1 /* ELF executable support for BFD.
3 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
4 2002, 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
6 This file is part of BFD, the Binary File Descriptor library.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
26 BFD support for ELF formats is being worked on.
27 Currently, the best supported back ends are for sparc and i386
28 (running svr4 or Solaris 2).
30 Documentation of the internals of the support code still needs
31 to be written. The code is changing quickly enough that we
32 haven't bothered yet. */
34 /* For sparc64-cross-sparc32. */
42 #include "libiberty.h"
44 static int elf_sort_sections (const void *, const void *);
45 static bfd_boolean
assign_file_positions_except_relocs (bfd
*, struct bfd_link_info
*);
46 static bfd_boolean
prep_headers (bfd
*);
47 static bfd_boolean
swap_out_syms (bfd
*, struct bfd_strtab_hash
**, int) ;
48 static bfd_boolean
elfcore_read_notes (bfd
*, file_ptr
, bfd_size_type
) ;
50 /* Swap version information in and out. The version information is
51 currently size independent. If that ever changes, this code will
52 need to move into elfcode.h. */
54 /* Swap in a Verdef structure. */
57 _bfd_elf_swap_verdef_in (bfd
*abfd
,
58 const Elf_External_Verdef
*src
,
59 Elf_Internal_Verdef
*dst
)
61 dst
->vd_version
= H_GET_16 (abfd
, src
->vd_version
);
62 dst
->vd_flags
= H_GET_16 (abfd
, src
->vd_flags
);
63 dst
->vd_ndx
= H_GET_16 (abfd
, src
->vd_ndx
);
64 dst
->vd_cnt
= H_GET_16 (abfd
, src
->vd_cnt
);
65 dst
->vd_hash
= H_GET_32 (abfd
, src
->vd_hash
);
66 dst
->vd_aux
= H_GET_32 (abfd
, src
->vd_aux
);
67 dst
->vd_next
= H_GET_32 (abfd
, src
->vd_next
);
70 /* Swap out a Verdef structure. */
73 _bfd_elf_swap_verdef_out (bfd
*abfd
,
74 const Elf_Internal_Verdef
*src
,
75 Elf_External_Verdef
*dst
)
77 H_PUT_16 (abfd
, src
->vd_version
, dst
->vd_version
);
78 H_PUT_16 (abfd
, src
->vd_flags
, dst
->vd_flags
);
79 H_PUT_16 (abfd
, src
->vd_ndx
, dst
->vd_ndx
);
80 H_PUT_16 (abfd
, src
->vd_cnt
, dst
->vd_cnt
);
81 H_PUT_32 (abfd
, src
->vd_hash
, dst
->vd_hash
);
82 H_PUT_32 (abfd
, src
->vd_aux
, dst
->vd_aux
);
83 H_PUT_32 (abfd
, src
->vd_next
, dst
->vd_next
);
86 /* Swap in a Verdaux structure. */
89 _bfd_elf_swap_verdaux_in (bfd
*abfd
,
90 const Elf_External_Verdaux
*src
,
91 Elf_Internal_Verdaux
*dst
)
93 dst
->vda_name
= H_GET_32 (abfd
, src
->vda_name
);
94 dst
->vda_next
= H_GET_32 (abfd
, src
->vda_next
);
97 /* Swap out a Verdaux structure. */
100 _bfd_elf_swap_verdaux_out (bfd
*abfd
,
101 const Elf_Internal_Verdaux
*src
,
102 Elf_External_Verdaux
*dst
)
104 H_PUT_32 (abfd
, src
->vda_name
, dst
->vda_name
);
105 H_PUT_32 (abfd
, src
->vda_next
, dst
->vda_next
);
108 /* Swap in a Verneed structure. */
111 _bfd_elf_swap_verneed_in (bfd
*abfd
,
112 const Elf_External_Verneed
*src
,
113 Elf_Internal_Verneed
*dst
)
115 dst
->vn_version
= H_GET_16 (abfd
, src
->vn_version
);
116 dst
->vn_cnt
= H_GET_16 (abfd
, src
->vn_cnt
);
117 dst
->vn_file
= H_GET_32 (abfd
, src
->vn_file
);
118 dst
->vn_aux
= H_GET_32 (abfd
, src
->vn_aux
);
119 dst
->vn_next
= H_GET_32 (abfd
, src
->vn_next
);
122 /* Swap out a Verneed structure. */
125 _bfd_elf_swap_verneed_out (bfd
*abfd
,
126 const Elf_Internal_Verneed
*src
,
127 Elf_External_Verneed
*dst
)
129 H_PUT_16 (abfd
, src
->vn_version
, dst
->vn_version
);
130 H_PUT_16 (abfd
, src
->vn_cnt
, dst
->vn_cnt
);
131 H_PUT_32 (abfd
, src
->vn_file
, dst
->vn_file
);
132 H_PUT_32 (abfd
, src
->vn_aux
, dst
->vn_aux
);
133 H_PUT_32 (abfd
, src
->vn_next
, dst
->vn_next
);
136 /* Swap in a Vernaux structure. */
139 _bfd_elf_swap_vernaux_in (bfd
*abfd
,
140 const Elf_External_Vernaux
*src
,
141 Elf_Internal_Vernaux
*dst
)
143 dst
->vna_hash
= H_GET_32 (abfd
, src
->vna_hash
);
144 dst
->vna_flags
= H_GET_16 (abfd
, src
->vna_flags
);
145 dst
->vna_other
= H_GET_16 (abfd
, src
->vna_other
);
146 dst
->vna_name
= H_GET_32 (abfd
, src
->vna_name
);
147 dst
->vna_next
= H_GET_32 (abfd
, src
->vna_next
);
150 /* Swap out a Vernaux structure. */
153 _bfd_elf_swap_vernaux_out (bfd
*abfd
,
154 const Elf_Internal_Vernaux
*src
,
155 Elf_External_Vernaux
*dst
)
157 H_PUT_32 (abfd
, src
->vna_hash
, dst
->vna_hash
);
158 H_PUT_16 (abfd
, src
->vna_flags
, dst
->vna_flags
);
159 H_PUT_16 (abfd
, src
->vna_other
, dst
->vna_other
);
160 H_PUT_32 (abfd
, src
->vna_name
, dst
->vna_name
);
161 H_PUT_32 (abfd
, src
->vna_next
, dst
->vna_next
);
164 /* Swap in a Versym structure. */
167 _bfd_elf_swap_versym_in (bfd
*abfd
,
168 const Elf_External_Versym
*src
,
169 Elf_Internal_Versym
*dst
)
171 dst
->vs_vers
= H_GET_16 (abfd
, src
->vs_vers
);
174 /* Swap out a Versym structure. */
177 _bfd_elf_swap_versym_out (bfd
*abfd
,
178 const Elf_Internal_Versym
*src
,
179 Elf_External_Versym
*dst
)
181 H_PUT_16 (abfd
, src
->vs_vers
, dst
->vs_vers
);
184 /* Standard ELF hash function. Do not change this function; you will
185 cause invalid hash tables to be generated. */
188 bfd_elf_hash (const char *namearg
)
190 const unsigned char *name
= (const unsigned char *) namearg
;
195 while ((ch
= *name
++) != '\0')
198 if ((g
= (h
& 0xf0000000)) != 0)
201 /* The ELF ABI says `h &= ~g', but this is equivalent in
202 this case and on some machines one insn instead of two. */
206 return h
& 0xffffffff;
210 bfd_elf_mkobject (bfd
*abfd
)
212 /* This just does initialization. */
213 /* coff_mkobject zalloc's space for tdata.coff_obj_data ... */
214 elf_tdata (abfd
) = bfd_zalloc (abfd
, sizeof (struct elf_obj_tdata
));
215 if (elf_tdata (abfd
) == 0)
217 /* Since everything is done at close time, do we need any
224 bfd_elf_mkcorefile (bfd
*abfd
)
226 /* I think this can be done just like an object file. */
227 return bfd_elf_mkobject (abfd
);
231 bfd_elf_get_str_section (bfd
*abfd
, unsigned int shindex
)
233 Elf_Internal_Shdr
**i_shdrp
;
234 bfd_byte
*shstrtab
= NULL
;
236 bfd_size_type shstrtabsize
;
238 i_shdrp
= elf_elfsections (abfd
);
239 if (i_shdrp
== 0 || i_shdrp
[shindex
] == 0)
242 shstrtab
= i_shdrp
[shindex
]->contents
;
243 if (shstrtab
== NULL
)
245 /* No cached one, attempt to read, and cache what we read. */
246 offset
= i_shdrp
[shindex
]->sh_offset
;
247 shstrtabsize
= i_shdrp
[shindex
]->sh_size
;
249 /* Allocate and clear an extra byte at the end, to prevent crashes
250 in case the string table is not terminated. */
251 if (shstrtabsize
+ 1 == 0
252 || (shstrtab
= bfd_alloc (abfd
, shstrtabsize
+ 1)) == NULL
253 || bfd_seek (abfd
, offset
, SEEK_SET
) != 0)
255 else if (bfd_bread (shstrtab
, shstrtabsize
, abfd
) != shstrtabsize
)
257 if (bfd_get_error () != bfd_error_system_call
)
258 bfd_set_error (bfd_error_file_truncated
);
262 shstrtab
[shstrtabsize
] = '\0';
263 i_shdrp
[shindex
]->contents
= shstrtab
;
265 return (char *) shstrtab
;
269 bfd_elf_string_from_elf_section (bfd
*abfd
,
270 unsigned int shindex
,
271 unsigned int strindex
)
273 Elf_Internal_Shdr
*hdr
;
278 hdr
= elf_elfsections (abfd
)[shindex
];
280 if (hdr
->contents
== NULL
281 && bfd_elf_get_str_section (abfd
, shindex
) == NULL
)
284 if (strindex
>= hdr
->sh_size
)
286 unsigned int shstrndx
= elf_elfheader(abfd
)->e_shstrndx
;
287 (*_bfd_error_handler
)
288 (_("%B: invalid string offset %u >= %lu for section `%s'"),
289 abfd
, strindex
, (unsigned long) hdr
->sh_size
,
290 (shindex
== shstrndx
&& strindex
== hdr
->sh_name
292 : bfd_elf_string_from_elf_section (abfd
, shstrndx
, hdr
->sh_name
)));
296 return ((char *) hdr
->contents
) + strindex
;
299 /* Read and convert symbols to internal format.
