* objcopy.c (copy_object): Catch the case where an attempt is made to add a
[deliverable/binutils-gdb.git] / bfd / elf.c
1 /* ELF executable support for BFD.
2
3 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
4 2002, 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
5
6 This file is part of BFD, the Binary File Descriptor library.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
21
22 /*
23 SECTION
24 ELF backends
25
26 BFD support for ELF formats is being worked on.
27 Currently, the best supported back ends are for sparc and i386
28 (running svr4 or Solaris 2).
29
30 Documentation of the internals of the support code still needs
31 to be written. The code is changing quickly enough that we
32 haven't bothered yet. */
33
34 /* For sparc64-cross-sparc32. */
35 #define _SYSCALL32
36 #include "bfd.h"
37 #include "sysdep.h"
38 #include "bfdlink.h"
39 #include "libbfd.h"
40 #define ARCH_SIZE 0
41 #include "elf-bfd.h"
42 #include "libiberty.h"
43
44 static int elf_sort_sections (const void *, const void *);
45 static bfd_boolean assign_file_positions_except_relocs (bfd *, struct bfd_link_info *);
46 static bfd_boolean prep_headers (bfd *);
47 static bfd_boolean swap_out_syms (bfd *, struct bfd_strtab_hash **, int) ;
48 static bfd_boolean elfcore_read_notes (bfd *, file_ptr, bfd_size_type) ;
49
50 /* Swap version information in and out. The version information is
51 currently size independent. If that ever changes, this code will
52 need to move into elfcode.h. */
53
54 /* Swap in a Verdef structure. */
55
56 void
57 _bfd_elf_swap_verdef_in (bfd *abfd,
58 const Elf_External_Verdef *src,
59 Elf_Internal_Verdef *dst)
60 {
61 dst->vd_version = H_GET_16 (abfd, src->vd_version);
62 dst->vd_flags = H_GET_16 (abfd, src->vd_flags);
63 dst->vd_ndx = H_GET_16 (abfd, src->vd_ndx);
64 dst->vd_cnt = H_GET_16 (abfd, src->vd_cnt);
65 dst->vd_hash = H_GET_32 (abfd, src->vd_hash);
66 dst->vd_aux = H_GET_32 (abfd, src->vd_aux);
67 dst->vd_next = H_GET_32 (abfd, src->vd_next);
68 }
69
70 /* Swap out a Verdef structure. */
71
72 void
73 _bfd_elf_swap_verdef_out (bfd *abfd,
74 const Elf_Internal_Verdef *src,
75 Elf_External_Verdef *dst)
76 {
77 H_PUT_16 (abfd, src->vd_version, dst->vd_version);
78 H_PUT_16 (abfd, src->vd_flags, dst->vd_flags);
79 H_PUT_16 (abfd, src->vd_ndx, dst->vd_ndx);
80 H_PUT_16 (abfd, src->vd_cnt, dst->vd_cnt);
81 H_PUT_32 (abfd, src->vd_hash, dst->vd_hash);
82 H_PUT_32 (abfd, src->vd_aux, dst->vd_aux);
83 H_PUT_32 (abfd, src->vd_next, dst->vd_next);
84 }
85
86 /* Swap in a Verdaux structure. */
87
88 void
89 _bfd_elf_swap_verdaux_in (bfd *abfd,
90 const Elf_External_Verdaux *src,
91 Elf_Internal_Verdaux *dst)
92 {
93 dst->vda_name = H_GET_32 (abfd, src->vda_name);
94 dst->vda_next = H_GET_32 (abfd, src->vda_next);
95 }
96
97 /* Swap out a Verdaux structure. */
98
99 void
100 _bfd_elf_swap_verdaux_out (bfd *abfd,
101 const Elf_Internal_Verdaux *src,
102 Elf_External_Verdaux *dst)
103 {
104 H_PUT_32 (abfd, src->vda_name, dst->vda_name);
105 H_PUT_32 (abfd, src->vda_next, dst->vda_next);
106 }
107
108 /* Swap in a Verneed structure. */
109
110 void
111 _bfd_elf_swap_verneed_in (bfd *abfd,
112 const Elf_External_Verneed *src,
113 Elf_Internal_Verneed *dst)
114 {
115 dst->vn_version = H_GET_16 (abfd, src->vn_version);
116 dst->vn_cnt = H_GET_16 (abfd, src->vn_cnt);
117 dst->vn_file = H_GET_32 (abfd, src->vn_file);
118 dst->vn_aux = H_GET_32 (abfd, src->vn_aux);
119 dst->vn_next = H_GET_32 (abfd, src->vn_next);
120 }
121
122 /* Swap out a Verneed structure. */
123
124 void
125 _bfd_elf_swap_verneed_out (bfd *abfd,
126 const Elf_Internal_Verneed *src,
127 Elf_External_Verneed *dst)
128 {
129 H_PUT_16 (abfd, src->vn_version, dst->vn_version);
130 H_PUT_16 (abfd, src->vn_cnt, dst->vn_cnt);
131 H_PUT_32 (abfd, src->vn_file, dst->vn_file);
132 H_PUT_32 (abfd, src->vn_aux, dst->vn_aux);
133 H_PUT_32 (abfd, src->vn_next, dst->vn_next);
134 }
135
136 /* Swap in a Vernaux structure. */
137
138 void
139 _bfd_elf_swap_vernaux_in (bfd *abfd,
140 const Elf_External_Vernaux *src,
141 Elf_Internal_Vernaux *dst)
142 {
143 dst->vna_hash = H_GET_32 (abfd, src->vna_hash);
144 dst->vna_flags = H_GET_16 (abfd, src->vna_flags);
145 dst->vna_other = H_GET_16 (abfd, src->vna_other);
146 dst->vna_name = H_GET_32 (abfd, src->vna_name);
147 dst->vna_next = H_GET_32 (abfd, src->vna_next);
148 }
149
150 /* Swap out a Vernaux structure. */
151
152 void
153 _bfd_elf_swap_vernaux_out (bfd *abfd,
154 const Elf_Internal_Vernaux *src,
155 Elf_External_Vernaux *dst)
156 {
157 H_PUT_32 (abfd, src->vna_hash, dst->vna_hash);
158 H_PUT_16 (abfd, src->vna_flags, dst->vna_flags);
159 H_PUT_16 (abfd, src->vna_other, dst->vna_other);
160 H_PUT_32 (abfd, src->vna_name, dst->vna_name);
161 H_PUT_32 (abfd, src->vna_next, dst->vna_next);
162 }
163
164 /* Swap in a Versym structure. */
165
166 void
167 _bfd_elf_swap_versym_in (bfd *abfd,
168 const Elf_External_Versym *src,
169 Elf_Internal_Versym *dst)
170 {
171 dst->vs_vers = H_GET_16 (abfd, src->vs_vers);
172 }
173
174 /* Swap out a Versym structure. */
175
176 void
177 _bfd_elf_swap_versym_out (bfd *abfd,
178 const Elf_Internal_Versym *src,
179 Elf_External_Versym *dst)
180 {
181 H_PUT_16 (abfd, src->vs_vers, dst->vs_vers);
182 }
183
184 /* Standard ELF hash function. Do not change this function; you will
185 cause invalid hash tables to be generated. */
186
187 unsigned long
188 bfd_elf_hash (const char *namearg)
189 {
190 const unsigned char *name = (const unsigned char *) namearg;
191 unsigned long h = 0;
192 unsigned long g;
193 int ch;
194
195 while ((ch = *name++) != '\0')
196 {
197 h = (h << 4) + ch;
198 if ((g = (h & 0xf0000000)) != 0)
199 {
200 h ^= g >> 24;
201 /* The ELF ABI says `h &= ~g', but this is equivalent in
202 this case and on some machines one insn instead of two. */
203 h ^= g;
204 }
205 }
206 return h & 0xffffffff;
207 }
208
209 bfd_boolean
210 bfd_elf_mkobject (bfd *abfd)
211 {
212 /* This just does initialization. */
213 /* coff_mkobject zalloc's space for tdata.coff_obj_data ... */
214 elf_tdata (abfd) = bfd_zalloc (abfd, sizeof (struct elf_obj_tdata));
215 if (elf_tdata (abfd) == 0)
216 return FALSE;
217 /* Since everything is done at close time, do we need any
218 initialization? */
219
220 return TRUE;
221 }
222
223 bfd_boolean
224 bfd_elf_mkcorefile (bfd *abfd)
225 {
226 /* I think this can be done just like an object file. */
227 return bfd_elf_mkobject (abfd);
228 }
229
230 char *
231 bfd_elf_get_str_section (bfd *abfd, unsigned int shindex)
232 {
233 Elf_Internal_Shdr **i_shdrp;
234 bfd_byte *shstrtab = NULL;
235 file_ptr offset;
236 bfd_size_type shstrtabsize;
237
238 i_shdrp = elf_elfsections (abfd);
239 if (i_shdrp == 0 || i_shdrp[shindex] == 0)
240 return NULL;
241
242 shstrtab = i_shdrp[shindex]->contents;
243 if (shstrtab == NULL)
244 {
245 /* No cached one, attempt to read, and cache what we read. */
246 offset = i_shdrp[shindex]->sh_offset;
247 shstrtabsize = i_shdrp[shindex]->sh_size;
248
249 /* Allocate and clear an extra byte at the end, to prevent crashes
250 in case the string table is not terminated. */
251 if (shstrtabsize + 1 == 0
252 || (shstrtab = bfd_alloc (abfd, shstrtabsize + 1)) == NULL
253 || bfd_seek (abfd, offset, SEEK_SET) != 0)
254 shstrtab = NULL;
255 else if (bfd_bread (shstrtab, shstrtabsize, abfd) != shstrtabsize)
256 {
257 if (bfd_get_error () != bfd_error_system_call)
258 bfd_set_error (bfd_error_file_truncated);
259 shstrtab = NULL;
260 }
261 else
262 shstrtab[shstrtabsize] = '\0';
263 i_shdrp[shindex]->contents = shstrtab;
264 }
265 return (char *) shstrtab;
266 }
267
268 char *
269 bfd_elf_string_from_elf_section (bfd *abfd,
270 unsigned int shindex,
271 unsigned int strindex)
272 {
273 Elf_Internal_Shdr *hdr;
274
275 if (strindex == 0)
276 return "";
277
278 hdr = elf_elfsections (abfd)[shindex];
279
280 if (hdr->contents == NULL
281 && bfd_elf_get_str_section (abfd, shindex) == NULL)
282 return NULL;
283
284 if (strindex >= hdr->sh_size)
285 {
286 unsigned int shstrndx = elf_elfheader(abfd)->e_shstrndx;
287 (*_bfd_error_handler)
288 (_("%B: invalid string offset %u >= %lu for section `%s'"),
289 abfd, strindex, (unsigned long) hdr->sh_size,
290 (shindex == shstrndx && strindex == hdr->sh_name
291 ? ".shstrtab"
292 : bfd_elf_string_from_elf_section (abfd, shstrndx, hdr->sh_name)));
293 return "";
294 }
295
296 return ((char *) hdr->contents) + strindex;
297 }
298
299 /* Read and convert symbols to internal format.
300 SYMCOUNT specifies the number of symbols to read, starting from
301 symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF
302 are non-NULL, they are used to store the internal symbols, external
303 symbols, and symbol section index extensions, respectively. */
304
305 Elf_Internal_Sym *
306 bfd_elf_get_elf_syms (bfd *ibfd,
307 Elf_Internal_Shdr *symtab_hdr,
308 size_t symcount,
309 size_t symoffset,
310 Elf_Internal_Sym *intsym_buf,
311 void *extsym_buf,
312 Elf_External_Sym_Shndx *extshndx_buf)
313 {
314 Elf_Internal_Shdr *shndx_hdr;
315 void *alloc_ext;
316 const bfd_byte *esym;
317 Elf_External_Sym_Shndx *alloc_extshndx;
318 Elf_External_Sym_Shndx *shndx;
319 Elf_Internal_Sym *isym;
320 Elf_Internal_Sym *isymend;
321 const struct elf_backend_data *bed;
322 size_t extsym_size;
323 bfd_size_type amt;
324 file_ptr pos;
325
326 if (symcount == 0)
327 return intsym_buf;
328
329 /* Normal syms might have section extension entries. */
330 shndx_hdr = NULL;
331 if (symtab_hdr == &elf_tdata (ibfd)->symtab_hdr)
332 shndx_hdr = &elf_tdata (ibfd)->symtab_shndx_hdr;
333
334 /* Read the symbols. */
335 alloc_ext = NULL;
336 alloc_extshndx = NULL;
337 bed = get_elf_backend_data (ibfd);
338 extsym_size = bed->s->sizeof_sym;
339 amt = symcount * extsym_size;
340 pos = symtab_hdr->sh_offset + symoffset * extsym_size;
341 if (extsym_buf == NULL)
342 {
343 alloc_ext = bfd_malloc2 (symcount, extsym_size);
344 extsym_buf = alloc_ext;
345 }
346 if (extsym_buf == NULL
347 || bfd_seek (ibfd, pos, SEEK_SET) != 0
348 || bfd_bread (extsym_buf, amt, ibfd) != amt)
349 {
350 intsym_buf = NULL;
351 goto out;
352 }
353
354 if (shndx_hdr == NULL || shndx_hdr->sh_size == 0)
355 extshndx_buf = NULL;
356 else
357 {
358 amt = symcount * sizeof (Elf_External_Sym_Shndx);
359 pos = shndx_hdr->sh_offset + symoffset * sizeof (Elf_External_Sym_Shndx);
360 if (extshndx_buf == NULL)
361 {
362 alloc_extshndx = bfd_malloc2 (symcount,
363 sizeof (Elf_External_Sym_Shndx));
364 extshndx_buf = alloc_extshndx;
365 }
366 if (extshndx_buf == NULL
367 || bfd_seek (ibfd, pos, SEEK_SET) != 0
368 || bfd_bread (extshndx_buf, amt, ibfd) != amt)
369 {
370 intsym_buf = NULL;
371 goto out;
372 }
373 }
374
375 if (intsym_buf == NULL)
376 {
377 intsym_buf = bfd_malloc2 (symcount, sizeof (Elf_Internal_Sym));
378 if (intsym_buf == NULL)
379 goto out;
380 }
381
382 /* Convert the symbols to internal form. */
383 isymend = intsym_buf + symcount;
384 for (esym = extsym_buf, isym = intsym_buf, shndx = extshndx_buf;
385 isym < isymend;
386 esym += extsym_size, isym++, shndx = shndx != NULL ? shndx + 1 : NULL)
387 (*bed->s->swap_symbol_in) (ibfd, esym, shndx, isym);
388
389 out:
390 if (alloc_ext != NULL)
391 free (alloc_ext);
392 if (alloc_extshndx != NULL)
393 free (alloc_extshndx);
394
395 return intsym_buf;
396 }
397
398 /* Look up a symbol name. */
399 const char *
400 bfd_elf_sym_name (bfd *abfd,
401 Elf_Internal_Shdr *symtab_hdr,
402 Elf_Internal_Sym *isym,
403 asection *sym_sec)
404 {
405 const char *name;
406 unsigned int iname = isym->st_name;
407 unsigned int shindex = symtab_hdr->sh_link;
408
409 if (iname == 0 && ELF_ST_TYPE (isym->st_info) == STT_SECTION
410 /* Check for a bogus st_shndx to avoid crashing. */
411 && isym->st_shndx < elf_numsections (abfd)
412 && !(isym->st_shndx >= SHN_LORESERVE && isym->st_shndx <= SHN_HIRESERVE))
413 {
414 iname = elf_elfsections (abfd)[isym->st_shndx]->sh_name;
415 shindex = elf_elfheader (abfd)->e_shstrndx;
416 }
417
418 name = bfd_elf_string_from_elf_section (abfd, shindex, iname);
419 if (name == NULL)
420 name = "(null)";
421 else if (sym_sec && *name == '\0')
422 name = bfd_section_name (abfd, sym_sec);
423
424 return name;
425 }
426
427 /* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
428 sections. The first element is the flags, the rest are section
429 pointers. */
430
431 typedef union elf_internal_group {
432 Elf_Internal_Shdr *shdr;
433 unsigned int flags;
434 } Elf_Internal_Group;
435
436 /* Return the name of the group signature symbol. Why isn't the
437 signature just a string? */
438
439 static const char *
440 group_signature (bfd *abfd, Elf_Internal_Shdr *ghdr)
441 {
442 Elf_Internal_Shdr *hdr;
443 unsigned char esym[sizeof (Elf64_External_Sym)];
444 Elf_External_Sym_Shndx eshndx;
445 Elf_Internal_Sym isym;
446
447 /* First we need to ensure the symbol table is available. Make sure
448 that it is a symbol table section. */
449 hdr = elf_elfsections (abfd) [ghdr->sh_link];
450 if (hdr->sh_type != SHT_SYMTAB
451 || ! bfd_section_from_shdr (abfd, ghdr->sh_link))
452 return NULL;
453
454 /* Go read the symbol. */
455 hdr = &elf_tdata (abfd)->symtab_hdr;
456 if (bfd_elf_get_elf_syms (abfd, hdr, 1, ghdr->sh_info,
457 &isym, esym, &eshndx) == NULL)
458 return NULL;
459
460 return bfd_elf_sym_name (abfd, hdr, &isym, NULL);
461 }
462
463 /* Set next_in_group list pointer, and group name for NEWSECT. */
464
465 static bfd_boolean
466 setup_group (bfd *abfd, Elf_Internal_Shdr *hdr, asection *newsect)
467 {
468 unsigned int num_group = elf_tdata (abfd)->num_group;
469
470 /* If num_group is zero, read in all SHT_GROUP sections. The count
471 is set to -1 if there are no SHT_GROUP sections. */
472 if (num_group == 0)
473 {
474 unsigned int i, shnum;
475
476 /* First count the number of groups. If we have a SHT_GROUP
477 section with just a flag word (ie. sh_size is 4), ignore it. */
478 shnum = elf_numsections (abfd);
479 num_group = 0;
480 for (i = 0; i < shnum; i++)
481 {
482 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
483 if (shdr->sh_type == SHT_GROUP && shdr->sh_size >= 8)
484 num_group += 1;
485 }
486
487 if (num_group == 0)
488 {
489 num_group = (unsigned) -1;
490 elf_tdata (abfd)->num_group = num_group;
491 }
492 else
493 {
494 /* We keep a list of elf section headers for group sections,
495 so we can find them quickly. */
496 bfd_size_type amt;
497
498 elf_tdata (abfd)->num_group = num_group;
499 elf_tdata (abfd)->group_sect_ptr
500 = bfd_alloc2 (abfd, num_group, sizeof (Elf_Internal_Shdr *));
501 if (elf_tdata (abfd)->group_sect_ptr == NULL)
502 return FALSE;
503
504 num_group = 0;
505 for (i = 0; i < shnum; i++)
506 {
507 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
508 if (shdr->sh_type == SHT_GROUP && shdr->sh_size >= 8)
509 {
510 unsigned char *src;
511 Elf_Internal_Group *dest;
512
513 /* Add to list of sections. */
514 elf_tdata (abfd)->group_sect_ptr[num_group] = shdr;
515 num_group += 1;
516
517 /* Read the raw contents. */
518 BFD_ASSERT (sizeof (*dest) >= 4);
519 amt = shdr->sh_size * sizeof (*dest) / 4;
520 shdr->contents = bfd_alloc2 (abfd, shdr->sh_size,
521 sizeof (*dest) / 4);
522 if (shdr->contents == NULL
523 || bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0
524 || (bfd_bread (shdr->contents, shdr->sh_size, abfd)
525 != shdr->sh_size))
526 return FALSE;
527
528 /* Translate raw contents, a flag word followed by an
529 array of elf section indices all in target byte order,
530 to the flag word followed by an array of elf section
531 pointers. */
532 src = shdr->contents + shdr->sh_size;
533 dest = (Elf_Internal_Group *) (shdr->contents + amt);
534 while (1)
535 {
536 unsigned int idx;
537
538 src -= 4;
539 --dest;
540 idx = H_GET_32 (abfd, src);
541 if (src == shdr->contents)
542 {
543 dest->flags = idx;
544 if (shdr->bfd_section != NULL && (idx & GRP_COMDAT))
545 shdr->bfd_section->flags
546 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
547 break;
548 }
549 if (idx >= shnum)
550 {
551 ((*_bfd_error_handler)
552 (_("%B: invalid SHT_GROUP entry"), abfd));
553 idx = 0;
554 }
555 dest->shdr = elf_elfsections (abfd)[idx];
556 }
557 }
558 }
559 }
560 }
561
562 if (num_group != (unsigned) -1)
563 {
564 unsigned int i;
565
566 for (i = 0; i < num_group; i++)
567 {
568 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
569 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
570 unsigned int n_elt = shdr->sh_size / 4;
571
572 /* Look through this group's sections to see if current
573 section is a member. */
574 while (--n_elt != 0)
575 if ((++idx)->shdr == hdr)
576 {
577 asection *s = NULL;
578
579 /* We are a member of this group. Go looking through
580 other members to see if any others are linked via
581 next_in_group. */
582 idx = (Elf_Internal_Group *) shdr->contents;
583 n_elt = shdr->sh_size / 4;
584 while (--n_elt != 0)
585 if ((s = (++idx)->shdr->bfd_section) != NULL
586 && elf_next_in_group (s) != NULL)
587 break;
588 if (n_elt != 0)
589 {
590 /* Snarf the group name from other member, and
591 insert current section in circular list. */
592 elf_group_name (newsect) = elf_group_name (s);
593 elf_next_in_group (newsect) = elf_next_in_group (s);
594 elf_next_in_group (s) = newsect;
595 }
596 else
597 {
598 const char *gname;
599
600 gname = group_signature (abfd, shdr);
601 if (gname == NULL)
602 return FALSE;
603 elf_group_name (newsect) = gname;
604
605 /* Start a circular list with one element. */
606 elf_next_in_group (newsect) = newsect;
607 }
608
609 /* If the group section has been created, point to the
610 new member. */
611 if (shdr->bfd_section != NULL)
612 elf_next_in_group (shdr->bfd_section) = newsect;
613
614 i = num_group - 1;
615 break;
616 }
617 }
618 }
619
620 if (elf_group_name (newsect) == NULL)
621 {
622 (*_bfd_error_handler) (_("%B: no group info for section %A"),
623 abfd, newsect);
624 }
625 return TRUE;
626 }
627
628 bfd_boolean
629 _bfd_elf_setup_sections (bfd *abfd)
630 {
631 unsigned int i;
632 unsigned int num_group = elf_tdata (abfd)->num_group;
633 bfd_boolean result = TRUE;
634 asection *s;
635
636 /* Process SHF_LINK_ORDER. */
637 for (s = abfd->sections; s != NULL; s = s->next)
638 {
639 Elf_Internal_Shdr *this_hdr = &elf_section_data (s)->this_hdr;
640 if ((this_hdr->sh_flags & SHF_LINK_ORDER) != 0)
641 {
642 unsigned int elfsec = this_hdr->sh_link;
643 /* FIXME: The old Intel compiler and old strip/objcopy may
644 not set the sh_link or sh_info fields. Hence we could
645 get the situation where elfsec is 0. */
646 if (elfsec == 0)
647 {
648 const struct elf_backend_data *bed
649 = get_elf_backend_data (abfd);
650 if (bed->link_order_error_handler)
651 bed->link_order_error_handler
652 (_("%B: warning: sh_link not set for section `%A'"),
653 abfd, s);
654 }
655 else
656 {
657 asection *link;
658
659 this_hdr = elf_elfsections (abfd)[elfsec];
660
661 /* PR 1991, 2008:
662 Some strip/objcopy may leave an incorrect value in
663 sh_link. We don't want to proceed. */
664 link = this_hdr->bfd_section;
665 if (link == NULL)
666 {
667 (*_bfd_error_handler)
668 (_("%B: sh_link [%d] in section `%A' is incorrect"),
669 s->owner, s, elfsec);
670 result = FALSE;
671 }
672
673 elf_linked_to_section (s) = link;
674 }
675 }
676 }
677
678 /* Process section groups. */
679 if (num_group == (unsigned) -1)
680 return result;
681
682 for (i = 0; i < num_group; i++)
683 {
684 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
685 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
686 unsigned int n_elt = shdr->sh_size / 4;
687
688 while (--n_elt != 0)
689 if ((++idx)->shdr->bfd_section)
690 elf_sec_group (idx->shdr->bfd_section) = shdr->bfd_section;
691 else if (idx->shdr->sh_type == SHT_RELA
692 || idx->shdr->sh_type == SHT_REL)
693 /* We won't include relocation sections in section groups in
694 output object files. We adjust the group section size here
695 so that relocatable link will work correctly when
696 relocation sections are in section group in input object
697 files. */
698 shdr->bfd_section->size -= 4;
699 else
700 {
701 /* There are some unknown sections in the group. */
702 (*_bfd_error_handler)
703 (_("%B: unknown [%d] section `%s' in group [%s]"),
704 abfd,
705 (unsigned int) idx->shdr->sh_type,
706 bfd_elf_string_from_elf_section (abfd,
707 (elf_elfheader (abfd)
708 ->e_shstrndx),
709 idx->shdr->sh_name),
710 shdr->bfd_section->name);
711 result = FALSE;
712 }
713 }
714 return result;
715 }
716
717 bfd_boolean
718 bfd_elf_is_group_section (bfd *abfd ATTRIBUTE_UNUSED, const asection *sec)
719 {
720 return elf_next_in_group (sec) != NULL;
721 }
722
723 /* Make a BFD section from an ELF section. We store a pointer to the
724 BFD section in the bfd_section field of the header. */
725
726 bfd_boolean
727 _bfd_elf_make_section_from_shdr (bfd *abfd,
728 Elf_Internal_Shdr *hdr,
729 const char *name,
730 int shindex)
731 {
732 asection *newsect;
733 flagword flags;
734 const struct elf_backend_data *bed;
735
736 if (hdr->bfd_section != NULL)
737 {
738 BFD_ASSERT (strcmp (name,
739 bfd_get_section_name (abfd, hdr->bfd_section)) == 0);
740 return TRUE;
741 }
742
743 newsect = bfd_make_section_anyway (abfd, name);
744 if (newsect == NULL)
745 return FALSE;
746
747 hdr->bfd_section = newsect;
748 elf_section_data (newsect)->this_hdr = *hdr;
749 elf_section_data (newsect)->this_idx = shindex;
750
751 /* Always use the real type/flags. */
752 elf_section_type (newsect) = hdr->sh_type;
753 elf_section_flags (newsect) = hdr->sh_flags;
754
755 newsect->filepos = hdr->sh_offset;
756
757 if (! bfd_set_section_vma (abfd, newsect, hdr->sh_addr)
758 || ! bfd_set_section_size (abfd, newsect, hdr->sh_size)
759 || ! bfd_set_section_alignment (abfd, newsect,
760 bfd_log2 ((bfd_vma) hdr->sh_addralign)))
761 return FALSE;
762
763 flags = SEC_NO_FLAGS;
764 if (hdr->sh_type != SHT_NOBITS)
765 flags |= SEC_HAS_CONTENTS;
766 if (hdr->sh_type == SHT_GROUP)
767 flags |= SEC_GROUP | SEC_EXCLUDE;
768 if ((hdr->sh_flags & SHF_ALLOC) != 0)
769 {
770 flags |= SEC_ALLOC;
771 if (hdr->sh_type != SHT_NOBITS)
772 flags |= SEC_LOAD;
773 }
774 if ((hdr->sh_flags & SHF_WRITE) == 0)
775 flags |= SEC_READONLY;
776 if ((hdr->sh_flags & SHF_EXECINSTR) != 0)
777 flags |= SEC_CODE;
778 else if ((flags & SEC_LOAD) != 0)
779 flags |= SEC_DATA;
780 if ((hdr->sh_flags & SHF_MERGE) != 0)
781 {
782 flags |= SEC_MERGE;
783 newsect->entsize = hdr->sh_entsize;
784 if ((hdr->sh_flags & SHF_STRINGS) != 0)
785 flags |= SEC_STRINGS;
786 }
787 if (hdr->sh_flags & SHF_GROUP)
788 if (!setup_group (abfd, hdr, newsect))
789 return FALSE;
790 if ((hdr->sh_flags & SHF_TLS) != 0)
791 flags |= SEC_THREAD_LOCAL;
792
793 if ((flags & SEC_ALLOC) == 0)
794 {
795 /* The debugging sections appear to be recognized only by name,
796 not any sort of flag. Their SEC_ALLOC bits are cleared. */
797 static const struct
798 {
799 const char *name;
800 int len;
801 } debug_sections [] =
802 {
803 { "debug", 5 }, /* 'd' */
804 { NULL, 0 }, /* 'e' */
805 { NULL, 0 }, /* 'f' */
806 { "gnu.linkonce.wi.", 17 }, /* 'g' */
807 { NULL, 0 }, /* 'h' */
808 { NULL, 0 }, /* 'i' */
809 { NULL, 0 }, /* 'j' */
810 { NULL, 0 }, /* 'k' */
811 { "line", 4 }, /* 'l' */
812 { NULL, 0 }, /* 'm' */
813 { NULL, 0 }, /* 'n' */
814 { NULL, 0 }, /* 'o' */
815 { NULL, 0 }, /* 'p' */
816 { NULL, 0 }, /* 'q' */
817 { NULL, 0 }, /* 'r' */
818 { "stab", 4 } /* 's' */
819 };
820
821 if (name [0] == '.')
822 {
823 int i = name [1] - 'd';
824 if (i >= 0
825 && i < (int) ARRAY_SIZE (debug_sections)
826 && debug_sections [i].name != NULL
827 && strncmp (&name [1], debug_sections [i].name,
828 debug_sections [i].len) == 0)
829 flags |= SEC_DEBUGGING;
830 }
831 }
832
833 /* As a GNU extension, if the name begins with .gnu.linkonce, we
834 only link a single copy of the section. This is used to support
835 g++. g++ will emit each template expansion in its own section.
836 The symbols will be defined as weak, so that multiple definitions
837 are permitted. The GNU linker extension is to actually discard
838 all but one of the sections. */
839 if (strncmp (name, ".gnu.linkonce", sizeof ".gnu.linkonce" - 1) == 0
840 && elf_next_in_group (newsect) == NULL)
841 flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
842
843 bed = get_elf_backend_data (abfd);
844 if (bed->elf_backend_section_flags)
845 if (! bed->elf_backend_section_flags (&flags, hdr))
846 return FALSE;
847
848 if (! bfd_set_section_flags (abfd, newsect, flags))
849 return FALSE;
850
851 if ((flags & SEC_ALLOC) != 0)
852 {
853 Elf_Internal_Phdr *phdr;
854 unsigned int i;
855
856 /* Look through the phdrs to see if we need to adjust the lma.
857 If all the p_paddr fields are zero, we ignore them, since
858 some ELF linkers produce such output. */
859 phdr = elf_tdata (abfd)->phdr;
860 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
861 {
862 if (phdr->p_paddr != 0)
863 break;
864 }
865 if (i < elf_elfheader (abfd)->e_phnum)
866 {
867 phdr = elf_tdata (abfd)->phdr;
868 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
869 {
870 /* This section is part of this segment if its file
871 offset plus size lies within the segment's memory
872 span and, if the section is loaded, the extent of the
873 loaded data lies within the extent of the segment.
874
875 Note - we used to check the p_paddr field as well, and
876 refuse to set the LMA if it was 0. This is wrong
877 though, as a perfectly valid initialised segment can
878 have a p_paddr of zero. Some architectures, eg ARM,
879 place special significance on the address 0 and
880 executables need to be able to have a segment which
881 covers this address. */
882 if (phdr->p_type == PT_LOAD
883 && (bfd_vma) hdr->sh_offset >= phdr->p_offset
884 && (hdr->sh_offset + hdr->sh_size
885 <= phdr->p_offset + phdr->p_memsz)
886 && ((flags & SEC_LOAD) == 0
887 || (hdr->sh_offset + hdr->sh_size
888 <= phdr->p_offset + phdr->p_filesz)))
889 {
890 if ((flags & SEC_LOAD) == 0)
891 newsect->lma = (phdr->p_paddr
892 + hdr->sh_addr - phdr->p_vaddr);
893 else
894 /* We used to use the same adjustment for SEC_LOAD
895 sections, but that doesn't work if the segment
896 is packed with code from multiple VMAs.
897 Instead we calculate the section LMA based on
898 the segment LMA. It is assumed that the
899 segment will contain sections with contiguous
900 LMAs, even if the VMAs are not. */
901 newsect->lma = (phdr->p_paddr
902 + hdr->sh_offset - phdr->p_offset);
903
904 /* With contiguous segments, we can't tell from file
905 offsets whether a section with zero size should
906 be placed at the end of one segment or the
907 beginning of the next. Decide based on vaddr. */
908 if (hdr->sh_addr >= phdr->p_vaddr
909 && (hdr->sh_addr + hdr->sh_size
910 <= phdr->p_vaddr + phdr->p_memsz))
911 break;
912 }
913 }
914 }
915 }
916
917 return TRUE;
918 }
919
920 /*
921 INTERNAL_FUNCTION
922 bfd_elf_find_section
923
924 SYNOPSIS
925 struct elf_internal_shdr *bfd_elf_find_section (bfd *abfd, char *name);
926
927 DESCRIPTION
928 Helper functions for GDB to locate the string tables.
929 Since BFD hides string tables from callers, GDB needs to use an
930 internal hook to find them. Sun's .stabstr, in particular,
931 isn't even pointed to by the .stab section, so ordinary
932 mechanisms wouldn't work to find it, even if we had some.
