* elf-bfd.h (struct elf_link_hash_entry): Replace elf_link_hash_flags
[deliverable/binutils-gdb.git] / bfd / elf.c
1 /* ELF executable support for BFD.
2
3 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
4 2002, 2003, 2004 Free Software Foundation, Inc.
5
6 This file is part of BFD, the Binary File Descriptor library.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
21
22 /* SECTION
23
24 ELF backends
25
26 BFD support for ELF formats is being worked on.
27 Currently, the best supported back ends are for sparc and i386
28 (running svr4 or Solaris 2).
29
30 Documentation of the internals of the support code still needs
31 to be written. The code is changing quickly enough that we
32 haven't bothered yet. */
33
34 /* For sparc64-cross-sparc32. */
35 #define _SYSCALL32
36 #include "bfd.h"
37 #include "sysdep.h"
38 #include "bfdlink.h"
39 #include "libbfd.h"
40 #define ARCH_SIZE 0
41 #include "elf-bfd.h"
42 #include "libiberty.h"
43
44 static int elf_sort_sections (const void *, const void *);
45 static bfd_boolean assign_file_positions_except_relocs (bfd *, struct bfd_link_info *);
46 static bfd_boolean prep_headers (bfd *);
47 static bfd_boolean swap_out_syms (bfd *, struct bfd_strtab_hash **, int) ;
48 static bfd_boolean elfcore_read_notes (bfd *, file_ptr, bfd_size_type) ;
49
50 /* Swap version information in and out. The version information is
51 currently size independent. If that ever changes, this code will
52 need to move into elfcode.h. */
53
54 /* Swap in a Verdef structure. */
55
56 void
57 _bfd_elf_swap_verdef_in (bfd *abfd,
58 const Elf_External_Verdef *src,
59 Elf_Internal_Verdef *dst)
60 {
61 dst->vd_version = H_GET_16 (abfd, src->vd_version);
62 dst->vd_flags = H_GET_16 (abfd, src->vd_flags);
63 dst->vd_ndx = H_GET_16 (abfd, src->vd_ndx);
64 dst->vd_cnt = H_GET_16 (abfd, src->vd_cnt);
65 dst->vd_hash = H_GET_32 (abfd, src->vd_hash);
66 dst->vd_aux = H_GET_32 (abfd, src->vd_aux);
67 dst->vd_next = H_GET_32 (abfd, src->vd_next);
68 }
69
70 /* Swap out a Verdef structure. */
71
72 void
73 _bfd_elf_swap_verdef_out (bfd *abfd,
74 const Elf_Internal_Verdef *src,
75 Elf_External_Verdef *dst)
76 {
77 H_PUT_16 (abfd, src->vd_version, dst->vd_version);
78 H_PUT_16 (abfd, src->vd_flags, dst->vd_flags);
79 H_PUT_16 (abfd, src->vd_ndx, dst->vd_ndx);
80 H_PUT_16 (abfd, src->vd_cnt, dst->vd_cnt);
81 H_PUT_32 (abfd, src->vd_hash, dst->vd_hash);
82 H_PUT_32 (abfd, src->vd_aux, dst->vd_aux);
83 H_PUT_32 (abfd, src->vd_next, dst->vd_next);
84 }
85
86 /* Swap in a Verdaux structure. */
87
88 void
89 _bfd_elf_swap_verdaux_in (bfd *abfd,
90 const Elf_External_Verdaux *src,
91 Elf_Internal_Verdaux *dst)
92 {
93 dst->vda_name = H_GET_32 (abfd, src->vda_name);
94 dst->vda_next = H_GET_32 (abfd, src->vda_next);
95 }
96
97 /* Swap out a Verdaux structure. */
98
99 void
100 _bfd_elf_swap_verdaux_out (bfd *abfd,
101 const Elf_Internal_Verdaux *src,
102 Elf_External_Verdaux *dst)
103 {
104 H_PUT_32 (abfd, src->vda_name, dst->vda_name);
105 H_PUT_32 (abfd, src->vda_next, dst->vda_next);
106 }
107
108 /* Swap in a Verneed structure. */
109
110 void
111 _bfd_elf_swap_verneed_in (bfd *abfd,
112 const Elf_External_Verneed *src,
113 Elf_Internal_Verneed *dst)
114 {
115 dst->vn_version = H_GET_16 (abfd, src->vn_version);
116 dst->vn_cnt = H_GET_16 (abfd, src->vn_cnt);
117 dst->vn_file = H_GET_32 (abfd, src->vn_file);
118 dst->vn_aux = H_GET_32 (abfd, src->vn_aux);
119 dst->vn_next = H_GET_32 (abfd, src->vn_next);
120 }
121
122 /* Swap out a Verneed structure. */
123
124 void
125 _bfd_elf_swap_verneed_out (bfd *abfd,
126 const Elf_Internal_Verneed *src,
127 Elf_External_Verneed *dst)
128 {
129 H_PUT_16 (abfd, src->vn_version, dst->vn_version);
130 H_PUT_16 (abfd, src->vn_cnt, dst->vn_cnt);
131 H_PUT_32 (abfd, src->vn_file, dst->vn_file);
132 H_PUT_32 (abfd, src->vn_aux, dst->vn_aux);
133 H_PUT_32 (abfd, src->vn_next, dst->vn_next);
134 }
135
136 /* Swap in a Vernaux structure. */
137
138 void
139 _bfd_elf_swap_vernaux_in (bfd *abfd,
140 const Elf_External_Vernaux *src,
141 Elf_Internal_Vernaux *dst)
142 {
143 dst->vna_hash = H_GET_32 (abfd, src->vna_hash);
144 dst->vna_flags = H_GET_16 (abfd, src->vna_flags);
145 dst->vna_other = H_GET_16 (abfd, src->vna_other);
146 dst->vna_name = H_GET_32 (abfd, src->vna_name);
147 dst->vna_next = H_GET_32 (abfd, src->vna_next);
148 }
149
150 /* Swap out a Vernaux structure. */
151
152 void
153 _bfd_elf_swap_vernaux_out (bfd *abfd,
154 const Elf_Internal_Vernaux *src,
155 Elf_External_Vernaux *dst)
156 {
157 H_PUT_32 (abfd, src->vna_hash, dst->vna_hash);
158 H_PUT_16 (abfd, src->vna_flags, dst->vna_flags);
159 H_PUT_16 (abfd, src->vna_other, dst->vna_other);
160 H_PUT_32 (abfd, src->vna_name, dst->vna_name);
161 H_PUT_32 (abfd, src->vna_next, dst->vna_next);
162 }
163
164 /* Swap in a Versym structure. */
165
166 void
167 _bfd_elf_swap_versym_in (bfd *abfd,
168 const Elf_External_Versym *src,
169 Elf_Internal_Versym *dst)
170 {
171 dst->vs_vers = H_GET_16 (abfd, src->vs_vers);
172 }
173
174 /* Swap out a Versym structure. */
175
176 void
177 _bfd_elf_swap_versym_out (bfd *abfd,
178 const Elf_Internal_Versym *src,
179 Elf_External_Versym *dst)
180 {
181 H_PUT_16 (abfd, src->vs_vers, dst->vs_vers);
182 }
183
184 /* Standard ELF hash function. Do not change this function; you will
185 cause invalid hash tables to be generated. */
186
187 unsigned long
188 bfd_elf_hash (const char *namearg)
189 {
190 const unsigned char *name = (const unsigned char *) namearg;
191 unsigned long h = 0;
192 unsigned long g;
193 int ch;
194
195 while ((ch = *name++) != '\0')
196 {
197 h = (h << 4) + ch;
198 if ((g = (h & 0xf0000000)) != 0)
199 {
200 h ^= g >> 24;
201 /* The ELF ABI says `h &= ~g', but this is equivalent in
202 this case and on some machines one insn instead of two. */
203 h ^= g;
204 }
205 }
206 return h & 0xffffffff;
207 }
208
209 /* Read a specified number of bytes at a specified offset in an ELF
210 file, into a newly allocated buffer, and return a pointer to the
211 buffer. */
212
213 static char *
214 elf_read (bfd *abfd, file_ptr offset, bfd_size_type size)
215 {
216 char *buf;
217
218 if ((buf = bfd_alloc (abfd, size)) == NULL)
219 return NULL;
220 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
221 return NULL;
222 if (bfd_bread (buf, size, abfd) != size)
223 {
224 if (bfd_get_error () != bfd_error_system_call)
225 bfd_set_error (bfd_error_file_truncated);
226 return NULL;
227 }
228 return buf;
229 }
230
231 bfd_boolean
232 bfd_elf_mkobject (bfd *abfd)
233 {
234 /* This just does initialization. */
235 /* coff_mkobject zalloc's space for tdata.coff_obj_data ... */
236 elf_tdata (abfd) = bfd_zalloc (abfd, sizeof (struct elf_obj_tdata));
237 if (elf_tdata (abfd) == 0)
238 return FALSE;
239 /* Since everything is done at close time, do we need any
240 initialization? */
241
242 return TRUE;
243 }
244
245 bfd_boolean
246 bfd_elf_mkcorefile (bfd *abfd)
247 {
248 /* I think this can be done just like an object file. */
249 return bfd_elf_mkobject (abfd);
250 }
251
252 char *
253 bfd_elf_get_str_section (bfd *abfd, unsigned int shindex)
254 {
255 Elf_Internal_Shdr **i_shdrp;
256 char *shstrtab = NULL;
257 file_ptr offset;
258 bfd_size_type shstrtabsize;
259
260 i_shdrp = elf_elfsections (abfd);
261 if (i_shdrp == 0 || i_shdrp[shindex] == 0)
262 return 0;
263
264 shstrtab = (char *) i_shdrp[shindex]->contents;
265 if (shstrtab == NULL)
266 {
267 /* No cached one, attempt to read, and cache what we read. */
268 offset = i_shdrp[shindex]->sh_offset;
269 shstrtabsize = i_shdrp[shindex]->sh_size;
270 shstrtab = elf_read (abfd, offset, shstrtabsize);
271 i_shdrp[shindex]->contents = shstrtab;
272 }
273 return shstrtab;
274 }
275
276 char *
277 bfd_elf_string_from_elf_section (bfd *abfd,
278 unsigned int shindex,
279 unsigned int strindex)
280 {
281 Elf_Internal_Shdr *hdr;
282
283 if (strindex == 0)
284 return "";
285
286 hdr = elf_elfsections (abfd)[shindex];
287
288 if (hdr->contents == NULL
289 && bfd_elf_get_str_section (abfd, shindex) == NULL)
290 return NULL;
291
292 if (strindex >= hdr->sh_size)
293 {
294 (*_bfd_error_handler)
295 (_("%B: invalid string offset %u >= %lu for section `%s'"),
296 abfd, strindex, (unsigned long) hdr->sh_size,
297 ((shindex == elf_elfheader(abfd)->e_shstrndx
298 && strindex == hdr->sh_name)
299 ? ".shstrtab"
300 : elf_string_from_elf_strtab (abfd, hdr->sh_name)));
301 return "";
302 }
303
304 return ((char *) hdr->contents) + strindex;
305 }
306
307 /* Read and convert symbols to internal format.
308 SYMCOUNT specifies the number of symbols to read, starting from
309 symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF
310 are non-NULL, they are used to store the internal symbols, external
311 symbols, and symbol section index extensions, respectively. */
312
313 Elf_Internal_Sym *
314 bfd_elf_get_elf_syms (bfd *ibfd,
315 Elf_Internal_Shdr *symtab_hdr,
316 size_t symcount,
317 size_t symoffset,
318 Elf_Internal_Sym *intsym_buf,
319 void *extsym_buf,
320 Elf_External_Sym_Shndx *extshndx_buf)
321 {
322 Elf_Internal_Shdr *shndx_hdr;
323 void *alloc_ext;
324 const bfd_byte *esym;
325 Elf_External_Sym_Shndx *alloc_extshndx;
326 Elf_External_Sym_Shndx *shndx;
327 Elf_Internal_Sym *isym;
328 Elf_Internal_Sym *isymend;
329 const struct elf_backend_data *bed;
330 size_t extsym_size;
331 bfd_size_type amt;
332 file_ptr pos;
333
334 if (symcount == 0)
335 return intsym_buf;
336
337 /* Normal syms might have section extension entries. */
338 shndx_hdr = NULL;
339 if (symtab_hdr == &elf_tdata (ibfd)->symtab_hdr)
340 shndx_hdr = &elf_tdata (ibfd)->symtab_shndx_hdr;
341
342 /* Read the symbols. */
343 alloc_ext = NULL;
344 alloc_extshndx = NULL;
345 bed = get_elf_backend_data (ibfd);
346 extsym_size = bed->s->sizeof_sym;
347 amt = symcount * extsym_size;
348 pos = symtab_hdr->sh_offset + symoffset * extsym_size;
349 if (extsym_buf == NULL)
350 {
351 alloc_ext = bfd_malloc (amt);
352 extsym_buf = alloc_ext;
353 }
354 if (extsym_buf == NULL
355 || bfd_seek (ibfd, pos, SEEK_SET) != 0
356 || bfd_bread (extsym_buf, amt, ibfd) != amt)
357 {
358 intsym_buf = NULL;
359 goto out;
360 }
361
362 if (shndx_hdr == NULL || shndx_hdr->sh_size == 0)
363 extshndx_buf = NULL;
364 else
365 {
366 amt = symcount * sizeof (Elf_External_Sym_Shndx);
367 pos = shndx_hdr->sh_offset + symoffset * sizeof (Elf_External_Sym_Shndx);
368 if (extshndx_buf == NULL)
369 {
370 alloc_extshndx = bfd_malloc (amt);
371 extshndx_buf = alloc_extshndx;
372 }
373 if (extshndx_buf == NULL
374 || bfd_seek (ibfd, pos, SEEK_SET) != 0
375 || bfd_bread (extshndx_buf, amt, ibfd) != amt)
376 {
377 intsym_buf = NULL;
378 goto out;
379 }
380 }
381
382 if (intsym_buf == NULL)
383 {
384 bfd_size_type amt = symcount * sizeof (Elf_Internal_Sym);
385 intsym_buf = bfd_malloc (amt);
386 if (intsym_buf == NULL)
387 goto out;
388 }
389
390 /* Convert the symbols to internal form. */
391 isymend = intsym_buf + symcount;
392 for (esym = extsym_buf, isym = intsym_buf, shndx = extshndx_buf;
393 isym < isymend;
394 esym += extsym_size, isym++, shndx = shndx != NULL ? shndx + 1 : NULL)
395 (*bed->s->swap_symbol_in) (ibfd, esym, shndx, isym);
396
397 out:
398 if (alloc_ext != NULL)
399 free (alloc_ext);
400 if (alloc_extshndx != NULL)
401 free (alloc_extshndx);
402
403 return intsym_buf;
404 }
405
406 /* Look up a symbol name. */
407 const char *
408 bfd_elf_local_sym_name (bfd *abfd, Elf_Internal_Sym *isym)
409 {
410 unsigned int iname = isym->st_name;
411 unsigned int shindex = elf_tdata (abfd)->symtab_hdr.sh_link;
412 if (iname == 0 && ELF_ST_TYPE (isym->st_info) == STT_SECTION)
413 {
414 iname = elf_elfsections (abfd)[isym->st_shndx]->sh_name;
415 shindex = elf_elfheader (abfd)->e_shstrndx;
416 }
417
418 return bfd_elf_string_from_elf_section (abfd, shindex, iname);
419 }
420
421 /* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
422 sections. The first element is the flags, the rest are section
423 pointers. */
424
425 typedef union elf_internal_group {
426 Elf_Internal_Shdr *shdr;
427 unsigned int flags;
428 } Elf_Internal_Group;
429
430 /* Return the name of the group signature symbol. Why isn't the
431 signature just a string? */
432
433 static const char *
434 group_signature (bfd *abfd, Elf_Internal_Shdr *ghdr)
435 {
436 Elf_Internal_Shdr *hdr;
437 unsigned char esym[sizeof (Elf64_External_Sym)];
438 Elf_External_Sym_Shndx eshndx;
439 Elf_Internal_Sym isym;
440
441 /* First we need to ensure the symbol table is available. */
442 if (! bfd_section_from_shdr (abfd, ghdr->sh_link))
443 return NULL;
444
445 /* Go read the symbol. */
446 hdr = &elf_tdata (abfd)->symtab_hdr;
447 if (bfd_elf_get_elf_syms (abfd, hdr, 1, ghdr->sh_info,
448 &isym, esym, &eshndx) == NULL)
449 return NULL;
450
451 return bfd_elf_local_sym_name (abfd, &isym);
452 }
453
454 /* Set next_in_group list pointer, and group name for NEWSECT. */
455
456 static bfd_boolean
457 setup_group (bfd *abfd, Elf_Internal_Shdr *hdr, asection *newsect)
458 {
459 unsigned int num_group = elf_tdata (abfd)->num_group;
460
461 /* If num_group is zero, read in all SHT_GROUP sections. The count
462 is set to -1 if there are no SHT_GROUP sections. */
463 if (num_group == 0)
464 {
465 unsigned int i, shnum;
466
467 /* First count the number of groups. If we have a SHT_GROUP
468 section with just a flag word (ie. sh_size is 4), ignore it. */
469 shnum = elf_numsections (abfd);
470 num_group = 0;
471 for (i = 0; i < shnum; i++)
472 {
473 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
474 if (shdr->sh_type == SHT_GROUP && shdr->sh_size >= 8)
475 num_group += 1;
476 }
477
478 if (num_group == 0)
479 num_group = (unsigned) -1;
480 elf_tdata (abfd)->num_group = num_group;
481
482 if (num_group > 0)
483 {
484 /* We keep a list of elf section headers for group sections,
485 so we can find them quickly. */
486 bfd_size_type amt = num_group * sizeof (Elf_Internal_Shdr *);
487 elf_tdata (abfd)->group_sect_ptr = bfd_alloc (abfd, amt);
488 if (elf_tdata (abfd)->group_sect_ptr == NULL)
489 return FALSE;
490
491 num_group = 0;
492 for (i = 0; i < shnum; i++)
493 {
494 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
495 if (shdr->sh_type == SHT_GROUP && shdr->sh_size >= 8)
496 {
497 unsigned char *src;
498 Elf_Internal_Group *dest;
499
500 /* Add to list of sections. */
501 elf_tdata (abfd)->group_sect_ptr[num_group] = shdr;
502 num_group += 1;
503
504 /* Read the raw contents. */
505 BFD_ASSERT (sizeof (*dest) >= 4);
506 amt = shdr->sh_size * sizeof (*dest) / 4;
507 shdr->contents = bfd_alloc (abfd, amt);
508 if (shdr->contents == NULL
509 || bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0
510 || (bfd_bread (shdr->contents, shdr->sh_size, abfd)
511 != shdr->sh_size))
512 return FALSE;
513
514 /* Translate raw contents, a flag word followed by an
515 array of elf section indices all in target byte order,
516 to the flag word followed by an array of elf section
517 pointers. */
518 src = shdr->contents + shdr->sh_size;
519 dest = (Elf_Internal_Group *) (shdr->contents + amt);
520 while (1)
521 {
522 unsigned int idx;
523
524 src -= 4;
525 --dest;
526 idx = H_GET_32 (abfd, src);
527 if (src == shdr->contents)
528 {
529 dest->flags = idx;
530 if (shdr->bfd_section != NULL && (idx & GRP_COMDAT))
531 shdr->bfd_section->flags
532 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
533 break;
534 }
535 if (idx >= shnum)
536 {
537 ((*_bfd_error_handler)
538 (_("%B: invalid SHT_GROUP entry"), abfd));
539 idx = 0;
540 }
541 dest->shdr = elf_elfsections (abfd)[idx];
542 }
543 }
544 }
545 }
546 }
547
548 if (num_group != (unsigned) -1)
549 {
550 unsigned int i;
551
552 for (i = 0; i < num_group; i++)
553 {
554 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
555 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
556 unsigned int n_elt = shdr->sh_size / 4;
557
558 /* Look through this group's sections to see if current
559 section is a member. */
560 while (--n_elt != 0)
561 if ((++idx)->shdr == hdr)
562 {
563 asection *s = NULL;
564
565 /* We are a member of this group. Go looking through
566 other members to see if any others are linked via
567 next_in_group. */
568 idx = (Elf_Internal_Group *) shdr->contents;
569 n_elt = shdr->sh_size / 4;
570 while (--n_elt != 0)
571 if ((s = (++idx)->shdr->bfd_section) != NULL
572 && elf_next_in_group (s) != NULL)
573 break;
574 if (n_elt != 0)
575 {
576 /* Snarf the group name from other member, and
577 insert current section in circular list. */
578 elf_group_name (newsect) = elf_group_name (s);
579 elf_next_in_group (newsect) = elf_next_in_group (s);
580 elf_next_in_group (s) = newsect;
581 }
582 else
583 {
584 const char *gname;
585
586 gname = group_signature (abfd, shdr);
587 if (gname == NULL)
588 return FALSE;
589 elf_group_name (newsect) = gname;
590
591 /* Start a circular list with one element. */
592 elf_next_in_group (newsect) = newsect;
593 }
594
595 /* If the group section has been created, point to the
596 new member. */
597 if (shdr->bfd_section != NULL)
598 elf_next_in_group (shdr->bfd_section) = newsect;
599
600 i = num_group - 1;
601 break;
602 }
603 }
604 }
605
606 if (elf_group_name (newsect) == NULL)
607 {
608 (*_bfd_error_handler) (_("%B: no group info for section %A"),
609 abfd, newsect);
610 }
611 return TRUE;
612 }
613
614 bfd_boolean
615 _bfd_elf_setup_group_pointers (bfd *abfd)
616 {
617 unsigned int i;
618 unsigned int num_group = elf_tdata (abfd)->num_group;
619 bfd_boolean result = TRUE;
620
621 if (num_group == (unsigned) -1)
622 return result;
623
624 for (i = 0; i < num_group; i++)
625 {
626 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
627 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
628 unsigned int n_elt = shdr->sh_size / 4;
629
630 while (--n_elt != 0)
631 if ((++idx)->shdr->bfd_section)
632 elf_sec_group (idx->shdr->bfd_section) = shdr->bfd_section;
633 else if (idx->shdr->sh_type == SHT_RELA
634 || idx->shdr->sh_type == SHT_REL)
635 /* We won't include relocation sections in section groups in
636 output object files. We adjust the group section size here
637 so that relocatable link will work correctly when
638 relocation sections are in section group in input object
639 files. */
640 shdr->bfd_section->size -= 4;
641 else
642 {
643 /* There are some unknown sections in the group. */
644 (*_bfd_error_handler)
645 (_("%B: unknown [%d] section `%s' in group [%s]"),
646 abfd,
647 (unsigned int) idx->shdr->sh_type,
648 elf_string_from_elf_strtab (abfd, idx->shdr->sh_name),
649 shdr->bfd_section->name);
650 result = FALSE;
651 }
652 }
653 return result;
654 }
655
656 bfd_boolean
657 bfd_elf_is_group_section (bfd *abfd ATTRIBUTE_UNUSED, const asection *sec)
658 {
659 return elf_next_in_group (sec) != NULL;
660 }
661
662 bfd_boolean
663 bfd_elf_discard_group (bfd *abfd ATTRIBUTE_UNUSED,
664 asection *group ATTRIBUTE_UNUSED)
665 {
666 #if 0
667 asection *first = elf_next_in_group (group);
668 asection *s = first;
669
670 while (s != NULL)
671 {
672 s->output_section = bfd_abs_section_ptr;
673 s = elf_next_in_group (s);
674 /* These lists are circular. */
675 if (s == first)
676 break;
677 }
678 #else
679 /* FIXME: Never used. Remove it! */
680 abort ();
681 #endif
682 return TRUE;
683 }
684
685 /* Make a BFD section from an ELF section. We store a pointer to the
686 BFD section in the bfd_section field of the header. */
687
688 bfd_boolean
689 _bfd_elf_make_section_from_shdr (bfd *abfd,
690 Elf_Internal_Shdr *hdr,
691 const char *name)
692 {
693 asection *newsect;
694 flagword flags;
695 const struct elf_backend_data *bed;
696
697 if (hdr->bfd_section != NULL)
698 {
699 BFD_ASSERT (strcmp (name,
700 bfd_get_section_name (abfd, hdr->bfd_section)) == 0);
701 return TRUE;
702 }
703
704 newsect = bfd_make_section_anyway (abfd, name);
705 if (newsect == NULL)
706 return FALSE;
707
708 hdr->bfd_section = newsect;
709 elf_section_data (newsect)->this_hdr = *hdr;
710
711 /* Always use the real type/flags. */
712 elf_section_type (newsect) = hdr->sh_type;
713 elf_section_flags (newsect) = hdr->sh_flags;
714
715 newsect->filepos = hdr->sh_offset;
716
717 if (! bfd_set_section_vma (abfd, newsect, hdr->sh_addr)
718 || ! bfd_set_section_size (abfd, newsect, hdr->sh_size)
719 || ! bfd_set_section_alignment (abfd, newsect,
720 bfd_log2 ((bfd_vma) hdr->sh_addralign)))
721 return FALSE;
722
723 flags = SEC_NO_FLAGS;
724 if (hdr->sh_type != SHT_NOBITS)
725 flags |= SEC_HAS_CONTENTS;
726 if (hdr->sh_type == SHT_GROUP)
727 flags |= SEC_GROUP | SEC_EXCLUDE;
728 if ((hdr->sh_flags & SHF_ALLOC) != 0)
729 {
730 flags |= SEC_ALLOC;
731 if (hdr->sh_type != SHT_NOBITS)
732 flags |= SEC_LOAD;
733 }
734 if ((hdr->sh_flags & SHF_WRITE) == 0)
735 flags |= SEC_READONLY;
736 if ((hdr->sh_flags & SHF_EXECINSTR) != 0)
737 flags |= SEC_CODE;
738 else if ((flags & SEC_LOAD) != 0)
739 flags |= SEC_DATA;
740 if ((hdr->sh_flags & SHF_MERGE) != 0)
741 {
742 flags |= SEC_MERGE;
743 newsect->entsize = hdr->sh_entsize;
744 if ((hdr->sh_flags & SHF_STRINGS) != 0)
745 flags |= SEC_STRINGS;
746 }
747 if (hdr->sh_flags & SHF_GROUP)
748 if (!setup_group (abfd, hdr, newsect))
749 return FALSE;
750 if ((hdr->sh_flags & SHF_TLS) != 0)
751 flags |= SEC_THREAD_LOCAL;
752
753 /* The debugging sections appear to be recognized only by name, not
754 any sort of flag. */
755 {
756 static const char *debug_sec_names [] =
757 {
758 ".debug",
759 ".gnu.linkonce.wi.",
760 ".line",
761 ".stab"
762 };
763 int i;
764
765 for (i = ARRAY_SIZE (debug_sec_names); i--;)
766 if (strncmp (name, debug_sec_names[i], strlen (debug_sec_names[i])) == 0)
767 break;
768
769 if (i >= 0)
770 flags |= SEC_DEBUGGING;
771 }
772
773 /* As a GNU extension, if the name begins with .gnu.linkonce, we
774 only link a single copy of the section. This is used to support
775 g++. g++ will emit each template expansion in its own section.
776 The symbols will be defined as weak, so that multiple definitions
777 are permitted. The GNU linker extension is to actually discard
778 all but one of the sections. */
779 if (strncmp (name, ".gnu.linkonce", sizeof ".gnu.linkonce" - 1) == 0
780 && elf_next_in_group (newsect) == NULL)
781 flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
782
783 bed = get_elf_backend_data (abfd);
784 if (bed->elf_backend_section_flags)
785 if (! bed->elf_backend_section_flags (&flags, hdr))
786 return FALSE;
787
788 if (! bfd_set_section_flags (abfd, newsect, flags))
789 return FALSE;
790
791 if ((flags & SEC_ALLOC) != 0)
792 {
793 Elf_Internal_Phdr *phdr;
794 unsigned int i;
795
796 /* Look through the phdrs to see if we need to adjust the lma.
797 If all the p_paddr fields are zero, we ignore them, since
798 some ELF linkers produce such output. */
799 phdr = elf_tdata (abfd)->phdr;
800 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
801 {
802 if (phdr->p_paddr != 0)
803 break;
804 }
805 if (i < elf_elfheader (abfd)->e_phnum)
806 {
807 phdr = elf_tdata (abfd)->phdr;
808 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
809 {
810 /* This section is part of this segment if its file
811 offset plus size lies within the segment's memory
812 span and, if the section is loaded, the extent of the
813 loaded data lies within the extent of the segment.
814
815 Note - we used to check the p_paddr field as well, and
816 refuse to set the LMA if it was 0. This is wrong
817 though, as a perfectly valid initialised segment can
818 have a p_paddr of zero. Some architectures, eg ARM,
819 place special significance on the address 0 and
820 executables need to be able to have a segment which
821 covers this address. */
822 if (phdr->p_type == PT_LOAD
823 && (bfd_vma) hdr->sh_offset >= phdr->p_offset
824 && (hdr->sh_offset + hdr->sh_size
825 <= phdr->p_offset + phdr->p_memsz)
826 && ((flags & SEC_LOAD) == 0
827 || (hdr->sh_offset + hdr->sh_size
828 <= phdr->p_offset + phdr->p_filesz)))
829 {
830 if ((flags & SEC_LOAD) == 0)
831 newsect->lma = (phdr->p_paddr
832 + hdr->sh_addr - phdr->p_vaddr);
833 else
834 /* We used to use the same adjustment for SEC_LOAD
835 sections, but that doesn't work if the segment
836 is packed with code from multiple VMAs.
837 Instead we calculate the section LMA based on
838 the segment LMA. It is assumed that the
839 segment will contain sections with contiguous
840 LMAs, even if the VMAs are not. */
841 newsect->lma = (phdr->p_paddr
842 + hdr->sh_offset - phdr->p_offset);
843
844 /* With contiguous segments, we can't tell from file
845 offsets whether a section with zero size should
846 be placed at the end of one segment or the
847 beginning of the next. Decide based on vaddr. */
848 if (hdr->sh_addr >= phdr->p_vaddr
849 && (hdr->sh_addr + hdr->sh_size
850 <= phdr->p_vaddr + phdr->p_memsz))
851 break;
852 }
853 }
854 }
855 }
856
857 return TRUE;
858 }
859
860 /*
861 INTERNAL_FUNCTION
862 bfd_elf_find_section
863
864 SYNOPSIS
865 struct elf_internal_shdr *bfd_elf_find_section (bfd *abfd, char *name);
866
867 DESCRIPTION
868 Helper functions for GDB to locate the string tables.
869 Since BFD hides string tables from callers, GDB needs to use an
870 internal hook to find them. Sun's .stabstr, in particular,
871 isn't even pointed to by the .stab section, so ordinary
872 mechanisms wouldn't work to find it, even if we had some.