300 SYMCOUNT specifies the number of symbols to read, starting from
301 symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF
302 are non-NULL, they are used to store the internal symbols, external
303 symbols, and symbol section index extensions, respectively. */
306 bfd_elf_get_elf_syms (bfd
*ibfd
,
307 Elf_Internal_Shdr
*symtab_hdr
,
310 Elf_Internal_Sym
*intsym_buf
,
312 Elf_External_Sym_Shndx
*extshndx_buf
)
314 Elf_Internal_Shdr
*shndx_hdr
;
316 const bfd_byte
*esym
;
317 Elf_External_Sym_Shndx
*alloc_extshndx
;
318 Elf_External_Sym_Shndx
*shndx
;
319 Elf_Internal_Sym
*isym
;
320 Elf_Internal_Sym
*isymend
;
321 const struct elf_backend_data
*bed
;
329 /* Normal syms might have section extension entries. */
331 if (symtab_hdr
== &elf_tdata (ibfd
)->symtab_hdr
)
332 shndx_hdr
= &elf_tdata (ibfd
)->symtab_shndx_hdr
;
334 /* Read the symbols. */
336 alloc_extshndx
= NULL
;
337 bed
= get_elf_backend_data (ibfd
);
338 extsym_size
= bed
->s
->sizeof_sym
;
339 amt
= symcount
* extsym_size
;
340 pos
= symtab_hdr
->sh_offset
+ symoffset
* extsym_size
;
341 if (extsym_buf
== NULL
)
343 alloc_ext
= bfd_malloc2 (symcount
, extsym_size
);
344 extsym_buf
= alloc_ext
;
346 if (extsym_buf
== NULL
347 || bfd_seek (ibfd
, pos
, SEEK_SET
) != 0
348 || bfd_bread (extsym_buf
, amt
, ibfd
) != amt
)
354 if (shndx_hdr
== NULL
|| shndx_hdr
->sh_size
== 0)
358 amt
= symcount
* sizeof (Elf_External_Sym_Shndx
);
359 pos
= shndx_hdr
->sh_offset
+ symoffset
* sizeof (Elf_External_Sym_Shndx
);
360 if (extshndx_buf
== NULL
)
362 alloc_extshndx
= bfd_malloc2 (symcount
,
363 sizeof (Elf_External_Sym_Shndx
));
364 extshndx_buf
= alloc_extshndx
;
366 if (extshndx_buf
== NULL
367 || bfd_seek (ibfd
, pos
, SEEK_SET
) != 0
368 || bfd_bread (extshndx_buf
, amt
, ibfd
) != amt
)
375 if (intsym_buf
== NULL
)
377 intsym_buf
= bfd_malloc2 (symcount
, sizeof (Elf_Internal_Sym
));
378 if (intsym_buf
== NULL
)
382 /* Convert the symbols to internal form. */
383 isymend
= intsym_buf
+ symcount
;
384 for (esym
= extsym_buf
, isym
= intsym_buf
, shndx
= extshndx_buf
;
386 esym
+= extsym_size
, isym
++, shndx
= shndx
!= NULL
? shndx
+ 1 : NULL
)
387 (*bed
->s
->swap_symbol_in
) (ibfd
, esym
, shndx
, isym
);
390 if (alloc_ext
!= NULL
)
392 if (alloc_extshndx
!= NULL
)
393 free (alloc_extshndx
);
398 /* Look up a symbol name. */
400 bfd_elf_sym_name (bfd
*abfd
,
401 Elf_Internal_Shdr
*symtab_hdr
,
402 Elf_Internal_Sym
*isym
,
406 unsigned int iname
= isym
->st_name
;
407 unsigned int shindex
= symtab_hdr
->sh_link
;
409 if (iname
== 0 && ELF_ST_TYPE (isym
->st_info
) == STT_SECTION
410 /* Check for a bogus st_shndx to avoid crashing. */
411 && isym
->st_shndx
< elf_numsections (abfd
)
412 && !(isym
->st_shndx
>= SHN_LORESERVE
&& isym
->st_shndx
<= SHN_HIRESERVE
))
414 iname
= elf_elfsections (abfd
)[isym
->st_shndx
]->sh_name
;
415 shindex
= elf_elfheader (abfd
)->e_shstrndx
;
418 name
= bfd_elf_string_from_elf_section (abfd
, shindex
, iname
);
421 else if (sym_sec
&& *name
== '\0')
422 name
= bfd_section_name (abfd
, sym_sec
);
427 /* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
428 sections. The first element is the flags, the rest are section
431 typedef union elf_internal_group
{
432 Elf_Internal_Shdr
*shdr
;
434 } Elf_Internal_Group
;
436 /* Return the name of the group signature symbol. Why isn't the
437 signature just a string? */
440 group_signature (bfd
*abfd
, Elf_Internal_Shdr
*ghdr
)
442 Elf_Internal_Shdr
*hdr
;
443 unsigned char esym
[sizeof (Elf64_External_Sym
)];
444 Elf_External_Sym_Shndx eshndx
;
445 Elf_Internal_Sym isym
;
447 /* First we need to ensure the symbol table is available. Make sure
448 that it is a symbol table section. */
449 hdr
= elf_elfsections (abfd
) [ghdr
->sh_link
];
450 if (hdr
->sh_type
!= SHT_SYMTAB
451 || ! bfd_section_from_shdr (abfd
, ghdr
->sh_link
))
454 /* Go read the symbol. */
455 hdr
= &elf_tdata (abfd
)->symtab_hdr
;
456 if (bfd_elf_get_elf_syms (abfd
, hdr
, 1, ghdr
->sh_info
,
457 &isym
, esym
, &eshndx
) == NULL
)
460 return bfd_elf_sym_name (abfd
, hdr
, &isym
, NULL
);
463 /* Set next_in_group list pointer, and group name for NEWSECT. */
466 setup_group (bfd
*abfd
, Elf_Internal_Shdr
*hdr
, asection
*newsect
)
468 unsigned int num_group
= elf_tdata (abfd
)->num_group
;
470 /* If num_group is zero, read in all SHT_GROUP sections. The count
471 is set to -1 if there are no SHT_GROUP sections. */
474 unsigned int i
, shnum
;
476 /* First count the number of groups. If we have a SHT_GROUP
477 section with just a flag word (ie. sh_size is 4), ignore it. */
478 shnum
= elf_numsections (abfd
);
480 for (i
= 0; i
< shnum
; i
++)
482 Elf_Internal_Shdr
*shdr
= elf_elfsections (abfd
)[i
];
483 if (shdr
->sh_type
== SHT_GROUP
&& shdr
->sh_size
>= 8)
489 num_group
= (unsigned) -1;
490 elf_tdata (abfd
)->num_group
= num_group
;
494 /* We keep a list of elf section headers for group sections,
495 so we can find them quickly. */
498 elf_tdata (abfd
)->num_group
= num_group
;
499 elf_tdata (abfd
)->group_sect_ptr
500 = bfd_alloc2 (abfd
, num_group
, sizeof (Elf_Internal_Shdr
*));
501 if (elf_tdata (abfd
)->group_sect_ptr
== NULL
)
505 for (i
= 0; i
< shnum
; i
++)
507 Elf_Internal_Shdr
*shdr
= elf_elfsections (abfd
)[i
];
508 if (shdr
->sh_type
== SHT_GROUP
&& shdr
->sh_size
>= 8)
511 Elf_Internal_Group
*dest
;
513 /* Add to list of sections. */
514 elf_tdata (abfd
)->group_sect_ptr
[num_group
] = shdr
;
517 /* Read the raw contents. */
518 BFD_ASSERT (sizeof (*dest
) >= 4);
519 amt
= shdr
->sh_size
* sizeof (*dest
) / 4;
520 shdr
->contents
= bfd_alloc2 (abfd
, shdr
->sh_size
,
522 if (shdr
->contents
== NULL
523 || bfd_seek (abfd
, shdr
->sh_offset
, SEEK_SET
) != 0
524 || (bfd_bread (shdr
->contents
, shdr
->sh_size
, abfd
)
528 /* Translate raw contents, a flag word followed by an
529 array of elf section indices all in target byte order,
530 to the flag word followed by an array of elf section
532 src
= shdr
->contents
+ shdr
->sh_size
;
533 dest
= (Elf_Internal_Group
*) (shdr
->contents
+ amt
);
540 idx
= H_GET_32 (abfd
, src
);
541 if (src
== shdr
->contents
)
544 if (shdr
->bfd_section
!= NULL
&& (idx
& GRP_COMDAT
))
545 shdr
->bfd_section
->flags
546 |= SEC_LINK_ONCE
| SEC_LINK_DUPLICATES_DISCARD
;
551 ((*_bfd_error_handler
)
552 (_("%B: invalid SHT_GROUP entry"), abfd
));
555 dest
->shdr
= elf_elfsections (abfd
)[idx
];
562 if (num_group
!= (unsigned) -1)
566 for (i
= 0; i
< num_group
; i
++)
568 Elf_Internal_Shdr
*shdr
= elf_tdata (abfd
)->group_sect_ptr
[i
];
569 Elf_Internal_Group
*idx
= (Elf_Internal_Group
*) shdr
->contents
;
570 unsigned int n_elt
= shdr
->sh_size
/ 4;
572 /* Look through this group's sections to see if current
573 section is a member. */
575 if ((++idx
)->shdr
== hdr
)
579 /* We are a member of this group. Go looking through
580 other members to see if any others are linked via
582 idx
= (Elf_Internal_Group
*) shdr
->contents
;
583 n_elt
= shdr
->sh_size
/ 4;
585 if ((s
= (++idx
)->shdr
->bfd_section
) != NULL
586 && elf_next_in_group (s
) != NULL
)
590 /* Snarf the group name from other member, and
591 insert current section in circular list. */
592 elf_group_name (newsect
) = elf_group_name (s
);
593 elf_next_in_group (newsect
) = elf_next_in_group (s
);
594 elf_next_in_group (s
) = newsect
;
600 gname
= group_signature (abfd
, shdr
);
603 elf_group_name (newsect
) = gname
;
605 /* Start a circular list with one element. */
606 elf_next_in_group (newsect
) = newsect
;
609 /* If the group section has been created, point to the
611 if (shdr
->bfd_section
!= NULL
)
612 elf_next_in_group (shdr
->bfd_section
) = newsect
;
620 if (elf_group_name (newsect
) == NULL
)
622 (*_bfd_error_handler
) (_("%B: no group info for section %A"),
629 _bfd_elf_setup_sections (bfd
*abfd
)
632 unsigned int num_group
= elf_tdata (abfd
)->num_group
;
633 bfd_boolean result
= TRUE
;
636 /* Process SHF_LINK_ORDER. */
637 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
639 Elf_Internal_Shdr
*this_hdr
= &elf_section_data (s
)->this_hdr
;
640 if ((this_hdr
->sh_flags
& SHF_LINK_ORDER
) != 0)
642 unsigned int elfsec
= this_hdr
->sh_link
;
643 /* FIXME: The old Intel compiler and old strip/objcopy may
644 not set the sh_link or sh_info fields. Hence we could
645 get the situation where elfsec is 0. */
648 const struct elf_backend_data
*bed
649 = get_elf_backend_data (abfd
);
650 if (bed
->link_order_error_handler
)
651 bed
->link_order_error_handler
652 (_("%B: warning: sh_link not set for section `%A'"),
659 this_hdr
= elf_elfsections (abfd
)[elfsec
];
662 Some strip/objcopy may leave an incorrect value in
663 sh_link. We don't want to proceed. */
664 link
= this_hdr
->bfd_section
;
667 (*_bfd_error_handler
)
668 (_("%B: sh_link [%d] in section `%A' is incorrect"),
669 s
->owner
, s
, elfsec
);
673 elf_linked_to_section (s
) = link
;
678 /* Process section groups. */
679 if (num_group
== (unsigned) -1)
682 for (i
= 0; i
< num_group
; i
++)
684 Elf_Internal_Shdr
*shdr
= elf_tdata (abfd
)->group_sect_ptr
[i
];
685 Elf_Internal_Group
*idx
= (Elf_Internal_Group
*) shdr
->contents
;
686 unsigned int n_elt
= shdr
->sh_size
/ 4;
689 if ((++idx
)->shdr
->bfd_section
)
690 elf_sec_group (idx
->shdr
->bfd_section
) = shdr
->bfd_section
;
691 else if (idx
->shdr
->sh_type
== SHT_RELA
692 || idx
->shdr
->sh_type
== SHT_REL
)
693 /* We won't include relocation sections in section groups in
694 output object files. We adjust the group section size here
695 so that relocatable link will work correctly when
696 relocation sections are in section group in input object
698 shdr
->bfd_section
->size
-= 4;
701 /* There are some unknown sections in the group. */
702 (*_bfd_error_handler
)
703 (_("%B: unknown [%d] section `%s' in group [%s]"),
705 (unsigned int) idx
->shdr
->sh_type
,
706 bfd_elf_string_from_elf_section (abfd
,
707 (elf_elfheader (abfd
)
710 shdr
->bfd_section
->name
);
718 bfd_elf_is_group_section (bfd
*abfd ATTRIBUTE_UNUSED
, const asection
*sec
)
720 return elf_next_in_group (sec
) != NULL
;
723 /* Make a BFD section from an ELF section. We store a pointer to the
724 BFD section in the bfd_section field of the header. */
727 _bfd_elf_make_section_from_shdr (bfd
*abfd
,
728 Elf_Internal_Shdr
*hdr
,
734 const struct elf_backend_data
*bed
;
736 if (hdr
->bfd_section
!= NULL
)
738 BFD_ASSERT (strcmp (name
,
739 bfd_get_section_name (abfd
, hdr
->bfd_section
)) == 0);
743 newsect
= bfd_make_section_anyway (abfd
, name
);
747 hdr
->bfd_section
= newsect
;
748 elf_section_data (newsect
)->this_hdr
= *hdr
;
749 elf_section_data (newsect
)->this_idx
= shindex
;
751 /* Always use the real type/flags. */
752 elf_section_type (newsect
) = hdr
->sh_type
;
753 elf_section_flags (newsect
) = hdr
->sh_flags
;
755 newsect
->filepos
= hdr
->sh_offset
;
757 if (! bfd_set_section_vma (abfd
, newsect
, hdr
->sh_addr
)
758 || ! bfd_set_section_size (abfd
, newsect
, hdr
->sh_size
)
759 || ! bfd_set_section_alignment (abfd
, newsect
,
760 bfd_log2 ((bfd_vma
) hdr
->sh_addralign
)))
763 flags
= SEC_NO_FLAGS
;
764 if (hdr
->sh_type
!= SHT_NOBITS
)
765 flags
|= SEC_HAS_CONTENTS
;
766 if (hdr
->sh_type
== SHT_GROUP
)
767 flags
|= SEC_GROUP
| SEC_EXCLUDE
;
768 if ((hdr
->sh_flags
& SHF_ALLOC
) != 0)
771 if (hdr
->sh_type
!= SHT_NOBITS
)
774 if ((hdr
->sh_flags
& SHF_WRITE
) == 0)
775 flags
|= SEC_READONLY
;
776 if ((hdr
->sh_flags
& SHF_EXECINSTR
) != 0)
778 else if ((flags
& SEC_LOAD
) != 0)
780 if ((hdr
->sh_flags
& SHF_MERGE
) != 0)
783 newsect
->entsize
= hdr
->sh_entsize
;
784 if ((hdr
->sh_flags
& SHF_STRINGS
) != 0)
785 flags
|= SEC_STRINGS
;
787 if (hdr
->sh_flags
& SHF_GROUP
)
788 if (!setup_group (abfd
, hdr
, newsect
))
790 if ((hdr
->sh_flags
& SHF_TLS
) != 0)
791 flags
|= SEC_THREAD_LOCAL
;
793 if ((flags
& SEC_ALLOC
) == 0)
795 /* The debugging sections appear to be recognized only by name,
796 not any sort of flag. Their SEC_ALLOC bits are cleared. */
801 } debug_sections
[] =
803 { "debug", 5 }, /* 'd' */
804 { NULL
, 0 }, /* 'e' */
805 { NULL
, 0 }, /* 'f' */
806 { "gnu.linkonce.wi.", 17 }, /* 'g' */
807 { NULL
, 0 }, /* 'h' */
808 { NULL
, 0 }, /* 'i' */
809 { NULL
, 0 }, /* 'j' */
810 { NULL
, 0 }, /* 'k' */
811 { "line", 4 }, /* 'l' */
812 { NULL
, 0 }, /* 'm' */
813 { NULL
, 0 }, /* 'n' */
814 { NULL
, 0 }, /* 'o' */
815 { NULL
, 0 }, /* 'p' */
816 { NULL
, 0 }, /* 'q' */
817 { NULL
, 0 }, /* 'r' */
818 { "stab", 4 } /* 's' */
823 int i
= name
[1] - 'd';
825 && i
< (int) ARRAY_SIZE (debug_sections
)
826 && debug_sections
[i
].name
!= NULL
827 && strncmp (&name
[1], debug_sections
[i
].name
,
828 debug_sections
[i
].len
) == 0)
829 flags
|= SEC_DEBUGGING
;
833 /* As a GNU extension, if the name begins with .gnu.linkonce, we
834 only link a single copy of the section. This is used to support
835 g++. g++ will emit each template expansion in its own section.
