh_info to -2 when the group
2848 signature symbol is global, and thus the index can't be
2849 set until all local symbols are output. */
2850 asection *igroup = elf_sec_group (elf_next_in_group (sec));
2851 struct bfd_elf_section_data *sec_data = elf_section_data (igroup);
2852 unsigned long symndx = sec_data->this_hdr.sh_info;
2853 unsigned long extsymoff = 0;
2854 struct elf_link_hash_entry *h;
2855
2856 if (!elf_bad_symtab (igroup->owner))
2857 {
2858 Elf_Internal_Shdr *symtab_hdr;
2859
2860 symtab_hdr = &elf_tdata (igroup->owner)->symtab_hdr;
2861 extsymoff = symtab_hdr->sh_info;
2862 }
2863 h = elf_sym_hashes (igroup->owner)[symndx - extsymoff];
2864 while (h->root.type == bfd_link_hash_indirect
2865 || h->root.type == bfd_link_hash_warning)
2866 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2867
2868 elf_section_data (sec)->this_hdr.sh_info = h->indx;
2869 }
2870
2871 /* The contents won't be allocated for "ld -r" or objcopy. */
2872 gas = TRUE;
2873 if (sec->contents == NULL)
2874 {
2875 gas = FALSE;
2876 sec->contents = (unsigned char *) bfd_alloc (abfd, sec->size);
2877
2878 /* Arrange for the section to be written out. */
2879 elf_section_data (sec)->this_hdr.contents = sec->contents;
2880 if (sec->contents == NULL)
2881 {
2882 *failedptr = TRUE;
2883 return;
2884 }
2885 }
2886
2887 loc = sec->contents + sec->size;
2888
2889 /* Get the pointer to the first section in the group that gas
2890 squirreled away here. objcopy arranges for this to be set to the
2891 start of the input section group. */
2892 first = elt = elf_next_in_group (sec);
2893
2894 /* First element is a flag word. Rest of section is elf section
2895 indices for all the sections of the group. Write them backwards
2896 just to keep the group in the same order as given in .section
2897 directives, not that it matters. */
2898 while (elt != NULL)
2899 {
2900 asection *s;
2901
2902 s = elt;
2903 if (!gas)
2904 s = s->output_section;
2905 if (s != NULL
2906 && !bfd_is_abs_section (s))
2907 {
2908 unsigned int idx = elf_section_data (s)->this_idx;
2909
2910 loc -= 4;
2911 H_PUT_32 (abfd, idx, loc);
2912 }
2913 elt = elf_next_in_group (elt);
2914 if (elt == first)
2915 break;
2916 }
2917
2918 if ((loc -= 4) != sec->contents)
2919 abort ();
2920
2921 H_PUT_32 (abfd, sec->flags & SEC_LINK_ONCE ? GRP_COMDAT : 0, loc);
2922 }
2923
2924 /* Assign all ELF section numbers. The dummy first section is handled here
2925 too. The link/info pointers for the standard section types are filled
2926 in here too, while we're at it. */
2927
2928 static bfd_boolean
2929 assign_section_numbers (bfd *abfd, struct bfd_link_info *link_info)
2930 {
2931 struct elf_obj_tdata *t = elf_tdata (abfd);
2932 asection *sec;
2933 unsigned int section_number, secn;
2934 Elf_Internal_Shdr **i_shdrp;
2935 struct bfd_elf_section_data *d;
2936 bfd_boolean need_symtab;
2937
2938 section_number = 1;
2939
2940 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd));
2941
2942 /* SHT_GROUP sections are in relocatable files only. */
2943 if (link_info == NULL || link_info->relocatable)
2944 {
2945 /* Put SHT_GROUP sections first. */
2946 for (sec = abfd->sections; sec != NULL; sec = sec->next)
2947 {
2948 d = elf_section_data (sec);
2949
2950 if (d->this_hdr.sh_type == SHT_GROUP)
2951 {
2952 if (sec->flags & SEC_LINKER_CREATED)
2953 {
2954 /* Remove the linker created SHT_GROUP sections. */
2955 bfd_section_list_remove (abfd, sec);
2956 abfd->section_count--;
2957 }
2958 else
2959 d->this_idx = section_number++;
2960 }
2961 }
2962 }
2963
2964 for (sec = abfd->sections; sec; sec = sec->next)
2965 {
2966 d = elf_section_data (sec);
2967
2968 if (d->this_hdr.sh_type != SHT_GROUP)
2969 d->this_idx = section_number++;
2970 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->this_hdr.sh_name);
2971 if (d->rel.hdr)
2972 {
2973 d->rel.idx = section_number++;
2974 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel.hdr->sh_name);
2975 }
2976 else
2977 d->rel.idx = 0;
2978
2979 if (d->rela.hdr)
2980 {
2981 d->rela.idx = section_number++;
2982 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rela.hdr->sh_name);
2983 }
2984 else
2985 d->rela.idx = 0;
2986 }
2987
2988 elf_shstrtab_sec (abfd) = section_number++;
2989 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->shstrtab_hdr.sh_name);
2990 elf_elfheader (abfd)->e_shstrndx = elf_shstrtab_sec (abfd);
2991
2992 need_symtab = (bfd_get_symcount (abfd) > 0
2993 || (link_info == NULL
2994 && ((abfd->flags & (EXEC_P | DYNAMIC | HAS_RELOC))
2995 == HAS_RELOC)));
2996 if (need_symtab)
2997 {
2998 elf_onesymtab (abfd) = section_number++;
2999 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->symtab_hdr.sh_name);
3000 if (section_number > ((SHN_LORESERVE - 2) & 0xFFFF))
3001 {
3002 elf_symtab_shndx (abfd) = section_number++;
3003 t->symtab_shndx_hdr.sh_name
3004 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
3005 ".symtab_shndx", FALSE);
3006 if (t->symtab_shndx_hdr.sh_name == (unsigned int) -1)
3007 return FALSE;
3008 }
3009 elf_strtab_sec (abfd) = section_number++;
3010 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->strtab_hdr.sh_name);
3011 }
3012
3013 if (section_number >= SHN_LORESERVE)
3014 {
3015 _bfd_error_handler (_("%B: too many sections: %u"),
3016 abfd, section_number);
3017 return FALSE;
3018 }
3019
3020 _bfd_elf_strtab_finalize (elf_shstrtab (abfd));
3021 t->shstrtab_hdr.sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
3022
3023 elf_numsections (abfd) = section_number;
3024 elf_elfheader (abfd)->e_shnum = section_number;
3025
3026 /* Set up the list of section header pointers, in agreement with the
3027 indices. */
3028 i_shdrp = (Elf_Internal_Shdr **) bfd_zalloc2 (abfd, section_number,
3029 sizeof (Elf_Internal_Shdr *));
3030 if (i_shdrp == NULL)
3031 return FALSE;
3032
3033 i_shdrp[0] = (Elf_Internal_Shdr *) bfd_zalloc (abfd,
3034 sizeof (Elf_Internal_Shdr));
3035 if (i_shdrp[0] == NULL)
3036 {
3037 bfd_release (abfd, i_shdrp);
3038 return FALSE;
3039 }
3040
3041 elf_elfsections (abfd) = i_shdrp;
3042
3043 i_shdrp[elf_shstrtab_sec (abfd)] = &t->shstrtab_hdr;
3044 if (need_symtab)
3045 {
3046 i_shdrp[elf_onesymtab (abfd)] = &t->symtab_hdr;
3047 if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
3048 {
3049 i_shdrp[elf_symtab_shndx (abfd)] = &t->symtab_shndx_hdr;
3050 t->symtab_shndx_hdr.sh_link = elf_onesymtab (abfd);
3051 }
3052 i_shdrp[elf_strtab_sec (abfd)] = &t->strtab_hdr;
3053 t->symtab_hdr.sh_link = elf_strtab_sec (abfd);
3054 }
3055
3056 for (sec = abfd->sections; sec; sec = sec->next)
3057 {
3058 asection *s;
3059 const char *name;
3060
3061 d = elf_section_data (sec);
3062
3063 i_shdrp[d->this_idx] = &d->this_hdr;
3064 if (d->rel.idx != 0)
3065 i_shdrp[d->rel.idx] = d->rel.hdr;
3066 if (d->rela.idx != 0)
3067 i_shdrp[d->rela.idx] = d->rela.hdr;
3068
3069 /* Fill in the sh_link and sh_info fields while we're at it. */
3070
3071 /* sh_link of a reloc section is the section index of the symbol
3072 table. sh_info is the section index of the section to which
3073 the relocation entries apply. */
3074 if (d->rel.idx != 0)
3075 {
3076 d->rel.hdr->sh_link = elf_onesymtab (abfd);
3077 d->rel.hdr->sh_info = d->this_idx;
3078 d->rel.hdr->sh_flags |= SHF_INFO_LINK;
3079 }
3080 if (d->rela.idx != 0)
3081 {
3082 d->rela.hdr->sh_link = elf_onesymtab (abfd);
3083 d->rela.hdr->sh_info = d->this_idx;
3084 d->rela.hdr->sh_flags |= SHF_INFO_LINK;
3085 }
3086
3087 /* We need to set up sh_link for SHF_LINK_ORDER. */
3088 if ((d->this_hdr.sh_flags & SHF_LINK_ORDER) != 0)
3089 {
3090 s = elf_linked_to_section (sec);
3091 if (s)
3092 {
3093 /* elf_linked_to_section points to the input section. */
3094 if (link_info != NULL)
3095 {
3096 /* Check discarded linkonce section. */
3097 if (discarded_section (s))
3098 {
3099 asection *kept;
3100 (*_bfd_error_handler)
3101 (_("%B: sh_link of section `%A' points to discarded section `%A' of `%B'"),
3102 abfd, d->this_hdr.bfd_section,
3103 s, s->owner);
3104 /* Point to the kept section if it has the same
3105 size as the discarded one. */
3106 kept = _bfd_elf_check_kept_section (s, link_info);
3107 if (kept == NULL)
3108 {
3109 bfd_set_error (bfd_error_bad_value);
3110 return FALSE;
3111 }
3112 s = kept;
3113 }
3114
3115 s = s->output_section;
3116 BFD_ASSERT (s != NULL);
3117 }
3118 else
3119 {
3120 /* Handle objcopy. */
3121 if (s->output_section == NULL)
3122 {
3123 (*_bfd_error_handler)
3124 (_("%B: sh_link of section `%A' points to removed section `%A' of `%B'"),
3125 abfd, d->this_hdr.bfd_section, s, s->owner);
3126 bfd_set_error (bfd_error_bad_value);
3127 return FALSE;
3128 }
3129 s = s->output_section;
3130 }
3131 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3132 }
3133 else
3134 {
3135 /* PR 290:
3136 The Intel C compiler generates SHT_IA_64_UNWIND with
3137 SHF_LINK_ORDER. But it doesn't set the sh_link or
3138 sh_info fields. Hence we could get the situation
3139 where s is NULL. */
3140 const struct elf_backend_data *bed
3141 = get_elf_backend_data (abfd);
3142 if (bed->link_order_error_handler)
3143 bed->link_order_error_handler
3144 (_("%B: warning: sh_link not set for section `%A'"),
3145 abfd, sec);
3146 }
3147 }
3148
3149 switch (d->this_hdr.sh_type)
3150 {
3151 case SHT_REL:
3152 case SHT_RELA:
3153 /* A reloc section which we are treating as a normal BFD
3154 section. sh_link is the section index of the symbol
3155 table. sh_info is the section index of the section to
3156 which the relocation entries apply. We assume that an
3157 allocated reloc section uses the dynamic symbol table.
3158 FIXME: How can we be sure? */
3159 s = bfd_get_section_by_name (abfd, ".dynsym");
3160 if (s != NULL)
3161 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3162
3163 /* We look up the section the relocs apply to by name. */
3164 name = sec->name;
3165 if (d->this_hdr.sh_type == SHT_REL)
3166 name += 4;
3167 else
3168 name += 5;
3169 s = bfd_get_section_by_name (abfd, name);
3170 if (s != NULL)
3171 {
3172 d->this_hdr.sh_info = elf_section_data (s)->this_idx;
3173 d->this_hdr.sh_flags |= SHF_INFO_LINK;
3174 }
3175 break;
3176
3177 case SHT_STRTAB:
3178 /* We assume that a section named .stab*str is a stabs
3179 string section. We look for a section with the same name
3180 but without the trailing ``str'', and set its sh_link
3181 field to point to this section. */
3182 if (CONST_STRNEQ (sec->name, ".stab")
3183 && strcmp (sec->name + strlen (sec->name) - 3, "str") == 0)
3184 {
3185 size_t len;
3186 char *alc;
3187
3188 len = strlen (sec->name);
3189 alc = (char *) bfd_malloc (len - 2);
3190 if (alc == NULL)
3191 return FALSE;
3192 memcpy (alc, sec->name, len - 3);
3193 alc[len - 3] = '\0';
3194 s = bfd_get_section_by_name (abfd, alc);
3195 free (alc);
3196 if (s != NULL)
3197 {
3198 elf_section_data (s)->this_hdr.sh_link = d->this_idx;
3199
3200 /* This is a .stab section. */
3201 if (elf_section_data (s)->this_hdr.sh_entsize == 0)
3202 elf_section_data (s)->this_hdr.sh_entsize
3203 = 4 + 2 * bfd_get_arch_size (abfd) / 8;
3204 }
3205 }
3206 break;
3207
3208 case SHT_DYNAMIC:
3209 case SHT_DYNSYM:
3210 case SHT_GNU_verneed:
3211 case SHT_GNU_verdef:
3212 /* sh_link is the section header index of the string table
3213 used for the dynamic entries, or the symbol table, or the
3214 version strings. */
3215 s = bfd_get_section_by_name (abfd, ".dynstr");
3216 if (s != NULL)
3217 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3218 break;
3219
3220 case SHT_GNU_LIBLIST:
3221 /* sh_link is the section header index of the prelink library
3222 list used for the dynamic entries, or the symbol table, or
3223 the version strings. */
3224 s = bfd_get_section_by_name (abfd, (sec->flags & SEC_ALLOC)
3225 ? ".dynstr" : ".gnu.libstr");
3226 if (s != NULL)
3227 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3228 break;
3229
3230 case SHT_HASH:
3231 case SHT_GNU_HASH:
3232 case SHT_GNU_versym:
3233 /* sh_link is the section header index of the symbol table
3234 this hash table or version table is for. */
3235 s = bfd_get_section_by_name (abfd, ".dynsym");
3236 if (s != NULL)
3237 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3238 break;
3239
3240 case SHT_GROUP:
3241 d->this_hdr.sh_link = elf_onesymtab (abfd);
3242 }
3243 }
3244
3245 for (secn = 1; secn < section_number; ++secn)
3246 if (i_shdrp[secn] == NULL)
3247 i_shdrp[secn] = i_shdrp[0];
3248 else
3249 i_shdrp[secn]->sh_name = _bfd_elf_strtab_offset (elf_shstrtab (abfd),
3250 i_shdrp[secn]->sh_name);
3251 return TRUE;
3252 }
3253
3254 static bfd_boolean
3255 sym_is_global (bfd *abfd, asymbol *sym)
3256 {
3257 /* If the backend has a special mapping, use it. */
3258 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3259 if (bed->elf_backend_sym_is_global)
3260 return (*bed->elf_backend_sym_is_global) (abfd, sym);
3261
3262 return ((sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE)) != 0
3263 || bfd_is_und_section (bfd_get_section (sym))
3264 || bfd_is_com_section (bfd_get_section (sym)));
3265 }
3266
3267 /* Don't output section symbols for sections that are not going to be
3268 output, that are duplicates or there is no BFD section. */
3269
3270 static bfd_boolean
3271 ignore_section_sym (bfd *abfd, asymbol *sym)
3272 {
3273 elf_symbol_type *type_ptr;
3274
3275 if ((sym->flags & BSF_SECTION_SYM) == 0)
3276 return FALSE;
3277
3278 type_ptr = elf_symbol_from (abfd, sym);
3279 return ((type_ptr != NULL
3280 && type_ptr->internal_elf_sym.st_shndx != 0
3281 && bfd_is_abs_section (sym->section))
3282 || !(sym->section->owner == abfd
3283 || (sym->section->output_section->owner == abfd
3284 && sym->section->output_offset == 0)
3285 || bfd_is_abs_section (sym->section)));
3286 }
3287
3288 /* Map symbol from it's internal number to the external number, moving
3289 all local symbols to be at the head of the list. */
3290
3291 static bfd_boolean
3292 elf_map_symbols (bfd *abfd, unsigned int *pnum_locals)
3293 {
3294 unsigned int symcount = bfd_get_symcount (abfd);
3295 asymbol **syms = bfd_get_outsymbols (abfd);
3296 asymbol **sect_syms;
3297 unsigned int num_locals = 0;
3298 unsigned int num_globals = 0;
3299 unsigned int num_locals2 = 0;
3300 unsigned int num_globals2 = 0;
3301 int max_index = 0;
3302 unsigned int idx;
3303 asection *asect;
3304 asymbol **new_syms;
3305
3306 #ifdef DEBUG
3307 fprintf (stderr, "elf_map_symbols\n");
3308 fflush (stderr);
3309 #endif
3310
3311 for (asect = abfd->sections; asect; asect = asect->next)
3312 {
3313 if (max_index < asect->index)
3314 max_index = asect->index;
3315 }
3316
3317 max_index++;
3318 sect_syms = (asymbol **) bfd_zalloc2 (abfd, max_index, sizeof (asymbol *));
3319 if (sect_syms == NULL)
3320 return FALSE;
3321 elf_section_syms (abfd) = sect_syms;
3322 elf_num_section_syms (abfd) = max_index;
3323
3324 /* Init sect_syms entries for any section symbols we have already
3325 decided to output. */
3326 for (idx = 0; idx < symcount; idx++)
3327 {
3328 asymbol *sym = syms[idx];
3329
3330 if ((sym->flags & BSF_SECTION_SYM) != 0
3331 && sym->value == 0
3332 && !ignore_section_sym (abfd, sym)
3333 && !bfd_is_abs_section (sym->section))
3334 {
3335 asection *sec = sym->section;
3336
3337 if (sec->owner != abfd)
3338 sec = sec->output_section;
3339
3340 sect_syms[sec->index] = syms[idx];
3341 }
3342 }
3343
3344 /* Classify all of the symbols. */
3345 for (idx = 0; idx < symcount; idx++)
3346 {
3347 if (sym_is_global (abfd, syms[idx]))
3348 num_globals++;
3349 else if (!ignore_section_sym (abfd, syms[idx]))
3350 num_locals++;
3351 }
3352
3353 /* We will be adding a section symbol for each normal BFD section. Most
3354 sections will already have a section symbol in outsymbols, but
3355 eg. SHT_GROUP sections will not, and we need the section symbol mapped
3356 at least in that case. */
3357 for (asect = abfd->sections; asect; asect = asect->next)
3358 {
3359 if (sect_syms[asect->index] == NULL)
3360 {
3361 if (!sym_is_global (abfd, asect->symbol))
3362 num_locals++;
3363 else
3364 num_globals++;
3365 }
3366 }
3367
3368 /* Now sort the symbols so the local symbols are first. */
3369 new_syms = (asymbol **) bfd_alloc2 (abfd, num_locals + num_globals,
3370 sizeof (asymbol *));
3371
3372 if (new_syms == NULL)
3373 return FALSE;
3374
3375 for (idx = 0; idx < symcount; idx++)
3376 {
3377 asymbol *sym = syms[idx];
3378 unsigned int i;
3379
3380 if (sym_is_global (abfd, sym))
3381 i = num_locals + num_globals2++;
3382 else if (!ignore_section_sym (abfd, sym))
3383 i = num_locals2++;
3384 else
3385 continue;
3386 new_syms[i] = sym;
3387 sym->udata.i = i + 1;
3388 }
3389 for (asect = abfd->sections; asect; asect = asect->next)
3390 {
3391 if (sect_syms[asect->index] == NULL)
3392 {
3393 asymbol *sym = asect->symbol;
3394 unsigned int i;
3395
3396 sect_syms[asect->index] = sym;
3397 if (!sym_is_global (abfd, sym))
3398 i = num_locals2++;
3399 else
3400 i = num_locals + num_globals2++;
3401 new_syms[i] = sym;
3402 sym->udata.i = i + 1;
3403 }
3404 }
3405
3406 bfd_set_symtab (abfd, new_syms, num_locals + num_globals);
3407
3408 *pnum_locals = num_locals;
3409 return TRUE;
3410 }
3411
3412 /* Align to the maximum file alignment that could be required for any
3413 ELF data structure. */
3414
3415 static inline file_ptr
3416 align_file_position (file_ptr off, int align)
3417 {
3418 return (off + align - 1) & ~(align - 1);
3419 }
3420
3421 /* Assign a file position to a section, optionally aligning to the
3422 required section alignment. */
3423
3424 file_ptr
3425 _bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr *i_shdrp,
3426 file_ptr offset,
3427 bfd_boolean align)
3428 {
3429 if (align && i_shdrp->sh_addralign > 1)
3430 offset = BFD_ALIGN (offset, i_shdrp->sh_addralign);
3431 i_shdrp->sh_offset = offset;
3432 if (i_shdrp->bfd_section != NULL)
3433 i_shdrp->bfd_section->filepos = offset;
3434 if (i_shdrp->sh_type != SHT_NOBITS)
3435 offset += i_shdrp->sh_size;
3436 return offset;
3437 }
3438
3439 /* Compute the file positions we are going to put the sections at, and
3440 otherwise prepare to begin writing out the ELF file. If LINK_INFO
3441 is not NULL, this is being called by the ELF backend linker. */
3442
3443 bfd_boolean
3444 _bfd_elf_compute_section_file_positions (bfd *abfd,
3445 struct bfd_link_info *link_info)
3446 {
3447 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3448 struct fake_section_arg fsargs;
3449 bfd_boolean failed;
3450 struct bfd_strtab_hash *strtab = NULL;
3451 Elf_Internal_Shdr *shstrtab_hdr;
3452 bfd_boolean need_symtab;
3453
3454 if (abfd->output_has_begun)
3455 return TRUE;
3456
3457 /* Do any elf backend specific processing first. */
3458 if (bed->elf_backend_begin_write_processing)
3459 (*bed->elf_backend_begin_write_processing) (abfd, link_info);
3460
3461 if (! prep_headers (abfd))
3462 return FALSE;
3463
3464 /* Post process the headers if necessary. */
3465 (*bed->elf_backend_post_process_headers) (abfd, link_info);
3466
3467 fsargs.failed = FALSE;
3468 fsargs.link_info = link_info;
3469 bfd_map_over_sections (abfd, elf_fake_sections, &fsargs);
3470 if (fsargs.failed)
3471 return FALSE;
3472
3473 if (!assign_section_numbers (abfd, link_info))
3474 return FALSE;
3475
3476 /* The backend linker builds symbol table information itself. */
3477 need_symtab = (link_info == NULL
3478 && (bfd_get_symcount (abfd) > 0
3479 || ((abfd->flags & (EXEC_P | DYNAMIC | HAS_RELOC))
3480 == HAS_RELOC)));
3481 if (need_symtab)
3482 {
3483 /* Non-zero if doing a relocatable link. */
3484 int relocatable_p = ! (abfd->flags & (EXEC_P | DYNAMIC));
3485
3486 if (! swap_out_syms (abfd, &strtab, relocatable_p))
3487 return FALSE;
3488 }
3489
3490 failed = FALSE;
3491 if (link_info == NULL)
3492 {
3493 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
3494 if (failed)
3495 return FALSE;
3496 }
3497
3498 shstrtab_hdr = &elf_tdata (abfd)->shstrtab_hdr;
3499 /* sh_name was set in prep_headers. */
3500 shstrtab_hdr->sh_type = SHT_STRTAB;
3501 shstrtab_hdr->sh_flags = 0;
3502 shstrtab_hdr->sh_addr = 0;
3503 shstrtab_hdr->sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
3504 shstrtab_hdr->sh_entsize = 0;
3505 shstrtab_hdr->sh_link = 0;
3506 shstrtab_hdr->sh_info = 0;
3507 /* sh_offset is set in assign_file_positions_except_relocs. */
3508 shstrtab_hdr->sh_addralign = 1;
3509
3510 if (!assign_file_positions_except_relocs (abfd, link_info))
3511 return FALSE;
3512
3513 if (need_symtab)
3514 {
3515 file_ptr off;
3516 Elf_Internal_Shdr *hdr;
3517
3518 off = elf_next_file_pos (abfd);
3519
3520 hdr = &elf_tdata (abfd)->symtab_hdr;
3521 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3522
3523 hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
3524 if (hdr->sh_size != 0)
3525 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3526
3527 hdr = &elf_tdata (abfd)->strtab_hdr;
3528 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3529
3530 elf_next_file_pos (abfd) = off;
3531
3532 /* Now that we know where the .strtab section goes, write it
3533 out. */
3534 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
3535 || ! _bfd_stringtab_emit (abfd, strtab))
3536 return FALSE;
3537 _bfd_stringtab_free (strtab);
3538 }
3539
3540 abfd->output_has_begun = TRUE;
3541
3542 return TRUE;
3543 }
3544
3545 /* Make an initial estimate of the size of the program header. If we
3546 get the number wrong here, we'll redo section placement. */
3547
3548 static bfd_size_type
3549 get_program_header_size (bfd *abfd, struct bfd_link_info *info)
3550 {
3551 size_t segs;
3552 asection *s;
3553 const struct elf_backend_data *bed;
3554
3555 /* Assume we will need exactly two PT_LOAD segments: one for text
3556 and one for data. */
3557 segs = 2;
3558
3559 s = bfd_get_section_by_name (abfd, ".interp");
3560 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3561 {
3562 /* If we have a loadable interpreter section, we need a
3563 PT_INTERP segment. In this case, assume we also need a
3564 PT_PHDR segment, although that may not be true for all
3565 targets. */
3566 segs += 2;
3567 }
3568
3569 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
3570 {
3571 /* We need a PT_DYNAMIC segment. */
3572 ++segs;
3573 }
3574
3575 if (info != NULL && info->relro)
3576 {
3577 /* We need a PT_GNU_RELRO segment. */
3578 ++segs;
3579 }
3580
3581 if (elf_eh_frame_hdr (abfd))
3582 {
3583 /* We need a PT_GNU_EH_FRAME segment. */
3584 ++segs;
3585 }
3586
3587 if (elf_stack_flags (abfd))
3588 {
3589 /* We need a PT_GNU_STACK segment. */
3590 ++segs;
3591 }
3592
3593 for (s = abfd->sections; s != NULL; s = s->next)
3594 {
3595 if ((s->flags & SEC_LOAD) != 0
3596 && CONST_STRNEQ (s->name, ".note"))
3597 {
3598 /* We need a PT_NOTE segment. */
3599 ++segs;
3600 /* Try to create just one PT_NOTE segment
3601 for all adjacent loadable .note* sections.