873 */
874
875 struct elf_internal_shdr *
876 bfd_elf_find_section (bfd *abfd, char *name)
877 {
878 Elf_Internal_Shdr **i_shdrp;
879 char *shstrtab;
880 unsigned int max;
881 unsigned int i;
882
883 i_shdrp = elf_elfsections (abfd);
884 if (i_shdrp != NULL)
885 {
886 shstrtab = bfd_elf_get_str_section (abfd,
887 elf_elfheader (abfd)->e_shstrndx);
888 if (shstrtab != NULL)
889 {
890 max = elf_numsections (abfd);
891 for (i = 1; i < max; i++)
892 if (!strcmp (&shstrtab[i_shdrp[i]->sh_name], name))
893 return i_shdrp[i];
894 }
895 }
896 return 0;
897 }
898
899 const char *const bfd_elf_section_type_names[] = {
900 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
901 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
902 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
903 };
904
905 /* ELF relocs are against symbols. If we are producing relocatable
906 output, and the reloc is against an external symbol, and nothing
907 has given us any additional addend, the resulting reloc will also
908 be against the same symbol. In such a case, we don't want to
909 change anything about the way the reloc is handled, since it will
910 all be done at final link time. Rather than put special case code
911 into bfd_perform_relocation, all the reloc types use this howto
912 function. It just short circuits the reloc if producing
913 relocatable output against an external symbol. */
914
915 bfd_reloc_status_type
916 bfd_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED,
917 arelent *reloc_entry,
918 asymbol *symbol,
919 void *data ATTRIBUTE_UNUSED,
920 asection *input_section,
921 bfd *output_bfd,
922 char **error_message ATTRIBUTE_UNUSED)
923 {
924 if (output_bfd != NULL
925 && (symbol->flags & BSF_SECTION_SYM) == 0
926 && (! reloc_entry->howto->partial_inplace
927 || reloc_entry->addend == 0))
928 {
929 reloc_entry->address += input_section->output_offset;
930 return bfd_reloc_ok;
931 }
932
933 return bfd_reloc_continue;
934 }
935 \f
936 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
937
938 static void
939 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
940 asection *sec)
941 {
942 BFD_ASSERT (sec->sec_info_type == ELF_INFO_TYPE_MERGE);
943 sec->sec_info_type = ELF_INFO_TYPE_NONE;
944 }
945
946 /* Finish SHF_MERGE section merging. */
947
948 bfd_boolean
949 _bfd_elf_merge_sections (bfd *abfd, struct bfd_link_info *info)
950 {
951 bfd *ibfd;
952 asection *sec;
953
954 if (!is_elf_hash_table (info->hash))
955 return FALSE;
956
957 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
958 if ((ibfd->flags & DYNAMIC) == 0)
959 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
960 if ((sec->flags & SEC_MERGE) != 0
961 && !bfd_is_abs_section (sec->output_section))
962 {
963 struct bfd_elf_section_data *secdata;
964
965 secdata = elf_section_data (sec);
966 if (! _bfd_add_merge_section (abfd,
967 &elf_hash_table (info)->merge_info,
968 sec, &secdata->sec_info))
969 return FALSE;
970 else if (secdata->sec_info)
971 sec->sec_info_type = ELF_INFO_TYPE_MERGE;
972 }
973
974 if (elf_hash_table (info)->merge_info != NULL)
975 _bfd_merge_sections (abfd, info, elf_hash_table (info)->merge_info,
976 merge_sections_remove_hook);
977 return TRUE;
978 }
979
980 void
981 _bfd_elf_link_just_syms (asection *sec, struct bfd_link_info *info)
982 {
983 sec->output_section = bfd_abs_section_ptr;
984 sec->output_offset = sec->vma;
985 if (!is_elf_hash_table (info->hash))
986 return;
987
988 sec->sec_info_type = ELF_INFO_TYPE_JUST_SYMS;
989 }
990 \f
991 /* Copy the program header and other data from one object module to
992 another. */
993
994 bfd_boolean
995 _bfd_elf_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
996 {
997 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
998 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
999 return TRUE;
1000
1001 BFD_ASSERT (!elf_flags_init (obfd)
1002 || (elf_elfheader (obfd)->e_flags
1003 == elf_elfheader (ibfd)->e_flags));
1004
1005 elf_gp (obfd) = elf_gp (ibfd);
1006 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
1007 elf_flags_init (obfd) = TRUE;
1008 return TRUE;
1009 }
1010
1011 /* Print out the program headers. */
1012
1013 bfd_boolean
1014 _bfd_elf_print_private_bfd_data (bfd *abfd, void *farg)
1015 {
1016 FILE *f = farg;
1017 Elf_Internal_Phdr *p;
1018 asection *s;
1019 bfd_byte *dynbuf = NULL;
1020
1021 p = elf_tdata (abfd)->phdr;
1022 if (p != NULL)
1023 {
1024 unsigned int i, c;
1025
1026 fprintf (f, _("\nProgram Header:\n"));
1027 c = elf_elfheader (abfd)->e_phnum;
1028 for (i = 0; i < c; i++, p++)
1029 {
1030 const char *pt;
1031 char buf[20];
1032
1033 switch (p->p_type)
1034 {
1035 case PT_NULL: pt = "NULL"; break;
1036 case PT_LOAD: pt = "LOAD"; break;
1037 case PT_DYNAMIC: pt = "DYNAMIC"; break;
1038 case PT_INTERP: pt = "INTERP"; break;
1039 case PT_NOTE: pt = "NOTE"; break;
1040 case PT_SHLIB: pt = "SHLIB"; break;
1041 case PT_PHDR: pt = "PHDR"; break;
1042 case PT_TLS: pt = "TLS"; break;
1043 case PT_GNU_EH_FRAME: pt = "EH_FRAME"; break;
1044 case PT_GNU_STACK: pt = "STACK"; break;
1045 case PT_GNU_RELRO: pt = "RELRO"; break;
1046 default: sprintf (buf, "0x%lx", p->p_type); pt = buf; break;
1047 }
1048 fprintf (f, "%8s off 0x", pt);
1049 bfd_fprintf_vma (abfd, f, p->p_offset);
1050 fprintf (f, " vaddr 0x");
1051 bfd_fprintf_vma (abfd, f, p->p_vaddr);
1052 fprintf (f, " paddr 0x");
1053 bfd_fprintf_vma (abfd, f, p->p_paddr);
1054 fprintf (f, " align 2**%u\n", bfd_log2 (p->p_align));
1055 fprintf (f, " filesz 0x");
1056 bfd_fprintf_vma (abfd, f, p->p_filesz);
1057 fprintf (f, " memsz 0x");
1058 bfd_fprintf_vma (abfd, f, p->p_memsz);
1059 fprintf (f, " flags %c%c%c",
1060 (p->p_flags & PF_R) != 0 ? 'r' : '-',
1061 (p->p_flags & PF_W) != 0 ? 'w' : '-',
1062 (p->p_flags & PF_X) != 0 ? 'x' : '-');
1063 if ((p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X)) != 0)
1064 fprintf (f, " %lx", p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X));
1065 fprintf (f, "\n");
1066 }
1067 }
1068
1069 s = bfd_get_section_by_name (abfd, ".dynamic");
1070 if (s != NULL)
1071 {
1072 int elfsec;
1073 unsigned long shlink;
1074 bfd_byte *extdyn, *extdynend;
1075 size_t extdynsize;
1076 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1077
1078 fprintf (f, _("\nDynamic Section:\n"));
1079
1080 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
1081 goto error_return;
1082
1083 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1084 if (elfsec == -1)
1085 goto error_return;
1086 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1087
1088 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1089 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1090
1091 extdyn = dynbuf;
1092 extdynend = extdyn + s->size;
1093 for (; extdyn < extdynend; extdyn += extdynsize)
1094 {
1095 Elf_Internal_Dyn dyn;
1096 const char *name;
1097 char ab[20];
1098 bfd_boolean stringp;
1099
1100 (*swap_dyn_in) (abfd, extdyn, &dyn);
1101
1102 if (dyn.d_tag == DT_NULL)
1103 break;
1104
1105 stringp = FALSE;
1106 switch (dyn.d_tag)
1107 {
1108 default:
1109 sprintf (ab, "0x%lx", (unsigned long) dyn.d_tag);
1110 name = ab;
1111 break;
1112
1113 case DT_NEEDED: name = "NEEDED"; stringp = TRUE; break;
1114 case DT_PLTRELSZ: name = "PLTRELSZ"; break;
1115 case DT_PLTGOT: name = "PLTGOT"; break;
1116 case DT_HASH: name = "HASH"; break;
1117 case DT_STRTAB: name = "STRTAB"; break;
1118 case DT_SYMTAB: name = "SYMTAB"; break;
1119 case DT_RELA: name = "RELA"; break;
1120 case DT_RELASZ: name = "RELASZ"; break;
1121 case DT_RELAENT: name = "RELAENT"; break;
1122 case DT_STRSZ: name = "STRSZ"; break;
1123 case DT_SYMENT: name = "SYMENT"; break;
1124 case DT_INIT: name = "INIT"; break;
1125 case DT_FINI: name = "FINI"; break;
1126 case DT_SONAME: name = "SONAME"; stringp = TRUE; break;
1127 case DT_RPATH: name = "RPATH"; stringp = TRUE; break;
1128 case DT_SYMBOLIC: name = "SYMBOLIC"; break;
1129 case DT_REL: name = "REL"; break;
1130 case DT_RELSZ: name = "RELSZ"; break;
1131 case DT_RELENT: name = "RELENT"; break;
1132 case DT_PLTREL: name = "PLTREL"; break;
1133 case DT_DEBUG: name = "DEBUG"; break;
1134 case DT_TEXTREL: name = "TEXTREL"; break;
1135 case DT_JMPREL: name = "JMPREL"; break;
1136 case DT_BIND_NOW: name = "BIND_NOW"; break;
1137 case DT_INIT_ARRAY: name = "INIT_ARRAY"; break;
1138 case DT_FINI_ARRAY: name = "FINI_ARRAY"; break;
1139 case DT_INIT_ARRAYSZ: name = "INIT_ARRAYSZ"; break;
1140 case DT_FINI_ARRAYSZ: name = "FINI_ARRAYSZ"; break;
1141 case DT_RUNPATH: name = "RUNPATH"; stringp = TRUE; break;
1142 case DT_FLAGS: name = "FLAGS"; break;
1143 case DT_PREINIT_ARRAY: name = "PREINIT_ARRAY"; break;
1144 case DT_PREINIT_ARRAYSZ: name = "PREINIT_ARRAYSZ"; break;
1145 case DT_CHECKSUM: name = "CHECKSUM"; break;
1146 case DT_PLTPADSZ: name = "PLTPADSZ"; break;
1147 case DT_MOVEENT: name = "MOVEENT"; break;
1148 case DT_MOVESZ: name = "MOVESZ"; break;
1149 case DT_FEATURE: name = "FEATURE"; break;
1150 case DT_POSFLAG_1: name = "POSFLAG_1"; break;
1151 case DT_SYMINSZ: name = "SYMINSZ"; break;
1152 case DT_SYMINENT: name = "SYMINENT"; break;
1153 case DT_CONFIG: name = "CONFIG"; stringp = TRUE; break;
1154 case DT_DEPAUDIT: name = "DEPAUDIT"; stringp = TRUE; break;
1155 case DT_AUDIT: name = "AUDIT"; stringp = TRUE; break;
1156 case DT_PLTPAD: name = "PLTPAD"; break;
1157 case DT_MOVETAB: name = "MOVETAB"; break;
1158 case DT_SYMINFO: name = "SYMINFO"; break;
1159 case DT_RELACOUNT: name = "RELACOUNT"; break;
1160 case DT_RELCOUNT: name = "RELCOUNT"; break;
1161 case DT_FLAGS_1: name = "FLAGS_1"; break;
1162 case DT_VERSYM: name = "VERSYM"; break;
1163 case DT_VERDEF: name = "VERDEF"; break;
1164 case DT_VERDEFNUM: name = "VERDEFNUM"; break;
1165 case DT_VERNEED: name = "VERNEED"; break;
1166 case DT_VERNEEDNUM: name = "VERNEEDNUM"; break;
1167 case DT_AUXILIARY: name = "AUXILIARY"; stringp = TRUE; break;
1168 case DT_USED: name = "USED"; break;
1169 case DT_FILTER: name = "FILTER"; stringp = TRUE; break;
1170 }
1171
1172 fprintf (f, " %-11s ", name);
1173 if (! stringp)
1174 fprintf (f, "0x%lx", (unsigned long) dyn.d_un.d_val);
1175 else
1176 {
1177 const char *string;
1178 unsigned int tagv = dyn.d_un.d_val;
1179
1180 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1181 if (string == NULL)
1182 goto error_return;
1183 fprintf (f, "%s", string);
1184 }
1185 fprintf (f, "\n");
1186 }
1187
1188 free (dynbuf);
1189 dynbuf = NULL;
1190 }
1191
1192 if ((elf_dynverdef (abfd) != 0 && elf_tdata (abfd)->verdef == NULL)
1193 || (elf_dynverref (abfd) != 0 && elf_tdata (abfd)->verref == NULL))
1194 {
1195 if (! _bfd_elf_slurp_version_tables (abfd))
1196 return FALSE;
1197 }
1198
1199 if (elf_dynverdef (abfd) != 0)
1200 {
1201 Elf_Internal_Verdef *t;
1202
1203 fprintf (f, _("\nVersion definitions:\n"));
1204 for (t = elf_tdata (abfd)->verdef; t != NULL; t = t->vd_nextdef)
1205 {
1206 fprintf (f, "%d 0x%2.2x 0x%8.8lx %s\n", t->vd_ndx,
1207 t->vd_flags, t->vd_hash, t->vd_nodename);
1208 if (t->vd_auxptr->vda_nextptr != NULL)
1209 {
1210 Elf_Internal_Verdaux *a;
1211
1212 fprintf (f, "\t");
1213 for (a = t->vd_auxptr->vda_nextptr;
1214 a != NULL;
1215 a = a->vda_nextptr)
1216 fprintf (f, "%s ", a->vda_nodename);
1217 fprintf (f, "\n");
1218 }
1219 }
1220 }
1221
1222 if (elf_dynverref (abfd) != 0)
1223 {
1224 Elf_Internal_Verneed *t;
1225
1226 fprintf (f, _("\nVersion References:\n"));
1227 for (t = elf_tdata (abfd)->verref; t != NULL; t = t->vn_nextref)
1228 {
1229 Elf_Internal_Vernaux *a;
1230
1231 fprintf (f, _(" required from %s:\n"), t->vn_filename);
1232 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1233 fprintf (f, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a->vna_hash,
1234 a->vna_flags, a->vna_other, a->vna_nodename);
1235 }
1236 }
1237
1238 return TRUE;
1239
1240 error_return:
1241 if (dynbuf != NULL)
1242 free (dynbuf);
1243 return FALSE;
1244 }
1245
1246 /* Display ELF-specific fields of a symbol. */
1247
1248 void
1249 bfd_elf_print_symbol (bfd *abfd,
1250 void *filep,
1251 asymbol *symbol,
1252 bfd_print_symbol_type how)
1253 {
1254 FILE *file = filep;
1255 switch (how)
1256 {
1257 case bfd_print_symbol_name:
1258 fprintf (file, "%s", symbol->name);
1259 break;
1260 case bfd_print_symbol_more:
1261 fprintf (file, "elf ");
1262 bfd_fprintf_vma (abfd, file, symbol->value);
1263 fprintf (file, " %lx", (long) symbol->flags);
1264 break;
1265 case bfd_print_symbol_all:
1266 {
1267 const char *section_name;
1268 const char *name = NULL;
1269 const struct elf_backend_data *bed;
1270 unsigned char st_other;
1271 bfd_vma val;
1272
1273 section_name = symbol->section ? symbol->section->name : "(*none*)";
1274
1275 bed = get_elf_backend_data (abfd);
1276 if (bed->elf_backend_print_symbol_all)
1277 name = (*bed->elf_backend_print_symbol_all) (abfd, filep, symbol);
1278
1279 if (name == NULL)
1280 {
1281 name = symbol->name;
1282 bfd_print_symbol_vandf (abfd, file, symbol);
1283 }
1284
1285 fprintf (file, " %s\t", section_name);
1286 /* Print the "other" value for a symbol. For common symbols,
1287 we've already printed the size; now print the alignment.
1288 For other symbols, we have no specified alignment, and
1289 we've printed the address; now print the size. */
1290 if (bfd_is_com_section (symbol->section))
1291 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
1292 else
1293 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_size;
1294 bfd_fprintf_vma (abfd, file, val);
1295
1296 /* If we have version information, print it. */
1297 if (elf_tdata (abfd)->dynversym_section != 0
1298 && (elf_tdata (abfd)->dynverdef_section != 0
1299 || elf_tdata (abfd)->dynverref_section != 0))
1300 {
1301 unsigned int vernum;
1302 const char *version_string;
1303
1304 vernum = ((elf_symbol_type *) symbol)->version & VERSYM_VERSION;
1305
1306 if (vernum == 0)
1307 version_string = "";
1308 else if (vernum == 1)
1309 version_string = "Base";
1310 else if (vernum <= elf_tdata (abfd)->cverdefs)
1311 version_string =
1312 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1313 else
1314 {
1315 Elf_Internal_Verneed *t;
1316
1317 version_string = "";
1318 for (t = elf_tdata (abfd)->verref;
1319 t != NULL;
1320 t = t->vn_nextref)
1321 {
1322 Elf_Internal_Vernaux *a;
1323
1324 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1325 {
1326 if (a->vna_other == vernum)
1327 {
1328 version_string = a->vna_nodename;
1329 break;
1330 }
1331 }
1332 }
1333 }
1334
1335 if ((((elf_symbol_type *) symbol)->version & VERSYM_HIDDEN) == 0)
1336 fprintf (file, " %-11s", version_string);
1337 else
1338 {
1339 int i;
1340
1341 fprintf (file, " (%s)", version_string);
1342 for (i = 10 - strlen (version_string); i > 0; --i)
1343 putc (' ', file);
1344 }
1345 }
1346
1347 /* If the st_other field is not zero, print it. */
1348 st_other = ((elf_symbol_type *) symbol)->internal_elf_sym.st_other;
1349
1350 switch (st_other)
1351 {
1352 case 0: break;
1353 case STV_INTERNAL: fprintf (file, " .internal"); break;
1354 case STV_HIDDEN: fprintf (file, " .hidden"); break;
1355 case STV_PROTECTED: fprintf (file, " .protected"); break;
1356 default:
1357 /* Some other non-defined flags are also present, so print
1358 everything hex. */
1359 fprintf (file, " 0x%02x", (unsigned int) st_other);
1360 }
1361
1362 fprintf (file, " %s", name);
1363 }
1364 break;
1365 }
1366 }
1367 \f
1368 /* Create an entry in an ELF linker hash table. */
1369
1370 struct bfd_hash_entry *
1371 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
1372 struct bfd_hash_table *table,
1373 const char *string)
1374 {
1375 /* Allocate the structure if it has not already been allocated by a
1376 subclass. */
1377 if (entry == NULL)
1378 {
1379 entry = bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
1380 if (entry == NULL)
1381 return entry;
1382 }
1383
1384 /* Call the allocation method of the superclass. */
1385 entry = _bfd_link_hash_newfunc (entry, table, string);
1386 if (entry != NULL)
1387 {
1388 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
1389 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
1390
1391 /* Set local fields. */
1392 ret->indx = -1;
1393 ret->dynindx = -1;
1394 ret->dynstr_index = 0;
1395 ret->elf_hash_value = 0;
1396 ret->weakdef = NULL;
1397 ret->verinfo.verdef = NULL;
1398 ret->vtable_entries_size = 0;
1399 ret->vtable_entries_used = NULL;
1400 ret->vtable_parent = NULL;
1401 ret->got = htab->init_refcount;
1402 ret->plt = htab->init_refcount;
1403 ret->size = 0;
1404 ret->type = STT_NOTYPE;
1405 ret->other = 0;
1406 /* Assume that we have been called by a non-ELF symbol reader.
1407 This flag is then reset by the code which reads an ELF input
1408 file. This ensures that a symbol created by a non-ELF symbol
1409 reader will have the flag set correctly. */
1410 ret->ref_regular = 0;
1411 ret->def_regular = 0;
1412 ret->ref_dynamic = 0;
1413 ret->def_dynamic = 0;
1414 ret->ref_regular_nonweak = 0;
1415 ret->dynamic_adjusted = 0;
1416 ret->needs_copy = 0;
1417 ret->needs_plt = 0;
1418 ret->non_elf = 1;
1419 ret->hidden = 0;
1420 ret->forced_local = 0;
1421 ret->mark = 0;
1422 ret->non_got_ref = 0;
1423 ret->dynamic_def = 0;
1424 ret->dynamic_weak = 0;
1425 ret->pointer_equality_needed = 0;
1426 }
1427
1428 return entry;
1429 }
1430
1431 /* Copy data from an indirect symbol to its direct symbol, hiding the
1432 old indirect symbol. Also used for copying flags to a weakdef. */
1433
1434 void
1435 _bfd_elf_link_hash_copy_indirect (const struct elf_backend_data *bed,
1436 struct elf_link_hash_entry *dir,
1437 struct elf_link_hash_entry *ind)
1438 {
1439 bfd_signed_vma tmp;
1440 bfd_signed_vma lowest_valid = bed->can_refcount;
1441
1442 /* Copy down any references that we may have already seen to the
1443 symbol which just became indirect. */
1444
1445 dir->ref_dynamic |= ind->ref_dynamic;
1446 dir->ref_regular |= ind->ref_regular;
1447 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
1448 dir->non_got_ref |= ind->non_got_ref;
1449 dir->needs_plt |= ind->needs_plt;
1450 dir->pointer_equality_needed |= ind->pointer_equality_needed;
1451
1452 if (ind->root.type != bfd_link_hash_indirect)
1453 return;
1454
1455 /* Copy over the global and procedure linkage table refcount entries.
1456 These may have been already set up by a check_relocs routine. */
1457 tmp = dir->got.refcount;
1458 if (tmp < lowest_valid)
1459 {
1460 dir->got.refcount = ind->got.refcount;
1461 ind->got.refcount = tmp;
1462 }
1463 else
1464 BFD_ASSERT (ind->got.refcount < lowest_valid);
1465
1466 tmp = dir->plt.refcount;
1467 if (tmp < lowest_valid)
1468 {
1469 dir->plt.refcount = ind->plt.refcount;
1470 ind->plt.refcount = tmp;
1471 }
1472 else
1473 BFD_ASSERT (ind->plt.refcount < lowest_valid);
1474
1475 if (dir->dynindx == -1)
1476 {
1477 dir->dynindx = ind->dynindx;
1478 dir->dynstr_index = ind->dynstr_index;
1479 ind->dynindx = -1;
1480 ind->dynstr_index = 0;
1481 }
1482 else
1483 BFD_ASSERT (ind->dynindx == -1);
1484 }
1485
1486 void
1487 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
1488 struct elf_link_hash_entry *h,
1489 bfd_boolean force_local)
1490 {
1491 h->plt = elf_hash_table (info)->init_offset;
1492 h->needs_plt = 0;
1493 if (force_local)
1494 {
1495 h->forced_local = 1;
1496 if (h->dynindx != -1)
1497 {
1498 h->dynindx = -1;
1499 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1500 h->dynstr_index);
1501 }
1502 }
1503 }
1504
1505 /* Initialize an ELF linker hash table. */
1506
1507 bfd_boolean
1508 _bfd_elf_link_hash_table_init
1509 (struct elf_link_hash_table *table,
1510 bfd *abfd,
1511 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
1512 struct bfd_hash_table *,
1513 const char *))
1514 {
1515 bfd_boolean ret;
1516
1517 table->dynamic_sections_created = FALSE;
1518 table->dynobj = NULL;
1519 /* Make sure can_refcount is extended to the width and signedness of
1520 init_refcount before we subtract one from it. */
1521 table->init_refcount.refcount = get_elf_backend_data (abfd)->can_refcount;
1522 table->init_refcount.refcount -= 1;
1523 table->init_offset.offset = -(bfd_vma) 1;
1524 /* The first dynamic symbol is a dummy. */
1525 table->dynsymcount = 1;
1526 table->dynstr = NULL;
1527 table->bucketcount = 0;
1528 table->needed = NULL;
1529 table->hgot = NULL;
1530 table->merge_info = NULL;
1531 memset (&table->stab_info, 0, sizeof (table->stab_info));
1532 memset (&table->eh_info, 0, sizeof (table->eh_info));
1533 table->dynlocal = NULL;
1534 table->runpath = NULL;
1535 table->tls_sec = NULL;
1536 table->tls_size = 0;
1537 table->loaded = NULL;
1538
1539 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc);
1540 table->root.type = bfd_link_elf_hash_table;
1541
1542 return ret;
1543 }
1544
1545 /* Create an ELF linker hash table. */
1546
1547 struct bfd_link_hash_table *
1548 _bfd_elf_link_hash_table_create (bfd *abfd)
1549 {
1550 struct elf_link_hash_table *ret;
1551 bfd_size_type amt = sizeof (struct elf_link_hash_table);
1552
1553 ret = bfd_malloc (amt);
1554 if (ret == NULL)
1555 return NULL;
1556
1557 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc))
1558 {
1559 free (ret);
1560 return NULL;
1561 }
1562
1563 return &ret->root;
1564 }
1565
1566 /* This is a hook for the ELF emulation code in the generic linker to
1567 tell the backend linker what file name to use for the DT_NEEDED
1568 entry for a dynamic object. */
1569
1570 void
1571 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
1572 {
1573 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1574 && bfd_get_format (abfd) == bfd_object)
1575 elf_dt_name (abfd) = name;
1576 }
1577
1578 int
1579 bfd_elf_get_dyn_lib_class (bfd *abfd)
1580 {
1581 int lib_class;
1582 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1583 && bfd_get_format (abfd) == bfd_object)
1584 lib_class = elf_dyn_lib_class (abfd);
1585 else
1586 lib_class = 0;
1587 return lib_class;
1588 }
1589
1590 void
1591 bfd_elf_set_dyn_lib_class (bfd *abfd, int lib_class)
1592 {
1593 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1594 && bfd_get_format (abfd) == bfd_object)
1595 elf_dyn_lib_class (abfd) = lib_class;
1596 }
1597
1598 /* Get the list of DT_NEEDED entries for a link. This is a hook for
1599 the linker ELF emulation code. */
1600
1601 struct bfd_link_needed_list *
1602 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
1603 struct bfd_link_info *info)
1604 {
1605 if (! is_elf_hash_table (info->hash))
1606 return NULL;
1607 return elf_hash_table (info)->needed;
1608 }
1609
1610 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
1611 hook for the linker ELF emulation code. */
1612
1613 struct bfd_link_needed_list *
1614 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
1615 struct bfd_link_info *info)
1616 {
1617 if (! is_elf_hash_table (info->hash))
1618 return NULL;
1619 return elf_hash_table (info)->runpath;
1620 }
1621
1622 /* Get the name actually used for a dynamic object for a link. This
1623 is the SONAME entry if there is one. Otherwise, it is the string
1624 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
1625
1626 const char *
1627 bfd_elf_get_dt_soname (bfd *abfd)
1628 {
1629 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1630 && bfd_get_format (abfd) == bfd_object)
1631 return elf_dt_name (abfd);
1632 return NULL;
1633 }
1634
1635 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
1636 the ELF linker emulation code. */
1637
1638 bfd_boolean
1639 bfd_elf_get_bfd_needed_list (bfd *abfd,
1640 struct bfd_link_needed_list **pneeded)
1641 {
1642 asection *s;
1643 bfd_byte *dynbuf = NULL;
1644 int elfsec;
1645 unsigned long shlink;
1646 bfd_byte *extdyn, *extdynend;
1647 size_t extdynsize;
1648 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1649
1650 *pneeded = NULL;
1651
1652 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
1653 || bfd_get_format (abfd) != bfd_object)
1654 return TRUE;
1655
1656 s = bfd_get_section_by_name (abfd, ".dynamic");
1657 if (s == NULL || s->size == 0)
1658 return TRUE;
1659
1660 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
1661 goto error_return;
1662
1663 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1664 if (elfsec == -1)
1665 goto error_return;
1666
1667 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1668
1669 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1670 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1671
1672 extdyn = dynbuf;
1673 extdynend = extdyn + s->size;
1674 for (; extdyn < extdynend; extdyn += extdynsize)
1675 {
1676 Elf_Internal_Dyn dyn;
1677
1678 (*swap_dyn_in) (abfd, extdyn, &dyn);
1679
1680 if (dyn.d_tag == DT_NULL)
1681 break;
1682
1683 if (dyn.d_tag == DT_NEEDED)
1684 {
1685 const char *string;
1686 struct bfd_link_needed_list *l;
1687 unsigned int tagv = dyn.d_un.d_val;
1688 bfd_size_type amt;
1689
1690 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1691 if (string == NULL)
1692 goto error_return;
1693
1694 amt = sizeof *l;
1695 l = bfd_alloc (abfd, amt);
1696 if (l == NULL)
1697 goto error_return;
1698
1699 l->by = abfd;
1700 l->name = string;
1701 l->next = *pneeded;
1702 *pneeded = l;
1703 }
1704 }
1705
1706 free (dynbuf);
1707
1708 return TRUE;
1709
1710 error_return:
1711 if (dynbuf != NULL)
1712 free (dynbuf);
1713 return FALSE;
1714 }
1715 \f
1716 /* Allocate an ELF string table--force the first byte to be zero. */
1717
1718 struct bfd_strtab_hash *
1719 _bfd_elf_stringtab_init (void)
1720 {
1721 struct bfd_strtab_hash *ret;
1722
1723 ret = _bfd_stringtab_init ();
1724 if (ret != NULL)
1725 {
1726 bfd_size_type loc;
1727
1728 loc = _bfd_stringtab_add (ret, "", TRUE, FALSE);
1729 BFD_ASSERT (loc == 0 || loc == (bfd_size_type) -1);
1730 if (loc == (bfd_size_type) -1)
1731 {
1732 _bfd_stringtab_free (ret);
1733 ret = NULL;
1734 }
1735 }
1736 return ret;
1737 }
1738 \f
1739 /* ELF .o/exec file reading */
1740
1741 /* Create a new bfd section from an ELF section header. */
1742
1743 bfd_boolean
1744 bfd_section_from_shdr (bfd *abfd, unsigned int shindex)
1745 {
1746 Elf_Internal_Shdr *hdr = elf_elfsections (abfd)[shindex];
1747 Elf_Internal_Ehdr *ehdr = elf_elfheader (abfd);
1748 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1749 const char *name;
1750
1751 name = elf_string_from_elf_strtab (abfd, hdr->sh_name);
1752
1753 switch (hdr->sh_type)
1754 {
1755 case SHT_NULL:
1756 /* Inactive section. Throw it away. */
1757 return TRUE;
1758
1759 case SHT_PROGBITS: /* Normal section with contents. */
1760 case SHT_NOBITS: /* .bss section. */
1761 case SHT_HASH: /* .hash section. */
1762 case SHT_NOTE: /* .note section. */
1763 case SHT_INIT_ARRAY: /* .init_array section. */
1764 case SHT_FINI_ARRAY: /* .fini_array section. */
1765 case SHT_PREINIT_ARRAY: /* .preinit_array section. */
1766 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
1767
1768 case SHT_DYNAMIC: /* Dynamic linking information. */
1769 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name))
1770 return FALSE;
1771 if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_STRTAB)
1772 {
1773 Elf_Internal_Shdr *dynsymhdr;
1774
1775 /* The shared libraries distributed with hpux11 have a bogus
1776 sh_link field for the ".dynamic" section. Find the
1777 string table for the ".dynsym" section instead. */
1778 if (elf_dynsymtab (abfd) != 0)
1779 {
1780 dynsymhdr = elf_elfsections (abfd)[elf_dynsymtab (abfd)];
1781 hdr->sh_link = dynsymhdr->sh_link;
1782 }
1783 else
1784 {
1785 unsigned int i, num_sec;
1786
1787 num_sec = elf_numsections (abfd);
1788 for (i = 1; i < num_sec; i++)
1789 {
1790 dynsymhdr = elf_elfsections (abfd)[i];
1791 if (dynsymhdr->sh_type == SHT_DYNSYM)
1792 {
1793 hdr->sh_link = dynsymhdr->sh_link;
1794 break;
1795 }
1796 }
1797 }
1798 }
1799 break;
1800
1801 case SHT_SYMTAB: /* A symbol table */
1802 if (elf_onesymtab (abfd) == shindex)
1803 return TRUE;
1804
1805 BFD_ASSERT (hdr->sh_entsize == bed->s->sizeof_sym);
1806 BFD_ASSERT (elf_onesymtab (abfd) == 0);
1807 elf_onesymtab (abfd) = shindex;
1808 elf_tdata (abfd)->symtab_hdr = *hdr;
1809 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->symtab_hdr;
1810 abfd->flags |= HAS_SYMS;
1811
1812 /* Sometimes a shared object will map in the symbol table. If
1813 SHF_ALLOC is set, and this is a shared object, then we also
1814 treat this section as a BFD section. We can not base the
1815 decision purely on SHF_ALLOC, because that flag is sometimes
1816 set in a relocatable object file, which would confuse the
1817 linker. */
1818 if ((hdr->sh_flags & SHF_ALLOC) != 0
1819 && (abfd->flags & DYNAMIC) != 0
1820 && ! _bfd_elf_make_section_from_shdr (abfd, hdr, name))
1821 return FALSE;
1822
1823 return TRUE;
1824
1825 case SHT_DYNSYM: /* A dynamic symbol table */
1826 if (elf_dynsymtab (abfd) == shindex)
1827 return TRUE;
1828
1829 BFD_ASSERT (hdr->sh_entsize == bed->s->sizeof_sym);
1830 BFD_ASSERT (elf_dynsymtab (abfd) == 0);
1831 elf_dynsymtab (abfd) = shindex;
1832 elf_tdata (abfd)->dynsymtab_hdr = *hdr;
1833 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->dynsymtab_hdr;
1834 abfd->flags |= HAS_SYMS;
1835
1836 /* Besides being a symbol table, we also treat this as a regular
1837 section, so that objcopy can handle it. */
1838 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
1839
1840 case SHT_SYMTAB_SHNDX: /* Symbol section indices when >64k sections */
1841 if (elf_symtab_shndx (abfd) == shindex)
1842 return TRUE;
1843
1844 /* Get the associated symbol table. */
1845 if (! bfd_section_from_shdr (abfd, hdr->sh_link)
1846 || hdr->sh_link != elf_onesymtab (abfd))
1847 return FALSE;
1848
1849 elf_symtab_shndx (abfd) = shindex;
1850 elf_tdata (abfd)->symtab_shndx_hdr = *hdr;
1851 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->symtab_shndx_hdr;
1852 return TRUE;
1853
1854 case SHT_STRTAB: /* A string table */
1855 if (hdr->bfd_section != NULL)
1856 return TRUE;
1857 if (ehdr->e_shstrndx == shindex)
1858 {
1859 elf_tdata (abfd)->shstrtab_hdr = *hdr;
1860 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->shstrtab_hdr;
1861 return TRUE;
1862 }
1863 {
1864 unsigned int i, num_sec;
1865
1866 num_sec = elf_numsections (abfd);
1867 for (i = 1; i < num_sec; i++)
1868 {
1869 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1870 if (hdr2->sh_link == shindex)
1871 {
1872 if (! bfd_section_from_shdr (abfd, i))
1873 return FALSE;
1874 if (elf_onesymtab (abfd) == i)
1875 {
1876 elf_tdata (abfd)->strtab_hdr = *hdr;
1877 elf_elfsections (abfd)[shindex] =
1878 &elf_tdata (abfd)->strtab_hdr;
1879 return TRUE;
1880 }
1881 if (elf_dynsymtab (abfd) == i)
1882 {
1883 elf_tdata (abfd)->dynstrtab_hdr = *hdr;
1884 elf_elfsections (abfd)[shindex] = hdr =
1885 &elf_tdata (abfd)->dynstrtab_hdr;
1886 /* We also treat this as a regular section, so
1887 that objcopy can handle it. */
1888 break;
1889 }
1890 #if 0 /* Not handling other string tables specially right now. */
1891 hdr2 = elf_elfsections (abfd)[i]; /* in case it moved */
1892 /* We have a strtab for some random other section. */
1893 newsect = (asection *) hdr2->bfd_section;
1894 if (!newsect)
1895 break;
1896 hdr->bfd_section = newsect;
1897 hdr2 = &elf_section_data (newsect)->str_hdr;
1898 *hdr2 = *hdr;
1899 elf_elfsections (abfd)[shindex] = hdr2;
1900 #endif
1901 }
1902 }
1903 }
1904
1905 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
1906
1907 case SHT_REL:
1908 case SHT_RELA:
1909 /* *These* do a lot of work -- but build no sections! */
1910 {
1911 asection *target_sect;
1912 Elf_Internal_Shdr *hdr2;
1913 unsigned int num_sec = elf_numsections (abfd);
1914
1915 /* Check for a bogus link to avoid crashing. */
1916 if ((hdr->sh_link >= SHN_LORESERVE && hdr->sh_link <= SHN_HIRESERVE)
1917 || hdr->sh_link >= num_sec)
1918 {
1919 ((*_bfd_error_handler)
1920 (_("%B: invalid link %lu for reloc section %s (index %u)"),
1921 abfd, hdr->sh_link, name, shindex));
1922 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
1923 }
1924
1925 /* For some incomprehensible reason Oracle distributes
1926 libraries for Solaris in which some of the objects have
1927 bogus sh_link fields. It would be nice if we could just
1928 reject them, but, unfortunately, some people need to use
1929 them. We scan through the section headers; if we find only
1930 one suitable symbol table, we clobber the sh_link to point
1931 to it. I hope this doesn't break anything. */
1932 if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_SYMTAB
1933 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_DYNSYM)
1934 {
1935 unsigned int scan;
1936 int found;
1937
1938 found = 0;
1939 for (scan = 1; scan < num_sec; scan++)
1940 {
1941 if (elf_elfsections (abfd)[scan]->sh_type == SHT_SYMTAB
1942 || elf_elfsections (abfd)[scan]->sh_type == SHT_DYNSYM)
1943 {
1944 if (found != 0)
1945 {
1946 found = 0;
1947 break;
1948 }
1949 found = scan;
1950 }
1951 }
1952 if (found != 0)
1953 hdr->sh_link = found;
1954 }
1955
1956 /* Get the symbol table. */
1957 if (elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_SYMTAB
1958 && ! bfd_section_from_shdr (abfd, hdr->sh_link))
1959 return FALSE;
1960
1961 /* If this reloc section does not use the main symbol table we
1962 don't treat it as a reloc section. BFD can't adequately
1963 represent such a section, so at least for now, we don't
1964 try. We just present it as a normal section. We also
1965 can't use it as a reloc section if it points to the null
1966 section. */
1967 if (hdr->sh_link != elf_onesymtab (abfd) || hdr->sh_info == SHN_UNDEF)
1968 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
1969
1970 if (! bfd_section_from_shdr (abfd, hdr->sh_info))
1971 return FALSE;
1972 target_sect = bfd_section_from_elf_index (abfd, hdr->sh_info);
1973 if (target_sect == NULL)
1974 return FALSE;
1975
1976 if ((target_sect->flags & SEC_RELOC) == 0
1977 || target_sect->reloc_count == 0)
1978 hdr2 = &elf_section_data (target_sect)->rel_hdr;
1979 else
1980 {
1981 bfd_size_type amt;
1982 BFD_ASSERT (elf_section_data (target_sect)->rel_hdr2 == NULL);
1983 amt = sizeof (*hdr2);
1984 hdr2 = bfd_alloc (abfd, amt);
1985 elf_section_data (target_sect)->rel_hdr2 = hdr2;
1986 }
1987 *hdr2 = *hdr;
1988 elf_elfsections (abfd)[shindex] = hdr2;
1989 target_sect->reloc_count += NUM_SHDR_ENTRIES (hdr);
1990 target_sect->flags |= SEC_RELOC;
1991 target_sect->relocation = NULL;
1992 target_sect->rel_filepos = hdr->sh_offset;
1993 /* In the section to which the relocations apply, mark whether
1994 its relocations are of the REL or RELA variety. */
1995 if (hdr->sh_size != 0)
1996 target_sect->use_rela_p = hdr->sh_type == SHT_RELA;
1997 abfd->flags |= HAS_RELOC;
1998 return TRUE;
1999 }
2000 break;
2001
2002 case SHT_GNU_verdef:
2003 elf_dynverdef (abfd) = shindex;
2004 elf_tdata (abfd)->dynverdef_hdr = *hdr;
2005 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
2006 break;
2007
2008 case SHT_GNU_versym:
2009 elf_dynversym (abfd) = shindex;
2010 elf_tdata (abfd)->dynversym_hdr = *hdr;
2011 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
2012 break;
2013
2014 case SHT_GNU_verneed:
2015 elf_dynverref (abfd) = shindex;
2016 elf_tdata (abfd)->dynverref_hdr = *hdr;
2017 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
2018 break;
2019
2020 case SHT_SHLIB:
2021 return TRUE;
2022
2023 case SHT_GROUP:
2024 /* We need a BFD section for objcopy and relocatable linking,
2025 and it's handy to have the signature available as the section
2026 name. */
2027 name = group_signature (abfd, hdr);
2028 if (name == NULL)
2029 return FALSE;
2030 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name))
2031 return FALSE;
2032 if (hdr->contents != NULL)
2033 {
2034 Elf_Internal_Group *idx = (Elf_Internal_Group *) hdr->contents;
2035 unsigned int n_elt = hdr->sh_size / 4;
2036 asection *s;
2037
2038 if (idx->flags & GRP_COMDAT)
2039 hdr->bfd_section->flags
2040 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
2041
2042 /* We try to keep the same section order as it comes in. */
2043 idx += n_elt;
2044 while (--n_elt != 0)
2045 if ((s = (--idx)->shdr->bfd_section) != NULL
2046 && elf_next_in_group (s) != NULL)
2047 {
2048 elf_next_in_group (hdr->bfd_section) = s;
2049 break;
2050 }
2051 }
2052 break;
2053
2054 default:
2055 /* Check for any processor-specific section types. */
2056 {
2057 if (bed->elf_backend_section_from_shdr)
2058 (*bed->elf_backend_section_from_shdr) (abfd, hdr, name);
2059 }
2060 break;
2061 }
2062
2063 return TRUE;
2064 }
2065
2066 /* Return the section for the local symbol specified by ABFD, R_SYMNDX.