836 The symbols will be defined as weak, so that multiple definitions
837 are permitted. The GNU linker extension is to actually discard
838 all but one of the sections. */
839 if (strncmp (name
, ".gnu.linkonce", sizeof ".gnu.linkonce" - 1) == 0
840 && elf_next_in_group (newsect
) == NULL
)
841 flags
|= SEC_LINK_ONCE
| SEC_LINK_DUPLICATES_DISCARD
;
843 bed
= get_elf_backend_data (abfd
);
844 if (bed
->elf_backend_section_flags
)
845 if (! bed
->elf_backend_section_flags (&flags
, hdr
))
848 if (! bfd_set_section_flags (abfd
, newsect
, flags
))
851 if ((flags
& SEC_ALLOC
) != 0)
853 Elf_Internal_Phdr
*phdr
;
856 /* Look through the phdrs to see if we need to adjust the lma.
857 If all the p_paddr fields are zero, we ignore them, since
858 some ELF linkers produce such output. */
859 phdr
= elf_tdata (abfd
)->phdr
;
860 for (i
= 0; i
< elf_elfheader (abfd
)->e_phnum
; i
++, phdr
++)
862 if (phdr
->p_paddr
!= 0)
865 if (i
< elf_elfheader (abfd
)->e_phnum
)
867 phdr
= elf_tdata (abfd
)->phdr
;
868 for (i
= 0; i
< elf_elfheader (abfd
)->e_phnum
; i
++, phdr
++)
870 /* This section is part of this segment if its file
871 offset plus size lies within the segment's memory
872 span and, if the section is loaded, the extent of the
873 loaded data lies within the extent of the segment.
875 Note - we used to check the p_paddr field as well, and
876 refuse to set the LMA if it was 0. This is wrong
877 though, as a perfectly valid initialised segment can
878 have a p_paddr of zero. Some architectures, eg ARM,
879 place special significance on the address 0 and
880 executables need to be able to have a segment which
881 covers this address. */
882 if (phdr
->p_type
== PT_LOAD
883 && (bfd_vma
) hdr
->sh_offset
>= phdr
->p_offset
884 && (hdr
->sh_offset
+ hdr
->sh_size
885 <= phdr
->p_offset
+ phdr
->p_memsz
)
886 && ((flags
& SEC_LOAD
) == 0
887 || (hdr
->sh_offset
+ hdr
->sh_size
888 <= phdr
->p_offset
+ phdr
->p_filesz
)))
890 if ((flags
& SEC_LOAD
) == 0)
891 newsect
->lma
= (phdr
->p_paddr
892 + hdr
->sh_addr
- phdr
->p_vaddr
);
894 /* We used to use the same adjustment for SEC_LOAD
895 sections, but that doesn't work if the segment
896 is packed with code from multiple VMAs.
897 Instead we calculate the section LMA based on
898 the segment LMA. It is assumed that the
899 segment will contain sections with contiguous
900 LMAs, even if the VMAs are not. */
901 newsect
->lma
= (phdr
->p_paddr
902 + hdr
->sh_offset
- phdr
->p_offset
);
904 /* With contiguous segments, we can't tell from file
905 offsets whether a section with zero size should
906 be placed at the end of one segment or the
907 beginning of the next. Decide based on vaddr. */
908 if (hdr
->sh_addr
>= phdr
->p_vaddr
909 && (hdr
->sh_addr
+ hdr
->sh_size
910 <= phdr
->p_vaddr
+ phdr
->p_memsz
))
925 struct elf_internal_shdr *bfd_elf_find_section (bfd *abfd, char *name);
928 Helper functions for GDB to locate the string tables.
929 Since BFD hides string tables from callers, GDB needs to use an
930 internal hook to find them. Sun's .stabstr, in particular,
931 isn't even pointed to by the .stab section, so ordinary
932 mechanisms wouldn't work to find it, even if we had some.
935 struct elf_internal_shdr
*
936 bfd_elf_find_section (bfd
*abfd
, char *name
)
938 Elf_Internal_Shdr
**i_shdrp
;
943 i_shdrp
= elf_elfsections (abfd
);
946 shstrtab
= bfd_elf_get_str_section (abfd
,
947 elf_elfheader (abfd
)->e_shstrndx
);
948 if (shstrtab
!= NULL
)
950 max
= elf_numsections (abfd
);
951 for (i
= 1; i
< max
; i
++)
952 if (!strcmp (&shstrtab
[i_shdrp
[i
]->sh_name
], name
))
959 const char *const bfd_elf_section_type_names
[] = {
960 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
961 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
962 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
965 /* ELF relocs are against symbols. If we are producing relocatable
966 output, and the reloc is against an external symbol, and nothing
967 has given us any additional addend, the resulting reloc will also
968 be against the same symbol. In such a case, we don't want to
969 change anything about the way the reloc is handled, since it will
970 all be done at final link time. Rather than put special case code
971 into bfd_perform_relocation, all the reloc types use this howto
972 function. It just short circuits the reloc if producing
973 relocatable output against an external symbol. */
975 bfd_reloc_status_type
976 bfd_elf_generic_reloc (bfd
*abfd ATTRIBUTE_UNUSED
,
977 arelent
*reloc_entry
,
979 void *data ATTRIBUTE_UNUSED
,
980 asection
*input_section
,
982 char **error_message ATTRIBUTE_UNUSED
)
984 if (output_bfd
!= NULL
985 && (symbol
->flags
& BSF_SECTION_SYM
) == 0
986 && (! reloc_entry
->howto
->partial_inplace
987 || reloc_entry
->addend
== 0))
989 reloc_entry
->address
+= input_section
->output_offset
;
993 return bfd_reloc_continue
;
996 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
999 merge_sections_remove_hook (bfd
*abfd ATTRIBUTE_UNUSED
,
1002 BFD_ASSERT (sec
->sec_info_type
== ELF_INFO_TYPE_MERGE
);
1003 sec
->sec_info_type
= ELF_INFO_TYPE_NONE
;
1006 /* Finish SHF_MERGE section merging. */
1009 _bfd_elf_merge_sections (bfd
*abfd
, struct bfd_link_info
*info
)
1014 if (!is_elf_hash_table (info
->hash
))
1017 for (ibfd
= info
->input_bfds
; ibfd
!= NULL
; ibfd
= ibfd
->link_next
)
1018 if ((ibfd
->flags
& DYNAMIC
) == 0)
1019 for (sec
= ibfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
1020 if ((sec
->flags
& SEC_MERGE
) != 0
1021 && !bfd_is_abs_section (sec
->output_section
))
1023 struct bfd_elf_section_data
*secdata
;
1025 secdata
= elf_section_data (sec
);
1026 if (! _bfd_add_merge_section (abfd
,
1027 &elf_hash_table (info
)->merge_info
,
1028 sec
, &secdata
->sec_info
))
1030 else if (secdata
->sec_info
)
1031 sec
->sec_info_type
= ELF_INFO_TYPE_MERGE
;
1034 if (elf_hash_table (info
)->merge_info
!= NULL
)
1035 _bfd_merge_sections (abfd
, info
, elf_hash_table (info
)->merge_info
,
1036 merge_sections_remove_hook
);
1041 _bfd_elf_link_just_syms (asection
*sec
, struct bfd_link_info
*info
)
1043 sec
->output_section
= bfd_abs_section_ptr
;
1044 sec
->output_offset
= sec
->vma
;
1045 if (!is_elf_hash_table (info
->hash
))
1048 sec
->sec_info_type
= ELF_INFO_TYPE_JUST_SYMS
;
1051 /* Copy the program header and other data from one object module to
1055 _bfd_elf_copy_private_bfd_data (bfd
*ibfd
, bfd
*obfd
)
1057 if (bfd_get_flavour (ibfd
) != bfd_target_elf_flavour
1058 || bfd_get_flavour (obfd
) != bfd_target_elf_flavour
)
1061 BFD_ASSERT (!elf_flags_init (obfd
)
1062 || (elf_elfheader (obfd
)->e_flags
1063 == elf_elfheader (ibfd
)->e_flags
));
1065 elf_gp (obfd
) = elf_gp (ibfd
);
1066 elf_elfheader (obfd
)->e_flags
= elf_elfheader (ibfd
)->e_flags
;
1067 elf_flags_init (obfd
) = TRUE
;
1071 /* Print out the program headers. */
1074 _bfd_elf_print_private_bfd_data (bfd
*abfd
, void *farg
)
1077 Elf_Internal_Phdr
*p
;
1079 bfd_byte
*dynbuf
= NULL
;
1081 p
= elf_tdata (abfd
)->phdr
;
1086 fprintf (f
, _("\nProgram Header:\n"));
1087 c
= elf_elfheader (abfd
)->e_phnum
;
1088 for (i
= 0; i
< c
; i
++, p
++)
1095 case PT_NULL
: pt
= "NULL"; break;
1096 case PT_LOAD
: pt
= "LOAD"; break;
1097 case PT_DYNAMIC
: pt
= "DYNAMIC"; break;
1098 case PT_INTERP
: pt
= "INTERP"; break;
1099 case PT_NOTE
: pt
= "NOTE"; break;
1100 case PT_SHLIB
: pt
= "SHLIB"; break;
1101 case PT_PHDR
: pt
= "PHDR"; break;
1102 case PT_TLS
: pt
= "TLS"; break;
1103 case PT_GNU_EH_FRAME
: pt
= "EH_FRAME"; break;
1104 case PT_GNU_STACK
: pt
= "STACK"; break;
1105 case PT_GNU_RELRO
: pt
= "RELRO"; break;
1106 default: sprintf (buf
, "0x%lx", p
->p_type
); pt
= buf
; break;
1108 fprintf (f
, "%8s off 0x", pt
);
1109 bfd_fprintf_vma (abfd
, f
, p
->p_offset
);
1110 fprintf (f
, " vaddr 0x");
1111 bfd_fprintf_vma (abfd
, f
, p
->p_vaddr
);
1112 fprintf (f
, " paddr 0x");
1113 bfd_fprintf_vma (abfd
, f
, p
->p_paddr
);
1114 fprintf (f
, " align 2**%u\n", bfd_log2 (p
->p_align
));
1115 fprintf (f
, " filesz 0x");
1116 bfd_fprintf_vma (abfd
, f
, p
->p_filesz
);
1117 fprintf (f
, " memsz 0x");
1118 bfd_fprintf_vma (abfd
, f
, p
->p_memsz
);
1119 fprintf (f
, " flags %c%c%c",
1120 (p
->p_flags
& PF_R
) != 0 ? 'r' : '-',
1121 (p
->p_flags
& PF_W
) != 0 ? 'w' : '-',
1122 (p
->p_flags
& PF_X
) != 0 ? 'x' : '-');
1123 if ((p
->p_flags
&~ (unsigned) (PF_R
| PF_W
| PF_X
)) != 0)
1124 fprintf (f
, " %lx", p
->p_flags
&~ (unsigned) (PF_R
| PF_W
| PF_X
));
1129 s
= bfd_get_section_by_name (abfd
, ".dynamic");
1133 unsigned long shlink
;
1134 bfd_byte
*extdyn
, *extdynend
;
1136 void (*swap_dyn_in
) (bfd
*, const void *, Elf_Internal_Dyn
*);
1138 fprintf (f
, _("\nDynamic Section:\n"));
1140 if (!bfd_malloc_and_get_section (abfd
, s
, &dynbuf
))
1143 elfsec
= _bfd_elf_section_from_bfd_section (abfd
, s
);
1146 shlink
= elf_elfsections (abfd
)[elfsec
]->sh_link
;
1148 extdynsize
= get_elf_backend_data (abfd
)->s
->sizeof_dyn
;
1149 swap_dyn_in
= get_elf_backend_data (abfd
)->s
->swap_dyn_in
;
1152 extdynend
= extdyn
+ s
->size
;
1153 for (; extdyn
< extdynend
; extdyn
+= extdynsize
)
1155 Elf_Internal_Dyn dyn
;
1158 bfd_boolean stringp
;
1160 (*swap_dyn_in
) (abfd
, extdyn
, &dyn
);
1162 if (dyn
.d_tag
== DT_NULL
)
1169 sprintf (ab
, "0x%lx", (unsigned long) dyn
.d_tag
);
1173 case DT_NEEDED
: name
= "NEEDED"; stringp