933 */
934
935 struct elf_internal_shdr *
936 bfd_elf_find_section (bfd *abfd, char *name)
937 {
938 Elf_Internal_Shdr **i_shdrp;
939 char *shstrtab;
940 unsigned int max;
941 unsigned int i;
942
943 i_shdrp = elf_elfsections (abfd);
944 if (i_shdrp != NULL)
945 {
946 shstrtab = bfd_elf_get_str_section (abfd,
947 elf_elfheader (abfd)->e_shstrndx);
948 if (shstrtab != NULL)
949 {
950 max = elf_numsections (abfd);
951 for (i = 1; i < max; i++)
952 if (!strcmp (&shstrtab[i_shdrp[i]->sh_name], name))
953 return i_shdrp[i];
954 }
955 }
956 return 0;
957 }
958
959 const char *const bfd_elf_section_type_names[] = {
960 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
961 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
962 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
963 };
964
965 /* ELF relocs are against symbols. If we are producing relocatable
966 output, and the reloc is against an external symbol, and nothing
967 has given us any additional addend, the resulting reloc will also
968 be against the same symbol. In such a case, we don't want to
969 change anything about the way the reloc is handled, since it will
970 all be done at final link time. Rather than put special case code
971 into bfd_perform_relocation, all the reloc types use this howto
972 function. It just short circuits the reloc if producing
973 relocatable output against an external symbol. */
974
975 bfd_reloc_status_type
976 bfd_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED,
977 arelent *reloc_entry,
978 asymbol *symbol,
979 void *data ATTRIBUTE_UNUSED,
980 asection *input_section,
981 bfd *output_bfd,
982 char **error_message ATTRIBUTE_UNUSED)
983 {
984 if (output_bfd != NULL
985 && (symbol->flags & BSF_SECTION_SYM) == 0
986 && (! reloc_entry->howto->partial_inplace
987 || reloc_entry->addend == 0))
988 {
989 reloc_entry->address += input_section->output_offset;
990 return bfd_reloc_ok;
991 }
992
993 return bfd_reloc_continue;
994 }
995 \f
996 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
997
998 static void
999 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
1000 asection *sec)
1001 {
1002 BFD_ASSERT (sec->sec_info_type == ELF_INFO_TYPE_MERGE);
1003 sec->sec_info_type = ELF_INFO_TYPE_NONE;
1004 }
1005
1006 /* Finish SHF_MERGE section merging. */
1007
1008 bfd_boolean
1009 _bfd_elf_merge_sections (bfd *abfd, struct bfd_link_info *info)
1010 {
1011 bfd *ibfd;
1012 asection *sec;
1013
1014 if (!is_elf_hash_table (info->hash))
1015 return FALSE;
1016
1017 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
1018 if ((ibfd->flags & DYNAMIC) == 0)
1019 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
1020 if ((sec->flags & SEC_MERGE) != 0
1021 && !bfd_is_abs_section (sec->output_section))
1022 {
1023 struct bfd_elf_section_data *secdata;
1024
1025 secdata = elf_section_data (sec);
1026 if (! _bfd_add_merge_section (abfd,
1027 &elf_hash_table (info)->merge_info,
1028 sec, &secdata->sec_info))
1029 return FALSE;
1030 else if (secdata->sec_info)
1031 sec->sec_info_type = ELF_INFO_TYPE_MERGE;
1032 }
1033
1034 if (elf_hash_table (info)->merge_info != NULL)
1035 _bfd_merge_sections (abfd, info, elf_hash_table (info)->merge_info,
1036 merge_sections_remove_hook);
1037 return TRUE;
1038 }
1039
1040 void
1041 _bfd_elf_link_just_syms (asection *sec, struct bfd_link_info *info)
1042 {
1043 sec->output_section = bfd_abs_section_ptr;
1044 sec->output_offset = sec->vma;
1045 if (!is_elf_hash_table (info->hash))
1046 return;
1047
1048 sec->sec_info_type = ELF_INFO_TYPE_JUST_SYMS;
1049 }
1050 \f
1051 /* Copy the program header and other data from one object module to
1052 another. */
1053
1054 bfd_boolean
1055 _bfd_elf_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
1056 {
1057 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
1058 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
1059 return TRUE;
1060
1061 BFD_ASSERT (!elf_flags_init (obfd)
1062 || (elf_elfheader (obfd)->e_flags
1063 == elf_elfheader (ibfd)->e_flags));
1064
1065 elf_gp (obfd) = elf_gp (ibfd);
1066 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
1067 elf_flags_init (obfd) = TRUE;
1068 return TRUE;
1069 }
1070
1071 /* Print out the program headers. */
1072
1073 bfd_boolean
1074 _bfd_elf_print_private_bfd_data (bfd *abfd, void *farg)
1075 {
1076 FILE *f = farg;
1077 Elf_Internal_Phdr *p;
1078 asection *s;
1079 bfd_byte *dynbuf = NULL;
1080
1081 p = elf_tdata (abfd)->phdr;
1082 if (p != NULL)
1083 {
1084 unsigned int i, c;
1085
1086 fprintf (f, _("\nProgram Header:\n"));
1087 c = elf_elfheader (abfd)->e_phnum;
1088 for (i = 0; i < c; i++, p++)
1089 {
1090 const char *pt;
1091 char buf[20];
1092
1093 switch (p->p_type)
1094 {
1095 case PT_NULL: pt = "NULL"; break;
1096 case PT_LOAD: pt = "LOAD"; break;
1097 case PT_DYNAMIC: pt = "DYNAMIC"; break;
1098 case PT_INTERP: pt = "INTERP"; break;
1099 case PT_NOTE: pt = "NOTE"; break;
1100 case PT_SHLIB: pt = "SHLIB"; break;
1101 case PT_PHDR: pt = "PHDR"; break;
1102 case PT_TLS: pt = "TLS"; break;
1103 case PT_GNU_EH_FRAME: pt = "EH_FRAME"; break;
1104 case PT_GNU_STACK: pt = "STACK"; break;
1105 case PT_GNU_RELRO: pt = "RELRO"; break;
1106 default: sprintf (buf, "0x%lx", p->p_type); pt = buf; break;
1107 }
1108 fprintf (f, "%8s off 0x", pt);
1109 bfd_fprintf_vma (abfd, f, p->p_offset);
1110 fprintf (f, " vaddr 0x");
1111 bfd_fprintf_vma (abfd, f, p->p_vaddr);
1112 fprintf (f, " paddr 0x");
1113 bfd_fprintf_vma (abfd, f, p->p_paddr);
1114 fprintf (f, " align 2**%u\n", bfd_log2 (p->p_align));
1115 fprintf (f, " filesz 0x");
1116 bfd_fprintf_vma (abfd, f, p->p_filesz);
1117 fprintf (f, " memsz 0x");
1118 bfd_fprintf_vma (abfd, f, p->p_memsz);
1119 fprintf (f, " flags %c%c%c",
1120 (p->p_flags & PF_R) != 0 ? 'r' : '-',
1121 (p->p_flags & PF_W) != 0 ? 'w' : '-',
1122 (p->p_flags & PF_X) != 0 ? 'x' : '-');
1123 if ((p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X)) != 0)
1124 fprintf (f, " %lx", p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X));
1125 fprintf (f, "\n");
1126 }
1127 }
1128
1129 s = bfd_get_section_by_name (abfd, ".dynamic");
1130 if (s != NULL)
1131 {
1132 int elfsec;
1133 unsigned long shlink;
1134 bfd_byte *extdyn, *extdynend;
1135 size_t extdynsize;
1136 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1137
1138 fprintf (f, _("\nDynamic Section:\n"));
1139
1140 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
1141 goto error_return;
1142
1143 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1144 if (elfsec == -1)
1145 goto error_return;
1146 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1147
1148 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1149 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1150
1151 extdyn = dynbuf;
1152 extdynend = extdyn + s->size;
1153 for (; extdyn < extdynend; extdyn += extdynsize)
1154 {
1155 Elf_Internal_Dyn dyn;
1156 const char *name;
1157 char ab[20];
1158 bfd_boolean stringp;
1159
1160 (*swap_dyn_in) (abfd, extdyn, &dyn);
1161
1162 if (dyn.d_tag == DT_NULL)
1163 break;
1164
1165 stringp = FALSE;
1166 switch (dyn.d_tag)
1167 {
1168 default:
1169 sprintf (ab, "0x%lx", (unsigned long) dyn.d_tag);
1170 name = ab;
1171 break;
1172
1173 case DT_NEEDED: name = "NEEDED"; stringp = TRUE; break;
1174 case DT_PLTRELSZ: name = "PLTRELSZ"; break;
1175 case DT_PLTGOT: name = "PLTGOT"; break;
1176 case DT_HASH: name = "HASH"; break;
1177 case DT_STRTAB: name = "STRTAB"; break;
1178 case DT_SYMTAB: name = "SYMTAB"; break;
1179 case DT_RELA: name = "RELA"; break;
1180 case DT_RELASZ: name = "RELASZ"; break;
1181 case DT_RELAENT: name = "RELAENT"; break;
1182 case DT_STRSZ: name = "STRSZ"; break;
1183 case DT_SYMENT: name = "SYMENT"; break;
1184 case DT_INIT: name = "INIT"; break;
1185 case DT_FINI: name = "FINI"; break;
1186 case DT_SONAME: name = "SONAME"; stringp = TRUE; break;
1187 case DT_RPATH: name = "RPATH"; stringp = TRUE; break;
1188 case DT_SYMBOLIC: name = "SYMBOLIC"; break;
1189 case DT_REL: name = "REL"; break;
1190 case DT_RELSZ: name = "RELSZ"; break;
1191 case DT_RELENT: name = "RELENT"; break;
1192 case DT_PLTREL: name = "PLTREL"; break;
1193 case DT_DEBUG: name = "DEBUG"; break;
1194 case DT_TEXTREL: name = "TEXTREL"; break;
1195 case DT_JMPREL: name = "JMPREL"; break;
1196 case DT_BIND_NOW: name = "BIND_NOW"; break;
1197 case DT_INIT_ARRAY: name = "INIT_ARRAY"; break;
1198 case DT_FINI_ARRAY: name = "FINI_ARRAY"; break;
1199 case DT_INIT_ARRAYSZ: name = "INIT_ARRAYSZ"; break;
1200 case DT_FINI_ARRAYSZ: name = "FINI_ARRAYSZ"; break;
1201 case DT_RUNPATH: name = "RUNPATH"; stringp = TRUE; break;
1202 case DT_FLAGS: name = "FLAGS"; break;
1203 case DT_PREINIT_ARRAY: name = "PREINIT_ARRAY"; break;
1204 case DT_PREINIT_ARRAYSZ: name = "PREINIT_ARRAYSZ"; break;
1205 case DT_CHECKSUM: name = "CHECKSUM"; break;
1206 case DT_PLTPADSZ: name = "PLTPADSZ"; break;
1207 case DT_MOVEENT: name = "MOVEENT"; break;
1208 case DT_MOVESZ: name = "MOVESZ"; break;
1209 case DT_FEATURE: name = "FEATURE"; break;
1210 case DT_POSFLAG_1: name = "POSFLAG_1"; break;
1211 case DT_SYMINSZ: name = "SYMINSZ"; break;
1212 case DT_SYMINENT: name = "SYMINENT"; break;
1213 case DT_CONFIG: name = "CONFIG"; stringp = TRUE; break;
1214 case DT_DEPAUDIT: name = "DEPAUDIT"; stringp = TRUE; break;
1215 case DT_AUDIT: name = "AUDIT"; stringp = TRUE; break;
1216 case DT_PLTPAD: name = "PLTPAD"; break;
1217 case DT_MOVETAB: name = "MOVETAB"; break;
1218 case DT_SYMINFO: name = "SYMINFO"; break;
1219 case DT_RELACOUNT: name = "RELACOUNT"; break;
1220 case DT_RELCOUNT: name = "RELCOUNT"; break;
1221 case DT_FLAGS_1: name = "FLAGS_1"; break;
1222 case DT_VERSYM: name = "VERSYM"; break;
1223 case DT_VERDEF: name = "VERDEF"; break;
1224 case DT_VERDEFNUM: name = "VERDEFNUM"; break;
1225 case DT_VERNEED: name = "VERNEED"; break;
1226 case DT_VERNEEDNUM: name = "VERNEEDNUM"; break;
1227 case DT_AUXILIARY: name = "AUXILIARY"; stringp = TRUE; break;
1228 case DT_USED: name = "USED"; break;
1229 case DT_FILTER: name = "FILTER"; stringp = TRUE; break;
1230 }
1231
1232 fprintf (f, " %-11s ", name);
1233 if (! stringp)
1234 fprintf (f, "0x%lx", (unsigned long) dyn.d_un.d_val);
1235 else
1236 {
1237 const char *string;
1238 unsigned int tagv = dyn.d_un.d_val;
1239
1240 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1241 if (string == NULL)
1242 goto error_return;
1243 fprintf (f, "%s", string);
1244 }
1245 fprintf (f, "\n");
1246 }
1247
1248 free (dynbuf);
1249 dynbuf = NULL;
1250 }
1251
1252 if ((elf_dynverdef (abfd) != 0 && elf_tdata (abfd)->verdef == NULL)
1253 || (elf_dynverref (abfd) != 0 && elf_tdata (abfd)->verref == NULL))
1254 {
1255 if (! _bfd_elf_slurp_version_tables (abfd, FALSE))
1256 return FALSE;
1257 }
1258
1259 if (elf_dynverdef (abfd) != 0)
1260 {
1261 Elf_Internal_Verdef *t;
1262
1263 fprintf (f, _("\nVersion definitions:\n"));
1264 for (t = elf_tdata (abfd)->verdef; t != NULL; t = t->vd_nextdef)
1265 {
1266 fprintf (f, "%d 0x%2.2x 0x%8.8lx %s\n", t->vd_ndx,
1267 t->vd_flags, t->vd_hash,
1268 t->vd_nodename ? t->vd_nodename : "<corrupt>");
1269 if (t->vd_auxptr != NULL && t->vd_auxptr->vda_nextptr != NULL)
1270 {
1271 Elf_Internal_Verdaux *a;
1272
1273 fprintf (f, "\t");
1274 for (a = t->vd_auxptr->vda_nextptr;
1275 a != NULL;
1276 a = a->vda_nextptr)
1277 fprintf (f, "%s ",
1278 a->vda_nodename ? a->vda_nodename : "<corrupt>");
1279 fprintf (f, "\n");
1280 }
1281 }
1282 }
1283
1284 if (elf_dynverref (abfd) != 0)
1285 {
1286 Elf_Internal_Verneed *t;
1287
1288 fprintf (f, _("\nVersion References:\n"));
1289 for (t = elf_tdata (abfd)->verref; t != NULL; t = t->vn_nextref)
1290 {
1291 Elf_Internal_Vernaux *a;
1292
1293 fprintf (f, _(" required from %s:\n"),
1294 t->vn_filename ? t->vn_filename : "<corrupt>");
1295 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1296 fprintf (f, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a->vna_hash,
1297 a->vna_flags, a->vna_other,
1298 a->vna_nodename ? a->vna_nodename : "<corrupt>");
1299 }
1300 }
1301
1302 return TRUE;
1303
1304 error_return:
1305 if (dynbuf != NULL)
1306 free (dynbuf);
1307 return FALSE;
1308 }
1309
1310 /* Display ELF-specific fields of a symbol. */
1311
1312 void
1313 bfd_elf_print_symbol (bfd *abfd,
1314 void *filep,
1315 asymbol *symbol,
1316 bfd_print_symbol_type how)
1317 {
1318 FILE *file = filep;
1319 switch (how)
1320 {
1321 case bfd_print_symbol_name:
1322 fprintf (file, "%s", symbol->name);
1323 break;
1324 case bfd_print_symbol_more:
1325 fprintf (file, "elf ");
1326 bfd_fprintf_vma (abfd, file, symbol->value);
1327 fprintf (file, " %lx", (long) symbol->flags);
1328 break;
1329 case bfd_print_symbol_all:
1330 {
1331 const char *section_name;
1332 const char *name = NULL;
1333 const struct elf_backend_data *bed;
1334 unsigned char st_other;
1335 bfd_vma val;
1336
1337 section_name = symbol->section ? symbol->section->name : "(*none*)";
1338
1339 bed = get_elf_backend_data (abfd);
1340 if (bed->elf_backend_print_symbol_all)
1341 name = (*bed->elf_backend_print_symbol_all) (abfd, filep, symbol);
1342
1343 if (name == NULL)
1344 {
1345 name = symbol->name;
1346 bfd_print_symbol_vandf (abfd, file, symbol);
1347 }
1348
1349 fprintf (file, " %s\t", section_name);
1350 /* Print the "other" value for a symbol. For common symbols,
1351 we've already printed the size; now print the alignment.
1352 For other symbols, we have no specified alignment, and
1353 we've printed the address; now print the size. */
1354 if (bfd_is_com_section (symbol->section))
1355 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
1356 else
1357 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_size;
1358 bfd_fprintf_vma (abfd, file, val);
1359
1360 /* If we have version information, print it. */
1361 if (elf_tdata (abfd)->dynversym_section != 0
1362 && (elf_tdata (abfd)->dynverdef_section != 0
1363 || elf_tdata (abfd)->dynverref_section != 0))
1364 {
1365 unsigned int vernum;
1366 const char *version_string;
1367
1368 vernum = ((elf_symbol_type *) symbol)->version & VERSYM_VERSION;
1369
1370 if (vernum == 0)
1371 version_string = "";
1372 else if (vernum == 1)
1373 version_string = "Base";
1374 else if (vernum <= elf_tdata (abfd)->cverdefs)
1375 version_string =
1376 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1377 else
1378 {
1379 Elf_Internal_Verneed *t;
1380
1381 version_string = "";
1382 for (t = elf_tdata (abfd)->verref;
1383 t != NULL;
1384 t = t->vn_nextref)
1385 {
1386 Elf_Internal_Vernaux *a;
1387
1388 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1389 {
1390 if (a->vna_other == vernum)
1391 {
1392 version_string = a->vna_nodename;
1393 break;
1394 }
1395 }
1396 }
1397 }
1398
1399 if ((((elf_symbol_type *) symbol)->version & VERSYM_HIDDEN) == 0)
1400 fprintf (file, " %-11s", version_string);
1401 else
1402 {
1403 int i;
1404
1405 fprintf (file, " (%s)", version_string);
1406 for (i = 10 - strlen (version_string); i > 0; --i)
1407 putc (' ', file);
1408 }
1409 }
1410
1411 /* If the st_other field is not zero, print it. */
1412 st_other = ((elf_symbol_type *) symbol)->internal_elf_sym.st_other;
1413
1414 switch (st_other)
1415 {
1416 case 0: break;
1417 case STV_INTERNAL: fprintf (file, " .internal"); break;
1418 case STV_HIDDEN: fprintf (file, " .hidden"); break;
1419 case STV_PROTECTED: fprintf (file, " .protected"); break;
1420 default:
1421 /* Some other non-defined flags are also present, so print
1422 everything hex. */
1423 fprintf (file, " 0x%02x", (unsigned int) st_other);
1424 }
1425
1426 fprintf (file, " %s", name);
1427 }
1428 break;
1429 }
1430 }
1431 \f
1432 /* Create an entry in an ELF linker hash table. */
1433
1434 struct bfd_hash_entry *
1435 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
1436 struct bfd_hash_table *table,
1437 const char *string)
1438 {
1439 /* Allocate the structure if it has not already been allocated by a
1440 subclass. */
1441 if (entry == NULL)
1442 {
1443 entry = bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
1444 if (entry == NULL)
1445 return entry;
1446 }
1447
1448 /* Call the allocation method of the superclass. */
1449 entry = _bfd_link_hash_newfunc (entry, table, string);
1450 if (entry != NULL)
1451 {
1452 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
1453 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
1454
1455 /* Set local fields. */
1456 ret->indx = -1;
1457 ret->dynindx = -1;
1458 ret->got = htab->init_got_refcount;
1459 ret->plt = htab->init_plt_refcount;
1460 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
1461 - offsetof (struct elf_link_hash_entry, size)));
1462 /* Assume that we have been called by a non-ELF symbol reader.
1463 This flag is then reset by the code which reads an ELF input
1464 file. This ensures that a symbol created by a non-ELF symbol
1465 reader will have the flag set correctly. */
1466 ret->non_elf = 1;
1467 }
1468
1469 return entry;
1470 }
1471
1472 /* Copy data from an indirect symbol to its direct symbol, hiding the
1473 old indirect symbol. Also used for copying flags to a weakdef. */
1474
1475 void
1476 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
1477 struct elf_link_hash_entry *dir,
1478 struct elf_link_hash_entry *ind)
1479 {
1480 struct elf_link_hash_table *htab;
1481
1482 /* Copy down any references that we may have already seen to the
1483 symbol which just became indirect. */
1484
1485 dir->ref_dynamic |= ind->ref_dynamic;
1486 dir->ref_regular |= ind->ref_regular;
1487 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
1488 dir->non_got_ref |= ind->non_got_ref;
1489 dir->needs_plt |= ind->needs_plt;
1490 dir->pointer_equality_needed |= ind->pointer_equality_needed;
1491
1492 if (ind->root.type != bfd_link_hash_indirect)
1493 return;
1494
1495 /* Copy over the global and procedure linkage table refcount entries.
1496 These may have been already set up by a check_relocs routine. */
1497 htab = elf_hash_table (info);
1498 if (ind->got.refcount > htab->init_got_refcount.refcount)
1499 {
1500 if (dir->got.refcount < 0)
1501 dir->got.refcount = 0;
1502 dir->got.refcount += ind->got.refcount;
1503 ind->got.refcount = htab->init_got_refcount.refcount;
1504 }
1505
1506 if (ind->plt.refcount > htab->init_plt_refcount.refcount)
1507 {
1508 if (dir->plt.refcount < 0)
1509 dir->plt.refcount = 0;
1510 dir->plt.refcount += ind->plt.refcount;
1511 ind->plt.refcount = htab->init_plt_refcount.refcount;
1512 }
1513
1514 if (ind->dynindx != -1)
1515 {
1516 if (dir->dynindx != -1)
1517 _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
1518 dir->dynindx = ind->dynindx;
1519 dir->dynstr_index = ind->dynstr_index;
1520 ind->dynindx = -1;
1521 ind->dynstr_index = 0;
1522 }
1523 }
1524
1525 void
1526 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
1527 struct elf_link_hash_entry *h,
1528 bfd_boolean force_local)
1529 {
1530 h->plt = elf_hash_table (info)->init_plt_offset;
1531 h->needs_plt = 0;
1532 if (force_local)
1533 {
1534 h->forced_local = 1;
1535 if (h->dynindx != -1)
1536 {
1537 h->dynindx = -1;
1538 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1539 h->dynstr_index);
1540 }
1541 }
1542 }
1543
1544 /* Initialize an ELF linker hash table. */
1545
1546 bfd_boolean
1547 _bfd_elf_link_hash_table_init
1548 (struct elf_link_hash_table *table,
1549 bfd *abfd,
1550 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
1551 struct bfd_hash_table *,
1552 const char *))
1553 {
1554 bfd_boolean ret;
1555 int can_refcount = get_elf_backend_data (abfd)->can_refcount;
1556
1557 table->dynamic_sections_created = FALSE;
1558 table->dynobj = NULL;
1559 table->init_got_refcount.refcount = can_refcount - 1;
1560 table->init_plt_refcount.refcount = can_refcount - 1;
1561 table->init_got_offset.offset = -(bfd_vma) 1;
1562 table->init_plt_offset.offset = -(bfd_vma) 1;
1563 /* The first dynamic symbol is a dummy. */
1564 table->dynsymcount = 1;
1565 table->dynstr = NULL;
1566 table->bucketcount = 0;
1567 table->needed = NULL;
1568 table->hgot = NULL;
1569 table->merge_info = NULL;
1570 memset (&table->stab_info, 0, sizeof (table->stab_info));
1571 memset (&table->eh_info, 0, sizeof (table->eh_info));
1572 table->dynlocal = NULL;
1573 table->runpath = NULL;
1574 table->tls_sec = NULL;
1575 table->tls_size = 0;
1576 table->loaded = NULL;
1577 table->is_relocatable_executable = FALSE;
1578
1579 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc);
1580 table->root.type = bfd_link_elf_hash_table;
1581
1582 return ret;
1583 }
1584
1585 /* Create an ELF linker hash table. */
1586
1587 struct bfd_link_hash_table *
1588 _bfd_elf_link_hash_table_create (bfd *abfd)
1589 {
1590 struct elf_link_hash_table *ret;
1591 bfd_size_type amt = sizeof (struct elf_link_hash_table);
1592
1593 ret = bfd_malloc (amt);
1594 if (ret == NULL)
1595 return NULL;
1596
1597 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc))
1598 {
1599 free (ret);
1600 return NULL;
1601 }
1602
1603 return &ret->root;
1604 }
1605
1606 /* This is a hook for the ELF emulation code in the generic linker to
1607 tell the backend linker what file name to use for the DT_NEEDED
1608 entry for a dynamic object. */
1609
1610 void
1611 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
1612 {
1613 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1614 && bfd_get_format (abfd) == bfd_object)
1615 elf_dt_name (abfd) = name;
1616 }
1617
1618 int
1619 bfd_elf_get_dyn_lib_class (bfd *abfd)
1620 {
1621 int lib_class;
1622 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1623 && bfd_get_format (abfd) == bfd_object)
1624 lib_class = elf_dyn_lib_class (abfd);
1625 else
1626 lib_class = 0;
1627 return lib_class;
1628 }
1629
1630 void
1631 bfd_elf_set_dyn_lib_class (bfd *abfd, int lib_class)
1632 {
1633 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1634 && bfd_get_format (abfd) == bfd_object)
1635 elf_dyn_lib_class (abfd) = lib_class;
1636 }
1637
1638 /* Get the list of DT_NEEDED entries for a link. This is a hook for
1639 the linker ELF emulation code. */
1640
1641 struct bfd_link_needed_list *
1642 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
1643 struct bfd_link_info *info)
1644 {
1645 if (! is_elf_hash_table (info->hash))
1646 return NULL;
1647 return elf_hash_table (info)->needed;
1648 }
1649
1650 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
1651 hook for the linker ELF emulation code. */
1652
1653 struct bfd_link_needed_list *
1654 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
1655 struct bfd_link_info *info)
1656 {
1657 if (! is_elf_hash_table (info->hash))
1658 return NULL;
1659 return elf_hash_table (info)->runpath;
1660 }
1661
1662 /* Get the name actually used for a dynamic object for a link. This
1663 is the SONAME entry if there is one. Otherwise, it is the string
1664 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
1665
1666 const char *
1667 bfd_elf_get_dt_soname (bfd *abfd)
1668 {
1669 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1670 && bfd_get_format (abfd) == bfd_object)
1671 return elf_dt_name (abfd);
1672 return NULL;
1673 }
1674
1675 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
1676 the ELF linker emulation code. */
1677
1678 bfd_boolean
1679 bfd_elf_get_bfd_needed_list (bfd *abfd,
1680 struct bfd_link_needed_list **pneeded)
1681 {
1682 asection *s;
1683 bfd_byte *dynbuf = NULL;
1684 int elfsec;
1685 unsigned long shlink;
1686 bfd_byte *extdyn, *extdynend;
1687 size_t extdynsize;
1688 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1689
1690 *pneeded = NULL;
1691
1692 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
1693 || bfd_get_format (abfd) != bfd_object)
1694 return TRUE;
1695
1696 s = bfd_get_section_by_name (abfd, ".dynamic");
1697 if (s == NULL || s->size == 0)
1698 return TRUE;
1699
1700 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
1701 goto error_return;
1702
1703 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1704 if (elfsec == -1)
1705 goto error_return;
1706
1707 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1708
1709 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1710 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1711
1712 extdyn = dynbuf;
1713 extdynend = extdyn + s->size;
1714 for (; extdyn < extdynend; extdyn += extdynsize)
1715 {
1716 Elf_Internal_Dyn dyn;
1717
1718 (*swap_dyn_in) (abfd, extdyn, &dyn);
1719
1720 if (dyn.d_tag == DT_NULL)
1721 break;
1722
1723 if (dyn.d_tag == DT_NEEDED)
1724 {
1725 const char *string;
1726 struct bfd_link_needed_list *l;
1727 unsigned int tagv = dyn.d_un.d_val;
1728 bfd_size_type amt;
1729
1730 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1731 if (string == NULL)
1732 goto error_return;
1733
1734 amt = sizeof *l;
1735 l = bfd_alloc (abfd, amt);
1736 if (l == NULL)
1737 goto error_return;
1738
1739 l->by = abfd;
1740 l->name = string;
1741 l->next = *pneeded;
1742 *pneeded = l;
1743 }
1744 }
1745
1746 free (dynbuf);
1747
1748 return TRUE;
1749
1750 error_return:
1751 if (dynbuf != NULL)
1752 free (dynbuf);
1753 return FALSE;
1754 }
1755 \f
1756 /* Allocate an ELF string table--force the first byte to be zero. */
1757
1758 struct bfd_strtab_hash *
1759 _bfd_elf_stringtab_init (void)
1760 {
1761 struct bfd_strtab_hash *ret;
1762
1763 ret = _bfd_stringtab_init ();
1764 if (ret != NULL)
1765 {
1766 bfd_size_type loc;
1767
1768 loc = _bfd_stringtab_add (ret, "", TRUE, FALSE);
1769 BFD_ASSERT (loc == 0 || loc == (bfd_size_type) -1);
1770 if (loc == (bfd_size_type) -1)
1771 {
1772 _bfd_stringtab_free (ret);
1773 ret = NULL;
1774 }
1775 }
1776 return ret;
1777 }
1778 \f
1779 /* ELF .o/exec file reading */
1780
1781 /* Create a new bfd section from an ELF section header. */
1782
1783 bfd_boolean
1784 bfd_section_from_shdr (bfd *abfd, unsigned int shindex)
1785 {
1786 Elf_Internal_Shdr *hdr = elf_elfsections (abfd)[shindex];
1787 Elf_Internal_Ehdr *ehdr = elf_elfheader (abfd);
1788 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1789 const char *name;
1790
1791 name = bfd_elf_string_from_elf_section (abfd,
1792 elf_elfheader (abfd)->e_shstrndx,
1793 hdr->sh_name);
1794 if (name == NULL)
1795 return FALSE;
1796
1797 switch (hdr->sh_type)
1798 {
1799 case SHT_NULL:
1800 /* Inactive section. Throw it away. */
1801 return TRUE;
1802
1803 case SHT_PROGBITS: /* Normal section with contents. */
1804 case SHT_NOBITS: /* .bss section. */
1805 case SHT_HASH: /* .hash section. */
1806 case SHT_NOTE: /* .note section. */
1807 case SHT_INIT_ARRAY: /* .init_array section. */
1808 case SHT_FINI_ARRAY: /* .fini_array section. */
1809 case SHT_PREINIT_ARRAY: /* .preinit_array section. */
1810 case SHT_GNU_LIBLIST: /* .gnu.liblist section. */
1811 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1812
1813 case SHT_DYNAMIC: /* Dynamic linking information. */
1814 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1815 return FALSE;
1816 if (hdr->sh_link > elf_numsections (abfd)
1817 || elf_elfsections (abfd)[hdr->sh_link] == NULL)
1818 return FALSE;
1819 if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_STRTAB)
1820 {
1821 Elf_Internal_Shdr *dynsymhdr;
1822
1823 /* The shared libraries distributed with hpux11 have a bogus
1824 sh_link field for the ".dynamic" section. Find the
1825 string table for the ".dynsym" section instead. */
1826 if (elf_dynsymtab (abfd) != 0)
1827 {
1828 dynsymhdr = elf_elfsections (abfd)[elf_dynsymtab (abfd)];
1829 hdr->sh_link = dynsymhdr->sh_link;
1830 }
1831 else
1832 {
1833 unsigned int i, num_sec;
1834
1835 num_sec = elf_numsections (abfd);
1836 for (i = 1; i < num_sec; i++)
1837 {
1838 dynsymhdr = elf_elfsections (abfd)[i];
1839 if (dynsymhdr->sh_type == SHT_DYNSYM)
1840 {
1841 hdr->sh_link = dynsymhdr->sh_link;
1842 break;
1843 }
1844 }
1845 }
1846 }
1847 break;
1848
1849 case SHT_SYMTAB: /* A symbol table */
1850 if (elf_onesymtab (abfd) == shindex)
1851 return TRUE;
1852
1853 if (hdr->sh_entsize != bed->s->sizeof_sym)
1854 return FALSE;
1855 BFD_ASSERT (elf_onesymtab (abfd) == 0);
1856 elf_onesymtab (abfd) = shindex;
1857 elf_tdata (abfd)->symtab_hdr = *hdr;
1858 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->symtab_hdr;
1859 abfd->flags |= HAS_SYMS;
1860
1861 /* Sometimes a shared object will map in the symbol table. If
1862 SHF_ALLOC is set, and this is a shared object, then we also
1863 treat this section as a BFD section. We can not base the
1864 decision purely on SHF_ALLOC, because that flag is sometimes
1865 set in a relocatable object file, which would confuse the
1866 linker. */
1867 if ((hdr->sh_flags & SHF_ALLOC) != 0
1868 && (abfd->flags & DYNAMIC) != 0
1869 && ! _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1870 shindex))
1871 return FALSE;
1872
1873 /* Go looking for SHT_SYMTAB_SHNDX too, since if there is one we
1874 can't read symbols without that section loaded as well. It
1875 is most likely specified by the next section header. */
1876 if (elf_elfsections (abfd)[elf_symtab_shndx (abfd)]->sh_link != shindex)
1877 {
1878 unsigned int i, num_sec;
1879
1880 num_sec = elf_numsections (abfd);
1881 for (i = shindex + 1; i < num_sec; i++)
1882 {
1883 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1884 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
1885 && hdr2->sh_link == shindex)
1886 break;
1887 }
1888 if (i == num_sec)
1889 for (i = 1; i < shindex; i++)
1890 {
1891 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1892 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
1893 && hdr2->sh_link == shindex)
1894 break;
1895 }
1896 if (i != shindex)
1897 return bfd_section_from_shdr (abfd, i);
1898 }
1899 return TRUE;
1900
1901 case SHT_DYNSYM: /* A dynamic symbol table */
1902 if (elf_dynsymtab (abfd) == shindex)
1903 return TRUE;
1904
1905 if (hdr->sh_entsize != bed->s->sizeof_sym)
1906 return FALSE;
1907 BFD_ASSERT (elf_dynsymtab (abfd) == 0);
1908 elf_dynsymtab (abfd) = shindex;
1909 elf_tdata (abfd)->dynsymtab_hdr = *hdr;
1910 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->dynsymtab_hdr;
1911 abfd->flags |= HAS_SYMS;
1912
1913 /* Besides being a symbol table, we also treat this as a regular
1914 section, so that objcopy can handle it. */
1915 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1916
1917 case SHT_SYMTAB_SHNDX: /* Symbol section indices when >64k sections */
1918 if (elf_symtab_shndx (abfd) == shindex)
1919 return TRUE;
1920
1921 BFD_ASSERT (elf_symtab_shndx (abfd) == 0);
1922 elf_symtab_shndx (abfd) = shindex;
1923 elf_tdata (abfd)->symtab_shndx_hdr = *hdr;
1924 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->symtab_shndx_hdr;
1925 return TRUE;
1926
1927 case SHT_STRTAB: /* A string table */
1928 if (hdr->bfd_section != NULL)
1929 return TRUE;
1930 if (ehdr->e_shstrndx == shindex)
1931 {
1932 elf_tdata (abfd)->shstrtab_hdr = *hdr;
1933 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->shstrtab_hdr;
1934 return TRUE;
1935 }
1936 if (elf_elfsections (abfd)[elf_onesymtab (abfd)]->sh_link == shindex)
1937 {
1938 symtab_strtab:
1939 elf_tdata (abfd)->strtab_hdr = *hdr;
1940 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->strtab_hdr;
1941 return TRUE;
1942 }
1943 if (elf_elfsections (abfd)[elf_dynsymtab (abfd)]->sh_link == shindex)
1944 {
1945 dynsymtab_strtab:
1946 elf_tdata (abfd)->dynstrtab_hdr = *hdr;
1947 hdr = &elf_tdata (abfd)->dynstrtab_hdr;
1948 elf_elfsections (abfd)[shindex] = hdr;
1949 /* We also treat this as a regular section, so that objcopy
1950 can handle it. */
1951 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1952 shindex);
1953 }
1954
1955 /* If the string table isn't one of the above, then treat it as a
1956 regular section. We need to scan all the headers to be sure,
1957 just in case this strtab section appeared before the above. */
1958 if (elf_onesymtab (abfd) == 0 || elf_dynsymtab (abfd) == 0)
1959 {
1960 unsigned int i, num_sec;
1961
1962 num_sec = elf_numsections (abfd);
1963 for (i = 1; i < num_sec; i++)
1964 {
1965 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1966 if (hdr2->sh_link == shindex)
1967 {
1968 /* Prevent endless recursion on broken objects. */
1969 if (i == shindex)
1970 return FALSE;
1971 if (! bfd_section_from_shdr (abfd, i))
1972 return FALSE;
1973 if (elf_onesymtab (abfd) == i)
1974 goto symtab_strtab;
1975 if (elf_dynsymtab (abfd) == i)
1976 goto dynsymtab_strtab;
1977 }
1978 }
1979 }
1980 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1981
1982 case SHT_REL:
1983 case SHT_RELA:
1984 /* *These* do a lot of work -- but build no sections! */
1985 {
1986 asection *target_sect;
1987 Elf_Internal_Shdr *hdr2;
1988 unsigned int num_sec = elf_numsections (abfd);
1989
1990 if (hdr->sh_entsize
1991 != (bfd_size_type) (hdr->sh_type == SHT_REL
1992 ? bed->s->sizeof_rel : bed->s->sizeof_rela))
1993 return FALSE;
1994
1995 /* Check for a bogus link to avoid crashing. */
1996 if ((hdr->sh_link >= SHN_LORESERVE && hdr->sh_link <= SHN_HIRESERVE)
1997 || hdr->sh_link >= num_sec)
1998 {
1999 ((*_bfd_error_handler)
2000 (_("%B: invalid link %lu for reloc section %s (index %u)"),
2001 abfd, hdr->sh_link, name, shindex));
2002 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2003 shindex);
2004 }
2005
2006 /* For some incomprehensible reason Oracle distributes
2007 libraries for Solaris in which some of the objects have
2008 bogus sh_link fields. It would be nice if we could just
2009 reject them, but, unfortunately, some people need to use
2010 them. We scan through the section headers; if we find only
2011 one suitable symbol table, we clobber the sh_link to point
2012 to it. I hope this doesn't break anything. */
2013 if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_SYMTAB
2014 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_DYNSYM)
2015 {
2016 unsigned int scan;
2017 int found;
2018
2019 found = 0;
2020 for (scan = 1; scan < num_sec; scan++)
2021 {
2022 if (elf_elfsections (abfd)[scan]->sh_type == SHT_SYMTAB
2023 || elf_elfsections (abfd)[scan]->sh_type == SHT_DYNSYM)
2024 {
2025 if (found != 0)
2026 {
2027 found = 0;
2028 break;
2029 }
2030 found = scan;
2031 }
2032 }
2033 if (found != 0)
2034 hdr->sh_link = found;
2035 }
2036
2037 /* Get the symbol table. */
2038 if ((elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_SYMTAB
2039 || elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_DYNSYM)
2040 && ! bfd_section_from_shdr (abfd, hdr->sh_link))
2041 return FALSE;
2042
2043 /* If this reloc section does not use the main symbol table we
2044 don't treat it as a reloc section. BFD can't adequately
2045 represent such a section, so at least for now, we don't
2046 try. We just present it as a normal section. We also
2047 can't use it as a reloc section if it points to the null
2048 section, an invalid section, or another reloc section. */
2049 if (hdr->sh_link != elf_onesymtab (abfd)
2050 || hdr->sh_info == SHN_UNDEF
2051 || (hdr->sh_info >= SHN_LORESERVE && hdr->sh_info <= SHN_HIRESERVE)
2052 || hdr->sh_info >= num_sec
2053 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_REL
2054 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_RELA)
2055 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2056 shindex);
2057
2058 if (! bfd_section_from_shdr (abfd, hdr->sh_info))
2059 return FALSE;
2060 target_sect = bfd_section_from_elf_index (abfd, hdr->sh_info);
2061 if (target_sect == NULL)
2062 return FALSE;
2063
2064 if ((target_sect->flags & SEC_RELOC) == 0
2065 || target_sect->reloc_count == 0)
2066 hdr2 = &elf_section_data (target_sect)->rel_hdr;
2067 else
2068 {
2069 bfd_size_type amt;
2070 BFD_ASSERT (elf_section_data (target_sect)->rel_hdr2 == NULL);
2071 amt = sizeof (*hdr2);
2072 hdr2 = bfd_alloc (abfd, amt);
2073 elf_section_data (target_sect)->rel_hdr2 = hdr2;
2074 }
2075 *hdr2 = *hdr;
2076 elf_elfsections (abfd)[shindex] = hdr2;
2077 target_sect->reloc_count += NUM_SHDR_ENTRIES (hdr);
2078 target_sect->flags |= SEC_RELOC;
2079 target_sect->relocation = NULL;
2080 target_sect->rel_filepos = hdr->sh_offset;
2081 /* In the section to which the relocations apply, mark whether
2082 its relocations are of the REL or RELA variety. */
2083 if (hdr->sh_size != 0)
2084 target_sect->use_rela_p = hdr->sh_type == SHT_RELA;
2085 abfd->flags |= HAS_RELOC;
2086 return TRUE;
2087 }
2088 break;
2089
2090 case SHT_GNU_verdef:
2091 elf_dynverdef (abfd) = shindex;
2092 elf_tdata (abfd)->dynverdef_hdr = *hdr;
2093 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2094 break;
2095
2096 case SHT_GNU_versym:
2097 if (hdr->sh_entsize != sizeof (Elf_External_Versym))
2098 return FALSE;
2099 elf_dynversym (abfd) = shindex;
2100 elf_tdata (abfd)->dynversym_hdr = *hdr;
2101 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2102 break;
2103
2104 case SHT_GNU_verneed:
2105 elf_dynverref (abfd) = shindex;
2106 elf_tdata (abfd)->dynverref_hdr = *hdr;
2107 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2108 break;
2109
2110 case SHT_SHLIB:
2111 return TRUE;
2112
2113 case SHT_GROUP:
2114 /* We need a BFD section for objcopy and relocatable linking,
2115 and it's handy to have the signature available as the section
2116 name. */
2117 if (hdr->sh_entsize != GRP_ENTRY_SIZE)
2118 return FALSE;
2119 name = group_signature (abfd, hdr);
2120 if (name == NULL)
2121 return FALSE;
2122 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2123 return FALSE;
2124 if (hdr->contents != NULL)
2125 {
2126 Elf_Internal_Group *idx = (Elf_Internal_Group *) hdr->contents;
2127 unsigned int n_elt = hdr->sh_size / 4;
2128 asection *s;
2129
2130 if (idx->flags & GRP_COMDAT)
2131 hdr->bfd_section->flags
2132 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
2133
2134 /* We try to keep the same section order as it comes in. */
2135 idx += n_elt;
2136 while (--n_elt != 0)
2137 if ((s = (--idx)->shdr->bfd_section) != NULL
2138 && elf_next_in_group (s) != NULL)
2139 {
2140 elf_next_in_group (hdr->bfd_section) = s;
2141 break;
2142 }
2143 }
2144 break;
2145
2146 default:
2147 /* Check for any processor-specific section types. */
2148 return bed->elf_backend_section_from_shdr (abfd, hdr, name,
2149 shindex);
2150 }
2151
2152 return TRUE;
2153 }
2154
2155 /* Return the section for the local symbol specified by ABFD, R_SYMNDX.