3602 gABI requires that within a PT_NOTE segment
3603 (and also inside of each SHT_NOTE section)
3604 each note is padded to a multiple of 4 size,
3605 so we check whether the sections are correctly
3606 aligned. */
3607 if (s->alignment_power == 2)
3608 while (s->next != NULL
3609 && s->next->alignment_power == 2
3610 && (s->next->flags & SEC_LOAD) != 0
3611 && CONST_STRNEQ (s->next->name, ".note"))
3612 s = s->next;
3613 }
3614 }
3615
3616 for (s = abfd->sections; s != NULL; s = s->next)
3617 {
3618 if (s->flags & SEC_THREAD_LOCAL)
3619 {
3620 /* We need a PT_TLS segment. */
3621 ++segs;
3622 break;
3623 }
3624 }
3625
3626 /* Let the backend count up any program headers it might need. */
3627 bed = get_elf_backend_data (abfd);
3628 if (bed->elf_backend_additional_program_headers)
3629 {
3630 int a;
3631
3632 a = (*bed->elf_backend_additional_program_headers) (abfd, info);
3633 if (a == -1)
3634 abort ();
3635 segs += a;
3636 }
3637
3638 return segs * bed->s->sizeof_phdr;
3639 }
3640
3641 /* Find the segment that contains the output_section of section. */
3642
3643 Elf_Internal_Phdr *
3644 _bfd_elf_find_segment_containing_section (bfd * abfd, asection * section)
3645 {
3646 struct elf_segment_map *m;
3647 Elf_Internal_Phdr *p;
3648
3649 for (m = elf_seg_map (abfd), p = elf_tdata (abfd)->phdr;
3650 m != NULL;
3651 m = m->next, p++)
3652 {
3653 int i;
3654
3655 for (i = m->count - 1; i >= 0; i--)
3656 if (m->sections[i] == section)
3657 return p;
3658 }
3659
3660 return NULL;
3661 }
3662
3663 /* Create a mapping from a set of sections to a program segment. */
3664
3665 static struct elf_segment_map *
3666 make_mapping (bfd *abfd,
3667 asection **sections,
3668 unsigned int from,
3669 unsigned int to,
3670 bfd_boolean phdr)
3671 {
3672 struct elf_segment_map *m;
3673 unsigned int i;
3674 asection **hdrpp;
3675 bfd_size_type amt;
3676
3677 amt = sizeof (struct elf_segment_map);
3678 amt += (to - from - 1) * sizeof (asection *);
3679 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
3680 if (m == NULL)
3681 return NULL;
3682 m->next = NULL;
3683 m->p_type = PT_LOAD;
3684 for (i = from, hdrpp = sections + from; i < to; i++, hdrpp++)
3685 m->sections[i - from] = *hdrpp;
3686 m->count = to - from;
3687
3688 if (from == 0 && phdr)
3689 {
3690 /* Include the headers in the first PT_LOAD segment. */
3691 m->includes_filehdr = 1;
3692 m->includes_phdrs = 1;
3693 }
3694
3695 return m;
3696 }
3697
3698 /* Create the PT_DYNAMIC segment, which includes DYNSEC. Returns NULL
3699 on failure. */
3700
3701 struct elf_segment_map *
3702 _bfd_elf_make_dynamic_segment (bfd *abfd, asection *dynsec)
3703 {
3704 struct elf_segment_map *m;
3705
3706 m = (struct elf_segment_map *) bfd_zalloc (abfd,
3707 sizeof (struct elf_segment_map));
3708 if (m == NULL)
3709 return NULL;
3710 m->next = NULL;
3711 m->p_type = PT_DYNAMIC;
3712 m->count = 1;
3713 m->sections[0] = dynsec;
3714
3715 return m;
3716 }
3717
3718 /* Possibly add or remove segments from the segment map. */
3719
3720 static bfd_boolean
3721 elf_modify_segment_map (bfd *abfd,
3722 struct bfd_link_info *info,
3723 bfd_boolean remove_empty_load)
3724 {
3725 struct elf_segment_map **m;
3726 const struct elf_backend_data *bed;
3727
3728 /* The placement algorithm assumes that non allocated sections are
3729 not in PT_LOAD segments. We ensure this here by removing such
3730 sections from the segment map. We also remove excluded
3731 sections. Finally, any PT_LOAD segment without sections is
3732 removed. */
3733 m = &elf_seg_map (abfd);
3734 while (*m)
3735 {
3736 unsigned int i, new_count;
3737
3738 for (new_count = 0, i = 0; i < (*m)->count; i++)
3739 {
3740 if (((*m)->sections[i]->flags & SEC_EXCLUDE) == 0
3741 && (((*m)->sections[i]->flags & SEC_ALLOC) != 0
3742 || (*m)->p_type != PT_LOAD))
3743 {
3744 (*m)->sections[new_count] = (*m)->sections[i];
3745 new_count++;
3746 }
3747 }
3748 (*m)->count = new_count;
3749
3750 if (remove_empty_load && (*m)->p_type == PT_LOAD && (*m)->count == 0)
3751 *m = (*m)->next;
3752 else
3753 m = &(*m)->next;
3754 }
3755
3756 bed = get_elf_backend_data (abfd);
3757 if (bed->elf_backend_modify_segment_map != NULL)
3758 {
3759 if (!(*bed->elf_backend_modify_segment_map) (abfd, info))
3760 return FALSE;
3761 }
3762
3763 return TRUE;
3764 }
3765
3766 /* Set up a mapping from BFD sections to program segments. */
3767
3768 bfd_boolean
3769 _bfd_elf_map_sections_to_segments (bfd *abfd, struct bfd_link_info *info)
3770 {
3771 unsigned int count;
3772 struct elf_segment_map *m;
3773 asection **sections = NULL;
3774 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3775 bfd_boolean no_user_phdrs;
3776
3777 no_user_phdrs = elf_seg_map (abfd) == NULL;
3778
3779 if (info != NULL)
3780 info->user_phdrs = !no_user_phdrs;
3781
3782 if (no_user_phdrs && bfd_count_sections (abfd) != 0)
3783 {
3784 asection *s;
3785 unsigned int i;
3786 struct elf_segment_map *mfirst;
3787 struct elf_segment_map **pm;
3788 asection *last_hdr;
3789 bfd_vma last_size;
3790 unsigned int phdr_index;
3791 bfd_vma maxpagesize;
3792 asection **hdrpp;
3793 bfd_boolean phdr_in_segment = TRUE;
3794 bfd_boolean writable;
3795 int tls_count = 0;
3796 asection *first_tls = NULL;
3797 asection *dynsec, *eh_frame_hdr;
3798 bfd_size_type amt;
3799 bfd_vma addr_mask, wrap_to = 0;
3800
3801 /* Select the allocated sections, and sort them. */
3802
3803 sections = (asection **) bfd_malloc2 (bfd_count_sections (abfd),
3804 sizeof (asection *));
3805 if (sections == NULL)
3806 goto error_return;
3807
3808 /* Calculate top address, avoiding undefined behaviour of shift
3809 left operator when shift count is equal to size of type
3810 being shifted. */
3811 addr_mask = ((bfd_vma) 1 << (bfd_arch_bits_per_address (abfd) - 1)) - 1;
3812 addr_mask = (addr_mask << 1) + 1;
3813
3814 i = 0;
3815 for (s = abfd->sections; s != NULL; s = s->next)
3816 {
3817 if ((s->flags & SEC_ALLOC) != 0)
3818 {
3819 sections[i] = s;
3820 ++i;
3821 /* A wrapping section potentially clashes with header. */
3822 if (((s->lma + s->size) & addr_mask) < (s->lma & addr_mask))
3823 wrap_to = (s->lma + s->size) & addr_mask;
3824 }
3825 }
3826 BFD_ASSERT (i <= bfd_count_sections (abfd));
3827 count = i;
3828
3829 qsort (sections, (size_t) count, sizeof (asection *), elf_sort_sections);
3830
3831 /* Build the mapping. */
3832
3833 mfirst = NULL;
3834 pm = &mfirst;
3835
3836 /* If we have a .interp section, then create a PT_PHDR segment for
3837 the program headers and a PT_INTERP segment for the .interp
3838 section. */
3839 s = bfd_get_section_by_name (abfd, ".interp");
3840 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3841 {
3842 amt = sizeof (struct elf_segment_map);
3843 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
3844 if (m == NULL)
3845 goto error_return;
3846 m->next = NULL;
3847 m->p_type = PT_PHDR;
3848 /* FIXME: UnixWare and Solaris set PF_X, Irix 5 does not. */
3849 m->p_flags = PF_R | PF_X;
3850 m->p_flags_valid = 1;
3851 m->includes_phdrs = 1;
3852
3853 *pm = m;
3854 pm = &m->next;
3855
3856 amt = sizeof (struct elf_segment_map);
3857 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
3858 if (m == NULL)
3859 goto error_return;
3860 m->next = NULL;
3861 m->p_type = PT_INTERP;
3862 m->count = 1;
3863 m->sections[0] = s;
3864
3865 *pm = m;
3866 pm = &m->next;
3867 }
3868
3869 /* Look through the sections. We put sections in the same program
3870 segment when the start of the second section can be placed within
3871 a few bytes of the end of the first section. */
3872 last_hdr = NULL;
3873 last_size = 0;
3874 phdr_index = 0;
3875 maxpagesize = bed->maxpagesize;
3876 writable = FALSE;
3877 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
3878 if (dynsec != NULL
3879 && (dynsec->flags & SEC_LOAD) == 0)
3880 dynsec = NULL;
3881
3882 /* Deal with -Ttext or something similar such that the first section
3883 is not adjacent to the program headers. This is an
3884 approximation, since at this point we don't know exactly how many
3885 program headers we will need. */
3886 if (count > 0)
3887 {
3888 bfd_size_type phdr_size = elf_program_header_size (abfd);
3889
3890 if (phdr_size == (bfd_size_type) -1)
3891 phdr_size = get_program_header_size (abfd, info);
3892 phdr_size += bed->s->sizeof_ehdr;
3893 if ((abfd->flags & D_PAGED) == 0
3894 || (sections[0]->lma & addr_mask) < phdr_size
3895 || ((sections[0]->lma & addr_mask) % maxpagesize
3896 < phdr_size % maxpagesize)
3897 || (sections[0]->lma & addr_mask & -maxpagesize) < wrap_to)
3898 phdr_in_segment = FALSE;
3899 }
3900
3901 for (i = 0, hdrpp = sections; i < count; i++, hdrpp++)
3902 {
3903 asection *hdr;
3904 bfd_boolean new_segment;
3905
3906 hdr = *hdrpp;
3907
3908 /* See if this section and the last one will fit in the same
3909 segment. */
3910
3911 if (last_hdr == NULL)
3912 {
3913 /* If we don't have a segment yet, then we don't need a new
3914 one (we build the last one after this loop). */
3915 new_segment = FALSE;
3916 }
3917 else if (last_hdr->lma - last_hdr->vma != hdr->lma - hdr->vma)
3918 {
3919 /* If this section has a different relation between the
3920 virtual address and the load address, then we need a new
3921 segment. */
3922 new_segment = TRUE;
3923 }
3924 else if (hdr->lma < last_hdr->lma + last_size
3925 || last_hdr->lma + last_size < last_hdr->lma)
3926 {
3927 /* If this section has a load address that makes it overlap
3928 the previous section, then we need a new segment. */
3929 new_segment = TRUE;
3930 }
3931 /* In the next test we have to be careful when last_hdr->lma is close
3932 to the end of the address space. If the aligned address wraps
3933 around to the start of the address space, then there are no more
3934 pages left in memory and it is OK to assume that the current
3935 section can be included in the current segment. */
3936 else if ((BFD_ALIGN (last_hdr->lma + last_size, maxpagesize) + maxpagesize
3937 > last_hdr->lma)
3938 && (BFD_ALIGN (last_hdr->lma + last_size, maxpagesize) + maxpagesize
3939 <= hdr->lma))
3940 {
3941 /* If putting this section in this segment would force us to
3942 skip a page in the segment, then we need a new segment. */
3943 new_segment = TRUE;
3944 }
3945 else if ((last_hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0
3946 && (hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) != 0)
3947 {
3948 /* We don't want to put a loadable section after a
3949 nonloadable section in the same segment.
3950 Consider .tbss sections as loadable for this purpose. */
3951 new_segment = TRUE;
3952 }
3953 else if ((abfd->flags & D_PAGED) == 0)
3954 {
3955 /* If the file is not demand paged, which means that we
3956 don't require the sections to be correctly aligned in the
3957 file, then there is no other reason for a new segment. */
3958 new_segment = FALSE;
3959 }
3960 else if (! writable
3961 && (hdr->flags & SEC_READONLY) == 0
3962 && (((last_hdr->lma + last_size - 1) & -maxpagesize)
3963 != (hdr->lma & -maxpagesize)))
3964 {
3965 /* We don't want to put a writable section in a read only
3966 segment, unless they are on the same page in memory
3967 anyhow. We already know that the last section does not
3968 bring us past the current section on the page, so the
3969 only case in which the new section is not on the same
3970 page as the previous section is when the previous section
3971 ends precisely on a page boundary. */
3972 new_segment = TRUE;
3973 }
3974 else
3975 {
3976 /* Otherwise, we can use the same segment. */
3977 new_segment = FALSE;
3978 }
3979
3980 /* Allow interested parties a chance to override our decision. */
3981 if (last_hdr != NULL
3982 && info != NULL
3983 && info->callbacks->override_segment_assignment != NULL)
3984 new_segment
3985 = info->callbacks->override_segment_assignment (info, abfd, hdr,
3986 last_hdr,
3987 new_segment);
3988
3989 if (! new_segment)
3990 {
3991 if ((hdr->flags & SEC_READONLY) == 0)
3992 writable = TRUE;
3993 last_hdr = hdr;
3994 /* .tbss sections effectively have zero size. */
3995 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD))
3996 != SEC_THREAD_LOCAL)
3997 last_size = hdr->size;
3998 else
3999 last_size = 0;
4000 continue;
4001 }
4002
4003 /* We need a new program segment. We must create a new program
4004 header holding all the sections from phdr_index until hdr. */
4005
4006 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
4007 if (m == NULL)
4008 goto error_return;
4009
4010 *pm = m;
4011 pm = &m->next;
4012
4013 if ((hdr->flags & SEC_READONLY) == 0)
4014 writable = TRUE;
4015 else
4016 writable = FALSE;
4017
4018 last_hdr = hdr;
4019 /* .tbss sections effectively have zero size. */
4020 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) != SEC_THREAD_LOCAL)
4021 last_size = hdr->size;
4022 else
4023 last_size = 0;
4024 phdr_index = i;
4025 phdr_in_segment = FALSE;
4026 }
4027
4028 /* Create a final PT_LOAD program segment, but not if it's just
4029 for .tbss. */
4030 if (last_hdr != NULL
4031 && (i - phdr_index != 1
4032 || ((last_hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD))
4033 != SEC_THREAD_LOCAL)))
4034 {
4035 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
4036 if (m == NULL)
4037 goto error_return;
4038
4039 *pm = m;
4040 pm = &m->next;
4041 }
4042
4043 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
4044 if (dynsec != NULL)
4045 {
4046 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
4047 if (m == NULL)
4048 goto error_return;
4049 *pm = m;
4050 pm = &m->next;
4051 }
4052
4053 /* For each batch of consecutive loadable .note sections,
4054 add a PT_NOTE segment. We don't use bfd_get_section_by_name,
4055 because if we link together nonloadable .note sections and
4056 loadable .note sections, we will generate two .note sections
4057 in the output file. FIXME: Using names for section types is
4058 bogus anyhow. */
4059 for (s = abfd->sections; s != NULL; s = s->next)
4060 {
4061 if ((s->flags & SEC_LOAD) != 0
4062 && CONST_STRNEQ (s->name, ".note"))
4063 {
4064 asection *s2;
4065
4066 count = 1;
4067 amt = sizeof (struct elf_segment_map);
4068 if (s->alignment_power == 2)
4069 for (s2 = s; s2->next != NULL; s2 = s2->next)
4070 {
4071 if (s2->next->alignment_power == 2
4072 && (s2->next->flags & SEC_LOAD) != 0
4073 && CONST_STRNEQ (s2->next->name, ".note")
4074 && align_power (s2->lma + s2->size, 2)
4075 == s2->next->lma)
4076 count++;
4077 else
4078 break;
4079 }
4080 amt += (count - 1) * sizeof (asection *);
4081 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4082 if (m == NULL)
4083 goto error_return;
4084 m->next = NULL;
4085 m->p_type = PT_NOTE;
4086 m->count = count;
4087 while (count > 1)
4088 {
4089 m->sections[m->count - count--] = s;
4090 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
4091 s = s->next;
4092 }
4093 m->sections[m->count - 1] = s;
4094 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
4095 *pm = m;
4096 pm = &m->next;
4097 }
4098 if (s->flags & SEC_THREAD_LOCAL)
4099 {
4100 if (! tls_count)
4101 first_tls = s;
4102 tls_count++;
4103 }
4104 }
4105
4106 /* If there are any SHF_TLS output sections, add PT_TLS segment. */
4107 if (tls_count > 0)
4108 {
4109 amt = sizeof (struct elf_segment_map);
4110 amt += (tls_count - 1) * sizeof (asection *);
4111 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4112 if (m == NULL)
4113 goto error_return;
4114 m->next = NULL;
4115 m->p_type = PT_TLS;
4116 m->count = tls_count;
4117 /* Mandated PF_R. */
4118 m->p_flags = PF_R;
4119 m->p_flags_valid = 1;
4120 for (i = 0; i < (unsigned int) tls_count; ++i)
4121 {
4122 BFD_ASSERT (first_tls->flags & SEC_THREAD_LOCAL);
4123 m->sections[i] = first_tls;
4124 first_tls = first_tls->next;
4125 }
4126
4127 *pm = m;
4128 pm = &m->next;
4129 }
4130
4131 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
4132 segment. */
4133 eh_frame_hdr = elf_eh_frame_hdr (abfd);
4134 if (eh_frame_hdr != NULL
4135 && (eh_frame_hdr->output_section->flags & SEC_LOAD) != 0)
4136 {
4137 amt = sizeof (struct elf_segment_map);
4138 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4139 if (m == NULL)
4140 goto error_return;
4141 m->next = NULL;
4142 m->p_type = PT_GNU_EH_FRAME;
4143 m->count = 1;
4144 m->sections[0] = eh_frame_hdr->output_section;
4145
4146 *pm = m;
4147 pm = &m->next;
4148 }
4149
4150 if (elf_stack_flags (abfd))
4151 {
4152 amt = sizeof (struct elf_segment_map);
4153 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4154 if (m == NULL)
4155 goto error_return;
4156 m->next = NULL;
4157 m->p_type = PT_GNU_STACK;
4158 m->p_flags = elf_stack_flags (abfd);
4159 m->p_align = bed->stack_align;
4160 m->p_flags_valid = 1;
4161 m->p_align_valid = m->p_align != 0;
4162 if (info->stacksize > 0)
4163 {
4164 m->p_size = info->stacksize;
4165 m->p_size_valid = 1;
4166 }
4167
4168 *pm = m;
4169 pm = &m->next;
4170 }
4171
4172 if (info != NULL && info->relro)
4173 {
4174 for (m = mfirst; m != NULL; m = m->next)
4175 {
4176 if (m->p_type == PT_LOAD
4177 && m->count != 0
4178 && m->sections[0]->vma >= info->relro_start
4179 && m->sections[0]->vma < info->relro_end)
4180 {
4181 i = m->count;
4182 while (--i != (unsigned) -1)
4183 if ((m->sections[i]->flags & (SEC_LOAD | SEC_HAS_CONTENTS))
4184 == (SEC_LOAD | SEC_HAS_CONTENTS))
4185 break;
4186
4187 if (i != (unsigned) -1)
4188 break;
4189 }
4190 }
4191
4192 /* Make a PT_GNU_RELRO segment only when it isn't empty. */
4193 if (m != NULL)
4194 {
4195 amt = sizeof (struct elf_segment_map);
4196 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4197 if (m == NULL)
4198 goto error_return;
4199 m->next = NULL;
4200 m->p_type = PT_GNU_RELRO;
4201 m->p_flags = PF_R;
4202 m->p_flags_valid = 1;
4203
4204 *pm = m;
4205 pm = &m->next;
4206 }
4207 }
4208
4209 free (sections);
4210 elf_seg_map (abfd) = mfirst;
4211 }
4212
4213 if (!elf_modify_segment_map (abfd, info, no_user_phdrs))
4214 return FALSE;
4215
4216 for (count = 0, m = elf_seg_map (abfd); m != NULL; m = m->next)
4217 ++count;
4218 elf_program_header_size (abfd) = count * bed->s->sizeof_phdr;
4219
4220 return TRUE;
4221
4222 error_return:
4223 if (sections != NULL)
4224 free (sections);
4225 return FALSE;
4226 }
4227
4228 /* Sort sections by address. */
4229
4230 static int
4231 elf_sort_sections (const void *arg1, const void *arg2)
4232 {
4233 const asection *sec1 = *(const asection **) arg1;
4234 const asection *sec2 = *(const asection **) arg2;
4235 bfd_size_type size1, size2;
4236
4237 /* Sort by LMA first, since this is the address used to
4238 place the section into a segment. */
4239 if (sec1->lma < sec2->lma)
4240 return -1;
4241 else if (sec1->lma > sec2->lma)
4242 return 1;
4243
4244 /* Then sort by VMA. Normally the LMA and the VMA will be
4245 the same, and this will do nothing. */
4246 if (sec1->vma < sec2->vma)
4247 return -1;
4248 else if (sec1->vma > sec2->vma)
4249 return 1;
4250
4251 /* Put !SEC_LOAD sections after SEC_LOAD ones. */
4252
4253 #define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0)
4254
4255 if (TOEND (sec1))
4256 {
4257 if (TOEND (sec2))
4258 {
4259 /* If the indicies are the same, do not return 0
4260 here, but continue to try the next comparison. */
4261 if (sec1->target_index - sec2->target_index != 0)
4262 return sec1->target_index - sec2->target_index;
4263 }
4264 else
4265 return 1;
4266 }
4267 else if (TOEND (sec2))
4268 return -1;
4269
4270 #undef TOEND
4271
4272 /* Sort by size, to put zero sized sections
4273 before others at the same address. */
4274
4275 size1 = (sec1->flags & SEC_LOAD) ? sec1->size : 0;
4276 size2 = (sec2->flags & SEC_LOAD) ? sec2->size : 0;
4277
4278 if (size1 < size2)
4279 return -1;
4280 if (size1 > size2)
4281 return 1;
4282
4283 return sec1->target_index - sec2->target_index;
4284 }
4285
4286 /* Ian Lance Taylor writes:
4287
4288 We shouldn't be using % with a negative signed number. That's just
4289 not good. We have to make sure either that the number is not
4290 negative, or that the number has an unsigned type. When the types
4291 are all the same size they wind up as unsigned. When file_ptr is a
4292 larger signed type, the arithmetic winds up as signed long long,
4293 which is wrong.
4294
4295 What we're trying to say here is something like ``increase OFF by
4296 the least amount that will cause it to be equal to the VMA modulo
4297 the page size.'' */
4298 /* In other words, something like:
4299
4300 vma_offset = m->sections[0]->vma % bed->maxpagesize;
4301 off_offset = off % bed->maxpagesize;
4302 if (vma_offset < off_offset)
4303 adjustment = vma_offset + bed->maxpagesize - off_offset;
4304 else
4305 adjustment = vma_offset - off_offset;
4306
4307 which can can be collapsed into the expression below. */
4308
4309 static file_ptr
4310 vma_page_aligned_bias (bfd_vma vma, ufile_ptr off, bfd_vma maxpagesize)
4311 {
4312 /* PR binutils/16199: Handle an alignment of zero. */
4313 if (maxpagesize == 0)
4314 maxpagesize = 1;
4315 return ((vma - off) % maxpagesize);
4316 }
4317
4318 static void
4319 print_segment_map (const struct elf_segment_map *m)
4320 {
4321 unsigned int j;
4322 const char *pt = get_segment_type (m->p_type);
4323 char buf[32];
4324
4325 if (pt == NULL)
4326 {
4327 if (m->p_type >= PT_LOPROC && m->p_type <= PT_HIPROC)
4328 sprintf (buf, "LOPROC+%7.7x",
4329 (unsigned int) (m->p_type - PT_LOPROC));
4330 else if (m->p_type >= PT_LOOS && m->p_type <= PT_HIOS)
4331 sprintf (buf, "LOOS+%7.7x",
4332 (unsigned int) (m->p_type - PT_LOOS));
4333 else
4334 snprintf (buf, sizeof (buf), "%8.8x",
4335 (unsigned int) m->p_type);
4336 pt = buf;
4337 }
4338 fflush (stdout);
4339 fprintf (stderr, "%s:", pt);
4340 for (j = 0; j < m->count; j++)
4341 fprintf (stderr, " %s", m->sections [j]->name);
4342 putc ('\n',stderr);
4343 fflush (stderr);
4344 }
4345
4346 static bfd_boolean
4347 write_zeros (bfd *abfd, file_ptr pos, bfd_size_type len)
4348 {
4349 void *buf;
4350 bfd_boolean ret;
4351
4352 if (bfd_seek (abfd, pos, SEEK_SET) != 0)
4353 return FALSE;
4354 buf = bfd_zmalloc (len);
4355 if (buf == NULL)
4356 return FALSE;
4357 ret = bfd_bwrite (buf, len, abfd) == len;
4358 free (buf);
4359 return ret;
4360 }
4361
4362 /* Assign file positions to the sections based on the mapping from
4363 sections to segments. This function also sets up some fields in
4364 the file header. */
4365
4366 static bfd_boolean
4367 assign_file_positions_for_load_sections (bfd *abfd,
4368 struct bfd_link_info *link_info)
4369 {
4370 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4371 struct elf_segment_map *m;
4372 Elf_Internal_Phdr *phdrs;
4373 Elf_Internal_Phdr *p;
4374 file_ptr off;
4375 bfd_size_type maxpagesize;
4376 unsigned int alloc;
4377 unsigned int i, j;
4378 bfd_vma header_pad = 0;
4379
4380 if (link_info == NULL
4381 && !_bfd_elf_map_sections_to_segments (abfd, link_info))
4382 return FALSE;
4383
4384 alloc = 0;
4385 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
4386 {
4387 ++alloc;
4388 if (m->header_size)
4389 header_pad = m->header_size;
4390 }
4391
4392 if (alloc)
4393 {
4394 elf_elfheader (abfd)->e_phoff = bed->s->sizeof_ehdr;
4395 elf_elfheader (abfd)->e_phentsize = bed->s->sizeof_phdr;
4396 }
4397 else
4398 {
4399 /* PR binutils/12467. */
4400 elf_elfheader (abfd)->e_phoff = 0;
4401 elf_elfheader (abfd)->e_phentsize = 0;
4402 }
4403
4404 elf_elfheader (abfd)->e_phnum = alloc;
4405
4406 if (elf_program_header_size (abfd) == (bfd_size_type) -1)
4407 elf_program_header_size (abfd) = alloc * bed->s->sizeof_phdr;
4408 else
4409 BFD_ASSERT (elf_program_header_size (abfd)
4410 >= alloc * bed->s->sizeof_phdr);
4411
4412 if (alloc == 0)
4413 {
4414 elf_next_file_pos (abfd) = bed->s->sizeof_ehdr;
4415 return TRUE;
4416 }
4417
4418 /* We're writing the size in elf_program_header_size (abfd),
4419 see assign_file_positions_except_relocs, so make sure we have
4420 that amount allocated, with trailing space cleared.
4421 The variable alloc contains the computed need, while
4422 elf_program_header_size (abfd) contains the size used for the
4423 layout.
4424 See ld/emultempl/elf-generic.em:gld${EMULATION_NAME}_map_segments
4425 where the layout is forced to according to a larger size in the
4426 last iterations for the testcase ld-elf/header. */
4427 BFD_ASSERT (elf_program_header_size (abfd) % bed->s->sizeof_phdr
4428 == 0);
4429 phdrs = (Elf_Internal_Phdr *)
4430 bfd_zalloc2 (abfd,
4431 (elf_program_header_size (abfd) / bed->s->sizeof_phdr),
4432 sizeof (Elf_Internal_Phdr));
4433 elf_tdata (abfd)->phdr = phdrs;
4434 if (phdrs == NULL)
4435 return FALSE;
4436
4437 maxpagesize = 1;
4438 if ((abfd->flags & D_PAGED) != 0)
4439 maxpagesize = bed->maxpagesize;
4440
4441 off = bed->s->sizeof_ehdr;
4442 off += alloc * bed->s->sizeof_phdr;
4443 if (header_pad < (bfd_vma) off)
4444 header_pad = 0;
4445 else
4446 header_pad -= off;
4447 off += header_pad;
4448
4449 for (m = elf_seg_map (abfd), p = phdrs, j = 0;
4450 m != NULL;
4451 m = m->next, p++, j++)
4452 {
4453 asection **secpp;
4454 bfd_vma off_adjust;
4455 bfd_boolean no_contents;
4456
4457 /* If elf_segment_map is not from map_sections_to_segments, the
4458 sections may not be correctly ordered. NOTE: sorting should
4459 not be done to the PT_NOTE section of a corefile, which may
4460 contain several pseudo-sections artificially created by bfd.
4461 Sorting these pseudo-sections breaks things badly. */
4462 if (m->count > 1
4463 && !(elf_elfheader (abfd)->e_type == ET_CORE
4464 && m->p_type == PT_NOTE))
4465 qsort (m->sections, (size_t) m->count, sizeof (asection *),
4466 elf_sort_sections);
4467
4468 /* An ELF segment (described by Elf_Internal_Phdr) may contain a
4469 number of sections with contents contributing to both p_filesz
4470 and p_memsz, followed by a number of sections with no contents
4471 that just contribute to p_memsz. In this loop, OFF tracks next
4472 available file offset for PT_LOAD and PT_NOTE segments. */
4473 p->p_type = m->p_type;
4474 p->p_flags = m->p_flags;
4475
4476 if (m->count == 0)
4477 p->p_vaddr = 0;
4478 else
4479 p->p_vaddr = m->sections[0]->vma - m->p_vaddr_offset;
4480
4481 if (m->p_paddr_valid)
4482 p->p_paddr = m->p_paddr;
4483 else if (m->count == 0)
4484 p->p_paddr = 0;
4485 else
4486 p->p_paddr = m->sections[0]->lma - m->p_vaddr_offset;
4487
4488 if (p->p_type == PT_LOAD
4489 && (abfd->flags & D_PAGED) != 0)
4490 {
4491 /* p_align in demand paged PT_LOAD segments effectively stores
4492 the maximum page size. When copying an executable with
4493 objcopy, we set m->p_align from the input file. Use this
4494 value for maxpagesize rather than bed->maxpagesize, which
4495 may be different. Note that we use maxpagesize for PT_TLS
4496 segment alignment later in this function, so we are relying
4497 on at least one PT_LOAD segment appearing before a PT_TLS
4498 segment. */
4499 if (m->p_align_valid)
4500 maxpagesize = m->p_align;
4501
4502 p->p_align = maxpagesize;
4503 }
4504 else if (m->p_align_valid)
4505 p->p_align = m->p_align;
4506 else if (m->count == 0)
4507 p->p_align = 1 << bed->s->log_file_align;
4508 else
4509 p->p_align = 0;
4510
4511 no_contents = FALSE;
4512 off_adjust = 0;
4513 if (p->p_type == PT_LOAD
4514 && m->count > 0)
4515 {
4516 bfd_size_type align;
4517 unsigned int align_power = 0;
4518
4519 if (m->p_align_valid)
4520 align = p->p_align;
4521 else
4522 {
4523 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4524 {
4525 unsigned int secalign;
4526
4527 secalign = bfd_get_section_alignment (abfd, *secpp);
4528 if (secalign > align_power)
4529 align_power = secalign;
4530 }
4531 align = (bfd_size_type) 1 << align_power;
4532 if (align < maxpagesize)
4533 align = maxpagesize;
4534 }
4535
4536 for (i = 0; i < m->count; i++)
4537 if ((m->sections[i]->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
4538 /* If we aren't making room for this section, then
4539 it must be SHT_NOBITS regardless of what we've
4540 set via struct bfd_elf_special_section. */
4541 elf_section_type (m->sections[i]) = SHT_NOBITS;
4542
4543 /* Find out whether this segment contains any loadable
4544 sections. */
4545 no_contents = TRUE;
4546 for (i = 0; i < m->count; i++)
4547 if (elf_section_type (m->sections[i]) != SHT_NOBITS)
4548 {
4549 no_contents = FALSE;
4550 break;
4551 }
4552
4553 off_adjust = vma_page_aligned_bias (p->p_vaddr, off, align);
4554 off += off_adjust;
4555 if (no_contents)
4556 {
4557 /* We shouldn't need to align the segment on disk since
4558 the segment doesn't need file space, but the gABI
4559 arguably requires the alignment and glibc ld.so
4560 checks it. So to comply with the alignment
4561 requirement but not waste file space, we adjust
4562 p_offset for just this segment. (OFF_ADJUST is
4563 subtracted from OFF later.) This may put p_offset
4564 past the end of file, but that shouldn't matter. */
4565 }
4566 else
4567 off_adjust = 0;
4568 }
4569 /* Make sure the .dynamic section is the first section in the
4570 PT_DYNAMIC segment. */
4571 else if (p->p_type == PT_DYNAMIC
4572 && m->count > 1
4573 && strcmp (m->sections[0]->name, ".dynamic") != 0)
4574 {
4575 _bfd_error_handler
4576 (_("%B: The first section in the PT_DYNAMIC segment is not the .dynamic section"),
4577 abfd);
4578 bfd_set_error (bfd_error_bad_value);
4579 return FALSE;
4580 }
4581 /* Set the note section type to SHT_NOTE. */
4582 else if (p->p_type == PT_NOTE)
4583 for (i = 0; i < m->count; i++)
4584 elf_section_type (m->sections[i]) = SHT_NOTE;
4585
4586 p->p_offset = 0;
4587 p->p_filesz = 0;
4588 p->p_memsz = 0;
4589
4590 if (m->includes_filehdr)
4591 {
4592 if (!m->p_flags_valid)
4593 p->p_flags |= PF_R;
4594 p->p_filesz = bed->s->sizeof_ehdr;
4595 p->p_memsz = bed->s->sizeof_ehdr;
4596 if (m->count > 0)
4597 {
4598 if (p->p_vaddr < (bfd_vma) off)
4599 {
4600 (*_bfd_error_handler)
4601 (_("%B: Not enough room for program headers, try linking with -N"),
4602 abfd);
4603 bfd_set_error (bfd_error_bad_value);
4604 return FALSE;
4605 }
4606
4607 p->p_vaddr -= off;
4608 if (!m->p_paddr_valid)
4609 p->p_paddr -= off;
4610 }
4611 }
4612
4613 if (m->includes_phdrs)
4614 {
4615 if (!m->p_flags_valid)
4616 p->p_flags |= PF_R;
4617
4618 if (!m->includes_filehdr)
4619 {
4620 p->p_offset = bed->s->sizeof_ehdr;
4621
4622 if (m->count > 0)
4623 {
4624 p->p_vaddr -= off - p->p_offset;
4625 if (!m->p_paddr_valid)
4626 p->p_paddr -= off - p->p_offset;
4627 }
4628 }
4629
4630 p->p_filesz += alloc * bed->s->sizeof_phdr;
4631 p->p_memsz += alloc * bed->s->sizeof_phdr;
4632 if (m->count)
4633 {
4634 p->p_filesz += header_pad;
4635 p->p_memsz += header_pad;
4636 }
4637 }
4638
4639 if (p->p_type == PT_LOAD
4640 || (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core))
4641 {
4642 if (!m->includes_filehdr && !m->includes_phdrs)
4643 p->p_offset = off;
4644 else
4645 {
4646 file_ptr adjust;
4647
4648 adjust = off - (p->p_offset + p->p_filesz);
4649 if (!no_contents)
4650 p->p_filesz += adjust;
4651 p->p_memsz += adjust;
4652 }
4653 }
4654
4655 /* Set up p_filesz, p_memsz, p_align and p_flags from the section
4656 maps. Set filepos for sections in PT_LOAD segments, and in
4657 core files, for sections in PT_NOTE segments.