= TRUE
; break;
1174 case DT_PLTRELSZ
: name
= "PLTRELSZ"; break;
1175 case DT_PLTGOT
: name
= "PLTGOT"; break;
1176 case DT_HASH
: name
= "HASH"; break;
1177 case DT_STRTAB
: name
= "STRTAB"; break;
1178 case DT_SYMTAB
: name
= "SYMTAB"; break;
1179 case DT_RELA
: name
= "RELA"; break;
1180 case DT_RELASZ
: name
= "RELASZ"; break;
1181 case DT_RELAENT
: name
= "RELAENT"; break;
1182 case DT_STRSZ
: name
= "STRSZ"; break;
1183 case DT_SYMENT
: name
= "SYMENT"; break;
1184 case DT_INIT
: name
= "INIT"; break;
1185 case DT_FINI
: name
= "FINI"; break;
1186 case DT_SONAME
: name
= "SONAME"; stringp
= TRUE
; break;
1187 case DT_RPATH
: name
= "RPATH"; stringp
= TRUE
; break;
1188 case DT_SYMBOLIC
: name
= "SYMBOLIC"; break;
1189 case DT_REL
: name
= "REL"; break;
1190 case DT_RELSZ
: name
= "RELSZ"; break;
1191 case DT_RELENT
: name
= "RELENT"; break;
1192 case DT_PLTREL
: name
= "PLTREL"; break;
1193 case DT_DEBUG
: name
= "DEBUG"; break;
1194 case DT_TEXTREL
: name
= "TEXTREL"; break;
1195 case DT_JMPREL
: name
= "JMPREL"; break;
1196 case DT_BIND_NOW
: name
= "BIND_NOW"; break;
1197 case DT_INIT_ARRAY
: name
= "INIT_ARRAY"; break;
1198 case DT_FINI_ARRAY
: name
= "FINI_ARRAY"; break;
1199 case DT_INIT_ARRAYSZ
: name
= "INIT_ARRAYSZ"; break;
1200 case DT_FINI_ARRAYSZ
: name
= "FINI_ARRAYSZ"; break;
1201 case DT_RUNPATH
: name
= "RUNPATH"; stringp
= TRUE
; break;
1202 case DT_FLAGS
: name
= "FLAGS"; break;
1203 case DT_PREINIT_ARRAY
: name
= "PREINIT_ARRAY"; break;
1204 case DT_PREINIT_ARRAYSZ
: name
= "PREINIT_ARRAYSZ"; break;
1205 case DT_CHECKSUM
: name
= "CHECKSUM"; break;
1206 case DT_PLTPADSZ
: name
= "PLTPADSZ"; break;
1207 case DT_MOVEENT
: name
= "MOVEENT"; break;
1208 case DT_MOVESZ
: name
= "MOVESZ"; break;
1209 case DT_FEATURE
: name
= "FEATURE"; break;
1210 case DT_POSFLAG_1
: name
= "POSFLAG_1"; break;
1211 case DT_SYMINSZ
: name
= "SYMINSZ"; break;
1212 case DT_SYMINENT
: name
= "SYMINENT"; break;
1213 case DT_CONFIG
: name
= "CONFIG"; stringp
= TRUE
; break;
1214 case DT_DEPAUDIT
: name
= "DEPAUDIT"; stringp
= TRUE
; break;
1215 case DT_AUDIT
: name
= "AUDIT"; stringp
= TRUE
; break;
1216 case DT_PLTPAD
: name
= "PLTPAD"; break;
1217 case DT_MOVETAB
: name
= "MOVETAB"; break;
1218 case DT_SYMINFO
: name
= "SYMINFO"; break;
1219 case DT_RELACOUNT
: name
= "RELACOUNT"; break;
1220 case DT_RELCOUNT
: name
= "RELCOUNT"; break;
1221 case DT_FLAGS_1
: name
= "FLAGS_1"; break;
1222 case DT_VERSYM
: name
= "VERSYM"; break;
1223 case DT_VERDEF
: name
= "VERDEF"; break;
1224 case DT_VERDEFNUM
: name
= "VERDEFNUM"; break;
1225 case DT_VERNEED
: name
= "VERNEED"; break;
1226 case DT_VERNEEDNUM
: name
= "VERNEEDNUM"; break;
1227 case DT_AUXILIARY
: name
= "AUXILIARY"; stringp
= TRUE
; break;
1228 case DT_USED
: name
= "USED"; break;
1229 case DT_FILTER
: name
= "FILTER"; stringp
= TRUE
; break;
1232 fprintf (f
, " %-11s ", name
);
1234 fprintf (f
, "0x%lx", (unsigned long) dyn
.d_un
.d_val
);
1238 unsigned int tagv
= dyn
.d_un
.d_val
;
1240 string
= bfd_elf_string_from_elf_section (abfd
, shlink
, tagv
);
1243 fprintf (f
, "%s", string
);
1252 if ((elf_dynverdef (abfd
) != 0 && elf_tdata (abfd
)->verdef
== NULL
)
1253 || (elf_dynverref (abfd
) != 0 && elf_tdata (abfd
)->verref
== NULL
))
1255 if (! _bfd_elf_slurp_version_tables (abfd
, FALSE
))
1259 if (elf_dynverdef (abfd
) != 0)
1261 Elf_Internal_Verdef
*t
;
1263 fprintf (f
, _("\nVersion definitions:\n"));
1264 for (t
= elf_tdata (abfd
)->verdef
; t
!= NULL
; t
= t
->vd_nextdef
)
1266 fprintf (f
, "%d 0x%2.2x 0x%8.8lx %s\n", t
->vd_ndx
,
1267 t
->vd_flags
, t
->vd_hash
,
1268 t
->vd_nodename
? t
->vd_nodename
: "<corrupt>");
1269 if (t
->vd_auxptr
!= NULL
&& t
->vd_auxptr
->vda_nextptr
!= NULL
)
1271 Elf_Internal_Verdaux
*a
;
1274 for (a
= t
->vd_auxptr
->vda_nextptr
;
1278 a
->vda_nodename
? a
->vda_nodename
: "<corrupt>");
1284 if (elf_dynverref (abfd
) != 0)
1286 Elf_Internal_Verneed
*t
;
1288 fprintf (f
, _("\nVersion References:\n"));
1289 for (t
= elf_tdata (abfd
)->verref
; t
!= NULL
; t
= t
->vn_nextref
)
1291 Elf_Internal_Vernaux
*a
;
1293 fprintf (f
, _(" required from %s:\n"),
1294 t
->vn_filename
? t
->vn_filename
: "<corrupt>");
1295 for (a
= t
->vn_auxptr
; a
!= NULL
; a
= a
->vna_nextptr
)
1296 fprintf (f
, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a
->vna_hash
,
1297 a
->vna_flags
, a
->vna_other
,
1298 a
->vna_nodename
? a
->vna_nodename
: "<corrupt>");
1310 /* Display ELF-specific fields of a symbol. */
1313 bfd_elf_print_symbol (bfd
*abfd
,
1316 bfd_print_symbol_type how
)
1321 case bfd_print_symbol_name
:
1322 fprintf (file
, "%s", symbol
->name
);
1324 case bfd_print_symbol_more
:
1325 fprintf (file
, "elf ");
1326 bfd_fprintf_vma (abfd
, file
, symbol
->value
);
1327 fprintf (file
, " %lx", (long) symbol
->flags
);
1329 case bfd_print_symbol_all
:
1331 const char *section_name
;
1332 const char *name
= NULL
;
1333 const struct elf_backend_data
*bed
;
1334 unsigned char st_other
;
1337 section_name
= symbol
->section
? symbol
->section
->name
: "(*none*)";
1339 bed
= get_elf_backend_data (abfd
);
1340 if (bed
->elf_backend_print_symbol_all
)
1341 name
= (*bed
->elf_backend_print_symbol_all
) (abfd
, filep
, symbol
);
1345 name
= symbol
->name
;
1346 bfd_print_symbol_vandf (abfd
, file
, symbol
);
1349 fprintf (file
, " %s\t", section_name
);
1350 /* Print the "other" value for a symbol. For common symbols,
1351 we've already printed the size; now print the alignment.
1352 For other symbols, we have no specified alignment, and
1353 we've printed the address; now print the size. */
1354 if (bfd_is_com_section (symbol
->section
))
1355 val
= ((elf_symbol_type
*) symbol
)->internal_elf_sym
.st_value
;
1357 val
= ((elf_symbol_type
*) symbol
)->internal_elf_sym
.st_size
;
1358 bfd_fprintf_vma (abfd
, file
, val
);
1360 /* If we have version information, print it. */
1361 if (elf_tdata (abfd
)->dynversym_section
!= 0
1362 && (elf_tdata (abfd
)->dynverdef_section
!= 0
1363 || elf_tdata (abfd
)->dynverref_section
!= 0))
1365 unsigned int vernum
;
1366 const char *version_string
;
1368 vernum
= ((elf_symbol_type
*) symbol
)->version
& VERSYM_VERSION
;
1371 version_string
= "";
1372 else if (vernum
== 1)
1373 version_string
= "Base";
1374 else if (vernum
<= elf_tdata (abfd
)->cverdefs
)
1376 elf_tdata (abfd
)->verdef
[vernum
- 1].vd_nodename
;
1379 Elf_Internal_Verneed
*t
;
1381 version_string
= "";
1382 for (t
= elf_tdata (abfd
)->verref
;
1386 Elf_Internal_Vernaux
*a
;
1388 for (a
= t
->vn_auxptr
; a
!= NULL
; a
= a
->vna_nextptr
)
1390 if (a
->vna_other
== vernum
)
1392 version_string
= a
->vna_nodename
;
1399 if ((((elf_symbol_type
*) symbol
)->version
& VERSYM_HIDDEN
) == 0)
1400 fprintf (file
, " %-11s", version_string
);
1405 fprintf (file
, " (%s)", version_string
);
1406 for (i
= 10 - strlen (version_string
); i
> 0; --i
)
1411 /* If the st_other field is not zero, print it. */
1412 st_other
= ((elf_symbol_type
*) symbol
)->internal_elf_sym
.st_other
;
1417 case STV_INTERNAL
: fprintf (file
, " .internal"); break;
1418 case STV_HIDDEN
: fprintf (file
, " .hidden"); break;
1419 case STV_PROTECTED
: fprintf (file
, " .protected"); break;
1421 /* Some other non-defined flags are also present, so print
1423 fprintf (file
, " 0x%02x", (unsigned int) st_other
);
1426 fprintf (file
, " %s", name
);
1432 /* Create an entry in an ELF linker hash table. */
1434 struct bfd_hash_entry
*
1435 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry
*entry
,
1436 struct bfd_hash_table
*table
,
1439 /* Allocate the structure if it has not already been allocated by a
1443 entry
= bfd_hash_allocate (table
, sizeof (struct elf_link_hash_entry
));
1448 /* Call the allocation method of the superclass. */
1449 entry
= _bfd_link_hash_newfunc (entry
, table
, string
);
1452 struct elf_link_hash_entry
*ret
= (struct elf_link_hash_entry
*) entry
;
1453 struct elf_link_hash_table
*htab
= (struct elf_link_hash_table
*) table
;
1455 /* Set local fields. */
1458 ret
->got
= htab
->init_got_refcount
;
1459 ret
->plt
= htab
->init_plt_refcount
;
1460 memset (&ret
->size
, 0, (sizeof (struct elf_link_hash_entry
)
1461 - offsetof (struct elf_link_hash_entry
, size
)));
1462 /* Assume that we have been called by a non-ELF symbol reader.
1463 This flag is then reset by the code which reads an ELF input
1464 file. This ensures that a symbol created by a non-ELF symbol
1465 reader will have the flag set correctly. */
1472 /* Copy data from an indirect symbol to its direct symbol, hiding the
1473 old indirect symbol. Also used for copying flags to a weakdef. */
1476 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info
*info
,
1477 struct elf_link_hash_entry
*dir
,
1478 struct elf_link_hash_entry
*ind
)
1480 struct elf_link_hash_table
*htab
;
1482 /* Copy down any references that we may have already seen to the
1483 symbol which just became indirect. */
1485 dir
->ref_dynamic
|= ind
->ref_dynamic
;
1486 dir
->ref_regular
|= ind
->ref_regular
;
1487 dir
->ref_regular_nonweak
|= ind
->ref_regular_nonweak
;
1488 dir
->non_got_ref
|= ind
->non_got_ref
;
1489 dir
->needs_plt
|= ind
->needs_plt
;
1490 dir
->pointer_equality_needed
|= ind
->pointer_equality_needed
;
1492 if (ind
->root
.type
!= bfd_link_hash_indirect
)
1495 /* Copy over the global and procedure linkage table refcount entries.