2156 Return SEC for sections that have no elf section, and NULL on error. */
2157
2158 asection *
2159 bfd_section_from_r_symndx (bfd *abfd,
2160 struct sym_sec_cache *cache,
2161 asection *sec,
2162 unsigned long r_symndx)
2163 {
2164 Elf_Internal_Shdr *symtab_hdr;
2165 unsigned char esym[sizeof (Elf64_External_Sym)];
2166 Elf_External_Sym_Shndx eshndx;
2167 Elf_Internal_Sym isym;
2168 unsigned int ent = r_symndx % LOCAL_SYM_CACHE_SIZE;
2169
2170 if (cache->abfd == abfd && cache->indx[ent] == r_symndx)
2171 return cache->sec[ent];
2172
2173 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2174 if (bfd_elf_get_elf_syms (abfd, symtab_hdr, 1, r_symndx,
2175 &isym, esym, &eshndx) == NULL)
2176 return NULL;
2177
2178 if (cache->abfd != abfd)
2179 {
2180 memset (cache->indx, -1, sizeof (cache->indx));
2181 cache->abfd = abfd;
2182 }
2183 cache->indx[ent] = r_symndx;
2184 cache->sec[ent] = sec;
2185 if ((isym.st_shndx != SHN_UNDEF && isym.st_shndx < SHN_LORESERVE)
2186 || isym.st_shndx > SHN_HIRESERVE)
2187 {
2188 asection *s;
2189 s = bfd_section_from_elf_index (abfd, isym.st_shndx);
2190 if (s != NULL)
2191 cache->sec[ent] = s;
2192 }
2193 return cache->sec[ent];
2194 }
2195
2196 /* Given an ELF section number, retrieve the corresponding BFD
2197 section. */
2198
2199 asection *
2200 bfd_section_from_elf_index (bfd *abfd, unsigned int index)
2201 {
2202 if (index >= elf_numsections (abfd))
2203 return NULL;
2204 return elf_elfsections (abfd)[index]->bfd_section;
2205 }
2206
2207 static const struct bfd_elf_special_section special_sections_b[] =
2208 {
2209 { ".bss", 4, -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2210 { NULL, 0, 0, 0, 0 }
2211 };
2212
2213 static const struct bfd_elf_special_section special_sections_c[] =
2214 {
2215 { ".comment", 8, 0, SHT_PROGBITS, 0 },
2216 { NULL, 0, 0, 0, 0 }
2217 };
2218
2219 static const struct bfd_elf_special_section special_sections_d[] =
2220 {
2221 { ".data", 5, -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2222 { ".data1", 6, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2223 { ".debug", 6, 0, SHT_PROGBITS, 0 },
2224 { ".debug_line", 11, 0, SHT_PROGBITS, 0 },
2225 { ".debug_info", 11, 0, SHT_PROGBITS, 0 },
2226 { ".debug_abbrev", 13, 0, SHT_PROGBITS, 0 },
2227 { ".debug_aranges", 14, 0, SHT_PROGBITS, 0 },
2228 { ".dynamic", 8, 0, SHT_DYNAMIC, SHF_ALLOC },
2229 { ".dynstr", 7, 0, SHT_STRTAB, SHF_ALLOC },
2230 { ".dynsym", 7, 0, SHT_DYNSYM, SHF_ALLOC },
2231 { NULL, 0, 0, 0, 0 }
2232 };
2233
2234 static const struct bfd_elf_special_section special_sections_f[] =
2235 {
2236 { ".fini", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2237 { ".fini_array", 11, 0, SHT_FINI_ARRAY, SHF_ALLOC + SHF_WRITE },
2238 { NULL, 0, 0, 0, 0 }
2239 };
2240
2241 static const struct bfd_elf_special_section special_sections_g[] =
2242 {
2243 { ".gnu.linkonce.b",15, -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2244 { ".got", 4, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2245 { ".gnu.version", 12, 0, SHT_GNU_versym, 0 },
2246 { ".gnu.version_d", 14, 0, SHT_GNU_verdef, 0 },
2247 { ".gnu.version_r", 14, 0, SHT_GNU_verneed, 0 },
2248 { ".gnu.liblist", 12, 0, SHT_GNU_LIBLIST, SHF_ALLOC },
2249 { ".gnu.conflict", 13, 0, SHT_RELA, SHF_ALLOC },
2250 { NULL, 0, 0, 0, 0 }
2251 };
2252
2253 static const struct bfd_elf_special_section special_sections_h[] =
2254 {
2255 { ".hash", 5, 0, SHT_HASH, SHF_ALLOC },
2256 { NULL, 0, 0, 0, 0 }
2257 };
2258
2259 static const struct bfd_elf_special_section special_sections_i[] =
2260 {
2261 { ".init", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2262 { ".init_array", 11, 0, SHT_INIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2263 { ".interp", 7, 0, SHT_PROGBITS, 0 },
2264 { NULL, 0, 0, 0, 0 }
2265 };
2266
2267 static const struct bfd_elf_special_section special_sections_l[] =
2268 {
2269 { ".line", 5, 0, SHT_PROGBITS, 0 },
2270 { NULL, 0, 0, 0, 0 }
2271 };
2272
2273 static const struct bfd_elf_special_section special_sections_n[] =
2274 {
2275 { ".note.GNU-stack",15, 0, SHT_PROGBITS, 0 },
2276 { ".note", 5, -1, SHT_NOTE, 0 },
2277 { NULL, 0, 0, 0, 0 }
2278 };
2279
2280 static const struct bfd_elf_special_section special_sections_p[] =
2281 {
2282 { ".preinit_array", 14, 0, SHT_PREINIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2283 { ".plt", 4, 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2284 { NULL, 0, 0, 0, 0 }
2285 };
2286
2287 static const struct bfd_elf_special_section special_sections_r[] =
2288 {
2289 { ".rodata", 7, -2, SHT_PROGBITS, SHF_ALLOC },
2290 { ".rodata1", 8, 0, SHT_PROGBITS, SHF_ALLOC },
2291 { ".rela", 5, -1, SHT_RELA, 0 },
2292 { ".rel", 4, -1, SHT_REL, 0 },
2293 { NULL, 0, 0, 0, 0 }
2294 };
2295
2296 static const struct bfd_elf_special_section special_sections_s[] =
2297 {
2298 { ".shstrtab", 9, 0, SHT_STRTAB, 0 },
2299 { ".strtab", 7, 0, SHT_STRTAB, 0 },
2300 { ".symtab", 7, 0, SHT_SYMTAB, 0 },
2301 { ".stabstr", 5, 3, SHT_STRTAB, 0 },
2302 { NULL, 0, 0, 0, 0 }
2303 };
2304
2305 static const struct bfd_elf_special_section special_sections_t[] =
2306 {
2307 { ".text", 5, -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2308 { ".tbss", 5, -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2309 { ".tdata", 6, -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2310 { NULL, 0, 0, 0, 0 }
2311 };
2312
2313 static const struct bfd_elf_special_section *special_sections[] =
2314 {
2315 special_sections_b, /* 'b' */
2316 special_sections_c, /* 'b' */
2317 special_sections_d, /* 'd' */
2318 NULL, /* 'e' */
2319 special_sections_f, /* 'f' */
2320 special_sections_g, /* 'g' */
2321 special_sections_h, /* 'h' */
2322 special_sections_i, /* 'i' */
2323 NULL, /* 'j' */
2324 NULL, /* 'k' */
2325 special_sections_l, /* 'l' */
2326 NULL, /* 'm' */
2327 special_sections_n, /* 'n' */
2328 NULL, /* 'o' */
2329 special_sections_p, /* 'p' */
2330 NULL, /* 'q' */
2331 special_sections_r, /* 'r' */
2332 special_sections_s, /* 's' */
2333 special_sections_t, /* 't' */
2334 };
2335
2336 const struct bfd_elf_special_section *
2337 _bfd_elf_get_special_section (const char *name,
2338 const struct bfd_elf_special_section *spec,
2339 unsigned int rela)
2340 {
2341 int i;
2342 int len;
2343
2344 len = strlen (name);
2345
2346 for (i = 0; spec[i].prefix != NULL; i++)
2347 {
2348 int suffix_len;
2349 int prefix_len = spec[i].prefix_length;
2350
2351 if (len < prefix_len)
2352 continue;
2353 if (memcmp (name, spec[i].prefix, prefix_len) != 0)
2354 continue;
2355
2356 suffix_len = spec[i].suffix_length;
2357 if (suffix_len <= 0)
2358 {
2359 if (name[prefix_len] != 0)
2360 {
2361 if (suffix_len == 0)
2362 continue;
2363 if (name[prefix_len] != '.'
2364 && (suffix_len == -2
2365 || (rela && spec[i].type == SHT_REL)))
2366 continue;
2367 }
2368 }
2369 else
2370 {
2371 if (len < prefix_len + suffix_len)
2372 continue;
2373 if (memcmp (name + len - suffix_len,
2374 spec[i].prefix + prefix_len,
2375 suffix_len) != 0)
2376 continue;
2377 }
2378 return &spec[i];
2379 }
2380
2381 return NULL;
2382 }
2383
2384 const struct bfd_elf_special_section *
2385 _bfd_elf_get_sec_type_attr (bfd *abfd, asection *sec)
2386 {
2387 int i;
2388 const struct bfd_elf_special_section *spec;
2389 const struct elf_backend_data *bed;
2390
2391 /* See if this is one of the special sections. */
2392 if (sec->name == NULL)
2393 return NULL;
2394
2395 bed = get_elf_backend_data (abfd);
2396 spec = bed->special_sections;
2397 if (spec)
2398 {
2399 spec = _bfd_elf_get_special_section (sec->name,
2400 bed->special_sections,
2401 sec->use_rela_p);
2402 if (spec != NULL)
2403 return spec;
2404 }
2405
2406 if (sec->name[0] != '.')
2407 return NULL;
2408
2409 i = sec->name[1] - 'b';
2410 if (i < 0 || i > 't' - 'b')
2411 return NULL;
2412
2413 spec = special_sections[i];
2414
2415 if (spec == NULL)
2416 return NULL;
2417
2418 return _bfd_elf_get_special_section (sec->name, spec, sec->use_rela_p);
2419 }
2420
2421 bfd_boolean
2422 _bfd_elf_new_section_hook (bfd *abfd, asection *sec)
2423 {
2424 struct bfd_elf_section_data *sdata;
2425 const struct elf_backend_data *bed;
2426 const struct bfd_elf_special_section *ssect;
2427
2428 sdata = (struct bfd_elf_section_data *) sec->used_by_bfd;
2429 if (sdata == NULL)
2430 {
2431 sdata = bfd_zalloc (abfd, sizeof (*sdata));
2432 if (sdata == NULL)
2433 return FALSE;
2434 sec->used_by_bfd = sdata;
2435 }
2436
2437 /* Indicate whether or not this section should use RELA relocations. */
2438 bed = get_elf_backend_data (abfd);
2439 sec->use_rela_p = bed->default_use_rela_p;
2440
2441 /* When we read a file, we don't need section type and flags unless
2442 it is a linker created section. They will be overridden in
2443 _bfd_elf_make_section_from_shdr anyway. */
2444 if (abfd->direction != read_direction
2445 || (sec->flags & SEC_LINKER_CREATED) != 0)
2446 {
2447 ssect = (*bed->get_sec_type_attr) (abfd, sec);
2448 if (ssect != NULL)
2449 {
2450 elf_section_type (sec) = ssect->type;
2451 elf_section_flags (sec) = ssect->attr;
2452 }
2453 }
2454
2455 return TRUE;
2456 }
2457
2458 /* Create a new bfd section from an ELF program header.
2459
2460 Since program segments have no names, we generate a synthetic name
2461 of the form segment<NUM>, where NUM is generally the index in the
2462 program header table. For segments that are split (see below) we
2463 generate the names segment<NUM>a and segment<NUM>b.
2464
2465 Note that some program segments may have a file size that is different than
2466 (less than) the memory size. All this means is that at execution the
2467 system must allocate the amount of memory specified by the memory size,
2468 but only initialize it with the first "file size" bytes read from the
2469 file. This would occur for example, with program segments consisting
2470 of combined data+bss.
2471
2472 To handle the above situation, this routine generates TWO bfd sections
2473 for the single program segment. The first has the length specified by
2474 the file size of the segment, and the second has the length specified
2475 by the difference between the two sizes. In effect, the segment is split
2476 into it's initialized and uninitialized parts.
2477
2478 */
2479
2480 bfd_boolean
2481 _bfd_elf_make_section_from_phdr (bfd *abfd,
2482 Elf_Internal_Phdr *hdr,
2483 int index,
2484 const char *typename)
2485 {
2486 asection *newsect;
2487 char *name;
2488 char namebuf[64];
2489 size_t len;
2490 int split;
2491
2492 split = ((hdr->p_memsz > 0)
2493 && (hdr->p_filesz > 0)
2494 && (hdr->p_memsz > hdr->p_filesz));
2495 sprintf (namebuf, "%s%d%s", typename, index, split ? "a" : "");
2496 len = strlen (namebuf) + 1;
2497 name = bfd_alloc (abfd, len);
2498 if (!name)
2499 return FALSE;
2500 memcpy (name, namebuf, len);
2501 newsect = bfd_make_section (abfd, name);
2502 if (newsect == NULL)
2503 return FALSE;
2504 newsect->vma = hdr->p_vaddr;
2505 newsect->lma = hdr->p_paddr;
2506 newsect->size = hdr->p_filesz;
2507 newsect->filepos = hdr->p_offset;
2508 newsect->flags |= SEC_HAS_CONTENTS;
2509 newsect->alignment_power = bfd_log2 (hdr->p_align);
2510 if (hdr->p_type == PT_LOAD)
2511 {
2512 newsect->flags |= SEC_ALLOC;
2513 newsect->flags |= SEC_LOAD;
2514 if (hdr->p_flags & PF_X)
2515 {
2516 /* FIXME: all we known is that it has execute PERMISSION,
2517 may be data. */
2518 newsect->flags |= SEC_CODE;
2519 }
2520 }
2521 if (!(hdr->p_flags & PF_W))
2522 {
2523 newsect->flags |= SEC_READONLY;
2524 }
2525
2526 if (split)
2527 {
2528 sprintf (namebuf, "%s%db", typename, index);
2529 len = strlen (namebuf) + 1;
2530 name = bfd_alloc (abfd, len);
2531 if (!name)
2532 return FALSE;
2533 memcpy (name, namebuf, len);
2534 newsect = bfd_make_section (abfd, name);
2535 if (newsect == NULL)
2536 return FALSE;
2537 newsect->vma = hdr->p_vaddr + hdr->p_filesz;
2538 newsect->lma = hdr->p_paddr + hdr->p_filesz;
2539 newsect->size = hdr->p_memsz - hdr->p_filesz;
2540 if (hdr->p_type == PT_LOAD)
2541 {
2542 newsect->flags |= SEC_ALLOC;
2543 if (hdr->p_flags & PF_X)
2544 newsect->flags |= SEC_CODE;
2545 }
2546 if (!(hdr->p_flags & PF_W))
2547 newsect->flags |= SEC_READONLY;
2548 }
2549
2550 return TRUE;
2551 }
2552
2553 bfd_boolean
2554 bfd_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int index)
2555 {
2556 const struct elf_backend_data *bed;
2557
2558 switch (hdr->p_type)
2559 {
2560 case PT_NULL:
2561 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "null");
2562
2563 case PT_LOAD:
2564 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "load");
2565
2566 case PT_DYNAMIC:
2567 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "dynamic");
2568
2569 case PT_INTERP:
2570 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "interp");
2571
2572 case PT_NOTE:
2573 if (! _bfd_elf_make_section_from_phdr (abfd, hdr, index, "note"))
2574 return FALSE;
2575 if (! elfcore_read_notes (abfd, hdr->p_offset, hdr->p_filesz))
2576 return FALSE;
2577 return TRUE;
2578
2579 case PT_SHLIB:
2580 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "shlib");
2581
2582 case PT_PHDR:
2583 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "phdr");
2584
2585 case PT_GNU_EH_FRAME:
2586 return _bfd_elf_make_section_from_phdr (abfd, hdr, index,
2587 "eh_frame_hdr");
2588
2589 case PT_GNU_STACK:
2590 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "stack");
2591
2592 case PT_GNU_RELRO:
2593 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "relro");
2594
2595 default:
2596 /* Check for any processor-specific program segment types. */
2597 bed = get_elf_backend_data (abfd);
2598 return bed->elf_backend_section_from_phdr (abfd, hdr, index, "proc");
2599 }
2600 }
2601
2602 /* Initialize REL_HDR, the section-header for new section, containing
2603 relocations against ASECT. If USE_RELA_P is TRUE, we use RELA
2604 relocations; otherwise, we use REL relocations. */
2605
2606 bfd_boolean
2607 _bfd_elf_init_reloc_shdr (bfd *abfd,
2608 Elf_Internal_Shdr *rel_hdr,
2609 asection *asect,
2610 bfd_boolean use_rela_p)
2611 {
2612 char *name;
2613 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2614 bfd_size_type amt = sizeof ".rela" + strlen (asect->name);
2615
2616 name = bfd_alloc (abfd, amt);
2617 if (name == NULL)
2618 return FALSE;
2619 sprintf (name, "%s%s", use_rela_p ? ".rela" : ".rel", asect->name);
2620 rel_hdr->sh_name =
2621 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd), name,
2622 FALSE);
2623 if (rel_hdr->sh_name == (unsigned int) -1)
2624 return FALSE;
2625 rel_hdr->sh_type = use_rela_p ? SHT_RELA : SHT_REL;
2626 rel_hdr->sh_entsize = (use_rela_p
2627 ? bed->s->sizeof_rela
2628 : bed->s->sizeof_rel);
2629 rel_hdr->sh_addralign = 1 << bed->s->log_file_align;
2630 rel_hdr->sh_flags = 0;
2631 rel_hdr->sh_addr = 0;
2632 rel_hdr->sh_size = 0;
2633 rel_hdr->sh_offset = 0;
2634
2635 return TRUE;
2636 }
2637
2638 /* Set up an ELF internal section header for a section. */
2639
2640 static void
2641 elf_fake_sections (bfd *abfd, asection *asect, void *failedptrarg)
2642 {
2643 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2644 bfd_boolean *failedptr = failedptrarg;
2645 Elf_Internal_Shdr *this_hdr;
2646
2647 if (*failedptr)
2648 {
2649 /* We already failed; just get out of the bfd_map_over_sections
2650 loop. */
2651 return;
2652 }
2653
2654 this_hdr = &elf_section_data (asect)->this_hdr;
2655
2656 this_hdr->sh_name = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
2657 asect->name, FALSE);
2658 if (this_hdr->sh_name == (unsigned int) -1)
2659 {
2660 *failedptr = TRUE;
2661 return;
2662 }
2663
2664 /* Don't clear sh_flags. Assembler may set additional bits. */
2665
2666 if ((asect->flags & SEC_ALLOC) != 0
2667 || asect->user_set_vma)
2668 this_hdr->sh_addr = asect->vma;
2669 else
2670 this_hdr->sh_addr = 0;
2671
2672 this_hdr->sh_offset = 0;
2673 this_hdr->sh_size = asect->size;
2674 this_hdr->sh_link = 0;
2675 this_hdr->sh_addralign = 1 << asect->alignment_power;
2676 /* The sh_entsize and sh_info fields may have been set already by
2677 copy_private_section_data. */
2678
2679 this_hdr->bfd_section = asect;
2680 this_hdr->contents = NULL;
2681
2682 /* If the section type is unspecified, we set it based on
2683 asect->flags. */
2684 if (this_hdr->sh_type == SHT_NULL)
2685 {
2686 if ((asect->flags & SEC_GROUP) != 0)
2687 this_hdr->sh_type = SHT_GROUP;
2688 else if ((asect->flags & SEC_ALLOC) != 0
2689 && (((asect->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
2690 || (asect->flags & SEC_NEVER_LOAD) != 0))
2691 this_hdr->sh_type = SHT_NOBITS;
2692 else
2693 this_hdr->sh_type = SHT_PROGBITS;
2694 }
2695
2696 switch (this_hdr->sh_type)
2697 {
2698 default:
2699 break;
2700
2701 case SHT_STRTAB:
2702 case SHT_INIT_ARRAY:
2703 case SHT_FINI_ARRAY:
2704 case SHT_PREINIT_ARRAY:
2705 case SHT_NOTE:
2706 case SHT_NOBITS:
2707 case SHT_PROGBITS:
2708 break;
2709
2710 case SHT_HASH:
2711 this_hdr->sh_entsize = bed->s->sizeof_hash_entry;
2712 break;
2713
2714 case SHT_DYNSYM:
2715 this_hdr->sh_entsize = bed->s->sizeof_sym;
2716 break;
2717
2718 case SHT_DYNAMIC:
2719 this_hdr->sh_entsize = bed->s->sizeof_dyn;
2720 break;
2721
2722 case SHT_RELA:
2723 if (get_elf_backend_data (abfd)->may_use_rela_p)
2724 this_hdr->sh_entsize = bed->s->sizeof_rela;
2725 break;
2726
2727 case SHT_REL:
2728 if (get_elf_backend_data (abfd)->may_use_rel_p)
2729 this_hdr->sh_entsize = bed->s->sizeof_rel;
2730 break;
2731
2732 case SHT_GNU_versym:
2733 this_hdr->sh_entsize = sizeof (Elf_External_Versym);
2734 break;
2735
2736 case SHT_GNU_verdef:
2737 this_hdr->sh_entsize = 0;
2738 /* objcopy or strip will copy over sh_info, but may not set
2739 cverdefs. The linker will set cverdefs, but sh_info will be
2740 zero. */
2741 if (this_hdr->sh_info == 0)
2742 this_hdr->sh_info = elf_tdata (abfd)->cverdefs;
2743 else
2744 BFD_ASSERT (elf_tdata (abfd)->cverdefs == 0
2745 || this_hdr->sh_info == elf_tdata (abfd)->cverdefs);
2746 break;
2747
2748 case SHT_GNU_verneed:
2749 this_hdr->sh_entsize = 0;
2750 /* objcopy or strip will copy over sh_info, but may not set
2751 cverrefs. The linker will set cverrefs, but sh_info will be
2752 zero. */
2753 if (this_hdr->sh_info == 0)
2754 this_hdr->sh_info = elf_tdata (abfd)->cverrefs;
2755 else
2756 BFD_ASSERT (elf_tdata (abfd)->cverrefs == 0
2757 || this_hdr->sh_info == elf_tdata (abfd)->cverrefs);
2758 break;
2759
2760 case SHT_GROUP:
2761 this_hdr->sh_entsize = 4;
2762 break;
2763 }
2764
2765 if ((asect->flags & SEC_ALLOC) != 0)
2766 this_hdr->sh_flags |= SHF_ALLOC;
2767 if ((asect->flags & SEC_READONLY) == 0)
2768 this_hdr->sh_flags |= SHF_WRITE;
2769 if ((asect->flags & SEC_CODE) != 0)
2770 this_hdr->sh_flags |= SHF_EXECINSTR;
2771 if ((asect->flags & SEC_MERGE) != 0)
2772 {
2773 this_hdr->sh_flags |= SHF_MERGE;
2774 this_hdr->sh_entsize = asect->entsize;
2775 if ((asect->flags & SEC_STRINGS) != 0)
2776 this_hdr->sh_flags |= SHF_STRINGS;
2777 }
2778 if ((asect->flags & SEC_GROUP) == 0 && elf_group_name (asect) != NULL)
2779 this_hdr->sh_flags |= SHF_GROUP;
2780 if ((asect->flags & SEC_THREAD_LOCAL) != 0)
2781 {
2782 this_hdr->sh_flags |= SHF_TLS;
2783 if (asect->size == 0
2784 && (asect->flags & SEC_HAS_CONTENTS) == 0)
2785 {
2786 struct bfd_link_order *o = asect->map_tail.link_order;
2787
2788 this_hdr->sh_size = 0;
2789 if (o != NULL)
2790 {
2791 this_hdr->sh_size = o->offset + o->size;
2792 if (this_hdr->sh_size != 0)
2793 this_hdr->sh_type = SHT_NOBITS;
2794 }
2795 }
2796 }
2797
2798 /* Check for processor-specific section types. */
2799 if (bed->elf_backend_fake_sections
2800 && !(*bed->elf_backend_fake_sections) (abfd, this_hdr, asect))
2801 *failedptr = TRUE;
2802
2803 /* If the section has relocs, set up a section header for the
2804 SHT_REL[A] section. If two relocation sections are required for
2805 this section, it is up to the processor-specific back-end to
2806 create the other. */
2807 if ((asect->flags & SEC_RELOC) != 0
2808 && !_bfd_elf_init_reloc_shdr (abfd,
2809 &elf_section_data (asect)->rel_hdr,
2810 asect,
2811 asect->use_rela_p))
2812 *failedptr = TRUE;
2813 }
2814
2815 /* Fill in the contents of a SHT_GROUP section. */
2816
2817 void
2818 bfd_elf_set_group_contents (bfd *abfd, asection *sec, void *failedptrarg)
2819 {
2820 bfd_boolean *failedptr = failedptrarg;
2821 unsigned long symindx;
2822 asection *elt, *first;
2823 unsigned char *loc;
2824 bfd_boolean gas;
2825
2826 /* Ignore linker created group section. See elfNN_ia64_object_p in
2827 elfxx-ia64.c. */
2828 if (((sec->flags & (SEC_GROUP | SEC_LINKER_CREATED)) != SEC_GROUP)
2829 || *failedptr)
2830 return;
2831
2832 symindx = 0;
2833 if (elf_group_id (sec) != NULL)
2834 symindx = elf_group_id (sec)->udata.i;
2835
2836 if (symindx == 0)
2837 {
2838 /* If called from the assembler, swap_out_syms will have set up
2839 elf_section_syms; If called for "ld -r", use target_index. */
2840 if (elf_section_syms (abfd) != NULL)
2841 symindx = elf_section_syms (abfd)[sec->index]->udata.i;
2842 else
2843 symindx = sec->target_index;
2844 }
2845 elf_section_data (sec)->this_hdr.sh_info = symindx;
2846
2847 /* The contents won't be allocated for "ld -r" or objcopy. */
2848 gas = TRUE;
2849 if (sec->contents == NULL)
2850 {
2851 gas = FALSE;
2852 sec->contents = bfd_alloc (abfd, sec->size);
2853
2854 /* Arrange for the section to be written out. */
2855 elf_section_data (sec)->this_hdr.contents = sec->contents;
2856 if (sec->contents == NULL)
2857 {
2858 *failedptr = TRUE;
2859 return;
2860 }
2861 }
2862
2863 loc = sec->contents + sec->size;
2864
2865 /* Get the pointer to the first section in the group that gas
2866 squirreled away here. objcopy arranges for this to be set to the
2867 start of the input section group. */
2868 first = elt = elf_next_in_group (sec);
2869
2870 /* First element is a flag word. Rest of section is elf section
2871 indices for all the sections of the group. Write them backwards
2872 just to keep the group in the same order as given in .section
2873 directives, not that it matters. */
2874 while (elt != NULL)
2875 {
2876 asection *s;
2877 unsigned int idx;
2878
2879 loc -= 4;
2880 s = elt;
2881 if (!gas)
2882 s = s->output_section;
2883 idx = 0;
2884 if (s != NULL)
2885 idx = elf_section_data (s)->this_idx;
2886 H_PUT_32 (abfd, idx, loc);
2887 elt = elf_next_in_group (elt);
2888 if (elt == first)
2889 break;
2890 }
2891
2892 if ((loc -= 4) != sec->contents)
2893 abort ();
2894
2895 H_PUT_32 (abfd, sec->flags & SEC_LINK_ONCE ? GRP_COMDAT : 0, loc);
2896 }
2897
2898 /* Assign all ELF section numbers. The dummy first section is handled here
2899 too. The link/info pointers for the standard section types are filled
2900 in here too, while we're at it. */
2901
2902 static bfd_boolean
2903 assign_section_numbers (bfd *abfd, struct bfd_link_info *link_info)
2904 {
2905 struct elf_obj_tdata *t = elf_tdata (abfd);
2906 asection *sec;
2907 unsigned int section_number, secn;
2908 Elf_Internal_Shdr **i_shdrp;
2909 struct bfd_elf_section_data *d;
2910
2911 section_number = 1;
2912
2913 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd));
2914
2915 /* SHT_GROUP sections are in relocatable files only. */
2916 if (link_info == NULL || link_info->relocatable)
2917 {
2918 /* Put SHT_GROUP sections first. */
2919 for (sec = abfd->sections; sec != NULL; sec = sec->next)
2920 {
2921 d = elf_section_data (sec);
2922
2923 if (d->this_hdr.sh_type == SHT_GROUP)
2924 {
2925 if (sec->flags & SEC_LINKER_CREATED)
2926 {
2927 /* Remove the linker created SHT_GROUP sections. */
2928 bfd_section_list_remove (abfd, sec);
2929 abfd->section_count--;
2930 }
2931 else
2932 {
2933 if (section_number == SHN_LORESERVE)
2934 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2935 d->this_idx = section_number++;
2936 }
2937 }
2938 }
2939 }
2940
2941 for (sec = abfd->sections; sec; sec = sec->next)
2942 {
2943 d = elf_section_data (sec);
2944
2945 if (d->this_hdr.sh_type != SHT_GROUP)
2946 {
2947 if (section_number == SHN_LORESERVE)
2948 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2949 d->this_idx = section_number++;
2950 }
2951 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->this_hdr.sh_name);
2952 if ((sec->flags & SEC_RELOC) == 0)
2953 d->rel_idx = 0;
2954 else
2955 {
2956 if (section_number == SHN_LORESERVE)
2957 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2958 d->rel_idx = section_number++;
2959 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel_hdr.sh_name);
2960 }
2961
2962 if (d->rel_hdr2)
2963 {
2964 if (section_number == SHN_LORESERVE)
2965 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2966 d->rel_idx2 = section_number++;
2967 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel_hdr2->sh_name);
2968 }
2969 else
2970 d->rel_idx2 = 0;
2971 }
2972
2973 if (section_number == SHN_LORESERVE)
2974 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2975 t->shstrtab_section = section_number++;
2976 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->shstrtab_hdr.sh_name);
2977 elf_elfheader (abfd)->e_shstrndx = t->shstrtab_section;
2978
2979 if (bfd_get_symcount (abfd) > 0)
2980 {
2981 if (section_number == SHN_LORESERVE)
2982 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2983 t->symtab_section = section_number++;
2984 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->symtab_hdr.sh_name);
2985 if (section_number > SHN_LORESERVE - 2)
2986 {
2987 if (section_number == SHN_LORESERVE)
2988 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2989 t->symtab_shndx_section = section_number++;
2990 t->symtab_shndx_hdr.sh_name
2991 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
2992 ".symtab_shndx", FALSE);
2993 if (t->symtab_shndx_hdr.sh_name == (unsigned int) -1)
2994 return FALSE;
2995 }
2996 if (section_number == SHN_LORESERVE)
2997 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2998 t->strtab_section = section_number++;
2999 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->strtab_hdr.sh_name);
3000 }
3001
3002 _bfd_elf_strtab_finalize (elf_shstrtab (abfd));
3003 t->shstrtab_hdr.sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
3004
3005 elf_numsections (abfd) = section_number;
3006 elf_elfheader (abfd)->e_shnum = section_number;
3007 if (section_number > SHN_LORESERVE)
3008 elf_elfheader (abfd)->e_shnum -= SHN_HIRESERVE + 1 - SHN_LORESERVE;
3009
3010 /* Set up the list of section header pointers, in agreement with the
3011 indices. */
3012 i_shdrp = bfd_zalloc2 (abfd, section_number, sizeof (Elf_Internal_Shdr *));
3013 if (i_shdrp == NULL)
3014 return FALSE;
3015
3016 i_shdrp[0] = bfd_zalloc (abfd, sizeof (Elf_Internal_Shdr));
3017 if (i_shdrp[0] == NULL)
3018 {
3019 bfd_release (abfd, i_shdrp);
3020 return FALSE;
3021 }
3022
3023 elf_elfsections (abfd) = i_shdrp;
3024
3025 i_shdrp[t->shstrtab_section] = &t->shstrtab_hdr;
3026 if (bfd_get_symcount (abfd) > 0)
3027 {
3028 i_shdrp[t->symtab_section] = &t->symtab_hdr;
3029 if (elf_numsections (abfd) > SHN_LORESERVE)
3030 {
3031 i_shdrp[t->symtab_shndx_section] = &t->symtab_shndx_hdr;
3032 t->symtab_shndx_hdr.sh_link = t->symtab_section;
3033 }
3034 i_shdrp[t->strtab_section] = &t->strtab_hdr;
3035 t->symtab_hdr.sh_link = t->strtab_section;
3036 }
3037
3038 for (sec = abfd->sections; sec; sec = sec->next)
3039 {
3040 struct bfd_elf_section_data *d = elf_section_data (sec);
3041 asection *s;
3042 const char *name;
3043
3044 i_shdrp[d->this_idx] = &d->this_hdr;
3045 if (d->rel_idx != 0)
3046 i_shdrp[d->rel_idx] = &d->rel_hdr;
3047 if (d->rel_idx2 != 0)
3048 i_shdrp[d->rel_idx2] = d->rel_hdr2;
3049
3050 /* Fill in the sh_link and sh_info fields while we're at it. */
3051
3052 /* sh_link of a reloc section is the section index of the symbol
3053 table. sh_info is the section index of the section to which
3054 the relocation entries apply. */
3055 if (d->rel_idx != 0)
3056 {
3057 d->rel_hdr.sh_link = t->symtab_section;
3058 d->rel_hdr.sh_info = d->this_idx;
3059 }
3060 if (d->rel_idx2 != 0)
3061 {
3062 d->rel_hdr2->sh_link = t->symtab_section;
3063 d->rel_hdr2->sh_info = d->this_idx;
3064 }
3065
3066 /* We need to set up sh_link for SHF_LINK_ORDER. */
3067 if ((d->this_hdr.sh_flags & SHF_LINK_ORDER) != 0)
3068 {
3069 s = elf_linked_to_section (sec);
3070 if (s)
3071 {
3072 /* elf_linked_to_section points to the input section. */
3073 if (link_info != NULL)
3074 {
3075 /* Check discarded linkonce section. */
3076 if (elf_discarded_section (s))
3077 {
3078 asection *kept;
3079 (*_bfd_error_handler)
3080 (_("%B: sh_link of section `%A' points to discarded section `%A' of `%B'"),
3081 abfd, d->this_hdr.bfd_section,
3082 s, s->owner);
3083 /* Point to the kept section if it has the same
3084 size as the discarded one. */
3085 kept = _bfd_elf_check_kept_section (s);
3086 if (kept == NULL)
3087 {
3088 bfd_set_error (bfd_error_bad_value);
3089 return FALSE;
3090 }
3091 s = kept;
3092 }
3093
3094 s = s->output_section;
3095 BFD_ASSERT (s != NULL);
3096 }
3097 else
3098 {
3099 /* Handle objcopy. */
3100 if (s->output_section == NULL)
3101 {
3102 (*_bfd_error_handler)
3103 (_("%B: sh_link of section `%A' points to removed section `%A' of `%B'"),
3104 abfd, d->this_hdr.bfd_section, s, s->owner);
3105 bfd_set_error (bfd_error_bad_value);
3106 return FALSE;
3107 }
3108 s = s->output_section;
3109 }
3110 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3111 }
3112 else
3113 {
3114 /* PR 290:
3115 The Intel C compiler generates SHT_IA_64_UNWIND with
3116 SHF_LINK_ORDER. But it doesn't set the sh_link or
3117 sh_info fields. Hence we could get the situation
3118 where s is NULL. */
3119 const struct elf_backend_data *bed
3120 = get_elf_backend_data (abfd);
3121 if (bed->link_order_error_handler)
3122 bed->link_order_error_handler
3123 (_("%B: warning: sh_link not set for section `%A'"),
3124 abfd, sec);
3125 }
3126 }
3127
3128 switch (d->this_hdr.sh_type)
3129 {
3130 case SHT_REL:
3131 case SHT_RELA:
3132 /* A reloc section which we are treating as a normal BFD
3133 section. sh_link is the section index of the symbol
3134 table. sh_info is the section index of the section to
3135 which the relocation entries apply. We assume that an
3136 allocated reloc section uses the dynamic symbol table.