4658 assign_file_positions_for_non_load_sections will set filepos
4659 for other sections and update p_filesz for other segments. */
4660 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4661 {
4662 asection *sec;
4663 bfd_size_type align;
4664 Elf_Internal_Shdr *this_hdr;
4665
4666 sec = *secpp;
4667 this_hdr = &elf_section_data (sec)->this_hdr;
4668 align = (bfd_size_type) 1 << bfd_get_section_alignment (abfd, sec);
4669
4670 if ((p->p_type == PT_LOAD
4671 || p->p_type == PT_TLS)
4672 && (this_hdr->sh_type != SHT_NOBITS
4673 || ((this_hdr->sh_flags & SHF_ALLOC) != 0
4674 && ((this_hdr->sh_flags & SHF_TLS) == 0
4675 || p->p_type == PT_TLS))))
4676 {
4677 bfd_vma p_start = p->p_paddr;
4678 bfd_vma p_end = p_start + p->p_memsz;
4679 bfd_vma s_start = sec->lma;
4680 bfd_vma adjust = s_start - p_end;
4681
4682 if (adjust != 0
4683 && (s_start < p_end
4684 || p_end < p_start))
4685 {
4686 (*_bfd_error_handler)
4687 (_("%B: section %A lma %#lx adjusted to %#lx"), abfd, sec,
4688 (unsigned long) s_start, (unsigned long) p_end);
4689 adjust = 0;
4690 sec->lma = p_end;
4691 }
4692 p->p_memsz += adjust;
4693
4694 if (this_hdr->sh_type != SHT_NOBITS)
4695 {
4696 if (p->p_filesz + adjust < p->p_memsz)
4697 {
4698 /* We have a PROGBITS section following NOBITS ones.
4699 Allocate file space for the NOBITS section(s) and
4700 zero it. */
4701 adjust = p->p_memsz - p->p_filesz;
4702 if (!write_zeros (abfd, off, adjust))
4703 return FALSE;
4704 }
4705 off += adjust;
4706 p->p_filesz += adjust;
4707 }
4708 }
4709
4710 if (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core)
4711 {
4712 /* The section at i == 0 is the one that actually contains
4713 everything. */
4714 if (i == 0)
4715 {
4716 this_hdr->sh_offset = sec->filepos = off;
4717 off += this_hdr->sh_size;
4718 p->p_filesz = this_hdr->sh_size;
4719 p->p_memsz = 0;
4720 p->p_align = 1;
4721 }
4722 else
4723 {
4724 /* The rest are fake sections that shouldn't be written. */
4725 sec->filepos = 0;
4726 sec->size = 0;
4727 sec->flags = 0;
4728 continue;
4729 }
4730 }
4731 else
4732 {
4733 if (p->p_type == PT_LOAD)
4734 {
4735 this_hdr->sh_offset = sec->filepos = off;
4736 if (this_hdr->sh_type != SHT_NOBITS)
4737 off += this_hdr->sh_size;
4738 }
4739 else if (this_hdr->sh_type == SHT_NOBITS
4740 && (this_hdr->sh_flags & SHF_TLS) != 0
4741 && this_hdr->sh_offset == 0)
4742 {
4743 /* This is a .tbss section that didn't get a PT_LOAD.
4744 (See _bfd_elf_map_sections_to_segments "Create a
4745 final PT_LOAD".) Set sh_offset to the value it
4746 would have if we had created a zero p_filesz and
4747 p_memsz PT_LOAD header for the section. This
4748 also makes the PT_TLS header have the same
4749 p_offset value. */
4750 bfd_vma adjust = vma_page_aligned_bias (this_hdr->sh_addr,
4751 off, align);
4752 this_hdr->sh_offset = sec->filepos = off + adjust;
4753 }
4754
4755 if (this_hdr->sh_type != SHT_NOBITS)
4756 {
4757 p->p_filesz += this_hdr->sh_size;
4758 /* A load section without SHF_ALLOC is something like
4759 a note section in a PT_NOTE segment. These take
4760 file space but are not loaded into memory. */
4761 if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
4762 p->p_memsz += this_hdr->sh_size;
4763 }
4764 else if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
4765 {
4766 if (p->p_type == PT_TLS)
4767 p->p_memsz += this_hdr->sh_size;
4768
4769 /* .tbss is special. It doesn't contribute to p_memsz of
4770 normal segments. */
4771 else if ((this_hdr->sh_flags & SHF_TLS) == 0)
4772 p->p_memsz += this_hdr->sh_size;
4773 }
4774
4775 if (align > p->p_align
4776 && !m->p_align_valid
4777 && (p->p_type != PT_LOAD
4778 || (abfd->flags & D_PAGED) == 0))
4779 p->p_align = align;
4780 }
4781
4782 if (!m->p_flags_valid)
4783 {
4784 p->p_flags |= PF_R;
4785 if ((this_hdr->sh_flags & SHF_EXECINSTR) != 0)
4786 p->p_flags |= PF_X;
4787 if ((this_hdr->sh_flags & SHF_WRITE) != 0)
4788 p->p_flags |= PF_W;
4789 }
4790 }
4791
4792 off -= off_adjust;
4793
4794 /* Check that all sections are in a PT_LOAD segment.
4795 Don't check funky gdb generated core files. */
4796 if (p->p_type == PT_LOAD && bfd_get_format (abfd) != bfd_core)
4797 {
4798 bfd_boolean check_vma = TRUE;
4799
4800 for (i = 1; i < m->count; i++)
4801 if (m->sections[i]->vma == m->sections[i - 1]->vma
4802 && ELF_SECTION_SIZE (&(elf_section_data (m->sections[i])
4803 ->this_hdr), p) != 0
4804 && ELF_SECTION_SIZE (&(elf_section_data (m->sections[i - 1])
4805 ->this_hdr), p) != 0)
4806 {
4807 /* Looks like we have overlays packed into the segment. */
4808 check_vma = FALSE;
4809 break;
4810 }
4811
4812 for (i = 0; i < m->count; i++)
4813 {
4814 Elf_Internal_Shdr *this_hdr;
4815 asection *sec;
4816
4817 sec = m->sections[i];
4818 this_hdr = &(elf_section_data(sec)->this_hdr);
4819 if (!ELF_SECTION_IN_SEGMENT_1 (this_hdr, p, check_vma, 0)
4820 && !ELF_TBSS_SPECIAL (this_hdr, p))
4821 {
4822 (*_bfd_error_handler)
4823 (_("%B: section `%A' can't be allocated in segment %d"),
4824 abfd, sec, j);
4825 print_segment_map (m);
4826 }
4827 }
4828 }
4829 }
4830
4831 elf_next_file_pos (abfd) = off;
4832 return TRUE;
4833 }
4834
4835 /* Assign file positions for the other sections. */
4836
4837 static bfd_boolean
4838 assign_file_positions_for_non_load_sections (bfd *abfd,
4839 struct bfd_link_info *link_info)
4840 {
4841 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4842 Elf_Internal_Shdr **i_shdrpp;
4843 Elf_Internal_Shdr **hdrpp;
4844 Elf_Internal_Phdr *phdrs;
4845 Elf_Internal_Phdr *p;
4846 struct elf_segment_map *m;
4847 struct elf_segment_map *hdrs_segment;
4848 bfd_vma filehdr_vaddr, filehdr_paddr;
4849 bfd_vma phdrs_vaddr, phdrs_paddr;
4850 file_ptr off;
4851 unsigned int num_sec;
4852 unsigned int i;
4853 unsigned int count;
4854
4855 i_shdrpp = elf_elfsections (abfd);
4856 num_sec = elf_numsections (abfd);
4857 off = elf_next_file_pos (abfd);
4858 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
4859 {
4860 Elf_Internal_Shdr *hdr;
4861
4862 hdr = *hdrpp;
4863 if (hdr->bfd_section != NULL
4864 && (hdr->bfd_section->filepos != 0
4865 || (hdr->sh_type == SHT_NOBITS
4866 && hdr->contents == NULL)))
4867 BFD_ASSERT (hdr->sh_offset == hdr->bfd_section->filepos);
4868 else if ((hdr->sh_flags & SHF_ALLOC) != 0)
4869 {
4870 if (hdr->sh_size != 0)
4871 (*_bfd_error_handler)
4872 (_("%B: warning: allocated section `%s' not in segment"),
4873 abfd,
4874 (hdr->bfd_section == NULL
4875 ? "*unknown*"
4876 : hdr->bfd_section->name));
4877 /* We don't need to page align empty sections. */
4878 if ((abfd->flags & D_PAGED) != 0 && hdr->sh_size != 0)
4879 off += vma_page_aligned_bias (hdr->sh_addr, off,
4880 bed->maxpagesize);
4881 else
4882 off += vma_page_aligned_bias (hdr->sh_addr, off,
4883 hdr->sh_addralign);
4884 off = _bfd_elf_assign_file_position_for_section (hdr, off,
4885 FALSE);
4886 }
4887 else if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
4888 && hdr->bfd_section == NULL)
4889 || hdr == i_shdrpp[elf_onesymtab (abfd)]
4890 || hdr == i_shdrpp[elf_symtab_shndx (abfd)]
4891 || hdr == i_shdrpp[elf_strtab_sec (abfd)])
4892 hdr->sh_offset = -1;
4893 else
4894 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4895 }
4896
4897 /* Now that we have set the section file positions, we can set up
4898 the file positions for the non PT_LOAD segments. */
4899 count = 0;
4900 filehdr_vaddr = 0;
4901 filehdr_paddr = 0;
4902 phdrs_vaddr = bed->maxpagesize + bed->s->sizeof_ehdr;
4903 phdrs_paddr = 0;
4904 hdrs_segment = NULL;
4905 phdrs = elf_tdata (abfd)->phdr;
4906 for (m = elf_seg_map (abfd), p = phdrs; m != NULL; m = m->next, p++)
4907 {
4908 ++count;
4909 if (p->p_type != PT_LOAD)
4910 continue;
4911
4912 if (m->includes_filehdr)
4913 {
4914 filehdr_vaddr = p->p_vaddr;
4915 filehdr_paddr = p->p_paddr;
4916 }
4917 if (m->includes_phdrs)
4918 {
4919 phdrs_vaddr = p->p_vaddr;
4920 phdrs_paddr = p->p_paddr;
4921 if (m->includes_filehdr)
4922 {
4923 hdrs_segment = m;
4924 phdrs_vaddr += bed->s->sizeof_ehdr;
4925 phdrs_paddr += bed->s->sizeof_ehdr;
4926 }
4927 }
4928 }
4929
4930 if (hdrs_segment != NULL && link_info != NULL)
4931 {
4932 /* There is a segment that contains both the file headers and the
4933 program headers, so provide a symbol __ehdr_start pointing there.
4934 A program can use this to examine itself robustly. */
4935
4936 struct elf_link_hash_entry *hash
4937 = elf_link_hash_lookup (elf_hash_table (link_info), "__ehdr_start",
4938 FALSE, FALSE, TRUE);
4939 /* If the symbol was referenced and not defined, define it. */
4940 if (hash != NULL
4941 && (hash->root.type == bfd_link_hash_new
4942 || hash->root.type == bfd_link_hash_undefined
4943 || hash->root.type == bfd_link_hash_undefweak
4944 || hash->root.type == bfd_link_hash_common))
4945 {
4946 asection *s = NULL;
4947 if (hdrs_segment->count != 0)
4948 /* The segment contains sections, so use the first one. */
4949 s = hdrs_segment->sections[0];
4950 else
4951 /* Use the first (i.e. lowest-addressed) section in any segment. */
4952 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
4953 if (m->count != 0)
4954 {
4955 s = m->sections[0];
4956 break;
4957 }
4958
4959 if (s != NULL)
4960 {
4961 hash->root.u.def.value = filehdr_vaddr - s->vma;
4962 hash->root.u.def.section = s;
4963 }
4964 else
4965 {
4966 hash->root.u.def.value = filehdr_vaddr;
4967 hash->root.u.def.section = bfd_abs_section_ptr;
4968 }
4969
4970 hash->root.type = bfd_link_hash_defined;
4971 hash->def_regular = 1;
4972 hash->non_elf = 0;
4973 }
4974 }
4975
4976 for (m = elf_seg_map (abfd), p = phdrs; m != NULL; m = m->next, p++)
4977 {
4978 if (p->p_type == PT_GNU_RELRO)
4979 {
4980 const Elf_Internal_Phdr *lp;
4981 struct elf_segment_map *lm;
4982
4983 if (link_info != NULL)
4984 {
4985 /* During linking the range of the RELRO segment is passed
4986 in link_info. */
4987 for (lm = elf_seg_map (abfd), lp = phdrs;
4988 lm != NULL;
4989 lm = lm->next, lp++)
4990 {
4991 if (lp->p_type == PT_LOAD
4992 && lp->p_vaddr < link_info->relro_end
4993 && lm->count != 0
4994 && lm->sections[0]->vma >= link_info->relro_start)
4995 break;
4996 }
4997
4998 BFD_ASSERT (lm != NULL);
4999 }
5000 else
5001 {
5002 /* Otherwise we are copying an executable or shared
5003 library, but we need to use the same linker logic. */
5004 for (lp = phdrs; lp < phdrs + count; ++lp)
5005 {
5006 if (lp->p_type == PT_LOAD
5007 && lp->p_paddr == p->p_paddr)
5008 break;
5009 }
5010 }
5011
5012 if (lp < phdrs + count)
5013 {
5014 p->p_vaddr = lp->p_vaddr;
5015 p->p_paddr = lp->p_paddr;
5016 p->p_offset = lp->p_offset;
5017 if (link_info != NULL)
5018 p->p_filesz = link_info->relro_end - lp->p_vaddr;
5019 else if (m->p_size_valid)
5020 p->p_filesz = m->p_size;
5021 else
5022 abort ();
5023 p->p_memsz = p->p_filesz;
5024 /* Preserve the alignment and flags if they are valid. The
5025 gold linker generates RW/4 for the PT_GNU_RELRO section.
5026 It is better for objcopy/strip to honor these attributes
5027 otherwise gdb will choke when using separate debug files.
5028 */
5029 if (!m->p_align_valid)
5030 p->p_align = 1;
5031 if (!m->p_flags_valid)
5032 p->p_flags = (lp->p_flags & ~PF_W);
5033 }
5034 else
5035 {
5036 memset (p, 0, sizeof *p);
5037 p->p_type = PT_NULL;
5038 }
5039 }
5040 else if (p->p_type == PT_GNU_STACK)
5041 {
5042 if (m->p_size_valid)
5043 p->p_memsz = m->p_size;
5044 }
5045 else if (m->count != 0)
5046 {
5047 if (p->p_type != PT_LOAD
5048 && (p->p_type != PT_NOTE
5049 || bfd_get_format (abfd) != bfd_core))
5050 {
5051 BFD_ASSERT (!m->includes_filehdr && !m->includes_phdrs);
5052
5053 p->p_filesz = 0;
5054 p->p_offset = m->sections[0]->filepos;
5055 for (i = m->count; i-- != 0;)
5056 {
5057 asection *sect = m->sections[i];
5058 Elf_Internal_Shdr *hdr = &elf_section_data (sect)->this_hdr;
5059 if (hdr->sh_type != SHT_NOBITS)
5060 {
5061 p->p_filesz = (sect->filepos - m->sections[0]->filepos
5062 + hdr->sh_size);
5063 break;
5064 }
5065 }
5066 }
5067 }
5068 else if (m->includes_filehdr)
5069 {
5070 p->p_vaddr = filehdr_vaddr;
5071 if (! m->p_paddr_valid)
5072 p->p_paddr = filehdr_paddr;
5073 }
5074 else if (m->includes_phdrs)
5075 {
5076 p->p_vaddr = phdrs_vaddr;
5077 if (! m->p_paddr_valid)
5078 p->p_paddr = phdrs_paddr;
5079 }
5080 }
5081
5082 elf_next_file_pos (abfd) = off;
5083
5084 return TRUE;
5085 }
5086
5087 /* Work out the file positions of all the sections. This is called by
5088 _bfd_elf_compute_section_file_positions. All the section sizes and
5089 VMAs must be known before this is called.
5090
5091 Reloc sections come in two flavours: Those processed specially as
5092 "side-channel" data attached to a section to which they apply, and
5093 those that bfd doesn't process as relocations. The latter sort are
5094 stored in a normal bfd section by bfd_section_from_shdr. We don't
5095 consider the former sort here, unless they form part of the loadable
5096 image. Reloc sections not assigned here will be handled later by
5097 assign_file_positions_for_relocs.
5098
5099 We also don't set the positions of the .symtab and .strtab here. */
5100
5101 static bfd_boolean
5102 assign_file_positions_except_relocs (bfd *abfd,
5103 struct bfd_link_info *link_info)
5104 {
5105 struct elf_obj_tdata *tdata = elf_tdata (abfd);
5106 Elf_Internal_Ehdr *i_ehdrp = elf_elfheader (abfd);
5107 file_ptr off;
5108 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5109
5110 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
5111 && bfd_get_format (abfd) != bfd_core)
5112 {
5113 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
5114 unsigned int num_sec = elf_numsections (abfd);
5115 Elf_Internal_Shdr **hdrpp;
5116 unsigned int i;
5117
5118 /* Start after the ELF header. */
5119 off = i_ehdrp->e_ehsize;
5120
5121 /* We are not creating an executable, which means that we are
5122 not creating a program header, and that the actual order of
5123 the sections in the file is unimportant. */
5124 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
5125 {
5126 Elf_Internal_Shdr *hdr;
5127
5128 hdr = *hdrpp;
5129 if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
5130 && hdr->bfd_section == NULL)
5131 || i == elf_onesymtab (abfd)
5132 || i == elf_symtab_shndx (abfd)
5133 || i == elf_strtab_sec (abfd))
5134 {
5135 hdr->sh_offset = -1;
5136 }
5137 else
5138 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
5139 }
5140 }
5141 else
5142 {
5143 unsigned int alloc;
5144
5145 /* Assign file positions for the loaded sections based on the
5146 assignment of sections to segments. */
5147 if (!assign_file_positions_for_load_sections (abfd, link_info))
5148 return FALSE;
5149
5150 /* And for non-load sections. */
5151 if (!assign_file_positions_for_non_load_sections (abfd, link_info))
5152 return FALSE;
5153
5154 if (bed->elf_backend_modify_program_headers != NULL)
5155 {
5156 if (!(*bed->elf_backend_modify_program_headers) (abfd, link_info))
5157 return FALSE;
5158 }
5159
5160 /* Set e_type in ELF header to ET_EXEC for -pie -Ttext-segment=. */
5161 if (link_info != NULL
5162 && link_info->executable
5163 && link_info->shared)
5164 {
5165 unsigned int num_segments = elf_elfheader (abfd)->e_phnum;
5166 Elf_Internal_Phdr *segment = elf_tdata (abfd)->phdr;
5167 Elf_Internal_Phdr *end_segment = &segment[num_segments];
5168
5169 /* Find the lowest p_vaddr in PT_LOAD segments. */
5170 bfd_vma p_vaddr = (bfd_vma) -1;
5171 for (; segment < end_segment; segment++)
5172 if (segment->p_type == PT_LOAD && p_vaddr > segment->p_vaddr)
5173 p_vaddr = segment->p_vaddr;
5174
5175 /* Set e_type to ET_EXEC if the lowest p_vaddr in PT_LOAD
5176 segments is non-zero. */
5177 if (p_vaddr)
5178 i_ehdrp->e_type = ET_EXEC;
5179 }
5180
5181 /* Write out the program headers. */
5182 alloc = elf_program_header_size (abfd) / bed->s->sizeof_phdr;
5183 if (bfd_seek (abfd, (bfd_signed_vma) bed->s->sizeof_ehdr, SEEK_SET) != 0
5184 || bed->s->write_out_phdrs (abfd, tdata->phdr, alloc) != 0)
5185 return FALSE;
5186
5187 off = elf_next_file_pos (abfd);
5188 }
5189
5190 /* Place the section headers. */
5191 off = align_file_position (off, 1 << bed->s->log_file_align);
5192 i_ehdrp->e_shoff = off;
5193 off += i_ehdrp->e_shnum * i_ehdrp->e_shentsize;
5194
5195 elf_next_file_pos (abfd) = off;
5196
5197 return TRUE;
5198 }
5199
5200 static bfd_boolean
5201 prep_headers (bfd *abfd)
5202 {
5203 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form. */
5204 struct elf_strtab_hash *shstrtab;
5205 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5206
5207 i_ehdrp = elf_elfheader (abfd);
5208
5209 shstrtab = _bfd_elf_strtab_init ();
5210 if (shstrtab == NULL)
5211 return FALSE;
5212
5213 elf_shstrtab (abfd) = shstrtab;
5214
5215 i_ehdrp->e_ident[EI_MAG0] = ELFMAG0;
5216 i_ehdrp->e_ident[EI_MAG1] = ELFMAG1;
5217 i_ehdrp->e_ident[EI_MAG2] = ELFMAG2;
5218 i_ehdrp->e_ident[EI_MAG3] = ELFMAG3;
5219
5220 i_ehdrp->e_ident[EI_CLASS] = bed->s->elfclass;
5221 i_ehdrp->e_ident[EI_DATA] =
5222 bfd_big_endian (abfd) ? ELFDATA2MSB : ELFDATA2LSB;
5223 i_ehdrp->e_ident[EI_VERSION] = bed->s->ev_current;
5224
5225 if ((abfd->flags & DYNAMIC) != 0)
5226 i_ehdrp->e_type = ET_DYN;
5227 else if ((abfd->flags & EXEC_P) != 0)
5228 i_ehdrp->e_type = ET_EXEC;
5229 else if (bfd_get_format (abfd) == bfd_core)
5230 i_ehdrp->e_type = ET_CORE;
5231 else
5232 i_ehdrp->e_type = ET_REL;
5233
5234 switch (bfd_get_arch (abfd))
5235 {
5236 case bfd_arch_unknown:
5237 i_ehdrp->e_machine = EM_NONE;
5238 break;
5239
5240 /* There used to be a long list of cases here, each one setting
5241 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
5242 in the corresponding bfd definition. To avoid duplication,
5243 the switch was removed. Machines that need special handling
5244 can generally do it in elf_backend_final_write_processing(),
5245 unless they need the information earlier than the final write.
5246 Such need can generally be supplied by replacing the tests for
5247 e_machine with the conditions used to determine it. */
5248 default:
5249 i_ehdrp->e_machine = bed->elf_machine_code;
5250 }
5251
5252 i_ehdrp->e_version = bed->s->ev_current;
5253 i_ehdrp->e_ehsize = bed->s->sizeof_ehdr;
5254
5255 /* No program header, for now. */
5256 i_ehdrp->e_phoff = 0;
5257 i_ehdrp->e_phentsize = 0;
5258 i_ehdrp->e_phnum = 0;
5259
5260 /* Each bfd section is section header entry. */
5261 i_ehdrp->e_entry = bfd_get_start_address (abfd);
5262 i_ehdrp->e_shentsize = bed->s->sizeof_shdr;
5263
5264 /* If we're building an executable, we'll need a program header table. */
5265 if (abfd->flags & EXEC_P)
5266 /* It all happens later. */
5267 ;
5268 else
5269 {
5270 i_ehdrp->e_phentsize = 0;
5271 i_ehdrp->e_phoff = 0;
5272 }
5273
5274 elf_tdata (abfd)->symtab_hdr.sh_name =
5275 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".symtab", FALSE);
5276 elf_tdata (abfd)->strtab_hdr.sh_name =
5277 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".strtab", FALSE);
5278 elf_tdata (abfd)->shstrtab_hdr.sh_name =
5279 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".shstrtab", FALSE);
5280 if (elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
5281 || elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
5282 || elf_tdata (abfd)->shstrtab_hdr.sh_name == (unsigned int) -1)
5283 return FALSE;
5284
5285 return TRUE;
5286 }
5287
5288 /* Assign file positions for all the reloc sections which are not part
5289 of the loadable file image. */
5290
5291 void
5292 _bfd_elf_assign_file_positions_for_relocs (bfd *abfd)
5293 {
5294 file_ptr off;
5295 unsigned int i, num_sec;
5296 Elf_Internal_Shdr **shdrpp;
5297
5298 off = elf_next_file_pos (abfd);
5299
5300 num_sec = elf_numsections (abfd);
5301 for (i = 1, shdrpp = elf_elfsections (abfd) + 1; i < num_sec; i++, shdrpp++)
5302 {
5303 Elf_Internal_Shdr *shdrp;
5304
5305 shdrp = *shdrpp;
5306 if ((shdrp->sh_type == SHT_REL || shdrp->sh_type == SHT_RELA)
5307 && shdrp->sh_offset == -1)
5308 off = _bfd_elf_assign_file_position_for_section (shdrp, off, TRUE);
5309 }
5310
5311 elf_next_file_pos (abfd) = off;
5312 }
5313
5314 bfd_boolean
5315 _bfd_elf_write_object_contents (bfd *abfd)
5316 {
5317 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5318 Elf_Internal_Shdr **i_shdrp;
5319 bfd_boolean failed;
5320 unsigned int count, num_sec;
5321 struct elf_obj_tdata *t;
5322
5323 if (! abfd->output_has_begun
5324 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
5325 return FALSE;
5326
5327 i_shdrp = elf_elfsections (abfd);
5328
5329 failed = FALSE;
5330 bfd_map_over_sections (abfd, bed->s->write_relocs, &failed);
5331 if (failed)
5332 return FALSE;
5333
5334 _bfd_elf_assign_file_positions_for_relocs (abfd);
5335
5336 /* After writing the headers, we need to write the sections too... */
5337 num_sec = elf_numsections (abfd);
5338 for (count = 1; count < num_sec; count++)
5339 {
5340 if (bed->elf_backend_section_processing)
5341 (*bed->elf_backend_section_processing) (abfd, i_shdrp[count]);
5342 if (i_shdrp[count]->contents)
5343 {
5344 bfd_size_type amt = i_shdrp[count]->sh_size;
5345
5346 if (bfd_seek (abfd, i_shdrp[count]->sh_offset, SEEK_SET) != 0
5347 || bfd_bwrite (i_shdrp[count]->contents, amt, abfd) != amt)
5348 return FALSE;
5349 }
5350 }
5351
5352 /* Write out the section header names. */
5353 t = elf_tdata (abfd);
5354 if (elf_shstrtab (abfd) != NULL
5355 && (bfd_seek (abfd, t->shstrtab_hdr.sh_offset, SEEK_SET) != 0
5356 || !_bfd_elf_strtab_emit (abfd, elf_shstrtab (abfd))))
5357 return FALSE;
5358
5359 if (bed->elf_backend_final_write_processing)
5360 (*bed->elf_backend_final_write_processing) (abfd, elf_linker (abfd));
5361
5362 if (!bed->s->write_shdrs_and_ehdr (abfd))
5363 return FALSE;
5364
5365 /* This is last since write_shdrs_and_ehdr can touch i_shdrp[0]. */
5366 if (t->o->build_id.after_write_object_contents != NULL)
5367 return (*t->o->build_id.after_write_object_contents) (abfd);
5368
5369 return TRUE;
5370 }
5371
5372 bfd_boolean
5373 _bfd_elf_write_corefile_contents (bfd *abfd)
5374 {
5375 /* Hopefully this can be done just like an object file. */
5376 return _bfd_elf_write_object_contents (abfd);
5377 }
5378
5379 /* Given a section, search the header to find them. */
5380
5381 unsigned int
5382 _bfd_elf_section_from_bfd_section (bfd *abfd, struct bfd_section *asect)
5383 {
5384 const struct elf_backend_data *bed;
5385 unsigned int sec_index;
5386
5387 if (elf_section_data (asect) != NULL
5388 && elf_section_data (asect)->this_idx != 0)
5389 return elf_section_data (asect)->this_idx;
5390
5391 if (bfd_is_abs_section (asect))
5392 sec_index = SHN_ABS;
5393 else if (bfd_is_com_section (asect))
5394 sec_index = SHN_COMMON;
5395 else if (bfd_is_und_section (asect))
5396 sec_index = SHN_UNDEF;
5397 else
5398 sec_index = SHN_BAD;
5399
5400 bed = get_elf_backend_data (abfd);
5401 if (bed->elf_backend_section_from_bfd_section)
5402 {
5403 int retval = sec_index;
5404
5405 if ((*bed->elf_backend_section_from_bfd_section) (abfd, asect, &retval))
5406 return retval;
5407 }
5408
5409 if (sec_index == SHN_BAD)
5410 bfd_set_error (bfd_error_nonrepresentable_section);
5411
5412 return sec_index;
5413 }
5414
5415 /* Given a BFD symbol, return the index in the ELF symbol table, or -1
5416 on error. */
5417
5418 int
5419 _bfd_elf_symbol_from_bfd_symbol (bfd *abfd, asymbol **asym_ptr_ptr)
5420 {
5421 asymbol *asym_ptr = *asym_ptr_ptr;
5422 int idx;
5423 flagword flags = asym_ptr->flags;
5424
5425 /* When gas creates relocations against local labels, it creates its
5426 own symbol for the section, but does put the symbol into the
5427 symbol chain, so udata is 0. When the linker is generating
5428 relocatable output, this section symbol may be for one of the
5429 input sections rather than the output section. */
5430 if (asym_ptr->udata.i == 0
5431 && (flags & BSF_SECTION_SYM)
5432 && asym_ptr->section)
5433 {
5434 asection *sec;
5435 int indx;
5436
5437 sec = asym_ptr->section;
5438 if (sec->owner != abfd && sec->output_section != NULL)
5439 sec = sec->output_section;
5440 if (sec->owner == abfd
5441 && (indx = sec->index) < elf_num_section_syms (abfd)
5442 && elf_section_syms (abfd)[indx] != NULL)
5443 asym_ptr->udata.i = elf_section_syms (abfd)[indx]->udata.i;
5444 }
5445
5446 idx = asym_ptr->udata.i;
5447
5448 if (idx == 0)
5449 {
5450 /* This case can occur when using --strip-symbol on a symbol
5451 which is used in a relocation entry. */
5452 (*_bfd_error_handler)
5453 (_("%B: symbol `%s' required but not present"),
5454 abfd, bfd_asymbol_name (asym_ptr));
5455 bfd_set_error (bfd_error_no_symbols);
5456 return -1;
5457 }
5458
5459 #if DEBUG & 4
5460 {
5461 fprintf (stderr,
5462 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8lx\n",
5463 (long) asym_ptr, asym_ptr->name, idx, (long) flags);
5464 fflush (stderr);
5465 }
5466 #endif
5467
5468 return idx;
5469 }
5470
5471 /* Rewrite program header information. */
5472
5473 static bfd_boolean
5474 rewrite_elf_program_header (bfd *ibfd, bfd *obfd)
5475 {
5476 Elf_Internal_Ehdr *iehdr;
5477 struct elf_segment_map *map;
5478 struct elf_segment_map *map_first;
5479 struct elf_segment_map **pointer_to_map;
5480 Elf_Internal_Phdr *segment;
5481 asection *section;
5482 unsigned int i;
5483 unsigned int num_segments;
5484 bfd_boolean phdr_included = FALSE;
5485 bfd_boolean p_paddr_valid;
5486 bfd_vma maxpagesize;
5487 struct elf_segment_map *phdr_adjust_seg = NULL;
5488 unsigned int phdr_adjust_num = 0;
5489 const struct elf_backend_data *bed;
5490
5491 bed = get_elf_backend_data (ibfd);
5492 iehdr = elf_elfheader (ibfd);
5493
5494 map_first = NULL;
5495 pointer_to_map = &map_first;
5496
5497 num_segments = elf_elfheader (ibfd)->e_phnum;
5498 maxpagesize = get_elf_backend_data (obfd)->maxpagesize;
5499
5500 /* Returns the end address of the segment + 1. */
5501 #define SEGMENT_END(segment, start) \
5502 (start + (segment->p_memsz > segment->p_filesz \
5503 ? segment->p_memsz : segment->p_filesz))
5504
5505 #define SECTION_SIZE(section, segment) \
5506 (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL)) \
5507 != SEC_THREAD_LOCAL || segment->p_type == PT_TLS) \
5508 ? section->size : 0)
5509
5510 /* Returns TRUE if the given section is contained within
5511 the given segment. VMA addresses are compared. */
5512 #define IS_CONTAINED_BY_VMA(section, segment) \
5513 (section->vma >= segment->p_vaddr \
5514 && (section->vma + SECTION_SIZE (section, segment) \
5515 <= (SEGMENT_END (segment, segment->p_vaddr))))
5516
5517 /* Returns TRUE if the given section is contained within
5518 the given segment. LMA addresses are compared. */
5519 #define IS_CONTAINED_BY_LMA(section, segment, base) \
5520 (section->lma >= base \
5521 && (section->lma + SECTION_SIZE (section, segment) \
5522 <= SEGMENT_END (segment, base)))
5523
5524 /* Handle PT_NOTE segment. */
5525 #define IS_NOTE(p, s) \
5526 (p->p_type == PT_NOTE \
5527 && elf_section_type (s) == SHT_NOTE \
5528 && (bfd_vma) s->filepos >= p->p_offset \
5529 && ((bfd_vma) s->filepos + s->size \
5530 <= p->p_offset + p->p_filesz))
5531
5532 /* Special case: corefile "NOTE" section containing regs, prpsinfo
5533 etc. */
5534 #define IS_COREFILE_NOTE(p, s) \
5535 (IS_NOTE (p, s) \
5536 && bfd_get_format (ibfd) == bfd_core \
5537 && s->vma == 0 \
5538 && s->lma == 0)
5539
5540 /* The complicated case when p_vaddr is 0 is to handle the Solaris
5541 linker, which generates a PT_INTERP section with p_vaddr and
5542 p_memsz set to 0. */
5543 #define IS_SOLARIS_PT_INTERP(p, s) \
5544 (p->p_vaddr == 0 \
5545 && p->p_paddr == 0 \
5546 && p->p_memsz == 0 \
5547 && p->p_filesz > 0 \
5548 && (s->flags & SEC_HAS_CONTENTS) != 0 \
5549 && s->size > 0 \
5550 && (bfd_vma) s->filepos >= p->p_offset \
5551 && ((bfd_vma) s->filepos + s->size \
5552 <= p->p_offset + p->p_filesz))
5553
5554 /* Decide if the given section should be included in the given segment.
