1 /* ELF executable support for BFD.
3 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
4 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
5 Free Software Foundation, Inc.
7 This file is part of BFD, the Binary File Descriptor library.
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22 MA 02110-1301, USA. */
29 BFD support for ELF formats is being worked on.
30 Currently, the best supported back ends are for sparc and i386
31 (running svr4 or Solaris 2).
33 Documentation of the internals of the support code still needs
34 to be written. The code is changing quickly enough that we
35 haven't bothered yet. */
37 /* For sparc64-cross-sparc32. */
45 #include "libiberty.h"
46 #include "safe-ctype.h"
48 static int elf_sort_sections (const void *, const void *);
49 static bfd_boolean
assign_file_positions_except_relocs (bfd
*, struct bfd_link_info
*);
50 static bfd_boolean
prep_headers (bfd
*);
51 static bfd_boolean
swap_out_syms (bfd
*, struct bfd_strtab_hash
**, int) ;
52 static bfd_boolean
elf_read_notes (bfd
*, file_ptr
, bfd_size_type
) ;
53 static bfd_boolean
elf_parse_notes (bfd
*abfd
, char *buf
, size_t size
,
56 /* Swap version information in and out. The version information is
57 currently size independent. If that ever changes, this code will
58 need to move into elfcode.h. */
60 /* Swap in a Verdef structure. */
63 _bfd_elf_swap_verdef_in (bfd
*abfd
,
64 const Elf_External_Verdef
*src
,
65 Elf_Internal_Verdef
*dst
)
67 dst
->vd_version
= H_GET_16 (abfd
, src
->vd_version
);
68 dst
->vd_flags
= H_GET_16 (abfd
, src
->vd_flags
);
69 dst
->vd_ndx
= H_GET_16 (abfd
, src
->vd_ndx
);
70 dst
->vd_cnt
= H_GET_16 (abfd
, src
->vd_cnt
);
71 dst
->vd_hash
= H_GET_32 (abfd
, src
->vd_hash
);
72 dst
->vd_aux
= H_GET_32 (abfd
, src
->vd_aux
);
73 dst
->vd_next
= H_GET_32 (abfd
, src
->vd_next
);
76 /* Swap out a Verdef structure. */
79 _bfd_elf_swap_verdef_out (bfd
*abfd
,
80 const Elf_Internal_Verdef
*src
,
81 Elf_External_Verdef
*dst
)
83 H_PUT_16 (abfd
, src
->vd_version
, dst
->vd_version
);
84 H_PUT_16 (abfd
, src
->vd_flags
, dst
->vd_flags
);
85 H_PUT_16 (abfd
, src
->vd_ndx
, dst
->vd_ndx
);
86 H_PUT_16 (abfd
, src
->vd_cnt
, dst
->vd_cnt
);
87 H_PUT_32 (abfd
, src
->vd_hash
, dst
->vd_hash
);
88 H_PUT_32 (abfd
, src
->vd_aux
, dst
->vd_aux
);
89 H_PUT_32 (abfd
, src
->vd_next
, dst
->vd_next
);
92 /* Swap in a Verdaux structure. */
95 _bfd_elf_swap_verdaux_in (bfd
*abfd
,
96 const Elf_External_Verdaux
*src
,
97 Elf_Internal_Verdaux
*dst
)
99 dst
->vda_name
= H_GET_32 (abfd
, src
->vda_name
);
100 dst
->vda_next
= H_GET_32 (abfd
, src
->vda_next
);
103 /* Swap out a Verdaux structure. */
106 _bfd_elf_swap_verdaux_out (bfd
*abfd
,
107 const Elf_Internal_Verdaux
*src
,
108 Elf_External_Verdaux
*dst
)
110 H_PUT_32 (abfd
, src
->vda_name
, dst
->vda_name
);
111 H_PUT_32 (abfd
, src
->vda_next
, dst
->vda_next
);
114 /* Swap in a Verneed structure. */
117 _bfd_elf_swap_verneed_in (bfd
*abfd
,
118 const Elf_External_Verneed
*src
,
119 Elf_Internal_Verneed
*dst
)
121 dst
->vn_version
= H_GET_16 (abfd
, src
->vn_version
);
122 dst
->vn_cnt
= H_GET_16 (abfd
, src
->vn_cnt
);
123 dst
->vn_file
= H_GET_32 (abfd
, src
->vn_file
);
124 dst
->vn_aux
= H_GET_32 (abfd
, src
->vn_aux
);
125 dst
->vn_next
= H_GET_32 (abfd
, src
->vn_next
);
128 /* Swap out a Verneed structure. */
131 _bfd_elf_swap_verneed_out (bfd
*abfd
,
132 const Elf_Internal_Verneed
*src
,
133 Elf_External_Verneed
*dst
)
135 H_PUT_16 (abfd
, src
->vn_version
, dst
->vn_version
);
136 H_PUT_16 (abfd
, src
->vn_cnt
, dst
->vn_cnt
);
137 H_PUT_32 (abfd
, src
->vn_file
, dst
->vn_file
);
138 H_PUT_32 (abfd
, src
->vn_aux
, dst
->vn_aux
);
139 H_PUT_32 (abfd
, src
->vn_next
, dst
->vn_next
);
142 /* Swap in a Vernaux structure. */
145 _bfd_elf_swap_vernaux_in (bfd
*abfd
,
146 const Elf_External_Vernaux
*src
,
147 Elf_Internal_Vernaux
*dst
)
149 dst
->vna_hash
= H_GET_32 (abfd
, src
->vna_hash
);
150 dst
->vna_flags
= H_GET_16 (abfd
, src
->vna_flags
);
151 dst
->vna_other
= H_GET_16 (abfd
, src
->vna_other
);
152 dst
->vna_name
= H_GET_32 (abfd
, src
->vna_name
);
153 dst
->vna_next
= H_GET_32 (abfd
, src
->vna_next
);
156 /* Swap out a Vernaux structure. */
159 _bfd_elf_swap_vernaux_out (bfd
*abfd
,
160 const Elf_Internal_Vernaux
*src
,
161 Elf_External_Vernaux
*dst
)
163 H_PUT_32 (abfd
, src
->vna_hash
, dst
->vna_hash
);
164 H_PUT_16 (abfd
, src
->vna_flags
, dst
->vna_flags
);
165 H_PUT_16 (abfd
, src
->vna_other
, dst
->vna_other
);
166 H_PUT_32 (abfd
, src
->vna_name
, dst
->vna_name
);
167 H_PUT_32 (abfd
, src
->vna_next
, dst
->vna_next
);
170 /* Swap in a Versym structure. */
173 _bfd_elf_swap_versym_in (bfd
*abfd
,
174 const Elf_External_Versym
*src
,
175 Elf_Internal_Versym
*dst
)
177 dst
->vs_vers
= H_GET_16 (abfd
, src
->vs_vers
);
180 /* Swap out a Versym structure. */
183 _bfd_elf_swap_versym_out (bfd
*abfd
,
184 const Elf_Internal_Versym
*src
,
185 Elf_External_Versym
*dst
)
187 H_PUT_16 (abfd
, src
->vs_vers
, dst
->vs_vers
);
190 /* Standard ELF hash function. Do not change this function; you will
191 cause invalid hash tables to be generated. */
194 bfd_elf_hash (const char *namearg
)
196 const unsigned char *name
= (const unsigned char *) namearg
;
201 while ((ch
= *name
++) != '\0')
204 if ((g
= (h
& 0xf0000000)) != 0)
207 /* The ELF ABI says `h &= ~g', but this is equivalent in
208 this case and on some machines one insn instead of two. */
212 return h
& 0xffffffff;
215 /* DT_GNU_HASH hash function. Do not change this function; you will
216 cause invalid hash tables to be generated. */
219 bfd_elf_gnu_hash (const char *namearg
)
221 const unsigned char *name
= (const unsigned char *) namearg
;
222 unsigned long h
= 5381;
225 while ((ch
= *name
++) != '\0')
226 h
= (h
<< 5) + h
+ ch
;
227 return h
& 0xffffffff;
230 /* Create a tdata field OBJECT_SIZE bytes in length, zeroed out and with
231 the object_id field of an elf_obj_tdata field set to OBJECT_ID. */
233 bfd_elf_allocate_object (bfd
*abfd
,
235 enum elf_object_id object_id
)
237 BFD_ASSERT (object_size
>= sizeof (struct elf_obj_tdata
));
238 abfd
->tdata
.any
= bfd_zalloc (abfd
, object_size
);
239 if (abfd
->tdata
.any
== NULL
)
242 elf_object_id (abfd
) = object_id
;
243 elf_program_header_size (abfd
) = (bfd_size_type
) -1;
249 bfd_elf_make_generic_object (bfd
*abfd
)
251 return bfd_elf_allocate_object (abfd
, sizeof (struct elf_obj_tdata
),
256 bfd_elf_mkcorefile (bfd
*abfd
)
258 /* I think this can be done just like an object file. */
259 return bfd_elf_make_generic_object (abfd
);
263 bfd_elf_get_str_section (bfd
*abfd
, unsigned int shindex
)
265 Elf_Internal_Shdr
**i_shdrp
;
266 bfd_byte
*shstrtab
= NULL
;
268 bfd_size_type shstrtabsize
;
270 i_shdrp
= elf_elfsections (abfd
);
272 || shindex
>= elf_numsections (abfd
)
273 || i_shdrp
[shindex
] == 0)
276 shstrtab
= i_shdrp
[shindex
]->contents
;
277 if (shstrtab
== NULL
)
279 /* No cached one, attempt to read, and cache what we read. */
280 offset
= i_shdrp
[shindex
]->sh_offset
;
281 shstrtabsize
= i_shdrp
[shindex
]->sh_size
;
283 /* Allocate and clear an extra byte at the end, to prevent crashes
284 in case the string table is not terminated. */
285 if (shstrtabsize
+ 1 <= 1
286 || (shstrtab
= bfd_alloc (abfd
, shstrtabsize
+ 1)) == NULL
287 || bfd_seek (abfd
, offset
, SEEK_SET
) != 0)
289 else if (bfd_bread (shstrtab
, shstrtabsize
, abfd
) != shstrtabsize
)
291 if (bfd_get_error () != bfd_error_system_call
)
292 bfd_set_error (bfd_error_file_truncated
);
294 /* Once we've failed to read it, make sure we don't keep
295 trying. Otherwise, we'll keep allocating space for
296 the string table over and over. */
297 i_shdrp
[shindex
]->sh_size
= 0;
300 shstrtab
[shstrtabsize
] = '\0';
301 i_shdrp
[shindex
]->contents
= shstrtab
;
303 return (char *) shstrtab
;
307 bfd_elf_string_from_elf_section (bfd
*abfd
,
308 unsigned int shindex
,
309 unsigned int strindex
)
311 Elf_Internal_Shdr
*hdr
;
316 if (elf_elfsections (abfd
) == NULL
|| shindex
>= elf_numsections (abfd
))
319 hdr
= elf_elfsections (abfd
)[shindex
];
321 if (hdr
->contents
== NULL
322 && bfd_elf_get_str_section (abfd
, shindex
) == NULL
)
325 if (strindex
>= hdr
->sh_size
)
327 unsigned int shstrndx
= elf_elfheader(abfd
)->e_shstrndx
;
328 (*_bfd_error_handler
)
329 (_("%B: invalid string offset %u >= %lu for section `%s'"),
330 abfd
, strindex
, (unsigned long) hdr
->sh_size
,
331 (shindex
== shstrndx
&& strindex
== hdr
->sh_name
333 : bfd_elf_string_from_elf_section (abfd
, shstrndx
, hdr
->sh_name
)));
337 return ((char *) hdr
->contents
) + strindex
;
340 /* Read and convert symbols to internal format.
341 SYMCOUNT specifies the number of symbols to read, starting from
342 symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF
343 are non-NULL, they are used to store the internal symbols, external
344 symbols, and symbol section index extensions, respectively.
345 Returns a pointer to the internal symbol buffer (malloced if necessary)
346 or NULL if there were no symbols or some kind of problem. */
349 bfd_elf_get_elf_syms (bfd
*ibfd
,
350 Elf_Internal_Shdr
*symtab_hdr
,
353 Elf_Internal_Sym
*intsym_buf
,
355 Elf_External_Sym_Shndx
*extshndx_buf
)
357 Elf_Internal_Shdr
*shndx_hdr
;
359 const bfd_byte
*esym
;
360 Elf_External_Sym_Shndx
*alloc_extshndx
;
361 Elf_External_Sym_Shndx
*shndx
;
362 Elf_Internal_Sym
*alloc_intsym
;
363 Elf_Internal_Sym
*isym
;
364 Elf_Internal_Sym
*isymend
;
365 const struct elf_backend_data
*bed
;
370 if (bfd_get_flavour (ibfd
) != bfd_target_elf_flavour
)
376 /* Normal syms might have section extension entries. */
378 if (symtab_hdr
== &elf_tdata (ibfd
)->symtab_hdr
)
379 shndx_hdr
= &elf_tdata (ibfd
)->symtab_shndx_hdr
;
381 /* Read the symbols. */
383 alloc_extshndx
= NULL
;
385 bed
= get_elf_backend_data (ibfd
);
386 extsym_size
= bed
->s
->sizeof_sym
;
387 amt
= symcount
* extsym_size
;
388 pos
= symtab_hdr
->sh_offset
+ symoffset
* extsym_size
;
389 if (extsym_buf
== NULL
)
391 alloc_ext
= bfd_malloc2 (symcount
, extsym_size
);
392 extsym_buf
= alloc_ext
;
394 if (extsym_buf
== NULL
395 || bfd_seek (ibfd
, pos
, SEEK_SET
) != 0
396 || bfd_bread (extsym_buf
, amt
, ibfd
) != amt
)
402 if (shndx_hdr
== NULL
|| shndx_hdr
->sh_size
== 0)
406 amt
= symcount
* sizeof (Elf_External_Sym_Shndx
);
407 pos
= shndx_hdr
->sh_offset
+ symoffset
* sizeof (Elf_External_Sym_Shndx
);
408 if (extshndx_buf
== NULL
)
410 alloc_extshndx
= bfd_malloc2 (symcount
,
411 sizeof (Elf_External_Sym_Shndx
));
412 extshndx_buf
= alloc_extshndx
;
414 if (extshndx_buf
== NULL
415 || bfd_seek (ibfd
, pos
, SEEK_SET
) != 0
416 || bfd_bread (extshndx_buf
, amt
, ibfd
) != amt
)
423 if (intsym_buf
== NULL
)
425 alloc_intsym
= bfd_malloc2 (symcount
, sizeof (Elf_Internal_Sym
));
426 intsym_buf
= alloc_intsym
;
427 if (intsym_buf
== NULL
)
431 /* Convert the symbols to internal form. */
432 isymend
= intsym_buf
+ symcount
;
433 for (esym
= extsym_buf
, isym
= intsym_buf
, shndx
= extshndx_buf
;
435 esym
+= extsym_size
, isym
++, shndx
= shndx
!= NULL
? shndx
+ 1 : NULL
)
436 if (!(*bed
->s
->swap_symbol_in
) (ibfd
, esym
, shndx
, isym
))
438 symoffset
+= (esym
- (bfd_byte
*) extsym_buf
) / extsym_size
;
439 (*_bfd_error_handler
) (_("%B symbol number %lu references "
440 "nonexistent SHT_SYMTAB_SHNDX section"),
441 ibfd
, (unsigned long) symoffset
);
442 if (alloc_intsym
!= NULL
)
449 if (alloc_ext
!= NULL
)
451 if (alloc_extshndx
!= NULL
)
452 free (alloc_extshndx
);
457 /* Look up a symbol name. */
459 bfd_elf_sym_name (bfd
*abfd
,
460 Elf_Internal_Shdr
*symtab_hdr
,
461 Elf_Internal_Sym
*isym
,
465 unsigned int iname
= isym
->st_name
;
466 unsigned int shindex
= symtab_hdr
->sh_link
;
468 if (iname
== 0 && ELF_ST_TYPE (isym
->st_info
) == STT_SECTION
469 /* Check for a bogus st_shndx to avoid crashing. */
470 && isym
->st_shndx
< elf_numsections (abfd
))
472 iname
= elf_elfsections (abfd
)[isym
->st_shndx
]->sh_name
;
473 shindex
= elf_elfheader (abfd
)->e_shstrndx
;
476 name
= bfd_elf_string_from_elf_section (abfd
, shindex
, iname
);
479 else if (sym_sec
&& *name
== '\0')
480 name
= bfd_section_name (abfd
, sym_sec
);
485 /* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
486 sections. The first element is the flags, the rest are section
489 typedef union elf_internal_group
{
490 Elf_Internal_Shdr
*shdr
;
492 } Elf_Internal_Group
;
494 /* Return the name of the group signature symbol. Why isn't the
495 signature just a string? */
498 group_signature (bfd
*abfd
, Elf_Internal_Shdr
*ghdr
)
500 Elf_Internal_Shdr
*hdr
;
501 unsigned char esym
[sizeof (Elf64_External_Sym
)];
502 Elf_External_Sym_Shndx eshndx
;
503 Elf_Internal_Sym isym
;
505 /* First we need to ensure the symbol table is available. Make sure
506 that it is a symbol table section. */
507 if (ghdr
->sh_link
>= elf_numsections (abfd
))
509 hdr
= elf_elfsections (abfd
) [ghdr
->sh_link
];
510 if (hdr
->sh_type
!= SHT_SYMTAB
511 || ! bfd_section_from_shdr (abfd
, ghdr
->sh_link
))
514 /* Go read the symbol. */
515 hdr
= &elf_tdata (abfd
)->symtab_hdr
;
516 if (bfd_elf_get_elf_syms (abfd
, hdr
, 1, ghdr
->sh_info
,
517 &isym
, esym
, &eshndx
) == NULL
)
520 return bfd_elf_sym_name (abfd
, hdr
, &isym
, NULL
);
523 /* Set next_in_group list pointer, and group name for NEWSECT. */
526 setup_group (bfd
*abfd
, Elf_Internal_Shdr
*hdr
, asection
*newsect
)
528 unsigned int num_group
= elf_tdata (abfd
)->num_group
;
530 /* If num_group is zero, read in all SHT_GROUP sections. The count
531 is set to -1 if there are no SHT_GROUP sections. */
534 unsigned int i
, shnum
;
536 /* First count the number of groups. If we have a SHT_GROUP
537 section with just a flag word (ie. sh_size is 4), ignore it. */
538 shnum
= elf_numsections (abfd
);
541 #define IS_VALID_GROUP_SECTION_HEADER(shdr) \
542 ( (shdr)->sh_type == SHT_GROUP \
543 && (shdr)->sh_size >= (2 * GRP_ENTRY_SIZE) \
544 && (shdr)->sh_entsize == GRP_ENTRY_SIZE \
545 && ((shdr)->sh_size % GRP_ENTRY_SIZE) == 0)
547 for (i
= 0; i
< shnum
; i
++)
549 Elf_Internal_Shdr
*shdr
= elf_elfsections (abfd
)[i
];
551 if (IS_VALID_GROUP_SECTION_HEADER (shdr
))
557 num_group
= (unsigned) -1;
558 elf_tdata (abfd
)->num_group
= num_group
;
562 /* We keep a list of elf section headers for group sections,
563 so we can find them quickly. */
566 elf_tdata (abfd
)->num_group
= num_group
;
567 elf_tdata (abfd
)->group_sect_ptr
568 = bfd_alloc2 (abfd
, num_group
, sizeof (Elf_Internal_Shdr
*));
569 if (elf_tdata (abfd
)->group_sect_ptr
== NULL
)
573 for (i
= 0; i
< shnum
; i
++)
575 Elf_Internal_Shdr
*shdr
= elf_elfsections (abfd
)[i
];
577 if (IS_VALID_GROUP_SECTION_HEADER (shdr
))
580 Elf_Internal_Group
*dest
;
582 /* Add to list of sections. */
583 elf_tdata (abfd
)->group_sect_ptr
[num_group
] = shdr
;
586 /* Read the raw contents. */
587 BFD_ASSERT (sizeof (*dest
) >= 4);
588 amt
= shdr
->sh_size
* sizeof (*dest
) / 4;
589 shdr
->contents
= bfd_alloc2 (abfd
, shdr
->sh_size
,
591 /* PR binutils/4110: Handle corrupt group headers. */
592 if (shdr
->contents
== NULL
)
595 (_("%B: Corrupt size field in group section header: 0x%lx"), abfd
, shdr
->sh_size
);
596 bfd_set_error (bfd_error_bad_value
);
600 memset (shdr
->contents
, 0, amt
);
602 if (bfd_seek (abfd
, shdr
->sh_offset
, SEEK_SET
) != 0
603 || (bfd_bread (shdr
->contents
, shdr
->sh_size
, abfd
)
607 /* Translate raw contents, a flag word followed by an
608 array of elf section indices all in target byte order,
609 to the flag word followed by an array of elf section
611 src
= shdr
->contents
+ shdr
->sh_size
;
612 dest
= (Elf_Internal_Group
*) (shdr
->contents
+ amt
);
619 idx
= H_GET_32 (abfd
, src
);
620 if (src
== shdr
->contents
)
623 if (shdr
->bfd_section
!= NULL
&& (idx
& GRP_COMDAT
))
624 shdr
->bfd_section
->flags
625 |= SEC_LINK_ONCE
| SEC_LINK_DUPLICATES_DISCARD
;
630 ((*_bfd_error_handler
)
631 (_("%B: invalid SHT_GROUP entry"), abfd
));
634 dest
->shdr
= elf_elfsections (abfd
)[idx
];
641 if (num_group
!= (unsigned) -1)
645 for (i
= 0; i
< num_group
; i
++)
647 Elf_Internal_Shdr
*shdr
= elf_tdata (abfd
)->group_sect_ptr
[i
];
648 Elf_Internal_Group
*idx
= (Elf_Internal_Group
*) shdr
->contents
;
649 unsigned int n_elt
= shdr
->sh_size
/ 4;
651 /* Look through this group's sections to see if current
652 section is a member. */
654 if ((++idx
)->shdr
== hdr
)
658 /* We are a member of this group. Go looking through
659 other members to see if any others are linked via
661 idx
= (Elf_Internal_Group
*) shdr
->contents
;
662 n_elt
= shdr
->sh_size
/ 4;
664 if ((s
= (++idx
)->shdr
->bfd_section
) != NULL
665 && elf_next_in_group (s
) != NULL
)
669 /* Snarf the group name from other member, and
670 insert current section in circular list. */
671 elf_group_name (newsect
) = elf_group_name (s
);
672 elf_next_in_group (newsect
) = elf_next_in_group (s
);
673 elf_next_in_group (s
) = newsect
;
679 gname
= group_signature (abfd
, shdr
);
682 elf_group_name (newsect
) = gname
;
684 /* Start a circular list with one element. */
685 elf_next_in_group (newsect
) = newsect
;
688 /* If the group section has been created, point to the
690 if (shdr
->bfd_section
!= NULL
)
691 elf_next_in_group (shdr
->bfd_section
) = newsect
;
699 if (elf_group_name (newsect
) == NULL
)
701 (*_bfd_error_handler
) (_("%B: no group info for section %A"),
708 _bfd_elf_setup_sections (bfd
*abfd
)
711 unsigned int num_group
= elf_tdata (abfd
)->num_group
;
712 bfd_boolean result
= TRUE
;
715 /* Process SHF_LINK_ORDER. */
716 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
718 Elf_Internal_Shdr
*this_hdr
= &elf_section_data (s
)->this_hdr
;
719 if ((this_hdr
->sh_flags
& SHF_LINK_ORDER
) != 0)
721 unsigned int elfsec
= this_hdr
->sh_link
;
722 /* FIXME: The old Intel compiler and old strip/objcopy may
723 not set the sh_link or sh_info fields. Hence we could
724 get the situation where elfsec is 0. */
727 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
728 if (bed
->link_order_error_handler
)
729 bed
->link_order_error_handler
730 (_("%B: warning: sh_link not set for section `%A'"),
735 asection
*link
= NULL
;
737 if (elfsec
< elf_numsections (abfd
))
739 this_hdr
= elf_elfsections (abfd
)[elfsec
];
740 link
= this_hdr
->bfd_section
;
744 Some strip/objcopy may leave an incorrect value in
745 sh_link. We don't want to proceed. */
748 (*_bfd_error_handler
)
749 (_("%B: sh_link [%d] in section `%A' is incorrect"),
750 s
->owner
, s
, elfsec
);
754 elf_linked_to_section (s
) = link
;
759 /* Process section groups. */
760 if (num_group
== (unsigned) -1)
763 for (i
= 0; i
< num_group
; i
++)
765 Elf_Internal_Shdr
*shdr
= elf_tdata (abfd
)->group_sect_ptr
[i
];
766 Elf_Internal_Group
*idx
= (Elf_Internal_Group
*) shdr
->contents
;
767 unsigned int n_elt
= shdr
->sh_size
/ 4;
770 if ((++idx
)->shdr
->bfd_section
)
771 elf_sec_group (idx
->shdr
->bfd_section
) = shdr
->bfd_section
;
772 else if (idx
->shdr
->sh_type
== SHT_RELA
773 || idx
->shdr
->sh_type
== SHT_REL
)
774 /* We won't include relocation sections in section groups in
775 output object files. We adjust the group section size here
776 so that relocatable link will work correctly when
777 relocation sections are in section group in input object
779 shdr
->bfd_section
->size
-= 4;
782 /* There are some unknown sections in the group. */
783 (*_bfd_error_handler
)
784 (_("%B: unknown [%d] section `%s' in group [%s]"),
786 (unsigned int) idx
->shdr
->sh_type
,
787 bfd_elf_string_from_elf_section (abfd
,
788 (elf_elfheader (abfd
)
791 shdr
->bfd_section
->name
);
799 bfd_elf_is_group_section (bfd
*abfd ATTRIBUTE_UNUSED
, const asection
*sec
)
801 return elf_next_in_group (sec
) != NULL
;
804 /* Make a BFD section from an ELF section. We store a pointer to the
805 BFD section in the bfd_section field of the header. */
808 _bfd_elf_make_section_from_shdr (bfd
*abfd
,
809 Elf_Internal_Shdr
*hdr
,
815 const struct elf_backend_data
*bed
;
817 if (hdr
->bfd_section
!= NULL
)
819 BFD_ASSERT (strcmp (name
,
820 bfd_get_section_name (abfd
, hdr
->bfd_section
)) == 0);
824 newsect
= bfd_make_section_anyway (abfd
, name
);
828 hdr
->bfd_section
= newsect
;
829 elf_section_data (newsect
)->this_hdr
= *hdr
;
830 elf_section_data (newsect
)->this_idx
= shindex
;
832 /* Always use the real type/flags. */
833 elf_section_type (newsect
) = hdr
->sh_type
;
834 elf_section_flags (newsect
) = hdr
->sh_flags
;
836 newsect
->filepos
= hdr
->sh_offset
;
838 if (! bfd_set_section_vma (abfd
, newsect
, hdr
->sh_addr
)
839 || ! bfd_set_section_size (abfd
, newsect
, hdr
->sh_size
)
840 || ! bfd_set_section_alignment (abfd
, newsect
,
841 bfd_log2 (hdr
->sh_addralign
)))
844 flags
= SEC_NO_FLAGS
;
845 if (hdr
->sh_type
!= SHT_NOBITS
)
846 flags
|= SEC_HAS_CONTENTS
;
847 if (hdr
->sh_type
== SHT_GROUP
)
848 flags
|= SEC_GROUP
| SEC_EXCLUDE
;
849 if ((hdr
->sh_flags
& SHF_ALLOC
) != 0)
852 if (hdr
->sh_type
!= SHT_NOBITS
)
855 if ((hdr
->sh_flags
& SHF_WRITE
) == 0)
856 flags
|= SEC_READONLY
;
857 if ((hdr
->sh_flags
& SHF_EXECINSTR
) != 0)
859 else if ((flags
& SEC_LOAD
) != 0)
861 if ((hdr
->sh_flags
& SHF_MERGE
) != 0)
864 newsect
->entsize
= hdr
->sh_entsize
;
865 if ((hdr
->sh_flags
& SHF_STRINGS
) != 0)
866 flags
|= SEC_STRINGS
;
868 if (hdr
->sh_flags
& SHF_GROUP
)
869 if (!setup_group (abfd
, hdr
, newsect
))
871 if ((hdr
->sh_flags
& SHF_TLS
) != 0)
872 flags
|= SEC_THREAD_LOCAL
;
874 if ((flags
& SEC_ALLOC
) == 0)
876 /* The debugging sections appear to be recognized only by name,
877 not any sort of flag. Their SEC_ALLOC bits are cleared. */
882 } debug_sections
[] =
884 { STRING_COMMA_LEN ("debug") }, /* 'd' */
885 { NULL
, 0 }, /* 'e' */
886 { NULL
, 0 }, /* 'f' */
887 { STRING_COMMA_LEN ("gnu.linkonce.wi.") }, /* 'g' */
888 { NULL
, 0 }, /* 'h' */
889 { NULL
, 0 }, /* 'i' */
890 { NULL
, 0 }, /* 'j' */
891 { NULL
, 0 }, /* 'k' */
892 { STRING_COMMA_LEN ("line") }, /* 'l' */
893 { NULL
, 0 }, /* 'm' */
894 { NULL
, 0 }, /* 'n' */
895 { NULL
, 0 }, /* 'o' */
896 { NULL
, 0 }, /* 'p' */
897 { NULL
, 0 }, /* 'q' */
898 { NULL
, 0 }, /* 'r' */
899 { STRING_COMMA_LEN ("stab") }, /* 's' */
900 { NULL
, 0 }, /* 't' */
901 { NULL
, 0 }, /* 'u' */
902 { NULL
, 0 }, /* 'v' */
903 { NULL
, 0 }, /* 'w' */
904 { NULL
, 0 }, /* 'x' */
905 { NULL
, 0 }, /* 'y' */
906 { STRING_COMMA_LEN ("zdebug") } /* 'z' */
911 int i
= name
[1] - 'd';
913 && i
< (int) ARRAY_SIZE (debug_sections
)
914 && debug_sections
[i
].name
!= NULL
915 && strncmp (&name
[1], debug_sections
[i
].name
,
916 debug_sections
[i
].len
) == 0)
917 flags
|= SEC_DEBUGGING
;
921 /* As a GNU extension, if the name begins with .gnu.linkonce, we
922 only link a single copy of the section. This is used to support
923 g++. g++ will emit each template expansion in its own section.
924 The symbols will be defined as weak, so that multiple definitions
925 are permitted. The GNU linker extension is to actually discard
926 all but one of the sections. */
927 if (CONST_STRNEQ (name
, ".gnu.linkonce")
928 && elf_next_in_group (newsect
) == NULL
)
929 flags
|= SEC_LINK_ONCE
| SEC_LINK_DUPLICATES_DISCARD
;
931 bed
= get_elf_backend_data (abfd
);
932 if (bed
->elf_backend_section_flags
)
933 if (! bed
->elf_backend_section_flags (&flags
, hdr
))
936 if (! bfd_set_section_flags (abfd
, newsect
, flags
))
939 /* We do not parse the PT_NOTE segments as we are interested even in the
940 separate debug info files which may have the segments offsets corrupted.
941 PT_NOTEs from the core files are currently not parsed using BFD. */
942 if (hdr
->sh_type
== SHT_NOTE
)
946 if (!bfd_malloc_and_get_section (abfd
, newsect
, &contents
))
949 elf_parse_notes (abfd
, (char *) contents
, hdr
->sh_size
, -1);
953 if ((flags
& SEC_ALLOC
) != 0)
955 Elf_Internal_Phdr
*phdr
;
956 unsigned int i
, nload
;
958 /* Some ELF linkers produce binaries with all the program header
959 p_paddr fields zero. If we have such a binary with more than
960 one PT_LOAD header, then leave the section lma equal to vma
961 so that we don't create sections with overlapping lma. */
962 phdr
= elf_tdata (abfd
)->phdr
;
963 for (nload
= 0, i
= 0; i
< elf_elfheader (abfd
)->e_phnum
; i
++, phdr
++)
964 if (phdr
->p_paddr
!= 0)
966 else if (phdr
->p_type
== PT_LOAD
&& phdr
->p_memsz
!= 0)
968 if (i
>= elf_elfheader (abfd
)->e_phnum
&& nload
> 1)
971 phdr
= elf_tdata (abfd
)->phdr
;
972 for (i
= 0; i
< elf_elfheader (abfd
)->e_phnum
; i
++, phdr
++)
974 if (phdr
->p_type
== PT_LOAD
975 && ELF_IS_SECTION_IN_SEGMENT (hdr
, phdr
))
977 if ((flags
& SEC_LOAD
) == 0)
978 newsect
->lma
= (phdr
->p_paddr
979 + hdr
->sh_addr
- phdr
->p_vaddr
);
981 /* We used to use the same adjustment for SEC_LOAD
982 sections, but that doesn't work if the segment
983 is packed with code from multiple VMAs.
