daily update
[deliverable/binutils-gdb.git] / bfd / elf.c
1 /* ELF executable support for BFD.
2
3 Copyright (C) 1993-2014 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
21
22
23 /*
24 SECTION
25 ELF backends
26
27 BFD support for ELF formats is being worked on.
28 Currently, the best supported back ends are for sparc and i386
29 (running svr4 or Solaris 2).
30
31 Documentation of the internals of the support code still needs
32 to be written. The code is changing quickly enough that we
33 haven't bothered yet. */
34
35 /* For sparc64-cross-sparc32. */
36 #define _SYSCALL32
37 #include "sysdep.h"
38 #include "bfd.h"
39 #include "bfdlink.h"
40 #include "libbfd.h"
41 #define ARCH_SIZE 0
42 #include "elf-bfd.h"
43 #include "libiberty.h"
44 #include "safe-ctype.h"
45 #include "elf-linux-psinfo.h"
46
47 #ifdef CORE_HEADER
48 #include CORE_HEADER
49 #endif
50
51 static int elf_sort_sections (const void *, const void *);
52 static bfd_boolean assign_file_positions_except_relocs (bfd *, struct bfd_link_info *);
53 static bfd_boolean prep_headers (bfd *);
54 static bfd_boolean swap_out_syms (bfd *, struct bfd_strtab_hash **, int) ;
55 static bfd_boolean elf_read_notes (bfd *, file_ptr, bfd_size_type) ;
56 static bfd_boolean elf_parse_notes (bfd *abfd, char *buf, size_t size,
57 file_ptr offset);
58
59 /* Swap version information in and out. The version information is
60 currently size independent. If that ever changes, this code will
61 need to move into elfcode.h. */
62
63 /* Swap in a Verdef structure. */
64
65 void
66 _bfd_elf_swap_verdef_in (bfd *abfd,
67 const Elf_External_Verdef *src,
68 Elf_Internal_Verdef *dst)
69 {
70 dst->vd_version = H_GET_16 (abfd, src->vd_version);
71 dst->vd_flags = H_GET_16 (abfd, src->vd_flags);
72 dst->vd_ndx = H_GET_16 (abfd, src->vd_ndx);
73 dst->vd_cnt = H_GET_16 (abfd, src->vd_cnt);
74 dst->vd_hash = H_GET_32 (abfd, src->vd_hash);
75 dst->vd_aux = H_GET_32 (abfd, src->vd_aux);
76 dst->vd_next = H_GET_32 (abfd, src->vd_next);
77 }
78
79 /* Swap out a Verdef structure. */
80
81 void
82 _bfd_elf_swap_verdef_out (bfd *abfd,
83 const Elf_Internal_Verdef *src,
84 Elf_External_Verdef *dst)
85 {
86 H_PUT_16 (abfd, src->vd_version, dst->vd_version);
87 H_PUT_16 (abfd, src->vd_flags, dst->vd_flags);
88 H_PUT_16 (abfd, src->vd_ndx, dst->vd_ndx);
89 H_PUT_16 (abfd, src->vd_cnt, dst->vd_cnt);
90 H_PUT_32 (abfd, src->vd_hash, dst->vd_hash);
91 H_PUT_32 (abfd, src->vd_aux, dst->vd_aux);
92 H_PUT_32 (abfd, src->vd_next, dst->vd_next);
93 }
94
95 /* Swap in a Verdaux structure. */
96
97 void
98 _bfd_elf_swap_verdaux_in (bfd *abfd,
99 const Elf_External_Verdaux *src,
100 Elf_Internal_Verdaux *dst)
101 {
102 dst->vda_name = H_GET_32 (abfd, src->vda_name);
103 dst->vda_next = H_GET_32 (abfd, src->vda_next);
104 }
105
106 /* Swap out a Verdaux structure. */
107
108 void
109 _bfd_elf_swap_verdaux_out (bfd *abfd,
110 const Elf_Internal_Verdaux *src,
111 Elf_External_Verdaux *dst)
112 {
113 H_PUT_32 (abfd, src->vda_name, dst->vda_name);
114 H_PUT_32 (abfd, src->vda_next, dst->vda_next);
115 }
116
117 /* Swap in a Verneed structure. */
118
119 void
120 _bfd_elf_swap_verneed_in (bfd *abfd,
121 const Elf_External_Verneed *src,
122 Elf_Internal_Verneed *dst)
123 {
124 dst->vn_version = H_GET_16 (abfd, src->vn_version);
125 dst->vn_cnt = H_GET_16 (abfd, src->vn_cnt);
126 dst->vn_file = H_GET_32 (abfd, src->vn_file);
127 dst->vn_aux = H_GET_32 (abfd, src->vn_aux);
128 dst->vn_next = H_GET_32 (abfd, src->vn_next);
129 }
130
131 /* Swap out a Verneed structure. */
132
133 void
134 _bfd_elf_swap_verneed_out (bfd *abfd,
135 const Elf_Internal_Verneed *src,
136 Elf_External_Verneed *dst)
137 {
138 H_PUT_16 (abfd, src->vn_version, dst->vn_version);
139 H_PUT_16 (abfd, src->vn_cnt, dst->vn_cnt);
140 H_PUT_32 (abfd, src->vn_file, dst->vn_file);
141 H_PUT_32 (abfd, src->vn_aux, dst->vn_aux);
142 H_PUT_32 (abfd, src->vn_next, dst->vn_next);
143 }
144
145 /* Swap in a Vernaux structure. */
146
147 void
148 _bfd_elf_swap_vernaux_in (bfd *abfd,
149 const Elf_External_Vernaux *src,
150 Elf_Internal_Vernaux *dst)
151 {
152 dst->vna_hash = H_GET_32 (abfd, src->vna_hash);
153 dst->vna_flags = H_GET_16 (abfd, src->vna_flags);
154 dst->vna_other = H_GET_16 (abfd, src->vna_other);
155 dst->vna_name = H_GET_32 (abfd, src->vna_name);
156 dst->vna_next = H_GET_32 (abfd, src->vna_next);
157 }
158
159 /* Swap out a Vernaux structure. */
160
161 void
162 _bfd_elf_swap_vernaux_out (bfd *abfd,
163 const Elf_Internal_Vernaux *src,
164 Elf_External_Vernaux *dst)
165 {
166 H_PUT_32 (abfd, src->vna_hash, dst->vna_hash);
167 H_PUT_16 (abfd, src->vna_flags, dst->vna_flags);
168 H_PUT_16 (abfd, src->vna_other, dst->vna_other);
169 H_PUT_32 (abfd, src->vna_name, dst->vna_name);
170 H_PUT_32 (abfd, src->vna_next, dst->vna_next);
171 }
172
173 /* Swap in a Versym structure. */
174
175 void
176 _bfd_elf_swap_versym_in (bfd *abfd,
177 const Elf_External_Versym *src,
178 Elf_Internal_Versym *dst)
179 {
180 dst->vs_vers = H_GET_16 (abfd, src->vs_vers);
181 }
182
183 /* Swap out a Versym structure. */
184
185 void
186 _bfd_elf_swap_versym_out (bfd *abfd,
187 const Elf_Internal_Versym *src,
188 Elf_External_Versym *dst)
189 {
190 H_PUT_16 (abfd, src->vs_vers, dst->vs_vers);
191 }
192
193 /* Standard ELF hash function. Do not change this function; you will
194 cause invalid hash tables to be generated. */
195
196 unsigned long
197 bfd_elf_hash (const char *namearg)
198 {
199 const unsigned char *name = (const unsigned char *) namearg;
200 unsigned long h = 0;
201 unsigned long g;
202 int ch;
203
204 while ((ch = *name++) != '\0')
205 {
206 h = (h << 4) + ch;
207 if ((g = (h & 0xf0000000)) != 0)
208 {
209 h ^= g >> 24;
210 /* The ELF ABI says `h &= ~g', but this is equivalent in
211 this case and on some machines one insn instead of two. */
212 h ^= g;
213 }
214 }
215 return h & 0xffffffff;
216 }
217
218 /* DT_GNU_HASH hash function. Do not change this function; you will
219 cause invalid hash tables to be generated. */
220
221 unsigned long
222 bfd_elf_gnu_hash (const char *namearg)
223 {
224 const unsigned char *name = (const unsigned char *) namearg;
225 unsigned long h = 5381;
226 unsigned char ch;
227
228 while ((ch = *name++) != '\0')
229 h = (h << 5) + h + ch;
230 return h & 0xffffffff;
231 }
232
233 /* Create a tdata field OBJECT_SIZE bytes in length, zeroed out and with
234 the object_id field of an elf_obj_tdata field set to OBJECT_ID. */
235 bfd_boolean
236 bfd_elf_allocate_object (bfd *abfd,
237 size_t object_size,
238 enum elf_target_id object_id)
239 {
240 BFD_ASSERT (object_size >= sizeof (struct elf_obj_tdata));
241 abfd->tdata.any = bfd_zalloc (abfd, object_size);
242 if (abfd->tdata.any == NULL)
243 return FALSE;
244
245 elf_object_id (abfd) = object_id;
246 if (abfd->direction != read_direction)
247 {
248 struct output_elf_obj_tdata *o = bfd_zalloc (abfd, sizeof *o);
249 if (o == NULL)
250 return FALSE;
251 elf_tdata (abfd)->o = o;
252 elf_program_header_size (abfd) = (bfd_size_type) -1;
253 }
254 return TRUE;
255 }
256
257
258 bfd_boolean
259 bfd_elf_make_object (bfd *abfd)
260 {
261 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
262 return bfd_elf_allocate_object (abfd, sizeof (struct elf_obj_tdata),
263 bed->target_id);
264 }
265
266 bfd_boolean
267 bfd_elf_mkcorefile (bfd *abfd)
268 {
269 /* I think this can be done just like an object file. */
270 if (!abfd->xvec->_bfd_set_format[(int) bfd_object] (abfd))
271 return FALSE;
272 elf_tdata (abfd)->core = bfd_zalloc (abfd, sizeof (*elf_tdata (abfd)->core));
273 return elf_tdata (abfd)->core != NULL;
274 }
275
276 static char *
277 bfd_elf_get_str_section (bfd *abfd, unsigned int shindex)
278 {
279 Elf_Internal_Shdr **i_shdrp;
280 bfd_byte *shstrtab = NULL;
281 file_ptr offset;
282 bfd_size_type shstrtabsize;
283
284 i_shdrp = elf_elfsections (abfd);
285 if (i_shdrp == 0
286 || shindex >= elf_numsections (abfd)
287 || i_shdrp[shindex] == 0)
288 return NULL;
289
290 shstrtab = i_shdrp[shindex]->contents;
291 if (shstrtab == NULL)
292 {
293 /* No cached one, attempt to read, and cache what we read. */
294 offset = i_shdrp[shindex]->sh_offset;
295 shstrtabsize = i_shdrp[shindex]->sh_size;
296
297 /* Allocate and clear an extra byte at the end, to prevent crashes
298 in case the string table is not terminated. */
299 if (shstrtabsize + 1 <= 1
300 || (shstrtab = (bfd_byte *) bfd_alloc (abfd, shstrtabsize + 1)) == NULL
301 || bfd_seek (abfd, offset, SEEK_SET) != 0)
302 shstrtab = NULL;
303 else if (bfd_bread (shstrtab, shstrtabsize, abfd) != shstrtabsize)
304 {
305 if (bfd_get_error () != bfd_error_system_call)
306 bfd_set_error (bfd_error_file_truncated);
307 shstrtab = NULL;
308 /* Once we've failed to read it, make sure we don't keep
309 trying. Otherwise, we'll keep allocating space for
310 the string table over and over. */
311 i_shdrp[shindex]->sh_size = 0;
312 }
313 else
314 shstrtab[shstrtabsize] = '\0';
315 i_shdrp[shindex]->contents = shstrtab;
316 }
317 return (char *) shstrtab;
318 }
319
320 char *
321 bfd_elf_string_from_elf_section (bfd *abfd,
322 unsigned int shindex,
323 unsigned int strindex)
324 {
325 Elf_Internal_Shdr *hdr;
326
327 if (strindex == 0)
328 return "";
329
330 if (elf_elfsections (abfd) == NULL || shindex >= elf_numsections (abfd))
331 return NULL;
332
333 hdr = elf_elfsections (abfd)[shindex];
334
335 if (hdr->contents == NULL
336 && bfd_elf_get_str_section (abfd, shindex) == NULL)
337 return NULL;
338
339 if (strindex >= hdr->sh_size)
340 {
341 unsigned int shstrndx = elf_elfheader(abfd)->e_shstrndx;
342 (*_bfd_error_handler)
343 (_("%B: invalid string offset %u >= %lu for section `%s'"),
344 abfd, strindex, (unsigned long) hdr->sh_size,
345 (shindex == shstrndx && strindex == hdr->sh_name
346 ? ".shstrtab"
347 : bfd_elf_string_from_elf_section (abfd, shstrndx, hdr->sh_name)));
348 return NULL;
349 }
350
351 return ((char *) hdr->contents) + strindex;
352 }
353
354 /* Read and convert symbols to internal format.
355 SYMCOUNT specifies the number of symbols to read, starting from
356 symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF
357 are non-NULL, they are used to store the internal symbols, external
358 symbols, and symbol section index extensions, respectively.
359 Returns a pointer to the internal symbol buffer (malloced if necessary)
360 or NULL if there were no symbols or some kind of problem. */
361
362 Elf_Internal_Sym *
363 bfd_elf_get_elf_syms (bfd *ibfd,
364 Elf_Internal_Shdr *symtab_hdr,
365 size_t symcount,
366 size_t symoffset,
367 Elf_Internal_Sym *intsym_buf,
368 void *extsym_buf,
369 Elf_External_Sym_Shndx *extshndx_buf)
370 {
371 Elf_Internal_Shdr *shndx_hdr;
372 void *alloc_ext;
373 const bfd_byte *esym;
374 Elf_External_Sym_Shndx *alloc_extshndx;
375 Elf_External_Sym_Shndx *shndx;
376 Elf_Internal_Sym *alloc_intsym;
377 Elf_Internal_Sym *isym;
378 Elf_Internal_Sym *isymend;
379 const struct elf_backend_data *bed;
380 size_t extsym_size;
381 bfd_size_type amt;
382 file_ptr pos;
383
384 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
385 abort ();
386
387 if (symcount == 0)
388 return intsym_buf;
389
390 /* Normal syms might have section extension entries. */
391 shndx_hdr = NULL;
392 if (symtab_hdr == &elf_tdata (ibfd)->symtab_hdr)
393 shndx_hdr = &elf_tdata (ibfd)->symtab_shndx_hdr;
394
395 /* Read the symbols. */
396 alloc_ext = NULL;
397 alloc_extshndx = NULL;
398 alloc_intsym = NULL;
399 bed = get_elf_backend_data (ibfd);
400 extsym_size = bed->s->sizeof_sym;
401 amt = symcount * extsym_size;
402 pos = symtab_hdr->sh_offset + symoffset * extsym_size;
403 if (extsym_buf == NULL)
404 {
405 alloc_ext = bfd_malloc2 (symcount, extsym_size);
406 extsym_buf = alloc_ext;
407 }
408 if (extsym_buf == NULL
409 || bfd_seek (ibfd, pos, SEEK_SET) != 0
410 || bfd_bread (extsym_buf, amt, ibfd) != amt)
411 {
412 intsym_buf = NULL;
413 goto out;
414 }
415
416 if (shndx_hdr == NULL || shndx_hdr->sh_size == 0)
417 extshndx_buf = NULL;
418 else
419 {
420 amt = symcount * sizeof (Elf_External_Sym_Shndx);
421 pos = shndx_hdr->sh_offset + symoffset * sizeof (Elf_External_Sym_Shndx);
422 if (extshndx_buf == NULL)
423 {
424 alloc_extshndx = (Elf_External_Sym_Shndx *)
425 bfd_malloc2 (symcount, sizeof (Elf_External_Sym_Shndx));
426 extshndx_buf = alloc_extshndx;
427 }
428 if (extshndx_buf == NULL
429 || bfd_seek (ibfd, pos, SEEK_SET) != 0
430 || bfd_bread (extshndx_buf, amt, ibfd) != amt)
431 {
432 intsym_buf = NULL;
433 goto out;
434 }
435 }
436
437 if (intsym_buf == NULL)
438 {
439 alloc_intsym = (Elf_Internal_Sym *)
440 bfd_malloc2 (symcount, sizeof (Elf_Internal_Sym));
441 intsym_buf = alloc_intsym;
442 if (intsym_buf == NULL)
443 goto out;
444 }
445
446 /* Convert the symbols to internal form. */
447 isymend = intsym_buf + symcount;
448 for (esym = (const bfd_byte *) extsym_buf, isym = intsym_buf,
449 shndx = extshndx_buf;
450 isym < isymend;
451 esym += extsym_size, isym++, shndx = shndx != NULL ? shndx + 1 : NULL)
452 if (!(*bed->s->swap_symbol_in) (ibfd, esym, shndx, isym))
453 {
454 symoffset += (esym - (bfd_byte *) extsym_buf) / extsym_size;
455 (*_bfd_error_handler) (_("%B symbol number %lu references "
456 "nonexistent SHT_SYMTAB_SHNDX section"),
457 ibfd, (unsigned long) symoffset);
458 if (alloc_intsym != NULL)
459 free (alloc_intsym);
460 intsym_buf = NULL;
461 goto out;
462 }
463
464 out:
465 if (alloc_ext != NULL)
466 free (alloc_ext);
467 if (alloc_extshndx != NULL)
468 free (alloc_extshndx);
469
470 return intsym_buf;
471 }
472
473 /* Look up a symbol name. */
474 const char *
475 bfd_elf_sym_name (bfd *abfd,
476 Elf_Internal_Shdr *symtab_hdr,
477 Elf_Internal_Sym *isym,
478 asection *sym_sec)
479 {
480 const char *name;
481 unsigned int iname = isym->st_name;
482 unsigned int shindex = symtab_hdr->sh_link;
483
484 if (iname == 0 && ELF_ST_TYPE (isym->st_info) == STT_SECTION
485 /* Check for a bogus st_shndx to avoid crashing. */
486 && isym->st_shndx < elf_numsections (abfd))
487 {
488 iname = elf_elfsections (abfd)[isym->st_shndx]->sh_name;
489 shindex = elf_elfheader (abfd)->e_shstrndx;
490 }
491
492 name = bfd_elf_string_from_elf_section (abfd, shindex, iname);
493 if (name == NULL)
494 name = "(null)";
495 else if (sym_sec && *name == '\0')
496 name = bfd_section_name (abfd, sym_sec);
497
498 return name;
499 }
500
501 /* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
502 sections. The first element is the flags, the rest are section
503 pointers. */
504
505 typedef union elf_internal_group {
506 Elf_Internal_Shdr *shdr;
507 unsigned int flags;
508 } Elf_Internal_Group;
509
510 /* Return the name of the group signature symbol. Why isn't the
511 signature just a string? */
512
513 static const char *
514 group_signature (bfd *abfd, Elf_Internal_Shdr *ghdr)
515 {
516 Elf_Internal_Shdr *hdr;
517 unsigned char esym[sizeof (Elf64_External_Sym)];
518 Elf_External_Sym_Shndx eshndx;
519 Elf_Internal_Sym isym;
520
521 /* First we need to ensure the symbol table is available. Make sure
522 that it is a symbol table section. */
523 if (ghdr->sh_link >= elf_numsections (abfd))
524 return NULL;
525 hdr = elf_elfsections (abfd) [ghdr->sh_link];
526 if (hdr->sh_type != SHT_SYMTAB
527 || ! bfd_section_from_shdr (abfd, ghdr->sh_link))
528 return NULL;
529
530 /* Go read the symbol. */
531 hdr = &elf_tdata (abfd)->symtab_hdr;
532 if (bfd_elf_get_elf_syms (abfd, hdr, 1, ghdr->sh_info,
533 &isym, esym, &eshndx) == NULL)
534 return NULL;
535
536 return bfd_elf_sym_name (abfd, hdr, &isym, NULL);
537 }
538
539 /* Set next_in_group list pointer, and group name for NEWSECT. */
540
541 static bfd_boolean
542 setup_group (bfd *abfd, Elf_Internal_Shdr *hdr, asection *newsect)
543 {
544 unsigned int num_group = elf_tdata (abfd)->num_group;
545
546 /* If num_group is zero, read in all SHT_GROUP sections. The count
547 is set to -1 if there are no SHT_GROUP sections. */
548 if (num_group == 0)
549 {
550 unsigned int i, shnum;
551
552 /* First count the number of groups. If we have a SHT_GROUP
553 section with just a flag word (ie. sh_size is 4), ignore it. */
554 shnum = elf_numsections (abfd);
555 num_group = 0;
556
557 #define IS_VALID_GROUP_SECTION_HEADER(shdr, minsize) \
558 ( (shdr)->sh_type == SHT_GROUP \
559 && (shdr)->sh_size >= minsize \
560 && (shdr)->sh_entsize == GRP_ENTRY_SIZE \
561 && ((shdr)->sh_size % GRP_ENTRY_SIZE) == 0)
562
563 for (i = 0; i < shnum; i++)
564 {
565 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
566
567 if (IS_VALID_GROUP_SECTION_HEADER (shdr, 2 * GRP_ENTRY_SIZE))
568 num_group += 1;
569 }
570
571 if (num_group == 0)
572 {
573 num_group = (unsigned) -1;
574 elf_tdata (abfd)->num_group = num_group;
575 }
576 else
577 {
578 /* We keep a list of elf section headers for group sections,
579 so we can find them quickly. */
580 bfd_size_type amt;
581
582 elf_tdata (abfd)->num_group = num_group;
583 elf_tdata (abfd)->group_sect_ptr = (Elf_Internal_Shdr **)
584 bfd_alloc2 (abfd, num_group, sizeof (Elf_Internal_Shdr *));
585 if (elf_tdata (abfd)->group_sect_ptr == NULL)
586 return FALSE;
587
588 num_group = 0;
589 for (i = 0; i < shnum; i++)
590 {
591 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
592
593 if (IS_VALID_GROUP_SECTION_HEADER (shdr, 2 * GRP_ENTRY_SIZE))
594 {
595 unsigned char *src;
596 Elf_Internal_Group *dest;
597
598 /* Add to list of sections. */
599 elf_tdata (abfd)->group_sect_ptr[num_group] = shdr;
600 num_group += 1;
601
602 /* Read the raw contents. */
603 BFD_ASSERT (sizeof (*dest) >= 4);
604 amt = shdr->sh_size * sizeof (*dest) / 4;
605 shdr->contents = (unsigned char *)
606 bfd_alloc2 (abfd, shdr->sh_size, sizeof (*dest) / 4);
607 /* PR binutils/4110: Handle corrupt group headers. */
608 if (shdr->contents == NULL)
609 {
610 _bfd_error_handler
611 (_("%B: Corrupt size field in group section header: 0x%lx"), abfd, shdr->sh_size);
612 bfd_set_error (bfd_error_bad_value);
613 return FALSE;
614 }
615
616 memset (shdr->contents, 0, amt);
617
618 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0
619 || (bfd_bread (shdr->contents, shdr->sh_size, abfd)
620 != shdr->sh_size))
621 return FALSE;
622
623 /* Translate raw contents, a flag word followed by an
624 array of elf section indices all in target byte order,
625 to the flag word followed by an array of elf section
626 pointers. */
627 src = shdr->contents + shdr->sh_size;
628 dest = (Elf_Internal_Group *) (shdr->contents + amt);
629 while (1)
630 {
631 unsigned int idx;
632
633 src -= 4;
634 --dest;
635 idx = H_GET_32 (abfd, src);
636 if (src == shdr->contents)
637 {
638 dest->flags = idx;
639 if (shdr->bfd_section != NULL && (idx & GRP_COMDAT))
640 shdr->bfd_section->flags
641 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
642 break;
643 }
644 if (idx >= shnum)
645 {
646 ((*_bfd_error_handler)
647 (_("%B: invalid SHT_GROUP entry"), abfd));
648 idx = 0;
649 }
650 dest->shdr = elf_elfsections (abfd)[idx];
651 }
652 }
653 }
654 }
655 }
656
657 if (num_group != (unsigned) -1)
658 {
659 unsigned int i;
660
661 for (i = 0; i < num_group; i++)
662 {
663 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
664 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
665 unsigned int n_elt = shdr->sh_size / 4;
666
667 /* Look through this group's sections to see if current
668 section is a member. */
669 while (--n_elt != 0)
670 if ((++idx)->shdr == hdr)
671 {
672 asection *s = NULL;
673
674 /* We are a member of this group. Go looking through
675 other members to see if any others are linked via
676 next_in_group. */
677 idx = (Elf_Internal_Group *) shdr->contents;
678 n_elt = shdr->sh_size / 4;
679 while (--n_elt != 0)
680 if ((s = (++idx)->shdr->bfd_section) != NULL
681 && elf_next_in_group (s) != NULL)
682 break;
683 if (n_elt != 0)
684 {
685 /* Snarf the group name from other member, and
686 insert current section in circular list. */
687 elf_group_name (newsect) = elf_group_name (s);
688 elf_next_in_group (newsect) = elf_next_in_group (s);
689 elf_next_in_group (s) = newsect;
690 }
691 else
692 {
693 const char *gname;
694
695 gname = group_signature (abfd, shdr);
696 if (gname == NULL)
697 return FALSE;
698 elf_group_name (newsect) = gname;
699
700 /* Start a circular list with one element. */
701 elf_next_in_group (newsect) = newsect;
702 }
703
704 /* If the group section has been created, point to the
705 new member. */
706 if (shdr->bfd_section != NULL)
707 elf_next_in_group (shdr->bfd_section) = newsect;
708
709 i = num_group - 1;
710 break;
711 }
712 }
713 }
714
715 if (elf_group_name (newsect) == NULL)
716 {
717 (*_bfd_error_handler) (_("%B: no group info for section %A"),
718 abfd, newsect);
719 }
720 return TRUE;
721 }
722
723 bfd_boolean
724 _bfd_elf_setup_sections (bfd *abfd)
725 {
726 unsigned int i;
727 unsigned int num_group = elf_tdata (abfd)->num_group;
728 bfd_boolean result = TRUE;
729 asection *s;
730
731 /* Process SHF_LINK_ORDER. */
732 for (s = abfd->sections; s != NULL; s = s->next)
733 {
734 Elf_Internal_Shdr *this_hdr = &elf_section_data (s)->this_hdr;
735 if ((this_hdr->sh_flags & SHF_LINK_ORDER) != 0)
736 {
737 unsigned int elfsec = this_hdr->sh_link;
738 /* FIXME: The old Intel compiler and old strip/objcopy may
739 not set the sh_link or sh_info fields. Hence we could
740 get the situation where elfsec is 0. */
741 if (elfsec == 0)
742 {
743 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
744 if (bed->link_order_error_handler)
745 bed->link_order_error_handler
746 (_("%B: warning: sh_link not set for section `%A'"),
747 abfd, s);
748 }
749 else
750 {
751 asection *linksec = NULL;
752
753 if (elfsec < elf_numsections (abfd))
754 {
755 this_hdr = elf_elfsections (abfd)[elfsec];
756 linksec = this_hdr->bfd_section;
757 }
758
759 /* PR 1991, 2008:
760 Some strip/objcopy may leave an incorrect value in
761 sh_link. We don't want to proceed. */
762 if (linksec == NULL)
763 {
764 (*_bfd_error_handler)
765 (_("%B: sh_link [%d] in section `%A' is incorrect"),
766 s->owner, s, elfsec);
767 result = FALSE;
768 }
769
770 elf_linked_to_section (s) = linksec;
771 }
772 }
773 }
774
775 /* Process section groups. */
776 if (num_group == (unsigned) -1)
777 return result;
778
779 for (i = 0; i < num_group; i++)
780 {
781 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
782 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
783 unsigned int n_elt = shdr->sh_size / 4;
784
785 while (--n_elt != 0)
786 if ((++idx)->shdr->bfd_section)
787 elf_sec_group (idx->shdr->bfd_section) = shdr->bfd_section;
788 else if (idx->shdr->sh_type == SHT_RELA
789 || idx->shdr->sh_type == SHT_REL)
790 /* We won't include relocation sections in section groups in
791 output object files. We adjust the group section size here
792 so that relocatable link will work correctly when
793 relocation sections are in section group in input object
794 files. */
795 shdr->bfd_section->size -= 4;
796 else
797 {
798 /* There are some unknown sections in the group. */
799 (*_bfd_error_handler)
800 (_("%B: unknown [%d] section `%s' in group [%s]"),
801 abfd,
802 (unsigned int) idx->shdr->sh_type,
803 bfd_elf_string_from_elf_section (abfd,
804 (elf_elfheader (abfd)
805 ->e_shstrndx),
806 idx->shdr->sh_name),
807 shdr->bfd_section->name);
808 result = FALSE;
809 }
810 }
811 return result;
812 }
813
814 bfd_boolean
815 bfd_elf_is_group_section (bfd *abfd ATTRIBUTE_UNUSED, const asection *sec)
816 {
817 return elf_next_in_group (sec) != NULL;
818 }
819
820 /* Make a BFD section from an ELF section. We store a pointer to the
821 BFD section in the bfd_section field of the header. */
822
823 bfd_boolean
824 _bfd_elf_make_section_from_shdr (bfd *abfd,
825 Elf_Internal_Shdr *hdr,
826 const char *name,
827 int shindex)
828 {
829 asection *newsect;
830 flagword flags;
831 const struct elf_backend_data *bed;
832
833 if (hdr->bfd_section != NULL)
834 return TRUE;
835
836 newsect = bfd_make_section_anyway (abfd, name);
837 if (newsect == NULL)
838 return FALSE;
839
840 hdr->bfd_section = newsect;
841 elf_section_data (newsect)->this_hdr = *hdr;
842 elf_section_data (newsect)->this_idx = shindex;
843
844 /* Always use the real type/flags. */
845 elf_section_type (newsect) = hdr->sh_type;
846 elf_section_flags (newsect) = hdr->sh_flags;
847
848 newsect->filepos = hdr->sh_offset;
849
850 if (! bfd_set_section_vma (abfd, newsect, hdr->sh_addr)
851 || ! bfd_set_section_size (abfd, newsect, hdr->sh_size)
852 || ! bfd_set_section_alignment (abfd, newsect,
853 bfd_log2 (hdr->sh_addralign)))
854 return FALSE;
855
856 flags = SEC_NO_FLAGS;
857 if (hdr->sh_type != SHT_NOBITS)
858 flags |= SEC_HAS_CONTENTS;
859 if (hdr->sh_type == SHT_GROUP)
860 flags |= SEC_GROUP | SEC_EXCLUDE;
861 if ((hdr->sh_flags & SHF_ALLOC) != 0)
862 {
863 flags |= SEC_ALLOC;
864 if (hdr->sh_type != SHT_NOBITS)
865 flags |= SEC_LOAD;
866 }
867 if ((hdr->sh_flags & SHF_WRITE) == 0)
868 flags |= SEC_READONLY;
869 if ((hdr->sh_flags & SHF_EXECINSTR) != 0)
870 flags |= SEC_CODE;
871 else if ((flags & SEC_LOAD) != 0)
872 flags |= SEC_DATA;
873 if ((hdr->sh_flags & SHF_MERGE) != 0)
874 {
875 flags |= SEC_MERGE;
876 newsect->entsize = hdr->sh_entsize;
877 if ((hdr->sh_flags & SHF_STRINGS) != 0)
878 flags |= SEC_STRINGS;
879 }
880 if (hdr->sh_flags & SHF_GROUP)
881 if (!setup_group (abfd, hdr, newsect))
882 return FALSE;
883 if ((hdr->sh_flags & SHF_TLS) != 0)
884 flags |= SEC_THREAD_LOCAL;
885 if ((hdr->sh_flags & SHF_EXCLUDE) != 0)
886 flags |= SEC_EXCLUDE;
887
888 if ((flags & SEC_ALLOC) == 0)
889 {
890 /* The debugging sections appear to be recognized only by name,
891 not any sort of flag. Their SEC_ALLOC bits are cleared. */
892 if (name [0] == '.')
893 {
894 const char *p;
895 int n;
896 if (name[1] == 'd')
897 p = ".debug", n = 6;
898 else if (name[1] == 'g' && name[2] == 'n')
899 p = ".gnu.linkonce.wi.", n = 17;
900 else if (name[1] == 'g' && name[2] == 'd')
901 p = ".gdb_index", n = 11; /* yes we really do mean 11. */
902 else if (name[1] == 'l')
903 p = ".line", n = 5;
904 else if (name[1] == 's')
905 p = ".stab", n = 5;
906 else if (name[1] == 'z')
907 p = ".zdebug", n = 7;
908 else
909 p = NULL, n = 0;
910 if (p != NULL && strncmp (name, p, n) == 0)
911 flags |= SEC_DEBUGGING;
912 }
913 }
914
915 /* As a GNU extension, if the name begins with .gnu.linkonce, we
916 only link a single copy of the section. This is used to support
917 g++. g++ will emit each template expansion in its own section.
918 The symbols will be defined as weak, so that multiple definitions
919 are permitted. The GNU linker extension is to actually discard
920 all but one of the sections. */
921 if (CONST_STRNEQ (name, ".gnu.linkonce")
922 && elf_next_in_group (newsect) == NULL)
923 flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
924
925 bed = get_elf_backend_data (abfd);
926 if (bed->elf_backend_section_flags)
927 if (! bed->elf_backend_section_flags (&flags, hdr))
928 return FALSE;
929
930 if (! bfd_set_section_flags (abfd, newsect, flags))
931 return FALSE;
932
933 /* We do not parse the PT_NOTE segments as we are interested even in the
934 separate debug info files which may have the segments offsets corrupted.
935 PT_NOTEs from the core files are currently not parsed using BFD. */
936 if (hdr->sh_type == SHT_NOTE)
937 {
938 bfd_byte *contents;
939
940 if (!bfd_malloc_and_get_section (abfd, newsect, &contents))
941 return FALSE;
942
943 elf_parse_notes (abfd, (char *) contents, hdr->sh_size, -1);
944 free (contents);
945 }
946
947 if ((flags & SEC_ALLOC) != 0)
948 {
949 Elf_Internal_Phdr *phdr;
950 unsigned int i, nload;
951
952 /* Some ELF linkers produce binaries with all the program header
953 p_paddr fields zero. If we have such a binary with more than
954 one PT_LOAD header, then leave the section lma equal to vma
955 so that we don't create sections with overlapping lma. */
956 phdr = elf_tdata (abfd)->phdr;
957 for (nload = 0, i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
958 if (phdr->p_paddr != 0)
959 break;
960 else if (phdr->p_type == PT_LOAD && phdr->p_memsz != 0)
961 ++nload;
962 if (i >= elf_elfheader (abfd)->e_phnum && nload > 1)
963 return TRUE;
964
965 phdr = elf_tdata (abfd)->phdr;
966 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
967 {
968 if (((phdr->p_type == PT_LOAD
969 && (hdr->sh_flags & SHF_TLS) == 0)
970 || phdr->p_type == PT_TLS)
971 && ELF_SECTION_IN_SEGMENT (hdr, phdr))
972 {
973 if ((flags & SEC_LOAD) == 0)
974 newsect->lma = (phdr->p_paddr
975 + hdr->sh_addr - phdr->p_vaddr);
976 else
977 /* We used to use the same adjustment for SEC_LOAD
978 sections, but that doesn't work if the segment
979 is packed with code from multiple VMAs.
980 Instead we calculate the section LMA based on
981 the segment LMA. It is assumed that the
982 segment will contain sections with contiguous
983 LMAs, even if the VMAs are not. */
984 newsect->lma = (phdr->p_paddr
985 + hdr->sh_offset - phdr->p_offset);
986
987 /* With contiguous segments, we can't tell from file
988 offsets whether a section with zero size should
989 be placed at the end of one segment or the
990 beginning of the next. Decide based on vaddr. */
991 if (hdr->sh_addr >= phdr->p_vaddr
992 && (hdr->sh_addr + hdr->sh_size
993 <= phdr->p_vaddr + phdr->p_memsz))
994 break;
995 }
996 }
997 }
998
999 /* Compress/decompress DWARF debug sections with names: .debug_* and
1000 .zdebug_*, after the section flags is set. */
1001 if ((flags & SEC_DEBUGGING)
1002 && ((name[1] == 'd' && name[6] == '_')
1003 || (name[1] == 'z' && name[7] == '_')))
1004 {
1005 enum { nothing, compress, decompress } action = nothing;
1006 char *new_name;
1007
1008 if (bfd_is_section_compressed (abfd, newsect))
1009 {
1010 /* Compressed section. Check if we should decompress. */
1011 if ((abfd->flags & BFD_DECOMPRESS))
1012 action = decompress;
1013 }
1014 else
1015 {
1016 /* Normal section. Check if we should compress. */
1017 if ((abfd->flags & BFD_COMPRESS) && newsect->size != 0)
1018 action = compress;
1019 }
1020
1021 new_name = NULL;
1022 switch (action)
1023 {
1024 case nothing:
1025 break;
1026 case compress:
1027 if (!bfd_init_section_compress_status (abfd, newsect))
1028 {
1029 (*_bfd_error_handler)
1030 (_("%B: unable to initialize compress status for section %s"),
1031 abfd, name);
1032 return FALSE;
1033 }
1034 if (name[1] != 'z')
1035 {
1036 unsigned int len = strlen (name);
1037
1038 new_name = bfd_alloc (abfd, len + 2);
1039 if (new_name == NULL)
1040 return FALSE;
1041 new_name[0] = '.';
1042 new_name[1] = 'z';
1043 memcpy (new_name + 2, name + 1, len);
1044 }
1045 break;
1046 case decompress:
1047 if (!bfd_init_section_decompress_status (abfd, newsect))
1048 {
1049 (*_bfd_error_handler)
1050 (_("%B: unable to initialize decompress status for section %s"),
1051 abfd, name);
1052 return FALSE;
1053 }
1054 if (name[1] == 'z')
1055 {
1056 unsigned int len = strlen (name);
1057
1058 new_name = bfd_alloc (abfd, len);
1059 if (new_name == NULL)
1060 return FALSE;
1061 new_name[0] = '.';
1062 memcpy (new_name + 1, name + 2, len - 1);
1063 }
1064 break;
1065 }
1066 if (new_name != NULL)
1067 bfd_rename_section (abfd, newsect, new_name);
1068 }
1069
1070 return TRUE;
1071 }
1072
1073 const char *const bfd_elf_section_type_names[] = {
1074 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
1075 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
1076 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
1077 };
1078
1079 /* ELF relocs are against symbols. If we are producing relocatable
1080 output, and the reloc is against an external symbol, and nothing
1081 has given us any additional addend, the resulting reloc will also
1082 be against the same symbol. In such a case, we don't want to
1083 change anything about the way the reloc is handled, since it will
1084 all be done at final link time. Rather than put special case code
1085 into bfd_perform_relocation, all the reloc types use this howto
1086 function. It just short circuits the reloc if producing
1087 relocatable output against an external symbol. */
1088
1089 bfd_reloc_status_type
1090 bfd_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED,
1091 arelent *reloc_entry,
1092 asymbol *symbol,
1093 void *data ATTRIBUTE_UNUSED,
1094 asection *input_section,
1095 bfd *output_bfd,
1096 char **error_message ATTRIBUTE_UNUSED)
1097 {
1098 if (output_bfd != NULL
1099 && (symbol->flags & BSF_SECTION_SYM) == 0
1100 && (! reloc_entry->howto->partial_inplace
1101 || reloc_entry->addend == 0))
1102 {
1103 reloc_entry->address += input_section->output_offset;
1104 return bfd_reloc_ok;
1105 }
1106
1107 return bfd_reloc_continue;
1108 }
1109 \f
1110 /* Copy the program header and other data from one object module to
1111 another. */
1112
1113 bfd_boolean
1114 _bfd_elf_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
1115 {
1116 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
1117 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
1118 return TRUE;
1119
1120 if (!elf_flags_init (obfd))
1121 {
1122 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
1123 elf_flags_init (obfd) = TRUE;
1124 }
1125
1126 elf_gp (obfd) = elf_gp (ibfd);
1127
1128 /* Also copy the EI_OSABI field. */
1129 elf_elfheader (obfd)->e_ident[EI_OSABI] =
1130 elf_elfheader (ibfd)->e_ident[EI_OSABI];
1131
1132 /* Copy object attributes. */
1133 _bfd_elf_copy_obj_attributes (ibfd, obfd);
1134 return TRUE;
1135 }
1136
1137 static const char *
1138 get_segment_type (unsigned int p_type)
1139 {
1140 const char *pt;
1141 switch (p_type)
1142 {
1143 case PT_NULL: pt = "NULL"; break;
1144 case PT_LOAD: pt = "LOAD"; break;
1145 case PT_DYNAMIC: pt = "DYNAMIC"; break;
1146 case PT_INTERP: pt = "INTERP"; break;
1147 case PT_NOTE: pt = "NOTE"; break;
1148 case PT_SHLIB: pt = "SHLIB"; break;
1149 case PT_PHDR: pt = "PHDR"; break;
1150 case PT_TLS: pt = "TLS"; break;
1151 case PT_GNU_EH_FRAME: pt = "EH_FRAME"; break;
1152 case PT_GNU_STACK: pt = "STACK"; break;
1153 case PT_GNU_RELRO: pt = "RELRO"; break;
1154 default: pt = NULL; break;
1155 }
1156 return pt;
1157 }
1158
1159 /* Print out the program headers. */
1160
1161 bfd_boolean
1162 _bfd_elf_print_private_bfd_data (bfd *abfd, void *farg)
1163 {
1164 FILE *f = (FILE *) farg;
1165 Elf_Internal_Phdr *p;
1166 asection *s;
1167 bfd_byte *dynbuf = NULL;
1168
1169 p = elf_tdata (abfd)->phdr;
1170 if (p != NULL)
1171 {
1172 unsigned int i, c;
1173
1174 fprintf (f, _("\nProgram Header:\n"));
1175 c = elf_elfheader (abfd)->e_phnum;
1176 for (i = 0; i < c; i++, p++)
1177 {
1178 const char *pt = get_segment_type (p->p_type);
1179 char buf[20];
1180
1181 if (pt == NULL)
1182 {
1183 sprintf (buf, "0x%lx", p->p_type);
1184 pt = buf;
1185 }
1186 fprintf (f, "%8s off 0x", pt);
1187 bfd_fprintf_vma (abfd, f, p->p_offset);
1188 fprintf (f, " vaddr 0x");
1189 bfd_fprintf_vma (abfd, f, p->p_vaddr);
1190 fprintf (f, " paddr 0x");
1191 bfd_fprintf_vma (abfd, f, p->p_paddr);
1192 fprintf (f, " align 2**%u\n", bfd_log2 (p->p_align));
1193 fprintf (f, " filesz 0x");
1194 bfd_fprintf_vma (abfd, f, p->p_filesz);
1195 fprintf (f, " memsz 0x");
1196 bfd_fprintf_vma (abfd, f, p->p_memsz);
1197 fprintf (f, " flags %c%c%c",
1198 (p->p_flags & PF_R) != 0 ? 'r' : '-',
1199 (p->p_flags & PF_W) != 0 ? 'w' : '-',
1200 (p->p_flags & PF_X) != 0 ? 'x' : '-');
1201 if ((p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X)) != 0)
1202 fprintf (f, " %lx", p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X));
1203 fprintf (f, "\n");
1204 }
1205 }
1206
1207 s = bfd_get_section_by_name (abfd, ".dynamic");
1208 if (s != NULL)
1209 {
1210 unsigned int elfsec;
1211 unsigned long shlink;
1212 bfd_byte *extdyn, *extdynend;
1213 size_t extdynsize;
1214 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1215
1216 fprintf (f, _("\nDynamic Section:\n"));
1217
1218 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
1219 goto error_return;
1220
1221 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1222 if (elfsec == SHN_BAD)
1223 goto error_return;
1224 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1225
1226 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1227 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1228
1229 extdyn = dynbuf;
1230 extdynend = extdyn + s->size;
1231 for (; extdyn < extdynend; extdyn += extdynsize)
1232 {
1233 Elf_Internal_Dyn dyn;
1234 const char *name = "";
1235 char ab[20];
1236 bfd_boolean stringp;
1237 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1238
1239 (*swap_dyn_in) (abfd, extdyn, &dyn);
1240
1241 if (dyn.d_tag == DT_NULL)
1242 break;
1243
1244 stringp = FALSE;
1245 switch (dyn.d_tag)
1246 {
1247 default:
1248 if (bed->elf_backend_get_target_dtag)
1249 name = (*bed->elf_backend_get_target_dtag) (dyn.d_tag);
1250
1251 if (!strcmp (name, ""))
1252 {
1253 sprintf (ab, "0x%lx", (unsigned long) dyn.d_tag);
1254 name = ab;
1255 }
1256 break;
1257
1258 case DT_NEEDED: name = "NEEDED"; stringp = TRUE; break;
1259 case DT_PLTRELSZ: name = "PLTRELSZ"; break;
1260 case DT_PLTGOT: name = "PLTGOT"; break;
1261 case DT_HASH: name = "HASH"; break;
1262 case DT_STRTAB: name = "STRTAB"; break;
1263 case DT_SYMTAB: name = "SYMTAB"; break;
1264 case DT_RELA: name = "RELA"; break;
1265 case DT_RELASZ: name = "RELASZ"; break;
1266 case DT_RELAENT: name = "RELAENT"; break;
1267 case DT_STRSZ: name = "STRSZ"; break;
1268 case DT_SYMENT: name = "SYMENT"; break;
1269 case DT_INIT: name = "INIT"; break;
1270 case DT_FINI: name = "FINI"; break;
1271 case DT_SONAME: name = "SONAME"; stringp = TRUE; break;
1272 case DT_RPATH: name = "RPATH"; stringp = TRUE; break;
1273 case DT_SYMBOLIC: name = "SYMBOLIC"; break;
1274 case DT_REL: name = "REL"; break;
1275 case DT_RELSZ: name = "RELSZ"; break;
1276 case DT_RELENT: name = "RELENT"; break;
1277 case DT_PLTREL: name = "PLTREL"; break;
1278 case DT_DEBUG: name = "DEBUG"; break;
1279 case DT_TEXTREL: name = "TEXTREL"; break;
1280 case DT_JMPREL: name = "JMPREL"; break;
1281 case DT_BIND_NOW: name = "BIND_NOW"; break;
1282 case DT_INIT_ARRAY: name = "INIT_ARRAY"; break;
1283 case DT_FINI_ARRAY: name = "FINI_ARRAY"; break;
1284 case DT_INIT_ARRAYSZ: name = "INIT_ARRAYSZ"; break;
1285 case DT_FINI_ARRAYSZ: name = "FINI_ARRAYSZ"; break;
1286 case DT_RUNPATH: name = "RUNPATH"; stringp = TRUE; break;
1287 case DT_FLAGS: name = "FLAGS"; break;
1288 case DT_PREINIT_ARRAY: name = "PREINIT_ARRAY"; break;
1289 case DT_PREINIT_ARRAYSZ: name = "PREINIT_ARRAYSZ"; break;
1290 case DT_CHECKSUM: name = "CHECKSUM"; break;
1291 case DT_PLTPADSZ: name = "PLTPADSZ"; break;
1292 case DT_MOVEENT: name = "MOVEENT"; break;
1293 case DT_MOVESZ: name = "MOVESZ"; break;
1294 case DT_FEATURE: name = "FEATURE"; break;
1295 case DT_POSFLAG_1: name = "POSFLAG_1"; break;
1296 case DT_SYMINSZ: name = "SYMINSZ"; break;
1297 case DT_SYMINENT: name = "SYMINENT"; break;
1298 case DT_CONFIG: name = "CONFIG"; stringp = TRUE; break;
1299 case DT_DEPAUDIT: name = "DEPAUDIT"; stringp = TRUE; break;
1300 case DT_AUDIT: name = "AUDIT"; stringp = TRUE; break;
1301 case DT_PLTPAD: name = "PLTPAD"; break;
1302 case DT_MOVETAB: name = "MOVETAB"; break;
1303 case DT_SYMINFO: name = "SYMINFO"; break;
1304 case DT_RELACOUNT: name = "RELACOUNT"; break;
1305 case DT_RELCOUNT: name = "RELCOUNT"; break;
1306 case DT_FLAGS_1: name = "FLAGS_1"; break;
1307 case DT_VERSYM: name = "VERSYM"; break;
1308 case DT_VERDEF: name = "VERDEF"; break;
1309 case DT_VERDEFNUM: name = "VERDEFNUM"; break;
1310 case DT_VERNEED: name = "VERNEED"; break;
1311 case DT_VERNEEDNUM: name = "VERNEEDNUM"; break;
1312 case DT_AUXILIARY: name = "AUXILIARY"; stringp = TRUE; break;
1313 case DT_USED: name = "USED"; break;
1314 case DT_FILTER: name = "FILTER"; stringp = TRUE; break;
1315 case DT_GNU_HASH: name = "GNU_HASH"; break;
1316 }
1317
1318 fprintf (f, " %-20s ", name);
1319 if (! stringp)
1320 {
1321 fprintf (f, "0x");
1322 bfd_fprintf_vma (abfd, f, dyn.d_un.d_val);
1323 }
1324 else
1325 {
1326 const char *string;
1327 unsigned int tagv = dyn.d_un.d_val;
1328
1329 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1330 if (string == NULL)
1331 goto error_return;
1332 fprintf (f, "%s", string);
1333 }
1334 fprintf (f, "\n");
1335 }
1336
1337 free (dynbuf);
1338 dynbuf = NULL;
1339 }
1340
1341 if ((elf_dynverdef (abfd) != 0 && elf_tdata (abfd)->verdef == NULL)
1342 || (elf_dynverref (abfd) != 0 && elf_tdata (abfd)->verref == NULL))
1343 {
1344 if (! _bfd_elf_slurp_version_tables (abfd, FALSE))
1345 return FALSE;
1346 }
1347
1348 if (elf_dynverdef (abfd) != 0)
1349 {
1350 Elf_Internal_Verdef *t;
1351
1352 fprintf (f, _("\nVersion definitions:\n"));
1353 for (t = elf_tdata (abfd)->verdef; t != NULL; t = t->vd_nextdef)
1354 {
1355 fprintf (f, "%d 0x%2.2x 0x%8.8lx %s\n", t->vd_ndx,
1356 t->vd_flags, t->vd_hash,
1357 t->vd_nodename ? t->vd_nodename : "<corrupt>");
1358 if (t->vd_auxptr != NULL && t->vd_auxptr->vda_nextptr != NULL)
1359 {
1360 Elf_Internal_Verdaux *a;
1361
1362 fprintf (f, "\t");
1363 for (a = t->vd_auxptr->vda_nextptr;
1364 a != NULL;
1365 a = a->vda_nextptr)
1366 fprintf (f, "%s ",
1367 a->vda_nodename ? a->vda_nodename : "<corrupt>");
1368 fprintf (f, "\n");
1369 }
1370 }
1371 }
1372
1373 if (elf_dynverref (abfd) != 0)
1374 {
1375 Elf_Internal_Verneed *t;
1376
1377 fprintf (f, _("\nVersion References:\n"));
1378 for (t = elf_tdata (abfd)->verref; t != NULL; t = t->vn_nextref)
1379 {
1380 Elf_Internal_Vernaux *a;
1381
1382 fprintf (f, _(" required from %s:\n"),
1383 t->vn_filename ? t->vn_filename : "<corrupt>");
1384 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1385 fprintf (f, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a->vna_hash,
1386 a->vna_flags, a->vna_other,
1387 a->vna_nodename ? a->vna_nodename : "<corrupt>");
1388 }
1389 }
1390
1391 return TRUE;
1392
1393 error_return:
1394 if (dynbuf != NULL)
1395 free (dynbuf);
1396 return FALSE;
1397 }
1398
1399 /* Display ELF-specific fields of a symbol. */
1400
1401 void
1402 bfd_elf_print_symbol (bfd *abfd,
1403 void *filep,
1404 asymbol *symbol,
1405 bfd_print_symbol_type how)
1406 {
1407 FILE *file = (FILE *) filep;
1408 switch (how)
1409 {
1410 case bfd_print_symbol_name:
1411 fprintf (file, "%s", symbol->name);
1412 break;
1413 case bfd_print_symbol_more:
1414 fprintf (file, "elf ");
1415 bfd_fprintf_vma (abfd, file, symbol->value);
1416 fprintf (file, " %lx", (unsigned long) symbol->flags);
1417 break;
1418 case bfd_print_symbol_all:
1419 {
1420 const char *section_name;
1421 const char *name = NULL;
1422 const struct elf_backend_data *bed;
1423 unsigned char st_other;
1424 bfd_vma val;
1425
1426 section_name = symbol->section ? symbol->section->name : "(*none*)";
1427
1428 bed = get_elf_backend_data (abfd);
1429 if (bed->elf_backend_print_symbol_all)
1430 name = (*bed->elf_backend_print_symbol_all) (abfd, filep, symbol);
1431
1432 if (name == NULL)
1433 {
1434 name = symbol->name;
1435 bfd_print_symbol_vandf (abfd, file, symbol);
1436 }
1437
1438 fprintf (file, " %s\t", section_name);
1439 /* Print the "other" value for a symbol. For common symbols,
1440 we've already printed the size; now print the alignment.