3137 FIXME: How can we be sure? */
3138 s = bfd_get_section_by_name (abfd, ".dynsym");
3139 if (s != NULL)
3140 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3141
3142 /* We look up the section the relocs apply to by name. */
3143 name = sec->name;
3144 if (d->this_hdr.sh_type == SHT_REL)
3145 name += 4;
3146 else
3147 name += 5;
3148 s = bfd_get_section_by_name (abfd, name);
3149 if (s != NULL)
3150 d->this_hdr.sh_info = elf_section_data (s)->this_idx;
3151 break;
3152
3153 case SHT_STRTAB:
3154 /* We assume that a section named .stab*str is a stabs
3155 string section. We look for a section with the same name
3156 but without the trailing ``str'', and set its sh_link
3157 field to point to this section. */
3158 if (strncmp (sec->name, ".stab", sizeof ".stab" - 1) == 0
3159 && strcmp (sec->name + strlen (sec->name) - 3, "str") == 0)
3160 {
3161 size_t len;
3162 char *alc;
3163
3164 len = strlen (sec->name);
3165 alc = bfd_malloc (len - 2);
3166 if (alc == NULL)
3167 return FALSE;
3168 memcpy (alc, sec->name, len - 3);
3169 alc[len - 3] = '\0';
3170 s = bfd_get_section_by_name (abfd, alc);
3171 free (alc);
3172 if (s != NULL)
3173 {
3174 elf_section_data (s)->this_hdr.sh_link = d->this_idx;
3175
3176 /* This is a .stab section. */
3177 if (elf_section_data (s)->this_hdr.sh_entsize == 0)
3178 elf_section_data (s)->this_hdr.sh_entsize
3179 = 4 + 2 * bfd_get_arch_size (abfd) / 8;
3180 }
3181 }
3182 break;
3183
3184 case SHT_DYNAMIC:
3185 case SHT_DYNSYM:
3186 case SHT_GNU_verneed:
3187 case SHT_GNU_verdef:
3188 /* sh_link is the section header index of the string table
3189 used for the dynamic entries, or the symbol table, or the
3190 version strings. */
3191 s = bfd_get_section_by_name (abfd, ".dynstr");
3192 if (s != NULL)
3193 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3194 break;
3195
3196 case SHT_GNU_LIBLIST:
3197 /* sh_link is the section header index of the prelink library
3198 list
3199 used for the dynamic entries, or the symbol table, or the
3200 version strings. */
3201 s = bfd_get_section_by_name (abfd, (sec->flags & SEC_ALLOC)
3202 ? ".dynstr" : ".gnu.libstr");
3203 if (s != NULL)
3204 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3205 break;
3206
3207 case SHT_HASH:
3208 case SHT_GNU_versym:
3209 /* sh_link is the section header index of the symbol table
3210 this hash table or version table is for. */
3211 s = bfd_get_section_by_name (abfd, ".dynsym");
3212 if (s != NULL)
3213 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3214 break;
3215
3216 case SHT_GROUP:
3217 d->this_hdr.sh_link = t->symtab_section;
3218 }
3219 }
3220
3221 for (secn = 1; secn < section_number; ++secn)
3222 if (i_shdrp[secn] == NULL)
3223 i_shdrp[secn] = i_shdrp[0];
3224 else
3225 i_shdrp[secn]->sh_name = _bfd_elf_strtab_offset (elf_shstrtab (abfd),
3226 i_shdrp[secn]->sh_name);
3227 return TRUE;
3228 }
3229
3230 /* Map symbol from it's internal number to the external number, moving
3231 all local symbols to be at the head of the list. */
3232
3233 static int
3234 sym_is_global (bfd *abfd, asymbol *sym)
3235 {
3236 /* If the backend has a special mapping, use it. */
3237 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3238 if (bed->elf_backend_sym_is_global)
3239 return (*bed->elf_backend_sym_is_global) (abfd, sym);
3240
3241 return ((sym->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
3242 || bfd_is_und_section (bfd_get_section (sym))
3243 || bfd_is_com_section (bfd_get_section (sym)));
3244 }
3245
3246 static bfd_boolean
3247 elf_map_symbols (bfd *abfd)
3248 {
3249 unsigned int symcount = bfd_get_symcount (abfd);
3250 asymbol **syms = bfd_get_outsymbols (abfd);
3251 asymbol **sect_syms;
3252 unsigned int num_locals = 0;
3253 unsigned int num_globals = 0;
3254 unsigned int num_locals2 = 0;
3255 unsigned int num_globals2 = 0;
3256 int max_index = 0;
3257 unsigned int idx;
3258 asection *asect;
3259 asymbol **new_syms;
3260
3261 #ifdef DEBUG
3262 fprintf (stderr, "elf_map_symbols\n");
3263 fflush (stderr);
3264 #endif
3265
3266 for (asect = abfd->sections; asect; asect = asect->next)
3267 {
3268 if (max_index < asect->index)
3269 max_index = asect->index;
3270 }
3271
3272 max_index++;
3273 sect_syms = bfd_zalloc2 (abfd, max_index, sizeof (asymbol *));
3274 if (sect_syms == NULL)
3275 return FALSE;
3276 elf_section_syms (abfd) = sect_syms;
3277 elf_num_section_syms (abfd) = max_index;
3278
3279 /* Init sect_syms entries for any section symbols we have already
3280 decided to output. */
3281 for (idx = 0; idx < symcount; idx++)
3282 {
3283 asymbol *sym = syms[idx];
3284
3285 if ((sym->flags & BSF_SECTION_SYM) != 0
3286 && sym->value == 0)
3287 {
3288 asection *sec;
3289
3290 sec = sym->section;
3291
3292 if (sec->owner != NULL)
3293 {
3294 if (sec->owner != abfd)
3295 {
3296 if (sec->output_offset != 0)
3297 continue;
3298
3299 sec = sec->output_section;
3300
3301 /* Empty sections in the input files may have had a
3302 section symbol created for them. (See the comment
3303 near the end of _bfd_generic_link_output_symbols in
3304 linker.c). If the linker script discards such
3305 sections then we will reach this point. Since we know
3306 that we cannot avoid this case, we detect it and skip
3307 the abort and the assignment to the sect_syms array.
3308 To reproduce this particular case try running the
3309 linker testsuite test ld-scripts/weak.exp for an ELF
3310 port that uses the generic linker. */
3311 if (sec->owner == NULL)
3312 continue;
3313
3314 BFD_ASSERT (sec->owner == abfd);
3315 }
3316 sect_syms[sec->index] = syms[idx];
3317 }
3318 }
3319 }
3320
3321 /* Classify all of the symbols. */
3322 for (idx = 0; idx < symcount; idx++)
3323 {
3324 if (!sym_is_global (abfd, syms[idx]))
3325 num_locals++;
3326 else
3327 num_globals++;
3328 }
3329
3330 /* We will be adding a section symbol for each BFD section. Most normal
3331 sections will already have a section symbol in outsymbols, but
3332 eg. SHT_GROUP sections will not, and we need the section symbol mapped
3333 at least in that case. */
3334 for (asect = abfd->sections; asect; asect = asect->next)
3335 {
3336 if (sect_syms[asect->index] == NULL)
3337 {
3338 if (!sym_is_global (abfd, asect->symbol))
3339 num_locals++;
3340 else
3341 num_globals++;
3342 }
3343 }
3344
3345 /* Now sort the symbols so the local symbols are first. */
3346 new_syms = bfd_alloc2 (abfd, num_locals + num_globals, sizeof (asymbol *));
3347
3348 if (new_syms == NULL)
3349 return FALSE;
3350
3351 for (idx = 0; idx < symcount; idx++)
3352 {
3353 asymbol *sym = syms[idx];
3354 unsigned int i;
3355
3356 if (!sym_is_global (abfd, sym))
3357 i = num_locals2++;
3358 else
3359 i = num_locals + num_globals2++;
3360 new_syms[i] = sym;
3361 sym->udata.i = i + 1;
3362 }
3363 for (asect = abfd->sections; asect; asect = asect->next)
3364 {
3365 if (sect_syms[asect->index] == NULL)
3366 {
3367 asymbol *sym = asect->symbol;
3368 unsigned int i;
3369
3370 sect_syms[asect->index] = sym;
3371 if (!sym_is_global (abfd, sym))
3372 i = num_locals2++;
3373 else
3374 i = num_locals + num_globals2++;
3375 new_syms[i] = sym;
3376 sym->udata.i = i + 1;
3377 }
3378 }
3379
3380 bfd_set_symtab (abfd, new_syms, num_locals + num_globals);
3381
3382 elf_num_locals (abfd) = num_locals;
3383 elf_num_globals (abfd) = num_globals;
3384 return TRUE;
3385 }
3386
3387 /* Align to the maximum file alignment that could be required for any
3388 ELF data structure. */
3389
3390 static inline file_ptr
3391 align_file_position (file_ptr off, int align)
3392 {
3393 return (off + align - 1) & ~(align - 1);
3394 }
3395
3396 /* Assign a file position to a section, optionally aligning to the
3397 required section alignment. */
3398
3399 file_ptr
3400 _bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr *i_shdrp,
3401 file_ptr offset,
3402 bfd_boolean align)
3403 {
3404 if (align)
3405 {
3406 unsigned int al;
3407
3408 al = i_shdrp->sh_addralign;
3409 if (al > 1)
3410 offset = BFD_ALIGN (offset, al);
3411 }
3412 i_shdrp->sh_offset = offset;
3413 if (i_shdrp->bfd_section != NULL)
3414 i_shdrp->bfd_section->filepos = offset;
3415 if (i_shdrp->sh_type != SHT_NOBITS)
3416 offset += i_shdrp->sh_size;
3417 return offset;
3418 }
3419
3420 /* Compute the file positions we are going to put the sections at, and
3421 otherwise prepare to begin writing out the ELF file. If LINK_INFO
3422 is not NULL, this is being called by the ELF backend linker. */
3423
3424 bfd_boolean
3425 _bfd_elf_compute_section_file_positions (bfd *abfd,
3426 struct bfd_link_info *link_info)
3427 {
3428 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3429 bfd_boolean failed;
3430 struct bfd_strtab_hash *strtab = NULL;
3431 Elf_Internal_Shdr *shstrtab_hdr;
3432
3433 if (abfd->output_has_begun)
3434 return TRUE;
3435
3436 /* Do any elf backend specific processing first. */
3437 if (bed->elf_backend_begin_write_processing)
3438 (*bed->elf_backend_begin_write_processing) (abfd, link_info);
3439
3440 if (! prep_headers (abfd))
3441 return FALSE;
3442
3443 /* Post process the headers if necessary. */
3444 if (bed->elf_backend_post_process_headers)
3445 (*bed->elf_backend_post_process_headers) (abfd, link_info);
3446
3447 failed = FALSE;
3448 bfd_map_over_sections (abfd, elf_fake_sections, &failed);
3449 if (failed)
3450 return FALSE;
3451
3452 if (!assign_section_numbers (abfd, link_info))
3453 return FALSE;
3454
3455 /* The backend linker builds symbol table information itself. */
3456 if (link_info == NULL && bfd_get_symcount (abfd) > 0)
3457 {
3458 /* Non-zero if doing a relocatable link. */
3459 int relocatable_p = ! (abfd->flags & (EXEC_P | DYNAMIC));
3460
3461 if (! swap_out_syms (abfd, &strtab, relocatable_p))
3462 return FALSE;
3463 }
3464
3465 if (link_info == NULL)
3466 {
3467 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
3468 if (failed)
3469 return FALSE;
3470 }
3471
3472 shstrtab_hdr = &elf_tdata (abfd)->shstrtab_hdr;
3473 /* sh_name was set in prep_headers. */
3474 shstrtab_hdr->sh_type = SHT_STRTAB;
3475 shstrtab_hdr->sh_flags = 0;
3476 shstrtab_hdr->sh_addr = 0;
3477 shstrtab_hdr->sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
3478 shstrtab_hdr->sh_entsize = 0;
3479 shstrtab_hdr->sh_link = 0;
3480 shstrtab_hdr->sh_info = 0;
3481 /* sh_offset is set in assign_file_positions_except_relocs. */
3482 shstrtab_hdr->sh_addralign = 1;
3483
3484 if (!assign_file_positions_except_relocs (abfd, link_info))
3485 return FALSE;
3486
3487 if (link_info == NULL && bfd_get_symcount (abfd) > 0)
3488 {
3489 file_ptr off;
3490 Elf_Internal_Shdr *hdr;
3491
3492 off = elf_tdata (abfd)->next_file_pos;
3493
3494 hdr = &elf_tdata (abfd)->symtab_hdr;
3495 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3496
3497 hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
3498 if (hdr->sh_size != 0)
3499 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3500
3501 hdr = &elf_tdata (abfd)->strtab_hdr;
3502 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3503
3504 elf_tdata (abfd)->next_file_pos = off;
3505
3506 /* Now that we know where the .strtab section goes, write it
3507 out. */
3508 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
3509 || ! _bfd_stringtab_emit (abfd, strtab))
3510 return FALSE;
3511 _bfd_stringtab_free (strtab);
3512 }
3513
3514 abfd->output_has_begun = TRUE;
3515
3516 return TRUE;
3517 }
3518
3519 /* Create a mapping from a set of sections to a program segment. */
3520
3521 static struct elf_segment_map *
3522 make_mapping (bfd *abfd,
3523 asection **sections,
3524 unsigned int from,
3525 unsigned int to,
3526 bfd_boolean phdr)
3527 {
3528 struct elf_segment_map *m;
3529 unsigned int i;
3530 asection **hdrpp;
3531 bfd_size_type amt;
3532
3533 amt = sizeof (struct elf_segment_map);
3534 amt += (to - from - 1) * sizeof (asection *);
3535 m = bfd_zalloc (abfd, amt);
3536 if (m == NULL)
3537 return NULL;
3538 m->next = NULL;
3539 m->p_type = PT_LOAD;
3540 for (i = from, hdrpp = sections + from; i < to; i++, hdrpp++)
3541 m->sections[i - from] = *hdrpp;
3542 m->count = to - from;
3543
3544 if (from == 0 && phdr)
3545 {
3546 /* Include the headers in the first PT_LOAD segment. */
3547 m->includes_filehdr = 1;
3548 m->includes_phdrs = 1;
3549 }
3550
3551 return m;
3552 }
3553
3554 /* Create the PT_DYNAMIC segment, which includes DYNSEC. Returns NULL
3555 on failure. */
3556
3557 struct elf_segment_map *
3558 _bfd_elf_make_dynamic_segment (bfd *abfd, asection *dynsec)
3559 {
3560 struct elf_segment_map *m;
3561
3562 m = bfd_zalloc (abfd, sizeof (struct elf_segment_map));
3563 if (m == NULL)
3564 return NULL;
3565 m->next = NULL;
3566 m->p_type = PT_DYNAMIC;
3567 m->count = 1;
3568 m->sections[0] = dynsec;
3569
3570 return m;
3571 }
3572
3573 /* Set up a mapping from BFD sections to program segments. */
3574
3575 static bfd_boolean
3576 map_sections_to_segments (bfd *abfd)
3577 {
3578 asection **sections = NULL;
3579 asection *s;
3580 unsigned int i;
3581 unsigned int count;
3582 struct elf_segment_map *mfirst;
3583 struct elf_segment_map **pm;
3584 struct elf_segment_map *m;
3585 asection *last_hdr;
3586 bfd_vma last_size;
3587 unsigned int phdr_index;
3588 bfd_vma maxpagesize;
3589 asection **hdrpp;
3590 bfd_boolean phdr_in_segment = TRUE;
3591 bfd_boolean writable;
3592 int tls_count = 0;
3593 asection *first_tls = NULL;
3594 asection *dynsec, *eh_frame_hdr;
3595 bfd_size_type amt;
3596
3597 if (elf_tdata (abfd)->segment_map != NULL)
3598 return TRUE;
3599
3600 if (bfd_count_sections (abfd) == 0)
3601 return TRUE;
3602
3603 /* Select the allocated sections, and sort them. */
3604
3605 sections = bfd_malloc2 (bfd_count_sections (abfd), sizeof (asection *));
3606 if (sections == NULL)
3607 goto error_return;
3608
3609 i = 0;
3610 for (s = abfd->sections; s != NULL; s = s->next)
3611 {
3612 if ((s->flags & SEC_ALLOC) != 0)
3613 {
3614 sections[i] = s;
3615 ++i;
3616 }
3617 }
3618 BFD_ASSERT (i <= bfd_count_sections (abfd));
3619 count = i;
3620
3621 qsort (sections, (size_t) count, sizeof (asection *), elf_sort_sections);
3622
3623 /* Build the mapping. */
3624
3625 mfirst = NULL;
3626 pm = &mfirst;
3627
3628 /* If we have a .interp section, then create a PT_PHDR segment for
3629 the program headers and a PT_INTERP segment for the .interp
3630 section. */
3631 s = bfd_get_section_by_name (abfd, ".interp");
3632 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3633 {
3634 amt = sizeof (struct elf_segment_map);
3635 m = bfd_zalloc (abfd, amt);
3636 if (m == NULL)
3637 goto error_return;
3638 m->next = NULL;
3639 m->p_type = PT_PHDR;
3640 /* FIXME: UnixWare and Solaris set PF_X, Irix 5 does not. */
3641 m->p_flags = PF_R | PF_X;
3642 m->p_flags_valid = 1;
3643 m->includes_phdrs = 1;
3644
3645 *pm = m;
3646 pm = &m->next;
3647
3648 amt = sizeof (struct elf_segment_map);
3649 m = bfd_zalloc (abfd, amt);
3650 if (m == NULL)
3651 goto error_return;
3652 m->next = NULL;
3653 m->p_type = PT_INTERP;
3654 m->count = 1;
3655 m->sections[0] = s;
3656
3657 *pm = m;
3658 pm = &m->next;
3659 }
3660
3661 /* Look through the sections. We put sections in the same program
3662 segment when the start of the second section can be placed within
3663 a few bytes of the end of the first section. */
3664 last_hdr = NULL;
3665 last_size = 0;
3666 phdr_index = 0;
3667 maxpagesize = get_elf_backend_data (abfd)->maxpagesize;
3668 writable = FALSE;
3669 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
3670 if (dynsec != NULL
3671 && (dynsec->flags & SEC_LOAD) == 0)
3672 dynsec = NULL;
3673
3674 /* Deal with -Ttext or something similar such that the first section
3675 is not adjacent to the program headers. This is an
3676 approximation, since at this point we don't know exactly how many
3677 program headers we will need. */
3678 if (count > 0)
3679 {
3680 bfd_size_type phdr_size;
3681
3682 phdr_size = elf_tdata (abfd)->program_header_size;
3683 if (phdr_size == 0)
3684 phdr_size = get_elf_backend_data (abfd)->s->sizeof_phdr;
3685 if ((abfd->flags & D_PAGED) == 0
3686 || sections[0]->lma < phdr_size
3687 || sections[0]->lma % maxpagesize < phdr_size % maxpagesize)
3688 phdr_in_segment = FALSE;
3689 }
3690
3691 for (i = 0, hdrpp = sections; i < count; i++, hdrpp++)
3692 {
3693 asection *hdr;
3694 bfd_boolean new_segment;
3695
3696 hdr = *hdrpp;
3697
3698 /* See if this section and the last one will fit in the same
3699 segment. */
3700
3701 if (last_hdr == NULL)
3702 {
3703 /* If we don't have a segment yet, then we don't need a new
3704 one (we build the last one after this loop). */
3705 new_segment = FALSE;
3706 }
3707 else if (last_hdr->lma - last_hdr->vma != hdr->lma - hdr->vma)
3708 {
3709 /* If this section has a different relation between the
3710 virtual address and the load address, then we need a new
3711 segment. */
3712 new_segment = TRUE;
3713 }
3714 else if (BFD_ALIGN (last_hdr->lma + last_size, maxpagesize)
3715 < BFD_ALIGN (hdr->lma, maxpagesize))
3716 {
3717 /* If putting this section in this segment would force us to
3718 skip a page in the segment, then we need a new segment. */
3719 new_segment = TRUE;
3720 }
3721 else if ((last_hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0
3722 && (hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) != 0)
3723 {
3724 /* We don't want to put a loadable section after a
3725 nonloadable section in the same segment.
3726 Consider .tbss sections as loadable for this purpose. */
3727 new_segment = TRUE;
3728 }
3729 else if ((abfd->flags & D_PAGED) == 0)
3730 {
3731 /* If the file is not demand paged, which means that we
3732 don't require the sections to be correctly aligned in the
3733 file, then there is no other reason for a new segment. */
3734 new_segment = FALSE;
3735 }
3736 else if (! writable
3737 && (hdr->flags & SEC_READONLY) == 0
3738 && (((last_hdr->lma + last_size - 1)
3739 & ~(maxpagesize - 1))
3740 != (hdr->lma & ~(maxpagesize - 1))))
3741 {
3742 /* We don't want to put a writable section in a read only
3743 segment, unless they are on the same page in memory
3744 anyhow. We already know that the last section does not
3745 bring us past the current section on the page, so the
3746 only case in which the new section is not on the same
3747 page as the previous section is when the previous section
3748 ends precisely on a page boundary. */
3749 new_segment = TRUE;
3750 }
3751 else
3752 {
3753 /* Otherwise, we can use the same segment. */
3754 new_segment = FALSE;
3755 }
3756
3757 if (! new_segment)
3758 {
3759 if ((hdr->flags & SEC_READONLY) == 0)
3760 writable = TRUE;
3761 last_hdr = hdr;
3762 /* .tbss sections effectively have zero size. */
3763 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) != SEC_THREAD_LOCAL)
3764 last_size = hdr->size;
3765 else
3766 last_size = 0;
3767 continue;
3768 }
3769
3770 /* We need a new program segment. We must create a new program
3771 header holding all the sections from phdr_index until hdr. */
3772
3773 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
3774 if (m == NULL)
3775 goto error_return;
3776
3777 *pm = m;
3778 pm = &m->next;
3779
3780 if ((hdr->flags & SEC_READONLY) == 0)
3781 writable = TRUE;
3782 else
3783 writable = FALSE;
3784
3785 last_hdr = hdr;
3786 /* .tbss sections effectively have zero size. */
3787 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) != SEC_THREAD_LOCAL)
3788 last_size = hdr->size;
3789 else
3790 last_size = 0;
3791 phdr_index = i;
3792 phdr_in_segment = FALSE;
3793 }
3794
3795 /* Create a final PT_LOAD program segment. */
3796 if (last_hdr != NULL)
3797 {
3798 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
3799 if (m == NULL)
3800 goto error_return;
3801
3802 *pm = m;
3803 pm = &m->next;
3804 }
3805
3806 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
3807 if (dynsec != NULL)
3808 {
3809 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
3810 if (m == NULL)
3811 goto error_return;
3812 *pm = m;
3813 pm = &m->next;
3814 }
3815
3816 /* For each loadable .note section, add a PT_NOTE segment. We don't
3817 use bfd_get_section_by_name, because if we link together
3818 nonloadable .note sections and loadable .note sections, we will
3819 generate two .note sections in the output file. FIXME: Using
3820 names for section types is bogus anyhow. */
3821 for (s = abfd->sections; s != NULL; s = s->next)
3822 {
3823 if ((s->flags & SEC_LOAD) != 0
3824 && strncmp (s->name, ".note", 5) == 0)
3825 {
3826 amt = sizeof (struct elf_segment_map);
3827 m = bfd_zalloc (abfd, amt);
3828 if (m == NULL)
3829 goto error_return;
3830 m->next = NULL;
3831 m->p_type = PT_NOTE;
3832 m->count = 1;
3833 m->sections[0] = s;
3834
3835 *pm = m;
3836 pm = &m->next;
3837 }
3838 if (s->flags & SEC_THREAD_LOCAL)
3839 {
3840 if (! tls_count)
3841 first_tls = s;
3842 tls_count++;
3843 }
3844 }
3845
3846 /* If there are any SHF_TLS output sections, add PT_TLS segment. */
3847 if (tls_count > 0)
3848 {
3849 int i;
3850
3851 amt = sizeof (struct elf_segment_map);
3852 amt += (tls_count - 1) * sizeof (asection *);
3853 m = bfd_zalloc (abfd, amt);
3854 if (m == NULL)
3855 goto error_return;
3856 m->next = NULL;
3857 m->p_type = PT_TLS;
3858 m->count = tls_count;
3859 /* Mandated PF_R. */
3860 m->p_flags = PF_R;
3861 m->p_flags_valid = 1;
3862 for (i = 0; i < tls_count; ++i)
3863 {
3864 BFD_ASSERT (first_tls->flags & SEC_THREAD_LOCAL);
3865 m->sections[i] = first_tls;
3866 first_tls = first_tls->next;
3867 }
3868
3869 *pm = m;
3870 pm = &m->next;
3871 }
3872
3873 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
3874 segment. */
3875 eh_frame_hdr = elf_tdata (abfd)->eh_frame_hdr;
3876 if (eh_frame_hdr != NULL
3877 && (eh_frame_hdr->output_section->flags & SEC_LOAD) != 0)
3878 {
3879 amt = sizeof (struct elf_segment_map);
3880 m = bfd_zalloc (abfd, amt);
3881 if (m == NULL)
3882 goto error_return;
3883 m->next = NULL;
3884 m->p_type = PT_GNU_EH_FRAME;
3885 m->count = 1;
3886 m->sections[0] = eh_frame_hdr->output_section;
3887
3888 *pm = m;
3889 pm = &m->next;
3890 }
3891
3892 if (elf_tdata (abfd)->stack_flags)
3893 {
3894 amt = sizeof (struct elf_segment_map);
3895 m = bfd_zalloc (abfd, amt);
3896 if (m == NULL)
3897 goto error_return;
3898 m->next = NULL;
3899 m->p_type = PT_GNU_STACK;
3900 m->p_flags = elf_tdata (abfd)->stack_flags;
3901 m->p_flags_valid = 1;
3902
3903 *pm = m;
3904 pm = &m->next;
3905 }
3906
3907 if (elf_tdata (abfd)->relro)
3908 {
3909 amt = sizeof (struct elf_segment_map);
3910 m = bfd_zalloc (abfd, amt);
3911 if (m == NULL)
3912 goto error_return;
3913 m->next = NULL;
3914 m->p_type = PT_GNU_RELRO;
3915 m->p_flags = PF_R;
3916 m->p_flags_valid = 1;
3917
3918 *pm = m;
3919 pm = &m->next;
3920 }
3921
3922 free (sections);
3923 sections = NULL;
3924
3925 elf_tdata (abfd)->segment_map = mfirst;
3926 return TRUE;
3927
3928 error_return:
3929 if (sections != NULL)
3930 free (sections);
3931 return FALSE;
3932 }
3933
3934 /* Sort sections by address. */
3935
3936 static int
3937 elf_sort_sections (const void *arg1, const void *arg2)
3938 {
3939 const asection *sec1 = *(const asection **) arg1;
3940 const asection *sec2 = *(const asection **) arg2;
3941 bfd_size_type size1, size2;
3942
3943 /* Sort by LMA first, since this is the address used to
3944 place the section into a segment. */
3945 if (sec1->lma < sec2->lma)
3946 return -1;
3947 else if (sec1->lma > sec2->lma)
3948 return 1;
3949
3950 /* Then sort by VMA. Normally the LMA and the VMA will be
3951 the same, and this will do nothing. */
3952 if (sec1->vma < sec2->vma)
3953 return -1;
3954 else if (sec1->vma > sec2->vma)
3955 return 1;
3956
3957 /* Put !SEC_LOAD sections after SEC_LOAD ones. */
3958
3959 #define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0)
3960
3961 if (TOEND (sec1))
3962 {
3963 if (TOEND (sec2))
3964 {
3965 /* If the indicies are the same, do not return 0
3966 here, but continue to try the next comparison. */
3967 if (sec1->target_index - sec2->target_index != 0)
3968 return sec1->target_index - sec2->target_index;
3969 }
3970 else
3971 return 1;
3972 }
3973 else if (TOEND (sec2))
3974 return -1;
3975
3976 #undef TOEND
3977
3978 /* Sort by size, to put zero sized sections
3979 before others at the same address. */
3980
3981 size1 = (sec1->flags & SEC_LOAD) ? sec1->size : 0;
3982 size2 = (sec2->flags & SEC_LOAD) ? sec2->size : 0;
3983
3984 if (size1 < size2)
3985 return -1;
3986 if (size1 > size2)
3987 return 1;
3988
3989 return sec1->target_index - sec2->target_index;
3990 }
3991
3992 /* Ian Lance Taylor writes:
3993
3994 We shouldn't be using % with a negative signed number. That's just
3995 not good. We have to make sure either that the number is not
3996 negative, or that the number has an unsigned type. When the types
3997 are all the same size they wind up as unsigned. When file_ptr is a
3998 larger signed type, the arithmetic winds up as signed long long,
3999 which is wrong.
4000
4001 What we're trying to say here is something like ``increase OFF by
4002 the least amount that will cause it to be equal to the VMA modulo
4003 the page size.'' */
4004 /* In other words, something like:
4005
4006 vma_offset = m->sections[0]->vma % bed->maxpagesize;
4007 off_offset = off % bed->maxpagesize;
4008 if (vma_offset < off_offset)
4009 adjustment = vma_offset + bed->maxpagesize - off_offset;
4010 else
4011 adjustment = vma_offset - off_offset;
4012
4013 which can can be collapsed into the expression below. */
4014
4015 static file_ptr
4016 vma_page_aligned_bias (bfd_vma vma, ufile_ptr off, bfd_vma maxpagesize)
4017 {
4018 return ((vma - off) % maxpagesize);
4019 }
4020
4021 /* Assign file positions to the sections based on the mapping from
4022 sections to segments. This function also sets up some fields in
4023 the file header, and writes out the program headers. */
4024
4025 static bfd_boolean
4026 assign_file_positions_for_segments (bfd *abfd, struct bfd_link_info *link_info)
4027 {
4028 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4029 unsigned int count;
4030 struct elf_segment_map *m;
4031 unsigned int alloc;
4032 Elf_Internal_Phdr *phdrs;
4033 file_ptr off, voff;
4034 bfd_vma filehdr_vaddr, filehdr_paddr;
4035 bfd_vma phdrs_vaddr, phdrs_paddr;
4036 Elf_Internal_Phdr *p;
4037
4038 if (elf_tdata (abfd)->segment_map == NULL)
4039 {
4040 if (! map_sections_to_segments (abfd))
4041 return FALSE;
4042 }
4043 else
4044 {
4045 /* The placement algorithm assumes that non allocated sections are
4046 not in PT_LOAD segments. We ensure this here by removing such
4047 sections from the segment map. We also remove excluded
4048 sections. */
4049 for (m = elf_tdata (abfd)->segment_map;
4050 m != NULL;
4051 m = m->next)
4052 {
4053 unsigned int new_count;
4054 unsigned int i;
4055
4056 new_count = 0;
4057 for (i = 0; i < m->count; i ++)
4058 {
4059 if ((m->sections[i]->flags & SEC_EXCLUDE) == 0
4060 && ((m->sections[i]->flags & SEC_ALLOC) != 0
4061 || m->p_type != PT_LOAD))
4062 {
4063 if (i != new_count)
4064 m->sections[new_count] = m->sections[i];
4065
4066 new_count ++;
4067 }
4068 }
4069
4070 if (new_count != m->count)
4071 m->count = new_count;
4072 }
4073 }
4074
4075 if (bed->elf_backend_modify_segment_map)
4076 {
4077 if (! (*bed->elf_backend_modify_segment_map) (abfd, link_info))
4078 return FALSE;
4079 }
4080
4081 count = 0;
4082 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
4083 ++count;
4084
4085 elf_elfheader (abfd)->e_phoff = bed->s->sizeof_ehdr;
4086 elf_elfheader (abfd)->e_phentsize = bed->s->sizeof_phdr;
4087 elf_elfheader (abfd)->e_phnum = count;
4088
4089 if (count == 0)
4090 {
4091 elf_tdata (abfd)->next_file_pos = bed->s->sizeof_ehdr;
4092 return TRUE;
4093 }
4094
4095 /* If we already counted the number of program segments, make sure
4096 that we allocated enough space. This happens when SIZEOF_HEADERS
4097 is used in a linker script. */
4098 alloc = elf_tdata (abfd)->program_header_size / bed->s->sizeof_phdr;
4099 if (alloc != 0 && count > alloc)
4100 {
4101 ((*_bfd_error_handler)
4102 (_("%B: Not enough room for program headers (allocated %u, need %u)"),
4103 abfd, alloc, count));
4104 bfd_set_error (bfd_error_bad_value);
4105 return FALSE;
4106 }
4107
4108 if (alloc == 0)
4109 alloc = count;
4110
4111 phdrs = bfd_alloc2 (abfd, alloc, sizeof (Elf_Internal_Phdr));
4112 if (phdrs == NULL)
4113 return FALSE;
4114
4115 off = bed->s->sizeof_ehdr;
4116 off += alloc * bed->s->sizeof_phdr;
4117
4118 filehdr_vaddr = 0;
4119 filehdr_paddr = 0;
4120 phdrs_vaddr = 0;
4121 phdrs_paddr = 0;
4122
4123 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
4124 m != NULL;
4125 m = m->next, p++)
4126 {
4127 unsigned int i;
4128 asection **secpp;
4129
4130 /* If elf_segment_map is not from map_sections_to_segments, the
4131 sections may not be correctly ordered. NOTE: sorting should
4132 not be done to the PT_NOTE section of a corefile, which may
4133 contain several pseudo-sections artificially created by bfd.
4134 Sorting these pseudo-sections breaks things badly. */
4135 if (m->count > 1
4136 && !(elf_elfheader (abfd)->e_type == ET_CORE
4137 && m->p_type == PT_NOTE))
4138 qsort (m->sections, (size_t) m->count, sizeof (asection *),
4139 elf_sort_sections);
4140
4141 /* An ELF segment (described by Elf_Internal_Phdr) may contain a
4142 number of sections with contents contributing to both p_filesz
4143 and p_memsz, followed by a number of sections with no contents
4144 that just contribute to p_memsz. In this loop, OFF tracks next
4145 available file offset for PT_LOAD and PT_NOTE segments. VOFF is
4146 an adjustment we use for segments that have no file contents
4147 but need zero filled memory allocation. */
4148 voff = 0;
4149 p->p_type = m->p_type;
4150 p->p_flags = m->p_flags;
4151
4152 if (p->p_type == PT_LOAD
4153 && m->count > 0)
4154 {
4155 bfd_size_type align;
4156 bfd_vma adjust;
4157 unsigned int align_power = 0;
4158
4159 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4160 {
4161 unsigned int secalign;
4162
4163 secalign = bfd_get_section_alignment (abfd, *secpp);
4164 if (secalign > align_power)
4165 align_power = secalign;
4166 }
4167 align = (bfd_size_type) 1 << align_power;
4168
4169 if ((abfd->flags & D_PAGED) != 0 && bed->maxpagesize > align)
4170 align = bed->maxpagesize;
4171
4172 adjust = vma_page_aligned_bias (m->sections[0]->vma, off, align);
4173 off += adjust;
4174 if (adjust != 0
4175 && !m->includes_filehdr
4176 && !m->includes_phdrs
4177 && (ufile_ptr) off >= align)
4178 {
4179 /* If the first section isn't loadable, the same holds for
4180 any other sections. Since the segment won't need file
4181 space, we can make p_offset overlap some prior segment.