2067 Return SEC for sections that have no elf section, and NULL on error. */
2068
2069 asection *
2070 bfd_section_from_r_symndx (bfd *abfd,
2071 struct sym_sec_cache *cache,
2072 asection *sec,
2073 unsigned long r_symndx)
2074 {
2075 Elf_Internal_Shdr *symtab_hdr;
2076 unsigned char esym[sizeof (Elf64_External_Sym)];
2077 Elf_External_Sym_Shndx eshndx;
2078 Elf_Internal_Sym isym;
2079 unsigned int ent = r_symndx % LOCAL_SYM_CACHE_SIZE;
2080
2081 if (cache->abfd == abfd && cache->indx[ent] == r_symndx)
2082 return cache->sec[ent];
2083
2084 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2085 if (bfd_elf_get_elf_syms (abfd, symtab_hdr, 1, r_symndx,
2086 &isym, esym, &eshndx) == NULL)
2087 return NULL;
2088
2089 if (cache->abfd != abfd)
2090 {
2091 memset (cache->indx, -1, sizeof (cache->indx));
2092 cache->abfd = abfd;
2093 }
2094 cache->indx[ent] = r_symndx;
2095 cache->sec[ent] = sec;
2096 if ((isym.st_shndx != SHN_UNDEF && isym.st_shndx < SHN_LORESERVE)
2097 || isym.st_shndx > SHN_HIRESERVE)
2098 {
2099 asection *s;
2100 s = bfd_section_from_elf_index (abfd, isym.st_shndx);
2101 if (s != NULL)
2102 cache->sec[ent] = s;
2103 }
2104 return cache->sec[ent];
2105 }
2106
2107 /* Given an ELF section number, retrieve the corresponding BFD
2108 section. */
2109
2110 asection *
2111 bfd_section_from_elf_index (bfd *abfd, unsigned int index)
2112 {
2113 if (index >= elf_numsections (abfd))
2114 return NULL;
2115 return elf_elfsections (abfd)[index]->bfd_section;
2116 }
2117
2118 static struct bfd_elf_special_section const special_sections[] =
2119 {
2120 { ".bss", 4, -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2121 { ".gnu.linkonce.b",15, -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2122 { ".comment", 8, 0, SHT_PROGBITS, 0 },
2123 { ".data", 5, -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2124 { ".data1", 6, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2125 { ".debug", 6, 0, SHT_PROGBITS, 0 },
2126 { ".fini", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2127 { ".init", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2128 { ".line", 5, 0, SHT_PROGBITS, 0 },
2129 { ".rodata", 7, -2, SHT_PROGBITS, SHF_ALLOC },
2130 { ".rodata1", 8, 0, SHT_PROGBITS, SHF_ALLOC },
2131 { ".tbss", 5, -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2132 { ".tdata", 6, -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2133 { ".text", 5, -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2134 { ".init_array", 11, 0, SHT_INIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2135 { ".fini_array", 11, 0, SHT_FINI_ARRAY, SHF_ALLOC + SHF_WRITE },
2136 { ".preinit_array", 14, 0, SHT_PREINIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2137 { ".debug_line", 11, 0, SHT_PROGBITS, 0 },
2138 { ".debug_info", 11, 0, SHT_PROGBITS, 0 },
2139 { ".debug_abbrev", 13, 0, SHT_PROGBITS, 0 },
2140 { ".debug_aranges", 14, 0, SHT_PROGBITS, 0 },
2141 { ".dynamic", 8, 0, SHT_DYNAMIC, SHF_ALLOC },
2142 { ".dynstr", 7, 0, SHT_STRTAB, SHF_ALLOC },
2143 { ".dynsym", 7, 0, SHT_DYNSYM, SHF_ALLOC },
2144 { ".got", 4, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2145 { ".hash", 5, 0, SHT_HASH, SHF_ALLOC },
2146 { ".interp", 7, 0, SHT_PROGBITS, 0 },
2147 { ".plt", 4, 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2148 { ".shstrtab", 9, 0, SHT_STRTAB, 0 },
2149 { ".strtab", 7, 0, SHT_STRTAB, 0 },
2150 { ".symtab", 7, 0, SHT_SYMTAB, 0 },
2151 { ".gnu.version", 12, 0, SHT_GNU_versym, 0 },
2152 { ".gnu.version_d", 14, 0, SHT_GNU_verdef, 0 },
2153 { ".gnu.version_r", 14, 0, SHT_GNU_verneed, 0 },
2154 { ".note.GNU-stack",15, 0, SHT_PROGBITS, 0 },
2155 { ".note", 5, -1, SHT_NOTE, 0 },
2156 { ".rela", 5, -1, SHT_RELA, 0 },
2157 { ".rel", 4, -1, SHT_REL, 0 },
2158 { ".stabstr", 5, 3, SHT_STRTAB, 0 },
2159 { NULL, 0, 0, 0, 0 }
2160 };
2161
2162 static const struct bfd_elf_special_section *
2163 get_special_section (const char *name,
2164 const struct bfd_elf_special_section *special_sections,
2165 unsigned int rela)
2166 {
2167 int i;
2168 int len = strlen (name);
2169
2170 for (i = 0; special_sections[i].prefix != NULL; i++)
2171 {
2172 int suffix_len;
2173 int prefix_len = special_sections[i].prefix_length;
2174
2175 if (len < prefix_len)
2176 continue;
2177 if (memcmp (name, special_sections[i].prefix, prefix_len) != 0)
2178 continue;
2179
2180 suffix_len = special_sections[i].suffix_length;
2181 if (suffix_len <= 0)
2182 {
2183 if (name[prefix_len] != 0)
2184 {
2185 if (suffix_len == 0)
2186 continue;
2187 if (name[prefix_len] != '.'
2188 && (suffix_len == -2
2189 || (rela && special_sections[i].type == SHT_REL)))
2190 continue;
2191 }
2192 }
2193 else
2194 {
2195 if (len < prefix_len + suffix_len)
2196 continue;
2197 if (memcmp (name + len - suffix_len,
2198 special_sections[i].prefix + prefix_len,
2199 suffix_len) != 0)
2200 continue;
2201 }
2202 return &special_sections[i];
2203 }
2204
2205 return NULL;
2206 }
2207
2208 const struct bfd_elf_special_section *
2209 _bfd_elf_get_sec_type_attr (bfd *abfd, const char *name)
2210 {
2211 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2212 const struct bfd_elf_special_section *ssect = NULL;
2213
2214 /* See if this is one of the special sections. */
2215 if (name)
2216 {
2217 unsigned int rela = bed->default_use_rela_p;
2218
2219 if (bed->special_sections)
2220 ssect = get_special_section (name, bed->special_sections, rela);
2221
2222 if (! ssect)
2223 ssect = get_special_section (name, special_sections, rela);
2224 }
2225
2226 return ssect;
2227 }
2228
2229 bfd_boolean
2230 _bfd_elf_new_section_hook (bfd *abfd, asection *sec)
2231 {
2232 struct bfd_elf_section_data *sdata;
2233 const struct bfd_elf_special_section *ssect;
2234
2235 sdata = (struct bfd_elf_section_data *) sec->used_by_bfd;
2236 if (sdata == NULL)
2237 {
2238 sdata = bfd_zalloc (abfd, sizeof (*sdata));
2239 if (sdata == NULL)
2240 return FALSE;
2241 sec->used_by_bfd = sdata;
2242 }
2243
2244 elf_section_type (sec) = SHT_NULL;
2245 ssect = _bfd_elf_get_sec_type_attr (abfd, sec->name);
2246 if (ssect != NULL)
2247 {
2248 elf_section_type (sec) = ssect->type;
2249 elf_section_flags (sec) = ssect->attr;
2250 }
2251
2252 /* Indicate whether or not this section should use RELA relocations. */
2253 sec->use_rela_p = get_elf_backend_data (abfd)->default_use_rela_p;
2254
2255 return TRUE;
2256 }
2257
2258 /* Create a new bfd section from an ELF program header.
2259
2260 Since program segments have no names, we generate a synthetic name
2261 of the form segment<NUM>, where NUM is generally the index in the
2262 program header table. For segments that are split (see below) we
2263 generate the names segment<NUM>a and segment<NUM>b.
2264
2265 Note that some program segments may have a file size that is different than
2266 (less than) the memory size. All this means is that at execution the
2267 system must allocate the amount of memory specified by the memory size,
2268 but only initialize it with the first "file size" bytes read from the
2269 file. This would occur for example, with program segments consisting
2270 of combined data+bss.
2271
2272 To handle the above situation, this routine generates TWO bfd sections
2273 for the single program segment. The first has the length specified by
2274 the file size of the segment, and the second has the length specified
2275 by the difference between the two sizes. In effect, the segment is split
2276 into it's initialized and uninitialized parts.
2277
2278 */
2279
2280 bfd_boolean
2281 _bfd_elf_make_section_from_phdr (bfd *abfd,
2282 Elf_Internal_Phdr *hdr,
2283 int index,
2284 const char *typename)
2285 {
2286 asection *newsect;
2287 char *name;
2288 char namebuf[64];
2289 size_t len;
2290 int split;
2291
2292 split = ((hdr->p_memsz > 0)
2293 && (hdr->p_filesz > 0)
2294 && (hdr->p_memsz > hdr->p_filesz));
2295 sprintf (namebuf, "%s%d%s", typename, index, split ? "a" : "");
2296 len = strlen (namebuf) + 1;
2297 name = bfd_alloc (abfd, len);
2298 if (!name)
2299 return FALSE;
2300 memcpy (name, namebuf, len);
2301 newsect = bfd_make_section (abfd, name);
2302 if (newsect == NULL)
2303 return FALSE;
2304 newsect->vma = hdr->p_vaddr;
2305 newsect->lma = hdr->p_paddr;
2306 newsect->size = hdr->p_filesz;
2307 newsect->filepos = hdr->p_offset;
2308 newsect->flags |= SEC_HAS_CONTENTS;
2309 newsect->alignment_power = bfd_log2 (hdr->p_align);
2310 if (hdr->p_type == PT_LOAD)
2311 {
2312 newsect->flags |= SEC_ALLOC;
2313 newsect->flags |= SEC_LOAD;
2314 if (hdr->p_flags & PF_X)
2315 {
2316 /* FIXME: all we known is that it has execute PERMISSION,
2317 may be data. */
2318 newsect->flags |= SEC_CODE;
2319 }
2320 }
2321 if (!(hdr->p_flags & PF_W))
2322 {
2323 newsect->flags |= SEC_READONLY;
2324 }
2325
2326 if (split)
2327 {
2328 sprintf (namebuf, "%s%db", typename, index);
2329 len = strlen (namebuf) + 1;
2330 name = bfd_alloc (abfd, len);
2331 if (!name)
2332 return FALSE;
2333 memcpy (name, namebuf, len);
2334 newsect = bfd_make_section (abfd, name);
2335 if (newsect == NULL)
2336 return FALSE;
2337 newsect->vma = hdr->p_vaddr + hdr->p_filesz;
2338 newsect->lma = hdr->p_paddr + hdr->p_filesz;
2339 newsect->size = hdr->p_memsz - hdr->p_filesz;
2340 if (hdr->p_type == PT_LOAD)
2341 {
2342 newsect->flags |= SEC_ALLOC;
2343 if (hdr->p_flags & PF_X)
2344 newsect->flags |= SEC_CODE;
2345 }
2346 if (!(hdr->p_flags & PF_W))
2347 newsect->flags |= SEC_READONLY;
2348 }
2349
2350 return TRUE;
2351 }
2352
2353 bfd_boolean
2354 bfd_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int index)
2355 {
2356 const struct elf_backend_data *bed;
2357
2358 switch (hdr->p_type)
2359 {
2360 case PT_NULL:
2361 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "null");
2362
2363 case PT_LOAD:
2364 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "load");
2365
2366 case PT_DYNAMIC:
2367 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "dynamic");
2368
2369 case PT_INTERP:
2370 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "interp");
2371
2372 case PT_NOTE:
2373 if (! _bfd_elf_make_section_from_phdr (abfd, hdr, index, "note"))
2374 return FALSE;
2375 if (! elfcore_read_notes (abfd, hdr->p_offset, hdr->p_filesz))
2376 return FALSE;
2377 return TRUE;
2378
2379 case PT_SHLIB:
2380 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "shlib");
2381
2382 case PT_PHDR:
2383 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "phdr");
2384
2385 case PT_GNU_EH_FRAME:
2386 return _bfd_elf_make_section_from_phdr (abfd, hdr, index,
2387 "eh_frame_hdr");
2388
2389 case PT_GNU_STACK:
2390 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "stack");
2391
2392 case PT_GNU_RELRO:
2393 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "relro");
2394
2395 default:
2396 /* Check for any processor-specific program segment types.
2397 If no handler for them, default to making "segment" sections. */
2398 bed = get_elf_backend_data (abfd);
2399 if (bed->elf_backend_section_from_phdr)
2400 return (*bed->elf_backend_section_from_phdr) (abfd, hdr, index);
2401 else
2402 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "segment");
2403 }
2404 }
2405
2406 /* Initialize REL_HDR, the section-header for new section, containing
2407 relocations against ASECT. If USE_RELA_P is TRUE, we use RELA
2408 relocations; otherwise, we use REL relocations. */
2409
2410 bfd_boolean
2411 _bfd_elf_init_reloc_shdr (bfd *abfd,
2412 Elf_Internal_Shdr *rel_hdr,
2413 asection *asect,
2414 bfd_boolean use_rela_p)
2415 {
2416 char *name;
2417 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2418 bfd_size_type amt = sizeof ".rela" + strlen (asect->name);
2419
2420 name = bfd_alloc (abfd, amt);
2421 if (name == NULL)
2422 return FALSE;
2423 sprintf (name, "%s%s", use_rela_p ? ".rela" : ".rel", asect->name);
2424 rel_hdr->sh_name =
2425 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd), name,
2426 FALSE);
2427 if (rel_hdr->sh_name == (unsigned int) -1)
2428 return FALSE;
2429 rel_hdr->sh_type = use_rela_p ? SHT_RELA : SHT_REL;
2430 rel_hdr->sh_entsize = (use_rela_p
2431 ? bed->s->sizeof_rela
2432 : bed->s->sizeof_rel);
2433 rel_hdr->sh_addralign = 1 << bed->s->log_file_align;
2434 rel_hdr->sh_flags = 0;
2435 rel_hdr->sh_addr = 0;
2436 rel_hdr->sh_size = 0;
2437 rel_hdr->sh_offset = 0;
2438
2439 return TRUE;
2440 }
2441
2442 /* Set up an ELF internal section header for a section. */
2443
2444 static void
2445 elf_fake_sections (bfd *abfd, asection *asect, void *failedptrarg)
2446 {
2447 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2448 bfd_boolean *failedptr = failedptrarg;
2449 Elf_Internal_Shdr *this_hdr;
2450
2451 if (*failedptr)
2452 {
2453 /* We already failed; just get out of the bfd_map_over_sections
2454 loop. */
2455 return;
2456 }
2457
2458 this_hdr = &elf_section_data (asect)->this_hdr;
2459
2460 this_hdr->sh_name = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
2461 asect->name, FALSE);
2462 if (this_hdr->sh_name == (unsigned int) -1)
2463 {
2464 *failedptr = TRUE;
2465 return;
2466 }
2467
2468 this_hdr->sh_flags = 0;
2469
2470 if ((asect->flags & SEC_ALLOC) != 0
2471 || asect->user_set_vma)
2472 this_hdr->sh_addr = asect->vma;
2473 else
2474 this_hdr->sh_addr = 0;
2475
2476 this_hdr->sh_offset = 0;
2477 this_hdr->sh_size = asect->size;
2478 this_hdr->sh_link = 0;
2479 this_hdr->sh_addralign = 1 << asect->alignment_power;
2480 /* The sh_entsize and sh_info fields may have been set already by
2481 copy_private_section_data. */
2482
2483 this_hdr->bfd_section = asect;
2484 this_hdr->contents = NULL;
2485
2486 /* If the section type is unspecified, we set it based on
2487 asect->flags. */
2488 if (this_hdr->sh_type == SHT_NULL)
2489 {
2490 if ((asect->flags & SEC_GROUP) != 0)
2491 {
2492 /* We also need to mark SHF_GROUP here for relocatable
2493 link. */
2494 struct bfd_link_order *l;
2495 asection *elt;
2496
2497 for (l = asect->link_order_head; l != NULL; l = l->next)
2498 if (l->type == bfd_indirect_link_order
2499 && (elt = elf_next_in_group (l->u.indirect.section)) != NULL)
2500 do
2501 {
2502 /* The name is not important. Anything will do. */
2503 elf_group_name (elt->output_section) = "G";
2504 elf_section_flags (elt->output_section) |= SHF_GROUP;
2505
2506 elt = elf_next_in_group (elt);
2507 /* During a relocatable link, the lists are
2508 circular. */
2509 }
2510 while (elt != elf_next_in_group (l->u.indirect.section));
2511
2512 this_hdr->sh_type = SHT_GROUP;
2513 }
2514 else if ((asect->flags & SEC_ALLOC) != 0
2515 && (((asect->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
2516 || (asect->flags & SEC_NEVER_LOAD) != 0))
2517 this_hdr->sh_type = SHT_NOBITS;
2518 else
2519 this_hdr->sh_type = SHT_PROGBITS;
2520 }
2521
2522 switch (this_hdr->sh_type)
2523 {
2524 default:
2525 break;
2526
2527 case SHT_STRTAB:
2528 case SHT_INIT_ARRAY:
2529 case SHT_FINI_ARRAY:
2530 case SHT_PREINIT_ARRAY:
2531 case SHT_NOTE:
2532 case SHT_NOBITS:
2533 case SHT_PROGBITS:
2534 break;
2535
2536 case SHT_HASH:
2537 this_hdr->sh_entsize = bed->s->sizeof_hash_entry;
2538 break;
2539
2540 case SHT_DYNSYM:
2541 this_hdr->sh_entsize = bed->s->sizeof_sym;
2542 break;
2543
2544 case SHT_DYNAMIC:
2545 this_hdr->sh_entsize = bed->s->sizeof_dyn;
2546 break;
2547
2548 case SHT_RELA:
2549 if (get_elf_backend_data (abfd)->may_use_rela_p)
2550 this_hdr->sh_entsize = bed->s->sizeof_rela;
2551 break;
2552
2553 case SHT_REL:
2554 if (get_elf_backend_data (abfd)->may_use_rel_p)
2555 this_hdr->sh_entsize = bed->s->sizeof_rel;
2556 break;
2557
2558 case SHT_GNU_versym:
2559 this_hdr->sh_entsize = sizeof (Elf_External_Versym);
2560 break;
2561
2562 case SHT_GNU_verdef:
2563 this_hdr->sh_entsize = 0;
2564 /* objcopy or strip will copy over sh_info, but may not set
2565 cverdefs. The linker will set cverdefs, but sh_info will be
2566 zero. */
2567 if (this_hdr->sh_info == 0)
2568 this_hdr->sh_info = elf_tdata (abfd)->cverdefs;
2569 else
2570 BFD_ASSERT (elf_tdata (abfd)->cverdefs == 0
2571 || this_hdr->sh_info == elf_tdata (abfd)->cverdefs);
2572 break;
2573
2574 case SHT_GNU_verneed:
2575 this_hdr->sh_entsize = 0;
2576 /* objcopy or strip will copy over sh_info, but may not set
2577 cverrefs. The linker will set cverrefs, but sh_info will be
2578 zero. */
2579 if (this_hdr->sh_info == 0)
2580 this_hdr->sh_info = elf_tdata (abfd)->cverrefs;
2581 else
2582 BFD_ASSERT (elf_tdata (abfd)->cverrefs == 0
2583 || this_hdr->sh_info == elf_tdata (abfd)->cverrefs);
2584 break;
2585
2586 case SHT_GROUP:
2587 this_hdr->sh_entsize = 4;
2588 break;
2589 }
2590
2591 if ((asect->flags & SEC_ALLOC) != 0)
2592 this_hdr->sh_flags |= SHF_ALLOC;
2593 if ((asect->flags & SEC_READONLY) == 0)
2594 this_hdr->sh_flags |= SHF_WRITE;
2595 if ((asect->flags & SEC_CODE) != 0)
2596 this_hdr->sh_flags |= SHF_EXECINSTR;
2597 if ((asect->flags & SEC_MERGE) != 0)
2598 {
2599 this_hdr->sh_flags |= SHF_MERGE;
2600 this_hdr->sh_entsize = asect->entsize;
2601 if ((asect->flags & SEC_STRINGS) != 0)
2602 this_hdr->sh_flags |= SHF_STRINGS;
2603 }
2604 if ((asect->flags & SEC_GROUP) == 0 && elf_group_name (asect) != NULL)
2605 this_hdr->sh_flags |= SHF_GROUP;
2606 if ((asect->flags & SEC_THREAD_LOCAL) != 0)
2607 {
2608 this_hdr->sh_flags |= SHF_TLS;
2609 if (asect->size == 0 && (asect->flags & SEC_HAS_CONTENTS) == 0)
2610 {
2611 struct bfd_link_order *o;
2612
2613 this_hdr->sh_size = 0;
2614 for (o = asect->link_order_head; o != NULL; o = o->next)
2615 if (this_hdr->sh_size < o->offset + o->size)
2616 this_hdr->sh_size = o->offset + o->size;
2617 if (this_hdr->sh_size)
2618 this_hdr->sh_type = SHT_NOBITS;
2619 }
2620 }
2621
2622 /* Check for processor-specific section types. */
2623 if (bed->elf_backend_fake_sections
2624 && !(*bed->elf_backend_fake_sections) (abfd, this_hdr, asect))
2625 *failedptr = TRUE;
2626
2627 /* If the section has relocs, set up a section header for the
2628 SHT_REL[A] section. If two relocation sections are required for
2629 this section, it is up to the processor-specific back-end to
2630 create the other. */
2631 if ((asect->flags & SEC_RELOC) != 0
2632 && !_bfd_elf_init_reloc_shdr (abfd,
2633 &elf_section_data (asect)->rel_hdr,
2634 asect,
2635 asect->use_rela_p))
2636 *failedptr = TRUE;
2637 }
2638
2639 /* Fill in the contents of a SHT_GROUP section. */
2640
2641 void
2642 bfd_elf_set_group_contents (bfd *abfd, asection *sec, void *failedptrarg)
2643 {
2644 bfd_boolean *failedptr = failedptrarg;
2645 unsigned long symindx;
2646 asection *elt, *first;
2647 unsigned char *loc;
2648 struct bfd_link_order *l;
2649 bfd_boolean gas;
2650
2651 if (elf_section_data (sec)->this_hdr.sh_type != SHT_GROUP
2652 || *failedptr)
2653 return;
2654
2655 symindx = 0;
2656 if (elf_group_id (sec) != NULL)
2657 symindx = elf_group_id (sec)->udata.i;
2658
2659 if (symindx == 0)
2660 {
2661 /* If called from the assembler, swap_out_syms will have set up
2662 elf_section_syms; If called for "ld -r", use target_index. */
2663 if (elf_section_syms (abfd) != NULL)
2664 symindx = elf_section_syms (abfd)[sec->index]->udata.i;
2665 else
2666 symindx = sec->target_index;
2667 }
2668 elf_section_data (sec)->this_hdr.sh_info = symindx;
2669
2670 /* The contents won't be allocated for "ld -r" or objcopy. */
2671 gas = TRUE;
2672 if (sec->contents == NULL)
2673 {
2674 gas = FALSE;
2675 sec->contents = bfd_alloc (abfd, sec->size);
2676
2677 /* Arrange for the section to be written out. */
2678 elf_section_data (sec)->this_hdr.contents = sec->contents;
2679 if (sec->contents == NULL)
2680 {
2681 *failedptr = TRUE;
2682 return;
2683 }
2684 }
2685
2686 loc = sec->contents + sec->size;
2687
2688 /* Get the pointer to the first section in the group that gas
2689 squirreled away here. objcopy arranges for this to be set to the
2690 start of the input section group. */
2691 first = elt = elf_next_in_group (sec);
2692
2693 /* First element is a flag word. Rest of section is elf section
2694 indices for all the sections of the group. Write them backwards
2695 just to keep the group in the same order as given in .section
2696 directives, not that it matters. */
2697 while (elt != NULL)
2698 {
2699 asection *s;
2700 unsigned int idx;
2701
2702 loc -= 4;
2703 s = elt;
2704 if (!gas)
2705 s = s->output_section;
2706 idx = 0;
2707 if (s != NULL)
2708 idx = elf_section_data (s)->this_idx;
2709 H_PUT_32 (abfd, idx, loc);
2710 elt = elf_next_in_group (elt);
2711 if (elt == first)
2712 break;
2713 }
2714
2715 /* If this is a relocatable link, then the above did nothing because
2716 SEC is the output section. Look through the input sections
2717 instead. */
2718 for (l = sec->link_order_head; l != NULL; l = l->next)
2719 if (l->type == bfd_indirect_link_order
2720 && (elt = elf_next_in_group (l->u.indirect.section)) != NULL)
2721 do
2722 {
2723 loc -= 4;
2724 H_PUT_32 (abfd,
2725 elf_section_data (elt->output_section)->this_idx, loc);
2726 elt = elf_next_in_group (elt);
2727 /* During a relocatable link, the lists are circular. */
2728 }
2729 while (elt != elf_next_in_group (l->u.indirect.section));
2730
2731 if ((loc -= 4) != sec->contents)
2732 abort ();
2733
2734 H_PUT_32 (abfd, sec->flags & SEC_LINK_ONCE ? GRP_COMDAT : 0, loc);
2735 }
2736
2737 /* Assign all ELF section numbers. The dummy first section is handled here
2738 too. The link/info pointers for the standard section types are filled
2739 in here too, while we're at it. */
2740
2741 static bfd_boolean
2742 assign_section_numbers (bfd *abfd)
2743 {
2744 struct elf_obj_tdata *t = elf_tdata (abfd);
2745 asection *sec;
2746 unsigned int section_number, secn;
2747 Elf_Internal_Shdr **i_shdrp;
2748 bfd_size_type amt;
2749
2750 section_number = 1;
2751
2752 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd));
2753
2754 for (sec = abfd->sections; sec; sec = sec->next)
2755 {
2756 struct bfd_elf_section_data *d = elf_section_data (sec);
2757
2758 if (section_number == SHN_LORESERVE)
2759 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2760 d->this_idx = section_number++;
2761 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->this_hdr.sh_name);
2762 if ((sec->flags & SEC_RELOC) == 0)
2763 d->rel_idx = 0;
2764 else
2765 {
2766 if (section_number == SHN_LORESERVE)
2767 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2768 d->rel_idx = section_number++;
2769 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel_hdr.sh_name);
2770 }
2771
2772 if (d->rel_hdr2)
2773 {
2774 if (section_number == SHN_LORESERVE)
2775 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2776 d->rel_idx2 = section_number++;
2777 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel_hdr2->sh_name);
2778 }
2779 else
2780 d->rel_idx2 = 0;
2781 }
2782
2783 if (section_number == SHN_LORESERVE)
2784 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2785 t->shstrtab_section = section_number++;
2786 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->shstrtab_hdr.sh_name);
2787 elf_elfheader (abfd)->e_shstrndx = t->shstrtab_section;
2788
2789 if (bfd_get_symcount (abfd) > 0)
2790 {
2791 if (section_number == SHN_LORESERVE)
2792 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2793 t->symtab_section = section_number++;
2794 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->symtab_hdr.sh_name);
2795 if (section_number > SHN_LORESERVE - 2)
2796 {
2797 if (section_number == SHN_LORESERVE)
2798 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2799 t->symtab_shndx_section = section_number++;
2800 t->symtab_shndx_hdr.sh_name
2801 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
2802 ".symtab_shndx", FALSE);
2803 if (t->symtab_shndx_hdr.sh_name == (unsigned int) -1)
2804 return FALSE;
2805 }
2806 if (section_number == SHN_LORESERVE)
2807 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2808 t->strtab_section = section_number++;
2809 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->strtab_hdr.sh_name);
2810 }
2811
2812 _bfd_elf_strtab_finalize (elf_shstrtab (abfd));
2813 t->shstrtab_hdr.sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
2814
2815 elf_numsections (abfd) = section_number;
2816 elf_elfheader (abfd)->e_shnum = section_number;
2817 if (section_number > SHN_LORESERVE)
2818 elf_elfheader (abfd)->e_shnum -= SHN_HIRESERVE + 1 - SHN_LORESERVE;
2819
2820 /* Set up the list of section header pointers, in agreement with the
2821 indices. */
2822 amt = section_number * sizeof (Elf_Internal_Shdr *);
2823 i_shdrp = bfd_zalloc (abfd, amt);
2824 if (i_shdrp == NULL)
2825 return FALSE;
2826
2827 amt = sizeof (Elf_Internal_Shdr);
2828 i_shdrp[0] = bfd_zalloc (abfd, amt);
2829 if (i_shdrp[0] == NULL)
2830 {
2831 bfd_release (abfd, i_shdrp);
2832 return FALSE;
2833 }
2834
2835 elf_elfsections (abfd) = i_shdrp;
2836
2837 i_shdrp[t->shstrtab_section] = &t->shstrtab_hdr;
2838 if (bfd_get_symcount (abfd) > 0)
2839 {
2840 i_shdrp[t->symtab_section] = &t->symtab_hdr;
2841 if (elf_numsections (abfd) > SHN_LORESERVE)
2842 {
2843 i_shdrp[t->symtab_shndx_section] = &t->symtab_shndx_hdr;
2844 t->symtab_shndx_hdr.sh_link = t->symtab_section;
2845 }
2846 i_shdrp[t->strtab_section] = &t->strtab_hdr;
2847 t->symtab_hdr.sh_link = t->strtab_section;
2848 }
2849
2850 for (sec = abfd->sections; sec; sec = sec->next)
2851 {
2852 struct bfd_elf_section_data *d = elf_section_data (sec);
2853 asection *s;
2854 const char *name;
2855
2856 i_shdrp[d->this_idx] = &d->this_hdr;
2857 if (d->rel_idx != 0)
2858 i_shdrp[d->rel_idx] = &d->rel_hdr;
2859 if (d->rel_idx2 != 0)
2860 i_shdrp[d->rel_idx2] = d->rel_hdr2;
2861
2862 /* Fill in the sh_link and sh_info fields while we're at it. */
2863
2864 /* sh_link of a reloc section is the section index of the symbol
2865 table. sh_info is the section index of the section to which
2866 the relocation entries apply. */
2867 if (d->rel_idx != 0)
2868 {
2869 d->rel_hdr.sh_link = t->symtab_section;
2870 d->rel_hdr.sh_info = d->this_idx;
2871 }
2872 if (d->rel_idx2 != 0)
2873 {
2874 d->rel_hdr2->sh_link = t->symtab_section;
2875 d->rel_hdr2->sh_info = d->this_idx;
2876 }
2877
2878 /* We need to set up sh_link for SHF_LINK_ORDER. */
2879 if ((d->this_hdr.sh_flags & SHF_LINK_ORDER) != 0)
2880 {
2881 s = elf_linked_to_section (sec);
2882 if (s)
2883 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
2884 else
2885 {
2886 struct bfd_link_order *p;
2887
2888 /* Find out what the corresponding section in output
2889 is. */
2890 for (p = sec->link_order_head; p != NULL; p = p->next)
2891 {
2892 s = p->u.indirect.section;
2893 if (p->type == bfd_indirect_link_order
2894 && (bfd_get_flavour (s->owner)
2895 == bfd_target_elf_flavour))
2896 {
2897 Elf_Internal_Shdr ** const elf_shdrp
2898 = elf_elfsections (s->owner);
2899 int elfsec
2900 = _bfd_elf_section_from_bfd_section (s->owner, s);
2901 elfsec = elf_shdrp[elfsec]->sh_link;
2902 /* PR 290:
2903 The Intel C compiler generates SHT_IA_64_UNWIND with
2904 SHF_LINK_ORDER. But it doesn't set theh sh_link or
2905 sh_info fields. Hence we could get the situation
2906 where elfsec is 0. */
2907 if (elfsec == 0)
2908 {
2909 const struct elf_backend_data *bed
2910 = get_elf_backend_data (abfd);
2911 if (bed->link_order_error_handler)
2912 bed->link_order_error_handler
2913 (_("%B: warning: sh_link not set for section `%S'"),
2914 abfd, s);
2915 }
2916 else
2917 {
2918 s = elf_shdrp[elfsec]->bfd_section->output_section;
2919 BFD_ASSERT (s != NULL);
2920 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
2921 }
2922 break;
2923 }
2924 }
2925 }
2926 }
2927
2928 switch (d->this_hdr.sh_type)
2929 {
2930 case SHT_REL:
2931 case SHT_RELA:
2932 /* A reloc section which we are treating as a normal BFD
2933 section. sh_link is the section index of the symbol
2934 table. sh_info is the section index of the section to
2935 which the relocation entries apply. We assume that an
2936 allocated reloc section uses the dynamic symbol table.