5555 A section will be included if:
5556 1. It is within the address space of the segment -- we use the LMA
5557 if that is set for the segment and the VMA otherwise,
5558 2. It is an allocated section or a NOTE section in a PT_NOTE
5559 segment.
5560 3. There is an output section associated with it,
5561 4. The section has not already been allocated to a previous segment.
5562 5. PT_GNU_STACK segments do not include any sections.
5563 6. PT_TLS segment includes only SHF_TLS sections.
5564 7. SHF_TLS sections are only in PT_TLS or PT_LOAD segments.
5565 8. PT_DYNAMIC should not contain empty sections at the beginning
5566 (with the possible exception of .dynamic). */
5567 #define IS_SECTION_IN_INPUT_SEGMENT(section, segment, bed) \
5568 ((((segment->p_paddr \
5569 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr) \
5570 : IS_CONTAINED_BY_VMA (section, segment)) \
5571 && (section->flags & SEC_ALLOC) != 0) \
5572 || IS_NOTE (segment, section)) \
5573 && segment->p_type != PT_GNU_STACK \
5574 && (segment->p_type != PT_TLS \
5575 || (section->flags & SEC_THREAD_LOCAL)) \
5576 && (segment->p_type == PT_LOAD \
5577 || segment->p_type == PT_TLS \
5578 || (section->flags & SEC_THREAD_LOCAL) == 0) \
5579 && (segment->p_type != PT_DYNAMIC \
5580 || SECTION_SIZE (section, segment) > 0 \
5581 || (segment->p_paddr \
5582 ? segment->p_paddr != section->lma \
5583 : segment->p_vaddr != section->vma) \
5584 || (strcmp (bfd_get_section_name (ibfd, section), ".dynamic") \
5585 == 0)) \
5586 && !section->segment_mark)
5587
5588 /* If the output section of a section in the input segment is NULL,
5589 it is removed from the corresponding output segment. */
5590 #define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed) \
5591 (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed) \
5592 && section->output_section != NULL)
5593
5594 /* Returns TRUE iff seg1 starts after the end of seg2. */
5595 #define SEGMENT_AFTER_SEGMENT(seg1, seg2, field) \
5596 (seg1->field >= SEGMENT_END (seg2, seg2->field))
5597
5598 /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both
5599 their VMA address ranges and their LMA address ranges overlap.
5600 It is possible to have overlapping VMA ranges without overlapping LMA
5601 ranges. RedBoot images for example can have both .data and .bss mapped
5602 to the same VMA range, but with the .data section mapped to a different
5603 LMA. */
5604 #define SEGMENT_OVERLAPS(seg1, seg2) \
5605 ( !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr) \
5606 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr)) \
5607 && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr) \
5608 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr)))
5609
5610 /* Initialise the segment mark field. */
5611 for (section = ibfd->sections; section != NULL; section = section->next)
5612 section->segment_mark = FALSE;
5613
5614 /* The Solaris linker creates program headers in which all the
5615 p_paddr fields are zero. When we try to objcopy or strip such a
5616 file, we get confused. Check for this case, and if we find it
5617 don't set the p_paddr_valid fields. */
5618 p_paddr_valid = FALSE;
5619 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5620 i < num_segments;
5621 i++, segment++)
5622 if (segment->p_paddr != 0)
5623 {
5624 p_paddr_valid = TRUE;
5625 break;
5626 }
5627
5628 /* Scan through the segments specified in the program header
5629 of the input BFD. For this first scan we look for overlaps
5630 in the loadable segments. These can be created by weird
5631 parameters to objcopy. Also, fix some solaris weirdness. */
5632 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5633 i < num_segments;
5634 i++, segment++)
5635 {
5636 unsigned int j;
5637 Elf_Internal_Phdr *segment2;
5638
5639 if (segment->p_type == PT_INTERP)
5640 for (section = ibfd->sections; section; section = section->next)
5641 if (IS_SOLARIS_PT_INTERP (segment, section))
5642 {
5643 /* Mininal change so that the normal section to segment
5644 assignment code will work. */
5645 segment->p_vaddr = section->vma;
5646 break;
5647 }
5648
5649 if (segment->p_type != PT_LOAD)
5650 {
5651 /* Remove PT_GNU_RELRO segment. */
5652 if (segment->p_type == PT_GNU_RELRO)
5653 segment->p_type = PT_NULL;
5654 continue;
5655 }
5656
5657 /* Determine if this segment overlaps any previous segments. */
5658 for (j = 0, segment2 = elf_tdata (ibfd)->phdr; j < i; j++, segment2++)
5659 {
5660 bfd_signed_vma extra_length;
5661
5662 if (segment2->p_type != PT_LOAD
5663 || !SEGMENT_OVERLAPS (segment, segment2))
5664 continue;
5665
5666 /* Merge the two segments together. */
5667 if (segment2->p_vaddr < segment->p_vaddr)
5668 {
5669 /* Extend SEGMENT2 to include SEGMENT and then delete
5670 SEGMENT. */
5671 extra_length = (SEGMENT_END (segment, segment->p_vaddr)
5672 - SEGMENT_END (segment2, segment2->p_vaddr));
5673
5674 if (extra_length > 0)
5675 {
5676 segment2->p_memsz += extra_length;
5677 segment2->p_filesz += extra_length;
5678 }
5679
5680 segment->p_type = PT_NULL;
5681
5682 /* Since we have deleted P we must restart the outer loop. */
5683 i = 0;
5684 segment = elf_tdata (ibfd)->phdr;
5685 break;
5686 }
5687 else
5688 {
5689 /* Extend SEGMENT to include SEGMENT2 and then delete
5690 SEGMENT2. */
5691 extra_length = (SEGMENT_END (segment2, segment2->p_vaddr)
5692 - SEGMENT_END (segment, segment->p_vaddr));
5693
5694 if (extra_length > 0)
5695 {
5696 segment->p_memsz += extra_length;
5697 segment->p_filesz += extra_length;
5698 }
5699
5700 segment2->p_type = PT_NULL;
5701 }
5702 }
5703 }
5704
5705 /* The second scan attempts to assign sections to segments. */
5706 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5707 i < num_segments;
5708 i++, segment++)
5709 {
5710 unsigned int section_count;
5711 asection **sections;
5712 asection *output_section;
5713 unsigned int isec;
5714 bfd_vma matching_lma;
5715 bfd_vma suggested_lma;
5716 unsigned int j;
5717 bfd_size_type amt;
5718 asection *first_section;
5719 bfd_boolean first_matching_lma;
5720 bfd_boolean first_suggested_lma;
5721
5722 if (segment->p_type == PT_NULL)
5723 continue;
5724
5725 first_section = NULL;
5726 /* Compute how many sections might be placed into this segment. */
5727 for (section = ibfd->sections, section_count = 0;
5728 section != NULL;
5729 section = section->next)
5730 {
5731 /* Find the first section in the input segment, which may be
5732 removed from the corresponding output segment. */
5733 if (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed))
5734 {
5735 if (first_section == NULL)
5736 first_section = section;
5737 if (section->output_section != NULL)
5738 ++section_count;
5739 }
5740 }
5741
5742 /* Allocate a segment map big enough to contain
5743 all of the sections we have selected. */
5744 amt = sizeof (struct elf_segment_map);
5745 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5746 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
5747 if (map == NULL)
5748 return FALSE;
5749
5750 /* Initialise the fields of the segment map. Default to
5751 using the physical address of the segment in the input BFD. */
5752 map->next = NULL;
5753 map->p_type = segment->p_type;
5754 map->p_flags = segment->p_flags;
5755 map->p_flags_valid = 1;
5756
5757 /* If the first section in the input segment is removed, there is
5758 no need to preserve segment physical address in the corresponding
5759 output segment. */
5760 if (!first_section || first_section->output_section != NULL)
5761 {
5762 map->p_paddr = segment->p_paddr;
5763 map->p_paddr_valid = p_paddr_valid;
5764 }
5765
5766 /* Determine if this segment contains the ELF file header
5767 and if it contains the program headers themselves. */
5768 map->includes_filehdr = (segment->p_offset == 0
5769 && segment->p_filesz >= iehdr->e_ehsize);
5770 map->includes_phdrs = 0;
5771
5772 if (!phdr_included || segment->p_type != PT_LOAD)
5773 {
5774 map->includes_phdrs =
5775 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
5776 && (segment->p_offset + segment->p_filesz
5777 >= ((bfd_vma) iehdr->e_phoff
5778 + iehdr->e_phnum * iehdr->e_phentsize)));
5779
5780 if (segment->p_type == PT_LOAD && map->includes_phdrs)
5781 phdr_included = TRUE;
5782 }
5783
5784 if (section_count == 0)
5785 {
5786 /* Special segments, such as the PT_PHDR segment, may contain
5787 no sections, but ordinary, loadable segments should contain
5788 something. They are allowed by the ELF spec however, so only
5789 a warning is produced. */
5790 if (segment->p_type == PT_LOAD)
5791 (*_bfd_error_handler) (_("%B: warning: Empty loadable segment"
5792 " detected, is this intentional ?\n"),
5793 ibfd);
5794
5795 map->count = 0;
5796 *pointer_to_map = map;
5797 pointer_to_map = &map->next;
5798
5799 continue;
5800 }
5801
5802 /* Now scan the sections in the input BFD again and attempt
5803 to add their corresponding output sections to the segment map.
5804 The problem here is how to handle an output section which has
5805 been moved (ie had its LMA changed). There are four possibilities:
5806
5807 1. None of the sections have been moved.
5808 In this case we can continue to use the segment LMA from the
5809 input BFD.
5810
5811 2. All of the sections have been moved by the same amount.
5812 In this case we can change the segment's LMA to match the LMA
5813 of the first section.
5814
5815 3. Some of the sections have been moved, others have not.
5816 In this case those sections which have not been moved can be
5817 placed in the current segment which will have to have its size,
5818 and possibly its LMA changed, and a new segment or segments will
5819 have to be created to contain the other sections.
5820
5821 4. The sections have been moved, but not by the same amount.
5822 In this case we can change the segment's LMA to match the LMA
5823 of the first section and we will have to create a new segment
5824 or segments to contain the other sections.
5825
5826 In order to save time, we allocate an array to hold the section
5827 pointers that we are interested in. As these sections get assigned
5828 to a segment, they are removed from this array. */
5829
5830 sections = (asection **) bfd_malloc2 (section_count, sizeof (asection *));
5831 if (sections == NULL)
5832 return FALSE;
5833
5834 /* Step One: Scan for segment vs section LMA conflicts.
5835 Also add the sections to the section array allocated above.
5836 Also add the sections to the current segment. In the common
5837 case, where the sections have not been moved, this means that
5838 we have completely filled the segment, and there is nothing
5839 more to do. */
5840 isec = 0;
5841 matching_lma = 0;
5842 suggested_lma = 0;
5843 first_matching_lma = TRUE;
5844 first_suggested_lma = TRUE;
5845
5846 for (section = ibfd->sections;
5847 section != NULL;
5848 section = section->next)
5849 if (section == first_section)
5850 break;
5851
5852 for (j = 0; section != NULL; section = section->next)
5853 {
5854 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
5855 {
5856 output_section = section->output_section;
5857
5858 sections[j++] = section;
5859
5860 /* The Solaris native linker always sets p_paddr to 0.
5861 We try to catch that case here, and set it to the
5862 correct value. Note - some backends require that
5863 p_paddr be left as zero. */
5864 if (!p_paddr_valid
5865 && segment->p_vaddr != 0
5866 && !bed->want_p_paddr_set_to_zero
5867 && isec == 0
5868 && output_section->lma != 0
5869 && output_section->vma == (segment->p_vaddr
5870 + (map->includes_filehdr
5871 ? iehdr->e_ehsize
5872 : 0)
5873 + (map->includes_phdrs
5874 ? (iehdr->e_phnum
5875 * iehdr->e_phentsize)
5876 : 0)))
5877 map->p_paddr = segment->p_vaddr;
5878
5879 /* Match up the physical address of the segment with the
5880 LMA address of the output section. */
5881 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
5882 || IS_COREFILE_NOTE (segment, section)
5883 || (bed->want_p_paddr_set_to_zero
5884 && IS_CONTAINED_BY_VMA (output_section, segment)))
5885 {
5886 if (first_matching_lma || output_section->lma < matching_lma)
5887 {
5888 matching_lma = output_section->lma;
5889 first_matching_lma = FALSE;
5890 }
5891
5892 /* We assume that if the section fits within the segment
5893 then it does not overlap any other section within that
5894 segment. */
5895 map->sections[isec++] = output_section;
5896 }
5897 else if (first_suggested_lma)
5898 {
5899 suggested_lma = output_section->lma;
5900 first_suggested_lma = FALSE;
5901 }
5902
5903 if (j == section_count)
5904 break;
5905 }
5906 }
5907
5908 BFD_ASSERT (j == section_count);
5909
5910 /* Step Two: Adjust the physical address of the current segment,
5911 if necessary. */
5912 if (isec == section_count)
5913 {
5914 /* All of the sections fitted within the segment as currently
5915 specified. This is the default case. Add the segment to
5916 the list of built segments and carry on to process the next
5917 program header in the input BFD. */
5918 map->count = section_count;
5919 *pointer_to_map = map;
5920 pointer_to_map = &map->next;
5921
5922 if (p_paddr_valid
5923 && !bed->want_p_paddr_set_to_zero
5924 && matching_lma != map->p_paddr
5925 && !map->includes_filehdr
5926 && !map->includes_phdrs)
5927 /* There is some padding before the first section in the
5928 segment. So, we must account for that in the output
5929 segment's vma. */
5930 map->p_vaddr_offset = matching_lma - map->p_paddr;
5931
5932 free (sections);
5933 continue;
5934 }
5935 else
5936 {
5937 if (!first_matching_lma)
5938 {
5939 /* At least one section fits inside the current segment.
5940 Keep it, but modify its physical address to match the
5941 LMA of the first section that fitted. */
5942 map->p_paddr = matching_lma;
5943 }
5944 else
5945 {
5946 /* None of the sections fitted inside the current segment.
5947 Change the current segment's physical address to match
5948 the LMA of the first section. */
5949 map->p_paddr = suggested_lma;
5950 }
5951
5952 /* Offset the segment physical address from the lma
5953 to allow for space taken up by elf headers. */
5954 if (map->includes_filehdr)
5955 {
5956 if (map->p_paddr >= iehdr->e_ehsize)
5957 map->p_paddr -= iehdr->e_ehsize;
5958 else
5959 {
5960 map->includes_filehdr = FALSE;
5961 map->includes_phdrs = FALSE;
5962 }
5963 }
5964
5965 if (map->includes_phdrs)
5966 {
5967 if (map->p_paddr >= iehdr->e_phnum * iehdr->e_phentsize)
5968 {
5969 map->p_paddr -= iehdr->e_phnum * iehdr->e_phentsize;
5970
5971 /* iehdr->e_phnum is just an estimate of the number
5972 of program headers that we will need. Make a note
5973 here of the number we used and the segment we chose
5974 to hold these headers, so that we can adjust the
5975 offset when we know the correct value. */
5976 phdr_adjust_num = iehdr->e_phnum;
5977 phdr_adjust_seg = map;
5978 }
5979 else
5980 map->includes_phdrs = FALSE;
5981 }
5982 }
5983
5984 /* Step Three: Loop over the sections again, this time assigning
5985 those that fit to the current segment and removing them from the
5986 sections array; but making sure not to leave large gaps. Once all
5987 possible sections have been assigned to the current segment it is
5988 added to the list of built segments and if sections still remain
5989 to be assigned, a new segment is constructed before repeating
5990 the loop. */
5991 isec = 0;
5992 do
5993 {
5994 map->count = 0;
5995 suggested_lma = 0;
5996 first_suggested_lma = TRUE;
5997
5998 /* Fill the current segment with sections that fit. */
5999 for (j = 0; j < section_count; j++)
6000 {
6001 section = sections[j];
6002
6003 if (section == NULL)
6004 continue;
6005
6006 output_section = section->output_section;
6007
6008 BFD_ASSERT (output_section != NULL);
6009
6010 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
6011 || IS_COREFILE_NOTE (segment, section))
6012 {
6013 if (map->count == 0)
6014 {
6015 /* If the first section in a segment does not start at
6016 the beginning of the segment, then something is
6017 wrong. */
6018 if (output_section->lma
6019 != (map->p_paddr
6020 + (map->includes_filehdr ? iehdr->e_ehsize : 0)
6021 + (map->includes_phdrs
6022 ? iehdr->e_phnum * iehdr->e_phentsize
6023 : 0)))
6024 abort ();
6025 }
6026 else
6027 {
6028 asection *prev_sec;
6029
6030 prev_sec = map->sections[map->count - 1];
6031
6032 /* If the gap between the end of the previous section
6033 and the start of this section is more than
6034 maxpagesize then we need to start a new segment. */
6035 if ((BFD_ALIGN (prev_sec->lma + prev_sec->size,
6036 maxpagesize)
6037 < BFD_ALIGN (output_section->lma, maxpagesize))
6038 || (prev_sec->lma + prev_sec->size
6039 > output_section->lma))
6040 {
6041 if (first_suggested_lma)
6042 {
6043 suggested_lma = output_section->lma;
6044 first_suggested_lma = FALSE;
6045 }
6046
6047 continue;
6048 }
6049 }
6050
6051 map->sections[map->count++] = output_section;
6052 ++isec;
6053 sections[j] = NULL;
6054 section->segment_mark = TRUE;
6055 }
6056 else if (first_suggested_lma)
6057 {
6058 suggested_lma = output_section->lma;
6059 first_suggested_lma = FALSE;
6060 }
6061 }
6062
6063 BFD_ASSERT (map->count > 0);
6064
6065 /* Add the current segment to the list of built segments. */
6066 *pointer_to_map = map;
6067 pointer_to_map = &map->next;
6068
6069 if (isec < section_count)
6070 {
6071 /* We still have not allocated all of the sections to
6072 segments. Create a new segment here, initialise it
6073 and carry on looping. */
6074 amt = sizeof (struct elf_segment_map);
6075 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
6076 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
6077 if (map == NULL)
6078 {
6079 free (sections);
6080 return FALSE;
6081 }
6082
6083 /* Initialise the fields of the segment map. Set the physical
6084 physical address to the LMA of the first section that has
6085 not yet been assigned. */
6086 map->next = NULL;
6087 map->p_type = segment->p_type;
6088 map->p_flags = segment->p_flags;
6089 map->p_flags_valid = 1;
6090 map->p_paddr = suggested_lma;
6091 map->p_paddr_valid = p_paddr_valid;
6092 map->includes_filehdr = 0;
6093 map->includes_phdrs = 0;
6094 }
6095 }
6096 while (isec < section_count);
6097
6098 free (sections);
6099 }
6100
6101 elf_seg_map (obfd) = map_first;
6102
6103 /* If we had to estimate the number of program headers that were
6104 going to be needed, then check our estimate now and adjust
6105 the offset if necessary. */
6106 if (phdr_adjust_seg != NULL)
6107 {
6108 unsigned int count;
6109
6110 for (count = 0, map = map_first; map != NULL; map = map->next)
6111 count++;
6112
6113 if (count > phdr_adjust_num)
6114 phdr_adjust_seg->p_paddr
6115 -= (count - phdr_adjust_num) * iehdr->e_phentsize;
6116 }
6117
6118 #undef SEGMENT_END
6119 #undef SECTION_SIZE
6120 #undef IS_CONTAINED_BY_VMA
6121 #undef IS_CONTAINED_BY_LMA
6122 #undef IS_NOTE
6123 #undef IS_COREFILE_NOTE
6124 #undef IS_SOLARIS_PT_INTERP
6125 #undef IS_SECTION_IN_INPUT_SEGMENT
6126 #undef INCLUDE_SECTION_IN_SEGMENT
6127 #undef SEGMENT_AFTER_SEGMENT
6128 #undef SEGMENT_OVERLAPS
6129 return TRUE;
6130 }
6131
6132 /* Copy ELF program header information. */
6133
6134 static bfd_boolean
6135 copy_elf_program_header (bfd *ibfd, bfd *obfd)
6136 {
6137 Elf_Internal_Ehdr *iehdr;
6138 struct elf_segment_map *map;
6139 struct elf_segment_map *map_first;
6140 struct elf_segment_map **pointer_to_map;
6141 Elf_Internal_Phdr *segment;
6142 unsigned int i;
6143 unsigned int num_segments;
6144 bfd_boolean phdr_included = FALSE;
6145 bfd_boolean p_paddr_valid;
6146
6147 iehdr = elf_elfheader (ibfd);
6148
6149 map_first = NULL;
6150 pointer_to_map = &map_first;
6151
6152 /* If all the segment p_paddr fields are zero, don't set
6153 map->p_paddr_valid. */
6154 p_paddr_valid = FALSE;
6155 num_segments = elf_elfheader (ibfd)->e_phnum;
6156 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6157 i < num_segments;
6158 i++, segment++)
6159 if (segment->p_paddr != 0)
6160 {
6161 p_paddr_valid = TRUE;
6162 break;
6163 }
6164
6165 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6166 i < num_segments;
6167 i++, segment++)
6168 {
6169 asection *section;
6170 unsigned int section_count;
6171 bfd_size_type amt;
6172 Elf_Internal_Shdr *this_hdr;
6173 asection *first_section = NULL;
6174 asection *lowest_section;
6175
6176 /* Compute how many sections are in this segment. */
6177 for (section = ibfd->sections, section_count = 0;
6178 section != NULL;
6179 section = section->next)
6180 {
6181 this_hdr = &(elf_section_data(section)->this_hdr);
6182 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
6183 {
6184 if (first_section == NULL)
6185 first_section = section;
6186 section_count++;
6187 }
6188 }
6189
6190 /* Allocate a segment map big enough to contain
6191 all of the sections we have selected. */
6192 amt = sizeof (struct elf_segment_map);
6193 if (section_count != 0)
6194 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
6195 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
6196 if (map == NULL)
6197 return FALSE;
6198
6199 /* Initialize the fields of the output segment map with the
6200 input segment. */
6201 map->next = NULL;
6202 map->p_type = segment->p_type;
6203 map->p_flags = segment->p_flags;
6204 map->p_flags_valid = 1;
6205 map->p_paddr = segment->p_paddr;
6206 map->p_paddr_valid = p_paddr_valid;
6207 map->p_align = segment->p_align;
6208 map->p_align_valid = 1;
6209 map->p_vaddr_offset = 0;
6210
6211 if (map->p_type == PT_GNU_RELRO
6212 || map->p_type == PT_GNU_STACK)
6213 {
6214 /* The PT_GNU_RELRO segment may contain the first a few
6215 bytes in the .got.plt section even if the whole .got.plt
6216 section isn't in the PT_GNU_RELRO segment. We won't
6217 change the size of the PT_GNU_RELRO segment.
6218 Similarly, PT_GNU_STACK size is significant on uclinux
6219 systems. */
6220 map->p_size = segment->p_memsz;
6221 map->p_size_valid = 1;
6222 }
6223
6224 /* Determine if this segment contains the ELF file header
6225 and if it contains the program headers themselves. */
6226 map->includes_filehdr = (segment->p_offset == 0
6227 && segment->p_filesz >= iehdr->e_ehsize);
6228
6229 map->includes_phdrs = 0;
6230 if (! phdr_included || segment->p_type != PT_LOAD)
6231 {
6232 map->includes_phdrs =
6233 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
6234 && (segment->p_offset + segment->p_filesz
6235 >= ((bfd_vma) iehdr->e_phoff
6236 + iehdr->e_phnum * iehdr->e_phentsize)));
6237
6238 if (segment->p_type == PT_LOAD && map->includes_phdrs)
6239 phdr_included = TRUE;
6240 }
6241
6242 lowest_section = first_section;
6243 if (section_count != 0)
6244 {
6245 unsigned int isec = 0;
6246
6247 for (section = first_section;
6248 section != NULL;
6249 section = section->next)
6250 {
6251 this_hdr = &(elf_section_data(section)->this_hdr);
6252 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
6253 {
6254 map->sections[isec++] = section->output_section;
6255 if ((section->flags & SEC_ALLOC) != 0)
6256 {
6257 bfd_vma seg_off;
6258
6259 if (section->lma < lowest_section->lma)
6260 lowest_section = section;
6261
6262 /* Section lmas are set up from PT_LOAD header
6263 p_paddr in _bfd_elf_make_section_from_shdr.
6264 If this header has a p_paddr that disagrees
6265 with the section lma, flag the p_paddr as
6266 invalid. */
6267 if ((section->flags & SEC_LOAD) != 0)
6268 seg_off = this_hdr->sh_offset - segment->p_offset;
6269 else
6270 seg_off = this_hdr->sh_addr - segment->p_vaddr;
6271 if (section->lma - segment->p_paddr != seg_off)
6272 map->p_paddr_valid = FALSE;
6273 }
6274 if (isec == section_count)
6275 break;
6276 }
6277 }
6278 }
6279
6280 if (map->includes_filehdr && lowest_section != NULL)
6281 /* We need to keep the space used by the headers fixed. */
6282 map->header_size = lowest_section->vma - segment->p_vaddr;
6283
6284 if (!map->includes_phdrs
6285 && !map->includes_filehdr
6286 && map->p_paddr_valid)
6287 /* There is some other padding before the first section. */
6288 map->p_vaddr_offset = ((lowest_section ? lowest_section->lma : 0)
6289 - segment->p_paddr);
6290
6291 map->count = section_count;
6292 *pointer_to_map = map;
6293 pointer_to_map = &map->next;
6294 }
6295
6296 elf_seg_map (obfd) = map_first;
6297 return TRUE;
6298 }
6299
6300 /* Copy private BFD data. This copies or rewrites ELF program header
6301 information. */
6302
6303 static bfd_boolean
6304 copy_private_bfd_data (bfd *ibfd, bfd *obfd)
6305 {
6306 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
6307 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
6308 return TRUE;
6309
6310 if (elf_tdata (ibfd)->phdr == NULL)
6311 return TRUE;
6312
6313 if (ibfd->xvec == obfd->xvec)
6314 {
6315 /* Check to see if any sections in the input BFD
6316 covered by ELF program header have changed. */
6317 Elf_Internal_Phdr *segment;
6318 asection *section, *osec;
6319 unsigned int i, num_segments;
6320 Elf_Internal_Shdr *this_hdr;
6321 const struct elf_backend_data *bed;
6322
6323 bed = get_elf_backend_data (ibfd);
6324
6325 /* Regenerate the segment map if p_paddr is set to 0. */
6326 if (bed->want_p_paddr_set_to_zero)
6327 goto rewrite;
6328
6329 /* Initialize the segment mark field. */
6330 for (section = obfd->sections; section != NULL;
6331 section = section->next)
6332 section->segment_mark = FALSE;
6333
6334 num_segments = elf_elfheader (ibfd)->e_phnum;
6335 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6336 i < num_segments;
6337 i++, segment++)
6338 {
6339 /* PR binutils/3535. The Solaris linker always sets the p_paddr
6340 and p_memsz fields of special segments (DYNAMIC, INTERP) to 0
6341 which severly confuses things, so always regenerate the segment
6342 map in this case. */
6343 if (segment->p_paddr == 0
6344 && segment->p_memsz == 0
6345 && (segment->p_type == PT_INTERP || segment->p_type == PT_DYNAMIC))
6346 goto rewrite;
6347
6348 for (section = ibfd->sections;
6349 section != NULL; section = section->next)
6350 {
6351 /* We mark the output section so that we know it comes
6352 from the input BFD. */
6353 osec = section->output_section;
6354 if (osec)
6355 osec->segment_mark = TRUE;
6356
6357 /* Check if this section is covered by the segment. */
6358 this_hdr = &(elf_section_data(section)->this_hdr);
6359 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
6360 {
6361 /* FIXME: Check if its output section is changed or
6362 removed. What else do we need to check? */
6363 if (osec == NULL
6364 || section->flags != osec->flags
6365 || section->lma != osec->lma
6366 || section->vma != osec->vma
6367 || section->size != osec->size
6368 || section->rawsize != osec->rawsize
6369 || section->alignment_power != osec->alignment_power)
6370 goto rewrite;
6371 }
6372 }
6373 }
6374
6375 /* Check to see if any output section do not come from the
6376 input BFD. */
6377 for (section = obfd->sections; section != NULL;
6378 section = section->next)
6379 {
6380 if (section->segment_mark == FALSE)
6381 goto rewrite;
6382 else
6383 section->segment_mark = FALSE;
6384 }
6385
6386 return copy_elf_program_header (ibfd, obfd);
6387 }
6388
6389 rewrite:
6390 if (ibfd->xvec == obfd->xvec)
6391 {
6392 /* When rewriting program header, set the output maxpagesize to
6393 the maximum alignment of input PT_LOAD segments. */
6394 Elf_Internal_Phdr *segment;
6395 unsigned int i;
6396 unsigned int num_segments = elf_elfheader (ibfd)->e_phnum;
6397 bfd_vma maxpagesize = 0;
6398
6399 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6400 i < num_segments;
6401 i++, segment++)
6402 if (segment->p_type == PT_LOAD
6403 && maxpagesize < segment->p_align)
6404 maxpagesize = segment->p_align;
6405
6406 if (maxpagesize != get_elf_backend_data (obfd)->maxpagesize)
6407 bfd_emul_set_maxpagesize (bfd_get_target (obfd), maxpagesize);
6408 }
6409
6410 return rewrite_elf_program_header (ibfd, obfd);
6411 }
6412
6413 /* Initialize private output section information from input section. */
6414
6415 bfd_boolean
6416 _bfd_elf_init_private_section_data (bfd *ibfd,
6417 asection *isec,
6418 bfd *obfd,
6419 asection *osec,
6420 struct bfd_link_info *link_info)
6421
6422 {
6423 Elf_Internal_Shdr *ihdr, *ohdr;
6424 bfd_boolean final_link = link_info != NULL && !link_info->relocatable;
6425
6426 if (ibfd->xvec->flavour != bfd_target_elf_flavour
6427 || obfd->xvec->flavour != bfd_target_elf_flavour)
6428 return TRUE;
6429
6430 BFD_ASSERT (elf_section_data (osec) != NULL);
6431
6432 /* For objcopy and relocatable link, don't copy the output ELF
6433 section type from input if the output BFD section flags have been
6434 set to something different. For a final link allow some flags
6435 that the linker clears to differ. */
6436 if (elf_section_type (osec) == SHT_NULL
6437 && (osec->flags == isec->flags
6438 || (final_link
6439 && ((osec->flags ^ isec->flags)
6440 & ~(SEC_LINK_ONCE | SEC_LINK_DUPLICATES | SEC_RELOC)) == 0)))
6441 elf_section_type (osec) = elf_section_type (isec);
6442
6443 /* FIXME: Is this correct for all OS/PROC specific flags? */
6444 elf_section_flags (osec) |= (elf_section_flags (isec)
6445 & (SHF_MASKOS | SHF_MASKPROC));
6446
6447 /* Set things up for objcopy and relocatable link. The output
6448 SHT_GROUP section will have its elf_next_in_group pointing back
6449 to the input group members. Ignore linker created group section.