1441 For other symbols, we have no specified alignment, and
1442 we've printed the address; now print the size. */
1443 if (symbol->section && bfd_is_com_section (symbol->section))
1444 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
1445 else
1446 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_size;
1447 bfd_fprintf_vma (abfd, file, val);
1448
1449 /* If we have version information, print it. */
1450 if (elf_dynversym (abfd) != 0
1451 && (elf_dynverdef (abfd) != 0
1452 || elf_dynverref (abfd) != 0))
1453 {
1454 unsigned int vernum;
1455 const char *version_string;
1456
1457 vernum = ((elf_symbol_type *) symbol)->version & VERSYM_VERSION;
1458
1459 if (vernum == 0)
1460 version_string = "";
1461 else if (vernum == 1)
1462 version_string = "Base";
1463 else if (vernum <= elf_tdata (abfd)->cverdefs)
1464 version_string =
1465 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1466 else
1467 {
1468 Elf_Internal_Verneed *t;
1469
1470 version_string = "";
1471 for (t = elf_tdata (abfd)->verref;
1472 t != NULL;
1473 t = t->vn_nextref)
1474 {
1475 Elf_Internal_Vernaux *a;
1476
1477 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1478 {
1479 if (a->vna_other == vernum)
1480 {
1481 version_string = a->vna_nodename;
1482 break;
1483 }
1484 }
1485 }
1486 }
1487
1488 if ((((elf_symbol_type *) symbol)->version & VERSYM_HIDDEN) == 0)
1489 fprintf (file, " %-11s", version_string);
1490 else
1491 {
1492 int i;
1493
1494 fprintf (file, " (%s)", version_string);
1495 for (i = 10 - strlen (version_string); i > 0; --i)
1496 putc (' ', file);
1497 }
1498 }
1499
1500 /* If the st_other field is not zero, print it. */
1501 st_other = ((elf_symbol_type *) symbol)->internal_elf_sym.st_other;
1502
1503 switch (st_other)
1504 {
1505 case 0: break;
1506 case STV_INTERNAL: fprintf (file, " .internal"); break;
1507 case STV_HIDDEN: fprintf (file, " .hidden"); break;
1508 case STV_PROTECTED: fprintf (file, " .protected"); break;
1509 default:
1510 /* Some other non-defined flags are also present, so print
1511 everything hex. */
1512 fprintf (file, " 0x%02x", (unsigned int) st_other);
1513 }
1514
1515 fprintf (file, " %s", name);
1516 }
1517 break;
1518 }
1519 }
1520
1521 /* Allocate an ELF string table--force the first byte to be zero. */
1522
1523 struct bfd_strtab_hash *
1524 _bfd_elf_stringtab_init (void)
1525 {
1526 struct bfd_strtab_hash *ret;
1527
1528 ret = _bfd_stringtab_init ();
1529 if (ret != NULL)
1530 {
1531 bfd_size_type loc;
1532
1533 loc = _bfd_stringtab_add (ret, "", TRUE, FALSE);
1534 BFD_ASSERT (loc == 0 || loc == (bfd_size_type) -1);
1535 if (loc == (bfd_size_type) -1)
1536 {
1537 _bfd_stringtab_free (ret);
1538 ret = NULL;
1539 }
1540 }
1541 return ret;
1542 }
1543 \f
1544 /* ELF .o/exec file reading */
1545
1546 /* Create a new bfd section from an ELF section header. */
1547
1548 bfd_boolean
1549 bfd_section_from_shdr (bfd *abfd, unsigned int shindex)
1550 {
1551 Elf_Internal_Shdr *hdr;
1552 Elf_Internal_Ehdr *ehdr;
1553 const struct elf_backend_data *bed;
1554 const char *name;
1555
1556 if (shindex >= elf_numsections (abfd))
1557 return FALSE;
1558
1559 hdr = elf_elfsections (abfd)[shindex];
1560 ehdr = elf_elfheader (abfd);
1561 name = bfd_elf_string_from_elf_section (abfd, ehdr->e_shstrndx,
1562 hdr->sh_name);
1563 if (name == NULL)
1564 return FALSE;
1565
1566 bed = get_elf_backend_data (abfd);
1567 switch (hdr->sh_type)
1568 {
1569 case SHT_NULL:
1570 /* Inactive section. Throw it away. */
1571 return TRUE;
1572
1573 case SHT_PROGBITS: /* Normal section with contents. */
1574 case SHT_NOBITS: /* .bss section. */
1575 case SHT_HASH: /* .hash section. */
1576 case SHT_NOTE: /* .note section. */
1577 case SHT_INIT_ARRAY: /* .init_array section. */
1578 case SHT_FINI_ARRAY: /* .fini_array section. */
1579 case SHT_PREINIT_ARRAY: /* .preinit_array section. */
1580 case SHT_GNU_LIBLIST: /* .gnu.liblist section. */
1581 case SHT_GNU_HASH: /* .gnu.hash section. */
1582 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1583
1584 case SHT_DYNAMIC: /* Dynamic linking information. */
1585 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1586 return FALSE;
1587 if (hdr->sh_link > elf_numsections (abfd))
1588 {
1589 /* PR 10478: Accept Solaris binaries with a sh_link
1590 field set to SHN_BEFORE or SHN_AFTER. */
1591 switch (bfd_get_arch (abfd))
1592 {
1593 case bfd_arch_i386:
1594 case bfd_arch_sparc:
1595 if (hdr->sh_link == (SHN_LORESERVE & 0xffff) /* SHN_BEFORE */
1596 || hdr->sh_link == ((SHN_LORESERVE + 1) & 0xffff) /* SHN_AFTER */)
1597 break;
1598 /* Otherwise fall through. */
1599 default:
1600 return FALSE;
1601 }
1602 }
1603 else if (elf_elfsections (abfd)[hdr->sh_link] == NULL)
1604 return FALSE;
1605 else if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_STRTAB)
1606 {
1607 Elf_Internal_Shdr *dynsymhdr;
1608
1609 /* The shared libraries distributed with hpux11 have a bogus
1610 sh_link field for the ".dynamic" section. Find the
1611 string table for the ".dynsym" section instead. */
1612 if (elf_dynsymtab (abfd) != 0)
1613 {
1614 dynsymhdr = elf_elfsections (abfd)[elf_dynsymtab (abfd)];
1615 hdr->sh_link = dynsymhdr->sh_link;
1616 }
1617 else
1618 {
1619 unsigned int i, num_sec;
1620
1621 num_sec = elf_numsections (abfd);
1622 for (i = 1; i < num_sec; i++)
1623 {
1624 dynsymhdr = elf_elfsections (abfd)[i];
1625 if (dynsymhdr->sh_type == SHT_DYNSYM)
1626 {
1627 hdr->sh_link = dynsymhdr->sh_link;
1628 break;
1629 }
1630 }
1631 }
1632 }
1633 break;
1634
1635 case SHT_SYMTAB: /* A symbol table */
1636 if (elf_onesymtab (abfd) == shindex)
1637 return TRUE;
1638
1639 if (hdr->sh_entsize != bed->s->sizeof_sym)
1640 return FALSE;
1641 if (hdr->sh_info * hdr->sh_entsize > hdr->sh_size)
1642 {
1643 if (hdr->sh_size != 0)
1644 return FALSE;
1645 /* Some assemblers erroneously set sh_info to one with a
1646 zero sh_size. ld sees this as a global symbol count
1647 of (unsigned) -1. Fix it here. */
1648 hdr->sh_info = 0;
1649 return TRUE;
1650 }
1651 BFD_ASSERT (elf_onesymtab (abfd) == 0);
1652 elf_onesymtab (abfd) = shindex;
1653 elf_tdata (abfd)->symtab_hdr = *hdr;
1654 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->symtab_hdr;
1655 abfd->flags |= HAS_SYMS;
1656
1657 /* Sometimes a shared object will map in the symbol table. If
1658 SHF_ALLOC is set, and this is a shared object, then we also
1659 treat this section as a BFD section. We can not base the
1660 decision purely on SHF_ALLOC, because that flag is sometimes
1661 set in a relocatable object file, which would confuse the
1662 linker. */
1663 if ((hdr->sh_flags & SHF_ALLOC) != 0
1664 && (abfd->flags & DYNAMIC) != 0
1665 && ! _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1666 shindex))
1667 return FALSE;
1668
1669 /* Go looking for SHT_SYMTAB_SHNDX too, since if there is one we
1670 can't read symbols without that section loaded as well. It
1671 is most likely specified by the next section header. */
1672 if (elf_elfsections (abfd)[elf_symtab_shndx (abfd)]->sh_link != shindex)
1673 {
1674 unsigned int i, num_sec;
1675
1676 num_sec = elf_numsections (abfd);
1677 for (i = shindex + 1; i < num_sec; i++)
1678 {
1679 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1680 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
1681 && hdr2->sh_link == shindex)
1682 break;
1683 }
1684 if (i == num_sec)
1685 for (i = 1; i < shindex; i++)
1686 {
1687 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1688 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
1689 && hdr2->sh_link == shindex)
1690 break;
1691 }
1692 if (i != shindex)
1693 return bfd_section_from_shdr (abfd, i);
1694 }
1695 return TRUE;
1696
1697 case SHT_DYNSYM: /* A dynamic symbol table */
1698 if (elf_dynsymtab (abfd) == shindex)
1699 return TRUE;
1700
1701 if (hdr->sh_entsize != bed->s->sizeof_sym)
1702 return FALSE;
1703 if (hdr->sh_info * hdr->sh_entsize > hdr->sh_size)
1704 {
1705 if (hdr->sh_size != 0)
1706 return FALSE;
1707 /* Some linkers erroneously set sh_info to one with a
1708 zero sh_size. ld sees this as a global symbol count
1709 of (unsigned) -1. Fix it here. */
1710 hdr->sh_info = 0;
1711 return TRUE;
1712 }
1713 BFD_ASSERT (elf_dynsymtab (abfd) == 0);
1714 elf_dynsymtab (abfd) = shindex;
1715 elf_tdata (abfd)->dynsymtab_hdr = *hdr;
1716 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->dynsymtab_hdr;
1717 abfd->flags |= HAS_SYMS;
1718
1719 /* Besides being a symbol table, we also treat this as a regular
1720 section, so that objcopy can handle it. */
1721 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1722
1723 case SHT_SYMTAB_SHNDX: /* Symbol section indices when >64k sections */
1724 if (elf_symtab_shndx (abfd) == shindex)
1725 return TRUE;
1726
1727 BFD_ASSERT (elf_symtab_shndx (abfd) == 0);
1728 elf_symtab_shndx (abfd) = shindex;
1729 elf_tdata (abfd)->symtab_shndx_hdr = *hdr;
1730 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->symtab_shndx_hdr;
1731 return TRUE;
1732
1733 case SHT_STRTAB: /* A string table */
1734 if (hdr->bfd_section != NULL)
1735 return TRUE;
1736 if (ehdr->e_shstrndx == shindex)
1737 {
1738 elf_tdata (abfd)->shstrtab_hdr = *hdr;
1739 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->shstrtab_hdr;
1740 return TRUE;
1741 }
1742 if (elf_elfsections (abfd)[elf_onesymtab (abfd)]->sh_link == shindex)
1743 {
1744 symtab_strtab:
1745 elf_tdata (abfd)->strtab_hdr = *hdr;
1746 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->strtab_hdr;
1747 return TRUE;
1748 }
1749 if (elf_elfsections (abfd)[elf_dynsymtab (abfd)]->sh_link == shindex)
1750 {
1751 dynsymtab_strtab:
1752 elf_tdata (abfd)->dynstrtab_hdr = *hdr;
1753 hdr = &elf_tdata (abfd)->dynstrtab_hdr;
1754 elf_elfsections (abfd)[shindex] = hdr;
1755 /* We also treat this as a regular section, so that objcopy
1756 can handle it. */
1757 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1758 shindex);
1759 }
1760
1761 /* If the string table isn't one of the above, then treat it as a
1762 regular section. We need to scan all the headers to be sure,
1763 just in case this strtab section appeared before the above. */
1764 if (elf_onesymtab (abfd) == 0 || elf_dynsymtab (abfd) == 0)
1765 {
1766 unsigned int i, num_sec;
1767
1768 num_sec = elf_numsections (abfd);
1769 for (i = 1; i < num_sec; i++)
1770 {
1771 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1772 if (hdr2->sh_link == shindex)
1773 {
1774 /* Prevent endless recursion on broken objects. */
1775 if (i == shindex)
1776 return FALSE;
1777 if (! bfd_section_from_shdr (abfd, i))
1778 return FALSE;
1779 if (elf_onesymtab (abfd) == i)
1780 goto symtab_strtab;
1781 if (elf_dynsymtab (abfd) == i)
1782 goto dynsymtab_strtab;
1783 }
1784 }
1785 }
1786 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1787
1788 case SHT_REL:
1789 case SHT_RELA:
1790 /* *These* do a lot of work -- but build no sections! */
1791 {
1792 asection *target_sect;
1793 Elf_Internal_Shdr *hdr2, **p_hdr;
1794 unsigned int num_sec = elf_numsections (abfd);
1795 struct bfd_elf_section_data *esdt;
1796 bfd_size_type amt;
1797
1798 if (hdr->sh_entsize
1799 != (bfd_size_type) (hdr->sh_type == SHT_REL
1800 ? bed->s->sizeof_rel : bed->s->sizeof_rela))
1801 return FALSE;
1802
1803 /* Check for a bogus link to avoid crashing. */
1804 if (hdr->sh_link >= num_sec)
1805 {
1806 ((*_bfd_error_handler)
1807 (_("%B: invalid link %lu for reloc section %s (index %u)"),
1808 abfd, hdr->sh_link, name, shindex));
1809 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1810 shindex);
1811 }
1812
1813 /* For some incomprehensible reason Oracle distributes
1814 libraries for Solaris in which some of the objects have
1815 bogus sh_link fields. It would be nice if we could just
1816 reject them, but, unfortunately, some people need to use
1817 them. We scan through the section headers; if we find only
1818 one suitable symbol table, we clobber the sh_link to point
1819 to it. I hope this doesn't break anything.
1820
1821 Don't do it on executable nor shared library. */
1822 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0
1823 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_SYMTAB
1824 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_DYNSYM)
1825 {
1826 unsigned int scan;
1827 int found;
1828
1829 found = 0;
1830 for (scan = 1; scan < num_sec; scan++)
1831 {
1832 if (elf_elfsections (abfd)[scan]->sh_type == SHT_SYMTAB
1833 || elf_elfsections (abfd)[scan]->sh_type == SHT_DYNSYM)
1834 {
1835 if (found != 0)
1836 {
1837 found = 0;
1838 break;
1839 }
1840 found = scan;
1841 }
1842 }
1843 if (found != 0)
1844 hdr->sh_link = found;
1845 }
1846
1847 /* Get the symbol table. */
1848 if ((elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_SYMTAB
1849 || elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_DYNSYM)
1850 && ! bfd_section_from_shdr (abfd, hdr->sh_link))
1851 return FALSE;
1852
1853 /* If this reloc section does not use the main symbol table we
1854 don't treat it as a reloc section. BFD can't adequately
1855 represent such a section, so at least for now, we don't
1856 try. We just present it as a normal section. We also
1857 can't use it as a reloc section if it points to the null
1858 section, an invalid section, another reloc section, or its
1859 sh_link points to the null section. */
1860 if (hdr->sh_link != elf_onesymtab (abfd)
1861 || hdr->sh_link == SHN_UNDEF
1862 || hdr->sh_info == SHN_UNDEF
1863 || hdr->sh_info >= num_sec
1864 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_REL
1865 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_RELA)
1866 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1867 shindex);
1868
1869 if (! bfd_section_from_shdr (abfd, hdr->sh_info))
1870 return FALSE;
1871 target_sect = bfd_section_from_elf_index (abfd, hdr->sh_info);
1872 if (target_sect == NULL)
1873 return FALSE;
1874
1875 esdt = elf_section_data (target_sect);
1876 if (hdr->sh_type == SHT_RELA)
1877 p_hdr = &esdt->rela.hdr;
1878 else
1879 p_hdr = &esdt->rel.hdr;
1880
1881 BFD_ASSERT (*p_hdr == NULL);
1882 amt = sizeof (*hdr2);
1883 hdr2 = (Elf_Internal_Shdr *) bfd_alloc (abfd, amt);
1884 if (hdr2 == NULL)
1885 return FALSE;
1886 *hdr2 = *hdr;
1887 *p_hdr = hdr2;
1888 elf_elfsections (abfd)[shindex] = hdr2;
1889 target_sect->reloc_count += NUM_SHDR_ENTRIES (hdr);
1890 target_sect->flags |= SEC_RELOC;
1891 target_sect->relocation = NULL;
1892 target_sect->rel_filepos = hdr->sh_offset;
1893 /* In the section to which the relocations apply, mark whether
1894 its relocations are of the REL or RELA variety. */
1895 if (hdr->sh_size != 0)
1896 {
1897 if (hdr->sh_type == SHT_RELA)
1898 target_sect->use_rela_p = 1;
1899 }
1900 abfd->flags |= HAS_RELOC;
1901 return TRUE;
1902 }
1903
1904 case SHT_GNU_verdef:
1905 elf_dynverdef (abfd) = shindex;
1906 elf_tdata (abfd)->dynverdef_hdr = *hdr;
1907 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1908
1909 case SHT_GNU_versym:
1910 if (hdr->sh_entsize != sizeof (Elf_External_Versym))
1911 return FALSE;
1912 elf_dynversym (abfd) = shindex;
1913 elf_tdata (abfd)->dynversym_hdr = *hdr;
1914 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1915
1916 case SHT_GNU_verneed:
1917 elf_dynverref (abfd) = shindex;
1918 elf_tdata (abfd)->dynverref_hdr = *hdr;
1919 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1920
1921 case SHT_SHLIB:
1922 return TRUE;
1923
1924 case SHT_GROUP:
1925 if (! IS_VALID_GROUP_SECTION_HEADER (hdr, GRP_ENTRY_SIZE))
1926 return FALSE;
1927 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1928 return FALSE;
1929 if (hdr->contents != NULL)
1930 {
1931 Elf_Internal_Group *idx = (Elf_Internal_Group *) hdr->contents;
1932 unsigned int n_elt = hdr->sh_size / GRP_ENTRY_SIZE;
1933 asection *s;
1934
1935 if (idx->flags & GRP_COMDAT)
1936 hdr->bfd_section->flags
1937 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
1938
1939 /* We try to keep the same section order as it comes in. */
1940 idx += n_elt;
1941 while (--n_elt != 0)
1942 {
1943 --idx;
1944
1945 if (idx->shdr != NULL
1946 && (s = idx->shdr->bfd_section) != NULL
1947 && elf_next_in_group (s) != NULL)
1948 {
1949 elf_next_in_group (hdr->bfd_section) = s;
1950 break;
1951 }
1952 }
1953 }
1954 break;
1955
1956 default:
1957 /* Possibly an attributes section. */
1958 if (hdr->sh_type == SHT_GNU_ATTRIBUTES
1959 || hdr->sh_type == bed->obj_attrs_section_type)
1960 {
1961 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1962 return FALSE;
1963 _bfd_elf_parse_attributes (abfd, hdr);
1964 return TRUE;
1965 }
1966
1967 /* Check for any processor-specific section types. */
1968 if (bed->elf_backend_section_from_shdr (abfd, hdr, name, shindex))
1969 return TRUE;
1970
1971 if (hdr->sh_type >= SHT_LOUSER && hdr->sh_type <= SHT_HIUSER)
1972 {
1973 if ((hdr->sh_flags & SHF_ALLOC) != 0)
1974 /* FIXME: How to properly handle allocated section reserved
1975 for applications? */
1976 (*_bfd_error_handler)
1977 (_("%B: don't know how to handle allocated, application "
1978 "specific section `%s' [0x%8x]"),
1979 abfd, name, hdr->sh_type);
1980 else
1981 /* Allow sections reserved for applications. */
1982 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1983 shindex);
1984 }
1985 else if (hdr->sh_type >= SHT_LOPROC
1986 && hdr->sh_type <= SHT_HIPROC)
1987 /* FIXME: We should handle this section. */
1988 (*_bfd_error_handler)
1989 (_("%B: don't know how to handle processor specific section "
1990 "`%s' [0x%8x]"),
1991 abfd, name, hdr->sh_type);
1992 else if (hdr->sh_type >= SHT_LOOS && hdr->sh_type <= SHT_HIOS)
1993 {
1994 /* Unrecognised OS-specific sections. */
1995 if ((hdr->sh_flags & SHF_OS_NONCONFORMING) != 0)
1996 /* SHF_OS_NONCONFORMING indicates that special knowledge is
1997 required to correctly process the section and the file should
1998 be rejected with an error message. */
1999 (*_bfd_error_handler)
2000 (_("%B: don't know how to handle OS specific section "
2001 "`%s' [0x%8x]"),
2002 abfd, name, hdr->sh_type);
2003 else
2004 /* Otherwise it should be processed. */
2005 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2006 }
2007 else
2008 /* FIXME: We should handle this section. */
2009 (*_bfd_error_handler)
2010 (_("%B: don't know how to handle section `%s' [0x%8x]"),
2011 abfd, name, hdr->sh_type);
2012
2013 return FALSE;
2014 }
2015
2016 return TRUE;
2017 }
2018
2019 /* Return the local symbol specified by ABFD, R_SYMNDX. */
2020
2021 Elf_Internal_Sym *
2022 bfd_sym_from_r_symndx (struct sym_cache *cache,
2023 bfd *abfd,
2024 unsigned long r_symndx)
2025 {
2026 unsigned int ent = r_symndx % LOCAL_SYM_CACHE_SIZE;
2027
2028 if (cache->abfd != abfd || cache->indx[ent] != r_symndx)
2029 {
2030 Elf_Internal_Shdr *symtab_hdr;
2031 unsigned char esym[sizeof (Elf64_External_Sym)];
2032 Elf_External_Sym_Shndx eshndx;
2033
2034 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2035 if (bfd_elf_get_elf_syms (abfd, symtab_hdr, 1, r_symndx,
2036 &cache->sym[ent], esym, &eshndx) == NULL)
2037 return NULL;
2038
2039 if (cache->abfd != abfd)
2040 {
2041 memset (cache->indx, -1, sizeof (cache->indx));
2042 cache->abfd = abfd;
2043 }
2044 cache->indx[ent] = r_symndx;
2045 }
2046
2047 return &cache->sym[ent];
2048 }
2049
2050 /* Given an ELF section number, retrieve the corresponding BFD
2051 section. */
2052
2053 asection *
2054 bfd_section_from_elf_index (bfd *abfd, unsigned int sec_index)
2055 {
2056 if (sec_index >= elf_numsections (abfd))
2057 return NULL;
2058 return elf_elfsections (abfd)[sec_index]->bfd_section;
2059 }
2060
2061 static const struct bfd_elf_special_section special_sections_b[] =
2062 {
2063 { STRING_COMMA_LEN (".bss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2064 { NULL, 0, 0, 0, 0 }
2065 };
2066
2067 static const struct bfd_elf_special_section special_sections_c[] =
2068 {
2069 { STRING_COMMA_LEN (".comment"), 0, SHT_PROGBITS, 0 },
2070 { NULL, 0, 0, 0, 0 }
2071 };
2072
2073 static const struct bfd_elf_special_section special_sections_d[] =
2074 {
2075 { STRING_COMMA_LEN (".data"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2076 { STRING_COMMA_LEN (".data1"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2077 /* There are more DWARF sections than these, but they needn't be added here
2078 unless you have to cope with broken compilers that don't emit section
2079 attributes or you want to help the user writing assembler. */
2080 { STRING_COMMA_LEN (".debug"), 0, SHT_PROGBITS, 0 },
2081 { STRING_COMMA_LEN (".debug_line"), 0, SHT_PROGBITS, 0 },
2082 { STRING_COMMA_LEN (".debug_info"), 0, SHT_PROGBITS, 0 },
2083 { STRING_COMMA_LEN (".debug_abbrev"), 0, SHT_PROGBITS, 0 },
2084 { STRING_COMMA_LEN (".debug_aranges"), 0, SHT_PROGBITS, 0 },
2085 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC, SHF_ALLOC },
2086 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB, SHF_ALLOC },
2087 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM, SHF_ALLOC },
2088 { NULL, 0, 0, 0, 0 }
2089 };
2090
2091 static const struct bfd_elf_special_section special_sections_f[] =
2092 {
2093 { STRING_COMMA_LEN (".fini"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2094 { STRING_COMMA_LEN (".fini_array"), 0, SHT_FINI_ARRAY, SHF_ALLOC + SHF_WRITE },
2095 { NULL, 0, 0, 0, 0 }
2096 };
2097
2098 static const struct bfd_elf_special_section special_sections_g[] =
2099 {
2100 { STRING_COMMA_LEN (".gnu.linkonce.b"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2101 { STRING_COMMA_LEN (".gnu.lto_"), -1, SHT_PROGBITS, SHF_EXCLUDE },
2102 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2103 { STRING_COMMA_LEN (".gnu.version"), 0, SHT_GNU_versym, 0 },
2104 { STRING_COMMA_LEN (".gnu.version_d"), 0, SHT_GNU_verdef, 0 },
2105 { STRING_COMMA_LEN (".gnu.version_r"), 0, SHT_GNU_verneed, 0 },
2106 { STRING_COMMA_LEN (".gnu.liblist"), 0, SHT_GNU_LIBLIST, SHF_ALLOC },
2107 { STRING_COMMA_LEN (".gnu.conflict"), 0, SHT_RELA, SHF_ALLOC },
2108 { STRING_COMMA_LEN (".gnu.hash"), 0, SHT_GNU_HASH, SHF_ALLOC },
2109 { NULL, 0, 0, 0, 0 }
2110 };
2111
2112 static const struct bfd_elf_special_section special_sections_h[] =
2113 {
2114 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH, SHF_ALLOC },
2115 { NULL, 0, 0, 0, 0 }
2116 };
2117
2118 static const struct bfd_elf_special_section special_sections_i[] =
2119 {
2120 { STRING_COMMA_LEN (".init"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2121 { STRING_COMMA_LEN (".init_array"), 0, SHT_INIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2122 { STRING_COMMA_LEN (".interp"), 0, SHT_PROGBITS, 0 },
2123 { NULL, 0, 0, 0, 0 }
2124 };
2125
2126 static const struct bfd_elf_special_section special_sections_l[] =
2127 {
2128 { STRING_COMMA_LEN (".line"), 0, SHT_PROGBITS, 0 },
2129 { NULL, 0, 0, 0, 0 }
2130 };
2131
2132 static const struct bfd_elf_special_section special_sections_n[] =
2133 {
2134 { STRING_COMMA_LEN (".note.GNU-stack"), 0, SHT_PROGBITS, 0 },
2135 { STRING_COMMA_LEN (".note"), -1, SHT_NOTE, 0 },
2136 { NULL, 0, 0, 0, 0 }
2137 };
2138
2139 static const struct bfd_elf_special_section special_sections_p[] =
2140 {
2141 { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2142 { STRING_COMMA_LEN (".plt"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2143 { NULL, 0, 0, 0, 0 }
2144 };
2145
2146 static const struct bfd_elf_special_section special_sections_r[] =
2147 {
2148 { STRING_COMMA_LEN (".rodata"), -2, SHT_PROGBITS, SHF_ALLOC },
2149 { STRING_COMMA_LEN (".rodata1"), 0, SHT_PROGBITS, SHF_ALLOC },
2150 { STRING_COMMA_LEN (".rela"), -1, SHT_RELA, 0 },
2151 { STRING_COMMA_LEN (".rel"), -1, SHT_REL, 0 },
2152 { NULL, 0, 0, 0, 0 }
2153 };
2154
2155 static const struct bfd_elf_special_section special_sections_s[] =
2156 {
2157 { STRING_COMMA_LEN (".shstrtab"), 0, SHT_STRTAB, 0 },
2158 { STRING_COMMA_LEN (".strtab"), 0, SHT_STRTAB, 0 },
2159 { STRING_COMMA_LEN (".symtab"), 0, SHT_SYMTAB, 0 },
2160 /* See struct bfd_elf_special_section declaration for the semantics of
2161 this special case where .prefix_length != strlen (.prefix). */
2162 { ".stabstr", 5, 3, SHT_STRTAB, 0 },
2163 { NULL, 0, 0, 0, 0 }
2164 };
2165
2166 static const struct bfd_elf_special_section special_sections_t[] =
2167 {
2168 { STRING_COMMA_LEN (".text"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2169 { STRING_COMMA_LEN (".tbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2170 { STRING_COMMA_LEN (".tdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2171 { NULL, 0, 0, 0, 0 }
2172 };
2173
2174 static const struct bfd_elf_special_section special_sections_z[] =
2175 {
2176 { STRING_COMMA_LEN (".zdebug_line"), 0, SHT_PROGBITS, 0 },
2177 { STRING_COMMA_LEN (".zdebug_info"), 0, SHT_PROGBITS, 0 },
2178 { STRING_COMMA_LEN (".zdebug_abbrev"), 0, SHT_PROGBITS, 0 },
2179 { STRING_COMMA_LEN (".zdebug_aranges"), 0, SHT_PROGBITS, 0 },
2180 { NULL, 0, 0, 0, 0 }
2181 };
2182
2183 static const struct bfd_elf_special_section * const special_sections[] =
2184 {
2185 special_sections_b, /* 'b' */
2186 special_sections_c, /* 'c' */
2187 special_sections_d, /* 'd' */
2188 NULL, /* 'e' */
2189 special_sections_f, /* 'f' */
2190 special_sections_g, /* 'g' */
2191 special_sections_h, /* 'h' */
2192 special_sections_i, /* 'i' */
2193 NULL, /* 'j' */
2194 NULL, /* 'k' */
2195 special_sections_l, /* 'l' */
2196 NULL, /* 'm' */
2197 special_sections_n, /* 'n' */
2198 NULL, /* 'o' */
2199 special_sections_p, /* 'p' */
2200 NULL, /* 'q' */
2201 special_sections_r, /* 'r' */
2202 special_sections_s, /* 's' */
2203 special_sections_t, /* 't' */
2204 NULL, /* 'u' */
2205 NULL, /* 'v' */
2206 NULL, /* 'w' */
2207 NULL, /* 'x' */
2208 NULL, /* 'y' */
2209 special_sections_z /* 'z' */
2210 };
2211
2212 const struct bfd_elf_special_section *
2213 _bfd_elf_get_special_section (const char *name,
2214 const struct bfd_elf_special_section *spec,
2215 unsigned int rela)
2216 {
2217 int i;
2218 int len;
2219
2220 len = strlen (name);
2221
2222 for (i = 0; spec[i].prefix != NULL; i++)
2223 {
2224 int suffix_len;
2225 int prefix_len = spec[i].prefix_length;
2226
2227 if (len < prefix_len)
2228 continue;
2229 if (memcmp (name, spec[i].prefix, prefix_len) != 0)
2230 continue;
2231
2232 suffix_len = spec[i].suffix_length;
2233 if (suffix_len <= 0)
2234 {
2235 if (name[prefix_len] != 0)
2236 {
2237 if (suffix_len == 0)
2238 continue;
2239 if (name[prefix_len] != '.'
2240 && (suffix_len == -2
2241 || (rela && spec[i].type == SHT_REL)))
2242 continue;
2243 }
2244 }
2245 else
2246 {
2247 if (len < prefix_len + suffix_len)
2248 continue;
2249 if (memcmp (name + len - suffix_len,
2250 spec[i].prefix + prefix_len,
2251 suffix_len) != 0)
2252 continue;
2253 }
2254 return &spec[i];
2255 }
2256
2257 return NULL;
2258 }
2259
2260 const struct bfd_elf_special_section *
2261 _bfd_elf_get_sec_type_attr (bfd *abfd, asection *sec)
2262 {
2263 int i;
2264 const struct bfd_elf_special_section *spec;
2265 const struct elf_backend_data *bed;
2266
2267 /* See if this is one of the special sections. */
2268 if (sec->name == NULL)
2269 return NULL;
2270
2271 bed = get_elf_backend_data (abfd);
2272 spec = bed->special_sections;
2273 if (spec)
2274 {
2275 spec = _bfd_elf_get_special_section (sec->name,
2276 bed->special_sections,
2277 sec->use_rela_p);
2278 if (spec != NULL)
2279 return spec;
2280 }
2281
2282 if (sec->name[0] != '.')
2283 return NULL;
2284
2285 i = sec->name[1] - 'b';
2286 if (i < 0 || i > 'z' - 'b')
2287 return NULL;
2288
2289 spec = special_sections[i];
2290
2291 if (spec == NULL)
2292 return NULL;
2293
2294 return _bfd_elf_get_special_section (sec->name, spec, sec->use_rela_p);
2295 }
2296
2297 bfd_boolean
2298 _bfd_elf_new_section_hook (bfd *abfd, asection *sec)
2299 {
2300 struct bfd_elf_section_data *sdata;
2301 const struct elf_backend_data *bed;
2302 const struct bfd_elf_special_section *ssect;
2303
2304 sdata = (struct bfd_elf_section_data *) sec->used_by_bfd;
2305 if (sdata == NULL)
2306 {
2307 sdata = (struct bfd_elf_section_data *) bfd_zalloc (abfd,
2308 sizeof (*sdata));
2309 if (sdata == NULL)
2310 return FALSE;
2311 sec->used_by_bfd = sdata;
2312 }
2313
2314 /* Indicate whether or not this section should use RELA relocations. */
2315 bed = get_elf_backend_data (abfd);
2316 sec->use_rela_p = bed->default_use_rela_p;
2317
2318 /* When we read a file, we don't need to set ELF section type and
2319 flags. They will be overridden in _bfd_elf_make_section_from_shdr
2320 anyway. We will set ELF section type and flags for all linker
2321 created sections. If user specifies BFD section flags, we will
2322 set ELF section type and flags based on BFD section flags in
2323 elf_fake_sections. Special handling for .init_array/.fini_array
2324 output sections since they may contain .ctors/.dtors input
2325 sections. We don't want _bfd_elf_init_private_section_data to
2326 copy ELF section type from .ctors/.dtors input sections. */
2327 if (abfd->direction != read_direction
2328 || (sec->flags & SEC_LINKER_CREATED) != 0)
2329 {
2330 ssect = (*bed->get_sec_type_attr) (abfd, sec);
2331 if (ssect != NULL
2332 && (!sec->flags
2333 || (sec->flags & SEC_LINKER_CREATED) != 0
2334 || ssect->type == SHT_INIT_ARRAY
2335 || ssect->type == SHT_FINI_ARRAY))
2336 {
2337 elf_section_type (sec) = ssect->type;
2338 elf_section_flags (sec) = ssect->attr;
2339 }
2340 }
2341
2342 return _bfd_generic_new_section_hook (abfd, sec);
2343 }
2344
2345 /* Create a new bfd section from an ELF program header.
2346
2347 Since program segments have no names, we generate a synthetic name
2348 of the form segment<NUM>, where NUM is generally the index in the
2349 program header table. For segments that are split (see below) we
2350 generate the names segment<NUM>a and segment<NUM>b.
2351
2352 Note that some program segments may have a file size that is different than
2353 (less than) the memory size. All this means is that at execution the
2354 system must allocate the amount of memory specified by the memory size,
2355 but only initialize it with the first "file size" bytes read from the
2356 file. This would occur for example, with program segments consisting
2357 of combined data+bss.
2358
2359 To handle the above situation, this routine generates TWO bfd sections
2360 for the single program segment. The first has the length specified by
2361 the file size of the segment, and the second has the length specified
2362 by the difference between the two sizes. In effect, the segment is split
2363 into its initialized and uninitialized parts.