4182 However, .tbss is special. If a segment starts with
4183 .tbss, we need to look at the next section to decide
4184 whether the segment has any loadable sections. */
4185 i = 0;
4186 while ((m->sections[i]->flags & SEC_LOAD) == 0)
4187 {
4188 if ((m->sections[i]->flags & SEC_THREAD_LOCAL) == 0
4189 || ++i >= m->count)
4190 {
4191 off -= adjust;
4192 voff = adjust - align;
4193 break;
4194 }
4195 }
4196 }
4197 }
4198 /* Make sure the .dynamic section is the first section in the
4199 PT_DYNAMIC segment. */
4200 else if (p->p_type == PT_DYNAMIC
4201 && m->count > 1
4202 && strcmp (m->sections[0]->name, ".dynamic") != 0)
4203 {
4204 _bfd_error_handler
4205 (_("%B: The first section in the PT_DYNAMIC segment is not the .dynamic section"),
4206 abfd);
4207 bfd_set_error (bfd_error_bad_value);
4208 return FALSE;
4209 }
4210
4211 if (m->count == 0)
4212 p->p_vaddr = 0;
4213 else
4214 p->p_vaddr = m->sections[0]->vma;
4215
4216 if (m->p_paddr_valid)
4217 p->p_paddr = m->p_paddr;
4218 else if (m->count == 0)
4219 p->p_paddr = 0;
4220 else
4221 p->p_paddr = m->sections[0]->lma;
4222
4223 if (p->p_type == PT_LOAD
4224 && (abfd->flags & D_PAGED) != 0)
4225 p->p_align = bed->maxpagesize;
4226 else if (m->count == 0)
4227 p->p_align = 1 << bed->s->log_file_align;
4228 else
4229 p->p_align = 0;
4230
4231 p->p_offset = 0;
4232 p->p_filesz = 0;
4233 p->p_memsz = 0;
4234
4235 if (m->includes_filehdr)
4236 {
4237 if (! m->p_flags_valid)
4238 p->p_flags |= PF_R;
4239 p->p_offset = 0;
4240 p->p_filesz = bed->s->sizeof_ehdr;
4241 p->p_memsz = bed->s->sizeof_ehdr;
4242 if (m->count > 0)
4243 {
4244 BFD_ASSERT (p->p_type == PT_LOAD);
4245
4246 if (p->p_vaddr < (bfd_vma) off)
4247 {
4248 (*_bfd_error_handler)
4249 (_("%B: Not enough room for program headers, try linking with -N"),
4250 abfd);
4251 bfd_set_error (bfd_error_bad_value);
4252 return FALSE;
4253 }
4254
4255 p->p_vaddr -= off;
4256 if (! m->p_paddr_valid)
4257 p->p_paddr -= off;
4258 }
4259 if (p->p_type == PT_LOAD)
4260 {
4261 filehdr_vaddr = p->p_vaddr;
4262 filehdr_paddr = p->p_paddr;
4263 }
4264 }
4265
4266 if (m->includes_phdrs)
4267 {
4268 if (! m->p_flags_valid)
4269 p->p_flags |= PF_R;
4270
4271 if (m->includes_filehdr)
4272 {
4273 if (p->p_type == PT_LOAD)
4274 {
4275 phdrs_vaddr = p->p_vaddr + bed->s->sizeof_ehdr;
4276 phdrs_paddr = p->p_paddr + bed->s->sizeof_ehdr;
4277 }
4278 }
4279 else
4280 {
4281 p->p_offset = bed->s->sizeof_ehdr;
4282
4283 if (m->count > 0)
4284 {
4285 BFD_ASSERT (p->p_type == PT_LOAD);
4286 p->p_vaddr -= off - p->p_offset;
4287 if (! m->p_paddr_valid)
4288 p->p_paddr -= off - p->p_offset;
4289 }
4290
4291 if (p->p_type == PT_LOAD)
4292 {
4293 phdrs_vaddr = p->p_vaddr;
4294 phdrs_paddr = p->p_paddr;
4295 }
4296 else
4297 phdrs_vaddr = bed->maxpagesize + bed->s->sizeof_ehdr;
4298 }
4299
4300 p->p_filesz += alloc * bed->s->sizeof_phdr;
4301 p->p_memsz += alloc * bed->s->sizeof_phdr;
4302 }
4303
4304 if (p->p_type == PT_LOAD
4305 || (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core))
4306 {
4307 if (! m->includes_filehdr && ! m->includes_phdrs)
4308 p->p_offset = off + voff;
4309 else
4310 {
4311 file_ptr adjust;
4312
4313 adjust = off - (p->p_offset + p->p_filesz);
4314 p->p_filesz += adjust;
4315 p->p_memsz += adjust;
4316 }
4317 }
4318
4319 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4320 {
4321 asection *sec;
4322 flagword flags;
4323 bfd_size_type align;
4324
4325 sec = *secpp;
4326 flags = sec->flags;
4327 align = 1 << bfd_get_section_alignment (abfd, sec);
4328
4329 if (p->p_type == PT_LOAD
4330 || p->p_type == PT_TLS)
4331 {
4332 bfd_signed_vma adjust;
4333
4334 if ((flags & SEC_LOAD) != 0)
4335 {
4336 adjust = sec->lma - (p->p_paddr + p->p_filesz);
4337 if (adjust < 0)
4338 {
4339 (*_bfd_error_handler)
4340 (_("%B: section %A lma 0x%lx overlaps previous sections"),
4341 abfd, sec, (unsigned long) sec->lma);
4342 adjust = 0;
4343 }
4344 off += adjust;
4345 p->p_filesz += adjust;
4346 p->p_memsz += adjust;
4347 }
4348 /* .tbss is special. It doesn't contribute to p_memsz of
4349 normal segments. */
4350 else if ((flags & SEC_THREAD_LOCAL) == 0
4351 || p->p_type == PT_TLS)
4352 {
4353 /* The section VMA must equal the file position
4354 modulo the page size. */
4355 bfd_size_type page = align;
4356 if ((abfd->flags & D_PAGED) != 0 && bed->maxpagesize > page)
4357 page = bed->maxpagesize;
4358 adjust = vma_page_aligned_bias (sec->vma,
4359 p->p_vaddr + p->p_memsz,
4360 page);
4361 p->p_memsz += adjust;
4362 }
4363 }
4364
4365 if (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core)
4366 {
4367 /* The section at i == 0 is the one that actually contains
4368 everything. */
4369 if (i == 0)
4370 {
4371 sec->filepos = off;
4372 off += sec->size;
4373 p->p_filesz = sec->size;
4374 p->p_memsz = 0;
4375 p->p_align = 1;
4376 }
4377 else
4378 {
4379 /* The rest are fake sections that shouldn't be written. */
4380 sec->filepos = 0;
4381 sec->size = 0;
4382 sec->flags = 0;
4383 continue;
4384 }
4385 }
4386 else
4387 {
4388 if (p->p_type == PT_LOAD)
4389 {
4390 sec->filepos = off;
4391 /* FIXME: The SEC_HAS_CONTENTS test here dates back to
4392 1997, and the exact reason for it isn't clear. One
4393 plausible explanation is that it is to work around
4394 a problem we have with linker scripts using data
4395 statements in NOLOAD sections. I don't think it
4396 makes a great deal of sense to have such a section
4397 assigned to a PT_LOAD segment, but apparently
4398 people do this. The data statement results in a
4399 bfd_data_link_order being built, and these need
4400 section contents to write into. Eventually, we get
4401 to _bfd_elf_write_object_contents which writes any
4402 section with contents to the output. Make room
4403 here for the write, so that following segments are
4404 not trashed. */
4405 if ((flags & SEC_LOAD) != 0
4406 || (flags & SEC_HAS_CONTENTS) != 0)
4407 off += sec->size;
4408 }
4409
4410 if ((flags & SEC_LOAD) != 0)
4411 {
4412 p->p_filesz += sec->size;
4413 p->p_memsz += sec->size;
4414 }
4415 /* PR ld/594: Sections in note segments which are not loaded
4416 contribute to the file size but not the in-memory size. */
4417 else if (p->p_type == PT_NOTE
4418 && (flags & SEC_HAS_CONTENTS) != 0)
4419 p->p_filesz += sec->size;
4420
4421 /* .tbss is special. It doesn't contribute to p_memsz of
4422 normal segments. */
4423 else if ((flags & SEC_THREAD_LOCAL) == 0
4424 || p->p_type == PT_TLS)
4425 p->p_memsz += sec->size;
4426
4427 if (p->p_type == PT_TLS
4428 && sec->size == 0
4429 && (sec->flags & SEC_HAS_CONTENTS) == 0)
4430 {
4431 struct bfd_link_order *o = sec->map_tail.link_order;
4432 if (o != NULL)
4433 p->p_memsz += o->offset + o->size;
4434 }
4435
4436 if (align > p->p_align
4437 && (p->p_type != PT_LOAD || (abfd->flags & D_PAGED) == 0))
4438 p->p_align = align;
4439 }
4440
4441 if (! m->p_flags_valid)
4442 {
4443 p->p_flags |= PF_R;
4444 if ((flags & SEC_CODE) != 0)
4445 p->p_flags |= PF_X;
4446 if ((flags & SEC_READONLY) == 0)
4447 p->p_flags |= PF_W;
4448 }
4449 }
4450 }
4451
4452 /* Now that we have set the section file positions, we can set up
4453 the file positions for the non PT_LOAD segments. */
4454 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
4455 m != NULL;
4456 m = m->next, p++)
4457 {
4458 if (p->p_type != PT_LOAD && m->count > 0)
4459 {
4460 BFD_ASSERT (! m->includes_filehdr && ! m->includes_phdrs);
4461 /* If the section has not yet been assigned a file position,
4462 do so now. The ARM BPABI requires that .dynamic section
4463 not be marked SEC_ALLOC because it is not part of any
4464 PT_LOAD segment, so it will not be processed above. */
4465 if (p->p_type == PT_DYNAMIC && m->sections[0]->filepos == 0)
4466 {
4467 unsigned int i;
4468 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
4469
4470 i = 1;
4471 while (i_shdrpp[i]->bfd_section != m->sections[0])
4472 ++i;
4473 off = (_bfd_elf_assign_file_position_for_section
4474 (i_shdrpp[i], off, TRUE));
4475 p->p_filesz = m->sections[0]->size;
4476 }
4477 p->p_offset = m->sections[0]->filepos;
4478 }
4479 if (m->count == 0)
4480 {
4481 if (m->includes_filehdr)
4482 {
4483 p->p_vaddr = filehdr_vaddr;
4484 if (! m->p_paddr_valid)
4485 p->p_paddr = filehdr_paddr;
4486 }
4487 else if (m->includes_phdrs)
4488 {
4489 p->p_vaddr = phdrs_vaddr;
4490 if (! m->p_paddr_valid)
4491 p->p_paddr = phdrs_paddr;
4492 }
4493 else if (p->p_type == PT_GNU_RELRO)
4494 {
4495 Elf_Internal_Phdr *lp;
4496
4497 for (lp = phdrs; lp < phdrs + count; ++lp)
4498 {
4499 if (lp->p_type == PT_LOAD
4500 && lp->p_vaddr <= link_info->relro_end
4501 && lp->p_vaddr >= link_info->relro_start
4502 && lp->p_vaddr + lp->p_filesz
4503 >= link_info->relro_end)
4504 break;
4505 }
4506
4507 if (lp < phdrs + count
4508 && link_info->relro_end > lp->p_vaddr)
4509 {
4510 p->p_vaddr = lp->p_vaddr;
4511 p->p_paddr = lp->p_paddr;
4512 p->p_offset = lp->p_offset;
4513 p->p_filesz = link_info->relro_end - lp->p_vaddr;
4514 p->p_memsz = p->p_filesz;
4515 p->p_align = 1;
4516 p->p_flags = (lp->p_flags & ~PF_W);
4517 }
4518 else
4519 {
4520 memset (p, 0, sizeof *p);
4521 p->p_type = PT_NULL;
4522 }
4523 }
4524 }
4525 }
4526
4527 /* Clear out any program headers we allocated but did not use. */
4528 for (; count < alloc; count++, p++)
4529 {
4530 memset (p, 0, sizeof *p);
4531 p->p_type = PT_NULL;
4532 }
4533
4534 elf_tdata (abfd)->phdr = phdrs;
4535
4536 elf_tdata (abfd)->next_file_pos = off;
4537
4538 /* Write out the program headers. */
4539 if (bfd_seek (abfd, (bfd_signed_vma) bed->s->sizeof_ehdr, SEEK_SET) != 0
4540 || bed->s->write_out_phdrs (abfd, phdrs, alloc) != 0)
4541 return FALSE;
4542
4543 return TRUE;
4544 }
4545
4546 /* Get the size of the program header.
4547
4548 If this is called by the linker before any of the section VMA's are set, it
4549 can't calculate the correct value for a strange memory layout. This only
4550 happens when SIZEOF_HEADERS is used in a linker script. In this case,
4551 SORTED_HDRS is NULL and we assume the normal scenario of one text and one
4552 data segment (exclusive of .interp and .dynamic).
4553
4554 ??? User written scripts must either not use SIZEOF_HEADERS, or assume there
4555 will be two segments. */
4556
4557 static bfd_size_type
4558 get_program_header_size (bfd *abfd)
4559 {
4560 size_t segs;
4561 asection *s;
4562 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4563
4564 /* We can't return a different result each time we're called. */
4565 if (elf_tdata (abfd)->program_header_size != 0)
4566 return elf_tdata (abfd)->program_header_size;
4567
4568 if (elf_tdata (abfd)->segment_map != NULL)
4569 {
4570 struct elf_segment_map *m;
4571
4572 segs = 0;
4573 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
4574 ++segs;
4575 elf_tdata (abfd)->program_header_size = segs * bed->s->sizeof_phdr;
4576 return elf_tdata (abfd)->program_header_size;
4577 }
4578
4579 /* Assume we will need exactly two PT_LOAD segments: one for text
4580 and one for data. */
4581 segs = 2;
4582
4583 s = bfd_get_section_by_name (abfd, ".interp");
4584 if (s != NULL && (s->flags & SEC_LOAD) != 0)
4585 {
4586 /* If we have a loadable interpreter section, we need a
4587 PT_INTERP segment. In this case, assume we also need a
4588 PT_PHDR segment, although that may not be true for all
4589 targets. */
4590 segs += 2;
4591 }
4592
4593 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
4594 {
4595 /* We need a PT_DYNAMIC segment. */
4596 ++segs;
4597 }
4598
4599 if (elf_tdata (abfd)->eh_frame_hdr)
4600 {
4601 /* We need a PT_GNU_EH_FRAME segment. */
4602 ++segs;
4603 }
4604
4605 if (elf_tdata (abfd)->stack_flags)
4606 {
4607 /* We need a PT_GNU_STACK segment. */
4608 ++segs;
4609 }
4610
4611 if (elf_tdata (abfd)->relro)
4612 {
4613 /* We need a PT_GNU_RELRO segment. */
4614 ++segs;
4615 }
4616
4617 for (s = abfd->sections; s != NULL; s = s->next)
4618 {
4619 if ((s->flags & SEC_LOAD) != 0
4620 && strncmp (s->name, ".note", 5) == 0)
4621 {
4622 /* We need a PT_NOTE segment. */
4623 ++segs;
4624 }
4625 }
4626
4627 for (s = abfd->sections; s != NULL; s = s->next)
4628 {
4629 if (s->flags & SEC_THREAD_LOCAL)
4630 {
4631 /* We need a PT_TLS segment. */
4632 ++segs;
4633 break;
4634 }
4635 }
4636
4637 /* Let the backend count up any program headers it might need. */
4638 if (bed->elf_backend_additional_program_headers)
4639 {
4640 int a;
4641
4642 a = (*bed->elf_backend_additional_program_headers) (abfd);
4643 if (a == -1)
4644 abort ();
4645 segs += a;
4646 }
4647
4648 elf_tdata (abfd)->program_header_size = segs * bed->s->sizeof_phdr;
4649 return elf_tdata (abfd)->program_header_size;
4650 }
4651
4652 /* Work out the file positions of all the sections. This is called by
4653 _bfd_elf_compute_section_file_positions. All the section sizes and
4654 VMAs must be known before this is called.
4655
4656 Reloc sections come in two flavours: Those processed specially as
4657 "side-channel" data attached to a section to which they apply, and
4658 those that bfd doesn't process as relocations. The latter sort are
4659 stored in a normal bfd section by bfd_section_from_shdr. We don't
4660 consider the former sort here, unless they form part of the loadable
4661 image. Reloc sections not assigned here will be handled later by
4662 assign_file_positions_for_relocs.
4663
4664 We also don't set the positions of the .symtab and .strtab here. */
4665
4666 static bfd_boolean
4667 assign_file_positions_except_relocs (bfd *abfd,
4668 struct bfd_link_info *link_info)
4669 {
4670 struct elf_obj_tdata * const tdata = elf_tdata (abfd);
4671 Elf_Internal_Ehdr * const i_ehdrp = elf_elfheader (abfd);
4672 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
4673 unsigned int num_sec = elf_numsections (abfd);
4674 file_ptr off;
4675 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4676
4677 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
4678 && bfd_get_format (abfd) != bfd_core)
4679 {
4680 Elf_Internal_Shdr **hdrpp;
4681 unsigned int i;
4682
4683 /* Start after the ELF header. */
4684 off = i_ehdrp->e_ehsize;
4685
4686 /* We are not creating an executable, which means that we are
4687 not creating a program header, and that the actual order of
4688 the sections in the file is unimportant. */
4689 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
4690 {
4691 Elf_Internal_Shdr *hdr;
4692
4693 hdr = *hdrpp;
4694 if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
4695 && hdr->bfd_section == NULL)
4696 || i == tdata->symtab_section
4697 || i == tdata->symtab_shndx_section
4698 || i == tdata->strtab_section)
4699 {
4700 hdr->sh_offset = -1;
4701 }
4702 else
4703 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4704
4705 if (i == SHN_LORESERVE - 1)
4706 {
4707 i += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4708 hdrpp += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4709 }
4710 }
4711 }
4712 else
4713 {
4714 unsigned int i;
4715 Elf_Internal_Shdr **hdrpp;
4716
4717 /* Assign file positions for the loaded sections based on the
4718 assignment of sections to segments. */
4719 if (! assign_file_positions_for_segments (abfd, link_info))
4720 return FALSE;
4721
4722 /* Assign file positions for the other sections. */
4723
4724 off = elf_tdata (abfd)->next_file_pos;
4725 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
4726 {
4727 Elf_Internal_Shdr *hdr;
4728
4729 hdr = *hdrpp;
4730 if (hdr->bfd_section != NULL
4731 && hdr->bfd_section->filepos != 0)
4732 hdr->sh_offset = hdr->bfd_section->filepos;
4733 else if ((hdr->sh_flags & SHF_ALLOC) != 0)
4734 {
4735 ((*_bfd_error_handler)
4736 (_("%B: warning: allocated section `%s' not in segment"),
4737 abfd,
4738 (hdr->bfd_section == NULL
4739 ? "*unknown*"
4740 : hdr->bfd_section->name)));
4741 if ((abfd->flags & D_PAGED) != 0)
4742 off += vma_page_aligned_bias (hdr->sh_addr, off,
4743 bed->maxpagesize);
4744 else
4745 off += vma_page_aligned_bias (hdr->sh_addr, off,
4746 hdr->sh_addralign);
4747 off = _bfd_elf_assign_file_position_for_section (hdr, off,
4748 FALSE);
4749 }
4750 else if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
4751 && hdr->bfd_section == NULL)
4752 || hdr == i_shdrpp[tdata->symtab_section]
4753 || hdr == i_shdrpp[tdata->symtab_shndx_section]
4754 || hdr == i_shdrpp[tdata->strtab_section])
4755 hdr->sh_offset = -1;
4756 else
4757 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4758
4759 if (i == SHN_LORESERVE - 1)
4760 {
4761 i += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4762 hdrpp += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4763 }
4764 }
4765 }
4766
4767 /* Place the section headers. */
4768 off = align_file_position (off, 1 << bed->s->log_file_align);
4769 i_ehdrp->e_shoff = off;
4770 off += i_ehdrp->e_shnum * i_ehdrp->e_shentsize;
4771
4772 elf_tdata (abfd)->next_file_pos = off;
4773
4774 return TRUE;
4775 }
4776
4777 static bfd_boolean
4778 prep_headers (bfd *abfd)
4779 {
4780 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
4781 Elf_Internal_Phdr *i_phdrp = 0; /* Program header table, internal form */
4782 Elf_Internal_Shdr **i_shdrp; /* Section header table, internal form */
4783 struct elf_strtab_hash *shstrtab;
4784 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4785
4786 i_ehdrp = elf_elfheader (abfd);
4787 i_shdrp = elf_elfsections (abfd);
4788
4789 shstrtab = _bfd_elf_strtab_init ();
4790 if (shstrtab == NULL)
4791 return FALSE;
4792
4793 elf_shstrtab (abfd) = shstrtab;
4794
4795 i_ehdrp->e_ident[EI_MAG0] = ELFMAG0;
4796 i_ehdrp->e_ident[EI_MAG1] = ELFMAG1;
4797 i_ehdrp->e_ident[EI_MAG2] = ELFMAG2;
4798 i_ehdrp->e_ident[EI_MAG3] = ELFMAG3;
4799
4800 i_ehdrp->e_ident[EI_CLASS] = bed->s->elfclass;
4801 i_ehdrp->e_ident[EI_DATA] =
4802 bfd_big_endian (abfd) ? ELFDATA2MSB : ELFDATA2LSB;
4803 i_ehdrp->e_ident[EI_VERSION] = bed->s->ev_current;
4804
4805 if ((abfd->flags & DYNAMIC) != 0)
4806 i_ehdrp->e_type = ET_DYN;
4807 else if ((abfd->flags & EXEC_P) != 0)
4808 i_ehdrp->e_type = ET_EXEC;
4809 else if (bfd_get_format (abfd) == bfd_core)
4810 i_ehdrp->e_type = ET_CORE;
4811 else
4812 i_ehdrp->e_type = ET_REL;
4813
4814 switch (bfd_get_arch (abfd))
4815 {
4816 case bfd_arch_unknown:
4817 i_ehdrp->e_machine = EM_NONE;
4818 break;
4819
4820 /* There used to be a long list of cases here, each one setting
4821 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
4822 in the corresponding bfd definition. To avoid duplication,
4823 the switch was removed. Machines that need special handling
4824 can generally do it in elf_backend_final_write_processing(),
4825 unless they need the information earlier than the final write.
4826 Such need can generally be supplied by replacing the tests for
4827 e_machine with the conditions used to determine it. */
4828 default:
4829 i_ehdrp->e_machine = bed->elf_machine_code;
4830 }
4831
4832 i_ehdrp->e_version = bed->s->ev_current;
4833 i_ehdrp->e_ehsize = bed->s->sizeof_ehdr;
4834
4835 /* No program header, for now. */
4836 i_ehdrp->e_phoff = 0;
4837 i_ehdrp->e_phentsize = 0;
4838 i_ehdrp->e_phnum = 0;
4839
4840 /* Each bfd section is section header entry. */
4841 i_ehdrp->e_entry = bfd_get_start_address (abfd);
4842 i_ehdrp->e_shentsize = bed->s->sizeof_shdr;
4843
4844 /* If we're building an executable, we'll need a program header table. */
4845 if (abfd->flags & EXEC_P)
4846 /* It all happens later. */
4847 ;
4848 else
4849 {
4850 i_ehdrp->e_phentsize = 0;
4851 i_phdrp = 0;
4852 i_ehdrp->e_phoff = 0;
4853 }
4854
4855 elf_tdata (abfd)->symtab_hdr.sh_name =
4856 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".symtab", FALSE);
4857 elf_tdata (abfd)->strtab_hdr.sh_name =
4858 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".strtab", FALSE);
4859 elf_tdata (abfd)->shstrtab_hdr.sh_name =
4860 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".shstrtab", FALSE);
4861 if (elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
4862 || elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
4863 || elf_tdata (abfd)->shstrtab_hdr.sh_name == (unsigned int) -1)
4864 return FALSE;
4865
4866 return TRUE;
4867 }
4868
4869 /* Assign file positions for all the reloc sections which are not part
4870 of the loadable file image. */
4871
4872 void
4873 _bfd_elf_assign_file_positions_for_relocs (bfd *abfd)
4874 {
4875 file_ptr off;
4876 unsigned int i, num_sec;
4877 Elf_Internal_Shdr **shdrpp;
4878
4879 off = elf_tdata (abfd)->next_file_pos;
4880
4881 num_sec = elf_numsections (abfd);
4882 for (i = 1, shdrpp = elf_elfsections (abfd) + 1; i < num_sec; i++, shdrpp++)
4883 {
4884 Elf_Internal_Shdr *shdrp;
4885
4886 shdrp = *shdrpp;
4887 if ((shdrp->sh_type == SHT_REL || shdrp->sh_type == SHT_RELA)
4888 && shdrp->sh_offset == -1)
4889 off = _bfd_elf_assign_file_position_for_section (shdrp, off, TRUE);
4890 }
4891
4892 elf_tdata (abfd)->next_file_pos = off;
4893 }
4894
4895 bfd_boolean
4896 _bfd_elf_write_object_contents (bfd *abfd)
4897 {
4898 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4899 Elf_Internal_Ehdr *i_ehdrp;
4900 Elf_Internal_Shdr **i_shdrp;
4901 bfd_boolean failed;
4902 unsigned int count, num_sec;
4903
4904 if (! abfd->output_has_begun
4905 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
4906 return FALSE;
4907
4908 i_shdrp = elf_elfsections (abfd);
4909 i_ehdrp = elf_elfheader (abfd);
4910
4911 failed = FALSE;
4912 bfd_map_over_sections (abfd, bed->s->write_relocs, &failed);
4913 if (failed)
4914 return FALSE;
4915
4916 _bfd_elf_assign_file_positions_for_relocs (abfd);
4917
4918 /* After writing the headers, we need to write the sections too... */
4919 num_sec = elf_numsections (abfd);
4920 for (count = 1; count < num_sec; count++)
4921 {
4922 if (bed->elf_backend_section_processing)
4923 (*bed->elf_backend_section_processing) (abfd, i_shdrp[count]);
4924 if (i_shdrp[count]->contents)
4925 {
4926 bfd_size_type amt = i_shdrp[count]->sh_size;
4927
4928 if (bfd_seek (abfd, i_shdrp[count]->sh_offset, SEEK_SET) != 0
4929 || bfd_bwrite (i_shdrp[count]->contents, amt, abfd) != amt)
4930 return FALSE;
4931 }
4932 if (count == SHN_LORESERVE - 1)
4933 count += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4934 }
4935
4936 /* Write out the section header names. */
4937 if (elf_shstrtab (abfd) != NULL
4938 && (bfd_seek (abfd, elf_tdata (abfd)->shstrtab_hdr.sh_offset, SEEK_SET) != 0
4939 || ! _bfd_elf_strtab_emit (abfd, elf_shstrtab (abfd))))
4940 return FALSE;
4941
4942 if (bed->elf_backend_final_write_processing)
4943 (*bed->elf_backend_final_write_processing) (abfd,
4944 elf_tdata (abfd)->linker);
4945
4946 return bed->s->write_shdrs_and_ehdr (abfd);
4947 }
4948
4949 bfd_boolean
4950 _bfd_elf_write_corefile_contents (bfd *abfd)
4951 {
4952 /* Hopefully this can be done just like an object file. */
4953 return _bfd_elf_write_object_contents (abfd);
4954 }
4955
4956 /* Given a section, search the header to find them. */
4957
4958 int
4959 _bfd_elf_section_from_bfd_section (bfd *abfd, struct bfd_section *asect)
4960 {
4961 const struct elf_backend_data *bed;
4962 int index;
4963
4964 if (elf_section_data (asect) != NULL
4965 && elf_section_data (asect)->this_idx != 0)
4966 return elf_section_data (asect)->this_idx;
4967
4968 if (bfd_is_abs_section (asect))
4969 index = SHN_ABS;
4970 else if (bfd_is_com_section (asect))
4971 index = SHN_COMMON;
4972 else if (bfd_is_und_section (asect))
4973 index = SHN_UNDEF;
4974 else
4975 index = -1;
4976
4977 bed = get_elf_backend_data (abfd);
4978 if (bed->elf_backend_section_from_bfd_section)
4979 {
4980 int retval = index;
4981
4982 if ((*bed->elf_backend_section_from_bfd_section) (abfd, asect, &retval))
4983 return retval;
4984 }
4985
4986 if (index == -1)
4987 bfd_set_error (bfd_error_nonrepresentable_section);
4988
4989 return index;
4990 }
4991
4992 /* Given a BFD symbol, return the index in the ELF symbol table, or -1
4993 on error. */
4994
4995 int
4996 _bfd_elf_symbol_from_bfd_symbol (bfd *abfd, asymbol **asym_ptr_ptr)
4997 {
4998 asymbol *asym_ptr = *asym_ptr_ptr;
4999 int idx;
5000 flagword flags = asym_ptr->flags;
5001
5002 /* When gas creates relocations against local labels, it creates its
5003 own symbol for the section, but does put the symbol into the
5004 symbol chain, so udata is 0. When the linker is generating
5005 relocatable output, this section symbol may be for one of the
5006 input sections rather than the output section. */
5007 if (asym_ptr->udata.i == 0
5008 && (flags & BSF_SECTION_SYM)
5009 && asym_ptr->section)
5010 {
5011 int indx;
5012
5013 if (asym_ptr->section->output_section != NULL)
5014 indx = asym_ptr->section->output_section->index;
5015 else
5016 indx = asym_ptr->section->index;
5017 if (indx < elf_num_section_syms (abfd)
5018 && elf_section_syms (abfd)[indx] != NULL)
5019 asym_ptr->udata.i = elf_section_syms (abfd)[indx]->udata.i;
5020 }
5021
5022 idx = asym_ptr->udata.i;
5023
5024 if (idx == 0)
5025 {
5026 /* This case can occur when using --strip-symbol on a symbol
5027 which is used in a relocation entry. */
5028 (*_bfd_error_handler)
5029 (_("%B: symbol `%s' required but not present"),
5030 abfd, bfd_asymbol_name (asym_ptr));
5031 bfd_set_error (bfd_error_no_symbols);
5032 return -1;
5033 }
5034
5035 #if DEBUG & 4
5036 {
5037 fprintf (stderr,
5038 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8lx%s\n",
5039 (long) asym_ptr, asym_ptr->name, idx, flags,
5040 elf_symbol_flags (flags));
5041 fflush (stderr);
5042 }
5043 #endif
5044
5045 return idx;
5046 }
5047
5048 /* Copy private BFD data. This copies any program header information. */
5049
5050 static bfd_boolean
5051 copy_private_bfd_data (bfd *ibfd, bfd *obfd)
5052 {
5053 Elf_Internal_Ehdr *iehdr;
5054 struct elf_segment_map *map;
5055 struct elf_segment_map *map_first;
5056 struct elf_segment_map **pointer_to_map;
5057 Elf_Internal_Phdr *segment;
5058 asection *section;
5059 unsigned int i;
5060 unsigned int num_segments;
5061 bfd_boolean phdr_included = FALSE;
5062 bfd_vma maxpagesize;
5063 struct elf_segment_map *phdr_adjust_seg = NULL;
5064 unsigned int phdr_adjust_num = 0;
5065 const struct elf_backend_data *bed;
5066
5067 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
5068 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
5069 return TRUE;
5070
5071 if (elf_tdata (ibfd)->phdr == NULL)
5072 return TRUE;
5073
5074 bed = get_elf_backend_data (ibfd);
5075 iehdr = elf_elfheader (ibfd);
5076
5077 map_first = NULL;
5078 pointer_to_map = &map_first;
5079
5080 num_segments = elf_elfheader (ibfd)->e_phnum;
5081 maxpagesize = get_elf_backend_data (obfd)->maxpagesize;
5082
5083 /* Returns the end address of the segment + 1. */
5084 #define SEGMENT_END(segment, start) \
5085 (start + (segment->p_memsz > segment->p_filesz \
5086 ? segment->p_memsz : segment->p_filesz))
5087
5088 #define SECTION_SIZE(section, segment) \
5089 (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL)) \
5090 != SEC_THREAD_LOCAL || segment->p_type == PT_TLS) \
5091 ? section->size : 0)
5092
5093 /* Returns TRUE if the given section is contained within
5094 the given segment. VMA addresses are compared. */
5095 #define IS_CONTAINED_BY_VMA(section, segment) \
5096 (section->vma >= segment->p_vaddr \
5097 && (section->vma + SECTION_SIZE (section, segment) \
5098 <= (SEGMENT_END (segment, segment->p_vaddr))))
5099
5100 /* Returns TRUE if the given section is contained within
5101 the given segment. LMA addresses are compared. */
5102 #define IS_CONTAINED_BY_LMA(section, segment, base) \
5103 (section->lma >= base \
5104 && (section->lma + SECTION_SIZE (section, segment) \
5105 <= SEGMENT_END (segment, base)))
5106
5107 /* Special case: corefile "NOTE" section containing regs, prpsinfo etc. */
5108 #define IS_COREFILE_NOTE(p, s) \
5109 (p->p_type == PT_NOTE \
5110 && bfd_get_format (ibfd) == bfd_core \
5111 && s->vma == 0 && s->lma == 0 \
5112 && (bfd_vma) s->filepos >= p->p_offset \
5113 && ((bfd_vma) s->filepos + s->size \
5114 <= p->p_offset + p->p_filesz))
5115
5116 /* The complicated case when p_vaddr is 0 is to handle the Solaris
5117 linker, which generates a PT_INTERP section with p_vaddr and
5118 p_memsz set to 0. */
5119 #define IS_SOLARIS_PT_INTERP(p, s) \
5120 (p->p_vaddr == 0 \
5121 && p->p_paddr == 0 \
5122 && p->p_memsz == 0 \
5123 && p->p_filesz > 0 \
5124 && (s->flags & SEC_HAS_CONTENTS) != 0 \
5125 && s->size > 0 \
5126 && (bfd_vma) s->filepos >= p->p_offset \
5127 && ((bfd_vma) s->filepos + s->size \
5128 <= p->p_offset + p->p_filesz))
5129
5130 /* Decide if the given section should be included in the given segment.
5131 A section will be included if:
5132 1. It is within the address space of the segment -- we use the LMA
5133 if that is set for the segment and the VMA otherwise,
5134 2. It is an allocated segment,
5135 3. There is an output section associated with it,
5136 4. The section has not already been allocated to a previous segment.
5137 5. PT_GNU_STACK segments do not include any sections.
5138 6. PT_TLS segment includes only SHF_TLS sections.
5139 7. SHF_TLS sections are only in PT_TLS or PT_LOAD segments.
5140 8. PT_DYNAMIC should not contain empty sections at the beginning
5141 (with the possible exception of .dynamic). */
5142 #define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed) \
5143 ((((segment->p_paddr \
5144 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr) \
5145 : IS_CONTAINED_BY_VMA (section, segment)) \
5146 && (section->flags & SEC_ALLOC) != 0) \
5147 || IS_COREFILE_NOTE (segment, section)) \
5148 && section->output_section != NULL \
5149 && segment->p_type != PT_GNU_STACK \
5150 && (segment->p_type != PT_TLS \
5151 || (section->flags & SEC_THREAD_LOCAL)) \
5152 && (segment->p_type == PT_LOAD \
5153 || segment->p_type == PT_TLS \
5154 || (section->flags & SEC_THREAD_LOCAL) == 0) \
5155 && (segment->p_type != PT_DYNAMIC \
5156 || SECTION_SIZE (section, segment) > 0 \
5157 || (segment->p_paddr \
5158 ? segment->p_paddr != section->lma \
5159 : segment->p_vaddr != section->vma) \
5160 || (strcmp (bfd_get_section_name (ibfd, section), ".dynamic") \
5161 == 0)) \
5162 && ! section->segment_mark)
5163
5164 /* Returns TRUE iff seg1 starts after the end of seg2. */
5165 #define SEGMENT_AFTER_SEGMENT(seg1, seg2, field) \
5166 (seg1->field >= SEGMENT_END (seg2, seg2->field))
5167
5168 /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both
5169 their VMA address ranges and their LMA address ranges overlap.