984 Instead we calculate the section LMA based on
985 the segment LMA. It is assumed that the
986 segment will contain sections with contiguous
987 LMAs, even if the VMAs are not. */
988 newsect
->lma
= (phdr
->p_paddr
989 + hdr
->sh_offset
- phdr
->p_offset
);
991 /* With contiguous segments, we can't tell from file
992 offsets whether a section with zero size should
993 be placed at the end of one segment or the
994 beginning of the next. Decide based on vaddr. */
995 if (hdr
->sh_addr
>= phdr
->p_vaddr
996 && (hdr
->sh_addr
+ hdr
->sh_size
997 <= phdr
->p_vaddr
+ phdr
->p_memsz
))
1006 const char *const bfd_elf_section_type_names
[] = {
1007 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
1008 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
1009 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
1012 /* ELF relocs are against symbols. If we are producing relocatable
1013 output, and the reloc is against an external symbol, and nothing
1014 has given us any additional addend, the resulting reloc will also
1015 be against the same symbol. In such a case, we don't want to
1016 change anything about the way the reloc is handled, since it will
1017 all be done at final link time. Rather than put special case code
1018 into bfd_perform_relocation, all the reloc types use this howto
1019 function. It just short circuits the reloc if producing
1020 relocatable output against an external symbol. */
1022 bfd_reloc_status_type
1023 bfd_elf_generic_reloc (bfd
*abfd ATTRIBUTE_UNUSED
,
1024 arelent
*reloc_entry
,
1026 void *data ATTRIBUTE_UNUSED
,
1027 asection
*input_section
,
1029 char **error_message ATTRIBUTE_UNUSED
)
1031 if (output_bfd
!= NULL
1032 && (symbol
->flags
& BSF_SECTION_SYM
) == 0
1033 && (! reloc_entry
->howto
->partial_inplace
1034 || reloc_entry
->addend
== 0))
1036 reloc_entry
->address
+= input_section
->output_offset
;
1037 return bfd_reloc_ok
;
1040 return bfd_reloc_continue
;
1043 /* Copy the program header and other data from one object module to
1047 _bfd_elf_copy_private_bfd_data (bfd
*ibfd
, bfd
*obfd
)
1049 if (bfd_get_flavour (ibfd
) != bfd_target_elf_flavour
1050 || bfd_get_flavour (obfd
) != bfd_target_elf_flavour
)
1053 BFD_ASSERT (!elf_flags_init (obfd
)
1054 || (elf_elfheader (obfd
)->e_flags
1055 == elf_elfheader (ibfd
)->e_flags
));
1057 elf_gp (obfd
) = elf_gp (ibfd
);
1058 elf_elfheader (obfd
)->e_flags
= elf_elfheader (ibfd
)->e_flags
;
1059 elf_flags_init (obfd
) = TRUE
;
1061 /* Copy object attributes. */
1062 _bfd_elf_copy_obj_attributes (ibfd
, obfd
);
1068 get_segment_type (unsigned int p_type
)
1073 case PT_NULL
: pt
= "NULL"; break;
1074 case PT_LOAD
: pt
= "LOAD"; break;
1075 case PT_DYNAMIC
: pt
= "DYNAMIC"; break;
1076 case PT_INTERP
: pt
= "INTERP"; break;
1077 case PT_NOTE
: pt
= "NOTE"; break;
1078 case PT_SHLIB
: pt
= "SHLIB"; break;
1079 case PT_PHDR
: pt
= "PHDR"; break;
1080 case PT_TLS
: pt
= "TLS"; break;
1081 case PT_GNU_EH_FRAME
: pt
= "EH_FRAME"; break;
1082 case PT_GNU_STACK
: pt
= "STACK"; break;
1083 case PT_GNU_RELRO
: pt
= "RELRO"; break;
1084 default: pt
= NULL
; break;
1089 /* Print out the program headers. */
1092 _bfd_elf_print_private_bfd_data (bfd
*abfd
, void *farg
)
1095 Elf_Internal_Phdr
*p
;
1097 bfd_byte
*dynbuf
= NULL
;
1099 p
= elf_tdata (abfd
)->phdr
;
1104 fprintf (f
, _("\nProgram Header:\n"));
1105 c
= elf_elfheader (abfd
)->e_phnum
;
1106 for (i
= 0; i
< c
; i
++, p
++)
1108 const char *pt
= get_segment_type (p
->p_type
);
1113 sprintf (buf
, "0x%lx", p
->p_type
);
1116 fprintf (f
, "%8s off 0x", pt
);
1117 bfd_fprintf_vma (abfd
, f
, p
->p_offset
);
1118 fprintf (f
, " vaddr 0x");
1119 bfd_fprintf_vma (abfd
, f
, p
->p_vaddr
);
1120 fprintf (f
, " paddr 0x");
1121 bfd_fprintf_vma (abfd
, f
, p
->p_paddr
);
1122 fprintf (f
, " align 2**%u\n", bfd_log2 (p
->p_align
));
1123 fprintf (f
, " filesz 0x");
1124 bfd_fprintf_vma (abfd
, f
, p
->p_filesz
);
1125 fprintf (f
, " memsz 0x");
1126 bfd_fprintf_vma (abfd
, f
, p
->p_memsz
);
1127 fprintf (f
, " flags %c%c%c",
1128 (p
->p_flags
& PF_R
) != 0 ? 'r' : '-',
1129 (p
->p_flags
& PF_W
) != 0 ? 'w' : '-',
1130 (p
->p_flags
& PF_X
) != 0 ? 'x' : '-');
1131 if ((p
->p_flags
&~ (unsigned) (PF_R
| PF_W
| PF_X
)) != 0)
1132 fprintf (f
, " %lx", p
->p_flags
&~ (unsigned) (PF_R
| PF_W
| PF_X
));
1137 s
= bfd_get_section_by_name (abfd
, ".dynamic");
1140 unsigned int elfsec
;
1141 unsigned long shlink
;
1142 bfd_byte
*extdyn
, *extdynend
;
1144 void (*swap_dyn_in
) (bfd
*, const void *, Elf_Internal_Dyn
*);
1146 fprintf (f
, _("\nDynamic Section:\n"));
1148 if (!bfd_malloc_and_get_section (abfd
, s
, &dynbuf
))
1151 elfsec
= _bfd_elf_section_from_bfd_section (abfd
, s
);
1152 if (elfsec
== SHN_BAD
)
1154 shlink
= elf_elfsections (abfd
)[elfsec
]->sh_link
;
1156 extdynsize
= get_elf_backend_data (abfd
)->s
->sizeof_dyn
;
1157 swap_dyn_in
= get_elf_backend_data (abfd
)->s
->swap_dyn_in
;
1160 extdynend
= extdyn
+ s
->size
;
1161 for (; extdyn
< extdynend
; extdyn
+= extdynsize
)
1163 Elf_Internal_Dyn dyn
;
1164 const char *name
= "";
1166 bfd_boolean stringp
;
1167 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
1169 (*swap_dyn_in
) (abfd
, extdyn
, &dyn
);
1171 if (dyn
.d_tag
== DT_NULL
)
1178 if (bed
->elf_backend_get_target_dtag
)
1179 name
= (*bed
->elf_backend_get_target_dtag
) (dyn
.d_tag
);
1181 if (!strcmp (name
, ""))
1183 sprintf (ab
, "0x%lx", (unsigned long) dyn
.d_tag
);
1188 case DT_NEEDED
: name
= "NEEDED"; stringp
= TRUE
; break;
1189 case DT_PLTRELSZ
: name
= "PLTRELSZ"; break;
1190 case DT_PLTGOT
: name
= "PLTGOT"; break;
1191 case DT_HASH
: name
= "HASH"; break;
1192 case DT_STRTAB
: name
= "STRTAB"; break;
1193 case DT_SYMTAB
: name
= "SYMTAB"; break;
1194 case DT_RELA
: name
= "RELA"; break;
1195 case DT_RELASZ
: name
= "RELASZ"; break;
1196 case DT_RELAENT
: name
= "RELAENT"; break;
1197 case DT_STRSZ
: name
= "STRSZ"; break;
1198 case DT_SYMENT
: name
= "SYMENT"; break;
1199 case DT_INIT
: name
= "INIT"; break;
1200 case DT_FINI
: name
= "FINI"; break;
1201 case DT_SONAME
: name
= "SONAME"; stringp
= TRUE
; break;
1202 case DT_RPATH
: name
= "RPATH"; stringp
= TRUE
; break;
1203 case DT_SYMBOLIC
: name
= "SYMBOLIC"; break;
1204 case DT_REL
: name
= "REL"; break;
1205 case DT_RELSZ
: name
= "RELSZ"; break;
1206 case DT_RELENT
: name
= "RELENT"; break;
1207 case DT_PLTREL
: name
= "PLTREL"; break;
1208 case DT_DEBUG
: name
= "DEBUG"; break;
1209 case DT_TEXTREL
: name
= "TEXTREL"; break;
1210 case DT_JMPREL
: name
= "JMPREL"; break;
1211 case DT_BIND_NOW
: name
= "BIND_NOW"; break;
1212 case DT_INIT_ARRAY
: name
= "INIT_ARRAY"; break;
1213 case DT_FINI_ARRAY
: name
= "FINI_ARRAY"; break;
1214 case DT_INIT_ARRAYSZ
: name
= "INIT_ARRAYSZ"; break;
1215 case DT_FINI_ARRAYSZ
: name
= "FINI_ARRAYSZ"; break;
1216 case DT_RUNPATH
: name
= "RUNPATH"; stringp
= TRUE
; break;
1217 case DT_FLAGS
: name
= "FLAGS"; break;
1218 case DT_PREINIT_ARRAY
: name
= "PREINIT_ARRAY"; break;
1219 case DT_PREINIT_ARRAYSZ
: name
= "PREINIT_ARRAYSZ"; break;
1220 case DT_CHECKSUM
: name
= "CHECKSUM"; break;
1221 case DT_PLTPADSZ
: name
= "PLTPADSZ"; break;
1222 case DT_MOVEENT
: name
= "MOVEENT"; break;
1223 case DT_MOVESZ
: name
= "MOVESZ"; break;
1224 case DT_FEATURE
: name
= "FEATURE"; break;
1225 case DT_POSFLAG_1
: name
= "POSFLAG_1"; break;
1226 case DT_SYMINSZ
: name
= "SYMINSZ"; break;
1227 case DT_SYMINENT
: name
= "SYMINENT"; break;
1228 case DT_CONFIG
: name
= "CONFIG"; stringp
= TRUE
; break;
1229 case DT_DEPAUDIT
: name
= "DEPAUDIT"; stringp
= TRUE
; break;
1230 case DT_AUDIT
: name
= "AUDIT"; stringp
= TRUE
; break;
1231 case DT_PLTPAD
: name
= "PLTPAD"; break;
1232 case DT_MOVETAB
: name
= "MOVETAB"; break;
1233 case DT_SYMINFO
: name
= "SYMINFO"; break;
1234 case DT_RELACOUNT
: name
= "RELACOUNT"; break;
1235 case DT_RELCOUNT
: name
= "RELCOUNT"; break;
1236 case DT_FLAGS_1
: name
= "FLAGS_1"; break;
1237 case DT_VERSYM
: name
= "VERSYM"; break;
1238 case DT_VERDEF
: name
= "VERDEF"; break;
1239 case DT_VERDEFNUM
: name
= "VERDEFNUM"; break;
1240 case DT_VERNEED
: name
= "VERNEED"; break;
1241 case DT_VERNEEDNUM
: name
= "VERNEEDNUM"; break;
1242 case DT_AUXILIARY
: name
= "AUXILIARY"; stringp
= TRUE
; break;
1243 case DT_USED
: name
= "USED"; break;
1244 case DT_FILTER
: name
= "FILTER"; stringp
= TRUE
; break;
1245 case DT_GNU_HASH
: name
= "GNU_HASH"; break;
1248 fprintf (f
, " %-20s ", name
);
1252 bfd_fprintf_vma (abfd
, f
, dyn
.d_un
.d_val
);
1257 unsigned int tagv
= dyn
.d_un
.d_val
;
1259 string
= bfd_elf_string_from_elf_section (abfd
, shlink
, tagv
);
1262 fprintf (f
, "%s", string
);
1271 if ((elf_dynverdef (abfd
) != 0 && elf_tdata (abfd
)->verdef
== NULL
)
1272 || (elf_dynverref (abfd
) != 0 && elf_tdata (abfd
)->verref
== NULL
))
1274 if (! _bfd_elf_slurp_version_tables (abfd
, FALSE
))
1278 if (elf_dynverdef (abfd
) != 0)
1280 Elf_Internal_Verdef
*t
;
1282 fprintf (f
, _("\nVersion definitions:\n"));
1283 for (t
= elf_tdata (abfd
)->verdef
; t
!= NULL
; t
= t
->vd_nextdef
)
1285 fprintf (f
, "%d 0x%2.2x 0x%8.8lx %s\n", t
->vd_ndx
,
1286 t
->vd_flags
, t
->vd_hash
,
1287 t
->vd_nodename
? t
->vd_nodename
: "<corrupt>");
1288 if (t
->vd_auxptr
!= NULL
&& t
->vd_auxptr
->vda_nextptr
!= NULL
)
1290 Elf_Internal_Verdaux
*a
;
1293 for (a
= t
->vd_auxptr
->vda_nextptr
;
1297 a
->vda_nodename
? a
->vda_nodename
: "<corrupt>");
1303 if (elf_dynverref (abfd
) != 0)
1305 Elf_Internal_Verneed
*t
;
1307 fprintf (f
, _("\nVersion References:\n"));
1308 for (t
= elf_tdata (abfd
)->verref
; t
!= NULL
; t
= t
->vn_nextref
)
1310 Elf_Internal_Vernaux
*a
;
1312 fprintf (f
, _(" required from %s:\n"),
1313 t
->vn_filename
? t
->vn_filename
: "<corrupt>");
1314 for (a
= t
->vn_auxptr
; a
!= NULL
; a
= a
->vna_nextptr
)
1315 fprintf (f
, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a
->vna_hash
,
1316 a
->vna_flags
, a
->vna_other
,
1317 a
->vna_nodename
? a
->vna_nodename
: "<corrupt>");
1329 /* Display ELF-specific fields of a symbol. */
1332 bfd_elf_print_symbol (bfd
*abfd
,
1335 bfd_print_symbol_type how
)
1340 case bfd_print_symbol_name
:
1341 fprintf (file
, "%s", symbol
->name
);
1343 case bfd_print_symbol_more
:
1344 fprintf (file
, "elf ");
1345 bfd_fprintf_vma (abfd
, file
, symbol
->value
);
1346 fprintf (file
, " %lx", (unsigned long) symbol
->flags
);
1348 case bfd_print_symbol_all
:
1350 const char *section_name
;
1351 const char *name
= NULL
;
1352 const struct elf_backend_data
*bed
;
1353 unsigned char st_other
;
1356 section_name
= symbol
->section
? symbol
->section
->name
: "(*none*)";
1358 bed
= get_elf_backend_data (abfd
);
1359 if (bed
->elf_backend_print_symbol_all
)
1360 name
= (*bed
->elf_backend_print_symbol_all
) (abfd
, filep
, symbol
);
1364 name
= symbol
->name
;
1365 bfd_print_symbol_vandf (abfd
, file
, symbol
);
1368 fprintf (file
, " %s\t", section_name
);
1369 /* Print the "other" value for a symbol. For common symbols,
1370 we've already printed the size; now print the alignment.
1371 For other symbols, we have no specified alignment, and
1372 we've printed the address; now print the size. */
1373 if (symbol
->section
&& bfd_is_com_section (symbol
->section
))
1374 val
= ((elf_symbol_type
*) symbol
)->internal_elf_sym
.st_value
;
1376 val
= ((elf_symbol_type
*) symbol
)->internal_elf_sym
.st_size
;
1377 bfd_fprintf_vma (abfd
, file
, val
);
1379 /* If we have version information, print it. */
1380 if (elf_tdata (abfd
)->dynversym_section
!= 0
1381 && (elf_tdata (abfd
)->dynverdef_section
!= 0
1382 || elf_tdata (abfd
)->dynverref_section
!= 0))
1384 unsigned int vernum
;
1385 const char *version_string
;
1387 vernum
= ((elf_symbol_type
*) symbol
)->version
& VERSYM_VERSION
;
1390 version_string
= "";
1391 else if (vernum
== 1)
1392 version_string
= "Base";
1393 else if (vernum
<= elf_tdata (abfd
)->cverdefs
)
1395 elf_tdata (abfd
)->verdef
[vernum
- 1].vd_nodename
;
1398 Elf_Internal_Verneed
*t
;
1400 version_string
= "";
1401 for (t
= elf_tdata (abfd
)->verref
;
1405 Elf_Internal_Vernaux
*a
;
1407 for (a
= t
->vn_auxptr
; a
!= NULL
; a
= a
->vna_nextptr
)
1409 if (a
->vna_other
== vernum
)
1411 version_string
= a
->vna_nodename
;
1418 if ((((elf_symbol_type
*) symbol
)->version
& VERSYM_HIDDEN
) == 0)
1419 fprintf (file
, " %-11s", version_string
);
1424 fprintf (file
, " (%s)", version_string
);
1425 for (i
= 10 - strlen (version_string
); i
> 0; --i
)
1430 /* If the st_other field is not zero, print it. */
1431 st_other
= ((elf_symbol_type
*) symbol
)->internal_elf_sym
.st_other
;
1436 case STV_INTERNAL
: fprintf (file
, " .internal"); break;
1437 case STV_HIDDEN
: fprintf (file
, " .hidden"); break;
1438 case STV_PROTECTED
: fprintf (file
, " .protected"); break;
1440 /* Some other non-defined flags are also present, so print
1442 fprintf (file
, " 0x%02x", (unsigned int) st_other
);
1445 fprintf (file
, " %s", name
);
1451 /* Allocate an ELF string table--force the first byte to be zero. */
1453 struct bfd_strtab_hash
*
1454 _bfd_elf_stringtab_init (void)
1456 struct bfd_strtab_hash
*ret
;
1458 ret
= _bfd_stringtab_init ();
1463 loc
= _bfd_stringtab_add (ret
, "", TRUE
, FALSE
);
1464 BFD_ASSERT (loc
== 0 || loc
== (bfd_size_type
) -1);
1465 if (loc
== (bfd_size_type
) -1)
1467 _bfd_stringtab_free (ret
);
1474 /* ELF .o/exec file reading */
1476 /* Create a new bfd section from an ELF section header. */
1479 bfd_section_from_shdr (bfd
*abfd
, unsigned int shindex
)
1481 Elf_Internal_Shdr
*hdr
;
1482 Elf_Internal_Ehdr
*ehdr
;
1483 const struct elf_backend_data
*bed
;
1486 if (shindex
>= elf_numsections (abfd
))
1489 hdr
= elf_elfsections (abfd
)[shindex
];
1490 ehdr
= elf_elfheader (abfd
);
1491 name
= bfd_elf_string_from_elf_section (abfd
, ehdr
->e_shstrndx
,
1496 bed
= get_elf_backend_data (abfd
);
1497 switch (hdr
->sh_type
)
1500 /* Inactive section. Throw it away. */
1503 case SHT_PROGBITS
: /* Normal section with contents. */
1504 case SHT_NOBITS
: /* .bss section. */
1505 case SHT_HASH
: /* .hash section. */
1506 case SHT_NOTE
: /* .note section. */
1507 case SHT_INIT_ARRAY
: /* .init_array section. */
1508 case SHT_FINI_ARRAY
: /* .fini_array section. */
1509 case SHT_PREINIT_ARRAY
: /* .preinit_array section. */
1510 case SHT_GNU_LIBLIST
: /* .gnu.liblist section. */
1511 case SHT_GNU_HASH
: /* .gnu.hash section. */
1512 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
);
1514 case SHT_DYNAMIC
: /* Dynamic linking information. */
1515 if (! _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
))
1517 if (hdr
->sh_link
> elf_numsections (abfd
)
1518 || elf_elfsections (abfd
)[hdr
->sh_link
] == NULL
)
1520 if (elf_elfsections (abfd
)[hdr
->sh_link
]->sh_type
!= SHT_STRTAB
)
1522 Elf_Internal_Shdr
*dynsymhdr
;
1524 /* The shared libraries distributed with hpux11 have a bogus
1525 sh_link field for the ".dynamic" section. Find the
1526 string table for the ".dynsym" section instead. */
1527 if (elf_dynsymtab (abfd
) != 0)
1529 dynsymhdr
= elf_elfsections (abfd
)[elf_dynsymtab (abfd
)];
1530 hdr
->sh_link
= dynsymhdr
->sh_link
;
1534 unsigned int i
, num_sec
;
1536 num_sec
= elf_numsections (abfd
);
1537 for (i
= 1; i
< num_sec
; i
++)
1539 dynsymhdr
= elf_elfsections (abfd
)[i
];
1540 if (dynsymhdr
->sh_type
== SHT_DYNSYM
)
1542 hdr
->sh_link
= dynsymhdr
->sh_link
;
1550 case SHT_SYMTAB
: /* A symbol table */
1551 if (elf_onesymtab (abfd
) == shindex
)
1554 if (hdr
->sh_entsize
!= bed
->s
->sizeof_sym
)
1556 if (hdr
->sh_info
* hdr
->sh_entsize
> hdr
->sh_size
)
1558 BFD_ASSERT (elf_onesymtab (abfd
) == 0);
1559 elf_onesymtab (abfd
) = shindex
;
1560 elf_tdata (abfd
)->symtab_hdr
= *hdr
;
1561 elf_elfsections (abfd
)[shindex
] = hdr
= &elf_tdata (abfd
)->symtab_hdr
;
1562 abfd
->flags
|= HAS_SYMS
;
1564 /* Sometimes a shared object will map in the symbol table. If
1565 SHF_ALLOC is set, and this is a shared object, then we also
1566 treat this section as a BFD section. We can not base the
1567 decision purely on SHF_ALLOC, because that flag is sometimes
1568 set in a relocatable object file, which would confuse the
1570 if ((hdr
->sh_flags
& SHF_ALLOC
) != 0
1571 && (abfd
->flags
& DYNAMIC
) != 0
1572 && ! _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
,
1576 /* Go looking for SHT_SYMTAB_SHNDX too, since if there is one we
1577 can't read symbols without that section loaded as well. It
1578 is most likely specified by the next section header. */
1579 if (elf_elfsections (abfd
)[elf_symtab_shndx (abfd
)]->sh_link
!= shindex
)
1581 unsigned int i
, num_sec
;
1583 num_sec
= elf_numsections (abfd
);
1584 for (i
= shindex
+ 1; i
< num_sec
; i
++)
1586 Elf_Internal_Shdr
*hdr2
= elf_elfsections (abfd
)[i
];
1587 if (hdr2
->sh_type
== SHT_SYMTAB_SHNDX
1588 && hdr2
->sh_link
== shindex
)
1592 for (i
= 1; i
< shindex
; i
++)
1594 Elf_Internal_Shdr
*hdr2
= elf_elfsections (abfd
)[i
];
1595 if (hdr2
->sh_type
== SHT_SYMTAB_SHNDX
1596 && hdr2
->sh_link
== shindex
)
1600 return bfd_section_from_shdr (abfd
, i
);
1604 case SHT_DYNSYM
: /* A dynamic symbol table */
1605 if (elf_dynsymtab (abfd
) == shindex
)
1608 if (hdr
->sh_entsize
!= bed
->s
->sizeof_sym
)
1610 BFD_ASSERT (elf_dynsymtab (abfd
) == 0);
1611 elf_dynsymtab (abfd
) = shindex
;
1612 elf_tdata (abfd
)->dynsymtab_hdr
= *hdr
;
1613 elf_elfsections (abfd
)[shindex
] = hdr
= &elf_tdata (abfd
)->dynsymtab_hdr
;
1614 abfd
->flags
|= HAS_SYMS
;
1616 /* Besides being a symbol table, we also treat this as a regular
1617 section, so that objcopy can handle it. */
1618 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
);
1620 case SHT_SYMTAB_SHNDX
: /* Symbol section indices when >64k sections */
1621 if (elf_symtab_shndx (abfd
) == shindex
)
1624 BFD_ASSERT (elf_symtab_shndx (abfd
) == 0);
1625 elf_symtab_shndx (abfd
) = shindex
;
1626 elf_tdata (abfd
)->symtab_shndx_hdr
= *hdr
;
1627 elf_elfsections (abfd
)[shindex
] = &elf_tdata (abfd
)->symtab_shndx_hdr
;
1630 case SHT_STRTAB
: /* A string table */
1631 if (hdr
->bfd_section
!= NULL
)
1633 if (ehdr
->e_shstrndx
== shindex
)
1635 elf_tdata (abfd
)->shstrtab_hdr
= *hdr
;
1636 elf_elfsections (abfd
)[shindex
] = &elf_tdata (abfd
)->shstrtab_hdr
;
1639 if (elf_elfsections (abfd
)[elf_onesymtab (abfd
)]->sh_link
== shindex
)
1642 elf_tdata (abfd
)->strtab_hdr
= *hdr
;
1643 elf_elfsections (abfd
)[shindex
] = &elf_tdata (abfd
)->strtab_hdr
;
1646 if (elf_elfsections (abfd
)[elf_dynsymtab (abfd
)]->sh_link
== shindex
)
1649 elf_tdata (abfd
)->dynstrtab_hdr
= *hdr
;
1650 hdr
= &elf_tdata (abfd
)->dynstrtab_hdr
;
1651 elf_elfsections (abfd
)[shindex
] = hdr
;
1652 /* We also treat this as a regular section, so that objcopy
1654 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
,
1658 /* If the string table isn't one of the above, then treat it as a
1659 regular section. We need to scan all the headers to be sure,
1660 just in case this strtab section appeared before the above. */
1661 if (elf_onesymtab (abfd
) == 0 || elf_dynsymtab (abfd
) == 0)
1663 unsigned int i
, num_sec
;
1665 num_sec
= elf_numsections (abfd
);
1666 for (i
= 1; i
< num_sec
; i
++)
1668 Elf_Internal_Shdr
*hdr2
= elf_elfsections (abfd
)[i
];
1669 if (hdr2
->sh_link
== shindex
)
1671 /* Prevent endless recursion on broken objects. */
1674 if (! bfd_section_from_shdr (abfd
, i
))
1676 if (elf_onesymtab (abfd
) == i
)
1678 if (elf_dynsymtab (abfd
) == i
)
1679 goto dynsymtab_strtab
;
1683 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
);
1687 /* *These* do a lot of work -- but build no sections! */
1689 asection
*target_sect
;
1690 Elf_Internal_Shdr
*hdr2
;
1691 unsigned int num_sec
= elf_numsections (abfd
);
1694 != (bfd_size_type
) (hdr
->sh_type
== SHT_REL
1695 ? bed
->s
->sizeof_rel
: bed
->s
->sizeof_rela
))
1698 /* Check for a bogus link to avoid crashing. */
1699 if (hdr
->sh_link
>= num_sec
)
1701 ((*_bfd_error_handler
)
1702 (_("%B: invalid link %lu for reloc section %s (index %u)"),
1703 abfd
, hdr
->sh_link
, name
, shindex
));
1704 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
,
1708 /* For some incomprehensible reason Oracle distributes
1709 libraries for Solaris in which some of the objects have
1710 bogus sh_link fields. It would be nice if we could just
1711 reject them, but, unfortunately, some people need to use
1712 them. We scan through the section headers; if we find only
1713 one suitable symbol table, we clobber the sh_link to point
1714 to it. I hope this doesn't break anything.
1716 Don't do it on executable nor shared library. */
1717 if ((abfd
->flags
& (DYNAMIC
| EXEC_P
)) == 0
1718 && elf_elfsections (abfd
)[hdr
->sh_link
]->sh_type
!= SHT_SYMTAB
1719 && elf_elfsections (abfd
)[hdr
->sh_link
]->sh_type
!= SHT_DYNSYM
)
1725 for (scan
= 1; scan
< num_sec
; scan
++)
1727 if (elf_elfsections (abfd
)[scan
]->sh_type
== SHT_SYMTAB
1728 || elf_elfsections (abfd
)[scan
]->sh_type
== SHT_DYNSYM
)
1739 hdr
->sh_link
= found
;
1742 /* Get the symbol table. */
1743 if ((elf_elfsections (abfd
)[hdr
->sh_link
]->sh_type
== SHT_SYMTAB
1744 || elf_elfsections (abfd
)[hdr
->sh_link
]->sh_type
== SHT_DYNSYM
)
1745 && ! bfd_section_from_shdr (abfd
, hdr
->sh_link
))
1748 /* If this reloc section does not use the main symbol table we
1749 don't treat it as a reloc section. BFD can't adequately
1750 represent such a section, so at least for now, we don't
1751 try. We just present it as a normal section. We also
1752 can't use it as a reloc section if it points to the null
1753 section, an invalid section, another reloc section, or its
1754 sh_link points to the null section. */
1755 if (hdr
->sh_link
!= elf_onesymtab (abfd
)
1756 || hdr
->sh_link
== SHN_UNDEF
1757 || hdr
->sh_info
== SHN_UNDEF
1758 || hdr
->sh_info
>= num_sec
1759 || elf_elfsections (abfd
)[hdr
->sh_info
]->sh_type
== SHT_REL
1760 || elf_elfsections (abfd
)[hdr
->sh_info
]->sh_type
== SHT_RELA
)
1761 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
,
1764 if (! bfd_section_from_shdr (abfd
, hdr
->sh_info
))
1766 target_sect
= bfd_section_from_elf_index (abfd
, hdr
->sh_info
);
1767 if (target_sect
== NULL
)
1770 if ((target_sect
->flags
& SEC_RELOC
) == 0
1771 || target_sect
->reloc_count
== 0)
1772 hdr2
= &elf_section_data (target_sect
)->rel_hdr
;
1776 BFD_ASSERT (elf_section_data (target_sect
)->rel_hdr2
== NULL
);
1777 amt
= sizeof (*hdr2
);
1778 hdr2
= bfd_alloc (abfd
, amt
);
1781 elf_section_data (target_sect
)->rel_hdr2
= hdr2
;
1784 elf_elfsections (abfd
)[shindex
] = hdr2
;
1785 target_sect
->reloc_count
+= NUM_SHDR_ENTRIES (hdr
);
1786 target_sect
->flags
|= SEC_RELOC
;
1787 target_sect
->relocation
= NULL
;
1788 target_sect
->rel_filepos
= hdr
->sh_offset
;
1789 /* In the section to which the relocations apply, mark whether
1790 its relocations are of the REL or RELA variety. */
1791 if (hdr
->sh_size
!= 0)
1792 target_sect
->use_rela_p
= hdr
->sh_type
== SHT_RELA
;
1793 abfd
->flags
|= HAS_RELOC
;
1797 case SHT_GNU_verdef
:
1798 elf_dynverdef (abfd
) = shindex
;
1799 elf_tdata (abfd
)->dynverdef_hdr
= *hdr
;
1800 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
);
1802 case SHT_GNU_versym
:
1803 if (hdr
->sh_entsize
!= sizeof (Elf_External_Versym
))
1805 elf_dynversym (abfd
) = shindex
;
1806 elf_tdata (abfd
)->dynversym_hdr
= *hdr
;
1807 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
);
1809 case SHT_GNU_verneed
:
1810 elf_dynverref (abfd
) = shindex
;
1811 elf_tdata (abfd
)->dynverref_hdr
= *hdr
;
1812 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
);
1818 if (! IS_VALID_GROUP_SECTION_HEADER (hdr
))
1820 if (!_bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
))
1822 if (hdr
->contents
!= NULL
)
1824 Elf_Internal_Group
*idx
= (Elf_Internal_Group
*) hdr
->contents
;
1825 unsigned int n_elt
= hdr
->sh_size
/ GRP_ENTRY_SIZE
;
1828 if (idx
->flags
& GRP_COMDAT
)
1829 hdr
->bfd_section
->flags
1830 |= SEC_LINK_ONCE
| SEC_LINK_DUPLICATES_DISCARD
;
1832 /* We try to keep the same section order as it comes in. */
1834 while (--n_elt
!= 0)
1838 if (idx
->shdr
!= NULL
1839 && (s
= idx
->shdr
->bfd_section
) != NULL
1840 && elf_next_in_group (s
) != NULL
)
1842 elf_next_in_group (hdr
->bfd_section
) = s
;
1850 /* Possibly an attributes section. */
1851 if (hdr
->sh_type
== SHT_GNU_ATTRIBUTES
1852 || hdr
->sh_type
== bed
->obj_attrs_section_type
)
1854 if (! _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
))
1856 _bfd_elf_parse_attributes (abfd
, hdr
);
1860 /* Check for any processor-specific section types. */
1861 if (bed
->elf_backend_section_from_shdr (abfd
, hdr
, name
, shindex
))
1864 if (hdr
->sh_type
>= SHT_LOUSER
&& hdr
->sh_type
<= SHT_HIUSER
)
1866 if ((hdr
->sh_flags
& SHF_ALLOC
) != 0)
1867 /* FIXME: How to properly handle allocated section reserved
1868 for applications? */
1869 (*_bfd_error_handler
)
1870 (_("%B: don't know how to handle allocated, application "
1871 "specific section `%s' [0x%8x]"),
1872 abfd
, name
, hdr
->sh_type
);
1874 /* Allow sections reserved for applications. */
1875 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
,
1878 else if (hdr
->sh_type
>= SHT_LOPROC
1879 && hdr
->sh_type
<= SHT_HIPROC
)
1880 /* FIXME: We should handle this section. */
1881 (*_bfd_error_handler
)
1882 (_("%B: don't know how to handle processor specific section "
1884 abfd
, name
, hdr
->sh_type
);
1885 else if (hdr
->sh_type
>= SHT_LOOS
&& hdr
->sh_type
<= SHT_HIOS
)
1887 /* Unrecognised OS-specific sections. */
1888 if ((hdr
->sh_flags
& SHF_OS_NONCONFORMING
) != 0)
1889 /* SHF_OS_NONCONFORMING indicates that special knowledge is
1890 required to correctly process the section and the file should
1891 be rejected with an error message. */
1892 (*_bfd_error_handler
)
1893 (_("%B: don't know how to handle OS specific section "
1895 abfd
, name
, hdr
->sh_type
);
1897 /* Otherwise it should be processed. */
1898 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
);
1901 /* FIXME: We should handle this section. */
1902 (*_bfd_error_handler
)
1903 (_("%B: don't know how to handle section `%s' [0x%8x]"),
1904 abfd
, name
, hdr
->sh_type
);
1912 /* Return the local symbol specified by ABFD, R_SYMNDX. */
1915 bfd_sym_from_r_symndx (struct sym_cache
*cache
,
1917 unsigned long r_symndx
)
1919 unsigned int ent
= r_symndx
% LOCAL_SYM_CACHE_SIZE
;
1921 if (cache
->abfd
!= abfd
|| cache
->indx
[ent
] != r_symndx
)
1923 Elf_Internal_Shdr
*symtab_hdr
;
1924 unsigned char esym
[sizeof (Elf64_External_Sym
)];
1925 Elf_External_Sym_Shndx eshndx
;
1927 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
1928 if (bfd_elf_get_elf_syms (abfd
, symtab_hdr
, 1, r_symndx
,
1929 &cache
->sym
[ent
], esym
, &eshndx
) == NULL
)
1932 if (cache
->abfd
!= abfd
)
1934 memset (cache
->indx
, -1, sizeof (cache
->indx
));
1937 cache
->indx
[ent
] = r_symndx
;
1940 return &cache
->sym
[ent
];
1943 /* Given an ELF section number, retrieve the corresponding BFD
1947 bfd_section_from_elf_index (bfd
*abfd
, unsigned int index
)
1949 if (index
>= elf_numsections (abfd
))
1951 return elf_elfsections (abfd
)[index
]->bfd_section
;
1954 static const struct bfd_elf_special_section special_sections_b
[] =
1956 { STRING_COMMA_LEN (".bss"), -2, SHT_NOBITS
, SHF_ALLOC
+ SHF_WRITE
},
1957 { NULL
, 0, 0, 0, 0 }
1960 static const struct bfd_elf_special_section special_sections_c
[] =
1962 { STRING_COMMA_LEN (".comment"), 0, SHT_PROGBITS
, 0 },
1963 { NULL
, 0, 0, 0, 0 }
1966 static const struct bfd_elf_special_section special_sections_d
[] =
1968 { STRING_COMMA_LEN (".data"), -2, SHT_PROGBITS
, SHF_ALLOC
+ SHF_WRITE
},
1969 { STRING_COMMA_LEN (".data1"), 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_WRITE
},
1970 { STRING_COMMA_LEN (".debug"), 0, SHT_PROGBITS
, 0 },
1971 { STRING_COMMA_LEN (".debug_line"), 0, SHT_PROGBITS
, 0 },
1972 { STRING_COMMA_LEN (".debug_info"), 0, SHT_PROGBITS
, 0 },
1973 { STRING_COMMA_LEN (".debug_abbrev"), 0, SHT_PROGBITS
, 0 },
1974 { STRING_COMMA_LEN (".debug_aranges"), 0, SHT_PROGBITS
, 0 },
1975 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC
, SHF_ALLOC
},
1976 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB
, SHF_ALLOC
},
1977 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM
, SHF_ALLOC
},
1978 { NULL
, 0, 0, 0, 0 }
1981 static const struct bfd_elf_special_section special_sections_f
[] =
1983 { STRING_COMMA_LEN (".fini"), 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_EXECINSTR
},
1984 { STRING_COMMA_LEN (".fini_array"), 0, SHT_FINI_ARRAY
, SHF_ALLOC
+ SHF_WRITE
},
1985 { NULL
, 0, 0, 0, 0 }
1988 static const struct bfd_elf_special_section special_sections_g
[] =
1990 { STRING_COMMA_LEN (".gnu.linkonce.b"), -2, SHT_NOBITS
, SHF_ALLOC
+ SHF_WRITE
},
1991 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_WRITE
},
1992 { STRING_COMMA_LEN (".gnu.version"), 0, SHT_GNU_versym
, 0 },
1993 { STRING_COMMA_LEN (".gnu.version_d"), 0, SHT_GNU_verdef
, 0 },
1994 { STRING_COMMA_LEN (".gnu.version_r"), 0, SHT_GNU_verneed
, 0 },
1995 { STRING_COMMA_LEN (".gnu.liblist"), 0, SHT_GNU_LIBLIST
, SHF_ALLOC
},
1996 { STRING_COMMA_LEN (".gnu.conflict"), 0, SHT_RELA
, SHF_ALLOC
},
1997 { STRING_COMMA_LEN (".gnu.hash"), 0, SHT_GNU_HASH
, SHF_ALLOC
},
1998 { NULL
, 0, 0, 0, 0 }
2001 static const struct bfd_elf_special_section special_sections_h
[] =
2003 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH
, SHF_ALLOC
},
2004 { NULL
, 0, 0, 0, 0 }
2007 static const struct bfd_elf_special_section special_sections_i
[] =
2009 { STRING_COMMA_LEN (".init"), 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_EXECINSTR
},
2010 { STRING_COMMA_LEN (".init_array"), 0, SHT_INIT_ARRAY
, SHF_ALLOC
+ SHF_WRITE
},
2011 { STRING_COMMA_LEN (".interp"), 0, SHT_PROGBITS
, 0 },
2012 { NULL
, 0, 0, 0, 0 }
2015 static const struct bfd_elf_special_section special_sections_l
[] =
2017 { STRING_COMMA_LEN (".line"), 0, SHT_PROGBITS
, 0 },
2018 { NULL
, 0, 0, 0, 0 }
2021 static const struct bfd_elf_special_section special_sections_n
[] =
2023 { STRING_COMMA_LEN (".note.GNU-stack"), 0, SHT_PROGBITS
, 0 },
2024 { STRING_COMMA_LEN (".note"), -1, SHT_NOTE
, 0 },
2025 { NULL
, 0, 0, 0, 0 }
2028 static const struct bfd_elf_special_section special_sections_p
[] =
2030 { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY
, SHF_ALLOC
+ SHF_WRITE
},
2031 { STRING_COMMA_LEN (".plt"), 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_EXECINSTR
},
2032 { NULL
, 0, 0, 0, 0 }
2035 static const struct bfd_elf_special_section special_sections_r
[] =
2037 { STRING_COMMA_LEN (".rodata"), -2, SHT_PROGBITS
, SHF_ALLOC
},
2038 { STRING_COMMA_LEN (".rodata1"), 0, SHT_PROGBITS
, SHF_ALLOC
},
2039 { STRING_COMMA_LEN (".rela"), -1, SHT_RELA
, 0 },
2040 { STRING_COMMA_LEN (".rel"), -1, SHT_REL
, 0 },
2041 { NULL
, 0, 0, 0, 0 }
2044 static const struct bfd_elf_special_section special_sections_s
[] =
2046 { STRING_COMMA_LEN (".shstrtab"), 0, SHT_STRTAB
, 0 },
2047 { STRING_COMMA_LEN (".strtab"), 0, SHT_STRTAB
, 0 },
2048 { STRING_COMMA_LEN (".symtab"), 0, SHT_SYMTAB
, 0 },
2049 /* See struct bfd_elf_special_section declaration for the semantics of
2050 this special case where .prefix_length != strlen (.prefix). */
2051 { ".stabstr", 5, 3, SHT_STRTAB
, 0 },
2052 { NULL
, 0, 0, 0, 0 }
2055 static const struct bfd_elf_special_section special_sections_t
[] =
2057 { STRING_COMMA_LEN (".text"), -2, SHT_PROGBITS
, SHF_ALLOC
+ SHF_EXECINSTR
},
2058 { STRING_COMMA_LEN (".tbss"), -2, SHT_NOBITS
, SHF_ALLOC
+ SHF_WRITE
+ SHF_TLS
},
2059 { STRING_COMMA_LEN (".tdata"), -2, SHT_PROGBITS
, SHF_ALLOC
+ SHF_WRITE
+ SHF_TLS
},
2060 { NULL
, 0, 0, 0, 0 }
2063 static const struct bfd_elf_special_section special_sections_z
[] =
2065 { STRING_COMMA_LEN (".zdebug_line"), 0, SHT_PROGBITS
, 0 },
2066 { STRING_COMMA_LEN (".zdebug_info"), 0, SHT_PROGBITS
, 0 },
2067 { STRING_COMMA_LEN (".zdebug_abbrev"), 0, SHT_PROGBITS
, 0 },
2068 { STRING_COMMA_LEN (".zdebug_aranges"), 0, SHT_PROGBITS
, 0 },
2069 { NULL
, 0, 0, 0, 0 }
2072 static const struct bfd_elf_special_section
*special_sections
[] =
2074 special_sections_b
, /* 'b' */
2075 special_sections_c
, /* 'c' */
2076 special_sections_d
, /* 'd' */
2078 special_sections_f
, /* 'f' */
2079 special_sections_g
, /* 'g' */
2080 special_sections_h
, /* 'h' */
2081 special_sections_i
, /* 'i' */
2084 special_sections_l
, /* 'l' */
2086 special_sections_n
, /* 'n' */
2088 special_sections_p
, /* 'p' */
2090 special_sections_r
, /* 'r' */
2091 special_sections_s
, /* 's' */
2092 special_sections_t
, /* 't' */
2098 special_sections_z
/* 'z' */
2101 const struct bfd_elf_special_section
*
2102 _bfd_elf_get_special_section (const char *name
,
2103 const struct bfd_elf_special_section
*spec
,
2109 len
= strlen (name
);
2111 for (i
= 0; spec
[i
].prefix
!= NULL
; i
++)
2114 int prefix_len
= spec
[i
].prefix_length
;
2116 if (len
< prefix_len
)
2118 if (memcmp (name
, spec
[i
].prefix
, prefix_len
) != 0)
2121 suffix_len
= spec
[i
].suffix_length
;
2122 if (suffix_len
<= 0)
2124 if (name
[prefix_len
] != 0)
2126 if (suffix_len
== 0)
2128 if (name
[prefix_len
] != '.'