2364
2365 */
2366
2367 bfd_boolean
2368 _bfd_elf_make_section_from_phdr (bfd *abfd,
2369 Elf_Internal_Phdr *hdr,
2370 int hdr_index,
2371 const char *type_name)
2372 {
2373 asection *newsect;
2374 char *name;
2375 char namebuf[64];
2376 size_t len;
2377 int split;
2378
2379 split = ((hdr->p_memsz > 0)
2380 && (hdr->p_filesz > 0)
2381 && (hdr->p_memsz > hdr->p_filesz));
2382
2383 if (hdr->p_filesz > 0)
2384 {
2385 sprintf (namebuf, "%s%d%s", type_name, hdr_index, split ? "a" : "");
2386 len = strlen (namebuf) + 1;
2387 name = (char *) bfd_alloc (abfd, len);
2388 if (!name)
2389 return FALSE;
2390 memcpy (name, namebuf, len);
2391 newsect = bfd_make_section (abfd, name);
2392 if (newsect == NULL)
2393 return FALSE;
2394 newsect->vma = hdr->p_vaddr;
2395 newsect->lma = hdr->p_paddr;
2396 newsect->size = hdr->p_filesz;
2397 newsect->filepos = hdr->p_offset;
2398 newsect->flags |= SEC_HAS_CONTENTS;
2399 newsect->alignment_power = bfd_log2 (hdr->p_align);
2400 if (hdr->p_type == PT_LOAD)
2401 {
2402 newsect->flags |= SEC_ALLOC;
2403 newsect->flags |= SEC_LOAD;
2404 if (hdr->p_flags & PF_X)
2405 {
2406 /* FIXME: all we known is that it has execute PERMISSION,
2407 may be data. */
2408 newsect->flags |= SEC_CODE;
2409 }
2410 }
2411 if (!(hdr->p_flags & PF_W))
2412 {
2413 newsect->flags |= SEC_READONLY;
2414 }
2415 }
2416
2417 if (hdr->p_memsz > hdr->p_filesz)
2418 {
2419 bfd_vma align;
2420
2421 sprintf (namebuf, "%s%d%s", type_name, hdr_index, split ? "b" : "");
2422 len = strlen (namebuf) + 1;
2423 name = (char *) bfd_alloc (abfd, len);
2424 if (!name)
2425 return FALSE;
2426 memcpy (name, namebuf, len);
2427 newsect = bfd_make_section (abfd, name);
2428 if (newsect == NULL)
2429 return FALSE;
2430 newsect->vma = hdr->p_vaddr + hdr->p_filesz;
2431 newsect->lma = hdr->p_paddr + hdr->p_filesz;
2432 newsect->size = hdr->p_memsz - hdr->p_filesz;
2433 newsect->filepos = hdr->p_offset + hdr->p_filesz;
2434 align = newsect->vma & -newsect->vma;
2435 if (align == 0 || align > hdr->p_align)
2436 align = hdr->p_align;
2437 newsect->alignment_power = bfd_log2 (align);
2438 if (hdr->p_type == PT_LOAD)
2439 {
2440 /* Hack for gdb. Segments that have not been modified do
2441 not have their contents written to a core file, on the
2442 assumption that a debugger can find the contents in the
2443 executable. We flag this case by setting the fake
2444 section size to zero. Note that "real" bss sections will
2445 always have their contents dumped to the core file. */
2446 if (bfd_get_format (abfd) == bfd_core)
2447 newsect->size = 0;
2448 newsect->flags |= SEC_ALLOC;
2449 if (hdr->p_flags & PF_X)
2450 newsect->flags |= SEC_CODE;
2451 }
2452 if (!(hdr->p_flags & PF_W))
2453 newsect->flags |= SEC_READONLY;
2454 }
2455
2456 return TRUE;
2457 }
2458
2459 bfd_boolean
2460 bfd_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int hdr_index)
2461 {
2462 const struct elf_backend_data *bed;
2463
2464 switch (hdr->p_type)
2465 {
2466 case PT_NULL:
2467 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "null");
2468
2469 case PT_LOAD:
2470 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "load");
2471
2472 case PT_DYNAMIC:
2473 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "dynamic");
2474
2475 case PT_INTERP:
2476 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "interp");
2477
2478 case PT_NOTE:
2479 if (! _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "note"))
2480 return FALSE;
2481 if (! elf_read_notes (abfd, hdr->p_offset, hdr->p_filesz))
2482 return FALSE;
2483 return TRUE;
2484
2485 case PT_SHLIB:
2486 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "shlib");
2487
2488 case PT_PHDR:
2489 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "phdr");
2490
2491 case PT_GNU_EH_FRAME:
2492 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index,
2493 "eh_frame_hdr");
2494
2495 case PT_GNU_STACK:
2496 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "stack");
2497
2498 case PT_GNU_RELRO:
2499 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "relro");
2500
2501 default:
2502 /* Check for any processor-specific program segment types. */
2503 bed = get_elf_backend_data (abfd);
2504 return bed->elf_backend_section_from_phdr (abfd, hdr, hdr_index, "proc");
2505 }
2506 }
2507
2508 /* Return the REL_HDR for SEC, assuming there is only a single one, either
2509 REL or RELA. */
2510
2511 Elf_Internal_Shdr *
2512 _bfd_elf_single_rel_hdr (asection *sec)
2513 {
2514 if (elf_section_data (sec)->rel.hdr)
2515 {
2516 BFD_ASSERT (elf_section_data (sec)->rela.hdr == NULL);
2517 return elf_section_data (sec)->rel.hdr;
2518 }
2519 else
2520 return elf_section_data (sec)->rela.hdr;
2521 }
2522
2523 /* Allocate and initialize a section-header for a new reloc section,
2524 containing relocations against ASECT. It is stored in RELDATA. If
2525 USE_RELA_P is TRUE, we use RELA relocations; otherwise, we use REL
2526 relocations. */
2527
2528 static bfd_boolean
2529 _bfd_elf_init_reloc_shdr (bfd *abfd,
2530 struct bfd_elf_section_reloc_data *reldata,
2531 asection *asect,
2532 bfd_boolean use_rela_p)
2533 {
2534 Elf_Internal_Shdr *rel_hdr;
2535 char *name;
2536 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2537 bfd_size_type amt;
2538
2539 amt = sizeof (Elf_Internal_Shdr);
2540 BFD_ASSERT (reldata->hdr == NULL);
2541 rel_hdr = bfd_zalloc (abfd, amt);
2542 reldata->hdr = rel_hdr;
2543
2544 amt = sizeof ".rela" + strlen (asect->name);
2545 name = (char *) bfd_alloc (abfd, amt);
2546 if (name == NULL)
2547 return FALSE;
2548 sprintf (name, "%s%s", use_rela_p ? ".rela" : ".rel", asect->name);
2549 rel_hdr->sh_name =
2550 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd), name,
2551 FALSE);
2552 if (rel_hdr->sh_name == (unsigned int) -1)
2553 return FALSE;
2554 rel_hdr->sh_type = use_rela_p ? SHT_RELA : SHT_REL;
2555 rel_hdr->sh_entsize = (use_rela_p
2556 ? bed->s->sizeof_rela
2557 : bed->s->sizeof_rel);
2558 rel_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
2559 rel_hdr->sh_flags = 0;
2560 rel_hdr->sh_addr = 0;
2561 rel_hdr->sh_size = 0;
2562 rel_hdr->sh_offset = 0;
2563
2564 return TRUE;
2565 }
2566
2567 /* Return the default section type based on the passed in section flags. */
2568
2569 int
2570 bfd_elf_get_default_section_type (flagword flags)
2571 {
2572 if ((flags & SEC_ALLOC) != 0
2573 && (flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
2574 return SHT_NOBITS;
2575 return SHT_PROGBITS;
2576 }
2577
2578 struct fake_section_arg
2579 {
2580 struct bfd_link_info *link_info;
2581 bfd_boolean failed;
2582 };
2583
2584 /* Set up an ELF internal section header for a section. */
2585
2586 static void
2587 elf_fake_sections (bfd *abfd, asection *asect, void *fsarg)
2588 {
2589 struct fake_section_arg *arg = (struct fake_section_arg *)fsarg;
2590 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2591 struct bfd_elf_section_data *esd = elf_section_data (asect);
2592 Elf_Internal_Shdr *this_hdr;
2593 unsigned int sh_type;
2594
2595 if (arg->failed)
2596 {
2597 /* We already failed; just get out of the bfd_map_over_sections
2598 loop. */
2599 return;
2600 }
2601
2602 this_hdr = &esd->this_hdr;
2603
2604 this_hdr->sh_name = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
2605 asect->name, FALSE);
2606 if (this_hdr->sh_name == (unsigned int) -1)
2607 {
2608 arg->failed = TRUE;
2609 return;
2610 }
2611
2612 /* Don't clear sh_flags. Assembler may set additional bits. */
2613
2614 if ((asect->flags & SEC_ALLOC) != 0
2615 || asect->user_set_vma)
2616 this_hdr->sh_addr = asect->vma;
2617 else
2618 this_hdr->sh_addr = 0;
2619
2620 this_hdr->sh_offset = 0;
2621 this_hdr->sh_size = asect->size;
2622 this_hdr->sh_link = 0;
2623 this_hdr->sh_addralign = (bfd_vma) 1 << asect->alignment_power;
2624 /* The sh_entsize and sh_info fields may have been set already by
2625 copy_private_section_data. */
2626
2627 this_hdr->bfd_section = asect;
2628 this_hdr->contents = NULL;
2629
2630 /* If the section type is unspecified, we set it based on
2631 asect->flags. */
2632 if ((asect->flags & SEC_GROUP) != 0)
2633 sh_type = SHT_GROUP;
2634 else
2635 sh_type = bfd_elf_get_default_section_type (asect->flags);
2636
2637 if (this_hdr->sh_type == SHT_NULL)
2638 this_hdr->sh_type = sh_type;
2639 else if (this_hdr->sh_type == SHT_NOBITS
2640 && sh_type == SHT_PROGBITS
2641 && (asect->flags & SEC_ALLOC) != 0)
2642 {
2643 /* Warn if we are changing a NOBITS section to PROGBITS, but
2644 allow the link to proceed. This can happen when users link
2645 non-bss input sections to bss output sections, or emit data
2646 to a bss output section via a linker script. */
2647 (*_bfd_error_handler)
2648 (_("warning: section `%A' type changed to PROGBITS"), asect);
2649 this_hdr->sh_type = sh_type;
2650 }
2651
2652 switch (this_hdr->sh_type)
2653 {
2654 default:
2655 break;
2656
2657 case SHT_STRTAB:
2658 case SHT_INIT_ARRAY:
2659 case SHT_FINI_ARRAY:
2660 case SHT_PREINIT_ARRAY:
2661 case SHT_NOTE:
2662 case SHT_NOBITS:
2663 case SHT_PROGBITS:
2664 break;
2665
2666 case SHT_HASH:
2667 this_hdr->sh_entsize = bed->s->sizeof_hash_entry;
2668 break;
2669
2670 case SHT_DYNSYM:
2671 this_hdr->sh_entsize = bed->s->sizeof_sym;
2672 break;
2673
2674 case SHT_DYNAMIC:
2675 this_hdr->sh_entsize = bed->s->sizeof_dyn;
2676 break;
2677
2678 case SHT_RELA:
2679 if (get_elf_backend_data (abfd)->may_use_rela_p)
2680 this_hdr->sh_entsize = bed->s->sizeof_rela;
2681 break;
2682
2683 case SHT_REL:
2684 if (get_elf_backend_data (abfd)->may_use_rel_p)
2685 this_hdr->sh_entsize = bed->s->sizeof_rel;
2686 break;
2687
2688 case SHT_GNU_versym:
2689 this_hdr->sh_entsize = sizeof (Elf_External_Versym);
2690 break;
2691
2692 case SHT_GNU_verdef:
2693 this_hdr->sh_entsize = 0;
2694 /* objcopy or strip will copy over sh_info, but may not set
2695 cverdefs. The linker will set cverdefs, but sh_info will be
2696 zero. */
2697 if (this_hdr->sh_info == 0)
2698 this_hdr->sh_info = elf_tdata (abfd)->cverdefs;
2699 else
2700 BFD_ASSERT (elf_tdata (abfd)->cverdefs == 0
2701 || this_hdr->sh_info == elf_tdata (abfd)->cverdefs);
2702 break;
2703
2704 case SHT_GNU_verneed:
2705 this_hdr->sh_entsize = 0;
2706 /* objcopy or strip will copy over sh_info, but may not set
2707 cverrefs. The linker will set cverrefs, but sh_info will be
2708 zero. */
2709 if (this_hdr->sh_info == 0)
2710 this_hdr->sh_info = elf_tdata (abfd)->cverrefs;
2711 else
2712 BFD_ASSERT (elf_tdata (abfd)->cverrefs == 0
2713 || this_hdr->sh_info == elf_tdata (abfd)->cverrefs);
2714 break;
2715
2716 case SHT_GROUP:
2717 this_hdr->sh_entsize = GRP_ENTRY_SIZE;
2718 break;
2719
2720 case SHT_GNU_HASH:
2721 this_hdr->sh_entsize = bed->s->arch_size == 64 ? 0 : 4;
2722 break;
2723 }
2724
2725 if ((asect->flags & SEC_ALLOC) != 0)
2726 this_hdr->sh_flags |= SHF_ALLOC;
2727 if ((asect->flags & SEC_READONLY) == 0)
2728 this_hdr->sh_flags |= SHF_WRITE;
2729 if ((asect->flags & SEC_CODE) != 0)
2730 this_hdr->sh_flags |= SHF_EXECINSTR;
2731 if ((asect->flags & SEC_MERGE) != 0)
2732 {
2733 this_hdr->sh_flags |= SHF_MERGE;
2734 this_hdr->sh_entsize = asect->entsize;
2735 if ((asect->flags & SEC_STRINGS) != 0)
2736 this_hdr->sh_flags |= SHF_STRINGS;
2737 }
2738 if ((asect->flags & SEC_GROUP) == 0 && elf_group_name (asect) != NULL)
2739 this_hdr->sh_flags |= SHF_GROUP;
2740 if ((asect->flags & SEC_THREAD_LOCAL) != 0)
2741 {
2742 this_hdr->sh_flags |= SHF_TLS;
2743 if (asect->size == 0
2744 && (asect->flags & SEC_HAS_CONTENTS) == 0)
2745 {
2746 struct bfd_link_order *o = asect->map_tail.link_order;
2747
2748 this_hdr->sh_size = 0;
2749 if (o != NULL)
2750 {
2751 this_hdr->sh_size = o->offset + o->size;
2752 if (this_hdr->sh_size != 0)
2753 this_hdr->sh_type = SHT_NOBITS;
2754 }
2755 }
2756 }
2757 if ((asect->flags & (SEC_GROUP | SEC_EXCLUDE)) == SEC_EXCLUDE)
2758 this_hdr->sh_flags |= SHF_EXCLUDE;
2759
2760 /* If the section has relocs, set up a section header for the
2761 SHT_REL[A] section. If two relocation sections are required for
2762 this section, it is up to the processor-specific back-end to
2763 create the other. */
2764 if ((asect->flags & SEC_RELOC) != 0)
2765 {
2766 /* When doing a relocatable link, create both REL and RELA sections if
2767 needed. */
2768 if (arg->link_info
2769 /* Do the normal setup if we wouldn't create any sections here. */
2770 && esd->rel.count + esd->rela.count > 0
2771 && (arg->link_info->relocatable || arg->link_info->emitrelocations))
2772 {
2773 if (esd->rel.count && esd->rel.hdr == NULL
2774 && !_bfd_elf_init_reloc_shdr (abfd, &esd->rel, asect, FALSE))
2775 {
2776 arg->failed = TRUE;
2777 return;
2778 }
2779 if (esd->rela.count && esd->rela.hdr == NULL
2780 && !_bfd_elf_init_reloc_shdr (abfd, &esd->rela, asect, TRUE))
2781 {
2782 arg->failed = TRUE;
2783 return;
2784 }
2785 }
2786 else if (!_bfd_elf_init_reloc_shdr (abfd,
2787 (asect->use_rela_p
2788 ? &esd->rela : &esd->rel),
2789 asect,
2790 asect->use_rela_p))
2791 arg->failed = TRUE;
2792 }
2793
2794 /* Check for processor-specific section types. */
2795 sh_type = this_hdr->sh_type;
2796 if (bed->elf_backend_fake_sections
2797 && !(*bed->elf_backend_fake_sections) (abfd, this_hdr, asect))
2798 arg->failed = TRUE;
2799
2800 if (sh_type == SHT_NOBITS && asect->size != 0)
2801 {
2802 /* Don't change the header type from NOBITS if we are being
2803 called for objcopy --only-keep-debug. */
2804 this_hdr->sh_type = sh_type;
2805 }
2806 }
2807
2808 /* Fill in the contents of a SHT_GROUP section. Called from
2809 _bfd_elf_compute_section_file_positions for gas, objcopy, and
2810 when ELF targets use the generic linker, ld. Called for ld -r
2811 from bfd_elf_final_link. */
2812
2813 void
2814 bfd_elf_set_group_contents (bfd *abfd, asection *sec, void *failedptrarg)
2815 {
2816 bfd_boolean *failedptr = (bfd_boolean *) failedptrarg;
2817 asection *elt, *first;
2818 unsigned char *loc;
2819 bfd_boolean gas;
2820
2821 /* Ignore linker created group section. See elfNN_ia64_object_p in
2822 elfxx-ia64.c. */
2823 if (((sec->flags & (SEC_GROUP | SEC_LINKER_CREATED)) != SEC_GROUP)
2824 || *failedptr)
2825 return;
2826
2827 if (elf_section_data (sec)->this_hdr.sh_info == 0)
2828 {
2829 unsigned long symindx = 0;
2830
2831 /* elf_group_id will have been set up by objcopy and the
2832 generic linker. */
2833 if (elf_group_id (sec) != NULL)
2834 symindx = elf_group_id (sec)->udata.i;
2835
2836 if (symindx == 0)
2837 {
2838 /* If called from the assembler, swap_out_syms will have set up
2839 elf_section_syms. */
2840 BFD_ASSERT (elf_section_syms (abfd) != NULL);
2841 symindx = elf_section_syms (abfd)[sec->index]->udata.i;
2842 }
2843 elf_section_data (sec)->this_hdr.sh_info = symindx;
2844 }
2845 else if (elf_section_data (sec)->this_hdr.sh_info == (unsigned int) -2)
2846 {
2847 /* The ELF backend linker sets sh_info to -2 when the group
2848 signature symbol is global, and thus the index can't be
2849 set until all local symbols are output. */
2850 asection *igroup = elf_sec_group (elf_next_in_group (sec));
2851 struct bfd_elf_section_data *sec_data = elf_section_data (igroup);
2852 unsigned long symndx = sec_data->this_hdr.sh_info;
2853 unsigned long extsymoff = 0;
2854 struct elf_link_hash_entry *h;
2855
2856 if (!elf_bad_symtab (igroup->owner))
2857 {
2858 Elf_Internal_Shdr *symtab_hdr;
2859
2860 symtab_hdr = &elf_tdata (igroup->owner)->symtab_hdr;
2861 extsymoff = symtab_hdr->sh_info;
2862 }
2863 h = elf_sym_hashes (igroup->owner)[symndx - extsymoff];
2864 while (h->root.type == bfd_link_hash_indirect
2865 || h->root.type == bfd_link_hash_warning)
2866 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2867
2868 elf_section_data (sec)->this_hdr.sh_info = h->indx;
2869 }
2870
2871 /* The contents won't be allocated for "ld -r" or objcopy. */
2872 gas = TRUE;
2873 if (sec->contents == NULL)
2874 {
2875 gas = FALSE;
2876 sec->contents = (unsigned char *) bfd_alloc (abfd, sec->size);
2877
2878 /* Arrange for the section to be written out. */
2879 elf_section_data (sec)->this_hdr.contents = sec->contents;
2880 if (sec->contents == NULL)
2881 {
2882 *failedptr = TRUE;
2883 return;
2884 }
2885 }
2886
2887 loc = sec->contents + sec->size;
2888
2889 /* Get the pointer to the first section in the group that gas
2890 squirreled away here. objcopy arranges for this to be set to the
2891 start of the input section group. */
2892 first = elt = elf_next_in_group (sec);
2893
2894 /* First element is a flag word. Rest of section is elf section
2895 indices for all the sections of the group. Write them backwards
2896 just to keep the group in the same order as given in .section
2897 directives, not that it matters. */
2898 while (elt != NULL)
2899 {
2900 asection *s;
2901
2902 s = elt;
2903 if (!gas)
2904 s = s->output_section;
2905 if (s != NULL
2906 && !bfd_is_abs_section (s))
2907 {
2908 unsigned int idx = elf_section_data (s)->this_idx;
2909
2910 loc -= 4;
2911 H_PUT_32 (abfd, idx, loc);
2912 }
2913 elt = elf_next_in_group (elt);
2914 if (elt == first)
2915 break;
2916 }
2917
2918 if ((loc -= 4) != sec->contents)
2919 abort ();
2920
2921 H_PUT_32 (abfd, sec->flags & SEC_LINK_ONCE ? GRP_COMDAT : 0, loc);
2922 }
2923
2924 /* Assign all ELF section numbers. The dummy first section is handled here
2925 too. The link/info pointers for the standard section types are filled
2926 in here too, while we're at it. */
2927
2928 static bfd_boolean
2929 assign_section_numbers (bfd *abfd, struct bfd_link_info *link_info)
2930 {
2931 struct elf_obj_tdata *t = elf_tdata (abfd);
2932 asection *sec;
2933 unsigned int section_number, secn;
2934 Elf_Internal_Shdr **i_shdrp;
2935 struct bfd_elf_section_data *d;
2936 bfd_boolean need_symtab;
2937
2938 section_number = 1;
2939
2940 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd));
2941
2942 /* SHT_GROUP sections are in relocatable files only. */
2943 if (link_info == NULL || link_info->relocatable)
2944 {
2945 /* Put SHT_GROUP sections first. */
2946 for (sec = abfd->sections; sec != NULL; sec = sec->next)
2947 {
2948 d = elf_section_data (sec);
2949
2950 if (d->this_hdr.sh_type == SHT_GROUP)
2951 {
2952 if (sec->flags & SEC_LINKER_CREATED)
2953 {
2954 /* Remove the linker created SHT_GROUP sections. */
2955 bfd_section_list_remove (abfd, sec);
2956 abfd->section_count--;
2957 }
2958 else
2959 d->this_idx = section_number++;
2960 }
2961 }
2962 }
2963
2964 for (sec = abfd->sections; sec; sec = sec->next)
2965 {
2966 d = elf_section_data (sec);
2967
2968 if (d->this_hdr.sh_type != SHT_GROUP)
2969 d->this_idx = section_number++;
2970 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->this_hdr.sh_name);
2971 if (d->rel.hdr)
2972 {
2973 d->rel.idx = section_number++;
2974 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel.hdr->sh_name);
2975 }
2976 else
2977 d->rel.idx = 0;
2978
2979 if (d->rela.hdr)
2980 {
2981 d->rela.idx = section_number++;
2982 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rela.hdr->sh_name);
2983 }
2984 else
2985 d->rela.idx = 0;
2986 }
2987
2988 elf_shstrtab_sec (abfd) = section_number++;
2989 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->shstrtab_hdr.sh_name);
2990 elf_elfheader (abfd)->e_shstrndx = elf_shstrtab_sec (abfd);
2991
2992 need_symtab = (bfd_get_symcount (abfd) > 0
2993 || (link_info == NULL
2994 && ((abfd->flags & (EXEC_P | DYNAMIC | HAS_RELOC))
2995 == HAS_RELOC)));
2996 if (need_symtab)
2997 {
2998 elf_onesymtab (abfd) = section_number++;
2999 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->symtab_hdr.sh_name);
3000 if (section_number > ((SHN_LORESERVE - 2) & 0xFFFF))
3001 {
3002 elf_symtab_shndx (abfd) = section_number++;
3003 t->symtab_shndx_hdr.sh_name
3004 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
3005 ".symtab_shndx", FALSE);
3006 if (t->symtab_shndx_hdr.sh_name == (unsigned int) -1)
3007 return FALSE;
3008 }
3009 elf_strtab_sec (abfd) = section_number++;
3010 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->strtab_hdr.sh_name);
3011 }
3012
3013 if (section_number >= SHN_LORESERVE)
3014 {
3015 _bfd_error_handler (_("%B: too many sections: %u"),
3016 abfd, section_number);
3017 return FALSE;
3018 }
3019
3020 _bfd_elf_strtab_finalize (elf_shstrtab (abfd));
3021 t->shstrtab_hdr.sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
3022
3023 elf_numsections (abfd) = section_number;
3024 elf_elfheader (abfd)->e_shnum = section_number;
3025
3026 /* Set up the list of section header pointers, in agreement with the
3027 indices. */
3028 i_shdrp = (Elf_Internal_Shdr **) bfd_zalloc2 (abfd, section_number,
3029 sizeof (Elf_Internal_Shdr *));
3030 if (i_shdrp == NULL)
3031 return FALSE;
3032
3033 i_shdrp[0] = (Elf_Internal_Shdr *) bfd_zalloc (abfd,
3034 sizeof (Elf_Internal_Shdr));
3035 if (i_shdrp[0] == NULL)
3036 {
3037 bfd_release (abfd, i_shdrp);
3038 return FALSE;
3039 }
3040
3041 elf_elfsections (abfd) = i_shdrp;
3042
3043 i_shdrp[elf_shstrtab_sec (abfd)] = &t->shstrtab_hdr;
3044 if (need_symtab)
3045 {
3046 i_shdrp[elf_onesymtab (abfd)] = &t->symtab_hdr;
3047 if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
3048 {
3049 i_shdrp[elf_symtab_shndx (abfd)] = &t->symtab_shndx_hdr;
3050 t->symtab_shndx_hdr.sh_link = elf_onesymtab (abfd);
3051 }
3052 i_shdrp[elf_strtab_sec (abfd)] = &t->strtab_hdr;
3053 t->symtab_hdr.sh_link = elf_strtab_sec (abfd);
3054 }
3055
3056 for (sec = abfd->sections; sec; sec = sec->next)
3057 {
3058 asection *s;
3059 const char *name;
3060
3061 d = elf_section_data (sec);
3062
3063 i_shdrp[d->this_idx] = &d->this_hdr;
3064 if (d->rel.idx != 0)
3065 i_shdrp[d->rel.idx] = d->rel.hdr;
3066 if (d->rela.idx != 0)
3067 i_shdrp[d->rela.idx] = d->rela.hdr;
3068
3069 /* Fill in the sh_link and sh_info fields while we're at it. */
3070
3071 /* sh_link of a reloc section is the section index of the symbol
3072 table. sh_info is the section index of the section to which
3073 the relocation entries apply. */
3074 if (d->rel.idx != 0)
3075 {
3076 d->rel.hdr->sh_link = elf_onesymtab (abfd);
3077 d->rel.hdr->sh_info = d->this_idx;
3078 d->rel.hdr->sh_flags |= SHF_INFO_LINK;
3079 }
3080 if (d->rela.idx != 0)
3081 {
3082 d->rela.hdr->sh_link = elf_onesymtab (abfd);
3083 d->rela.hdr->sh_info = d->this_idx;
3084 d->rela.hdr->sh_flags |= SHF_INFO_LINK;
3085 }
3086
3087 /* We need to set up sh_link for SHF_LINK_ORDER. */
3088 if ((d->this_hdr.sh_flags & SHF_LINK_ORDER) != 0)
3089 {
3090 s = elf_linked_to_section (sec);
3091 if (s)
3092 {
3093 /* elf_linked_to_section points to the input section. */
3094 if (link_info != NULL)
3095 {
3096 /* Check discarded linkonce section. */
3097 if (discarded_section (s))
3098 {
3099 asection *kept;
3100 (*_bfd_error_handler)
3101 (_("%B: sh_link of section `%A' points to discarded section `%A' of `%B'"),
3102 abfd, d->this_hdr.bfd_section,
3103 s, s->owner);
3104 /* Point to the kept section if it has the same
3105 size as the discarded one. */
3106 kept = _bfd_elf_check_kept_section (s, link_info);
3107 if (kept == NULL)
3108 {
3109 bfd_set_error (bfd_error_bad_value);
3110 return FALSE;
3111 }
3112 s = kept;
3113 }
3114
3115 s = s->output_section;
3116 BFD_ASSERT (s != NULL);
3117 }
3118 else
3119 {
3120 /* Handle objcopy. */
3121 if (s->output_section == NULL)
3122 {
3123 (*_bfd_error_handler)
3124 (_("%B: sh_link of section `%A' points to removed section `%A' of `%B'"),
3125 abfd, d->this_hdr.bfd_section, s, s->owner);
3126 bfd_set_error (bfd_error_bad_value);
3127 return FALSE;
3128 }
3129 s = s->output_section;
3130 }
3131 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3132 }
3133 else
3134 {
3135 /* PR 290:
3136 The Intel C compiler generates SHT_IA_64_UNWIND with
3137 SHF_LINK_ORDER. But it doesn't set the sh_link or
3138 sh_info fields. Hence we could get the situation
3139 where s is NULL. */
3140 const struct elf_backend_data *bed
3141 = get_elf_backend_data (abfd);
3142 if (bed->link_order_error_handler)
3143 bed->link_order_error_handler
3144 (_("%B: warning: sh_link not set for section `%A'"),
3145 abfd, sec);
3146 }
3147 }
3148
3149 switch (d->this_hdr.sh_type)
3150 {
3151 case SHT_REL:
3152 case SHT_RELA:
3153 /* A reloc section which we are treating as a normal BFD
3154 section. sh_link is the section index of the symbol
3155 table. sh_info is the section index of the section to
3156 which the relocation entries apply. We assume that an
3157 allocated reloc section uses the dynamic symbol table.
3158 FIXME: How can we be sure? */
3159 s = bfd_get_section_by_name (abfd, ".dynsym");
3160 if (s != NULL)
3161 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3162
3163 /* We look up the section the relocs apply to by name. */
3164 name = sec->name;
3165 if (d->this_hdr.sh_type == SHT_REL)
3166 name += 4;
3167 else
3168 name += 5;
3169 s = bfd_get_section_by_name (abfd, name);
3170 if (s != NULL)
3171 {
3172 d->this_hdr.sh_info = elf_section_data (s)->this_idx;
3173 d->this_hdr.sh_flags |= SHF_INFO_LINK;
3174 }
3175 break;
3176
3177 case SHT_STRTAB:
3178 /* We assume that a section named .stab*str is a stabs
3179 string section. We look for a section with the same name
3180 but without the trailing ``str'', and set its sh_link
3181 field to point to this section. */
3182 if (CONST_STRNEQ (sec->name, ".stab")
3183 && strcmp (sec->name + strlen (sec->name) - 3, "str") == 0)
3184 {
3185 size_t len;
3186 char *alc;
3187
3188 len = strlen (sec->name);
3189 alc = (char *) bfd_malloc (len - 2);
3190 if (alc == NULL)
3191 return FALSE;
3192 memcpy (alc, sec->name, len - 3);
3193 alc[len - 3] = '\0';
3194 s = bfd_get_section_by_name (abfd, alc);
3195 free (alc);
3196 if (s != NULL)
3197 {
3198 elf_section_data (s)->this_hdr.sh_link = d->this_idx;
3199
3200 /* This is a .stab section. */
3201 if (elf_section_data (s)->this_hdr.sh_entsize == 0)
3202 elf_section_data (s)->this_hdr.sh_entsize
3203 = 4 + 2 * bfd_get_arch_size (abfd) / 8;
3204 }
3205 }
3206 break;
3207
3208 case SHT_DYNAMIC:
3209 case SHT_DYNSYM:
3210 case SHT_GNU_verneed:
3211 case SHT_GNU_verdef:
3212 /* sh_link is the section header index of the string table
3213 used for the dynamic entries, or the symbol table, or the
3214 version strings. */
3215 s = bfd_get_section_by_name (abfd, ".dynstr");
3216 if (s != NULL)
3217 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3218 break;
3219
3220 case SHT_GNU_LIBLIST:
3221 /* sh_link is the section header index of the prelink library
3222 list used for the dynamic entries, or the symbol table, or
3223 the version strings. */
3224 s = bfd_get_section_by_name (abfd, (sec->flags & SEC_ALLOC)
3225 ? ".dynstr" : ".gnu.libstr");
3226 if (s != NULL)
3227 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3228 break;
3229
3230 case SHT_HASH:
3231 case SHT_GNU_HASH:
3232 case SHT_GNU_versym:
3233 /* sh_link is the section header index of the symbol table
3234 this hash table or version table is for. */
3235 s = bfd_get_section_by_name (abfd, ".dynsym");
3236 if (s != NULL)
3237 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3238 break;
3239
3240 case SHT_GROUP:
3241 d->this_hdr.sh_link = elf_onesymtab (abfd);
3242 }
3243 }
3244
3245 for (secn = 1; secn < section_number; ++secn)
3246 if (i_shdrp[secn] == NULL)
3247 i_shdrp[secn] = i_shdrp[0];
3248 else
3249 i_shdrp[secn]->sh_name = _bfd_elf_strtab_offset (elf_shstrtab (abfd),
3250 i_shdrp[secn]->sh_name);
3251 return TRUE;
3252 }
3253
3254 static bfd_boolean
3255 sym_is_global (bfd *abfd, asymbol *sym)
3256 {
3257 /* If the backend has a special mapping, use it. */
3258 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3259 if (bed->elf_backend_sym_is_global)
3260 return (*bed->elf_backend_sym_is_global) (abfd, sym);
3261
3262 return ((sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE)) != 0
3263 || bfd_is_und_section (bfd_get_section (sym))
3264 || bfd_is_com_section (bfd_get_section (sym)));
3265 }
3266
3267 /* Don't output section symbols for sections that are not going to be
3268 output, that are duplicates or there is no BFD section. */
3269
3270 static bfd_boolean
3271 ignore_section_sym (bfd *abfd, asymbol *sym)
3272 {
3273 elf_symbol_type *type_ptr;
3274
3275 if ((sym->flags & BSF_SECTION_SYM) == 0)
3276 return FALSE;
3277
3278 type_ptr = elf_symbol_from (abfd, sym);
3279 return ((type_ptr != NULL
3280 && type_ptr->internal_elf_sym.st_shndx != 0
3281 && bfd_is_abs_section (sym->section))
3282 || !(sym->section->owner == abfd
3283 || (sym->section->output_section->owner == abfd
3284 && sym->section->output_offset == 0)
3285 || bfd_is_abs_section (sym->section)));
3286 }
3287
3288 /* Map symbol from it's internal number to the external number, moving
3289 all local symbols to be at the head of the list. */
3290
3291 static bfd_boolean
3292 elf_map_symbols (bfd *abfd, unsigned int *pnum_locals)
3293 {
3294 unsigned int symcount = bfd_get_symcount (abfd);
3295 asymbol **syms = bfd_get_outsymbols (abfd);
3296 asymbol **sect_syms;
3297 unsigned int num_locals = 0;
3298 unsigned int num_globals = 0;
3299 unsigned int num_locals2 = 0;
3300 unsigned int num_globals2 = 0;
3301 int max_index = 0;
3302 unsigned int idx;
3303 asection *asect;
3304 asymbol **new_syms;
3305
3306 #ifdef DEBUG
3307 fprintf (stderr, "elf_map_symbols\n");
3308 fflush (stderr);
3309 #endif
3310
3311 for (asect = abfd->sections; asect; asect = asect->next)
3312 {
3313 if (max_index < asect->index)
3314 max_index = asect->index;
3315 }
3316
3317 max_index++;
3318 sect_syms = (asymbol **) bfd_zalloc2 (abfd, max_index, sizeof (asymbol *));
3319 if (sect_syms == NULL)
3320 return FALSE;
3321 elf_section_syms (abfd) = sect_syms;
3322 elf_num_section_syms (abfd) = max_index;
3323
3324 /* Init sect_syms entries for any section symbols we have already
3325 decided to output. */
3326 for (idx = 0; idx < symcount; idx++)
3327 {
3328 asymbol *sym = syms[idx];
3329
3330 if ((sym->flags & BSF_SECTION_SYM) != 0
3331 && sym->value == 0
3332 && !ignore_section_sym (abfd, sym)
3333 && !bfd_is_abs_section (sym->section))
3334 {
3335 asection *sec = sym->section;
3336
3337 if (sec->owner != abfd)
3338 sec = sec->output_section;
3339
3340 sect_syms[sec->index] = syms[idx];
3341 }
3342 }
3343
3344 /* Classify all of the symbols. */
3345 for (idx = 0; idx < symcount; idx++)
3346 {
3347 if (sym_is_global (abfd, syms[idx]))
3348 num_globals++;
3349 else if (!ignore_section_sym (abfd, syms[idx]))
3350 num_locals++;
3351 }
3352
3353 /* We will be adding a section symbol for each normal BFD section. Most
3354 sections will already have a section symbol in outsymbols, but
3355 eg. SHT_GROUP sections will not, and we need the section symbol mapped
3356 at least in that case. */
3357 for (asect = abfd->sections; asect; asect = asect->next)
3358 {
3359 if (sect_syms[asect->index] == NULL)
3360 {
3361 if (!sym_is_global (abfd, asect->symbol))
3362 num_locals++;
3363 else
3364 num_globals++;
3365 }
3366 }
3367
3368 /* Now sort the symbols so the local symbols are first. */
3369 new_syms = (asymbol **) bfd_alloc2 (abfd, num_locals + num_globals,
3370 sizeof (asymbol *));
3371
3372 if (new_syms == NULL)
3373 return FALSE;
3374
3375 for (idx = 0; idx < symcount; idx++)
3376 {
3377 asymbol *sym = syms[idx];
3378 unsigned int i;
3379
3380 if (sym_is_global (abfd, sym))
3381 i = num_locals + num_globals2++;
3382 else if (!ignore_section_sym (abfd, sym))
3383 i = num_locals2++;
3384 else
3385 continue;
3386 new_syms[i] = sym;
3387 sym->udata.i = i + 1;
3388 }
3389 for (asect = abfd->sections; asect; asect = asect->next)
3390 {
3391 if (sect_syms[asect->index] == NULL)
3392 {
3393 asymbol *sym = asect->symbol;
3394 unsigned int i;
3395
3396 sect_syms[asect->index] = sym;
3397 if (!sym_is_global (abfd, sym))
3398 i = num_locals2++;
3399 else
3400 i = num_locals + num_globals2++;
3401 new_syms[i] = sym;
3402 sym->udata.i = i + 1;
3403 }
3404 }
3405
3406 bfd_set_symtab (abfd, new_syms, num_locals + num_globals);
3407
3408 *pnum_locals = num_locals;
3409 return TRUE;
3410 }
3411
3412 /* Align to the maximum file alignment that could be required for any
3413 ELF data structure. */
3414
3415 static inline file_ptr
3416 align_file_position (file_ptr off, int align)
3417 {
3418 return (off + align - 1) & ~(align - 1);
3419 }
3420
3421 /* Assign a file position to a section, optionally aligning to the
3422 required section alignment. */
3423
3424 file_ptr
3425 _bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr *i_shdrp,
3426 file_ptr offset,
3427 bfd_boolean align)
3428 {
3429 if (align && i_shdrp->sh_addralign > 1)
3430 offset = BFD_ALIGN (offset, i_shdrp->sh_addralign);
3431 i_shdrp->sh_offset = offset;
3432 if (i_shdrp->bfd_section != NULL)
3433 i_shdrp->bfd_section->filepos = offset;
3434 if (i_shdrp->sh_type != SHT_NOBITS)
3435 offset += i_shdrp->sh_size;
3436 return offset;
3437 }
3438
3439 /* Compute the file positions we are going to put the sections at, and
3440 otherwise prepare to begin writing out the ELF file. If LINK_INFO
3441 is not NULL, this is being called by the ELF backend linker. */
3442
3443 bfd_boolean
3444 _bfd_elf_compute_section_file_positions (bfd *abfd,
3445 struct bfd_link_info *link_info)
3446 {
3447 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3448 struct fake_section_arg fsargs;
3449 bfd_boolean failed;
3450 struct bfd_strtab_hash *strtab = NULL;
3451 Elf_Internal_Shdr *shstrtab_hdr;
3452 bfd_boolean need_symtab;
3453
3454 if (abfd->output_has_begun)
3455 return TRUE;
3456
3457 /* Do any elf backend specific processing first. */
3458 if (bed->elf_backend_begin_write_processing)
3459 (*bed->elf_backend_begin_write_processing) (abfd, link_info);
3460
3461 if (! prep_headers (abfd))
3462 return FALSE;
3463
3464 /* Post process the headers if necessary. */
3465 (*bed->elf_backend_post_process_headers) (abfd, link_info);
3466
3467 fsargs.failed = FALSE;
3468 fsargs.link_info = link_info;
3469 bfd_map_over_sections (abfd, elf_fake_sections, &fsargs);
3470 if (fsargs.failed)
3471 return FALSE;
3472
3473 if (!assign_section_numbers (abfd, link_info))
3474 return FALSE;
3475
3476 /* The backend linker builds symbol table information itself. */
3477 need_symtab = (link_info == NULL
3478 && (bfd_get_symcount (abfd) > 0
3479 || ((abfd->flags & (EXEC_P | DYNAMIC | HAS_RELOC))
3480 == HAS_RELOC)));
3481 if (need_symtab)
3482 {
3483 /* Non-zero if doing a relocatable link. */
3484 int relocatable_p = ! (abfd->flags & (EXEC_P | DYNAMIC));
3485
3486 if (! swap_out_syms (abfd, &strtab, relocatable_p))
3487 return FALSE;
3488 }
3489
3490 failed = FALSE;
3491 if (link_info == NULL)
3492 {
3493 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
3494 if (failed)
3495 return FALSE;
3496 }
3497
3498 shstrtab_hdr = &elf_tdata (abfd)->shstrtab_hdr;
3499 /* sh_name was set in prep_headers. */
3500 shstrtab_hdr->sh_type = SHT_STRTAB;
3501 shstrtab_hdr->sh_flags = 0;
3502 shstrtab_hdr->sh_addr = 0;
3503 shstrtab_hdr->sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
3504 shstrtab_hdr->sh_entsize = 0;
3505 shstrtab_hdr->sh_link = 0;
3506 shstrtab_hdr->sh_info = 0;
3507 /* sh_offset is set in assign_file_positions_except_relocs. */
3508 shstrtab_hdr->sh_addralign = 1;
3509
3510 if (!assign_file_positions_except_relocs (abfd, link_info))
3511 return FALSE;
3512
3513 if (need_symtab)
3514 {
3515 file_ptr off;
3516 Elf_Internal_Shdr *hdr;
3517
3518 off = elf_next_file_pos (abfd);
3519
3520 hdr = &elf_tdata (abfd)->symtab_hdr;
3521 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3522
3523 hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
3524 if (hdr->sh_size != 0)
3525 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3526
3527 hdr = &elf_tdata (abfd)->strtab_hdr;
3528 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3529
3530 elf_next_file_pos (abfd) = off;
3531
3532 /* Now that we know where the .strtab section goes, write it
3533 out. */
3534 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
3535 || ! _bfd_stringtab_emit (abfd, strtab))
3536 return FALSE;
3537 _bfd_stringtab_free (strtab);
3538 }
3539
3540 abfd->output_has_begun = TRUE;
3541
3542 return TRUE;
3543 }
3544
3545 /* Make an initial estimate of the size of the program header. If we
3546 get the number wrong here, we'll redo section placement. */
3547
3548 static bfd_size_type
3549 get_program_header_size (bfd *abfd, struct bfd_link_info *info)
3550 {
3551 size_t segs;
3552 asection *s;
3553 const struct elf_backend_data *bed;
3554
3555 /* Assume we will need exactly two PT_LOAD segments: one for text
3556 and one for data. */
3557 segs = 2;
3558
3559 s = bfd_get_section_by_name (abfd, ".interp");
3560 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3561 {
3562 /* If we have a loadable interpreter section, we need a
3563 PT_INTERP segment. In this case, assume we also need a
3564 PT_PHDR segment, although that may not be true for all
3565 targets. */
3566 segs += 2;
3567 }
3568
3569 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
3570 {
3571 /* We need a PT_DYNAMIC segment. */
3572 ++segs;
3573 }
3574
3575 if (info != NULL && info->relro)
3576 {
3577 /* We need a PT_GNU_RELRO segment. */
3578 ++segs;
3579 }
3580
3581 if (elf_eh_frame_hdr (abfd))
3582 {
3583 /* We need a PT_GNU_EH_FRAME segment. */
3584 ++segs;
3585 }
3586
3587 if (elf_stack_flags (abfd))
3588 {
3589 /* We need a PT_GNU_STACK segment. */
3590 ++segs;
3591 }
3592
3593 for (s = abfd->sections; s != NULL; s = s->next)
3594 {
3595 if ((s->flags & SEC_LOAD) != 0
3596 && CONST_STRNEQ (s->name, ".note"))
3597 {
3598 /* We need a PT_NOTE segment. */
3599 ++segs;
3600 /* Try to create just one PT_NOTE segment
3601 for all adjacent loadable .note* sections.