5170 It is possible to have overlapping VMA ranges without overlapping LMA
5171 ranges. RedBoot images for example can have both .data and .bss mapped
5172 to the same VMA range, but with the .data section mapped to a different
5173 LMA. */
5174 #define SEGMENT_OVERLAPS(seg1, seg2) \
5175 ( !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr) \
5176 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr)) \
5177 && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr) \
5178 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr)))
5179
5180 /* Initialise the segment mark field. */
5181 for (section = ibfd->sections; section != NULL; section = section->next)
5182 section->segment_mark = FALSE;
5183
5184 /* Scan through the segments specified in the program header
5185 of the input BFD. For this first scan we look for overlaps
5186 in the loadable segments. These can be created by weird
5187 parameters to objcopy. Also, fix some solaris weirdness. */
5188 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5189 i < num_segments;
5190 i++, segment++)
5191 {
5192 unsigned int j;
5193 Elf_Internal_Phdr *segment2;
5194
5195 if (segment->p_type == PT_INTERP)
5196 for (section = ibfd->sections; section; section = section->next)
5197 if (IS_SOLARIS_PT_INTERP (segment, section))
5198 {
5199 /* Mininal change so that the normal section to segment
5200 assignment code will work. */
5201 segment->p_vaddr = section->vma;
5202 break;
5203 }
5204
5205 if (segment->p_type != PT_LOAD)
5206 continue;
5207
5208 /* Determine if this segment overlaps any previous segments. */
5209 for (j = 0, segment2 = elf_tdata (ibfd)->phdr; j < i; j++, segment2 ++)
5210 {
5211 bfd_signed_vma extra_length;
5212
5213 if (segment2->p_type != PT_LOAD
5214 || ! SEGMENT_OVERLAPS (segment, segment2))
5215 continue;
5216
5217 /* Merge the two segments together. */
5218 if (segment2->p_vaddr < segment->p_vaddr)
5219 {
5220 /* Extend SEGMENT2 to include SEGMENT and then delete
5221 SEGMENT. */
5222 extra_length =
5223 SEGMENT_END (segment, segment->p_vaddr)
5224 - SEGMENT_END (segment2, segment2->p_vaddr);
5225
5226 if (extra_length > 0)
5227 {
5228 segment2->p_memsz += extra_length;
5229 segment2->p_filesz += extra_length;
5230 }
5231
5232 segment->p_type = PT_NULL;
5233
5234 /* Since we have deleted P we must restart the outer loop. */
5235 i = 0;
5236 segment = elf_tdata (ibfd)->phdr;
5237 break;
5238 }
5239 else
5240 {
5241 /* Extend SEGMENT to include SEGMENT2 and then delete
5242 SEGMENT2. */
5243 extra_length =
5244 SEGMENT_END (segment2, segment2->p_vaddr)
5245 - SEGMENT_END (segment, segment->p_vaddr);
5246
5247 if (extra_length > 0)
5248 {
5249 segment->p_memsz += extra_length;
5250 segment->p_filesz += extra_length;
5251 }
5252
5253 segment2->p_type = PT_NULL;
5254 }
5255 }
5256 }
5257
5258 /* The second scan attempts to assign sections to segments. */
5259 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5260 i < num_segments;
5261 i ++, segment ++)
5262 {
5263 unsigned int section_count;
5264 asection ** sections;
5265 asection * output_section;
5266 unsigned int isec;
5267 bfd_vma matching_lma;
5268 bfd_vma suggested_lma;
5269 unsigned int j;
5270 bfd_size_type amt;
5271
5272 if (segment->p_type == PT_NULL)
5273 continue;
5274
5275 /* Compute how many sections might be placed into this segment. */
5276 for (section = ibfd->sections, section_count = 0;
5277 section != NULL;
5278 section = section->next)
5279 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
5280 ++section_count;
5281
5282 /* Allocate a segment map big enough to contain
5283 all of the sections we have selected. */
5284 amt = sizeof (struct elf_segment_map);
5285 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5286 map = bfd_alloc (obfd, amt);
5287 if (map == NULL)
5288 return FALSE;
5289
5290 /* Initialise the fields of the segment map. Default to
5291 using the physical address of the segment in the input BFD. */
5292 map->next = NULL;
5293 map->p_type = segment->p_type;
5294 map->p_flags = segment->p_flags;
5295 map->p_flags_valid = 1;
5296 map->p_paddr = segment->p_paddr;
5297 map->p_paddr_valid = 1;
5298
5299 /* Determine if this segment contains the ELF file header
5300 and if it contains the program headers themselves. */
5301 map->includes_filehdr = (segment->p_offset == 0
5302 && segment->p_filesz >= iehdr->e_ehsize);
5303
5304 map->includes_phdrs = 0;
5305
5306 if (! phdr_included || segment->p_type != PT_LOAD)
5307 {
5308 map->includes_phdrs =
5309 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
5310 && (segment->p_offset + segment->p_filesz
5311 >= ((bfd_vma) iehdr->e_phoff
5312 + iehdr->e_phnum * iehdr->e_phentsize)));
5313
5314 if (segment->p_type == PT_LOAD && map->includes_phdrs)
5315 phdr_included = TRUE;
5316 }
5317
5318 if (section_count == 0)
5319 {
5320 /* Special segments, such as the PT_PHDR segment, may contain
5321 no sections, but ordinary, loadable segments should contain
5322 something. They are allowed by the ELF spec however, so only
5323 a warning is produced. */
5324 if (segment->p_type == PT_LOAD)
5325 (*_bfd_error_handler)
5326 (_("%B: warning: Empty loadable segment detected, is this intentional ?\n"),
5327 ibfd);
5328
5329 map->count = 0;
5330 *pointer_to_map = map;
5331 pointer_to_map = &map->next;
5332
5333 continue;
5334 }
5335
5336 /* Now scan the sections in the input BFD again and attempt
5337 to add their corresponding output sections to the segment map.
5338 The problem here is how to handle an output section which has
5339 been moved (ie had its LMA changed). There are four possibilities:
5340
5341 1. None of the sections have been moved.
5342 In this case we can continue to use the segment LMA from the
5343 input BFD.
5344
5345 2. All of the sections have been moved by the same amount.
5346 In this case we can change the segment's LMA to match the LMA
5347 of the first section.
5348
5349 3. Some of the sections have been moved, others have not.
5350 In this case those sections which have not been moved can be
5351 placed in the current segment which will have to have its size,
5352 and possibly its LMA changed, and a new segment or segments will
5353 have to be created to contain the other sections.
5354
5355 4. The sections have been moved, but not by the same amount.
5356 In this case we can change the segment's LMA to match the LMA
5357 of the first section and we will have to create a new segment
5358 or segments to contain the other sections.
5359
5360 In order to save time, we allocate an array to hold the section
5361 pointers that we are interested in. As these sections get assigned
5362 to a segment, they are removed from this array. */
5363
5364 /* Gcc 2.96 miscompiles this code on mips. Don't do casting here
5365 to work around this long long bug. */
5366 sections = bfd_malloc2 (section_count, sizeof (asection *));
5367 if (sections == NULL)
5368 return FALSE;
5369
5370 /* Step One: Scan for segment vs section LMA conflicts.
5371 Also add the sections to the section array allocated above.
5372 Also add the sections to the current segment. In the common
5373 case, where the sections have not been moved, this means that
5374 we have completely filled the segment, and there is nothing
5375 more to do. */
5376 isec = 0;
5377 matching_lma = 0;
5378 suggested_lma = 0;
5379
5380 for (j = 0, section = ibfd->sections;
5381 section != NULL;
5382 section = section->next)
5383 {
5384 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
5385 {
5386 output_section = section->output_section;
5387
5388 sections[j ++] = section;
5389
5390 /* The Solaris native linker always sets p_paddr to 0.
5391 We try to catch that case here, and set it to the
5392 correct value. Note - some backends require that
5393 p_paddr be left as zero. */
5394 if (segment->p_paddr == 0
5395 && segment->p_vaddr != 0
5396 && (! bed->want_p_paddr_set_to_zero)
5397 && isec == 0
5398 && output_section->lma != 0
5399 && (output_section->vma == (segment->p_vaddr
5400 + (map->includes_filehdr
5401 ? iehdr->e_ehsize
5402 : 0)
5403 + (map->includes_phdrs
5404 ? (iehdr->e_phnum
5405 * iehdr->e_phentsize)
5406 : 0))))
5407 map->p_paddr = segment->p_vaddr;
5408
5409 /* Match up the physical address of the segment with the
5410 LMA address of the output section. */
5411 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
5412 || IS_COREFILE_NOTE (segment, section)
5413 || (bed->want_p_paddr_set_to_zero &&
5414 IS_CONTAINED_BY_VMA (output_section, segment))
5415 )
5416 {
5417 if (matching_lma == 0)
5418 matching_lma = output_section->lma;
5419
5420 /* We assume that if the section fits within the segment
5421 then it does not overlap any other section within that
5422 segment. */
5423 map->sections[isec ++] = output_section;
5424 }
5425 else if (suggested_lma == 0)
5426 suggested_lma = output_section->lma;
5427 }
5428 }
5429
5430 BFD_ASSERT (j == section_count);
5431
5432 /* Step Two: Adjust the physical address of the current segment,
5433 if necessary. */
5434 if (isec == section_count)
5435 {
5436 /* All of the sections fitted within the segment as currently
5437 specified. This is the default case. Add the segment to
5438 the list of built segments and carry on to process the next
5439 program header in the input BFD. */
5440 map->count = section_count;
5441 *pointer_to_map = map;
5442 pointer_to_map = &map->next;
5443
5444 free (sections);
5445 continue;
5446 }
5447 else
5448 {
5449 if (matching_lma != 0)
5450 {
5451 /* At least one section fits inside the current segment.
5452 Keep it, but modify its physical address to match the
5453 LMA of the first section that fitted. */
5454 map->p_paddr = matching_lma;
5455 }
5456 else
5457 {
5458 /* None of the sections fitted inside the current segment.
5459 Change the current segment's physical address to match
5460 the LMA of the first section. */
5461 map->p_paddr = suggested_lma;
5462 }
5463
5464 /* Offset the segment physical address from the lma
5465 to allow for space taken up by elf headers. */
5466 if (map->includes_filehdr)
5467 map->p_paddr -= iehdr->e_ehsize;
5468
5469 if (map->includes_phdrs)
5470 {
5471 map->p_paddr -= iehdr->e_phnum * iehdr->e_phentsize;
5472
5473 /* iehdr->e_phnum is just an estimate of the number
5474 of program headers that we will need. Make a note
5475 here of the number we used and the segment we chose
5476 to hold these headers, so that we can adjust the
5477 offset when we know the correct value. */
5478 phdr_adjust_num = iehdr->e_phnum;
5479 phdr_adjust_seg = map;
5480 }
5481 }
5482
5483 /* Step Three: Loop over the sections again, this time assigning
5484 those that fit to the current segment and removing them from the
5485 sections array; but making sure not to leave large gaps. Once all
5486 possible sections have been assigned to the current segment it is
5487 added to the list of built segments and if sections still remain
5488 to be assigned, a new segment is constructed before repeating
5489 the loop. */
5490 isec = 0;
5491 do
5492 {
5493 map->count = 0;
5494 suggested_lma = 0;
5495
5496 /* Fill the current segment with sections that fit. */
5497 for (j = 0; j < section_count; j++)
5498 {
5499 section = sections[j];
5500
5501 if (section == NULL)
5502 continue;
5503
5504 output_section = section->output_section;
5505
5506 BFD_ASSERT (output_section != NULL);
5507
5508 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
5509 || IS_COREFILE_NOTE (segment, section))
5510 {
5511 if (map->count == 0)
5512 {
5513 /* If the first section in a segment does not start at
5514 the beginning of the segment, then something is
5515 wrong. */
5516 if (output_section->lma !=
5517 (map->p_paddr
5518 + (map->includes_filehdr ? iehdr->e_ehsize : 0)
5519 + (map->includes_phdrs
5520 ? iehdr->e_phnum * iehdr->e_phentsize
5521 : 0)))
5522 abort ();
5523 }
5524 else
5525 {
5526 asection * prev_sec;
5527
5528 prev_sec = map->sections[map->count - 1];
5529
5530 /* If the gap between the end of the previous section
5531 and the start of this section is more than
5532 maxpagesize then we need to start a new segment. */
5533 if ((BFD_ALIGN (prev_sec->lma + prev_sec->size,
5534 maxpagesize)
5535 < BFD_ALIGN (output_section->lma, maxpagesize))
5536 || ((prev_sec->lma + prev_sec->size)
5537 > output_section->lma))
5538 {
5539 if (suggested_lma == 0)
5540 suggested_lma = output_section->lma;
5541
5542 continue;
5543 }
5544 }
5545
5546 map->sections[map->count++] = output_section;
5547 ++isec;
5548 sections[j] = NULL;
5549 section->segment_mark = TRUE;
5550 }
5551 else if (suggested_lma == 0)
5552 suggested_lma = output_section->lma;
5553 }
5554
5555 BFD_ASSERT (map->count > 0);
5556
5557 /* Add the current segment to the list of built segments. */
5558 *pointer_to_map = map;
5559 pointer_to_map = &map->next;
5560
5561 if (isec < section_count)
5562 {
5563 /* We still have not allocated all of the sections to
5564 segments. Create a new segment here, initialise it
5565 and carry on looping. */
5566 amt = sizeof (struct elf_segment_map);
5567 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5568 map = bfd_alloc (obfd, amt);
5569 if (map == NULL)
5570 {
5571 free (sections);
5572 return FALSE;
5573 }
5574
5575 /* Initialise the fields of the segment map. Set the physical
5576 physical address to the LMA of the first section that has
5577 not yet been assigned. */
5578 map->next = NULL;
5579 map->p_type = segment->p_type;
5580 map->p_flags = segment->p_flags;
5581 map->p_flags_valid = 1;
5582 map->p_paddr = suggested_lma;
5583 map->p_paddr_valid = 1;
5584 map->includes_filehdr = 0;
5585 map->includes_phdrs = 0;
5586 }
5587 }
5588 while (isec < section_count);
5589
5590 free (sections);
5591 }
5592
5593 /* The Solaris linker creates program headers in which all the
5594 p_paddr fields are zero. When we try to objcopy or strip such a
5595 file, we get confused. Check for this case, and if we find it
5596 reset the p_paddr_valid fields. */
5597 for (map = map_first; map != NULL; map = map->next)
5598 if (map->p_paddr != 0)
5599 break;
5600 if (map == NULL)
5601 for (map = map_first; map != NULL; map = map->next)
5602 map->p_paddr_valid = 0;
5603
5604 elf_tdata (obfd)->segment_map = map_first;
5605
5606 /* If we had to estimate the number of program headers that were
5607 going to be needed, then check our estimate now and adjust
5608 the offset if necessary. */
5609 if (phdr_adjust_seg != NULL)
5610 {
5611 unsigned int count;
5612
5613 for (count = 0, map = map_first; map != NULL; map = map->next)
5614 count++;
5615
5616 if (count > phdr_adjust_num)
5617 phdr_adjust_seg->p_paddr
5618 -= (count - phdr_adjust_num) * iehdr->e_phentsize;
5619 }
5620
5621 #undef SEGMENT_END
5622 #undef SECTION_SIZE
5623 #undef IS_CONTAINED_BY_VMA
5624 #undef IS_CONTAINED_BY_LMA
5625 #undef IS_COREFILE_NOTE
5626 #undef IS_SOLARIS_PT_INTERP
5627 #undef INCLUDE_SECTION_IN_SEGMENT
5628 #undef SEGMENT_AFTER_SEGMENT
5629 #undef SEGMENT_OVERLAPS
5630 return TRUE;
5631 }
5632
5633 /* Initialize private output section information from input section. */
5634
5635 bfd_boolean
5636 _bfd_elf_init_private_section_data (bfd *ibfd,
5637 asection *isec,
5638 bfd *obfd,
5639 asection *osec,
5640 struct bfd_link_info *link_info)
5641
5642 {
5643 Elf_Internal_Shdr *ihdr, *ohdr;
5644 bfd_boolean need_group = link_info == NULL || link_info->relocatable;
5645
5646 if (ibfd->xvec->flavour != bfd_target_elf_flavour
5647 || obfd->xvec->flavour != bfd_target_elf_flavour)
5648 return TRUE;
5649
5650 /* FIXME: What if the output ELF section type has been set to
5651 something different? */
5652 if (elf_section_type (osec) == SHT_NULL)
5653 elf_section_type (osec) = elf_section_type (isec);
5654
5655 /* Set things up for objcopy and relocatable link. The output
5656 SHT_GROUP section will have its elf_next_in_group pointing back
5657 to the input group members. Ignore linker created group section.
5658 See elfNN_ia64_object_p in elfxx-ia64.c. */
5659
5660 if (need_group)
5661 {
5662 if (elf_sec_group (isec) == NULL
5663 || (elf_sec_group (isec)->flags & SEC_LINKER_CREATED) == 0)
5664 {
5665 if (elf_section_flags (isec) & SHF_GROUP)
5666 elf_section_flags (osec) |= SHF_GROUP;
5667 elf_next_in_group (osec) = elf_next_in_group (isec);
5668 elf_group_name (osec) = elf_group_name (isec);
5669 }
5670 }
5671
5672 ihdr = &elf_section_data (isec)->this_hdr;
5673
5674 /* We need to handle elf_linked_to_section for SHF_LINK_ORDER. We
5675 don't use the output section of the linked-to section since it
5676 may be NULL at this point. */
5677 if ((ihdr->sh_flags & SHF_LINK_ORDER) != 0)
5678 {
5679 ohdr = &elf_section_data (osec)->this_hdr;
5680 ohdr->sh_flags |= SHF_LINK_ORDER;
5681 elf_linked_to_section (osec) = elf_linked_to_section (isec);
5682 }
5683
5684 osec->use_rela_p = isec->use_rela_p;
5685
5686 return TRUE;
5687 }
5688
5689 /* Copy private section information. This copies over the entsize
5690 field, and sometimes the info field. */
5691
5692 bfd_boolean
5693 _bfd_elf_copy_private_section_data (bfd *ibfd,
5694 asection *isec,
5695 bfd *obfd,
5696 asection *osec)
5697 {
5698 Elf_Internal_Shdr *ihdr, *ohdr;
5699
5700 if (ibfd->xvec->flavour != bfd_target_elf_flavour
5701 || obfd->xvec->flavour != bfd_target_elf_flavour)
5702 return TRUE;
5703
5704 ihdr = &elf_section_data (isec)->this_hdr;
5705 ohdr = &elf_section_data (osec)->this_hdr;
5706
5707 ohdr->sh_entsize = ihdr->sh_entsize;
5708
5709 if (ihdr->sh_type == SHT_SYMTAB
5710 || ihdr->sh_type == SHT_DYNSYM
5711 || ihdr->sh_type == SHT_GNU_verneed
5712 || ihdr->sh_type == SHT_GNU_verdef)
5713 ohdr->sh_info = ihdr->sh_info;
5714
5715 return _bfd_elf_init_private_section_data (ibfd, isec, obfd, osec,
5716 NULL);
5717 }
5718
5719 /* Copy private header information. */
5720
5721 bfd_boolean
5722 _bfd_elf_copy_private_header_data (bfd *ibfd, bfd *obfd)
5723 {
5724 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
5725 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
5726 return TRUE;
5727
5728 /* Copy over private BFD data if it has not already been copied.
5729 This must be done here, rather than in the copy_private_bfd_data
5730 entry point, because the latter is called after the section
5731 contents have been set, which means that the program headers have
5732 already been worked out. */
5733 if (elf_tdata (obfd)->segment_map == NULL && elf_tdata (ibfd)->phdr != NULL)
5734 {
5735 if (! copy_private_bfd_data (ibfd, obfd))
5736 return FALSE;
5737 }
5738
5739 return TRUE;
5740 }
5741
5742 /* Copy private symbol information. If this symbol is in a section
5743 which we did not map into a BFD section, try to map the section
5744 index correctly. We use special macro definitions for the mapped
5745 section indices; these definitions are interpreted by the
5746 swap_out_syms function. */
5747
5748 #define MAP_ONESYMTAB (SHN_HIOS + 1)
5749 #define MAP_DYNSYMTAB (SHN_HIOS + 2)
5750 #define MAP_STRTAB (SHN_HIOS + 3)
5751 #define MAP_SHSTRTAB (SHN_HIOS + 4)
5752 #define MAP_SYM_SHNDX (SHN_HIOS + 5)
5753
5754 bfd_boolean
5755 _bfd_elf_copy_private_symbol_data (bfd *ibfd,
5756 asymbol *isymarg,
5757 bfd *obfd,
5758 asymbol *osymarg)
5759 {
5760 elf_symbol_type *isym, *osym;
5761
5762 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
5763 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
5764 return TRUE;
5765
5766 isym = elf_symbol_from (ibfd, isymarg);
5767 osym = elf_symbol_from (obfd, osymarg);
5768
5769 if (isym != NULL
5770 && osym != NULL
5771 && bfd_is_abs_section (isym->symbol.section))
5772 {
5773 unsigned int shndx;
5774
5775 shndx = isym->internal_elf_sym.st_shndx;
5776 if (shndx == elf_onesymtab (ibfd))
5777 shndx = MAP_ONESYMTAB;
5778 else if (shndx == elf_dynsymtab (ibfd))
5779 shndx = MAP_DYNSYMTAB;
5780 else if (shndx == elf_tdata (ibfd)->strtab_section)
5781 shndx = MAP_STRTAB;
5782 else if (shndx == elf_tdata (ibfd)->shstrtab_section)
5783 shndx = MAP_SHSTRTAB;
5784 else if (shndx == elf_tdata (ibfd)->symtab_shndx_section)
5785 shndx = MAP_SYM_SHNDX;
5786 osym->internal_elf_sym.st_shndx = shndx;
5787 }
5788
5789 return TRUE;
5790 }
5791
5792 /* Swap out the symbols. */
5793
5794 static bfd_boolean
5795 swap_out_syms (bfd *abfd,
5796 struct bfd_strtab_hash **sttp,
5797 int relocatable_p)
5798 {
5799 const struct elf_backend_data *bed;
5800 int symcount;
5801 asymbol **syms;
5802 struct bfd_strtab_hash *stt;
5803 Elf_Internal_Shdr *symtab_hdr;
5804 Elf_Internal_Shdr *symtab_shndx_hdr;
5805 Elf_Internal_Shdr *symstrtab_hdr;
5806 bfd_byte *outbound_syms;
5807 bfd_byte *outbound_shndx;
5808 int idx;
5809 bfd_size_type amt;
5810 bfd_boolean name_local_sections;
5811
5812 if (!elf_map_symbols (abfd))
5813 return FALSE;
5814
5815 /* Dump out the symtabs. */
5816 stt = _bfd_elf_stringtab_init ();
5817 if (stt == NULL)
5818 return FALSE;
5819
5820 bed = get_elf_backend_data (abfd);
5821 symcount = bfd_get_symcount (abfd);
5822 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
5823 symtab_hdr->sh_type = SHT_SYMTAB;
5824 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
5825 symtab_hdr->sh_size = symtab_hdr->sh_entsize * (symcount + 1);
5826 symtab_hdr->sh_info = elf_num_locals (abfd) + 1;
5827 symtab_hdr->sh_addralign = 1 << bed->s->log_file_align;
5828
5829 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
5830 symstrtab_hdr->sh_type = SHT_STRTAB;
5831
5832 outbound_syms = bfd_alloc2 (abfd, 1 + symcount, bed->s->sizeof_sym);
5833 if (outbound_syms == NULL)
5834 {
5835 _bfd_stringtab_free (stt);
5836 return FALSE;
5837 }
5838 symtab_hdr->contents = outbound_syms;
5839
5840 outbound_shndx = NULL;
5841 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
5842 if (symtab_shndx_hdr->sh_name != 0)
5843 {
5844 amt = (bfd_size_type) (1 + symcount) * sizeof (Elf_External_Sym_Shndx);
5845 outbound_shndx = bfd_zalloc2 (abfd, 1 + symcount,
5846 sizeof (Elf_External_Sym_Shndx));
5847 if (outbound_shndx == NULL)
5848 {
5849 _bfd_stringtab_free (stt);
5850 return FALSE;
5851 }
5852
5853 symtab_shndx_hdr->contents = outbound_shndx;
5854 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
5855 symtab_shndx_hdr->sh_size = amt;
5856 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
5857 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
5858 }
5859
5860 /* Now generate the data (for "contents"). */
5861 {
5862 /* Fill in zeroth symbol and swap it out. */
5863 Elf_Internal_Sym sym;
5864 sym.st_name = 0;
5865 sym.st_value = 0;
5866 sym.st_size = 0;
5867 sym.st_info = 0;
5868 sym.st_other = 0;
5869 sym.st_shndx = SHN_UNDEF;
5870 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
5871 outbound_syms += bed->s->sizeof_sym;
5872 if (outbound_shndx != NULL)
5873 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
5874 }
5875
5876 name_local_sections
5877 = (bed->elf_backend_name_local_section_symbols
5878 && bed->elf_backend_name_local_section_symbols (abfd));
5879
5880 syms = bfd_get_outsymbols (abfd);
5881 for (idx = 0; idx < symcount; idx++)
5882 {
5883 Elf_Internal_Sym sym;
5884 bfd_vma value = syms[idx]->value;
5885 elf_symbol_type *type_ptr;
5886 flagword flags = syms[idx]->flags;
5887 int type;
5888
5889 if (!name_local_sections
5890 && (flags & (BSF_SECTION_SYM | BSF_GLOBAL)) == BSF_SECTION_SYM)
5891 {
5892 /* Local section symbols have no name. */
5893 sym.st_name = 0;
5894 }
5895 else
5896 {
5897 sym.st_name = (unsigned long) _bfd_stringtab_add (stt,
5898 syms[idx]->name,
5899 TRUE, FALSE);
5900 if (sym.st_name == (unsigned long) -1)
5901 {
5902 _bfd_stringtab_free (stt);
5903 return FALSE;
5904 }
5905 }
5906
5907 type_ptr = elf_symbol_from (abfd, syms[idx]);
5908
5909 if ((flags & BSF_SECTION_SYM) == 0
5910 && bfd_is_com_section (syms[idx]->section))
5911 {
5912 /* ELF common symbols put the alignment into the `value' field,
5913 and the size into the `size' field. This is backwards from
5914 how BFD handles it, so reverse it here. */
5915 sym.st_size = value;
5916 if (type_ptr == NULL
5917 || type_ptr->internal_elf_sym.st_value == 0)
5918 sym.st_value = value >= 16 ? 16 : (1 << bfd_log2 (value));
5919 else
5920 sym.st_value = type_ptr->internal_elf_sym.st_value;
5921 sym.st_shndx = _bfd_elf_section_from_bfd_section
5922 (abfd, syms[idx]->section);
5923 }
5924 else
5925 {
5926 asection *sec = syms[idx]->section;
5927 int shndx;
5928
5929 if (sec->output_section)
5930 {
5931 value += sec->output_offset;
5932 sec = sec->output_section;
5933 }
5934
5935 /* Don't add in the section vma for relocatable output. */
5936 if (! relocatable_p)
5937 value += sec->vma;
5938 sym.st_value = value;
5939 sym.st_size = type_ptr ? type_ptr->internal_elf_sym.st_size : 0;
5940
5941 if (bfd_is_abs_section (sec)
5942 && type_ptr != NULL
5943 && type_ptr->internal_elf_sym.st_shndx != 0)
5944 {
5945 /* This symbol is in a real ELF section which we did
5946 not create as a BFD section. Undo the mapping done
5947 by copy_private_symbol_data. */
5948 shndx = type_ptr->internal_elf_sym.st_shndx;
5949 switch (shndx)
5950 {
5951 case MAP_ONESYMTAB:
5952 shndx = elf_onesymtab (abfd);
5953 break;
5954 case MAP_DYNSYMTAB:
5955 shndx = elf_dynsymtab (abfd);
5956 break;
5957 case MAP_STRTAB:
5958 shndx = elf_tdata (abfd)->strtab_section;
5959 break;
5960 case MAP_SHSTRTAB:
5961 shndx = elf_tdata (abfd)->shstrtab_section;
5962 break;
5963 case MAP_SYM_SHNDX:
5964 shndx = elf_tdata (abfd)->symtab_shndx_section;
5965 break;
5966 default:
5967 break;
5968 }
5969 }
5970 else
5971 {
5972 shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
5973
5974 if (shndx == -1)
5975 {
5976 asection *sec2;
5977
5978 /* Writing this would be a hell of a lot easier if
5979 we had some decent documentation on bfd, and
5980 knew what to expect of the library, and what to
5981 demand of applications. For example, it
5982 appears that `objcopy' might not set the
5983 section of a symbol to be a section that is
5984 actually in the output file. */
5985 sec2 = bfd_get_section_by_name (abfd, sec->name);
5986 if (sec2 == NULL)
5987 {
5988 _bfd_error_handler (_("\
5989 Unable to find equivalent output section for symbol '%s' from section '%s'"),
5990 syms[idx]->name ? syms[idx]->name : "<Local sym>",
5991 sec->name);
5992 bfd_set_error (bfd_error_invalid_operation);
5993 _bfd_stringtab_free (stt);
5994 return FALSE;
5995 }
5996
5997 shndx = _bfd_elf_section_from_bfd_section (abfd, sec2);
5998 BFD_ASSERT (shndx != -1);
5999 }
6000 }
6001
6002 sym.st_shndx = shndx;
6003 }
6004
6005 if ((flags & BSF_THREAD_LOCAL) != 0)
6006 type = STT_TLS;
6007 else if ((flags & BSF_FUNCTION) != 0)
6008 type = STT_FUNC;
6009 else if ((flags & BSF_OBJECT) != 0)
6010 type = STT_OBJECT;
6011 else
6012 type = STT_NOTYPE;
6013
6014 if (syms[idx]->section->flags & SEC_THREAD_LOCAL)
6015 type = STT_TLS;
6016
6017 /* Processor-specific types. */
6018 if (type_ptr != NULL
6019 && bed->elf_backend_get_symbol_type)
6020 type = ((*bed->elf_backend_get_symbol_type)
6021 (&type_ptr->internal_elf_sym, type));
6022
6023 if (flags & BSF_SECTION_SYM)
6024 {
6025 if (flags & BSF_GLOBAL)
6026 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6027 else
6028 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
6029 }
6030 else if (bfd_is_com_section (syms[idx]->section))
6031 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
6032 else if (bfd_is_und_section (syms[idx]->section))
6033 sym.st_info = ELF_ST_INFO (((flags & BSF_WEAK)
6034 ? STB_WEAK
6035 : STB_GLOBAL),
6036 type);
6037 else if (flags & BSF_FILE)
6038 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
6039 else
6040 {
6041 int bind = STB_LOCAL;
6042
6043 if (flags & BSF_LOCAL)
6044 bind = STB_LOCAL;
6045 else if (flags & BSF_WEAK)
6046 bind = STB_WEAK;
6047 else if (flags & BSF_GLOBAL)
6048 bind = STB_GLOBAL;
6049
6050 sym.st_info = ELF_ST_INFO (bind, type);
6051 }
6052
6053 if (type_ptr != NULL)
6054 sym.st_other = type_ptr->internal_elf_sym.st_other;
6055 else
6056 sym.st_other = 0;
6057
6058 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
6059 outbound_syms += bed->s->sizeof_sym;
6060 if (outbound_shndx != NULL)
6061 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
6062 }
6063
6064 *sttp = stt;
6065 symstrtab_hdr->sh_size = _bfd_stringtab_size (stt);
6066 symstrtab_hdr->sh_type = SHT_STRTAB;
6067
6068 symstrtab_hdr->sh_flags = 0;
6069 symstrtab_hdr->sh_addr = 0;
6070 symstrtab_hdr->sh_entsize = 0;
6071 symstrtab_hdr->sh_link = 0;
6072 symstrtab_hdr->sh_info = 0;
6073 symstrtab_hdr->sh_addralign = 1;
6074
6075 return TRUE;
6076 }
6077
6078 /* Return the number of bytes required to hold the symtab vector.