2129 && (suffix_len
== -2
2130 || (rela
&& spec
[i
].type
== SHT_REL
)))
2136 if (len
< prefix_len
+ suffix_len
)
2138 if (memcmp (name
+ len
- suffix_len
,
2139 spec
[i
].prefix
+ prefix_len
,
2149 const struct bfd_elf_special_section
*
2150 _bfd_elf_get_sec_type_attr (bfd
*abfd
, asection
*sec
)
2153 const struct bfd_elf_special_section
*spec
;
2154 const struct elf_backend_data
*bed
;
2156 /* See if this is one of the special sections. */
2157 if (sec
->name
== NULL
)
2160 bed
= get_elf_backend_data (abfd
);
2161 spec
= bed
->special_sections
;
2164 spec
= _bfd_elf_get_special_section (sec
->name
,
2165 bed
->special_sections
,
2171 if (sec
->name
[0] != '.')
2174 i
= sec
->name
[1] - 'b';
2175 if (i
< 0 || i
> 'z' - 'b')
2178 spec
= special_sections
[i
];
2183 return _bfd_elf_get_special_section (sec
->name
, spec
, sec
->use_rela_p
);
2187 _bfd_elf_new_section_hook (bfd
*abfd
, asection
*sec
)
2189 struct bfd_elf_section_data
*sdata
;
2190 const struct elf_backend_data
*bed
;
2191 const struct bfd_elf_special_section
*ssect
;
2193 sdata
= (struct bfd_elf_section_data
*) sec
->used_by_bfd
;
2196 sdata
= bfd_zalloc (abfd
, sizeof (*sdata
));
2199 sec
->used_by_bfd
= sdata
;
2202 /* Indicate whether or not this section should use RELA relocations. */
2203 bed
= get_elf_backend_data (abfd
);
2204 sec
->use_rela_p
= bed
->default_use_rela_p
;
2206 /* When we read a file, we don't need to set ELF section type and
2207 flags. They will be overridden in _bfd_elf_make_section_from_shdr
2208 anyway. We will set ELF section type and flags for all linker
2209 created sections. If user specifies BFD section flags, we will
2210 set ELF section type and flags based on BFD section flags in
2211 elf_fake_sections. */
2212 if ((!sec
->flags
&& abfd
->direction
!= read_direction
)
2213 || (sec
->flags
& SEC_LINKER_CREATED
) != 0)
2215 ssect
= (*bed
->get_sec_type_attr
) (abfd
, sec
);
2218 elf_section_type (sec
) = ssect
->type
;
2219 elf_section_flags (sec
) = ssect
->attr
;
2223 return _bfd_generic_new_section_hook (abfd
, sec
);
2226 /* Create a new bfd section from an ELF program header.
2228 Since program segments have no names, we generate a synthetic name
2229 of the form segment<NUM>, where NUM is generally the index in the
2230 program header table. For segments that are split (see below) we
2231 generate the names segment<NUM>a and segment<NUM>b.
2233 Note that some program segments may have a file size that is different than
2234 (less than) the memory size. All this means is that at execution the
2235 system must allocate the amount of memory specified by the memory size,
2236 but only initialize it with the first "file size" bytes read from the
2237 file. This would occur for example, with program segments consisting
2238 of combined data+bss.
2240 To handle the above situation, this routine generates TWO bfd sections
2241 for the single program segment. The first has the length specified by
2242 the file size of the segment, and the second has the length specified
2243 by the difference between the two sizes. In effect, the segment is split
2244 into its initialized and uninitialized parts.
2249 _bfd_elf_make_section_from_phdr (bfd
*abfd
,
2250 Elf_Internal_Phdr
*hdr
,
2252 const char *typename
)
2260 split
= ((hdr
->p_memsz
> 0)
2261 && (hdr
->p_filesz
> 0)
2262 && (hdr
->p_memsz
> hdr
->p_filesz
));
2264 if (hdr
->p_filesz
> 0)
2266 sprintf (namebuf
, "%s%d%s", typename
, index
, split
? "a" : "");
2267 len
= strlen (namebuf
) + 1;
2268 name
= bfd_alloc (abfd
, len
);
2271 memcpy (name
, namebuf
, len
);
2272 newsect
= bfd_make_section (abfd
, name
);
2273 if (newsect
== NULL
)
2275 newsect
->vma
= hdr
->p_vaddr
;
2276 newsect
->lma
= hdr
->p_paddr
;
2277 newsect
->size
= hdr
->p_filesz
;
2278 newsect
->filepos
= hdr
->p_offset
;
2279 newsect
->flags
|= SEC_HAS_CONTENTS
;
2280 newsect
->alignment_power
= bfd_log2 (hdr
->p_align
);
2281 if (hdr
->p_type
== PT_LOAD
)
2283 newsect
->flags
|= SEC_ALLOC
;
2284 newsect
->flags
|= SEC_LOAD
;
2285 if (hdr
->p_flags
& PF_X
)
2287 /* FIXME: all we known is that it has execute PERMISSION,
2289 newsect
->flags
|= SEC_CODE
;
2292 if (!(hdr
->p_flags
& PF_W
))
2294 newsect
->flags
|= SEC_READONLY
;
2298 if (hdr
->p_memsz
> hdr
->p_filesz
)
2302 sprintf (namebuf
, "%s%d%s", typename
, index
, split
? "b" : "");
2303 len
= strlen (namebuf
) + 1;
2304 name
= bfd_alloc (abfd
, len
);
2307 memcpy (name
, namebuf
, len
);
2308 newsect
= bfd_make_section (abfd
, name
);
2309 if (newsect
== NULL
)
2311 newsect
->vma
= hdr
->p_vaddr
+ hdr
->p_filesz
;
2312 newsect
->lma
= hdr
->p_paddr
+ hdr
->p_filesz
;
2313 newsect
->size
= hdr
->p_memsz
- hdr
->p_filesz
;
2314 newsect
->filepos
= hdr
->p_offset
+ hdr
->p_filesz
;
2315 align
= newsect
->vma
& -newsect
->vma
;
2316 if (align
== 0 || align
> hdr
->p_align
)
2317 align
= hdr
->p_align
;
2318 newsect
->alignment_power
= bfd_log2 (align
);
2319 if (hdr
->p_type
== PT_LOAD
)
2321 /* Hack for gdb. Segments that have not been modified do
2322 not have their contents written to a core file, on the
2323 assumption that a debugger can find the contents in the
2324 executable. We flag this case by setting the fake
2325 section size to zero. Note that "real" bss sections will
2326 always have their contents dumped to the core file. */
2327 if (bfd_get_format (abfd
) == bfd_core
)
2329 newsect
->flags
|= SEC_ALLOC
;
2330 if (hdr
->p_flags
& PF_X
)
2331 newsect
->flags
|= SEC_CODE
;
2333 if (!(hdr
->p_flags
& PF_W
))
2334 newsect
->flags
|= SEC_READONLY
;
2341 bfd_section_from_phdr (bfd
*abfd
, Elf_Internal_Phdr
*hdr
, int index
)
2343 const struct elf_backend_data
*bed
;
2345 switch (hdr
->p_type
)
2348 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "null");
2351 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "load");
2354 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "dynamic");
2357 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "interp");
2360 if (! _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "note"))
2362 if (! elf_read_notes (abfd
, hdr
->p_offset
, hdr
->p_filesz
))
2367 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "shlib");
2370 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "phdr");
2372 case PT_GNU_EH_FRAME
:
2373 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
,
2377 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "stack");
2380 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "relro");
2383 /* Check for any processor-specific program segment types. */
2384 bed
= get_elf_backend_data (abfd
);
2385 return bed
->elf_backend_section_from_phdr (abfd
, hdr
, index
, "proc");
2389 /* Initialize REL_HDR, the section-header for new section, containing
2390 relocations against ASECT. If USE_RELA_P is TRUE, we use RELA
2391 relocations; otherwise, we use REL relocations. */
2394 _bfd_elf_init_reloc_shdr (bfd
*abfd
,
2395 Elf_Internal_Shdr
*rel_hdr
,
2397 bfd_boolean use_rela_p
)
2400 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
2401 bfd_size_type amt
= sizeof ".rela" + strlen (asect
->name
);
2403 name
= bfd_alloc (abfd
, amt
);
2406 sprintf (name
, "%s%s", use_rela_p
? ".rela" : ".rel", asect
->name
);
2408 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd
), name
,
2410 if (rel_hdr
->sh_name
== (unsigned int) -1)
2412 rel_hdr
->sh_type
= use_rela_p
? SHT_RELA
: SHT_REL
;
2413 rel_hdr
->sh_entsize
= (use_rela_p
2414 ? bed
->s
->sizeof_rela
2415 : bed
->s
->sizeof_rel
);
2416 rel_hdr
->sh_addralign
= (bfd_vma
) 1 << bed
->s
->log_file_align
;
2417 rel_hdr
->sh_flags
= 0;
2418 rel_hdr
->sh_addr
= 0;
2419 rel_hdr
->sh_size
= 0;
2420 rel_hdr
->sh_offset
= 0;
2425 /* Set up an ELF internal section header for a section. */
2428 elf_fake_sections (bfd
*abfd
, asection
*asect
, void *failedptrarg
)
2430 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
2431 bfd_boolean
*failedptr
= failedptrarg
;
2432 Elf_Internal_Shdr
*this_hdr
;
2433 unsigned int sh_type
;
2437 /* We already failed; just get out of the bfd_map_over_sections
2442 this_hdr
= &elf_section_data (asect
)->this_hdr
;
2444 this_hdr
->sh_name
= (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd
),
2445 asect
->name
, FALSE
);
2446 if (this_hdr
->sh_name
== (unsigned int) -1)
2452 /* Don't clear sh_flags. Assembler may set additional bits. */
2454 if ((asect
->flags
& SEC_ALLOC
) != 0
2455 || asect
->user_set_vma
)
2456 this_hdr
->sh_addr
= asect
->vma
;
2458 this_hdr
->sh_addr
= 0;
2460 this_hdr
->sh_offset
= 0;
2461 this_hdr
->sh_size
= asect
->size
;
2462 this_hdr
->sh_link
= 0;
2463 this_hdr
->sh_addralign
= (bfd_vma
) 1 << asect
->alignment_power
;
2464 /* The sh_entsize and sh_info fields may have been set already by
2465 copy_private_section_data. */
2467 this_hdr
->bfd_section
= asect
;
2468 this_hdr
->contents
= NULL
;
2470 /* If the section type is unspecified, we set it based on
2472 if ((asect
->flags
& SEC_GROUP
) != 0)
2473 sh_type
= SHT_GROUP
;
2474 else if ((asect
->flags
& SEC_ALLOC
) != 0
2475 && (((asect
->flags
& (SEC_LOAD
| SEC_HAS_CONTENTS
)) == 0)
2476 || (asect
->flags
& SEC_NEVER_LOAD
) != 0))
2477 sh_type
= SHT_NOBITS
;
2479 sh_type
= SHT_PROGBITS
;
2481 if (this_hdr
->sh_type
== SHT_NULL
)
2482 this_hdr
->sh_type
= sh_type
;
2483 else if (this_hdr
->sh_type
== SHT_NOBITS
2484 && sh_type
== SHT_PROGBITS
2485 && (asect
->flags
& SEC_ALLOC
) != 0)
2487 /* Warn if we are changing a NOBITS section to PROGBITS, but
2488 allow the link to proceed. This can happen when users link
2489 non-bss input sections to bss output sections, or emit data
2490 to a bss output section via a linker script. */
2491 (*_bfd_error_handler
)
2492 (_("warning: section `%A' type changed to PROGBITS"), asect
);
2493 this_hdr
->sh_type
= sh_type
;
2496 switch (this_hdr
->sh_type
)
2502 case SHT_INIT_ARRAY
:
2503 case SHT_FINI_ARRAY
:
2504 case SHT_PREINIT_ARRAY
:
2511 this_hdr
->sh_entsize
= bed
->s
->sizeof_hash_entry
;
2515 this_hdr
->sh_entsize
= bed
->s
->sizeof_sym
;
2519 this_hdr
->sh_entsize
= bed
->s
->sizeof_dyn
;
2523 if (get_elf_backend_data (abfd
)->may_use_rela_p
)
2524 this_hdr
->sh_entsize
= bed
->s
->sizeof_rela
;
2528 if (get_elf_backend_data (abfd
)->may_use_rel_p
)
2529 this_hdr
->sh_entsize
= bed
->s
->sizeof_rel
;
2532 case SHT_GNU_versym
:
2533 this_hdr
->sh_entsize
= sizeof (Elf_External_Versym
);
2536 case SHT_GNU_verdef
:
2537 this_hdr
->sh_entsize
= 0;
2538 /* objcopy or strip will copy over sh_info, but may not set
2539 cverdefs. The linker will set cverdefs, but sh_info will be
2541 if (this_hdr
->sh_info
== 0)
2542 this_hdr
->sh_info
= elf_tdata (abfd
)->cverdefs
;
2544 BFD_ASSERT (elf_tdata (abfd
)->cverdefs
== 0
2545 || this_hdr
->sh_info
== elf_tdata (abfd
)->cverdefs
);
2548 case SHT_GNU_verneed
:
2549 this_hdr
->sh_entsize
= 0;
2550 /* objcopy or strip will copy over sh_info, but may not set
2551 cverrefs. The linker will set cverrefs, but sh_info will be
2553 if (this_hdr
->sh_info
== 0)
2554 this_hdr
->sh_info
= elf_tdata (abfd
)->cverrefs
;
2556 BFD_ASSERT (elf_tdata (abfd
)->cverrefs
== 0
2557 || this_hdr
->sh_info
== elf_tdata (abfd
)->cverrefs
);
2561 this_hdr
->sh_entsize
= GRP_ENTRY_SIZE
;
2565 this_hdr
->sh_entsize
= bed
->s
->arch_size
== 64 ? 0 : 4;
2569 if ((asect
->flags
& SEC_ALLOC
) != 0)
2570 this_hdr
->sh_flags
|= SHF_ALLOC
;
2571 if ((asect
->flags
& SEC_READONLY
) == 0)
2572 this_hdr
->sh_flags
|= SHF_WRITE
;
2573 if ((asect
->flags
& SEC_CODE
) != 0)
2574 this_hdr
->sh_flags
|= SHF_EXECINSTR
;
2575 if ((asect
->flags
& SEC_MERGE
) != 0)
2577 this_hdr
->sh_flags
|= SHF_MERGE
;
2578 this_hdr
->sh_entsize
= asect
->entsize
;
2579 if ((asect
->flags
& SEC_STRINGS
) != 0)
2580 this_hdr
->sh_flags
|= SHF_STRINGS
;
2582 if ((asect
->flags
& SEC_GROUP
) == 0 && elf_group_name (asect
) != NULL
)
2583 this_hdr
->sh_flags
|= SHF_GROUP
;
2584 if ((asect
->flags
& SEC_THREAD_LOCAL
) != 0)
2586 this_hdr
->sh_flags
|= SHF_TLS
;
2587 if (asect
->size
== 0
2588 && (asect
->flags
& SEC_HAS_CONTENTS
) == 0)
2590 struct bfd_link_order
*o
= asect
->map_tail
.link_order
;
2592 this_hdr
->sh_size
= 0;
2595 this_hdr
->sh_size
= o
->offset
+ o
->size
;
2596 if (this_hdr
->sh_size
!= 0)
2597 this_hdr
->sh_type
= SHT_NOBITS
;
2602 /* Check for processor-specific section types. */
2603 sh_type
= this_hdr
->sh_type
;
2604 if (bed
->elf_backend_fake_sections
2605 && !(*bed
->elf_backend_fake_sections
) (abfd
, this_hdr
, asect
))
2608 if (sh_type
== SHT_NOBITS
&& asect
->size
!= 0)
2610 /* Don't change the header type from NOBITS if we are being
2611 called for objcopy --only-keep-debug. */
2612 this_hdr
->sh_type
= sh_type
;
2615 /* If the section has relocs, set up a section header for the
2616 SHT_REL[A] section. If two relocation sections are required for
2617 this section, it is up to the processor-specific back-end to
2618 create the other. */
2619 if ((asect
->flags
& SEC_RELOC
) != 0
2620 && !_bfd_elf_init_reloc_shdr (abfd
,
2621 &elf_section_data (asect
)->rel_hdr
,
2627 /* Fill in the contents of a SHT_GROUP section. Called from
2628 _bfd_elf_compute_section_file_positions for gas, objcopy, and
2629 when ELF targets use the generic linker, ld. Called for ld -r
2630 from bfd_elf_final_link. */
2633 bfd_elf_set_group_contents (bfd
*abfd
, asection
*sec
, void *failedptrarg
)
2635 bfd_boolean
*failedptr
= failedptrarg
;
2636 asection
*elt
, *first
;
2640 /* Ignore linker created group section. See elfNN_ia64_object_p in
2642 if (((sec
->flags
& (SEC_GROUP
| SEC_LINKER_CREATED
)) != SEC_GROUP
)
2646 if (elf_section_data (sec
)->this_hdr
.sh_info
== 0)
2648 unsigned long symindx
= 0;
2650 /* elf_group_id will have been set up by objcopy and the
2652 if (elf_group_id (sec
) != NULL
)
2653 symindx
= elf_group_id (sec
)->udata
.i
;
2657 /* If called from the assembler, swap_out_syms will have set up
2658 elf_section_syms. */
2659 BFD_ASSERT (elf_section_syms (abfd
) != NULL
);
2660 symindx
= elf_section_syms (abfd
)[sec
->index
]->udata
.i
;
2662 elf_section_data (sec
)->this_hdr
.sh_info
= symindx
;
2664 else if (elf_section_data (sec
)->this_hdr
.sh_info
== (unsigned int) -2)
2666 /* The ELF backend linker sets sh_info to -2 when the group
2667 signature symbol is global, and thus the index can't be
2668 set until all local symbols are output. */
2669 asection
*igroup
= elf_sec_group (elf_next_in_group (sec
));
2670 struct bfd_elf_section_data
*sec_data
= elf_section_data (igroup
);
2671 unsigned long symndx
= sec_data
->this_hdr
.sh_info
;
2672 unsigned long extsymoff
= 0;
2673 struct elf_link_hash_entry
*h
;
2675 if (!elf_bad_symtab (igroup
->owner
))
2677 Elf_Internal_Shdr
*symtab_hdr
;
2679 symtab_hdr
= &elf_tdata (igroup
->owner
)->symtab_hdr
;
2680 extsymoff
= symtab_hdr
->sh_info
;
2682 h
= elf_sym_hashes (igroup
->owner
)[symndx
- extsymoff
];
2683 while (h
->root
.type
== bfd_link_hash_indirect
2684 || h
->root
.type
== bfd_link_hash_warning
)
2685 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
2687 elf_section_data (sec
)->this_hdr
.sh_info
= h
->indx
;
2690 /* The contents won't be allocated for "ld -r" or objcopy. */
2692 if (sec
->contents
== NULL
)
2695 sec
->contents
= bfd_alloc (abfd
, sec
->size
);
2697 /* Arrange for the section to be written out. */
2698 elf_section_data (sec
)->this_hdr
.contents
= sec
->contents
;
2699 if (sec
->contents
== NULL
)
2706 loc
= sec
->contents
+ sec
->size
;
2708 /* Get the pointer to the first section in the group that gas
2709 squirreled away here. objcopy arranges for this to be set to the
2710 start of the input section group. */
2711 first
= elt
= elf_next_in_group (sec
);
2713 /* First element is a flag word. Rest of section is elf section
2714 indices for all the sections of the group. Write them backwards
2715 just to keep the group in the same order as given in .section
2716 directives, not that it matters. */
2723 if (! elf_discarded_section (s
))
2727 s
= s
->output_section
;
2730 idx
= elf_section_data (s
)->this_idx
;
2731 H_PUT_32 (abfd
, idx
, loc
);
2733 elt
= elf_next_in_group (elt
);
2738 if ((loc
-= 4) != sec
->contents
)
2741 H_PUT_32 (abfd
, sec
->flags
& SEC_LINK_ONCE
? GRP_COMDAT
: 0, loc
);
2744 /* Assign all ELF section numbers. The dummy first section is handled here
2745 too. The link/info pointers for the standard section types are filled
2746 in here too, while we're at it. */
2749 assign_section_numbers (bfd
*abfd
, struct bfd_link_info
*link_info
)
2751 struct elf_obj_tdata
*t
= elf_tdata (abfd
);
2753 unsigned int section_number
, secn
;
2754 Elf_Internal_Shdr
**i_shdrp
;
2755 struct bfd_elf_section_data
*d
;
2756 bfd_boolean need_symtab
;
2760 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd
));
2762 /* SHT_GROUP sections are in relocatable files only. */
2763 if (link_info
== NULL
|| link_info
->relocatable
)
2765 /* Put SHT_GROUP sections first. */
2766 for (sec
= abfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
2768 d
= elf_section_data (sec
);
2770 if (d
->this_hdr
.sh_type
== SHT_GROUP
)
2772 if (sec
->flags
& SEC_LINKER_CREATED
)
2774 /* Remove the linker created SHT_GROUP sections. */
2775 bfd_section_list_remove (abfd
, sec
);
2776 abfd
->section_count
--;
2779 d
->this_idx
= section_number
++;
2784 for (sec
= abfd
->sections
; sec
; sec
= sec
->next
)
2786 d
= elf_section_data (sec
);
2788 if (d
->this_hdr
.sh_type
!= SHT_GROUP
)
2789 d
->this_idx
= section_number
++;
2790 _bfd_elf_strtab_addref (elf_shstrtab (abfd
), d
->this_hdr
.sh_name
);
2791 if ((sec
->flags
& SEC_RELOC
) == 0)
2795 d
->rel_idx
= section_number
++;
2796 _bfd_elf_strtab_addref (elf_shstrtab (abfd
), d
->rel_hdr
.sh_name
);
2801 d
->rel_idx2
= section_number
++;
2802 _bfd_elf_strtab_addref (elf_shstrtab (abfd
), d
->rel_hdr2
->sh_name
);
2808 t
->shstrtab_section
= section_number
++;
2809 _bfd_elf_strtab_addref (elf_shstrtab (abfd
), t
->shstrtab_hdr
.sh_name
);
2810 elf_elfheader (abfd
)->e_shstrndx
= t
->shstrtab_section
;
2812 need_symtab
= (bfd_get_symcount (abfd
) > 0
2813 || (link_info
== NULL
2814 && ((abfd
->flags
& (EXEC_P
| DYNAMIC
| HAS_RELOC
))
2818 t
->symtab_section
= section_number
++;
2819 _bfd_elf_strtab_addref (elf_shstrtab (abfd
), t
->symtab_hdr
.sh_name
);
2820 if (section_number
> ((SHN_LORESERVE
- 2) & 0xFFFF))
2822 t
->symtab_shndx_section
= section_number
++;
2823 t
->symtab_shndx_hdr
.sh_name
2824 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd
),
2825 ".symtab_shndx", FALSE
);
2826 if (t
->symtab_shndx_hdr
.sh_name
== (unsigned int) -1)
2829 t
->strtab_section
= section_number
++;
2830 _bfd_elf_strtab_addref (elf_shstrtab (abfd
), t
->strtab_hdr
.sh_name
);
2833 _bfd_elf_strtab_finalize (elf_shstrtab (abfd
));
2834 t
->shstrtab_hdr
.sh_size
= _bfd_elf_strtab_size (elf_shstrtab (abfd
));
2836 elf_numsections (abfd
) = section_number
;
2837 elf_elfheader (abfd
)->e_shnum
= section_number
;
2839 /* Set up the list of section header pointers, in agreement with the
2841 i_shdrp
= bfd_zalloc2 (abfd
, section_number
, sizeof (Elf_Internal_Shdr
*));
2842 if (i_shdrp
== NULL
)
2845 i_shdrp
[0] = bfd_zalloc (abfd
, sizeof (Elf_Internal_Shdr
));
2846 if (i_shdrp
[0] == NULL
)
2848 bfd_release (abfd
, i_shdrp
);
2852 elf_elfsections (abfd
) = i_shdrp
;
2854 i_shdrp
[t
->shstrtab_section
] = &t
->shstrtab_hdr
;
2857 i_shdrp
[t
->symtab_section
] = &t
->symtab_hdr
;
2858 if (elf_numsections (abfd
) > (SHN_LORESERVE
& 0xFFFF))
2860 i_shdrp
[t
->symtab_shndx_section
] = &t
->symtab_shndx_hdr
;
2861 t
->symtab_shndx_hdr
.sh_link
= t
->symtab_section
;
2863 i_shdrp
[t
->strtab_section
] = &t
->strtab_hdr
;
2864 t
->symtab_hdr
.sh_link
= t
->strtab_section
;
2867 for (sec
= abfd
->sections
; sec
; sec
= sec
->next
)
2869 struct bfd_elf_section_data
*d
= elf_section_data (sec
);
2873 i_shdrp
[d
->this_idx
] = &d
->this_hdr
;
2874 if (d
->rel_idx
!= 0)
2875 i_shdrp
[d
->rel_idx
] = &d
->rel_hdr
;
2876 if (d
->rel_idx2
!= 0)
2877 i_shdrp
[d
->rel_idx2
] = d
->rel_hdr2
;
2879 /* Fill in the sh_link and sh_info fields while we're at it. */
2881 /* sh_link of a reloc section is the section index of the symbol
2882 table. sh_info is the section index of the section to which
2883 the relocation entries apply. */
2884 if (d
->rel_idx
!= 0)
2886 d
->rel_hdr
.sh_link
= t
->symtab_section
;
2887 d
->rel_hdr
.sh_info
= d
->this_idx
;
2889 if (d
->rel_idx2
!= 0)
2891 d
->rel_hdr2
->sh_link
= t
->symtab_section
;
2892 d
->rel_hdr2
->sh_info
= d
->this_idx
;
2895 /* We need to set up sh_link for SHF_LINK_ORDER. */
2896 if ((d
->this_hdr
.sh_flags
& SHF_LINK_ORDER
) != 0)
2898 s
= elf_linked_to_section (sec
);
2901 /* elf_linked_to_section points to the input section. */
2902 if (link_info
!= NULL
)
2904 /* Check discarded linkonce section. */
2905 if (elf_discarded_section (s
))
2908 (*_bfd_error_handler
)
2909 (_("%B: sh_link of section `%A' points to discarded section `%A' of `%B'"),
2910 abfd
, d
->this_hdr
.bfd_section
,
2912 /* Point to the kept section if it has the same
2913 size as the discarded one. */
2914 kept
= _bfd_elf_check_kept_section (s
, link_info
);
2917 bfd_set_error (bfd_error_bad_value
);
2923 s
= s
->output_section
;
2924 BFD_ASSERT (s
!= NULL
);
2928 /* Handle objcopy. */
2929 if (s
->output_section
== NULL
)
2931 (*_bfd_error_handler
)
2932 (_("%B: sh_link of section `%A' points to removed section `%A' of `%B'"),
2933 abfd
, d
->this_hdr
.bfd_section
, s
, s
->owner
);
2934 bfd_set_error (bfd_error_bad_value
);
2937 s
= s
->output_section
;
2939 d
->this_hdr
.sh_link
= elf_section_data (s
)->this_idx
;
2944 The Intel C compiler generates SHT_IA_64_UNWIND with
2945 SHF_LINK_ORDER. But it doesn't set the sh_link or
2946 sh_info fields. Hence we could get the situation
2948 const struct elf_backend_data
*bed
2949 = get_elf_backend_data (abfd
);
2950 if (bed
->link_order_error_handler
)
2951 bed
->link_order_error_handler
2952 (_("%B: warning: sh_link not set for section `%A'"),
2957 switch (d
->this_hdr
.sh_type
)
2961 /* A reloc section which we are treating as a normal BFD
2962 section. sh_link is the section index of the symbol
2963 table. sh_info is the section index of the section to
2964 which the relocation entries apply. We assume that an
2965 allocated reloc section uses the dynamic symbol table.