6450 See elfNN_ia64_object_p in elfxx-ia64.c. */
6451 if (!final_link)
6452 {
6453 if (elf_sec_group (isec) == NULL
6454 || (elf_sec_group (isec)->flags & SEC_LINKER_CREATED) == 0)
6455 {
6456 if (elf_section_flags (isec) & SHF_GROUP)
6457 elf_section_flags (osec) |= SHF_GROUP;
6458 elf_next_in_group (osec) = elf_next_in_group (isec);
6459 elf_section_data (osec)->group = elf_section_data (isec)->group;
6460 }
6461 }
6462
6463 ihdr = &elf_section_data (isec)->this_hdr;
6464
6465 /* We need to handle elf_linked_to_section for SHF_LINK_ORDER. We
6466 don't use the output section of the linked-to section since it
6467 may be NULL at this point. */
6468 if ((ihdr->sh_flags & SHF_LINK_ORDER) != 0)
6469 {
6470 ohdr = &elf_section_data (osec)->this_hdr;
6471 ohdr->sh_flags |= SHF_LINK_ORDER;
6472 elf_linked_to_section (osec) = elf_linked_to_section (isec);
6473 }
6474
6475 osec->use_rela_p = isec->use_rela_p;
6476
6477 return TRUE;
6478 }
6479
6480 /* Copy private section information. This copies over the entsize
6481 field, and sometimes the info field. */
6482
6483 bfd_boolean
6484 _bfd_elf_copy_private_section_data (bfd *ibfd,
6485 asection *isec,
6486 bfd *obfd,
6487 asection *osec)
6488 {
6489 Elf_Internal_Shdr *ihdr, *ohdr;
6490
6491 if (ibfd->xvec->flavour != bfd_target_elf_flavour
6492 || obfd->xvec->flavour != bfd_target_elf_flavour)
6493 return TRUE;
6494
6495 ihdr = &elf_section_data (isec)->this_hdr;
6496 ohdr = &elf_section_data (osec)->this_hdr;
6497
6498 ohdr->sh_entsize = ihdr->sh_entsize;
6499
6500 if (ihdr->sh_type == SHT_SYMTAB
6501 || ihdr->sh_type == SHT_DYNSYM
6502 || ihdr->sh_type == SHT_GNU_verneed
6503 || ihdr->sh_type == SHT_GNU_verdef)
6504 ohdr->sh_info = ihdr->sh_info;
6505
6506 return _bfd_elf_init_private_section_data (ibfd, isec, obfd, osec,
6507 NULL);
6508 }
6509
6510 /* Look at all the SHT_GROUP sections in IBFD, making any adjustments
6511 necessary if we are removing either the SHT_GROUP section or any of
6512 the group member sections. DISCARDED is the value that a section's
6513 output_section has if the section will be discarded, NULL when this
6514 function is called from objcopy, bfd_abs_section_ptr when called
6515 from the linker. */
6516
6517 bfd_boolean
6518 _bfd_elf_fixup_group_sections (bfd *ibfd, asection *discarded)
6519 {
6520 asection *isec;
6521
6522 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
6523 if (elf_section_type (isec) == SHT_GROUP)
6524 {
6525 asection *first = elf_next_in_group (isec);
6526 asection *s = first;
6527 bfd_size_type removed = 0;
6528
6529 while (s != NULL)
6530 {
6531 /* If this member section is being output but the
6532 SHT_GROUP section is not, then clear the group info
6533 set up by _bfd_elf_copy_private_section_data. */
6534 if (s->output_section != discarded
6535 && isec->output_section == discarded)
6536 {
6537 elf_section_flags (s->output_section) &= ~SHF_GROUP;
6538 elf_group_name (s->output_section) = NULL;
6539 }
6540 /* Conversely, if the member section is not being output
6541 but the SHT_GROUP section is, then adjust its size. */
6542 else if (s->output_section == discarded
6543 && isec->output_section != discarded)
6544 removed += 4;
6545 s = elf_next_in_group (s);
6546 if (s == first)
6547 break;
6548 }
6549 if (removed != 0)
6550 {
6551 if (discarded != NULL)
6552 {
6553 /* If we've been called for ld -r, then we need to
6554 adjust the input section size. This function may
6555 be called multiple times, so save the original
6556 size. */
6557 if (isec->rawsize == 0)
6558 isec->rawsize = isec->size;
6559 isec->size = isec->rawsize - removed;
6560 }
6561 else
6562 {
6563 /* Adjust the output section size when called from
6564 objcopy. */
6565 isec->output_section->size -= removed;
6566 }
6567 }
6568 }
6569
6570 return TRUE;
6571 }
6572
6573 /* Copy private header information. */
6574
6575 bfd_boolean
6576 _bfd_elf_copy_private_header_data (bfd *ibfd, bfd *obfd)
6577 {
6578 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
6579 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
6580 return TRUE;
6581
6582 /* Copy over private BFD data if it has not already been copied.
6583 This must be done here, rather than in the copy_private_bfd_data
6584 entry point, because the latter is called after the section
6585 contents have been set, which means that the program headers have
6586 already been worked out. */
6587 if (elf_seg_map (obfd) == NULL && elf_tdata (ibfd)->phdr != NULL)
6588 {
6589 if (! copy_private_bfd_data (ibfd, obfd))
6590 return FALSE;
6591 }
6592
6593 return _bfd_elf_fixup_group_sections (ibfd, NULL);
6594 }
6595
6596 /* Copy private symbol information. If this symbol is in a section
6597 which we did not map into a BFD section, try to map the section
6598 index correctly. We use special macro definitions for the mapped
6599 section indices; these definitions are interpreted by the
6600 swap_out_syms function. */
6601
6602 #define MAP_ONESYMTAB (SHN_HIOS + 1)
6603 #define MAP_DYNSYMTAB (SHN_HIOS + 2)
6604 #define MAP_STRTAB (SHN_HIOS + 3)
6605 #define MAP_SHSTRTAB (SHN_HIOS + 4)
6606 #define MAP_SYM_SHNDX (SHN_HIOS + 5)
6607
6608 bfd_boolean
6609 _bfd_elf_copy_private_symbol_data (bfd *ibfd,
6610 asymbol *isymarg,
6611 bfd *obfd,
6612 asymbol *osymarg)
6613 {
6614 elf_symbol_type *isym, *osym;
6615
6616 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
6617 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
6618 return TRUE;
6619
6620 isym = elf_symbol_from (ibfd, isymarg);
6621 osym = elf_symbol_from (obfd, osymarg);
6622
6623 if (isym != NULL
6624 && isym->internal_elf_sym.st_shndx != 0
6625 && osym != NULL
6626 && bfd_is_abs_section (isym->symbol.section))
6627 {
6628 unsigned int shndx;
6629
6630 shndx = isym->internal_elf_sym.st_shndx;
6631 if (shndx == elf_onesymtab (ibfd))
6632 shndx = MAP_ONESYMTAB;
6633 else if (shndx == elf_dynsymtab (ibfd))
6634 shndx = MAP_DYNSYMTAB;
6635 else if (shndx == elf_strtab_sec (ibfd))
6636 shndx = MAP_STRTAB;
6637 else if (shndx == elf_shstrtab_sec (ibfd))
6638 shndx = MAP_SHSTRTAB;
6639 else if (shndx == elf_symtab_shndx (ibfd))
6640 shndx = MAP_SYM_SHNDX;
6641 osym->internal_elf_sym.st_shndx = shndx;
6642 }
6643
6644 return TRUE;
6645 }
6646
6647 /* Swap out the symbols. */
6648
6649 static bfd_boolean
6650 swap_out_syms (bfd *abfd,
6651 struct bfd_strtab_hash **sttp,
6652 int relocatable_p)
6653 {
6654 const struct elf_backend_data *bed;
6655 int symcount;
6656 asymbol **syms;
6657 struct bfd_strtab_hash *stt;
6658 Elf_Internal_Shdr *symtab_hdr;
6659 Elf_Internal_Shdr *symtab_shndx_hdr;
6660 Elf_Internal_Shdr *symstrtab_hdr;
6661 bfd_byte *outbound_syms;
6662 bfd_byte *outbound_shndx;
6663 int idx;
6664 unsigned int num_locals;
6665 bfd_size_type amt;
6666 bfd_boolean name_local_sections;
6667
6668 if (!elf_map_symbols (abfd, &num_locals))
6669 return FALSE;
6670
6671 /* Dump out the symtabs. */
6672 stt = _bfd_elf_stringtab_init ();
6673 if (stt == NULL)
6674 return FALSE;
6675
6676 bed = get_elf_backend_data (abfd);
6677 symcount = bfd_get_symcount (abfd);
6678 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
6679 symtab_hdr->sh_type = SHT_SYMTAB;
6680 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
6681 symtab_hdr->sh_size = symtab_hdr->sh_entsize * (symcount + 1);
6682 symtab_hdr->sh_info = num_locals + 1;
6683 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
6684
6685 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
6686 symstrtab_hdr->sh_type = SHT_STRTAB;
6687
6688 outbound_syms = (bfd_byte *) bfd_alloc2 (abfd, 1 + symcount,
6689 bed->s->sizeof_sym);
6690 if (outbound_syms == NULL)
6691 {
6692 _bfd_stringtab_free (stt);
6693 return FALSE;
6694 }
6695 symtab_hdr->contents = outbound_syms;
6696
6697 outbound_shndx = NULL;
6698 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
6699 if (symtab_shndx_hdr->sh_name != 0)
6700 {
6701 amt = (bfd_size_type) (1 + symcount) * sizeof (Elf_External_Sym_Shndx);
6702 outbound_shndx = (bfd_byte *)
6703 bfd_zalloc2 (abfd, 1 + symcount, sizeof (Elf_External_Sym_Shndx));
6704 if (outbound_shndx == NULL)
6705 {
6706 _bfd_stringtab_free (stt);
6707 return FALSE;
6708 }
6709
6710 symtab_shndx_hdr->contents = outbound_shndx;
6711 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
6712 symtab_shndx_hdr->sh_size = amt;
6713 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
6714 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
6715 }
6716
6717 /* Now generate the data (for "contents"). */
6718 {
6719 /* Fill in zeroth symbol and swap it out. */
6720 Elf_Internal_Sym sym;
6721 sym.st_name = 0;
6722 sym.st_value = 0;
6723 sym.st_size = 0;
6724 sym.st_info = 0;
6725 sym.st_other = 0;
6726 sym.st_shndx = SHN_UNDEF;
6727 sym.st_target_internal = 0;
6728 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
6729 outbound_syms += bed->s->sizeof_sym;
6730 if (outbound_shndx != NULL)
6731 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
6732 }
6733
6734 name_local_sections
6735 = (bed->elf_backend_name_local_section_symbols
6736 && bed->elf_backend_name_local_section_symbols (abfd));
6737
6738 syms = bfd_get_outsymbols (abfd);
6739 for (idx = 0; idx < symcount; idx++)
6740 {
6741 Elf_Internal_Sym sym;
6742 bfd_vma value = syms[idx]->value;
6743 elf_symbol_type *type_ptr;
6744 flagword flags = syms[idx]->flags;
6745 int type;
6746
6747 if (!name_local_sections
6748 && (flags & (BSF_SECTION_SYM | BSF_GLOBAL)) == BSF_SECTION_SYM)
6749 {
6750 /* Local section symbols have no name. */
6751 sym.st_name = 0;
6752 }
6753 else
6754 {
6755 sym.st_name = (unsigned long) _bfd_stringtab_add (stt,
6756 syms[idx]->name,
6757 TRUE, FALSE);
6758 if (sym.st_name == (unsigned long) -1)
6759 {
6760 _bfd_stringtab_free (stt);
6761 return FALSE;
6762 }
6763 }
6764
6765 type_ptr = elf_symbol_from (abfd, syms[idx]);
6766
6767 if ((flags & BSF_SECTION_SYM) == 0
6768 && bfd_is_com_section (syms[idx]->section))
6769 {
6770 /* ELF common symbols put the alignment into the `value' field,
6771 and the size into the `size' field. This is backwards from
6772 how BFD handles it, so reverse it here. */
6773 sym.st_size = value;
6774 if (type_ptr == NULL
6775 || type_ptr->internal_elf_sym.st_value == 0)
6776 sym.st_value = value >= 16 ? 16 : (1 << bfd_log2 (value));
6777 else
6778 sym.st_value = type_ptr->internal_elf_sym.st_value;
6779 sym.st_shndx = _bfd_elf_section_from_bfd_section
6780 (abfd, syms[idx]->section);
6781 }
6782 else
6783 {
6784 asection *sec = syms[idx]->section;
6785 unsigned int shndx;
6786
6787 if (sec->output_section)
6788 {
6789 value += sec->output_offset;
6790 sec = sec->output_section;
6791 }
6792
6793 /* Don't add in the section vma for relocatable output. */
6794 if (! relocatable_p)
6795 value += sec->vma;
6796 sym.st_value = value;
6797 sym.st_size = type_ptr ? type_ptr->internal_elf_sym.st_size : 0;
6798
6799 if (bfd_is_abs_section (sec)
6800 && type_ptr != NULL
6801 && type_ptr->internal_elf_sym.st_shndx != 0)
6802 {
6803 /* This symbol is in a real ELF section which we did
6804 not create as a BFD section. Undo the mapping done
6805 by copy_private_symbol_data. */
6806 shndx = type_ptr->internal_elf_sym.st_shndx;
6807 switch (shndx)
6808 {
6809 case MAP_ONESYMTAB:
6810 shndx = elf_onesymtab (abfd);
6811 break;
6812 case MAP_DYNSYMTAB:
6813 shndx = elf_dynsymtab (abfd);
6814 break;
6815 case MAP_STRTAB:
6816 shndx = elf_strtab_sec (abfd);
6817 break;
6818 case MAP_SHSTRTAB:
6819 shndx = elf_shstrtab_sec (abfd);
6820 break;
6821 case MAP_SYM_SHNDX:
6822 shndx = elf_symtab_shndx (abfd);
6823 break;
6824 default:
6825 shndx = SHN_ABS;
6826 break;
6827 }
6828 }
6829 else
6830 {
6831 shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
6832
6833 if (shndx == SHN_BAD)
6834 {
6835 asection *sec2;
6836
6837 /* Writing this would be a hell of a lot easier if
6838 we had some decent documentation on bfd, and
6839 knew what to expect of the library, and what to
6840 demand of applications. For example, it
6841 appears that `objcopy' might not set the
6842 section of a symbol to be a section that is
6843 actually in the output file. */
6844 sec2 = bfd_get_section_by_name (abfd, sec->name);
6845 if (sec2 == NULL)
6846 {
6847 _bfd_error_handler (_("\
6848 Unable to find equivalent output section for symbol '%s' from section '%s'"),
6849 syms[idx]->name ? syms[idx]->name : "<Local sym>",
6850 sec->name);
6851 bfd_set_error (bfd_error_invalid_operation);
6852 _bfd_stringtab_free (stt);
6853 return FALSE;
6854 }
6855
6856 shndx = _bfd_elf_section_from_bfd_section (abfd, sec2);
6857 BFD_ASSERT (shndx != SHN_BAD);
6858 }
6859 }
6860
6861 sym.st_shndx = shndx;
6862 }
6863
6864 if ((flags & BSF_THREAD_LOCAL) != 0)
6865 type = STT_TLS;
6866 else if ((flags & BSF_GNU_INDIRECT_FUNCTION) != 0)
6867 type = STT_GNU_IFUNC;
6868 else if ((flags & BSF_FUNCTION) != 0)
6869 type = STT_FUNC;
6870 else if ((flags & BSF_OBJECT) != 0)
6871 type = STT_OBJECT;
6872 else if ((flags & BSF_RELC) != 0)
6873 type = STT_RELC;
6874 else if ((flags & BSF_SRELC) != 0)
6875 type = STT_SRELC;
6876 else
6877 type = STT_NOTYPE;
6878
6879 if (syms[idx]->section->flags & SEC_THREAD_LOCAL)
6880 type = STT_TLS;
6881
6882 /* Processor-specific types. */
6883 if (type_ptr != NULL
6884 && bed->elf_backend_get_symbol_type)
6885 type = ((*bed->elf_backend_get_symbol_type)
6886 (&type_ptr->internal_elf_sym, type));
6887
6888 if (flags & BSF_SECTION_SYM)
6889 {
6890 if (flags & BSF_GLOBAL)
6891 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6892 else
6893 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
6894 }
6895 else if (bfd_is_com_section (syms[idx]->section))
6896 {
6897 #ifdef USE_STT_COMMON
6898 if (type == STT_OBJECT)
6899 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_COMMON);
6900 else
6901 #endif
6902 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
6903 }
6904 else if (bfd_is_und_section (syms[idx]->section))
6905 sym.st_info = ELF_ST_INFO (((flags & BSF_WEAK)
6906 ? STB_WEAK
6907 : STB_GLOBAL),
6908 type);
6909 else if (flags & BSF_FILE)
6910 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
6911 else
6912 {
6913 int bind = STB_LOCAL;
6914
6915 if (flags & BSF_LOCAL)
6916 bind = STB_LOCAL;
6917 else if (flags & BSF_GNU_UNIQUE)
6918 bind = STB_GNU_UNIQUE;
6919 else if (flags & BSF_WEAK)
6920 bind = STB_WEAK;
6921 else if (flags & BSF_GLOBAL)
6922 bind = STB_GLOBAL;
6923
6924 sym.st_info = ELF_ST_INFO (bind, type);
6925 }
6926
6927 if (type_ptr != NULL)
6928 {
6929 sym.st_other = type_ptr->internal_elf_sym.st_other;
6930 sym.st_target_internal
6931 = type_ptr->internal_elf_sym.st_target_internal;
6932 }
6933 else
6934 {
6935 sym.st_other = 0;
6936 sym.st_target_internal = 0;
6937 }
6938
6939 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
6940 outbound_syms += bed->s->sizeof_sym;
6941 if (outbound_shndx != NULL)
6942 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
6943 }
6944
6945 *sttp = stt;
6946 symstrtab_hdr->sh_size = _bfd_stringtab_size (stt);
6947 symstrtab_hdr->sh_type = SHT_STRTAB;
6948
6949 symstrtab_hdr->sh_flags = 0;
6950 symstrtab_hdr->sh_addr = 0;
6951 symstrtab_hdr->sh_entsize = 0;
6952 symstrtab_hdr->sh_link = 0;
6953 symstrtab_hdr->sh_info = 0;
6954 symstrtab_hdr->sh_addralign = 1;
6955
6956 return TRUE;
6957 }
6958
6959 /* Return the number of bytes required to hold the symtab vector.
6960
6961 Note that we base it on the count plus 1, since we will null terminate
6962 the vector allocated based on this size. However, the ELF symbol table
6963 always has a dummy entry as symbol #0, so it ends up even. */
6964
6965 long
6966 _bfd_elf_get_symtab_upper_bound (bfd *abfd)
6967 {
6968 long symcount;
6969 long symtab_size;
6970 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->symtab_hdr;
6971
6972 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
6973 symtab_size = (symcount + 1) * (sizeof (asymbol *));
6974 if (symcount > 0)
6975 symtab_size -= sizeof (asymbol *);
6976
6977 return symtab_size;
6978 }
6979
6980 long
6981 _bfd_elf_get_dynamic_symtab_upper_bound (bfd *abfd)
6982 {
6983 long symcount;
6984 long symtab_size;
6985 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->dynsymtab_hdr;
6986
6987 if (elf_dynsymtab (abfd) == 0)
6988 {
6989 bfd_set_error (bfd_error_invalid_operation);
6990 return -1;
6991 }
6992
6993 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
6994 symtab_size = (symcount + 1) * (sizeof (asymbol *));
6995 if (symcount > 0)
6996 symtab_size -= sizeof (asymbol *);
6997
6998 return symtab_size;
6999 }
7000
7001 long
7002 _bfd_elf_get_reloc_upper_bound (bfd *abfd ATTRIBUTE_UNUSED,
7003 sec_ptr asect)
7004 {
7005 return (asect->reloc_count + 1) * sizeof (arelent *);
7006 }
7007
7008 /* Canonicalize the relocs. */
7009
7010 long
7011 _bfd_elf_canonicalize_reloc (bfd *abfd,
7012 sec_ptr section,
7013 arelent **relptr,
7014 asymbol **symbols)
7015 {
7016 arelent *tblptr;
7017 unsigned int i;
7018 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7019
7020 if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE))
7021 return -1;
7022
7023 tblptr = section->relocation;
7024 for (i = 0; i < section->reloc_count; i++)
7025 *relptr++ = tblptr++;
7026
7027 *relptr = NULL;
7028
7029 return section->reloc_count;
7030 }
7031
7032 long
7033 _bfd_elf_canonicalize_symtab (bfd *abfd, asymbol **allocation)
7034 {
7035 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7036 long symcount = bed->s->slurp_symbol_table (abfd, allocation, FALSE);
7037
7038 if (symcount >= 0)
7039 bfd_get_symcount (abfd) = symcount;
7040 return symcount;
7041 }
7042
7043 long
7044 _bfd_elf_canonicalize_dynamic_symtab (bfd *abfd,
7045 asymbol **allocation)
7046 {
7047 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7048 long symcount = bed->s->slurp_symbol_table (abfd, allocation, TRUE);
7049
7050 if (symcount >= 0)
7051 bfd_get_dynamic_symcount (abfd) = symcount;
7052 return symcount;
7053 }
7054
7055 /* Return the size required for the dynamic reloc entries. Any loadable
7056 section that was actually installed in the BFD, and has type SHT_REL
7057 or SHT_RELA, and uses the dynamic symbol table, is considered to be a
7058 dynamic reloc section. */
7059
7060 long
7061 _bfd_elf_get_dynamic_reloc_upper_bound (bfd *abfd)
7062 {
7063 long ret;
7064 asection *s;
7065
7066 if (elf_dynsymtab (abfd) == 0)
7067 {
7068 bfd_set_error (bfd_error_invalid_operation);
7069 return -1;
7070 }
7071
7072 ret = sizeof (arelent *);
7073 for (s = abfd->sections; s != NULL; s = s->next)
7074 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
7075 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
7076 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
7077 ret += ((s->size / elf_section_data (s)->this_hdr.sh_entsize)
7078 * sizeof (arelent *));
7079
7080 return ret;
7081 }
7082
7083 /* Canonicalize the dynamic relocation entries. Note that we return the
7084 dynamic relocations as a single block, although they are actually
7085 associated with particular sections; the interface, which was
7086 designed for SunOS style shared libraries, expects that there is only
7087 one set of dynamic relocs. Any loadable section that was actually
7088 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses the
7089 dynamic symbol table, is considered to be a dynamic reloc section. */
7090
7091 long
7092 _bfd_elf_canonicalize_dynamic_reloc (bfd *abfd,
7093 arelent **storage,
7094 asymbol **syms)
7095 {
7096 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
7097 asection *s;
7098 long ret;
7099
7100 if (elf_dynsymtab (abfd) == 0)
7101 {
7102 bfd_set_error (bfd_error_invalid_operation);
7103 return -1;
7104 }
7105
7106 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
7107 ret = 0;
7108 for (s = abfd->sections; s != NULL; s = s->next)
7109 {
7110 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
7111 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
7112 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
7113 {
7114 arelent *p;
7115 long count, i;
7116
7117 if (! (*slurp_relocs) (abfd, s, syms, TRUE))
7118 return -1;
7119 count = s->size / elf_section_data (s)->this_hdr.sh_entsize;
7120 p = s->relocation;
7121 for (i = 0; i < count; i++)
7122 *storage++ = p++;
7123 ret += count;
7124 }
7125 }
7126
7127 *storage = NULL;
7128
7129 return ret;
7130 }
7131 \f
7132 /* Read in the version information. */
7133
7134 bfd_boolean
7135 _bfd_elf_slurp_version_tables (bfd *abfd, bfd_boolean default_imported_symver)
7136 {
7137 bfd_byte *contents = NULL;
7138 unsigned int freeidx = 0;
7139
7140 if (elf_dynverref (abfd) != 0)
7141 {
7142 Elf_Internal_Shdr *hdr;
7143 Elf_External_Verneed *everneed;
7144 Elf_Internal_Verneed *iverneed;
7145 unsigned int i;
7146 bfd_byte *contents_end;
7147
7148 hdr = &elf_tdata (abfd)->dynverref_hdr;
7149
7150 elf_tdata (abfd)->verref = (Elf_Internal_Verneed *)
7151 bfd_zalloc2 (abfd, hdr->sh_info, sizeof (Elf_Internal_Verneed));
7152 if (elf_tdata (abfd)->verref == NULL)
7153 goto error_return;
7154
7155 elf_tdata (abfd)->cverrefs = hdr->sh_info;
7156
7157 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
7158 if (contents == NULL)
7159 {
7160 error_return_verref:
7161 elf_tdata (abfd)->verref = NULL;
7162 elf_tdata (abfd)->cverrefs = 0;
7163 goto error_return;
7164 }
7165 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
7166 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
7167 goto error_return_verref;
7168
7169 if (hdr->sh_info && hdr->sh_size < sizeof (Elf_External_Verneed))
7170 goto error_return_verref;
7171
7172 BFD_ASSERT (sizeof (Elf_External_Verneed)
7173 == sizeof (Elf_External_Vernaux));
7174 contents_end = contents + hdr->sh_size - sizeof (Elf_External_Verneed);
7175 everneed = (Elf_External_Verneed *) contents;
7176 iverneed = elf_tdata (abfd)->verref;
7177 for (i = 0; i < hdr->sh_info; i++, iverneed++)
7178 {
7179 Elf_External_Vernaux *evernaux;
7180 Elf_Internal_Vernaux *ivernaux;
7181 unsigned int j;
7182
7183 _bfd_elf_swap_verneed_in (abfd, everneed, iverneed);
7184
7185 iverneed->vn_bfd = abfd;
7186
7187 iverneed->vn_filename =
7188 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
7189 iverneed->vn_file);
7190 if (iverneed->vn_filename == NULL)
7191 goto error_return_verref;
7192
7193 if (iverneed->vn_cnt == 0)
7194 iverneed->vn_auxptr = NULL;
7195 else
7196 {
7197 iverneed->vn_auxptr = (struct elf_internal_vernaux *)
7198 bfd_alloc2 (abfd, iverneed->vn_cnt,
7199 sizeof (Elf_Internal_Vernaux));
7200 if (iverneed->vn_auxptr == NULL)
7201 goto error_return_verref;
7202 }
7203
7204 if (iverneed->vn_aux
7205 > (size_t) (contents_end - (bfd_byte *) everneed))
7206 goto error_return_verref;
7207
7208 evernaux = ((Elf_External_Vernaux *)
7209 ((bfd_byte *) everneed + iverneed->vn_aux));
7210 ivernaux = iverneed->vn_auxptr;
7211 for (j = 0; j < iverneed->vn_cnt; j++, ivernaux++)
7212 {
7213 _bfd_elf_swap_vernaux_in (abfd, evernaux, ivernaux);
7214
7215 ivernaux->vna_nodename =
7216 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
7217 ivernaux->vna_name);
7218 if (ivernaux->vna_nodename == NULL)
7219 goto error_return_verref;
7220
7221 if (j + 1 < iverneed->vn_cnt)
7222 ivernaux->vna_nextptr = ivernaux + 1;
7223 else
7224 ivernaux->vna_nextptr = NULL;
7225
7226 if (ivernaux->vna_next
7227 > (size_t) (contents_end - (bfd_byte *) evernaux))
7228 goto error_return_verref;
7229
7230 evernaux = ((Elf_External_Vernaux *)
7231 ((bfd_byte *) evernaux + ivernaux->vna_next));
7232
7233 if (ivernaux->vna_other > freeidx)
7234 freeidx = ivernaux->vna_other;
7235 }
7236
7237 if (i + 1 < hdr->sh_info)
7238 iverneed->vn_nextref = iverneed + 1;
7239 else
7240 iverneed->vn_nextref = NULL;
7241
7242 if (iverneed->vn_next
7243 > (size_t) (contents_end - (bfd_byte *) everneed))
7244 goto error_return_verref;
7245
7246 everneed = ((Elf_External_Verneed *)
7247 ((bfd_byte *) everneed + iverneed->vn_next));
7248 }
7249
7250 free (contents);
7251 contents = NULL;
7252 }
7253
7254 if (elf_dynverdef (abfd) != 0)
7255 {
7256 Elf_Internal_Shdr *hdr;
7257 Elf_External_Verdef *everdef;
7258 Elf_Internal_Verdef *iverdef;
7259 Elf_Internal_Verdef *iverdefarr;
7260 Elf_Internal_Verdef iverdefmem;
7261 unsigned int i;
7262 unsigned int maxidx;
7263 bfd_byte *contents_end_def, *contents_end_aux;
7264
7265 hdr = &elf_tdata (abfd)->dynverdef_hdr;
7266
7267 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
7268 if (contents == NULL)
7269 goto error_return;
7270 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
7271 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
7272 goto error_return;
7273
7274 if (hdr->sh_info && hdr->sh_size < sizeof (Elf_External_Verdef))
7275 goto error_return;
7276
7277 BFD_ASSERT (sizeof (Elf_External_Verdef)
7278 >= sizeof (Elf_External_Verdaux));
7279 contents_end_def = contents + hdr->sh_size
7280 - sizeof (Elf_External_Verdef);
7281 contents_end_aux = contents + hdr->sh_size
7282 - sizeof (Elf_External_Verdaux);
7283
7284 /* We know the number of entries in the section but not the maximum
7285 index. Therefore we have to run through all entries and find
7286 the maximum. */
7287 everdef = (Elf_External_Verdef *) contents;
7288 maxidx = 0;
7289 for (i = 0; i < hdr->sh_info; ++i)
7290 {
7291 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
7292
7293 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) > maxidx)
7294 maxidx = iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION);
7295
7296 if (iverdefmem.vd_next
7297 > (size_t) (contents_end_def - (bfd_byte *) everdef))
7298 goto error_return;
7299
7300 everdef = ((Elf_External_Verdef *)
7301 ((bfd_byte *) everdef + iverdefmem.vd_next));
7302 }
7303
7304 if (default_imported_symver)
7305 {
7306 if (freeidx > maxidx)
7307 maxidx = ++freeidx;
7308 else
7309 freeidx = ++maxidx;
7310 }
7311 elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *)
7312 bfd_zalloc2 (abfd, maxidx, sizeof (Elf_Internal_Verdef));
7313 if (elf_tdata (abfd)->verdef == NULL)
7314 goto error_return;
7315
7316 elf_tdata (abfd)->cverdefs = maxidx;
7317
7318 everdef = (Elf_External_Verdef *) contents;
7319 iverdefarr = elf_tdata (abfd)->verdef;
7320 for (i = 0; i < hdr->sh_info; i++)
7321 {
7322 Elf_External_Verdaux *everdaux;
7323 Elf_Internal_Verdaux *iverdaux;
7324 unsigned int j;
7325
7326 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
7327
7328 if ((iverdefmem.vd_ndx & VERSYM_VERSION) == 0)
7329 {
7330 error_return_verdef:
7331 elf_tdata (abfd)->verdef = NULL;
7332 elf_tdata (abfd)->cverdefs = 0;
7333 goto error_return;
7334 }
7335
7336 iverdef = &iverdefarr[(iverdefmem.vd_ndx & VERSYM_VERSION) - 1];
7337 memcpy (iverdef, &iverdefmem, sizeof (Elf_Internal_Verdef));
7338
7339 iverdef->vd_bfd = abfd;
7340
7341 if (iverdef->vd_cnt == 0)
7342 iverdef->vd_auxptr = NULL;
7343 else
7344 {
7345 iverdef->vd_auxptr = (struct elf_internal_verdaux *)
7346 bfd_alloc2 (abfd, iverdef->vd_cnt,
7347 sizeof (Elf_Internal_Verdaux));
7348 if (iverdef->vd_auxptr == NULL)
7349 goto error_return_verdef;
7350 }
7351
7352 if (iverdef->vd_aux
7353 > (size_t) (contents_end_aux - (bfd_byte *) everdef))
7354 goto error_return_verdef;
7355
7356 everdaux = ((Elf_External_Verdaux *)
7357 ((bfd_byte *) everdef + iverdef->vd_aux));
7358 iverdaux = iverdef->vd_auxptr;
7359 for (j = 0; j < iverdef->vd_cnt; j++, iverdaux++)
7360 {
7361 _bfd_elf_swap_verdaux_in (abfd, everdaux, iverdaux);
7362
7363 iverdaux->vda_nodename =
7364 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
7365 iverdaux->vda_name);
7366 if (iverdaux->vda_nodename == NULL)
7367 goto error_return_verdef;
7368
7369 if (j + 1 < iverdef->vd_cnt)
7370 iverdaux->vda_nextptr = iverdaux + 1;
7371 else
7372 iverdaux->vda_nextptr = NULL;
7373
7374 if (iverdaux->vda_next
7375 > (size_t) (contents_end_aux - (bfd_byte *) everdaux))
7376 goto error_return_verdef;
7377
7378 everdaux = ((Elf_External_Verdaux *)
7379 ((bfd_byte *) everdaux + iverdaux->vda_next));
7380 }
7381
7382 if (iverdef->vd_cnt)
7383 iverdef->vd_nodename = iverdef->vd_auxptr->vda_nodename;
7384
7385 if ((size_t) (iverdef - iverdefarr) + 1 < maxidx)
7386 iverdef->vd_nextdef = iverdef + 1;
7387 else
7388 iverdef->vd_nextdef = NULL;
7389
7390 everdef = ((Elf_External_Verdef *)
7391 ((bfd_byte *) everdef + iverdef->vd_next));
7392 }
7393
7394 free (contents);
7395 contents = NULL;
7396 }
7397 else if (default_imported_symver)
7398 {
7399 if (freeidx < 3)
7400 freeidx = 3;
7401 else
7402 freeidx++;
7403
7404 elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *)
7405 bfd_zalloc2 (abfd, freeidx, sizeof (Elf_Internal_Verdef));
7406 if (elf_tdata (abfd)->verdef == NULL)
7407 goto error_return;
7408
7409 elf_tdata (abfd)->cverdefs = freeidx;
7410 }
7411
7412 /* Create a default version based on the soname. */
7413 if (default_imported_symver)
7414 {
7415 Elf_Internal_Verdef *iverdef;
7416 Elf_Internal_Verdaux *iverdaux;
7417
7418 iverdef = &elf_tdata (abfd)->verdef[freeidx - 1];
7419
7420 iverdef->vd_version = VER_DEF_CURRENT;
7421 iverdef->vd_flags = 0;
7422 iverdef->vd_ndx = freeidx;
7423 iverdef->vd_cnt = 1;
7424
7425 iverdef->vd_bfd = abfd;
7426
7427 iverdef->vd_nodename = bfd_elf_get_dt_soname (abfd);
7428 if (iverdef->vd_nodename == NULL)
7429 goto error_return_verdef;
7430 iverdef->vd_nextdef = NULL;
7431 iverdef->vd_auxptr = (struct elf_internal_verdaux *)
7432 bfd_alloc (abfd, sizeof (Elf_Internal_Verdaux));
7433 if (iverdef->vd_auxptr == NULL)
7434 goto error_return_verdef;
7435
7436 iverdaux = iverdef->vd_auxptr;
7437 iverdaux->vda_nodename = iverdef->vd_nodename;
7438 iverdaux->vda_nextptr = NULL;
7439 }
7440
7441 return TRUE;
7442
7443 error_return:
7444 if (contents != NULL)
7445 free (contents);
7446 return FALSE;
7447 }
7448 \f
7449 asymbol *
7450 _bfd_elf_make_empty_symbol (bfd *abfd)
7451 {
7452 elf_symbol_type *newsym;
7453 bfd_size_type amt = sizeof (elf_symbol_type);
7454
7455 newsym = (elf_symbol_type *) bfd_zalloc (abfd, amt);
7456 if (!newsym)
7457 return NULL;
7458 else
7459 {
7460 newsym->symbol.the_bfd = abfd;
7461 return &newsym->symbol;
7462 }
7463 }
7464
7465 void
7466 _bfd_elf_get_symbol_info (bfd *abfd ATTRIBUTE_UNUSED,
7467 asymbol *symbol,
7468 symbol_info *ret)
7469 {
7470 bfd_symbol_info (symbol, ret);
7471 }
7472
7473 /* Return whether a symbol name implies a local symbol. Most targets
7474 use this function for the is_local_label_name entry point, but some
7475 override it. */
7476
7477 bfd_boolean
7478 _bfd_elf_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED,
7479 const char *name)
7480 {
7481 /* Normal local symbols start with ``.L''. */
7482 if (name[0] == '.' && name[1] == 'L')
7483 return TRUE;
7484
7485 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
7486 DWARF debugging symbols starting with ``..''. */
7487 if (name[0] == '.' && name[1] == '.')