1496 These may have been already set up by a check_relocs routine. */
1497 htab
= elf_hash_table (info
);
1498 if (ind
->got
.refcount
> htab
->init_got_refcount
.refcount
)
1500 if (dir
->got
.refcount
< 0)
1501 dir
->got
.refcount
= 0;
1502 dir
->got
.refcount
+= ind
->got
.refcount
;
1503 ind
->got
.refcount
= htab
->init_got_refcount
.refcount
;
1506 if (ind
->plt
.refcount
> htab
->init_plt_refcount
.refcount
)
1508 if (dir
->plt
.refcount
< 0)
1509 dir
->plt
.refcount
= 0;
1510 dir
->plt
.refcount
+= ind
->plt
.refcount
;
1511 ind
->plt
.refcount
= htab
->init_plt_refcount
.refcount
;
1514 if (ind
->dynindx
!= -1)
1516 if (dir
->dynindx
!= -1)
1517 _bfd_elf_strtab_delref (htab
->dynstr
, dir
->dynstr_index
);
1518 dir
->dynindx
= ind
->dynindx
;
1519 dir
->dynstr_index
= ind
->dynstr_index
;
1521 ind
->dynstr_index
= 0;
1526 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info
*info
,
1527 struct elf_link_hash_entry
*h
,
1528 bfd_boolean force_local
)
1530 h
->plt
= elf_hash_table (info
)->init_plt_offset
;
1534 h
->forced_local
= 1;
1535 if (h
->dynindx
!= -1)
1538 _bfd_elf_strtab_delref (elf_hash_table (info
)->dynstr
,
1544 /* Initialize an ELF linker hash table. */
1547 _bfd_elf_link_hash_table_init
1548 (struct elf_link_hash_table
*table
,
1550 struct bfd_hash_entry
*(*newfunc
) (struct bfd_hash_entry
*,
1551 struct bfd_hash_table
*,
1555 int can_refcount
= get_elf_backend_data (abfd
)->can_refcount
;
1557 table
->dynamic_sections_created
= FALSE
;
1558 table
->dynobj
= NULL
;
1559 table
->init_got_refcount
.refcount
= can_refcount
- 1;
1560 table
->init_plt_refcount
.refcount
= can_refcount
- 1;
1561 table
->init_got_offset
.offset
= -(bfd_vma
) 1;
1562 table
->init_plt_offset
.offset
= -(bfd_vma
) 1;
1563 /* The first dynamic symbol is a dummy. */
1564 table
->dynsymcount
= 1;
1565 table
->dynstr
= NULL
;
1566 table
->bucketcount
= 0;
1567 table
->needed
= NULL
;
1569 table
->merge_info
= NULL
;
1570 memset (&table
->stab_info
, 0, sizeof (table
->stab_info
));
1571 memset (&table
->eh_info
, 0, sizeof (table
->eh_info
));
1572 table
->dynlocal
= NULL
;
1573 table
->runpath
= NULL
;
1574 table
->tls_sec
= NULL
;
1575 table
->tls_size
= 0;
1576 table
->loaded
= NULL
;
1577 table
->is_relocatable_executable
= FALSE
;
1579 ret
= _bfd_link_hash_table_init (&table
->root
, abfd
, newfunc
);
1580 table
->root
.type
= bfd_link_elf_hash_table
;
1585 /* Create an ELF linker hash table. */
1587 struct bfd_link_hash_table
*
1588 _bfd_elf_link_hash_table_create (bfd
*abfd
)
1590 struct elf_link_hash_table
*ret
;
1591 bfd_size_type amt
= sizeof (struct elf_link_hash_table
);
1593 ret
= bfd_malloc (amt
);
1597 if (! _bfd_elf_link_hash_table_init (ret
, abfd
, _bfd_elf_link_hash_newfunc
))
1606 /* This is a hook for the ELF emulation code in the generic linker to
1607 tell the backend linker what file name to use for the DT_NEEDED
1608 entry for a dynamic object. */
1611 bfd_elf_set_dt_needed_name (bfd
*abfd
, const char *name
)
1613 if (bfd_get_flavour (abfd
) == bfd_target_elf_flavour
1614 && bfd_get_format (abfd
) == bfd_object
)
1615 elf_dt_name (abfd
) = name
;
1619 bfd_elf_get_dyn_lib_class (bfd
*abfd
)
1622 if (bfd_get_flavour (abfd
) == bfd_target_elf_flavour
1623 && bfd_get_format (abfd
) == bfd_object
)
1624 lib_class
= elf_dyn_lib_class (abfd
);
1631 bfd_elf_set_dyn_lib_class (bfd
*abfd
, int lib_class
)
1633 if (bfd_get_flavour (abfd
) == bfd_target_elf_flavour
1634 && bfd_get_format (abfd
) == bfd_object
)
1635 elf_dyn_lib_class (abfd
) = lib_class
;
1638 /* Get the list of DT_NEEDED entries for a link. This is a hook for
1639 the linker ELF emulation code. */
1641 struct bfd_link_needed_list
*
1642 bfd_elf_get_needed_list (bfd
*abfd ATTRIBUTE_UNUSED
,
1643 struct bfd_link_info
*info
)
1645 if (! is_elf_hash_table (info
->hash
))
1647 return elf_hash_table (info
)->needed
;
1650 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
1651 hook for the linker ELF emulation code. */
1653 struct bfd_link_needed_list
*
1654 bfd_elf_get_runpath_list (bfd
*abfd ATTRIBUTE_UNUSED
,
1655 struct bfd_link_info
*info
)
1657 if (! is_elf_hash_table (info
->hash
))
1659 return elf_hash_table (info
)->runpath
;
1662 /* Get the name actually used for a dynamic object for a link. This
1663 is the SONAME entry if there is one. Otherwise, it is the string
1664 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
1667 bfd_elf_get_dt_soname (bfd
*abfd
)
1669 if (bfd_get_flavour (abfd
) == bfd_target_elf_flavour
1670 && bfd_get_format (abfd
) == bfd_object
)
1671 return elf_dt_name (abfd
);
1675 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
1676 the ELF linker emulation code. */
1679 bfd_elf_get_bfd_needed_list (bfd
*abfd
,
1680 struct bfd_link_needed_list
**pneeded
)
1683 bfd_byte
*dynbuf
= NULL
;
1685 unsigned long shlink
;
1686 bfd_byte
*extdyn
, *extdynend
;
1688 void (*swap_dyn_in
) (bfd
*, const void *, Elf_Internal_Dyn
*);
1692 if (bfd_get_flavour (abfd
) != bfd_target_elf_flavour
1693 || bfd_get_format (abfd
) != bfd_object
)
1696 s
= bfd_get_section_by_name (abfd
, ".dynamic");
1697 if (s
== NULL
|| s
->size
== 0)
1700 if (!bfd_malloc_and_get_section (abfd
, s
, &dynbuf
))
1703 elfsec
= _bfd_elf_section_from_bfd_section (abfd
, s
);
1707 shlink
= elf_elfsections (abfd
)[elfsec
]->sh_link
;
1709 extdynsize
= get_elf_backend_data (abfd
)->s
->sizeof_dyn
;
1710 swap_dyn_in
= get_elf_backend_data (abfd
)->s
->swap_dyn_in
;
1713 extdynend
= extdyn
+ s
->size
;
1714 for (; extdyn
< extdynend
; extdyn
+= extdynsize
)
1716 Elf_Internal_Dyn dyn
;
1718 (*swap_dyn_in
) (abfd
, extdyn
, &dyn
);
1720 if (dyn
.d_tag
== DT_NULL
)
1723 if (dyn
.d_tag
== DT_NEEDED
)
1726 struct bfd_link_needed_list
*l
;
1727 unsigned int tagv
= dyn
.d_un
.d_val
;
1730 string
= bfd_elf_string_from_elf_section (abfd
, shlink
, tagv
);
1735 l
= bfd_alloc (abfd
, amt
);
1756 /* Allocate an ELF string table--force the first byte to be zero. */
1758 struct bfd_strtab_hash
*
1759 _bfd_elf_stringtab_init (void)
1761 struct bfd_strtab_hash
*ret
;
1763 ret
= _bfd_stringtab_init ();
1768 loc
= _bfd_stringtab_add (ret
, "", TRUE
, FALSE
);
1769 BFD_ASSERT (loc
== 0 || loc
== (bfd_size_type
) -1);
1770 if (loc
== (bfd_size_type
) -1)
1772 _bfd_stringtab_free (ret
);
1779 /* ELF .o/exec file reading */
1781 /* Create a new bfd section from an ELF section header. */
1784 bfd_section_from_shdr (bfd
*abfd
, unsigned int shindex
)
1786 Elf_Internal_Shdr
*hdr
= elf_elfsections (abfd
)[shindex
];
1787 Elf_Internal_Ehdr
*ehdr
= elf_elfheader (abfd
);
1788 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
1791 name
= bfd_elf_string_from_elf_section (abfd
,
1792 elf_elfheader (abfd
)->e_shstrndx
,
1797 switch (hdr
->sh_type
)
1800 /* Inactive section. Throw it away. */
1803 case SHT_PROGBITS
: /* Normal section with contents. */
1804 case SHT_NOBITS
: /* .bss section. */
1805 case SHT_HASH
: /* .hash section. */
1806 case SHT_NOTE
: /* .note section. */
1807 case SHT_INIT_ARRAY
: /* .init_array section. */
1808 case SHT_FINI_ARRAY
: /* .fini_array section. */
1809 case SHT_PREINIT_ARRAY
: /* .preinit_array section. */
1810 case SHT_GNU_LIBLIST
: /* .gnu.liblist section. */
1811 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
);
1813 case SHT_DYNAMIC
: /* Dynamic linking information. */
1814 if (! _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
))
1816 if (hdr
->sh_link
> elf_numsections (abfd
)
1817 || elf_elfsections (abfd
)[hdr
->sh_link
] == NULL
)
1819 if (elf_elfsections (abfd
)[hdr
->sh_link
]->sh_type
!= SHT_STRTAB
)
1821 Elf_Internal_Shdr
*dynsymhdr
;
1823 /* The shared libraries distributed with hpux11 have a bogus
1824 sh_link field for the ".dynamic" section. Find the
1825 string table for the ".dynsym" section instead. */
1826 if (elf_dynsymtab (abfd
) != 0)
1828 dynsymhdr
= elf_elfsections (abfd
)[elf_dynsymtab (abfd
)];
1829 hdr
->sh_link
= dynsymhdr
->sh_link
;
1833 unsigned int i
, num_sec
;
1835 num_sec
= elf_numsections (abfd
);
1836 for (i
= 1; i
< num_sec
; i
++)
1838 dynsymhdr
= elf_elfsections (abfd
)[i
];
1839 if (dynsymhdr
->sh_type
== SHT_DYNSYM
)
1841 hdr
->sh_link
= dynsymhdr
->sh_link
;
1849 case SHT_SYMTAB
: /* A symbol table */
1850 if (elf_onesymtab (abfd
) == shindex
)
1853 if (hdr
->sh_entsize
!= bed
->s
->sizeof_sym
)
1855 BFD_ASSERT (elf_onesymtab (abfd
) == 0);
1856 elf_onesymtab (abfd
) = shindex
;
1857 elf_tdata (abfd
)->symtab_hdr
= *hdr
;
1858 elf_elfsections (abfd
)[shindex
] = hdr
= &elf_tdata (abfd
)->symtab_hdr
;
1859 abfd
->flags
|= HAS_SYMS
;
1861 /* Sometimes a shared object will map in the symbol table. If
1862 SHF_ALLOC is set, and this is a shared object, then we also
1863 treat this section as a BFD section. We can not base the
1864 decision purely on SHF_ALLOC, because that flag is sometimes
1865 set in a relocatable object file, which would confuse the
1867 if ((hdr
->sh_flags
& SHF_ALLOC
) != 0
1868 && (abfd
->flags
& DYNAMIC
) != 0
1869 && ! _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
,
1873 /* Go looking for SHT_SYMTAB_SHNDX too, since if there is one we
1874 can't read symbols without that section loaded as well. It
1875 is most likely specified by the next section header. */
1876 if (elf_elfsections (abfd
)[elf_symtab_shndx (abfd
)]->sh_link
!= shindex
)
1878 unsigned int i
, num_sec
;
1880 num_sec
= elf_numsections (abfd
);
1881 for (i
= shindex
+ 1; i
< num_sec
; i
++)
1883 Elf_Internal_Shdr
*hdr2
= elf_elfsections (abfd
)[i
];
1884 if (hdr2
->sh_type
== SHT_SYMTAB_SHNDX
1885 && hdr2
->sh_link
== shindex
)
1889 for (i
= 1; i
< shindex
; i
++)
1891 Elf_Internal_Shdr
*hdr2
= elf_elfsections (abfd
)[i
];
1892 if (hdr2
->sh_type
== SHT_SYMTAB_SHNDX
1893 && hdr2
->sh_link
== shindex
)
1897 return bfd_section_from_shdr (abfd
, i
);
1901 case SHT_DYNSYM
: /* A dynamic symbol table */
1902 if (elf_dynsymtab (abfd
) == shindex
)
1905 if (hdr
->sh_entsize
!= bed
->s
->sizeof_sym
)
1907 BFD_ASSERT (elf_dynsymtab (abfd
) == 0);
1908 elf_dynsymtab (abfd
) = shindex
;
1909 elf_tdata (abfd
)->dynsymtab_hdr
= *hdr
;
1910 elf_elfsections (abfd
)[shindex
] = hdr
= &elf_tdata (abfd
)->dynsymtab_hdr
;
1911 abfd
->flags
|= HAS_SYMS
;
1913 /* Besides being a symbol table, we also treat this as a regular
1914 section, so that objcopy can handle it. */
1915 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
);
1917 case SHT_SYMTAB_SHNDX
: /* Symbol section indices when >64k sections */
1918 if (elf_symtab_shndx (abfd
) == shindex
)
1921 BFD_ASSERT (elf_symtab_shndx (abfd
) == 0);
1922 elf_symtab_shndx (abfd
) = shindex
;
1923 elf_tdata (abfd
)->symtab_shndx_hdr
= *hdr
;
1924 elf_elfsections (abfd
)[shindex
] = &elf_tdata (abfd
)->symtab_shndx_hdr
;
1927 case SHT_STRTAB
: /* A string table */
1928 if (hdr
->bfd_section
!= NULL
)
1930 if (ehdr
->e_shstrndx
== shindex
)
1932 elf_tdata (abfd
)->shstrtab_hdr
= *hdr
;
1933 elf_elfsections (abfd
)[shindex
] = &elf_tdata (abfd
)->shstrtab_hdr
;
1936 if (elf_elfsections (abfd
)[elf_onesymtab (abfd
)]->sh_link
== shindex
)
1939 elf_tdata (abfd
)->strtab_hdr
= *hdr
;
1940 elf_elfsections (abfd
)[shindex
] = &elf_tdata (abfd
)->strtab_hdr
;
1943 if (elf_elfsections (abfd
)[elf_dynsymtab (abfd
)]->sh_link
== shindex
)
1946 elf_tdata (abfd
)->dynstrtab_hdr
= *hdr
;
1947 hdr
= &elf_tdata (abfd
)->dynstrtab_hdr
;
1948 elf_elfsections (abfd
)[shindex
] = hdr
;
1949 /* We also treat this as a regular section, so that objcopy
1951 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
,
1955 /* If the string table isn't one of the above, then treat it as a
1956 regular section. We need to scan all the headers to be sure,