2966 FIXME: How can we be sure? */
2967 s
= bfd_get_section_by_name (abfd
, ".dynsym");
2969 d
->this_hdr
.sh_link
= elf_section_data (s
)->this_idx
;
2971 /* We look up the section the relocs apply to by name. */
2973 if (d
->this_hdr
.sh_type
== SHT_REL
)
2977 s
= bfd_get_section_by_name (abfd
, name
);
2979 d
->this_hdr
.sh_info
= elf_section_data (s
)->this_idx
;
2983 /* We assume that a section named .stab*str is a stabs
2984 string section. We look for a section with the same name
2985 but without the trailing ``str'', and set its sh_link
2986 field to point to this section. */
2987 if (CONST_STRNEQ (sec
->name
, ".stab")
2988 && strcmp (sec
->name
+ strlen (sec
->name
) - 3, "str") == 0)
2993 len
= strlen (sec
->name
);
2994 alc
= bfd_malloc (len
- 2);
2997 memcpy (alc
, sec
->name
, len
- 3);
2998 alc
[len
- 3] = '\0';
2999 s
= bfd_get_section_by_name (abfd
, alc
);
3003 elf_section_data (s
)->this_hdr
.sh_link
= d
->this_idx
;
3005 /* This is a .stab section. */
3006 if (elf_section_data (s
)->this_hdr
.sh_entsize
== 0)
3007 elf_section_data (s
)->this_hdr
.sh_entsize
3008 = 4 + 2 * bfd_get_arch_size (abfd
) / 8;
3015 case SHT_GNU_verneed
:
3016 case SHT_GNU_verdef
:
3017 /* sh_link is the section header index of the string table
3018 used for the dynamic entries, or the symbol table, or the
3020 s
= bfd_get_section_by_name (abfd
, ".dynstr");
3022 d
->this_hdr
.sh_link
= elf_section_data (s
)->this_idx
;
3025 case SHT_GNU_LIBLIST
:
3026 /* sh_link is the section header index of the prelink library
3027 list used for the dynamic entries, or the symbol table, or
3028 the version strings. */
3029 s
= bfd_get_section_by_name (abfd
, (sec
->flags
& SEC_ALLOC
)
3030 ? ".dynstr" : ".gnu.libstr");
3032 d
->this_hdr
.sh_link
= elf_section_data (s
)->this_idx
;
3037 case SHT_GNU_versym
:
3038 /* sh_link is the section header index of the symbol table
3039 this hash table or version table is for. */
3040 s
= bfd_get_section_by_name (abfd
, ".dynsym");
3042 d
->this_hdr
.sh_link
= elf_section_data (s
)->this_idx
;
3046 d
->this_hdr
.sh_link
= t
->symtab_section
;
3050 for (secn
= 1; secn
< section_number
; ++secn
)
3051 if (i_shdrp
[secn
] == NULL
)
3052 i_shdrp
[secn
] = i_shdrp
[0];
3054 i_shdrp
[secn
]->sh_name
= _bfd_elf_strtab_offset (elf_shstrtab (abfd
),
3055 i_shdrp
[secn
]->sh_name
);
3059 /* Map symbol from it's internal number to the external number, moving
3060 all local symbols to be at the head of the list. */
3063 sym_is_global (bfd
*abfd
, asymbol
*sym
)
3065 /* If the backend has a special mapping, use it. */
3066 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
3067 if (bed
->elf_backend_sym_is_global
)
3068 return (*bed
->elf_backend_sym_is_global
) (abfd
, sym
);
3070 return ((sym
->flags
& (BSF_GLOBAL
| BSF_WEAK
| BSF_GNU_UNIQUE
)) != 0
3071 || bfd_is_und_section (bfd_get_section (sym
))
3072 || bfd_is_com_section (bfd_get_section (sym
)));
3075 /* Don't output section symbols for sections that are not going to be
3079 ignore_section_sym (bfd
*abfd
, asymbol
*sym
)
3081 return ((sym
->flags
& BSF_SECTION_SYM
) != 0
3082 && !(sym
->section
->owner
== abfd
3083 || (sym
->section
->output_section
->owner
== abfd
3084 && sym
->section
->output_offset
== 0)));
3088 elf_map_symbols (bfd
*abfd
)
3090 unsigned int symcount
= bfd_get_symcount (abfd
);
3091 asymbol
**syms
= bfd_get_outsymbols (abfd
);
3092 asymbol
**sect_syms
;
3093 unsigned int num_locals
= 0;
3094 unsigned int num_globals
= 0;
3095 unsigned int num_locals2
= 0;
3096 unsigned int num_globals2
= 0;
3103 fprintf (stderr
, "elf_map_symbols\n");
3107 for (asect
= abfd
->sections
; asect
; asect
= asect
->next
)
3109 if (max_index
< asect
->index
)
3110 max_index
= asect
->index
;
3114 sect_syms
= bfd_zalloc2 (abfd
, max_index
, sizeof (asymbol
*));
3115 if (sect_syms
== NULL
)
3117 elf_section_syms (abfd
) = sect_syms
;
3118 elf_num_section_syms (abfd
) = max_index
;
3120 /* Init sect_syms entries for any section symbols we have already
3121 decided to output. */
3122 for (idx
= 0; idx
< symcount
; idx
++)
3124 asymbol
*sym
= syms
[idx
];
3126 if ((sym
->flags
& BSF_SECTION_SYM
) != 0
3128 && !ignore_section_sym (abfd
, sym
))
3130 asection
*sec
= sym
->section
;
3132 if (sec
->owner
!= abfd
)
3133 sec
= sec
->output_section
;
3135 sect_syms
[sec
->index
] = syms
[idx
];
3139 /* Classify all of the symbols. */
3140 for (idx
= 0; idx
< symcount
; idx
++)
3142 if (ignore_section_sym (abfd
, syms
[idx
]))
3144 if (!sym_is_global (abfd
, syms
[idx
]))
3150 /* We will be adding a section symbol for each normal BFD section. Most
3151 sections will already have a section symbol in outsymbols, but
3152 eg. SHT_GROUP sections will not, and we need the section symbol mapped
3153 at least in that case. */
3154 for (asect
= abfd
->sections
; asect
; asect
= asect
->next
)
3156 if (sect_syms
[asect
->index
] == NULL
)
3158 if (!sym_is_global (abfd
, asect
->symbol
))
3165 /* Now sort the symbols so the local symbols are first. */
3166 new_syms
= bfd_alloc2 (abfd
, num_locals
+ num_globals
, sizeof (asymbol
*));
3168 if (new_syms
== NULL
)
3171 for (idx
= 0; idx
< symcount
; idx
++)
3173 asymbol
*sym
= syms
[idx
];
3176 if (ignore_section_sym (abfd
, sym
))
3178 if (!sym_is_global (abfd
, sym
))
3181 i
= num_locals
+ num_globals2
++;
3183 sym
->udata
.i
= i
+ 1;
3185 for (asect
= abfd
->sections
; asect
; asect
= asect
->next
)
3187 if (sect_syms
[asect
->index
] == NULL
)
3189 asymbol
*sym
= asect
->symbol
;
3192 sect_syms
[asect
->index
] = sym
;
3193 if (!sym_is_global (abfd
, sym
))
3196 i
= num_locals
+ num_globals2
++;
3198 sym
->udata
.i
= i
+ 1;
3202 bfd_set_symtab (abfd
, new_syms
, num_locals
+ num_globals
);
3204 elf_num_locals (abfd
) = num_locals
;
3205 elf_num_globals (abfd
) = num_globals
;
3209 /* Align to the maximum file alignment that could be required for any
3210 ELF data structure. */
3212 static inline file_ptr
3213 align_file_position (file_ptr off
, int align
)
3215 return (off
+ align
- 1) & ~(align
- 1);
3218 /* Assign a file position to a section, optionally aligning to the
3219 required section alignment. */
3222 _bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr
*i_shdrp
,
3226 if (align
&& i_shdrp
->sh_addralign
> 1)
3227 offset
= BFD_ALIGN (offset
, i_shdrp
->sh_addralign
);
3228 i_shdrp
->sh_offset
= offset
;
3229 if (i_shdrp
->bfd_section
!= NULL
)
3230 i_shdrp
->bfd_section
->filepos
= offset
;
3231 if (i_shdrp
->sh_type
!= SHT_NOBITS
)
3232 offset
+= i_shdrp
->sh_size
;
3236 /* Compute the file positions we are going to put the sections at, and
3237 otherwise prepare to begin writing out the ELF file. If LINK_INFO
3238 is not NULL, this is being called by the ELF backend linker. */
3241 _bfd_elf_compute_section_file_positions (bfd
*abfd
,
3242 struct bfd_link_info
*link_info
)
3244 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
3246 struct bfd_strtab_hash
*strtab
= NULL
;
3247 Elf_Internal_Shdr
*shstrtab_hdr
;
3248 bfd_boolean need_symtab
;
3250 if (abfd
->output_has_begun
)
3253 /* Do any elf backend specific processing first. */
3254 if (bed
->elf_backend_begin_write_processing
)
3255 (*bed
->elf_backend_begin_write_processing
) (abfd
, link_info
);
3257 if (! prep_headers (abfd
))
3260 /* Post process the headers if necessary. */
3261 if (bed
->elf_backend_post_process_headers
)
3262 (*bed
->elf_backend_post_process_headers
) (abfd
, link_info
);
3265 bfd_map_over_sections (abfd
, elf_fake_sections
, &failed
);
3269 if (!assign_section_numbers (abfd
, link_info
))
3272 /* The backend linker builds symbol table information itself. */
3273 need_symtab
= (link_info
== NULL
3274 && (bfd_get_symcount (abfd
) > 0
3275 || ((abfd
->flags
& (EXEC_P
| DYNAMIC
| HAS_RELOC
))
3279 /* Non-zero if doing a relocatable link. */
3280 int relocatable_p
= ! (abfd
->flags
& (EXEC_P
| DYNAMIC
));
3282 if (! swap_out_syms (abfd
, &strtab
, relocatable_p
))
3286 if (link_info
== NULL
)
3288 bfd_map_over_sections (abfd
, bfd_elf_set_group_contents
, &failed
);
3293 shstrtab_hdr
= &elf_tdata (abfd
)->shstrtab_hdr
;
3294 /* sh_name was set in prep_headers. */
3295 shstrtab_hdr
->sh_type
= SHT_STRTAB
;
3296 shstrtab_hdr
->sh_flags
= 0;
3297 shstrtab_hdr
->sh_addr
= 0;
3298 shstrtab_hdr
->sh_size
= _bfd_elf_strtab_size (elf_shstrtab (abfd
));
3299 shstrtab_hdr
->sh_entsize
= 0;
3300 shstrtab_hdr
->sh_link
= 0;
3301 shstrtab_hdr
->sh_info
= 0;
3302 /* sh_offset is set in assign_file_positions_except_relocs. */
3303 shstrtab_hdr
->sh_addralign
= 1;
3305 if (!assign_file_positions_except_relocs (abfd
, link_info
))
3311 Elf_Internal_Shdr
*hdr
;
3313 off
= elf_tdata (abfd
)->next_file_pos
;
3315 hdr
= &elf_tdata (abfd
)->symtab_hdr
;
3316 off
= _bfd_elf_assign_file_position_for_section (hdr
, off
, TRUE
);
3318 hdr
= &elf_tdata (abfd
)->symtab_shndx_hdr
;
3319 if (hdr
->sh_size
!= 0)
3320 off
= _bfd_elf_assign_file_position_for_section (hdr
, off
, TRUE
);
3322 hdr
= &elf_tdata (abfd
)->strtab_hdr
;
3323 off
= _bfd_elf_assign_file_position_for_section (hdr
, off
, TRUE
);
3325 elf_tdata (abfd
)->next_file_pos
= off
;
3327 /* Now that we know where the .strtab section goes, write it
3329 if (bfd_seek (abfd
, hdr
->sh_offset
, SEEK_SET
) != 0
3330 || ! _bfd_stringtab_emit (abfd
, strtab
))
3332 _bfd_stringtab_free (strtab
);
3335 abfd
->output_has_begun
= TRUE
;
3340 /* Make an initial estimate of the size of the program header. If we
3341 get the number wrong here, we'll redo section placement. */
3343 static bfd_size_type
3344 get_program_header_size (bfd
*abfd
, struct bfd_link_info
*info
)
3348 const struct elf_backend_data
*bed
;
3350 /* Assume we will need exactly two PT_LOAD segments: one for text
3351 and one for data. */
3354 s
= bfd_get_section_by_name (abfd
, ".interp");
3355 if (s
!= NULL
&& (s
->flags
& SEC_LOAD
) != 0)
3357 /* If we have a loadable interpreter section, we need a
3358 PT_INTERP segment. In this case, assume we also need a
3359 PT_PHDR segment, although that may not be true for all
3364 if (bfd_get_section_by_name (abfd
, ".dynamic") != NULL
)
3366 /* We need a PT_DYNAMIC segment. */
3370 if (info
!= NULL
&& info
->relro
)
3372 /* We need a PT_GNU_RELRO segment. */
3376 if (elf_tdata (abfd
)->eh_frame_hdr
)
3378 /* We need a PT_GNU_EH_FRAME segment. */
3382 if (elf_tdata (abfd
)->stack_flags
)
3384 /* We need a PT_GNU_STACK segment. */
3388 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
3390 if ((s
->flags
& SEC_LOAD
) != 0
3391 && CONST_STRNEQ (s
->name
, ".note"))
3393 /* We need a PT_NOTE segment. */
3395 /* Try to create just one PT_NOTE segment
3396 for all adjacent loadable .note* sections.
3397 gABI requires that within a PT_NOTE segment
3398 (and also inside of each SHT_NOTE section)
3399 each note is padded to a multiple of 4 size,
3400 so we check whether the sections are correctly
3402 if (s
->alignment_power
== 2)
3403 while (s
->next
!= NULL
3404 && s
->next
->alignment_power
== 2
3405 && (s
->next
->flags
& SEC_LOAD
) != 0
3406 && CONST_STRNEQ (s
->next
->name
, ".note"))
3411 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
3413 if (s
->flags
& SEC_THREAD_LOCAL
)
3415 /* We need a PT_TLS segment. */
3421 /* Let the backend count up any program headers it might need. */
3422 bed
= get_elf_backend_data (abfd
);
3423 if (bed
->elf_backend_additional_program_headers
)
3427 a
= (*bed
->elf_backend_additional_program_headers
) (abfd
, info
);
3433 return segs
* bed
->s
->sizeof_phdr
;
3436 /* Find the segment that contains the output_section of section. */
3439 _bfd_elf_find_segment_containing_section (bfd
* abfd
, asection
* section
)
3441 struct elf_segment_map
*m
;
3442 Elf_Internal_Phdr
*p
;
3444 for (m
= elf_tdata (abfd
)->segment_map
,
3445 p
= elf_tdata (abfd
)->phdr
;
3451 for (i
= m
->count
- 1; i
>= 0; i
--)
3452 if (m
->sections
[i
] == section
)
3459 /* Create a mapping from a set of sections to a program segment. */
3461 static struct elf_segment_map
*
3462 make_mapping (bfd
*abfd
,
3463 asection
**sections
,
3468 struct elf_segment_map
*m
;
3473 amt
= sizeof (struct elf_segment_map
);
3474 amt
+= (to
- from
- 1) * sizeof (asection
*);
3475 m
= bfd_zalloc (abfd
, amt
);
3479 m
->p_type
= PT_LOAD
;
3480 for (i
= from
, hdrpp
= sections
+ from
; i
< to
; i
++, hdrpp
++)
3481 m
->sections
[i
- from
] = *hdrpp
;
3482 m
->count
= to
- from
;
3484 if (from
== 0 && phdr
)
3486 /* Include the headers in the first PT_LOAD segment. */
3487 m
->includes_filehdr
= 1;
3488 m
->includes_phdrs
= 1;
3494 /* Create the PT_DYNAMIC segment, which includes DYNSEC. Returns NULL
3497 struct elf_segment_map
*
3498 _bfd_elf_make_dynamic_segment (bfd
*abfd
, asection
*dynsec
)
3500 struct elf_segment_map
*m
;
3502 m
= bfd_zalloc (abfd
, sizeof (struct elf_segment_map
));
3506 m
->p_type
= PT_DYNAMIC
;
3508 m
->sections
[0] = dynsec
;
3513 /* Possibly add or remove segments from the segment map. */
3516 elf_modify_segment_map (bfd
*abfd
,
3517 struct bfd_link_info
*info
,
3518 bfd_boolean remove_empty_load
)
3520 struct elf_segment_map
**m
;
3521 const struct elf_backend_data
*bed
;
3523 /* The placement algorithm assumes that non allocated sections are
3524 not in PT_LOAD segments. We ensure this here by removing such
3525 sections from the segment map. We also remove excluded
3526 sections. Finally, any PT_LOAD segment without sections is
3528 m
= &elf_tdata (abfd
)->segment_map
;
3531 unsigned int i
, new_count
;
3533 for (new_count
= 0, i
= 0; i
< (*m
)->count
; i
++)
3535 if (((*m
)->sections
[i
]->flags
& SEC_EXCLUDE
) == 0
3536 && (((*m
)->sections
[i
]->flags
& SEC_ALLOC
) != 0
3537 || (*m
)->p_type
!= PT_LOAD
))
3539 (*m
)->sections
[new_count
] = (*m
)->sections
[i
];
3543 (*m
)->count
= new_count
;
3545 if (remove_empty_load
&& (*m
)->p_type
== PT_LOAD
&& (*m
)->count
== 0)
3551 bed
= get_elf_backend_data (abfd
);
3552 if (bed
->elf_backend_modify_segment_map
!= NULL
)
3554 if (!(*bed
->elf_backend_modify_segment_map
) (abfd
, info
))
3561 /* Set up a mapping from BFD sections to program segments. */
3564 _bfd_elf_map_sections_to_segments (bfd
*abfd
, struct bfd_link_info
*info
)
3567 struct elf_segment_map
*m
;
3568 asection
**sections
= NULL
;
3569 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
3570 bfd_boolean no_user_phdrs
;
3572 no_user_phdrs
= elf_tdata (abfd
)->segment_map
== NULL
;
3573 if (no_user_phdrs
&& bfd_count_sections (abfd
) != 0)
3577 struct elf_segment_map
*mfirst
;
3578 struct elf_segment_map
**pm
;
3581 unsigned int phdr_index
;
3582 bfd_vma maxpagesize
;
3584 bfd_boolean phdr_in_segment
= TRUE
;
3585 bfd_boolean writable
;
3587 asection
*first_tls
= NULL
;
3588 asection
*dynsec
, *eh_frame_hdr
;
3591 /* Select the allocated sections, and sort them. */
3593 sections
= bfd_malloc2 (bfd_count_sections (abfd
), sizeof (asection
*));
3594 if (sections
== NULL
)
3598 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
3600 if ((s
->flags
& SEC_ALLOC
) != 0)
3606 BFD_ASSERT (i
<= bfd_count_sections (abfd
));
3609 qsort (sections
, (size_t) count
, sizeof (asection
*), elf_sort_sections
);
3611 /* Build the mapping. */
3616 /* If we have a .interp section, then create a PT_PHDR segment for
3617 the program headers and a PT_INTERP segment for the .interp
3619 s
= bfd_get_section_by_name (abfd
, ".interp");
3620 if (s
!= NULL
&& (s
->flags
& SEC_LOAD
) != 0)
3622 amt
= sizeof (struct elf_segment_map
);
3623 m
= bfd_zalloc (abfd
, amt
);
3627 m
->p_type
= PT_PHDR
;
3628 /* FIXME: UnixWare and Solaris set PF_X, Irix 5 does not. */
3629 m
->p_flags
= PF_R
| PF_X
;
3630 m
->p_flags_valid
= 1;
3631 m
->includes_phdrs
= 1;
3636 amt
= sizeof (struct elf_segment_map
);
3637 m
= bfd_zalloc (abfd
, amt
);
3641 m
->p_type
= PT_INTERP
;
3649 /* Look through the sections. We put sections in the same program
3650 segment when the start of the second section can be placed within
3651 a few bytes of the end of the first section. */
3655 maxpagesize
= bed
->maxpagesize
;
3657 dynsec
= bfd_get_section_by_name (abfd
, ".dynamic");
3659 && (dynsec
->flags
& SEC_LOAD
) == 0)
3662 /* Deal with -Ttext or something similar such that the first section
3663 is not adjacent to the program headers. This is an
3664 approximation, since at this point we don't know exactly how many
3665 program headers we will need. */
3668 bfd_size_type phdr_size
= elf_tdata (abfd
)->program_header_size
;
3670 if (phdr_size
== (bfd_size_type
) -1)
3671 phdr_size
= get_program_header_size (abfd
, info
);
3672 if ((abfd
->flags
& D_PAGED
) == 0
3673 || sections
[0]->lma
< phdr_size
3674 || sections
[0]->lma
% maxpagesize
< phdr_size
% maxpagesize
)
3675 phdr_in_segment
= FALSE
;
3678 for (i
= 0, hdrpp
= sections
; i
< count
; i
++, hdrpp
++)
3681 bfd_boolean new_segment
;
3685 /* See if this section and the last one will fit in the same
3688 if (last_hdr
== NULL
)
3690 /* If we don't have a segment yet, then we don't need a new
3691 one (we build the last one after this loop). */
3692 new_segment
= FALSE
;
3694 else if (last_hdr
->lma
- last_hdr
->vma
!= hdr
->lma
- hdr
->vma
)
3696 /* If this section has a different relation between the
3697 virtual address and the load address, then we need a new
3701 /* In the next test we have to be careful when last_hdr->lma is close
3702 to the end of the address space. If the aligned address wraps
3703 around to the start of the address space, then there are no more
3704 pages left in memory and it is OK to assume that the current
3705 section can be included in the current segment. */
3706 else if ((BFD_ALIGN (last_hdr
->lma
+ last_size
, maxpagesize
) + maxpagesize
3708 && (BFD_ALIGN (last_hdr
->lma
+ last_size
, maxpagesize
) + maxpagesize
3711 /* If putting this section in this segment would force us to
3712 skip a page in the segment, then we need a new segment. */
3715 else if ((last_hdr
->flags
& (SEC_LOAD
| SEC_THREAD_LOCAL
)) == 0
3716 && (hdr
->flags
& (SEC_LOAD
| SEC_THREAD_LOCAL
)) != 0)
3718 /* We don't want to put a loadable section after a
3719 nonloadable section in the same segment.
3720 Consider .tbss sections as loadable for this purpose. */
3723 else if ((abfd
->flags
& D_PAGED
) == 0)
3725 /* If the file is not demand paged, which means that we
3726 don't require the sections to be correctly aligned in the
3727 file, then there is no other reason for a new segment. */
3728 new_segment
= FALSE
;
3731 && (hdr
->flags
& SEC_READONLY
) == 0
3732 && (((last_hdr
->lma
+ last_size
- 1)
3733 & ~(maxpagesize
- 1))
3734 != (hdr
->lma
& ~(maxpagesize
- 1))))
3736 /* We don't want to put a writable section in a read only
3737 segment, unless they are on the same page in memory
3738 anyhow. We already know that the last section does not
3739 bring us past the current section on the page, so the
3740 only case in which the new section is not on the same
3741 page as the previous section is when the previous section
3742 ends precisely on a page boundary. */
3747 /* Otherwise, we can use the same segment. */
3748 new_segment
= FALSE
;
3751 /* Allow interested parties a chance to override our decision. */
3752 if (last_hdr
!= NULL
3754 && info
->callbacks
->override_segment_assignment
!= NULL
)
3756 = info
->callbacks
->override_segment_assignment (info
, abfd
, hdr
,
3762 if ((hdr
->flags
& SEC_READONLY
) == 0)
3765 /* .tbss sections effectively have zero size. */
3766 if ((hdr
->flags
& (SEC_THREAD_LOCAL
| SEC_LOAD
))
3767 != SEC_THREAD_LOCAL
)
3768 last_size
= hdr
->size
;
3774 /* We need a new program segment. We must create a new program
3775 header holding all the sections from phdr_index until hdr. */
3777 m
= make_mapping (abfd
, sections
, phdr_index
, i
, phdr_in_segment
);
3784 if ((hdr
->flags
& SEC_READONLY
) == 0)
3790 /* .tbss sections effectively have zero size. */
3791 if ((hdr
->flags
& (SEC_THREAD_LOCAL
| SEC_LOAD
)) != SEC_THREAD_LOCAL
)
3792 last_size
= hdr
->size
;
3796 phdr_in_segment
= FALSE
;
3799 /* Create a final PT_LOAD program segment. */
3800 if (last_hdr
!= NULL
)
3802 m
= make_mapping (abfd
, sections
, phdr_index
, i
, phdr_in_segment
);
3810 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
3813 m
= _bfd_elf_make_dynamic_segment (abfd
, dynsec
);
3820 /* For each batch of consecutive loadable .note sections,
3821 add a PT_NOTE segment. We don't use bfd_get_section_by_name,
3822 because if we link together nonloadable .note sections and
3823 loadable .note sections, we will generate two .note sections
3824 in the output file. FIXME: Using names for section types is
3826 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
3828 if ((s
->flags
& SEC_LOAD
) != 0
3829 && CONST_STRNEQ (s
->name
, ".note"))
3833 amt
= sizeof (struct elf_segment_map
);
3834 if (s
->alignment_power
== 2)
3835 for (s2
= s
; s2
->next
!= NULL
; s2
= s2
->next
)
3837 if (s2
->next
->alignment_power
== 2
3838 && (s2
->next
->flags
& SEC_LOAD
) != 0
3839 && CONST_STRNEQ (s2
->next
->name
, ".note")
3840 && align_power (s2
->vma
+ s2
->size
, 2)
3846 amt
+= (count
- 1) * sizeof (asection
*);
3847 m
= bfd_zalloc (abfd
, amt
);
3851 m
->p_type
= PT_NOTE
;
3855 m
->sections
[m
->count
- count
--] = s
;
3856 BFD_ASSERT ((s
->flags
& SEC_THREAD_LOCAL
) == 0);
3859 m
->sections
[m
->count
- 1] = s
;
3860 BFD_ASSERT ((s
->flags
& SEC_THREAD_LOCAL
) == 0);
3864 if (s
->flags
& SEC_THREAD_LOCAL
)
3872 /* If there are any SHF_TLS output sections, add PT_TLS segment. */
3877 amt
= sizeof (struct elf_segment_map
);
3878 amt
+= (tls_count
- 1) * sizeof (asection
*);
3879 m
= bfd_zalloc (abfd
, amt
);
3884 m
->count
= tls_count
;
3885 /* Mandated PF_R. */
3887 m
->p_flags_valid
= 1;
3888 for (i
= 0; i
< tls_count
; ++i
)
3890 BFD_ASSERT (first_tls
->flags
& SEC_THREAD_LOCAL
);
3891 m
->sections
[i
] = first_tls
;
3892 first_tls
= first_tls
->next
;
3899 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
3901 eh_frame_hdr
= elf_tdata (abfd
)->eh_frame_hdr
;
3902 if (eh_frame_hdr
!= NULL
3903 && (eh_frame_hdr
->output_section
->flags
& SEC_LOAD
) != 0)
3905 amt
= sizeof (struct elf_segment_map
);
3906 m
= bfd_zalloc (abfd
, amt
);
3910 m
->p_type
= PT_GNU_EH_FRAME
;
3912 m
->sections
[0] = eh_frame_hdr
->output_section
;
3918 if (elf_tdata (abfd
)->stack_flags
)
3920 amt
= sizeof (struct elf_segment_map
);
3921 m
= bfd_zalloc (abfd
, amt
);
3925 m
->p_type
= PT_GNU_STACK
;
3926 m
->p_flags
= elf_tdata (abfd
)->stack_flags
;
3927 m
->p_flags_valid
= 1;
3933 if (info
!= NULL
&& info
->relro
)
3935 for (m
= mfirst
; m
!= NULL
; m
= m
->next
)
3937 if (m
->p_type
== PT_LOAD
)
3939 asection
*last
= m
->sections
[m
->count
- 1];
3940 bfd_vma vaddr
= m
->sections
[0]->vma
;
3941 bfd_vma filesz
= last
->vma
- vaddr
+ last
->size
;
3943 if (vaddr
< info
->relro_end
3944 && vaddr
>= info
->relro_start
3945 && (vaddr
+ filesz
) >= info
->relro_end
)
3950 /* Make a PT_GNU_RELRO segment only when it isn't empty. */
3953 amt
= sizeof (struct elf_segment_map
);
3954 m
= bfd_zalloc (abfd
, amt
);
3958 m
->p_type
= PT_GNU_RELRO
;
3960 m
->p_flags_valid
= 1;
3968 elf_tdata (abfd
)->segment_map
= mfirst
;
3971 if (!elf_modify_segment_map (abfd
, info
, no_user_phdrs
))
3974 for (count
= 0, m
= elf_tdata (abfd
)->segment_map
; m
!= NULL
; m
= m
->next
)
3976 elf_tdata (abfd
)->program_header_size
= count
* bed
->s
->sizeof_phdr
;
3981 if (sections
!= NULL
)
3986 /* Sort sections by address. */
3989 elf_sort_sections (const void *arg1
, const void *arg2
)
3991 const asection
*sec1
= *(const asection
**) arg1
;
3992 const asection
*sec2
= *(const asection
**) arg2
;
3993 bfd_size_type size1
, size2
;
3995 /* Sort by LMA first, since this is the address used to
3996 place the section into a segment. */
3997 if (sec1
->lma
< sec2
->lma
)
3999 else if (sec1
->lma
> sec2
->lma
)
4002 /* Then sort by VMA. Normally the LMA and the VMA will be
4003 the same, and this will do nothing. */
4004 if (sec1
->vma
< sec2
->vma
)
4006 else if (sec1
->vma
> sec2
->vma
)
4009 /* Put !SEC_LOAD sections after SEC_LOAD ones. */
4011 #define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0)
4017 /* If the indicies are the same, do not return 0
4018 here, but continue to try the next comparison. */
4019 if (sec1
->target_index
- sec2
->target_index
!= 0)
4020 return sec1
->target_index
- sec2
->target_index
;
4025 else if (TOEND (sec2
))
4030 /* Sort by size, to put zero sized sections
4031 before others at the same address. */
4033 size1
= (sec1
->flags
& SEC_LOAD
) ? sec1
->size
: 0;
4034 size2
= (sec2
->flags
& SEC_LOAD
) ? sec2
->size
: 0;
4041 return sec1
->target_index
- sec2
->target_index
;
4044 /* Ian Lance Taylor writes:
4046 We shouldn't be using % with a negative signed number. That's just
4047 not good. We have to make sure either that the number is not
4048 negative, or that the number has an unsigned type. When the types
4049 are all the same size they wind up as unsigned. When file_ptr is a
4050 larger signed type, the arithmetic winds up as signed long long,
4053 What we're trying to say here is something like ``increase OFF by
4054 the least amount that will cause it to be equal to the VMA modulo
4056 /* In other words, something like:
4058 vma_offset = m->sections[0]->vma % bed->maxpagesize;
4059 off_offset = off % bed->maxpagesize;
4060 if (vma_offset < off_offset)
4061 adjustment = vma_offset + bed->maxpagesize - off_offset;
4063 adjustment = vma_offset - off_offset;
4065 which can can be collapsed into the expression below. */
4068 vma_page_aligned_bias (bfd_vma vma
, ufile_ptr off
, bfd_vma maxpagesize
)
4070 return ((vma
- off
) % maxpagesize
);
4074 print_segment_map (const struct elf_segment_map
*m
)
4077 const char *pt
= get_segment_type (m
->p_type
);
4082 if (m
->p_type
>= PT_LOPROC
&& m
->p_type
<= PT_HIPROC
)
4083 sprintf (buf
, "LOPROC+%7.7x",
4084 (unsigned int) (m
->p_type
- PT_LOPROC
));
4085 else if (m
->p_type
>= PT_LOOS
&& m
->p_type
<= PT_HIOS
)
4086 sprintf (buf
, "LOOS+%7.7x",
4087 (unsigned int) (m
->p_type
- PT_LOOS
));
4089 snprintf (buf
, sizeof (buf
), "%8.8x",
4090 (unsigned int) m
->p_type
);
4093 fprintf (stderr
, "%s:", pt
);
4094 for (j
= 0; j
< m
->count
; j
++)
4095 fprintf (stderr
, " %s", m
->sections
[j
]->name
);
4099 /* Assign file positions to the sections based on the mapping from
4100 sections to segments. This function also sets up some fields in
4104 assign_file_positions_for_load_sections (bfd
*abfd
,
4105 struct bfd_link_info
*link_info
)
4107 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
4108 struct elf_segment_map
*m
;
4109 Elf_Internal_Phdr
*phdrs
;
4110 Elf_Internal_Phdr
*p
;
4112 bfd_size_type maxpagesize
;
4115 bfd_vma header_pad
= 0;
4117 if (link_info
== NULL
4118 && !_bfd_elf_map_sections_to_segments (abfd
, link_info
))
4122 for (m
= elf_tdata (abfd
)->segment_map
; m
!= NULL
; m
= m
->next
)
4126 header_pad
= m
->header_size
;
4129 elf_elfheader (abfd
)->e_phoff
= bed
->s
->sizeof_ehdr
;
4130 elf_elfheader (abfd
)->e_phentsize
= bed
->s
->sizeof_phdr
;
4131 elf_elfheader (abfd
)->e_phnum
= alloc
;
4133 if (elf_tdata (abfd
)->program_header_size
== (bfd_size_type
) -1)
4134 elf_tdata (abfd
)->program_header_size
= alloc
* bed
->s
->sizeof_phdr
;
4136 BFD_ASSERT (elf_tdata (abfd
)->program_header_size
4137 >= alloc
* bed
->s
->sizeof_phdr
);
4141 elf_tdata (abfd
)->next_file_pos
= bed
->s
->sizeof_ehdr
;
4145 /* We're writing the size in elf_tdata (abfd)->program_header_size,
4146 see assign_file_positions_except_relocs, so make sure we have
4147 that amount allocated, with trailing space cleared.
4148 The variable alloc contains the computed need, while elf_tdata
4149 (abfd)->program_header_size contains the size used for the
4151 See ld/emultempl/elf-generic.em:gld${EMULATION_NAME}_map_segments
4152 where the layout is forced to according to a larger size in the
4153 last iterations for the testcase ld-elf/header. */
4154 BFD_ASSERT (elf_tdata (abfd
)->program_header_size
% bed
->s
->sizeof_phdr
4156 phdrs
= bfd_zalloc2 (abfd
,
4157 (elf_tdata (abfd
)->program_header_size
4158 / bed
->s
->sizeof_phdr
),
4159 sizeof (Elf_Internal_Phdr
));
4160 elf_tdata (abfd
)->phdr
= phdrs
;
4165 if ((abfd
->flags
& D_PAGED
) != 0)
4166 maxpagesize
= bed
->maxpagesize
;
4168 off
= bed
->s
->sizeof_ehdr
;
4169 off
+= alloc
* bed
->s
->sizeof_phdr
;
4170 if (header_pad
< (bfd_vma
) off
)
4176 for (m
= elf_tdata (abfd
)->segment_map
, p
= phdrs
, j
= 0;
4178 m
= m
->next
, p
++, j
++)
4182 bfd_boolean no_contents
;
4184 /* If elf_segment_map is not from map_sections_to_segments, the
4185 sections may not be correctly ordered. NOTE: sorting should
4186 not be done to the PT_NOTE section of a corefile, which may
4187 contain several pseudo-sections artificially created by bfd.
4188 Sorting these pseudo-sections breaks things badly. */
4190 && !(elf_elfheader (abfd
)->e_type
== ET_CORE
4191 && m
->p_type
== PT_NOTE
))
4192 qsort (m
->sections
, (size_t) m
->count
, sizeof (asection
*),
4195 /* An ELF segment (described by Elf_Internal_Phdr) may contain a
4196 number of sections with contents contributing to both p_filesz
4197 and p_memsz, followed by a number of sections with no contents
4198 that just contribute to p_memsz. In this loop, OFF tracks next
4199 available file offset for PT_LOAD and PT_NOTE segments. */
4200 p
->p_type
= m
->p_type
;
4201 p
->p_flags
= m
->p_flags
;
4206 p
->p_vaddr
= m
->sections
[0]->vma
- m
->p_vaddr_offset
;
4208 if (m
->p_paddr_valid
)
4209 p
->p_paddr
= m
->p_paddr
;
4210 else if (m
->count
== 0)
4213 p
->p_paddr
= m
->sections
[0]->lma
- m
->p_vaddr_offset
;
4215 if (p
->p_type
== PT_LOAD
4216 && (abfd
->flags
& D_PAGED
) != 0)
4218 /* p_align in demand paged PT_LOAD segments effectively stores
4219 the maximum page size. When copying an executable with
4220 objcopy, we set m->p_align from the input file. Use this
4221 value for maxpagesize rather than bed->maxpagesize, which
4222 may be different. Note that we use maxpagesize for PT_TLS
4223 segment alignment later in this function, so we are relying
4224 on at least one PT_LOAD segment appearing before a PT_TLS
4226 if (m
->p_align_valid
)
4227 maxpagesize
= m
->p_align
;
4229 p
->p_align
= maxpagesize
;
4231 else if (m
->p_align_valid
)
4232 p
->p_align
= m
->p_align
;
4233 else if (m
->count
== 0)
4234 p
->p_align
= 1 << bed
->s
->log_file_align
;
4238 no_contents
= FALSE
;
4240 if (p
->p_type
== PT_LOAD
4243 bfd_size_type align
;
4244 unsigned int align_power
= 0;
4246 if (m
->p_align_valid
)
4250 for (i
= 0, secpp
= m
->sections
; i
< m
->count
; i
++, secpp
++)
4252 unsigned int secalign
;
4254 secalign
= bfd_get_section_alignment (abfd
, *secpp
);
4255 if (secalign
> align_power
)
4256 align_power
= secalign
;
4258 align
= (bfd_size_type
) 1 << align_power
;
4259 if (align
< maxpagesize
)
4260 align
= maxpagesize
;
4263 for (i
= 0; i
< m
->count
; i
++)
4264 if ((m
->sections
[i
]->flags
& (SEC_LOAD
| SEC_HAS_CONTENTS
)) == 0)
4265 /* If we aren't making room for this section, then
4266 it must be SHT_NOBITS regardless of what we've
4267 set via struct bfd_elf_special_section. */
4268 elf_section_type (m
->sections
[i
]) = SHT_NOBITS
;
4270 /* Find out whether this segment contains any loadable
4273 for (i
= 0; i
< m
->count
; i
++)
4274 if (elf_section_type (m
->sections
[i
]) != SHT_NOBITS
)
4276 no_contents
= FALSE
;
4280 off_adjust
= vma_page_aligned_bias (m
->sections
[0]->vma
, off
, align
);
4284 /* We shouldn't need to align the segment on disk since
4285 the segment doesn't need file space, but the gABI
4286 arguably requires the alignment and glibc ld.so
4287 checks it. So to comply with the alignment
4288 requirement but not waste file space, we adjust
4289 p_offset for just this segment. (OFF_ADJUST is
4290 subtracted from OFF later.) This may put p_offset
4291 past the end of file, but that shouldn't matter. */
4296 /* Make sure the .dynamic section is the first section in the
4297 PT_DYNAMIC segment. */
4298 else if (p
->p_type
== PT_DYNAMIC
4300 && strcmp (m
->sections
[0]->name
, ".dynamic") != 0)
4303 (_("%B: The first section in the PT_DYNAMIC segment is not the .dynamic section"),
4305 bfd_set_error (bfd_error_bad_value
);
4308 /* Set the note section type to SHT_NOTE. */
4309 else if (p
->p_type
== PT_NOTE
)
4310 for (i
= 0; i
< m
->count
; i
++)
4311 elf_section_type (m
->sections
[i
]) = SHT_NOTE
;
4317 if (m
->includes_filehdr
)
4319 if (!m
->p_flags_valid
)
4321 p
->p_filesz
= bed
->s
->sizeof_ehdr
;
4322 p
->p_memsz
= bed
->s
->sizeof_ehdr
;
4325 BFD_ASSERT (p
->p_type
== PT_LOAD
);
4327 if (p
->p_vaddr
< (bfd_vma
) off
)
4329 (*_bfd_error_handler
)
4330 (_("%B: Not enough room for program headers, try linking with -N"),
4332 bfd_set_error (bfd_error_bad_value
);
4337 if (!m
->p_paddr_valid
)
4342 if (m
->includes_phdrs
)
4344 if (!m
->p_flags_valid
)
4347 if (!m
->includes_filehdr
)
4349 p
->p_offset
= bed
->s
->sizeof_ehdr
;
4353 BFD_ASSERT (p
->p_type
== PT_LOAD
);
4354 p
->p_vaddr
-= off
- p
->p_offset
;
4355 if (!m
->p_paddr_valid
)
4356 p
->p_paddr
-= off
- p
->p_offset
;
4360 p
->p_filesz
+= alloc
* bed
->s
->sizeof_phdr
;
4361 p
->p_memsz
+= alloc
* bed
->s
->sizeof_phdr
;
4364 p
->p_filesz
+= header_pad
;
4365 p
->p_memsz
+= header_pad
;
4369 if (p
->p_type
== PT_LOAD
4370 || (p
->p_type
== PT_NOTE
&& bfd_get_format (abfd
) == bfd_core
))
4372 if (!m
->includes_filehdr
&& !m
->includes_phdrs
)
4378 adjust
= off
- (p
->p_offset
+ p
->p_filesz
);
4380 p
->p_filesz
+= adjust
;
4381 p
->p_memsz
+= adjust
;
4385 /* Set up p_filesz, p_memsz, p_align and p_flags from the section
4386 maps. Set filepos for sections in PT_LOAD segments, and in
4387 core files, for sections in PT_NOTE segments.