3602 gABI requires that within a PT_NOTE segment
3603 (and also inside of each SHT_NOTE section)
3604 each note is padded to a multiple of 4 size,
3605 so we check whether the sections are correctly
3606 aligned. */
3607 if (s->alignment_power == 2)
3608 while (s->next != NULL
3609 && s->next->alignment_power == 2
3610 && (s->next->flags & SEC_LOAD) != 0
3611 && CONST_STRNEQ (s->next->name, ".note"))
3612 s = s->next;
3613 }
3614 }
3615
3616 for (s = abfd->sections; s != NULL; s = s->next)
3617 {
3618 if (s->flags & SEC_THREAD_LOCAL)
3619 {
3620 /* We need a PT_TLS segment. */
3621 ++segs;
3622 break;
3623 }
3624 }
3625
3626 /* Let the backend count up any program headers it might need. */
3627 bed = get_elf_backend_data (abfd);
3628 if (bed->elf_backend_additional_program_headers)
3629 {
3630 int a;
3631
3632 a = (*bed->elf_backend_additional_program_headers) (abfd, info);
3633 if (a == -1)
3634 abort ();
3635 segs += a;
3636 }
3637
3638 return segs * bed->s->sizeof_phdr;
3639 }
3640
3641 /* Find the segment that contains the output_section of section. */
3642
3643 Elf_Internal_Phdr *
3644 _bfd_elf_find_segment_containing_section (bfd * abfd, asection * section)
3645 {
3646 struct elf_segment_map *m;
3647 Elf_Internal_Phdr *p;
3648
3649 for (m = elf_seg_map (abfd), p = elf_tdata (abfd)->phdr;
3650 m != NULL;
3651 m = m->next, p++)
3652 {
3653 int i;
3654
3655 for (i = m->count - 1; i >= 0; i--)
3656 if (m->sections[i] == section)
3657 return p;
3658 }
3659
3660 return NULL;
3661 }
3662
3663 /* Create a mapping from a set of sections to a program segment. */
3664
3665 static struct elf_segment_map *
3666 make_mapping (bfd *abfd,
3667 asection **sections,
3668 unsigned int from,
3669 unsigned int to,
3670 bfd_boolean phdr)
3671 {
3672 struct elf_segment_map *m;
3673 unsigned int i;
3674 asection **hdrpp;
3675 bfd_size_type amt;
3676
3677 amt = sizeof (struct elf_segment_map);
3678 amt += (to - from - 1) * sizeof (asection *);
3679 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
3680 if (m == NULL)
3681 return NULL;
3682 m->next = NULL;
3683 m->p_type = PT_LOAD;
3684 for (i = from, hdrpp = sections + from; i < to; i++, hdrpp++)
3685 m->sections[i - from] = *hdrpp;
3686 m->count = to - from;
3687
3688 if (from == 0 && phdr)
3689 {
3690 /* Include the headers in the first PT_LOAD segment. */
3691 m->includes_filehdr = 1;
3692 m->includes_phdrs = 1;
3693 }
3694
3695 return m;
3696 }
3697
3698 /* Create the PT_DYNAMIC segment, which includes DYNSEC. Returns NULL
3699 on failure. */
3700
3701 struct elf_segment_map *
3702 _bfd_elf_make_dynamic_segment (bfd *abfd, asection *dynsec)
3703 {
3704 struct elf_segment_map *m;
3705
3706 m = (struct elf_segment_map *) bfd_zalloc (abfd,
3707 sizeof (struct elf_segment_map));
3708 if (m == NULL)
3709 return NULL;
3710 m->next = NULL;
3711 m->p_type = PT_DYNAMIC;
3712 m->count = 1;
3713 m->sections[0] = dynsec;
3714
3715 return m;
3716 }
3717
3718 /* Possibly add or remove segments from the segment map. */
3719
3720 static bfd_boolean
3721 elf_modify_segment_map (bfd *abfd,
3722 struct bfd_link_info *info,
3723 bfd_boolean remove_empty_load)
3724 {
3725 struct elf_segment_map **m;
3726 const struct elf_backend_data *bed;
3727
3728 /* The placement algorithm assumes that non allocated sections are
3729 not in PT_LOAD segments. We ensure this here by removing such
3730 sections from the segment map. We also remove excluded
3731 sections. Finally, any PT_LOAD segment without sections is
3732 removed. */
3733 m = &elf_seg_map (abfd);
3734 while (*m)
3735 {
3736 unsigned int i, new_count;
3737
3738 for (new_count = 0, i = 0; i < (*m)->count; i++)
3739 {
3740 if (((*m)->sections[i]->flags & SEC_EXCLUDE) == 0
3741 && (((*m)->sections[i]->flags & SEC_ALLOC) != 0
3742 || (*m)->p_type != PT_LOAD))
3743 {
3744 (*m)->sections[new_count] = (*m)->sections[i];
3745 new_count++;
3746 }
3747 }
3748 (*m)->count = new_count;
3749
3750 if (remove_empty_load && (*m)->p_type == PT_LOAD && (*m)->count == 0)
3751 *m = (*m)->next;
3752 else
3753 m = &(*m)->next;
3754 }
3755
3756 bed = get_elf_backend_data (abfd);
3757 if (bed->elf_backend_modify_segment_map != NULL)
3758 {
3759 if (!(*bed->elf_backend_modify_segment_map) (abfd, info))
3760 return FALSE;
3761 }
3762
3763 return TRUE;
3764 }
3765
3766 /* Set up a mapping from BFD sections to program segments. */
3767
3768 bfd_boolean
3769 _bfd_elf_map_sections_to_segments (bfd *abfd, struct bfd_link_info *info)
3770 {
3771 unsigned int count;
3772 struct elf_segment_map *m;
3773 asection **sections = NULL;
3774 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3775 bfd_boolean no_user_phdrs;
3776
3777 no_user_phdrs = elf_seg_map (abfd) == NULL;
3778
3779 if (info != NULL)
3780 info->user_phdrs = !no_user_phdrs;
3781
3782 if (no_user_phdrs && bfd_count_sections (abfd) != 0)
3783 {
3784 asection *s;
3785 unsigned int i;
3786 struct elf_segment_map *mfirst;
3787 struct elf_segment_map **pm;
3788 asection *last_hdr;
3789 bfd_vma last_size;
3790 unsigned int phdr_index;
3791 bfd_vma maxpagesize;
3792 asection **hdrpp;
3793 bfd_boolean phdr_in_segment = TRUE;
3794 bfd_boolean writable;
3795 int tls_count = 0;
3796 asection *first_tls = NULL;
3797 asection *dynsec, *eh_frame_hdr;
3798 bfd_size_type amt;
3799 bfd_vma addr_mask, wrap_to = 0;
3800
3801 /* Select the allocated sections, and sort them. */
3802
3803 sections = (asection **) bfd_malloc2 (bfd_count_sections (abfd),
3804 sizeof (asection *));
3805 if (sections == NULL)
3806 goto error_return;
3807
3808 /* Calculate top address, avoiding undefined behaviour of shift
3809 left operator when shift count is equal to size of type
3810 being shifted. */
3811 addr_mask = ((bfd_vma) 1 << (bfd_arch_bits_per_address (abfd) - 1)) - 1;
3812 addr_mask = (addr_mask << 1) + 1;
3813
3814 i = 0;
3815 for (s = abfd->sections; s != NULL; s = s->next)
3816 {
3817 if ((s->flags & SEC_ALLOC) != 0)
3818 {
3819 sections[i] = s;
3820 ++i;
3821 /* A wrapping section potentially clashes with header. */
3822 if (((s->lma + s->size) & addr_mask) < (s->lma & addr_mask))
3823 wrap_to = (s->lma + s->size) & addr_mask;
3824 }
3825 }
3826 BFD_ASSERT (i <= bfd_count_sections (abfd));
3827 count = i;
3828
3829 qsort (sections, (size_t) count, sizeof (asection *), elf_sort_sections);
3830
3831 /* Build the mapping. */
3832
3833 mfirst = NULL;
3834 pm = &mfirst;
3835
3836 /* If we have a .interp section, then create a PT_PHDR segment for
3837 the program headers and a PT_INTERP segment for the .interp
3838 section. */
3839 s = bfd_get_section_by_name (abfd, ".interp");
3840 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3841 {
3842 amt = sizeof (struct elf_segment_map);
3843 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
3844 if (m == NULL)
3845 goto error_return;
3846 m->next = NULL;
3847 m->p_type = PT_PHDR;
3848 /* FIXME: UnixWare and Solaris set PF_X, Irix 5 does not. */
3849 m->p_flags = PF_R | PF_X;
3850 m->p_flags_valid = 1;
3851 m->includes_phdrs = 1;
3852
3853 *pm = m;
3854 pm = &m->next;
3855
3856 amt = sizeof (struct elf_segment_map);
3857 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
3858 if (m == NULL)
3859 goto error_return;
3860 m->next = NULL;
3861 m->p_type = PT_INTERP;
3862 m->count = 1;
3863 m->sections[0] = s;
3864
3865 *pm = m;
3866 pm = &m->next;
3867 }
3868
3869 /* Look through the sections. We put sections in the same program
3870 segment when the start of the second section can be placed within
3871 a few bytes of the end of the first section. */
3872 last_hdr = NULL;
3873 last_size = 0;
3874 phdr_index = 0;
3875 maxpagesize = bed->maxpagesize;
3876 writable = FALSE;
3877 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
3878 if (dynsec != NULL
3879 && (dynsec->flags & SEC_LOAD) == 0)
3880 dynsec = NULL;
3881
3882 /* Deal with -Ttext or something similar such that the first section
3883 is not adjacent to the program headers. This is an
3884 approximation, since at this point we don't know exactly how many
3885 program headers we will need. */
3886 if (count > 0)
3887 {
3888 bfd_size_type phdr_size = elf_program_header_size (abfd);
3889
3890 if (phdr_size == (bfd_size_type) -1)
3891 phdr_size = get_program_header_size (abfd, info);
3892 phdr_size += bed->s->sizeof_ehdr;
3893 if ((abfd->flags & D_PAGED) == 0
3894 || (sections[0]->lma & addr_mask) < phdr_size
3895 || ((sections[0]->lma & addr_mask) % maxpagesize
3896 < phdr_size % maxpagesize)
3897 || (sections[0]->lma & addr_mask & -maxpagesize) < wrap_to)
3898 phdr_in_segment = FALSE;
3899 }
3900
3901 for (i = 0, hdrpp = sections; i < count; i++, hdrpp++)
3902 {
3903 asection *hdr;
3904 bfd_boolean new_segment;
3905
3906 hdr = *hdrpp;
3907
3908 /* See if this section and the last one will fit in the same
3909 segment. */
3910
3911 if (last_hdr == NULL)
3912 {
3913 /* If we don't have a segment yet, then we don't need a new
3914 one (we build the last one after this loop). */
3915 new_segment = FALSE;
3916 }
3917 else if (last_hdr->lma - last_hdr->vma != hdr->lma - hdr->vma)
3918 {
3919 /* If this section has a different relation between the
3920 virtual address and the load address, then we need a new
3921 segment. */
3922 new_segment = TRUE;
3923 }
3924 else if (hdr->lma < last_hdr->lma + last_size
3925 || last_hdr->lma + last_size < last_hdr->lma)
3926 {
3927 /* If this section has a load address that makes it overlap
3928 the previous section, then we need a new segment. */
3929 new_segment = TRUE;
3930 }
3931 /* In the next test we have to be careful when last_hdr->lma is close
3932 to the end of the address space. If the aligned address wraps
3933 around to the start of the address space, then there are no more
3934 pages left in memory and it is OK to assume that the current
3935 section can be included in the current segment. */
3936 else if ((BFD_ALIGN (last_hdr->lma + last_size, maxpagesize) + maxpagesize
3937 > last_hdr->lma)
3938 && (BFD_ALIGN (last_hdr->lma + last_size, maxpagesize) + maxpagesize
3939 <= hdr->lma))
3940 {
3941 /* If putting this section in this segment would force us to
3942 skip a page in the segment, then we need a new segment. */
3943 new_segment = TRUE;
3944 }
3945 else if ((last_hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0
3946 && (hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) != 0)
3947 {
3948 /* We don't want to put a loadable section after a
3949 nonloadable section in the same segment.
3950 Consider .tbss sections as loadable for this purpose. */
3951 new_segment = TRUE;
3952 }
3953 else if ((abfd->flags & D_PAGED) == 0)
3954 {
3955 /* If the file is not demand paged, which means that we
3956 don't require the sections to be correctly aligned in the
3957 file, then there is no other reason for a new segment. */
3958 new_segment = FALSE;
3959 }
3960 else if (! writable
3961 && (hdr->flags & SEC_READONLY) == 0
3962 && (((last_hdr->lma + last_size - 1) & -maxpagesize)
3963 != (hdr->lma & -maxpagesize)))
3964 {
3965 /* We don't want to put a writable section in a read only
3966 segment, unless they are on the same page in memory
3967 anyhow. We already know that the last section does not
3968 bring us past the current section on the page, so the
3969 only case in which the new section is not on the same
3970 page as the previous section is when the previous section
3971 ends precisely on a page boundary. */
3972 new_segment = TRUE;
3973 }
3974 else
3975 {
3976 /* Otherwise, we can use the same segment. */
3977 new_segment = FALSE;
3978 }
3979
3980 /* Allow interested parties a chance to override our decision. */
3981 if (last_hdr != NULL
3982 && info != NULL
3983 && info->callbacks->override_segment_assignment != NULL)
3984 new_segment
3985 = info->callbacks->override_segment_assignment (info, abfd, hdr,
3986 last_hdr,
3987 new_segment);
3988
3989 if (! new_segment)
3990 {
3991 if ((hdr->flags & SEC_READONLY) == 0)
3992 writable = TRUE;
3993 last_hdr = hdr;
3994 /* .tbss sections effectively have zero size. */
3995 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD))
3996 != SEC_THREAD_LOCAL)
3997 last_size = hdr->size;
3998 else
3999 last_size = 0;
4000 continue;
4001 }
4002
4003 /* We need a new program segment. We must create a new program
4004 header holding all the sections from phdr_index until hdr. */
4005
4006 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
4007 if (m == NULL)
4008 goto error_return;
4009
4010 *pm = m;
4011 pm = &m->next;
4012
4013 if ((hdr->flags & SEC_READONLY) == 0)
4014 writable = TRUE;
4015 else
4016 writable = FALSE;
4017
4018 last_hdr = hdr;
4019 /* .tbss sections effectively have zero size. */
4020 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) != SEC_THREAD_LOCAL)
4021 last_size = hdr->size;
4022 else
4023 last_size = 0;
4024 phdr_index = i;
4025 phdr_in_segment = FALSE;
4026 }
4027
4028 /* Create a final PT_LOAD program segment, but not if it's just
4029 for .tbss. */
4030 if (last_hdr != NULL
4031 && (i - phdr_index != 1
4032 || ((last_hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD))
4033 != SEC_THREAD_LOCAL)))
4034 {
4035 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
4036 if (m == NULL)
4037 goto error_return;
4038
4039 *pm = m;
4040 pm = &m->next;
4041 }
4042
4043 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
4044 if (dynsec != NULL)
4045 {
4046 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
4047 if (m == NULL)
4048 goto error_return;
4049 *pm = m;
4050 pm = &m->next;
4051 }
4052
4053 /* For each batch of consecutive loadable .note sections,
4054 add a PT_NOTE segment. We don't use bfd_get_section_by_name,
4055 because if we link together nonloadable .note sections and
4056 loadable .note sections, we will generate two .note sections
4057 in the output file. FIXME: Using names for section types is
4058 bogus anyhow. */
4059 for (s = abfd->sections; s != NULL; s = s->next)
4060 {
4061 if ((s->flags & SEC_LOAD) != 0
4062 && CONST_STRNEQ (s->name, ".note"))
4063 {
4064 asection *s2;
4065
4066 count = 1;
4067 amt = sizeof (struct elf_segment_map);
4068 if (s->alignment_power == 2)
4069 for (s2 = s; s2->next != NULL; s2 = s2->next)
4070 {
4071 if (s2->next->alignment_power == 2
4072 && (s2->next->flags & SEC_LOAD) != 0
4073 && CONST_STRNEQ (s2->next->name, ".note")
4074 && align_power (s2->lma + s2->size, 2)
4075 == s2->next->lma)
4076 count++;
4077 else
4078 break;
4079 }
4080 amt += (count - 1) * sizeof (asection *);
4081 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4082 if (m == NULL)
4083 goto error_return;
4084 m->next = NULL;
4085 m->p_type = PT_NOTE;
4086 m->count = count;
4087 while (count > 1)
4088 {
4089 m->sections[m->count - count--] = s;
4090 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
4091 s = s->next;
4092 }
4093 m->sections[m->count - 1] = s;
4094 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
4095 *pm = m;
4096 pm = &m->next;
4097 }
4098 if (s->flags & SEC_THREAD_LOCAL)
4099 {
4100 if (! tls_count)
4101 first_tls = s;
4102 tls_count++;
4103 }
4104 }
4105
4106 /* If there are any SHF_TLS output sections, add PT_TLS segment. */
4107 if (tls_count > 0)
4108 {
4109 amt = sizeof (struct elf_segment_map);
4110 amt += (tls_count - 1) * sizeof (asection *);
4111 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4112 if (m == NULL)
4113 goto error_return;
4114 m->next = NULL;
4115 m->p_type = PT_TLS;
4116 m->count = tls_count;
4117 /* Mandated PF_R. */
4118 m->p_flags = PF_R;
4119 m->p_flags_valid = 1;
4120 s = first_tls;
4121 for (i = 0; i < (unsigned int) tls_count; ++i)
4122 {
4123 if ((s->flags & SEC_THREAD_LOCAL) == 0)
4124 {
4125 _bfd_error_handler
4126 (_("%B: TLS sections are not adjacent:"), abfd);
4127 s = first_tls;
4128 i = 0;
4129 while (i < (unsigned int) tls_count)
4130 {
4131 if ((s->flags & SEC_THREAD_LOCAL) != 0)
4132 {
4133 _bfd_error_handler (_(" TLS: %A"), s);
4134 i++;
4135 }
4136 else
4137 _bfd_error_handler (_(" non-TLS: %A"), s);
4138 s = s->next;
4139 }
4140 bfd_set_error (bfd_error_bad_value);
4141 goto error_return;
4142 }
4143 m->sections[i] = s;
4144 s = s->next;
4145 }
4146
4147 *pm = m;
4148 pm = &m->next;
4149 }
4150
4151 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
4152 segment. */
4153 eh_frame_hdr = elf_eh_frame_hdr (abfd);
4154 if (eh_frame_hdr != NULL
4155 && (eh_frame_hdr->output_section->flags & SEC_LOAD) != 0)
4156 {
4157 amt = sizeof (struct elf_segment_map);
4158 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4159 if (m == NULL)
4160 goto error_return;
4161 m->next = NULL;
4162 m->p_type = PT_GNU_EH_FRAME;
4163 m->count = 1;
4164 m->sections[0] = eh_frame_hdr->output_section;
4165
4166 *pm = m;
4167 pm = &m->next;
4168 }
4169
4170 if (elf_stack_flags (abfd))
4171 {
4172 amt = sizeof (struct elf_segment_map);
4173 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4174 if (m == NULL)
4175 goto error_return;
4176 m->next = NULL;
4177 m->p_type = PT_GNU_STACK;
4178 m->p_flags = elf_stack_flags (abfd);
4179 m->p_align = bed->stack_align;
4180 m->p_flags_valid = 1;
4181 m->p_align_valid = m->p_align != 0;
4182 if (info->stacksize > 0)
4183 {
4184 m->p_size = info->stacksize;
4185 m->p_size_valid = 1;
4186 }
4187
4188 *pm = m;
4189 pm = &m->next;
4190 }
4191
4192 if (info != NULL && info->relro)
4193 {
4194 for (m = mfirst; m != NULL; m = m->next)
4195 {
4196 if (m->p_type == PT_LOAD
4197 && m->count != 0
4198 && m->sections[0]->vma >= info->relro_start
4199 && m->sections[0]->vma < info->relro_end)
4200 {
4201 i = m->count;
4202 while (--i != (unsigned) -1)
4203 if ((m->sections[i]->flags & (SEC_LOAD | SEC_HAS_CONTENTS))
4204 == (SEC_LOAD | SEC_HAS_CONTENTS))
4205 break;
4206
4207 if (i != (unsigned) -1)
4208 break;
4209 }
4210 }
4211
4212 /* Make a PT_GNU_RELRO segment only when it isn't empty. */
4213 if (m != NULL)
4214 {
4215 amt = sizeof (struct elf_segment_map);
4216 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4217 if (m == NULL)
4218 goto error_return;
4219 m->next = NULL;
4220 m->p_type = PT_GNU_RELRO;
4221 m->p_flags = PF_R;
4222 m->p_flags_valid = 1;
4223
4224 *pm = m;
4225 pm = &m->next;
4226 }
4227 }
4228
4229 free (sections);
4230 elf_seg_map (abfd) = mfirst;
4231 }
4232
4233 if (!elf_modify_segment_map (abfd, info, no_user_phdrs))
4234 return FALSE;
4235
4236 for (count = 0, m = elf_seg_map (abfd); m != NULL; m = m->next)
4237 ++count;
4238 elf_program_header_size (abfd) = count * bed->s->sizeof_phdr;
4239
4240 return TRUE;
4241
4242 error_return:
4243 if (sections != NULL)
4244 free (sections);
4245 return FALSE;
4246 }
4247
4248 /* Sort sections by address. */
4249
4250 static int
4251 elf_sort_sections (const void *arg1, const void *arg2)
4252 {
4253 const asection *sec1 = *(const asection **) arg1;
4254 const asection *sec2 = *(const asection **) arg2;
4255 bfd_size_type size1, size2;
4256
4257 /* Sort by LMA first, since this is the address used to
4258 place the section into a segment. */
4259 if (sec1->lma < sec2->lma)
4260 return -1;
4261 else if (sec1->lma > sec2->lma)
4262 return 1;
4263
4264 /* Then sort by VMA. Normally the LMA and the VMA will be
4265 the same, and this will do nothing. */
4266 if (sec1->vma < sec2->vma)
4267 return -1;
4268 else if (sec1->vma > sec2->vma)
4269 return 1;
4270
4271 /* Put !SEC_LOAD sections after SEC_LOAD ones. */
4272
4273 #define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0)
4274
4275 if (TOEND (sec1))
4276 {
4277 if (TOEND (sec2))
4278 {
4279 /* If the indicies are the same, do not return 0
4280 here, but continue to try the next comparison. */
4281 if (sec1->target_index - sec2->target_index != 0)
4282 return sec1->target_index - sec2->target_index;
4283 }
4284 else
4285 return 1;
4286 }
4287 else if (TOEND (sec2))
4288 return -1;
4289
4290 #undef TOEND
4291
4292 /* Sort by size, to put zero sized sections
4293 before others at the same address. */
4294
4295 size1 = (sec1->flags & SEC_LOAD) ? sec1->size : 0;
4296 size2 = (sec2->flags & SEC_LOAD) ? sec2->size : 0;
4297
4298 if (size1 < size2)
4299 return -1;
4300 if (size1 > size2)
4301 return 1;
4302
4303 return sec1->target_index - sec2->target_index;
4304 }
4305
4306 /* Ian Lance Taylor writes:
4307
4308 We shouldn't be using % with a negative signed number. That's just
4309 not good. We have to make sure either that the number is not
4310 negative, or that the number has an unsigned type. When the types
4311 are all the same size they wind up as unsigned. When file_ptr is a
4312 larger signed type, the arithmetic winds up as signed long long,
4313 which is wrong.
4314
4315 What we're trying to say here is something like ``increase OFF by
4316 the least amount that will cause it to be equal to the VMA modulo
4317 the page size.'' */
4318 /* In other words, something like:
4319
4320 vma_offset = m->sections[0]->vma % bed->maxpagesize;
4321 off_offset = off % bed->maxpagesize;
4322 if (vma_offset < off_offset)
4323 adjustment = vma_offset + bed->maxpagesize - off_offset;
4324 else
4325 adjustment = vma_offset - off_offset;
4326
4327 which can can be collapsed into the expression below. */
4328
4329 static file_ptr
4330 vma_page_aligned_bias (bfd_vma vma, ufile_ptr off, bfd_vma maxpagesize)
4331 {
4332 /* PR binutils/16199: Handle an alignment of zero. */
4333 if (maxpagesize == 0)
4334 maxpagesize = 1;
4335 return ((vma - off) % maxpagesize);
4336 }
4337
4338 static void
4339 print_segment_map (const struct elf_segment_map *m)
4340 {
4341 unsigned int j;
4342 const char *pt = get_segment_type (m->p_type);
4343 char buf[32];
4344
4345 if (pt == NULL)
4346 {
4347 if (m->p_type >= PT_LOPROC && m->p_type <= PT_HIPROC)
4348 sprintf (buf, "LOPROC+%7.7x",
4349 (unsigned int) (m->p_type - PT_LOPROC));
4350 else if (m->p_type >= PT_LOOS && m->p_type <= PT_HIOS)
4351 sprintf (buf, "LOOS+%7.7x",
4352 (unsigned int) (m->p_type - PT_LOOS));
4353 else
4354 snprintf (buf, sizeof (buf), "%8.8x",
4355 (unsigned int) m->p_type);
4356 pt = buf;
4357 }
4358 fflush (stdout);
4359 fprintf (stderr, "%s:", pt);
4360 for (j = 0; j < m->count; j++)
4361 fprintf (stderr, " %s", m->sections [j]->name);
4362 putc ('\n',stderr);
4363 fflush (stderr);
4364 }
4365
4366 static bfd_boolean
4367 write_zeros (bfd *abfd, file_ptr pos, bfd_size_type len)
4368 {
4369 void *buf;
4370 bfd_boolean ret;
4371
4372 if (bfd_seek (abfd, pos, SEEK_SET) != 0)
4373 return FALSE;
4374 buf = bfd_zmalloc (len);
4375 if (buf == NULL)
4376 return FALSE;
4377 ret = bfd_bwrite (buf, len, abfd) == len;
4378 free (buf);
4379 return ret;
4380 }
4381
4382 /* Assign file positions to the sections based on the mapping from
4383 sections to segments. This function also sets up some fields in
4384 the file header. */
4385
4386 static bfd_boolean
4387 assign_file_positions_for_load_sections (bfd *abfd,
4388 struct bfd_link_info *link_info)
4389 {
4390 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4391 struct elf_segment_map *m;
4392 Elf_Internal_Phdr *phdrs;
4393 Elf_Internal_Phdr *p;
4394 file_ptr off;
4395 bfd_size_type maxpagesize;
4396 unsigned int alloc;
4397 unsigned int i, j;
4398 bfd_vma header_pad = 0;
4399
4400 if (link_info == NULL
4401 && !_bfd_elf_map_sections_to_segments (abfd, link_info))
4402 return FALSE;
4403
4404 alloc = 0;
4405 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
4406 {
4407 ++alloc;
4408 if (m->header_size)
4409 header_pad = m->header_size;
4410 }
4411
4412 if (alloc)
4413 {
4414 elf_elfheader (abfd)->e_phoff = bed->s->sizeof_ehdr;
4415 elf_elfheader (abfd)->e_phentsize = bed->s->sizeof_phdr;
4416 }
4417 else
4418 {
4419 /* PR binutils/12467. */
4420 elf_elfheader (abfd)->e_phoff = 0;
4421 elf_elfheader (abfd)->e_phentsize = 0;
4422 }
4423
4424 elf_elfheader (abfd)->e_phnum = alloc;
4425
4426 if (elf_program_header_size (abfd) == (bfd_size_type) -1)
4427 elf_program_header_size (abfd) = alloc * bed->s->sizeof_phdr;
4428 else
4429 BFD_ASSERT (elf_program_header_size (abfd)
4430 >= alloc * bed->s->sizeof_phdr);
4431
4432 if (alloc == 0)
4433 {
4434 elf_next_file_pos (abfd) = bed->s->sizeof_ehdr;
4435 return TRUE;
4436 }
4437
4438 /* We're writing the size in elf_program_header_size (abfd),
4439 see assign_file_positions_except_relocs, so make sure we have
4440 that amount allocated, with trailing space cleared.
4441 The variable alloc contains the computed need, while
4442 elf_program_header_size (abfd) contains the size used for the
4443 layout.
4444 See ld/emultempl/elf-generic.em:gld${EMULATION_NAME}_map_segments
4445 where the layout is forced to according to a larger size in the
4446 last iterations for the testcase ld-elf/header. */
4447 BFD_ASSERT (elf_program_header_size (abfd) % bed->s->sizeof_phdr
4448 == 0);
4449 phdrs = (Elf_Internal_Phdr *)
4450 bfd_zalloc2 (abfd,
4451 (elf_program_header_size (abfd) / bed->s->sizeof_phdr),
4452 sizeof (Elf_Internal_Phdr));
4453 elf_tdata (abfd)->phdr = phdrs;
4454 if (phdrs == NULL)
4455 return FALSE;
4456
4457 maxpagesize = 1;
4458 if ((abfd->flags & D_PAGED) != 0)
4459 maxpagesize = bed->maxpagesize;
4460
4461 off = bed->s->sizeof_ehdr;
4462 off += alloc * bed->s->sizeof_phdr;
4463 if (header_pad < (bfd_vma) off)
4464 header_pad = 0;
4465 else
4466 header_pad -= off;
4467 off += header_pad;
4468
4469 for (m = elf_seg_map (abfd), p = phdrs, j = 0;
4470 m != NULL;
4471 m = m->next, p++, j++)
4472 {
4473 asection **secpp;
4474 bfd_vma off_adjust;
4475 bfd_boolean no_contents;
4476
4477 /* If elf_segment_map is not from map_sections_to_segments, the
4478 sections may not be correctly ordered. NOTE: sorting should
4479 not be done to the PT_NOTE section of a corefile, which may
4480 contain several pseudo-sections artificially created by bfd.
4481 Sorting these pseudo-sections breaks things badly. */
4482 if (m->count > 1
4483 && !(elf_elfheader (abfd)->e_type == ET_CORE
4484 && m->p_type == PT_NOTE))
4485 qsort (m->sections, (size_t) m->count, sizeof (asection *),
4486 elf_sort_sections);
4487
4488 /* An ELF segment (described by Elf_Internal_Phdr) may contain a
4489 number of sections with contents contributing to both p_filesz
4490 and p_memsz, followed by a number of sections with no contents
4491 that just contribute to p_memsz. In this loop, OFF tracks next
4492 available file offset for PT_LOAD and PT_NOTE segments. */
4493 p->p_type = m->p_type;
4494 p->p_flags = m->p_flags;
4495
4496 if (m->count == 0)
4497 p->p_vaddr = 0;
4498 else
4499 p->p_vaddr = m->sections[0]->vma - m->p_vaddr_offset;
4500
4501 if (m->p_paddr_valid)
4502 p->p_paddr = m->p_paddr;
4503 else if (m->count == 0)
4504 p->p_paddr = 0;
4505 else
4506 p->p_paddr = m->sections[0]->lma - m->p_vaddr_offset;
4507
4508 if (p->p_type == PT_LOAD
4509 && (abfd->flags & D_PAGED) != 0)
4510 {
4511 /* p_align in demand paged PT_LOAD segments effectively stores
4512 the maximum page size. When copying an executable with
4513 objcopy, we set m->p_align from the input file. Use this
4514 value for maxpagesize rather than bed->maxpagesize, which
4515 may be different. Note that we use maxpagesize for PT_TLS
4516 segment alignment later in this function, so we are relying
4517 on at least one PT_LOAD segment appearing before a PT_TLS
4518 segment. */
4519 if (m->p_align_valid)
4520 maxpagesize = m->p_align;
4521
4522 p->p_align = maxpagesize;
4523 }
4524 else if (m->p_align_valid)
4525 p->p_align = m->p_align;
4526 else if (m->count == 0)
4527 p->p_align = 1 << bed->s->log_file_align;
4528 else
4529 p->p_align = 0;
4530
4531 no_contents = FALSE;
4532 off_adjust = 0;
4533 if (p->p_type == PT_LOAD
4534 && m->count > 0)
4535 {
4536 bfd_size_type align;
4537 unsigned int align_power = 0;
4538
4539 if (m->p_align_valid)
4540 align = p->p_align;
4541 else
4542 {
4543 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4544 {
4545 unsigned int secalign;
4546
4547 secalign = bfd_get_section_alignment (abfd, *secpp);
4548 if (secalign > align_power)
4549 align_power = secalign;
4550 }
4551 align = (bfd_size_type) 1 << align_power;
4552 if (align < maxpagesize)
4553 align = maxpagesize;
4554 }
4555
4556 for (i = 0; i < m->count; i++)
4557 if ((m->sections[i]->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
4558 /* If we aren't making room for this section, then
4559 it must be SHT_NOBITS regardless of what we've
4560 set via struct bfd_elf_special_section. */
4561 elf_section_type (m->sections[i]) = SHT_NOBITS;
4562
4563 /* Find out whether this segment contains any loadable
4564 sections. */
4565 no_contents = TRUE;
4566 for (i = 0; i < m->count; i++)
4567 if (elf_section_type (m->sections[i]) != SHT_NOBITS)
4568 {
4569 no_contents = FALSE;
4570 break;
4571 }
4572
4573 off_adjust = vma_page_aligned_bias (p->p_vaddr, off, align);
4574 off += off_adjust;
4575 if (no_contents)
4576 {
4577 /* We shouldn't need to align the segment on disk since
4578 the segment doesn't need file space, but the gABI
4579 arguably requires the alignment and glibc ld.so
4580 checks it. So to comply with the alignment
4581 requirement but not waste file space, we adjust
4582 p_offset for just this segment. (OFF_ADJUST is
4583 subtracted from OFF later.) This may put p_offset
4584 past the end of file, but that shouldn't matter. */
4585 }
4586 else
4587 off_adjust = 0;
4588 }
4589 /* Make sure the .dynamic section is the first section in the
4590 PT_DYNAMIC segment. */
4591 else if (p->p_type == PT_DYNAMIC
4592 && m->count > 1
4593 && strcmp (m->sections[0]->name, ".dynamic") != 0)
4594 {
4595 _bfd_error_handler
4596 (_("%B: The first section in the PT_DYNAMIC segment is not the .dynamic section"),
4597 abfd);
4598 bfd_set_error (bfd_error_bad_value);
4599 return FALSE;
4600 }
4601 /* Set the note section type to SHT_NOTE. */
4602 else if (p->p_type == PT_NOTE)
4603 for (i = 0; i < m->count; i++)
4604 elf_section_type (m->sections[i]) = SHT_NOTE;
4605
4606 p->p_offset = 0;
4607 p->p_filesz = 0;
4608 p->p_memsz = 0;
4609
4610 if (m->includes_filehdr)
4611 {
4612 if (!m->p_flags_valid)
4613 p->p_flags |= PF_R;
4614 p->p_filesz = bed->s->sizeof_ehdr;
4615 p->p_memsz = bed->s->sizeof_ehdr;
4616 if (m->count > 0)
4617 {
4618 if (p->p_vaddr < (bfd_vma) off)
4619 {
4620 (*_bfd_error_handler)
4621 (_("%B: Not enough room for program headers, try linking with -N"),
4622 abfd);
4623 bfd_set_error (bfd_error_bad_value);
4624 return FALSE;
4625 }
4626
4627 p->p_vaddr -= off;
4628 if (!m->p_paddr_valid)
4629 p->p_paddr -= off;
4630 }
4631 }
4632
4633 if (m->includes_phdrs)
4634 {
4635 if (!m->p_flags_valid)
4636 p->p_flags |= PF_R;
4637
4638 if (!m->includes_filehdr)
4639 {
4640 p->p_offset = bed->s->sizeof_ehdr;
4641
4642 if (m->count > 0)
4643 {
4644 p->p_vaddr -= off - p->p_offset;
4645 if (!m->p_paddr_valid)
4646 p->p_paddr -= off - p->p_offset;
4647 }
4648 }
4649
4650 p->p_filesz += alloc * bed->s->sizeof_phdr;
4651 p->p_memsz += alloc * bed->s->sizeof_phdr;
4652 if (m->count)
4653 {
4654 p->p_filesz += header_pad;
4655 p->p_memsz += header_pad;
4656 }
4657 }
4658
4659 if (p->p_type == PT_LOAD
4660 || (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core))
4661 {
4662 if (!m->includes_filehdr && !m->includes_phdrs)
4663 p->p_offset = off;
4664 else
4665 {
4666 file_ptr adjust;
4667
4668 adjust = off - (p->p_offset + p->p_filesz);
4669 if (!no_contents)
4670 p->p_filesz += adjust;
4671 p->p_memsz += adjust;
4672 }
4673 }
4674
4675 /* Set up p_filesz, p_memsz, p_align and p_flags from the section
4676 maps. Set filepos for sections in PT_LOAD segments, and in
4677 core files, for sections in PT_NOTE segments.
4678 assign_file_positions_for_non_load_sections will set filepos
4679 for other sections and update p_filesz for other segments. */
4680 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4681 {
4682 asection *sec;
4683 bfd_size_type align;
4684 Elf_Internal_Shdr *this_hdr;
4685
4686 sec = *secpp;
4687 this_hdr = &elf_section_data (sec)->this_hdr;
4688 align = (bfd_size_type) 1 << bfd_get_section_alignment (abfd, sec);
4689
4690 if ((p->p_type == PT_LOAD
4691 || p->p_type == PT_TLS)
4692 && (this_hdr->sh_type != SHT_NOBITS
4693 || ((this_hdr->sh_flags & SHF_ALLOC) != 0
4694 && ((this_hdr->sh_flags & SHF_TLS) == 0
4695 || p->p_type == PT_TLS))))
4696 {
4697 bfd_vma p_start = p->p_paddr;
4698 bfd_vma p_end = p_start + p->p_memsz;
4699 bfd_vma s_start = sec->lma;
4700 bfd_vma adjust = s_start - p_end;
4701
4702 if (adjust != 0
4703 && (s_start < p_end
4704 || p_end < p_start))
4705 {
4706 (*_bfd_error_handler)
4707 (_("%B: section %A lma %#lx adjusted to %#lx"), abfd, sec,
4708 (unsigned long) s_start, (unsigned long) p_end);
4709 adjust = 0;
4710 sec->lma = p_end;
4711 }
4712 p->p_memsz += adjust;
4713
4714 if (this_hdr->sh_type != SHT_NOBITS)
4715 {
4716 if (p->p_filesz + adjust < p->p_memsz)
4717 {
4718 /* We have a PROGBITS section following NOBITS ones.
4719 Allocate file space for the NOBITS section(s) and
4720 zero it. */
4721 adjust = p->p_memsz - p->p_filesz;
4722 if (!write_zeros (abfd, off, adjust))
4723 return FALSE;
4724 }
4725 off += adjust;
4726 p->p_filesz += adjust;
4727 }
4728 }
4729
4730 if (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core)
4731 {
4732 /* The section at i == 0 is the one that actually contains
4733 everything. */
4734 if (i == 0)
4735 {
4736 this_hdr->sh_offset = sec->filepos = off;
4737 off += this_hdr->sh_size;
4738 p->p_filesz = this_hdr->sh_size;
4739 p->p_memsz = 0;
4740 p->p_align = 1;
4741 }
4742 else
4743 {
4744 /* The rest are fake sections that shouldn't be written. */
4745 sec->filepos = 0;
4746 sec->size = 0;
4747 sec->flags = 0;
4748 continue;
4749 }
4750 }
4751 else
4752 {
4753 if (p->p_type == PT_LOAD)
4754 {
4755 this_hdr->sh_offset = sec->filepos = off;
4756 if (this_hdr->sh_type != SHT_NOBITS)
4757 off += this_hdr->sh_size;
4758 }
4759 else if (this_hdr->sh_type == SHT_NOBITS
4760 && (this_hdr->sh_flags & SHF_TLS) != 0
4761 && this_hdr->sh_offset == 0)
4762 {
4763 /* This is a .tbss section that didn't get a PT_LOAD.
4764 (See _bfd_elf_map_sections_to_segments "Create a
4765 final PT_LOAD".) Set sh_offset to the value it
4766 would have if we had created a zero p_filesz and
4767 p_memsz PT_LOAD header for the section. This
4768 also makes the PT_TLS header have the same
4769 p_offset value. */
4770 bfd_vma adjust = vma_page_aligned_bias (this_hdr->sh_addr,
4771 off, align);
4772 this_hdr->sh_offset = sec->filepos = off + adjust;
4773 }
4774
4775 if (this_hdr->sh_type != SHT_NOBITS)
4776 {
4777 p->p_filesz += this_hdr->sh_size;
4778 /* A load section without SHF_ALLOC is something like
4779 a note section in a PT_NOTE segment. These take
4780 file space but are not loaded into memory. */
4781 if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
4782 p->p_memsz += this_hdr->sh_size;
4783 }
4784 else if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
4785 {
4786 if (p->p_type == PT_TLS)
4787 p->p_memsz += this_hdr->sh_size;
4788
4789 /* .tbss is special. It doesn't contribute to p_memsz of
4790 normal segments. */
4791 else if ((this_hdr->sh_flags & SHF_TLS) == 0)
4792 p->p_memsz += this_hdr->sh_size;
4793 }
4794
4795 if (align > p->p_align
4796 && !m->p_align_valid
4797 && (p->p_type != PT_LOAD
4798 || (abfd->flags & D_PAGED) == 0))
4799 p->p_align = align;
4800 }
4801
4802 if (!m->p_flags_valid)
4803 {
4804 p->p_flags |= PF_R;
4805 if ((this_hdr->sh_flags & SHF_EXECINSTR) != 0)
4806 p->p_flags |= PF_X;
4807 if ((this_hdr->sh_flags & SHF_WRITE) != 0)
4808 p->p_flags |= PF_W;
4809 }
4810 }
4811
4812 off -= off_adjust;
4813
4814 /* Check that all sections are in a PT_LOAD segment.
4815 Don't check funky gdb generated core files. */
4816 if (p->p_type == PT_LOAD && bfd_get_format (abfd) != bfd_core)
4817 {
4818 bfd_boolean check_vma = TRUE;
4819
4820 for (i = 1; i < m->count; i++)
4821 if (m->sections[i]->vma == m->sections[i - 1]->vma
4822 && ELF_SECTION_SIZE (&(elf_section_data (m->sections[i])
4823 ->this_hdr), p) != 0
4824 && ELF_SECTION_SIZE (&(elf_section_data (m->sections[i - 1])
4825 ->this_hdr), p) != 0)
4826 {
4827 /* Looks like we have overlays packed into the segment. */
4828 check_vma = FALSE;
4829 break;
4830 }
4831
4832 for (i = 0; i < m->count; i++)
4833 {
4834 Elf_Internal_Shdr *this_hdr;
4835 asection *sec;
4836
4837 sec = m->sections[i];
4838 this_hdr = &(elf_section_data(sec)->this_hdr);
4839 if (!ELF_SECTION_IN_SEGMENT_1 (this_hdr, p, check_vma, 0)
4840 && !ELF_TBSS_SPECIAL (this_hdr, p))
4841 {
4842 (*_bfd_error_handler)
4843 (_("%B: section `%A' can't be allocated in segment %d"),
4844 abfd, sec, j);
4845 print_segment_map (m);
4846 }
4847 }
4848 }
4849 }
4850
4851 elf_next_file_pos (abfd) = off;
4852 return TRUE;
4853 }
4854
4855 /* Assign file positions for the other sections. */
4856
4857 static bfd_boolean
4858 assign_file_positions_for_non_load_sections (bfd *abfd,
4859 struct bfd_link_info *link_info)
4860 {
4861 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4862 Elf_Internal_Shdr **i_shdrpp;
4863 Elf_Internal_Shdr **hdrpp;
4864 Elf_Internal_Phdr *phdrs;
4865 Elf_Internal_Phdr *p;
4866 struct elf_segment_map *m;
4867 struct elf_segment_map *hdrs_segment;
4868 bfd_vma filehdr_vaddr, filehdr_paddr;
4869 bfd_vma phdrs_vaddr, phdrs_paddr;
4870 file_ptr off;
4871 unsigned int num_sec;
4872 unsigned int i;
4873 unsigned int count;
4874
4875 i_shdrpp = elf_elfsections (abfd);
4876 num_sec = elf_numsections (abfd);
4877 off = elf_next_file_pos (abfd);
4878 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
4879 {
4880 Elf_Internal_Shdr *hdr;
4881
4882 hdr = *hdrpp;
4883 if (hdr->bfd_section != NULL
4884 && (hdr->bfd_section->filepos != 0
4885 || (hdr->sh_type == SHT_NOBITS
4886 && hdr->contents == NULL)))
4887 BFD_ASSERT (hdr->sh_offset == hdr->bfd_section->filepos);
4888 else if ((hdr->sh_flags & SHF_ALLOC) != 0)
4889 {
4890 if (hdr->sh_size != 0)
4891 (*_bfd_error_handler)
4892 (_("%B: warning: allocated section `%s' not in segment"),
4893 abfd,
4894 (hdr->bfd_section == NULL
4895 ? "*unknown*"
4896 : hdr->bfd_section->name));
4897 /* We don't need to page align empty sections. */
4898 if ((abfd->flags & D_PAGED) != 0 && hdr->sh_size != 0)
4899 off += vma_page_aligned_bias (hdr->sh_addr, off,
4900 bed->maxpagesize);
4901 else
4902 off += vma_page_aligned_bias (hdr->sh_addr, off,
4903 hdr->sh_addralign);
4904 off = _bfd_elf_assign_file_position_for_section (hdr, off,
4905 FALSE);
4906 }
4907 else if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
4908 && hdr->bfd_section == NULL)
4909 || hdr == i_shdrpp[elf_onesymtab (abfd)]
4910 || hdr == i_shdrpp[elf_symtab_shndx (abfd)]
4911 || hdr == i_shdrpp[elf_strtab_sec (abfd)])
4912 hdr->sh_offset = -1;
4913 else
4914 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4915 }
4916
4917 /* Now that we have set the section file positions, we can set up
4918 the file positions for the non PT_LOAD segments. */
4919 count = 0;
4920 filehdr_vaddr = 0;
4921 filehdr_paddr = 0;
4922 phdrs_vaddr = bed->maxpagesize + bed->s->sizeof_ehdr;
4923 phdrs_paddr = 0;
4924 hdrs_segment = NULL;
4925 phdrs = elf_tdata (abfd)->phdr;
4926 for (m = elf_seg_map (abfd), p = phdrs; m != NULL; m = m->next, p++)
4927 {
4928 ++count;
4929 if (p->p_type != PT_LOAD)
4930 continue;
4931
4932 if (m->includes_filehdr)
4933 {
4934 filehdr_vaddr = p->p_vaddr;
4935 filehdr_paddr = p->p_paddr;
4936 }
4937 if (m->includes_phdrs)
4938 {
4939 phdrs_vaddr = p->p_vaddr;
4940 phdrs_paddr = p->p_paddr;
4941 if (m->includes_filehdr)
4942 {
4943 hdrs_segment = m;
4944 phdrs_vaddr += bed->s->sizeof_ehdr;
4945 phdrs_paddr += bed->s->sizeof_ehdr;
4946 }
4947 }
4948 }
4949
4950 if (hdrs_segment != NULL && link_info != NULL)
4951 {
4952 /* There is a segment that contains both the file headers and the
4953 program headers, so provide a symbol __ehdr_start pointing there.