1957 just in case this strtab section appeared before the above. */
1958 if (elf_onesymtab (abfd
) == 0 || elf_dynsymtab (abfd
) == 0)
1960 unsigned int i
, num_sec
;
1962 num_sec
= elf_numsections (abfd
);
1963 for (i
= 1; i
< num_sec
; i
++)
1965 Elf_Internal_Shdr
*hdr2
= elf_elfsections (abfd
)[i
];
1966 if (hdr2
->sh_link
== shindex
)
1968 /* Prevent endless recursion on broken objects. */
1971 if (! bfd_section_from_shdr (abfd
, i
))
1973 if (elf_onesymtab (abfd
) == i
)
1975 if (elf_dynsymtab (abfd
) == i
)
1976 goto dynsymtab_strtab
;
1980 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
);
1984 /* *These* do a lot of work -- but build no sections! */
1986 asection
*target_sect
;
1987 Elf_Internal_Shdr
*hdr2
;
1988 unsigned int num_sec
= elf_numsections (abfd
);
1991 != (bfd_size_type
) (hdr
->sh_type
== SHT_REL
1992 ? bed
->s
->sizeof_rel
: bed
->s
->sizeof_rela
))
1995 /* Check for a bogus link to avoid crashing. */
1996 if ((hdr
->sh_link
>= SHN_LORESERVE
&& hdr
->sh_link
<= SHN_HIRESERVE
)
1997 || hdr
->sh_link
>= num_sec
)
1999 ((*_bfd_error_handler
)
2000 (_("%B: invalid link %lu for reloc section %s (index %u)"),
2001 abfd
, hdr
->sh_link
, name
, shindex
));
2002 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
,
2006 /* For some incomprehensible reason Oracle distributes
2007 libraries for Solaris in which some of the objects have
2008 bogus sh_link fields. It would be nice if we could just
2009 reject them, but, unfortunately, some people need to use
2010 them. We scan through the section headers; if we find only
2011 one suitable symbol table, we clobber the sh_link to point
2012 to it. I hope this doesn't break anything. */
2013 if (elf_elfsections (abfd
)[hdr
->sh_link
]->sh_type
!= SHT_SYMTAB
2014 && elf_elfsections (abfd
)[hdr
->sh_link
]->sh_type
!= SHT_DYNSYM
)
2020 for (scan
= 1; scan
< num_sec
; scan
++)
2022 if (elf_elfsections (abfd
)[scan
]->sh_type
== SHT_SYMTAB
2023 || elf_elfsections (abfd
)[scan
]->sh_type
== SHT_DYNSYM
)
2034 hdr
->sh_link
= found
;
2037 /* Get the symbol table. */
2038 if ((elf_elfsections (abfd
)[hdr
->sh_link
]->sh_type
== SHT_SYMTAB
2039 || elf_elfsections (abfd
)[hdr
->sh_link
]->sh_type
== SHT_DYNSYM
)
2040 && ! bfd_section_from_shdr (abfd
, hdr
->sh_link
))
2043 /* If this reloc section does not use the main symbol table we
2044 don't treat it as a reloc section. BFD can't adequately
2045 represent such a section, so at least for now, we don't
2046 try. We just present it as a normal section. We also
2047 can't use it as a reloc section if it points to the null
2048 section, an invalid section, or another reloc section. */
2049 if (hdr
->sh_link
!= elf_onesymtab (abfd
)
2050 || hdr
->sh_info
== SHN_UNDEF
2051 || (hdr
->sh_info
>= SHN_LORESERVE
&& hdr
->sh_info
<= SHN_HIRESERVE
)
2052 || hdr
->sh_info
>= num_sec
2053 || elf_elfsections (abfd
)[hdr
->sh_info
]->sh_type
== SHT_REL
2054 || elf_elfsections (abfd
)[hdr
->sh_info
]->sh_type
== SHT_RELA
)
2055 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
,
2058 if (! bfd_section_from_shdr (abfd
, hdr
->sh_info
))
2060 target_sect
= bfd_section_from_elf_index (abfd
, hdr
->sh_info
);
2061 if (target_sect
== NULL
)
2064 if ((target_sect
->flags
& SEC_RELOC
) == 0
2065 || target_sect
->reloc_count
== 0)
2066 hdr2
= &elf_section_data (target_sect
)->rel_hdr
;
2070 BFD_ASSERT (elf_section_data (target_sect
)->rel_hdr2
== NULL
);
2071 amt
= sizeof (*hdr2
);
2072 hdr2
= bfd_alloc (abfd
, amt
);
2073 elf_section_data (target_sect
)->rel_hdr2
= hdr2
;
2076 elf_elfsections (abfd
)[shindex
] = hdr2
;
2077 target_sect
->reloc_count
+= NUM_SHDR_ENTRIES (hdr
);
2078 target_sect
->flags
|= SEC_RELOC
;
2079 target_sect
->relocation
= NULL
;
2080 target_sect
->rel_filepos
= hdr
->sh_offset
;
2081 /* In the section to which the relocations apply, mark whether
2082 its relocations are of the REL or RELA variety. */
2083 if (hdr
->sh_size
!= 0)
2084 target_sect
->use_rela_p
= hdr
->sh_type
== SHT_RELA
;
2085 abfd
->flags
|= HAS_RELOC
;
2090 case SHT_GNU_verdef
:
2091 elf_dynverdef (abfd
) = shindex
;
2092 elf_tdata (abfd
)->dynverdef_hdr
= *hdr
;
2093 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
);
2096 case SHT_GNU_versym
:
2097 if (hdr
->sh_entsize
!= sizeof (Elf_External_Versym
))
2099 elf_dynversym (abfd
) = shindex
;
2100 elf_tdata (abfd
)->dynversym_hdr
= *hdr
;
2101 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
);
2104 case SHT_GNU_verneed
:
2105 elf_dynverref (abfd
) = shindex
;
2106 elf_tdata (abfd
)->dynverref_hdr
= *hdr
;
2107 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
);
2114 /* We need a BFD section for objcopy and relocatable linking,
2115 and it's handy to have the signature available as the section
2117 if (hdr
->sh_entsize
!= GRP_ENTRY_SIZE
)
2119 name
= group_signature (abfd
, hdr
);
2122 if (!_bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
))
2124 if (hdr
->contents
!= NULL
)
2126 Elf_Internal_Group
*idx
= (Elf_Internal_Group
*) hdr
->contents
;
2127 unsigned int n_elt
= hdr
->sh_size
/ 4;
2130 if (idx
->flags
& GRP_COMDAT
)
2131 hdr
->bfd_section
->flags
2132 |= SEC_LINK_ONCE
| SEC_LINK_DUPLICATES_DISCARD
;
2134 /* We try to keep the same section order as it comes in. */
2136 while (--n_elt
!= 0)
2137 if ((s
= (--idx
)->shdr
->bfd_section
) != NULL
2138 && elf_next_in_group (s
) != NULL
)
2140 elf_next_in_group (hdr
->bfd_section
) = s
;
2147 /* Check for any processor-specific section types. */
2148 return bed
->elf_backend_section_from_shdr (abfd
, hdr
, name
,
2155 /* Return the section for the local symbol specified by ABFD, R_SYMNDX.
2156 Return SEC for sections that have no elf section, and NULL on error. */
2159 bfd_section_from_r_symndx (bfd
*abfd
,
2160 struct sym_sec_cache
*cache
,
2162 unsigned long r_symndx
)
2164 Elf_Internal_Shdr
*symtab_hdr
;
2165 unsigned char esym
[sizeof (Elf64_External_Sym
)];
2166 Elf_External_Sym_Shndx eshndx
;
2167 Elf_Internal_Sym isym
;
2168 unsigned int ent
= r_symndx
% LOCAL_SYM_CACHE_SIZE
;
2170 if (cache
->abfd
== abfd
&& cache
->indx
[ent
] == r_symndx
)
2171 return cache
->sec
[ent
];
2173 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
2174 if (bfd_elf_get_elf_syms (abfd
, symtab_hdr
, 1, r_symndx
,
2175 &isym
, esym
, &eshndx
) == NULL
)
2178 if (cache
->abfd
!= abfd
)
2180 memset (cache
->indx
, -1, sizeof (cache
->indx
));
2183 cache
->indx
[ent
] = r_symndx
;
2184 cache
->sec
[ent
] = sec
;
2185 if ((isym
.st_shndx
!= SHN_UNDEF
&& isym
.st_shndx
< SHN_LORESERVE
)
2186 || isym
.st_shndx
> SHN_HIRESERVE
)
2189 s
= bfd_section_from_elf_index (abfd
, isym
.st_shndx
);
2191 cache
->sec
[ent
] = s
;
2193 return cache
->sec
[ent
];
2196 /* Given an ELF section number, retrieve the corresponding BFD
2200 bfd_section_from_elf_index (bfd
*abfd
, unsigned int index
)
2202 if (index
>= elf_numsections (abfd
))
2204 return elf_elfsections (abfd
)[index
]->bfd_section
;
2207 static const struct bfd_elf_special_section special_sections_b
[] =
2209 { ".bss", 4, -2, SHT_NOBITS
, SHF_ALLOC
+ SHF_WRITE
},
2210 { NULL
, 0, 0, 0, 0 }
2213 static const struct bfd_elf_special_section special_sections_c
[] =
2215 { ".comment", 8, 0, SHT_PROGBITS
, 0 },
2216 { NULL
, 0, 0, 0, 0 }
2219 static const struct bfd_elf_special_section special_sections_d
[] =
2221 { ".data", 5, -2, SHT_PROGBITS
, SHF_ALLOC
+ SHF_WRITE
},
2222 { ".data1", 6, 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_WRITE
},
2223 { ".debug", 6, 0, SHT_PROGBITS
, 0 },
2224 { ".debug_line", 11, 0, SHT_PROGBITS
, 0 },
2225 { ".debug_info", 11, 0, SHT_PROGBITS
, 0 },
2226 { ".debug_abbrev", 13, 0, SHT_PROGBITS
, 0 },
2227 { ".debug_aranges", 14, 0, SHT_PROGBITS
, 0 },
2228 { ".dynamic", 8, 0, SHT_DYNAMIC
, SHF_ALLOC
},
2229 { ".dynstr", 7, 0, SHT_STRTAB
, SHF_ALLOC
},
2230 { ".dynsym", 7, 0, SHT_DYNSYM
, SHF_ALLOC
},
2231 { NULL
, 0, 0, 0, 0 }
2234 static const struct bfd_elf_special_section special_sections_f
[] =
2236 { ".fini", 5, 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_EXECINSTR
},
2237 { ".fini_array", 11, 0, SHT_FINI_ARRAY
, SHF_ALLOC
+ SHF_WRITE
},
2238 { NULL
, 0, 0, 0, 0 }
2241 static const struct bfd_elf_special_section special_sections_g
[] =
2243 { ".gnu.linkonce.b",15, -2, SHT_NOBITS
, SHF_ALLOC
+ SHF_WRITE
},
2244 { ".got", 4, 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_WRITE
},
2245 { ".gnu.version", 12, 0, SHT_GNU_versym
, 0 },
2246 { ".gnu.version_d", 14, 0, SHT_GNU_verdef
, 0 },
2247 { ".gnu.version_r", 14, 0, SHT_GNU_verneed
, 0 },
2248 { ".gnu.liblist", 12, 0, SHT_GNU_LIBLIST
, SHF_ALLOC
},
2249 { ".gnu.conflict", 13, 0, SHT_RELA
, SHF_ALLOC
},
2250 { NULL
, 0, 0, 0, 0 }
2253 static const struct bfd_elf_special_section special_sections_h
[] =
2255 { ".hash", 5, 0, SHT_HASH
, SHF_ALLOC
},
2256 { NULL
, 0, 0, 0, 0 }
2259 static const struct bfd_elf_special_section special_sections_i
[] =
2261 { ".init", 5, 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_EXECINSTR
},
2262 { ".init_array", 11, 0, SHT_INIT_ARRAY
, SHF_ALLOC
+ SHF_WRITE
},
2263 { ".interp", 7, 0, SHT_PROGBITS
, 0 },
2264 { NULL
, 0, 0, 0, 0 }
2267 static const struct bfd_elf_special_section special_sections_l
[] =
2269 { ".line", 5, 0, SHT_PROGBITS
, 0 },
2270 { NULL
, 0, 0, 0, 0 }
2273 static const struct bfd_elf_special_section special_sections_n
[] =
2275 { ".note.GNU-stack",15, 0, SHT_PROGBITS
, 0 },
2276 { ".note", 5, -1, SHT_NOTE
, 0 },
2277 { NULL
, 0, 0, 0, 0 }
2280 static const struct bfd_elf_special_section special_sections_p
[] =
2282 { ".preinit_array", 14, 0, SHT_PREINIT_ARRAY
, SHF_ALLOC
+ SHF_WRITE
},
2283 { ".plt", 4, 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_EXECINSTR
},
2284 { NULL
, 0, 0, 0, 0 }
2287 static const struct bfd_elf_special_section special_sections_r
[] =
2289 { ".rodata", 7, -2, SHT_PROGBITS
, SHF_ALLOC
},
2290 { ".rodata1", 8, 0, SHT_PROGBITS
, SHF_ALLOC
},
2291 { ".rela", 5, -1, SHT_RELA
, 0 },
2292 { ".rel", 4, -1, SHT_REL
, 0 },
2293 { NULL
, 0, 0, 0, 0 }
2296 static const struct bfd_elf_special_section special_sections_s
[] =
2298 { ".shstrtab", 9, 0, SHT_STRTAB
, 0 },
2299 { ".strtab", 7, 0, SHT_STRTAB
, 0 },
2300 { ".symtab", 7, 0, SHT_SYMTAB
, 0 },
2301 { ".stabstr", 5, 3, SHT_STRTAB
, 0 },
2302 { NULL
, 0, 0, 0, 0 }
2305 static const struct bfd_elf_special_section special_sections_t
[] =
2307 { ".text", 5, -2, SHT_PROGBITS
, SHF_ALLOC
+ SHF_EXECINSTR
},
2308 { ".tbss", 5, -2, SHT_NOBITS
, SHF_ALLOC
+ SHF_WRITE
+ SHF_TLS
},
2309 { ".tdata", 6, -2, SHT_PROGBITS
, SHF_ALLOC
+ SHF_WRITE
+ SHF_TLS
},
2310 { NULL
, 0, 0, 0, 0 }
2313 static const struct bfd_elf_special_section
*special_sections
[] =
2315 special_sections_b
, /* 'b' */
2316 special_sections_c
, /* 'b' */
2317 special_sections_d
, /* 'd' */
2319 special_sections_f
, /* 'f' */
2320 special_sections_g
, /* 'g' */
2321 special_sections_h
, /* 'h' */
2322 special_sections_i
, /* 'i' */
2325 special_sections_l
, /* 'l' */
2327 special_sections_n
, /* 'n' */
2329 special_sections_p
, /* 'p' */
2331 special_sections_r
, /* 'r' */
2332 special_sections_s
, /* 's' */
2333 special_sections_t
, /* 't' */
2336 const struct bfd_elf_special_section
*
2337 _bfd_elf_get_special_section (const char *name
,
2338 const struct bfd_elf_special_section
*spec
,
2344 len
= strlen (name
);
2346 for (i
= 0; spec
[i
].prefix
!= NULL
; i
++)
2349 int prefix_len
= spec
[i
].prefix_length
;
2351 if (len
< prefix_len
)
2353 if (memcmp (name
, spec
[i
].prefix
, prefix_len
) != 0)
2356 suffix_len
= spec
[i
].suffix_length
;
2357 if (suffix_len
<= 0)
2359 if (name
[prefix_len
] != 0)
2361 if (suffix_len
== 0)
2363 if (name
[prefix_len
] != '.'