4388 assign_file_positions_for_non_load_sections will set filepos
4389 for other sections and update p_filesz for other segments. */
4390 for (i
= 0, secpp
= m
->sections
; i
< m
->count
; i
++, secpp
++)
4393 bfd_size_type align
;
4394 Elf_Internal_Shdr
*this_hdr
;
4397 this_hdr
= &elf_section_data (sec
)->this_hdr
;
4398 align
= (bfd_size_type
) 1 << bfd_get_section_alignment (abfd
, sec
);
4400 if ((p
->p_type
== PT_LOAD
4401 || p
->p_type
== PT_TLS
)
4402 && (this_hdr
->sh_type
!= SHT_NOBITS
4403 || ((this_hdr
->sh_flags
& SHF_ALLOC
) != 0
4404 && ((this_hdr
->sh_flags
& SHF_TLS
) == 0
4405 || p
->p_type
== PT_TLS
))))
4407 bfd_signed_vma adjust
= sec
->vma
- (p
->p_vaddr
+ p
->p_memsz
);
4411 (*_bfd_error_handler
)
4412 (_("%B: section %A vma 0x%lx overlaps previous sections"),
4413 abfd
, sec
, (unsigned long) sec
->vma
);
4416 p
->p_memsz
+= adjust
;
4418 if (this_hdr
->sh_type
!= SHT_NOBITS
)
4421 p
->p_filesz
+= adjust
;
4425 if (p
->p_type
== PT_NOTE
&& bfd_get_format (abfd
) == bfd_core
)
4427 /* The section at i == 0 is the one that actually contains
4431 this_hdr
->sh_offset
= sec
->filepos
= off
;
4432 off
+= this_hdr
->sh_size
;
4433 p
->p_filesz
= this_hdr
->sh_size
;
4439 /* The rest are fake sections that shouldn't be written. */
4448 if (p
->p_type
== PT_LOAD
)
4450 this_hdr
->sh_offset
= sec
->filepos
= off
;
4451 if (this_hdr
->sh_type
!= SHT_NOBITS
)
4452 off
+= this_hdr
->sh_size
;
4455 if (this_hdr
->sh_type
!= SHT_NOBITS
)
4457 p
->p_filesz
+= this_hdr
->sh_size
;
4458 /* A load section without SHF_ALLOC is something like
4459 a note section in a PT_NOTE segment. These take
4460 file space but are not loaded into memory. */
4461 if ((this_hdr
->sh_flags
& SHF_ALLOC
) != 0)
4462 p
->p_memsz
+= this_hdr
->sh_size
;
4464 else if ((this_hdr
->sh_flags
& SHF_ALLOC
) != 0)
4466 if (p
->p_type
== PT_TLS
)
4467 p
->p_memsz
+= this_hdr
->sh_size
;
4469 /* .tbss is special. It doesn't contribute to p_memsz of
4471 else if ((this_hdr
->sh_flags
& SHF_TLS
) == 0)
4472 p
->p_memsz
+= this_hdr
->sh_size
;
4475 if (align
> p
->p_align
4476 && !m
->p_align_valid
4477 && (p
->p_type
!= PT_LOAD
4478 || (abfd
->flags
& D_PAGED
) == 0))
4482 if (!m
->p_flags_valid
)
4485 if ((this_hdr
->sh_flags
& SHF_EXECINSTR
) != 0)
4487 if ((this_hdr
->sh_flags
& SHF_WRITE
) != 0)
4493 /* Check that all sections are in a PT_LOAD segment.
4494 Don't check funky gdb generated core files. */
4495 if (p
->p_type
== PT_LOAD
&& bfd_get_format (abfd
) != bfd_core
)
4496 for (i
= 0, secpp
= m
->sections
; i
< m
->count
; i
++, secpp
++)
4498 Elf_Internal_Shdr
*this_hdr
;
4502 this_hdr
= &(elf_section_data(sec
)->this_hdr
);
4503 if (this_hdr
->sh_size
!= 0
4504 && !ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr
, p
))
4506 (*_bfd_error_handler
)
4507 (_("%B: section `%A' can't be allocated in segment %d"),
4509 print_segment_map (m
);
4510 bfd_set_error (bfd_error_bad_value
);
4516 elf_tdata (abfd
)->next_file_pos
= off
;
4520 /* Assign file positions for the other sections. */
4523 assign_file_positions_for_non_load_sections (bfd
*abfd
,
4524 struct bfd_link_info
*link_info
)
4526 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
4527 Elf_Internal_Shdr
**i_shdrpp
;
4528 Elf_Internal_Shdr
**hdrpp
;
4529 Elf_Internal_Phdr
*phdrs
;
4530 Elf_Internal_Phdr
*p
;
4531 struct elf_segment_map
*m
;
4532 bfd_vma filehdr_vaddr
, filehdr_paddr
;
4533 bfd_vma phdrs_vaddr
, phdrs_paddr
;
4535 unsigned int num_sec
;
4539 i_shdrpp
= elf_elfsections (abfd
);
4540 num_sec
= elf_numsections (abfd
);
4541 off
= elf_tdata (abfd
)->next_file_pos
;
4542 for (i
= 1, hdrpp
= i_shdrpp
+ 1; i
< num_sec
; i
++, hdrpp
++)
4544 struct elf_obj_tdata
*tdata
= elf_tdata (abfd
);
4545 Elf_Internal_Shdr
*hdr
;
4548 if (hdr
->bfd_section
!= NULL
4549 && (hdr
->bfd_section
->filepos
!= 0
4550 || (hdr
->sh_type
== SHT_NOBITS
4551 && hdr
->contents
== NULL
)))
4552 BFD_ASSERT (hdr
->sh_offset
== hdr
->bfd_section
->filepos
);
4553 else if ((hdr
->sh_flags
& SHF_ALLOC
) != 0)
4555 if (hdr
->sh_size
!= 0)
4556 ((*_bfd_error_handler
)
4557 (_("%B: warning: allocated section `%s' not in segment"),
4559 (hdr
->bfd_section
== NULL
4561 : hdr
->bfd_section
->name
)));
4562 /* We don't need to page align empty sections. */
4563 if ((abfd
->flags
& D_PAGED
) != 0 && hdr
->sh_size
!= 0)
4564 off
+= vma_page_aligned_bias (hdr
->sh_addr
, off
,
4567 off
+= vma_page_aligned_bias (hdr
->sh_addr
, off
,
4569 off
= _bfd_elf_assign_file_position_for_section (hdr
, off
,
4572 else if (((hdr
->sh_type
== SHT_REL
|| hdr
->sh_type
== SHT_RELA
)
4573 && hdr
->bfd_section
== NULL
)
4574 || hdr
== i_shdrpp
[tdata
->symtab_section
]
4575 || hdr
== i_shdrpp
[tdata
->symtab_shndx_section
]
4576 || hdr
== i_shdrpp
[tdata
->strtab_section
])
4577 hdr
->sh_offset
= -1;
4579 off
= _bfd_elf_assign_file_position_for_section (hdr
, off
, TRUE
);
4582 /* Now that we have set the section file positions, we can set up
4583 the file positions for the non PT_LOAD segments. */
4587 phdrs_vaddr
= bed
->maxpagesize
+ bed
->s
->sizeof_ehdr
;
4589 phdrs
= elf_tdata (abfd
)->phdr
;
4590 for (m
= elf_tdata (abfd
)->segment_map
, p
= phdrs
;
4595 if (p
->p_type
!= PT_LOAD
)
4598 if (m
->includes_filehdr
)
4600 filehdr_vaddr
= p
->p_vaddr
;
4601 filehdr_paddr
= p
->p_paddr
;
4603 if (m
->includes_phdrs
)
4605 phdrs_vaddr
= p
->p_vaddr
;
4606 phdrs_paddr
= p
->p_paddr
;
4607 if (m
->includes_filehdr
)
4609 phdrs_vaddr
+= bed
->s
->sizeof_ehdr
;
4610 phdrs_paddr
+= bed
->s
->sizeof_ehdr
;
4615 for (m
= elf_tdata (abfd
)->segment_map
, p
= phdrs
;
4619 if (p
->p_type
== PT_GNU_RELRO
)
4621 const Elf_Internal_Phdr
*lp
;
4623 BFD_ASSERT (!m
->includes_filehdr
&& !m
->includes_phdrs
);
4625 if (link_info
!= NULL
)
4627 /* During linking the range of the RELRO segment is passed
4629 for (lp
= phdrs
; lp
< phdrs
+ count
; ++lp
)
4631 if (lp
->p_type
== PT_LOAD
4632 && lp
->p_vaddr
>= link_info
->relro_start
4633 && lp
->p_vaddr
< link_info
->relro_end
4634 && lp
->p_vaddr
+ lp
->p_filesz
>= link_info
->relro_end
)
4640 /* Otherwise we are copying an executable or shared
4641 library, but we need to use the same linker logic. */
4642 for (lp
= phdrs
; lp
< phdrs
+ count
; ++lp
)
4644 if (lp
->p_type
== PT_LOAD
4645 && lp
->p_paddr
== p
->p_paddr
)
4650 if (lp
< phdrs
+ count
)
4652 p
->p_vaddr
= lp
->p_vaddr
;
4653 p
->p_paddr
= lp
->p_paddr
;
4654 p
->p_offset
= lp
->p_offset
;
4655 if (link_info
!= NULL
)
4656 p
->p_filesz
= link_info
->relro_end
- lp
->p_vaddr
;
4657 else if (m
->p_size_valid
)
4658 p
->p_filesz
= m
->p_size
;
4661 p
->p_memsz
= p
->p_filesz
;
4663 p
->p_flags
= (lp
->p_flags
& ~PF_W
);
4667 memset (p
, 0, sizeof *p
);
4668 p
->p_type
= PT_NULL
;
4671 else if (m
->count
!= 0)
4673 if (p
->p_type
!= PT_LOAD
4674 && (p
->p_type
!= PT_NOTE
4675 || bfd_get_format (abfd
) != bfd_core
))
4677 Elf_Internal_Shdr
*hdr
;
4680 BFD_ASSERT (!m
->includes_filehdr
&& !m
->includes_phdrs
);
4682 sect
= m
->sections
[m
->count
- 1];
4683 hdr
= &elf_section_data (sect
)->this_hdr
;
4684 p
->p_filesz
= sect
->filepos
- m
->sections
[0]->filepos
;
4685 if (hdr
->sh_type
!= SHT_NOBITS
)
4686 p
->p_filesz
+= hdr
->sh_size
;
4687 p
->p_offset
= m
->sections
[0]->filepos
;
4690 else if (m
->includes_filehdr
)
4692 p
->p_vaddr
= filehdr_vaddr
;
4693 if (! m
->p_paddr_valid
)
4694 p
->p_paddr
= filehdr_paddr
;
4696 else if (m
->includes_phdrs
)
4698 p
->p_vaddr
= phdrs_vaddr
;
4699 if (! m
->p_paddr_valid
)
4700 p
->p_paddr
= phdrs_paddr
;
4704 elf_tdata (abfd
)->next_file_pos
= off
;
4709 /* Work out the file positions of all the sections. This is called by
4710 _bfd_elf_compute_section_file_positions. All the section sizes and
4711 VMAs must be known before this is called.
4713 Reloc sections come in two flavours: Those processed specially as
4714 "side-channel" data attached to a section to which they apply, and
4715 those that bfd doesn't process as relocations. The latter sort are
4716 stored in a normal bfd section by bfd_section_from_shdr. We don't
4717 consider the former sort here, unless they form part of the loadable
4718 image. Reloc sections not assigned here will be handled later by
4719 assign_file_positions_for_relocs.
4721 We also don't set the positions of the .symtab and .strtab here. */
4724 assign_file_positions_except_relocs (bfd
*abfd
,
4725 struct bfd_link_info
*link_info
)
4727 struct elf_obj_tdata
*tdata
= elf_tdata (abfd
);
4728 Elf_Internal_Ehdr
*i_ehdrp
= elf_elfheader (abfd
);
4730 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
4732 if ((abfd
->flags
& (EXEC_P
| DYNAMIC
)) == 0
4733 && bfd_get_format (abfd
) != bfd_core
)
4735 Elf_Internal_Shdr
** const i_shdrpp
= elf_elfsections (abfd
);
4736 unsigned int num_sec
= elf_numsections (abfd
);
4737 Elf_Internal_Shdr
**hdrpp
;
4740 /* Start after the ELF header. */
4741 off
= i_ehdrp
->e_ehsize
;
4743 /* We are not creating an executable, which means that we are
4744 not creating a program header, and that the actual order of
4745 the sections in the file is unimportant. */
4746 for (i
= 1, hdrpp
= i_shdrpp
+ 1; i
< num_sec
; i
++, hdrpp
++)
4748 Elf_Internal_Shdr
*hdr
;
4751 if (((hdr
->sh_type
== SHT_REL
|| hdr
->sh_type
== SHT_RELA
)
4752 && hdr
->bfd_section
== NULL
)
4753 || i
== tdata
->symtab_section
4754 || i
== tdata
->symtab_shndx_section
4755 || i
== tdata
->strtab_section
)
4757 hdr
->sh_offset
= -1;
4760 off
= _bfd_elf_assign_file_position_for_section (hdr
, off
, TRUE
);
4767 /* Assign file positions for the loaded sections based on the
4768 assignment of sections to segments. */
4769 if (!assign_file_positions_for_load_sections (abfd
, link_info
))
4772 /* And for non-load sections. */
4773 if (!assign_file_positions_for_non_load_sections (abfd
, link_info
))
4776 if (bed
->elf_backend_modify_program_headers
!= NULL
)
4778 if (!(*bed
->elf_backend_modify_program_headers
) (abfd
, link_info
))
4782 /* Write out the program headers. */
4783 alloc
= tdata
->program_header_size
/ bed
->s
->sizeof_phdr
;
4784 if (bfd_seek (abfd
, (bfd_signed_vma
) bed
->s
->sizeof_ehdr
, SEEK_SET
) != 0
4785 || bed
->s
->write_out_phdrs (abfd
, tdata
->phdr
, alloc
) != 0)
4788 off
= tdata
->next_file_pos
;
4791 /* Place the section headers. */
4792 off
= align_file_position (off
, 1 << bed
->s
->log_file_align
);
4793 i_ehdrp
->e_shoff
= off
;
4794 off
+= i_ehdrp
->e_shnum
* i_ehdrp
->e_shentsize
;
4796 tdata
->next_file_pos
= off
;
4802 prep_headers (bfd
*abfd
)
4804 Elf_Internal_Ehdr
*i_ehdrp
; /* Elf file header, internal form */
4805 Elf_Internal_Phdr
*i_phdrp
= 0; /* Program header table, internal form */
4806 struct elf_strtab_hash
*shstrtab
;
4807 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
4809 i_ehdrp
= elf_elfheader (abfd
);
4811 shstrtab
= _bfd_elf_strtab_init ();
4812 if (shstrtab
== NULL
)
4815 elf_shstrtab (abfd
) = shstrtab
;
4817 i_ehdrp
->e_ident
[EI_MAG0
] = ELFMAG0
;
4818 i_ehdrp
->e_ident
[EI_MAG1
] = ELFMAG1
;
4819 i_ehdrp
->e_ident
[EI_MAG2
] = ELFMAG2
;
4820 i_ehdrp
->e_ident
[EI_MAG3
] = ELFMAG3
;
4822 i_ehdrp
->e_ident
[EI_CLASS
] = bed
->s
->elfclass
;
4823 i_ehdrp
->e_ident
[EI_DATA
] =
4824 bfd_big_endian (abfd
) ? ELFDATA2MSB
: ELFDATA2LSB
;
4825 i_ehdrp
->e_ident
[EI_VERSION
] = bed
->s
->ev_current
;
4827 if ((abfd
->flags
& DYNAMIC
) != 0)
4828 i_ehdrp
->e_type
= ET_DYN
;
4829 else if ((abfd
->flags
& EXEC_P
) != 0)
4830 i_ehdrp
->e_type
= ET_EXEC
;
4831 else if (bfd_get_format (abfd
) == bfd_core
)
4832 i_ehdrp
->e_type
= ET_CORE
;
4834 i_ehdrp
->e_type
= ET_REL
;
4836 switch (bfd_get_arch (abfd
))
4838 case bfd_arch_unknown
:
4839 i_ehdrp
->e_machine
= EM_NONE
;
4842 /* There used to be a long list of cases here, each one setting
4843 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
4844 in the corresponding bfd definition. To avoid duplication,
4845 the switch was removed. Machines that need special handling
4846 can generally do it in elf_backend_final_write_processing(),
4847 unless they need the information earlier than the final write.
4848 Such need can generally be supplied by replacing the tests for
4849 e_machine with the conditions used to determine it. */
4851 i_ehdrp
->e_machine
= bed
->elf_machine_code
;
4854 i_ehdrp
->e_version
= bed
->s
->ev_current
;
4855 i_ehdrp
->e_ehsize
= bed
->s
->sizeof_ehdr
;
4857 /* No program header, for now. */
4858 i_ehdrp
->e_phoff
= 0;
4859 i_ehdrp
->e_phentsize
= 0;
4860 i_ehdrp
->e_phnum
= 0;
4862 /* Each bfd section is section header entry. */
4863 i_ehdrp
->e_entry
= bfd_get_start_address (abfd
);
4864 i_ehdrp
->e_shentsize
= bed
->s
->sizeof_shdr
;
4866 /* If we're building an executable, we'll need a program header table. */
4867 if (abfd
->flags
& EXEC_P
)
4868 /* It all happens later. */
4872 i_ehdrp
->e_phentsize
= 0;
4874 i_ehdrp
->e_phoff
= 0;
4877 elf_tdata (abfd
)->symtab_hdr
.sh_name
=
4878 (unsigned int) _bfd_elf_strtab_add (shstrtab
, ".symtab", FALSE
);
4879 elf_tdata (abfd
)->strtab_hdr
.sh_name
=
4880 (unsigned int) _bfd_elf_strtab_add (shstrtab
, ".strtab", FALSE
);
4881 elf_tdata (abfd
)->shstrtab_hdr
.sh_name
=
4882 (unsigned int) _bfd_elf_strtab_add (shstrtab
, ".shstrtab", FALSE
);
4883 if (elf_tdata (abfd
)->symtab_hdr
.sh_name
== (unsigned int) -1
4884 || elf_tdata (abfd
)->symtab_hdr
.sh_name
== (unsigned int) -1
4885 || elf_tdata (abfd
)->shstrtab_hdr
.sh_name
== (unsigned int) -1)
4891 /* Assign file positions for all the reloc sections which are not part
4892 of the loadable file image. */
4895 _bfd_elf_assign_file_positions_for_relocs (bfd
*abfd
)
4898 unsigned int i
, num_sec
;
4899 Elf_Internal_Shdr
**shdrpp
;
4901 off
= elf_tdata (abfd
)->next_file_pos
;
4903 num_sec
= elf_numsections (abfd
);
4904 for (i
= 1, shdrpp
= elf_elfsections (abfd
) + 1; i
< num_sec
; i
++, shdrpp
++)
4906 Elf_Internal_Shdr
*shdrp
;
4909 if ((shdrp
->sh_type
== SHT_REL
|| shdrp
->sh_type
== SHT_RELA
)
4910 && shdrp
->sh_offset
== -1)
4911 off
= _bfd_elf_assign_file_position_for_section (shdrp
, off
, TRUE
);
4914 elf_tdata (abfd
)->next_file_pos
= off
;
4918 _bfd_elf_write_object_contents (bfd
*abfd
)
4920 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
4921 Elf_Internal_Ehdr
*i_ehdrp
;
4922 Elf_Internal_Shdr
**i_shdrp
;
4924 unsigned int count
, num_sec
;
4926 if (! abfd
->output_has_begun
4927 && ! _bfd_elf_compute_section_file_positions (abfd
, NULL
))
4930 i_shdrp
= elf_elfsections (abfd
);
4931 i_ehdrp
= elf_elfheader (abfd
);
4934 bfd_map_over_sections (abfd
, bed
->s
->write_relocs
, &failed
);
4938 _bfd_elf_assign_file_positions_for_relocs (abfd
);
4940 /* After writing the headers, we need to write the sections too... */
4941 num_sec
= elf_numsections (abfd
);
4942 for (count
= 1; count
< num_sec
; count
++)
4944 if (bed
->elf_backend_section_processing
)
4945 (*bed
->elf_backend_section_processing
) (abfd
, i_shdrp
[count
]);
4946 if (i_shdrp
[count
]->contents
)
4948 bfd_size_type amt
= i_shdrp
[count
]->sh_size
;
4950 if (bfd_seek (abfd
, i_shdrp
[count
]->sh_offset
, SEEK_SET
) != 0
4951 || bfd_bwrite (i_shdrp
[count
]->contents
, amt
, abfd
) != amt
)
4956 /* Write out the section header names. */
4957 if (elf_shstrtab (abfd
) != NULL
4958 && (bfd_seek (abfd
, elf_tdata (abfd
)->shstrtab_hdr
.sh_offset
, SEEK_SET
) != 0
4959 || !_bfd_elf_strtab_emit (abfd
, elf_shstrtab (abfd
))))
4962 if (bed
->elf_backend_final_write_processing
)
4963 (*bed
->elf_backend_final_write_processing
) (abfd
,
4964 elf_tdata (abfd
)->linker
);
4966 if (!bed
->s
->write_shdrs_and_ehdr (abfd
))
4969 /* This is last since write_shdrs_and_ehdr can touch i_shdrp[0]. */
4970 if (elf_tdata (abfd
)->after_write_object_contents
)
4971 return (*elf_tdata (abfd
)->after_write_object_contents
) (abfd
);
4977 _bfd_elf_write_corefile_contents (bfd
*abfd
)
4979 /* Hopefully this can be done just like an object file. */
4980 return _bfd_elf_write_object_contents (abfd
);
4983 /* Given a section, search the header to find them. */
4986 _bfd_elf_section_from_bfd_section (bfd
*abfd
, struct bfd_section
*asect
)
4988 const struct elf_backend_data
*bed
;
4991 if (elf_section_data (asect
) != NULL
4992 && elf_section_data (asect
)->this_idx
!= 0)
4993 return elf_section_data (asect
)->this_idx
;
4995 if (bfd_is_abs_section (asect
))
4997 else if (bfd_is_com_section (asect
))
4999 else if (bfd_is_und_section (asect
))
5004 bed
= get_elf_backend_data (abfd
);
5005 if (bed
->elf_backend_section_from_bfd_section
)
5009 if ((*bed
->elf_backend_section_from_bfd_section
) (abfd
, asect
, &retval
))
5013 if (index
== SHN_BAD
)
5014 bfd_set_error (bfd_error_nonrepresentable_section
);
5019 /* Given a BFD symbol, return the index in the ELF symbol table, or -1
5023 _bfd_elf_symbol_from_bfd_symbol (bfd
*abfd
, asymbol
**asym_ptr_ptr
)
5025 asymbol
*asym_ptr
= *asym_ptr_ptr
;
5027 flagword flags
= asym_ptr
->flags
;
5029 /* When gas creates relocations against local labels, it creates its
5030 own symbol for the section, but does put the symbol into the
5031 symbol chain, so udata is 0. When the linker is generating
5032 relocatable output, this section symbol may be for one of the
5033 input sections rather than the output section. */
5034 if (asym_ptr
->udata
.i
== 0
5035 && (flags
& BSF_SECTION_SYM
)
5036 && asym_ptr
->section
)
5041 sec
= asym_ptr
->section
;
5042 if (sec
->owner
!= abfd
&& sec
->output_section
!= NULL
)
5043 sec
= sec
->output_section
;
5044 if (sec
->owner
== abfd
5045 && (indx
= sec
->index
) < elf_num_section_syms (abfd
)
5046 && elf_section_syms (abfd
)[indx
] != NULL
)
5047 asym_ptr
->udata
.i
= elf_section_syms (abfd
)[indx
]->udata
.i
;
5050 idx
= asym_ptr
->udata
.i
;
5054 /* This case can occur when using --strip-symbol on a symbol
5055 which is used in a relocation entry. */
5056 (*_bfd_error_handler
)
5057 (_("%B: symbol `%s' required but not present"),
5058 abfd
, bfd_asymbol_name (asym_ptr
));
5059 bfd_set_error (bfd_error_no_symbols
);
5066 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8lx%s\n",
5067 (long) asym_ptr
, asym_ptr
->name
, idx
, flags
,
5068 elf_symbol_flags (flags
));
5076 /* Rewrite program header information. */
5079 rewrite_elf_program_header (bfd
*ibfd
, bfd
*obfd
)
5081 Elf_Internal_Ehdr
*iehdr
;
5082 struct elf_segment_map
*map
;
5083 struct elf_segment_map
*map_first
;
5084 struct elf_segment_map
**pointer_to_map
;
5085 Elf_Internal_Phdr
*segment
;
5088 unsigned int num_segments
;
5089 bfd_boolean phdr_included
= FALSE
;
5090 bfd_boolean p_paddr_valid
;
5091 bfd_vma maxpagesize
;
5092 struct elf_segment_map
*phdr_adjust_seg
= NULL
;
5093 unsigned int phdr_adjust_num
= 0;
5094 const struct elf_backend_data
*bed
;
5096 bed
= get_elf_backend_data (ibfd
);
5097 iehdr
= elf_elfheader (ibfd
);
5100 pointer_to_map
= &map_first
;
5102 num_segments
= elf_elfheader (ibfd
)->e_phnum
;
5103 maxpagesize
= get_elf_backend_data (obfd
)->maxpagesize
;
5105 /* Returns the end address of the segment + 1. */
5106 #define SEGMENT_END(segment, start) \
5107 (start + (segment->p_memsz > segment->p_filesz \
5108 ? segment->p_memsz : segment->p_filesz))
5110 #define SECTION_SIZE(section, segment) \
5111 (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL)) \
5112 != SEC_THREAD_LOCAL || segment->p_type == PT_TLS) \
5113 ? section->size : 0)
5115 /* Returns TRUE if the given section is contained within
5116 the given segment. VMA addresses are compared. */
5117 #define IS_CONTAINED_BY_VMA(section, segment) \
5118 (section->vma >= segment->p_vaddr \
5119 && (section->vma + SECTION_SIZE (section, segment) \
5120 <= (SEGMENT_END (segment, segment->p_vaddr))))
5122 /* Returns TRUE if the given section is contained within
5123 the given segment. LMA addresses are compared. */
5124 #define IS_CONTAINED_BY_LMA(section, segment, base) \
5125 (section->lma >= base \
5126 && (section->lma + SECTION_SIZE (section, segment) \
5127 <= SEGMENT_END (segment, base)))
5129 /* Handle PT_NOTE segment. */
5130 #define IS_NOTE(p, s) \
5131 (p->p_type == PT_NOTE \
5132 && elf_section_type (s) == SHT_NOTE \
5133 && (bfd_vma) s->filepos >= p->p_offset \
5134 && ((bfd_vma) s->filepos + s->size \
5135 <= p->p_offset + p->p_filesz))
5137 /* Special case: corefile "NOTE" section containing regs, prpsinfo
5139 #define IS_COREFILE_NOTE(p, s) \
5141 && bfd_get_format (ibfd) == bfd_core \
5145 /* The complicated case when p_vaddr is 0 is to handle the Solaris
5146 linker, which generates a PT_INTERP section with p_vaddr and
5147 p_memsz set to 0. */
5148 #define IS_SOLARIS_PT_INTERP(p, s) \
5150 && p->p_paddr == 0 \
5151 && p->p_memsz == 0 \
5152 && p->p_filesz > 0 \
5153 && (s->flags & SEC_HAS_CONTENTS) != 0 \
5155 && (bfd_vma) s->filepos >= p->p_offset \
5156 && ((bfd_vma) s->filepos + s->size \
5157 <= p->p_offset + p->p_filesz))
5159 /* Decide if the given section should be included in the given segment.
5160 A section will be included if:
5161 1. It is within the address space of the segment -- we use the LMA
5162 if that is set for the segment and the VMA otherwise,
5163 2. It is an allocated section or a NOTE section in a PT_NOTE
5165 3. There is an output section associated with it,
5166 4. The section has not already been allocated to a previous segment.
5167 5. PT_GNU_STACK segments do not include any sections.
5168 6. PT_TLS segment includes only SHF_TLS sections.
5169 7. SHF_TLS sections are only in PT_TLS or PT_LOAD segments.
5170 8. PT_DYNAMIC should not contain empty sections at the beginning
5171 (with the possible exception of .dynamic). */
5172 #define IS_SECTION_IN_INPUT_SEGMENT(section, segment, bed) \
5173 ((((segment->p_paddr \
5174 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr) \
5175 : IS_CONTAINED_BY_VMA (section, segment)) \
5176 && (section->flags & SEC_ALLOC) != 0) \
5177 || IS_NOTE (segment, section)) \
5178 && segment->p_type != PT_GNU_STACK \
5179 && (segment->p_type != PT_TLS \
5180 || (section->flags & SEC_THREAD_LOCAL)) \
5181 && (segment->p_type == PT_LOAD \
5182 || segment->p_type == PT_TLS \
5183 || (section->flags & SEC_THREAD_LOCAL) == 0) \
5184 && (segment->p_type != PT_DYNAMIC \
5185 || SECTION_SIZE (section, segment) > 0 \
5186 || (segment->p_paddr \
5187 ? segment->p_paddr != section->lma \
5188 : segment->p_vaddr != section->vma) \
5189 || (strcmp (bfd_get_section_name (ibfd, section), ".dynamic") \
5191 && !section->segment_mark)
5193 /* If the output section of a section in the input segment is NULL,
5194 it is removed from the corresponding output segment. */
5195 #define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed) \
5196 (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed) \
5197 && section->output_section != NULL)
5199 /* Returns TRUE iff seg1 starts after the end of seg2. */
5200 #define SEGMENT_AFTER_SEGMENT(seg1, seg2, field) \
5201 (seg1->field >= SEGMENT_END (seg2, seg2->field))
5203 /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both
5204 their VMA address ranges and their LMA address ranges overlap.
5205 It is possible to have overlapping VMA ranges without overlapping LMA
5206 ranges. RedBoot images for example can have both .data and .bss mapped
5207 to the same VMA range, but with the .data section mapped to a different
5209 #define SEGMENT_OVERLAPS(seg1, seg2) \
5210 ( !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr) \
5211 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr)) \
5212 && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr) \
5213 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr)))
5215 /* Initialise the segment mark field. */
5216 for (section
= ibfd
->sections
; section
!= NULL
; section
= section
->next
)
5217 section
->segment_mark
= FALSE
;
5219 /* The Solaris linker creates program headers in which all the
5220 p_paddr fields are zero. When we try to objcopy or strip such a
5221 file, we get confused. Check for this case, and if we find it
5222 don't set the p_paddr_valid fields. */
5223 p_paddr_valid
= FALSE
;
5224 for (i
= 0, segment
= elf_tdata (ibfd
)->phdr
;
5227 if (segment
->p_paddr
!= 0)
5229 p_paddr_valid
= TRUE
;
5233 /* Scan through the segments specified in the program header
5234 of the input BFD. For this first scan we look for overlaps
5235 in the loadable segments. These can be created by weird
5236 parameters to objcopy. Also, fix some solaris weirdness. */
5237 for (i
= 0, segment
= elf_tdata (ibfd
)->phdr
;
5242 Elf_Internal_Phdr
*segment2
;
5244 if (segment
->p_type
== PT_INTERP
)
5245 for (section
= ibfd
->sections
; section
; section
= section
->next
)
5246 if (IS_SOLARIS_PT_INTERP (segment
, section
))
5248 /* Mininal change so that the normal section to segment
5249 assignment code will work. */
5250 segment
->p_vaddr
= section
->vma
;
5254 if (segment
->p_type
!= PT_LOAD
)
5256 /* Remove PT_GNU_RELRO segment. */
5257 if (segment
->p_type
== PT_GNU_RELRO
)
5258 segment
->p_type
= PT_NULL
;
5262 /* Determine if this segment overlaps any previous segments. */
5263 for (j
= 0, segment2
= elf_tdata (ibfd
)->phdr
; j
< i
; j
++, segment2
++)
5265 bfd_signed_vma extra_length
;
5267 if (segment2
->p_type
!= PT_LOAD
5268 || !SEGMENT_OVERLAPS (segment
, segment2
))
5271 /* Merge the two segments together. */
5272 if (segment2
->p_vaddr
< segment
->p_vaddr
)
5274 /* Extend SEGMENT2 to include SEGMENT and then delete
5276 extra_length
= (SEGMENT_END (segment
, segment
->p_vaddr
)
5277 - SEGMENT_END (segment2
, segment2
->p_vaddr
));
5279 if (extra_length
> 0)
5281 segment2
->p_memsz
+= extra_length
;
5282 segment2
->p_filesz
+= extra_length
;
5285 segment
->p_type
= PT_NULL
;
5287 /* Since we have deleted P we must restart the outer loop. */
5289 segment
= elf_tdata (ibfd
)->phdr
;
5294 /* Extend SEGMENT to include SEGMENT2 and then delete
5296 extra_length
= (SEGMENT_END (segment2
, segment2
->p_vaddr
)
5297 - SEGMENT_END (segment
, segment
->p_vaddr
));
5299 if (extra_length
> 0)
5301 segment
->p_memsz
+= extra_length
;
5302 segment
->p_filesz
+= extra_length
;
5305 segment2
->p_type
= PT_NULL
;
5310 /* The second scan attempts to assign sections to segments. */
5311 for (i
= 0, segment
= elf_tdata (ibfd
)->phdr
;
5315 unsigned int section_count
;
5316 asection
**sections
;
5317 asection
*output_section
;
5319 bfd_vma matching_lma
;
5320 bfd_vma suggested_lma
;
5323 asection
*first_section
;
5324 bfd_boolean first_matching_lma
;
5325 bfd_boolean first_suggested_lma
;
5327 if (segment
->p_type
== PT_NULL
)
5330 first_section
= NULL
;
5331 /* Compute how many sections might be placed into this segment. */
5332 for (section
= ibfd
->sections
, section_count
= 0;
5334 section
= section
->next
)
5336 /* Find the first section in the input segment, which may be
5337 removed from the corresponding output segment. */
5338 if (IS_SECTION_IN_INPUT_SEGMENT (section
, segment
, bed
))
5340 if (first_section
== NULL
)
5341 first_section
= section
;
5342 if (section
->output_section
!= NULL
)
5347 /* Allocate a segment map big enough to contain
5348 all of the sections we have selected. */
5349 amt
= sizeof (struct elf_segment_map
);
5350 amt
+= ((bfd_size_type
) section_count
- 1) * sizeof (asection
*);
5351 map
= bfd_zalloc (obfd
, amt
);
5355 /* Initialise the fields of the segment map. Default to
5356 using the physical address of the segment in the input BFD. */
5358 map
->p_type
= segment
->p_type
;
5359 map
->p_flags
= segment
->p_flags
;
5360 map
->p_flags_valid
= 1;
5362 /* If the first section in the input segment is removed, there is
5363 no need to preserve segment physical address in the corresponding
5365 if (!first_section
|| first_section
->output_section
!= NULL
)
5367 map
->p_paddr
= segment
->p_paddr
;
5368 map
->p_paddr_valid
= p_paddr_valid
;
5371 /* Determine if this segment contains the ELF file header
5372 and if it contains the program headers themselves. */
5373 map
->includes_filehdr
= (segment
->p_offset
== 0
5374 && segment
->p_filesz
>= iehdr
->e_ehsize
);
5375 map
->includes_phdrs
= 0;
5377 if (!phdr_included
|| segment
->p_type
!= PT_LOAD
)
5379 map
->includes_phdrs
=
5380 (segment
->p_offset
<= (bfd_vma
) iehdr
->e_phoff
5381 && (segment
->p_offset
+ segment
->p_filesz
5382 >= ((bfd_vma
) iehdr
->e_phoff
5383 + iehdr
->e_phnum
* iehdr
->e_phentsize
)));
5385 if (segment
->p_type
== PT_LOAD
&& map
->includes_phdrs
)
5386 phdr_included
= TRUE
;
5389 if (section_count
== 0)
5391 /* Special segments, such as the PT_PHDR segment, may contain
5392 no sections, but ordinary, loadable segments should contain
5393 something. They are allowed by the ELF spec however, so only
5394 a warning is produced. */
5395 if (segment
->p_type
== PT_LOAD
)
5396 (*_bfd_error_handler
) (_("%B: warning: Empty loadable segment"
5397 " detected, is this intentional ?\n"),
5401 *pointer_to_map
= map
;
5402 pointer_to_map
= &map
->next
;
5407 /* Now scan the sections in the input BFD again and attempt
5408 to add their corresponding output sections to the segment map.
5409 The problem here is how to handle an output section which has
5410 been moved (ie had its LMA changed). There are four possibilities:
5412 1. None of the sections have been moved.
5413 In this case we can continue to use the segment LMA from the
5416 2. All of the sections have been moved by the same amount.
5417 In this case we can change the segment's LMA to match the LMA
5418 of the first section.
5420 3. Some of the sections have been moved, others have not.
5421 In this case those sections which have not been moved can be
5422 placed in the current segment which will have to have its size,
5423 and possibly its LMA changed, and a new segment or segments will
5424 have to be created to contain the other sections.