4954 A program can use this to examine itself robustly. */
4955
4956 struct elf_link_hash_entry *hash
4957 = elf_link_hash_lookup (elf_hash_table (link_info), "__ehdr_start",
4958 FALSE, FALSE, TRUE);
4959 /* If the symbol was referenced and not defined, define it. */
4960 if (hash != NULL
4961 && (hash->root.type == bfd_link_hash_new
4962 || hash->root.type == bfd_link_hash_undefined
4963 || hash->root.type == bfd_link_hash_undefweak
4964 || hash->root.type == bfd_link_hash_common))
4965 {
4966 asection *s = NULL;
4967 if (hdrs_segment->count != 0)
4968 /* The segment contains sections, so use the first one. */
4969 s = hdrs_segment->sections[0];
4970 else
4971 /* Use the first (i.e. lowest-addressed) section in any segment. */
4972 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
4973 if (m->count != 0)
4974 {
4975 s = m->sections[0];
4976 break;
4977 }
4978
4979 if (s != NULL)
4980 {
4981 hash->root.u.def.value = filehdr_vaddr - s->vma;
4982 hash->root.u.def.section = s;
4983 }
4984 else
4985 {
4986 hash->root.u.def.value = filehdr_vaddr;
4987 hash->root.u.def.section = bfd_abs_section_ptr;
4988 }
4989
4990 hash->root.type = bfd_link_hash_defined;
4991 hash->def_regular = 1;
4992 hash->non_elf = 0;
4993 }
4994 }
4995
4996 for (m = elf_seg_map (abfd), p = phdrs; m != NULL; m = m->next, p++)
4997 {
4998 if (p->p_type == PT_GNU_RELRO)
4999 {
5000 const Elf_Internal_Phdr *lp;
5001 struct elf_segment_map *lm;
5002
5003 if (link_info != NULL)
5004 {
5005 /* During linking the range of the RELRO segment is passed
5006 in link_info. */
5007 for (lm = elf_seg_map (abfd), lp = phdrs;
5008 lm != NULL;
5009 lm = lm->next, lp++)
5010 {
5011 if (lp->p_type == PT_LOAD
5012 && lp->p_vaddr < link_info->relro_end
5013 && lm->count != 0
5014 && lm->sections[0]->vma >= link_info->relro_start)
5015 break;
5016 }
5017
5018 BFD_ASSERT (lm != NULL);
5019 }
5020 else
5021 {
5022 /* Otherwise we are copying an executable or shared
5023 library, but we need to use the same linker logic. */
5024 for (lp = phdrs; lp < phdrs + count; ++lp)
5025 {
5026 if (lp->p_type == PT_LOAD
5027 && lp->p_paddr == p->p_paddr)
5028 break;
5029 }
5030 }
5031
5032 if (lp < phdrs + count)
5033 {
5034 p->p_vaddr = lp->p_vaddr;
5035 p->p_paddr = lp->p_paddr;
5036 p->p_offset = lp->p_offset;
5037 if (link_info != NULL)
5038 p->p_filesz = link_info->relro_end - lp->p_vaddr;
5039 else if (m->p_size_valid)
5040 p->p_filesz = m->p_size;
5041 else
5042 abort ();
5043 p->p_memsz = p->p_filesz;
5044 /* Preserve the alignment and flags if they are valid. The
5045 gold linker generates RW/4 for the PT_GNU_RELRO section.
5046 It is better for objcopy/strip to honor these attributes
5047 otherwise gdb will choke when using separate debug files.
5048 */
5049 if (!m->p_align_valid)
5050 p->p_align = 1;
5051 if (!m->p_flags_valid)
5052 p->p_flags = (lp->p_flags & ~PF_W);
5053 }
5054 else
5055 {
5056 memset (p, 0, sizeof *p);
5057 p->p_type = PT_NULL;
5058 }
5059 }
5060 else if (p->p_type == PT_GNU_STACK)
5061 {
5062 if (m->p_size_valid)
5063 p->p_memsz = m->p_size;
5064 }
5065 else if (m->count != 0)
5066 {
5067 if (p->p_type != PT_LOAD
5068 && (p->p_type != PT_NOTE
5069 || bfd_get_format (abfd) != bfd_core))
5070 {
5071 BFD_ASSERT (!m->includes_filehdr && !m->includes_phdrs);
5072
5073 p->p_filesz = 0;
5074 p->p_offset = m->sections[0]->filepos;
5075 for (i = m->count; i-- != 0;)
5076 {
5077 asection *sect = m->sections[i];
5078 Elf_Internal_Shdr *hdr = &elf_section_data (sect)->this_hdr;
5079 if (hdr->sh_type != SHT_NOBITS)
5080 {
5081 p->p_filesz = (sect->filepos - m->sections[0]->filepos
5082 + hdr->sh_size);
5083 break;
5084 }
5085 }
5086 }
5087 }
5088 else if (m->includes_filehdr)
5089 {
5090 p->p_vaddr = filehdr_vaddr;
5091 if (! m->p_paddr_valid)
5092 p->p_paddr = filehdr_paddr;
5093 }
5094 else if (m->includes_phdrs)
5095 {
5096 p->p_vaddr = phdrs_vaddr;
5097 if (! m->p_paddr_valid)
5098 p->p_paddr = phdrs_paddr;
5099 }
5100 }
5101
5102 elf_next_file_pos (abfd) = off;
5103
5104 return TRUE;
5105 }
5106
5107 /* Work out the file positions of all the sections. This is called by
5108 _bfd_elf_compute_section_file_positions. All the section sizes and
5109 VMAs must be known before this is called.
5110
5111 Reloc sections come in two flavours: Those processed specially as
5112 "side-channel" data attached to a section to which they apply, and
5113 those that bfd doesn't process as relocations. The latter sort are
5114 stored in a normal bfd section by bfd_section_from_shdr. We don't
5115 consider the former sort here, unless they form part of the loadable
5116 image. Reloc sections not assigned here will be handled later by
5117 assign_file_positions_for_relocs.
5118
5119 We also don't set the positions of the .symtab and .strtab here. */
5120
5121 static bfd_boolean
5122 assign_file_positions_except_relocs (bfd *abfd,
5123 struct bfd_link_info *link_info)
5124 {
5125 struct elf_obj_tdata *tdata = elf_tdata (abfd);
5126 Elf_Internal_Ehdr *i_ehdrp = elf_elfheader (abfd);
5127 file_ptr off;
5128 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5129
5130 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
5131 && bfd_get_format (abfd) != bfd_core)
5132 {
5133 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
5134 unsigned int num_sec = elf_numsections (abfd);
5135 Elf_Internal_Shdr **hdrpp;
5136 unsigned int i;
5137
5138 /* Start after the ELF header. */
5139 off = i_ehdrp->e_ehsize;
5140
5141 /* We are not creating an executable, which means that we are
5142 not creating a program header, and that the actual order of
5143 the sections in the file is unimportant. */
5144 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
5145 {
5146 Elf_Internal_Shdr *hdr;
5147
5148 hdr = *hdrpp;
5149 if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
5150 && hdr->bfd_section == NULL)
5151 || i == elf_onesymtab (abfd)
5152 || i == elf_symtab_shndx (abfd)
5153 || i == elf_strtab_sec (abfd))
5154 {
5155 hdr->sh_offset = -1;
5156 }
5157 else
5158 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
5159 }
5160 }
5161 else
5162 {
5163 unsigned int alloc;
5164
5165 /* Assign file positions for the loaded sections based on the
5166 assignment of sections to segments. */
5167 if (!assign_file_positions_for_load_sections (abfd, link_info))
5168 return FALSE;
5169
5170 /* And for non-load sections. */
5171 if (!assign_file_positions_for_non_load_sections (abfd, link_info))
5172 return FALSE;
5173
5174 if (bed->elf_backend_modify_program_headers != NULL)
5175 {
5176 if (!(*bed->elf_backend_modify_program_headers) (abfd, link_info))
5177 return FALSE;
5178 }
5179
5180 /* Set e_type in ELF header to ET_EXEC for -pie -Ttext-segment=. */
5181 if (link_info != NULL
5182 && link_info->executable
5183 && link_info->shared)
5184 {
5185 unsigned int num_segments = elf_elfheader (abfd)->e_phnum;
5186 Elf_Internal_Phdr *segment = elf_tdata (abfd)->phdr;
5187 Elf_Internal_Phdr *end_segment = &segment[num_segments];
5188
5189 /* Find the lowest p_vaddr in PT_LOAD segments. */
5190 bfd_vma p_vaddr = (bfd_vma) -1;
5191 for (; segment < end_segment; segment++)
5192 if (segment->p_type == PT_LOAD && p_vaddr > segment->p_vaddr)
5193 p_vaddr = segment->p_vaddr;
5194
5195 /* Set e_type to ET_EXEC if the lowest p_vaddr in PT_LOAD
5196 segments is non-zero. */
5197 if (p_vaddr)
5198 i_ehdrp->e_type = ET_EXEC;
5199 }
5200
5201 /* Write out the program headers. */
5202 alloc = elf_program_header_size (abfd) / bed->s->sizeof_phdr;
5203 if (bfd_seek (abfd, (bfd_signed_vma) bed->s->sizeof_ehdr, SEEK_SET) != 0
5204 || bed->s->write_out_phdrs (abfd, tdata->phdr, alloc) != 0)
5205 return FALSE;
5206
5207 off = elf_next_file_pos (abfd);
5208 }
5209
5210 /* Place the section headers. */
5211 off = align_file_position (off, 1 << bed->s->log_file_align);
5212 i_ehdrp->e_shoff = off;
5213 off += i_ehdrp->e_shnum * i_ehdrp->e_shentsize;
5214
5215 elf_next_file_pos (abfd) = off;
5216
5217 return TRUE;
5218 }
5219
5220 static bfd_boolean
5221 prep_headers (bfd *abfd)
5222 {
5223 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form. */
5224 struct elf_strtab_hash *shstrtab;
5225 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5226
5227 i_ehdrp = elf_elfheader (abfd);
5228
5229 shstrtab = _bfd_elf_strtab_init ();
5230 if (shstrtab == NULL)
5231 return FALSE;
5232
5233 elf_shstrtab (abfd) = shstrtab;
5234
5235 i_ehdrp->e_ident[EI_MAG0] = ELFMAG0;
5236 i_ehdrp->e_ident[EI_MAG1] = ELFMAG1;
5237 i_ehdrp->e_ident[EI_MAG2] = ELFMAG2;
5238 i_ehdrp->e_ident[EI_MAG3] = ELFMAG3;
5239
5240 i_ehdrp->e_ident[EI_CLASS] = bed->s->elfclass;
5241 i_ehdrp->e_ident[EI_DATA] =
5242 bfd_big_endian (abfd) ? ELFDATA2MSB : ELFDATA2LSB;
5243 i_ehdrp->e_ident[EI_VERSION] = bed->s->ev_current;
5244
5245 if ((abfd->flags & DYNAMIC) != 0)
5246 i_ehdrp->e_type = ET_DYN;
5247 else if ((abfd->flags & EXEC_P) != 0)
5248 i_ehdrp->e_type = ET_EXEC;
5249 else if (bfd_get_format (abfd) == bfd_core)
5250 i_ehdrp->e_type = ET_CORE;
5251 else
5252 i_ehdrp->e_type = ET_REL;
5253
5254 switch (bfd_get_arch (abfd))
5255 {
5256 case bfd_arch_unknown:
5257 i_ehdrp->e_machine = EM_NONE;
5258 break;
5259
5260 /* There used to be a long list of cases here, each one setting
5261 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
5262 in the corresponding bfd definition. To avoid duplication,
5263 the switch was removed. Machines that need special handling
5264 can generally do it in elf_backend_final_write_processing(),
5265 unless they need the information earlier than the final write.
5266 Such need can generally be supplied by replacing the tests for
5267 e_machine with the conditions used to determine it. */
5268 default:
5269 i_ehdrp->e_machine = bed->elf_machine_code;
5270 }
5271
5272 i_ehdrp->e_version = bed->s->ev_current;
5273 i_ehdrp->e_ehsize = bed->s->sizeof_ehdr;
5274
5275 /* No program header, for now. */
5276 i_ehdrp->e_phoff = 0;
5277 i_ehdrp->e_phentsize = 0;
5278 i_ehdrp->e_phnum = 0;
5279
5280 /* Each bfd section is section header entry. */
5281 i_ehdrp->e_entry = bfd_get_start_address (abfd);
5282 i_ehdrp->e_shentsize = bed->s->sizeof_shdr;
5283
5284 /* If we're building an executable, we'll need a program header table. */
5285 if (abfd->flags & EXEC_P)
5286 /* It all happens later. */
5287 ;
5288 else
5289 {
5290 i_ehdrp->e_phentsize = 0;
5291 i_ehdrp->e_phoff = 0;
5292 }
5293
5294 elf_tdata (abfd)->symtab_hdr.sh_name =
5295 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".symtab", FALSE);
5296 elf_tdata (abfd)->strtab_hdr.sh_name =
5297 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".strtab", FALSE);
5298 elf_tdata (abfd)->shstrtab_hdr.sh_name =
5299 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".shstrtab", FALSE);
5300 if (elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
5301 || elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
5302 || elf_tdata (abfd)->shstrtab_hdr.sh_name == (unsigned int) -1)
5303 return FALSE;
5304
5305 return TRUE;
5306 }
5307
5308 /* Assign file positions for all the reloc sections which are not part
5309 of the loadable file image. */
5310
5311 void
5312 _bfd_elf_assign_file_positions_for_relocs (bfd *abfd)
5313 {
5314 file_ptr off;
5315 unsigned int i, num_sec;
5316 Elf_Internal_Shdr **shdrpp;
5317
5318 off = elf_next_file_pos (abfd);
5319
5320 num_sec = elf_numsections (abfd);
5321 for (i = 1, shdrpp = elf_elfsections (abfd) + 1; i < num_sec; i++, shdrpp++)
5322 {
5323 Elf_Internal_Shdr *shdrp;
5324
5325 shdrp = *shdrpp;
5326 if ((shdrp->sh_type == SHT_REL || shdrp->sh_type == SHT_RELA)
5327 && shdrp->sh_offset == -1)
5328 off = _bfd_elf_assign_file_position_for_section (shdrp, off, TRUE);
5329 }
5330
5331 elf_next_file_pos (abfd) = off;
5332 }
5333
5334 bfd_boolean
5335 _bfd_elf_write_object_contents (bfd *abfd)
5336 {
5337 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5338 Elf_Internal_Shdr **i_shdrp;
5339 bfd_boolean failed;
5340 unsigned int count, num_sec;
5341 struct elf_obj_tdata *t;
5342
5343 if (! abfd->output_has_begun
5344 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
5345 return FALSE;
5346
5347 i_shdrp = elf_elfsections (abfd);
5348
5349 failed = FALSE;
5350 bfd_map_over_sections (abfd, bed->s->write_relocs, &failed);
5351 if (failed)
5352 return FALSE;
5353
5354 _bfd_elf_assign_file_positions_for_relocs (abfd);
5355
5356 /* After writing the headers, we need to write the sections too... */
5357 num_sec = elf_numsections (abfd);
5358 for (count = 1; count < num_sec; count++)
5359 {
5360 if (bed->elf_backend_section_processing)
5361 (*bed->elf_backend_section_processing) (abfd, i_shdrp[count]);
5362 if (i_shdrp[count]->contents)
5363 {
5364 bfd_size_type amt = i_shdrp[count]->sh_size;
5365
5366 if (bfd_seek (abfd, i_shdrp[count]->sh_offset, SEEK_SET) != 0
5367 || bfd_bwrite (i_shdrp[count]->contents, amt, abfd) != amt)
5368 return FALSE;
5369 }
5370 }
5371
5372 /* Write out the section header names. */
5373 t = elf_tdata (abfd);
5374 if (elf_shstrtab (abfd) != NULL
5375 && (bfd_seek (abfd, t->shstrtab_hdr.sh_offset, SEEK_SET) != 0
5376 || !_bfd_elf_strtab_emit (abfd, elf_shstrtab (abfd))))
5377 return FALSE;
5378
5379 if (bed->elf_backend_final_write_processing)
5380 (*bed->elf_backend_final_write_processing) (abfd, elf_linker (abfd));
5381
5382 if (!bed->s->write_shdrs_and_ehdr (abfd))
5383 return FALSE;
5384
5385 /* This is last since write_shdrs_and_ehdr can touch i_shdrp[0]. */
5386 if (t->o->build_id.after_write_object_contents != NULL)
5387 return (*t->o->build_id.after_write_object_contents) (abfd);
5388
5389 return TRUE;
5390 }
5391
5392 bfd_boolean
5393 _bfd_elf_write_corefile_contents (bfd *abfd)
5394 {
5395 /* Hopefully this can be done just like an object file. */
5396 return _bfd_elf_write_object_contents (abfd);
5397 }
5398
5399 /* Given a section, search the header to find them. */
5400
5401 unsigned int
5402 _bfd_elf_section_from_bfd_section (bfd *abfd, struct bfd_section *asect)
5403 {
5404 const struct elf_backend_data *bed;
5405 unsigned int sec_index;
5406
5407 if (elf_section_data (asect) != NULL
5408 && elf_section_data (asect)->this_idx != 0)
5409 return elf_section_data (asect)->this_idx;
5410
5411 if (bfd_is_abs_section (asect))
5412 sec_index = SHN_ABS;
5413 else if (bfd_is_com_section (asect))
5414 sec_index = SHN_COMMON;
5415 else if (bfd_is_und_section (asect))
5416 sec_index = SHN_UNDEF;
5417 else
5418 sec_index = SHN_BAD;
5419
5420 bed = get_elf_backend_data (abfd);
5421 if (bed->elf_backend_section_from_bfd_section)
5422 {
5423 int retval = sec_index;
5424
5425 if ((*bed->elf_backend_section_from_bfd_section) (abfd, asect, &retval))
5426 return retval;
5427 }
5428
5429 if (sec_index == SHN_BAD)
5430 bfd_set_error (bfd_error_nonrepresentable_section);
5431
5432 return sec_index;
5433 }
5434
5435 /* Given a BFD symbol, return the index in the ELF symbol table, or -1
5436 on error. */
5437
5438 int
5439 _bfd_elf_symbol_from_bfd_symbol (bfd *abfd, asymbol **asym_ptr_ptr)
5440 {
5441 asymbol *asym_ptr = *asym_ptr_ptr;
5442 int idx;
5443 flagword flags = asym_ptr->flags;
5444
5445 /* When gas creates relocations against local labels, it creates its
5446 own symbol for the section, but does put the symbol into the
5447 symbol chain, so udata is 0. When the linker is generating
5448 relocatable output, this section symbol may be for one of the
5449 input sections rather than the output section. */
5450 if (asym_ptr->udata.i == 0
5451 && (flags & BSF_SECTION_SYM)
5452 && asym_ptr->section)
5453 {
5454 asection *sec;
5455 int indx;
5456
5457 sec = asym_ptr->section;
5458 if (sec->owner != abfd && sec->output_section != NULL)
5459 sec = sec->output_section;
5460 if (sec->owner == abfd
5461 && (indx = sec->index) < elf_num_section_syms (abfd)
5462 && elf_section_syms (abfd)[indx] != NULL)
5463 asym_ptr->udata.i = elf_section_syms (abfd)[indx]->udata.i;
5464 }
5465
5466 idx = asym_ptr->udata.i;
5467
5468 if (idx == 0)
5469 {
5470 /* This case can occur when using --strip-symbol on a symbol
5471 which is used in a relocation entry. */
5472 (*_bfd_error_handler)
5473 (_("%B: symbol `%s' required but not present"),
5474 abfd, bfd_asymbol_name (asym_ptr));
5475 bfd_set_error (bfd_error_no_symbols);
5476 return -1;
5477 }
5478
5479 #if DEBUG & 4
5480 {
5481 fprintf (stderr,
5482 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8lx\n",
5483 (long) asym_ptr, asym_ptr->name, idx, (long) flags);
5484 fflush (stderr);
5485 }
5486 #endif
5487
5488 return idx;
5489 }
5490
5491 /* Rewrite program header information. */
5492
5493 static bfd_boolean
5494 rewrite_elf_program_header (bfd *ibfd, bfd *obfd)
5495 {
5496 Elf_Internal_Ehdr *iehdr;
5497 struct elf_segment_map *map;
5498 struct elf_segment_map *map_first;
5499 struct elf_segment_map **pointer_to_map;
5500 Elf_Internal_Phdr *segment;
5501 asection *section;
5502 unsigned int i;
5503 unsigned int num_segments;
5504 bfd_boolean phdr_included = FALSE;
5505 bfd_boolean p_paddr_valid;
5506 bfd_vma maxpagesize;
5507 struct elf_segment_map *phdr_adjust_seg = NULL;
5508 unsigned int phdr_adjust_num = 0;
5509 const struct elf_backend_data *bed;
5510
5511 bed = get_elf_backend_data (ibfd);
5512 iehdr = elf_elfheader (ibfd);
5513
5514 map_first = NULL;
5515 pointer_to_map = &map_first;
5516
5517 num_segments = elf_elfheader (ibfd)->e_phnum;
5518 maxpagesize = get_elf_backend_data (obfd)->maxpagesize;
5519
5520 /* Returns the end address of the segment + 1. */
5521 #define SEGMENT_END(segment, start) \
5522 (start + (segment->p_memsz > segment->p_filesz \
5523 ? segment->p_memsz : segment->p_filesz))
5524
5525 #define SECTION_SIZE(section, segment) \
5526 (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL)) \
5527 != SEC_THREAD_LOCAL || segment->p_type == PT_TLS) \
5528 ? section->size : 0)
5529
5530 /* Returns TRUE if the given section is contained within
5531 the given segment. VMA addresses are compared. */
5532 #define IS_CONTAINED_BY_VMA(section, segment) \
5533 (section->vma >= segment->p_vaddr \
5534 && (section->vma + SECTION_SIZE (section, segment) \
5535 <= (SEGMENT_END (segment, segment->p_vaddr))))
5536
5537 /* Returns TRUE if the given section is contained within
5538 the given segment. LMA addresses are compared. */
5539 #define IS_CONTAINED_BY_LMA(section, segment, base) \
5540 (section->lma >= base \
5541 && (section->lma + SECTION_SIZE (section, segment) \
5542 <= SEGMENT_END (segment, base)))
5543
5544 /* Handle PT_NOTE segment. */
5545 #define IS_NOTE(p, s) \
5546 (p->p_type == PT_NOTE \
5547 && elf_section_type (s) == SHT_NOTE \
5548 && (bfd_vma) s->filepos >= p->p_offset \
5549 && ((bfd_vma) s->filepos + s->size \
5550 <= p->p_offset + p->p_filesz))
5551
5552 /* Special case: corefile "NOTE" section containing regs, prpsinfo
5553 etc. */
5554 #define IS_COREFILE_NOTE(p, s) \
5555 (IS_NOTE (p, s) \
5556 && bfd_get_format (ibfd) == bfd_core \
5557 && s->vma == 0 \
5558 && s->lma == 0)
5559
5560 /* The complicated case when p_vaddr is 0 is to handle the Solaris
5561 linker, which generates a PT_INTERP section with p_vaddr and
5562 p_memsz set to 0. */
5563 #define IS_SOLARIS_PT_INTERP(p, s) \
5564 (p->p_vaddr == 0 \
5565 && p->p_paddr == 0 \
5566 && p->p_memsz == 0 \
5567 && p->p_filesz > 0 \
5568 && (s->flags & SEC_HAS_CONTENTS) != 0 \
5569 && s->size > 0 \
5570 && (bfd_vma) s->filepos >= p->p_offset \
5571 && ((bfd_vma) s->filepos + s->size \
5572 <= p->p_offset + p->p_filesz))
5573
5574 /* Decide if the given section should be included in the given segment.
5575 A section will be included if:
5576 1. It is within the address space of the segment -- we use the LMA
5577 if that is set for the segment and the VMA otherwise,
5578 2. It is an allocated section or a NOTE section in a PT_NOTE
5579 segment.
5580 3. There is an output section associated with it,
5581 4. The section has not already been allocated to a previous segment.
5582 5. PT_GNU_STACK segments do not include any sections.
5583 6. PT_TLS segment includes only SHF_TLS sections.
5584 7. SHF_TLS sections are only in PT_TLS or PT_LOAD segments.
5585 8. PT_DYNAMIC should not contain empty sections at the beginning
5586 (with the possible exception of .dynamic). */
5587 #define IS_SECTION_IN_INPUT_SEGMENT(section, segment, bed) \
5588 ((((segment->p_paddr \
5589 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr) \
5590 : IS_CONTAINED_BY_VMA (section, segment)) \
5591 && (section->flags & SEC_ALLOC) != 0) \
5592 || IS_NOTE (segment, section)) \
5593 && segment->p_type != PT_GNU_STACK \
5594 && (segment->p_type != PT_TLS \
5595 || (section->flags & SEC_THREAD_LOCAL)) \
5596 && (segment->p_type == PT_LOAD \
5597 || segment->p_type == PT_TLS \
5598 || (section->flags & SEC_THREAD_LOCAL) == 0) \
5599 && (segment->p_type != PT_DYNAMIC \
5600 || SECTION_SIZE (section, segment) > 0 \
5601 || (segment->p_paddr \
5602 ? segment->p_paddr != section->lma \
5603 : segment->p_vaddr != section->vma) \
5604 || (strcmp (bfd_get_section_name (ibfd, section), ".dynamic") \
5605 == 0)) \
5606 && !section->segment_mark)
5607
5608 /* If the output section of a section in the input segment is NULL,
5609 it is removed from the corresponding output segment. */
5610 #define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed) \
5611 (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed) \
5612 && section->output_section != NULL)
5613
5614 /* Returns TRUE iff seg1 starts after the end of seg2. */
5615 #define SEGMENT_AFTER_SEGMENT(seg1, seg2, field) \
5616 (seg1->field >= SEGMENT_END (seg2, seg2->field))
5617
5618 /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both
5619 their VMA address ranges and their LMA address ranges overlap.
5620 It is possible to have overlapping VMA ranges without overlapping LMA
5621 ranges. RedBoot images for example can have both .data and .bss mapped
5622 to the same VMA range, but with the .data section mapped to a different
5623 LMA. */
5624 #define SEGMENT_OVERLAPS(seg1, seg2) \
5625 ( !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr) \
5626 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr)) \
5627 && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr) \
5628 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr)))
5629
5630 /* Initialise the segment mark field. */
5631 for (section = ibfd->sections; section != NULL; section = section->next)
5632 section->segment_mark = FALSE;
5633
5634 /* The Solaris linker creates program headers in which all the
5635 p_paddr fields are zero. When we try to objcopy or strip such a
5636 file, we get confused. Check for this case, and if we find it
5637 don't set the p_paddr_valid fields. */
5638 p_paddr_valid = FALSE;
5639 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5640 i < num_segments;
5641 i++, segment++)
5642 if (segment->p_paddr != 0)
5643 {
5644 p_paddr_valid = TRUE;
5645 break;
5646 }
5647
5648 /* Scan through the segments specified in the program header
5649 of the input BFD. For this first scan we look for overlaps
5650 in the loadable segments. These can be created by weird
5651 parameters to objcopy. Also, fix some solaris weirdness. */
5652 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5653 i < num_segments;
5654 i++, segment++)
5655 {
5656 unsigned int j;
5657 Elf_Internal_Phdr *segment2;
5658
5659 if (segment->p_type == PT_INTERP)
5660 for (section = ibfd->sections; section; section = section->next)
5661 if (IS_SOLARIS_PT_INTERP (segment, section))
5662 {
5663 /* Mininal change so that the normal section to segment
5664 assignment code will work. */
5665 segment->p_vaddr = section->vma;
5666 break;
5667 }
5668
5669 if (segment->p_type != PT_LOAD)
5670 {
5671 /* Remove PT_GNU_RELRO segment. */
5672 if (segment->p_type == PT_GNU_RELRO)
5673 segment->p_type = PT_NULL;
5674 continue;
5675 }
5676
5677 /* Determine if this segment overlaps any previous segments. */
5678 for (j = 0, segment2 = elf_tdata (ibfd)->phdr; j < i; j++, segment2++)
5679 {
5680 bfd_signed_vma extra_length;
5681
5682 if (segment2->p_type != PT_LOAD
5683 || !SEGMENT_OVERLAPS (segment, segment2))
5684 continue;
5685
5686 /* Merge the two segments together. */
5687 if (segment2->p_vaddr < segment->p_vaddr)
5688 {
5689 /* Extend SEGMENT2 to include SEGMENT and then delete
5690 SEGMENT. */
5691 extra_length = (SEGMENT_END (segment, segment->p_vaddr)
5692 - SEGMENT_END (segment2, segment2->p_vaddr));
5693
5694 if (extra_length > 0)
5695 {
5696 segment2->p_memsz += extra_length;
5697 segment2->p_filesz += extra_length;
5698 }
5699
5700 segment->p_type = PT_NULL;
5701
5702 /* Since we have deleted P we must restart the outer loop. */
5703 i = 0;
5704 segment = elf_tdata (ibfd)->phdr;
5705 break;
5706 }
5707 else
5708 {
5709 /* Extend SEGMENT to include SEGMENT2 and then delete
5710 SEGMENT2. */
5711 extra_length = (SEGMENT_END (segment2, segment2->p_vaddr)
5712 - SEGMENT_END (segment, segment->p_vaddr));
5713
5714 if (extra_length > 0)
5715 {
5716 segment->p_memsz += extra_length;
5717 segment->p_filesz += extra_length;
5718 }
5719
5720 segment2->p_type = PT_NULL;
5721 }
5722 }
5723 }
5724
5725 /* The second scan attempts to assign sections to segments. */
5726 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5727 i < num_segments;
5728 i++, segment++)
5729 {
5730 unsigned int section_count;
5731 asection **sections;
5732 asection *output_section;
5733 unsigned int isec;
5734 bfd_vma matching_lma;
5735 bfd_vma suggested_lma;
5736 unsigned int j;
5737 bfd_size_type amt;
5738 asection *first_section;
5739 bfd_boolean first_matching_lma;
5740 bfd_boolean first_suggested_lma;
5741
5742 if (segment->p_type == PT_NULL)
5743 continue;
5744
5745 first_section = NULL;
5746 /* Compute how many sections might be placed into this segment. */
5747 for (section = ibfd->sections, section_count = 0;
5748 section != NULL;
5749 section = section->next)
5750 {
5751 /* Find the first section in the input segment, which may be
5752 removed from the corresponding output segment. */
5753 if (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed))
5754 {
5755 if (first_section == NULL)
5756 first_section = section;
5757 if (section->output_section != NULL)
5758 ++section_count;
5759 }
5760 }
5761
5762 /* Allocate a segment map big enough to contain
5763 all of the sections we have selected. */
5764 amt = sizeof (struct elf_segment_map);
5765 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5766 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
5767 if (map == NULL)
5768 return FALSE;
5769
5770 /* Initialise the fields of the segment map. Default to
5771 using the physical address of the segment in the input BFD. */
5772 map->next = NULL;
5773 map->p_type = segment->p_type;
5774 map->p_flags = segment->p_flags;
5775 map->p_flags_valid = 1;
5776
5777 /* If the first section in the input segment is removed, there is
5778 no need to preserve segment physical address in the corresponding
5779 output segment. */
5780 if (!first_section || first_section->output_section != NULL)
5781 {
5782 map->p_paddr = segment->p_paddr;
5783 map->p_paddr_valid = p_paddr_valid;
5784 }
5785
5786 /* Determine if this segment contains the ELF file header
5787 and if it contains the program headers themselves. */
5788 map->includes_filehdr = (segment->p_offset == 0
5789 && segment->p_filesz >= iehdr->e_ehsize);
5790 map->includes_phdrs = 0;
5791
5792 if (!phdr_included || segment->p_type != PT_LOAD)
5793 {
5794 map->includes_phdrs =
5795 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
5796 && (segment->p_offset + segment->p_filesz
5797 >= ((bfd_vma) iehdr->e_phoff
5798 + iehdr->e_phnum * iehdr->e_phentsize)));
5799
5800 if (segment->p_type == PT_LOAD && map->includes_phdrs)
5801 phdr_included = TRUE;
5802 }
5803
5804 if (section_count == 0)
5805 {
5806 /* Special segments, such as the PT_PHDR segment, may contain
5807 no sections, but ordinary, loadable segments should contain
5808 something. They are allowed by the ELF spec however, so only
5809 a warning is produced. */
5810 if (segment->p_type == PT_LOAD)
5811 (*_bfd_error_handler) (_("%B: warning: Empty loadable segment"
5812 " detected, is this intentional ?\n"),
5813 ibfd);
5814
5815 map->count = 0;
5816 *pointer_to_map = map;
5817 pointer_to_map = &map->next;
5818
5819 continue;
5820 }
5821
5822 /* Now scan the sections in the input BFD again and attempt
5823 to add their corresponding output sections to the segment map.
5824 The problem here is how to handle an output section which has
5825 been moved (ie had its LMA changed). There are four possibilities:
5826
5827 1. None of the sections have been moved.
5828 In this case we can continue to use the segment LMA from the
5829 input BFD.
5830
5831 2. All of the sections have been moved by the same amount.
5832 In this case we can change the segment's LMA to match the LMA
5833 of the first section.
5834
5835 3. Some of the sections have been moved, others have not.
5836 In this case those sections which have not been moved can be
5837 placed in the current segment which will have to have its size,
5838 and possibly its LMA changed, and a new segment or segments will
5839 have to be created to contain the other sections.
5840
5841 4. The sections have been moved, but not by the same amount.
5842 In this case we can change the segment's LMA to match the LMA
5843 of the first section and we will have to create a new segment
5844 or segments to contain the other sections.
5845
5846 In order to save time, we allocate an array to hold the section
5847 pointers that we are interested in. As these sections get assigned
5848 to a segment, they are removed from this array. */
5849
5850 sections = (asection **) bfd_malloc2 (section_count, sizeof (asection *));
5851 if (sections == NULL)
5852 return FALSE;
5853
5854 /* Step One: Scan for segment vs section LMA conflicts.
5855 Also add the sections to the section array allocated above.
5856 Also add the sections to the current segment. In the common
5857 case, where the sections have not been moved, this means that
5858 we have completely filled the segment, and there is nothing
5859 more to do. */
5860 isec = 0;
5861 matching_lma = 0;
5862 suggested_lma = 0;
5863 first_matching_lma = TRUE;
5864 first_suggested_lma = TRUE;
5865
5866 for (section = ibfd->sections;
5867 section != NULL;
5868 section = section->next)
5869 if (section == first_section)
5870 break;
5871
5872 for (j = 0; section != NULL; section = section->next)
5873 {
5874 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
5875 {
5876 output_section = section->output_section;
5877
5878 sections[j++] = section;
5879
5880 /* The Solaris native linker always sets p_paddr to 0.
5881 We try to catch that case here, and set it to the
5882 correct value. Note - some backends require that
5883 p_paddr be left as zero. */
5884 if (!p_paddr_valid
5885 && segment->p_vaddr != 0
5886 && !bed->want_p_paddr_set_to_zero
5887 && isec == 0
5888 && output_section->lma != 0
5889 && output_section->vma == (segment->p_vaddr
5890 + (map->includes_filehdr
5891 ? iehdr->e_ehsize
5892 : 0)
5893 + (map->includes_phdrs
5894 ? (iehdr->e_phnum
5895 * iehdr->e_phentsize)
5896 : 0)))
5897 map->p_paddr = segment->p_vaddr;
5898
5899 /* Match up the physical address of the segment with the
5900 LMA address of the output section. */
5901 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
5902 || IS_COREFILE_NOTE (segment, section)
5903 || (bed->want_p_paddr_set_to_zero
5904 && IS_CONTAINED_BY_VMA (output_section, segment)))
5905 {
5906 if (first_matching_lma || output_section->lma < matching_lma)
5907 {
5908 matching_lma = output_section->lma;
5909 first_matching_lma = FALSE;
5910 }
5911
5912 /* We assume that if the section fits within the segment
5913 then it does not overlap any other section within that
5914 segment. */
5915 map->sections[isec++] = output_section;
5916 }
5917 else if (first_suggested_lma)
5918 {
5919 suggested_lma = output_section->lma;
5920 first_suggested_lma = FALSE;
5921 }
5922
5923 if (j == section_count)
5924 break;
5925 }
5926 }
5927
5928 BFD_ASSERT (j == section_count);
5929
5930 /* Step Two: Adjust the physical address of the current segment,
5931 if necessary. */
5932 if (isec == section_count)
5933 {
5934 /* All of the sections fitted within the segment as currently
5935 specified. This is the default case. Add the segment to
5936 the list of built segments and carry on to process the next
5937 program header in the input BFD. */
5938 map->count = section_count;
5939 *pointer_to_map = map;
5940 pointer_to_map = &map->next;
5941
5942 if (p_paddr_valid
5943 && !bed->want_p_paddr_set_to_zero
5944 && matching_lma != map->p_paddr
5945 && !map->includes_filehdr
5946 && !map->includes_phdrs)
5947 /* There is some padding before the first section in the
5948 segment. So, we must account for that in the output
5949 segment's vma. */
5950 map->p_vaddr_offset = matching_lma - map->p_paddr;
5951
5952 free (sections);
5953 continue;
5954 }
5955 else
5956 {
5957 if (!first_matching_lma)
5958 {
5959 /* At least one section fits inside the current segment.
5960 Keep it, but modify its physical address to match the
5961 LMA of the first section that fitted. */
5962 map->p_paddr = matching_lma;
5963 }
5964 else
5965 {
5966 /* None of the sections fitted inside the current segment.
5967 Change the current segment's physical address to match
5968 the LMA of the first section. */
5969 map->p_paddr = suggested_lma;
5970 }
5971
5972 /* Offset the segment physical address from the lma
5973 to allow for space taken up by elf headers. */
5974 if (map->includes_filehdr)
5975 {
5976 if (map->p_paddr >= iehdr->e_ehsize)
5977 map->p_paddr -= iehdr->e_ehsize;
5978 else
5979 {
5980 map->includes_filehdr = FALSE;
5981 map->includes_phdrs = FALSE;
5982 }
5983 }
5984
5985 if (map->includes_phdrs)
5986 {
5987 if (map->p_paddr >= iehdr->e_phnum * iehdr->e_phentsize)
5988 {
5989 map->p_paddr -= iehdr->e_phnum * iehdr->e_phentsize;
5990
5991 /* iehdr->e_phnum is just an estimate of the number
5992 of program headers that we will need. Make a note
5993 here of the number we used and the segment we chose
5994 to hold these headers, so that we can adjust the
5995 offset when we know the correct value. */
5996 phdr_adjust_num = iehdr->e_phnum;
5997 phdr_adjust_seg = map;
5998 }
5999 else
6000 map->includes_phdrs = FALSE;
6001 }
6002 }
6003
6004 /* Step Three: Loop over the sections again, this time assigning
6005 those that fit to the current segment and removing them from the
6006 sections array; but making sure not to leave large gaps. Once all
6007 possible sections have been assigned to the current segment it is
6008 added to the list of built segments and if sections still remain
6009 to be assigned, a new segment is constructed before repeating
6010 the loop. */
6011 isec = 0;
6012 do
6013 {
6014 map->count = 0;
6015 suggested_lma = 0;
6016 first_suggested_lma = TRUE;
6017
6018 /* Fill the current segment with sections that fit. */
6019 for (j = 0; j < section_count; j++)
6020 {
6021 section = sections[j];
6022
6023 if (section == NULL)
6024 continue;
6025
6026 output_section = section->output_section;
6027
6028 BFD_ASSERT (output_section != NULL);
6029
6030 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
6031 || IS_COREFILE_NOTE (segment, section))
6032 {
6033 if (map->count == 0)
6034 {
6035 /* If the first section in a segment does not start at
6036 the beginning of the segment, then something is
6037 wrong. */
6038 if (output_section->lma
6039 != (map->p_paddr
6040 + (map->includes_filehdr ? iehdr->e_ehsize : 0)
6041 + (map->includes_phdrs
6042 ? iehdr->e_phnum * iehdr->e_phentsize
6043 : 0)))
6044 abort ();
6045 }
6046 else
6047 {
6048 asection *prev_sec;
6049
6050 prev_sec = map->sections[map->count - 1];
6051
6052 /* If the gap between the end of the previous section
6053 and the start of this section is more than
6054 maxpagesize then we need to start a new segment. */
6055 if ((BFD_ALIGN (prev_sec->lma + prev_sec->size,
6056 maxpagesize)
6057 < BFD_ALIGN (output_section->lma, maxpagesize))
6058 || (prev_sec->lma + prev_sec->size
6059 > output_section->lma))
6060 {
6061 if (first_suggested_lma)
6062 {
6063 suggested_lma = output_section->lma;
6064 first_suggested_lma = FALSE;
6065 }
6066
6067 continue;
6068 }
6069 }
6070
6071 map->sections[map->count++] = output_section;
6072 ++isec;
6073 sections[j] = NULL;
6074 section->segment_mark = TRUE;
6075 }
6076 else if (first_suggested_lma)
6077 {
6078 suggested_lma = output_section->lma;
6079 first_suggested_lma = FALSE;
6080 }
6081 }
6082
6083 BFD_ASSERT (map->count > 0);
6084
6085 /* Add the current segment to the list of built segments. */
6086 *pointer_to_map = map;
6087 pointer_to_map = &map->next;
6088
6089 if (isec < section_count)
6090 {
6091 /* We still have not allocated all of the sections to
6092 segments. Create a new segment here, initialise it
6093 and carry on looping. */
6094 amt = sizeof (struct elf_segment_map);
6095 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
6096 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
6097 if (map == NULL)
6098 {
6099 free (sections);
6100 return FALSE;
6101 }
6102
6103 /* Initialise the fields of the segment map. Set the physical
6104 physical address to the LMA of the first section that has
6105 not yet been assigned. */
6106 map->next = NULL;
6107 map->p_type = segment->p_type;
6108 map->p_flags = segment->p_flags;
6109 map->p_flags_valid = 1;
6110 map->p_paddr = suggested_lma;
6111 map->p_paddr_valid = p_paddr_valid;
6112 map->includes_filehdr = 0;
6113 map->includes_phdrs = 0;
6114 }
6115 }
6116 while (isec < section_count);
6117
6118 free (sections);
6119 }
6120
6121 elf_seg_map (obfd) = map_first;
6122
6123 /* If we had to estimate the number of program headers that were
6124 going to be needed, then check our estimate now and adjust
6125 the offset if necessary. */
6126 if (phdr_adjust_seg != NULL)
6127 {
6128 unsigned int count;
6129
6130 for (count = 0, map = map_first; map != NULL; map = map->next)
6131 count++;
6132
6133 if (count > phdr_adjust_num)
6134 phdr_adjust_seg->p_paddr
6135 -= (count - phdr_adjust_num) * iehdr->e_phentsize;
6136 }
6137
6138 #undef SEGMENT_END
6139 #undef SECTION_SIZE
6140 #undef IS_CONTAINED_BY_VMA
6141 #undef IS_CONTAINED_BY_LMA
6142 #undef IS_NOTE
6143 #undef IS_COREFILE_NOTE
6144 #undef IS_SOLARIS_PT_INTERP
6145 #undef IS_SECTION_IN_INPUT_SEGMENT
6146 #undef INCLUDE_SECTION_IN_SEGMENT
6147 #undef SEGMENT_AFTER_SEGMENT
6148 #undef SEGMENT_OVERLAPS
6149 return TRUE;
6150 }
6151
6152 /* Copy ELF program header information. */
6153
6154 static bfd_boolean
6155 copy_elf_program_header (bfd *ibfd, bfd *obfd)
6156 {
6157 Elf_Internal_Ehdr *iehdr;
6158 struct elf_segment_map *map;
6159 struct elf_segment_map *map_first;
6160 struct elf_segment_map **pointer_to_map;
6161 Elf_Internal_Phdr *segment;
6162 unsigned int i;
6163 unsigned int num_segments;
6164 bfd_boolean phdr_included = FALSE;
6165 bfd_boolean p_paddr_valid;
6166
6167 iehdr = elf_elfheader (ibfd);
6168
6169 map_first = NULL;
6170 pointer_to_map = &map_first;
6171
6172 /* If all the segment p_paddr fields are zero, don't set
6173 map->p_paddr_valid. */
6174 p_paddr_valid = FALSE;
6175 num_segments = elf_elfheader (ibfd)->e_phnum;
6176 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6177 i < num_segments;
6178 i++, segment++)
6179 if (segment->p_paddr != 0)
6180 {
6181 p_paddr_valid = TRUE;
6182 break;
6183 }
6184
6185 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6186 i < num_segments;
6187 i++, segment++)
6188 {
6189 asection *section;
6190 unsigned int section_count;
6191 bfd_size_type amt;
6192 Elf_Internal_Shdr *this_hdr;
6193 asection *first_section = NULL;
6194 asection *lowest_section;
6195
6196 /* Compute how many sections are in this segment. */
6197 for (section = ibfd->sections, section_count = 0;
6198 section != NULL;
6199 section = section->next)
6200 {
6201 this_hdr = &(elf_section_data(section)->this_hdr);
6202 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
6203 {
6204 if (first_section == NULL)
6205 first_section = section;
6206 section_count++;
6207 }
6208 }
6209
6210 /* Allocate a segment map big enough to contain
6211 all of the sections we have selected. */
6212 amt = sizeof (struct elf_segment_map);
6213 if (section_count != 0)
6214 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
6215 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
6216 if (map == NULL)
6217 return FALSE;
6218
6219 /* Initialize the fields of the output segment map with the
6220 input segment. */
6221 map->next = NULL;
6222 map->p_type = segment->p_type;
6223 map->p_flags = segment->p_flags;
6224 map->p_flags_valid = 1;
6225 map->p_paddr = segment->p_paddr;
6226 map->p_paddr_valid = p_paddr_valid;
6227 map->p_align = segment->p_align;
6228 map->p_align_valid = 1;
6229 map->p_vaddr_offset = 0;
6230
6231 if (map->p_type == PT_GNU_RELRO
6232 || map->p_type == PT_GNU_STACK)
6233 {
6234 /* The PT_GNU_RELRO segment may contain the first a few
6235 bytes in the .got.plt section even if the whole .got.plt
6236 section isn't in the PT_GNU_RELRO segment. We won't
6237 change the size of the PT_GNU_RELRO segment.