7488 return TRUE;
7489
7490 /* gcc will sometimes generate symbols beginning with ``_.L_'' when
7491 emitting DWARF debugging output. I suspect this is actually a
7492 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
7493 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
7494 underscore to be emitted on some ELF targets). For ease of use,
7495 we treat such symbols as local. */
7496 if (name[0] == '_' && name[1] == '.' && name[2] == 'L' && name[3] == '_')
7497 return TRUE;
7498
7499 return FALSE;
7500 }
7501
7502 alent *
7503 _bfd_elf_get_lineno (bfd *abfd ATTRIBUTE_UNUSED,
7504 asymbol *symbol ATTRIBUTE_UNUSED)
7505 {
7506 abort ();
7507 return NULL;
7508 }
7509
7510 bfd_boolean
7511 _bfd_elf_set_arch_mach (bfd *abfd,
7512 enum bfd_architecture arch,
7513 unsigned long machine)
7514 {
7515 /* If this isn't the right architecture for this backend, and this
7516 isn't the generic backend, fail. */
7517 if (arch != get_elf_backend_data (abfd)->arch
7518 && arch != bfd_arch_unknown
7519 && get_elf_backend_data (abfd)->arch != bfd_arch_unknown)
7520 return FALSE;
7521
7522 return bfd_default_set_arch_mach (abfd, arch, machine);
7523 }
7524
7525 /* Find the function to a particular section and offset,
7526 for error reporting. */
7527
7528 static bfd_boolean
7529 elf_find_function (bfd *abfd,
7530 asection *section,
7531 asymbol **symbols,
7532 bfd_vma offset,
7533 const char **filename_ptr,
7534 const char **functionname_ptr)
7535 {
7536 struct elf_find_function_cache
7537 {
7538 asection *last_section;
7539 asymbol *func;
7540 const char *filename;
7541 bfd_size_type func_size;
7542 } *cache;
7543
7544 if (symbols == NULL)
7545 return FALSE;
7546
7547 cache = elf_tdata (abfd)->elf_find_function_cache;
7548 if (cache == NULL)
7549 {
7550 cache = bfd_zalloc (abfd, sizeof (*cache));
7551 elf_tdata (abfd)->elf_find_function_cache = cache;
7552 if (cache == NULL)
7553 return FALSE;
7554 }
7555 if (cache->last_section != section
7556 || cache->func == NULL
7557 || offset < cache->func->value
7558 || offset >= cache->func->value + cache->func_size)
7559 {
7560 asymbol *file;
7561 bfd_vma low_func;
7562 asymbol **p;
7563 /* ??? Given multiple file symbols, it is impossible to reliably
7564 choose the right file name for global symbols. File symbols are
7565 local symbols, and thus all file symbols must sort before any
7566 global symbols. The ELF spec may be interpreted to say that a
7567 file symbol must sort before other local symbols, but currently
7568 ld -r doesn't do this. So, for ld -r output, it is possible to
7569 make a better choice of file name for local symbols by ignoring
7570 file symbols appearing after a given local symbol. */
7571 enum { nothing_seen, symbol_seen, file_after_symbol_seen } state;
7572 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7573
7574 file = NULL;
7575 low_func = 0;
7576 state = nothing_seen;
7577 cache->filename = NULL;
7578 cache->func = NULL;
7579 cache->func_size = 0;
7580 cache->last_section = section;
7581
7582 for (p = symbols; *p != NULL; p++)
7583 {
7584 asymbol *sym = *p;
7585 bfd_vma code_off;
7586 bfd_size_type size;
7587
7588 if ((sym->flags & BSF_FILE) != 0)
7589 {
7590 file = sym;
7591 if (state == symbol_seen)
7592 state = file_after_symbol_seen;
7593 continue;
7594 }
7595
7596 size = bed->maybe_function_sym (sym, section, &code_off);
7597 if (size != 0
7598 && code_off <= offset
7599 && (code_off > low_func
7600 || (code_off == low_func
7601 && size > cache->func_size)))
7602 {
7603 cache->func = sym;
7604 cache->func_size = size;
7605 cache->filename = NULL;
7606 low_func = code_off;
7607 if (file != NULL
7608 && ((sym->flags & BSF_LOCAL) != 0
7609 || state != file_after_symbol_seen))
7610 cache->filename = bfd_asymbol_name (file);
7611 }
7612 if (state == nothing_seen)
7613 state = symbol_seen;
7614 }
7615 }
7616
7617 if (cache->func == NULL)
7618 return FALSE;
7619
7620 if (filename_ptr)
7621 *filename_ptr = cache->filename;
7622 if (functionname_ptr)
7623 *functionname_ptr = bfd_asymbol_name (cache->func);
7624
7625 return TRUE;
7626 }
7627
7628 /* Find the nearest line to a particular section and offset,
7629 for error reporting. */
7630
7631 bfd_boolean
7632 _bfd_elf_find_nearest_line (bfd *abfd,
7633 asection *section,
7634 asymbol **symbols,
7635 bfd_vma offset,
7636 const char **filename_ptr,
7637 const char **functionname_ptr,
7638 unsigned int *line_ptr)
7639 {
7640 return _bfd_elf_find_nearest_line_discriminator (abfd, section, symbols,
7641 offset, filename_ptr,
7642 functionname_ptr,
7643 line_ptr,
7644 NULL);
7645 }
7646
7647 bfd_boolean
7648 _bfd_elf_find_nearest_line_discriminator (bfd *abfd,
7649 asection *section,
7650 asymbol **symbols,
7651 bfd_vma offset,
7652 const char **filename_ptr,
7653 const char **functionname_ptr,
7654 unsigned int *line_ptr,
7655 unsigned int *discriminator_ptr)
7656 {
7657 bfd_boolean found;
7658
7659 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
7660 filename_ptr, functionname_ptr,
7661 line_ptr))
7662 {
7663 if (!*functionname_ptr)
7664 elf_find_function (abfd, section, symbols, offset,
7665 *filename_ptr ? NULL : filename_ptr,
7666 functionname_ptr);
7667
7668 return TRUE;
7669 }
7670
7671 if (_bfd_dwarf2_find_nearest_line (abfd, dwarf_debug_sections,
7672 section, symbols, offset,
7673 filename_ptr, functionname_ptr,
7674 line_ptr, discriminator_ptr, 0,
7675 &elf_tdata (abfd)->dwarf2_find_line_info))
7676 {
7677 if (!*functionname_ptr)
7678 elf_find_function (abfd, section, symbols, offset,
7679 *filename_ptr ? NULL : filename_ptr,
7680 functionname_ptr);
7681
7682 return TRUE;
7683 }
7684
7685 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
7686 &found, filename_ptr,
7687 functionname_ptr, line_ptr,
7688 &elf_tdata (abfd)->line_info))
7689 return FALSE;
7690 if (found && (*functionname_ptr || *line_ptr))
7691 return TRUE;
7692
7693 if (symbols == NULL)
7694 return FALSE;
7695
7696 if (! elf_find_function (abfd, section, symbols, offset,
7697 filename_ptr, functionname_ptr))
7698 return FALSE;
7699
7700 *line_ptr = 0;
7701 return TRUE;
7702 }
7703
7704 /* Find the line for a symbol. */
7705
7706 bfd_boolean
7707 _bfd_elf_find_line (bfd *abfd, asymbol **symbols, asymbol *symbol,
7708 const char **filename_ptr, unsigned int *line_ptr)
7709 {
7710 return _bfd_elf_find_line_discriminator (abfd, symbols, symbol,
7711 filename_ptr, line_ptr,
7712 NULL);
7713 }
7714
7715 bfd_boolean
7716 _bfd_elf_find_line_discriminator (bfd *abfd, asymbol **symbols, asymbol *symbol,
7717 const char **filename_ptr,
7718 unsigned int *line_ptr,
7719 unsigned int *discriminator_ptr)
7720 {
7721 return _bfd_dwarf2_find_line (abfd, symbols, symbol,
7722 filename_ptr, line_ptr, discriminator_ptr, 0,
7723 &elf_tdata (abfd)->dwarf2_find_line_info);
7724 }
7725
7726 /* After a call to bfd_find_nearest_line, successive calls to
7727 bfd_find_inliner_info can be used to get source information about
7728 each level of function inlining that terminated at the address
7729 passed to bfd_find_nearest_line. Currently this is only supported
7730 for DWARF2 with appropriate DWARF3 extensions. */
7731
7732 bfd_boolean
7733 _bfd_elf_find_inliner_info (bfd *abfd,
7734 const char **filename_ptr,
7735 const char **functionname_ptr,
7736 unsigned int *line_ptr)
7737 {
7738 bfd_boolean found;
7739 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
7740 functionname_ptr, line_ptr,
7741 & elf_tdata (abfd)->dwarf2_find_line_info);
7742 return found;
7743 }
7744
7745 int
7746 _bfd_elf_sizeof_headers (bfd *abfd, struct bfd_link_info *info)
7747 {
7748 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7749 int ret = bed->s->sizeof_ehdr;
7750
7751 if (!info->relocatable)
7752 {
7753 bfd_size_type phdr_size = elf_program_header_size (abfd);
7754
7755 if (phdr_size == (bfd_size_type) -1)
7756 {
7757 struct elf_segment_map *m;
7758
7759 phdr_size = 0;
7760 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
7761 phdr_size += bed->s->sizeof_phdr;
7762
7763 if (phdr_size == 0)
7764 phdr_size = get_program_header_size (abfd, info);
7765 }
7766
7767 elf_program_header_size (abfd) = phdr_size;
7768 ret += phdr_size;
7769 }
7770
7771 return ret;
7772 }
7773
7774 bfd_boolean
7775 _bfd_elf_set_section_contents (bfd *abfd,
7776 sec_ptr section,
7777 const void *location,
7778 file_ptr offset,
7779 bfd_size_type count)
7780 {
7781 Elf_Internal_Shdr *hdr;
7782 bfd_signed_vma pos;
7783
7784 if (! abfd->output_has_begun
7785 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
7786 return FALSE;
7787
7788 hdr = &elf_section_data (section)->this_hdr;
7789 pos = hdr->sh_offset + offset;
7790 if (bfd_seek (abfd, pos, SEEK_SET) != 0
7791 || bfd_bwrite (location, count, abfd) != count)
7792 return FALSE;
7793
7794 return TRUE;
7795 }
7796
7797 void
7798 _bfd_elf_no_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED,
7799 arelent *cache_ptr ATTRIBUTE_UNUSED,
7800 Elf_Internal_Rela *dst ATTRIBUTE_UNUSED)
7801 {
7802 abort ();
7803 }
7804
7805 /* Try to convert a non-ELF reloc into an ELF one. */
7806
7807 bfd_boolean
7808 _bfd_elf_validate_reloc (bfd *abfd, arelent *areloc)
7809 {
7810 /* Check whether we really have an ELF howto. */
7811
7812 if ((*areloc->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec)
7813 {
7814 bfd_reloc_code_real_type code;
7815 reloc_howto_type *howto;
7816
7817 /* Alien reloc: Try to determine its type to replace it with an
7818 equivalent ELF reloc. */
7819
7820 if (areloc->howto->pc_relative)
7821 {
7822 switch (areloc->howto->bitsize)
7823 {
7824 case 8:
7825 code = BFD_RELOC_8_PCREL;
7826 break;
7827 case 12:
7828 code = BFD_RELOC_12_PCREL;
7829 break;
7830 case 16:
7831 code = BFD_RELOC_16_PCREL;
7832 break;
7833 case 24:
7834 code = BFD_RELOC_24_PCREL;
7835 break;
7836 case 32:
7837 code = BFD_RELOC_32_PCREL;
7838 break;
7839 case 64:
7840 code = BFD_RELOC_64_PCREL;
7841 break;
7842 default:
7843 goto fail;
7844 }
7845
7846 howto = bfd_reloc_type_lookup (abfd, code);
7847
7848 if (areloc->howto->pcrel_offset != howto->pcrel_offset)
7849 {
7850 if (howto->pcrel_offset)
7851 areloc->addend += areloc->address;
7852 else
7853 areloc->addend -= areloc->address; /* addend is unsigned!! */
7854 }
7855 }
7856 else
7857 {
7858 switch (areloc->howto->bitsize)
7859 {
7860 case 8:
7861 code = BFD_RELOC_8;
7862 break;
7863 case 14:
7864 code = BFD_RELOC_14;
7865 break;
7866 case 16:
7867 code = BFD_RELOC_16;
7868 break;
7869 case 26:
7870 code = BFD_RELOC_26;
7871 break;
7872 case 32:
7873 code = BFD_RELOC_32;
7874 break;
7875 case 64:
7876 code = BFD_RELOC_64;
7877 break;
7878 default:
7879 goto fail;
7880 }
7881
7882 howto = bfd_reloc_type_lookup (abfd, code);
7883 }
7884
7885 if (howto)
7886 areloc->howto = howto;
7887 else
7888 goto fail;
7889 }
7890
7891 return TRUE;
7892
7893 fail:
7894 (*_bfd_error_handler)
7895 (_("%B: unsupported relocation type %s"),
7896 abfd, areloc->howto->name);
7897 bfd_set_error (bfd_error_bad_value);
7898 return FALSE;
7899 }
7900
7901 bfd_boolean
7902 _bfd_elf_close_and_cleanup (bfd *abfd)
7903 {
7904 struct elf_obj_tdata *tdata = elf_tdata (abfd);
7905 if (bfd_get_format (abfd) == bfd_object && tdata != NULL)
7906 {
7907 if (elf_tdata (abfd)->o != NULL && elf_shstrtab (abfd) != NULL)
7908 _bfd_elf_strtab_free (elf_shstrtab (abfd));
7909 _bfd_dwarf2_cleanup_debug_info (abfd, &tdata->dwarf2_find_line_info);
7910 }
7911
7912 return _bfd_generic_close_and_cleanup (abfd);
7913 }
7914
7915 /* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
7916 in the relocation's offset. Thus we cannot allow any sort of sanity
7917 range-checking to interfere. There is nothing else to do in processing
7918 this reloc. */
7919
7920 bfd_reloc_status_type
7921 _bfd_elf_rel_vtable_reloc_fn
7922 (bfd *abfd ATTRIBUTE_UNUSED, arelent *re ATTRIBUTE_UNUSED,
7923 struct bfd_symbol *symbol ATTRIBUTE_UNUSED,
7924 void *data ATTRIBUTE_UNUSED, asection *is ATTRIBUTE_UNUSED,
7925 bfd *obfd ATTRIBUTE_UNUSED, char **errmsg ATTRIBUTE_UNUSED)
7926 {
7927 return bfd_reloc_ok;
7928 }
7929 \f
7930 /* Elf core file support. Much of this only works on native
7931 toolchains, since we rely on knowing the
7932 machine-dependent procfs structure in order to pick
7933 out details about the corefile. */
7934
7935 #ifdef HAVE_SYS_PROCFS_H
7936 /* Needed for new procfs interface on sparc-solaris. */
7937 # define _STRUCTURED_PROC 1
7938 # include <sys/procfs.h>
7939 #endif
7940
7941 /* Return a PID that identifies a "thread" for threaded cores, or the
7942 PID of the main process for non-threaded cores. */
7943
7944 static int
7945 elfcore_make_pid (bfd *abfd)
7946 {
7947 int pid;
7948
7949 pid = elf_tdata (abfd)->core->lwpid;
7950 if (pid == 0)
7951 pid = elf_tdata (abfd)->core->pid;
7952
7953 return pid;
7954 }
7955
7956 /* If there isn't a section called NAME, make one, using
7957 data from SECT. Note, this function will generate a
7958 reference to NAME, so you shouldn't deallocate or
7959 overwrite it. */
7960
7961 static bfd_boolean
7962 elfcore_maybe_make_sect (bfd *abfd, char *name, asection *sect)
7963 {
7964 asection *sect2;
7965
7966 if (bfd_get_section_by_name (abfd, name) != NULL)
7967 return TRUE;
7968
7969 sect2 = bfd_make_section_with_flags (abfd, name, sect->flags);
7970 if (sect2 == NULL)
7971 return FALSE;
7972
7973 sect2->size = sect->size;
7974 sect2->filepos = sect->filepos;
7975 sect2->alignment_power = sect->alignment_power;
7976 return TRUE;
7977 }
7978
7979 /* Create a pseudosection containing SIZE bytes at FILEPOS. This
7980 actually creates up to two pseudosections:
7981 - For the single-threaded case, a section named NAME, unless
7982 such a section already exists.
7983 - For the multi-threaded case, a section named "NAME/PID", where
7984 PID is elfcore_make_pid (abfd).
7985 Both pseudosections have identical contents. */
7986 bfd_boolean
7987 _bfd_elfcore_make_pseudosection (bfd *abfd,
7988 char *name,
7989 size_t size,
7990 ufile_ptr filepos)
7991 {
7992 char buf[100];
7993 char *threaded_name;
7994 size_t len;
7995 asection *sect;
7996
7997 /* Build the section name. */
7998
7999 sprintf (buf, "%s/%d", name, elfcore_make_pid (abfd));
8000 len = strlen (buf) + 1;
8001 threaded_name = (char *) bfd_alloc (abfd, len);
8002 if (threaded_name == NULL)
8003 return FALSE;
8004 memcpy (threaded_name, buf, len);
8005
8006 sect = bfd_make_section_anyway_with_flags (abfd, threaded_name,
8007 SEC_HAS_CONTENTS);
8008 if (sect == NULL)
8009 return FALSE;
8010 sect->size = size;
8011 sect->filepos = filepos;
8012 sect->alignment_power = 2;
8013
8014 return elfcore_maybe_make_sect (abfd, name, sect);
8015 }
8016
8017 /* prstatus_t exists on:
8018 solaris 2.5+
8019 linux 2.[01] + glibc
8020 unixware 4.2
8021 */
8022
8023 #if defined (HAVE_PRSTATUS_T)
8024
8025 static bfd_boolean
8026 elfcore_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
8027 {
8028 size_t size;
8029 int offset;
8030
8031 if (note->descsz == sizeof (prstatus_t))
8032 {
8033 prstatus_t prstat;
8034
8035 size = sizeof (prstat.pr_reg);
8036 offset = offsetof (prstatus_t, pr_reg);
8037 memcpy (&prstat, note->descdata, sizeof (prstat));
8038
8039 /* Do not overwrite the core signal if it
8040 has already been set by another thread. */
8041 if (elf_tdata (abfd)->core->signal == 0)
8042 elf_tdata (abfd)->core->signal = prstat.pr_cursig;
8043 if (elf_tdata (abfd)->core->pid == 0)
8044 elf_tdata (abfd)->core->pid = prstat.pr_pid;
8045
8046 /* pr_who exists on:
8047 solaris 2.5+
8048 unixware 4.2
8049 pr_who doesn't exist on:
8050 linux 2.[01]
8051 */
8052 #if defined (HAVE_PRSTATUS_T_PR_WHO)
8053 elf_tdata (abfd)->core->lwpid = prstat.pr_who;
8054 #else
8055 elf_tdata (abfd)->core->lwpid = prstat.pr_pid;
8056 #endif
8057 }
8058 #if defined (HAVE_PRSTATUS32_T)
8059 else if (note->descsz == sizeof (prstatus32_t))
8060 {
8061 /* 64-bit host, 32-bit corefile */
8062 prstatus32_t prstat;
8063
8064 size = sizeof (prstat.pr_reg);
8065 offset = offsetof (prstatus32_t, pr_reg);
8066 memcpy (&prstat, note->descdata, sizeof (prstat));
8067
8068 /* Do not overwrite the core signal if it
8069 has already been set by another thread. */
8070 if (elf_tdata (abfd)->core->signal == 0)
8071 elf_tdata (abfd)->core->signal = prstat.pr_cursig;
8072 if (elf_tdata (abfd)->core->pid == 0)
8073 elf_tdata (abfd)->core->pid = prstat.pr_pid;
8074
8075 /* pr_who exists on:
8076 solaris 2.5+
8077 unixware 4.2
8078 pr_who doesn't exist on:
8079 linux 2.[01]
8080 */
8081 #if defined (HAVE_PRSTATUS32_T_PR_WHO)
8082 elf_tdata (abfd)->core->lwpid = prstat.pr_who;
8083 #else
8084 elf_tdata (abfd)->core->lwpid = prstat.pr_pid;
8085 #endif
8086 }
8087 #endif /* HAVE_PRSTATUS32_T */
8088 else
8089 {
8090 /* Fail - we don't know how to handle any other
8091 note size (ie. data object type). */
8092 return TRUE;
8093 }
8094
8095 /* Make a ".reg/999" section and a ".reg" section. */
8096 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
8097 size, note->descpos + offset);
8098 }
8099 #endif /* defined (HAVE_PRSTATUS_T) */
8100
8101 /* Create a pseudosection containing the exact contents of NOTE. */
8102 static bfd_boolean
8103 elfcore_make_note_pseudosection (bfd *abfd,
8104 char *name,
8105 Elf_Internal_Note *note)
8106 {
8107 return _bfd_elfcore_make_pseudosection (abfd, name,
8108 note->descsz, note->descpos);
8109 }
8110
8111 /* There isn't a consistent prfpregset_t across platforms,
8112 but it doesn't matter, because we don't have to pick this
8113 data structure apart. */
8114
8115 static bfd_boolean
8116 elfcore_grok_prfpreg (bfd *abfd, Elf_Internal_Note *note)
8117 {
8118 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
8119 }
8120
8121 /* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
8122 type of NT_PRXFPREG. Just include the whole note's contents
8123 literally. */
8124
8125 static bfd_boolean
8126 elfcore_grok_prxfpreg (bfd *abfd, Elf_Internal_Note *note)
8127 {
8128 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
8129 }
8130
8131 /* Linux dumps the Intel XSAVE extended state in a note named "LINUX"
8132 with a note type of NT_X86_XSTATE. Just include the whole note's
8133 contents literally. */
8134
8135 static bfd_boolean
8136 elfcore_grok_xstatereg (bfd *abfd, Elf_Internal_Note *note)
8137 {
8138 return elfcore_make_note_pseudosection (abfd, ".reg-xstate", note);
8139 }
8140
8141 static bfd_boolean
8142 elfcore_grok_ppc_vmx (bfd *abfd, Elf_Internal_Note *note)
8143 {
8144 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vmx", note);
8145 }
8146
8147 static bfd_boolean
8148 elfcore_grok_ppc_vsx (bfd *abfd, Elf_Internal_Note *note)
8149 {
8150 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vsx", note);
8151 }
8152
8153 static bfd_boolean
8154 elfcore_grok_s390_high_gprs (bfd *abfd, Elf_Internal_Note *note)
8155 {
8156 return elfcore_make_note_pseudosection (abfd, ".reg-s390-high-gprs", note);
8157 }
8158
8159 static bfd_boolean
8160 elfcore_grok_s390_timer (bfd *abfd, Elf_Internal_Note *note)
8161 {
8162 return elfcore_make_note_pseudosection (abfd, ".reg-s390-timer", note);
8163 }
8164
8165 static bfd_boolean
8166 elfcore_grok_s390_todcmp (bfd *abfd, Elf_Internal_Note *note)
8167 {
8168 return elfcore_make_note_pseudosection (abfd, ".reg-s390-todcmp", note);
8169 }
8170
8171 static bfd_boolean
8172 elfcore_grok_s390_todpreg (bfd *abfd, Elf_Internal_Note *note)
8173 {
8174 return elfcore_make_note_pseudosection (abfd, ".reg-s390-todpreg", note);
8175 }
8176
8177 static bfd_boolean
8178 elfcore_grok_s390_ctrs (bfd *abfd, Elf_Internal_Note *note)
8179 {
8180 return elfcore_make_note_pseudosection (abfd, ".reg-s390-ctrs", note);
8181 }
8182
8183 static bfd_boolean
8184 elfcore_grok_s390_prefix (bfd *abfd, Elf_Internal_Note *note)
8185 {
8186 return elfcore_make_note_pseudosection (abfd, ".reg-s390-prefix", note);
8187 }
8188
8189 static bfd_boolean
8190 elfcore_grok_s390_last_break (bfd *abfd, Elf_Internal_Note *note)
8191 {
8192 return elfcore_make_note_pseudosection (abfd, ".reg-s390-last-break", note);
8193 }
8194
8195 static bfd_boolean
8196 elfcore_grok_s390_system_call (bfd *abfd, Elf_Internal_Note *note)
8197 {
8198 return elfcore_make_note_pseudosection (abfd, ".reg-s390-system-call", note);
8199 }
8200
8201 static bfd_boolean
8202 elfcore_grok_s390_tdb (bfd *abfd, Elf_Internal_Note *note)
8203 {
8204 return elfcore_make_note_pseudosection (abfd, ".reg-s390-tdb", note);
8205 }
8206
8207 static bfd_boolean
8208 elfcore_grok_arm_vfp (bfd *abfd, Elf_Internal_Note *note)
8209 {
8210 return elfcore_make_note_pseudosection (abfd, ".reg-arm-vfp", note);
8211 }
8212
8213 static bfd_boolean
8214 elfcore_grok_aarch_tls (bfd *abfd, Elf_Internal_Note *note)
8215 {
8216 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-tls", note);
8217 }
8218
8219 static bfd_boolean
8220 elfcore_grok_aarch_hw_break (bfd *abfd, Elf_Internal_Note *note)
8221 {
8222 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-hw-break", note);
8223 }
8224
8225 static bfd_boolean
8226 elfcore_grok_aarch_hw_watch (bfd *abfd, Elf_Internal_Note *note)
8227 {
8228 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-hw-watch", note);
8229 }
8230
8231 #if defined (HAVE_PRPSINFO_T)
8232 typedef prpsinfo_t elfcore_psinfo_t;
8233 #if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
8234 typedef prpsinfo32_t elfcore_psinfo32_t;
8235 #endif
8236 #endif
8237
8238 #if defined (HAVE_PSINFO_T)
8239 typedef psinfo_t elfcore_psinfo_t;
8240 #if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
8241 typedef psinfo32_t elfcore_psinfo32_t;
8242 #endif
8243 #endif
8244
8245 /* return a malloc'ed copy of a string at START which is at
8246 most MAX bytes long, possibly without a terminating '\0'.