5426 4. The sections have been moved, but not by the same amount.
5427 In this case we can change the segment's LMA to match the LMA
5428 of the first section and we will have to create a new segment
5429 or segments to contain the other sections.
5431 In order to save time, we allocate an array to hold the section
5432 pointers that we are interested in. As these sections get assigned
5433 to a segment, they are removed from this array. */
5435 sections
= bfd_malloc2 (section_count
, sizeof (asection
*));
5436 if (sections
== NULL
)
5439 /* Step One: Scan for segment vs section LMA conflicts.
5440 Also add the sections to the section array allocated above.
5441 Also add the sections to the current segment. In the common
5442 case, where the sections have not been moved, this means that
5443 we have completely filled the segment, and there is nothing
5448 first_matching_lma
= TRUE
;
5449 first_suggested_lma
= TRUE
;
5451 for (section
= ibfd
->sections
;
5453 section
= section
->next
)
5454 if (section
== first_section
)
5457 for (j
= 0; section
!= NULL
; section
= section
->next
)
5459 if (INCLUDE_SECTION_IN_SEGMENT (section
, segment
, bed
))
5461 output_section
= section
->output_section
;
5463 sections
[j
++] = section
;
5465 /* The Solaris native linker always sets p_paddr to 0.
5466 We try to catch that case here, and set it to the
5467 correct value. Note - some backends require that
5468 p_paddr be left as zero. */
5470 && segment
->p_vaddr
!= 0
5471 && !bed
->want_p_paddr_set_to_zero
5473 && output_section
->lma
!= 0
5474 && output_section
->vma
== (segment
->p_vaddr
5475 + (map
->includes_filehdr
5478 + (map
->includes_phdrs
5480 * iehdr
->e_phentsize
)
5482 map
->p_paddr
= segment
->p_vaddr
;
5484 /* Match up the physical address of the segment with the
5485 LMA address of the output section. */
5486 if (IS_CONTAINED_BY_LMA (output_section
, segment
, map
->p_paddr
)
5487 || IS_COREFILE_NOTE (segment
, section
)
5488 || (bed
->want_p_paddr_set_to_zero
5489 && IS_CONTAINED_BY_VMA (output_section
, segment
)))
5491 if (first_matching_lma
|| output_section
->lma
< matching_lma
)
5493 matching_lma
= output_section
->lma
;
5494 first_matching_lma
= FALSE
;
5497 /* We assume that if the section fits within the segment
5498 then it does not overlap any other section within that
5500 map
->sections
[isec
++] = output_section
;
5502 else if (first_suggested_lma
)
5504 suggested_lma
= output_section
->lma
;
5505 first_suggested_lma
= FALSE
;
5508 if (j
== section_count
)
5513 BFD_ASSERT (j
== section_count
);
5515 /* Step Two: Adjust the physical address of the current segment,
5517 if (isec
== section_count
)
5519 /* All of the sections fitted within the segment as currently
5520 specified. This is the default case. Add the segment to
5521 the list of built segments and carry on to process the next
5522 program header in the input BFD. */
5523 map
->count
= section_count
;
5524 *pointer_to_map
= map
;
5525 pointer_to_map
= &map
->next
;
5528 && !bed
->want_p_paddr_set_to_zero
5529 && matching_lma
!= map
->p_paddr
5530 && !map
->includes_filehdr
5531 && !map
->includes_phdrs
)
5532 /* There is some padding before the first section in the
5533 segment. So, we must account for that in the output
5535 map
->p_vaddr_offset
= matching_lma
- map
->p_paddr
;
5542 if (!first_matching_lma
)
5544 /* At least one section fits inside the current segment.
5545 Keep it, but modify its physical address to match the
5546 LMA of the first section that fitted. */
5547 map
->p_paddr
= matching_lma
;
5551 /* None of the sections fitted inside the current segment.
5552 Change the current segment's physical address to match
5553 the LMA of the first section. */
5554 map
->p_paddr
= suggested_lma
;
5557 /* Offset the segment physical address from the lma
5558 to allow for space taken up by elf headers. */
5559 if (map
->includes_filehdr
)
5561 if (map
->p_paddr
>= iehdr
->e_ehsize
)
5562 map
->p_paddr
-= iehdr
->e_ehsize
;
5565 map
->includes_filehdr
= FALSE
;
5566 map
->includes_phdrs
= FALSE
;
5570 if (map
->includes_phdrs
)
5572 if (map
->p_paddr
>= iehdr
->e_phnum
* iehdr
->e_phentsize
)
5574 map
->p_paddr
-= iehdr
->e_phnum
* iehdr
->e_phentsize
;
5576 /* iehdr->e_phnum is just an estimate of the number
5577 of program headers that we will need. Make a note
5578 here of the number we used and the segment we chose
5579 to hold these headers, so that we can adjust the
5580 offset when we know the correct value. */
5581 phdr_adjust_num
= iehdr
->e_phnum
;
5582 phdr_adjust_seg
= map
;
5585 map
->includes_phdrs
= FALSE
;
5589 /* Step Three: Loop over the sections again, this time assigning
5590 those that fit to the current segment and removing them from the
5591 sections array; but making sure not to leave large gaps. Once all
5592 possible sections have been assigned to the current segment it is
5593 added to the list of built segments and if sections still remain
5594 to be assigned, a new segment is constructed before repeating
5601 first_suggested_lma
= TRUE
;
5603 /* Fill the current segment with sections that fit. */
5604 for (j
= 0; j
< section_count
; j
++)
5606 section
= sections
[j
];
5608 if (section
== NULL
)
5611 output_section
= section
->output_section
;
5613 BFD_ASSERT (output_section
!= NULL
);
5615 if (IS_CONTAINED_BY_LMA (output_section
, segment
, map
->p_paddr
)
5616 || IS_COREFILE_NOTE (segment
, section
))
5618 if (map
->count
== 0)
5620 /* If the first section in a segment does not start at
5621 the beginning of the segment, then something is
5623 if (output_section
->lma
5625 + (map
->includes_filehdr
? iehdr
->e_ehsize
: 0)
5626 + (map
->includes_phdrs
5627 ? iehdr
->e_phnum
* iehdr
->e_phentsize
5635 prev_sec
= map
->sections
[map
->count
- 1];
5637 /* If the gap between the end of the previous section
5638 and the start of this section is more than
5639 maxpagesize then we need to start a new segment. */
5640 if ((BFD_ALIGN (prev_sec
->lma
+ prev_sec
->size
,
5642 < BFD_ALIGN (output_section
->lma
, maxpagesize
))
5643 || (prev_sec
->lma
+ prev_sec
->size
5644 > output_section
->lma
))
5646 if (first_suggested_lma
)
5648 suggested_lma
= output_section
->lma
;
5649 first_suggested_lma
= FALSE
;
5656 map
->sections
[map
->count
++] = output_section
;
5659 section
->segment_mark
= TRUE
;
5661 else if (first_suggested_lma
)
5663 suggested_lma
= output_section
->lma
;
5664 first_suggested_lma
= FALSE
;
5668 BFD_ASSERT (map
->count
> 0);
5670 /* Add the current segment to the list of built segments. */
5671 *pointer_to_map
= map
;
5672 pointer_to_map
= &map
->next
;
5674 if (isec
< section_count
)
5676 /* We still have not allocated all of the sections to
5677 segments. Create a new segment here, initialise it
5678 and carry on looping. */
5679 amt
= sizeof (struct elf_segment_map
);
5680 amt
+= ((bfd_size_type
) section_count
- 1) * sizeof (asection
*);
5681 map
= bfd_alloc (obfd
, amt
);
5688 /* Initialise the fields of the segment map. Set the physical
5689 physical address to the LMA of the first section that has
5690 not yet been assigned. */
5692 map
->p_type
= segment
->p_type
;
5693 map
->p_flags
= segment
->p_flags
;
5694 map
->p_flags_valid
= 1;
5695 map
->p_paddr
= suggested_lma
;
5696 map
->p_paddr_valid
= p_paddr_valid
;
5697 map
->includes_filehdr
= 0;
5698 map
->includes_phdrs
= 0;
5701 while (isec
< section_count
);
5706 elf_tdata (obfd
)->segment_map
= map_first
;
5708 /* If we had to estimate the number of program headers that were
5709 going to be needed, then check our estimate now and adjust
5710 the offset if necessary. */
5711 if (phdr_adjust_seg
!= NULL
)
5715 for (count
= 0, map
= map_first
; map
!= NULL
; map
= map
->next
)
5718 if (count
> phdr_adjust_num
)
5719 phdr_adjust_seg
->p_paddr
5720 -= (count
- phdr_adjust_num
) * iehdr
->e_phentsize
;
5725 #undef IS_CONTAINED_BY_VMA
5726 #undef IS_CONTAINED_BY_LMA
5728 #undef IS_COREFILE_NOTE
5729 #undef IS_SOLARIS_PT_INTERP
5730 #undef IS_SECTION_IN_INPUT_SEGMENT
5731 #undef INCLUDE_SECTION_IN_SEGMENT
5732 #undef SEGMENT_AFTER_SEGMENT
5733 #undef SEGMENT_OVERLAPS
5737 /* Copy ELF program header information. */
5740 copy_elf_program_header (bfd
*ibfd
, bfd
*obfd
)
5742 Elf_Internal_Ehdr
*iehdr
;
5743 struct elf_segment_map
*map
;
5744 struct elf_segment_map
*map_first
;
5745 struct elf_segment_map
**pointer_to_map
;
5746 Elf_Internal_Phdr
*segment
;
5748 unsigned int num_segments
;
5749 bfd_boolean phdr_included
= FALSE
;
5750 bfd_boolean p_paddr_valid
;
5752 iehdr
= elf_elfheader (ibfd
);
5755 pointer_to_map
= &map_first
;
5757 /* If all the segment p_paddr fields are zero, don't set
5758 map->p_paddr_valid. */
5759 p_paddr_valid
= FALSE
;
5760 num_segments
= elf_elfheader (ibfd
)->e_phnum
;
5761 for (i
= 0, segment
= elf_tdata (ibfd
)->phdr
;
5764 if (segment
->p_paddr
!= 0)
5766 p_paddr_valid
= TRUE
;
5770 for (i
= 0, segment
= elf_tdata (ibfd
)->phdr
;
5775 unsigned int section_count
;
5777 Elf_Internal_Shdr
*this_hdr
;
5778 asection
*first_section
= NULL
;
5779 asection
*lowest_section
= NULL
;
5781 /* Compute how many sections are in this segment. */
5782 for (section
= ibfd
->sections
, section_count
= 0;
5784 section
= section
->next
)
5786 this_hdr
= &(elf_section_data(section
)->this_hdr
);
5787 if (ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr
, segment
))
5790 first_section
= lowest_section
= section
;
5791 if (section
->lma
< lowest_section
->lma
)
5792 lowest_section
= section
;
5797 /* Allocate a segment map big enough to contain
5798 all of the sections we have selected. */
5799 amt
= sizeof (struct elf_segment_map
);
5800 if (section_count
!= 0)
5801 amt
+= ((bfd_size_type
) section_count
- 1) * sizeof (asection
*);
5802 map
= bfd_zalloc (obfd
, amt
);
5806 /* Initialize the fields of the output segment map with the
5809 map
->p_type
= segment
->p_type
;
5810 map
->p_flags
= segment
->p_flags
;
5811 map
->p_flags_valid
= 1;
5812 map
->p_paddr
= segment
->p_paddr
;
5813 map
->p_paddr_valid
= p_paddr_valid
;
5814 map
->p_align
= segment
->p_align
;
5815 map
->p_align_valid
= 1;
5816 map
->p_vaddr_offset
= 0;
5818 if (map
->p_type
== PT_GNU_RELRO
)
5820 /* The PT_GNU_RELRO segment may contain the first a few
5821 bytes in the .got.plt section even if the whole .got.plt
5822 section isn't in the PT_GNU_RELRO segment. We won't
5823 change the size of the PT_GNU_RELRO segment. */
5824 map
->p_size
= segment
->p_memsz
;
5825 map
->p_size_valid
= 1;
5828 /* Determine if this segment contains the ELF file header
5829 and if it contains the program headers themselves. */
5830 map
->includes_filehdr
= (segment
->p_offset
== 0
5831 && segment
->p_filesz
>= iehdr
->e_ehsize
);
5833 map
->includes_phdrs
= 0;
5834 if (! phdr_included
|| segment
->p_type
!= PT_LOAD
)
5836 map
->includes_phdrs
=
5837 (segment
->p_offset
<= (bfd_vma
) iehdr
->e_phoff
5838 && (segment
->p_offset
+ segment
->p_filesz
5839 >= ((bfd_vma
) iehdr
->e_phoff
5840 + iehdr
->e_phnum
* iehdr
->e_phentsize
)));
5842 if (segment
->p_type
== PT_LOAD
&& map
->includes_phdrs
)
5843 phdr_included
= TRUE
;
5846 if (map
->includes_filehdr
&& first_section
)
5847 /* We need to keep the space used by the headers fixed. */
5848 map
->header_size
= first_section
->vma
- segment
->p_vaddr
;
5850 if (!map
->includes_phdrs
5851 && !map
->includes_filehdr
5852 && map
->p_paddr_valid
)
5853 /* There is some other padding before the first section. */
5854 map
->p_vaddr_offset
= ((lowest_section
? lowest_section
->lma
: 0)
5855 - segment
->p_paddr
);
5857 if (section_count
!= 0)
5859 unsigned int isec
= 0;
5861 for (section
= first_section
;
5863 section
= section
->next
)
5865 this_hdr
= &(elf_section_data(section
)->this_hdr
);
5866 if (ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr
, segment
))
5868 map
->sections
[isec
++] = section
->output_section
;
5869 if (isec
== section_count
)
5875 map
->count
= section_count
;
5876 *pointer_to_map
= map
;
5877 pointer_to_map
= &map
->next
;
5880 elf_tdata (obfd
)->segment_map
= map_first
;
5884 /* Copy private BFD data. This copies or rewrites ELF program header
5888 copy_private_bfd_data (bfd
*ibfd
, bfd
*obfd
)
5890 if (bfd_get_flavour (ibfd
) != bfd_target_elf_flavour
5891 || bfd_get_flavour (obfd
) != bfd_target_elf_flavour
)
5894 if (elf_tdata (ibfd
)->phdr
== NULL
)
5897 if (ibfd
->xvec
== obfd
->xvec
)
5899 /* Check to see if any sections in the input BFD
5900 covered by ELF program header have changed. */
5901 Elf_Internal_Phdr
*segment
;
5902 asection
*section
, *osec
;
5903 unsigned int i
, num_segments
;
5904 Elf_Internal_Shdr
*this_hdr
;
5905 const struct elf_backend_data
*bed
;
5907 bed
= get_elf_backend_data (ibfd
);
5909 /* Regenerate the segment map if p_paddr is set to 0. */
5910 if (bed
->want_p_paddr_set_to_zero
)
5913 /* Initialize the segment mark field. */
5914 for (section
= obfd
->sections
; section
!= NULL
;
5915 section
= section
->next
)
5916 section
->segment_mark
= FALSE
;
5918 num_segments
= elf_elfheader (ibfd
)->e_phnum
;
5919 for (i
= 0, segment
= elf_tdata (ibfd
)->phdr
;
5923 /* PR binutils/3535. The Solaris linker always sets the p_paddr
5924 and p_memsz fields of special segments (DYNAMIC, INTERP) to 0
5925 which severly confuses things, so always regenerate the segment
5926 map in this case. */
5927 if (segment
->p_paddr
== 0
5928 && segment
->p_memsz
== 0
5929 && (segment
->p_type
== PT_INTERP
|| segment
->p_type
== PT_DYNAMIC
))
5932 for (section
= ibfd
->sections
;
5933 section
!= NULL
; section
= section
->next
)
5935 /* We mark the output section so that we know it comes
5936 from the input BFD. */
5937 osec
= section
->output_section
;
5939 osec
->segment_mark
= TRUE
;
5941 /* Check if this section is covered by the segment. */
5942 this_hdr
= &(elf_section_data(section
)->this_hdr
);
5943 if (ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr
, segment
))
5945 /* FIXME: Check if its output section is changed or
5946 removed. What else do we need to check? */
5948 || section
->flags
!= osec
->flags
5949 || section
->lma
!= osec
->lma
5950 || section
->vma
!= osec
->vma
5951 || section
->size
!= osec
->size
5952 || section
->rawsize
!= osec
->rawsize
5953 || section
->alignment_power
!= osec
->alignment_power
)
5959 /* Check to see if any output section do not come from the
5961 for (section
= obfd
->sections
; section
!= NULL
;
5962 section
= section
->next
)
5964 if (section
->segment_mark
== FALSE
)
5967 section
->segment_mark
= FALSE
;
5970 return copy_elf_program_header (ibfd
, obfd
);
5974 return rewrite_elf_program_header (ibfd
, obfd
);
5977 /* Initialize private output section information from input section. */
5980 _bfd_elf_init_private_section_data (bfd
*ibfd
,
5984 struct bfd_link_info
*link_info
)
5987 Elf_Internal_Shdr
*ihdr
, *ohdr
;
5988 bfd_boolean need_group
= link_info
== NULL
|| link_info
->relocatable
;
5990 if (ibfd
->xvec
->flavour
!= bfd_target_elf_flavour
5991 || obfd
->xvec
->flavour
!= bfd_target_elf_flavour
)
5994 /* Don't copy the output ELF section type from input if the
5995 output BFD section flags have been set to something different.
5996 elf_fake_sections will set ELF section type based on BFD
5998 if (elf_section_type (osec
) == SHT_NULL
5999 && (osec
->flags
== isec
->flags
|| !osec
->flags
))
6000 elf_section_type (osec
) = elf_section_type (isec
);
6002 /* FIXME: Is this correct for all OS/PROC specific flags? */
6003 elf_section_flags (osec
) |= (elf_section_flags (isec
)
6004 & (SHF_MASKOS
| SHF_MASKPROC
));
6006 /* Set things up for objcopy and relocatable link. The output
6007 SHT_GROUP section will have its elf_next_in_group pointing back
6008 to the input group members. Ignore linker created group section.
6009 See elfNN_ia64_object_p in elfxx-ia64.c. */
6012 if (elf_sec_group (isec
) == NULL
6013 || (elf_sec_group (isec
)->flags
& SEC_LINKER_CREATED
) == 0)
6015 if (elf_section_flags (isec
) & SHF_GROUP
)
6016 elf_section_flags (osec
) |= SHF_GROUP
;
6017 elf_next_in_group (osec
) = elf_next_in_group (isec
);
6018 elf_section_data (osec
)->group
= elf_section_data (isec
)->group
;
6022 ihdr
= &elf_section_data (isec
)->this_hdr
;
6024 /* We need to handle elf_linked_to_section for SHF_LINK_ORDER. We
6025 don't use the output section of the linked-to section since it
6026 may be NULL at this point. */
6027 if ((ihdr
->sh_flags
& SHF_LINK_ORDER
) != 0)
6029 ohdr
= &elf_section_data (osec
)->this_hdr
;
6030 ohdr
->sh_flags
|= SHF_LINK_ORDER
;
6031 elf_linked_to_section (osec
) = elf_linked_to_section (isec
);
6034 osec
->use_rela_p
= isec
->use_rela_p
;
6039 /* Copy private section information. This copies over the entsize
6040 field, and sometimes the info field. */
6043 _bfd_elf_copy_private_section_data (bfd
*ibfd
,
6048 Elf_Internal_Shdr
*ihdr
, *ohdr
;
6050 if (ibfd
->xvec
->flavour
!= bfd_target_elf_flavour
6051 || obfd
->xvec
->flavour
!= bfd_target_elf_flavour
)
6054 ihdr
= &elf_section_data (isec
)->this_hdr
;
6055 ohdr
= &elf_section_data (osec
)->this_hdr
;
6057 ohdr
->sh_entsize
= ihdr
->sh_entsize
;
6059 if (ihdr
->sh_type
== SHT_SYMTAB
6060 || ihdr
->sh_type
== SHT_DYNSYM
6061 || ihdr
->sh_type
== SHT_GNU_verneed
6062 || ihdr
->sh_type
== SHT_GNU_verdef
)
6063 ohdr
->sh_info
= ihdr
->sh_info
;
6065 return _bfd_elf_init_private_section_data (ibfd
, isec
, obfd
, osec
,
6069 /* Copy private header information. */
6072 _bfd_elf_copy_private_header_data (bfd
*ibfd
, bfd
*obfd
)
6076 if (bfd_get_flavour (ibfd
) != bfd_target_elf_flavour
6077 || bfd_get_flavour (obfd
) != bfd_target_elf_flavour
)
6080 /* Copy over private BFD data if it has not already been copied.
6081 This must be done here, rather than in the copy_private_bfd_data
6082 entry point, because the latter is called after the section
6083 contents have been set, which means that the program headers have
6084 already been worked out. */
6085 if (elf_tdata (obfd
)->segment_map
== NULL
&& elf_tdata (ibfd
)->phdr
!= NULL
)
6087 if (! copy_private_bfd_data (ibfd
, obfd
))
6091 /* _bfd_elf_copy_private_section_data copied over the SHF_GROUP flag
6092 but this might be wrong if we deleted the group section. */
6093 for (isec
= ibfd
->sections
; isec
!= NULL
; isec
= isec
->next
)
6094 if (elf_section_type (isec
) == SHT_GROUP
6095 && isec
->output_section
== NULL
)
6097 asection
*first
= elf_next_in_group (isec
);
6098 asection
*s
= first
;
6101 if (s
->output_section
!= NULL
)
6103 elf_section_flags (s
->output_section
) &= ~SHF_GROUP
;
6104 elf_group_name (s
->output_section
) = NULL
;
6106 s
= elf_next_in_group (s
);
6115 /* Copy private symbol information. If this symbol is in a section
6116 which we did not map into a BFD section, try to map the section
6117 index correctly. We use special macro definitions for the mapped
6118 section indices; these definitions are interpreted by the
6119 swap_out_syms function. */
6121 #define MAP_ONESYMTAB (SHN_HIOS + 1)
6122 #define MAP_DYNSYMTAB (SHN_HIOS + 2)
6123 #define MAP_STRTAB (SHN_HIOS + 3)
6124 #define MAP_SHSTRTAB (SHN_HIOS + 4)
6125 #define MAP_SYM_SHNDX (SHN_HIOS + 5)
6128 _bfd_elf_copy_private_symbol_data (bfd
*ibfd
,
6133 elf_symbol_type
*isym
, *osym
;
6135 if (bfd_get_flavour (ibfd
) != bfd_target_elf_flavour
6136 || bfd_get_flavour (obfd
) != bfd_target_elf_flavour
)
6139 isym
= elf_symbol_from (ibfd
, isymarg
);
6140 osym
= elf_symbol_from (obfd
, osymarg
);
6143 && isym
->internal_elf_sym
.st_shndx
!= 0
6145 && bfd_is_abs_section (isym
->symbol
.section
))
6149 shndx
= isym
->internal_elf_sym
.st_shndx
;
6150 if (shndx
== elf_onesymtab (ibfd
))
6151 shndx
= MAP_ONESYMTAB
;
6152 else if (shndx
== elf_dynsymtab (ibfd
))
6153 shndx
= MAP_DYNSYMTAB
;
6154 else if (shndx
== elf_tdata (ibfd
)->strtab_section
)
6156 else if (shndx
== elf_tdata (ibfd
)->shstrtab_section
)
6157 shndx
= MAP_SHSTRTAB
;
6158 else if (shndx
== elf_tdata (ibfd
)->symtab_shndx_section
)
6159 shndx
= MAP_SYM_SHNDX
;
6160 osym
->internal_elf_sym
.st_shndx
= shndx
;
6166 /* Swap out the symbols. */
6169 swap_out_syms (bfd
*abfd
,
6170 struct bfd_strtab_hash
**sttp
,
6173 const struct elf_backend_data
*bed
;
6176 struct bfd_strtab_hash
*stt
;
6177 Elf_Internal_Shdr
*symtab_hdr
;
6178 Elf_Internal_Shdr
*symtab_shndx_hdr
;
6179 Elf_Internal_Shdr
*symstrtab_hdr
;
6180 bfd_byte
*outbound_syms
;
6181 bfd_byte
*outbound_shndx
;
6184 bfd_boolean name_local_sections
;
6186 if (!elf_map_symbols (abfd
))
6189 /* Dump out the symtabs. */
6190 stt
= _bfd_elf_stringtab_init ();
6194 bed
= get_elf_backend_data (abfd
);
6195 symcount
= bfd_get_symcount (abfd
);
6196 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
6197 symtab_hdr
->sh_type
= SHT_SYMTAB
;
6198 symtab_hdr
->sh_entsize
= bed
->s
->sizeof_sym
;
6199 symtab_hdr
->sh_size
= symtab_hdr
->sh_entsize
* (symcount
+ 1);
6200 symtab_hdr
->sh_info
= elf_num_locals (abfd
) + 1;
6201 symtab_hdr
->sh_addralign
= (bfd_vma
) 1 << bed
->s
->log_file_align
;
6203 symstrtab_hdr
= &elf_tdata (abfd
)->strtab_hdr
;
6204 symstrtab_hdr
->sh_type
= SHT_STRTAB
;
6206 outbound_syms
= bfd_alloc2 (abfd
, 1 + symcount
, bed
->s
->sizeof_sym
);
6207 if (outbound_syms
== NULL
)
6209 _bfd_stringtab_free (stt
);
6212 symtab_hdr
->contents
= outbound_syms
;
6214 outbound_shndx
= NULL
;
6215 symtab_shndx_hdr
= &elf_tdata (abfd
)->symtab_shndx_hdr
;
6216 if (symtab_shndx_hdr
->sh_name
!= 0)
6218 amt
= (bfd_size_type
) (1 + symcount
) * sizeof (Elf_External_Sym_Shndx
);
6219 outbound_shndx
= bfd_zalloc2 (abfd
, 1 + symcount
,
6220 sizeof (Elf_External_Sym_Shndx
));
6221 if (outbound_shndx
== NULL
)
6223 _bfd_stringtab_free (stt
);
6227 symtab_shndx_hdr
->contents
= outbound_shndx
;
6228 symtab_shndx_hdr
->sh_type
= SHT_SYMTAB_SHNDX
;
6229 symtab_shndx_hdr
->sh_size
= amt
;
6230 symtab_shndx_hdr
->sh_addralign
= sizeof (Elf_External_Sym_Shndx
);
6231 symtab_shndx_hdr
->sh_entsize
= sizeof (Elf_External_Sym_Shndx
);
6234 /* Now generate the data (for "contents"). */
6236 /* Fill in zeroth symbol and swap it out. */
6237 Elf_Internal_Sym sym
;
6243 sym
.st_shndx
= SHN_UNDEF
;
6244 bed
->s
->swap_symbol_out (abfd
, &sym
, outbound_syms
, outbound_shndx
);
6245 outbound_syms
+= bed
->s
->sizeof_sym
;
6246 if (outbound_shndx
!= NULL
)
6247 outbound_shndx
+= sizeof (Elf_External_Sym_Shndx
);
6251 = (bed
->elf_backend_name_local_section_symbols
6252 && bed
->elf_backend_name_local_section_symbols (abfd
));
6254 syms
= bfd_get_outsymbols (abfd
);
6255 for (idx
= 0; idx
< symcount
; idx
++)
6257 Elf_Internal_Sym sym
;
6258 bfd_vma value
= syms
[idx
]->value
;
6259 elf_symbol_type
*type_ptr
;
6260 flagword flags
= syms
[idx
]->flags
;
6263 if (!name_local_sections
6264 && (flags
& (BSF_SECTION_SYM
| BSF_GLOBAL
)) == BSF_SECTION_SYM
)
6266 /* Local section symbols have no name. */
6271 sym
.st_name
= (unsigned long) _bfd_stringtab_add (stt
,
6274 if (sym
.st_name
== (unsigned long) -1)
6276 _bfd_stringtab_free (stt
);
6281 type_ptr
= elf_symbol_from (abfd
, syms
[idx
]);
6283 if ((flags
& BSF_SECTION_SYM
) == 0
6284 && bfd_is_com_section (syms
[idx
]->section
))
6286 /* ELF common symbols put the alignment into the `value' field,
6287 and the size into the `size' field. This is backwards from
6288 how BFD handles it, so reverse it here. */
6289 sym
.st_size
= value
;
6290 if (type_ptr
== NULL
6291 || type_ptr
->internal_elf_sym
.st_value
== 0)
6292 sym
.st_value
= value
>= 16 ? 16 : (1 << bfd_log2 (value
));
6294 sym
.st_value
= type_ptr
->internal_elf_sym
.st_value
;
6295 sym
.st_shndx
= _bfd_elf_section_from_bfd_section
6296 (abfd
, syms
[idx
]->section
);
6300 asection
*sec
= syms
[idx
]->section
;
6303 if (sec
->output_section
)
6305 value
+= sec
->output_offset
;
6306 sec
= sec
->output_section
;
6309 /* Don't add in the section vma for relocatable output. */
6310 if (! relocatable_p
)
6312 sym
.st_value
= value
;
6313 sym
.st_size
= type_ptr
? type_ptr
->internal_elf_sym
.st_size
: 0;
6315 if (bfd_is_abs_section (sec
)
6317 && type_ptr
->internal_elf_sym
.st_shndx
!= 0)
6319 /* This symbol is in a real ELF section which we did
6320 not create as a BFD section. Undo the mapping done
6321 by copy_private_symbol_data. */
6322 shndx
= type_ptr
->internal_elf_sym
.st_shndx
;
6326 shndx
= elf_onesymtab (abfd
);
6329 shndx
= elf_dynsymtab (abfd
);
6332 shndx
= elf_tdata (abfd
)->strtab_section
;
6335 shndx
= elf_tdata (abfd
)->shstrtab_section
;
6338 shndx
= elf_tdata (abfd
)->symtab_shndx_section
;
6346 shndx
= _bfd_elf_section_from_bfd_section (abfd
, sec
);
6348 if (shndx
== SHN_BAD
)
6352 /* Writing this would be a hell of a lot easier if
6353 we had some decent documentation on bfd, and
6354 knew what to expect of the library, and what to
6355 demand of applications. For example, it
6356 appears that `objcopy' might not set the
6357 section of a symbol to be a section that is
6358 actually in the output file. */
6359 sec2
= bfd_get_section_by_name (abfd
, sec
->name
);
6362 _bfd_error_handler (_("\
6363 Unable to find equivalent output section for symbol '%s' from section '%s'"),
6364 syms
[idx
]->name
? syms
[idx
]->name
: "<Local sym>",
6366 bfd_set_error (bfd_error_invalid_operation
);
6367 _bfd_stringtab_free (stt
);
6371 shndx
= _bfd_elf_section_from_bfd_section (abfd
, sec2
);
6372 BFD_ASSERT (shndx
!= SHN_BAD
);
6376 sym
.st_shndx
= shndx
;
6379 if ((flags
& BSF_THREAD_LOCAL
) != 0)
6381 else if ((flags
& BSF_GNU_INDIRECT_FUNCTION
) != 0)
6382 type
= STT_GNU_IFUNC
;
6383 else if ((flags
& BSF_FUNCTION
) != 0)
6385 else if ((flags
& BSF_OBJECT
) != 0)
6387 else if ((flags
& BSF_RELC
) != 0)
6389 else if ((flags
& BSF_SRELC
) != 0)
6394 if (syms
[idx
]->section
->flags
& SEC_THREAD_LOCAL
)
6397 /* Processor-specific types. */
6398 if (type_ptr
!= NULL
6399 && bed
->elf_backend_get_symbol_type
)
6400 type
= ((*bed
->elf_backend_get_symbol_type
)
6401 (&type_ptr
->internal_elf_sym
, type
));
6403 if (flags
& BSF_SECTION_SYM
)
6405 if (flags
& BSF_GLOBAL
)
6406 sym
.st_info
= ELF_ST_INFO (STB_GLOBAL
, STT_SECTION
);
6408 sym
.st_info
= ELF_ST_INFO (STB_LOCAL
, STT_SECTION
);
6410 else if (bfd_is_com_section (syms
[idx
]->section
))
6412 #ifdef USE_STT_COMMON
6413 if (type
== STT_OBJECT
)
6414 sym
.st_info
= ELF_ST_INFO (STB_GLOBAL
, STT_COMMON
);
6417 sym
.st_info
= ELF_ST_INFO (STB_GLOBAL
, type
);
6419 else if (bfd_is_und_section (syms
[idx
]->section
))
6420 sym
.st_info
= ELF_ST_INFO (((flags
& BSF_WEAK
)
6424 else if (flags
& BSF_FILE
)
6425 sym
.st_info
= ELF_ST_INFO (STB_LOCAL
, STT_FILE
);
6428 int bind
= STB_LOCAL
;
6430 if (flags
& BSF_LOCAL
)
6432 else if (flags
& BSF_GNU_UNIQUE
)
6433 bind
= STB_GNU_UNIQUE
;
6434 else if (flags
& BSF_WEAK
)
6436 else if (flags
& BSF_GLOBAL
)
6439 sym
.st_info
= ELF_ST_INFO (bind
, type
);
6442 if (type_ptr
!= NULL
)
6443 sym
.st_other
= type_ptr
->internal_elf_sym
.st_other
;
6447 bed
->s
->swap_symbol_out (abfd
, &sym
, outbound_syms
, outbound_shndx
);
6448 outbound_syms
+= bed
->s
->sizeof_sym
;
6449 if (outbound_shndx
!= NULL
)
6450 outbound_shndx
+= sizeof (Elf_External_Sym_Shndx
);
6454 symstrtab_hdr
->sh_size
= _bfd_stringtab_size (stt
);
6455 symstrtab_hdr
->sh_type
= SHT_STRTAB
;
6457 symstrtab_hdr
->sh_flags
= 0;
6458 symstrtab_hdr
->sh_addr
= 0;
6459 symstrtab_hdr
->sh_entsize
= 0;
6460 symstrtab_hdr
->sh_link
= 0;
6461 symstrtab_hdr
->sh_info
= 0;
6462 symstrtab_hdr
->sh_addralign
= 1;
6467 /* Return the number of bytes required to hold the symtab vector.