2364 && (suffix_len
== -2
2365 || (rela
&& spec
[i
].type
== SHT_REL
)))
2371 if (len
< prefix_len
+ suffix_len
)
2373 if (memcmp (name
+ len
- suffix_len
,
2374 spec
[i
].prefix
+ prefix_len
,
2384 const struct bfd_elf_special_section
*
2385 _bfd_elf_get_sec_type_attr (bfd
*abfd
, asection
*sec
)
2388 const struct bfd_elf_special_section
*spec
;
2389 const struct elf_backend_data
*bed
;
2391 /* See if this is one of the special sections. */
2392 if (sec
->name
== NULL
)
2395 bed
= get_elf_backend_data (abfd
);
2396 spec
= bed
->special_sections
;
2399 spec
= _bfd_elf_get_special_section (sec
->name
,
2400 bed
->special_sections
,
2406 if (sec
->name
[0] != '.')
2409 i
= sec
->name
[1] - 'b';
2410 if (i
< 0 || i
> 't' - 'b')
2413 spec
= special_sections
[i
];
2418 return _bfd_elf_get_special_section (sec
->name
, spec
, sec
->use_rela_p
);
2422 _bfd_elf_new_section_hook (bfd
*abfd
, asection
*sec
)
2424 struct bfd_elf_section_data
*sdata
;
2425 const struct elf_backend_data
*bed
;
2426 const struct bfd_elf_special_section
*ssect
;
2428 sdata
= (struct bfd_elf_section_data
*) sec
->used_by_bfd
;
2431 sdata
= bfd_zalloc (abfd
, sizeof (*sdata
));
2434 sec
->used_by_bfd
= sdata
;
2437 /* Indicate whether or not this section should use RELA relocations. */
2438 bed
= get_elf_backend_data (abfd
);
2439 sec
->use_rela_p
= bed
->default_use_rela_p
;
2441 /* When we read a file, we don't need section type and flags unless
2442 it is a linker created section. They will be overridden in
2443 _bfd_elf_make_section_from_shdr anyway. */
2444 if (abfd
->direction
!= read_direction
2445 || (sec
->flags
& SEC_LINKER_CREATED
) != 0)
2447 ssect
= (*bed
->get_sec_type_attr
) (abfd
, sec
);
2450 elf_section_type (sec
) = ssect
->type
;
2451 elf_section_flags (sec
) = ssect
->attr
;
2458 /* Create a new bfd section from an ELF program header.
2460 Since program segments have no names, we generate a synthetic name
2461 of the form segment<NUM>, where NUM is generally the index in the
2462 program header table. For segments that are split (see below) we
2463 generate the names segment<NUM>a and segment<NUM>b.
2465 Note that some program segments may have a file size that is different than
2466 (less than) the memory size. All this means is that at execution the
2467 system must allocate the amount of memory specified by the memory size,
2468 but only initialize it with the first "file size" bytes read from the
2469 file. This would occur for example, with program segments consisting
2470 of combined data+bss.
2472 To handle the above situation, this routine generates TWO bfd sections
2473 for the single program segment. The first has the length specified by
2474 the file size of the segment, and the second has the length specified
2475 by the difference between the two sizes. In effect, the segment is split
2476 into it's initialized and uninitialized parts.
2481 _bfd_elf_make_section_from_phdr (bfd
*abfd
,
2482 Elf_Internal_Phdr
*hdr
,
2484 const char *typename
)
2492 split
= ((hdr
->p_memsz
> 0)
2493 && (hdr
->p_filesz
> 0)
2494 && (hdr
->p_memsz
> hdr
->p_filesz
));
2495 sprintf (namebuf
, "%s%d%s", typename
, index
, split
? "a" : "");
2496 len
= strlen (namebuf
) + 1;
2497 name
= bfd_alloc (abfd
, len
);
2500 memcpy (name
, namebuf
, len
);
2501 newsect
= bfd_make_section (abfd
, name
);
2502 if (newsect
== NULL
)
2504 newsect
->vma
= hdr
->p_vaddr
;
2505 newsect
->lma
= hdr
->p_paddr
;
2506 newsect
->size
= hdr
->p_filesz
;
2507 newsect
->filepos
= hdr
->p_offset
;
2508 newsect
->flags
|= SEC_HAS_CONTENTS
;
2509 newsect
->alignment_power
= bfd_log2 (hdr
->p_align
);
2510 if (hdr
->p_type
== PT_LOAD
)
2512 newsect
->flags
|= SEC_ALLOC
;
2513 newsect
->flags
|= SEC_LOAD
;
2514 if (hdr
->p_flags
& PF_X
)
2516 /* FIXME: all we known is that it has execute PERMISSION,
2518 newsect
->flags
|= SEC_CODE
;
2521 if (!(hdr
->p_flags
& PF_W
))
2523 newsect
->flags
|= SEC_READONLY
;
2528 sprintf (namebuf
, "%s%db", typename
, index
);
2529 len
= strlen (namebuf
) + 1;
2530 name
= bfd_alloc (abfd
, len
);
2533 memcpy (name
, namebuf
, len
);
2534 newsect
= bfd_make_section (abfd
, name
);
2535 if (newsect
== NULL
)
2537 newsect
->vma
= hdr
->p_vaddr
+ hdr
->p_filesz
;
2538 newsect
->lma
= hdr
->p_paddr
+ hdr
->p_filesz
;
2539 newsect
->size
= hdr
->p_memsz
- hdr
->p_filesz
;
2540 if (hdr
->p_type
== PT_LOAD
)
2542 newsect
->flags
|= SEC_ALLOC
;
2543 if (hdr
->p_flags
& PF_X
)
2544 newsect
->flags
|= SEC_CODE
;
2546 if (!(hdr
->p_flags
& PF_W
))
2547 newsect
->flags
|= SEC_READONLY
;
2554 bfd_section_from_phdr (bfd
*abfd
, Elf_Internal_Phdr
*hdr
, int index
)
2556 const struct elf_backend_data
*bed
;
2558 switch (hdr
->p_type
)
2561 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "null");
2564 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "load");
2567 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "dynamic");
2570 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "interp");
2573 if (! _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "note"))
2575 if (! elfcore_read_notes (abfd
, hdr
->p_offset
, hdr
->p_filesz
))
2580 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "shlib");
2583 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "phdr");
2585 case PT_GNU_EH_FRAME
:
2586 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
,
2590 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "stack");
2593 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "relro");
2596 /* Check for any processor-specific program segment types. */
2597 bed
= get_elf_backend_data (abfd
);
2598 return bed
->elf_backend_section_from_phdr (abfd
, hdr
, index
, "proc");
2602 /* Initialize REL_HDR, the section-header for new section, containing
2603 relocations against ASECT. If USE_RELA_P is TRUE, we use RELA
2604 relocations; otherwise, we use REL relocations. */
2607 _bfd_elf_init_reloc_shdr (bfd
*abfd
,
2608 Elf_Internal_Shdr
*rel_hdr
,
2610 bfd_boolean use_rela_p
)
2613 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
2614 bfd_size_type amt
= sizeof ".rela" + strlen (asect
->name
);
2616 name
= bfd_alloc (abfd
, amt
);
2619 sprintf (name
, "%s%s", use_rela_p
? ".rela" : ".rel", asect
->name
);
2621 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd
), name
,
2623 if (rel_hdr
->sh_name
== (unsigned int) -1)
2625 rel_hdr
->sh_type
= use_rela_p
? SHT_RELA
: SHT_REL
;
2626 rel_hdr
->sh_entsize
= (use_rela_p
2627 ? bed
->s
->sizeof_rela
2628 : bed
->s
->sizeof_rel
);
2629 rel_hdr
->sh_addralign
= 1 << bed
->s
->log_file_align
;
2630 rel_hdr
->sh_flags
= 0;
2631 rel_hdr
->sh_addr
= 0;
2632 rel_hdr
->sh_size
= 0;
2633 rel_hdr
->sh_offset
= 0;
2638 /* Set up an ELF internal section header for a section. */
2641 elf_fake_sections (bfd
*abfd
, asection
*asect
, void *failedptrarg
)
2643 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
2644 bfd_boolean
*failedptr
= failedptrarg
;
2645 Elf_Internal_Shdr
*this_hdr
;
2649 /* We already failed; just get out of the bfd_map_over_sections
2654 this_hdr
= &elf_section_data (asect
)->this_hdr
;
2656 this_hdr
->sh_name
= (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd
),
2657 asect
->name
, FALSE
);
2658 if (this_hdr
->sh_name
== (unsigned int) -1)
2664 /* Don't clear sh_flags. Assembler may set additional bits. */
2666 if ((asect
->flags
& SEC_ALLOC
) != 0
2667 || asect
->user_set_vma
)
2668 this_hdr
->sh_addr
= asect
->vma
;
2670 this_hdr
->sh_addr
= 0;
2672 this_hdr
->sh_offset
= 0;
2673 this_hdr
->sh_size
= asect
->size
;
2674 this_hdr
->sh_link
= 0;
2675 this_hdr
->sh_addralign
= 1 << asect
->alignment_power
;
2676 /* The sh_entsize and sh_info fields may have been set already by
2677 copy_private_section_data. */
2679 this_hdr
->bfd_section
= asect
;
2680 this_hdr
->contents
= NULL
;
2682 /* If the section type is unspecified, we set it based on
2684 if (this_hdr
->sh_type
== SHT_NULL
)
2686 if ((asect
->flags
& SEC_GROUP
) != 0)
2687 this_hdr
->sh_type
= SHT_GROUP
;
2688 else if ((asect
->flags
& SEC_ALLOC
) != 0
2689 && (((asect
->flags
& (SEC_LOAD
| SEC_HAS_CONTENTS
)) == 0)
2690 || (asect
->flags
& SEC_NEVER_LOAD
) != 0))
2691 this_hdr
->sh_type
= SHT_NOBITS
;
2693 this_hdr
->sh_type
= SHT_PROGBITS
;
2696 switch (this_hdr
->sh_type
)
2702 case SHT_INIT_ARRAY
:
2703 case SHT_FINI_ARRAY
:
2704 case SHT_PREINIT_ARRAY
:
2711 this_hdr
->sh_entsize
= bed
->s
->sizeof_hash_entry
;
2715 this_hdr
->sh_entsize
= bed
->s
->sizeof_sym
;
2719 this_hdr
->sh_entsize
= bed
->s
->sizeof_dyn
;
2723 if (get_elf_backend_data (abfd
)->may_use_rela_p
)
2724 this_hdr
->sh_entsize
= bed
->s
->sizeof_rela
;
2728 if (get_elf_backend_data (abfd
)->may_use_rel_p
)
2729 this_hdr
->sh_entsize
= bed
->s
->sizeof_rel
;
2732 case SHT_GNU_versym
:
2733 this_hdr
->sh_entsize
= sizeof (Elf_External_Versym
);
2736 case SHT_GNU_verdef
:
2737 this_hdr
->sh_entsize
= 0;
2738 /* objcopy or strip will copy over sh_info, but may not set
2739 cverdefs. The linker will set cverdefs, but sh_info will be
2741 if (this_hdr
->sh_info
== 0)
2742 this_hdr
->sh_info
= elf_tdata (abfd
)->cverdefs
;
2744 BFD_ASSERT (elf_tdata (abfd
)->cverdefs
== 0
2745 || this_hdr
->sh_info
== elf_tdata (abfd
)->cverdefs
);
2748 case SHT_GNU_verneed
:
2749 this_hdr
->sh_entsize
= 0;
2750 /* objcopy or strip will copy over sh_info, but may not set
2751 cverrefs. The linker will set cverrefs, but sh_info will be
2753 if (this_hdr
->sh_info
== 0)
2754 this_hdr
->sh_info
= elf_tdata (abfd
)->cverrefs
;
2756 BFD_ASSERT (elf_tdata (abfd
)->cverrefs
== 0
2757 || this_hdr
->sh_info
== elf_tdata (abfd
)->cverrefs
);
2761 this_hdr
->sh_entsize
= 4;
2765 if ((asect
->flags
& SEC_ALLOC
) != 0)
2766 this_hdr
->sh_flags
|= SHF_ALLOC
;
2767 if ((asect
->flags
& SEC_READONLY
) == 0)
2768 this_hdr
->sh_flags
|= SHF_WRITE
;
2769 if ((asect
->flags
& SEC_CODE
) != 0)
2770 this_hdr
->sh_flags
|= SHF_EXECINSTR
;
2771 if ((asect
->flags
& SEC_MERGE
) != 0)
2773 this_hdr
->sh_flags
|= SHF_MERGE
;
2774 this_hdr
->sh_entsize
= asect
->entsize
;
2775 if ((asect
->flags
& SEC_STRINGS
) != 0)
2776 this_hdr
->sh_flags
|= SHF_STRINGS
;
2778 if ((asect
->flags
& SEC_GROUP
) == 0 && elf_group_name (asect
) != NULL
)
2779 this_hdr
->sh_flags
|= SHF_GROUP
;
2780 if ((asect
->flags
& SEC_THREAD_LOCAL
) != 0)
2782 this_hdr
->sh_flags
|= SHF_TLS
;
2783 if (asect
->size
== 0
2784 && (asect
->flags
& SEC_HAS_CONTENTS
) == 0)
2786 struct bfd_link_order
*o
= asect
->map_tail
.link_order
;
2788 this_hdr
->sh_size
= 0;
2791 this_hdr
->sh_size
= o
->offset
+ o
->size
;
2792 if (this_hdr
->sh_size
!= 0)
2793 this_hdr
->sh_type
= SHT_NOBITS
;
2798 /* Check for processor-specific section types. */
2799 if (bed
->elf_backend_fake_sections
2800 && !(*bed
->elf_backend_fake_sections
) (abfd
, this_hdr
, asect
))
2803 /* If the section has relocs, set up a section header for the
2804 SHT_REL[A] section. If two relocation sections are required for
2805 this section, it is up to the processor-specific back-end to
2806 create the other. */
2807 if ((asect
->flags
& SEC_RELOC
) != 0
2808 && !_bfd_elf_init_reloc_shdr (abfd
,