8247 the copy will always have a terminating '\0'. */
8248
8249 char *
8250 _bfd_elfcore_strndup (bfd *abfd, char *start, size_t max)
8251 {
8252 char *dups;
8253 char *end = (char *) memchr (start, '\0', max);
8254 size_t len;
8255
8256 if (end == NULL)
8257 len = max;
8258 else
8259 len = end - start;
8260
8261 dups = (char *) bfd_alloc (abfd, len + 1);
8262 if (dups == NULL)
8263 return NULL;
8264
8265 memcpy (dups, start, len);
8266 dups[len] = '\0';
8267
8268 return dups;
8269 }
8270
8271 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
8272 static bfd_boolean
8273 elfcore_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
8274 {
8275 if (note->descsz == sizeof (elfcore_psinfo_t))
8276 {
8277 elfcore_psinfo_t psinfo;
8278
8279 memcpy (&psinfo, note->descdata, sizeof (psinfo));
8280
8281 #if defined (HAVE_PSINFO_T_PR_PID) || defined (HAVE_PRPSINFO_T_PR_PID)
8282 elf_tdata (abfd)->core->pid = psinfo.pr_pid;
8283 #endif
8284 elf_tdata (abfd)->core->program
8285 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
8286 sizeof (psinfo.pr_fname));
8287
8288 elf_tdata (abfd)->core->command
8289 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
8290 sizeof (psinfo.pr_psargs));
8291 }
8292 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
8293 else if (note->descsz == sizeof (elfcore_psinfo32_t))
8294 {
8295 /* 64-bit host, 32-bit corefile */
8296 elfcore_psinfo32_t psinfo;
8297
8298 memcpy (&psinfo, note->descdata, sizeof (psinfo));
8299
8300 #if defined (HAVE_PSINFO32_T_PR_PID) || defined (HAVE_PRPSINFO32_T_PR_PID)
8301 elf_tdata (abfd)->core->pid = psinfo.pr_pid;
8302 #endif
8303 elf_tdata (abfd)->core->program
8304 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
8305 sizeof (psinfo.pr_fname));
8306
8307 elf_tdata (abfd)->core->command
8308 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
8309 sizeof (psinfo.pr_psargs));
8310 }
8311 #endif
8312
8313 else
8314 {
8315 /* Fail - we don't know how to handle any other
8316 note size (ie. data object type). */
8317 return TRUE;
8318 }
8319
8320 /* Note that for some reason, a spurious space is tacked
8321 onto the end of the args in some (at least one anyway)
8322 implementations, so strip it off if it exists. */
8323
8324 {
8325 char *command = elf_tdata (abfd)->core->command;
8326 int n = strlen (command);
8327
8328 if (0 < n && command[n - 1] == ' ')
8329 command[n - 1] = '\0';
8330 }
8331
8332 return TRUE;
8333 }
8334 #endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
8335
8336 #if defined (HAVE_PSTATUS_T)
8337 static bfd_boolean
8338 elfcore_grok_pstatus (bfd *abfd, Elf_Internal_Note *note)
8339 {
8340 if (note->descsz == sizeof (pstatus_t)
8341 #if defined (HAVE_PXSTATUS_T)
8342 || note->descsz == sizeof (pxstatus_t)
8343 #endif
8344 )
8345 {
8346 pstatus_t pstat;
8347
8348 memcpy (&pstat, note->descdata, sizeof (pstat));
8349
8350 elf_tdata (abfd)->core->pid = pstat.pr_pid;
8351 }
8352 #if defined (HAVE_PSTATUS32_T)
8353 else if (note->descsz == sizeof (pstatus32_t))
8354 {
8355 /* 64-bit host, 32-bit corefile */
8356 pstatus32_t pstat;
8357
8358 memcpy (&pstat, note->descdata, sizeof (pstat));
8359
8360 elf_tdata (abfd)->core->pid = pstat.pr_pid;
8361 }
8362 #endif
8363 /* Could grab some more details from the "representative"
8364 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
8365 NT_LWPSTATUS note, presumably. */
8366
8367 return TRUE;
8368 }
8369 #endif /* defined (HAVE_PSTATUS_T) */
8370
8371 #if defined (HAVE_LWPSTATUS_T)
8372 static bfd_boolean
8373 elfcore_grok_lwpstatus (bfd *abfd, Elf_Internal_Note *note)
8374 {
8375 lwpstatus_t lwpstat;
8376 char buf[100];
8377 char *name;
8378 size_t len;
8379 asection *sect;
8380
8381 if (note->descsz != sizeof (lwpstat)
8382 #if defined (HAVE_LWPXSTATUS_T)
8383 && note->descsz != sizeof (lwpxstatus_t)
8384 #endif
8385 )
8386 return TRUE;
8387
8388 memcpy (&lwpstat, note->descdata, sizeof (lwpstat));
8389
8390 elf_tdata (abfd)->core->lwpid = lwpstat.pr_lwpid;
8391 /* Do not overwrite the core signal if it has already been set by
8392 another thread. */
8393 if (elf_tdata (abfd)->core->signal == 0)
8394 elf_tdata (abfd)->core->signal = lwpstat.pr_cursig;
8395
8396 /* Make a ".reg/999" section. */
8397
8398 sprintf (buf, ".reg/%d", elfcore_make_pid (abfd));
8399 len = strlen (buf) + 1;
8400 name = bfd_alloc (abfd, len);
8401 if (name == NULL)
8402 return FALSE;
8403 memcpy (name, buf, len);
8404
8405 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8406 if (sect == NULL)
8407 return FALSE;
8408
8409 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
8410 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.gregs);
8411 sect->filepos = note->descpos
8412 + offsetof (lwpstatus_t, pr_context.uc_mcontext.gregs);
8413 #endif
8414
8415 #if defined (HAVE_LWPSTATUS_T_PR_REG)
8416 sect->size = sizeof (lwpstat.pr_reg);
8417 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_reg);
8418 #endif
8419
8420 sect->alignment_power = 2;
8421
8422 if (!elfcore_maybe_make_sect (abfd, ".reg", sect))
8423 return FALSE;
8424
8425 /* Make a ".reg2/999" section */
8426
8427 sprintf (buf, ".reg2/%d", elfcore_make_pid (abfd));
8428 len = strlen (buf) + 1;
8429 name = bfd_alloc (abfd, len);
8430 if (name == NULL)
8431 return FALSE;
8432 memcpy (name, buf, len);
8433
8434 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8435 if (sect == NULL)
8436 return FALSE;
8437
8438 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
8439 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.fpregs);
8440 sect->filepos = note->descpos
8441 + offsetof (lwpstatus_t, pr_context.uc_mcontext.fpregs);
8442 #endif
8443
8444 #if defined (HAVE_LWPSTATUS_T_PR_FPREG)
8445 sect->size = sizeof (lwpstat.pr_fpreg);
8446 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_fpreg);
8447 #endif
8448
8449 sect->alignment_power = 2;
8450
8451 return elfcore_maybe_make_sect (abfd, ".reg2", sect);
8452 }
8453 #endif /* defined (HAVE_LWPSTATUS_T) */
8454
8455 static bfd_boolean
8456 elfcore_grok_win32pstatus (bfd *abfd, Elf_Internal_Note *note)
8457 {
8458 char buf[30];
8459 char *name;
8460 size_t len;
8461 asection *sect;
8462 int type;
8463 int is_active_thread;
8464 bfd_vma base_addr;
8465
8466 if (note->descsz < 728)
8467 return TRUE;
8468
8469 if (! CONST_STRNEQ (note->namedata, "win32"))
8470 return TRUE;
8471
8472 type = bfd_get_32 (abfd, note->descdata);
8473
8474 switch (type)
8475 {
8476 case 1 /* NOTE_INFO_PROCESS */:
8477 /* FIXME: need to add ->core->command. */
8478 /* process_info.pid */
8479 elf_tdata (abfd)->core->pid = bfd_get_32 (abfd, note->descdata + 8);
8480 /* process_info.signal */
8481 elf_tdata (abfd)->core->signal = bfd_get_32 (abfd, note->descdata + 12);
8482 break;
8483
8484 case 2 /* NOTE_INFO_THREAD */:
8485 /* Make a ".reg/999" section. */
8486 /* thread_info.tid */
8487 sprintf (buf, ".reg/%ld", (long) bfd_get_32 (abfd, note->descdata + 8));
8488
8489 len = strlen (buf) + 1;
8490 name = (char *) bfd_alloc (abfd, len);
8491 if (name == NULL)
8492 return FALSE;
8493
8494 memcpy (name, buf, len);
8495
8496 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8497 if (sect == NULL)
8498 return FALSE;
8499
8500 /* sizeof (thread_info.thread_context) */
8501 sect->size = 716;
8502 /* offsetof (thread_info.thread_context) */
8503 sect->filepos = note->descpos + 12;
8504 sect->alignment_power = 2;
8505
8506 /* thread_info.is_active_thread */
8507 is_active_thread = bfd_get_32 (abfd, note->descdata + 8);
8508
8509 if (is_active_thread)
8510 if (! elfcore_maybe_make_sect (abfd, ".reg", sect))
8511 return FALSE;
8512 break;
8513
8514 case 3 /* NOTE_INFO_MODULE */:
8515 /* Make a ".module/xxxxxxxx" section. */
8516 /* module_info.base_address */
8517 base_addr = bfd_get_32 (abfd, note->descdata + 4);
8518 sprintf (buf, ".module/%08lx", (unsigned long) base_addr);
8519
8520 len = strlen (buf) + 1;
8521 name = (char *) bfd_alloc (abfd, len);
8522 if (name == NULL)
8523 return FALSE;
8524
8525 memcpy (name, buf, len);
8526
8527 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8528
8529 if (sect == NULL)
8530 return FALSE;
8531
8532 sect->size = note->descsz;
8533 sect->filepos = note->descpos;
8534 sect->alignment_power = 2;
8535 break;
8536
8537 default:
8538 return TRUE;
8539 }
8540
8541 return TRUE;
8542 }
8543
8544 static bfd_boolean
8545 elfcore_grok_note (bfd *abfd, Elf_Internal_Note *note)
8546 {
8547 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8548
8549 switch (note->type)
8550 {
8551 default:
8552 return TRUE;
8553
8554 case NT_PRSTATUS:
8555 if (bed->elf_backend_grok_prstatus)
8556 if ((*bed->elf_backend_grok_prstatus) (abfd, note))
8557 return TRUE;
8558 #if defined (HAVE_PRSTATUS_T)
8559 return elfcore_grok_prstatus (abfd, note);
8560 #else
8561 return TRUE;
8562 #endif
8563
8564 #if defined (HAVE_PSTATUS_T)
8565 case NT_PSTATUS:
8566 return elfcore_grok_pstatus (abfd, note);
8567 #endif
8568
8569 #if defined (HAVE_LWPSTATUS_T)
8570 case NT_LWPSTATUS:
8571 return elfcore_grok_lwpstatus (abfd, note);
8572 #endif
8573
8574 case NT_FPREGSET: /* FIXME: rename to NT_PRFPREG */
8575 return elfcore_grok_prfpreg (abfd, note);
8576
8577 case NT_WIN32PSTATUS:
8578 return elfcore_grok_win32pstatus (abfd, note);
8579
8580 case NT_PRXFPREG: /* Linux SSE extension */
8581 if (note->namesz == 6
8582 && strcmp (note->namedata, "LINUX") == 0)
8583 return elfcore_grok_prxfpreg (abfd, note);
8584 else
8585 return TRUE;
8586
8587 case NT_X86_XSTATE: /* Linux XSAVE extension */
8588 if (note->namesz == 6
8589 && strcmp (note->namedata, "LINUX") == 0)
8590 return elfcore_grok_xstatereg (abfd, note);
8591 else
8592 return TRUE;
8593
8594 case NT_PPC_VMX:
8595 if (note->namesz == 6
8596 && strcmp (note->namedata, "LINUX") == 0)
8597 return elfcore_grok_ppc_vmx (abfd, note);
8598 else
8599 return TRUE;
8600
8601 case NT_PPC_VSX:
8602 if (note->namesz == 6
8603 && strcmp (note->namedata, "LINUX") == 0)
8604 return elfcore_grok_ppc_vsx (abfd, note);
8605 else
8606 return TRUE;
8607
8608 case NT_S390_HIGH_GPRS:
8609 if (note->namesz == 6
8610 && strcmp (note->namedata, "LINUX") == 0)
8611 return elfcore_grok_s390_high_gprs (abfd, note);
8612 else
8613 return TRUE;
8614
8615 case NT_S390_TIMER:
8616 if (note->namesz == 6
8617 && strcmp (note->namedata, "LINUX") == 0)
8618 return elfcore_grok_s390_timer (abfd, note);
8619 else
8620 return TRUE;
8621
8622 case NT_S390_TODCMP:
8623 if (note->namesz == 6
8624 && strcmp (note->namedata, "LINUX") == 0)
8625 return elfcore_grok_s390_todcmp (abfd, note);
8626 else
8627 return TRUE;
8628
8629 case NT_S390_TODPREG:
8630 if (note->namesz == 6
8631 && strcmp (note->namedata, "LINUX") == 0)
8632 return elfcore_grok_s390_todpreg (abfd, note);
8633 else
8634 return TRUE;
8635
8636 case NT_S390_CTRS:
8637 if (note->namesz == 6
8638 && strcmp (note->namedata, "LINUX") == 0)
8639 return elfcore_grok_s390_ctrs (abfd, note);
8640 else
8641 return TRUE;
8642
8643 case NT_S390_PREFIX:
8644 if (note->namesz == 6
8645 && strcmp (note->namedata, "LINUX") == 0)
8646 return elfcore_grok_s390_prefix (abfd, note);
8647 else
8648 return TRUE;
8649
8650 case NT_S390_LAST_BREAK:
8651 if (note->namesz == 6
8652 && strcmp (note->namedata, "LINUX") == 0)
8653 return elfcore_grok_s390_last_break (abfd, note);
8654 else
8655 return TRUE;
8656
8657 case NT_S390_SYSTEM_CALL:
8658 if (note->namesz == 6
8659 && strcmp (note->namedata, "LINUX") == 0)
8660 return elfcore_grok_s390_system_call (abfd, note);
8661 else
8662 return TRUE;
8663
8664 case NT_S390_TDB:
8665 if (note->namesz == 6
8666 && strcmp (note->namedata, "LINUX") == 0)
8667 return elfcore_grok_s390_tdb (abfd, note);
8668 else
8669 return TRUE;
8670
8671 case NT_ARM_VFP:
8672 if (note->namesz == 6
8673 && strcmp (note->namedata, "LINUX") == 0)
8674 return elfcore_grok_arm_vfp (abfd, note);
8675 else
8676 return TRUE;
8677
8678 case NT_ARM_TLS:
8679 if (note->namesz == 6
8680 && strcmp (note->namedata, "LINUX") == 0)
8681 return elfcore_grok_aarch_tls (abfd, note);
8682 else
8683 return TRUE;
8684
8685 case NT_ARM_HW_BREAK:
8686 if (note->namesz == 6
8687 && strcmp (note->namedata, "LINUX") == 0)
8688 return elfcore_grok_aarch_hw_break (abfd, note);
8689 else
8690 return TRUE;
8691
8692 case NT_ARM_HW_WATCH:
8693 if (note->namesz == 6
8694 && strcmp (note->namedata, "LINUX") == 0)
8695 return elfcore_grok_aarch_hw_watch (abfd, note);
8696 else
8697 return TRUE;
8698
8699 case NT_PRPSINFO:
8700 case NT_PSINFO:
8701 if (bed->elf_backend_grok_psinfo)
8702 if ((*bed->elf_backend_grok_psinfo) (abfd, note))
8703 return TRUE;
8704 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
8705 return elfcore_grok_psinfo (abfd, note);
8706 #else
8707 return TRUE;
8708 #endif
8709
8710 case NT_AUXV:
8711 {
8712 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
8713 SEC_HAS_CONTENTS);
8714
8715 if (sect == NULL)
8716 return FALSE;
8717 sect->size = note->descsz;
8718 sect->filepos = note->descpos;
8719 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
8720
8721 return TRUE;
8722 }
8723
8724 case NT_FILE:
8725 return elfcore_make_note_pseudosection (abfd, ".note.linuxcore.file",
8726 note);
8727
8728 case NT_SIGINFO:
8729 return elfcore_make_note_pseudosection (abfd, ".note.linuxcore.siginfo",
8730 note);
8731 }
8732 }
8733
8734 static bfd_boolean
8735 elfobj_grok_gnu_build_id (bfd *abfd, Elf_Internal_Note *note)
8736 {
8737 struct elf_obj_tdata *t;
8738
8739 if (note->descsz == 0)
8740 return FALSE;
8741
8742 t = elf_tdata (abfd);
8743 t->build_id = bfd_alloc (abfd, sizeof (*t->build_id) - 1 + note->descsz);
8744 if (t->build_id == NULL)
8745 return FALSE;
8746
8747 t->build_id->size = note->descsz;
8748 memcpy (t->build_id->data, note->descdata, note->descsz);
8749
8750 return TRUE;
8751 }
8752
8753 static bfd_boolean
8754 elfobj_grok_gnu_note (bfd *abfd, Elf_Internal_Note *note)
8755 {
8756 switch (note->type)
8757 {
8758 default:
8759 return TRUE;
8760
8761 case NT_GNU_BUILD_ID:
8762 return elfobj_grok_gnu_build_id (abfd, note);
8763 }
8764 }
8765
8766 static bfd_boolean
8767 elfobj_grok_stapsdt_note_1 (bfd *abfd, Elf_Internal_Note *note)
8768 {
8769 struct sdt_note *cur =
8770 (struct sdt_note *) bfd_alloc (abfd, sizeof (struct sdt_note)
8771 + note->descsz);
8772
8773 cur->next = (struct sdt_note *) (elf_tdata (abfd))->sdt_note_head;
8774 cur->size = (bfd_size_type) note->descsz;
8775 memcpy (cur->data, note->descdata, note->descsz);
8776
8777 elf_tdata (abfd)->sdt_note_head = cur;
8778
8779 return TRUE;
8780 }
8781
8782 static bfd_boolean
8783 elfobj_grok_stapsdt_note (bfd *abfd, Elf_Internal_Note *note)
8784 {
8785 switch (note->type)
8786 {
8787 case NT_STAPSDT:
8788 return elfobj_grok_stapsdt_note_1 (abfd, note);
8789
8790 default:
8791 return TRUE;
8792 }
8793 }
8794
8795 static bfd_boolean
8796 elfcore_netbsd_get_lwpid (Elf_Internal_Note *note, int *lwpidp)
8797 {
8798 char *cp;
8799
8800 cp = strchr (note->namedata, '@');
8801 if (cp != NULL)
8802 {
8803 *lwpidp = atoi(cp + 1);
8804 return TRUE;
8805 }
8806 return FALSE;
8807 }
8808
8809 static bfd_boolean
8810 elfcore_grok_netbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
8811 {
8812 /* Signal number at offset 0x08. */
8813 elf_tdata (abfd)->core->signal
8814 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
8815
8816 /* Process ID at offset 0x50. */
8817 elf_tdata (abfd)->core->pid
8818 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x50);
8819
8820 /* Command name at 0x7c (max 32 bytes, including nul). */
8821 elf_tdata (abfd)->core->command
8822 = _bfd_elfcore_strndup (abfd, note->descdata + 0x7c, 31);
8823
8824 return elfcore_make_note_pseudosection (abfd, ".note.netbsdcore.procinfo",
8825 note);
8826 }
8827
8828 static bfd_boolean
8829 elfcore_grok_netbsd_note (bfd *abfd, Elf_Internal_Note *note)
8830 {
8831 int lwp;
8832
8833 if (elfcore_netbsd_get_lwpid (note, &lwp))
8834 elf_tdata (abfd)->core->lwpid = lwp;
8835
8836 if (note->type == NT_NETBSDCORE_PROCINFO)
8837 {
8838 /* NetBSD-specific core "procinfo". Note that we expect to
8839 find this note before any of the others, which is fine,
8840 since the kernel writes this note out first when it
8841 creates a core file. */
8842
8843 return elfcore_grok_netbsd_procinfo (abfd, note);
8844 }
8845
8846 /* As of Jan 2002 there are no other machine-independent notes
8847 defined for NetBSD core files. If the note type is less
8848 than the start of the machine-dependent note types, we don't
8849 understand it. */
8850
8851 if (note->type < NT_NETBSDCORE_FIRSTMACH)
8852 return TRUE;
8853
8854
8855 switch (bfd_get_arch (abfd))
8856 {
8857 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
8858 PT_GETFPREGS == mach+2. */
8859
8860 case bfd_arch_alpha:
8861 case bfd_arch_sparc:
8862 switch (note->type)
8863 {
8864 case NT_NETBSDCORE_FIRSTMACH+0:
8865 return elfcore_make_note_pseudosection (abfd, ".reg", note);
8866
8867 case NT_NETBSDCORE_FIRSTMACH+2:
8868 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
8869
8870 default:
8871 return TRUE;
8872 }
8873
8874 /* On all other arch's, PT_GETREGS == mach+1 and
8875 PT_GETFPREGS == mach+3. */
8876
8877 default:
8878 switch (note->type)
8879 {
8880 case NT_NETBSDCORE_FIRSTMACH+1:
8881 return elfcore_make_note_pseudosection (abfd, ".reg", note);
8882
8883 case NT_NETBSDCORE_FIRSTMACH+3:
8884 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
8885
8886 default:
8887 return TRUE;
8888 }
8889 }
8890 /* NOTREACHED */
8891 }
8892
8893 static bfd_boolean
8894 elfcore_grok_openbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
8895 {
8896 /* Signal number at offset 0x08. */
8897 elf_tdata (abfd)->core->signal
8898 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
8899
8900 /* Process ID at offset 0x20. */
8901 elf_tdata (abfd)->core->pid
8902 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x20);
8903
8904 /* Command name at 0x48 (max 32 bytes, including nul). */
8905 elf_tdata (abfd)->core->command
8906 = _bfd_elfcore_strndup (abfd, note->descdata + 0x48, 31);
8907
8908 return TRUE;
8909 }
8910
8911 static bfd_boolean
8912 elfcore_grok_openbsd_note (bfd *abfd, Elf_Internal_Note *note)
8913 {
8914 if (note->type == NT_OPENBSD_PROCINFO)
8915 return elfcore_grok_openbsd_procinfo (abfd, note);
8916
8917 if (note->type == NT_OPENBSD_REGS)
8918 return elfcore_make_note_pseudosection (abfd, ".reg", note);
8919
8920 if (note->type == NT_OPENBSD_FPREGS)
8921 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
8922
8923 if (note->type == NT_OPENBSD_XFPREGS)
8924 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
8925
8926 if (note->type == NT_OPENBSD_AUXV)
8927 {
8928 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
8929 SEC_HAS_CONTENTS);
8930
8931 if (sect == NULL)
8932 return FALSE;
8933 sect->size = note->descsz;
8934 sect->filepos = note->descpos;
8935 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
8936
8937 return TRUE;
8938 }
8939
8940 if (note->type == NT_OPENBSD_WCOOKIE)
8941 {
8942 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".wcookie",
8943 SEC_HAS_CONTENTS);
8944
8945 if (sect == NULL)
8946 return FALSE;
8947 sect->size = note->descsz;
8948 sect->filepos = note->descpos;
8949 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
8950
8951 return TRUE;
8952 }
8953
8954 return TRUE;
8955 }
8956
8957 static bfd_boolean
8958 elfcore_grok_nto_status (bfd *abfd, Elf_Internal_Note *note, long *tid)
8959 {
8960 void *ddata = note->descdata;
8961 char buf[100];
8962 char *name;
8963 asection *sect;
8964 short sig;
8965 unsigned flags;
8966
8967 /* nto_procfs_status 'pid' field is at offset 0. */
8968 elf_tdata (abfd)->core->pid = bfd_get_32 (abfd, (bfd_byte *) ddata);
8969
8970 /* nto_procfs_status 'tid' field is at offset 4. Pass it back. */
8971 *tid = bfd_get_32 (abfd, (bfd_byte *) ddata + 4);
8972
8973 /* nto_procfs_status 'flags' field is at offset 8. */
8974 flags = bfd_get_32 (abfd, (bfd_byte *) ddata + 8);
8975
8976 /* nto_procfs_status 'what' field is at offset 14. */
8977 if ((sig = bfd_get_16 (abfd, (bfd_byte *) ddata + 14)) > 0)
8978 {
8979 elf_tdata (abfd)->core->signal = sig;
8980 elf_tdata (abfd)->core->lwpid = *tid;
8981 }
8982
8983 /* _DEBUG_FLAG_CURTID (current thread) is 0x80. Some cores
8984 do not come from signals so we make sure we set the current
8985 thread just in case. */
8986 if (flags & 0x00000080)
8987 elf_tdata (abfd)->core->lwpid = *tid;
8988
8989 /* Make a ".qnx_core_status/%d" section. */
8990 sprintf (buf, ".qnx_core_status/%ld", *tid);
8991
8992 name = (char *) bfd_alloc (abfd, strlen (buf) + 1);
8993 if (name == NULL)
8994 return FALSE;
8995 strcpy (name, buf);
8996
8997 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8998 if (sect == NULL)
8999 return FALSE;
9000
9001 sect->size = note->descsz;
9002 sect->filepos = note->descpos;
9003 sect->alignment_power = 2;
9004
9005 return (elfcore_maybe_make_sect (abfd, ".qnx_core_status", sect));
9006 }
9007
9008 static bfd_boolean
9009 elfcore_grok_nto_regs (bfd *abfd,
9010 Elf_Internal_Note *note,
9011 long tid,
9012 char *base)
9013 {
9014 char buf[100];
9015 char *name;
9016 asection *sect;
9017
9018 /* Make a "(base)/%d" section. */
9019 sprintf (buf, "%s/%ld", base, tid);
9020
9021 name = (char *) bfd_alloc (abfd, strlen (buf) + 1);
9022 if (name == NULL)
9023 return FALSE;
9024 strcpy (name, buf);
9025
9026 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
9027 if (sect == NULL)
9028 return FALSE;
9029
9030 sect->size = note->descsz;
9031 sect->filepos = note->descpos;
9032 sect->alignment_power = 2;
9033
9034 /* This is the current thread. */
9035 if (elf_tdata (abfd)->core->lwpid == tid)
9036 return elfcore_maybe_make_sect (abfd, base, sect);
9037
9038 return TRUE;
9039 }
9040
9041 #define BFD_QNT_CORE_INFO 7
9042 #define BFD_QNT_CORE_STATUS 8
9043 #define BFD_QNT_CORE_GREG 9
9044 #define BFD_QNT_CORE_FPREG 10
9045
9046 static bfd_boolean
9047 elfcore_grok_nto_note (bfd *abfd, Elf_Internal_Note *note)
9048 {
9049 /* Every GREG section has a STATUS section before it. Store the
9050 tid from the previous call to pass down to the next gregs
9051 function. */
9052 static long tid = 1;
9053
9054 switch (note->type)
9055 {
9056 case BFD_QNT_CORE_INFO:
9057 return elfcore_make_note_pseudosection (abfd, ".qnx_core_info", note);
9058 case BFD_QNT_CORE_STATUS:
9059 return elfcore_grok_nto_status (abfd, note, &tid);
9060 case BFD_QNT_CORE_GREG:
9061 return elfcore_grok_nto_regs (abfd, note, tid, ".reg");
9062 case BFD_QNT_CORE_FPREG:
9063 return elfcore_grok_nto_regs (abfd, note, tid, ".reg2");
9064 default:
9065 return TRUE;
9066 }
9067 }
9068
9069 static bfd_boolean
9070 elfcore_grok_spu_note (bfd *abfd, Elf_Internal_Note *note)
9071 {
9072 char *name;
9073 asection *sect;
9074 size_t len;
9075
9076 /* Use note name as section name. */
9077 len = note->namesz;
9078 name = (char *) bfd_alloc (abfd, len);
9079 if (name == NULL)
9080 return FALSE;
9081 memcpy (name, note->namedata, len);
9082 name[len - 1] = '\0';
9083
9084 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
9085 if (sect == NULL)
9086 return FALSE;
9087
9088 sect->size = note->descsz;
9089 sect->filepos = note->descpos;
9090 sect->alignment_power = 1;
9091
9092 return TRUE;
9093 }
9094
9095 /* Function: elfcore_write_note
9096
9097 Inputs:
9098 buffer to hold note, and current size of buffer
9099 name of note
9100 type of note
9101 data for note
9102 size of data for note
9103
9104 Writes note to end of buffer. ELF64 notes are written exactly as
9105 for ELF32, despite the current (as of 2006) ELF gabi specifying
9106 that they ought to have 8-byte namesz and descsz field, and have
9107 8-byte alignment. Other writers, eg. Linux kernel, do the same.