6469 Note that we base it on the count plus 1, since we will null terminate
6470 the vector allocated based on this size. However, the ELF symbol table
6471 always has a dummy entry as symbol #0, so it ends up even. */
6474 _bfd_elf_get_symtab_upper_bound (bfd
*abfd
)
6478 Elf_Internal_Shdr
*hdr
= &elf_tdata (abfd
)->symtab_hdr
;
6480 symcount
= hdr
->sh_size
/ get_elf_backend_data (abfd
)->s
->sizeof_sym
;
6481 symtab_size
= (symcount
+ 1) * (sizeof (asymbol
*));
6483 symtab_size
-= sizeof (asymbol
*);
6489 _bfd_elf_get_dynamic_symtab_upper_bound (bfd
*abfd
)
6493 Elf_Internal_Shdr
*hdr
= &elf_tdata (abfd
)->dynsymtab_hdr
;
6495 if (elf_dynsymtab (abfd
) == 0)
6497 bfd_set_error (bfd_error_invalid_operation
);
6501 symcount
= hdr
->sh_size
/ get_elf_backend_data (abfd
)->s
->sizeof_sym
;
6502 symtab_size
= (symcount
+ 1) * (sizeof (asymbol
*));
6504 symtab_size
-= sizeof (asymbol
*);
6510 _bfd_elf_get_reloc_upper_bound (bfd
*abfd ATTRIBUTE_UNUSED
,
6513 return (asect
->reloc_count
+ 1) * sizeof (arelent
*);
6516 /* Canonicalize the relocs. */
6519 _bfd_elf_canonicalize_reloc (bfd
*abfd
,
6526 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
6528 if (! bed
->s
->slurp_reloc_table (abfd
, section
, symbols
, FALSE
))
6531 tblptr
= section
->relocation
;
6532 for (i
= 0; i
< section
->reloc_count
; i
++)
6533 *relptr
++ = tblptr
++;
6537 return section
->reloc_count
;
6541 _bfd_elf_canonicalize_symtab (bfd
*abfd
, asymbol
**allocation
)
6543 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
6544 long symcount
= bed
->s
->slurp_symbol_table (abfd
, allocation
, FALSE
);
6547 bfd_get_symcount (abfd
) = symcount
;
6552 _bfd_elf_canonicalize_dynamic_symtab (bfd
*abfd
,
6553 asymbol
**allocation
)
6555 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
6556 long symcount
= bed
->s
->slurp_symbol_table (abfd
, allocation
, TRUE
);
6559 bfd_get_dynamic_symcount (abfd
) = symcount
;
6563 /* Return the size required for the dynamic reloc entries. Any loadable
6564 section that was actually installed in the BFD, and has type SHT_REL
6565 or SHT_RELA, and uses the dynamic symbol table, is considered to be a
6566 dynamic reloc section. */
6569 _bfd_elf_get_dynamic_reloc_upper_bound (bfd
*abfd
)
6574 if (elf_dynsymtab (abfd
) == 0)
6576 bfd_set_error (bfd_error_invalid_operation
);
6580 ret
= sizeof (arelent
*);
6581 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
6582 if (elf_section_data (s
)->this_hdr
.sh_link
== elf_dynsymtab (abfd
)
6583 && (elf_section_data (s
)->this_hdr
.sh_type
== SHT_REL
6584 || elf_section_data (s
)->this_hdr
.sh_type
== SHT_RELA
))
6585 ret
+= ((s
->size
/ elf_section_data (s
)->this_hdr
.sh_entsize
)
6586 * sizeof (arelent
*));
6591 /* Canonicalize the dynamic relocation entries. Note that we return the
6592 dynamic relocations as a single block, although they are actually
6593 associated with particular sections; the interface, which was
6594 designed for SunOS style shared libraries, expects that there is only
6595 one set of dynamic relocs. Any loadable section that was actually
6596 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses the
6597 dynamic symbol table, is considered to be a dynamic reloc section. */
6600 _bfd_elf_canonicalize_dynamic_reloc (bfd
*abfd
,
6604 bfd_boolean (*slurp_relocs
) (bfd
*, asection
*, asymbol
**, bfd_boolean
);
6608 if (elf_dynsymtab (abfd
) == 0)
6610 bfd_set_error (bfd_error_invalid_operation
);
6614 slurp_relocs
= get_elf_backend_data (abfd
)->s
->slurp_reloc_table
;
6616 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
6618 if (elf_section_data (s
)->this_hdr
.sh_link
== elf_dynsymtab (abfd
)
6619 && (elf_section_data (s
)->this_hdr
.sh_type
== SHT_REL
6620 || elf_section_data (s
)->this_hdr
.sh_type
== SHT_RELA
))
6625 if (! (*slurp_relocs
) (abfd
, s
, syms
, TRUE
))
6627 count
= s
->size
/ elf_section_data (s
)->this_hdr
.sh_entsize
;
6629 for (i
= 0; i
< count
; i
++)
6640 /* Read in the version information. */
6643 _bfd_elf_slurp_version_tables (bfd
*abfd
, bfd_boolean default_imported_symver
)
6645 bfd_byte
*contents
= NULL
;
6646 unsigned int freeidx
= 0;
6648 if (elf_dynverref (abfd
) != 0)
6650 Elf_Internal_Shdr
*hdr
;
6651 Elf_External_Verneed
*everneed
;
6652 Elf_Internal_Verneed
*iverneed
;
6654 bfd_byte
*contents_end
;
6656 hdr
= &elf_tdata (abfd
)->dynverref_hdr
;
6658 elf_tdata (abfd
)->verref
= bfd_zalloc2 (abfd
, hdr
->sh_info
,
6659 sizeof (Elf_Internal_Verneed
));
6660 if (elf_tdata (abfd
)->verref
== NULL
)
6663 elf_tdata (abfd
)->cverrefs
= hdr
->sh_info
;
6665 contents
= bfd_malloc (hdr
->sh_size
);
6666 if (contents
== NULL
)
6668 error_return_verref
:
6669 elf_tdata (abfd
)->verref
= NULL
;
6670 elf_tdata (abfd
)->cverrefs
= 0;
6673 if (bfd_seek (abfd
, hdr
->sh_offset
, SEEK_SET
) != 0
6674 || bfd_bread (contents
, hdr
->sh_size
, abfd
) != hdr
->sh_size
)
6675 goto error_return_verref
;
6677 if (hdr
->sh_info
&& hdr
->sh_size
< sizeof (Elf_External_Verneed
))
6678 goto error_return_verref
;
6680 BFD_ASSERT (sizeof (Elf_External_Verneed
)
6681 == sizeof (Elf_External_Vernaux
));
6682 contents_end
= contents
+ hdr
->sh_size
- sizeof (Elf_External_Verneed
);
6683 everneed
= (Elf_External_Verneed
*) contents
;
6684 iverneed
= elf_tdata (abfd
)->verref
;
6685 for (i
= 0; i
< hdr
->sh_info
; i
++, iverneed
++)
6687 Elf_External_Vernaux
*evernaux
;
6688 Elf_Internal_Vernaux
*ivernaux
;
6691 _bfd_elf_swap_verneed_in (abfd
, everneed
, iverneed
);
6693 iverneed
->vn_bfd
= abfd
;
6695 iverneed
->vn_filename
=
6696 bfd_elf_string_from_elf_section (abfd
, hdr
->sh_link
,
6698 if (iverneed
->vn_filename
== NULL
)
6699 goto error_return_verref
;
6701 if (iverneed
->vn_cnt
== 0)
6702 iverneed
->vn_auxptr
= NULL
;
6705 iverneed
->vn_auxptr
= bfd_alloc2 (abfd
, iverneed
->vn_cnt
,
6706 sizeof (Elf_Internal_Vernaux
));
6707 if (iverneed
->vn_auxptr
== NULL
)
6708 goto error_return_verref
;
6711 if (iverneed
->vn_aux
6712 > (size_t) (contents_end
- (bfd_byte
*) everneed
))
6713 goto error_return_verref
;
6715 evernaux
= ((Elf_External_Vernaux
*)
6716 ((bfd_byte
*) everneed
+ iverneed
->vn_aux
));
6717 ivernaux
= iverneed
->vn_auxptr
;
6718 for (j
= 0; j
< iverneed
->vn_cnt
; j
++, ivernaux
++)
6720 _bfd_elf_swap_vernaux_in (abfd
, evernaux
, ivernaux
);
6722 ivernaux
->vna_nodename
=
6723 bfd_elf_string_from_elf_section (abfd
, hdr
->sh_link
,
6724 ivernaux
->vna_name
);
6725 if (ivernaux
->vna_nodename
== NULL
)
6726 goto error_return_verref
;
6728 if (j
+ 1 < iverneed
->vn_cnt
)
6729 ivernaux
->vna_nextptr
= ivernaux
+ 1;
6731 ivernaux
->vna_nextptr
= NULL
;
6733 if (ivernaux
->vna_next
6734 > (size_t) (contents_end
- (bfd_byte
*) evernaux
))
6735 goto error_return_verref
;
6737 evernaux
= ((Elf_External_Vernaux
*)
6738 ((bfd_byte
*) evernaux
+ ivernaux
->vna_next
));
6740 if (ivernaux
->vna_other
> freeidx
)
6741 freeidx
= ivernaux
->vna_other
;
6744 if (i
+ 1 < hdr
->sh_info
)
6745 iverneed
->vn_nextref
= iverneed
+ 1;
6747 iverneed
->vn_nextref
= NULL
;
6749 if (iverneed
->vn_next
6750 > (size_t) (contents_end
- (bfd_byte
*) everneed
))
6751 goto error_return_verref
;
6753 everneed
= ((Elf_External_Verneed
*)
6754 ((bfd_byte
*) everneed
+ iverneed
->vn_next
));
6761 if (elf_dynverdef (abfd
) != 0)
6763 Elf_Internal_Shdr
*hdr
;
6764 Elf_External_Verdef
*everdef
;
6765 Elf_Internal_Verdef
*iverdef
;
6766 Elf_Internal_Verdef
*iverdefarr
;
6767 Elf_Internal_Verdef iverdefmem
;
6769 unsigned int maxidx
;
6770 bfd_byte
*contents_end_def
, *contents_end_aux
;
6772 hdr
= &elf_tdata (abfd
)->dynverdef_hdr
;
6774 contents
= bfd_malloc (hdr
->sh_size
);
6775 if (contents
== NULL
)
6777 if (bfd_seek (abfd
, hdr
->sh_offset
, SEEK_SET
) != 0
6778 || bfd_bread (contents
, hdr
->sh_size
, abfd
) != hdr
->sh_size
)
6781 if (hdr
->sh_info
&& hdr
->sh_size
< sizeof (Elf_External_Verdef
))
6784 BFD_ASSERT (sizeof (Elf_External_Verdef
)
6785 >= sizeof (Elf_External_Verdaux
));
6786 contents_end_def
= contents
+ hdr
->sh_size
6787 - sizeof (Elf_External_Verdef
);
6788 contents_end_aux
= contents
+ hdr
->sh_size
6789 - sizeof (Elf_External_Verdaux
);
6791 /* We know the number of entries in the section but not the maximum
6792 index. Therefore we have to run through all entries and find
6794 everdef
= (Elf_External_Verdef
*) contents
;
6796 for (i
= 0; i
< hdr
->sh_info
; ++i
)
6798 _bfd_elf_swap_verdef_in (abfd
, everdef
, &iverdefmem
);
6800 if ((iverdefmem
.vd_ndx
& ((unsigned) VERSYM_VERSION
)) > maxidx
)
6801 maxidx
= iverdefmem
.vd_ndx
& ((unsigned) VERSYM_VERSION
);
6803 if (iverdefmem
.vd_next
6804 > (size_t) (contents_end_def
- (bfd_byte
*) everdef
))
6807 everdef
= ((Elf_External_Verdef
*)
6808 ((bfd_byte
*) everdef
+ iverdefmem
.vd_next
));
6811 if (default_imported_symver
)
6813 if (freeidx
> maxidx
)
6818 elf_tdata (abfd
)->verdef
= bfd_zalloc2 (abfd
, maxidx
,
6819 sizeof (Elf_Internal_Verdef
));
6820 if (elf_tdata (abfd
)->verdef
== NULL
)
6823 elf_tdata (abfd
)->cverdefs
= maxidx
;
6825 everdef
= (Elf_External_Verdef
*) contents
;
6826 iverdefarr
= elf_tdata (abfd
)->verdef
;
6827 for (i
= 0; i
< hdr
->sh_info
; i
++)
6829 Elf_External_Verdaux
*everdaux
;
6830 Elf_Internal_Verdaux
*iverdaux
;
6833 _bfd_elf_swap_verdef_in (abfd
, everdef
, &iverdefmem
);
6835 if ((iverdefmem
.vd_ndx
& VERSYM_VERSION
) == 0)
6837 error_return_verdef
:
6838 elf_tdata (abfd
)->verdef
= NULL
;
6839 elf_tdata (abfd
)->cverdefs
= 0;
6843 iverdef
= &iverdefarr
[(iverdefmem
.vd_ndx
& VERSYM_VERSION
) - 1];
6844 memcpy (iverdef
, &iverdefmem
, sizeof (Elf_Internal_Verdef
));
6846 iverdef
->vd_bfd
= abfd
;
6848 if (iverdef
->vd_cnt
== 0)
6849 iverdef
->vd_auxptr
= NULL
;
6852 iverdef
->vd_auxptr
= bfd_alloc2 (abfd
, iverdef
->vd_cnt
,
6853 sizeof (Elf_Internal_Verdaux
));
6854 if (iverdef
->vd_auxptr
== NULL
)
6855 goto error_return_verdef
;
6859 > (size_t) (contents_end_aux
- (bfd_byte
*) everdef
))
6860 goto error_return_verdef
;
6862 everdaux
= ((Elf_External_Verdaux
*)
6863 ((bfd_byte
*) everdef
+ iverdef
->vd_aux
));
6864 iverdaux
= iverdef
->vd_auxptr
;
6865 for (j
= 0; j
< iverdef
->vd_cnt
; j
++, iverdaux
++)
6867 _bfd_elf_swap_verdaux_in (abfd
, everdaux
, iverdaux
);
6869 iverdaux
->vda_nodename
=
6870 bfd_elf_string_from_elf_section (abfd
, hdr
->sh_link
,
6871 iverdaux
->vda_name
);
6872 if (iverdaux
->vda_nodename
== NULL
)
6873 goto error_return_verdef
;
6875 if (j
+ 1 < iverdef
->vd_cnt
)
6876 iverdaux
->vda_nextptr
= iverdaux
+ 1;
6878 iverdaux
->vda_nextptr
= NULL
;
6880 if (iverdaux
->vda_next
6881 > (size_t) (contents_end_aux
- (bfd_byte
*) everdaux
))
6882 goto error_return_verdef
;
6884 everdaux
= ((Elf_External_Verdaux
*)
6885 ((bfd_byte
*) everdaux
+ iverdaux
->vda_next
));
6888 if (iverdef
->vd_cnt
)
6889 iverdef
->vd_nodename
= iverdef
->vd_auxptr
->vda_nodename
;
6891 if ((size_t) (iverdef
- iverdefarr
) + 1 < maxidx
)
6892 iverdef
->vd_nextdef
= iverdef
+ 1;
6894 iverdef
->vd_nextdef
= NULL
;
6896 everdef
= ((Elf_External_Verdef
*)
6897 ((bfd_byte
*) everdef
+ iverdef
->vd_next
));
6903 else if (default_imported_symver
)
6910 elf_tdata (abfd
)->verdef
= bfd_zalloc2 (abfd
, freeidx
,
6911 sizeof (Elf_Internal_Verdef
));
6912 if (elf_tdata (abfd
)->verdef
== NULL
)
6915 elf_tdata (abfd
)->cverdefs
= freeidx
;
6918 /* Create a default version based on the soname. */
6919 if (default_imported_symver
)
6921 Elf_Internal_Verdef
*iverdef
;
6922 Elf_Internal_Verdaux
*iverdaux
;
6924 iverdef
= &elf_tdata (abfd
)->verdef
[freeidx
- 1];;
6926 iverdef
->vd_version
= VER_DEF_CURRENT
;
6927 iverdef
->vd_flags
= 0;
6928 iverdef
->vd_ndx
= freeidx
;
6929 iverdef
->vd_cnt
= 1;
6931 iverdef
->vd_bfd
= abfd
;
6933 iverdef
->vd_nodename
= bfd_elf_get_dt_soname (abfd
);
6934 if (iverdef
->vd_nodename
== NULL
)
6935 goto error_return_verdef
;
6936 iverdef
->vd_nextdef
= NULL
;
6937 iverdef
->vd_auxptr
= bfd_alloc (abfd
, sizeof (Elf_Internal_Verdaux
));
6938 if (iverdef
->vd_auxptr
== NULL
)
6939 goto error_return_verdef
;
6941 iverdaux
= iverdef
->vd_auxptr
;
6942 iverdaux
->vda_nodename
= iverdef
->vd_nodename
;
6943 iverdaux
->vda_nextptr
= NULL
;
6949 if (contents
!= NULL
)
6955 _bfd_elf_make_empty_symbol (bfd
*abfd
)
6957 elf_symbol_type
*newsym
;
6958 bfd_size_type amt
= sizeof (elf_symbol_type
);
6960 newsym
= bfd_zalloc (abfd
, amt
);
6965 newsym
->symbol
.the_bfd
= abfd
;
6966 return &newsym
->symbol
;
6971 _bfd_elf_get_symbol_info (bfd
*abfd ATTRIBUTE_UNUSED
,
6975 bfd_symbol_info (symbol
, ret
);
6978 /* Return whether a symbol name implies a local symbol. Most targets
6979 use this function for the is_local_label_name entry point, but some
6983 _bfd_elf_is_local_label_name (bfd
*abfd ATTRIBUTE_UNUSED
,
6986 /* Normal local symbols start with ``.L''. */
6987 if (name
[0] == '.' && name
[1] == 'L')
6990 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
6991 DWARF debugging symbols starting with ``..''. */
6992 if (name
[0] == '.' && name
[1] == '.')
6995 /* gcc will sometimes generate symbols beginning with ``_.L_'' when
6996 emitting DWARF debugging output. I suspect this is actually a
6997 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
6998 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
6999 underscore to be emitted on some ELF targets). For ease of use,
7000 we treat such symbols as local. */
7001 if (name
[0] == '_' && name
[1] == '.' && name
[2] == 'L' && name
[3] == '_')
7008 _bfd_elf_get_lineno (bfd
*abfd ATTRIBUTE_UNUSED
,
7009 asymbol
*symbol ATTRIBUTE_UNUSED
)
7016 _bfd_elf_set_arch_mach (bfd
*abfd
,
7017 enum bfd_architecture arch
,
7018 unsigned long machine
)
7020 /* If this isn't the right architecture for this backend, and this
7021 isn't the generic backend, fail. */
7022 if (arch
!= get_elf_backend_data (abfd
)->arch
7023 && arch
!= bfd_arch_unknown
7024 && get_elf_backend_data (abfd
)->arch
!= bfd_arch_unknown
)
7027 return bfd_default_set_arch_mach (abfd
, arch
, machine
);
7030 /* Find the function to a particular section and offset,
7031 for error reporting. */
7034 elf_find_function (bfd
*abfd
,
7038 const char **filename_ptr
,
7039 const char **functionname_ptr
)
7041 const char *filename
;
7042 asymbol
*func
, *file
;
7045 /* ??? Given multiple file symbols, it is impossible to reliably
7046 choose the right file name for global symbols. File symbols are
7047 local symbols, and thus all file symbols must sort before any
7048 global symbols. The ELF spec may be interpreted to say that a
7049 file symbol must sort before other local symbols, but currently
7050 ld -r doesn't do this. So, for ld -r output, it is possible to
7051 make a better choice of file name for local symbols by ignoring
7052 file symbols appearing after a given local symbol. */
7053 enum { nothing_seen
, symbol_seen
, file_after_symbol_seen
} state
;
7054 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
7060 state
= nothing_seen
;
7062 for (p
= symbols
; *p
!= NULL
; p
++)
7067 q
= (elf_symbol_type
*) *p
;
7069 type
= ELF_ST_TYPE (q
->internal_elf_sym
.st_info
);
7074 if (state
== symbol_seen
)
7075 state
= file_after_symbol_seen
;
7078 if (!bed
->is_function_type (type
))
7081 if (bfd_get_section (&q
->symbol
) == section
7082 && q
->symbol
.value
>= low_func
7083 && q
->symbol
.value
<= offset
)
7085 func
= (asymbol
*) q
;
7086 low_func
= q
->symbol
.value
;
7089 && (ELF_ST_BIND (q
->internal_elf_sym
.st_info
) == STB_LOCAL
7090 || state
!= file_after_symbol_seen
))
7091 filename
= bfd_asymbol_name (file
);
7095 if (state
== nothing_seen
)
7096 state
= symbol_seen
;
7103 *filename_ptr
= filename
;
7104 if (functionname_ptr
)
7105 *functionname_ptr
= bfd_asymbol_name (func
);
7110 /* Find the nearest line to a particular section and offset,
7111 for error reporting. */
7114 _bfd_elf_find_nearest_line (bfd
*abfd
,
7118 const char **filename_ptr
,
7119 const char **functionname_ptr
,
7120 unsigned int *line_ptr
)
7124 if (_bfd_dwarf1_find_nearest_line (abfd
, section
, symbols
, offset
,
7125 filename_ptr
, functionname_ptr
,
7128 if (!*functionname_ptr
)
7129 elf_find_function (abfd
, section
, symbols
, offset
,
7130 *filename_ptr
? NULL
: filename_ptr
,
7136 if (_bfd_dwarf2_find_nearest_line (abfd
, section
, symbols
, offset
,
7137 filename_ptr
, functionname_ptr
,
7139 &elf_tdata (abfd
)->dwarf2_find_line_info
))
7141 if (!*functionname_ptr
)
7142 elf_find_function (abfd
, section
, symbols
, offset
,
7143 *filename_ptr
? NULL
: filename_ptr
,
7149 if (! _bfd_stab_section_find_nearest_line (abfd
, symbols
, section
, offset
,
7150 &found
, filename_ptr
,
7151 functionname_ptr
, line_ptr
,
7152 &elf_tdata (abfd
)->line_info
))
7154 if (found
&& (*functionname_ptr
|| *line_ptr
))
7157 if (symbols
== NULL
)
7160 if (! elf_find_function (abfd
, section
, symbols
, offset
,
7161 filename_ptr
, functionname_ptr
))
7168 /* Find the line for a symbol. */
7171 _bfd_elf_find_line (bfd
*abfd
, asymbol
**symbols
, asymbol
*symbol
,
7172 const char **filename_ptr
, unsigned int *line_ptr
)
7174 return _bfd_dwarf2_find_line (abfd
, symbols
, symbol
,
7175 filename_ptr
, line_ptr
, 0,
7176 &elf_tdata (abfd
)->dwarf2_find_line_info
);
7179 /* After a call to bfd_find_nearest_line, successive calls to
7180 bfd_find_inliner_info can be used to get source information about
7181 each level of function inlining that terminated at the address
7182 passed to bfd_find_nearest_line. Currently this is only supported
7183 for DWARF2 with appropriate DWARF3 extensions. */
7186 _bfd_elf_find_inliner_info (bfd
*abfd
,
7187 const char **filename_ptr
,
7188 const char **functionname_ptr
,
7189 unsigned int *line_ptr
)
7192 found
= _bfd_dwarf2_find_inliner_info (abfd
, filename_ptr
,
7193 functionname_ptr
, line_ptr
,
7194 & elf_tdata (abfd
)->dwarf2_find_line_info
);
7199 _bfd_elf_sizeof_headers (bfd
*abfd
, struct bfd_link_info
*info
)
7201 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
7202 int ret
= bed
->s
->sizeof_ehdr
;
7204 if (!info
->relocatable
)
7206 bfd_size_type phdr_size
= elf_tdata (abfd
)->program_header_size
;
7208 if (phdr_size
== (bfd_size_type
) -1)
7210 struct elf_segment_map
*m
;
7213 for (m
= elf_tdata (abfd
)->segment_map
; m
!= NULL
; m
= m
->next
)
7214 phdr_size
+= bed
->s
->sizeof_phdr
;
7217 phdr_size
= get_program_header_size (abfd
, info
);
7220 elf_tdata (abfd
)->program_header_size
= phdr_size
;
7228 _bfd_elf_set_section_contents (bfd
*abfd
,
7230 const void *location
,
7232 bfd_size_type count
)
7234 Elf_Internal_Shdr
*hdr
;
7237 if (! abfd
->output_has_begun
7238 && ! _bfd_elf_compute_section_file_positions (abfd
, NULL
))
7241 hdr
= &elf_section_data (section
)->this_hdr
;
7242 pos
= hdr
->sh_offset
+ offset
;
7243 if (bfd_seek (abfd
, pos
, SEEK_SET
) != 0
7244 || bfd_bwrite (location
, count
, abfd
) != count
)
7251 _bfd_elf_no_info_to_howto (bfd
*abfd ATTRIBUTE_UNUSED
,
7252 arelent
*cache_ptr ATTRIBUTE_UNUSED
,
7253 Elf_Internal_Rela
*dst ATTRIBUTE_UNUSED
)
7258 /* Try to convert a non-ELF reloc into an ELF one. */
7261 _bfd_elf_validate_reloc (bfd
*abfd
, arelent
*areloc
)
7263 /* Check whether we really have an ELF howto. */
7265 if ((*areloc
->sym_ptr_ptr
)->the_bfd
->xvec
!= abfd
->xvec
)
7267 bfd_reloc_code_real_type code
;
7268 reloc_howto_type
*howto
;
7270 /* Alien reloc: Try to determine its type to replace it with an
7271 equivalent ELF reloc. */
7273 if (areloc
->howto
->pc_relative
)
7275 switch (areloc
->howto
->bitsize
)
7278 code
= BFD_RELOC_8_PCREL
;
7281 code
= BFD_RELOC_12_PCREL
;
7284 code
= BFD_RELOC_16_PCREL
;
7287 code
= BFD_RELOC_24_PCREL
;
7290 code
= BFD_RELOC_32_PCREL
;
7293 code
= BFD_RELOC_64_PCREL
;
7299 howto
= bfd_reloc_type_lookup (abfd
, code
);
7301 if (areloc
->howto
->pcrel_offset
!= howto
->pcrel_offset
)
7303 if (howto
->pcrel_offset
)
7304 areloc
->addend
+= areloc
->address
;
7306 areloc
->addend
-= areloc
->address
; /* addend is unsigned!! */
7311 switch (areloc
->howto
->bitsize
)
7317 code
= BFD_RELOC_14
;
7320 code
= BFD_RELOC_16
;
7323 code
= BFD_RELOC_26
;
7326 code
= BFD_RELOC_32
;
7329 code
= BFD_RELOC_64
;
7335 howto
= bfd_reloc_type_lookup (abfd
, code
);
7339 areloc
->howto
= howto
;
7347 (*_bfd_error_handler
)
7348 (_("%B: unsupported relocation type %s"),
7349 abfd
, areloc
->howto
->name
);
7350 bfd_set_error (bfd_error_bad_value
);
7355 _bfd_elf_close_and_cleanup (bfd
*abfd
)
7357 if (bfd_get_format (abfd
) == bfd_object
)
7359 if (elf_tdata (abfd
) != NULL
&& elf_shstrtab (abfd
) != NULL
)
7360 _bfd_elf_strtab_free (elf_shstrtab (abfd
));
7361 _bfd_dwarf2_cleanup_debug_info (abfd
);
7364 return _bfd_generic_close_and_cleanup (abfd
);
7367 /* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
7368 in the relocation's offset. Thus we cannot allow any sort of sanity
7369 range-checking to interfere. There is nothing else to do in processing
7372 bfd_reloc_status_type
7373 _bfd_elf_rel_vtable_reloc_fn
7374 (bfd
*abfd ATTRIBUTE_UNUSED
, arelent
*re ATTRIBUTE_UNUSED
,
7375 struct bfd_symbol
*symbol ATTRIBUTE_UNUSED
,
7376 void *data ATTRIBUTE_UNUSED
, asection
*is ATTRIBUTE_UNUSED
,
7377 bfd
*obfd ATTRIBUTE_UNUSED
, char **errmsg ATTRIBUTE_UNUSED
)
7379 return bfd_reloc_ok
;
7382 /* Elf core file support. Much of this only works on native
7383 toolchains, since we rely on knowing the
7384 machine-dependent procfs structure in order to pick
7385 out details about the corefile. */
7387 #ifdef HAVE_SYS_PROCFS_H
7388 # include <sys/procfs.h>
7391 /* FIXME: this is kinda wrong, but it's what gdb wants. */
7394 elfcore_make_pid (bfd
*abfd
)
7396 return ((elf_tdata (abfd
)->core_lwpid
<< 16)
7397 + (elf_tdata (abfd
)->core_pid
));
7400 /* If there isn't a section called NAME, make one, using
7401 data from SECT. Note, this function will generate a
7402 reference to NAME, so you shouldn't deallocate or
7406 elfcore_maybe_make_sect (bfd
*abfd
, char *name
, asection
*sect
)
7410 if (bfd_get_section_by_name (abfd
, name
) != NULL
)
7413 sect2
= bfd_make_section_with_flags (abfd
, name
, sect
->flags
);
7417 sect2
->size
= sect
->size
;
7418 sect2
->filepos
= sect
->filepos
;
7419 sect2
->alignment_power
= sect
->alignment_power
;
7423 /* Create a pseudosection containing SIZE bytes at FILEPOS. This
7424 actually creates up to two pseudosections:
7425 - For the single-threaded case, a section named NAME, unless
7426 such a section already exists.
7427 - For the multi-threaded case, a section named "NAME/PID", where
7428 PID is elfcore_make_pid (abfd).
7429 Both pseudosections have identical contents. */
7431 _bfd_elfcore_make_pseudosection (bfd
*abfd
,
7437 char *threaded_name
;
7441 /* Build the section name. */
7443 sprintf (buf
, "%s/%d", name
, elfcore_make_pid (abfd
));
7444 len
= strlen (buf
) + 1;
7445 threaded_name
= bfd_alloc (abfd
, len
);
7446 if (threaded_name
== NULL
)
7448 memcpy (threaded_name
, buf
, len
);
7450 sect
= bfd_make_section_anyway_with_flags (abfd
, threaded_name
,
7455 sect
->filepos
= filepos
;
7456 sect
->alignment_power
= 2;
7458 return elfcore_maybe_make_sect (abfd
, name
, sect
);
7461 /* prstatus_t exists on:
7463 linux 2.[01] + glibc
7467 #if defined (HAVE_PRSTATUS_T)
7470 elfcore_grok_prstatus (bfd
*abfd
, Elf_Internal_Note
*note
)
7475 if (note
->descsz
== sizeof (prstatus_t
))
7479 size
= sizeof (prstat
.pr_reg
);
7480 offset
= offsetof (prstatus_t
, pr_reg
);
7481 memcpy (&prstat
, note
->descdata
, sizeof (prstat
));
7483 /* Do not overwrite the core signal if it
7484 has already been set by another thread. */
7485 if (elf_tdata (abfd
)->core_signal
== 0)
7486 elf_tdata (abfd
)->core_signal
= prstat
.pr_cursig
;
7487 elf_tdata (abfd
)->core_pid
= prstat
.pr_pid
;
7489 /* pr_who exists on:
7492 pr_who doesn't exist on:
7495 #if defined (HAVE_PRSTATUS_T_PR_WHO)
7496 elf_tdata (abfd
)->core_lwpid
= prstat
.pr_who
;
7499 #if defined (HAVE_PRSTATUS32_T)
7500 else if (note
->descsz
== sizeof (prstatus32_t
))
7502 /* 64-bit host, 32-bit corefile */
7503 prstatus32_t prstat
;
7505 size
= sizeof (prstat
.pr_reg
);
7506 offset
= offsetof (prstatus32_t
, pr_reg
);
7507 memcpy (&prstat
, note
->descdata
, sizeof (prstat
));
7509 /* Do not overwrite the core signal if it
7510 has already been set by another thread. */
7511 if (elf_tdata (abfd
)->core_signal
== 0)
7512 elf_tdata (abfd
)->core_signal
= prstat
.pr_cursig
;
7513 elf_tdata (abfd
)->core_pid
= prstat
.pr_pid
;
7515 /* pr_who exists on:
7518 pr_who doesn't exist on:
7521 #if defined (HAVE_PRSTATUS32_T_PR_WHO)
7522 elf_tdata (abfd
)->core_lwpid
= prstat
.pr_who
;
7525 #endif /* HAVE_PRSTATUS32_T */
7528 /* Fail - we don't know how to handle any other
7529 note size (ie. data object type). */
7533 /* Make a ".reg/999" section and a ".reg" section. */
7534 return _bfd_elfcore_make_pseudosection (abfd
, ".reg",
7535 size
, note
->descpos
+ offset
);
7537 #endif /* defined (HAVE_PRSTATUS_T) */
7539 /* Create a pseudosection containing the exact contents of NOTE. */
7541 elfcore_make_note_pseudosection (bfd
*abfd
,
7543 Elf_Internal_Note
*note
)
7545 return _bfd_elfcore_make_pseudosection (abfd
, name
,
7546 note
->descsz
, note
->descpos
);
7549 /* There isn't a consistent prfpregset_t across platforms,
7550 but it doesn't matter, because we don't have to pick this
7551 data structure apart. */
7554 elfcore_grok_prfpreg (bfd
*abfd
, Elf_Internal_Note
*note
)
7556 return elfcore_make_note_pseudosection (abfd
, ".reg2", note
);
7559 /* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
7560 type of NT_PRXFPREG. Just include the whole note's contents
7564 elfcore_grok_prxfpreg (bfd
*abfd
, Elf_Internal_Note
*note
)
7566 return elfcore_make_note_pseudosection (abfd
, ".reg-xfp", note
);
7570 elfcore_grok_ppc_vmx (bfd
*abfd
, Elf_Internal_Note
*note
)
7572 return elfcore_make_note_pseudosection (abfd
, ".reg-ppc-vmx", note
);
7576 elfcore_grok_ppc_vsx (bfd
*abfd
, Elf_Internal_Note
*note
)
7578 return elfcore_make_note_pseudosection (abfd
, ".reg-ppc-vsx", note
);
7581 #if defined (HAVE_PRPSINFO_T)
7582 typedef prpsinfo_t elfcore_psinfo_t
;
7583 #if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
7584 typedef prpsinfo32_t elfcore_psinfo32_t
;
7588 #if defined (HAVE_PSINFO_T)
7589 typedef psinfo_t elfcore_psinfo_t
;
7590 #if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
7591 typedef psinfo32_t elfcore_psinfo32_t
;
7595 /* return a malloc'ed copy of a string at START which is at
7596 most MAX bytes long, possibly without a terminating '\0'.