6238 Similarly, PT_GNU_STACK size is significant on uclinux
6239 systems. */
6240 map->p_size = segment->p_memsz;
6241 map->p_size_valid = 1;
6242 }
6243
6244 /* Determine if this segment contains the ELF file header
6245 and if it contains the program headers themselves. */
6246 map->includes_filehdr = (segment->p_offset == 0
6247 && segment->p_filesz >= iehdr->e_ehsize);
6248
6249 map->includes_phdrs = 0;
6250 if (! phdr_included || segment->p_type != PT_LOAD)
6251 {
6252 map->includes_phdrs =
6253 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
6254 && (segment->p_offset + segment->p_filesz
6255 >= ((bfd_vma) iehdr->e_phoff
6256 + iehdr->e_phnum * iehdr->e_phentsize)));
6257
6258 if (segment->p_type == PT_LOAD && map->includes_phdrs)
6259 phdr_included = TRUE;
6260 }
6261
6262 lowest_section = NULL;
6263 if (section_count != 0)
6264 {
6265 unsigned int isec = 0;
6266
6267 for (section = first_section;
6268 section != NULL;
6269 section = section->next)
6270 {
6271 this_hdr = &(elf_section_data(section)->this_hdr);
6272 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
6273 {
6274 map->sections[isec++] = section->output_section;
6275 if ((section->flags & SEC_ALLOC) != 0)
6276 {
6277 bfd_vma seg_off;
6278
6279 if (lowest_section == NULL
6280 || section->lma < lowest_section->lma)
6281 lowest_section = section;
6282
6283 /* Section lmas are set up from PT_LOAD header
6284 p_paddr in _bfd_elf_make_section_from_shdr.
6285 If this header has a p_paddr that disagrees
6286 with the section lma, flag the p_paddr as
6287 invalid. */
6288 if ((section->flags & SEC_LOAD) != 0)
6289 seg_off = this_hdr->sh_offset - segment->p_offset;
6290 else
6291 seg_off = this_hdr->sh_addr - segment->p_vaddr;
6292 if (section->lma - segment->p_paddr != seg_off)
6293 map->p_paddr_valid = FALSE;
6294 }
6295 if (isec == section_count)
6296 break;
6297 }
6298 }
6299 }
6300
6301 if (map->includes_filehdr && lowest_section != NULL)
6302 /* We need to keep the space used by the headers fixed. */
6303 map->header_size = lowest_section->vma - segment->p_vaddr;
6304
6305 if (!map->includes_phdrs
6306 && !map->includes_filehdr
6307 && map->p_paddr_valid)
6308 /* There is some other padding before the first section. */
6309 map->p_vaddr_offset = ((lowest_section ? lowest_section->lma : 0)
6310 - segment->p_paddr);
6311
6312 map->count = section_count;
6313 *pointer_to_map = map;
6314 pointer_to_map = &map->next;
6315 }
6316
6317 elf_seg_map (obfd) = map_first;
6318 return TRUE;
6319 }
6320
6321 /* Copy private BFD data. This copies or rewrites ELF program header
6322 information. */
6323
6324 static bfd_boolean
6325 copy_private_bfd_data (bfd *ibfd, bfd *obfd)
6326 {
6327 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
6328 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
6329 return TRUE;
6330
6331 if (elf_tdata (ibfd)->phdr == NULL)
6332 return TRUE;
6333
6334 if (ibfd->xvec == obfd->xvec)
6335 {
6336 /* Check to see if any sections in the input BFD
6337 covered by ELF program header have changed. */
6338 Elf_Internal_Phdr *segment;
6339 asection *section, *osec;
6340 unsigned int i, num_segments;
6341 Elf_Internal_Shdr *this_hdr;
6342 const struct elf_backend_data *bed;
6343
6344 bed = get_elf_backend_data (ibfd);
6345
6346 /* Regenerate the segment map if p_paddr is set to 0. */
6347 if (bed->want_p_paddr_set_to_zero)
6348 goto rewrite;
6349
6350 /* Initialize the segment mark field. */
6351 for (section = obfd->sections; section != NULL;
6352 section = section->next)
6353 section->segment_mark = FALSE;
6354
6355 num_segments = elf_elfheader (ibfd)->e_phnum;
6356 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6357 i < num_segments;
6358 i++, segment++)
6359 {
6360 /* PR binutils/3535. The Solaris linker always sets the p_paddr
6361 and p_memsz fields of special segments (DYNAMIC, INTERP) to 0
6362 which severly confuses things, so always regenerate the segment
6363 map in this case. */
6364 if (segment->p_paddr == 0
6365 && segment->p_memsz == 0
6366 && (segment->p_type == PT_INTERP || segment->p_type == PT_DYNAMIC))
6367 goto rewrite;
6368
6369 for (section = ibfd->sections;
6370 section != NULL; section = section->next)
6371 {
6372 /* We mark the output section so that we know it comes
6373 from the input BFD. */
6374 osec = section->output_section;
6375 if (osec)
6376 osec->segment_mark = TRUE;
6377
6378 /* Check if this section is covered by the segment. */
6379 this_hdr = &(elf_section_data(section)->this_hdr);
6380 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
6381 {
6382 /* FIXME: Check if its output section is changed or
6383 removed. What else do we need to check? */
6384 if (osec == NULL
6385 || section->flags != osec->flags
6386 || section->lma != osec->lma
6387 || section->vma != osec->vma
6388 || section->size != osec->size
6389 || section->rawsize != osec->rawsize
6390 || section->alignment_power != osec->alignment_power)
6391 goto rewrite;
6392 }
6393 }
6394 }
6395
6396 /* Check to see if any output section do not come from the
6397 input BFD. */
6398 for (section = obfd->sections; section != NULL;
6399 section = section->next)
6400 {
6401 if (section->segment_mark == FALSE)
6402 goto rewrite;
6403 else
6404 section->segment_mark = FALSE;
6405 }
6406
6407 return copy_elf_program_header (ibfd, obfd);
6408 }
6409
6410 rewrite:
6411 if (ibfd->xvec == obfd->xvec)
6412 {
6413 /* When rewriting program header, set the output maxpagesize to
6414 the maximum alignment of input PT_LOAD segments. */
6415 Elf_Internal_Phdr *segment;
6416 unsigned int i;
6417 unsigned int num_segments = elf_elfheader (ibfd)->e_phnum;
6418 bfd_vma maxpagesize = 0;
6419
6420 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6421 i < num_segments;
6422 i++, segment++)
6423 if (segment->p_type == PT_LOAD
6424 && maxpagesize < segment->p_align)
6425 maxpagesize = segment->p_align;
6426
6427 if (maxpagesize != get_elf_backend_data (obfd)->maxpagesize)
6428 bfd_emul_set_maxpagesize (bfd_get_target (obfd), maxpagesize);
6429 }
6430
6431 return rewrite_elf_program_header (ibfd, obfd);
6432 }
6433
6434 /* Initialize private output section information from input section. */
6435
6436 bfd_boolean
6437 _bfd_elf_init_private_section_data (bfd *ibfd,
6438 asection *isec,
6439 bfd *obfd,
6440 asection *osec,
6441 struct bfd_link_info *link_info)
6442
6443 {
6444 Elf_Internal_Shdr *ihdr, *ohdr;
6445 bfd_boolean final_link = link_info != NULL && !link_info->relocatable;
6446
6447 if (ibfd->xvec->flavour != bfd_target_elf_flavour
6448 || obfd->xvec->flavour != bfd_target_elf_flavour)
6449 return TRUE;
6450
6451 BFD_ASSERT (elf_section_data (osec) != NULL);
6452
6453 /* For objcopy and relocatable link, don't copy the output ELF
6454 section type from input if the output BFD section flags have been
6455 set to something different. For a final link allow some flags
6456 that the linker clears to differ. */
6457 if (elf_section_type (osec) == SHT_NULL
6458 && (osec->flags == isec->flags
6459 || (final_link
6460 && ((osec->flags ^ isec->flags)
6461 & ~(SEC_LINK_ONCE | SEC_LINK_DUPLICATES | SEC_RELOC)) == 0)))
6462 elf_section_type (osec) = elf_section_type (isec);
6463
6464 /* FIXME: Is this correct for all OS/PROC specific flags? */
6465 elf_section_flags (osec) |= (elf_section_flags (isec)
6466 & (SHF_MASKOS | SHF_MASKPROC));
6467
6468 /* Set things up for objcopy and relocatable link. The output
6469 SHT_GROUP section will have its elf_next_in_group pointing back
6470 to the input group members. Ignore linker created group section.
6471 See elfNN_ia64_object_p in elfxx-ia64.c. */
6472 if (!final_link)
6473 {
6474 if (elf_sec_group (isec) == NULL
6475 || (elf_sec_group (isec)->flags & SEC_LINKER_CREATED) == 0)
6476 {
6477 if (elf_section_flags (isec) & SHF_GROUP)
6478 elf_section_flags (osec) |= SHF_GROUP;
6479 elf_next_in_group (osec) = elf_next_in_group (isec);
6480 elf_section_data (osec)->group = elf_section_data (isec)->group;
6481 }
6482 }
6483
6484 ihdr = &elf_section_data (isec)->this_hdr;
6485
6486 /* We need to handle elf_linked_to_section for SHF_LINK_ORDER. We
6487 don't use the output section of the linked-to section since it
6488 may be NULL at this point. */
6489 if ((ihdr->sh_flags & SHF_LINK_ORDER) != 0)
6490 {
6491 ohdr = &elf_section_data (osec)->this_hdr;
6492 ohdr->sh_flags |= SHF_LINK_ORDER;
6493 elf_linked_to_section (osec) = elf_linked_to_section (isec);
6494 }
6495
6496 osec->use_rela_p = isec->use_rela_p;
6497
6498 return TRUE;
6499 }
6500
6501 /* Copy private section information. This copies over the entsize
6502 field, and sometimes the info field. */
6503
6504 bfd_boolean
6505 _bfd_elf_copy_private_section_data (bfd *ibfd,
6506 asection *isec,
6507 bfd *obfd,
6508 asection *osec)
6509 {
6510 Elf_Internal_Shdr *ihdr, *ohdr;
6511
6512 if (ibfd->xvec->flavour != bfd_target_elf_flavour
6513 || obfd->xvec->flavour != bfd_target_elf_flavour)
6514 return TRUE;
6515
6516 ihdr = &elf_section_data (isec)->this_hdr;
6517 ohdr = &elf_section_data (osec)->this_hdr;
6518
6519 ohdr->sh_entsize = ihdr->sh_entsize;
6520
6521 if (ihdr->sh_type == SHT_SYMTAB
6522 || ihdr->sh_type == SHT_DYNSYM
6523 || ihdr->sh_type == SHT_GNU_verneed
6524 || ihdr->sh_type == SHT_GNU_verdef)
6525 ohdr->sh_info = ihdr->sh_info;
6526
6527 return _bfd_elf_init_private_section_data (ibfd, isec, obfd, osec,
6528 NULL);
6529 }
6530
6531 /* Look at all the SHT_GROUP sections in IBFD, making any adjustments
6532 necessary if we are removing either the SHT_GROUP section or any of
6533 the group member sections. DISCARDED is the value that a section's
6534 output_section has if the section will be discarded, NULL when this
6535 function is called from objcopy, bfd_abs_section_ptr when called
6536 from the linker. */
6537
6538 bfd_boolean
6539 _bfd_elf_fixup_group_sections (bfd *ibfd, asection *discarded)
6540 {
6541 asection *isec;
6542
6543 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
6544 if (elf_section_type (isec) == SHT_GROUP)
6545 {
6546 asection *first = elf_next_in_group (isec);
6547 asection *s = first;
6548 bfd_size_type removed = 0;
6549
6550 while (s != NULL)
6551 {
6552 /* If this member section is being output but the
6553 SHT_GROUP section is not, then clear the group info
6554 set up by _bfd_elf_copy_private_section_data. */
6555 if (s->output_section != discarded
6556 && isec->output_section == discarded)
6557 {
6558 elf_section_flags (s->output_section) &= ~SHF_GROUP;
6559 elf_group_name (s->output_section) = NULL;
6560 }
6561 /* Conversely, if the member section is not being output
6562 but the SHT_GROUP section is, then adjust its size. */
6563 else if (s->output_section == discarded
6564 && isec->output_section != discarded)
6565 removed += 4;
6566 s = elf_next_in_group (s);
6567 if (s == first)
6568 break;
6569 }
6570 if (removed != 0)
6571 {
6572 if (discarded != NULL)
6573 {
6574 /* If we've been called for ld -r, then we need to
6575 adjust the input section size. This function may
6576 be called multiple times, so save the original
6577 size. */
6578 if (isec->rawsize == 0)
6579 isec->rawsize = isec->size;
6580 isec->size = isec->rawsize - removed;
6581 }
6582 else
6583 {
6584 /* Adjust the output section size when called from
6585 objcopy. */
6586 isec->output_section->size -= removed;
6587 }
6588 }
6589 }
6590
6591 return TRUE;
6592 }
6593
6594 /* Copy private header information. */
6595
6596 bfd_boolean
6597 _bfd_elf_copy_private_header_data (bfd *ibfd, bfd *obfd)
6598 {
6599 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
6600 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
6601 return TRUE;
6602
6603 /* Copy over private BFD data if it has not already been copied.
6604 This must be done here, rather than in the copy_private_bfd_data
6605 entry point, because the latter is called after the section
6606 contents have been set, which means that the program headers have
6607 already been worked out. */
6608 if (elf_seg_map (obfd) == NULL && elf_tdata (ibfd)->phdr != NULL)
6609 {
6610 if (! copy_private_bfd_data (ibfd, obfd))
6611 return FALSE;
6612 }
6613
6614 return _bfd_elf_fixup_group_sections (ibfd, NULL);
6615 }
6616
6617 /* Copy private symbol information. If this symbol is in a section
6618 which we did not map into a BFD section, try to map the section
6619 index correctly. We use special macro definitions for the mapped
6620 section indices; these definitions are interpreted by the
6621 swap_out_syms function. */
6622
6623 #define MAP_ONESYMTAB (SHN_HIOS + 1)
6624 #define MAP_DYNSYMTAB (SHN_HIOS + 2)
6625 #define MAP_STRTAB (SHN_HIOS + 3)
6626 #define MAP_SHSTRTAB (SHN_HIOS + 4)
6627 #define MAP_SYM_SHNDX (SHN_HIOS + 5)
6628
6629 bfd_boolean
6630 _bfd_elf_copy_private_symbol_data (bfd *ibfd,
6631 asymbol *isymarg,
6632 bfd *obfd,
6633 asymbol *osymarg)
6634 {
6635 elf_symbol_type *isym, *osym;
6636
6637 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
6638 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
6639 return TRUE;
6640
6641 isym = elf_symbol_from (ibfd, isymarg);
6642 osym = elf_symbol_from (obfd, osymarg);
6643
6644 if (isym != NULL
6645 && isym->internal_elf_sym.st_shndx != 0
6646 && osym != NULL
6647 && bfd_is_abs_section (isym->symbol.section))
6648 {
6649 unsigned int shndx;
6650
6651 shndx = isym->internal_elf_sym.st_shndx;
6652 if (shndx == elf_onesymtab (ibfd))
6653 shndx = MAP_ONESYMTAB;
6654 else if (shndx == elf_dynsymtab (ibfd))
6655 shndx = MAP_DYNSYMTAB;
6656 else if (shndx == elf_strtab_sec (ibfd))
6657 shndx = MAP_STRTAB;
6658 else if (shndx == elf_shstrtab_sec (ibfd))
6659 shndx = MAP_SHSTRTAB;
6660 else if (shndx == elf_symtab_shndx (ibfd))
6661 shndx = MAP_SYM_SHNDX;
6662 osym->internal_elf_sym.st_shndx = shndx;
6663 }
6664
6665 return TRUE;
6666 }
6667
6668 /* Swap out the symbols. */
6669
6670 static bfd_boolean
6671 swap_out_syms (bfd *abfd,
6672 struct bfd_strtab_hash **sttp,
6673 int relocatable_p)
6674 {
6675 const struct elf_backend_data *bed;
6676 int symcount;
6677 asymbol **syms;
6678 struct bfd_strtab_hash *stt;
6679 Elf_Internal_Shdr *symtab_hdr;
6680 Elf_Internal_Shdr *symtab_shndx_hdr;
6681 Elf_Internal_Shdr *symstrtab_hdr;
6682 bfd_byte *outbound_syms;
6683 bfd_byte *outbound_shndx;
6684 int idx;
6685 unsigned int num_locals;
6686 bfd_size_type amt;
6687 bfd_boolean name_local_sections;
6688
6689 if (!elf_map_symbols (abfd, &num_locals))
6690 return FALSE;
6691
6692 /* Dump out the symtabs. */
6693 stt = _bfd_elf_stringtab_init ();
6694 if (stt == NULL)
6695 return FALSE;
6696
6697 bed = get_elf_backend_data (abfd);
6698 symcount = bfd_get_symcount (abfd);
6699 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
6700 symtab_hdr->sh_type = SHT_SYMTAB;
6701 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
6702 symtab_hdr->sh_size = symtab_hdr->sh_entsize * (symcount + 1);
6703 symtab_hdr->sh_info = num_locals + 1;
6704 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
6705
6706 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
6707 symstrtab_hdr->sh_type = SHT_STRTAB;
6708
6709 outbound_syms = (bfd_byte *) bfd_alloc2 (abfd, 1 + symcount,
6710 bed->s->sizeof_sym);
6711 if (outbound_syms == NULL)
6712 {
6713 _bfd_stringtab_free (stt);
6714 return FALSE;
6715 }
6716 symtab_hdr->contents = outbound_syms;
6717
6718 outbound_shndx = NULL;
6719 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
6720 if (symtab_shndx_hdr->sh_name != 0)
6721 {
6722 amt = (bfd_size_type) (1 + symcount) * sizeof (Elf_External_Sym_Shndx);
6723 outbound_shndx = (bfd_byte *)
6724 bfd_zalloc2 (abfd, 1 + symcount, sizeof (Elf_External_Sym_Shndx));
6725 if (outbound_shndx == NULL)
6726 {
6727 _bfd_stringtab_free (stt);
6728 return FALSE;
6729 }
6730
6731 symtab_shndx_hdr->contents = outbound_shndx;
6732 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
6733 symtab_shndx_hdr->sh_size = amt;
6734 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
6735 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
6736 }
6737
6738 /* Now generate the data (for "contents"). */
6739 {
6740 /* Fill in zeroth symbol and swap it out. */
6741 Elf_Internal_Sym sym;
6742 sym.st_name = 0;
6743 sym.st_value = 0;
6744 sym.st_size = 0;
6745 sym.st_info = 0;
6746 sym.st_other = 0;
6747 sym.st_shndx = SHN_UNDEF;
6748 sym.st_target_internal = 0;
6749 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
6750 outbound_syms += bed->s->sizeof_sym;
6751 if (outbound_shndx != NULL)
6752 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
6753 }
6754
6755 name_local_sections
6756 = (bed->elf_backend_name_local_section_symbols
6757 && bed->elf_backend_name_local_section_symbols (abfd));
6758
6759 syms = bfd_get_outsymbols (abfd);
6760 for (idx = 0; idx < symcount; idx++)
6761 {
6762 Elf_Internal_Sym sym;
6763 bfd_vma value = syms[idx]->value;
6764 elf_symbol_type *type_ptr;
6765 flagword flags = syms[idx]->flags;
6766 int type;
6767
6768 if (!name_local_sections
6769 && (flags & (BSF_SECTION_SYM | BSF_GLOBAL)) == BSF_SECTION_SYM)
6770 {
6771 /* Local section symbols have no name. */
6772 sym.st_name = 0;
6773 }
6774 else
6775 {
6776 sym.st_name = (unsigned long) _bfd_stringtab_add (stt,
6777 syms[idx]->name,
6778 TRUE, FALSE);
6779 if (sym.st_name == (unsigned long) -1)
6780 {
6781 _bfd_stringtab_free (stt);
6782 return FALSE;
6783 }
6784 }
6785
6786 type_ptr = elf_symbol_from (abfd, syms[idx]);
6787
6788 if ((flags & BSF_SECTION_SYM) == 0
6789 && bfd_is_com_section (syms[idx]->section))
6790 {
6791 /* ELF common symbols put the alignment into the `value' field,
6792 and the size into the `size' field. This is backwards from
6793 how BFD handles it, so reverse it here. */
6794 sym.st_size = value;
6795 if (type_ptr == NULL
6796 || type_ptr->internal_elf_sym.st_value == 0)
6797 sym.st_value = value >= 16 ? 16 : (1 << bfd_log2 (value));
6798 else
6799 sym.st_value = type_ptr->internal_elf_sym.st_value;
6800 sym.st_shndx = _bfd_elf_section_from_bfd_section
6801 (abfd, syms[idx]->section);
6802 }
6803 else
6804 {
6805 asection *sec = syms[idx]->section;
6806 unsigned int shndx;
6807
6808 if (sec->output_section)
6809 {
6810 value += sec->output_offset;
6811 sec = sec->output_section;
6812 }
6813
6814 /* Don't add in the section vma for relocatable output. */
6815 if (! relocatable_p)
6816 value += sec->vma;
6817 sym.st_value = value;
6818 sym.st_size = type_ptr ? type_ptr->internal_elf_sym.st_size : 0;
6819
6820 if (bfd_is_abs_section (sec)
6821 && type_ptr != NULL
6822 && type_ptr->internal_elf_sym.st_shndx != 0)
6823 {
6824 /* This symbol is in a real ELF section which we did
6825 not create as a BFD section. Undo the mapping done
6826 by copy_private_symbol_data. */
6827 shndx = type_ptr->internal_elf_sym.st_shndx;
6828 switch (shndx)
6829 {
6830 case MAP_ONESYMTAB:
6831 shndx = elf_onesymtab (abfd);
6832 break;
6833 case MAP_DYNSYMTAB:
6834 shndx = elf_dynsymtab (abfd);
6835 break;
6836 case MAP_STRTAB:
6837 shndx = elf_strtab_sec (abfd);
6838 break;
6839 case MAP_SHSTRTAB:
6840 shndx = elf_shstrtab_sec (abfd);
6841 break;
6842 case MAP_SYM_SHNDX:
6843 shndx = elf_symtab_shndx (abfd);
6844 break;
6845 default:
6846 shndx = SHN_ABS;
6847 break;
6848 }
6849 }
6850 else
6851 {
6852 shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
6853
6854 if (shndx == SHN_BAD)
6855 {
6856 asection *sec2;
6857
6858 /* Writing this would be a hell of a lot easier if
6859 we had some decent documentation on bfd, and
6860 knew what to expect of the library, and what to
6861 demand of applications. For example, it
6862 appears that `objcopy' might not set the
6863 section of a symbol to be a section that is
6864 actually in the output file. */
6865 sec2 = bfd_get_section_by_name (abfd, sec->name);
6866 if (sec2 == NULL)
6867 {
6868 _bfd_error_handler (_("\
6869 Unable to find equivalent output section for symbol '%s' from section '%s'"),
6870 syms[idx]->name ? syms[idx]->name : "<Local sym>",
6871 sec->name);
6872 bfd_set_error (bfd_error_invalid_operation);
6873 _bfd_stringtab_free (stt);
6874 return FALSE;
6875 }
6876
6877 shndx = _bfd_elf_section_from_bfd_section (abfd, sec2);
6878 BFD_ASSERT (shndx != SHN_BAD);
6879 }
6880 }
6881
6882 sym.st_shndx = shndx;
6883 }
6884
6885 if ((flags & BSF_THREAD_LOCAL) != 0)
6886 type = STT_TLS;
6887 else if ((flags & BSF_GNU_INDIRECT_FUNCTION) != 0)
6888 type = STT_GNU_IFUNC;
6889 else if ((flags & BSF_FUNCTION) != 0)
6890 type = STT_FUNC;
6891 else if ((flags & BSF_OBJECT) != 0)
6892 type = STT_OBJECT;
6893 else if ((flags & BSF_RELC) != 0)
6894 type = STT_RELC;
6895 else if ((flags & BSF_SRELC) != 0)
6896 type = STT_SRELC;
6897 else
6898 type = STT_NOTYPE;
6899
6900 if (syms[idx]->section->flags & SEC_THREAD_LOCAL)
6901 type = STT_TLS;
6902
6903 /* Processor-specific types. */
6904 if (type_ptr != NULL
6905 && bed->elf_backend_get_symbol_type)
6906 type = ((*bed->elf_backend_get_symbol_type)
6907 (&type_ptr->internal_elf_sym, type));
6908
6909 if (flags & BSF_SECTION_SYM)
6910 {
6911 if (flags & BSF_GLOBAL)
6912 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6913 else
6914 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
6915 }
6916 else if (bfd_is_com_section (syms[idx]->section))
6917 {
6918 #ifdef USE_STT_COMMON
6919 if (type == STT_OBJECT)
6920 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_COMMON);
6921 else
6922 #endif
6923 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
6924 }
6925 else if (bfd_is_und_section (syms[idx]->section))
6926 sym.st_info = ELF_ST_INFO (((flags & BSF_WEAK)
6927 ? STB_WEAK
6928 : STB_GLOBAL),
6929 type);
6930 else if (flags & BSF_FILE)
6931 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
6932 else
6933 {
6934 int bind = STB_LOCAL;
6935
6936 if (flags & BSF_LOCAL)
6937 bind = STB_LOCAL;
6938 else if (flags & BSF_GNU_UNIQUE)
6939 bind = STB_GNU_UNIQUE;
6940 else if (flags & BSF_WEAK)
6941 bind = STB_WEAK;
6942 else if (flags & BSF_GLOBAL)
6943 bind = STB_GLOBAL;
6944
6945 sym.st_info = ELF_ST_INFO (bind, type);
6946 }
6947
6948 if (type_ptr != NULL)
6949 {
6950 sym.st_other = type_ptr->internal_elf_sym.st_other;
6951 sym.st_target_internal
6952 = type_ptr->internal_elf_sym.st_target_internal;
6953 }
6954 else
6955 {
6956 sym.st_other = 0;
6957 sym.st_target_internal = 0;
6958 }
6959
6960 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
6961 outbound_syms += bed->s->sizeof_sym;
6962 if (outbound_shndx != NULL)
6963 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
6964 }
6965
6966 *sttp = stt;
6967 symstrtab_hdr->sh_size = _bfd_stringtab_size (stt);
6968 symstrtab_hdr->sh_type = SHT_STRTAB;
6969
6970 symstrtab_hdr->sh_flags = 0;
6971 symstrtab_hdr->sh_addr = 0;
6972 symstrtab_hdr->sh_entsize = 0;
6973 symstrtab_hdr->sh_link = 0;
6974 symstrtab_hdr->sh_info = 0;
6975 symstrtab_hdr->sh_addralign = 1;
6976
6977 return TRUE;
6978 }
6979
6980 /* Return the number of bytes required to hold the symtab vector.
6981
6982 Note that we base it on the count plus 1, since we will null terminate
6983 the vector allocated based on this size. However, the ELF symbol table
6984 always has a dummy entry as symbol #0, so it ends up even. */
6985
6986 long
6987 _bfd_elf_get_symtab_upper_bound (bfd *abfd)
6988 {
6989 long symcount;
6990 long symtab_size;
6991 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->symtab_hdr;
6992
6993 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
6994 symtab_size = (symcount + 1) * (sizeof (asymbol *));
6995 if (symcount > 0)
6996 symtab_size -= sizeof (asymbol *);
6997
6998 return symtab_size;
6999 }
7000
7001 long
7002 _bfd_elf_get_dynamic_symtab_upper_bound (bfd *abfd)
7003 {
7004 long symcount;
7005 long symtab_size;
7006 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->dynsymtab_hdr;
7007
7008 if (elf_dynsymtab (abfd) == 0)
7009 {
7010 bfd_set_error (bfd_error_invalid_operation);
7011 return -1;
7012 }
7013
7014 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
7015 symtab_size = (symcount + 1) * (sizeof (asymbol *));
7016 if (symcount > 0)
7017 symtab_size -= sizeof (asymbol *);
7018
7019 return symtab_size;
7020 }
7021
7022 long
7023 _bfd_elf_get_reloc_upper_bound (bfd *abfd ATTRIBUTE_UNUSED,
7024 sec_ptr asect)
7025 {
7026 return (asect->reloc_count + 1) * sizeof (arelent *);
7027 }
7028
7029 /* Canonicalize the relocs. */
7030
7031 long
7032 _bfd_elf_canonicalize_reloc (bfd *abfd,
7033 sec_ptr section,
7034 arelent **relptr,
7035 asymbol **symbols)
7036 {
7037 arelent *tblptr;
7038 unsigned int i;
7039 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7040
7041 if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE))
7042 return -1;
7043
7044 tblptr = section->relocation;
7045 for (i = 0; i < section->reloc_count; i++)
7046 *relptr++ = tblptr++;
7047
7048 *relptr = NULL;
7049
7050 return section->reloc_count;
7051 }
7052
7053 long
7054 _bfd_elf_canonicalize_symtab (bfd *abfd, asymbol **allocation)
7055 {
7056 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7057 long symcount = bed->s->slurp_symbol_table (abfd, allocation, FALSE);
7058
7059 if (symcount >= 0)
7060 bfd_get_symcount (abfd) = symcount;
7061 return symcount;
7062 }
7063
7064 long
7065 _bfd_elf_canonicalize_dynamic_symtab (bfd *abfd,
7066 asymbol **allocation)
7067 {
7068 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7069 long symcount = bed->s->slurp_symbol_table (abfd, allocation, TRUE);
7070
7071 if (symcount >= 0)
7072 bfd_get_dynamic_symcount (abfd) = symcount;
7073 return symcount;
7074 }
7075
7076 /* Return the size required for the dynamic reloc entries. Any loadable
7077 section that was actually installed in the BFD, and has type SHT_REL
7078 or SHT_RELA, and uses the dynamic symbol table, is considered to be a
7079 dynamic reloc section. */
7080
7081 long
7082 _bfd_elf_get_dynamic_reloc_upper_bound (bfd *abfd)
7083 {
7084 long ret;
7085 asection *s;
7086
7087 if (elf_dynsymtab (abfd) == 0)
7088 {
7089 bfd_set_error (bfd_error_invalid_operation);
7090 return -1;
7091 }
7092
7093 ret = sizeof (arelent *);
7094 for (s = abfd->sections; s != NULL; s = s->next)
7095 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
7096 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
7097 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
7098 ret += ((s->size / elf_section_data (s)->this_hdr.sh_entsize)
7099 * sizeof (arelent *));
7100
7101 return ret;
7102 }
7103
7104 /* Canonicalize the dynamic relocation entries. Note that we return the
7105 dynamic relocations as a single block, although they are actually
7106 associated with particular sections; the interface, which was
7107 designed for SunOS style shared libraries, expects that there is only
7108 one set of dynamic relocs. Any loadable section that was actually
7109 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses the
7110 dynamic symbol table, is considered to be a dynamic reloc section. */
7111
7112 long
7113 _bfd_elf_canonicalize_dynamic_reloc (bfd *abfd,
7114 arelent **storage,
7115 asymbol **syms)
7116 {
7117 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
7118 asection *s;
7119 long ret;
7120
7121 if (elf_dynsymtab (abfd) == 0)
7122 {
7123 bfd_set_error (bfd_error_invalid_operation);
7124 return -1;
7125 }
7126
7127 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
7128 ret = 0;
7129 for (s = abfd->sections; s != NULL; s = s->next)
7130 {
7131 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
7132 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
7133 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
7134 {
7135 arelent *p;
7136 long count, i;
7137
7138 if (! (*slurp_relocs) (abfd, s, syms, TRUE))
7139 return -1;
7140 count = s->size / elf_section_data (s)->this_hdr.sh_entsize;
7141 p = s->relocation;
7142 for (i = 0; i < count; i++)
7143 *storage++ = p++;
7144 ret += count;
7145 }
7146 }
7147
7148 *storage = NULL;
7149
7150 return ret;
7151 }
7152 \f
7153 /* Read in the version information. */
7154
7155 bfd_boolean
7156 _bfd_elf_slurp_version_tables (bfd *abfd, bfd_boolean default_imported_symver)
7157 {
7158 bfd_byte *contents = NULL;
7159 unsigned int freeidx = 0;
7160
7161 if (elf_dynverref (abfd) != 0)
7162 {
7163 Elf_Internal_Shdr *hdr;
7164 Elf_External_Verneed *everneed;
7165 Elf_Internal_Verneed *iverneed;
7166 unsigned int i;
7167 bfd_byte *contents_end;
7168
7169 hdr = &elf_tdata (abfd)->dynverref_hdr;
7170
7171 elf_tdata (abfd)->verref = (Elf_Internal_Verneed *)
7172 bfd_zalloc2 (abfd, hdr->sh_info, sizeof (Elf_Internal_Verneed));
7173 if (elf_tdata (abfd)->verref == NULL)
7174 goto error_return;
7175
7176 elf_tdata (abfd)->cverrefs = hdr->sh_info;
7177
7178 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
7179 if (contents == NULL)
7180 {
7181 error_return_verref:
7182 elf_tdata (abfd)->verref = NULL;
7183 elf_tdata (abfd)->cverrefs = 0;
7184 goto error_return;
7185 }
7186 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
7187 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
7188 goto error_return_verref;
7189
7190 if (hdr->sh_info && hdr->sh_size < sizeof (Elf_External_Verneed))
7191 goto error_return_verref;
7192
7193 BFD_ASSERT (sizeof (Elf_External_Verneed)
7194 == sizeof (Elf_External_Vernaux));
7195 contents_end = contents + hdr->sh_size - sizeof (Elf_External_Verneed);
7196 everneed = (Elf_External_Verneed *) contents;
7197 iverneed = elf_tdata (abfd)->verref;
7198 for (i = 0; i < hdr->sh_info; i++, iverneed++)
7199 {
7200 Elf_External_Vernaux *evernaux;
7201 Elf_Internal_Vernaux *ivernaux;
7202 unsigned int j;
7203
7204 _bfd_elf_swap_verneed_in (abfd, everneed, iverneed);
7205
7206 iverneed->vn_bfd = abfd;
7207
7208 iverneed->vn_filename =
7209 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
7210 iverneed->vn_file);
7211 if (iverneed->vn_filename == NULL)
7212 goto error_return_verref;
7213
7214 if (iverneed->vn_cnt == 0)
7215 iverneed->vn_auxptr = NULL;
7216 else
7217 {
7218 iverneed->vn_auxptr = (struct elf_internal_vernaux *)
7219 bfd_alloc2 (abfd, iverneed->vn_cnt,
7220 sizeof (Elf_Internal_Vernaux));
7221 if (iverneed->vn_auxptr == NULL)
7222 goto error_return_verref;
7223 }
7224
7225 if (iverneed->vn_aux
7226 > (size_t) (contents_end - (bfd_byte *) everneed))
7227 goto error_return_verref;
7228
7229 evernaux = ((Elf_External_Vernaux *)
7230 ((bfd_byte *) everneed + iverneed->vn_aux));
7231 ivernaux = iverneed->vn_auxptr;
7232 for (j = 0; j < iverneed->vn_cnt; j++, ivernaux++)
7233 {
7234 _bfd_elf_swap_vernaux_in (abfd, evernaux, ivernaux);
7235
7236 ivernaux->vna_nodename =
7237 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
7238 ivernaux->vna_name);
7239 if (ivernaux->vna_nodename == NULL)
7240 goto error_return_verref;
7241
7242 if (j + 1 < iverneed->vn_cnt)
7243 ivernaux->vna_nextptr = ivernaux + 1;
7244 else
7245 ivernaux->vna_nextptr = NULL;
7246
7247 if (ivernaux->vna_next
7248 > (size_t) (contents_end - (bfd_byte *) evernaux))
7249 goto error_return_verref;
7250
7251 evernaux = ((Elf_External_Vernaux *)
7252 ((bfd_byte *) evernaux + ivernaux->vna_next));
7253
7254 if (ivernaux->vna_other > freeidx)
7255 freeidx = ivernaux->vna_other;
7256 }
7257
7258 if (i + 1 < hdr->sh_info)
7259 iverneed->vn_nextref = iverneed + 1;
7260 else
7261 iverneed->vn_nextref = NULL;
7262
7263 if (iverneed->vn_next
7264 > (size_t) (contents_end - (bfd_byte *) everneed))
7265 goto error_return_verref;
7266
7267 everneed = ((Elf_External_Verneed *)
7268 ((bfd_byte *) everneed + iverneed->vn_next));
7269 }
7270
7271 free (contents);
7272 contents = NULL;
7273 }
7274
7275 if (elf_dynverdef (abfd) != 0)
7276 {
7277 Elf_Internal_Shdr *hdr;
7278 Elf_External_Verdef *everdef;
7279 Elf_Internal_Verdef *iverdef;
7280 Elf_Internal_Verdef *iverdefarr;
7281 Elf_Internal_Verdef iverdefmem;
7282 unsigned int i;
7283 unsigned int maxidx;
7284 bfd_byte *contents_end_def, *contents_end_aux;
7285
7286 hdr = &elf_tdata (abfd)->dynverdef_hdr;
7287
7288 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
7289 if (contents == NULL)
7290 goto error_return;
7291 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
7292 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
7293 goto error_return;
7294
7295 if (hdr->sh_info && hdr->sh_size < sizeof (Elf_External_Verdef))
7296 goto error_return;
7297
7298 BFD_ASSERT (sizeof (Elf_External_Verdef)
7299 >= sizeof (Elf_External_Verdaux));
7300 contents_end_def = contents + hdr->sh_size
7301 - sizeof (Elf_External_Verdef);
7302 contents_end_aux = contents + hdr->sh_size
7303 - sizeof (Elf_External_Verdaux);
7304
7305 /* We know the number of entries in the section but not the maximum
7306 index. Therefore we have to run through all entries and find
7307 the maximum. */
7308 everdef = (Elf_External_Verdef *) contents;
7309 maxidx = 0;
7310 for (i = 0; i < hdr->sh_info; ++i)
7311 {
7312 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
7313
7314 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) > maxidx)
7315 maxidx = iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION);
7316
7317 if (iverdefmem.vd_next
7318 > (size_t) (contents_end_def - (bfd_byte *) everdef))
7319 goto error_return;
7320
7321 everdef = ((Elf_External_Verdef *)
7322 ((bfd_byte *) everdef + iverdefmem.vd_next));
7323 }
7324
7325 if (default_imported_symver)
7326 {
7327 if (freeidx > maxidx)
7328 maxidx = ++freeidx;
7329 else
7330 freeidx = ++maxidx;
7331 }
7332 elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *)
7333 bfd_zalloc2 (abfd, maxidx, sizeof (Elf_Internal_Verdef));
7334 if (elf_tdata (abfd)->verdef == NULL)
7335 goto error_return;
7336
7337 elf_tdata (abfd)->cverdefs = maxidx;
7338
7339 everdef = (Elf_External_Verdef *) contents;
7340 iverdefarr = elf_tdata (abfd)->verdef;
7341 for (i = 0; i < hdr->sh_info; i++)
7342 {
7343 Elf_External_Verdaux *everdaux;
7344 Elf_Internal_Verdaux *iverdaux;
7345 unsigned int j;
7346
7347 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
7348
7349 if ((iverdefmem.vd_ndx & VERSYM_VERSION) == 0)
7350 {
7351 error_return_verdef:
7352 elf_tdata (abfd)->verdef = NULL;
7353 elf_tdata (abfd)->cverdefs = 0;
7354 goto error_return;
7355 }
7356
7357 iverdef = &iverdefarr[(iverdefmem.vd_ndx & VERSYM_VERSION) - 1];
7358 memcpy (iverdef, &iverdefmem, sizeof (Elf_Internal_Verdef));
7359
7360 iverdef->vd_bfd = abfd;
7361
7362 if (iverdef->vd_cnt == 0)
7363 iverdef->vd_auxptr = NULL;
7364 else
7365 {
7366 iverdef->vd_auxptr = (struct elf_internal_verdaux *)
7367 bfd_alloc2 (abfd, iverdef->vd_cnt,
7368 sizeof (Elf_Internal_Verdaux));
7369 if (iverdef->vd_auxptr == NULL)
7370 goto error_return_verdef;
7371 }
7372
7373 if (iverdef->vd_aux
7374 > (size_t) (contents_end_aux - (bfd_byte *) everdef))
7375 goto error_return_verdef;
7376
7377 everdaux = ((Elf_External_Verdaux *)
7378 ((bfd_byte *) everdef + iverdef->vd_aux));
7379 iverdaux = iverdef->vd_auxptr;
7380 for (j = 0; j < iverdef->vd_cnt; j++, iverdaux++)
7381 {
7382 _bfd_elf_swap_verdaux_in (abfd, everdaux, iverdaux);
7383
7384 iverdaux->vda_nodename =
7385 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
7386 iverdaux->vda_name);
7387 if (iverdaux->vda_nodename == NULL)
7388 goto error_return_verdef;
7389
7390 if (j + 1 < iverdef->vd_cnt)
7391 iverdaux->vda_nextptr = iverdaux + 1;
7392 else
7393 iverdaux->vda_nextptr = NULL;
7394
7395 if (iverdaux->vda_next
7396 > (size_t) (contents_end_aux - (bfd_byte *) everdaux))
7397 goto error_return_verdef;
7398
7399 everdaux = ((Elf_External_Verdaux *)
7400 ((bfd_byte *) everdaux + iverdaux->vda_next));
7401 }
7402
7403 if (iverdef->vd_cnt)
7404 iverdef->vd_nodename = iverdef->vd_auxptr->vda_nodename;
7405
7406 if ((size_t) (iverdef - iverdefarr) + 1 < maxidx)
7407 iverdef->vd_nextdef = iverdef + 1;
7408 else
7409 iverdef->vd_nextdef = NULL;
7410
7411 everdef = ((Elf_External_Verdef *)
7412 ((bfd_byte *) everdef + iverdef->vd_next));
7413 }
7414
7415 free (contents);
7416 contents = NULL;
7417 }
7418 else if (default_imported_symver)
7419 {
7420 if (freeidx < 3)
7421 freeidx = 3;
7422 else
7423 freeidx++;
7424
7425 elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *)
7426 bfd_zalloc2 (abfd, freeidx, sizeof (Elf_Internal_Verdef));
7427 if (elf_tdata (abfd)->verdef == NULL)
7428 goto error_return;
7429
7430 elf_tdata (abfd)->cverdefs = freeidx;
7431 }
7432
7433 /* Create a default version based on the soname. */
7434 if (default_imported_symver)
7435 {
7436 Elf_Internal_Verdef *iverdef;
7437 Elf_Internal_Verdaux *iverdaux;
7438
7439 iverdef = &elf_tdata (abfd)->verdef[freeidx - 1];
7440
7441 iverdef->vd_version = VER_DEF_CURRENT;
7442 iverdef->vd_flags = 0;
7443 iverdef->vd_ndx = freeidx;
7444 iverdef->vd_cnt = 1;
7445
7446 iverdef->vd_bfd = abfd;
7447
7448 iverdef->vd_nodename = bfd_elf_get_dt_soname (abfd);
7449 if (iverdef->vd_nodename == NULL)
7450 goto error_return_verdef;
7451 iverdef->vd_nextdef = NULL;
7452 iverdef->vd_auxptr = (struct elf_internal_verdaux *)
7453 bfd_alloc (abfd, sizeof (Elf_Internal_Verdaux));
7454 if (iverdef->vd_auxptr == NULL)
7455 goto error_return_verdef;
7456
7457 iverdaux = iverdef->vd_auxptr;
7458 iverdaux->vda_nodename = iverdef->vd_nodename;
7459 iverdaux->vda_nextptr = NULL;
7460 }
7461
7462 return TRUE;
7463
7464 error_return:
7465 if (contents != NULL)
7466 free (contents);
7467 return FALSE;
7468 }
7469 \f
7470 asymbol *
7471 _bfd_elf_make_empty_symbol (bfd *abfd)
7472 {
7473 elf_symbol_type *newsym;
7474 bfd_size_type amt = sizeof (elf_symbol_type);
7475
7476 newsym = (elf_symbol_type *) bfd_zalloc (abfd, amt);
7477 if (!newsym)
7478 return NULL;
7479 else
7480 {
7481 newsym->symbol.the_bfd = abfd;
7482 return &newsym->symbol;
7483 }
7484 }
7485
7486 void
7487 _bfd_elf_get_symbol_info (bfd *abfd ATTRIBUTE_UNUSED,
7488 asymbol *symbol,
7489 symbol_info *ret)
7490 {
7491 bfd_symbol_info (symbol, ret);
7492 }
7493
7494 /* Return whether a symbol name implies a local symbol. Most targets
7495 use this function for the is_local_label_name entry point, but some
7496 override it. */
7497
7498 bfd_boolean
7499 _bfd_elf_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED,
7500 const char *name)
7501 {
7502 /* Normal local symbols start with ``.L''. */
7503 if (name[0] == '.' && name[1] == 'L')
7504 return TRUE;
7505
7506 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
7507 DWARF debugging symbols starting with ``..''. */
7508 if (name[0] == '.' && name[1] == '.')