2937 FIXME: How can we be sure? */
2938 s = bfd_get_section_by_name (abfd, ".dynsym");
2939 if (s != NULL)
2940 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
2941
2942 /* We look up the section the relocs apply to by name. */
2943 name = sec->name;
2944 if (d->this_hdr.sh_type == SHT_REL)
2945 name += 4;
2946 else
2947 name += 5;
2948 s = bfd_get_section_by_name (abfd, name);
2949 if (s != NULL)
2950 d->this_hdr.sh_info = elf_section_data (s)->this_idx;
2951 break;
2952
2953 case SHT_STRTAB:
2954 /* We assume that a section named .stab*str is a stabs
2955 string section. We look for a section with the same name
2956 but without the trailing ``str'', and set its sh_link
2957 field to point to this section. */
2958 if (strncmp (sec->name, ".stab", sizeof ".stab" - 1) == 0
2959 && strcmp (sec->name + strlen (sec->name) - 3, "str") == 0)
2960 {
2961 size_t len;
2962 char *alc;
2963
2964 len = strlen (sec->name);
2965 alc = bfd_malloc (len - 2);
2966 if (alc == NULL)
2967 return FALSE;
2968 memcpy (alc, sec->name, len - 3);
2969 alc[len - 3] = '\0';
2970 s = bfd_get_section_by_name (abfd, alc);
2971 free (alc);
2972 if (s != NULL)
2973 {
2974 elf_section_data (s)->this_hdr.sh_link = d->this_idx;
2975
2976 /* This is a .stab section. */
2977 if (elf_section_data (s)->this_hdr.sh_entsize == 0)
2978 elf_section_data (s)->this_hdr.sh_entsize
2979 = 4 + 2 * bfd_get_arch_size (abfd) / 8;
2980 }
2981 }
2982 break;
2983
2984 case SHT_DYNAMIC:
2985 case SHT_DYNSYM:
2986 case SHT_GNU_verneed:
2987 case SHT_GNU_verdef:
2988 /* sh_link is the section header index of the string table
2989 used for the dynamic entries, or the symbol table, or the
2990 version strings. */
2991 s = bfd_get_section_by_name (abfd, ".dynstr");
2992 if (s != NULL)
2993 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
2994 break;
2995
2996 case SHT_HASH:
2997 case SHT_GNU_versym:
2998 /* sh_link is the section header index of the symbol table
2999 this hash table or version table is for. */
3000 s = bfd_get_section_by_name (abfd, ".dynsym");
3001 if (s != NULL)
3002 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3003 break;
3004
3005 case SHT_GROUP:
3006 d->this_hdr.sh_link = t->symtab_section;
3007 }
3008 }
3009
3010 for (secn = 1; secn < section_number; ++secn)
3011 if (i_shdrp[secn] == NULL)
3012 i_shdrp[secn] = i_shdrp[0];
3013 else
3014 i_shdrp[secn]->sh_name = _bfd_elf_strtab_offset (elf_shstrtab (abfd),
3015 i_shdrp[secn]->sh_name);
3016 return TRUE;
3017 }
3018
3019 /* Map symbol from it's internal number to the external number, moving
3020 all local symbols to be at the head of the list. */
3021
3022 static int
3023 sym_is_global (bfd *abfd, asymbol *sym)
3024 {
3025 /* If the backend has a special mapping, use it. */
3026 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3027 if (bed->elf_backend_sym_is_global)
3028 return (*bed->elf_backend_sym_is_global) (abfd, sym);
3029
3030 return ((sym->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
3031 || bfd_is_und_section (bfd_get_section (sym))
3032 || bfd_is_com_section (bfd_get_section (sym)));
3033 }
3034
3035 static bfd_boolean
3036 elf_map_symbols (bfd *abfd)
3037 {
3038 unsigned int symcount = bfd_get_symcount (abfd);
3039 asymbol **syms = bfd_get_outsymbols (abfd);
3040 asymbol **sect_syms;
3041 unsigned int num_locals = 0;
3042 unsigned int num_globals = 0;
3043 unsigned int num_locals2 = 0;
3044 unsigned int num_globals2 = 0;
3045 int max_index = 0;
3046 unsigned int idx;
3047 asection *asect;
3048 asymbol **new_syms;
3049 bfd_size_type amt;
3050
3051 #ifdef DEBUG
3052 fprintf (stderr, "elf_map_symbols\n");
3053 fflush (stderr);
3054 #endif
3055
3056 for (asect = abfd->sections; asect; asect = asect->next)
3057 {
3058 if (max_index < asect->index)
3059 max_index = asect->index;
3060 }
3061
3062 max_index++;
3063 amt = max_index * sizeof (asymbol *);
3064 sect_syms = bfd_zalloc (abfd, amt);
3065 if (sect_syms == NULL)
3066 return FALSE;
3067 elf_section_syms (abfd) = sect_syms;
3068 elf_num_section_syms (abfd) = max_index;
3069
3070 /* Init sect_syms entries for any section symbols we have already
3071 decided to output. */
3072 for (idx = 0; idx < symcount; idx++)
3073 {
3074 asymbol *sym = syms[idx];
3075
3076 if ((sym->flags & BSF_SECTION_SYM) != 0
3077 && sym->value == 0)
3078 {
3079 asection *sec;
3080
3081 sec = sym->section;
3082
3083 if (sec->owner != NULL)
3084 {
3085 if (sec->owner != abfd)
3086 {
3087 if (sec->output_offset != 0)
3088 continue;
3089
3090 sec = sec->output_section;
3091
3092 /* Empty sections in the input files may have had a
3093 section symbol created for them. (See the comment
3094 near the end of _bfd_generic_link_output_symbols in
3095 linker.c). If the linker script discards such
3096 sections then we will reach this point. Since we know
3097 that we cannot avoid this case, we detect it and skip
3098 the abort and the assignment to the sect_syms array.
3099 To reproduce this particular case try running the
3100 linker testsuite test ld-scripts/weak.exp for an ELF
3101 port that uses the generic linker. */
3102 if (sec->owner == NULL)
3103 continue;
3104
3105 BFD_ASSERT (sec->owner == abfd);
3106 }
3107 sect_syms[sec->index] = syms[idx];
3108 }
3109 }
3110 }
3111
3112 /* Classify all of the symbols. */
3113 for (idx = 0; idx < symcount; idx++)
3114 {
3115 if (!sym_is_global (abfd, syms[idx]))
3116 num_locals++;
3117 else
3118 num_globals++;
3119 }
3120
3121 /* We will be adding a section symbol for each BFD section. Most normal
3122 sections will already have a section symbol in outsymbols, but
3123 eg. SHT_GROUP sections will not, and we need the section symbol mapped
3124 at least in that case. */
3125 for (asect = abfd->sections; asect; asect = asect->next)
3126 {
3127 if (sect_syms[asect->index] == NULL)
3128 {
3129 if (!sym_is_global (abfd, asect->symbol))
3130 num_locals++;
3131 else
3132 num_globals++;
3133 }
3134 }
3135
3136 /* Now sort the symbols so the local symbols are first. */
3137 amt = (num_locals + num_globals) * sizeof (asymbol *);
3138 new_syms = bfd_alloc (abfd, amt);
3139
3140 if (new_syms == NULL)
3141 return FALSE;
3142
3143 for (idx = 0; idx < symcount; idx++)
3144 {
3145 asymbol *sym = syms[idx];
3146 unsigned int i;
3147
3148 if (!sym_is_global (abfd, sym))
3149 i = num_locals2++;
3150 else
3151 i = num_locals + num_globals2++;
3152 new_syms[i] = sym;
3153 sym->udata.i = i + 1;
3154 }
3155 for (asect = abfd->sections; asect; asect = asect->next)
3156 {
3157 if (sect_syms[asect->index] == NULL)
3158 {
3159 asymbol *sym = asect->symbol;
3160 unsigned int i;
3161
3162 sect_syms[asect->index] = sym;
3163 if (!sym_is_global (abfd, sym))
3164 i = num_locals2++;
3165 else
3166 i = num_locals + num_globals2++;
3167 new_syms[i] = sym;
3168 sym->udata.i = i + 1;
3169 }
3170 }
3171
3172 bfd_set_symtab (abfd, new_syms, num_locals + num_globals);
3173
3174 elf_num_locals (abfd) = num_locals;
3175 elf_num_globals (abfd) = num_globals;
3176 return TRUE;
3177 }
3178
3179 /* Align to the maximum file alignment that could be required for any
3180 ELF data structure. */
3181
3182 static inline file_ptr
3183 align_file_position (file_ptr off, int align)
3184 {
3185 return (off + align - 1) & ~(align - 1);
3186 }
3187
3188 /* Assign a file position to a section, optionally aligning to the
3189 required section alignment. */
3190
3191 file_ptr
3192 _bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr *i_shdrp,
3193 file_ptr offset,
3194 bfd_boolean align)
3195 {
3196 if (align)
3197 {
3198 unsigned int al;
3199
3200 al = i_shdrp->sh_addralign;
3201 if (al > 1)
3202 offset = BFD_ALIGN (offset, al);
3203 }
3204 i_shdrp->sh_offset = offset;
3205 if (i_shdrp->bfd_section != NULL)
3206 i_shdrp->bfd_section->filepos = offset;
3207 if (i_shdrp->sh_type != SHT_NOBITS)
3208 offset += i_shdrp->sh_size;
3209 return offset;
3210 }
3211
3212 /* Compute the file positions we are going to put the sections at, and
3213 otherwise prepare to begin writing out the ELF file. If LINK_INFO
3214 is not NULL, this is being called by the ELF backend linker. */
3215
3216 bfd_boolean
3217 _bfd_elf_compute_section_file_positions (bfd *abfd,
3218 struct bfd_link_info *link_info)
3219 {
3220 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3221 bfd_boolean failed;
3222 struct bfd_strtab_hash *strtab;
3223 Elf_Internal_Shdr *shstrtab_hdr;
3224
3225 if (abfd->output_has_begun)
3226 return TRUE;
3227
3228 /* Do any elf backend specific processing first. */
3229 if (bed->elf_backend_begin_write_processing)
3230 (*bed->elf_backend_begin_write_processing) (abfd, link_info);
3231
3232 if (! prep_headers (abfd))
3233 return FALSE;
3234
3235 /* Post process the headers if necessary. */
3236 if (bed->elf_backend_post_process_headers)
3237 (*bed->elf_backend_post_process_headers) (abfd, link_info);
3238
3239 failed = FALSE;
3240 bfd_map_over_sections (abfd, elf_fake_sections, &failed);
3241 if (failed)
3242 return FALSE;
3243
3244 if (!assign_section_numbers (abfd))
3245 return FALSE;
3246
3247 /* The backend linker builds symbol table information itself. */
3248 if (link_info == NULL && bfd_get_symcount (abfd) > 0)
3249 {
3250 /* Non-zero if doing a relocatable link. */
3251 int relocatable_p = ! (abfd->flags & (EXEC_P | DYNAMIC));
3252
3253 if (! swap_out_syms (abfd, &strtab, relocatable_p))
3254 return FALSE;
3255 }
3256
3257 if (link_info == NULL)
3258 {
3259 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
3260 if (failed)
3261 return FALSE;
3262 }
3263
3264 shstrtab_hdr = &elf_tdata (abfd)->shstrtab_hdr;
3265 /* sh_name was set in prep_headers. */
3266 shstrtab_hdr->sh_type = SHT_STRTAB;
3267 shstrtab_hdr->sh_flags = 0;
3268 shstrtab_hdr->sh_addr = 0;
3269 shstrtab_hdr->sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
3270 shstrtab_hdr->sh_entsize = 0;
3271 shstrtab_hdr->sh_link = 0;
3272 shstrtab_hdr->sh_info = 0;
3273 /* sh_offset is set in assign_file_positions_except_relocs. */
3274 shstrtab_hdr->sh_addralign = 1;
3275
3276 if (!assign_file_positions_except_relocs (abfd, link_info))
3277 return FALSE;
3278
3279 if (link_info == NULL && bfd_get_symcount (abfd) > 0)
3280 {
3281 file_ptr off;
3282 Elf_Internal_Shdr *hdr;
3283
3284 off = elf_tdata (abfd)->next_file_pos;
3285
3286 hdr = &elf_tdata (abfd)->symtab_hdr;
3287 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3288
3289 hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
3290 if (hdr->sh_size != 0)
3291 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3292
3293 hdr = &elf_tdata (abfd)->strtab_hdr;
3294 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3295
3296 elf_tdata (abfd)->next_file_pos = off;
3297
3298 /* Now that we know where the .strtab section goes, write it
3299 out. */
3300 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
3301 || ! _bfd_stringtab_emit (abfd, strtab))
3302 return FALSE;
3303 _bfd_stringtab_free (strtab);
3304 }
3305
3306 abfd->output_has_begun = TRUE;
3307
3308 return TRUE;
3309 }
3310
3311 /* Create a mapping from a set of sections to a program segment. */
3312
3313 static struct elf_segment_map *
3314 make_mapping (bfd *abfd,
3315 asection **sections,
3316 unsigned int from,
3317 unsigned int to,
3318 bfd_boolean phdr)
3319 {
3320 struct elf_segment_map *m;
3321 unsigned int i;
3322 asection **hdrpp;
3323 bfd_size_type amt;
3324
3325 amt = sizeof (struct elf_segment_map);
3326 amt += (to - from - 1) * sizeof (asection *);
3327 m = bfd_zalloc (abfd, amt);
3328 if (m == NULL)
3329 return NULL;
3330 m->next = NULL;
3331 m->p_type = PT_LOAD;
3332 for (i = from, hdrpp = sections + from; i < to; i++, hdrpp++)
3333 m->sections[i - from] = *hdrpp;
3334 m->count = to - from;
3335
3336 if (from == 0 && phdr)
3337 {
3338 /* Include the headers in the first PT_LOAD segment. */
3339 m->includes_filehdr = 1;
3340 m->includes_phdrs = 1;
3341 }
3342
3343 return m;
3344 }
3345
3346 /* Create the PT_DYNAMIC segment, which includes DYNSEC. Returns NULL
3347 on failure. */
3348
3349 struct elf_segment_map *
3350 _bfd_elf_make_dynamic_segment (bfd *abfd, asection *dynsec)
3351 {
3352 struct elf_segment_map *m;
3353
3354 m = bfd_zalloc (abfd, sizeof (struct elf_segment_map));
3355 if (m == NULL)
3356 return NULL;
3357 m->next = NULL;
3358 m->p_type = PT_DYNAMIC;
3359 m->count = 1;
3360 m->sections[0] = dynsec;
3361
3362 return m;
3363 }
3364
3365 /* Set up a mapping from BFD sections to program segments. */
3366
3367 static bfd_boolean
3368 map_sections_to_segments (bfd *abfd)
3369 {
3370 asection **sections = NULL;
3371 asection *s;
3372 unsigned int i;
3373 unsigned int count;
3374 struct elf_segment_map *mfirst;
3375 struct elf_segment_map **pm;
3376 struct elf_segment_map *m;
3377 asection *last_hdr;
3378 bfd_vma last_size;
3379 unsigned int phdr_index;
3380 bfd_vma maxpagesize;
3381 asection **hdrpp;
3382 bfd_boolean phdr_in_segment = TRUE;
3383 bfd_boolean writable;
3384 int tls_count = 0;
3385 asection *first_tls = NULL;
3386 asection *dynsec, *eh_frame_hdr;
3387 bfd_size_type amt;
3388
3389 if (elf_tdata (abfd)->segment_map != NULL)
3390 return TRUE;
3391
3392 if (bfd_count_sections (abfd) == 0)
3393 return TRUE;
3394
3395 /* Select the allocated sections, and sort them. */
3396
3397 amt = bfd_count_sections (abfd) * sizeof (asection *);
3398 sections = bfd_malloc (amt);
3399 if (sections == NULL)
3400 goto error_return;
3401
3402 i = 0;
3403 for (s = abfd->sections; s != NULL; s = s->next)
3404 {
3405 if ((s->flags & SEC_ALLOC) != 0)
3406 {
3407 sections[i] = s;
3408 ++i;
3409 }
3410 }
3411 BFD_ASSERT (i <= bfd_count_sections (abfd));
3412 count = i;
3413
3414 qsort (sections, (size_t) count, sizeof (asection *), elf_sort_sections);
3415
3416 /* Build the mapping. */
3417
3418 mfirst = NULL;
3419 pm = &mfirst;
3420
3421 /* If we have a .interp section, then create a PT_PHDR segment for
3422 the program headers and a PT_INTERP segment for the .interp
3423 section. */
3424 s = bfd_get_section_by_name (abfd, ".interp");
3425 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3426 {
3427 amt = sizeof (struct elf_segment_map);
3428 m = bfd_zalloc (abfd, amt);
3429 if (m == NULL)
3430 goto error_return;
3431 m->next = NULL;
3432 m->p_type = PT_PHDR;
3433 /* FIXME: UnixWare and Solaris set PF_X, Irix 5 does not. */
3434 m->p_flags = PF_R | PF_X;
3435 m->p_flags_valid = 1;
3436 m->includes_phdrs = 1;
3437
3438 *pm = m;
3439 pm = &m->next;
3440
3441 amt = sizeof (struct elf_segment_map);
3442 m = bfd_zalloc (abfd, amt);
3443 if (m == NULL)
3444 goto error_return;
3445 m->next = NULL;
3446 m->p_type = PT_INTERP;
3447 m->count = 1;
3448 m->sections[0] = s;
3449
3450 *pm = m;
3451 pm = &m->next;
3452 }
3453
3454 /* Look through the sections. We put sections in the same program
3455 segment when the start of the second section can be placed within
3456 a few bytes of the end of the first section. */
3457 last_hdr = NULL;
3458 last_size = 0;
3459 phdr_index = 0;
3460 maxpagesize = get_elf_backend_data (abfd)->maxpagesize;
3461 writable = FALSE;
3462 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
3463 if (dynsec != NULL
3464 && (dynsec->flags & SEC_LOAD) == 0)
3465 dynsec = NULL;
3466
3467 /* Deal with -Ttext or something similar such that the first section
3468 is not adjacent to the program headers. This is an
3469 approximation, since at this point we don't know exactly how many
3470 program headers we will need. */
3471 if (count > 0)
3472 {
3473 bfd_size_type phdr_size;
3474
3475 phdr_size = elf_tdata (abfd)->program_header_size;
3476 if (phdr_size == 0)
3477 phdr_size = get_elf_backend_data (abfd)->s->sizeof_phdr;
3478 if ((abfd->flags & D_PAGED) == 0
3479 || sections[0]->lma < phdr_size
3480 || sections[0]->lma % maxpagesize < phdr_size % maxpagesize)
3481 phdr_in_segment = FALSE;
3482 }
3483
3484 for (i = 0, hdrpp = sections; i < count; i++, hdrpp++)
3485 {
3486 asection *hdr;
3487 bfd_boolean new_segment;
3488
3489 hdr = *hdrpp;
3490
3491 /* See if this section and the last one will fit in the same
3492 segment. */
3493
3494 if (last_hdr == NULL)
3495 {
3496 /* If we don't have a segment yet, then we don't need a new
3497 one (we build the last one after this loop). */
3498 new_segment = FALSE;
3499 }
3500 else if (last_hdr->lma - last_hdr->vma != hdr->lma - hdr->vma)
3501 {
3502 /* If this section has a different relation between the
3503 virtual address and the load address, then we need a new
3504 segment. */
3505 new_segment = TRUE;
3506 }
3507 else if (BFD_ALIGN (last_hdr->lma + last_size, maxpagesize)
3508 < BFD_ALIGN (hdr->lma, maxpagesize))
3509 {
3510 /* If putting this section in this segment would force us to
3511 skip a page in the segment, then we need a new segment. */
3512 new_segment = TRUE;
3513 }
3514 else if ((last_hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0
3515 && (hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) != 0)
3516 {
3517 /* We don't want to put a loadable section after a
3518 nonloadable section in the same segment.
3519 Consider .tbss sections as loadable for this purpose. */
3520 new_segment = TRUE;
3521 }
3522 else if ((abfd->flags & D_PAGED) == 0)
3523 {
3524 /* If the file is not demand paged, which means that we
3525 don't require the sections to be correctly aligned in the
3526 file, then there is no other reason for a new segment. */
3527 new_segment = FALSE;
3528 }
3529 else if (! writable
3530 && (hdr->flags & SEC_READONLY) == 0
3531 && (((last_hdr->lma + last_size - 1)
3532 & ~(maxpagesize - 1))
3533 != (hdr->lma & ~(maxpagesize - 1))))
3534 {
3535 /* We don't want to put a writable section in a read only
3536 segment, unless they are on the same page in memory
3537 anyhow. We already know that the last section does not
3538 bring us past the current section on the page, so the
3539 only case in which the new section is not on the same
3540 page as the previous section is when the previous section
3541 ends precisely on a page boundary. */
3542 new_segment = TRUE;
3543 }
3544 else
3545 {
3546 /* Otherwise, we can use the same segment. */
3547 new_segment = FALSE;
3548 }
3549
3550 if (! new_segment)
3551 {
3552 if ((hdr->flags & SEC_READONLY) == 0)
3553 writable = TRUE;
3554 last_hdr = hdr;
3555 /* .tbss sections effectively have zero size. */
3556 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) != SEC_THREAD_LOCAL)
3557 last_size = hdr->size;
3558 else
3559 last_size = 0;
3560 continue;
3561 }
3562
3563 /* We need a new program segment. We must create a new program
3564 header holding all the sections from phdr_index until hdr. */
3565
3566 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
3567 if (m == NULL)
3568 goto error_return;
3569
3570 *pm = m;
3571 pm = &m->next;
3572
3573 if ((hdr->flags & SEC_READONLY) == 0)
3574 writable = TRUE;
3575 else
3576 writable = FALSE;
3577
3578 last_hdr = hdr;
3579 /* .tbss sections effectively have zero size. */
3580 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) != SEC_THREAD_LOCAL)
3581 last_size = hdr->size;
3582 else
3583 last_size = 0;
3584 phdr_index = i;
3585 phdr_in_segment = FALSE;
3586 }
3587
3588 /* Create a final PT_LOAD program segment. */
3589 if (last_hdr != NULL)
3590 {
3591 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
3592 if (m == NULL)
3593 goto error_return;
3594
3595 *pm = m;
3596 pm = &m->next;
3597 }
3598
3599 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
3600 if (dynsec != NULL)
3601 {
3602 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
3603 if (m == NULL)
3604 goto error_return;
3605 *pm = m;
3606 pm = &m->next;
3607 }
3608
3609 /* For each loadable .note section, add a PT_NOTE segment. We don't
3610 use bfd_get_section_by_name, because if we link together
3611 nonloadable .note sections and loadable .note sections, we will
3612 generate two .note sections in the output file. FIXME: Using
3613 names for section types is bogus anyhow. */
3614 for (s = abfd->sections; s != NULL; s = s->next)
3615 {
3616 if ((s->flags & SEC_LOAD) != 0
3617 && strncmp (s->name, ".note", 5) == 0)
3618 {
3619 amt = sizeof (struct elf_segment_map);
3620 m = bfd_zalloc (abfd, amt);
3621 if (m == NULL)
3622 goto error_return;
3623 m->next = NULL;
3624 m->p_type = PT_NOTE;
3625 m->count = 1;
3626 m->sections[0] = s;
3627
3628 *pm = m;
3629 pm = &m->next;
3630 }
3631 if (s->flags & SEC_THREAD_LOCAL)
3632 {
3633 if (! tls_count)
3634 first_tls = s;
3635 tls_count++;
3636 }
3637 }
3638
3639 /* If there are any SHF_TLS output sections, add PT_TLS segment. */
3640 if (tls_count > 0)
3641 {
3642 int i;
3643
3644 amt = sizeof (struct elf_segment_map);
3645 amt += (tls_count - 1) * sizeof (asection *);
3646 m = bfd_zalloc (abfd, amt);
3647 if (m == NULL)
3648 goto error_return;
3649 m->next = NULL;
3650 m->p_type = PT_TLS;
3651 m->count = tls_count;
3652 /* Mandated PF_R. */
3653 m->p_flags = PF_R;
3654 m->p_flags_valid = 1;
3655 for (i = 0; i < tls_count; ++i)
3656 {
3657 BFD_ASSERT (first_tls->flags & SEC_THREAD_LOCAL);
3658 m->sections[i] = first_tls;
3659 first_tls = first_tls->next;
3660 }
3661
3662 *pm = m;
3663 pm = &m->next;
3664 }
3665
3666 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
3667 segment. */
3668 eh_frame_hdr = elf_tdata (abfd)->eh_frame_hdr;
3669 if (eh_frame_hdr != NULL
3670 && (eh_frame_hdr->output_section->flags & SEC_LOAD) != 0)
3671 {
3672 amt = sizeof (struct elf_segment_map);
3673 m = bfd_zalloc (abfd, amt);
3674 if (m == NULL)
3675 goto error_return;
3676 m->next = NULL;
3677 m->p_type = PT_GNU_EH_FRAME;
3678 m->count = 1;
3679 m->sections[0] = eh_frame_hdr->output_section;
3680
3681 *pm = m;
3682 pm = &m->next;
3683 }
3684
3685 if (elf_tdata (abfd)->stack_flags)
3686 {
3687 amt = sizeof (struct elf_segment_map);
3688 m = bfd_zalloc (abfd, amt);
3689 if (m == NULL)
3690 goto error_return;
3691 m->next = NULL;
3692 m->p_type = PT_GNU_STACK;
3693 m->p_flags = elf_tdata (abfd)->stack_flags;
3694 m->p_flags_valid = 1;
3695
3696 *pm = m;
3697 pm = &m->next;
3698 }
3699
3700 if (elf_tdata (abfd)->relro)
3701 {
3702 amt = sizeof (struct elf_segment_map);
3703 m = bfd_zalloc (abfd, amt);
3704 if (m == NULL)
3705 goto error_return;
3706 m->next = NULL;
3707 m->p_type = PT_GNU_RELRO;
3708 m->p_flags = PF_R;
3709 m->p_flags_valid = 1;
3710
3711 *pm = m;
3712 pm = &m->next;
3713 }
3714
3715 free (sections);
3716 sections = NULL;
3717
3718 elf_tdata (abfd)->segment_map = mfirst;
3719 return TRUE;
3720
3721 error_return:
3722 if (sections != NULL)
3723 free (sections);
3724 return FALSE;
3725 }
3726
3727 /* Sort sections by address. */
3728
3729 static int
3730 elf_sort_sections (const void *arg1, const void *arg2)
3731 {
3732 const asection *sec1 = *(const asection **) arg1;
3733 const asection *sec2 = *(const asection **) arg2;
3734 bfd_size_type size1, size2;
3735
3736 /* Sort by LMA first, since this is the address used to
3737 place the section into a segment. */
3738 if (sec1->lma < sec2->lma)
3739 return -1;
3740 else if (sec1->lma > sec2->lma)
3741 return 1;
3742
3743 /* Then sort by VMA. Normally the LMA and the VMA will be
3744 the same, and this will do nothing. */
3745 if (sec1->vma < sec2->vma)
3746 return -1;
3747 else if (sec1->vma > sec2->vma)
3748 return 1;
3749
3750 /* Put !SEC_LOAD sections after SEC_LOAD ones. */
3751
3752 #define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0)
3753
3754 if (TOEND (sec1))
3755 {
3756 if (TOEND (sec2))
3757 {
3758 /* If the indicies are the same, do not return 0
3759 here, but continue to try the next comparison. */
3760 if (sec1->target_index - sec2->target_index != 0)
3761 return sec1->target_index - sec2->target_index;
3762 }
3763 else
3764 return 1;
3765 }
3766 else if (TOEND (sec2))
3767 return -1;
3768
3769 #undef TOEND
3770
3771 /* Sort by size, to put zero sized sections
3772 before others at the same address. */
3773
3774 size1 = (sec1->flags & SEC_LOAD) ? sec1->size : 0;
3775 size2 = (sec2->flags & SEC_LOAD) ? sec2->size : 0;
3776
3777 if (size1 < size2)
3778 return -1;
3779 if (size1 > size2)
3780 return 1;
3781
3782 return sec1->target_index - sec2->target_index;
3783 }
3784
3785 /* Ian Lance Taylor writes:
3786
3787 We shouldn't be using % with a negative signed number. That's just
3788 not good. We have to make sure either that the number is not
3789 negative, or that the number has an unsigned type. When the types
3790 are all the same size they wind up as unsigned. When file_ptr is a
3791 larger signed type, the arithmetic winds up as signed long long,
3792 which is wrong.
3793
3794 What we're trying to say here is something like ``increase OFF by
3795 the least amount that will cause it to be equal to the VMA modulo
3796 the page size.'' */
3797 /* In other words, something like:
3798
3799 vma_offset = m->sections[0]->vma % bed->maxpagesize;
3800 off_offset = off % bed->maxpagesize;
3801 if (vma_offset < off_offset)
3802 adjustment = vma_offset + bed->maxpagesize - off_offset;
3803 else
3804 adjustment = vma_offset - off_offset;
3805
3806 which can can be collapsed into the expression below. */
3807
3808 static file_ptr
3809 vma_page_aligned_bias (bfd_vma vma, ufile_ptr off, bfd_vma maxpagesize)
3810 {
3811 return ((vma - off) % maxpagesize);
3812 }
3813
3814 /* Assign file positions to the sections based on the mapping from
3815 sections to segments. This function also sets up some fields in
3816 the file header, and writes out the program headers. */
3817
3818 static bfd_boolean
3819 assign_file_positions_for_segments (bfd *abfd, struct bfd_link_info *link_info)
3820 {
3821 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3822 unsigned int count;
3823 struct elf_segment_map *m;
3824 unsigned int alloc;
3825 Elf_Internal_Phdr *phdrs;
3826 file_ptr off, voff;
3827 bfd_vma filehdr_vaddr, filehdr_paddr;
3828 bfd_vma phdrs_vaddr, phdrs_paddr;
3829 Elf_Internal_Phdr *p;
3830 bfd_size_type amt;
3831
3832 if (elf_tdata (abfd)->segment_map == NULL)
3833 {
3834 if (! map_sections_to_segments (abfd))
3835 return FALSE;
3836 }
3837 else
3838 {
3839 /* The placement algorithm assumes that non allocated sections are
3840 not in PT_LOAD segments. We ensure this here by removing such
3841 sections from the segment map. */
3842 for (m = elf_tdata (abfd)->segment_map;
3843 m != NULL;
3844 m = m->next)
3845 {
3846 unsigned int new_count;
3847 unsigned int i;
3848
3849 if (m->p_type != PT_LOAD)
3850 continue;
3851
3852 new_count = 0;
3853 for (i = 0; i < m->count; i ++)
3854 {
3855 if ((m->sections[i]->flags & SEC_ALLOC) != 0)
3856 {
3857 if (i != new_count)
3858 m->sections[new_count] = m->sections[i];
3859
3860 new_count ++;
3861 }
3862 }
3863
3864 if (new_count != m->count)
3865 m->count = new_count;
3866 }
3867 }
3868
3869 if (bed->elf_backend_modify_segment_map)
3870 {
3871 if (! (*bed->elf_backend_modify_segment_map) (abfd, link_info))
3872 return FALSE;
3873 }
3874
3875 count = 0;
3876 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
3877 ++count;
3878
3879 elf_elfheader (abfd)->e_phoff = bed->s->sizeof_ehdr;
3880 elf_elfheader (abfd)->e_phentsize = bed->s->sizeof_phdr;
3881 elf_elfheader (abfd)->e_phnum = count;
3882
3883 if (count == 0)
3884 return TRUE;
3885
3886 /* If we already counted the number of program segments, make sure
3887 that we allocated enough space. This happens when SIZEOF_HEADERS
3888 is used in a linker script. */
3889 alloc = elf_tdata (abfd)->program_header_size / bed->s->sizeof_phdr;
3890 if (alloc != 0 && count > alloc)
3891 {
3892 ((*_bfd_error_handler)
3893 (_("%s: Not enough room for program headers (allocated %u, need %u)"),
3894 bfd_get_filename (abfd), alloc, count));
3895 bfd_set_error (bfd_error_bad_value);
3896 return FALSE;
3897 }
3898
3899 if (alloc == 0)
3900 alloc = count;
3901
3902 amt = alloc * sizeof (Elf_Internal_Phdr);
3903 phdrs = bfd_alloc (abfd, amt);
3904 if (phdrs == NULL)
3905 return FALSE;
3906
3907 off = bed->s->sizeof_ehdr;
3908 off += alloc * bed->s->sizeof_phdr;
3909
3910 filehdr_vaddr = 0;
3911 filehdr_paddr = 0;
3912 phdrs_vaddr = 0;
3913 phdrs_paddr = 0;
3914
3915 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
3916 m != NULL;
3917 m = m->next, p++)
3918 {
3919 unsigned int i;
3920 asection **secpp;
3921
3922 /* If elf_segment_map is not from map_sections_to_segments, the
3923 sections may not be correctly ordered. NOTE: sorting should
3924 not be done to the PT_NOTE section of a corefile, which may
3925 contain several pseudo-sections artificially created by bfd.