7597 the copy will always have a terminating '\0'. */
7600 _bfd_elfcore_strndup (bfd
*abfd
, char *start
, size_t max
)
7603 char *end
= memchr (start
, '\0', max
);
7611 dups
= bfd_alloc (abfd
, len
+ 1);
7615 memcpy (dups
, start
, len
);
7621 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7623 elfcore_grok_psinfo (bfd
*abfd
, Elf_Internal_Note
*note
)
7625 if (note
->descsz
== sizeof (elfcore_psinfo_t
))
7627 elfcore_psinfo_t psinfo
;
7629 memcpy (&psinfo
, note
->descdata
, sizeof (psinfo
));
7631 elf_tdata (abfd
)->core_program
7632 = _bfd_elfcore_strndup (abfd
, psinfo
.pr_fname
,
7633 sizeof (psinfo
.pr_fname
));
7635 elf_tdata (abfd
)->core_command
7636 = _bfd_elfcore_strndup (abfd
, psinfo
.pr_psargs
,
7637 sizeof (psinfo
.pr_psargs
));
7639 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
7640 else if (note
->descsz
== sizeof (elfcore_psinfo32_t
))
7642 /* 64-bit host, 32-bit corefile */
7643 elfcore_psinfo32_t psinfo
;
7645 memcpy (&psinfo
, note
->descdata
, sizeof (psinfo
));
7647 elf_tdata (abfd
)->core_program
7648 = _bfd_elfcore_strndup (abfd
, psinfo
.pr_fname
,
7649 sizeof (psinfo
.pr_fname
));
7651 elf_tdata (abfd
)->core_command
7652 = _bfd_elfcore_strndup (abfd
, psinfo
.pr_psargs
,
7653 sizeof (psinfo
.pr_psargs
));
7659 /* Fail - we don't know how to handle any other
7660 note size (ie. data object type). */
7664 /* Note that for some reason, a spurious space is tacked
7665 onto the end of the args in some (at least one anyway)
7666 implementations, so strip it off if it exists. */
7669 char *command
= elf_tdata (abfd
)->core_command
;
7670 int n
= strlen (command
);
7672 if (0 < n
&& command
[n
- 1] == ' ')
7673 command
[n
- 1] = '\0';
7678 #endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
7680 #if defined (HAVE_PSTATUS_T)
7682 elfcore_grok_pstatus (bfd
*abfd
, Elf_Internal_Note
*note
)
7684 if (note
->descsz
== sizeof (pstatus_t
)
7685 #if defined (HAVE_PXSTATUS_T)
7686 || note
->descsz
== sizeof (pxstatus_t
)
7692 memcpy (&pstat
, note
->descdata
, sizeof (pstat
));
7694 elf_tdata (abfd
)->core_pid
= pstat
.pr_pid
;
7696 #if defined (HAVE_PSTATUS32_T)
7697 else if (note
->descsz
== sizeof (pstatus32_t
))
7699 /* 64-bit host, 32-bit corefile */
7702 memcpy (&pstat
, note
->descdata
, sizeof (pstat
));
7704 elf_tdata (abfd
)->core_pid
= pstat
.pr_pid
;
7707 /* Could grab some more details from the "representative"
7708 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
7709 NT_LWPSTATUS note, presumably. */
7713 #endif /* defined (HAVE_PSTATUS_T) */
7715 #if defined (HAVE_LWPSTATUS_T)
7717 elfcore_grok_lwpstatus (bfd
*abfd
, Elf_Internal_Note
*note
)
7719 lwpstatus_t lwpstat
;
7725 if (note
->descsz
!= sizeof (lwpstat
)
7726 #if defined (HAVE_LWPXSTATUS_T)
7727 && note
->descsz
!= sizeof (lwpxstatus_t
)
7732 memcpy (&lwpstat
, note
->descdata
, sizeof (lwpstat
));
7734 elf_tdata (abfd
)->core_lwpid
= lwpstat
.pr_lwpid
;
7735 elf_tdata (abfd
)->core_signal
= lwpstat
.pr_cursig
;
7737 /* Make a ".reg/999" section. */
7739 sprintf (buf
, ".reg/%d", elfcore_make_pid (abfd
));
7740 len
= strlen (buf
) + 1;
7741 name
= bfd_alloc (abfd
, len
);
7744 memcpy (name
, buf
, len
);
7746 sect
= bfd_make_section_anyway_with_flags (abfd
, name
, SEC_HAS_CONTENTS
);
7750 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7751 sect
->size
= sizeof (lwpstat
.pr_context
.uc_mcontext
.gregs
);
7752 sect
->filepos
= note
->descpos
7753 + offsetof (lwpstatus_t
, pr_context
.uc_mcontext
.gregs
);
7756 #if defined (HAVE_LWPSTATUS_T_PR_REG)
7757 sect
->size
= sizeof (lwpstat
.pr_reg
);
7758 sect
->filepos
= note
->descpos
+ offsetof (lwpstatus_t
, pr_reg
);
7761 sect
->alignment_power
= 2;
7763 if (!elfcore_maybe_make_sect (abfd
, ".reg", sect
))
7766 /* Make a ".reg2/999" section */
7768 sprintf (buf
, ".reg2/%d", elfcore_make_pid (abfd
));
7769 len
= strlen (buf
) + 1;
7770 name
= bfd_alloc (abfd
, len
);
7773 memcpy (name
, buf
, len
);
7775 sect
= bfd_make_section_anyway_with_flags (abfd
, name
, SEC_HAS_CONTENTS
);
7779 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7780 sect
->size
= sizeof (lwpstat
.pr_context
.uc_mcontext
.fpregs
);
7781 sect
->filepos
= note
->descpos
7782 + offsetof (lwpstatus_t
, pr_context
.uc_mcontext
.fpregs
);
7785 #if defined (HAVE_LWPSTATUS_T_PR_FPREG)
7786 sect
->size
= sizeof (lwpstat
.pr_fpreg
);
7787 sect
->filepos
= note
->descpos
+ offsetof (lwpstatus_t
, pr_fpreg
);
7790 sect
->alignment_power
= 2;
7792 return elfcore_maybe_make_sect (abfd
, ".reg2", sect
);
7794 #endif /* defined (HAVE_LWPSTATUS_T) */
7797 elfcore_grok_win32pstatus (bfd
*abfd
, Elf_Internal_Note
*note
)
7804 int is_active_thread
;
7807 if (note
->descsz
< 728)
7810 if (! CONST_STRNEQ (note
->namedata
, "win32"))
7813 type
= bfd_get_32 (abfd
, note
->descdata
);
7817 case 1 /* NOTE_INFO_PROCESS */:
7818 /* FIXME: need to add ->core_command. */
7819 /* process_info.pid */
7820 elf_tdata (abfd
)->core_pid
= bfd_get_32 (abfd
, note
->descdata
+ 8);
7821 /* process_info.signal */
7822 elf_tdata (abfd
)->core_signal
= bfd_get_32 (abfd
, note
->descdata
+ 12);
7825 case 2 /* NOTE_INFO_THREAD */:
7826 /* Make a ".reg/999" section. */
7827 /* thread_info.tid */
7828 sprintf (buf
, ".reg/%ld", (long) bfd_get_32 (abfd
, note
->descdata
+ 8));
7830 len
= strlen (buf
) + 1;
7831 name
= bfd_alloc (abfd
, len
);
7835 memcpy (name
, buf
, len
);
7837 sect
= bfd_make_section_anyway_with_flags (abfd
, name
, SEC_HAS_CONTENTS
);
7841 /* sizeof (thread_info.thread_context) */
7843 /* offsetof (thread_info.thread_context) */
7844 sect
->filepos
= note
->descpos
+ 12;
7845 sect
->alignment_power
= 2;
7847 /* thread_info.is_active_thread */
7848 is_active_thread
= bfd_get_32 (abfd
, note
->descdata
+ 8);
7850 if (is_active_thread
)
7851 if (! elfcore_maybe_make_sect (abfd
, ".reg", sect
))
7855 case 3 /* NOTE_INFO_MODULE */:
7856 /* Make a ".module/xxxxxxxx" section. */
7857 /* module_info.base_address */
7858 base_addr
= bfd_get_32 (abfd
, note
->descdata
+ 4);
7859 sprintf (buf
, ".module/%08lx", (unsigned long) base_addr
);
7861 len
= strlen (buf
) + 1;
7862 name
= bfd_alloc (abfd
, len
);
7866 memcpy (name
, buf
, len
);
7868 sect
= bfd_make_section_anyway_with_flags (abfd
, name
, SEC_HAS_CONTENTS
);
7873 sect
->size
= note
->descsz
;
7874 sect
->filepos
= note
->descpos
;
7875 sect
->alignment_power
= 2;
7886 elfcore_grok_note (bfd
*abfd
, Elf_Internal_Note
*note
)
7888 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
7896 if (bed
->elf_backend_grok_prstatus
)
7897 if ((*bed
->elf_backend_grok_prstatus
) (abfd
, note
))
7899 #if defined (HAVE_PRSTATUS_T)
7900 return elfcore_grok_prstatus (abfd
, note
);
7905 #if defined (HAVE_PSTATUS_T)
7907 return elfcore_grok_pstatus (abfd
, note
);
7910 #if defined (HAVE_LWPSTATUS_T)
7912 return elfcore_grok_lwpstatus (abfd
, note
);
7915 case NT_FPREGSET
: /* FIXME: rename to NT_PRFPREG */
7916 return elfcore_grok_prfpreg (abfd
, note
);
7918 case NT_WIN32PSTATUS
:
7919 return elfcore_grok_win32pstatus (abfd
, note
);
7921 case NT_PRXFPREG
: /* Linux SSE extension */
7922 if (note
->namesz
== 6
7923 && strcmp (note
->namedata
, "LINUX") == 0)
7924 return elfcore_grok_prxfpreg (abfd
, note
);
7929 if (note
->namesz
== 6
7930 && strcmp (note
->namedata
, "LINUX") == 0)
7931 return elfcore_grok_ppc_vmx (abfd
, note
);
7936 if (note
->namesz
== 6
7937 && strcmp (note
->namedata
, "LINUX") == 0)
7938 return elfcore_grok_ppc_vsx (abfd
, note
);
7944 if (bed
->elf_backend_grok_psinfo
)
7945 if ((*bed
->elf_backend_grok_psinfo
) (abfd
, note
))
7947 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7948 return elfcore_grok_psinfo (abfd
, note
);
7955 asection
*sect
= bfd_make_section_anyway_with_flags (abfd
, ".auxv",
7960 sect
->size
= note
->descsz
;
7961 sect
->filepos
= note
->descpos
;
7962 sect
->alignment_power
= 1 + bfd_get_arch_size (abfd
) / 32;
7970 elfobj_grok_gnu_build_id (bfd
*abfd
, Elf_Internal_Note
*note
)
7972 elf_tdata (abfd
)->build_id_size
= note
->descsz
;
7973 elf_tdata (abfd
)->build_id
= bfd_alloc (abfd
, note
->descsz
);
7974 if (elf_tdata (abfd
)->build_id
== NULL
)
7977 memcpy (elf_tdata (abfd
)->build_id
, note
->descdata
, note
->descsz
);
7983 elfobj_grok_gnu_note (bfd
*abfd
, Elf_Internal_Note
*note
)
7990 case NT_GNU_BUILD_ID
:
7991 return elfobj_grok_gnu_build_id (abfd
, note
);
7996 elfcore_netbsd_get_lwpid (Elf_Internal_Note
*note
, int *lwpidp
)
8000 cp
= strchr (note
->namedata
, '@');
8003 *lwpidp
= atoi(cp
+ 1);
8010 elfcore_grok_netbsd_procinfo (bfd
*abfd
, Elf_Internal_Note
*note
)
8012 /* Signal number at offset 0x08. */
8013 elf_tdata (abfd
)->core_signal
8014 = bfd_h_get_32 (abfd
, (bfd_byte
*) note
->descdata
+ 0x08);
8016 /* Process ID at offset 0x50. */
8017 elf_tdata (abfd
)->core_pid
8018 = bfd_h_get_32 (abfd
, (bfd_byte
*) note
->descdata
+ 0x50);
8020 /* Command name at 0x7c (max 32 bytes, including nul). */
8021 elf_tdata (abfd
)->core_command
8022 = _bfd_elfcore_strndup (abfd
, note
->descdata
+ 0x7c, 31);
8024 return elfcore_make_note_pseudosection (abfd
, ".note.netbsdcore.procinfo",
8029 elfcore_grok_netbsd_note (bfd
*abfd
, Elf_Internal_Note
*note
)
8033 if (elfcore_netbsd_get_lwpid (note
, &lwp
))
8034 elf_tdata (abfd
)->core_lwpid
= lwp
;
8036 if (note
->type
== NT_NETBSDCORE_PROCINFO
)
8038 /* NetBSD-specific core "procinfo". Note that we expect to
8039 find this note before any of the others, which is fine,
8040 since the kernel writes this note out first when it
8041 creates a core file. */
8043 return elfcore_grok_netbsd_procinfo (abfd
, note
);
8046 /* As of Jan 2002 there are no other machine-independent notes
8047 defined for NetBSD core files. If the note type is less
8048 than the start of the machine-dependent note types, we don't
8051 if (note
->type
< NT_NETBSDCORE_FIRSTMACH
)
8055 switch (bfd_get_arch (abfd
))
8057 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
8058 PT_GETFPREGS == mach+2. */
8060 case bfd_arch_alpha
:
8061 case bfd_arch_sparc
:
8064 case NT_NETBSDCORE_FIRSTMACH
+0:
8065 return elfcore_make_note_pseudosection (abfd
, ".reg", note
);
8067 case NT_NETBSDCORE_FIRSTMACH
+2:
8068 return elfcore_make_note_pseudosection (abfd
, ".reg2", note
);
8074 /* On all other arch's, PT_GETREGS == mach+1 and
8075 PT_GETFPREGS == mach+3. */
8080 case NT_NETBSDCORE_FIRSTMACH
+1:
8081 return elfcore_make_note_pseudosection (abfd
, ".reg", note
);
8083 case NT_NETBSDCORE_FIRSTMACH
+3:
8084 return elfcore_make_note_pseudosection (abfd
, ".reg2", note
);
8094 elfcore_grok_openbsd_procinfo (bfd
*abfd
, Elf_Internal_Note
*note
)
8096 /* Signal number at offset 0x08. */
8097 elf_tdata (abfd
)->core_signal
8098 = bfd_h_get_32 (abfd
, (bfd_byte
*) note
->descdata
+ 0x08);
8100 /* Process ID at offset 0x20. */
8101 elf_tdata (abfd
)->core_pid
8102 = bfd_h_get_32 (abfd
, (bfd_byte
*) note
->descdata
+ 0x20);
8104 /* Command name at 0x48 (max 32 bytes, including nul). */
8105 elf_tdata (abfd
)->core_command
8106 = _bfd_elfcore_strndup (abfd
, note
->descdata
+ 0x48, 31);
8112 elfcore_grok_openbsd_note (bfd
*abfd
, Elf_Internal_Note
*note
)
8114 if (note
->type
== NT_OPENBSD_PROCINFO
)
8115 return elfcore_grok_openbsd_procinfo (abfd
, note
);
8117 if (note
->type
== NT_OPENBSD_REGS
)
8118 return elfcore_make_note_pseudosection (abfd
, ".reg", note
);
8120 if (note
->type
== NT_OPENBSD_FPREGS
)
8121 return elfcore_make_note_pseudosection (abfd
, ".reg2", note
);
8123 if (note
->type
== NT_OPENBSD_XFPREGS
)
8124 return elfcore_make_note_pseudosection (abfd
, ".reg-xfp", note
);
8126 if (note
->type
== NT_OPENBSD_AUXV
)
8128 asection
*sect
= bfd_make_section_anyway_with_flags (abfd
, ".auxv",
8133 sect
->size
= note
->descsz
;
8134 sect
->filepos
= note
->descpos
;
8135 sect
->alignment_power
= 1 + bfd_get_arch_size (abfd
) / 32;
8140 if (note
->type
== NT_OPENBSD_WCOOKIE
)
8142 asection
*sect
= bfd_make_section_anyway_with_flags (abfd
, ".wcookie",
8147 sect
->size
= note
->descsz
;
8148 sect
->filepos
= note
->descpos
;
8149 sect
->alignment_power
= 1 + bfd_get_arch_size (abfd
) / 32;
8158 elfcore_grok_nto_status (bfd
*abfd
, Elf_Internal_Note
*note
, long *tid
)
8160 void *ddata
= note
->descdata
;
8167 /* nto_procfs_status 'pid' field is at offset 0. */
8168 elf_tdata (abfd
)->core_pid
= bfd_get_32 (abfd
, (bfd_byte
*) ddata
);
8170 /* nto_procfs_status 'tid' field is at offset 4. Pass it back. */
8171 *tid
= bfd_get_32 (abfd
, (bfd_byte
*) ddata
+ 4);
8173 /* nto_procfs_status 'flags' field is at offset 8. */
8174 flags
= bfd_get_32 (abfd
, (bfd_byte
*) ddata
+ 8);
8176 /* nto_procfs_status 'what' field is at offset 14. */
8177 if ((sig
= bfd_get_16 (abfd
, (bfd_byte
*) ddata
+ 14)) > 0)
8179 elf_tdata (abfd
)->core_signal
= sig
;
8180 elf_tdata (abfd
)->core_lwpid
= *tid
;
8183 /* _DEBUG_FLAG_CURTID (current thread) is 0x80. Some cores
8184 do not come from signals so we make sure we set the current
8185 thread just in case. */
8186 if (flags
& 0x00000080)
8187 elf_tdata (abfd
)->core_lwpid
= *tid
;
8189 /* Make a ".qnx_core_status/%d" section. */
8190 sprintf (buf
, ".qnx_core_status/%ld", *tid
);
8192 name
= bfd_alloc (abfd
, strlen (buf
) + 1);
8197 sect
= bfd_make_section_anyway_with_flags (abfd
, name
, SEC_HAS_CONTENTS
);
8201 sect
->size
= note
->descsz
;
8202 sect
->filepos
= note
->descpos
;
8203 sect
->alignment_power
= 2;
8205 return (elfcore_maybe_make_sect (abfd
, ".qnx_core_status", sect
));
8209 elfcore_grok_nto_regs (bfd
*abfd
,
8210 Elf_Internal_Note
*note
,
8218 /* Make a "(base)/%d" section. */
8219 sprintf (buf
, "%s/%ld", base
, tid
);
8221 name
= bfd_alloc (abfd
, strlen (buf
) + 1);
8226 sect
= bfd_make_section_anyway_with_flags (abfd
, name
, SEC_HAS_CONTENTS
);
8230 sect
->size
= note
->descsz
;
8231 sect
->filepos
= note
->descpos
;
8232 sect
->alignment_power
= 2;
8234 /* This is the current thread. */
8235 if (elf_tdata (abfd
)->core_lwpid
== tid
)
8236 return elfcore_maybe_make_sect (abfd
, base
, sect
);
8241 #define BFD_QNT_CORE_INFO 7
8242 #define BFD_QNT_CORE_STATUS 8
8243 #define BFD_QNT_CORE_GREG 9
8244 #define BFD_QNT_CORE_FPREG 10
8247 elfcore_grok_nto_note (bfd
*abfd
, Elf_Internal_Note
*note
)
8249 /* Every GREG section has a STATUS section before it. Store the
8250 tid from the previous call to pass down to the next gregs
8252 static long tid
= 1;
8256 case BFD_QNT_CORE_INFO
:
8257 return elfcore_make_note_pseudosection (abfd
, ".qnx_core_info", note
);
8258 case BFD_QNT_CORE_STATUS
:
8259 return elfcore_grok_nto_status (abfd
, note
, &tid
);
8260 case BFD_QNT_CORE_GREG
:
8261 return elfcore_grok_nto_regs (abfd
, note
, tid
, ".reg");
8262 case BFD_QNT_CORE_FPREG
:
8263 return elfcore_grok_nto_regs (abfd
, note
, tid
, ".reg2");
8270 elfcore_grok_spu_note (bfd
*abfd
, Elf_Internal_Note
*note
)
8276 /* Use note name as section name. */
8278 name
= bfd_alloc (abfd
, len
);
8281 memcpy (name
, note
->namedata
, len
);
8282 name
[len
- 1] = '\0';
8284 sect
= bfd_make_section_anyway_with_flags (abfd
, name
, SEC_HAS_CONTENTS
);
8288 sect
->size
= note
->descsz
;
8289 sect
->filepos
= note
->descpos
;
8290 sect
->alignment_power
= 1;
8295 /* Function: elfcore_write_note
8298 buffer to hold note, and current size of buffer
8302 size of data for note
8304 Writes note to end of buffer. ELF64 notes are written exactly as
8305 for ELF32, despite the current (as of 2006) ELF gabi specifying
8306 that they ought to have 8-byte namesz and descsz field, and have
8307 8-byte alignment. Other writers, eg. Linux kernel, do the same.
8310 Pointer to realloc'd buffer, *BUFSIZ updated. */
8313 elfcore_write_note (bfd
*abfd
,
8321 Elf_External_Note
*xnp
;
8328 namesz
= strlen (name
) + 1;
8330 newspace
= 12 + ((namesz
+ 3) & -4) + ((size
+ 3) & -4);
8332 buf
= realloc (buf
, *bufsiz
+ newspace
);
8335 dest
= buf
+ *bufsiz
;
8336 *bufsiz
+= newspace
;
8337 xnp
= (Elf_External_Note
*) dest
;
8338 H_PUT_32 (abfd
, namesz
, xnp
->namesz
);
8339 H_PUT_32 (abfd
, size
, xnp
->descsz
);
8340 H_PUT_32 (abfd
, type
, xnp
->type
);
8344 memcpy (dest
, name
, namesz
);
8352 memcpy (dest
, input
, size
);
8362 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
8364 elfcore_write_prpsinfo (bfd
*abfd
,
8370 const char *note_name
= "CORE";
8371 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
8373 if (bed
->elf_backend_write_core_note
!= NULL
)
8376 ret
= (*bed
->elf_backend_write_core_note
) (abfd
, buf
, bufsiz
,
8377 NT_PRPSINFO
, fname
, psargs
);
8382 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
8383 if (bed
->s
->elfclass
== ELFCLASS32
)
8385 #if defined (HAVE_PSINFO32_T)
8387 int note_type
= NT_PSINFO
;
8390 int note_type
= NT_PRPSINFO
;
8393 memset (&data
, 0, sizeof (data
));
8394 strncpy (data
.pr_fname
, fname
, sizeof (data
.pr_fname
));
8395 strncpy (data
.pr_psargs
, psargs
, sizeof (data
.pr_psargs
));
8396 return elfcore_write_note (abfd
, buf
, bufsiz
,
8397 note_name
, note_type
, &data
, sizeof (data
));
8402 #if defined (HAVE_PSINFO_T)
8404 int note_type
= NT_PSINFO
;
8407 int note_type
= NT_PRPSINFO
;
8410 memset (&data
, 0, sizeof (data
));
8411 strncpy (data
.pr_fname
, fname
, sizeof (data
.pr_fname
));
8412 strncpy (data
.pr_psargs
, psargs
, sizeof (data
.pr_psargs
));
8413 return elfcore_write_note (abfd
, buf
, bufsiz
,
8414 note_name
, note_type
, &data
, sizeof (data
));
8417 #endif /* PSINFO_T or PRPSINFO_T */
8419 #if defined (HAVE_PRSTATUS_T)
8421 elfcore_write_prstatus (bfd
*abfd
,
8428 const char *note_name
= "CORE";
8429 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
8431 if (bed
->elf_backend_write_core_note
!= NULL
)
8434 ret
= (*bed
->elf_backend_write_core_note
) (abfd
, buf
, bufsiz
,
8436 pid
, cursig
, gregs
);
8441 #if defined (HAVE_PRSTATUS32_T)
8442 if (bed
->s
->elfclass
== ELFCLASS32
)
8444 prstatus32_t prstat
;
8446 memset (&prstat
, 0, sizeof (prstat
));
8447 prstat
.pr_pid
= pid
;
8448 prstat
.pr_cursig
= cursig
;
8449 memcpy (&prstat
.pr_reg
, gregs
, sizeof (prstat
.pr_reg
));
8450 return elfcore_write_note (abfd
, buf
, bufsiz
, note_name
,
8451 NT_PRSTATUS
, &prstat
, sizeof (prstat
));
8458 memset (&prstat
, 0, sizeof (prstat
));
8459 prstat
.pr_pid
= pid
;
8460 prstat
.pr_cursig
= cursig
;
8461 memcpy (&prstat
.pr_reg
, gregs
, sizeof (prstat
.pr_reg
));
8462 return elfcore_write_note (abfd
, buf
, bufsiz
, note_name
,
8463 NT_PRSTATUS
, &prstat
, sizeof (prstat
));
8466 #endif /* HAVE_PRSTATUS_T */
8468 #if defined (HAVE_LWPSTATUS_T)
8470 elfcore_write_lwpstatus (bfd
*abfd
,
8477 lwpstatus_t lwpstat
;
8478 const char *note_name
= "CORE";
8480 memset (&lwpstat
, 0, sizeof (lwpstat
));
8481 lwpstat
.pr_lwpid
= pid
>> 16;
8482 lwpstat
.pr_cursig
= cursig
;
8483 #if defined (HAVE_LWPSTATUS_T_PR_REG)
8484 memcpy (lwpstat
.pr_reg
, gregs
, sizeof (lwpstat
.pr_reg
));
8485 #elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
8487 memcpy (lwpstat
.pr_context
.uc_mcontext
.gregs
,
8488 gregs
, sizeof (lwpstat
.pr_context
.uc_mcontext
.gregs
));
8490 memcpy (lwpstat
.pr_context
.uc_mcontext
.__gregs
,
8491 gregs
, sizeof (lwpstat
.pr_context
.uc_mcontext
.__gregs
));
8494 return elfcore_write_note (abfd
, buf
, bufsiz
, note_name
,
8495 NT_LWPSTATUS
, &lwpstat
, sizeof (lwpstat
));
8497 #endif /* HAVE_LWPSTATUS_T */
8499 #if defined (HAVE_PSTATUS_T)
8501 elfcore_write_pstatus (bfd
*abfd
,
8505 int cursig ATTRIBUTE_UNUSED
,
8506 const void *gregs ATTRIBUTE_UNUSED
)
8508 const char *note_name
= "CORE";
8509 #if defined (HAVE_PSTATUS32_T)
8510 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
8512 if (bed
->s
->elfclass
== ELFCLASS32
)
8516 memset (&pstat
, 0, sizeof (pstat
));
8517 pstat
.pr_pid
= pid
& 0xffff;
8518 buf
= elfcore_write_note (abfd
, buf
, bufsiz
, note_name
,
8519 NT_PSTATUS
, &pstat
, sizeof (pstat
));
8527 memset (&pstat
, 0, sizeof (pstat
));
8528 pstat
.pr_pid
= pid
& 0xffff;
8529 buf
= elfcore_write_note (abfd
, buf
, bufsiz
, note_name
,
8530 NT_PSTATUS
, &pstat
, sizeof (pstat
));
8534 #endif /* HAVE_PSTATUS_T */
8537 elfcore_write_prfpreg (bfd
*abfd
,
8543 const char *note_name
= "CORE";
8544 return elfcore_write_note (abfd
, buf
, bufsiz
,
8545 note_name
, NT_FPREGSET
, fpregs
, size
);
8549 elfcore_write_prxfpreg (bfd
*abfd
,
8552 const void *xfpregs
,
8555 char *note_name
= "LINUX";
8556 return elfcore_write_note (abfd
, buf
, bufsiz
,
8557 note_name
, NT_PRXFPREG
, xfpregs
, size
);
8561 elfcore_write_ppc_vmx (bfd
*abfd
,
8564 const void *ppc_vmx
,
8567 char *note_name
= "LINUX";
8568 return elfcore_write_note (abfd
, buf
, bufsiz
,
8569 note_name
, NT_PPC_VMX
, ppc_vmx
, size
);
8573 elfcore_write_ppc_vsx (bfd
*abfd
,
8576 const void *ppc_vsx
,
8579 char *note_name
= "LINUX";
8580 return elfcore_write_note (abfd
, buf
, bufsiz
,
8581 note_name
, NT_PPC_VSX
, ppc_vsx
, size
);
8585 elfcore_write_register_note (bfd
*abfd
,
8588 const char *section
,
8592 if (strcmp (section
, ".reg2") == 0)
8593 return elfcore_write_prfpreg (abfd
, buf
, bufsiz
, data
, size
);
8594 if (strcmp (section
, ".reg-xfp") == 0)
8595 return elfcore_write_prxfpreg (abfd
, buf
, bufsiz
, data
, size
);
8596 if (strcmp (section
, ".reg-ppc-vmx") == 0)
8597 return elfcore_write_ppc_vmx (abfd
, buf
, bufsiz
, data
, size
);
8598 if (strcmp (section
, ".reg-ppc-vsx") == 0)
8599 return elfcore_write_ppc_vsx (abfd
, buf
, bufsiz
, data
, size
);
8604 elf_parse_notes (bfd
*abfd
, char *buf
, size_t size
, file_ptr offset
)
8609 while (p
< buf
+ size
)
8611 /* FIXME: bad alignment assumption. */
8612 Elf_External_Note
*xnp
= (Elf_External_Note
*) p
;
8613 Elf_Internal_Note in
;
8615 if (offsetof (Elf_External_Note
, name
) > buf
- p
+ size
)
8618 in
.type
= H_GET_32 (abfd
, xnp
->type
);
8620 in
.namesz
= H_GET_32 (abfd
, xnp
->namesz
);
8621 in
.namedata
= xnp
->name
;
8622 if (in
.namesz
> buf
- in
.namedata
+ size
)
8625 in
.descsz
= H_GET_32 (abfd
, xnp
->descsz
);
8626 in
.descdata
= in
.namedata
+ BFD_ALIGN (in
.namesz
, 4);
8627 in
.descpos
= offset
+ (in
.descdata
- buf
);
8629 && (in
.descdata
>= buf
+ size
8630 || in
.descsz
> buf
- in
.descdata
+ size
))
8633 switch (bfd_get_format (abfd
))
8639 if (CONST_STRNEQ (in
.namedata
, "NetBSD-CORE"))
8641 if (! elfcore_grok_netbsd_note (abfd
, &in
))
8644 else if (CONST_STRNEQ (in
.namedata
, "OpenBSD"))
8646 if (! elfcore_grok_openbsd_note (abfd
, &in
))
8649 else if (CONST_STRNEQ (in
.namedata
, "QNX"))
8651 if (! elfcore_grok_nto_note (abfd
, &in
))
8654 else if (CONST_STRNEQ (in
.namedata
, "SPU/"))
8656 if (! elfcore_grok_spu_note (abfd
, &in
))
8661 if (! elfcore_grok_note (abfd
, &in
))
8667 if (in
.namesz
== sizeof "GNU" && strcmp (in
.namedata
, "GNU") == 0)
8669 if (! elfobj_grok_gnu_note (abfd
, &in
))
8675 p
= in
.descdata
+ BFD_ALIGN (in
.descsz
, 4);
8682 elf_read_notes (bfd
*abfd
, file_ptr offset
, bfd_size_type size
)
8689 if (bfd_seek (abfd
, offset
, SEEK_SET
) != 0)
8692 buf
= bfd_malloc (size
);
8696 if (bfd_bread (buf
, size
, abfd
) != size
8697 || !elf_parse_notes (abfd
, buf
, size
, offset
))
8707 /* Providing external access to the ELF program header table. */
8709 /* Return an upper bound on the number of bytes required to store a
8710 copy of ABFD's program header table entries. Return -1 if an error
8711 occurs; bfd_get_error will return an appropriate code. */
8714 bfd_get_elf_phdr_upper_bound (bfd
*abfd
)
8716 if (abfd
->xvec
->flavour
!= bfd_target_elf_flavour
)
8718 bfd_set_error (bfd_error_wrong_format
);
8722 return elf_elfheader (abfd
)->e_phnum
* sizeof (Elf_Internal_Phdr
);
8725 /* Copy ABFD's program header table entries to *PHDRS. The entries
8726 will be stored as an array of Elf_Internal_Phdr structures, as
8727 defined in include/elf/internal.h. To find out how large the
8728 buffer needs to be, call bfd_get_elf_phdr_upper_bound.
8730 Return the number of program header table entries read, or -1 if an
8731 error occurs; bfd_get_error will return an appropriate code. */
8734 bfd_get_elf_phdrs (bfd
*abfd
, void *phdrs
)
8738 if (abfd
->xvec
->flavour
!= bfd_target_elf_flavour
)
8740 bfd_set_error (bfd_error_wrong_format
);
8744 num_phdrs
= elf_elfheader (abfd
)->e_phnum
;
8745 memcpy (phdrs
, elf_tdata (abfd
)->phdr
,
8746 num_phdrs
* sizeof (Elf_Internal_Phdr
));
8751 enum elf_reloc_type_class
8752 _bfd_elf_reloc_type_class (const Elf_Internal_Rela
*rela ATTRIBUTE_UNUSED
)
8754 return reloc_class_normal
;
8757 /* For RELA architectures, return the relocation value for a
8758 relocation against a local symbol. */
8761 _bfd_elf_rela_local_sym (bfd
*abfd
,
8762 Elf_Internal_Sym
*sym
,
8764 Elf_Internal_Rela
*rel
)
8766 asection
*sec
= *psec
;
8769 relocation
= (sec
->output_section
->vma
8770 + sec
->output_offset
8772 if ((sec
->flags
& SEC_MERGE
)
8773 && ELF_ST_TYPE (sym
->st_info
) == STT_SECTION
8774 && sec
->sec_info_type
== ELF_INFO_TYPE_MERGE
)
8777 _bfd_merged_section_offset (abfd
, psec
,
8778 elf_section_data (sec
)->sec_info
,
8779 sym
->st_value
+ rel
->r_addend
);
8782 /* If we have changed the section, and our original section is
8783 marked with SEC_EXCLUDE, it means that the original
8784 SEC_MERGE section has been completely subsumed in some
8785 other SEC_MERGE section. In this case, we need to leave
8786 some info around for --emit-relocs. */
8787 if ((sec
->flags
& SEC_EXCLUDE
) != 0)
8788 sec
->kept_section
= *psec
;
8791 rel
->r_addend
-= relocation
;
8792 rel
->r_addend
+= sec
->output_section
->vma
+ sec
->output_offset
;
8798 _bfd_elf_rel_local_sym (bfd
*abfd
,
8799 Elf_Internal_Sym
*sym
,
8803 asection
*sec
= *psec
;
8805 if (sec
->sec_info_type
!= ELF_INFO_TYPE_MERGE
)
8806 return sym
->st_value
+ addend
;
8808 return _bfd_merged_section_offset (abfd
, psec
,
8809 elf_section_data (sec
)->sec_info
,
8810 sym
->st_value
+ addend
);
8814 _bfd_elf_section_offset (bfd
*abfd
,
8815 struct bfd_link_info
*info
,
8819 switch (sec
->sec_info_type
)
8821 case ELF_INFO_TYPE_STABS
:
8822 return _bfd_stab_section_offset (sec
, elf_section_data (sec
)->sec_info
,
8824 case ELF_INFO_TYPE_EH_FRAME
:
8825 return _bfd_elf_eh_frame_section_offset (abfd
, info
, sec
, offset
);
8831 /* Create a new BFD as if by bfd_openr. Rather than opening a file,
8832 reconstruct an ELF file by reading the segments out of remote memory
8833 based on the ELF file header at EHDR_VMA and the ELF program headers it
8834 points to. If not null, *LOADBASEP is filled in with the difference
8835 between the VMAs from which the segments were read, and the VMAs the
8836 file headers (and hence BFD's idea of each section's VMA) put them at.
8838 The function TARGET_READ_MEMORY is called to copy LEN bytes from the
8839 remote memory at target address VMA into the local buffer at MYADDR; it
8840 should return zero on success or an `errno' code on failure. TEMPL must
8841 be a BFD for an ELF target with the word size and byte order found in
8842 the remote memory. */
8845 bfd_elf_bfd_from_remote_memory
8849 int (*target_read_memory
) (bfd_vma
, bfd_byte
*, int))
8851 return (*get_elf_backend_data (templ
)->elf_backend_bfd_from_remote_memory
)
8852 (templ
, ehdr_vma
, loadbasep
, target_read_memory
);
8856 _bfd_elf_get_synthetic_symtab (bfd
*abfd
,
8857 long symcount ATTRIBUTE_UNUSED
,
8858 asymbol
**syms ATTRIBUTE_UNUSED
,
8863 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
8866 const char *relplt_name
;
8867 bfd_boolean (*slurp_relocs
) (bfd
*, asection
*, asymbol
**, bfd_boolean
);
8871 Elf_Internal_Shdr
*hdr
;
8877 if ((abfd
->flags
& (DYNAMIC
| EXEC_P
)) == 0)
8880 if (dynsymcount
<= 0)
8883 if (!bed
->plt_sym_val
)
8886 relplt_name
= bed
->relplt_name
;
8887 if (relplt_name
== NULL
)
8888 relplt_name
= bed
->rela_plts_and_copies_p
? ".rela.plt" : ".rel.plt";
8889 relplt
= bfd_get_section_by_name (abfd
, relplt_name
);
8893 hdr
= &elf_section_data (relplt
)->this_hdr
;
8894 if (hdr
->sh_link
!= elf_dynsymtab (abfd
)
8895 || (hdr
->sh_type
!= SHT_REL
&& hdr
->sh_type
!= SHT_RELA
))
8898 plt
= bfd_get_section_by_name (abfd
, ".plt");
8902 slurp_relocs
= get_elf_backend_data (abfd
)->s
->slurp_reloc_table
;
8903 if (! (*slurp_relocs
) (abfd
, relplt
, dynsyms
, TRUE
))
8906 count
= relplt
->size
/ hdr
->sh_entsize
;
8907 size
= count
* sizeof (asymbol
);
8908 p
= relplt
->relocation
;
8909 for (i
= 0; i
< count
; i
++, p
+= bed
->s
->int_rels_per_ext_rel
)
8911 size
+= strlen ((*p
->sym_ptr_ptr
)->name
) + sizeof ("@plt");
8915 size
+= sizeof ("+0x") - 1 + 8 + 8 * (bed
->s
->elfclass
== ELFCLASS64
);
8917 size
+= sizeof ("+0x") - 1 + 8;
8922 s
= *ret
= bfd_malloc (size
);
8926 names
= (char *) (s
+ count
);
8927 p
= relplt
->relocation
;
8929 for (i
= 0; i
< count
; i
++, p
+= bed
->s
->int_rels_per_ext_rel
)
8934 addr
= bed
->plt_sym_val (i
, plt
, p
);
8935 if (addr
== (bfd_vma
) -1)
8938 *s
= **p
->sym_ptr_ptr
;
8939 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
8940 we are defining a symbol, ensure one of them is set. */
8941 if ((s
->flags
& BSF_LOCAL
) == 0)
8942 s
->flags
|= BSF_GLOBAL
;
8943 s
->flags
|= BSF_SYNTHETIC
;
8945 s
->value
= addr
- plt
->vma
;
8948 len
= strlen ((*p
->sym_ptr_ptr
)->name
);
8949 memcpy (names
, (*p
->sym_ptr_ptr
)->name
, len
);
8955 memcpy (names
, "+0x", sizeof ("+0x") - 1);
8956 names
+= sizeof ("+0x") - 1;
8957 bfd_sprintf_vma (abfd
, buf
, p
->addend
);
8958 for (a
= buf
; *a
== '0'; ++a
)
8961 memcpy (names
, a
, len
);
8964 memcpy (names
, "@plt", sizeof ("@plt"));
8965 names
+= sizeof ("@plt");
8972 /* It is only used by x86-64 so far. */
8973 asection _bfd_elf_large_com_section
8974 = BFD_FAKE_SECTION (_bfd_elf_large_com_section
,
8975 SEC_IS_COMMON
, NULL
, "LARGE_COMMON", 0);
8978 _bfd_elf_set_osabi (bfd
* abfd
,
8979 struct bfd_link_info
* link_info ATTRIBUTE_UNUSED
)
8981 Elf_Internal_Ehdr
* i_ehdrp
; /* ELF file header, internal form. */
8983 i_ehdrp
= elf_elfheader (abfd
);
8985 i_ehdrp
->e_ident
[EI_OSABI
] = get_elf_backend_data (abfd
)->elf_osabi
;
8987 /* To make things simpler for the loader on Linux systems we set the
8988 osabi field to ELFOSABI_LINUX if the binary contains symbols of
8989 the STT_GNU_IFUNC type. */
8990 if (i_ehdrp
->e_ident
[EI_OSABI
] == ELFOSABI_NONE
8991 && elf_tdata (abfd
)->has_ifunc_symbols
)
8992 i_ehdrp
->e_ident
[EI_OSABI
] = ELFOSABI_LINUX
;
8996 /* Return TRUE for ELF symbol types that represent functions.
8997 This is the default version of this function, which is sufficient for
8998 most targets. It returns true if TYPE is STT_FUNC or STT_GNU_IFUNC. */
9001 _bfd_elf_is_function_type (unsigned int type
)
9003 return (type
== STT_FUNC
9004 || type
== STT_GNU_IFUNC
);