7509 return TRUE;
7510
7511 /* gcc will sometimes generate symbols beginning with ``_.L_'' when
7512 emitting DWARF debugging output. I suspect this is actually a
7513 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
7514 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
7515 underscore to be emitted on some ELF targets). For ease of use,
7516 we treat such symbols as local. */
7517 if (name[0] == '_' && name[1] == '.' && name[2] == 'L' && name[3] == '_')
7518 return TRUE;
7519
7520 return FALSE;
7521 }
7522
7523 alent *
7524 _bfd_elf_get_lineno (bfd *abfd ATTRIBUTE_UNUSED,
7525 asymbol *symbol ATTRIBUTE_UNUSED)
7526 {
7527 abort ();
7528 return NULL;
7529 }
7530
7531 bfd_boolean
7532 _bfd_elf_set_arch_mach (bfd *abfd,
7533 enum bfd_architecture arch,
7534 unsigned long machine)
7535 {
7536 /* If this isn't the right architecture for this backend, and this
7537 isn't the generic backend, fail. */
7538 if (arch != get_elf_backend_data (abfd)->arch
7539 && arch != bfd_arch_unknown
7540 && get_elf_backend_data (abfd)->arch != bfd_arch_unknown)
7541 return FALSE;
7542
7543 return bfd_default_set_arch_mach (abfd, arch, machine);
7544 }
7545
7546 /* Find the function to a particular section and offset,
7547 for error reporting. */
7548
7549 static bfd_boolean
7550 elf_find_function (bfd *abfd,
7551 asection *section,
7552 asymbol **symbols,
7553 bfd_vma offset,
7554 const char **filename_ptr,
7555 const char **functionname_ptr)
7556 {
7557 struct elf_find_function_cache
7558 {
7559 asection *last_section;
7560 asymbol *func;
7561 const char *filename;
7562 bfd_size_type func_size;
7563 } *cache;
7564
7565 if (symbols == NULL)
7566 return FALSE;
7567
7568 cache = elf_tdata (abfd)->elf_find_function_cache;
7569 if (cache == NULL)
7570 {
7571 cache = bfd_zalloc (abfd, sizeof (*cache));
7572 elf_tdata (abfd)->elf_find_function_cache = cache;
7573 if (cache == NULL)
7574 return FALSE;
7575 }
7576 if (cache->last_section != section
7577 || cache->func == NULL
7578 || offset < cache->func->value
7579 || offset >= cache->func->value + cache->func_size)
7580 {
7581 asymbol *file;
7582 bfd_vma low_func;
7583 asymbol **p;
7584 /* ??? Given multiple file symbols, it is impossible to reliably
7585 choose the right file name for global symbols. File symbols are
7586 local symbols, and thus all file symbols must sort before any
7587 global symbols. The ELF spec may be interpreted to say that a
7588 file symbol must sort before other local symbols, but currently
7589 ld -r doesn't do this. So, for ld -r output, it is possible to
7590 make a better choice of file name for local symbols by ignoring
7591 file symbols appearing after a given local symbol. */
7592 enum { nothing_seen, symbol_seen, file_after_symbol_seen } state;
7593 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7594
7595 file = NULL;
7596 low_func = 0;
7597 state = nothing_seen;
7598 cache->filename = NULL;
7599 cache->func = NULL;
7600 cache->func_size = 0;
7601 cache->last_section = section;
7602
7603 for (p = symbols; *p != NULL; p++)
7604 {
7605 asymbol *sym = *p;
7606 bfd_vma code_off;
7607 bfd_size_type size;
7608
7609 if ((sym->flags & BSF_FILE) != 0)
7610 {
7611 file = sym;
7612 if (state == symbol_seen)
7613 state = file_after_symbol_seen;
7614 continue;
7615 }
7616
7617 size = bed->maybe_function_sym (sym, section, &code_off);
7618 if (size != 0
7619 && code_off <= offset
7620 && (code_off > low_func
7621 || (code_off == low_func
7622 && size > cache->func_size)))
7623 {
7624 cache->func = sym;
7625 cache->func_size = size;
7626 cache->filename = NULL;
7627 low_func = code_off;
7628 if (file != NULL
7629 && ((sym->flags & BSF_LOCAL) != 0
7630 || state != file_after_symbol_seen))
7631 cache->filename = bfd_asymbol_name (file);
7632 }
7633 if (state == nothing_seen)
7634 state = symbol_seen;
7635 }
7636 }
7637
7638 if (cache->func == NULL)
7639 return FALSE;
7640
7641 if (filename_ptr)
7642 *filename_ptr = cache->filename;
7643 if (functionname_ptr)
7644 *functionname_ptr = bfd_asymbol_name (cache->func);
7645
7646 return TRUE;
7647 }
7648
7649 /* Find the nearest line to a particular section and offset,
7650 for error reporting. */
7651
7652 bfd_boolean
7653 _bfd_elf_find_nearest_line (bfd *abfd,
7654 asection *section,
7655 asymbol **symbols,
7656 bfd_vma offset,
7657 const char **filename_ptr,
7658 const char **functionname_ptr,
7659 unsigned int *line_ptr)
7660 {
7661 return _bfd_elf_find_nearest_line_discriminator (abfd, section, symbols,
7662 offset, filename_ptr,
7663 functionname_ptr,
7664 line_ptr,
7665 NULL);
7666 }
7667
7668 bfd_boolean
7669 _bfd_elf_find_nearest_line_discriminator (bfd *abfd,
7670 asection *section,
7671 asymbol **symbols,
7672 bfd_vma offset,
7673 const char **filename_ptr,
7674 const char **functionname_ptr,
7675 unsigned int *line_ptr,
7676 unsigned int *discriminator_ptr)
7677 {
7678 bfd_boolean found;
7679
7680 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
7681 filename_ptr, functionname_ptr,
7682 line_ptr))
7683 {
7684 if (!*functionname_ptr)
7685 elf_find_function (abfd, section, symbols, offset,
7686 *filename_ptr ? NULL : filename_ptr,
7687 functionname_ptr);
7688
7689 return TRUE;
7690 }
7691
7692 if (_bfd_dwarf2_find_nearest_line (abfd, dwarf_debug_sections,
7693 section, symbols, offset,
7694 filename_ptr, functionname_ptr,
7695 line_ptr, discriminator_ptr, 0,
7696 &elf_tdata (abfd)->dwarf2_find_line_info))
7697 {
7698 if (!*functionname_ptr)
7699 elf_find_function (abfd, section, symbols, offset,
7700 *filename_ptr ? NULL : filename_ptr,
7701 functionname_ptr);
7702
7703 return TRUE;
7704 }
7705
7706 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
7707 &found, filename_ptr,
7708 functionname_ptr, line_ptr,
7709 &elf_tdata (abfd)->line_info))
7710 return FALSE;
7711 if (found && (*functionname_ptr || *line_ptr))
7712 return TRUE;
7713
7714 if (symbols == NULL)
7715 return FALSE;
7716
7717 if (! elf_find_function (abfd, section, symbols, offset,
7718 filename_ptr, functionname_ptr))
7719 return FALSE;
7720
7721 *line_ptr = 0;
7722 return TRUE;
7723 }
7724
7725 /* Find the line for a symbol. */
7726
7727 bfd_boolean
7728 _bfd_elf_find_line (bfd *abfd, asymbol **symbols, asymbol *symbol,
7729 const char **filename_ptr, unsigned int *line_ptr)
7730 {
7731 return _bfd_elf_find_line_discriminator (abfd, symbols, symbol,
7732 filename_ptr, line_ptr,
7733 NULL);
7734 }
7735
7736 bfd_boolean
7737 _bfd_elf_find_line_discriminator (bfd *abfd, asymbol **symbols, asymbol *symbol,
7738 const char **filename_ptr,
7739 unsigned int *line_ptr,
7740 unsigned int *discriminator_ptr)
7741 {
7742 return _bfd_dwarf2_find_line (abfd, symbols, symbol,
7743 filename_ptr, line_ptr, discriminator_ptr, 0,
7744 &elf_tdata (abfd)->dwarf2_find_line_info);
7745 }
7746
7747 /* After a call to bfd_find_nearest_line, successive calls to
7748 bfd_find_inliner_info can be used to get source information about
7749 each level of function inlining that terminated at the address
7750 passed to bfd_find_nearest_line. Currently this is only supported
7751 for DWARF2 with appropriate DWARF3 extensions. */
7752
7753 bfd_boolean
7754 _bfd_elf_find_inliner_info (bfd *abfd,
7755 const char **filename_ptr,
7756 const char **functionname_ptr,
7757 unsigned int *line_ptr)
7758 {
7759 bfd_boolean found;
7760 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
7761 functionname_ptr, line_ptr,
7762 & elf_tdata (abfd)->dwarf2_find_line_info);
7763 return found;
7764 }
7765
7766 int
7767 _bfd_elf_sizeof_headers (bfd *abfd, struct bfd_link_info *info)
7768 {
7769 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7770 int ret = bed->s->sizeof_ehdr;
7771
7772 if (!info->relocatable)
7773 {
7774 bfd_size_type phdr_size = elf_program_header_size (abfd);
7775
7776 if (phdr_size == (bfd_size_type) -1)
7777 {
7778 struct elf_segment_map *m;
7779
7780 phdr_size = 0;
7781 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
7782 phdr_size += bed->s->sizeof_phdr;
7783
7784 if (phdr_size == 0)
7785 phdr_size = get_program_header_size (abfd, info);
7786 }
7787
7788 elf_program_header_size (abfd) = phdr_size;
7789 ret += phdr_size;
7790 }
7791
7792 return ret;
7793 }
7794
7795 bfd_boolean
7796 _bfd_elf_set_section_contents (bfd *abfd,
7797 sec_ptr section,
7798 const void *location,
7799 file_ptr offset,
7800 bfd_size_type count)
7801 {
7802 Elf_Internal_Shdr *hdr;
7803 file_ptr pos;
7804
7805 if (! abfd->output_has_begun
7806 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
7807 return FALSE;
7808
7809 hdr = &elf_section_data (section)->this_hdr;
7810 pos = hdr->sh_offset + offset;
7811 if (bfd_seek (abfd, pos, SEEK_SET) != 0
7812 || bfd_bwrite (location, count, abfd) != count)
7813 return FALSE;
7814
7815 return TRUE;
7816 }
7817
7818 void
7819 _bfd_elf_no_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED,
7820 arelent *cache_ptr ATTRIBUTE_UNUSED,
7821 Elf_Internal_Rela *dst ATTRIBUTE_UNUSED)
7822 {
7823 abort ();
7824 }
7825
7826 /* Try to convert a non-ELF reloc into an ELF one. */
7827
7828 bfd_boolean
7829 _bfd_elf_validate_reloc (bfd *abfd, arelent *areloc)
7830 {
7831 /* Check whether we really have an ELF howto. */
7832
7833 if ((*areloc->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec)
7834 {
7835 bfd_reloc_code_real_type code;
7836 reloc_howto_type *howto;
7837
7838 /* Alien reloc: Try to determine its type to replace it with an
7839 equivalent ELF reloc. */
7840
7841 if (areloc->howto->pc_relative)
7842 {
7843 switch (areloc->howto->bitsize)
7844 {
7845 case 8:
7846 code = BFD_RELOC_8_PCREL;
7847 break;
7848 case 12:
7849 code = BFD_RELOC_12_PCREL;
7850 break;
7851 case 16:
7852 code = BFD_RELOC_16_PCREL;
7853 break;
7854 case 24:
7855 code = BFD_RELOC_24_PCREL;
7856 break;
7857 case 32:
7858 code = BFD_RELOC_32_PCREL;
7859 break;
7860 case 64:
7861 code = BFD_RELOC_64_PCREL;
7862 break;
7863 default:
7864 goto fail;
7865 }
7866
7867 howto = bfd_reloc_type_lookup (abfd, code);
7868
7869 if (areloc->howto->pcrel_offset != howto->pcrel_offset)
7870 {
7871 if (howto->pcrel_offset)
7872 areloc->addend += areloc->address;
7873 else
7874 areloc->addend -= areloc->address; /* addend is unsigned!! */
7875 }
7876 }
7877 else
7878 {
7879 switch (areloc->howto->bitsize)
7880 {
7881 case 8:
7882 code = BFD_RELOC_8;
7883 break;
7884 case 14:
7885 code = BFD_RELOC_14;
7886 break;
7887 case 16:
7888 code = BFD_RELOC_16;
7889 break;
7890 case 26:
7891 code = BFD_RELOC_26;
7892 break;
7893 case 32:
7894 code = BFD_RELOC_32;
7895 break;
7896 case 64:
7897 code = BFD_RELOC_64;
7898 break;
7899 default:
7900 goto fail;
7901 }
7902
7903 howto = bfd_reloc_type_lookup (abfd, code);
7904 }
7905
7906 if (howto)
7907 areloc->howto = howto;
7908 else
7909 goto fail;
7910 }
7911
7912 return TRUE;
7913
7914 fail:
7915 (*_bfd_error_handler)
7916 (_("%B: unsupported relocation type %s"),
7917 abfd, areloc->howto->name);
7918 bfd_set_error (bfd_error_bad_value);
7919 return FALSE;
7920 }
7921
7922 bfd_boolean
7923 _bfd_elf_close_and_cleanup (bfd *abfd)
7924 {
7925 struct elf_obj_tdata *tdata = elf_tdata (abfd);
7926 if (bfd_get_format (abfd) == bfd_object && tdata != NULL)
7927 {
7928 if (elf_tdata (abfd)->o != NULL && elf_shstrtab (abfd) != NULL)
7929 _bfd_elf_strtab_free (elf_shstrtab (abfd));
7930 _bfd_dwarf2_cleanup_debug_info (abfd, &tdata->dwarf2_find_line_info);
7931 }
7932
7933 return _bfd_generic_close_and_cleanup (abfd);
7934 }
7935
7936 /* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
7937 in the relocation's offset. Thus we cannot allow any sort of sanity
7938 range-checking to interfere. There is nothing else to do in processing
7939 this reloc. */
7940
7941 bfd_reloc_status_type
7942 _bfd_elf_rel_vtable_reloc_fn
7943 (bfd *abfd ATTRIBUTE_UNUSED, arelent *re ATTRIBUTE_UNUSED,
7944 struct bfd_symbol *symbol ATTRIBUTE_UNUSED,
7945 void *data ATTRIBUTE_UNUSED, asection *is ATTRIBUTE_UNUSED,
7946 bfd *obfd ATTRIBUTE_UNUSED, char **errmsg ATTRIBUTE_UNUSED)
7947 {
7948 return bfd_reloc_ok;
7949 }
7950 \f
7951 /* Elf core file support. Much of this only works on native
7952 toolchains, since we rely on knowing the
7953 machine-dependent procfs structure in order to pick
7954 out details about the corefile. */
7955
7956 #ifdef HAVE_SYS_PROCFS_H
7957 /* Needed for new procfs interface on sparc-solaris. */
7958 # define _STRUCTURED_PROC 1
7959 # include <sys/procfs.h>
7960 #endif
7961
7962 /* Return a PID that identifies a "thread" for threaded cores, or the
7963 PID of the main process for non-threaded cores. */
7964
7965 static int
7966 elfcore_make_pid (bfd *abfd)
7967 {
7968 int pid;
7969
7970 pid = elf_tdata (abfd)->core->lwpid;
7971 if (pid == 0)
7972 pid = elf_tdata (abfd)->core->pid;
7973
7974 return pid;
7975 }
7976
7977 /* If there isn't a section called NAME, make one, using
7978 data from SECT. Note, this function will generate a
7979 reference to NAME, so you shouldn't deallocate or
7980 overwrite it. */
7981
7982 static bfd_boolean
7983 elfcore_maybe_make_sect (bfd *abfd, char *name, asection *sect)
7984 {
7985 asection *sect2;
7986
7987 if (bfd_get_section_by_name (abfd, name) != NULL)
7988 return TRUE;
7989
7990 sect2 = bfd_make_section_with_flags (abfd, name, sect->flags);
7991 if (sect2 == NULL)
7992 return FALSE;
7993
7994 sect2->size = sect->size;
7995 sect2->filepos = sect->filepos;
7996 sect2->alignment_power = sect->alignment_power;
7997 return TRUE;
7998 }
7999
8000 /* Create a pseudosection containing SIZE bytes at FILEPOS. This
8001 actually creates up to two pseudosections:
8002 - For the single-threaded case, a section named NAME, unless
8003 such a section already exists.
8004 - For the multi-threaded case, a section named "NAME/PID", where
8005 PID is elfcore_make_pid (abfd).
8006 Both pseudosections have identical contents. */
8007 bfd_boolean
8008 _bfd_elfcore_make_pseudosection (bfd *abfd,
8009 char *name,
8010 size_t size,
8011 ufile_ptr filepos)
8012 {
8013 char buf[100];
8014 char *threaded_name;
8015 size_t len;
8016 asection *sect;
8017
8018 /* Build the section name. */
8019
8020 sprintf (buf, "%s/%d", name, elfcore_make_pid (abfd));
8021 len = strlen (buf) + 1;
8022 threaded_name = (char *) bfd_alloc (abfd, len);
8023 if (threaded_name == NULL)
8024 return FALSE;
8025 memcpy (threaded_name, buf, len);
8026
8027 sect = bfd_make_section_anyway_with_flags (abfd, threaded_name,
8028 SEC_HAS_CONTENTS);
8029 if (sect == NULL)
8030 return FALSE;
8031 sect->size = size;
8032 sect->filepos = filepos;
8033 sect->alignment_power = 2;
8034
8035 return elfcore_maybe_make_sect (abfd, name, sect);
8036 }
8037
8038 /* prstatus_t exists on:
8039 solaris 2.5+
8040 linux 2.[01] + glibc
8041 unixware 4.2
8042 */
8043
8044 #if defined (HAVE_PRSTATUS_T)
8045
8046 static bfd_boolean
8047 elfcore_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
8048 {
8049 size_t size;
8050 int offset;
8051
8052 if (note->descsz == sizeof (prstatus_t))
8053 {
8054 prstatus_t prstat;
8055
8056 size = sizeof (prstat.pr_reg);
8057 offset = offsetof (prstatus_t, pr_reg);
8058 memcpy (&prstat, note->descdata, sizeof (prstat));
8059
8060 /* Do not overwrite the core signal if it
8061 has already been set by another thread. */
8062 if (elf_tdata (abfd)->core->signal == 0)
8063 elf_tdata (abfd)->core->signal = prstat.pr_cursig;
8064 if (elf_tdata (abfd)->core->pid == 0)
8065 elf_tdata (abfd)->core->pid = prstat.pr_pid;
8066
8067 /* pr_who exists on:
8068 solaris 2.5+
8069 unixware 4.2
8070 pr_who doesn't exist on:
8071 linux 2.[01]
8072 */
8073 #if defined (HAVE_PRSTATUS_T_PR_WHO)
8074 elf_tdata (abfd)->core->lwpid = prstat.pr_who;
8075 #else
8076 elf_tdata (abfd)->core->lwpid = prstat.pr_pid;
8077 #endif
8078 }
8079 #if defined (HAVE_PRSTATUS32_T)
8080 else if (note->descsz == sizeof (prstatus32_t))
8081 {
8082 /* 64-bit host, 32-bit corefile */
8083 prstatus32_t prstat;
8084
8085 size = sizeof (prstat.pr_reg);
8086 offset = offsetof (prstatus32_t, pr_reg);
8087 memcpy (&prstat, note->descdata, sizeof (prstat));
8088
8089 /* Do not overwrite the core signal if it
8090 has already been set by another thread. */
8091 if (elf_tdata (abfd)->core->signal == 0)
8092 elf_tdata (abfd)->core->signal = prstat.pr_cursig;
8093 if (elf_tdata (abfd)->core->pid == 0)
8094 elf_tdata (abfd)->core->pid = prstat.pr_pid;
8095
8096 /* pr_who exists on:
8097 solaris 2.5+
8098 unixware 4.2
8099 pr_who doesn't exist on:
8100 linux 2.[01]
8101 */
8102 #if defined (HAVE_PRSTATUS32_T_PR_WHO)
8103 elf_tdata (abfd)->core->lwpid = prstat.pr_who;
8104 #else
8105 elf_tdata (abfd)->core->lwpid = prstat.pr_pid;
8106 #endif
8107 }
8108 #endif /* HAVE_PRSTATUS32_T */
8109 else
8110 {
8111 /* Fail - we don't know how to handle any other
8112 note size (ie. data object type). */
8113 return TRUE;
8114 }
8115
8116 /* Make a ".reg/999" section and a ".reg" section. */
8117 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
8118 size, note->descpos + offset);
8119 }
8120 #endif /* defined (HAVE_PRSTATUS_T) */
8121
8122 /* Create a pseudosection containing the exact contents of NOTE. */
8123 static bfd_boolean
8124 elfcore_make_note_pseudosection (bfd *abfd,
8125 char *name,
8126 Elf_Internal_Note *note)
8127 {
8128 return _bfd_elfcore_make_pseudosection (abfd, name,
8129 note->descsz, note->descpos);
8130 }
8131
8132 /* There isn't a consistent prfpregset_t across platforms,
8133 but it doesn't matter, because we don't have to pick this
8134 data structure apart. */
8135
8136 static bfd_boolean
8137 elfcore_grok_prfpreg (bfd *abfd, Elf_Internal_Note *note)
8138 {
8139 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
8140 }
8141
8142 /* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
8143 type of NT_PRXFPREG. Just include the whole note's contents
8144 literally. */
8145
8146 static bfd_boolean
8147 elfcore_grok_prxfpreg (bfd *abfd, Elf_Internal_Note *note)
8148 {
8149 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
8150 }
8151
8152 /* Linux dumps the Intel XSAVE extended state in a note named "LINUX"
8153 with a note type of NT_X86_XSTATE. Just include the whole note's
8154 contents literally. */
8155
8156 static bfd_boolean
8157 elfcore_grok_xstatereg (bfd *abfd, Elf_Internal_Note *note)
8158 {
8159 return elfcore_make_note_pseudosection (abfd, ".reg-xstate", note);
8160 }
8161
8162 static bfd_boolean
8163 elfcore_grok_ppc_vmx (bfd *abfd, Elf_Internal_Note *note)
8164 {
8165 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vmx", note);
8166 }
8167
8168 static bfd_boolean
8169 elfcore_grok_ppc_vsx (bfd *abfd, Elf_Internal_Note *note)
8170 {
8171 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vsx", note);
8172 }
8173
8174 static bfd_boolean
8175 elfcore_grok_s390_high_gprs (bfd *abfd, Elf_Internal_Note *note)
8176 {
8177 return elfcore_make_note_pseudosection (abfd, ".reg-s390-high-gprs", note);
8178 }
8179
8180 static bfd_boolean
8181 elfcore_grok_s390_timer (bfd *abfd, Elf_Internal_Note *note)
8182 {
8183 return elfcore_make_note_pseudosection (abfd, ".reg-s390-timer", note);
8184 }
8185
8186 static bfd_boolean
8187 elfcore_grok_s390_todcmp (bfd *abfd, Elf_Internal_Note *note)
8188 {
8189 return elfcore_make_note_pseudosection (abfd, ".reg-s390-todcmp", note);
8190 }
8191
8192 static bfd_boolean
8193 elfcore_grok_s390_todpreg (bfd *abfd, Elf_Internal_Note *note)
8194 {
8195 return elfcore_make_note_pseudosection (abfd, ".reg-s390-todpreg", note);
8196 }
8197
8198 static bfd_boolean
8199 elfcore_grok_s390_ctrs (bfd *abfd, Elf_Internal_Note *note)
8200 {
8201 return elfcore_make_note_pseudosection (abfd, ".reg-s390-ctrs", note);
8202 }
8203
8204 static bfd_boolean
8205 elfcore_grok_s390_prefix (bfd *abfd, Elf_Internal_Note *note)
8206 {
8207 return elfcore_make_note_pseudosection (abfd, ".reg-s390-prefix", note);
8208 }
8209
8210 static bfd_boolean
8211 elfcore_grok_s390_last_break (bfd *abfd, Elf_Internal_Note *note)
8212 {
8213 return elfcore_make_note_pseudosection (abfd, ".reg-s390-last-break", note);
8214 }
8215
8216 static bfd_boolean
8217 elfcore_grok_s390_system_call (bfd *abfd, Elf_Internal_Note *note)
8218 {
8219 return elfcore_make_note_pseudosection (abfd, ".reg-s390-system-call", note);
8220 }
8221
8222 static bfd_boolean
8223 elfcore_grok_s390_tdb (bfd *abfd, Elf_Internal_Note *note)
8224 {
8225 return elfcore_make_note_pseudosection (abfd, ".reg-s390-tdb", note);
8226 }
8227
8228 static bfd_boolean
8229 elfcore_grok_arm_vfp (bfd *abfd, Elf_Internal_Note *note)
8230 {
8231 return elfcore_make_note_pseudosection (abfd, ".reg-arm-vfp", note);
8232 }
8233
8234 static bfd_boolean
8235 elfcore_grok_aarch_tls (bfd *abfd, Elf_Internal_Note *note)
8236 {
8237 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-tls", note);
8238 }
8239
8240 static bfd_boolean
8241 elfcore_grok_aarch_hw_break (bfd *abfd, Elf_Internal_Note *note)
8242 {
8243 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-hw-break", note);
8244 }
8245
8246 static bfd_boolean
8247 elfcore_grok_aarch_hw_watch (bfd *abfd, Elf_Internal_Note *note)
8248 {
8249 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-hw-watch", note);
8250 }
8251
8252 #if defined (HAVE_PRPSINFO_T)
8253 typedef prpsinfo_t elfcore_psinfo_t;
8254 #if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
8255 typedef prpsinfo32_t elfcore_psinfo32_t;
8256 #endif
8257 #endif
8258
8259 #if defined (HAVE_PSINFO_T)
8260 typedef psinfo_t elfcore_psinfo_t;
8261 #if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
8262 typedef psinfo32_t elfcore_psinfo32_t;
8263 #endif
8264 #endif
8265
8266 /* return a malloc'ed copy of a string at START which is at
8267 most MAX bytes long, possibly without a terminating '\0'.
8268 the copy will always have a terminating '\0'. */
8269
8270 char *
8271 _bfd_elfcore_strndup (bfd *abfd, char *start, size_t max)
8272 {
8273 char *dups;
8274 char *end = (char *) memchr (start, '\0', max);
8275 size_t len;
8276
8277 if (end == NULL)
8278 len = max;
8279 else
8280 len = end - start;
8281
8282 dups = (char *) bfd_alloc (abfd, len + 1);
8283 if (dups == NULL)
8284 return NULL;
8285
8286 memcpy (dups, start, len);
8287 dups[len] = '\0';
8288
8289 return dups;
8290 }
8291
8292 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
8293 static bfd_boolean
8294 elfcore_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
8295 {
8296 if (note->descsz == sizeof (elfcore_psinfo_t))
8297 {
8298 elfcore_psinfo_t psinfo;
8299
8300 memcpy (&psinfo, note->descdata, sizeof (psinfo));
8301
8302 #if defined (HAVE_PSINFO_T_PR_PID) || defined (HAVE_PRPSINFO_T_PR_PID)
8303 elf_tdata (abfd)->core->pid = psinfo.pr_pid;
8304 #endif
8305 elf_tdata (abfd)->core->program
8306 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
8307 sizeof (psinfo.pr_fname));
8308
8309 elf_tdata (abfd)->core->command
8310 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
8311 sizeof (psinfo.pr_psargs));
8312 }
8313 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
8314 else if (note->descsz == sizeof (elfcore_psinfo32_t))
8315 {
8316 /* 64-bit host, 32-bit corefile */
8317 elfcore_psinfo32_t psinfo;
8318
8319 memcpy (&psinfo, note->descdata, sizeof (psinfo));
8320
8321 #if defined (HAVE_PSINFO32_T_PR_PID) || defined (HAVE_PRPSINFO32_T_PR_PID)
8322 elf_tdata (abfd)->core->pid = psinfo.pr_pid;
8323 #endif
8324 elf_tdata (abfd)->core->program
8325 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
8326 sizeof (psinfo.pr_fname));
8327
8328 elf_tdata (abfd)->core->command
8329 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
8330 sizeof (psinfo.pr_psargs));
8331 }
8332 #endif
8333
8334 else
8335 {
8336 /* Fail - we don't know how to handle any other
8337 note size (ie. data object type). */
8338 return TRUE;
8339 }
8340
8341 /* Note that for some reason, a spurious space is tacked
8342 onto the end of the args in some (at least one anyway)
8343 implementations, so strip it off if it exists. */
8344
8345 {
8346 char *command = elf_tdata (abfd)->core->command;
8347 int n = strlen (command);
8348
8349 if (0 < n && command[n - 1] == ' ')
8350 command[n - 1] = '\0';
8351 }
8352
8353 return TRUE;
8354 }
8355 #endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
8356
8357 #if defined (HAVE_PSTATUS_T)
8358 static bfd_boolean
8359 elfcore_grok_pstatus (bfd *abfd, Elf_Internal_Note *note)
8360 {
8361 if (note->descsz == sizeof (pstatus_t)
8362 #if defined (HAVE_PXSTATUS_T)
8363 || note->descsz == sizeof (pxstatus_t)
8364 #endif
8365 )
8366 {
8367 pstatus_t pstat;
8368
8369 memcpy (&pstat, note->descdata, sizeof (pstat));
8370
8371 elf_tdata (abfd)->core->pid = pstat.pr_pid;
8372 }
8373 #if defined (HAVE_PSTATUS32_T)
8374 else if (note->descsz == sizeof (pstatus32_t))
8375 {
8376 /* 64-bit host, 32-bit corefile */
8377 pstatus32_t pstat;
8378
8379 memcpy (&pstat, note->descdata, sizeof (pstat));
8380
8381 elf_tdata (abfd)->core->pid = pstat.pr_pid;
8382 }
8383 #endif
8384 /* Could grab some more details from the "representative"
8385 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
8386 NT_LWPSTATUS note, presumably. */
8387
8388 return TRUE;
8389 }
8390 #endif /* defined (HAVE_PSTATUS_T) */
8391
8392 #if defined (HAVE_LWPSTATUS_T)
8393 static bfd_boolean
8394 elfcore_grok_lwpstatus (bfd *abfd, Elf_Internal_Note *note)
8395 {
8396 lwpstatus_t lwpstat;
8397 char buf[100];
8398 char *name;
8399 size_t len;
8400 asection *sect;
8401
8402 if (note->descsz != sizeof (lwpstat)
8403 #if defined (HAVE_LWPXSTATUS_T)
8404 && note->descsz != sizeof (lwpxstatus_t)
8405 #endif
8406 )
8407 return TRUE;
8408
8409 memcpy (&lwpstat, note->descdata, sizeof (lwpstat));
8410
8411 elf_tdata (abfd)->core->lwpid = lwpstat.pr_lwpid;
8412 /* Do not overwrite the core signal if it has already been set by
8413 another thread. */
8414 if (elf_tdata (abfd)->core->signal == 0)
8415 elf_tdata (abfd)->core->signal = lwpstat.pr_cursig;
8416
8417 /* Make a ".reg/999" section. */
8418
8419 sprintf (buf, ".reg/%d", elfcore_make_pid (abfd));
8420 len = strlen (buf) + 1;
8421 name = bfd_alloc (abfd, len);
8422 if (name == NULL)
8423 return FALSE;
8424 memcpy (name, buf, len);
8425
8426 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8427 if (sect == NULL)
8428 return FALSE;
8429
8430 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
8431 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.gregs);
8432 sect->filepos = note->descpos
8433 + offsetof (lwpstatus_t, pr_context.uc_mcontext.gregs);
8434 #endif
8435
8436 #if defined (HAVE_LWPSTATUS_T_PR_REG)
8437 sect->size = sizeof (lwpstat.pr_reg);
8438 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_reg);
8439 #endif
8440
8441 sect->alignment_power = 2;
8442
8443 if (!elfcore_maybe_make_sect (abfd, ".reg", sect))
8444 return FALSE;
8445
8446 /* Make a ".reg2/999" section */
8447
8448 sprintf (buf, ".reg2/%d", elfcore_make_pid (abfd));
8449 len = strlen (buf) + 1;
8450 name = bfd_alloc (abfd, len);
8451 if (name == NULL)
8452 return FALSE;
8453 memcpy (name, buf, len);
8454
8455 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8456 if (sect == NULL)
8457 return FALSE;
8458
8459 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
8460 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.fpregs);
8461 sect->filepos = note->descpos
8462 + offsetof (lwpstatus_t, pr_context.uc_mcontext.fpregs);
8463 #endif
8464
8465 #if defined (HAVE_LWPSTATUS_T_PR_FPREG)
8466 sect->size = sizeof (lwpstat.pr_fpreg);
8467 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_fpreg);
8468 #endif
8469
8470 sect->alignment_power = 2;
8471
8472 return elfcore_maybe_make_sect (abfd, ".reg2", sect);
8473 }
8474 #endif /* defined (HAVE_LWPSTATUS_T) */
8475
8476 static bfd_boolean
8477 elfcore_grok_win32pstatus (bfd *abfd, Elf_Internal_Note *note)
8478 {
8479 char buf[30];
8480 char *name;
8481 size_t len;
8482 asection *sect;
8483 int type;
8484 int is_active_thread;
8485 bfd_vma base_addr;
8486
8487 if (note->descsz < 728)
8488 return TRUE;
8489
8490 if (! CONST_STRNEQ (note->namedata, "win32"))
8491 return TRUE;
8492
8493 type = bfd_get_32 (abfd, note->descdata);
8494
8495 switch (type)
8496 {
8497 case 1 /* NOTE_INFO_PROCESS */:
8498 /* FIXME: need to add ->core->command. */
8499 /* process_info.pid */
8500 elf_tdata (abfd)->core->pid = bfd_get_32 (abfd, note->descdata + 8);
8501 /* process_info.signal */
8502 elf_tdata (abfd)->core->signal = bfd_get_32 (abfd, note->descdata + 12);
8503 break;
8504
8505 case 2 /* NOTE_INFO_THREAD */:
8506 /* Make a ".reg/999" section. */
8507 /* thread_info.tid */
8508 sprintf (buf, ".reg/%ld", (long) bfd_get_32 (abfd, note->descdata + 8));
8509
8510 len = strlen (buf) + 1;
8511 name = (char *) bfd_alloc (abfd, len);
8512 if (name == NULL)
8513 return FALSE;
8514
8515 memcpy (name, buf, len);
8516
8517 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8518 if (sect == NULL)
8519 return FALSE;
8520
8521 /* sizeof (thread_info.thread_context) */
8522 sect->size = 716;
8523 /* offsetof (thread_info.thread_context) */
8524 sect->filepos = note->descpos + 12;
8525 sect->alignment_power = 2;
8526
8527 /* thread_info.is_active_thread */
8528 is_active_thread = bfd_get_32 (abfd, note->descdata + 8);
8529
8530 if (is_active_thread)
8531 if (! elfcore_maybe_make_sect (abfd, ".reg", sect))
8532 return FALSE;
8533 break;
8534
8535 case 3 /* NOTE_INFO_MODULE */:
8536 /* Make a ".module/xxxxxxxx" section. */
8537 /* module_info.base_address */
8538 base_addr = bfd_get_32 (abfd, note->descdata + 4);
8539 sprintf (buf, ".module/%08lx", (unsigned long) base_addr);
8540
8541 len = strlen (buf) + 1;
8542 name = (char *) bfd_alloc (abfd, len);
8543 if (name == NULL)
8544 return FALSE;
8545
8546 memcpy (name, buf, len);
8547
8548 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8549
8550 if (sect == NULL)
8551 return FALSE;
8552
8553 sect->size = note->descsz;
8554 sect->filepos = note->descpos;
8555 sect->alignment_power = 2;
8556 break;
8557
8558 default:
8559 return TRUE;
8560 }
8561
8562 return TRUE;
8563 }
8564
8565 static bfd_boolean
8566 elfcore_grok_note (bfd *abfd, Elf_Internal_Note *note)
8567 {
8568 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8569
8570 switch (note->type)
8571 {
8572 default:
8573 return TRUE;
8574
8575 case NT_PRSTATUS:
8576 if (bed->elf_backend_grok_prstatus)
8577 if ((*bed->elf_backend_grok_prstatus) (abfd, note))
8578 return TRUE;
8579 #if defined (HAVE_PRSTATUS_T)
8580 return elfcore_grok_prstatus (abfd, note);
8581 #else
8582 return TRUE;
8583 #endif
8584
8585 #if defined (HAVE_PSTATUS_T)
8586 case NT_PSTATUS:
8587 return elfcore_grok_pstatus (abfd, note);
8588 #endif
8589
8590 #if defined (HAVE_LWPSTATUS_T)
8591 case NT_LWPSTATUS:
8592 return elfcore_grok_lwpstatus (abfd, note);
8593 #endif
8594
8595 case NT_FPREGSET: /* FIXME: rename to NT_PRFPREG */
8596 return elfcore_grok_prfpreg (abfd, note);
8597
8598 case NT_WIN32PSTATUS:
8599 return elfcore_grok_win32pstatus (abfd, note);
8600
8601 case NT_PRXFPREG: /* Linux SSE extension */
8602 if (note->namesz == 6
8603 && strcmp (note->namedata, "LINUX") == 0)
8604 return elfcore_grok_prxfpreg (abfd, note);
8605 else
8606 return TRUE;
8607
8608 case NT_X86_XSTATE: /* Linux XSAVE extension */
8609 if (note->namesz == 6
8610 && strcmp (note->namedata, "LINUX") == 0)
8611 return elfcore_grok_xstatereg (abfd, note);
8612 else
8613 return TRUE;
8614
8615 case NT_PPC_VMX:
8616 if (note->namesz == 6
8617 && strcmp (note->namedata, "LINUX") == 0)
8618 return elfcore_grok_ppc_vmx (abfd, note);
8619 else
8620 return TRUE;
8621
8622 case NT_PPC_VSX:
8623 if (note->namesz == 6
8624 && strcmp (note->namedata, "LINUX") == 0)
8625 return elfcore_grok_ppc_vsx (abfd, note);
8626 else
8627 return TRUE;
8628
8629 case NT_S390_HIGH_GPRS:
8630 if (note->namesz == 6
8631 && strcmp (note->namedata, "LINUX") == 0)
8632 return elfcore_grok_s390_high_gprs (abfd, note);
8633 else
8634 return TRUE;
8635
8636 case NT_S390_TIMER:
8637 if (note->namesz == 6
8638 && strcmp (note->namedata, "LINUX") == 0)
8639 return elfcore_grok_s390_timer (abfd, note);
8640 else
8641 return TRUE;
8642
8643 case NT_S390_TODCMP:
8644 if (note->namesz == 6
8645 && strcmp (note->namedata, "LINUX") == 0)
8646 return elfcore_grok_s390_todcmp (abfd, note);
8647 else
8648 return TRUE;
8649
8650 case NT_S390_TODPREG:
8651 if (note->namesz == 6
8652 && strcmp (note->namedata, "LINUX") == 0)
8653 return elfcore_grok_s390_todpreg (abfd, note);
8654 else
8655 return TRUE;
8656
8657 case NT_S390_CTRS:
8658 if (note->namesz == 6
8659 && strcmp (note->namedata, "LINUX") == 0)
8660 return elfcore_grok_s390_ctrs (abfd, note);
8661 else
8662 return TRUE;
8663
8664 case NT_S390_PREFIX:
8665 if (note->namesz == 6
8666 && strcmp (note->namedata, "LINUX") == 0)
8667 return elfcore_grok_s390_prefix (abfd, note);
8668 else
8669 return TRUE;
8670
8671 case NT_S390_LAST_BREAK:
8672 if (note->namesz == 6
8673 && strcmp (note->namedata, "LINUX") == 0)
8674 return elfcore_grok_s390_last_break (abfd, note);
8675 else
8676 return TRUE;
8677
8678 case NT_S390_SYSTEM_CALL:
8679 if (note->namesz == 6
8680 && strcmp (note->namedata, "LINUX") == 0)
8681 return elfcore_grok_s390_system_call (abfd, note);
8682 else
8683 return TRUE;
8684
8685 case NT_S390_TDB:
8686 if (note->namesz == 6
8687 && strcmp (note->namedata, "LINUX") == 0)
8688 return elfcore_grok_s390_tdb (abfd, note);
8689 else
8690 return TRUE;
8691
8692 case NT_ARM_VFP:
8693 if (note->namesz == 6
8694 && strcmp (note->namedata, "LINUX") == 0)
8695 return elfcore_grok_arm_vfp (abfd, note);
8696 else
8697 return TRUE;
8698
8699 case NT_ARM_TLS:
8700 if (note->namesz == 6
8701 && strcmp (note->namedata, "LINUX") == 0)
8702 return elfcore_grok_aarch_tls (abfd, note);
8703 else
8704 return TRUE;
8705
8706 case NT_ARM_HW_BREAK:
8707 if (note->namesz == 6
8708 && strcmp (note->namedata, "LINUX") == 0)
8709 return elfcore_grok_aarch_hw_break (abfd, note);
8710 else
8711 return TRUE;
8712
8713 case NT_ARM_HW_WATCH:
8714 if (note->namesz == 6
8715 && strcmp (note->namedata, "LINUX") == 0)
8716 return elfcore_grok_aarch_hw_watch (abfd, note);
8717 else
8718 return TRUE;
8719
8720 case NT_PRPSINFO:
8721 case NT_PSINFO:
8722 if (bed->elf_backend_grok_psinfo)
8723 if ((*bed->elf_backend_grok_psinfo) (abfd, note))
8724 return TRUE;
8725 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
8726 return elfcore_grok_psinfo (abfd, note);
8727 #else
8728 return TRUE;
8729 #endif
8730
8731 case NT_AUXV:
8732 {
8733 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
8734 SEC_HAS_CONTENTS);
8735
8736 if (sect == NULL)
8737 return FALSE;
8738 sect->size = note->descsz;
8739 sect->filepos = note->descpos;
8740 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
8741
8742 return TRUE;
8743 }
8744
8745 case NT_FILE:
8746 return elfcore_make_note_pseudosection (abfd, ".note.linuxcore.file",
8747 note);
8748
8749 case NT_SIGINFO:
8750 return elfcore_make_note_pseudosection (abfd, ".note.linuxcore.siginfo",
8751 note);
8752 }
8753 }
8754
8755 static bfd_boolean
8756 elfobj_grok_gnu_build_id (bfd *abfd, Elf_Internal_Note *note)
8757 {
8758 struct elf_obj_tdata *t;
8759
8760 if (note->descsz == 0)
8761 return FALSE;
8762
8763 t = elf_tdata (abfd);
8764 t->build_id = bfd_alloc (abfd, sizeof (*t->build_id) - 1 + note->descsz);
8765 if (t->build_id == NULL)
8766 return FALSE;
8767
8768 t->build_id->size = note->descsz;
8769 memcpy (t->build_id->data, note->descdata, note->descsz);
8770
8771 return TRUE;
8772 }
8773
8774 static bfd_boolean
8775 elfobj_grok_gnu_note (bfd *abfd, Elf_Internal_Note *note)
8776 {
8777 switch (note->type)
8778 {
8779 default:
8780 return TRUE;
8781
8782 case NT_GNU_BUILD_ID:
8783 return elfobj_grok_gnu_build_id (abfd, note);
8784 }
8785 }
8786
8787 static bfd_boolean
8788 elfobj_grok_stapsdt_note_1 (bfd *abfd, Elf_Internal_Note *note)
8789 {
8790 struct sdt_note *cur =
8791 (struct sdt_note *) bfd_alloc (abfd, sizeof (struct sdt_note)
8792 + note->descsz);
8793
8794 cur->next = (struct sdt_note *) (elf_tdata (abfd))->sdt_note_head;
8795 cur->size = (bfd_size_type) note->descsz;
8796 memcpy (cur->data, note->descdata, note->descsz);
8797
8798 elf_tdata (abfd)->sdt_note_head = cur;
8799
8800 return TRUE;
8801 }
8802
8803 static bfd_boolean
8804 elfobj_grok_stapsdt_note (bfd *abfd, Elf_Internal_Note *note)
8805 {
8806 switch (note->type)
8807 {
8808 case NT_STAPSDT:
8809 return elfobj_grok_stapsdt_note_1 (abfd, note);
8810
8811 default:
8812 return TRUE;
8813 }
8814 }
8815
8816 static bfd_boolean
8817 elfcore_netbsd_get_lwpid (Elf_Internal_Note *note, int *lwpidp)
8818 {
8819 char *cp;
8820
8821 cp = strchr (note->namedata, '@');
8822 if (cp != NULL)
8823 {
8824 *lwpidp = atoi(cp + 1);
8825 return TRUE;
8826 }
8827 return FALSE;
8828 }
8829
8830 static bfd_boolean
8831 elfcore_grok_netbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
8832 {
8833 /* Signal number at offset 0x08. */
8834 elf_tdata (abfd)->core->signal
8835 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
8836
8837 /* Process ID at offset 0x50. */
8838 elf_tdata (abfd)->core->pid
8839 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x50);
8840
8841 /* Command name at 0x7c (max 32 bytes, including nul). */
8842 elf_tdata (abfd)->core->command
8843 = _bfd_elfcore_strndup (abfd, note->descdata + 0x7c, 31);
8844
8845 return elfcore_make_note_pseudosection (abfd, ".note.netbsdcore.procinfo",
8846 note);
8847 }
8848
8849 static bfd_boolean
8850 elfcore_grok_netbsd_note (bfd *abfd, Elf_Internal_Note *note)
8851 {
8852 int lwp;
8853
8854 if (elfcore_netbsd_get_lwpid (note, &lwp))
8855 elf_tdata (abfd)->core->lwpid = lwp;
8856
8857 if (note->type == NT_NETBSDCORE_PROCINFO)
8858 {
8859 /* NetBSD-specific core "procinfo". Note that we expect to
8860 find this note before any of the others, which is fine,
8861 since the kernel writes this note out first when it
8862 creates a core file. */
8863
8864 return elfcore_grok_netbsd_procinfo (abfd, note);
8865 }
8866
8867 /* As of Jan 2002 there are no other machine-independent notes
8868 defined for NetBSD core files. If the note type is less
8869 than the start of the machine-dependent note types, we don't
8870 understand it. */
8871
8872 if (note->type < NT_NETBSDCORE_FIRSTMACH)
8873 return TRUE;
8874
8875
8876 switch (bfd_get_arch (abfd))
8877 {
8878 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
8879 PT_GETFPREGS == mach+2. */
8880
8881 case bfd_arch_alpha:
8882 case bfd_arch_sparc:
8883 switch (note->type)
8884 {
8885 case NT_NETBSDCORE_FIRSTMACH+0:
8886 return elfcore_make_note_pseudosection (abfd, ".reg", note);
8887
8888 case NT_NETBSDCORE_FIRSTMACH+2:
8889 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
8890
8891 default:
8892 return TRUE;
8893 }
8894
8895 /* On all other arch's, PT_GETREGS == mach+1 and
8896 PT_GETFPREGS == mach+3. */
8897
8898 default:
8899 switch (note->type)
8900 {
8901 case NT_NETBSDCORE_FIRSTMACH+1:
8902 return elfcore_make_note_pseudosection (abfd, ".reg", note);
8903
8904 case NT_NETBSDCORE_FIRSTMACH+3:
8905 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
8906
8907 default:
8908 return TRUE;
8909 }
8910 }
8911 /* NOTREACHED */
8912 }
8913
8914 static bfd_boolean
8915 elfcore_grok_openbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
8916 {
8917 /* Signal number at offset 0x08. */
8918 elf_tdata (abfd)->core->signal
8919 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
8920
8921 /* Process ID at offset 0x20. */
8922 elf_tdata (abfd)->core->pid
8923 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x20);
8924
8925 /* Command name at 0x48 (max 32 bytes, including nul). */
8926 elf_tdata (abfd)->core->command
8927 = _bfd_elfcore_strndup (abfd, note->descdata + 0x48, 31);
8928
8929 return TRUE;
8930 }
8931
8932 static bfd_boolean
8933 elfcore_grok_openbsd_note (bfd *abfd, Elf_Internal_Note *note)
8934 {
8935 if (note->type == NT_OPENBSD_PROCINFO)
8936 return elfcore_grok_openbsd_procinfo (abfd, note);
8937
8938 if (note->type == NT_OPENBSD_REGS)
8939 return elfcore_make_note_pseudosection (abfd, ".reg", note);
8940
8941 if (note->type == NT_OPENBSD_FPREGS)
8942 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
8943
8944 if (note->type == NT_OPENBSD_XFPREGS)
8945 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
8946
8947 if (note->type == NT_OPENBSD_AUXV)
8948 {
8949 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
8950 SEC_HAS_CONTENTS);
8951
8952 if (sect == NULL)
8953 return FALSE;
8954 sect->size = note->descsz;
8955 sect->filepos = note->descpos;
8956 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
8957
8958 return TRUE;
8959 }
8960
8961 if (note->type == NT_OPENBSD_WCOOKIE)
8962 {
8963 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".wcookie",
8964 SEC_HAS_CONTENTS);
8965
8966 if (sect == NULL)
8967 return FALSE;
8968 sect->size = note->descsz;
8969 sect->filepos = note->descpos;
8970 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
8971
8972 return TRUE;
8973 }
8974
8975 return TRUE;
8976 }
8977
8978 static bfd_boolean
8979 elfcore_grok_nto_status (bfd *abfd, Elf_Internal_Note *note, long *tid)
8980 {
8981 void *ddata = note->descdata;
8982 char buf[100];
8983 char *name;
8984 asection *sect;
8985 short sig;
8986 unsigned flags;
8987
8988 /* nto_procfs_status 'pid' field is at offset 0. */
8989 elf_tdata (abfd)->core->pid = bfd_get_32 (abfd, (bfd_byte *) ddata);
8990
8991 /* nto_procfs_status 'tid' field is at offset 4. Pass it back. */
8992 *tid = bfd_get_32 (abfd, (bfd_byte *) ddata + 4);
8993
8994 /* nto_procfs_status 'flags' field is at offset 8. */
8995 flags = bfd_get_32 (abfd, (bfd_byte *) ddata + 8);
8996
8997 /* nto_procfs_status 'what' field is at offset 14. */
8998 if ((sig = bfd_get_16 (abfd, (bfd_byte *) ddata + 14)) > 0)
8999 {
9000 elf_tdata (abfd)->core->signal = sig;
9001 elf_tdata (abfd)->core->lwpid = *tid;
9002 }
9003
9004 /* _DEBUG_FLAG_CURTID (current thread) is 0x80. Some cores
9005 do not come from signals so we make sure we set the current
9006 thread just in case. */
9007 if (flags & 0x00000080)
9008 elf_tdata (abfd)->core->lwpid = *tid;
9009
9010 /* Make a ".qnx_core_status/%d" section. */
9011 sprintf (buf, ".qnx_core_status/%ld", *tid);
9012
9013 name = (char *) bfd_alloc (abfd, strlen (buf) + 1);
9014 if (name == NULL)
9015 return FALSE;
9016 strcpy (name, buf);
9017
9018 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
9019 if (sect == NULL)
9020 return FALSE;
9021
9022 sect->size = note->descsz;
9023 sect->filepos = note->descpos;
9024 sect->alignment_power = 2;
9025
9026 return (elfcore_maybe_make_sect (abfd, ".qnx_core_status", sect));
9027 }
9028
9029 static bfd_boolean
9030 elfcore_grok_nto_regs (bfd *abfd,
9031 Elf_Internal_Note *note,
9032 long tid,
9033 char *base)
9034 {
9035 char buf[100];
9036 char *name;
9037 asection *sect;
9038
9039 /* Make a "(base)/%d" section. */
9040 sprintf (buf, "%s/%ld", base, tid);
9041
9042 name = (char *) bfd_alloc (abfd, strlen (buf) + 1);
9043 if (name == NULL)
9044 return FALSE;
9045 strcpy (name, buf);
9046
9047 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
9048 if (sect == NULL)
9049 return FALSE;
9050
9051 sect->size = note->descsz;
9052 sect->filepos = note->descpos;
9053 sect->alignment_power = 2;
9054
9055 /* This is the current thread. */
9056 if (elf_tdata (abfd)->core->lwpid == tid)
9057 return elfcore_maybe_make_sect (abfd, base, sect);
9058
9059 return TRUE;
9060 }
9061
9062 #define BFD_QNT_CORE_INFO 7
9063 #define BFD_QNT_CORE_STATUS 8
9064 #define BFD_QNT_CORE_GREG 9
9065 #define BFD_QNT_CORE_FPREG 10
9066
9067 static bfd_boolean
9068 elfcore_grok_nto_note (bfd *abfd, Elf_Internal_Note *note)
9069 {
9070 /* Every GREG section has a STATUS section before it. Store the
9071 tid from the previous call to pass down to the next gregs
9072 function. */
9073 static long tid = 1;
9074
9075 switch (note->type)
9076 {
9077 case BFD_QNT_CORE_INFO:
9078 return elfcore_make_note_pseudosection (abfd, ".qnx_core_info", note);
9079 case BFD_QNT_CORE_STATUS:
9080 return elfcore_grok_nto_status (abfd, note, &tid);
9081 case BFD_QNT_CORE_GREG:
9082 return elfcore_grok_nto_regs (abfd, note, tid, ".reg");
9083 case BFD_QNT_CORE_FPREG:
9084 return elfcore_grok_nto_regs (abfd, note, tid, ".reg2");
9085 default:
9086 return TRUE;
9087 }
9088 }
9089
9090 static bfd_boolean
9091 elfcore_grok_spu_note (bfd *abfd, Elf_Internal_Note *note)
9092 {
9093 char *name;
9094 asection *sect;
9095 size_t len;
9096
9097 /* Use note name as section name. */
9098 len = note->namesz;
9099 name = (char *) bfd_alloc (abfd, len);
9100 if (name == NULL)
9101 return FALSE;
9102 memcpy (name, note->namedata, len);
9103 name[len - 1] = '\0';
9104
9105 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
9106 if (sect == NULL)
9107 return FALSE;
9108
9109 sect->size = note->descsz;
9110 sect->filepos = note->descpos;
9111 sect->alignment_power = 1;
9112
9113 return TRUE;
9114 }
9115
9116 /* Function: elfcore_write_note
9117
9118 Inputs:
9119 buffer to hold note, and current size of buffer
9120 name of note
9121 type of note
9122 data for note
9123 size of data for note
9124
9125 Writes note to end of buffer. ELF64 notes are written exactly as
9126 for ELF32, despite the current (as of 2006) ELF gabi specifying
9127 that they ought to have 8-byte namesz and descsz field, and have
9128 8-byte alignment. Other writers, eg. Linux kernel, do the same.