3926 Sorting these pseudo-sections breaks things badly. */
3927 if (m->count > 1
3928 && !(elf_elfheader (abfd)->e_type == ET_CORE
3929 && m->p_type == PT_NOTE))
3930 qsort (m->sections, (size_t) m->count, sizeof (asection *),
3931 elf_sort_sections);
3932
3933 p->p_type = m->p_type;
3934 p->p_flags = m->p_flags;
3935
3936 if (p->p_type == PT_LOAD
3937 && m->count > 0
3938 && (m->sections[0]->flags & SEC_ALLOC) != 0)
3939 {
3940 if ((abfd->flags & D_PAGED) != 0)
3941 off += vma_page_aligned_bias (m->sections[0]->vma, off,
3942 bed->maxpagesize);
3943 else
3944 {
3945 bfd_size_type align;
3946
3947 align = 0;
3948 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
3949 {
3950 bfd_size_type secalign;
3951
3952 secalign = bfd_get_section_alignment (abfd, *secpp);
3953 if (secalign > align)
3954 align = secalign;
3955 }
3956
3957 off += vma_page_aligned_bias (m->sections[0]->vma, off,
3958 1 << align);
3959 }
3960 }
3961 /* Make sure the .dynamic section is the first section in the
3962 PT_DYNAMIC segment. */
3963 else if (p->p_type == PT_DYNAMIC
3964 && m->count > 1
3965 && strcmp (m->sections[0]->name, ".dynamic") != 0)
3966 {
3967 _bfd_error_handler
3968 (_("%s: The first section in the PT_DYNAMIC segment is not the .dynamic section"),
3969 bfd_get_filename (abfd));
3970 bfd_set_error (bfd_error_bad_value);
3971 return FALSE;
3972 }
3973
3974 if (m->count == 0)
3975 p->p_vaddr = 0;
3976 else
3977 p->p_vaddr = m->sections[0]->vma;
3978
3979 if (m->p_paddr_valid)
3980 p->p_paddr = m->p_paddr;
3981 else if (m->count == 0)
3982 p->p_paddr = 0;
3983 else
3984 p->p_paddr = m->sections[0]->lma;
3985
3986 if (p->p_type == PT_LOAD
3987 && (abfd->flags & D_PAGED) != 0)
3988 p->p_align = bed->maxpagesize;
3989 else if (m->count == 0)
3990 p->p_align = 1 << bed->s->log_file_align;
3991 else
3992 p->p_align = 0;
3993
3994 p->p_offset = 0;
3995 p->p_filesz = 0;
3996 p->p_memsz = 0;
3997
3998 if (m->includes_filehdr)
3999 {
4000 if (! m->p_flags_valid)
4001 p->p_flags |= PF_R;
4002 p->p_offset = 0;
4003 p->p_filesz = bed->s->sizeof_ehdr;
4004 p->p_memsz = bed->s->sizeof_ehdr;
4005 if (m->count > 0)
4006 {
4007 BFD_ASSERT (p->p_type == PT_LOAD);
4008
4009 if (p->p_vaddr < (bfd_vma) off)
4010 {
4011 (*_bfd_error_handler)
4012 (_("%s: Not enough room for program headers, try linking with -N"),
4013 bfd_get_filename (abfd));
4014 bfd_set_error (bfd_error_bad_value);
4015 return FALSE;
4016 }
4017
4018 p->p_vaddr -= off;
4019 if (! m->p_paddr_valid)
4020 p->p_paddr -= off;
4021 }
4022 if (p->p_type == PT_LOAD)
4023 {
4024 filehdr_vaddr = p->p_vaddr;
4025 filehdr_paddr = p->p_paddr;
4026 }
4027 }
4028
4029 if (m->includes_phdrs)
4030 {
4031 if (! m->p_flags_valid)
4032 p->p_flags |= PF_R;
4033
4034 if (m->includes_filehdr)
4035 {
4036 if (p->p_type == PT_LOAD)
4037 {
4038 phdrs_vaddr = p->p_vaddr + bed->s->sizeof_ehdr;
4039 phdrs_paddr = p->p_paddr + bed->s->sizeof_ehdr;
4040 }
4041 }
4042 else
4043 {
4044 p->p_offset = bed->s->sizeof_ehdr;
4045
4046 if (m->count > 0)
4047 {
4048 BFD_ASSERT (p->p_type == PT_LOAD);
4049 p->p_vaddr -= off - p->p_offset;
4050 if (! m->p_paddr_valid)
4051 p->p_paddr -= off - p->p_offset;
4052 }
4053
4054 if (p->p_type == PT_LOAD)
4055 {
4056 phdrs_vaddr = p->p_vaddr;
4057 phdrs_paddr = p->p_paddr;
4058 }
4059 else
4060 phdrs_vaddr = bed->maxpagesize + bed->s->sizeof_ehdr;
4061 }
4062
4063 p->p_filesz += alloc * bed->s->sizeof_phdr;
4064 p->p_memsz += alloc * bed->s->sizeof_phdr;
4065 }
4066
4067 if (p->p_type == PT_LOAD
4068 || (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core))
4069 {
4070 if (! m->includes_filehdr && ! m->includes_phdrs)
4071 p->p_offset = off;
4072 else
4073 {
4074 file_ptr adjust;
4075
4076 adjust = off - (p->p_offset + p->p_filesz);
4077 p->p_filesz += adjust;
4078 p->p_memsz += adjust;
4079 }
4080 }
4081
4082 voff = off;
4083
4084 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4085 {
4086 asection *sec;
4087 flagword flags;
4088 bfd_size_type align;
4089
4090 sec = *secpp;
4091 flags = sec->flags;
4092 align = 1 << bfd_get_section_alignment (abfd, sec);
4093
4094 /* The section may have artificial alignment forced by a
4095 link script. Notice this case by the gap between the
4096 cumulative phdr lma and the section's lma. */
4097 if (p->p_paddr + p->p_memsz < sec->lma)
4098 {
4099 bfd_vma adjust = sec->lma - (p->p_paddr + p->p_memsz);
4100
4101 p->p_memsz += adjust;
4102 if (p->p_type == PT_LOAD
4103 || (p->p_type == PT_NOTE
4104 && bfd_get_format (abfd) == bfd_core))
4105 {
4106 off += adjust;
4107 voff += adjust;
4108 }
4109 if ((flags & SEC_LOAD) != 0
4110 || (flags & SEC_THREAD_LOCAL) != 0)
4111 p->p_filesz += adjust;
4112 }
4113
4114 if (p->p_type == PT_LOAD)
4115 {
4116 bfd_signed_vma adjust;
4117
4118 if ((flags & SEC_LOAD) != 0)
4119 {
4120 adjust = sec->lma - (p->p_paddr + p->p_memsz);
4121 if (adjust < 0)
4122 adjust = 0;
4123 }
4124 else if ((flags & SEC_ALLOC) != 0)
4125 {
4126 /* The section VMA must equal the file position
4127 modulo the page size. FIXME: I'm not sure if
4128 this adjustment is really necessary. We used to
4129 not have the SEC_LOAD case just above, and then
4130 this was necessary, but now I'm not sure. */
4131 if ((abfd->flags & D_PAGED) != 0)
4132 adjust = vma_page_aligned_bias (sec->vma, voff,
4133 bed->maxpagesize);
4134 else
4135 adjust = vma_page_aligned_bias (sec->vma, voff,
4136 align);
4137 }
4138 else
4139 adjust = 0;
4140
4141 if (adjust != 0)
4142 {
4143 if (i == 0)
4144 {
4145 (* _bfd_error_handler) (_("\
4146 Error: First section in segment (%s) starts at 0x%x whereas the segment starts at 0x%x"),
4147 bfd_section_name (abfd, sec),
4148 sec->lma,
4149 p->p_paddr);
4150 return FALSE;
4151 }
4152 p->p_memsz += adjust;
4153 off += adjust;
4154 voff += adjust;
4155 if ((flags & SEC_LOAD) != 0)
4156 p->p_filesz += adjust;
4157 }
4158
4159 sec->filepos = off;
4160
4161 /* We check SEC_HAS_CONTENTS here because if NOLOAD is
4162 used in a linker script we may have a section with
4163 SEC_LOAD clear but which is supposed to have
4164 contents. */
4165 if ((flags & SEC_LOAD) != 0
4166 || (flags & SEC_HAS_CONTENTS) != 0)
4167 off += sec->size;
4168
4169 if ((flags & SEC_ALLOC) != 0
4170 && ((flags & SEC_LOAD) != 0
4171 || (flags & SEC_THREAD_LOCAL) == 0))
4172 voff += sec->size;
4173 }
4174
4175 if (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core)
4176 {
4177 /* The actual "note" segment has i == 0.
4178 This is the one that actually contains everything. */
4179 if (i == 0)
4180 {
4181 sec->filepos = off;
4182 p->p_filesz = sec->size;
4183 off += sec->size;
4184 voff = off;
4185 }
4186 else
4187 {
4188 /* Fake sections -- don't need to be written. */
4189 sec->filepos = 0;
4190 sec->size = 0;
4191 flags = sec->flags = 0;
4192 }
4193 p->p_memsz = 0;
4194 p->p_align = 1;
4195 }
4196 else
4197 {
4198 if ((sec->flags & SEC_LOAD) != 0
4199 || (sec->flags & SEC_THREAD_LOCAL) == 0
4200 || p->p_type == PT_TLS)
4201 p->p_memsz += sec->size;
4202
4203 if ((flags & SEC_LOAD) != 0)
4204 p->p_filesz += sec->size;
4205
4206 if (p->p_type == PT_TLS
4207 && sec->size == 0
4208 && (sec->flags & SEC_HAS_CONTENTS) == 0)
4209 {
4210 struct bfd_link_order *o;
4211 bfd_vma tbss_size = 0;
4212
4213 for (o = sec->link_order_head; o != NULL; o = o->next)
4214 if (tbss_size < o->offset + o->size)
4215 tbss_size = o->offset + o->size;
4216
4217 p->p_memsz += tbss_size;
4218 }
4219
4220 if (align > p->p_align
4221 && (p->p_type != PT_LOAD || (abfd->flags & D_PAGED) == 0))
4222 p->p_align = align;
4223 }
4224
4225 if (! m->p_flags_valid)
4226 {
4227 p->p_flags |= PF_R;
4228 if ((flags & SEC_CODE) != 0)
4229 p->p_flags |= PF_X;
4230 if ((flags & SEC_READONLY) == 0)
4231 p->p_flags |= PF_W;
4232 }
4233 }
4234 }
4235
4236 /* Now that we have set the section file positions, we can set up
4237 the file positions for the non PT_LOAD segments. */
4238 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
4239 m != NULL;
4240 m = m->next, p++)
4241 {
4242 if (p->p_type != PT_LOAD && m->count > 0)
4243 {
4244 BFD_ASSERT (! m->includes_filehdr && ! m->includes_phdrs);
4245 /* If the section has not yet been assigned a file position,
4246 do so now. The ARM BPABI requires that .dynamic section
4247 not be marked SEC_ALLOC because it is not part of any
4248 PT_LOAD segment, so it will not be processed above. */
4249 if (p->p_type == PT_DYNAMIC && m->sections[0]->filepos == 0)
4250 {
4251 unsigned int i;
4252 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
4253
4254 i = 1;
4255 while (i_shdrpp[i]->bfd_section != m->sections[0])
4256 ++i;
4257 off = (_bfd_elf_assign_file_position_for_section
4258 (i_shdrpp[i], off, TRUE));
4259 p->p_filesz = m->sections[0]->size;
4260 }
4261 p->p_offset = m->sections[0]->filepos;
4262 }
4263 if (m->count == 0)
4264 {
4265 if (m->includes_filehdr)
4266 {
4267 p->p_vaddr = filehdr_vaddr;
4268 if (! m->p_paddr_valid)
4269 p->p_paddr = filehdr_paddr;
4270 }
4271 else if (m->includes_phdrs)
4272 {
4273 p->p_vaddr = phdrs_vaddr;
4274 if (! m->p_paddr_valid)
4275 p->p_paddr = phdrs_paddr;
4276 }
4277 else if (p->p_type == PT_GNU_RELRO)
4278 {
4279 Elf_Internal_Phdr *lp;
4280
4281 for (lp = phdrs; lp < phdrs + count; ++lp)
4282 {
4283 if (lp->p_type == PT_LOAD
4284 && lp->p_vaddr <= link_info->relro_end
4285 && lp->p_vaddr >= link_info->relro_start
4286 && lp->p_vaddr + lp->p_filesz
4287 >= link_info->relro_end)
4288 break;
4289 }
4290
4291 if (lp < phdrs + count
4292 && link_info->relro_end > lp->p_vaddr)
4293 {
4294 p->p_vaddr = lp->p_vaddr;
4295 p->p_paddr = lp->p_paddr;
4296 p->p_offset = lp->p_offset;
4297 p->p_filesz = link_info->relro_end - lp->p_vaddr;
4298 p->p_memsz = p->p_filesz;
4299 p->p_align = 1;
4300 p->p_flags = (lp->p_flags & ~PF_W);
4301 }
4302 else
4303 {
4304 memset (p, 0, sizeof *p);
4305 p->p_type = PT_NULL;
4306 }
4307 }
4308 }
4309 }
4310
4311 /* Clear out any program headers we allocated but did not use. */
4312 for (; count < alloc; count++, p++)
4313 {
4314 memset (p, 0, sizeof *p);
4315 p->p_type = PT_NULL;
4316 }
4317
4318 elf_tdata (abfd)->phdr = phdrs;
4319
4320 elf_tdata (abfd)->next_file_pos = off;
4321
4322 /* Write out the program headers. */
4323 if (bfd_seek (abfd, (bfd_signed_vma) bed->s->sizeof_ehdr, SEEK_SET) != 0
4324 || bed->s->write_out_phdrs (abfd, phdrs, alloc) != 0)
4325 return FALSE;
4326
4327 return TRUE;
4328 }
4329
4330 /* Get the size of the program header.
4331
4332 If this is called by the linker before any of the section VMA's are set, it
4333 can't calculate the correct value for a strange memory layout. This only
4334 happens when SIZEOF_HEADERS is used in a linker script. In this case,
4335 SORTED_HDRS is NULL and we assume the normal scenario of one text and one
4336 data segment (exclusive of .interp and .dynamic).
4337
4338 ??? User written scripts must either not use SIZEOF_HEADERS, or assume there
4339 will be two segments. */
4340
4341 static bfd_size_type
4342 get_program_header_size (bfd *abfd)
4343 {
4344 size_t segs;
4345 asection *s;
4346 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4347
4348 /* We can't return a different result each time we're called. */
4349 if (elf_tdata (abfd)->program_header_size != 0)
4350 return elf_tdata (abfd)->program_header_size;
4351
4352 if (elf_tdata (abfd)->segment_map != NULL)
4353 {
4354 struct elf_segment_map *m;
4355
4356 segs = 0;
4357 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
4358 ++segs;
4359 elf_tdata (abfd)->program_header_size = segs * bed->s->sizeof_phdr;
4360 return elf_tdata (abfd)->program_header_size;
4361 }
4362
4363 /* Assume we will need exactly two PT_LOAD segments: one for text
4364 and one for data. */
4365 segs = 2;
4366
4367 s = bfd_get_section_by_name (abfd, ".interp");
4368 if (s != NULL && (s->flags & SEC_LOAD) != 0)
4369 {
4370 /* If we have a loadable interpreter section, we need a
4371 PT_INTERP segment. In this case, assume we also need a
4372 PT_PHDR segment, although that may not be true for all
4373 targets. */
4374 segs += 2;
4375 }
4376
4377 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
4378 {
4379 /* We need a PT_DYNAMIC segment. */
4380 ++segs;
4381 }
4382
4383 if (elf_tdata (abfd)->eh_frame_hdr)
4384 {
4385 /* We need a PT_GNU_EH_FRAME segment. */
4386 ++segs;
4387 }
4388
4389 if (elf_tdata (abfd)->stack_flags)
4390 {
4391 /* We need a PT_GNU_STACK segment. */
4392 ++segs;
4393 }
4394
4395 if (elf_tdata (abfd)->relro)
4396 {
4397 /* We need a PT_GNU_RELRO segment. */
4398 ++segs;
4399 }
4400
4401 for (s = abfd->sections; s != NULL; s = s->next)
4402 {
4403 if ((s->flags & SEC_LOAD) != 0
4404 && strncmp (s->name, ".note", 5) == 0)
4405 {
4406 /* We need a PT_NOTE segment. */
4407 ++segs;
4408 }
4409 }
4410
4411 for (s = abfd->sections; s != NULL; s = s->next)
4412 {
4413 if (s->flags & SEC_THREAD_LOCAL)
4414 {
4415 /* We need a PT_TLS segment. */
4416 ++segs;
4417 break;
4418 }
4419 }
4420
4421 /* Let the backend count up any program headers it might need. */
4422 if (bed->elf_backend_additional_program_headers)
4423 {
4424 int a;
4425
4426 a = (*bed->elf_backend_additional_program_headers) (abfd);
4427 if (a == -1)
4428 abort ();
4429 segs += a;
4430 }
4431
4432 elf_tdata (abfd)->program_header_size = segs * bed->s->sizeof_phdr;
4433 return elf_tdata (abfd)->program_header_size;
4434 }
4435
4436 /* Work out the file positions of all the sections. This is called by
4437 _bfd_elf_compute_section_file_positions. All the section sizes and
4438 VMAs must be known before this is called.
4439
4440 Reloc sections come in two flavours: Those processed specially as
4441 "side-channel" data attached to a section to which they apply, and
4442 those that bfd doesn't process as relocations. The latter sort are
4443 stored in a normal bfd section by bfd_section_from_shdr. We don't
4444 consider the former sort here, unless they form part of the loadable
4445 image. Reloc sections not assigned here will be handled later by
4446 assign_file_positions_for_relocs.
4447
4448 We also don't set the positions of the .symtab and .strtab here. */
4449
4450 static bfd_boolean
4451 assign_file_positions_except_relocs (bfd *abfd,
4452 struct bfd_link_info *link_info)
4453 {
4454 struct elf_obj_tdata * const tdata = elf_tdata (abfd);
4455 Elf_Internal_Ehdr * const i_ehdrp = elf_elfheader (abfd);
4456 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
4457 unsigned int num_sec = elf_numsections (abfd);
4458 file_ptr off;
4459 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4460
4461 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
4462 && bfd_get_format (abfd) != bfd_core)
4463 {
4464 Elf_Internal_Shdr **hdrpp;
4465 unsigned int i;
4466
4467 /* Start after the ELF header. */
4468 off = i_ehdrp->e_ehsize;
4469
4470 /* We are not creating an executable, which means that we are
4471 not creating a program header, and that the actual order of
4472 the sections in the file is unimportant. */
4473 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
4474 {
4475 Elf_Internal_Shdr *hdr;
4476
4477 hdr = *hdrpp;
4478 if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
4479 && hdr->bfd_section == NULL)
4480 || i == tdata->symtab_section
4481 || i == tdata->symtab_shndx_section
4482 || i == tdata->strtab_section)
4483 {
4484 hdr->sh_offset = -1;
4485 }
4486 else
4487 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4488
4489 if (i == SHN_LORESERVE - 1)
4490 {
4491 i += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4492 hdrpp += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4493 }
4494 }
4495 }
4496 else
4497 {
4498 unsigned int i;
4499 Elf_Internal_Shdr **hdrpp;
4500
4501 /* Assign file positions for the loaded sections based on the
4502 assignment of sections to segments. */
4503 if (! assign_file_positions_for_segments (abfd, link_info))
4504 return FALSE;
4505
4506 /* Assign file positions for the other sections. */
4507
4508 off = elf_tdata (abfd)->next_file_pos;
4509 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
4510 {
4511 Elf_Internal_Shdr *hdr;
4512
4513 hdr = *hdrpp;
4514 if (hdr->bfd_section != NULL
4515 && hdr->bfd_section->filepos != 0)
4516 hdr->sh_offset = hdr->bfd_section->filepos;
4517 else if ((hdr->sh_flags & SHF_ALLOC) != 0)
4518 {
4519 ((*_bfd_error_handler)
4520 (_("%s: warning: allocated section `%s' not in segment"),
4521 bfd_get_filename (abfd),
4522 (hdr->bfd_section == NULL
4523 ? "*unknown*"
4524 : hdr->bfd_section->name)));
4525 if ((abfd->flags & D_PAGED) != 0)
4526 off += vma_page_aligned_bias (hdr->sh_addr, off,
4527 bed->maxpagesize);
4528 else
4529 off += vma_page_aligned_bias (hdr->sh_addr, off,
4530 hdr->sh_addralign);
4531 off = _bfd_elf_assign_file_position_for_section (hdr, off,
4532 FALSE);
4533 }
4534 else if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
4535 && hdr->bfd_section == NULL)
4536 || hdr == i_shdrpp[tdata->symtab_section]
4537 || hdr == i_shdrpp[tdata->symtab_shndx_section]
4538 || hdr == i_shdrpp[tdata->strtab_section])
4539 hdr->sh_offset = -1;
4540 else
4541 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4542
4543 if (i == SHN_LORESERVE - 1)
4544 {
4545 i += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4546 hdrpp += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4547 }
4548 }
4549 }
4550
4551 /* Place the section headers. */
4552 off = align_file_position (off, 1 << bed->s->log_file_align);
4553 i_ehdrp->e_shoff = off;
4554 off += i_ehdrp->e_shnum * i_ehdrp->e_shentsize;
4555
4556 elf_tdata (abfd)->next_file_pos = off;
4557
4558 return TRUE;
4559 }
4560
4561 static bfd_boolean
4562 prep_headers (bfd *abfd)
4563 {
4564 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
4565 Elf_Internal_Phdr *i_phdrp = 0; /* Program header table, internal form */
4566 Elf_Internal_Shdr **i_shdrp; /* Section header table, internal form */
4567 struct elf_strtab_hash *shstrtab;
4568 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4569
4570 i_ehdrp = elf_elfheader (abfd);
4571 i_shdrp = elf_elfsections (abfd);
4572
4573 shstrtab = _bfd_elf_strtab_init ();
4574 if (shstrtab == NULL)
4575 return FALSE;
4576
4577 elf_shstrtab (abfd) = shstrtab;
4578
4579 i_ehdrp->e_ident[EI_MAG0] = ELFMAG0;
4580 i_ehdrp->e_ident[EI_MAG1] = ELFMAG1;
4581 i_ehdrp->e_ident[EI_MAG2] = ELFMAG2;
4582 i_ehdrp->e_ident[EI_MAG3] = ELFMAG3;
4583
4584 i_ehdrp->e_ident[EI_CLASS] = bed->s->elfclass;
4585 i_ehdrp->e_ident[EI_DATA] =
4586 bfd_big_endian (abfd) ? ELFDATA2MSB : ELFDATA2LSB;
4587 i_ehdrp->e_ident[EI_VERSION] = bed->s->ev_current;
4588
4589 if ((abfd->flags & DYNAMIC) != 0)
4590 i_ehdrp->e_type = ET_DYN;
4591 else if ((abfd->flags & EXEC_P) != 0)
4592 i_ehdrp->e_type = ET_EXEC;
4593 else if (bfd_get_format (abfd) == bfd_core)
4594 i_ehdrp->e_type = ET_CORE;
4595 else
4596 i_ehdrp->e_type = ET_REL;
4597
4598 switch (bfd_get_arch (abfd))
4599 {
4600 case bfd_arch_unknown:
4601 i_ehdrp->e_machine = EM_NONE;
4602 break;
4603
4604 /* There used to be a long list of cases here, each one setting
4605 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
4606 in the corresponding bfd definition. To avoid duplication,
4607 the switch was removed. Machines that need special handling
4608 can generally do it in elf_backend_final_write_processing(),
4609 unless they need the information earlier than the final write.
4610 Such need can generally be supplied by replacing the tests for
4611 e_machine with the conditions used to determine it. */
4612 default:
4613 i_ehdrp->e_machine = bed->elf_machine_code;
4614 }
4615
4616 i_ehdrp->e_version = bed->s->ev_current;
4617 i_ehdrp->e_ehsize = bed->s->sizeof_ehdr;
4618
4619 /* No program header, for now. */
4620 i_ehdrp->e_phoff = 0;
4621 i_ehdrp->e_phentsize = 0;
4622 i_ehdrp->e_phnum = 0;
4623
4624 /* Each bfd section is section header entry. */
4625 i_ehdrp->e_entry = bfd_get_start_address (abfd);
4626 i_ehdrp->e_shentsize = bed->s->sizeof_shdr;
4627
4628 /* If we're building an executable, we'll need a program header table. */
4629 if (abfd->flags & EXEC_P)
4630 {
4631 /* It all happens later. */
4632 #if 0
4633 i_ehdrp->e_phentsize = sizeof (Elf_External_Phdr);
4634
4635 /* elf_build_phdrs() returns a (NULL-terminated) array of
4636 Elf_Internal_Phdrs. */
4637 i_phdrp = elf_build_phdrs (abfd, i_ehdrp, i_shdrp, &i_ehdrp->e_phnum);
4638 i_ehdrp->e_phoff = outbase;
4639 outbase += i_ehdrp->e_phentsize * i_ehdrp->e_phnum;
4640 #endif
4641 }
4642 else
4643 {
4644 i_ehdrp->e_phentsize = 0;
4645 i_phdrp = 0;
4646 i_ehdrp->e_phoff = 0;
4647 }
4648
4649 elf_tdata (abfd)->symtab_hdr.sh_name =
4650 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".symtab", FALSE);
4651 elf_tdata (abfd)->strtab_hdr.sh_name =
4652 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".strtab", FALSE);
4653 elf_tdata (abfd)->shstrtab_hdr.sh_name =
4654 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".shstrtab", FALSE);
4655 if (elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
4656 || elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
4657 || elf_tdata (abfd)->shstrtab_hdr.sh_name == (unsigned int) -1)
4658 return FALSE;
4659
4660 return TRUE;
4661 }
4662
4663 /* Assign file positions for all the reloc sections which are not part
4664 of the loadable file image. */
4665
4666 void
4667 _bfd_elf_assign_file_positions_for_relocs (bfd *abfd)
4668 {
4669 file_ptr off;
4670 unsigned int i, num_sec;
4671 Elf_Internal_Shdr **shdrpp;
4672
4673 off = elf_tdata (abfd)->next_file_pos;
4674
4675 num_sec = elf_numsections (abfd);
4676 for (i = 1, shdrpp = elf_elfsections (abfd) + 1; i < num_sec; i++, shdrpp++)
4677 {
4678 Elf_Internal_Shdr *shdrp;
4679
4680 shdrp = *shdrpp;
4681 if ((shdrp->sh_type == SHT_REL || shdrp->sh_type == SHT_RELA)
4682 && shdrp->sh_offset == -1)
4683 off = _bfd_elf_assign_file_position_for_section (shdrp, off, TRUE);
4684 }
4685
4686 elf_tdata (abfd)->next_file_pos = off;
4687 }
4688
4689 bfd_boolean
4690 _bfd_elf_write_object_contents (bfd *abfd)
4691 {
4692 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4693 Elf_Internal_Ehdr *i_ehdrp;
4694 Elf_Internal_Shdr **i_shdrp;
4695 bfd_boolean failed;
4696 unsigned int count, num_sec;
4697
4698 if (! abfd->output_has_begun
4699 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
4700 return FALSE;
4701
4702 i_shdrp = elf_elfsections (abfd);
4703 i_ehdrp = elf_elfheader (abfd);
4704
4705 failed = FALSE;
4706 bfd_map_over_sections (abfd, bed->s->write_relocs, &failed);
4707 if (failed)
4708 return FALSE;
4709
4710 _bfd_elf_assign_file_positions_for_relocs (abfd);
4711
4712 /* After writing the headers, we need to write the sections too... */
4713 num_sec = elf_numsections (abfd);
4714 for (count = 1; count < num_sec; count++)
4715 {
4716 if (bed->elf_backend_section_processing)
4717 (*bed->elf_backend_section_processing) (abfd, i_shdrp[count]);
4718 if (i_shdrp[count]->contents)
4719 {
4720 bfd_size_type amt = i_shdrp[count]->sh_size;
4721
4722 if (bfd_seek (abfd, i_shdrp[count]->sh_offset, SEEK_SET) != 0
4723 || bfd_bwrite (i_shdrp[count]->contents, amt, abfd) != amt)
4724 return FALSE;
4725 }
4726 if (count == SHN_LORESERVE - 1)
4727 count += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4728 }
4729
4730 /* Write out the section header names. */
4731 if (bfd_seek (abfd, elf_tdata (abfd)->shstrtab_hdr.sh_offset, SEEK_SET) != 0
4732 || ! _bfd_elf_strtab_emit (abfd, elf_shstrtab (abfd)))
4733 return FALSE;
4734
4735 if (bed->elf_backend_final_write_processing)
4736 (*bed->elf_backend_final_write_processing) (abfd,
4737 elf_tdata (abfd)->linker);
4738
4739 return bed->s->write_shdrs_and_ehdr (abfd);
4740 }
4741
4742 bfd_boolean
4743 _bfd_elf_write_corefile_contents (bfd *abfd)
4744 {
4745 /* Hopefully this can be done just like an object file. */
4746 return _bfd_elf_write_object_contents (abfd);
4747 }
4748
4749 /* Given a section, search the header to find them. */
4750
4751 int
4752 _bfd_elf_section_from_bfd_section (bfd *abfd, struct bfd_section *asect)
4753 {
4754 const struct elf_backend_data *bed;
4755 int index;
4756
4757 if (elf_section_data (asect) != NULL
4758 && elf_section_data (asect)->this_idx != 0)
4759 return elf_section_data (asect)->this_idx;
4760
4761 if (bfd_is_abs_section (asect))
4762 index = SHN_ABS;
4763 else if (bfd_is_com_section (asect))
4764 index = SHN_COMMON;
4765 else if (bfd_is_und_section (asect))
4766 index = SHN_UNDEF;
4767 else
4768 {
4769 Elf_Internal_Shdr **i_shdrp = elf_elfsections (abfd);
4770 int maxindex = elf_numsections (abfd);
4771
4772 for (index = 1; index < maxindex; index++)
4773 {
4774 Elf_Internal_Shdr *hdr = i_shdrp[index];
4775
4776 if (hdr != NULL && hdr->bfd_section == asect)
4777 return index;
4778 }
4779 index = -1;
4780 }
4781
4782 bed = get_elf_backend_data (abfd);
4783 if (bed->elf_backend_section_from_bfd_section)
4784 {
4785 int retval = index;
4786
4787 if ((*bed->elf_backend_section_from_bfd_section) (abfd, asect, &retval))
4788 return retval;
4789 }
4790
4791 if (index == -1)
4792 bfd_set_error (bfd_error_nonrepresentable_section);
4793
4794 return index;
4795 }
4796
4797 /* Given a BFD symbol, return the index in the ELF symbol table, or -1
4798 on error. */
4799
4800 int
4801 _bfd_elf_symbol_from_bfd_symbol (bfd *abfd, asymbol **asym_ptr_ptr)
4802 {
4803 asymbol *asym_ptr = *asym_ptr_ptr;
4804 int idx;
4805 flagword flags = asym_ptr->flags;
4806
4807 /* When gas creates relocations against local labels, it creates its
4808 own symbol for the section, but does put the symbol into the
4809 symbol chain, so udata is 0. When the linker is generating
4810 relocatable output, this section symbol may be for one of the
4811 input sections rather than the output section. */
4812 if (asym_ptr->udata.i == 0
4813 && (flags & BSF_SECTION_SYM)
4814 && asym_ptr->section)
4815 {
4816 int indx;
4817
4818 if (asym_ptr->section->output_section != NULL)
4819 indx = asym_ptr->section->output_section->index;
4820 else
4821 indx = asym_ptr->section->index;
4822 if (indx < elf_num_section_syms (abfd)
4823 && elf_section_syms (abfd)[indx] != NULL)
4824 asym_ptr->udata.i = elf_section_syms (abfd)[indx]->udata.i;
4825 }
4826
4827 idx = asym_ptr->udata.i;
4828
4829 if (idx == 0)
4830 {
4831 /* This case can occur when using --strip-symbol on a symbol
4832 which is used in a relocation entry. */
4833 (*_bfd_error_handler)
4834 (_("%B: symbol `%s' required but not present"),
4835 abfd, bfd_asymbol_name (asym_ptr));
4836 bfd_set_error (bfd_error_no_symbols);
4837 return -1;
4838 }
4839
4840 #if DEBUG & 4
4841 {
4842 fprintf (stderr,
4843 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8lx%s\n",
4844 (long) asym_ptr, asym_ptr->name, idx, flags,
4845 elf_symbol_flags (flags));
4846 fflush (stderr);
4847 }
4848 #endif
4849
4850 return idx;
4851 }
4852
4853 /* Copy private BFD data. This copies any program header information. */
4854
4855 static bfd_boolean
4856 copy_private_bfd_data (bfd *ibfd, bfd *obfd)
4857 {
4858 Elf_Internal_Ehdr *iehdr;
4859 struct elf_segment_map *map;
4860 struct elf_segment_map *map_first;
4861 struct elf_segment_map **pointer_to_map;
4862 Elf_Internal_Phdr *segment;
4863 asection *section;
4864 unsigned int i;
4865 unsigned int num_segments;
4866 bfd_boolean phdr_included = FALSE;
4867 bfd_vma maxpagesize;
4868 struct elf_segment_map *phdr_adjust_seg = NULL;
4869 unsigned int phdr_adjust_num = 0;
4870 const struct elf_backend_data *bed;
4871
4872 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
4873 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
4874 return TRUE;
4875
4876 if (elf_tdata (ibfd)->phdr == NULL)
4877 return TRUE;
4878
4879 bed = get_elf_backend_data (ibfd);
4880 iehdr = elf_elfheader (ibfd);
4881
4882 map_first = NULL;
4883 pointer_to_map = &map_first;
4884
4885 num_segments = elf_elfheader (ibfd)->e_phnum;
4886 maxpagesize = get_elf_backend_data (obfd)->maxpagesize;
4887
4888 /* Returns the end address of the segment + 1. */
4889 #define SEGMENT_END(segment, start) \
4890 (start + (segment->p_memsz > segment->p_filesz \
4891 ? segment->p_memsz : segment->p_filesz))
4892
4893 #define SECTION_SIZE(section, segment) \
4894 (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL)) \
4895 != SEC_THREAD_LOCAL || segment->p_type == PT_TLS) \
4896 ? section->size : 0)
4897
4898 /* Returns TRUE if the given section is contained within
4899 the given segment. VMA addresses are compared. */
4900 #define IS_CONTAINED_BY_VMA(section, segment) \
4901 (section->vma >= segment->p_vaddr \
4902 && (section->vma + SECTION_SIZE (section, segment) \
4903 <= (SEGMENT_END (segment, segment->p_vaddr))))
4904
4905 /* Returns TRUE if the given section is contained within
4906 the given segment. LMA addresses are compared. */
4907 #define IS_CONTAINED_BY_LMA(section, segment, base) \
4908 (section->lma >= base \
4909 && (section->lma + SECTION_SIZE (section, segment) \
4910 <= SEGMENT_END (segment, base)))
4911
4912 /* Special case: corefile "NOTE" section containing regs, prpsinfo etc. */
4913 #define IS_COREFILE_NOTE(p, s) \
4914 (p->p_type == PT_NOTE \
4915 && bfd_get_format (ibfd) == bfd_core \
4916 && s->vma == 0 && s->lma == 0 \
4917 && (bfd_vma) s->filepos >= p->p_offset \
4918 && ((bfd_vma) s->filepos + s->size \
4919 <= p->p_offset + p->p_filesz))
4920
4921 /* The complicated case when p_vaddr is 0 is to handle the Solaris
4922 linker, which generates a PT_INTERP section with p_vaddr and
4923 p_memsz set to 0. */
4924 #define IS_SOLARIS_PT_INTERP(p, s) \
4925 (p->p_vaddr == 0 \
4926 && p->p_paddr == 0 \
4927 && p->p_memsz == 0 \
4928 && p->p_filesz > 0 \
4929 && (s->flags & SEC_HAS_CONTENTS) != 0 \
4930 && s->size > 0 \
4931 && (bfd_vma) s->filepos >= p->p_offset \
4932 && ((bfd_vma) s->filepos + s->size \
4933 <= p->p_offset + p->p_filesz))
4934
4935 /* Decide if the given section should be included in the given segment.
4936 A section will be included if:
4937 1. It is within the address space of the segment -- we use the LMA
4938 if that is set for the segment and the VMA otherwise,
4939 2. It is an allocated segment,
4940 3. There is an output section associated with it,
4941 4. The section has not already been allocated to a previous segment.
4942 5. PT_GNU_STACK segments do not include any sections.
4943 6. PT_TLS segment includes only SHF_TLS sections.