6079
6080 Note that we base it on the count plus 1, since we will null terminate
6081 the vector allocated based on this size. However, the ELF symbol table
6082 always has a dummy entry as symbol #0, so it ends up even. */
6083
6084 long
6085 _bfd_elf_get_symtab_upper_bound (bfd *abfd)
6086 {
6087 long symcount;
6088 long symtab_size;
6089 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->symtab_hdr;
6090
6091 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
6092 symtab_size = (symcount + 1) * (sizeof (asymbol *));
6093 if (symcount > 0)
6094 symtab_size -= sizeof (asymbol *);
6095
6096 return symtab_size;
6097 }
6098
6099 long
6100 _bfd_elf_get_dynamic_symtab_upper_bound (bfd *abfd)
6101 {
6102 long symcount;
6103 long symtab_size;
6104 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->dynsymtab_hdr;
6105
6106 if (elf_dynsymtab (abfd) == 0)
6107 {
6108 bfd_set_error (bfd_error_invalid_operation);
6109 return -1;
6110 }
6111
6112 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
6113 symtab_size = (symcount + 1) * (sizeof (asymbol *));
6114 if (symcount > 0)
6115 symtab_size -= sizeof (asymbol *);
6116
6117 return symtab_size;
6118 }
6119
6120 long
6121 _bfd_elf_get_reloc_upper_bound (bfd *abfd ATTRIBUTE_UNUSED,
6122 sec_ptr asect)
6123 {
6124 return (asect->reloc_count + 1) * sizeof (arelent *);
6125 }
6126
6127 /* Canonicalize the relocs. */
6128
6129 long
6130 _bfd_elf_canonicalize_reloc (bfd *abfd,
6131 sec_ptr section,
6132 arelent **relptr,
6133 asymbol **symbols)
6134 {
6135 arelent *tblptr;
6136 unsigned int i;
6137 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6138
6139 if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE))
6140 return -1;
6141
6142 tblptr = section->relocation;
6143 for (i = 0; i < section->reloc_count; i++)
6144 *relptr++ = tblptr++;
6145
6146 *relptr = NULL;
6147
6148 return section->reloc_count;
6149 }
6150
6151 long
6152 _bfd_elf_canonicalize_symtab (bfd *abfd, asymbol **allocation)
6153 {
6154 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6155 long symcount = bed->s->slurp_symbol_table (abfd, allocation, FALSE);
6156
6157 if (symcount >= 0)
6158 bfd_get_symcount (abfd) = symcount;
6159 return symcount;
6160 }
6161
6162 long
6163 _bfd_elf_canonicalize_dynamic_symtab (bfd *abfd,
6164 asymbol **allocation)
6165 {
6166 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6167 long symcount = bed->s->slurp_symbol_table (abfd, allocation, TRUE);
6168
6169 if (symcount >= 0)
6170 bfd_get_dynamic_symcount (abfd) = symcount;
6171 return symcount;
6172 }
6173
6174 /* Return the size required for the dynamic reloc entries. Any loadable
6175 section that was actually installed in the BFD, and has type SHT_REL
6176 or SHT_RELA, and uses the dynamic symbol table, is considered to be a
6177 dynamic reloc section. */
6178
6179 long
6180 _bfd_elf_get_dynamic_reloc_upper_bound (bfd *abfd)
6181 {
6182 long ret;
6183 asection *s;
6184
6185 if (elf_dynsymtab (abfd) == 0)
6186 {
6187 bfd_set_error (bfd_error_invalid_operation);
6188 return -1;
6189 }
6190
6191 ret = sizeof (arelent *);
6192 for (s = abfd->sections; s != NULL; s = s->next)
6193 if ((s->flags & SEC_LOAD) != 0
6194 && elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
6195 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
6196 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
6197 ret += ((s->size / elf_section_data (s)->this_hdr.sh_entsize)
6198 * sizeof (arelent *));
6199
6200 return ret;
6201 }
6202
6203 /* Canonicalize the dynamic relocation entries. Note that we return the
6204 dynamic relocations as a single block, although they are actually
6205 associated with particular sections; the interface, which was
6206 designed for SunOS style shared libraries, expects that there is only
6207 one set of dynamic relocs. Any loadable section that was actually
6208 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses the
6209 dynamic symbol table, is considered to be a dynamic reloc section. */
6210
6211 long
6212 _bfd_elf_canonicalize_dynamic_reloc (bfd *abfd,
6213 arelent **storage,
6214 asymbol **syms)
6215 {
6216 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
6217 asection *s;
6218 long ret;
6219
6220 if (elf_dynsymtab (abfd) == 0)
6221 {
6222 bfd_set_error (bfd_error_invalid_operation);
6223 return -1;
6224 }
6225
6226 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
6227 ret = 0;
6228 for (s = abfd->sections; s != NULL; s = s->next)
6229 {
6230 if ((s->flags & SEC_LOAD) != 0
6231 && elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
6232 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
6233 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
6234 {
6235 arelent *p;
6236 long count, i;
6237
6238 if (! (*slurp_relocs) (abfd, s, syms, TRUE))
6239 return -1;
6240 count = s->size / elf_section_data (s)->this_hdr.sh_entsize;
6241 p = s->relocation;
6242 for (i = 0; i < count; i++)
6243 *storage++ = p++;
6244 ret += count;
6245 }
6246 }
6247
6248 *storage = NULL;
6249
6250 return ret;
6251 }
6252 \f
6253 /* Read in the version information. */
6254
6255 bfd_boolean
6256 _bfd_elf_slurp_version_tables (bfd *abfd, bfd_boolean default_imported_symver)
6257 {
6258 bfd_byte *contents = NULL;
6259 unsigned int freeidx = 0;
6260
6261 if (elf_dynverref (abfd) != 0)
6262 {
6263 Elf_Internal_Shdr *hdr;
6264 Elf_External_Verneed *everneed;
6265 Elf_Internal_Verneed *iverneed;
6266 unsigned int i;
6267 bfd_byte *contents_end;
6268
6269 hdr = &elf_tdata (abfd)->dynverref_hdr;
6270
6271 elf_tdata (abfd)->verref = bfd_zalloc2 (abfd, hdr->sh_info,
6272 sizeof (Elf_Internal_Verneed));
6273 if (elf_tdata (abfd)->verref == NULL)
6274 goto error_return;
6275
6276 elf_tdata (abfd)->cverrefs = hdr->sh_info;
6277
6278 contents = bfd_malloc (hdr->sh_size);
6279 if (contents == NULL)
6280 {
6281 error_return_verref:
6282 elf_tdata (abfd)->verref = NULL;
6283 elf_tdata (abfd)->cverrefs = 0;
6284 goto error_return;
6285 }
6286 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
6287 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
6288 goto error_return_verref;
6289
6290 if (hdr->sh_info && hdr->sh_size < sizeof (Elf_External_Verneed))
6291 goto error_return_verref;
6292
6293 BFD_ASSERT (sizeof (Elf_External_Verneed)
6294 == sizeof (Elf_External_Vernaux));
6295 contents_end = contents + hdr->sh_size - sizeof (Elf_External_Verneed);
6296 everneed = (Elf_External_Verneed *) contents;
6297 iverneed = elf_tdata (abfd)->verref;
6298 for (i = 0; i < hdr->sh_info; i++, iverneed++)
6299 {
6300 Elf_External_Vernaux *evernaux;
6301 Elf_Internal_Vernaux *ivernaux;
6302 unsigned int j;
6303
6304 _bfd_elf_swap_verneed_in (abfd, everneed, iverneed);
6305
6306 iverneed->vn_bfd = abfd;
6307
6308 iverneed->vn_filename =
6309 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
6310 iverneed->vn_file);
6311 if (iverneed->vn_filename == NULL)
6312 goto error_return_verref;
6313
6314 if (iverneed->vn_cnt == 0)
6315 iverneed->vn_auxptr = NULL;
6316 else
6317 {
6318 iverneed->vn_auxptr = bfd_alloc2 (abfd, iverneed->vn_cnt,
6319 sizeof (Elf_Internal_Vernaux));
6320 if (iverneed->vn_auxptr == NULL)
6321 goto error_return_verref;
6322 }
6323
6324 if (iverneed->vn_aux
6325 > (size_t) (contents_end - (bfd_byte *) everneed))
6326 goto error_return_verref;
6327
6328 evernaux = ((Elf_External_Vernaux *)
6329 ((bfd_byte *) everneed + iverneed->vn_aux));
6330 ivernaux = iverneed->vn_auxptr;
6331 for (j = 0; j < iverneed->vn_cnt; j++, ivernaux++)
6332 {
6333 _bfd_elf_swap_vernaux_in (abfd, evernaux, ivernaux);
6334
6335 ivernaux->vna_nodename =
6336 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
6337 ivernaux->vna_name);
6338 if (ivernaux->vna_nodename == NULL)
6339 goto error_return_verref;
6340
6341 if (j + 1 < iverneed->vn_cnt)
6342 ivernaux->vna_nextptr = ivernaux + 1;
6343 else
6344 ivernaux->vna_nextptr = NULL;
6345
6346 if (ivernaux->vna_next
6347 > (size_t) (contents_end - (bfd_byte *) evernaux))
6348 goto error_return_verref;
6349
6350 evernaux = ((Elf_External_Vernaux *)
6351 ((bfd_byte *) evernaux + ivernaux->vna_next));
6352
6353 if (ivernaux->vna_other > freeidx)
6354 freeidx = ivernaux->vna_other;
6355 }
6356
6357 if (i + 1 < hdr->sh_info)
6358 iverneed->vn_nextref = iverneed + 1;
6359 else
6360 iverneed->vn_nextref = NULL;
6361
6362 if (iverneed->vn_next
6363 > (size_t) (contents_end - (bfd_byte *) everneed))
6364 goto error_return_verref;
6365
6366 everneed = ((Elf_External_Verneed *)
6367 ((bfd_byte *) everneed + iverneed->vn_next));
6368 }
6369
6370 free (contents);
6371 contents = NULL;
6372 }
6373
6374 if (elf_dynverdef (abfd) != 0)
6375 {
6376 Elf_Internal_Shdr *hdr;
6377 Elf_External_Verdef *everdef;
6378 Elf_Internal_Verdef *iverdef;
6379 Elf_Internal_Verdef *iverdefarr;
6380 Elf_Internal_Verdef iverdefmem;
6381 unsigned int i;
6382 unsigned int maxidx;
6383 bfd_byte *contents_end_def, *contents_end_aux;
6384
6385 hdr = &elf_tdata (abfd)->dynverdef_hdr;
6386
6387 contents = bfd_malloc (hdr->sh_size);
6388 if (contents == NULL)
6389 goto error_return;
6390 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
6391 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
6392 goto error_return;
6393
6394 if (hdr->sh_info && hdr->sh_size < sizeof (Elf_External_Verdef))
6395 goto error_return;
6396
6397 BFD_ASSERT (sizeof (Elf_External_Verdef)
6398 >= sizeof (Elf_External_Verdaux));
6399 contents_end_def = contents + hdr->sh_size
6400 - sizeof (Elf_External_Verdef);
6401 contents_end_aux = contents + hdr->sh_size
6402 - sizeof (Elf_External_Verdaux);
6403
6404 /* We know the number of entries in the section but not the maximum
6405 index. Therefore we have to run through all entries and find
6406 the maximum. */
6407 everdef = (Elf_External_Verdef *) contents;
6408 maxidx = 0;
6409 for (i = 0; i < hdr->sh_info; ++i)
6410 {
6411 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
6412
6413 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) > maxidx)
6414 maxidx = iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION);
6415
6416 if (iverdefmem.vd_next
6417 > (size_t) (contents_end_def - (bfd_byte *) everdef))
6418 goto error_return;
6419
6420 everdef = ((Elf_External_Verdef *)
6421 ((bfd_byte *) everdef + iverdefmem.vd_next));
6422 }
6423
6424 if (default_imported_symver)
6425 {
6426 if (freeidx > maxidx)
6427 maxidx = ++freeidx;
6428 else
6429 freeidx = ++maxidx;
6430 }
6431 elf_tdata (abfd)->verdef = bfd_zalloc2 (abfd, maxidx,
6432 sizeof (Elf_Internal_Verdef));
6433 if (elf_tdata (abfd)->verdef == NULL)
6434 goto error_return;
6435
6436 elf_tdata (abfd)->cverdefs = maxidx;
6437
6438 everdef = (Elf_External_Verdef *) contents;
6439 iverdefarr = elf_tdata (abfd)->verdef;
6440 for (i = 0; i < hdr->sh_info; i++)
6441 {
6442 Elf_External_Verdaux *everdaux;
6443 Elf_Internal_Verdaux *iverdaux;
6444 unsigned int j;
6445
6446 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
6447
6448 if ((iverdefmem.vd_ndx & VERSYM_VERSION) == 0)
6449 {
6450 error_return_verdef:
6451 elf_tdata (abfd)->verdef = NULL;
6452 elf_tdata (abfd)->cverdefs = 0;
6453 goto error_return;
6454 }
6455
6456 iverdef = &iverdefarr[(iverdefmem.vd_ndx & VERSYM_VERSION) - 1];
6457 memcpy (iverdef, &iverdefmem, sizeof (Elf_Internal_Verdef));
6458
6459 iverdef->vd_bfd = abfd;
6460
6461 if (iverdef->vd_cnt == 0)
6462 iverdef->vd_auxptr = NULL;
6463 else
6464 {
6465 iverdef->vd_auxptr = bfd_alloc2 (abfd, iverdef->vd_cnt,
6466 sizeof (Elf_Internal_Verdaux));
6467 if (iverdef->vd_auxptr == NULL)
6468 goto error_return_verdef;
6469 }
6470
6471 if (iverdef->vd_aux
6472 > (size_t) (contents_end_aux - (bfd_byte *) everdef))
6473 goto error_return_verdef;
6474
6475 everdaux = ((Elf_External_Verdaux *)
6476 ((bfd_byte *) everdef + iverdef->vd_aux));
6477 iverdaux = iverdef->vd_auxptr;
6478 for (j = 0; j < iverdef->vd_cnt; j++, iverdaux++)
6479 {
6480 _bfd_elf_swap_verdaux_in (abfd, everdaux, iverdaux);
6481
6482 iverdaux->vda_nodename =
6483 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
6484 iverdaux->vda_name);
6485 if (iverdaux->vda_nodename == NULL)
6486 goto error_return_verdef;
6487
6488 if (j + 1 < iverdef->vd_cnt)
6489 iverdaux->vda_nextptr = iverdaux + 1;
6490 else
6491 iverdaux->vda_nextptr = NULL;
6492
6493 if (iverdaux->vda_next
6494 > (size_t) (contents_end_aux - (bfd_byte *) everdaux))
6495 goto error_return_verdef;
6496
6497 everdaux = ((Elf_External_Verdaux *)
6498 ((bfd_byte *) everdaux + iverdaux->vda_next));
6499 }
6500
6501 if (iverdef->vd_cnt)
6502 iverdef->vd_nodename = iverdef->vd_auxptr->vda_nodename;
6503
6504 if ((size_t) (iverdef - iverdefarr) + 1 < maxidx)
6505 iverdef->vd_nextdef = iverdef + 1;
6506 else
6507 iverdef->vd_nextdef = NULL;
6508
6509 everdef = ((Elf_External_Verdef *)
6510 ((bfd_byte *) everdef + iverdef->vd_next));
6511 }
6512
6513 free (contents);
6514 contents = NULL;
6515 }
6516 else if (default_imported_symver)
6517 {
6518 if (freeidx < 3)
6519 freeidx = 3;
6520 else
6521 freeidx++;
6522
6523 elf_tdata (abfd)->verdef = bfd_zalloc2 (abfd, freeidx,
6524 sizeof (Elf_Internal_Verdef));
6525 if (elf_tdata (abfd)->verdef == NULL)
6526 goto error_return;
6527
6528 elf_tdata (abfd)->cverdefs = freeidx;
6529 }
6530
6531 /* Create a default version based on the soname. */
6532 if (default_imported_symver)
6533 {
6534 Elf_Internal_Verdef *iverdef;
6535 Elf_Internal_Verdaux *iverdaux;
6536
6537 iverdef = &elf_tdata (abfd)->verdef[freeidx - 1];;
6538
6539 iverdef->vd_version = VER_DEF_CURRENT;
6540 iverdef->vd_flags = 0;
6541 iverdef->vd_ndx = freeidx;
6542 iverdef->vd_cnt = 1;
6543
6544 iverdef->vd_bfd = abfd;
6545
6546 iverdef->vd_nodename = bfd_elf_get_dt_soname (abfd);
6547 if (iverdef->vd_nodename == NULL)
6548 goto error_return_verdef;
6549 iverdef->vd_nextdef = NULL;
6550 iverdef->vd_auxptr = bfd_alloc (abfd, sizeof (Elf_Internal_Verdaux));
6551 if (iverdef->vd_auxptr == NULL)
6552 goto error_return_verdef;
6553
6554 iverdaux = iverdef->vd_auxptr;
6555 iverdaux->vda_nodename = iverdef->vd_nodename;
6556 iverdaux->vda_nextptr = NULL;
6557 }
6558
6559 return TRUE;
6560
6561 error_return:
6562 if (contents != NULL)
6563 free (contents);
6564 return FALSE;
6565 }
6566 \f
6567 asymbol *
6568 _bfd_elf_make_empty_symbol (bfd *abfd)
6569 {
6570 elf_symbol_type *newsym;
6571 bfd_size_type amt = sizeof (elf_symbol_type);
6572
6573 newsym = bfd_zalloc (abfd, amt);
6574 if (!newsym)
6575 return NULL;
6576 else
6577 {
6578 newsym->symbol.the_bfd = abfd;
6579 return &newsym->symbol;
6580 }
6581 }
6582
6583 void
6584 _bfd_elf_get_symbol_info (bfd *abfd ATTRIBUTE_UNUSED,
6585 asymbol *symbol,
6586 symbol_info *ret)
6587 {
6588 bfd_symbol_info (symbol, ret);
6589 }
6590
6591 /* Return whether a symbol name implies a local symbol. Most targets
6592 use this function for the is_local_label_name entry point, but some
6593 override it. */
6594
6595 bfd_boolean
6596 _bfd_elf_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED,
6597 const char *name)
6598 {
6599 /* Normal local symbols start with ``.L''. */
6600 if (name[0] == '.' && name[1] == 'L')
6601 return TRUE;
6602
6603 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
6604 DWARF debugging symbols starting with ``..''. */
6605 if (name[0] == '.' && name[1] == '.')
6606 return TRUE;
6607
6608 /* gcc will sometimes generate symbols beginning with ``_.L_'' when
6609 emitting DWARF debugging output. I suspect this is actually a
6610 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
6611 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
6612 underscore to be emitted on some ELF targets). For ease of use,
6613 we treat such symbols as local. */
6614 if (name[0] == '_' && name[1] == '.' && name[2] == 'L' && name[3] == '_')
6615 return TRUE;
6616
6617 return FALSE;
6618 }
6619
6620 alent *
6621 _bfd_elf_get_lineno (bfd *abfd ATTRIBUTE_UNUSED,
6622 asymbol *symbol ATTRIBUTE_UNUSED)
6623 {
6624 abort ();
6625 return NULL;
6626 }
6627
6628 bfd_boolean
6629 _bfd_elf_set_arch_mach (bfd *abfd,
6630 enum bfd_architecture arch,
6631 unsigned long machine)
6632 {
6633 /* If this isn't the right architecture for this backend, and this
6634 isn't the generic backend, fail. */
6635 if (arch != get_elf_backend_data (abfd)->arch
6636 && arch != bfd_arch_unknown
6637 && get_elf_backend_data (abfd)->arch != bfd_arch_unknown)
6638 return FALSE;
6639
6640 return bfd_default_set_arch_mach (abfd, arch, machine);
6641 }
6642
6643 /* Find the function to a particular section and offset,
6644 for error reporting. */
6645
6646 static bfd_boolean
6647 elf_find_function (bfd *abfd ATTRIBUTE_UNUSED,
6648 asection *section,
6649 asymbol **symbols,
6650 bfd_vma offset,
6651 const char **filename_ptr,
6652 const char **functionname_ptr)
6653 {
6654 const char *filename;
6655 asymbol *func, *file;
6656 bfd_vma low_func;
6657 asymbol **p;
6658 /* ??? Given multiple file symbols, it is impossible to reliably
6659 choose the right file name for global symbols. File symbols are
6660 local symbols, and thus all file symbols must sort before any
6661 global symbols. The ELF spec may be interpreted to say that a
6662 file symbol must sort before other local symbols, but currently
6663 ld -r doesn't do this. So, for ld -r output, it is possible to
6664 make a better choice of file name for local symbols by ignoring
6665 file symbols appearing after a given local symbol. */
6666 enum { nothing_seen, symbol_seen, file_after_symbol_seen } state;
6667
6668 filename = NULL;
6669 func = NULL;
6670 file = NULL;
6671 low_func = 0;
6672 state = nothing_seen;
6673
6674 for (p = symbols; *p != NULL; p++)
6675 {
6676 elf_symbol_type *q;
6677
6678 q = (elf_symbol_type *) *p;
6679
6680 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
6681 {
6682 default:
6683 break;
6684 case STT_FILE:
6685 file = &q->symbol;
6686 if (state == symbol_seen)
6687 state = file_after_symbol_seen;
6688 continue;
6689 case STT_NOTYPE:
6690 case STT_FUNC:
6691 if (bfd_get_section (&q->symbol) == section
6692 && q->symbol.value >= low_func
6693 && q->symbol.value <= offset)
6694 {
6695 func = (asymbol *) q;
6696 low_func = q->symbol.value;
6697 filename = NULL;
6698 if (file != NULL
6699 && (ELF_ST_BIND (q->internal_elf_sym.st_info) == STB_LOCAL
6700 || state != file_after_symbol_seen))
6701 filename = bfd_asymbol_name (file);
6702 }
6703 break;
6704 }
6705 if (state == nothing_seen)
6706 state = symbol_seen;
6707 }
6708
6709 if (func == NULL)
6710 return FALSE;
6711
6712 if (filename_ptr)
6713 *filename_ptr = filename;
6714 if (functionname_ptr)
6715 *functionname_ptr = bfd_asymbol_name (func);
6716
6717 return TRUE;
6718 }
6719
6720 /* Find the nearest line to a particular section and offset,
6721 for error reporting. */
6722
6723 bfd_boolean
6724 _bfd_elf_find_nearest_line (bfd *abfd,
6725 asection *section,
6726 asymbol **symbols,
6727 bfd_vma offset,
6728 const char **filename_ptr,
6729 const char **functionname_ptr,
6730 unsigned int *line_ptr)
6731 {
6732 bfd_boolean found;
6733
6734 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
6735 filename_ptr, functionname_ptr,
6736 line_ptr))
6737 {
6738 if (!*functionname_ptr)
6739 elf_find_function (abfd, section, symbols, offset,
6740 *filename_ptr ? NULL : filename_ptr,
6741 functionname_ptr);
6742
6743 return TRUE;
6744 }
6745
6746 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
6747 filename_ptr, functionname_ptr,
6748 line_ptr, 0,
6749 &elf_tdata (abfd)->dwarf2_find_line_info))
6750 {
6751 if (!*functionname_ptr)
6752 elf_find_function (abfd, section, symbols, offset,
6753 *filename_ptr ? NULL : filename_ptr,
6754 functionname_ptr);
6755
6756 return TRUE;
6757 }
6758
6759 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
6760 &found, filename_ptr,
6761 functionname_ptr, line_ptr,
6762 &elf_tdata (abfd)->line_info))
6763 return FALSE;
6764 if (found && (*functionname_ptr || *line_ptr))
6765 return TRUE;
6766
6767 if (symbols == NULL)
6768 return FALSE;
6769
6770 if (! elf_find_function (abfd, section, symbols, offset,
6771 filename_ptr, functionname_ptr))
6772 return FALSE;
6773
6774 *line_ptr = 0;
6775 return TRUE;
6776 }
6777
6778 /* Find the line for a symbol. */
6779
6780 bfd_boolean
6781 _bfd_elf_find_line (bfd *abfd, asymbol **symbols, asymbol *symbol,
6782 const char **filename_ptr, unsigned int *line_ptr)
6783 {
6784 return _bfd_dwarf2_find_line (abfd, symbols, symbol,
6785 filename_ptr, line_ptr, 0,
6786 &elf_tdata (abfd)->dwarf2_find_line_info);
6787 }
6788
6789 /* After a call to bfd_find_nearest_line, successive calls to
6790 bfd_find_inliner_info can be used to get source information about
6791 each level of function inlining that terminated at the address
6792 passed to bfd_find_nearest_line. Currently this is only supported
6793 for DWARF2 with appropriate DWARF3 extensions. */
6794
6795 bfd_boolean
6796 _bfd_elf_find_inliner_info (bfd *abfd,
6797 const char **filename_ptr,
6798 const char **functionname_ptr,
6799 unsigned int *line_ptr)
6800 {
6801 bfd_boolean found;
6802 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
6803 functionname_ptr, line_ptr,
6804 & elf_tdata (abfd)->dwarf2_find_line_info);
6805 return found;
6806 }
6807
6808 int
6809 _bfd_elf_sizeof_headers (bfd *abfd, bfd_boolean reloc)
6810 {
6811 int ret;
6812
6813 ret = get_elf_backend_data (abfd)->s->sizeof_ehdr;
6814 if (! reloc)
6815 ret += get_program_header_size (abfd);
6816 return ret;
6817 }
6818
6819 bfd_boolean
6820 _bfd_elf_set_section_contents (bfd *abfd,
6821 sec_ptr section,
6822 const void *location,
6823 file_ptr offset,
6824 bfd_size_type count)
6825 {
6826 Elf_Internal_Shdr *hdr;
6827 bfd_signed_vma pos;
6828
6829 if (! abfd->output_has_begun
6830 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
6831 return FALSE;
6832
6833 hdr = &elf_section_data (section)->this_hdr;
6834 pos = hdr->sh_offset + offset;
6835 if (bfd_seek (abfd, pos, SEEK_SET) != 0
6836 || bfd_bwrite (location, count, abfd) != count)
6837 return FALSE;
6838
6839 return TRUE;
6840 }
6841
6842 void
6843 _bfd_elf_no_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED,
6844 arelent *cache_ptr ATTRIBUTE_UNUSED,
6845 Elf_Internal_Rela *dst ATTRIBUTE_UNUSED)
6846 {
6847 abort ();
6848 }
6849
6850 /* Try to convert a non-ELF reloc into an ELF one. */
6851
6852 bfd_boolean
6853 _bfd_elf_validate_reloc (bfd *abfd, arelent *areloc)
6854 {
6855 /* Check whether we really have an ELF howto. */
6856
6857 if ((*areloc->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec)
6858 {
6859 bfd_reloc_code_real_type code;
6860 reloc_howto_type *howto;
6861
6862 /* Alien reloc: Try to determine its type to replace it with an
6863 equivalent ELF reloc. */
6864
6865 if (areloc->howto->pc_relative)
6866 {
6867 switch (areloc->howto->bitsize)
6868 {
6869 case 8:
6870 code = BFD_RELOC_8_PCREL;
6871 break;
6872 case 12:
6873 code = BFD_RELOC_12_PCREL;
6874 break;
6875 case 16:
6876 code = BFD_RELOC_16_PCREL;
6877 break;
6878 case 24:
6879 code = BFD_RELOC_24_PCREL;
6880 break;
6881 case 32:
6882 code = BFD_RELOC_32_PCREL;
6883 break;
6884 case 64:
6885 code = BFD_RELOC_64_PCREL;
6886 break;
6887 default:
6888 goto fail;
6889 }
6890
6891 howto = bfd_reloc_type_lookup (abfd, code);
6892
6893 if (areloc->howto->pcrel_offset != howto->pcrel_offset)
6894 {
6895 if (howto->pcrel_offset)
6896 areloc->addend += areloc->address;
6897 else
6898 areloc->addend -= areloc->address; /* addend is unsigned!! */
6899 }
6900 }
6901 else
6902 {
6903 switch (areloc->howto->bitsize)
6904 {
6905 case 8:
6906 code = BFD_RELOC_8;
6907 break;
6908 case 14:
6909 code = BFD_RELOC_14;
6910 break;
6911 case 16:
6912 code = BFD_RELOC_16;
6913 break;
6914 case 26:
6915 code = BFD_RELOC_26;
6916 break;
6917 case 32:
6918 code = BFD_RELOC_32;
6919 break;
6920 case 64:
6921 code = BFD_RELOC_64;
6922 break;
6923 default:
6924 goto fail;
6925 }
6926
6927 howto = bfd_reloc_type_lookup (abfd, code);
6928 }
6929
6930 if (howto)
6931 areloc->howto = howto;
6932 else
6933 goto fail;
6934 }
6935
6936 return TRUE;
6937
6938 fail:
6939 (*_bfd_error_handler)
6940 (_("%B: unsupported relocation type %s"),
6941 abfd, areloc->howto->name);
6942 bfd_set_error (bfd_error_bad_value);
6943 return FALSE;
6944 }
6945
6946 bfd_boolean
6947 _bfd_elf_close_and_cleanup (bfd *abfd)
6948 {
6949 if (bfd_get_format (abfd) == bfd_object)
6950 {
6951 if (elf_shstrtab (abfd) != NULL)
6952 _bfd_elf_strtab_free (elf_shstrtab (abfd));
6953 _bfd_dwarf2_cleanup_debug_info (abfd);
6954 }
6955
6956 return _bfd_generic_close_and_cleanup (abfd);
6957 }
6958
6959 /* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
6960 in the relocation's offset. Thus we cannot allow any sort of sanity
6961 range-checking to interfere. There is nothing else to do in processing
6962 this reloc. */
6963
6964 bfd_reloc_status_type
6965 _bfd_elf_rel_vtable_reloc_fn
6966 (bfd *abfd ATTRIBUTE_UNUSED, arelent *re ATTRIBUTE_UNUSED,
6967 struct bfd_symbol *symbol ATTRIBUTE_UNUSED,
6968 void *data ATTRIBUTE_UNUSED, asection *is ATTRIBUTE_UNUSED,
6969 bfd *obfd ATTRIBUTE_UNUSED, char **errmsg ATTRIBUTE_UNUSED)
6970 {
6971 return bfd_reloc_ok;
6972 }
6973 \f
6974 /* Elf core file support. Much of this only works on native
6975 toolchains, since we rely on knowing the
6976 machine-dependent procfs structure in order to pick
6977 out details about the corefile. */
6978
6979 #ifdef HAVE_SYS_PROCFS_H
6980 # include <sys/procfs.h>
6981 #endif
6982
6983 /* FIXME: this is kinda wrong, but it's what gdb wants. */
6984
6985 static int
6986 elfcore_make_pid (bfd *abfd)
6987 {
6988 return ((elf_tdata (abfd)->core_lwpid << 16)
6989 + (elf_tdata (abfd)->core_pid));
6990 }
6991
6992 /* If there isn't a section called NAME, make one, using
6993 data from SECT. Note, this function will generate a
6994 reference to NAME, so you shouldn't deallocate or
6995 overwrite it. */
6996
6997 static bfd_boolean
6998 elfcore_maybe_make_sect (bfd *abfd, char *name, asection *sect)
6999 {
7000 asection *sect2;
7001
7002 if (bfd_get_section_by_name (abfd, name) != NULL)
7003 return TRUE;
7004
7005 sect2 = bfd_make_section (abfd, name);
7006 if (sect2 == NULL)
7007 return FALSE;
7008
7009 sect2->size = sect->size;
7010 sect2->filepos = sect->filepos;
7011 sect2->flags = sect->flags;
7012 sect2->alignment_power = sect->alignment_power;
7013 return TRUE;
7014 }
7015
7016 /* Create a pseudosection containing SIZE bytes at FILEPOS. This
7017 actually creates up to two pseudosections:
7018 - For the single-threaded case, a section named NAME, unless
7019 such a section already exists.
7020 - For the multi-threaded case, a section named "NAME/PID", where
7021 PID is elfcore_make_pid (abfd).
7022 Both pseudosections have identical contents. */
7023 bfd_boolean
7024 _bfd_elfcore_make_pseudosection (bfd *abfd,
7025 char *name,
7026 size_t size,
7027 ufile_ptr filepos)
7028 {
7029 char buf[100];
7030 char *threaded_name;
7031 size_t len;
7032 asection *sect;
7033
7034 /* Build the section name. */
7035
7036 sprintf (buf, "%s/%d", name, elfcore_make_pid (abfd));
7037 len = strlen (buf) + 1;
7038 threaded_name = bfd_alloc (abfd, len);
7039 if (threaded_name == NULL)
7040 return FALSE;
7041 memcpy (threaded_name, buf, len);
7042
7043 sect = bfd_make_section_anyway (abfd, threaded_name);
7044 if (sect == NULL)
7045 return FALSE;
7046 sect->size = size;
7047 sect->filepos = filepos;
7048 sect->flags = SEC_HAS_CONTENTS;
7049 sect->alignment_power = 2;
7050
7051 return elfcore_maybe_make_sect (abfd, name, sect);
7052 }
7053
7054 /* prstatus_t exists on:
7055 solaris 2.5+
7056 linux 2.[01] + glibc
7057 unixware 4.2
7058 */
7059
7060 #if defined (HAVE_PRSTATUS_T)
7061
7062 static bfd_boolean
7063 elfcore_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
7064 {
7065 size_t size;
7066 int offset;
7067
7068 if (note->descsz == sizeof (prstatus_t))
7069 {
7070 prstatus_t prstat;
7071
7072 size = sizeof (prstat.pr_reg);
7073 offset = offsetof (prstatus_t, pr_reg);
7074 memcpy (&prstat, note->descdata, sizeof (prstat));
7075
7076 /* Do not overwrite the core signal if it
7077 has already been set by another thread. */
7078 if (elf_tdata (abfd)->core_signal == 0)
7079 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
7080 elf_tdata (abfd)->core_pid = prstat.pr_pid;
7081
7082 /* pr_who exists on:
7083 solaris 2.5+
7084 unixware 4.2
7085 pr_who doesn't exist on:
7086 linux 2.[01]
7087 */
7088 #if defined (HAVE_PRSTATUS_T_PR_WHO)
7089 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
7090 #endif
7091 }
7092 #if defined (HAVE_PRSTATUS32_T)
7093 else if (note->descsz == sizeof (prstatus32_t))
7094 {
7095 /* 64-bit host, 32-bit corefile */
7096 prstatus32_t prstat;
7097
7098 size = sizeof (prstat.pr_reg);
7099 offset = offsetof (prstatus32_t, pr_reg);
7100 memcpy (&prstat, note->descdata, sizeof (prstat));
7101
7102 /* Do not overwrite the core signal if it
7103 has already been set by another thread. */
7104 if (elf_tdata (abfd)->core_signal == 0)
7105 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
7106 elf_tdata (abfd)->core_pid = prstat.pr_pid;
7107
7108 /* pr_who exists on:
7109 solaris 2.5+
7110 unixware 4.2
7111 pr_who doesn't exist on:
7112 linux 2.[01]
7113 */
7114 #if defined (HAVE_PRSTATUS32_T_PR_WHO)
7115 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
7116 #endif
7117 }
7118 #endif /* HAVE_PRSTATUS32_T */
7119 else
7120 {
7121 /* Fail - we don't know how to handle any other
7122 note size (ie. data object type). */
7123 return TRUE;
7124 }
7125
7126 /* Make a ".reg/999" section and a ".reg" section. */
7127 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
7128 size, note->descpos + offset);
7129 }
7130 #endif /* defined (HAVE_PRSTATUS_T) */
7131
7132 /* Create a pseudosection containing the exact contents of NOTE. */
7133 static bfd_boolean
7134 elfcore_make_note_pseudosection (bfd *abfd,
7135 char *name,
7136 Elf_Internal_Note *note)
7137 {
7138 return _bfd_elfcore_make_pseudosection (abfd, name,
7139 note->descsz, note->descpos);
7140 }
7141
7142 /* There isn't a consistent prfpregset_t across platforms,
7143 but it doesn't matter, because we don't have to pick this
7144 data structure apart. */
7145
7146 static bfd_boolean
7147 elfcore_grok_prfpreg (bfd *abfd, Elf_Internal_Note *note)
7148 {
7149 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
7150 }
7151
7152 /* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
7153 type of 5 (NT_PRXFPREG). Just include the whole note's contents
7154 literally. */
7155
7156 static bfd_boolean
7157 elfcore_grok_prxfpreg (bfd *abfd, Elf_Internal_Note *note)
7158 {
7159 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
7160 }
7161
7162 #if defined (HAVE_PRPSINFO_T)
7163 typedef prpsinfo_t elfcore_psinfo_t;
7164 #if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
7165 typedef prpsinfo32_t elfcore_psinfo32_t;
7166 #endif
7167 #endif
7168
7169 #if defined (HAVE_PSINFO_T)
7170 typedef psinfo_t elfcore_psinfo_t;
7171 #if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
7172 typedef psinfo32_t elfcore_psinfo32_t;
7173 #endif
7174 #endif
7175
7176 /* return a malloc'ed copy of a string at START which is at
7177 most MAX bytes long, possibly without a terminating '\0'.