9129
9130 Return:
9131 Pointer to realloc'd buffer, *BUFSIZ updated. */
9132
9133 char *
9134 elfcore_write_note (bfd *abfd,
9135 char *buf,
9136 int *bufsiz,
9137 const char *name,
9138 int type,
9139 const void *input,
9140 int size)
9141 {
9142 Elf_External_Note *xnp;
9143 size_t namesz;
9144 size_t newspace;
9145 char *dest;
9146
9147 namesz = 0;
9148 if (name != NULL)
9149 namesz = strlen (name) + 1;
9150
9151 newspace = 12 + ((namesz + 3) & -4) + ((size + 3) & -4);
9152
9153 buf = (char *) realloc (buf, *bufsiz + newspace);
9154 if (buf == NULL)
9155 return buf;
9156 dest = buf + *bufsiz;
9157 *bufsiz += newspace;
9158 xnp = (Elf_External_Note *) dest;
9159 H_PUT_32 (abfd, namesz, xnp->namesz);
9160 H_PUT_32 (abfd, size, xnp->descsz);
9161 H_PUT_32 (abfd, type, xnp->type);
9162 dest = xnp->name;
9163 if (name != NULL)
9164 {
9165 memcpy (dest, name, namesz);
9166 dest += namesz;
9167 while (namesz & 3)
9168 {
9169 *dest++ = '\0';
9170 ++namesz;
9171 }
9172 }
9173 memcpy (dest, input, size);
9174 dest += size;
9175 while (size & 3)
9176 {
9177 *dest++ = '\0';
9178 ++size;
9179 }
9180 return buf;
9181 }
9182
9183 char *
9184 elfcore_write_prpsinfo (bfd *abfd,
9185 char *buf,
9186 int *bufsiz,
9187 const char *fname,
9188 const char *psargs)
9189 {
9190 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9191
9192 if (bed->elf_backend_write_core_note != NULL)
9193 {
9194 char *ret;
9195 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
9196 NT_PRPSINFO, fname, psargs);
9197 if (ret != NULL)
9198 return ret;
9199 }
9200
9201 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
9202 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
9203 if (bed->s->elfclass == ELFCLASS32)
9204 {
9205 #if defined (HAVE_PSINFO32_T)
9206 psinfo32_t data;
9207 int note_type = NT_PSINFO;
9208 #else
9209 prpsinfo32_t data;
9210 int note_type = NT_PRPSINFO;
9211 #endif
9212
9213 memset (&data, 0, sizeof (data));
9214 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
9215 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
9216 return elfcore_write_note (abfd, buf, bufsiz,
9217 "CORE", note_type, &data, sizeof (data));
9218 }
9219 else
9220 #endif
9221 {
9222 #if defined (HAVE_PSINFO_T)
9223 psinfo_t data;
9224 int note_type = NT_PSINFO;
9225 #else
9226 prpsinfo_t data;
9227 int note_type = NT_PRPSINFO;
9228 #endif
9229
9230 memset (&data, 0, sizeof (data));
9231 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
9232 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
9233 return elfcore_write_note (abfd, buf, bufsiz,
9234 "CORE", note_type, &data, sizeof (data));
9235 }
9236 #endif /* PSINFO_T or PRPSINFO_T */
9237
9238 free (buf);
9239 return NULL;
9240 }
9241
9242 char *
9243 elfcore_write_linux_prpsinfo32
9244 (bfd *abfd, char *buf, int *bufsiz,
9245 const struct elf_internal_linux_prpsinfo *prpsinfo)
9246 {
9247 struct elf_external_linux_prpsinfo32 data;
9248
9249 memset (&data, 0, sizeof (data));
9250 LINUX_PRPSINFO32_SWAP_FIELDS (abfd, prpsinfo, data);
9251
9252 return elfcore_write_note (abfd, buf, bufsiz, "CORE", NT_PRPSINFO,
9253 &data, sizeof (data));
9254 }
9255
9256 char *
9257 elfcore_write_linux_prpsinfo64
9258 (bfd *abfd, char *buf, int *bufsiz,
9259 const struct elf_internal_linux_prpsinfo *prpsinfo)
9260 {
9261 struct elf_external_linux_prpsinfo64 data;
9262
9263 memset (&data, 0, sizeof (data));
9264 LINUX_PRPSINFO64_SWAP_FIELDS (abfd, prpsinfo, data);
9265
9266 return elfcore_write_note (abfd, buf, bufsiz,
9267 "CORE", NT_PRPSINFO, &data, sizeof (data));
9268 }
9269
9270 char *
9271 elfcore_write_prstatus (bfd *abfd,
9272 char *buf,
9273 int *bufsiz,
9274 long pid,
9275 int cursig,
9276 const void *gregs)
9277 {
9278 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9279
9280 if (bed->elf_backend_write_core_note != NULL)
9281 {
9282 char *ret;
9283 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
9284 NT_PRSTATUS,
9285 pid, cursig, gregs);
9286 if (ret != NULL)
9287 return ret;
9288 }
9289
9290 #if defined (HAVE_PRSTATUS_T)
9291 #if defined (HAVE_PRSTATUS32_T)
9292 if (bed->s->elfclass == ELFCLASS32)
9293 {
9294 prstatus32_t prstat;
9295
9296 memset (&prstat, 0, sizeof (prstat));
9297 prstat.pr_pid = pid;
9298 prstat.pr_cursig = cursig;
9299 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
9300 return elfcore_write_note (abfd, buf, bufsiz, "CORE",
9301 NT_PRSTATUS, &prstat, sizeof (prstat));
9302 }
9303 else
9304 #endif
9305 {
9306 prstatus_t prstat;
9307
9308 memset (&prstat, 0, sizeof (prstat));
9309 prstat.pr_pid = pid;
9310 prstat.pr_cursig = cursig;
9311 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
9312 return elfcore_write_note (abfd, buf, bufsiz, "CORE",
9313 NT_PRSTATUS, &prstat, sizeof (prstat));
9314 }
9315 #endif /* HAVE_PRSTATUS_T */
9316
9317 free (buf);
9318 return NULL;
9319 }
9320
9321 #if defined (HAVE_LWPSTATUS_T)
9322 char *
9323 elfcore_write_lwpstatus (bfd *abfd,
9324 char *buf,
9325 int *bufsiz,
9326 long pid,
9327 int cursig,
9328 const void *gregs)
9329 {
9330 lwpstatus_t lwpstat;
9331 const char *note_name = "CORE";
9332
9333 memset (&lwpstat, 0, sizeof (lwpstat));
9334 lwpstat.pr_lwpid = pid >> 16;
9335 lwpstat.pr_cursig = cursig;
9336 #if defined (HAVE_LWPSTATUS_T_PR_REG)
9337 memcpy (lwpstat.pr_reg, gregs, sizeof (lwpstat.pr_reg));
9338 #elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
9339 #if !defined(gregs)
9340 memcpy (lwpstat.pr_context.uc_mcontext.gregs,
9341 gregs, sizeof (lwpstat.pr_context.uc_mcontext.gregs));
9342 #else
9343 memcpy (lwpstat.pr_context.uc_mcontext.__gregs,
9344 gregs, sizeof (lwpstat.pr_context.uc_mcontext.__gregs));
9345 #endif
9346 #endif
9347 return elfcore_write_note (abfd, buf, bufsiz, note_name,
9348 NT_LWPSTATUS, &lwpstat, sizeof (lwpstat));
9349 }
9350 #endif /* HAVE_LWPSTATUS_T */
9351
9352 #if defined (HAVE_PSTATUS_T)
9353 char *
9354 elfcore_write_pstatus (bfd *abfd,
9355 char *buf,
9356 int *bufsiz,
9357 long pid,
9358 int cursig ATTRIBUTE_UNUSED,
9359 const void *gregs ATTRIBUTE_UNUSED)
9360 {
9361 const char *note_name = "CORE";
9362 #if defined (HAVE_PSTATUS32_T)
9363 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9364
9365 if (bed->s->elfclass == ELFCLASS32)
9366 {
9367 pstatus32_t pstat;
9368
9369 memset (&pstat, 0, sizeof (pstat));
9370 pstat.pr_pid = pid & 0xffff;
9371 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
9372 NT_PSTATUS, &pstat, sizeof (pstat));
9373 return buf;
9374 }
9375 else
9376 #endif
9377 {
9378 pstatus_t pstat;
9379
9380 memset (&pstat, 0, sizeof (pstat));
9381 pstat.pr_pid = pid & 0xffff;
9382 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
9383 NT_PSTATUS, &pstat, sizeof (pstat));
9384 return buf;
9385 }
9386 }
9387 #endif /* HAVE_PSTATUS_T */
9388
9389 char *
9390 elfcore_write_prfpreg (bfd *abfd,
9391 char *buf,
9392 int *bufsiz,
9393 const void *fpregs,
9394 int size)
9395 {
9396 const char *note_name = "CORE";
9397 return elfcore_write_note (abfd, buf, bufsiz,
9398 note_name, NT_FPREGSET, fpregs, size);
9399 }
9400
9401 char *
9402 elfcore_write_prxfpreg (bfd *abfd,
9403 char *buf,
9404 int *bufsiz,
9405 const void *xfpregs,
9406 int size)
9407 {
9408 char *note_name = "LINUX";
9409 return elfcore_write_note (abfd, buf, bufsiz,
9410 note_name, NT_PRXFPREG, xfpregs, size);
9411 }
9412
9413 char *
9414 elfcore_write_xstatereg (bfd *abfd, char *buf, int *bufsiz,
9415 const void *xfpregs, int size)
9416 {
9417 char *note_name = "LINUX";
9418 return elfcore_write_note (abfd, buf, bufsiz,
9419 note_name, NT_X86_XSTATE, xfpregs, size);
9420 }
9421
9422 char *
9423 elfcore_write_ppc_vmx (bfd *abfd,
9424 char *buf,
9425 int *bufsiz,
9426 const void *ppc_vmx,
9427 int size)
9428 {
9429 char *note_name = "LINUX";
9430 return elfcore_write_note (abfd, buf, bufsiz,
9431 note_name, NT_PPC_VMX, ppc_vmx, size);
9432 }
9433
9434 char *
9435 elfcore_write_ppc_vsx (bfd *abfd,
9436 char *buf,
9437 int *bufsiz,
9438 const void *ppc_vsx,
9439 int size)
9440 {
9441 char *note_name = "LINUX";
9442 return elfcore_write_note (abfd, buf, bufsiz,
9443 note_name, NT_PPC_VSX, ppc_vsx, size);
9444 }
9445
9446 static char *
9447 elfcore_write_s390_high_gprs (bfd *abfd,
9448 char *buf,
9449 int *bufsiz,
9450 const void *s390_high_gprs,
9451 int size)
9452 {
9453 char *note_name = "LINUX";
9454 return elfcore_write_note (abfd, buf, bufsiz,
9455 note_name, NT_S390_HIGH_GPRS,
9456 s390_high_gprs, size);
9457 }
9458
9459 char *
9460 elfcore_write_s390_timer (bfd *abfd,
9461 char *buf,
9462 int *bufsiz,
9463 const void *s390_timer,
9464 int size)
9465 {
9466 char *note_name = "LINUX";
9467 return elfcore_write_note (abfd, buf, bufsiz,
9468 note_name, NT_S390_TIMER, s390_timer, size);
9469 }
9470
9471 char *
9472 elfcore_write_s390_todcmp (bfd *abfd,
9473 char *buf,
9474 int *bufsiz,
9475 const void *s390_todcmp,
9476 int size)
9477 {
9478 char *note_name = "LINUX";
9479 return elfcore_write_note (abfd, buf, bufsiz,
9480 note_name, NT_S390_TODCMP, s390_todcmp, size);
9481 }
9482
9483 char *
9484 elfcore_write_s390_todpreg (bfd *abfd,
9485 char *buf,
9486 int *bufsiz,
9487 const void *s390_todpreg,
9488 int size)
9489 {
9490 char *note_name = "LINUX";
9491 return elfcore_write_note (abfd, buf, bufsiz,
9492 note_name, NT_S390_TODPREG, s390_todpreg, size);
9493 }
9494
9495 char *
9496 elfcore_write_s390_ctrs (bfd *abfd,
9497 char *buf,
9498 int *bufsiz,
9499 const void *s390_ctrs,
9500 int size)
9501 {
9502 char *note_name = "LINUX";
9503 return elfcore_write_note (abfd, buf, bufsiz,
9504 note_name, NT_S390_CTRS, s390_ctrs, size);
9505 }
9506
9507 char *
9508 elfcore_write_s390_prefix (bfd *abfd,
9509 char *buf,
9510 int *bufsiz,
9511 const void *s390_prefix,
9512 int size)
9513 {
9514 char *note_name = "LINUX";
9515 return elfcore_write_note (abfd, buf, bufsiz,
9516 note_name, NT_S390_PREFIX, s390_prefix, size);
9517 }
9518
9519 char *
9520 elfcore_write_s390_last_break (bfd *abfd,
9521 char *buf,
9522 int *bufsiz,
9523 const void *s390_last_break,
9524 int size)
9525 {
9526 char *note_name = "LINUX";
9527 return elfcore_write_note (abfd, buf, bufsiz,
9528 note_name, NT_S390_LAST_BREAK,
9529 s390_last_break, size);
9530 }
9531
9532 char *
9533 elfcore_write_s390_system_call (bfd *abfd,
9534 char *buf,
9535 int *bufsiz,
9536 const void *s390_system_call,
9537 int size)
9538 {
9539 char *note_name = "LINUX";
9540 return elfcore_write_note (abfd, buf, bufsiz,
9541 note_name, NT_S390_SYSTEM_CALL,
9542 s390_system_call, size);
9543 }
9544
9545 char *
9546 elfcore_write_s390_tdb (bfd *abfd,
9547 char *buf,
9548 int *bufsiz,
9549 const void *s390_tdb,
9550 int size)
9551 {
9552 char *note_name = "LINUX";
9553 return elfcore_write_note (abfd, buf, bufsiz,
9554 note_name, NT_S390_TDB, s390_tdb, size);
9555 }
9556
9557 char *
9558 elfcore_write_arm_vfp (bfd *abfd,
9559 char *buf,
9560 int *bufsiz,
9561 const void *arm_vfp,
9562 int size)
9563 {
9564 char *note_name = "LINUX";
9565 return elfcore_write_note (abfd, buf, bufsiz,
9566 note_name, NT_ARM_VFP, arm_vfp, size);
9567 }
9568
9569 char *
9570 elfcore_write_aarch_tls (bfd *abfd,
9571 char *buf,
9572 int *bufsiz,
9573 const void *aarch_tls,
9574 int size)
9575 {
9576 char *note_name = "LINUX";
9577 return elfcore_write_note (abfd, buf, bufsiz,
9578 note_name, NT_ARM_TLS, aarch_tls, size);
9579 }
9580
9581 char *
9582 elfcore_write_aarch_hw_break (bfd *abfd,
9583 char *buf,
9584 int *bufsiz,
9585 const void *aarch_hw_break,
9586 int size)
9587 {
9588 char *note_name = "LINUX";
9589 return elfcore_write_note (abfd, buf, bufsiz,
9590 note_name, NT_ARM_HW_BREAK, aarch_hw_break, size);
9591 }
9592
9593 char *
9594 elfcore_write_aarch_hw_watch (bfd *abfd,
9595 char *buf,
9596 int *bufsiz,
9597 const void *aarch_hw_watch,
9598 int size)
9599 {
9600 char *note_name = "LINUX";
9601 return elfcore_write_note (abfd, buf, bufsiz,
9602 note_name, NT_ARM_HW_WATCH, aarch_hw_watch, size);
9603 }
9604
9605 char *
9606 elfcore_write_register_note (bfd *abfd,
9607 char *buf,
9608 int *bufsiz,
9609 const char *section,
9610 const void *data,
9611 int size)
9612 {
9613 if (strcmp (section, ".reg2") == 0)
9614 return elfcore_write_prfpreg (abfd, buf, bufsiz, data, size);
9615 if (strcmp (section, ".reg-xfp") == 0)
9616 return elfcore_write_prxfpreg (abfd, buf, bufsiz, data, size);
9617 if (strcmp (section, ".reg-xstate") == 0)
9618 return elfcore_write_xstatereg (abfd, buf, bufsiz, data, size);
9619 if (strcmp (section, ".reg-ppc-vmx") == 0)
9620 return elfcore_write_ppc_vmx (abfd, buf, bufsiz, data, size);
9621 if (strcmp (section, ".reg-ppc-vsx") == 0)
9622 return elfcore_write_ppc_vsx (abfd, buf, bufsiz, data, size);
9623 if (strcmp (section, ".reg-s390-high-gprs") == 0)
9624 return elfcore_write_s390_high_gprs (abfd, buf, bufsiz, data, size);
9625 if (strcmp (section, ".reg-s390-timer") == 0)
9626 return elfcore_write_s390_timer (abfd, buf, bufsiz, data, size);
9627 if (strcmp (section, ".reg-s390-todcmp") == 0)
9628 return elfcore_write_s390_todcmp (abfd, buf, bufsiz, data, size);
9629 if (strcmp (section, ".reg-s390-todpreg") == 0)
9630 return elfcore_write_s390_todpreg (abfd, buf, bufsiz, data, size);
9631 if (strcmp (section, ".reg-s390-ctrs") == 0)
9632 return elfcore_write_s390_ctrs (abfd, buf, bufsiz, data, size);
9633 if (strcmp (section, ".reg-s390-prefix") == 0)
9634 return elfcore_write_s390_prefix (abfd, buf, bufsiz, data, size);
9635 if (strcmp (section, ".reg-s390-last-break") == 0)
9636 return elfcore_write_s390_last_break (abfd, buf, bufsiz, data, size);
9637 if (strcmp (section, ".reg-s390-system-call") == 0)
9638 return elfcore_write_s390_system_call (abfd, buf, bufsiz, data, size);
9639 if (strcmp (section, ".reg-s390-tdb") == 0)
9640 return elfcore_write_s390_tdb (abfd, buf, bufsiz, data, size);
9641 if (strcmp (section, ".reg-arm-vfp") == 0)
9642 return elfcore_write_arm_vfp (abfd, buf, bufsiz, data, size);
9643 if (strcmp (section, ".reg-aarch-tls") == 0)
9644 return elfcore_write_aarch_tls (abfd, buf, bufsiz, data, size);
9645 if (strcmp (section, ".reg-aarch-hw-break") == 0)
9646 return elfcore_write_aarch_hw_break (abfd, buf, bufsiz, data, size);
9647 if (strcmp (section, ".reg-aarch-hw-watch") == 0)
9648 return elfcore_write_aarch_hw_watch (abfd, buf, bufsiz, data, size);
9649 return NULL;
9650 }
9651
9652 static bfd_boolean
9653 elf_parse_notes (bfd *abfd, char *buf, size_t size, file_ptr offset)
9654 {
9655 char *p;
9656
9657 p = buf;
9658 while (p < buf + size)
9659 {
9660 /* FIXME: bad alignment assumption. */
9661 Elf_External_Note *xnp = (Elf_External_Note *) p;
9662 Elf_Internal_Note in;
9663
9664 if (offsetof (Elf_External_Note, name) > buf - p + size)
9665 return FALSE;
9666
9667 in.type = H_GET_32 (abfd, xnp->type);
9668
9669 in.namesz = H_GET_32 (abfd, xnp->namesz);
9670 in.namedata = xnp->name;
9671 if (in.namesz > buf - in.namedata + size)
9672 return FALSE;
9673
9674 in.descsz = H_GET_32 (abfd, xnp->descsz);
9675 in.descdata = in.namedata + BFD_ALIGN (in.namesz, 4);
9676 in.descpos = offset + (in.descdata - buf);
9677 if (in.descsz != 0
9678 && (in.descdata >= buf + size
9679 || in.descsz > buf - in.descdata + size))
9680 return FALSE;
9681
9682 switch (bfd_get_format (abfd))
9683 {
9684 default:
9685 return TRUE;
9686
9687 case bfd_core:
9688 if (CONST_STRNEQ (in.namedata, "NetBSD-CORE"))
9689 {
9690 if (! elfcore_grok_netbsd_note (abfd, &in))
9691 return FALSE;
9692 }
9693 else if (CONST_STRNEQ (in.namedata, "OpenBSD"))
9694 {
9695 if (! elfcore_grok_openbsd_note (abfd, &in))
9696 return FALSE;
9697 }
9698 else if (CONST_STRNEQ (in.namedata, "QNX"))
9699 {
9700 if (! elfcore_grok_nto_note (abfd, &in))
9701 return FALSE;
9702 }
9703 else if (CONST_STRNEQ (in.namedata, "SPU/"))
9704 {
9705 if (! elfcore_grok_spu_note (abfd, &in))
9706 return FALSE;
9707 }
9708 else
9709 {
9710 if (! elfcore_grok_note (abfd, &in))
9711 return FALSE;
9712 }
9713 break;
9714
9715 case bfd_object:
9716 if (in.namesz == sizeof "GNU" && strcmp (in.namedata, "GNU") == 0)
9717 {
9718 if (! elfobj_grok_gnu_note (abfd, &in))
9719 return FALSE;
9720 }
9721 else if (in.namesz == sizeof "stapsdt"
9722 && strcmp (in.namedata, "stapsdt") == 0)
9723 {
9724 if (! elfobj_grok_stapsdt_note (abfd, &in))
9725 return FALSE;
9726 }
9727 break;
9728 }
9729
9730 p = in.descdata + BFD_ALIGN (in.descsz, 4);
9731 }
9732
9733 return TRUE;
9734 }
9735
9736 static bfd_boolean
9737 elf_read_notes (bfd *abfd, file_ptr offset, bfd_size_type size)
9738 {
9739 char *buf;
9740
9741 if (size <= 0)
9742 return TRUE;
9743
9744 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
9745 return FALSE;
9746
9747 buf = (char *) bfd_malloc (size);
9748 if (buf == NULL)
9749 return FALSE;
9750
9751 if (bfd_bread (buf, size, abfd) != size
9752 || !elf_parse_notes (abfd, buf, size, offset))
9753 {
9754 free (buf);
9755 return FALSE;
9756 }
9757
9758 free (buf);
9759 return TRUE;
9760 }
9761 \f
9762 /* Providing external access to the ELF program header table. */
9763
9764 /* Return an upper bound on the number of bytes required to store a
9765 copy of ABFD's program header table entries. Return -1 if an error
9766 occurs; bfd_get_error will return an appropriate code. */
9767
9768 long
9769 bfd_get_elf_phdr_upper_bound (bfd *abfd)
9770 {
9771 if (abfd->xvec->flavour != bfd_target_elf_flavour)
9772 {
9773 bfd_set_error (bfd_error_wrong_format);
9774 return -1;
9775 }
9776
9777 return elf_elfheader (abfd)->e_phnum * sizeof (Elf_Internal_Phdr);
9778 }
9779
9780 /* Copy ABFD's program header table entries to *PHDRS. The entries
9781 will be stored as an array of Elf_Internal_Phdr structures, as
9782 defined in include/elf/internal.h. To find out how large the
9783 buffer needs to be, call bfd_get_elf_phdr_upper_bound.
9784
9785 Return the number of program header table entries read, or -1 if an
9786 error occurs; bfd_get_error will return an appropriate code. */
9787
9788 int
9789 bfd_get_elf_phdrs (bfd *abfd, void *phdrs)
9790 {
9791 int num_phdrs;
9792
9793 if (abfd->xvec->flavour != bfd_target_elf_flavour)
9794 {
9795 bfd_set_error (bfd_error_wrong_format);
9796 return -1;
9797 }
9798
9799 num_phdrs = elf_elfheader (abfd)->e_phnum;
9800 memcpy (phdrs, elf_tdata (abfd)->phdr,
9801 num_phdrs * sizeof (Elf_Internal_Phdr));
9802
9803 return num_phdrs;
9804 }
9805
9806 enum elf_reloc_type_class
9807 _bfd_elf_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
9808 const asection *rel_sec ATTRIBUTE_UNUSED,
9809 const Elf_Internal_Rela *rela ATTRIBUTE_UNUSED)
9810 {
9811 return reloc_class_normal;
9812 }
9813
9814 /* For RELA architectures, return the relocation value for a
9815 relocation against a local symbol. */
9816
9817 bfd_vma
9818 _bfd_elf_rela_local_sym (bfd *abfd,
9819 Elf_Internal_Sym *sym,
9820 asection **psec,
9821 Elf_Internal_Rela *rel)
9822 {
9823 asection *sec = *psec;
9824 bfd_vma relocation;
9825
9826 relocation = (sec->output_section->vma
9827 + sec->output_offset
9828 + sym->st_value);
9829 if ((sec->flags & SEC_MERGE)
9830 && ELF_ST_TYPE (sym->st_info) == STT_SECTION
9831 && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
9832 {
9833 rel->r_addend =
9834 _bfd_merged_section_offset (abfd, psec,
9835 elf_section_data (sec)->sec_info,
9836 sym->st_value + rel->r_addend);
9837 if (sec != *psec)
9838 {
9839 /* If we have changed the section, and our original section is
9840 marked with SEC_EXCLUDE, it means that the original
9841 SEC_MERGE section has been completely subsumed in some
9842 other SEC_MERGE section. In this case, we need to leave
9843 some info around for --emit-relocs. */
9844 if ((sec->flags & SEC_EXCLUDE) != 0)
9845 sec->kept_section = *psec;
9846 sec = *psec;
9847 }
9848 rel->r_addend -= relocation;
9849 rel->r_addend += sec->output_section->vma + sec->output_offset;
9850 }
9851 return relocation;
9852 }
9853
9854 bfd_vma
9855 _bfd_elf_rel_local_sym (bfd *abfd,
9856 Elf_Internal_Sym *sym,
9857 asection **psec,
9858 bfd_vma addend)
9859 {
9860 asection *sec = *psec;
9861
9862 if (sec->sec_info_type != SEC_INFO_TYPE_MERGE)
9863 return sym->st_value + addend;
9864
9865 return _bfd_merged_section_offset (abfd, psec,
9866 elf_section_data (sec)->sec_info,
9867 sym->st_value + addend);
9868 }
9869
9870 bfd_vma
9871 _bfd_elf_section_offset (bfd *abfd,
9872 struct bfd_link_info *info,
9873 asection *sec,
9874 bfd_vma offset)
9875 {
9876 switch (sec->sec_info_type)
9877 {
9878 case SEC_INFO_TYPE_STABS:
9879 return _bfd_stab_section_offset (sec, elf_section_data (sec)->sec_info,
9880 offset);
9881 case SEC_INFO_TYPE_EH_FRAME:
9882 return _bfd_elf_eh_frame_section_offset (abfd, info, sec, offset);
9883 default:
9884 if ((sec->flags & SEC_ELF_REVERSE_COPY) != 0)
9885 {
9886 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9887 bfd_size_type address_size = bed->s->arch_size / 8;
9888 offset = sec->size - offset - address_size;
9889 }
9890 return offset;
9891 }
9892 }
9893 \f
9894 /* Create a new BFD as if by bfd_openr. Rather than opening a file,
9895 reconstruct an ELF file by reading the segments out of remote memory
9896 based on the ELF file header at EHDR_VMA and the ELF program headers it
9897 points to. If not null, *LOADBASEP is filled in with the difference
9898 between the VMAs from which the segments were read, and the VMAs the
9899 file headers (and hence BFD's idea of each section's VMA) put them at.
9900
9901 The function TARGET_READ_MEMORY is called to copy LEN bytes from the
9902 remote memory at target address VMA into the local buffer at MYADDR; it
9903 should return zero on success or an `errno' code on failure. TEMPL must
9904 be a BFD for an ELF target with the word size and byte order found in
9905 the remote memory. */
9906
9907 bfd *
9908 bfd_elf_bfd_from_remote_memory
9909 (bfd *templ,
9910 bfd_vma ehdr_vma,
9911 bfd_size_type size,
9912 bfd_vma *loadbasep,
9913 int (*target_read_memory) (bfd_vma, bfd_byte *, bfd_size_type))
9914 {
9915 return (*get_elf_backend_data (templ)->elf_backend_bfd_from_remote_memory)
9916 (templ, ehdr_vma, size, loadbasep, target_read_memory);
9917 }
9918 \f
9919 long
9920 _bfd_elf_get_synthetic_symtab (bfd *abfd,
9921 long symcount ATTRIBUTE_UNUSED,
9922 asymbol **syms ATTRIBUTE_UNUSED,
9923 long dynsymcount,
9924 asymbol **dynsyms,
9925 asymbol **ret)
9926 {
9927 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9928 asection *relplt;
9929 asymbol *s;
9930 const char *relplt_name;
9931 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
9932 arelent *p;
9933 long count, i, n;
9934 size_t size;
9935 Elf_Internal_Shdr *hdr;
9936 char *names;
9937 asection *plt;
9938
9939 *ret = NULL;
9940
9941 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0)
9942 return 0;
9943
9944 if (dynsymcount <= 0)
9945 return 0;
9946
9947 if (!bed->plt_sym_val)
9948 return 0;
9949
9950 relplt_name = bed->relplt_name;
9951 if (relplt_name == NULL)
9952 relplt_name = bed->rela_plts_and_copies_p ? ".rela.plt" : ".rel.plt";
9953 relplt = bfd_get_section_by_name (abfd, relplt_name);
9954 if (relplt == NULL)
9955 return 0;
9956
9957 hdr = &elf_section_data (relplt)->this_hdr;
9958 if (hdr->sh_link != elf_dynsymtab (abfd)
9959 || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA))
9960 return 0;
9961
9962 plt = bfd_get_section_by_name (abfd, ".plt");
9963 if (plt == NULL)
9964 return 0;
9965
9966 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
9967 if (! (*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
9968 return -1;
9969
9970 count = relplt->size / hdr->sh_entsize;
9971 size = count * sizeof (asymbol);
9972 p = relplt->relocation;
9973 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
9974 {
9975 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
9976 if (p->addend != 0)
9977 {
9978 #ifdef BFD64
9979 size += sizeof ("+0x") - 1 + 8 + 8 * (bed->s->elfclass == ELFCLASS64);
9980 #else
9981 size += sizeof ("+0x") - 1 + 8;
9982 #endif
9983 }
9984 }
9985
9986 s = *ret = (asymbol *) bfd_malloc (size);
9987 if (s == NULL)
9988 return -1;
9989
9990 names = (char *) (s + count);
9991 p = relplt->relocation;
9992 n = 0;
9993 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
9994 {
9995 size_t len;
9996 bfd_vma addr;
9997
9998 addr = bed->plt_sym_val (i, plt, p);
9999 if (addr == (bfd_vma) -1)
10000 continue;
10001
10002 *s = **p->sym_ptr_ptr;
10003 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
10004 we are defining a symbol, ensure one of them is set. */
10005 if ((s->flags & BSF_LOCAL) == 0)
10006 s->flags |= BSF_GLOBAL;
10007 s->flags |= BSF_SYNTHETIC;
10008 s->section = plt;
10009 s->value = addr - plt->vma;
10010 s->name = names;
10011 s->udata.p = NULL;
10012 len = strlen ((*p->sym_ptr_ptr)->name);
10013 memcpy (names, (*p->sym_ptr_ptr)->name, len);
10014 names += len;
10015 if (p->addend != 0)
10016 {
10017 char buf[30], *a;
10018
10019 memcpy (names, "+0x", sizeof ("+0x") - 1);
10020 names += sizeof ("+0x") - 1;
10021 bfd_sprintf_vma (abfd, buf, p->addend);
10022 for (a = buf; *a == '0'; ++a)
10023 ;
10024 len = strlen (a);
10025 memcpy (names, a, len);
10026 names += len;
10027 }
10028 memcpy (names, "@plt", sizeof ("@plt"));
10029 names += sizeof ("@plt");
10030 ++s, ++n;
10031 }
10032
10033 return n;
10034 }
10035
10036 /* It is only used by x86-64 so far. */
10037 asection _bfd_elf_large_com_section
10038 = BFD_FAKE_SECTION (_bfd_elf_large_com_section,
10039 SEC_IS_COMMON, NULL, "LARGE_COMMON", 0);
10040
10041 void
10042 _bfd_elf_post_process_headers (bfd * abfd,
10043 struct bfd_link_info * link_info ATTRIBUTE_UNUSED)
10044 {
10045 Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */
10046
10047 i_ehdrp = elf_elfheader (abfd);
10048
10049 i_ehdrp->e_ident[EI_OSABI] = get_elf_backend_data (abfd)->elf_osabi;
10050
10051 /* To make things simpler for the loader on Linux systems we set the
10052 osabi field to ELFOSABI_GNU if the binary contains symbols of
10053 the STT_GNU_IFUNC type or STB_GNU_UNIQUE binding. */
10054 if (i_ehdrp->e_ident[EI_OSABI] == ELFOSABI_NONE
10055 && elf_tdata (abfd)->has_gnu_symbols)
10056 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_GNU;
10057 }
10058
10059
10060 /* Return TRUE for ELF symbol types that represent functions.
10061 This is the default version of this function, which is sufficient for
10062 most targets. It returns true if TYPE is STT_FUNC or STT_GNU_IFUNC. */
10063
10064 bfd_boolean
10065 _bfd_elf_is_function_type (unsigned int type)
10066 {
10067 return (type == STT_FUNC
10068 || type == STT_GNU_IFUNC);
10069 }
10070
10071 /* If the ELF symbol SYM might be a function in SEC, return the
10072 function size and set *CODE_OFF to the function's entry point,
10073 otherwise return zero. */
10074
10075 bfd_size_type
10076 _bfd_elf_maybe_function_sym (const asymbol *sym, asection *sec,
10077 bfd_vma *code_off)
10078 {
10079 bfd_size_type size;
10080
10081 if ((sym->flags & (BSF_SECTION_SYM | BSF_FILE | BSF_OBJECT
10082 | BSF_THREAD_LOCAL | BSF_RELC | BSF_SRELC)) != 0
10083 || sym->section != sec)
10084 return 0;
10085
10086 *code_off = sym->value;
10087 size = 0;
10088 if (!(sym->flags & BSF_SYNTHETIC))
10089 size = ((elf_symbol_type *) sym)->internal_elf_sym.st_size;
10090 if (size == 0)
10091 size = 1;
10092 return size;
10093 }
This page took 0.259842 seconds and 4 git commands to generate.