4944 7. SHF_TLS sections are only in PT_TLS or PT_LOAD segments. */
4945 #define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed) \
4946 ((((segment->p_paddr \
4947 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr) \
4948 : IS_CONTAINED_BY_VMA (section, segment)) \
4949 && (section->flags & SEC_ALLOC) != 0) \
4950 || IS_COREFILE_NOTE (segment, section)) \
4951 && section->output_section != NULL \
4952 && segment->p_type != PT_GNU_STACK \
4953 && (segment->p_type != PT_TLS \
4954 || (section->flags & SEC_THREAD_LOCAL)) \
4955 && (segment->p_type == PT_LOAD \
4956 || segment->p_type == PT_TLS \
4957 || (section->flags & SEC_THREAD_LOCAL) == 0) \
4958 && ! section->segment_mark)
4959
4960 /* Returns TRUE iff seg1 starts after the end of seg2. */
4961 #define SEGMENT_AFTER_SEGMENT(seg1, seg2, field) \
4962 (seg1->field >= SEGMENT_END (seg2, seg2->field))
4963
4964 /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both
4965 their VMA address ranges and their LMA address ranges overlap.
4966 It is possible to have overlapping VMA ranges without overlapping LMA
4967 ranges. RedBoot images for example can have both .data and .bss mapped
4968 to the same VMA range, but with the .data section mapped to a different
4969 LMA. */
4970 #define SEGMENT_OVERLAPS(seg1, seg2) \
4971 ( !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr) \
4972 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr)) \
4973 && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr) \
4974 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr)))
4975
4976 /* Initialise the segment mark field. */
4977 for (section = ibfd->sections; section != NULL; section = section->next)
4978 section->segment_mark = FALSE;
4979
4980 /* Scan through the segments specified in the program header
4981 of the input BFD. For this first scan we look for overlaps
4982 in the loadable segments. These can be created by weird
4983 parameters to objcopy. Also, fix some solaris weirdness. */
4984 for (i = 0, segment = elf_tdata (ibfd)->phdr;
4985 i < num_segments;
4986 i++, segment++)
4987 {
4988 unsigned int j;
4989 Elf_Internal_Phdr *segment2;
4990
4991 if (segment->p_type == PT_INTERP)
4992 for (section = ibfd->sections; section; section = section->next)
4993 if (IS_SOLARIS_PT_INTERP (segment, section))
4994 {
4995 /* Mininal change so that the normal section to segment
4996 assignment code will work. */
4997 segment->p_vaddr = section->vma;
4998 break;
4999 }
5000
5001 if (segment->p_type != PT_LOAD)
5002 continue;
5003
5004 /* Determine if this segment overlaps any previous segments. */
5005 for (j = 0, segment2 = elf_tdata (ibfd)->phdr; j < i; j++, segment2 ++)
5006 {
5007 bfd_signed_vma extra_length;
5008
5009 if (segment2->p_type != PT_LOAD
5010 || ! SEGMENT_OVERLAPS (segment, segment2))
5011 continue;
5012
5013 /* Merge the two segments together. */
5014 if (segment2->p_vaddr < segment->p_vaddr)
5015 {
5016 /* Extend SEGMENT2 to include SEGMENT and then delete
5017 SEGMENT. */
5018 extra_length =
5019 SEGMENT_END (segment, segment->p_vaddr)
5020 - SEGMENT_END (segment2, segment2->p_vaddr);
5021
5022 if (extra_length > 0)
5023 {
5024 segment2->p_memsz += extra_length;
5025 segment2->p_filesz += extra_length;
5026 }
5027
5028 segment->p_type = PT_NULL;
5029
5030 /* Since we have deleted P we must restart the outer loop. */
5031 i = 0;
5032 segment = elf_tdata (ibfd)->phdr;
5033 break;
5034 }
5035 else
5036 {
5037 /* Extend SEGMENT to include SEGMENT2 and then delete
5038 SEGMENT2. */
5039 extra_length =
5040 SEGMENT_END (segment2, segment2->p_vaddr)
5041 - SEGMENT_END (segment, segment->p_vaddr);
5042
5043 if (extra_length > 0)
5044 {
5045 segment->p_memsz += extra_length;
5046 segment->p_filesz += extra_length;
5047 }
5048
5049 segment2->p_type = PT_NULL;
5050 }
5051 }
5052 }
5053
5054 /* The second scan attempts to assign sections to segments. */
5055 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5056 i < num_segments;
5057 i ++, segment ++)
5058 {
5059 unsigned int section_count;
5060 asection ** sections;
5061 asection * output_section;
5062 unsigned int isec;
5063 bfd_vma matching_lma;
5064 bfd_vma suggested_lma;
5065 unsigned int j;
5066 bfd_size_type amt;
5067
5068 if (segment->p_type == PT_NULL)
5069 continue;
5070
5071 /* Compute how many sections might be placed into this segment. */
5072 for (section = ibfd->sections, section_count = 0;
5073 section != NULL;
5074 section = section->next)
5075 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
5076 ++section_count;
5077
5078 /* Allocate a segment map big enough to contain
5079 all of the sections we have selected. */
5080 amt = sizeof (struct elf_segment_map);
5081 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5082 map = bfd_alloc (obfd, amt);
5083 if (map == NULL)
5084 return FALSE;
5085
5086 /* Initialise the fields of the segment map. Default to
5087 using the physical address of the segment in the input BFD. */
5088 map->next = NULL;
5089 map->p_type = segment->p_type;
5090 map->p_flags = segment->p_flags;
5091 map->p_flags_valid = 1;
5092 map->p_paddr = segment->p_paddr;
5093 map->p_paddr_valid = 1;
5094
5095 /* Determine if this segment contains the ELF file header
5096 and if it contains the program headers themselves. */
5097 map->includes_filehdr = (segment->p_offset == 0
5098 && segment->p_filesz >= iehdr->e_ehsize);
5099
5100 map->includes_phdrs = 0;
5101
5102 if (! phdr_included || segment->p_type != PT_LOAD)
5103 {
5104 map->includes_phdrs =
5105 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
5106 && (segment->p_offset + segment->p_filesz
5107 >= ((bfd_vma) iehdr->e_phoff
5108 + iehdr->e_phnum * iehdr->e_phentsize)));
5109
5110 if (segment->p_type == PT_LOAD && map->includes_phdrs)
5111 phdr_included = TRUE;
5112 }
5113
5114 if (section_count == 0)
5115 {
5116 /* Special segments, such as the PT_PHDR segment, may contain
5117 no sections, but ordinary, loadable segments should contain
5118 something. They are allowed by the ELF spec however, so only
5119 a warning is produced. */
5120 if (segment->p_type == PT_LOAD)
5121 (*_bfd_error_handler)
5122 (_("%B: warning: Empty loadable segment detected, is this intentional ?\n"),
5123 ibfd);
5124
5125 map->count = 0;
5126 *pointer_to_map = map;
5127 pointer_to_map = &map->next;
5128
5129 continue;
5130 }
5131
5132 /* Now scan the sections in the input BFD again and attempt
5133 to add their corresponding output sections to the segment map.
5134 The problem here is how to handle an output section which has
5135 been moved (ie had its LMA changed). There are four possibilities:
5136
5137 1. None of the sections have been moved.
5138 In this case we can continue to use the segment LMA from the
5139 input BFD.
5140
5141 2. All of the sections have been moved by the same amount.
5142 In this case we can change the segment's LMA to match the LMA
5143 of the first section.
5144
5145 3. Some of the sections have been moved, others have not.
5146 In this case those sections which have not been moved can be
5147 placed in the current segment which will have to have its size,
5148 and possibly its LMA changed, and a new segment or segments will
5149 have to be created to contain the other sections.
5150
5151 4. The sections have been moved, but not by the same amount.
5152 In this case we can change the segment's LMA to match the LMA
5153 of the first section and we will have to create a new segment
5154 or segments to contain the other sections.
5155
5156 In order to save time, we allocate an array to hold the section
5157 pointers that we are interested in. As these sections get assigned
5158 to a segment, they are removed from this array. */
5159
5160 /* Gcc 2.96 miscompiles this code on mips. Don't do casting here
5161 to work around this long long bug. */
5162 amt = section_count * sizeof (asection *);
5163 sections = bfd_malloc (amt);
5164 if (sections == NULL)
5165 return FALSE;
5166
5167 /* Step One: Scan for segment vs section LMA conflicts.
5168 Also add the sections to the section array allocated above.
5169 Also add the sections to the current segment. In the common
5170 case, where the sections have not been moved, this means that
5171 we have completely filled the segment, and there is nothing
5172 more to do. */
5173 isec = 0;
5174 matching_lma = 0;
5175 suggested_lma = 0;
5176
5177 for (j = 0, section = ibfd->sections;
5178 section != NULL;
5179 section = section->next)
5180 {
5181 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
5182 {
5183 output_section = section->output_section;
5184
5185 sections[j ++] = section;
5186
5187 /* The Solaris native linker always sets p_paddr to 0.
5188 We try to catch that case here, and set it to the
5189 correct value. Note - some backends require that
5190 p_paddr be left as zero. */
5191 if (segment->p_paddr == 0
5192 && segment->p_vaddr != 0
5193 && (! bed->want_p_paddr_set_to_zero)
5194 && isec == 0
5195 && output_section->lma != 0
5196 && (output_section->vma == (segment->p_vaddr
5197 + (map->includes_filehdr
5198 ? iehdr->e_ehsize
5199 : 0)
5200 + (map->includes_phdrs
5201 ? (iehdr->e_phnum
5202 * iehdr->e_phentsize)
5203 : 0))))
5204 map->p_paddr = segment->p_vaddr;
5205
5206 /* Match up the physical address of the segment with the
5207 LMA address of the output section. */
5208 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
5209 || IS_COREFILE_NOTE (segment, section)
5210 || (bed->want_p_paddr_set_to_zero &&
5211 IS_CONTAINED_BY_VMA (output_section, segment))
5212 )
5213 {
5214 if (matching_lma == 0)
5215 matching_lma = output_section->lma;
5216
5217 /* We assume that if the section fits within the segment
5218 then it does not overlap any other section within that
5219 segment. */
5220 map->sections[isec ++] = output_section;
5221 }
5222 else if (suggested_lma == 0)
5223 suggested_lma = output_section->lma;
5224 }
5225 }
5226
5227 BFD_ASSERT (j == section_count);
5228
5229 /* Step Two: Adjust the physical address of the current segment,
5230 if necessary. */
5231 if (isec == section_count)
5232 {
5233 /* All of the sections fitted within the segment as currently
5234 specified. This is the default case. Add the segment to
5235 the list of built segments and carry on to process the next
5236 program header in the input BFD. */
5237 map->count = section_count;
5238 *pointer_to_map = map;
5239 pointer_to_map = &map->next;
5240
5241 free (sections);
5242 continue;
5243 }
5244 else
5245 {
5246 if (matching_lma != 0)
5247 {
5248 /* At least one section fits inside the current segment.
5249 Keep it, but modify its physical address to match the
5250 LMA of the first section that fitted. */
5251 map->p_paddr = matching_lma;
5252 }
5253 else
5254 {
5255 /* None of the sections fitted inside the current segment.
5256 Change the current segment's physical address to match
5257 the LMA of the first section. */
5258 map->p_paddr = suggested_lma;
5259 }
5260
5261 /* Offset the segment physical address from the lma
5262 to allow for space taken up by elf headers. */
5263 if (map->includes_filehdr)
5264 map->p_paddr -= iehdr->e_ehsize;
5265
5266 if (map->includes_phdrs)
5267 {
5268 map->p_paddr -= iehdr->e_phnum * iehdr->e_phentsize;
5269
5270 /* iehdr->e_phnum is just an estimate of the number
5271 of program headers that we will need. Make a note
5272 here of the number we used and the segment we chose
5273 to hold these headers, so that we can adjust the
5274 offset when we know the correct value. */
5275 phdr_adjust_num = iehdr->e_phnum;
5276 phdr_adjust_seg = map;
5277 }
5278 }
5279
5280 /* Step Three: Loop over the sections again, this time assigning
5281 those that fit to the current segment and removing them from the
5282 sections array; but making sure not to leave large gaps. Once all
5283 possible sections have been assigned to the current segment it is
5284 added to the list of built segments and if sections still remain
5285 to be assigned, a new segment is constructed before repeating
5286 the loop. */
5287 isec = 0;
5288 do
5289 {
5290 map->count = 0;
5291 suggested_lma = 0;
5292
5293 /* Fill the current segment with sections that fit. */
5294 for (j = 0; j < section_count; j++)
5295 {
5296 section = sections[j];
5297
5298 if (section == NULL)
5299 continue;
5300
5301 output_section = section->output_section;
5302
5303 BFD_ASSERT (output_section != NULL);
5304
5305 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
5306 || IS_COREFILE_NOTE (segment, section))
5307 {
5308 if (map->count == 0)
5309 {
5310 /* If the first section in a segment does not start at
5311 the beginning of the segment, then something is
5312 wrong. */
5313 if (output_section->lma !=
5314 (map->p_paddr
5315 + (map->includes_filehdr ? iehdr->e_ehsize : 0)
5316 + (map->includes_phdrs
5317 ? iehdr->e_phnum * iehdr->e_phentsize
5318 : 0)))
5319 abort ();
5320 }
5321 else
5322 {
5323 asection * prev_sec;
5324
5325 prev_sec = map->sections[map->count - 1];
5326
5327 /* If the gap between the end of the previous section
5328 and the start of this section is more than
5329 maxpagesize then we need to start a new segment. */
5330 if ((BFD_ALIGN (prev_sec->lma + prev_sec->size,
5331 maxpagesize)
5332 < BFD_ALIGN (output_section->lma, maxpagesize))
5333 || ((prev_sec->lma + prev_sec->size)
5334 > output_section->lma))
5335 {
5336 if (suggested_lma == 0)
5337 suggested_lma = output_section->lma;
5338
5339 continue;
5340 }
5341 }
5342
5343 map->sections[map->count++] = output_section;
5344 ++isec;
5345 sections[j] = NULL;
5346 section->segment_mark = TRUE;
5347 }
5348 else if (suggested_lma == 0)
5349 suggested_lma = output_section->lma;
5350 }
5351
5352 BFD_ASSERT (map->count > 0);
5353
5354 /* Add the current segment to the list of built segments. */
5355 *pointer_to_map = map;
5356 pointer_to_map = &map->next;
5357
5358 if (isec < section_count)
5359 {
5360 /* We still have not allocated all of the sections to
5361 segments. Create a new segment here, initialise it
5362 and carry on looping. */
5363 amt = sizeof (struct elf_segment_map);
5364 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5365 map = bfd_alloc (obfd, amt);
5366 if (map == NULL)
5367 {
5368 free (sections);
5369 return FALSE;
5370 }
5371
5372 /* Initialise the fields of the segment map. Set the physical
5373 physical address to the LMA of the first section that has
5374 not yet been assigned. */
5375 map->next = NULL;
5376 map->p_type = segment->p_type;
5377 map->p_flags = segment->p_flags;
5378 map->p_flags_valid = 1;
5379 map->p_paddr = suggested_lma;
5380 map->p_paddr_valid = 1;
5381 map->includes_filehdr = 0;
5382 map->includes_phdrs = 0;
5383 }
5384 }
5385 while (isec < section_count);
5386
5387 free (sections);
5388 }
5389
5390 /* The Solaris linker creates program headers in which all the
5391 p_paddr fields are zero. When we try to objcopy or strip such a
5392 file, we get confused. Check for this case, and if we find it
5393 reset the p_paddr_valid fields. */
5394 for (map = map_first; map != NULL; map = map->next)
5395 if (map->p_paddr != 0)
5396 break;
5397 if (map == NULL)
5398 for (map = map_first; map != NULL; map = map->next)
5399 map->p_paddr_valid = 0;
5400
5401 elf_tdata (obfd)->segment_map = map_first;
5402
5403 /* If we had to estimate the number of program headers that were
5404 going to be needed, then check our estimate now and adjust
5405 the offset if necessary. */
5406 if (phdr_adjust_seg != NULL)
5407 {
5408 unsigned int count;
5409
5410 for (count = 0, map = map_first; map != NULL; map = map->next)
5411 count++;
5412
5413 if (count > phdr_adjust_num)
5414 phdr_adjust_seg->p_paddr
5415 -= (count - phdr_adjust_num) * iehdr->e_phentsize;
5416 }
5417
5418 #if 0
5419 /* Final Step: Sort the segments into ascending order of physical
5420 address. */
5421 if (map_first != NULL)
5422 {
5423 struct elf_segment_map *prev;
5424
5425 prev = map_first;
5426 for (map = map_first->next; map != NULL; prev = map, map = map->next)
5427 {
5428 /* Yes I know - its a bubble sort.... */
5429 if (map->next != NULL && (map->next->p_paddr < map->p_paddr))
5430 {
5431 /* Swap map and map->next. */
5432 prev->next = map->next;
5433 map->next = map->next->next;
5434 prev->next->next = map;
5435
5436 /* Restart loop. */
5437 map = map_first;
5438 }
5439 }
5440 }
5441 #endif
5442
5443 #undef SEGMENT_END
5444 #undef SECTION_SIZE
5445 #undef IS_CONTAINED_BY_VMA
5446 #undef IS_CONTAINED_BY_LMA
5447 #undef IS_COREFILE_NOTE
5448 #undef IS_SOLARIS_PT_INTERP
5449 #undef INCLUDE_SECTION_IN_SEGMENT
5450 #undef SEGMENT_AFTER_SEGMENT
5451 #undef SEGMENT_OVERLAPS
5452 return TRUE;
5453 }
5454
5455 /* Copy private section information. This copies over the entsize
5456 field, and sometimes the info field. */
5457
5458 bfd_boolean
5459 _bfd_elf_copy_private_section_data (bfd *ibfd,
5460 asection *isec,
5461 bfd *obfd,
5462 asection *osec)
5463 {
5464 Elf_Internal_Shdr *ihdr, *ohdr;
5465
5466 if (ibfd->xvec->flavour != bfd_target_elf_flavour
5467 || obfd->xvec->flavour != bfd_target_elf_flavour)
5468 return TRUE;
5469
5470 ihdr = &elf_section_data (isec)->this_hdr;
5471 ohdr = &elf_section_data (osec)->this_hdr;
5472
5473 ohdr->sh_entsize = ihdr->sh_entsize;
5474
5475 if (ihdr->sh_type == SHT_SYMTAB
5476 || ihdr->sh_type == SHT_DYNSYM
5477 || ihdr->sh_type == SHT_GNU_verneed
5478 || ihdr->sh_type == SHT_GNU_verdef)
5479 ohdr->sh_info = ihdr->sh_info;
5480
5481 /* Set things up for objcopy. The output SHT_GROUP section will
5482 have its elf_next_in_group pointing back to the input group
5483 members. */
5484 elf_next_in_group (osec) = elf_next_in_group (isec);
5485 elf_group_name (osec) = elf_group_name (isec);
5486
5487 osec->use_rela_p = isec->use_rela_p;
5488
5489 return TRUE;
5490 }
5491
5492 /* Copy private header information. */
5493
5494 bfd_boolean
5495 _bfd_elf_copy_private_header_data (bfd *ibfd, bfd *obfd)
5496 {
5497 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
5498 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
5499 return TRUE;
5500
5501 /* Copy over private BFD data if it has not already been copied.
5502 This must be done here, rather than in the copy_private_bfd_data
5503 entry point, because the latter is called after the section
5504 contents have been set, which means that the program headers have
5505 already been worked out. */
5506 if (elf_tdata (obfd)->segment_map == NULL && elf_tdata (ibfd)->phdr != NULL)
5507 {
5508 if (! copy_private_bfd_data (ibfd, obfd))
5509 return FALSE;
5510 }
5511
5512 return TRUE;
5513 }
5514
5515 /* Copy private symbol information. If this symbol is in a section
5516 which we did not map into a BFD section, try to map the section
5517 index correctly. We use special macro definitions for the mapped
5518 section indices; these definitions are interpreted by the
5519 swap_out_syms function. */
5520
5521 #define MAP_ONESYMTAB (SHN_HIOS + 1)
5522 #define MAP_DYNSYMTAB (SHN_HIOS + 2)
5523 #define MAP_STRTAB (SHN_HIOS + 3)
5524 #define MAP_SHSTRTAB (SHN_HIOS + 4)
5525 #define MAP_SYM_SHNDX (SHN_HIOS + 5)
5526
5527 bfd_boolean
5528 _bfd_elf_copy_private_symbol_data (bfd *ibfd,
5529 asymbol *isymarg,
5530 bfd *obfd,
5531 asymbol *osymarg)
5532 {
5533 elf_symbol_type *isym, *osym;
5534
5535 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
5536 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
5537 return TRUE;
5538
5539 isym = elf_symbol_from (ibfd, isymarg);
5540 osym = elf_symbol_from (obfd, osymarg);
5541
5542 if (isym != NULL
5543 && osym != NULL
5544 && bfd_is_abs_section (isym->symbol.section))
5545 {
5546 unsigned int shndx;
5547
5548 shndx = isym->internal_elf_sym.st_shndx;
5549 if (shndx == elf_onesymtab (ibfd))
5550 shndx = MAP_ONESYMTAB;
5551 else if (shndx == elf_dynsymtab (ibfd))
5552 shndx = MAP_DYNSYMTAB;
5553 else if (shndx == elf_tdata (ibfd)->strtab_section)
5554 shndx = MAP_STRTAB;
5555 else if (shndx == elf_tdata (ibfd)->shstrtab_section)
5556 shndx = MAP_SHSTRTAB;
5557 else if (shndx == elf_tdata (ibfd)->symtab_shndx_section)
5558 shndx = MAP_SYM_SHNDX;
5559 osym->internal_elf_sym.st_shndx = shndx;
5560 }
5561
5562 return TRUE;
5563 }
5564
5565 /* Swap out the symbols. */
5566
5567 static bfd_boolean
5568 swap_out_syms (bfd *abfd,
5569 struct bfd_strtab_hash **sttp,
5570 int relocatable_p)
5571 {
5572 const struct elf_backend_data *bed;
5573 int symcount;
5574 asymbol **syms;
5575 struct bfd_strtab_hash *stt;
5576 Elf_Internal_Shdr *symtab_hdr;
5577 Elf_Internal_Shdr *symtab_shndx_hdr;
5578 Elf_Internal_Shdr *symstrtab_hdr;
5579 char *outbound_syms;
5580 char *outbound_shndx;
5581 int idx;
5582 bfd_size_type amt;
5583 bfd_boolean name_local_sections;
5584
5585 if (!elf_map_symbols (abfd))
5586 return FALSE;
5587
5588 /* Dump out the symtabs. */
5589 stt = _bfd_elf_stringtab_init ();
5590 if (stt == NULL)
5591 return FALSE;
5592
5593 bed = get_elf_backend_data (abfd);
5594 symcount = bfd_get_symcount (abfd);
5595 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
5596 symtab_hdr->sh_type = SHT_SYMTAB;
5597 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
5598 symtab_hdr->sh_size = symtab_hdr->sh_entsize * (symcount + 1);
5599 symtab_hdr->sh_info = elf_num_locals (abfd) + 1;
5600 symtab_hdr->sh_addralign = 1 << bed->s->log_file_align;
5601
5602 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
5603 symstrtab_hdr->sh_type = SHT_STRTAB;
5604
5605 amt = (bfd_size_type) (1 + symcount) * bed->s->sizeof_sym;
5606 outbound_syms = bfd_alloc (abfd, amt);
5607 if (outbound_syms == NULL)
5608 {
5609 _bfd_stringtab_free (stt);
5610 return FALSE;
5611 }
5612 symtab_hdr->contents = outbound_syms;
5613
5614 outbound_shndx = NULL;
5615 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
5616 if (symtab_shndx_hdr->sh_name != 0)
5617 {
5618 amt = (bfd_size_type) (1 + symcount) * sizeof (Elf_External_Sym_Shndx);
5619 outbound_shndx = bfd_zalloc (abfd, amt);
5620 if (outbound_shndx == NULL)
5621 {
5622 _bfd_stringtab_free (stt);
5623 return FALSE;
5624 }
5625
5626 symtab_shndx_hdr->contents = outbound_shndx;
5627 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
5628 symtab_shndx_hdr->sh_size = amt;
5629 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
5630 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
5631 }
5632
5633 /* Now generate the data (for "contents"). */
5634 {
5635 /* Fill in zeroth symbol and swap it out. */
5636 Elf_Internal_Sym sym;
5637 sym.st_name = 0;
5638 sym.st_value = 0;
5639 sym.st_size = 0;
5640 sym.st_info = 0;
5641 sym.st_other = 0;
5642 sym.st_shndx = SHN_UNDEF;
5643 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
5644 outbound_syms += bed->s->sizeof_sym;
5645 if (outbound_shndx != NULL)
5646 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
5647 }
5648
5649 name_local_sections
5650 = (bed->elf_backend_name_local_section_symbols
5651 && bed->elf_backend_name_local_section_symbols (abfd));
5652
5653 syms = bfd_get_outsymbols (abfd);
5654 for (idx = 0; idx < symcount; idx++)
5655 {
5656 Elf_Internal_Sym sym;
5657 bfd_vma value = syms[idx]->value;
5658 elf_symbol_type *type_ptr;
5659 flagword flags = syms[idx]->flags;
5660 int type;
5661
5662 if (!name_local_sections
5663 && (flags & (BSF_SECTION_SYM | BSF_GLOBAL)) == BSF_SECTION_SYM)
5664 {
5665 /* Local section symbols have no name. */
5666 sym.st_name = 0;
5667 }
5668 else
5669 {
5670 sym.st_name = (unsigned long) _bfd_stringtab_add (stt,
5671 syms[idx]->name,
5672 TRUE, FALSE);
5673 if (sym.st_name == (unsigned long) -1)
5674 {
5675 _bfd_stringtab_free (stt);
5676 return FALSE;
5677 }
5678 }
5679
5680 type_ptr = elf_symbol_from (abfd, syms[idx]);
5681
5682 if ((flags & BSF_SECTION_SYM) == 0
5683 && bfd_is_com_section (syms[idx]->section))
5684 {
5685 /* ELF common symbols put the alignment into the `value' field,
5686 and the size into the `size' field. This is backwards from
5687 how BFD handles it, so reverse it here. */
5688 sym.st_size = value;
5689 if (type_ptr == NULL
5690 || type_ptr->internal_elf_sym.st_value == 0)
5691 sym.st_value = value >= 16 ? 16 : (1 << bfd_log2 (value));
5692 else
5693 sym.st_value = type_ptr->internal_elf_sym.st_value;
5694 sym.st_shndx = _bfd_elf_section_from_bfd_section
5695 (abfd, syms[idx]->section);
5696 }
5697 else
5698 {
5699 asection *sec = syms[idx]->section;
5700 int shndx;
5701
5702 if (sec->output_section)
5703 {
5704 value += sec->output_offset;
5705 sec = sec->output_section;
5706 }
5707
5708 /* Don't add in the section vma for relocatable output. */
5709 if (! relocatable_p)
5710 value += sec->vma;
5711 sym.st_value = value;
5712 sym.st_size = type_ptr ? type_ptr->internal_elf_sym.st_size : 0;
5713
5714 if (bfd_is_abs_section (sec)
5715 && type_ptr != NULL
5716 && type_ptr->internal_elf_sym.st_shndx != 0)
5717 {
5718 /* This symbol is in a real ELF section which we did
5719 not create as a BFD section. Undo the mapping done
5720 by copy_private_symbol_data. */
5721 shndx = type_ptr->internal_elf_sym.st_shndx;
5722 switch (shndx)
5723 {
5724 case MAP_ONESYMTAB:
5725 shndx = elf_onesymtab (abfd);
5726 break;
5727 case MAP_DYNSYMTAB:
5728 shndx = elf_dynsymtab (abfd);
5729 break;
5730 case MAP_STRTAB:
5731 shndx = elf_tdata (abfd)->strtab_section;
5732 break;
5733 case MAP_SHSTRTAB:
5734 shndx = elf_tdata (abfd)->shstrtab_section;
5735 break;
5736 case MAP_SYM_SHNDX:
5737 shndx = elf_tdata (abfd)->symtab_shndx_section;
5738 break;
5739 default:
5740 break;
5741 }
5742 }
5743 else
5744 {
5745 shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
5746
5747 if (shndx == -1)
5748 {
5749 asection *sec2;
5750
5751 /* Writing this would be a hell of a lot easier if
5752 we had some decent documentation on bfd, and
5753 knew what to expect of the library, and what to
5754 demand of applications. For example, it
5755 appears that `objcopy' might not set the
5756 section of a symbol to be a section that is
5757 actually in the output file. */
5758 sec2 = bfd_get_section_by_name (abfd, sec->name);
5759 if (sec2 == NULL)
5760 {
5761 _bfd_error_handler (_("\
5762 Unable to find equivalent output section for symbol '%s' from section '%s'"),
5763 syms[idx]->name ? syms[idx]->name : "<Local sym>",
5764 sec->name);
5765 bfd_set_error (bfd_error_invalid_operation);
5766 _bfd_stringtab_free (stt);
5767 return FALSE;
5768 }
5769
5770 shndx = _bfd_elf_section_from_bfd_section (abfd, sec2);
5771 BFD_ASSERT (shndx != -1);
5772 }
5773 }
5774
5775 sym.st_shndx = shndx;
5776 }
5777
5778 if ((flags & BSF_THREAD_LOCAL) != 0)
5779 type = STT_TLS;
5780 else if ((flags & BSF_FUNCTION) != 0)
5781 type = STT_FUNC;
5782 else if ((flags & BSF_OBJECT) != 0)
5783 type = STT_OBJECT;
5784 else
5785 type = STT_NOTYPE;
5786
5787 if (syms[idx]->section->flags & SEC_THREAD_LOCAL)
5788 type = STT_TLS;
5789
5790 /* Processor-specific types. */
5791 if (type_ptr != NULL
5792 && bed->elf_backend_get_symbol_type)
5793 type = ((*bed->elf_backend_get_symbol_type)
5794 (&type_ptr->internal_elf_sym, type));
5795
5796 if (flags & BSF_SECTION_SYM)
5797 {
5798 if (flags & BSF_GLOBAL)
5799 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
5800 else
5801 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
5802 }
5803 else if (bfd_is_com_section (syms[idx]->section))
5804 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
5805 else if (bfd_is_und_section (syms[idx]->section))
5806 sym.st_info = ELF_ST_INFO (((flags & BSF_WEAK)
5807 ? STB_WEAK
5808 : STB_GLOBAL),
5809 type);
5810 else if (flags & BSF_FILE)
5811 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
5812 else
5813 {
5814 int bind = STB_LOCAL;
5815
5816 if (flags & BSF_LOCAL)
5817 bind = STB_LOCAL;
5818 else if (flags & BSF_WEAK)
5819 bind = STB_WEAK;
5820 else if (flags & BSF_GLOBAL)
5821 bind = STB_GLOBAL;
5822
5823 sym.st_info = ELF_ST_INFO (bind, type);
5824 }
5825
5826 if (type_ptr != NULL)
5827 sym.st_other = type_ptr->internal_elf_sym.st_other;
5828 else
5829 sym.st_other = 0;
5830
5831 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
5832 outbound_syms += bed->s->sizeof_sym;
5833 if (outbound_shndx != NULL)
5834 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
5835 }
5836
5837 *sttp = stt;
5838 symstrtab_hdr->sh_size = _bfd_stringtab_size (stt);
5839 symstrtab_hdr->sh_type = SHT_STRTAB;
5840
5841 symstrtab_hdr->sh_flags = 0;
5842 symstrtab_hdr->sh_addr = 0;
5843 symstrtab_hdr->sh_entsize = 0;
5844 symstrtab_hdr->sh_link = 0;
5845 symstrtab_hdr->sh_info = 0;
5846 symstrtab_hdr->sh_addralign = 1;
5847
5848 return TRUE;
5849 }
5850
5851 /* Return the number of bytes required to hold the symtab vector.