7178 the copy will always have a terminating '\0'. */
7179
7180 char *
7181 _bfd_elfcore_strndup (bfd *abfd, char *start, size_t max)
7182 {
7183 char *dups;
7184 char *end = memchr (start, '\0', max);
7185 size_t len;
7186
7187 if (end == NULL)
7188 len = max;
7189 else
7190 len = end - start;
7191
7192 dups = bfd_alloc (abfd, len + 1);
7193 if (dups == NULL)
7194 return NULL;
7195
7196 memcpy (dups, start, len);
7197 dups[len] = '\0';
7198
7199 return dups;
7200 }
7201
7202 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7203 static bfd_boolean
7204 elfcore_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
7205 {
7206 if (note->descsz == sizeof (elfcore_psinfo_t))
7207 {
7208 elfcore_psinfo_t psinfo;
7209
7210 memcpy (&psinfo, note->descdata, sizeof (psinfo));
7211
7212 elf_tdata (abfd)->core_program
7213 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
7214 sizeof (psinfo.pr_fname));
7215
7216 elf_tdata (abfd)->core_command
7217 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
7218 sizeof (psinfo.pr_psargs));
7219 }
7220 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
7221 else if (note->descsz == sizeof (elfcore_psinfo32_t))
7222 {
7223 /* 64-bit host, 32-bit corefile */
7224 elfcore_psinfo32_t psinfo;
7225
7226 memcpy (&psinfo, note->descdata, sizeof (psinfo));
7227
7228 elf_tdata (abfd)->core_program
7229 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
7230 sizeof (psinfo.pr_fname));
7231
7232 elf_tdata (abfd)->core_command
7233 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
7234 sizeof (psinfo.pr_psargs));
7235 }
7236 #endif
7237
7238 else
7239 {
7240 /* Fail - we don't know how to handle any other
7241 note size (ie. data object type). */
7242 return TRUE;
7243 }
7244
7245 /* Note that for some reason, a spurious space is tacked
7246 onto the end of the args in some (at least one anyway)
7247 implementations, so strip it off if it exists. */
7248
7249 {
7250 char *command = elf_tdata (abfd)->core_command;
7251 int n = strlen (command);
7252
7253 if (0 < n && command[n - 1] == ' ')
7254 command[n - 1] = '\0';
7255 }
7256
7257 return TRUE;
7258 }
7259 #endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
7260
7261 #if defined (HAVE_PSTATUS_T)
7262 static bfd_boolean
7263 elfcore_grok_pstatus (bfd *abfd, Elf_Internal_Note *note)
7264 {
7265 if (note->descsz == sizeof (pstatus_t)
7266 #if defined (HAVE_PXSTATUS_T)
7267 || note->descsz == sizeof (pxstatus_t)
7268 #endif
7269 )
7270 {
7271 pstatus_t pstat;
7272
7273 memcpy (&pstat, note->descdata, sizeof (pstat));
7274
7275 elf_tdata (abfd)->core_pid = pstat.pr_pid;
7276 }
7277 #if defined (HAVE_PSTATUS32_T)
7278 else if (note->descsz == sizeof (pstatus32_t))
7279 {
7280 /* 64-bit host, 32-bit corefile */
7281 pstatus32_t pstat;
7282
7283 memcpy (&pstat, note->descdata, sizeof (pstat));
7284
7285 elf_tdata (abfd)->core_pid = pstat.pr_pid;
7286 }
7287 #endif
7288 /* Could grab some more details from the "representative"
7289 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
7290 NT_LWPSTATUS note, presumably. */
7291
7292 return TRUE;
7293 }
7294 #endif /* defined (HAVE_PSTATUS_T) */
7295
7296 #if defined (HAVE_LWPSTATUS_T)
7297 static bfd_boolean
7298 elfcore_grok_lwpstatus (bfd *abfd, Elf_Internal_Note *note)
7299 {
7300 lwpstatus_t lwpstat;
7301 char buf[100];
7302 char *name;
7303 size_t len;
7304 asection *sect;
7305
7306 if (note->descsz != sizeof (lwpstat)
7307 #if defined (HAVE_LWPXSTATUS_T)
7308 && note->descsz != sizeof (lwpxstatus_t)
7309 #endif
7310 )
7311 return TRUE;
7312
7313 memcpy (&lwpstat, note->descdata, sizeof (lwpstat));
7314
7315 elf_tdata (abfd)->core_lwpid = lwpstat.pr_lwpid;
7316 elf_tdata (abfd)->core_signal = lwpstat.pr_cursig;
7317
7318 /* Make a ".reg/999" section. */
7319
7320 sprintf (buf, ".reg/%d", elfcore_make_pid (abfd));
7321 len = strlen (buf) + 1;
7322 name = bfd_alloc (abfd, len);
7323 if (name == NULL)
7324 return FALSE;
7325 memcpy (name, buf, len);
7326
7327 sect = bfd_make_section_anyway (abfd, name);
7328 if (sect == NULL)
7329 return FALSE;
7330
7331 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7332 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.gregs);
7333 sect->filepos = note->descpos
7334 + offsetof (lwpstatus_t, pr_context.uc_mcontext.gregs);
7335 #endif
7336
7337 #if defined (HAVE_LWPSTATUS_T_PR_REG)
7338 sect->size = sizeof (lwpstat.pr_reg);
7339 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_reg);
7340 #endif
7341
7342 sect->flags = SEC_HAS_CONTENTS;
7343 sect->alignment_power = 2;
7344
7345 if (!elfcore_maybe_make_sect (abfd, ".reg", sect))
7346 return FALSE;
7347
7348 /* Make a ".reg2/999" section */
7349
7350 sprintf (buf, ".reg2/%d", elfcore_make_pid (abfd));
7351 len = strlen (buf) + 1;
7352 name = bfd_alloc (abfd, len);
7353 if (name == NULL)
7354 return FALSE;
7355 memcpy (name, buf, len);
7356
7357 sect = bfd_make_section_anyway (abfd, name);
7358 if (sect == NULL)
7359 return FALSE;
7360
7361 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7362 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.fpregs);
7363 sect->filepos = note->descpos
7364 + offsetof (lwpstatus_t, pr_context.uc_mcontext.fpregs);
7365 #endif
7366
7367 #if defined (HAVE_LWPSTATUS_T_PR_FPREG)
7368 sect->size = sizeof (lwpstat.pr_fpreg);
7369 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_fpreg);
7370 #endif
7371
7372 sect->flags = SEC_HAS_CONTENTS;
7373 sect->alignment_power = 2;
7374
7375 return elfcore_maybe_make_sect (abfd, ".reg2", sect);
7376 }
7377 #endif /* defined (HAVE_LWPSTATUS_T) */
7378
7379 #if defined (HAVE_WIN32_PSTATUS_T)
7380 static bfd_boolean
7381 elfcore_grok_win32pstatus (bfd *abfd, Elf_Internal_Note *note)
7382 {
7383 char buf[30];
7384 char *name;
7385 size_t len;
7386 asection *sect;
7387 win32_pstatus_t pstatus;
7388
7389 if (note->descsz < sizeof (pstatus))
7390 return TRUE;
7391
7392 memcpy (&pstatus, note->descdata, sizeof (pstatus));
7393
7394 switch (pstatus.data_type)
7395 {
7396 case NOTE_INFO_PROCESS:
7397 /* FIXME: need to add ->core_command. */
7398 elf_tdata (abfd)->core_signal = pstatus.data.process_info.signal;
7399 elf_tdata (abfd)->core_pid = pstatus.data.process_info.pid;
7400 break;
7401
7402 case NOTE_INFO_THREAD:
7403 /* Make a ".reg/999" section. */
7404 sprintf (buf, ".reg/%ld", (long) pstatus.data.thread_info.tid);
7405
7406 len = strlen (buf) + 1;
7407 name = bfd_alloc (abfd, len);
7408 if (name == NULL)
7409 return FALSE;
7410
7411 memcpy (name, buf, len);
7412
7413 sect = bfd_make_section_anyway (abfd, name);
7414 if (sect == NULL)
7415 return FALSE;
7416
7417 sect->size = sizeof (pstatus.data.thread_info.thread_context);
7418 sect->filepos = (note->descpos
7419 + offsetof (struct win32_pstatus,
7420 data.thread_info.thread_context));
7421 sect->flags = SEC_HAS_CONTENTS;
7422 sect->alignment_power = 2;
7423
7424 if (pstatus.data.thread_info.is_active_thread)
7425 if (! elfcore_maybe_make_sect (abfd, ".reg", sect))
7426 return FALSE;
7427 break;
7428
7429 case NOTE_INFO_MODULE:
7430 /* Make a ".module/xxxxxxxx" section. */
7431 sprintf (buf, ".module/%08lx",
7432 (long) pstatus.data.module_info.base_address);
7433
7434 len = strlen (buf) + 1;
7435 name = bfd_alloc (abfd, len);
7436 if (name == NULL)
7437 return FALSE;
7438
7439 memcpy (name, buf, len);
7440
7441 sect = bfd_make_section_anyway (abfd, name);
7442
7443 if (sect == NULL)
7444 return FALSE;
7445
7446 sect->size = note->descsz;
7447 sect->filepos = note->descpos;
7448 sect->flags = SEC_HAS_CONTENTS;
7449 sect->alignment_power = 2;
7450 break;
7451
7452 default:
7453 return TRUE;
7454 }
7455
7456 return TRUE;
7457 }
7458 #endif /* HAVE_WIN32_PSTATUS_T */
7459
7460 static bfd_boolean
7461 elfcore_grok_note (bfd *abfd, Elf_Internal_Note *note)
7462 {
7463 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7464
7465 switch (note->type)
7466 {
7467 default:
7468 return TRUE;
7469
7470 case NT_PRSTATUS:
7471 if (bed->elf_backend_grok_prstatus)
7472 if ((*bed->elf_backend_grok_prstatus) (abfd, note))
7473 return TRUE;
7474 #if defined (HAVE_PRSTATUS_T)
7475 return elfcore_grok_prstatus (abfd, note);
7476 #else
7477 return TRUE;
7478 #endif
7479
7480 #if defined (HAVE_PSTATUS_T)
7481 case NT_PSTATUS:
7482 return elfcore_grok_pstatus (abfd, note);
7483 #endif
7484
7485 #if defined (HAVE_LWPSTATUS_T)
7486 case NT_LWPSTATUS:
7487 return elfcore_grok_lwpstatus (abfd, note);
7488 #endif
7489
7490 case NT_FPREGSET: /* FIXME: rename to NT_PRFPREG */
7491 return elfcore_grok_prfpreg (abfd, note);
7492
7493 #if defined (HAVE_WIN32_PSTATUS_T)
7494 case NT_WIN32PSTATUS:
7495 return elfcore_grok_win32pstatus (abfd, note);
7496 #endif
7497
7498 case NT_PRXFPREG: /* Linux SSE extension */
7499 if (note->namesz == 6
7500 && strcmp (note->namedata, "LINUX") == 0)
7501 return elfcore_grok_prxfpreg (abfd, note);
7502 else
7503 return TRUE;
7504
7505 case NT_PRPSINFO:
7506 case NT_PSINFO:
7507 if (bed->elf_backend_grok_psinfo)
7508 if ((*bed->elf_backend_grok_psinfo) (abfd, note))
7509 return TRUE;
7510 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7511 return elfcore_grok_psinfo (abfd, note);
7512 #else
7513 return TRUE;
7514 #endif
7515
7516 case NT_AUXV:
7517 {
7518 asection *sect = bfd_make_section_anyway (abfd, ".auxv");
7519
7520 if (sect == NULL)
7521 return FALSE;
7522 sect->size = note->descsz;
7523 sect->filepos = note->descpos;
7524 sect->flags = SEC_HAS_CONTENTS;
7525 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
7526
7527 return TRUE;
7528 }
7529 }
7530 }
7531
7532 static bfd_boolean
7533 elfcore_netbsd_get_lwpid (Elf_Internal_Note *note, int *lwpidp)
7534 {
7535 char *cp;
7536
7537 cp = strchr (note->namedata, '@');
7538 if (cp != NULL)
7539 {
7540 *lwpidp = atoi(cp + 1);
7541 return TRUE;
7542 }
7543 return FALSE;
7544 }
7545
7546 static bfd_boolean
7547 elfcore_grok_netbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
7548 {
7549
7550 /* Signal number at offset 0x08. */
7551 elf_tdata (abfd)->core_signal
7552 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
7553
7554 /* Process ID at offset 0x50. */
7555 elf_tdata (abfd)->core_pid
7556 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x50);
7557
7558 /* Command name at 0x7c (max 32 bytes, including nul). */
7559 elf_tdata (abfd)->core_command
7560 = _bfd_elfcore_strndup (abfd, note->descdata + 0x7c, 31);
7561
7562 return elfcore_make_note_pseudosection (abfd, ".note.netbsdcore.procinfo",
7563 note);
7564 }
7565
7566 static bfd_boolean
7567 elfcore_grok_netbsd_note (bfd *abfd, Elf_Internal_Note *note)
7568 {
7569 int lwp;
7570
7571 if (elfcore_netbsd_get_lwpid (note, &lwp))
7572 elf_tdata (abfd)->core_lwpid = lwp;
7573
7574 if (note->type == NT_NETBSDCORE_PROCINFO)
7575 {
7576 /* NetBSD-specific core "procinfo". Note that we expect to
7577 find this note before any of the others, which is fine,
7578 since the kernel writes this note out first when it
7579 creates a core file. */
7580
7581 return elfcore_grok_netbsd_procinfo (abfd, note);
7582 }
7583
7584 /* As of Jan 2002 there are no other machine-independent notes
7585 defined for NetBSD core files. If the note type is less
7586 than the start of the machine-dependent note types, we don't
7587 understand it. */
7588
7589 if (note->type < NT_NETBSDCORE_FIRSTMACH)
7590 return TRUE;
7591
7592
7593 switch (bfd_get_arch (abfd))
7594 {
7595 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
7596 PT_GETFPREGS == mach+2. */
7597
7598 case bfd_arch_alpha:
7599 case bfd_arch_sparc:
7600 switch (note->type)
7601 {
7602 case NT_NETBSDCORE_FIRSTMACH+0:
7603 return elfcore_make_note_pseudosection (abfd, ".reg", note);
7604
7605 case NT_NETBSDCORE_FIRSTMACH+2:
7606 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
7607
7608 default:
7609 return TRUE;
7610 }
7611
7612 /* On all other arch's, PT_GETREGS == mach+1 and
7613 PT_GETFPREGS == mach+3. */
7614
7615 default:
7616 switch (note->type)
7617 {
7618 case NT_NETBSDCORE_FIRSTMACH+1:
7619 return elfcore_make_note_pseudosection (abfd, ".reg", note);
7620
7621 case NT_NETBSDCORE_FIRSTMACH+3:
7622 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
7623
7624 default:
7625 return TRUE;
7626 }
7627 }
7628 /* NOTREACHED */
7629 }
7630
7631 static bfd_boolean
7632 elfcore_grok_nto_status (bfd *abfd, Elf_Internal_Note *note, pid_t *tid)
7633 {
7634 void *ddata = note->descdata;
7635 char buf[100];
7636 char *name;
7637 asection *sect;
7638 short sig;
7639 unsigned flags;
7640
7641 /* nto_procfs_status 'pid' field is at offset 0. */
7642 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, (bfd_byte *) ddata);
7643
7644 /* nto_procfs_status 'tid' field is at offset 4. Pass it back. */
7645 *tid = bfd_get_32 (abfd, (bfd_byte *) ddata + 4);
7646
7647 /* nto_procfs_status 'flags' field is at offset 8. */
7648 flags = bfd_get_32 (abfd, (bfd_byte *) ddata + 8);
7649
7650 /* nto_procfs_status 'what' field is at offset 14. */
7651 if ((sig = bfd_get_16 (abfd, (bfd_byte *) ddata + 14)) > 0)
7652 {
7653 elf_tdata (abfd)->core_signal = sig;
7654 elf_tdata (abfd)->core_lwpid = *tid;
7655 }
7656
7657 /* _DEBUG_FLAG_CURTID (current thread) is 0x80. Some cores
7658 do not come from signals so we make sure we set the current
7659 thread just in case. */
7660 if (flags & 0x00000080)
7661 elf_tdata (abfd)->core_lwpid = *tid;
7662
7663 /* Make a ".qnx_core_status/%d" section. */
7664 sprintf (buf, ".qnx_core_status/%ld", (long) *tid);
7665
7666 name = bfd_alloc (abfd, strlen (buf) + 1);
7667 if (name == NULL)
7668 return FALSE;
7669 strcpy (name, buf);
7670
7671 sect = bfd_make_section_anyway (abfd, name);
7672 if (sect == NULL)
7673 return FALSE;
7674
7675 sect->size = note->descsz;
7676 sect->filepos = note->descpos;
7677 sect->flags = SEC_HAS_CONTENTS;
7678 sect->alignment_power = 2;
7679
7680 return (elfcore_maybe_make_sect (abfd, ".qnx_core_status", sect));
7681 }
7682
7683 static bfd_boolean
7684 elfcore_grok_nto_regs (bfd *abfd,
7685 Elf_Internal_Note *note,
7686 pid_t tid,
7687 char *base)
7688 {
7689 char buf[100];
7690 char *name;
7691 asection *sect;
7692
7693 /* Make a "(base)/%d" section. */
7694 sprintf (buf, "%s/%ld", base, (long) tid);
7695
7696 name = bfd_alloc (abfd, strlen (buf) + 1);
7697 if (name == NULL)
7698 return FALSE;
7699 strcpy (name, buf);
7700
7701 sect = bfd_make_section_anyway (abfd, name);
7702 if (sect == NULL)
7703 return FALSE;
7704
7705 sect->size = note->descsz;
7706 sect->filepos = note->descpos;
7707 sect->flags = SEC_HAS_CONTENTS;
7708 sect->alignment_power = 2;
7709
7710 /* This is the current thread. */
7711 if (elf_tdata (abfd)->core_lwpid == tid)
7712 return elfcore_maybe_make_sect (abfd, base, sect);
7713
7714 return TRUE;
7715 }
7716
7717 #define BFD_QNT_CORE_INFO 7
7718 #define BFD_QNT_CORE_STATUS 8
7719 #define BFD_QNT_CORE_GREG 9
7720 #define BFD_QNT_CORE_FPREG 10
7721
7722 static bfd_boolean
7723 elfcore_grok_nto_note (bfd *abfd, Elf_Internal_Note *note)
7724 {
7725 /* Every GREG section has a STATUS section before it. Store the
7726 tid from the previous call to pass down to the next gregs
7727 function. */
7728 static pid_t tid = 1;
7729
7730 switch (note->type)
7731 {
7732 case BFD_QNT_CORE_INFO:
7733 return elfcore_make_note_pseudosection (abfd, ".qnx_core_info", note);
7734 case BFD_QNT_CORE_STATUS:
7735 return elfcore_grok_nto_status (abfd, note, &tid);
7736 case BFD_QNT_CORE_GREG:
7737 return elfcore_grok_nto_regs (abfd, note, tid, ".reg");
7738 case BFD_QNT_CORE_FPREG:
7739 return elfcore_grok_nto_regs (abfd, note, tid, ".reg2");
7740 default:
7741 return TRUE;
7742 }
7743 }
7744
7745 /* Function: elfcore_write_note
7746
7747 Inputs:
7748 buffer to hold note
7749 name of note
7750 type of note
7751 data for note
7752 size of data for note
7753
7754 Return:
7755 End of buffer containing note. */
7756
7757 char *
7758 elfcore_write_note (bfd *abfd,
7759 char *buf,
7760 int *bufsiz,
7761 const char *name,
7762 int type,
7763 const void *input,
7764 int size)
7765 {
7766 Elf_External_Note *xnp;
7767 size_t namesz;
7768 size_t pad;
7769 size_t newspace;
7770 char *p, *dest;
7771
7772 namesz = 0;
7773 pad = 0;
7774 if (name != NULL)
7775 {
7776 const struct elf_backend_data *bed;
7777
7778 namesz = strlen (name) + 1;
7779 bed = get_elf_backend_data (abfd);
7780 pad = -namesz & ((1 << bed->s->log_file_align) - 1);
7781 }
7782
7783 newspace = 12 + namesz + pad + size;
7784
7785 p = realloc (buf, *bufsiz + newspace);
7786 dest = p + *bufsiz;
7787 *bufsiz += newspace;
7788 xnp = (Elf_External_Note *) dest;
7789 H_PUT_32 (abfd, namesz, xnp->namesz);
7790 H_PUT_32 (abfd, size, xnp->descsz);
7791 H_PUT_32 (abfd, type, xnp->type);
7792 dest = xnp->name;
7793 if (name != NULL)
7794 {
7795 memcpy (dest, name, namesz);
7796 dest += namesz;
7797 while (pad != 0)
7798 {
7799 *dest++ = '\0';
7800 --pad;
7801 }
7802 }
7803 memcpy (dest, input, size);
7804 return p;
7805 }
7806
7807 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7808 char *
7809 elfcore_write_prpsinfo (bfd *abfd,
7810 char *buf,
7811 int *bufsiz,
7812 const char *fname,
7813 const char *psargs)
7814 {
7815 int note_type;
7816 char *note_name = "CORE";
7817
7818 #if defined (HAVE_PSINFO_T)
7819 psinfo_t data;
7820 note_type = NT_PSINFO;
7821 #else
7822 prpsinfo_t data;
7823 note_type = NT_PRPSINFO;
7824 #endif
7825
7826 memset (&data, 0, sizeof (data));
7827 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
7828 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
7829 return elfcore_write_note (abfd, buf, bufsiz,
7830 note_name, note_type, &data, sizeof (data));
7831 }
7832 #endif /* PSINFO_T or PRPSINFO_T */
7833
7834 #if defined (HAVE_PRSTATUS_T)
7835 char *
7836 elfcore_write_prstatus (bfd *abfd,
7837 char *buf,
7838 int *bufsiz,
7839 long pid,
7840 int cursig,
7841 const void *gregs)
7842 {
7843 prstatus_t prstat;
7844 char *note_name = "CORE";
7845
7846 memset (&prstat, 0, sizeof (prstat));
7847 prstat.pr_pid = pid;
7848 prstat.pr_cursig = cursig;
7849 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
7850 return elfcore_write_note (abfd, buf, bufsiz,
7851 note_name, NT_PRSTATUS, &prstat, sizeof (prstat));
7852 }
7853 #endif /* HAVE_PRSTATUS_T */
7854
7855 #if defined (HAVE_LWPSTATUS_T)
7856 char *
7857 elfcore_write_lwpstatus (bfd *abfd,
7858 char *buf,
7859 int *bufsiz,
7860 long pid,
7861 int cursig,
7862 const void *gregs)
7863 {
7864 lwpstatus_t lwpstat;
7865 char *note_name = "CORE";
7866
7867 memset (&lwpstat, 0, sizeof (lwpstat));
7868 lwpstat.pr_lwpid = pid >> 16;
7869 lwpstat.pr_cursig = cursig;
7870 #if defined (HAVE_LWPSTATUS_T_PR_REG)
7871 memcpy (lwpstat.pr_reg, gregs, sizeof (lwpstat.pr_reg));
7872 #elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7873 #if !defined(gregs)
7874 memcpy (lwpstat.pr_context.uc_mcontext.gregs,
7875 gregs, sizeof (lwpstat.pr_context.uc_mcontext.gregs));
7876 #else
7877 memcpy (lwpstat.pr_context.uc_mcontext.__gregs,
7878 gregs, sizeof (lwpstat.pr_context.uc_mcontext.__gregs));
7879 #endif
7880 #endif
7881 return elfcore_write_note (abfd, buf, bufsiz, note_name,
7882 NT_LWPSTATUS, &lwpstat, sizeof (lwpstat));
7883 }
7884 #endif /* HAVE_LWPSTATUS_T */
7885
7886 #if defined (HAVE_PSTATUS_T)
7887 char *
7888 elfcore_write_pstatus (bfd *abfd,
7889 char *buf,
7890 int *bufsiz,
7891 long pid,
7892 int cursig ATTRIBUTE_UNUSED,
7893 const void *gregs ATTRIBUTE_UNUSED)
7894 {
7895 pstatus_t pstat;
7896 char *note_name = "CORE";
7897
7898 memset (&pstat, 0, sizeof (pstat));
7899 pstat.pr_pid = pid & 0xffff;
7900 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
7901 NT_PSTATUS, &pstat, sizeof (pstat));
7902 return buf;
7903 }
7904 #endif /* HAVE_PSTATUS_T */
7905
7906 char *
7907 elfcore_write_prfpreg (bfd *abfd,
7908 char *buf,
7909 int *bufsiz,
7910 const void *fpregs,
7911 int size)
7912 {
7913 char *note_name = "CORE";
7914 return elfcore_write_note (abfd, buf, bufsiz,
7915 note_name, NT_FPREGSET, fpregs, size);
7916 }
7917
7918 char *
7919 elfcore_write_prxfpreg (bfd *abfd,
7920 char *buf,
7921 int *bufsiz,
7922 const void *xfpregs,
7923 int size)
7924 {
7925 char *note_name = "LINUX";
7926 return elfcore_write_note (abfd, buf, bufsiz,
7927 note_name, NT_PRXFPREG, xfpregs, size);
7928 }
7929
7930 static bfd_boolean
7931 elfcore_read_notes (bfd *abfd, file_ptr offset, bfd_size_type size)
7932 {
7933 char *buf;
7934 char *p;
7935
7936 if (size <= 0)
7937 return TRUE;
7938
7939 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
7940 return FALSE;
7941
7942 buf = bfd_malloc (size);
7943 if (buf == NULL)
7944 return FALSE;
7945
7946 if (bfd_bread (buf, size, abfd) != size)
7947 {
7948 error:
7949 free (buf);
7950 return FALSE;
7951 }
7952
7953 p = buf;
7954 while (p < buf + size)
7955 {
7956 /* FIXME: bad alignment assumption. */
7957 Elf_External_Note *xnp = (Elf_External_Note *) p;
7958 Elf_Internal_Note in;
7959
7960 in.type = H_GET_32 (abfd, xnp->type);
7961
7962 in.namesz = H_GET_32 (abfd, xnp->namesz);
7963 in.namedata = xnp->name;
7964
7965 in.descsz = H_GET_32 (abfd, xnp->descsz);
7966 in.descdata = in.namedata + BFD_ALIGN (in.namesz, 4);
7967 in.descpos = offset + (in.descdata - buf);
7968
7969 if (strncmp (in.namedata, "NetBSD-CORE", 11) == 0)
7970 {
7971 if (! elfcore_grok_netbsd_note (abfd, &in))
7972 goto error;
7973 }
7974 else if (strncmp (in.namedata, "QNX", 3) == 0)
7975 {
7976 if (! elfcore_grok_nto_note (abfd, &in))
7977 goto error;
7978 }
7979 else
7980 {
7981 if (! elfcore_grok_note (abfd, &in))
7982 goto error;
7983 }
7984
7985 p = in.descdata + BFD_ALIGN (in.descsz, 4);
7986 }
7987
7988 free (buf);
7989 return TRUE;
7990 }
7991 \f
7992 /* Providing external access to the ELF program header table. */
7993
7994 /* Return an upper bound on the number of bytes required to store a
7995 copy of ABFD's program header table entries. Return -1 if an error
7996 occurs; bfd_get_error will return an appropriate code. */
7997
7998 long
7999 bfd_get_elf_phdr_upper_bound (bfd *abfd)
8000 {
8001 if (abfd->xvec->flavour != bfd_target_elf_flavour)
8002 {
8003 bfd_set_error (bfd_error_wrong_format);
8004 return -1;
8005 }
8006
8007 return elf_elfheader (abfd)->e_phnum * sizeof (Elf_Internal_Phdr);
8008 }
8009
8010 /* Copy ABFD's program header table entries to *PHDRS. The entries
8011 will be stored as an array of Elf_Internal_Phdr structures, as
8012 defined in include/elf/internal.h. To find out how large the
8013 buffer needs to be, call bfd_get_elf_phdr_upper_bound.
8014
8015 Return the number of program header table entries read, or -1 if an
8016 error occurs; bfd_get_error will return an appropriate code. */
8017
8018 int
8019 bfd_get_elf_phdrs (bfd *abfd, void *phdrs)
8020 {
8021 int num_phdrs;
8022
8023 if (abfd->xvec->flavour != bfd_target_elf_flavour)
8024 {
8025 bfd_set_error (bfd_error_wrong_format);
8026 return -1;
8027 }
8028
8029 num_phdrs = elf_elfheader (abfd)->e_phnum;
8030 memcpy (phdrs, elf_tdata (abfd)->phdr,
8031 num_phdrs * sizeof (Elf_Internal_Phdr));
8032
8033 return num_phdrs;
8034 }
8035
8036 void
8037 _bfd_elf_sprintf_vma (bfd *abfd ATTRIBUTE_UNUSED, char *buf, bfd_vma value)
8038 {
8039 #ifdef BFD64
8040 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
8041
8042 i_ehdrp = elf_elfheader (abfd);
8043 if (i_ehdrp == NULL)
8044 sprintf_vma (buf, value);
8045 else
8046 {
8047 if (i_ehdrp->e_ident[EI_CLASS] == ELFCLASS64)
8048 {
8049 #if BFD_HOST_64BIT_LONG
8050 sprintf (buf, "%016lx", value);
8051 #else
8052 sprintf (buf, "%08lx%08lx", _bfd_int64_high (value),
8053 _bfd_int64_low (value));
8054 #endif
8055 }
8056 else
8057 sprintf (buf, "%08lx", (unsigned long) (value & 0xffffffff));
8058 }
8059 #else
8060 sprintf_vma (buf, value);
8061 #endif
8062 }
8063
8064 void
8065 _bfd_elf_fprintf_vma (bfd *abfd ATTRIBUTE_UNUSED, void *stream, bfd_vma value)
8066 {
8067 #ifdef BFD64
8068 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
8069
8070 i_ehdrp = elf_elfheader (abfd);
8071 if (i_ehdrp == NULL)
8072 fprintf_vma ((FILE *) stream, value);
8073 else
8074 {
8075 if (i_ehdrp->e_ident[EI_CLASS] == ELFCLASS64)
8076 {
8077 #if BFD_HOST_64BIT_LONG
8078 fprintf ((FILE *) stream, "%016lx", value);
8079 #else
8080 fprintf ((FILE *) stream, "%08lx%08lx",
8081 _bfd_int64_high (value), _bfd_int64_low (value));
8082 #endif
8083 }
8084 else
8085 fprintf ((FILE *) stream, "%08lx",
8086 (unsigned long) (value & 0xffffffff));
8087 }
8088 #else
8089 fprintf_vma ((FILE *) stream, value);
8090 #endif
8091 }
8092
8093 enum elf_reloc_type_class
8094 _bfd_elf_reloc_type_class (const Elf_Internal_Rela *rela ATTRIBUTE_UNUSED)
8095 {
8096 return reloc_class_normal;
8097 }
8098
8099 /* For RELA architectures, return the relocation value for a
8100 relocation against a local symbol. */
8101
8102 bfd_vma
8103 _bfd_elf_rela_local_sym (bfd *abfd,
8104 Elf_Internal_Sym *sym,
8105 asection **psec,
8106 Elf_Internal_Rela *rel)
8107 {
8108 asection *sec = *psec;
8109 bfd_vma relocation;
8110
8111 relocation = (sec->output_section->vma
8112 + sec->output_offset
8113 + sym->st_value);
8114 if ((sec->flags & SEC_MERGE)
8115 && ELF_ST_TYPE (sym->st_info) == STT_SECTION
8116 && sec->sec_info_type == ELF_INFO_TYPE_MERGE)
8117 {
8118 rel->r_addend =
8119 _bfd_merged_section_offset (abfd, psec,
8120 elf_section_data (sec)->sec_info,
8121 sym->st_value + rel->r_addend);
8122 if (sec != *psec)
8123 {
8124 /* If we have changed the section, and our original section is
8125 marked with SEC_EXCLUDE, it means that the original
8126 SEC_MERGE section has been completely subsumed in some
8127 other SEC_MERGE section. In this case, we need to leave
8128 some info around for --emit-relocs. */
8129 if ((sec->flags & SEC_EXCLUDE) != 0)
8130 sec->kept_section = *psec;
8131 sec = *psec;
8132 }
8133 rel->r_addend -= relocation;
8134 rel->r_addend += sec->output_section->vma + sec->output_offset;
8135 }
8136 return relocation;
8137 }
8138
8139 bfd_vma
8140 _bfd_elf_rel_local_sym (bfd *abfd,
8141 Elf_Internal_Sym *sym,
8142 asection **psec,
8143 bfd_vma addend)
8144 {
8145 asection *sec = *psec;
8146
8147 if (sec->sec_info_type != ELF_INFO_TYPE_MERGE)
8148 return sym->st_value + addend;
8149
8150 return _bfd_merged_section_offset (abfd, psec,
8151 elf_section_data (sec)->sec_info,
8152 sym->st_value + addend);
8153 }
8154
8155 bfd_vma
8156 _bfd_elf_section_offset (bfd *abfd,
8157 struct bfd_link_info *info,
8158 asection *sec,
8159 bfd_vma offset)
8160 {
8161 switch (sec->sec_info_type)
8162 {
8163 case ELF_INFO_TYPE_STABS:
8164 return _bfd_stab_section_offset (sec, elf_section_data (sec)->sec_info,
8165 offset);
8166 case ELF_INFO_TYPE_EH_FRAME:
8167 return _bfd_elf_eh_frame_section_offset (abfd, info, sec, offset);
8168 default:
8169 return offset;
8170 }
8171 }
8172 \f
8173 /* Create a new BFD as if by bfd_openr. Rather than opening a file,
8174 reconstruct an ELF file by reading the segments out of remote memory
8175 based on the ELF file header at EHDR_VMA and the ELF program headers it
8176 points to. If not null, *LOADBASEP is filled in with the difference
8177 between the VMAs from which the segments were read, and the VMAs the
8178 file headers (and hence BFD's idea of each section's VMA) put them at.
8179
8180 The function TARGET_READ_MEMORY is called to copy LEN bytes from the
8181 remote memory at target address VMA into the local buffer at MYADDR; it
8182 should return zero on success or an `errno' code on failure. TEMPL must
8183 be a BFD for an ELF target with the word size and byte order found in
8184 the remote memory. */
8185
8186 bfd *
8187 bfd_elf_bfd_from_remote_memory
8188 (bfd *templ,
8189 bfd_vma ehdr_vma,
8190 bfd_vma *loadbasep,
8191 int (*target_read_memory) (bfd_vma, bfd_byte *, int))
8192 {
8193 return (*get_elf_backend_data (templ)->elf_backend_bfd_from_remote_memory)
8194 (templ, ehdr_vma, loadbasep, target_read_memory);
8195 }
8196 \f
8197 long
8198 _bfd_elf_get_synthetic_symtab (bfd *abfd,
8199 long symcount ATTRIBUTE_UNUSED,
8200 asymbol **syms ATTRIBUTE_UNUSED,
8201 long dynsymcount,
8202 asymbol **dynsyms,
8203 asymbol **ret)
8204 {
8205 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8206 asection *relplt;
8207 asymbol *s;
8208 const char *relplt_name;
8209 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
8210 arelent *p;
8211 long count, i, n;
8212 size_t size;
8213 Elf_Internal_Shdr *hdr;
8214 char *names;
8215 asection *plt;
8216
8217 *ret = NULL;
8218
8219 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0)
8220 return 0;
8221
8222 if (dynsymcount <= 0)
8223 return 0;
8224
8225 if (!bed->plt_sym_val)
8226 return 0;
8227
8228 relplt_name = bed->relplt_name;
8229 if (relplt_name == NULL)
8230 relplt_name = bed->default_use_rela_p ? ".rela.plt" : ".rel.plt";
8231 relplt = bfd_get_section_by_name (abfd, relplt_name);
8232 if (relplt == NULL)
8233 return 0;
8234
8235 hdr = &elf_section_data (relplt)->this_hdr;
8236 if (hdr->sh_link != elf_dynsymtab (abfd)
8237 || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA))
8238 return 0;
8239
8240 plt = bfd_get_section_by_name (abfd, ".plt");
8241 if (plt == NULL)
8242 return 0;
8243
8244 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
8245 if (! (*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
8246 return -1;
8247
8248 count = relplt->size / hdr->sh_entsize;
8249 size = count * sizeof (asymbol);
8250 p = relplt->relocation;
8251 for (i = 0; i < count; i++, s++, p++)
8252 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
8253
8254 s = *ret = bfd_malloc (size);
8255 if (s == NULL)
8256 return -1;
8257
8258 names = (char *) (s + count);
8259 p = relplt->relocation;
8260 n = 0;
8261 for (i = 0; i < count; i++, s++, p++)
8262 {
8263 size_t len;
8264 bfd_vma addr;
8265
8266 addr = bed->plt_sym_val (i, plt, p);
8267 if (addr == (bfd_vma) -1)
8268 continue;
8269
8270 *s = **p->sym_ptr_ptr;
8271 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
8272 we are defining a symbol, ensure one of them is set. */
8273 if ((s->flags & BSF_LOCAL) == 0)
8274 s->flags |= BSF_GLOBAL;
8275 s->section = plt;
8276 s->value = addr - plt->vma;
8277 s->name = names;
8278 len = strlen ((*p->sym_ptr_ptr)->name);
8279 memcpy (names, (*p->sym_ptr_ptr)->name, len);
8280 names += len;
8281 memcpy (names, "@plt", sizeof ("@plt"));
8282 names += sizeof ("@plt");
8283 ++n;
8284 }
8285
8286 return n;
8287 }
8288
8289 /* Sort symbol by binding and section. We want to put definitions
8290 sorted by section at the beginning. */
8291
8292 static int
8293 elf_sort_elf_symbol (const void *arg1, const void *arg2)
8294 {
8295 const Elf_Internal_Sym *s1;
8296 const Elf_Internal_Sym *s2;
8297 int shndx;
8298
8299 /* Make sure that undefined symbols are at the end. */
8300 s1 = (const Elf_Internal_Sym *) arg1;
8301 if (s1->st_shndx == SHN_UNDEF)
8302 return 1;
8303 s2 = (const Elf_Internal_Sym *) arg2;
8304 if (s2->st_shndx == SHN_UNDEF)
8305 return -1;
8306
8307 /* Sorted by section index. */
8308 shndx = s1->st_shndx - s2->st_shndx;
8309 if (shndx != 0)
8310 return shndx;
8311
8312 /* Sorted by binding. */
8313 return ELF_ST_BIND (s1->st_info) - ELF_ST_BIND (s2->st_info);
8314 }
8315
8316 struct elf_symbol
8317 {
8318 Elf_Internal_Sym *sym;
8319 const char *name;
8320 };
8321
8322 static int
8323 elf_sym_name_compare (const void *arg1, const void *arg2)
8324 {
8325 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
8326 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
8327 return strcmp (s1->name, s2->name);
8328 }
8329
8330 /* Check if 2 sections define the same set of local and global
8331 symbols. */
8332
8333 bfd_boolean
8334 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2)
8335 {
8336 bfd *bfd1, *bfd2;
8337 const struct elf_backend_data *bed1, *bed2;
8338 Elf_Internal_Shdr *hdr1, *hdr2;
8339 bfd_size_type symcount1, symcount2;
8340 Elf_Internal_Sym *isymbuf1, *isymbuf2;
8341 Elf_Internal_Sym *isymstart1 = NULL, *isymstart2 = NULL, *isym;
8342 Elf_Internal_Sym *isymend;
8343 struct elf_symbol *symp, *symtable1 = NULL, *symtable2 = NULL;
8344 bfd_size_type count1, count2, i;
8345 int shndx1, shndx2;
8346 bfd_boolean result;
8347
8348 bfd1 = sec1->owner;
8349 bfd2 = sec2->owner;
8350
8351 /* If both are .gnu.linkonce sections, they have to have the same
8352 section name. */
8353 if (strncmp (sec1->name, ".gnu.linkonce",
8354 sizeof ".gnu.linkonce" - 1) == 0
8355 && strncmp (sec2->name, ".gnu.linkonce",
8356 sizeof ".gnu.linkonce" - 1) == 0)
8357 return strcmp (sec1->name + sizeof ".gnu.linkonce",
8358 sec2->name + sizeof ".gnu.linkonce") == 0;
8359
8360 /* Both sections have to be in ELF. */
8361 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
8362 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
8363 return FALSE;
8364
8365 if (elf_section_type (sec1) != elf_section_type (sec2))
8366 return FALSE;
8367
8368 if ((elf_section_flags (sec1) & SHF_GROUP) != 0
8369 && (elf_section_flags (sec2) & SHF_GROUP) != 0)
8370 {
8371 /* If both are members of section groups, they have to have the
8372 same group name. */
8373 if (strcmp (elf_group_name (sec1), elf_group_name (sec2)) != 0)
8374 return FALSE;
8375 }
8376
8377 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
8378 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
8379 if (shndx1 == -1 || shndx2 == -1)
8380 return FALSE;
8381
8382 bed1 = get_elf_backend_data (bfd1);
8383 bed2 = get_elf_backend_data (bfd2);
8384 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
8385 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
8386 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
8387 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
8388
8389 if (symcount1 == 0 || symcount2 == 0)
8390 return FALSE;
8391
8392 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
8393 NULL, NULL, NULL);
8394 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
8395 NULL, NULL, NULL);
8396
8397 result = FALSE;
8398 if (isymbuf1 == NULL || isymbuf2 == NULL)
8399 goto done;
8400
8401 /* Sort symbols by binding and section. Global definitions are at
8402 the beginning. */
8403 qsort (isymbuf1, symcount1, sizeof (Elf_Internal_Sym),
8404 elf_sort_elf_symbol);
8405 qsort (isymbuf2, symcount2, sizeof (Elf_Internal_Sym),
8406 elf_sort_elf_symbol);
8407
8408 /* Count definitions in the section. */
8409 count1 = 0;
8410 for (isym = isymbuf1, isymend = isym + symcount1;
8411 isym < isymend; isym++)
8412 {
8413 if (isym->st_shndx == (unsigned int) shndx1)
8414 {
8415 if (count1 == 0)
8416 isymstart1 = isym;
8417 count1++;
8418 }
8419
8420 if (count1 && isym->st_shndx != (unsigned int) shndx1)
8421 break;
8422 }
8423
8424 count2 = 0;
8425 for (isym = isymbuf2, isymend = isym + symcount2;
8426 isym < isymend; isym++)
8427 {
8428 if (isym->st_shndx == (unsigned int) shndx2)
8429 {
8430 if (count2 == 0)
8431 isymstart2 = isym;
8432 count2++;
8433 }
8434
8435 if (count2 && isym->st_shndx != (unsigned int) shndx2)
8436 break;
8437 }
8438
8439 if (count1 == 0 || count2 == 0 || count1 != count2)
8440 goto done;
8441
8442 symtable1 = bfd_malloc (count1 * sizeof (struct elf_symbol));
8443 symtable2 = bfd_malloc (count1 * sizeof (struct elf_symbol));
8444
8445 if (symtable1 == NULL || symtable2 == NULL)
8446 goto done;
8447
8448 symp = symtable1;
8449 for (isym = isymstart1, isymend = isym + count1;
8450 isym < isymend; isym++)
8451 {
8452 symp->sym = isym;
8453 symp->name = bfd_elf_string_from_elf_section (bfd1,
8454 hdr1->sh_link,
8455 isym->st_name);
8456 symp++;
8457 }
8458
8459 symp = symtable2;
8460 for (isym = isymstart2, isymend = isym + count1;
8461 isym < isymend; isym++)
8462 {
8463 symp->sym = isym;
8464 symp->name = bfd_elf_string_from_elf_section (bfd2,
8465 hdr2->sh_link,
8466 isym->st_name);
8467 symp++;
8468 }
8469
8470 /* Sort symbol by name. */
8471 qsort (symtable1, count1, sizeof (struct elf_symbol),
8472 elf_sym_name_compare);
8473 qsort (symtable2, count1, sizeof (struct elf_symbol),
8474 elf_sym_name_compare);
8475
8476 for (i = 0; i < count1; i++)
8477 /* Two symbols must have the same binding, type and name. */
8478 if (symtable1 [i].sym->st_info != symtable2 [i].sym->st_info
8479 || symtable1 [i].sym->st_other != symtable2 [i].sym->st_other
8480 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
8481 goto done;
8482
8483 result = TRUE;
8484
8485 done:
8486 if (symtable1)
8487 free (symtable1);
8488 if (symtable2)
8489 free (symtable2);
8490 if (isymbuf1)
8491 free (isymbuf1);
8492 if (isymbuf2)
8493 free (isymbuf2);
8494
8495 return result;
8496 }
8497
8498 /* It is only used by x86-64 so far. */
8499 asection _bfd_elf_large_com_section
8500 = BFD_FAKE_SECTION (_bfd_elf_large_com_section,
8501 SEC_IS_COMMON, NULL, NULL, "LARGE_COMMON",
8502 0);
8503
8504 /* Return TRUE if 2 section types are compatible. */
8505
8506 bfd_boolean
8507 _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
8508 bfd *bbfd, const asection *bsec)
8509 {
8510 if (asec == NULL
8511 || bsec == NULL
8512 || abfd->xvec->flavour != bfd_target_elf_flavour
8513 || bbfd->xvec->flavour != bfd_target_elf_flavour)
8514 return TRUE;
8515
8516 return elf_section_type (asec) == elf_section_type (bsec);
8517 }
This page took 0.25355 seconds and 4 git commands to generate.