9108
9109 Return:
9110 Pointer to realloc'd buffer, *BUFSIZ updated. */
9111
9112 char *
9113 elfcore_write_note (bfd *abfd,
9114 char *buf,
9115 int *bufsiz,
9116 const char *name,
9117 int type,
9118 const void *input,
9119 int size)
9120 {
9121 Elf_External_Note *xnp;
9122 size_t namesz;
9123 size_t newspace;
9124 char *dest;
9125
9126 namesz = 0;
9127 if (name != NULL)
9128 namesz = strlen (name) + 1;
9129
9130 newspace = 12 + ((namesz + 3) & -4) + ((size + 3) & -4);
9131
9132 buf = (char *) realloc (buf, *bufsiz + newspace);
9133 if (buf == NULL)
9134 return buf;
9135 dest = buf + *bufsiz;
9136 *bufsiz += newspace;
9137 xnp = (Elf_External_Note *) dest;
9138 H_PUT_32 (abfd, namesz, xnp->namesz);
9139 H_PUT_32 (abfd, size, xnp->descsz);
9140 H_PUT_32 (abfd, type, xnp->type);
9141 dest = xnp->name;
9142 if (name != NULL)
9143 {
9144 memcpy (dest, name, namesz);
9145 dest += namesz;
9146 while (namesz & 3)
9147 {
9148 *dest++ = '\0';
9149 ++namesz;
9150 }
9151 }
9152 memcpy (dest, input, size);
9153 dest += size;
9154 while (size & 3)
9155 {
9156 *dest++ = '\0';
9157 ++size;
9158 }
9159 return buf;
9160 }
9161
9162 char *
9163 elfcore_write_prpsinfo (bfd *abfd,
9164 char *buf,
9165 int *bufsiz,
9166 const char *fname,
9167 const char *psargs)
9168 {
9169 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9170
9171 if (bed->elf_backend_write_core_note != NULL)
9172 {
9173 char *ret;
9174 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
9175 NT_PRPSINFO, fname, psargs);
9176 if (ret != NULL)
9177 return ret;
9178 }
9179
9180 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
9181 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
9182 if (bed->s->elfclass == ELFCLASS32)
9183 {
9184 #if defined (HAVE_PSINFO32_T)
9185 psinfo32_t data;
9186 int note_type = NT_PSINFO;
9187 #else
9188 prpsinfo32_t data;
9189 int note_type = NT_PRPSINFO;
9190 #endif
9191
9192 memset (&data, 0, sizeof (data));
9193 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
9194 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
9195 return elfcore_write_note (abfd, buf, bufsiz,
9196 "CORE", note_type, &data, sizeof (data));
9197 }
9198 else
9199 #endif
9200 {
9201 #if defined (HAVE_PSINFO_T)
9202 psinfo_t data;
9203 int note_type = NT_PSINFO;
9204 #else
9205 prpsinfo_t data;
9206 int note_type = NT_PRPSINFO;
9207 #endif
9208
9209 memset (&data, 0, sizeof (data));
9210 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
9211 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
9212 return elfcore_write_note (abfd, buf, bufsiz,
9213 "CORE", note_type, &data, sizeof (data));
9214 }
9215 #endif /* PSINFO_T or PRPSINFO_T */
9216
9217 free (buf);
9218 return NULL;
9219 }
9220
9221 char *
9222 elfcore_write_linux_prpsinfo32
9223 (bfd *abfd, char *buf, int *bufsiz,
9224 const struct elf_internal_linux_prpsinfo *prpsinfo)
9225 {
9226 struct elf_external_linux_prpsinfo32 data;
9227
9228 memset (&data, 0, sizeof (data));
9229 LINUX_PRPSINFO32_SWAP_FIELDS (abfd, prpsinfo, data);
9230
9231 return elfcore_write_note (abfd, buf, bufsiz, "CORE", NT_PRPSINFO,
9232 &data, sizeof (data));
9233 }
9234
9235 char *
9236 elfcore_write_linux_prpsinfo64
9237 (bfd *abfd, char *buf, int *bufsiz,
9238 const struct elf_internal_linux_prpsinfo *prpsinfo)
9239 {
9240 struct elf_external_linux_prpsinfo64 data;
9241
9242 memset (&data, 0, sizeof (data));
9243 LINUX_PRPSINFO64_SWAP_FIELDS (abfd, prpsinfo, data);
9244
9245 return elfcore_write_note (abfd, buf, bufsiz,
9246 "CORE", NT_PRPSINFO, &data, sizeof (data));
9247 }
9248
9249 char *
9250 elfcore_write_prstatus (bfd *abfd,
9251 char *buf,
9252 int *bufsiz,
9253 long pid,
9254 int cursig,
9255 const void *gregs)
9256 {
9257 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9258
9259 if (bed->elf_backend_write_core_note != NULL)
9260 {
9261 char *ret;
9262 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
9263 NT_PRSTATUS,
9264 pid, cursig, gregs);
9265 if (ret != NULL)
9266 return ret;
9267 }
9268
9269 #if defined (HAVE_PRSTATUS_T)
9270 #if defined (HAVE_PRSTATUS32_T)
9271 if (bed->s->elfclass == ELFCLASS32)
9272 {
9273 prstatus32_t prstat;
9274
9275 memset (&prstat, 0, sizeof (prstat));
9276 prstat.pr_pid = pid;
9277 prstat.pr_cursig = cursig;
9278 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
9279 return elfcore_write_note (abfd, buf, bufsiz, "CORE",
9280 NT_PRSTATUS, &prstat, sizeof (prstat));
9281 }
9282 else
9283 #endif
9284 {
9285 prstatus_t prstat;
9286
9287 memset (&prstat, 0, sizeof (prstat));
9288 prstat.pr_pid = pid;
9289 prstat.pr_cursig = cursig;
9290 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
9291 return elfcore_write_note (abfd, buf, bufsiz, "CORE",
9292 NT_PRSTATUS, &prstat, sizeof (prstat));
9293 }
9294 #endif /* HAVE_PRSTATUS_T */
9295
9296 free (buf);
9297 return NULL;
9298 }
9299
9300 #if defined (HAVE_LWPSTATUS_T)
9301 char *
9302 elfcore_write_lwpstatus (bfd *abfd,
9303 char *buf,
9304 int *bufsiz,
9305 long pid,
9306 int cursig,
9307 const void *gregs)
9308 {
9309 lwpstatus_t lwpstat;
9310 const char *note_name = "CORE";
9311
9312 memset (&lwpstat, 0, sizeof (lwpstat));
9313 lwpstat.pr_lwpid = pid >> 16;
9314 lwpstat.pr_cursig = cursig;
9315 #if defined (HAVE_LWPSTATUS_T_PR_REG)
9316 memcpy (lwpstat.pr_reg, gregs, sizeof (lwpstat.pr_reg));
9317 #elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
9318 #if !defined(gregs)
9319 memcpy (lwpstat.pr_context.uc_mcontext.gregs,
9320 gregs, sizeof (lwpstat.pr_context.uc_mcontext.gregs));
9321 #else
9322 memcpy (lwpstat.pr_context.uc_mcontext.__gregs,
9323 gregs, sizeof (lwpstat.pr_context.uc_mcontext.__gregs));
9324 #endif
9325 #endif
9326 return elfcore_write_note (abfd, buf, bufsiz, note_name,
9327 NT_LWPSTATUS, &lwpstat, sizeof (lwpstat));
9328 }
9329 #endif /* HAVE_LWPSTATUS_T */
9330
9331 #if defined (HAVE_PSTATUS_T)
9332 char *
9333 elfcore_write_pstatus (bfd *abfd,
9334 char *buf,
9335 int *bufsiz,
9336 long pid,
9337 int cursig ATTRIBUTE_UNUSED,
9338 const void *gregs ATTRIBUTE_UNUSED)
9339 {
9340 const char *note_name = "CORE";
9341 #if defined (HAVE_PSTATUS32_T)
9342 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9343
9344 if (bed->s->elfclass == ELFCLASS32)
9345 {
9346 pstatus32_t pstat;
9347
9348 memset (&pstat, 0, sizeof (pstat));
9349 pstat.pr_pid = pid & 0xffff;
9350 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
9351 NT_PSTATUS, &pstat, sizeof (pstat));
9352 return buf;
9353 }
9354 else
9355 #endif
9356 {
9357 pstatus_t pstat;
9358
9359 memset (&pstat, 0, sizeof (pstat));
9360 pstat.pr_pid = pid & 0xffff;
9361 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
9362 NT_PSTATUS, &pstat, sizeof (pstat));
9363 return buf;
9364 }
9365 }
9366 #endif /* HAVE_PSTATUS_T */
9367
9368 char *
9369 elfcore_write_prfpreg (bfd *abfd,
9370 char *buf,
9371 int *bufsiz,
9372 const void *fpregs,
9373 int size)
9374 {
9375 const char *note_name = "CORE";
9376 return elfcore_write_note (abfd, buf, bufsiz,
9377 note_name, NT_FPREGSET, fpregs, size);
9378 }
9379
9380 char *
9381 elfcore_write_prxfpreg (bfd *abfd,
9382 char *buf,
9383 int *bufsiz,
9384 const void *xfpregs,
9385 int size)
9386 {
9387 char *note_name = "LINUX";
9388 return elfcore_write_note (abfd, buf, bufsiz,
9389 note_name, NT_PRXFPREG, xfpregs, size);
9390 }
9391
9392 char *
9393 elfcore_write_xstatereg (bfd *abfd, char *buf, int *bufsiz,
9394 const void *xfpregs, int size)
9395 {
9396 char *note_name = "LINUX";
9397 return elfcore_write_note (abfd, buf, bufsiz,
9398 note_name, NT_X86_XSTATE, xfpregs, size);
9399 }
9400
9401 char *
9402 elfcore_write_ppc_vmx (bfd *abfd,
9403 char *buf,
9404 int *bufsiz,
9405 const void *ppc_vmx,
9406 int size)
9407 {
9408 char *note_name = "LINUX";
9409 return elfcore_write_note (abfd, buf, bufsiz,
9410 note_name, NT_PPC_VMX, ppc_vmx, size);
9411 }
9412
9413 char *
9414 elfcore_write_ppc_vsx (bfd *abfd,
9415 char *buf,
9416 int *bufsiz,
9417 const void *ppc_vsx,
9418 int size)
9419 {
9420 char *note_name = "LINUX";
9421 return elfcore_write_note (abfd, buf, bufsiz,
9422 note_name, NT_PPC_VSX, ppc_vsx, size);
9423 }
9424
9425 static char *
9426 elfcore_write_s390_high_gprs (bfd *abfd,
9427 char *buf,
9428 int *bufsiz,
9429 const void *s390_high_gprs,
9430 int size)
9431 {
9432 char *note_name = "LINUX";
9433 return elfcore_write_note (abfd, buf, bufsiz,
9434 note_name, NT_S390_HIGH_GPRS,
9435 s390_high_gprs, size);
9436 }
9437
9438 char *
9439 elfcore_write_s390_timer (bfd *abfd,
9440 char *buf,
9441 int *bufsiz,
9442 const void *s390_timer,
9443 int size)
9444 {
9445 char *note_name = "LINUX";
9446 return elfcore_write_note (abfd, buf, bufsiz,
9447 note_name, NT_S390_TIMER, s390_timer, size);
9448 }
9449
9450 char *
9451 elfcore_write_s390_todcmp (bfd *abfd,
9452 char *buf,
9453 int *bufsiz,
9454 const void *s390_todcmp,
9455 int size)
9456 {
9457 char *note_name = "LINUX";
9458 return elfcore_write_note (abfd, buf, bufsiz,
9459 note_name, NT_S390_TODCMP, s390_todcmp, size);
9460 }
9461
9462 char *
9463 elfcore_write_s390_todpreg (bfd *abfd,
9464 char *buf,
9465 int *bufsiz,
9466 const void *s390_todpreg,
9467 int size)
9468 {
9469 char *note_name = "LINUX";
9470 return elfcore_write_note (abfd, buf, bufsiz,
9471 note_name, NT_S390_TODPREG, s390_todpreg, size);
9472 }
9473
9474 char *
9475 elfcore_write_s390_ctrs (bfd *abfd,
9476 char *buf,
9477 int *bufsiz,
9478 const void *s390_ctrs,
9479 int size)
9480 {
9481 char *note_name = "LINUX";
9482 return elfcore_write_note (abfd, buf, bufsiz,
9483 note_name, NT_S390_CTRS, s390_ctrs, size);
9484 }
9485
9486 char *
9487 elfcore_write_s390_prefix (bfd *abfd,
9488 char *buf,
9489 int *bufsiz,
9490 const void *s390_prefix,
9491 int size)
9492 {
9493 char *note_name = "LINUX";
9494 return elfcore_write_note (abfd, buf, bufsiz,
9495 note_name, NT_S390_PREFIX, s390_prefix, size);
9496 }
9497
9498 char *
9499 elfcore_write_s390_last_break (bfd *abfd,
9500 char *buf,
9501 int *bufsiz,
9502 const void *s390_last_break,
9503 int size)
9504 {
9505 char *note_name = "LINUX";
9506 return elfcore_write_note (abfd, buf, bufsiz,
9507 note_name, NT_S390_LAST_BREAK,
9508 s390_last_break, size);
9509 }
9510
9511 char *
9512 elfcore_write_s390_system_call (bfd *abfd,
9513 char *buf,
9514 int *bufsiz,
9515 const void *s390_system_call,
9516 int size)
9517 {
9518 char *note_name = "LINUX";
9519 return elfcore_write_note (abfd, buf, bufsiz,
9520 note_name, NT_S390_SYSTEM_CALL,
9521 s390_system_call, size);
9522 }
9523
9524 char *
9525 elfcore_write_s390_tdb (bfd *abfd,
9526 char *buf,
9527 int *bufsiz,
9528 const void *s390_tdb,
9529 int size)
9530 {
9531 char *note_name = "LINUX";
9532 return elfcore_write_note (abfd, buf, bufsiz,
9533 note_name, NT_S390_TDB, s390_tdb, size);
9534 }
9535
9536 char *
9537 elfcore_write_arm_vfp (bfd *abfd,
9538 char *buf,
9539 int *bufsiz,
9540 const void *arm_vfp,
9541 int size)
9542 {
9543 char *note_name = "LINUX";
9544 return elfcore_write_note (abfd, buf, bufsiz,
9545 note_name, NT_ARM_VFP, arm_vfp, size);
9546 }
9547
9548 char *
9549 elfcore_write_aarch_tls (bfd *abfd,
9550 char *buf,
9551 int *bufsiz,
9552 const void *aarch_tls,
9553 int size)
9554 {
9555 char *note_name = "LINUX";
9556 return elfcore_write_note (abfd, buf, bufsiz,
9557 note_name, NT_ARM_TLS, aarch_tls, size);
9558 }
9559
9560 char *
9561 elfcore_write_aarch_hw_break (bfd *abfd,
9562 char *buf,
9563 int *bufsiz,
9564 const void *aarch_hw_break,
9565 int size)
9566 {
9567 char *note_name = "LINUX";
9568 return elfcore_write_note (abfd, buf, bufsiz,
9569 note_name, NT_ARM_HW_BREAK, aarch_hw_break, size);
9570 }
9571
9572 char *
9573 elfcore_write_aarch_hw_watch (bfd *abfd,
9574 char *buf,
9575 int *bufsiz,
9576 const void *aarch_hw_watch,
9577 int size)
9578 {
9579 char *note_name = "LINUX";
9580 return elfcore_write_note (abfd, buf, bufsiz,
9581 note_name, NT_ARM_HW_WATCH, aarch_hw_watch, size);
9582 }
9583
9584 char *
9585 elfcore_write_register_note (bfd *abfd,
9586 char *buf,
9587 int *bufsiz,
9588 const char *section,
9589 const void *data,
9590 int size)
9591 {
9592 if (strcmp (section, ".reg2") == 0)
9593 return elfcore_write_prfpreg (abfd, buf, bufsiz, data, size);
9594 if (strcmp (section, ".reg-xfp") == 0)
9595 return elfcore_write_prxfpreg (abfd, buf, bufsiz, data, size);
9596 if (strcmp (section, ".reg-xstate") == 0)
9597 return elfcore_write_xstatereg (abfd, buf, bufsiz, data, size);
9598 if (strcmp (section, ".reg-ppc-vmx") == 0)
9599 return elfcore_write_ppc_vmx (abfd, buf, bufsiz, data, size);
9600 if (strcmp (section, ".reg-ppc-vsx") == 0)
9601 return elfcore_write_ppc_vsx (abfd, buf, bufsiz, data, size);
9602 if (strcmp (section, ".reg-s390-high-gprs") == 0)
9603 return elfcore_write_s390_high_gprs (abfd, buf, bufsiz, data, size);
9604 if (strcmp (section, ".reg-s390-timer") == 0)
9605 return elfcore_write_s390_timer (abfd, buf, bufsiz, data, size);
9606 if (strcmp (section, ".reg-s390-todcmp") == 0)
9607 return elfcore_write_s390_todcmp (abfd, buf, bufsiz, data, size);
9608 if (strcmp (section, ".reg-s390-todpreg") == 0)
9609 return elfcore_write_s390_todpreg (abfd, buf, bufsiz, data, size);
9610 if (strcmp (section, ".reg-s390-ctrs") == 0)
9611 return elfcore_write_s390_ctrs (abfd, buf, bufsiz, data, size);
9612 if (strcmp (section, ".reg-s390-prefix") == 0)
9613 return elfcore_write_s390_prefix (abfd, buf, bufsiz, data, size);
9614 if (strcmp (section, ".reg-s390-last-break") == 0)
9615 return elfcore_write_s390_last_break (abfd, buf, bufsiz, data, size);
9616 if (strcmp (section, ".reg-s390-system-call") == 0)
9617 return elfcore_write_s390_system_call (abfd, buf, bufsiz, data, size);
9618 if (strcmp (section, ".reg-s390-tdb") == 0)
9619 return elfcore_write_s390_tdb (abfd, buf, bufsiz, data, size);
9620 if (strcmp (section, ".reg-arm-vfp") == 0)
9621 return elfcore_write_arm_vfp (abfd, buf, bufsiz, data, size);
9622 if (strcmp (section, ".reg-aarch-tls") == 0)
9623 return elfcore_write_aarch_tls (abfd, buf, bufsiz, data, size);
9624 if (strcmp (section, ".reg-aarch-hw-break") == 0)
9625 return elfcore_write_aarch_hw_break (abfd, buf, bufsiz, data, size);
9626 if (strcmp (section, ".reg-aarch-hw-watch") == 0)
9627 return elfcore_write_aarch_hw_watch (abfd, buf, bufsiz, data, size);
9628 return NULL;
9629 }
9630
9631 static bfd_boolean
9632 elf_parse_notes (bfd *abfd, char *buf, size_t size, file_ptr offset)
9633 {
9634 char *p;
9635
9636 p = buf;
9637 while (p < buf + size)
9638 {
9639 /* FIXME: bad alignment assumption. */
9640 Elf_External_Note *xnp = (Elf_External_Note *) p;
9641 Elf_Internal_Note in;
9642
9643 if (offsetof (Elf_External_Note, name) > buf - p + size)
9644 return FALSE;
9645
9646 in.type = H_GET_32 (abfd, xnp->type);
9647
9648 in.namesz = H_GET_32 (abfd, xnp->namesz);
9649 in.namedata = xnp->name;
9650 if (in.namesz > buf - in.namedata + size)
9651 return FALSE;
9652
9653 in.descsz = H_GET_32 (abfd, xnp->descsz);
9654 in.descdata = in.namedata + BFD_ALIGN (in.namesz, 4);
9655 in.descpos = offset + (in.descdata - buf);
9656 if (in.descsz != 0
9657 && (in.descdata >= buf + size
9658 || in.descsz > buf - in.descdata + size))
9659 return FALSE;
9660
9661 switch (bfd_get_format (abfd))
9662 {
9663 default:
9664 return TRUE;
9665
9666 case bfd_core:
9667 if (CONST_STRNEQ (in.namedata, "NetBSD-CORE"))
9668 {
9669 if (! elfcore_grok_netbsd_note (abfd, &in))
9670 return FALSE;
9671 }
9672 else if (CONST_STRNEQ (in.namedata, "OpenBSD"))
9673 {
9674 if (! elfcore_grok_openbsd_note (abfd, &in))
9675 return FALSE;
9676 }
9677 else if (CONST_STRNEQ (in.namedata, "QNX"))
9678 {
9679 if (! elfcore_grok_nto_note (abfd, &in))
9680 return FALSE;
9681 }
9682 else if (CONST_STRNEQ (in.namedata, "SPU/"))
9683 {
9684 if (! elfcore_grok_spu_note (abfd, &in))
9685 return FALSE;
9686 }
9687 else
9688 {
9689 if (! elfcore_grok_note (abfd, &in))
9690 return FALSE;
9691 }
9692 break;
9693
9694 case bfd_object:
9695 if (in.namesz == sizeof "GNU" && strcmp (in.namedata, "GNU") == 0)
9696 {
9697 if (! elfobj_grok_gnu_note (abfd, &in))
9698 return FALSE;
9699 }
9700 else if (in.namesz == sizeof "stapsdt"
9701 && strcmp (in.namedata, "stapsdt") == 0)
9702 {
9703 if (! elfobj_grok_stapsdt_note (abfd, &in))
9704 return FALSE;
9705 }
9706 break;
9707 }
9708
9709 p = in.descdata + BFD_ALIGN (in.descsz, 4);
9710 }
9711
9712 return TRUE;
9713 }
9714
9715 static bfd_boolean
9716 elf_read_notes (bfd *abfd, file_ptr offset, bfd_size_type size)
9717 {
9718 char *buf;
9719
9720 if (size <= 0)
9721 return TRUE;
9722
9723 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
9724 return FALSE;
9725
9726 buf = (char *) bfd_malloc (size);
9727 if (buf == NULL)
9728 return FALSE;
9729
9730 if (bfd_bread (buf, size, abfd) != size
9731 || !elf_parse_notes (abfd, buf, size, offset))
9732 {
9733 free (buf);
9734 return FALSE;
9735 }
9736
9737 free (buf);
9738 return TRUE;
9739 }
9740 \f
9741 /* Providing external access to the ELF program header table. */
9742
9743 /* Return an upper bound on the number of bytes required to store a
9744 copy of ABFD's program header table entries. Return -1 if an error
9745 occurs; bfd_get_error will return an appropriate code. */
9746
9747 long
9748 bfd_get_elf_phdr_upper_bound (bfd *abfd)
9749 {
9750 if (abfd->xvec->flavour != bfd_target_elf_flavour)
9751 {
9752 bfd_set_error (bfd_error_wrong_format);
9753 return -1;
9754 }
9755
9756 return elf_elfheader (abfd)->e_phnum * sizeof (Elf_Internal_Phdr);
9757 }
9758
9759 /* Copy ABFD's program header table entries to *PHDRS. The entries
9760 will be stored as an array of Elf_Internal_Phdr structures, as
9761 defined in include/elf/internal.h. To find out how large the
9762 buffer needs to be, call bfd_get_elf_phdr_upper_bound.
9763
9764 Return the number of program header table entries read, or -1 if an
9765 error occurs; bfd_get_error will return an appropriate code. */
9766
9767 int
9768 bfd_get_elf_phdrs (bfd *abfd, void *phdrs)
9769 {
9770 int num_phdrs;
9771
9772 if (abfd->xvec->flavour != bfd_target_elf_flavour)
9773 {
9774 bfd_set_error (bfd_error_wrong_format);
9775 return -1;
9776 }
9777
9778 num_phdrs = elf_elfheader (abfd)->e_phnum;
9779 memcpy (phdrs, elf_tdata (abfd)->phdr,
9780 num_phdrs * sizeof (Elf_Internal_Phdr));
9781
9782 return num_phdrs;
9783 }
9784
9785 enum elf_reloc_type_class
9786 _bfd_elf_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
9787 const asection *rel_sec ATTRIBUTE_UNUSED,
9788 const Elf_Internal_Rela *rela ATTRIBUTE_UNUSED)
9789 {
9790 return reloc_class_normal;
9791 }
9792
9793 /* For RELA architectures, return the relocation value for a
9794 relocation against a local symbol. */
9795
9796 bfd_vma
9797 _bfd_elf_rela_local_sym (bfd *abfd,
9798 Elf_Internal_Sym *sym,
9799 asection **psec,
9800 Elf_Internal_Rela *rel)
9801 {
9802 asection *sec = *psec;
9803 bfd_vma relocation;
9804
9805 relocation = (sec->output_section->vma
9806 + sec->output_offset
9807 + sym->st_value);
9808 if ((sec->flags & SEC_MERGE)
9809 && ELF_ST_TYPE (sym->st_info) == STT_SECTION
9810 && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
9811 {
9812 rel->r_addend =
9813 _bfd_merged_section_offset (abfd, psec,
9814 elf_section_data (sec)->sec_info,
9815 sym->st_value + rel->r_addend);
9816 if (sec != *psec)
9817 {
9818 /* If we have changed the section, and our original section is
9819 marked with SEC_EXCLUDE, it means that the original
9820 SEC_MERGE section has been completely subsumed in some
9821 other SEC_MERGE section. In this case, we need to leave
9822 some info around for --emit-relocs. */
9823 if ((sec->flags & SEC_EXCLUDE) != 0)
9824 sec->kept_section = *psec;
9825 sec = *psec;
9826 }
9827 rel->r_addend -= relocation;
9828 rel->r_addend += sec->output_section->vma + sec->output_offset;
9829 }
9830 return relocation;
9831 }
9832
9833 bfd_vma
9834 _bfd_elf_rel_local_sym (bfd *abfd,
9835 Elf_Internal_Sym *sym,
9836 asection **psec,
9837 bfd_vma addend)
9838 {
9839 asection *sec = *psec;
9840
9841 if (sec->sec_info_type != SEC_INFO_TYPE_MERGE)
9842 return sym->st_value + addend;
9843
9844 return _bfd_merged_section_offset (abfd, psec,
9845 elf_section_data (sec)->sec_info,
9846 sym->st_value + addend);
9847 }
9848
9849 bfd_vma
9850 _bfd_elf_section_offset (bfd *abfd,
9851 struct bfd_link_info *info,
9852 asection *sec,
9853 bfd_vma offset)
9854 {
9855 switch (sec->sec_info_type)
9856 {
9857 case SEC_INFO_TYPE_STABS:
9858 return _bfd_stab_section_offset (sec, elf_section_data (sec)->sec_info,
9859 offset);
9860 case SEC_INFO_TYPE_EH_FRAME:
9861 return _bfd_elf_eh_frame_section_offset (abfd, info, sec, offset);
9862 default:
9863 if ((sec->flags & SEC_ELF_REVERSE_COPY) != 0)
9864 {
9865 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9866 bfd_size_type address_size = bed->s->arch_size / 8;
9867 offset = sec->size - offset - address_size;
9868 }
9869 return offset;
9870 }
9871 }
9872 \f
9873 /* Create a new BFD as if by bfd_openr. Rather than opening a file,
9874 reconstruct an ELF file by reading the segments out of remote memory
9875 based on the ELF file header at EHDR_VMA and the ELF program headers it
9876 points to. If not null, *LOADBASEP is filled in with the difference
9877 between the VMAs from which the segments were read, and the VMAs the
9878 file headers (and hence BFD's idea of each section's VMA) put them at.
9879
9880 The function TARGET_READ_MEMORY is called to copy LEN bytes from the
9881 remote memory at target address VMA into the local buffer at MYADDR; it
9882 should return zero on success or an `errno' code on failure. TEMPL must
9883 be a BFD for an ELF target with the word size and byte order found in
9884 the remote memory. */
9885
9886 bfd *
9887 bfd_elf_bfd_from_remote_memory
9888 (bfd *templ,
9889 bfd_vma ehdr_vma,
9890 bfd_vma *loadbasep,
9891 int (*target_read_memory) (bfd_vma, bfd_byte *, bfd_size_type))
9892 {
9893 return (*get_elf_backend_data (templ)->elf_backend_bfd_from_remote_memory)
9894 (templ, ehdr_vma, loadbasep, target_read_memory);
9895 }
9896 \f
9897 long
9898 _bfd_elf_get_synthetic_symtab (bfd *abfd,
9899 long symcount ATTRIBUTE_UNUSED,
9900 asymbol **syms ATTRIBUTE_UNUSED,
9901 long dynsymcount,
9902 asymbol **dynsyms,
9903 asymbol **ret)
9904 {
9905 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9906 asection *relplt;
9907 asymbol *s;
9908 const char *relplt_name;
9909 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
9910 arelent *p;
9911 long count, i, n;
9912 size_t size;
9913 Elf_Internal_Shdr *hdr;
9914 char *names;
9915 asection *plt;
9916
9917 *ret = NULL;
9918
9919 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0)
9920 return 0;
9921
9922 if (dynsymcount <= 0)
9923 return 0;
9924
9925 if (!bed->plt_sym_val)
9926 return 0;
9927
9928 relplt_name = bed->relplt_name;
9929 if (relplt_name == NULL)
9930 relplt_name = bed->rela_plts_and_copies_p ? ".rela.plt" : ".rel.plt";
9931 relplt = bfd_get_section_by_name (abfd, relplt_name);
9932 if (relplt == NULL)
9933 return 0;
9934
9935 hdr = &elf_section_data (relplt)->this_hdr;
9936 if (hdr->sh_link != elf_dynsymtab (abfd)
9937 || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA))
9938 return 0;
9939
9940 plt = bfd_get_section_by_name (abfd, ".plt");
9941 if (plt == NULL)
9942 return 0;
9943
9944 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
9945 if (! (*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
9946 return -1;
9947
9948 count = relplt->size / hdr->sh_entsize;
9949 size = count * sizeof (asymbol);
9950 p = relplt->relocation;
9951 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
9952 {
9953 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
9954 if (p->addend != 0)
9955 {
9956 #ifdef BFD64
9957 size += sizeof ("+0x") - 1 + 8 + 8 * (bed->s->elfclass == ELFCLASS64);
9958 #else
9959 size += sizeof ("+0x") - 1 + 8;
9960 #endif
9961 }
9962 }
9963
9964 s = *ret = (asymbol *) bfd_malloc (size);
9965 if (s == NULL)
9966 return -1;
9967
9968 names = (char *) (s + count);
9969 p = relplt->relocation;
9970 n = 0;
9971 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
9972 {
9973 size_t len;
9974 bfd_vma addr;
9975
9976 addr = bed->plt_sym_val (i, plt, p);
9977 if (addr == (bfd_vma) -1)
9978 continue;
9979
9980 *s = **p->sym_ptr_ptr;
9981 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
9982 we are defining a symbol, ensure one of them is set. */
9983 if ((s->flags & BSF_LOCAL) == 0)
9984 s->flags |= BSF_GLOBAL;
9985 s->flags |= BSF_SYNTHETIC;
9986 s->section = plt;
9987 s->value = addr - plt->vma;
9988 s->name = names;
9989 s->udata.p = NULL;
9990 len = strlen ((*p->sym_ptr_ptr)->name);
9991 memcpy (names, (*p->sym_ptr_ptr)->name, len);
9992 names += len;
9993 if (p->addend != 0)
9994 {
9995 char buf[30], *a;
9996
9997 memcpy (names, "+0x", sizeof ("+0x") - 1);
9998 names += sizeof ("+0x") - 1;
9999 bfd_sprintf_vma (abfd, buf, p->addend);
10000 for (a = buf; *a == '0'; ++a)
10001 ;
10002 len = strlen (a);
10003 memcpy (names, a, len);
10004 names += len;
10005 }
10006 memcpy (names, "@plt", sizeof ("@plt"));
10007 names += sizeof ("@plt");
10008 ++s, ++n;
10009 }
10010
10011 return n;
10012 }
10013
10014 /* It is only used by x86-64 so far. */
10015 asection _bfd_elf_large_com_section
10016 = BFD_FAKE_SECTION (_bfd_elf_large_com_section,
10017 SEC_IS_COMMON, NULL, "LARGE_COMMON", 0);
10018
10019 void
10020 _bfd_elf_post_process_headers (bfd * abfd,
10021 struct bfd_link_info * link_info ATTRIBUTE_UNUSED)
10022 {
10023 Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */
10024
10025 i_ehdrp = elf_elfheader (abfd);
10026
10027 i_ehdrp->e_ident[EI_OSABI] = get_elf_backend_data (abfd)->elf_osabi;
10028
10029 /* To make things simpler for the loader on Linux systems we set the
10030 osabi field to ELFOSABI_GNU if the binary contains symbols of
10031 the STT_GNU_IFUNC type or STB_GNU_UNIQUE binding. */
10032 if (i_ehdrp->e_ident[EI_OSABI] == ELFOSABI_NONE
10033 && elf_tdata (abfd)->has_gnu_symbols)
10034 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_GNU;
10035 }
10036
10037
10038 /* Return TRUE for ELF symbol types that represent functions.
10039 This is the default version of this function, which is sufficient for
10040 most targets. It returns true if TYPE is STT_FUNC or STT_GNU_IFUNC. */
10041
10042 bfd_boolean
10043 _bfd_elf_is_function_type (unsigned int type)
10044 {
10045 return (type == STT_FUNC
10046 || type == STT_GNU_IFUNC);
10047 }
10048
10049 /* If the ELF symbol SYM might be a function in SEC, return the
10050 function size and set *CODE_OFF to the function's entry point,
10051 otherwise return zero. */
10052
10053 bfd_size_type
10054 _bfd_elf_maybe_function_sym (const asymbol *sym, asection *sec,
10055 bfd_vma *code_off)
10056 {
10057 bfd_size_type size;
10058
10059 if ((sym->flags & (BSF_SECTION_SYM | BSF_FILE | BSF_OBJECT
10060 | BSF_THREAD_LOCAL | BSF_RELC | BSF_SRELC)) != 0
10061 || sym->section != sec)
10062 return 0;
10063
10064 *code_off = sym->value;
10065 size = 0;
10066 if (!(sym->flags & BSF_SYNTHETIC))
10067 size = ((elf_symbol_type *) sym)->internal_elf_sym.st_size;
10068 if (size == 0)
10069 size = 1;
10070 return size;
10071 }
This page took 0.258527 seconds and 4 git commands to generate.