5852
5853 Note that we base it on the count plus 1, since we will null terminate
5854 the vector allocated based on this size. However, the ELF symbol table
5855 always has a dummy entry as symbol #0, so it ends up even. */
5856
5857 long
5858 _bfd_elf_get_symtab_upper_bound (bfd *abfd)
5859 {
5860 long symcount;
5861 long symtab_size;
5862 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->symtab_hdr;
5863
5864 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
5865 symtab_size = (symcount + 1) * (sizeof (asymbol *));
5866 if (symcount > 0)
5867 symtab_size -= sizeof (asymbol *);
5868
5869 return symtab_size;
5870 }
5871
5872 long
5873 _bfd_elf_get_dynamic_symtab_upper_bound (bfd *abfd)
5874 {
5875 long symcount;
5876 long symtab_size;
5877 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->dynsymtab_hdr;
5878
5879 if (elf_dynsymtab (abfd) == 0)
5880 {
5881 bfd_set_error (bfd_error_invalid_operation);
5882 return -1;
5883 }
5884
5885 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
5886 symtab_size = (symcount + 1) * (sizeof (asymbol *));
5887 if (symcount > 0)
5888 symtab_size -= sizeof (asymbol *);
5889
5890 return symtab_size;
5891 }
5892
5893 long
5894 _bfd_elf_get_reloc_upper_bound (bfd *abfd ATTRIBUTE_UNUSED,
5895 sec_ptr asect)
5896 {
5897 return (asect->reloc_count + 1) * sizeof (arelent *);
5898 }
5899
5900 /* Canonicalize the relocs. */
5901
5902 long
5903 _bfd_elf_canonicalize_reloc (bfd *abfd,
5904 sec_ptr section,
5905 arelent **relptr,
5906 asymbol **symbols)
5907 {
5908 arelent *tblptr;
5909 unsigned int i;
5910 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5911
5912 if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE))
5913 return -1;
5914
5915 tblptr = section->relocation;
5916 for (i = 0; i < section->reloc_count; i++)
5917 *relptr++ = tblptr++;
5918
5919 *relptr = NULL;
5920
5921 return section->reloc_count;
5922 }
5923
5924 long
5925 _bfd_elf_canonicalize_symtab (bfd *abfd, asymbol **allocation)
5926 {
5927 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5928 long symcount = bed->s->slurp_symbol_table (abfd, allocation, FALSE);
5929
5930 if (symcount >= 0)
5931 bfd_get_symcount (abfd) = symcount;
5932 return symcount;
5933 }
5934
5935 long
5936 _bfd_elf_canonicalize_dynamic_symtab (bfd *abfd,
5937 asymbol **allocation)
5938 {
5939 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5940 long symcount = bed->s->slurp_symbol_table (abfd, allocation, TRUE);
5941
5942 if (symcount >= 0)
5943 bfd_get_dynamic_symcount (abfd) = symcount;
5944 return symcount;
5945 }
5946
5947 /* Return the size required for the dynamic reloc entries. Any
5948 section that was actually installed in the BFD, and has type
5949 SHT_REL or SHT_RELA, and uses the dynamic symbol table, is
5950 considered to be a dynamic reloc section. */
5951
5952 long
5953 _bfd_elf_get_dynamic_reloc_upper_bound (bfd *abfd)
5954 {
5955 long ret;
5956 asection *s;
5957
5958 if (elf_dynsymtab (abfd) == 0)
5959 {
5960 bfd_set_error (bfd_error_invalid_operation);
5961 return -1;
5962 }
5963
5964 ret = sizeof (arelent *);
5965 for (s = abfd->sections; s != NULL; s = s->next)
5966 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
5967 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
5968 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
5969 ret += ((s->size / elf_section_data (s)->this_hdr.sh_entsize)
5970 * sizeof (arelent *));
5971
5972 return ret;
5973 }
5974
5975 /* Canonicalize the dynamic relocation entries. Note that we return
5976 the dynamic relocations as a single block, although they are
5977 actually associated with particular sections; the interface, which
5978 was designed for SunOS style shared libraries, expects that there
5979 is only one set of dynamic relocs. Any section that was actually
5980 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses
5981 the dynamic symbol table, is considered to be a dynamic reloc
5982 section. */
5983
5984 long
5985 _bfd_elf_canonicalize_dynamic_reloc (bfd *abfd,
5986 arelent **storage,
5987 asymbol **syms)
5988 {
5989 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
5990 asection *s;
5991 long ret;
5992
5993 if (elf_dynsymtab (abfd) == 0)
5994 {
5995 bfd_set_error (bfd_error_invalid_operation);
5996 return -1;
5997 }
5998
5999 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
6000 ret = 0;
6001 for (s = abfd->sections; s != NULL; s = s->next)
6002 {
6003 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
6004 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
6005 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
6006 {
6007 arelent *p;
6008 long count, i;
6009
6010 if (! (*slurp_relocs) (abfd, s, syms, TRUE))
6011 return -1;
6012 count = s->size / elf_section_data (s)->this_hdr.sh_entsize;
6013 p = s->relocation;
6014 for (i = 0; i < count; i++)
6015 *storage++ = p++;
6016 ret += count;
6017 }
6018 }
6019
6020 *storage = NULL;
6021
6022 return ret;
6023 }
6024 \f
6025 /* Read in the version information. */
6026
6027 bfd_boolean
6028 _bfd_elf_slurp_version_tables (bfd *abfd)
6029 {
6030 bfd_byte *contents = NULL;
6031 bfd_size_type amt;
6032
6033 if (elf_dynverdef (abfd) != 0)
6034 {
6035 Elf_Internal_Shdr *hdr;
6036 Elf_External_Verdef *everdef;
6037 Elf_Internal_Verdef *iverdef;
6038 Elf_Internal_Verdef *iverdefarr;
6039 Elf_Internal_Verdef iverdefmem;
6040 unsigned int i;
6041 unsigned int maxidx;
6042
6043 hdr = &elf_tdata (abfd)->dynverdef_hdr;
6044
6045 contents = bfd_malloc (hdr->sh_size);
6046 if (contents == NULL)
6047 goto error_return;
6048 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
6049 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
6050 goto error_return;
6051
6052 /* We know the number of entries in the section but not the maximum
6053 index. Therefore we have to run through all entries and find
6054 the maximum. */
6055 everdef = (Elf_External_Verdef *) contents;
6056 maxidx = 0;
6057 for (i = 0; i < hdr->sh_info; ++i)
6058 {
6059 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
6060
6061 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) > maxidx)
6062 maxidx = iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION);
6063
6064 everdef = ((Elf_External_Verdef *)
6065 ((bfd_byte *) everdef + iverdefmem.vd_next));
6066 }
6067
6068 amt = (bfd_size_type) maxidx * sizeof (Elf_Internal_Verdef);
6069 elf_tdata (abfd)->verdef = bfd_zalloc (abfd, amt);
6070 if (elf_tdata (abfd)->verdef == NULL)
6071 goto error_return;
6072
6073 elf_tdata (abfd)->cverdefs = maxidx;
6074
6075 everdef = (Elf_External_Verdef *) contents;
6076 iverdefarr = elf_tdata (abfd)->verdef;
6077 for (i = 0; i < hdr->sh_info; i++)
6078 {
6079 Elf_External_Verdaux *everdaux;
6080 Elf_Internal_Verdaux *iverdaux;
6081 unsigned int j;
6082
6083 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
6084
6085 iverdef = &iverdefarr[(iverdefmem.vd_ndx & VERSYM_VERSION) - 1];
6086 memcpy (iverdef, &iverdefmem, sizeof (Elf_Internal_Verdef));
6087
6088 iverdef->vd_bfd = abfd;
6089
6090 amt = (bfd_size_type) iverdef->vd_cnt * sizeof (Elf_Internal_Verdaux);
6091 iverdef->vd_auxptr = bfd_alloc (abfd, amt);
6092 if (iverdef->vd_auxptr == NULL)
6093 goto error_return;
6094
6095 everdaux = ((Elf_External_Verdaux *)
6096 ((bfd_byte *) everdef + iverdef->vd_aux));
6097 iverdaux = iverdef->vd_auxptr;
6098 for (j = 0; j < iverdef->vd_cnt; j++, iverdaux++)
6099 {
6100 _bfd_elf_swap_verdaux_in (abfd, everdaux, iverdaux);
6101
6102 iverdaux->vda_nodename =
6103 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
6104 iverdaux->vda_name);
6105 if (iverdaux->vda_nodename == NULL)
6106 goto error_return;
6107
6108 if (j + 1 < iverdef->vd_cnt)
6109 iverdaux->vda_nextptr = iverdaux + 1;
6110 else
6111 iverdaux->vda_nextptr = NULL;
6112
6113 everdaux = ((Elf_External_Verdaux *)
6114 ((bfd_byte *) everdaux + iverdaux->vda_next));
6115 }
6116
6117 iverdef->vd_nodename = iverdef->vd_auxptr->vda_nodename;
6118
6119 if (i + 1 < hdr->sh_info)
6120 iverdef->vd_nextdef = iverdef + 1;
6121 else
6122 iverdef->vd_nextdef = NULL;
6123
6124 everdef = ((Elf_External_Verdef *)
6125 ((bfd_byte *) everdef + iverdef->vd_next));
6126 }
6127
6128 free (contents);
6129 contents = NULL;
6130 }
6131
6132 if (elf_dynverref (abfd) != 0)
6133 {
6134 Elf_Internal_Shdr *hdr;
6135 Elf_External_Verneed *everneed;
6136 Elf_Internal_Verneed *iverneed;
6137 unsigned int i;
6138
6139 hdr = &elf_tdata (abfd)->dynverref_hdr;
6140
6141 amt = (bfd_size_type) hdr->sh_info * sizeof (Elf_Internal_Verneed);
6142 elf_tdata (abfd)->verref = bfd_zalloc (abfd, amt);
6143 if (elf_tdata (abfd)->verref == NULL)
6144 goto error_return;
6145
6146 elf_tdata (abfd)->cverrefs = hdr->sh_info;
6147
6148 contents = bfd_malloc (hdr->sh_size);
6149 if (contents == NULL)
6150 goto error_return;
6151 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
6152 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
6153 goto error_return;
6154
6155 everneed = (Elf_External_Verneed *) contents;
6156 iverneed = elf_tdata (abfd)->verref;
6157 for (i = 0; i < hdr->sh_info; i++, iverneed++)
6158 {
6159 Elf_External_Vernaux *evernaux;
6160 Elf_Internal_Vernaux *ivernaux;
6161 unsigned int j;
6162
6163 _bfd_elf_swap_verneed_in (abfd, everneed, iverneed);
6164
6165 iverneed->vn_bfd = abfd;
6166
6167 iverneed->vn_filename =
6168 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
6169 iverneed->vn_file);
6170 if (iverneed->vn_filename == NULL)
6171 goto error_return;
6172
6173 amt = iverneed->vn_cnt;
6174 amt *= sizeof (Elf_Internal_Vernaux);
6175 iverneed->vn_auxptr = bfd_alloc (abfd, amt);
6176
6177 evernaux = ((Elf_External_Vernaux *)
6178 ((bfd_byte *) everneed + iverneed->vn_aux));
6179 ivernaux = iverneed->vn_auxptr;
6180 for (j = 0; j < iverneed->vn_cnt; j++, ivernaux++)
6181 {
6182 _bfd_elf_swap_vernaux_in (abfd, evernaux, ivernaux);
6183
6184 ivernaux->vna_nodename =
6185 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
6186 ivernaux->vna_name);
6187 if (ivernaux->vna_nodename == NULL)
6188 goto error_return;
6189
6190 if (j + 1 < iverneed->vn_cnt)
6191 ivernaux->vna_nextptr = ivernaux + 1;
6192 else
6193 ivernaux->vna_nextptr = NULL;
6194
6195 evernaux = ((Elf_External_Vernaux *)
6196 ((bfd_byte *) evernaux + ivernaux->vna_next));
6197 }
6198
6199 if (i + 1 < hdr->sh_info)
6200 iverneed->vn_nextref = iverneed + 1;
6201 else
6202 iverneed->vn_nextref = NULL;
6203
6204 everneed = ((Elf_External_Verneed *)
6205 ((bfd_byte *) everneed + iverneed->vn_next));
6206 }
6207
6208 free (contents);
6209 contents = NULL;
6210 }
6211
6212 return TRUE;
6213
6214 error_return:
6215 if (contents != NULL)
6216 free (contents);
6217 return FALSE;
6218 }
6219 \f
6220 asymbol *
6221 _bfd_elf_make_empty_symbol (bfd *abfd)
6222 {
6223 elf_symbol_type *newsym;
6224 bfd_size_type amt = sizeof (elf_symbol_type);
6225
6226 newsym = bfd_zalloc (abfd, amt);
6227 if (!newsym)
6228 return NULL;
6229 else
6230 {
6231 newsym->symbol.the_bfd = abfd;
6232 return &newsym->symbol;
6233 }
6234 }
6235
6236 void
6237 _bfd_elf_get_symbol_info (bfd *abfd ATTRIBUTE_UNUSED,
6238 asymbol *symbol,
6239 symbol_info *ret)
6240 {
6241 bfd_symbol_info (symbol, ret);
6242 }
6243
6244 /* Return whether a symbol name implies a local symbol. Most targets
6245 use this function for the is_local_label_name entry point, but some
6246 override it. */
6247
6248 bfd_boolean
6249 _bfd_elf_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED,
6250 const char *name)
6251 {
6252 /* Normal local symbols start with ``.L''. */
6253 if (name[0] == '.' && name[1] == 'L')
6254 return TRUE;
6255
6256 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
6257 DWARF debugging symbols starting with ``..''. */
6258 if (name[0] == '.' && name[1] == '.')
6259 return TRUE;
6260
6261 /* gcc will sometimes generate symbols beginning with ``_.L_'' when
6262 emitting DWARF debugging output. I suspect this is actually a
6263 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
6264 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
6265 underscore to be emitted on some ELF targets). For ease of use,
6266 we treat such symbols as local. */
6267 if (name[0] == '_' && name[1] == '.' && name[2] == 'L' && name[3] == '_')
6268 return TRUE;
6269
6270 return FALSE;
6271 }
6272
6273 alent *
6274 _bfd_elf_get_lineno (bfd *abfd ATTRIBUTE_UNUSED,
6275 asymbol *symbol ATTRIBUTE_UNUSED)
6276 {
6277 abort ();
6278 return NULL;
6279 }
6280
6281 bfd_boolean
6282 _bfd_elf_set_arch_mach (bfd *abfd,
6283 enum bfd_architecture arch,
6284 unsigned long machine)
6285 {
6286 /* If this isn't the right architecture for this backend, and this
6287 isn't the generic backend, fail. */
6288 if (arch != get_elf_backend_data (abfd)->arch
6289 && arch != bfd_arch_unknown
6290 && get_elf_backend_data (abfd)->arch != bfd_arch_unknown)
6291 return FALSE;
6292
6293 return bfd_default_set_arch_mach (abfd, arch, machine);
6294 }
6295
6296 /* Find the function to a particular section and offset,
6297 for error reporting. */
6298
6299 static bfd_boolean
6300 elf_find_function (bfd *abfd ATTRIBUTE_UNUSED,
6301 asection *section,
6302 asymbol **symbols,
6303 bfd_vma offset,
6304 const char **filename_ptr,
6305 const char **functionname_ptr)
6306 {
6307 const char *filename;
6308 asymbol *func;
6309 bfd_vma low_func;
6310 asymbol **p;
6311
6312 filename = NULL;
6313 func = NULL;
6314 low_func = 0;
6315
6316 for (p = symbols; *p != NULL; p++)
6317 {
6318 elf_symbol_type *q;
6319
6320 q = (elf_symbol_type *) *p;
6321
6322 if (bfd_get_section (&q->symbol) != section)
6323 continue;
6324
6325 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
6326 {
6327 default:
6328 break;
6329 case STT_FILE:
6330 filename = bfd_asymbol_name (&q->symbol);
6331 break;
6332 case STT_NOTYPE:
6333 case STT_FUNC:
6334 if (q->symbol.section == section
6335 && q->symbol.value >= low_func
6336 && q->symbol.value <= offset)
6337 {
6338 func = (asymbol *) q;
6339 low_func = q->symbol.value;
6340 }
6341 break;
6342 }
6343 }
6344
6345 if (func == NULL)
6346 return FALSE;
6347
6348 if (filename_ptr)
6349 *filename_ptr = filename;
6350 if (functionname_ptr)
6351 *functionname_ptr = bfd_asymbol_name (func);
6352
6353 return TRUE;
6354 }
6355
6356 /* Find the nearest line to a particular section and offset,
6357 for error reporting. */
6358
6359 bfd_boolean
6360 _bfd_elf_find_nearest_line (bfd *abfd,
6361 asection *section,
6362 asymbol **symbols,
6363 bfd_vma offset,
6364 const char **filename_ptr,
6365 const char **functionname_ptr,
6366 unsigned int *line_ptr)
6367 {
6368 bfd_boolean found;
6369
6370 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
6371 filename_ptr, functionname_ptr,
6372 line_ptr))
6373 {
6374 if (!*functionname_ptr)
6375 elf_find_function (abfd, section, symbols, offset,
6376 *filename_ptr ? NULL : filename_ptr,
6377 functionname_ptr);
6378
6379 return TRUE;
6380 }
6381
6382 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
6383 filename_ptr, functionname_ptr,
6384 line_ptr, 0,
6385 &elf_tdata (abfd)->dwarf2_find_line_info))
6386 {
6387 if (!*functionname_ptr)
6388 elf_find_function (abfd, section, symbols, offset,
6389 *filename_ptr ? NULL : filename_ptr,
6390 functionname_ptr);
6391
6392 return TRUE;
6393 }
6394
6395 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
6396 &found, filename_ptr,
6397 functionname_ptr, line_ptr,
6398 &elf_tdata (abfd)->line_info))
6399 return FALSE;
6400 if (found && (*functionname_ptr || *line_ptr))
6401 return TRUE;
6402
6403 if (symbols == NULL)
6404 return FALSE;
6405
6406 if (! elf_find_function (abfd, section, symbols, offset,
6407 filename_ptr, functionname_ptr))
6408 return FALSE;
6409
6410 *line_ptr = 0;
6411 return TRUE;
6412 }
6413
6414 int
6415 _bfd_elf_sizeof_headers (bfd *abfd, bfd_boolean reloc)
6416 {
6417 int ret;
6418
6419 ret = get_elf_backend_data (abfd)->s->sizeof_ehdr;
6420 if (! reloc)
6421 ret += get_program_header_size (abfd);
6422 return ret;
6423 }
6424
6425 bfd_boolean
6426 _bfd_elf_set_section_contents (bfd *abfd,
6427 sec_ptr section,
6428 const void *location,
6429 file_ptr offset,
6430 bfd_size_type count)
6431 {
6432 Elf_Internal_Shdr *hdr;
6433 bfd_signed_vma pos;
6434
6435 if (! abfd->output_has_begun
6436 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
6437 return FALSE;
6438
6439 hdr = &elf_section_data (section)->this_hdr;
6440 pos = hdr->sh_offset + offset;
6441 if (bfd_seek (abfd, pos, SEEK_SET) != 0
6442 || bfd_bwrite (location, count, abfd) != count)
6443 return FALSE;
6444
6445 return TRUE;
6446 }
6447
6448 void
6449 _bfd_elf_no_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED,
6450 arelent *cache_ptr ATTRIBUTE_UNUSED,
6451 Elf_Internal_Rela *dst ATTRIBUTE_UNUSED)
6452 {
6453 abort ();
6454 }
6455
6456 /* Try to convert a non-ELF reloc into an ELF one. */
6457
6458 bfd_boolean
6459 _bfd_elf_validate_reloc (bfd *abfd, arelent *areloc)
6460 {
6461 /* Check whether we really have an ELF howto. */
6462
6463 if ((*areloc->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec)
6464 {
6465 bfd_reloc_code_real_type code;
6466 reloc_howto_type *howto;
6467
6468 /* Alien reloc: Try to determine its type to replace it with an
6469 equivalent ELF reloc. */
6470
6471 if (areloc->howto->pc_relative)
6472 {
6473 switch (areloc->howto->bitsize)
6474 {
6475 case 8:
6476 code = BFD_RELOC_8_PCREL;
6477 break;
6478 case 12:
6479 code = BFD_RELOC_12_PCREL;
6480 break;
6481 case 16:
6482 code = BFD_RELOC_16_PCREL;
6483 break;
6484 case 24:
6485 code = BFD_RELOC_24_PCREL;
6486 break;
6487 case 32:
6488 code = BFD_RELOC_32_PCREL;
6489 break;
6490 case 64:
6491 code = BFD_RELOC_64_PCREL;
6492 break;
6493 default:
6494 goto fail;
6495 }
6496
6497 howto = bfd_reloc_type_lookup (abfd, code);
6498
6499 if (areloc->howto->pcrel_offset != howto->pcrel_offset)
6500 {
6501 if (howto->pcrel_offset)
6502 areloc->addend += areloc->address;
6503 else
6504 areloc->addend -= areloc->address; /* addend is unsigned!! */
6505 }
6506 }
6507 else
6508 {
6509 switch (areloc->howto->bitsize)
6510 {
6511 case 8:
6512 code = BFD_RELOC_8;
6513 break;
6514 case 14:
6515 code = BFD_RELOC_14;
6516 break;
6517 case 16:
6518 code = BFD_RELOC_16;
6519 break;
6520 case 26:
6521 code = BFD_RELOC_26;
6522 break;
6523 case 32:
6524 code = BFD_RELOC_32;
6525 break;
6526 case 64:
6527 code = BFD_RELOC_64;
6528 break;
6529 default:
6530 goto fail;
6531 }
6532
6533 howto = bfd_reloc_type_lookup (abfd, code);
6534 }
6535
6536 if (howto)
6537 areloc->howto = howto;
6538 else
6539 goto fail;
6540 }
6541
6542 return TRUE;
6543
6544 fail:
6545 (*_bfd_error_handler)
6546 (_("%B: unsupported relocation type %s"),
6547 abfd, areloc->howto->name);
6548 bfd_set_error (bfd_error_bad_value);
6549 return FALSE;
6550 }
6551
6552 bfd_boolean
6553 _bfd_elf_close_and_cleanup (bfd *abfd)
6554 {
6555 if (bfd_get_format (abfd) == bfd_object)
6556 {
6557 if (elf_shstrtab (abfd) != NULL)
6558 _bfd_elf_strtab_free (elf_shstrtab (abfd));
6559 }
6560
6561 return _bfd_generic_close_and_cleanup (abfd);
6562 }
6563
6564 /* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
6565 in the relocation's offset. Thus we cannot allow any sort of sanity
6566 range-checking to interfere. There is nothing else to do in processing
6567 this reloc. */
6568
6569 bfd_reloc_status_type
6570 _bfd_elf_rel_vtable_reloc_fn
6571 (bfd *abfd ATTRIBUTE_UNUSED, arelent *re ATTRIBUTE_UNUSED,
6572 struct bfd_symbol *symbol ATTRIBUTE_UNUSED,
6573 void *data ATTRIBUTE_UNUSED, asection *is ATTRIBUTE_UNUSED,
6574 bfd *obfd ATTRIBUTE_UNUSED, char **errmsg ATTRIBUTE_UNUSED)
6575 {
6576 return bfd_reloc_ok;
6577 }
6578 \f
6579 /* Elf core file support. Much of this only works on native
6580 toolchains, since we rely on knowing the
6581 machine-dependent procfs structure in order to pick
6582 out details about the corefile. */
6583
6584 #ifdef HAVE_SYS_PROCFS_H
6585 # include <sys/procfs.h>
6586 #endif
6587
6588 /* FIXME: this is kinda wrong, but it's what gdb wants. */
6589
6590 static int
6591 elfcore_make_pid (bfd *abfd)
6592 {
6593 return ((elf_tdata (abfd)->core_lwpid << 16)
6594 + (elf_tdata (abfd)->core_pid));
6595 }
6596
6597 /* If there isn't a section called NAME, make one, using
6598 data from SECT. Note, this function will generate a
6599 reference to NAME, so you shouldn't deallocate or
6600 overwrite it. */
6601
6602 static bfd_boolean
6603 elfcore_maybe_make_sect (bfd *abfd, char *name, asection *sect)
6604 {
6605 asection *sect2;
6606
6607 if (bfd_get_section_by_name (abfd, name) != NULL)
6608 return TRUE;
6609
6610 sect2 = bfd_make_section (abfd, name);
6611 if (sect2 == NULL)
6612 return FALSE;
6613
6614 sect2->size = sect->size;
6615 sect2->filepos = sect->filepos;
6616 sect2->flags = sect->flags;
6617 sect2->alignment_power = sect->alignment_power;
6618 return TRUE;
6619 }
6620
6621 /* Create a pseudosection containing SIZE bytes at FILEPOS. This
6622 actually creates up to two pseudosections:
6623 - For the single-threaded case, a section named NAME, unless
6624 such a section already exists.
6625 - For the multi-threaded case, a section named "NAME/PID", where
6626 PID is elfcore_make_pid (abfd).
6627 Both pseudosections have identical contents. */
6628 bfd_boolean
6629 _bfd_elfcore_make_pseudosection (bfd *abfd,
6630 char *name,
6631 size_t size,
6632 ufile_ptr filepos)
6633 {
6634 char buf[100];
6635 char *threaded_name;
6636 size_t len;
6637 asection *sect;
6638
6639 /* Build the section name. */
6640
6641 sprintf (buf, "%s/%d", name, elfcore_make_pid (abfd));
6642 len = strlen (buf) + 1;
6643 threaded_name = bfd_alloc (abfd, len);
6644 if (threaded_name == NULL)
6645 return FALSE;
6646 memcpy (threaded_name, buf, len);
6647
6648 sect = bfd_make_section_anyway (abfd, threaded_name);
6649 if (sect == NULL)
6650 return FALSE;
6651 sect->size = size;
6652 sect->filepos = filepos;
6653 sect->flags = SEC_HAS_CONTENTS;
6654 sect->alignment_power = 2;
6655
6656 return elfcore_maybe_make_sect (abfd, name, sect);
6657 }
6658
6659 /* prstatus_t exists on:
6660 solaris 2.5+
6661 linux 2.[01] + glibc
6662 unixware 4.2
6663 */
6664
6665 #if defined (HAVE_PRSTATUS_T)
6666
6667 static bfd_boolean
6668 elfcore_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
6669 {
6670 size_t size;
6671 int offset;
6672
6673 if (note->descsz == sizeof (prstatus_t))
6674 {
6675 prstatus_t prstat;
6676
6677 size = sizeof (prstat.pr_reg);
6678 offset = offsetof (prstatus_t, pr_reg);
6679 memcpy (&prstat, note->descdata, sizeof (prstat));
6680
6681 /* Do not overwrite the core signal if it
6682 has already been set by another thread. */
6683 if (elf_tdata (abfd)->core_signal == 0)
6684 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
6685 elf_tdata (abfd)->core_pid = prstat.pr_pid;
6686
6687 /* pr_who exists on:
6688 solaris 2.5+
6689 unixware 4.2
6690 pr_who doesn't exist on:
6691 linux 2.[01]
6692 */
6693 #if defined (HAVE_PRSTATUS_T_PR_WHO)
6694 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
6695 #endif
6696 }
6697 #if defined (HAVE_PRSTATUS32_T)
6698 else if (note->descsz == sizeof (prstatus32_t))
6699 {
6700 /* 64-bit host, 32-bit corefile */
6701 prstatus32_t prstat;
6702
6703 size = sizeof (prstat.pr_reg);
6704 offset = offsetof (prstatus32_t, pr_reg);
6705 memcpy (&prstat, note->descdata, sizeof (prstat));
6706
6707 /* Do not overwrite the core signal if it
6708 has already been set by another thread. */
6709 if (elf_tdata (abfd)->core_signal == 0)
6710 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
6711 elf_tdata (abfd)->core_pid = prstat.pr_pid;
6712
6713 /* pr_who exists on:
6714 solaris 2.5+
6715 unixware 4.2
6716 pr_who doesn't exist on:
6717 linux 2.[01]
6718 */
6719 #if defined (HAVE_PRSTATUS32_T_PR_WHO)
6720 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
6721 #endif
6722 }
6723 #endif /* HAVE_PRSTATUS32_T */
6724 else
6725 {
6726 /* Fail - we don't know how to handle any other
6727 note size (ie. data object type). */
6728 return TRUE;
6729 }
6730
6731 /* Make a ".reg/999" section and a ".reg" section. */
6732 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
6733 size, note->descpos + offset);
6734 }
6735 #endif /* defined (HAVE_PRSTATUS_T) */
6736
6737 /* Create a pseudosection containing the exact contents of NOTE. */
6738 static bfd_boolean
6739 elfcore_make_note_pseudosection (bfd *abfd,
6740 char *name,
6741 Elf_Internal_Note *note)
6742 {
6743 return _bfd_elfcore_make_pseudosection (abfd, name,
6744 note->descsz, note->descpos);
6745 }
6746
6747 /* There isn't a consistent prfpregset_t across platforms,
6748 but it doesn't matter, because we don't have to pick this
6749 data structure apart. */
6750
6751 static bfd_boolean
6752 elfcore_grok_prfpreg (bfd *abfd, Elf_Internal_Note *note)
6753 {
6754 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
6755 }
6756
6757 /* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
6758 type of 5 (NT_PRXFPREG). Just include the whole note's contents
6759 literally. */
6760
6761 static bfd_boolean
6762 elfcore_grok_prxfpreg (bfd *abfd, Elf_Internal_Note *note)
6763 {
6764 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
6765 }
6766
6767 #if defined (HAVE_PRPSINFO_T)
6768 typedef prpsinfo_t elfcore_psinfo_t;
6769 #if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
6770 typedef prpsinfo32_t elfcore_psinfo32_t;
6771 #endif
6772 #endif
6773
6774 #if defined (HAVE_PSINFO_T)
6775 typedef psinfo_t elfcore_psinfo_t;
6776 #if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
6777 typedef psinfo32_t elfcore_psinfo32_t;
6778 #endif
6779 #endif
6780
6781 /* return a malloc'ed copy of a string at START which is at
6782 most MAX bytes long, possibly without a terminating '\0'.
6783 the copy will always have a terminating '\0'. */
6784
6785 char *
6786 _bfd_elfcore_strndup (bfd *abfd, char *start, size_t max)
6787 {
6788 char *dups;
6789 char *end = memchr (start, '\0', max);
6790 size_t len;
6791
6792 if (end == NULL)
6793 len = max;
6794 else
6795 len = end - start;
6796
6797 dups = bfd_alloc (abfd, len + 1);
6798 if (dups == NULL)
6799 return NULL;
6800
6801 memcpy (dups, start, len);
6802 dups[len] = '\0';
6803
6804 return dups;
6805 }
6806
6807 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
6808 static bfd_boolean
6809 elfcore_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
6810 {
6811 if (note->descsz == sizeof (elfcore_psinfo_t))
6812 {
6813 elfcore_psinfo_t psinfo;
6814
6815 memcpy (&psinfo, note->descdata, sizeof (psinfo));
6816
6817 elf_tdata (abfd)->core_program
6818 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
6819 sizeof (psinfo.pr_fname));
6820
6821 elf_tdata (abfd)->core_command
6822 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
6823 sizeof (psinfo.pr_psargs));
6824 }
6825 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
6826 else if (note->descsz == sizeof (elfcore_psinfo32_t))
6827 {
6828 /* 64-bit host, 32-bit corefile */
6829 elfcore_psinfo32_t psinfo;
6830
6831 memcpy (&psinfo, note->descdata, sizeof (psinfo));
6832
6833 elf_tdata (abfd)->core_program
6834 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
6835 sizeof (psinfo.pr_fname));
6836
6837 elf_tdata (abfd)->core_command
6838 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
6839 sizeof (psinfo.pr_psargs));
6840 }
6841 #endif
6842
6843 else
6844 {
6845 /* Fail - we don't know how to handle any other
6846 note size (ie. data object type). */
6847 return TRUE;
6848 }
6849
6850 /* Note that for some reason, a spurious space is tacked
6851 onto the end of the args in some (at least one anyway)
6852 implementations, so strip it off if it exists. */
6853
6854 {
6855 char *command = elf_tdata (abfd)->core_command;
6856 int n = strlen (command);
6857
6858 if (0 < n && command[n - 1] == ' ')
6859 command[n - 1] = '\0';
6860 }
6861
6862 return TRUE;
6863 }
6864 #endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
6865
6866 #if defined (HAVE_PSTATUS_T)
6867 static bfd_boolean
6868 elfcore_grok_pstatus (bfd *abfd, Elf_Internal_Note *note)
6869 {
6870 if (note->descsz == sizeof (pstatus_t)
6871 #if defined (HAVE_PXSTATUS_T)
6872 || note->descsz == sizeof (pxstatus_t)
6873 #endif
6874 )
6875 {
6876 pstatus_t pstat;
6877
6878 memcpy (&pstat, note->descdata, sizeof (pstat));
6879
6880 elf_tdata (abfd)->core_pid = pstat.pr_pid;
6881 }
6882 #if defined (HAVE_PSTATUS32_T)
6883 else if (note->descsz == sizeof (pstatus32_t))
6884 {
6885 /* 64-bit host, 32-bit corefile */
6886 pstatus32_t pstat;
6887
6888 memcpy (&pstat, note->descdata, sizeof (pstat));
6889
6890 elf_tdata (abfd)->core_pid = pstat.pr_pid;
6891 }
6892 #endif
6893 /* Could grab some more details from the "representative"
6894 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
6895 NT_LWPSTATUS note, presumably. */
6896
6897 return TRUE;
6898 }
6899 #endif /* defined (HAVE_PSTATUS_T) */
6900
6901 #if defined (HAVE_LWPSTATUS_T)
6902 static bfd_boolean
6903 elfcore_grok_lwpstatus (bfd *abfd, Elf_Internal_Note *note)
6904 {
6905 lwpstatus_t lwpstat;
6906 char buf[100];
6907 char *name;
6908 size_t len;
6909 asection *sect;
6910
6911 if (note->descsz != sizeof (lwpstat)
6912 #if defined (HAVE_LWPXSTATUS_T)
6913 && note->descsz != sizeof (lwpxstatus_t)
6914 #endif
6915 )
6916 return TRUE;
6917
6918 memcpy (&lwpstat, note->descdata, sizeof (lwpstat));
6919
6920 elf_tdata (abfd)->core_lwpid = lwpstat.pr_lwpid;
6921 elf_tdata (abfd)->core_signal = lwpstat.pr_cursig;
6922
6923 /* Make a ".reg/999" section. */
6924
6925 sprintf (buf, ".reg/%d", elfcore_make_pid (abfd));
6926 len = strlen (buf) + 1;
6927 name = bfd_alloc (abfd, len);
6928 if (name == NULL)
6929 return FALSE;
6930 memcpy (name, buf, len);
6931
6932 sect = bfd_make_section_anyway (abfd, name);
6933 if (sect == NULL)
6934 return FALSE;
6935
6936 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
6937 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.gregs);
6938 sect->filepos = note->descpos
6939 + offsetof (lwpstatus_t, pr_context.uc_mcontext.gregs);
6940 #endif
6941
6942 #if defined (HAVE_LWPSTATUS_T_PR_REG)
6943 sect->size = sizeof (lwpstat.pr_reg);
6944 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_reg);
6945 #endif
6946
6947 sect->flags = SEC_HAS_CONTENTS;
6948 sect->alignment_power = 2;
6949
6950 if (!elfcore_maybe_make_sect (abfd, ".reg", sect))
6951 return FALSE;
6952
6953 /* Make a ".reg2/999" section */
6954
6955 sprintf (buf, ".reg2/%d", elfcore_make_pid (abfd));
6956 len = strlen (buf) + 1;
6957 name = bfd_alloc (abfd, len);
6958 if (name == NULL)
6959 return FALSE;
6960 memcpy (name, buf, len);
6961
6962 sect = bfd_make_section_anyway (abfd, name);
6963 if (sect == NULL)
6964 return FALSE;
6965
6966 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
6967 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.fpregs);
6968 sect->filepos = note->descpos
6969 + offsetof (lwpstatus_t, pr_context.uc_mcontext.fpregs);
6970 #endif
6971
6972 #if defined (HAVE_LWPSTATUS_T_PR_FPREG)
6973 sect->size = sizeof (lwpstat.pr_fpreg);
6974 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_fpreg);
6975 #endif
6976
6977 sect->flags = SEC_HAS_CONTENTS;
6978 sect->alignment_power = 2;
6979
6980 return elfcore_maybe_make_sect (abfd, ".reg2", sect);
6981 }
6982 #endif /* defined (HAVE_LWPSTATUS_T) */
6983
6984 #if defined (HAVE_WIN32_PSTATUS_T)
6985 static bfd_boolean
6986 elfcore_grok_win32pstatus (bfd *abfd, Elf_Internal_Note *note)
6987 {
6988 char buf[30];
6989 char *name;
6990 size_t len;
6991 asection *sect;
6992 win32_pstatus_t pstatus;
6993
6994 if (note->descsz < sizeof (pstatus))
6995 return TRUE;
6996
6997 memcpy (&pstatus, note->descdata, sizeof (pstatus));
6998
6999 switch (pstatus.data_type)
7000 {
7001 case NOTE_INFO_PROCESS:
7002 /* FIXME: need to add ->core_command. */
7003 elf_tdata (abfd)->core_signal = pstatus.data.process_info.signal;
7004 elf_tdata (abfd)->core_pid = pstatus.data.process_info.pid;
7005 break;
7006
7007 case NOTE_INFO_THREAD:
7008 /* Make a ".reg/999" section. */
7009 sprintf (buf, ".reg/%d", pstatus.data.thread_info.tid);
7010
7011 len = strlen (buf) + 1;
7012 name = bfd_alloc (abfd, len);
7013 if (name == NULL)
7014 return FALSE;
7015
7016 memcpy (name, buf, len);
7017
7018 sect = bfd_make_section_anyway (abfd, name);
7019 if (sect == NULL)
7020 return FALSE;
7021
7022 sect->size = sizeof (pstatus.data.thread_info.thread_context);
7023 sect->filepos = (note->descpos
7024 + offsetof (struct win32_pstatus,
7025 data.thread_info.thread_context));
7026 sect->flags = SEC_HAS_CONTENTS;
7027 sect->alignment_power = 2;
7028
7029 if (pstatus.data.thread_info.is_active_thread)
7030 if (! elfcore_maybe_make_sect (abfd, ".reg", sect))
7031 return FALSE;
7032 break;
7033
7034 case NOTE_INFO_MODULE:
7035 /* Make a ".module/xxxxxxxx" section. */
7036 sprintf (buf, ".module/%08x", pstatus.data.module_info.base_address);
7037
7038 len = strlen (buf) + 1;
7039 name = bfd_alloc (abfd, len);
7040 if (name == NULL)
7041 return FALSE;
7042
7043 memcpy (name, buf, len);
7044
7045 sect = bfd_make_section_anyway (abfd, name);
7046
7047 if (sect == NULL)
7048 return FALSE;
7049
7050 sect->size = note->descsz;
7051 sect->filepos = note->descpos;
7052 sect->flags = SEC_HAS_CONTENTS;
7053 sect->alignment_power = 2;
7054 break;
7055
7056 default:
7057 return TRUE;
7058 }
7059
7060 return TRUE;
7061 }
7062 #endif /* HAVE_WIN32_PSTATUS_T */
7063
7064 static bfd_boolean
7065 elfcore_grok_note (bfd *abfd, Elf_Internal_Note *note)
7066 {
7067 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7068
7069 switch (note->type)
7070 {
7071 default:
7072 return TRUE;
7073
7074 case NT_PRSTATUS:
7075 if (bed->elf_backend_grok_prstatus)
7076 if ((*bed->elf_backend_grok_prstatus) (abfd, note))
7077 return TRUE;
7078 #if defined (HAVE_PRSTATUS_T)
7079 return elfcore_grok_prstatus (abfd, note);
7080 #else
7081 return TRUE;
7082 #endif
7083
7084 #if defined (HAVE_PSTATUS_T)
7085 case NT_PSTATUS:
7086 return elfcore_grok_pstatus (abfd, note);
7087 #endif
7088
7089 #if defined (HAVE_LWPSTATUS_T)
7090 case NT_LWPSTATUS:
7091 return elfcore_grok_lwpstatus (abfd, note);
7092 #endif
7093
7094 case NT_FPREGSET: /* FIXME: rename to NT_PRFPREG */
7095 return elfcore_grok_prfpreg (abfd, note);
7096
7097 #if defined (HAVE_WIN32_PSTATUS_T)
7098 case NT_WIN32PSTATUS:
7099 return elfcore_grok_win32pstatus (abfd, note);
7100 #endif
7101
7102 case NT_PRXFPREG: /* Linux SSE extension */
7103 if (note->namesz == 6
7104 && strcmp (note->namedata, "LINUX") == 0)
7105 return elfcore_grok_prxfpreg (abfd, note);
7106 else
7107 return TRUE;
7108
7109 case NT_PRPSINFO:
7110 case NT_PSINFO:
7111 if (bed->elf_backend_grok_psinfo)
7112 if ((*bed->elf_backend_grok_psinfo) (abfd, note))
7113 return TRUE;
7114 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7115 return elfcore_grok_psinfo (abfd, note);
7116 #else
7117 return TRUE;
7118 #endif
7119
7120 case NT_AUXV:
7121 {
7122 asection *sect = bfd_make_section_anyway (abfd, ".auxv");
7123
7124 if (sect == NULL)
7125 return FALSE;
7126 sect->size = note->descsz;
7127 sect->filepos = note->descpos;
7128 sect->flags = SEC_HAS_CONTENTS;
7129 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
7130
7131 return TRUE;
7132 }
7133 }
7134 }
7135
7136 static bfd_boolean
7137 elfcore_netbsd_get_lwpid (Elf_Internal_Note *note, int *lwpidp)
7138 {
7139 char *cp;
7140
7141 cp = strchr (note->namedata, '@');
7142 if (cp != NULL)
7143 {
7144 *lwpidp = atoi(cp + 1);
7145 return TRUE;
7146 }
7147 return FALSE;
7148 }
7149
7150 static bfd_boolean
7151 elfcore_grok_netbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
7152 {
7153
7154 /* Signal number at offset 0x08. */
7155 elf_tdata (abfd)->core_signal
7156 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
7157
7158 /* Process ID at offset 0x50. */
7159 elf_tdata (abfd)->core_pid
7160 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x50);
7161
7162 /* Command name at 0x7c (max 32 bytes, including nul). */
7163 elf_tdata (abfd)->core_command
7164 = _bfd_elfcore_strndup (abfd, note->descdata + 0x7c, 31);
7165
7166 return elfcore_make_note_pseudosection (abfd, ".note.netbsdcore.procinfo",
7167 note);
7168 }
7169
7170 static bfd_boolean
7171 elfcore_grok_netbsd_note (bfd *abfd, Elf_Internal_Note *note)
7172 {
7173 int lwp;
7174
7175 if (elfcore_netbsd_get_lwpid (note, &lwp))
7176 elf_tdata (abfd)->core_lwpid = lwp;
7177
7178 if (note->type == NT_NETBSDCORE_PROCINFO)
7179 {
7180 /* NetBSD-specific core "procinfo". Note that we expect to
7181 find this note before any of the others, which is fine,
7182 since the kernel writes this note out first when it
7183 creates a core file. */
7184
7185 return elfcore_grok_netbsd_procinfo (abfd, note);
7186 }
7187
7188 /* As of Jan 2002 there are no other machine-independent notes
7189 defined for NetBSD core files. If the note type is less
7190 than the start of the machine-dependent note types, we don't
7191 understand it. */
7192
7193 if (note->type < NT_NETBSDCORE_FIRSTMACH)
7194 return TRUE;
7195
7196
7197 switch (bfd_get_arch (abfd))
7198 {
7199 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
7200 PT_GETFPREGS == mach+2. */
7201
7202 case bfd_arch_alpha:
7203 case bfd_arch_sparc:
7204 switch (note->type)
7205 {
7206 case NT_NETBSDCORE_FIRSTMACH+0:
7207 return elfcore_make_note_pseudosection (abfd, ".reg", note);
7208
7209 case NT_NETBSDCORE_FIRSTMACH+2:
7210 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
7211
7212 default:
7213 return TRUE;
7214 }
7215
7216 /* On all other arch's, PT_GETREGS == mach+1 and
7217 PT_GETFPREGS == mach+3. */
7218
7219 default:
7220 switch (note->type)
7221 {
7222 case NT_NETBSDCORE_FIRSTMACH+1:
7223 return elfcore_make_note_pseudosection (abfd, ".reg", note);
7224
7225 case NT_NETBSDCORE_FIRSTMACH+3:
7226 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
7227
7228 default:
7229 return TRUE;
7230 }
7231 }
7232 /* NOTREACHED */
7233 }
7234
7235 static bfd_boolean
7236 elfcore_grok_nto_status (bfd *abfd, Elf_Internal_Note *note, pid_t *tid)
7237 {
7238 void *ddata = note->descdata;
7239 char buf[100];
7240 char *name;
7241 asection *sect;
7242 short sig;
7243 unsigned flags;
7244
7245 /* nto_procfs_status 'pid' field is at offset 0. */
7246 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, (bfd_byte *) ddata);
7247
7248 /* nto_procfs_status 'tid' field is at offset 4. Pass it back. */
7249 *tid = bfd_get_32 (abfd, (bfd_byte *) ddata + 4);
7250
7251 /* nto_procfs_status 'flags' field is at offset 8. */
7252 flags = bfd_get_32 (abfd, (bfd_byte *) ddata + 8);
7253
7254 /* nto_procfs_status 'what' field is at offset 14. */
7255 if ((sig = bfd_get_16 (abfd, (bfd_byte *) ddata + 14)) > 0)
7256 {
7257 elf_tdata (abfd)->core_signal = sig;
7258 elf_tdata (abfd)->core_lwpid = *tid;
7259 }
7260
7261 /* _DEBUG_FLAG_CURTID (current thread) is 0x80. Some cores
7262 do not come from signals so we make sure we set the current
7263 thread just in case. */
7264 if (flags & 0x00000080)
7265 elf_tdata (abfd)->core_lwpid = *tid;
7266
7267 /* Make a ".qnx_core_status/%d" section. */
7268 sprintf (buf, ".qnx_core_status/%d", *tid);
7269
7270 name = bfd_alloc (abfd, strlen (buf) + 1);
7271 if (name == NULL)
7272 return FALSE;
7273 strcpy (name, buf);
7274
7275 sect = bfd_make_section_anyway (abfd, name);
7276 if (sect == NULL)
7277 return FALSE;
7278
7279 sect->size = note->descsz;
7280 sect->filepos = note->descpos;
7281 sect->flags = SEC_HAS_CONTENTS;
7282 sect->alignment_power = 2;
7283
7284 return (elfcore_maybe_make_sect (abfd, ".qnx_core_status", sect));
7285 }
7286
7287 static bfd_boolean
7288 elfcore_grok_nto_gregs (bfd *abfd, Elf_Internal_Note *note, pid_t tid)
7289 {
7290 char buf[100];
7291 char *name;
7292 asection *sect;
7293
7294 /* Make a ".reg/%d" section. */
7295 sprintf (buf, ".reg/%d", tid);
7296
7297 name = bfd_alloc (abfd, strlen (buf) + 1);
7298 if (name == NULL)
7299 return FALSE;
7300 strcpy (name, buf);
7301
7302 sect = bfd_make_section_anyway (abfd, name);
7303 if (sect == NULL)
7304 return FALSE;
7305
7306 sect->size = note->descsz;
7307 sect->filepos = note->descpos;
7308 sect->flags = SEC_HAS_CONTENTS;
7309 sect->alignment_power = 2;
7310
7311 /* This is the current thread. */
7312 if (elf_tdata (abfd)->core_lwpid == tid)
7313 return elfcore_maybe_make_sect (abfd, ".reg", sect);
7314
7315 return TRUE;
7316 }
7317
7318 #define BFD_QNT_CORE_INFO 7
7319 #define BFD_QNT_CORE_STATUS 8
7320 #define BFD_QNT_CORE_GREG 9
7321 #define BFD_QNT_CORE_FPREG 10
7322
7323 static bfd_boolean
7324 elfcore_grok_nto_note (bfd *abfd, Elf_Internal_Note *note)
7325 {
7326 /* Every GREG section has a STATUS section before it. Store the
7327 tid from the previous call to pass down to the next gregs
7328 function. */
7329 static pid_t tid = 1;
7330
7331 switch (note->type)
7332 {
7333 case BFD_QNT_CORE_INFO: return elfcore_make_note_pseudosection (abfd, ".qnx_core_info", note);
7334 case BFD_QNT_CORE_STATUS: return elfcore_grok_nto_status (abfd, note, &tid);
7335 case BFD_QNT_CORE_GREG: return elfcore_grok_nto_gregs (abfd, note, tid);
7336 case BFD_QNT_CORE_FPREG: return elfcore_grok_prfpreg (abfd, note);
7337 default: return TRUE;
7338 }
7339 }
7340
7341 /* Function: elfcore_write_note
7342
7343 Inputs:
7344 buffer to hold note
7345 name of note
7346 type of note
7347 data for note
7348 size of data for note
7349
7350 Return:
7351 End of buffer containing note. */
7352
7353 char *
7354 elfcore_write_note (bfd *abfd,
7355 char *buf,
7356 int *bufsiz,
7357 const char *name,
7358 int type,
7359 const void *input,
7360 int size)
7361 {
7362 Elf_External_Note *xnp;
7363 size_t namesz;
7364 size_t pad;
7365 size_t newspace;
7366 char *p, *dest;
7367
7368 namesz = 0;
7369 pad = 0;
7370 if (name != NULL)
7371 {
7372 const struct elf_backend_data *bed;
7373
7374 namesz = strlen (name) + 1;
7375 bed = get_elf_backend_data (abfd);
7376 pad = -namesz & ((1 << bed->s->log_file_align) - 1);
7377 }
7378
7379 newspace = 12 + namesz + pad + size;
7380
7381 p = realloc (buf, *bufsiz + newspace);
7382 dest = p + *bufsiz;
7383 *bufsiz += newspace;
7384 xnp = (Elf_External_Note *) dest;
7385 H_PUT_32 (abfd, namesz, xnp->namesz);
7386 H_PUT_32 (abfd, size, xnp->descsz);
7387 H_PUT_32 (abfd, type, xnp->type);
7388 dest = xnp->name;
7389 if (name != NULL)
7390 {
7391 memcpy (dest, name, namesz);
7392 dest += namesz;
7393 while (pad != 0)
7394 {
7395 *dest++ = '\0';
7396 --pad;
7397 }
7398 }
7399 memcpy (dest, input, size);
7400 return p;
7401 }
7402
7403 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7404 char *
7405 elfcore_write_prpsinfo (bfd *abfd,
7406 char *buf,
7407 int *bufsiz,
7408 const char *fname,
7409 const char *psargs)
7410 {
7411 int note_type;
7412 char *note_name = "CORE";
7413
7414 #if defined (HAVE_PSINFO_T)
7415 psinfo_t data;
7416 note_type = NT_PSINFO;
7417 #else
7418 prpsinfo_t data;
7419 note_type = NT_PRPSINFO;
7420 #endif
7421
7422 memset (&data, 0, sizeof (data));
7423 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
7424 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
7425 return elfcore_write_note (abfd, buf, bufsiz,
7426 note_name, note_type, &data, sizeof (data));
7427 }
7428 #endif /* PSINFO_T or PRPSINFO_T */
7429
7430 #if defined (HAVE_PRSTATUS_T)
7431 char *
7432 elfcore_write_prstatus (bfd *abfd,
7433 char *buf,
7434 int *bufsiz,
7435 long pid,
7436 int cursig,
7437 const void *gregs)
7438 {
7439 prstatus_t prstat;
7440 char *note_name = "CORE";
7441
7442 memset (&prstat, 0, sizeof (prstat));
7443 prstat.pr_pid = pid;
7444 prstat.pr_cursig = cursig;
7445 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
7446 return elfcore_write_note (abfd, buf, bufsiz,
7447 note_name, NT_PRSTATUS, &prstat, sizeof (prstat));
7448 }
7449 #endif /* HAVE_PRSTATUS_T */
7450
7451 #if defined (HAVE_LWPSTATUS_T)
7452 char *
7453 elfcore_write_lwpstatus (bfd *abfd,
7454 char *buf,
7455 int *bufsiz,
7456 long pid,
7457 int cursig,
7458 const void *gregs)
7459 {
7460 lwpstatus_t lwpstat;
7461 char *note_name = "CORE";
7462
7463 memset (&lwpstat, 0, sizeof (lwpstat));
7464 lwpstat.pr_lwpid = pid >> 16;
7465 lwpstat.pr_cursig = cursig;
7466 #if defined (HAVE_LWPSTATUS_T_PR_REG)
7467 memcpy (lwpstat.pr_reg, gregs, sizeof (lwpstat.pr_reg));
7468 #elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7469 #if !defined(gregs)
7470 memcpy (lwpstat.pr_context.uc_mcontext.gregs,
7471 gregs, sizeof (lwpstat.pr_context.uc_mcontext.gregs));
7472 #else
7473 memcpy (lwpstat.pr_context.uc_mcontext.__gregs,
7474 gregs, sizeof (lwpstat.pr_context.uc_mcontext.__gregs));
7475 #endif
7476 #endif
7477 return elfcore_write_note (abfd, buf, bufsiz, note_name,
7478 NT_LWPSTATUS, &lwpstat, sizeof (lwpstat));
7479 }
7480 #endif /* HAVE_LWPSTATUS_T */
7481
7482 #if defined (HAVE_PSTATUS_T)
7483 char *
7484 elfcore_write_pstatus (bfd *abfd,
7485 char *buf,
7486 int *bufsiz,
7487 long pid,
7488 int cursig,
7489 const void *gregs)
7490 {
7491 pstatus_t pstat;
7492 char *note_name = "CORE";
7493
7494 memset (&pstat, 0, sizeof (pstat));
7495 pstat.pr_pid = pid & 0xffff;
7496 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
7497 NT_PSTATUS, &pstat, sizeof (pstat));
7498 return buf;
7499 }
7500 #endif /* HAVE_PSTATUS_T */
7501
7502 char *
7503 elfcore_write_prfpreg (bfd *abfd,
7504 char *buf,
7505 int *bufsiz,
7506 const void *fpregs,
7507 int size)
7508 {
7509 char *note_name = "CORE";
7510 return elfcore_write_note (abfd, buf, bufsiz,
7511 note_name, NT_FPREGSET, fpregs, size);
7512 }
7513
7514 char *
7515 elfcore_write_prxfpreg (bfd *abfd,
7516 char *buf,
7517 int *bufsiz,
7518 const void *xfpregs,
7519 int size)
7520 {
7521 char *note_name = "LINUX";
7522 return elfcore_write_note (abfd, buf, bufsiz,
7523 note_name, NT_PRXFPREG, xfpregs, size);
7524 }
7525
7526 static bfd_boolean
7527 elfcore_read_notes (bfd *abfd, file_ptr offset, bfd_size_type size)
7528 {
7529 char *buf;
7530 char *p;
7531
7532 if (size <= 0)
7533 return TRUE;
7534
7535 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
7536 return FALSE;
7537
7538 buf = bfd_malloc (size);
7539 if (buf == NULL)
7540 return FALSE;
7541
7542 if (bfd_bread (buf, size, abfd) != size)
7543 {
7544 error:
7545 free (buf);
7546 return FALSE;
7547 }
7548
7549 p = buf;
7550 while (p < buf + size)
7551 {
7552 /* FIXME: bad alignment assumption. */
7553 Elf_External_Note *xnp = (Elf_External_Note *) p;
7554 Elf_Internal_Note in;
7555
7556 in.type = H_GET_32 (abfd, xnp->type);
7557
7558 in.namesz = H_GET_32 (abfd, xnp->namesz);
7559 in.namedata = xnp->name;
7560
7561 in.descsz = H_GET_32 (abfd, xnp->descsz);
7562 in.descdata = in.namedata + BFD_ALIGN (in.namesz, 4);
7563 in.descpos = offset + (in.descdata - buf);
7564
7565 if (strncmp (in.namedata, "NetBSD-CORE", 11) == 0)
7566 {
7567 if (! elfcore_grok_netbsd_note (abfd, &in))
7568 goto error;
7569 }
7570 else if (strncmp (in.namedata, "QNX", 3) == 0)
7571 {
7572 if (! elfcore_grok_nto_note (abfd, &in))
7573 goto error;
7574 }
7575 else
7576 {
7577 if (! elfcore_grok_note (abfd, &in))
7578 goto error;
7579 }
7580
7581 p = in.descdata + BFD_ALIGN (in.descsz, 4);
7582 }
7583
7584 free (buf);
7585 return TRUE;
7586 }
7587 \f
7588 /* Providing external access to the ELF program header table. */
7589
7590 /* Return an upper bound on the number of bytes required to store a
7591 copy of ABFD's program header table entries. Return -1 if an error
7592 occurs; bfd_get_error will return an appropriate code. */
7593
7594 long
7595 bfd_get_elf_phdr_upper_bound (bfd *abfd)
7596 {
7597 if (abfd->xvec->flavour != bfd_target_elf_flavour)
7598 {
7599 bfd_set_error (bfd_error_wrong_format);
7600 return -1;
7601 }
7602
7603 return elf_elfheader (abfd)->e_phnum * sizeof (Elf_Internal_Phdr);
7604 }
7605
7606 /* Copy ABFD's program header table entries to *PHDRS. The entries
7607 will be stored as an array of Elf_Internal_Phdr structures, as
7608 defined in include/elf/internal.h. To find out how large the
7609 buffer needs to be, call bfd_get_elf_phdr_upper_bound.
7610
7611 Return the number of program header table entries read, or -1 if an
7612 error occurs; bfd_get_error will return an appropriate code. */
7613
7614 int
7615 bfd_get_elf_phdrs (bfd *abfd, void *phdrs)
7616 {
7617 int num_phdrs;
7618
7619 if (abfd->xvec->flavour != bfd_target_elf_flavour)
7620 {
7621 bfd_set_error (bfd_error_wrong_format);
7622 return -1;
7623 }
7624
7625 num_phdrs = elf_elfheader (abfd)->e_phnum;
7626 memcpy (phdrs, elf_tdata (abfd)->phdr,
7627 num_phdrs * sizeof (Elf_Internal_Phdr));
7628
7629 return num_phdrs;
7630 }
7631
7632 void
7633 _bfd_elf_sprintf_vma (bfd *abfd ATTRIBUTE_UNUSED, char *buf, bfd_vma value)
7634 {
7635 #ifdef BFD64
7636 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
7637
7638 i_ehdrp = elf_elfheader (abfd);
7639 if (i_ehdrp == NULL)
7640 sprintf_vma (buf, value);
7641 else
7642 {
7643 if (i_ehdrp->e_ident[EI_CLASS] == ELFCLASS64)
7644 {
7645 #if BFD_HOST_64BIT_LONG
7646 sprintf (buf, "%016lx", value);
7647 #else
7648 sprintf (buf, "%08lx%08lx", _bfd_int64_high (value),
7649 _bfd_int64_low (value));
7650 #endif
7651 }
7652 else
7653 sprintf (buf, "%08lx", (unsigned long) (value & 0xffffffff));
7654 }
7655 #else
7656 sprintf_vma (buf, value);
7657 #endif
7658 }
7659
7660 void
7661 _bfd_elf_fprintf_vma (bfd *abfd ATTRIBUTE_UNUSED, void *stream, bfd_vma value)
7662 {
7663 #ifdef BFD64
7664 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
7665
7666 i_ehdrp = elf_elfheader (abfd);
7667 if (i_ehdrp == NULL)
7668 fprintf_vma ((FILE *) stream, value);
7669 else
7670 {
7671 if (i_ehdrp->e_ident[EI_CLASS] == ELFCLASS64)
7672 {
7673 #if BFD_HOST_64BIT_LONG
7674 fprintf ((FILE *) stream, "%016lx", value);
7675 #else
7676 fprintf ((FILE *) stream, "%08lx%08lx",
7677 _bfd_int64_high (value), _bfd_int64_low (value));
7678 #endif
7679 }
7680 else
7681 fprintf ((FILE *) stream, "%08lx",
7682 (unsigned long) (value & 0xffffffff));
7683 }
7684 #else
7685 fprintf_vma ((FILE *) stream, value);
7686 #endif
7687 }
7688
7689 enum elf_reloc_type_class
7690 _bfd_elf_reloc_type_class (const Elf_Internal_Rela *rela ATTRIBUTE_UNUSED)
7691 {
7692 return reloc_class_normal;
7693 }
7694
7695 /* For RELA architectures, return the relocation value for a
7696 relocation against a local symbol. */
7697
7698 bfd_vma
7699 _bfd_elf_rela_local_sym (bfd *abfd,
7700 Elf_Internal_Sym *sym,
7701 asection **psec,
7702 Elf_Internal_Rela *rel)
7703 {
7704 asection *sec = *psec;
7705 bfd_vma relocation;
7706
7707 relocation = (sec->output_section->vma
7708 + sec->output_offset
7709 + sym->st_value);
7710 if ((sec->flags & SEC_MERGE)
7711 && ELF_ST_TYPE (sym->st_info) == STT_SECTION
7712 && sec->sec_info_type == ELF_INFO_TYPE_MERGE)
7713 {
7714 rel->r_addend =
7715 _bfd_merged_section_offset (abfd, psec,
7716 elf_section_data (sec)->sec_info,
7717 sym->st_value + rel->r_addend);
7718 if (sec != *psec)
7719 {
7720 /* If we have changed the section, and our original section is
7721 marked with SEC_EXCLUDE, it means that the original
7722 SEC_MERGE section has been completely subsumed in some
7723 other SEC_MERGE section. In this case, we need to leave
7724 some info around for --emit-relocs. */
7725 if ((sec->flags & SEC_EXCLUDE) != 0)
7726 sec->kept_section = *psec;
7727 sec = *psec;
7728 }
7729 rel->r_addend -= relocation;
7730 rel->r_addend += sec->output_section->vma + sec->output_offset;
7731 }
7732 return relocation;
7733 }
7734
7735 bfd_vma
7736 _bfd_elf_rel_local_sym (bfd *abfd,
7737 Elf_Internal_Sym *sym,
7738 asection **psec,
7739 bfd_vma addend)
7740 {
7741 asection *sec = *psec;
7742
7743 if (sec->sec_info_type != ELF_INFO_TYPE_MERGE)
7744 return sym->st_value + addend;
7745
7746 return _bfd_merged_section_offset (abfd, psec,
7747 elf_section_data (sec)->sec_info,
7748 sym->st_value + addend);
7749 }
7750
7751 bfd_vma
7752 _bfd_elf_section_offset (bfd *abfd,
7753 struct bfd_link_info *info ATTRIBUTE_UNUSED,
7754 asection *sec,
7755 bfd_vma offset)
7756 {
7757 switch (sec->sec_info_type)
7758 {
7759 case ELF_INFO_TYPE_STABS:
7760 return _bfd_stab_section_offset (sec, elf_section_data (sec)->sec_info,
7761 offset);
7762 case ELF_INFO_TYPE_EH_FRAME:
7763 return _bfd_elf_eh_frame_section_offset (abfd, sec, offset);
7764 default:
7765 return offset;
7766 }
7767 }
7768 \f
7769 /* Create a new BFD as if by bfd_openr. Rather than opening a file,
7770 reconstruct an ELF file by reading the segments out of remote memory
7771 based on the ELF file header at EHDR_VMA and the ELF program headers it
7772 points to. If not null, *LOADBASEP is filled in with the difference
7773 between the VMAs from which the segments were read, and the VMAs the
7774 file headers (and hence BFD's idea of each section's VMA) put them at.
7775
7776 The function TARGET_READ_MEMORY is called to copy LEN bytes from the
7777 remote memory at target address VMA into the local buffer at MYADDR; it
7778 should return zero on success or an `errno' code on failure. TEMPL must
7779 be a BFD for an ELF target with the word size and byte order found in
7780 the remote memory. */
7781
7782 bfd *
7783 bfd_elf_bfd_from_remote_memory
7784 (bfd *templ,
7785 bfd_vma ehdr_vma,
7786 bfd_vma *loadbasep,
7787 int (*target_read_memory) (bfd_vma, char *, int))
7788 {
7789 return (*get_elf_backend_data (templ)->elf_backend_bfd_from_remote_memory)
7790 (templ, ehdr_vma, loadbasep, target_read_memory);
7791 }
7792 \f
7793 long
7794 _bfd_elf_get_synthetic_symtab (bfd *abfd,
7795 long symcount ATTRIBUTE_UNUSED,
7796 asymbol **syms ATTRIBUTE_UNUSED,
7797 long dynsymcount ATTRIBUTE_UNUSED,
7798 asymbol **dynsyms,
7799 asymbol **ret)
7800 {
7801 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7802 asection *relplt;
7803 asymbol *s;
7804 const char *relplt_name;
7805 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
7806 arelent *p;
7807 long count, i, n;
7808 size_t size;
7809 Elf_Internal_Shdr *hdr;
7810 char *names;
7811 asection *plt;
7812
7813 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0)
7814 return 0;
7815
7816 *ret = NULL;
7817 if (!bed->plt_sym_val)
7818 return 0;
7819
7820 relplt_name = bed->relplt_name;
7821 if (relplt_name == NULL)
7822 relplt_name = bed->default_use_rela_p ? ".rela.plt" : ".rel.plt";
7823 relplt = bfd_get_section_by_name (abfd, relplt_name);
7824 if (relplt == NULL)
7825 return 0;
7826
7827 hdr = &elf_section_data (relplt)->this_hdr;
7828 if (hdr->sh_link != elf_dynsymtab (abfd)
7829 || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA))
7830 return 0;
7831
7832 plt = bfd_get_section_by_name (abfd, ".plt");
7833 if (plt == NULL)
7834 return 0;
7835
7836 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
7837 if (! (*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
7838 return -1;
7839
7840 count = relplt->size / hdr->sh_entsize;
7841 size = count * sizeof (asymbol);
7842 p = relplt->relocation;
7843 for (i = 0; i < count; i++, s++, p++)
7844 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
7845
7846 s = *ret = bfd_malloc (size);
7847 if (s == NULL)
7848 return -1;
7849
7850 names = (char *) (s + count);
7851 p = relplt->relocation;
7852 n = 0;
7853 for (i = 0; i < count; i++, s++, p++)
7854 {
7855 size_t len;
7856 bfd_vma addr;
7857
7858 addr = bed->plt_sym_val (i, plt, p);
7859 if (addr == (bfd_vma) -1)
7860 continue;
7861
7862 *s = **p->sym_ptr_ptr;
7863 s->section = plt;
7864 s->value = addr - plt->vma;
7865 s->name = names;
7866 len = strlen ((*p->sym_ptr_ptr)->name);
7867 memcpy (names, (*p->sym_ptr_ptr)->name, len);
7868 names += len;
7869 memcpy (names, "@plt", sizeof ("@plt"));
7870 names += sizeof ("@plt");
7871 ++n;
7872 }
7873
7874 return n;
7875 }
7876
7877 /* Sort symbol by binding and section. We want to put definitions
7878 sorted by section at the beginning. */
7879
7880 static int
7881 elf_sort_elf_symbol (const void *arg1, const void *arg2)
7882 {
7883 const Elf_Internal_Sym *s1;
7884 const Elf_Internal_Sym *s2;
7885 int shndx;
7886
7887 /* Make sure that undefined symbols are at the end. */
7888 s1 = (const Elf_Internal_Sym *) arg1;
7889 if (s1->st_shndx == SHN_UNDEF)
7890 return 1;
7891 s2 = (const Elf_Internal_Sym *) arg2;
7892 if (s2->st_shndx == SHN_UNDEF)
7893 return -1;
7894
7895 /* Sorted by section index. */
7896 shndx = s1->st_shndx - s2->st_shndx;
7897 if (shndx != 0)
7898 return shndx;
7899
7900 /* Sorted by binding. */
7901 return ELF_ST_BIND (s1->st_info) - ELF_ST_BIND (s2->st_info);
7902 }
7903
7904 struct elf_symbol
7905 {
7906 Elf_Internal_Sym *sym;
7907 const char *name;
7908 };
7909
7910 static int
7911 elf_sym_name_compare (const void *arg1, const void *arg2)
7912 {
7913 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
7914 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
7915 return strcmp (s1->name, s2->name);
7916 }
7917
7918 /* Check if 2 sections define the same set of local and global
7919 symbols. */
7920
7921 bfd_boolean
7922 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2)
7923 {
7924 bfd *bfd1, *bfd2;
7925 const struct elf_backend_data *bed1, *bed2;
7926 Elf_Internal_Shdr *hdr1, *hdr2;
7927 bfd_size_type symcount1, symcount2;
7928 Elf_Internal_Sym *isymbuf1, *isymbuf2;
7929 Elf_Internal_Sym *isymstart1 = NULL, *isymstart2 = NULL, *isym;
7930 Elf_Internal_Sym *isymend;
7931 struct elf_symbol *symp, *symtable1 = NULL, *symtable2 = NULL;
7932 bfd_size_type count1, count2, i;
7933 int shndx1, shndx2;
7934 bfd_boolean result;
7935
7936 bfd1 = sec1->owner;
7937 bfd2 = sec2->owner;
7938
7939 /* If both are .gnu.linkonce sections, they have to have the same
7940 section name. */
7941 if (strncmp (sec1->name, ".gnu.linkonce",
7942 sizeof ".gnu.linkonce" - 1) == 0
7943 && strncmp (sec2->name, ".gnu.linkonce",
7944 sizeof ".gnu.linkonce" - 1) == 0)
7945 return strcmp (sec1->name + sizeof ".gnu.linkonce",
7946 sec2->name + sizeof ".gnu.linkonce") == 0;
7947
7948 /* Both sections have to be in ELF. */
7949 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
7950 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
7951 return FALSE;
7952
7953 if (elf_section_type (sec1) != elf_section_type (sec2))
7954 return FALSE;
7955
7956 if ((elf_section_flags (sec1) & SHF_GROUP) != 0
7957 && (elf_section_flags (sec2) & SHF_GROUP) != 0)
7958 {
7959 /* If both are members of section groups, they have to have the
7960 same group name. */
7961 if (strcmp (elf_group_name (sec1), elf_group_name (sec2)) != 0)
7962 return FALSE;
7963 }
7964
7965 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
7966 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
7967 if (shndx1 == -1 || shndx2 == -1)
7968 return FALSE;
7969
7970 bed1 = get_elf_backend_data (bfd1);
7971 bed2 = get_elf_backend_data (bfd2);
7972 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
7973 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
7974 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
7975 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
7976
7977 if (symcount1 == 0 || symcount2 == 0)
7978 return FALSE;
7979
7980 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
7981 NULL, NULL, NULL);
7982 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
7983 NULL, NULL, NULL);
7984
7985 result = FALSE;
7986 if (isymbuf1 == NULL || isymbuf2 == NULL)
7987 goto done;
7988
7989 /* Sort symbols by binding and section. Global definitions are at
7990 the beginning. */
7991 qsort (isymbuf1, symcount1, sizeof (Elf_Internal_Sym),
7992 elf_sort_elf_symbol);
7993 qsort (isymbuf2, symcount2, sizeof (Elf_Internal_Sym),
7994 elf_sort_elf_symbol);
7995
7996 /* Count definitions in the section. */
7997 count1 = 0;
7998 for (isym = isymbuf1, isymend = isym + symcount1;
7999 isym < isymend; isym++)
8000 {
8001 if (isym->st_shndx == (unsigned int) shndx1)
8002 {
8003 if (count1 == 0)
8004 isymstart1 = isym;
8005 count1++;
8006 }
8007
8008 if (count1 && isym->st_shndx != (unsigned int) shndx1)
8009 break;
8010 }
8011
8012 count2 = 0;
8013 for (isym = isymbuf2, isymend = isym + symcount2;
8014 isym < isymend; isym++)
8015 {
8016 if (isym->st_shndx == (unsigned int) shndx2)
8017 {
8018 if (count2 == 0)
8019 isymstart2 = isym;
8020 count2++;
8021 }
8022
8023 if (count2 && isym->st_shndx != (unsigned int) shndx2)
8024 break;
8025 }
8026
8027 if (count1 == 0 || count2 == 0 || count1 != count2)
8028 goto done;
8029
8030 symtable1 = bfd_malloc (count1 * sizeof (struct elf_symbol));
8031 symtable2 = bfd_malloc (count1 * sizeof (struct elf_symbol));
8032
8033 if (symtable1 == NULL || symtable2 == NULL)
8034 goto done;
8035
8036 symp = symtable1;
8037 for (isym = isymstart1, isymend = isym + count1;
8038 isym < isymend; isym++)
8039 {
8040 symp->sym = isym;
8041 symp->name = bfd_elf_string_from_elf_section (bfd1,
8042 hdr1->sh_link,
8043 isym->st_name);
8044 symp++;
8045 }
8046
8047 symp = symtable2;
8048 for (isym = isymstart2, isymend = isym + count1;
8049 isym < isymend; isym++)
8050 {
8051 symp->sym = isym;
8052 symp->name = bfd_elf_string_from_elf_section (bfd2,
8053 hdr2->sh_link,
8054 isym->st_name);
8055 symp++;
8056 }
8057
8058 /* Sort symbol by name. */
8059 qsort (symtable1, count1, sizeof (struct elf_symbol),
8060 elf_sym_name_compare);
8061 qsort (symtable2, count1, sizeof (struct elf_symbol),
8062 elf_sym_name_compare);
8063
8064 for (i = 0; i < count1; i++)
8065 /* Two symbols must have the same binding, type and name. */
8066 if (symtable1 [i].sym->st_info != symtable2 [i].sym->st_info
8067 || symtable1 [i].sym->st_other != symtable2 [i].sym->st_other
8068 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
8069 goto done;
8070
8071 result = TRUE;
8072
8073 done:
8074 if (symtable1)
8075 free (symtable1);
8076 if (symtable2)
8077 free (symtable2);
8078 if (isymbuf1)
8079 free (isymbuf1);
8080 if (isymbuf2)
8081 free (isymbuf2);
8082
8083 return result;
8084 }
This page took 0.202275 seconds and 4 git commands to generate.