2809 &elf_section_data (asect
)->rel_hdr
,
2815 /* Fill in the contents of a SHT_GROUP section. */
2818 bfd_elf_set_group_contents (bfd
*abfd
, asection
*sec
, void *failedptrarg
)
2820 bfd_boolean
*failedptr
= failedptrarg
;
2821 unsigned long symindx
;
2822 asection
*elt
, *first
;
2826 /* Ignore linker created group section. See elfNN_ia64_object_p in
2828 if (((sec
->flags
& (SEC_GROUP
| SEC_LINKER_CREATED
)) != SEC_GROUP
)
2833 if (elf_group_id (sec
) != NULL
)
2834 symindx
= elf_group_id (sec
)->udata
.i
;
2838 /* If called from the assembler, swap_out_syms will have set up
2839 elf_section_syms; If called for "ld -r", use target_index. */
2840 if (elf_section_syms (abfd
) != NULL
)
2841 symindx
= elf_section_syms (abfd
)[sec
->index
]->udata
.i
;
2843 symindx
= sec
->target_index
;
2845 elf_section_data (sec
)->this_hdr
.sh_info
= symindx
;
2847 /* The contents won't be allocated for "ld -r" or objcopy. */
2849 if (sec
->contents
== NULL
)
2852 sec
->contents
= bfd_alloc (abfd
, sec
->size
);
2854 /* Arrange for the section to be written out. */
2855 elf_section_data (sec
)->this_hdr
.contents
= sec
->contents
;
2856 if (sec
->contents
== NULL
)
2863 loc
= sec
->contents
+ sec
->size
;
2865 /* Get the pointer to the first section in the group that gas
2866 squirreled away here. objcopy arranges for this to be set to the
2867 start of the input section group. */
2868 first
= elt
= elf_next_in_group (sec
);
2870 /* First element is a flag word. Rest of section is elf section
2871 indices for all the sections of the group. Write them backwards
2872 just to keep the group in the same order as given in .section
2873 directives, not that it matters. */
2882 s
= s
->output_section
;
2885 idx
= elf_section_data (s
)->this_idx
;
2886 H_PUT_32 (abfd
, idx
, loc
);
2887 elt
= elf_next_in_group (elt
);
2892 if ((loc
-= 4) != sec
->contents
)
2895 H_PUT_32 (abfd
, sec
->flags
& SEC_LINK_ONCE
? GRP_COMDAT
: 0, loc
);
2898 /* Assign all ELF section numbers. The dummy first section is handled here
2899 too. The link/info pointers for the standard section types are filled
2900 in here too, while we're at it. */
2903 assign_section_numbers (bfd
*abfd
, struct bfd_link_info
*link_info
)
2905 struct elf_obj_tdata
*t
= elf_tdata (abfd
);
2907 unsigned int section_number
, secn
;
2908 Elf_Internal_Shdr
**i_shdrp
;
2909 struct bfd_elf_section_data
*d
;
2913 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd
));
2915 /* SHT_GROUP sections are in relocatable files only. */
2916 if (link_info
== NULL
|| link_info
->relocatable
)
2918 /* Put SHT_GROUP sections first. */
2919 for (sec
= abfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
2921 d
= elf_section_data (sec
);
2923 if (d
->this_hdr
.sh_type
== SHT_GROUP
)
2925 if (sec
->flags
& SEC_LINKER_CREATED
)
2927 /* Remove the linker created SHT_GROUP sections. */
2928 bfd_section_list_remove (abfd
, sec
);
2929 abfd
->section_count
--;
2933 if (section_number
== SHN_LORESERVE
)
2934 section_number
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
2935 d
->this_idx
= section_number
++;
2941 for (sec
= abfd
->sections
; sec
; sec
= sec
->next
)
2943 d
= elf_section_data (sec
);
2945 if (d
->this_hdr
.sh_type
!= SHT_GROUP
)
2947 if (section_number
== SHN_LORESERVE
)
2948 section_number
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
2949 d
->this_idx
= section_number
++;
2951 _bfd_elf_strtab_addref (elf_shstrtab (abfd
), d
->this_hdr
.sh_name
);
2952 if ((sec
->flags
& SEC_RELOC
) == 0)
2956 if (section_number
== SHN_LORESERVE
)
2957 section_number
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
2958 d
->rel_idx
= section_number
++;
2959 _bfd_elf_strtab_addref (elf_shstrtab (abfd
), d
->rel_hdr
.sh_name
);
2964 if (section_number
== SHN_LORESERVE
)
2965 section_number
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
2966 d
->rel_idx2
= section_number
++;
2967 _bfd_elf_strtab_addref (elf_shstrtab (abfd
), d
->rel_hdr2
->sh_name
);
2973 if (section_number
== SHN_LORESERVE
)
2974 section_number
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
2975 t
->shstrtab_section
= section_number
++;
2976 _bfd_elf_strtab_addref (elf_shstrtab (abfd
), t
->shstrtab_hdr
.sh_name
);
2977 elf_elfheader (abfd
)->e_shstrndx
= t
->shstrtab_section
;
2979 if (bfd_get_symcount (abfd
) > 0)
2981 if (section_number
== SHN_LORESERVE
)
2982 section_number
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
2983 t
->symtab_section
= section_number
++;
2984 _bfd_elf_strtab_addref (elf_shstrtab (abfd
), t
->symtab_hdr
.sh_name
);
2985 if (section_number
> SHN_LORESERVE
- 2)
2987 if (section_number
== SHN_LORESERVE
)
2988 section_number
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
2989 t
->symtab_shndx_section
= section_number
++;
2990 t
->symtab_shndx_hdr
.sh_name
2991 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd
),
2992 ".symtab_shndx", FALSE
);
2993 if (t
->symtab_shndx_hdr
.sh_name
== (unsigned int) -1)
2996 if (section_number
== SHN_LORESERVE
)
2997 section_number
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
2998 t
->strtab_section
= section_number
++;
2999 _bfd_elf_strtab_addref (elf_shstrtab (abfd
), t
->strtab_hdr
.sh_name
);
3002 _bfd_elf_strtab_finalize (elf_shstrtab (abfd
));
3003 t
->shstrtab_hdr
.sh_size
= _bfd_elf_strtab_size (elf_shstrtab (abfd
));
3005 elf_numsections (abfd
) = section_number
;
3006 elf_elfheader (abfd
)->e_shnum
= section_number
;
3007 if (section_number
> SHN_LORESERVE
)
3008 elf_elfheader (abfd
)->e_shnum
-= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
3010 /* Set up the list of section header pointers, in agreement with the
3012 i_shdrp
= bfd_zalloc2 (abfd
, section_number
, sizeof (Elf_Internal_Shdr
*));
3013 if (i_shdrp
== NULL
)
3016 i_shdrp
[0] = bfd_zalloc (abfd
, sizeof (Elf_Internal_Shdr
));
3017 if (i_shdrp
[0] == NULL
)
3019 bfd_release (abfd
, i_shdrp
);
3023 elf_elfsections (abfd
) = i_shdrp
;
3025 i_shdrp
[t
->shstrtab_section
] = &t
->shstrtab_hdr
;
3026 if (bfd_get_symcount (abfd
) > 0)
3028 i_shdrp
[t
->symtab_section
] = &t
->symtab_hdr
;
3029 if (elf_numsections (abfd
) > SHN_LORESERVE
)
3031 i_shdrp
[t
->symtab_shndx_section
] = &t
->symtab_shndx_hdr
;
3032 t
->symtab_shndx_hdr
.sh_link
= t
->symtab_section
;
3034 i_shdrp
[t
->strtab_section
] = &t
->strtab_hdr
;
3035 t
->symtab_hdr
.sh_link
= t
->strtab_section
;
3038 for (sec
= abfd
->sections
; sec
; sec
= sec
->next
)
3040 struct bfd_elf_section_data
*d
= elf_section_data (sec
);
3044 i_shdrp
[d
->this_idx
] = &d
->this_hdr
;
3045 if (d
->rel_idx
!= 0)
3046 i_shdrp
[d
->rel_idx
] = &d
->rel_hdr
;
3047 if (d
->rel_idx2
!= 0)
3048 i_shdrp
[d
->rel_idx2
] = d
->rel_hdr2
;
3050 /* Fill in the sh_link and sh_info fields while we're at it. */
3052 /* sh_link of a reloc section is the section index of the symbol
3053 table. sh_info is the section index of the section to which
3054 the relocation entries apply. */
3055 if (d
->rel_idx
!= 0)
3057 d
->rel_hdr
.sh_link
= t
->symtab_section
;
3058 d
->rel_hdr
.sh_info
= d
->this_idx
;
3060 if (d
->rel_idx2
!= 0)
3062 d
->rel_hdr2
->sh_link
= t
->symtab_section
;
3063 d
->rel_hdr2
->sh_info
= d
->this_idx
;
3066 /* We need to set up sh_link for SHF_LINK_ORDER. */
3067 if ((d
->this_hdr
.sh_flags
& SHF_LINK_ORDER
) != 0)
3069 s
= elf_linked_to_section (sec
);
3072 /* elf_linked_to_section points to the input section. */
3073 if (link_info
!= NULL
)
3075 /* Check discarded linkonce section. */
3076 if (elf_discarded_section (s
))
3079 (*_bfd_error_handler
)
3080 (_("%B: sh_link of section `%A' points to discarded section `%A' of `%B'"),
3081 abfd
, d
->this_hdr
.bfd_section
,
3083 /* Point to the kept section if it has the same
3084 size as the discarded one. */
3085 kept
= _bfd_elf_check_kept_section (s
);
3088 bfd_set_error (bfd_error_bad_value
);
3094 s
= s
->output_section
;
3095 BFD_ASSERT (s
!= NULL
);
3099 /* Handle objcopy. */
3100 if (s
->output_section
== NULL
)
3102 (*_bfd_error_handler
)
3103 (_("%B: sh_link of section `%A' points to removed section `%A' of `%B'"),
3104 abfd
, d
->this_hdr
.bfd_section
, s
, s
->owner
);
3105 bfd_set_error (bfd_error_bad_value
);
3108 s
= s
->output_section
;
3110 d
->this_hdr
.sh_link
= elf_section_data (s
)->this_idx
;
3115 The Intel C compiler generates SHT_IA_64_UNWIND with
3116 SHF_LINK_ORDER. But it doesn't set the sh_link or
3117 sh_info fields. Hence we could get the situation
3119 const struct elf_backend_data
*bed
3120 = get_elf_backend_data (abfd
);
3121 if (bed
->link_order_error_handler
)
3122 bed
->link_order_error_handler
3123 (_("%B: warning: sh_link not set for section `%A'"),
3128 switch (d
->this_hdr
.sh_type
)
3132 /* A reloc section which we are treating as a normal BFD
3133 section. sh_link is the section index of the symbol
3134 table. sh_info is the section index of the section to
3135 which the relocation entries apply. We assume that an
3136 allocated reloc section uses the dynamic symbol table.
3137 FIXME: How can we be sure? */
3138 s
= bfd_get_section_by_name (abfd
, ".dynsym");
3140 d
->this_hdr
.sh_link
= elf_section_data (s
)->this_idx
;
3142 /* We look up the section the relocs apply to by name. */
3144 if (d
->this_hdr
.sh_type
== SHT_REL
)
3148 s
= bfd_get_section_by_name (abfd
, name
);
3150 d
->this_hdr
.sh_info
= elf_section_data (s
)->this_idx
;
3154 /* We assume that a section named .stab*str is a stabs
3155 string section. We look for a section with the same name
3156 but without the trailing ``str'', and set its sh_link
3157 field to point to this section. */
3158 if (strncmp (sec
->name
, ".stab", sizeof ".stab" - 1) == 0
3159 && strcmp (sec
->name
+ strlen (sec
->name
) - 3, "str") == 0)
3164 len
= strlen (sec
->name
);
3165 alc
= bfd_malloc (len
- 2);
3168 memcpy (alc
, sec
->name
, len
- 3);
3169 alc
[len
- 3] = '\0';
3170 s
= bfd_get_section_by_name (abfd
, alc
);
3174 elf_section_data (s
)->this_hdr
.sh_link
= d
->this_idx
;
3176 /* This is a .stab section. */
3177 if (elf_section_data (s
)->this_hdr
.sh_entsize
== 0)
3178 elf_section_data (s
)->this_hdr
.sh_entsize
3179 = 4 + 2 * bfd_get_arch_size (abfd
) / 8;
3186 case SHT_GNU_verneed
:
3187 case SHT_GNU_verdef
:
3188 /* sh_link is the section header index of the string table
3189 used for the dynamic entries, or the symbol table, or the
3191 s
= bfd_get_section_by_name (abfd
, ".dynstr");
3193 d
->this_hdr
.sh_link
= elf_section_data (s
)->this_idx
;
3196 case SHT_GNU_LIBLIST
:
3197 /* sh_link is the section header index of the prelink library
3199 used for the dynamic entries, or the symbol table, or the
3201 s
= bfd_get_section_by_name (abfd
, (sec
->flags
& SEC_ALLOC
)
3202 ? ".dynstr" : ".gnu.libstr");
3204 d
->this_hdr
.sh_link
= elf_section_data (s
)->this_idx
;
3208 case SHT_GNU_versym
:
3209 /* sh_link is the section header index of the symbol table
3210 this hash table or version table is for. */
3211 s
= bfd_get_section_by_name (abfd
, ".dynsym");
3213 d
->this_hdr
.sh_link
= elf_section_data (s
)->this_idx
;
3217 d
->this_hdr
.sh_link
= t
->symtab_section
;
3221 for (secn
= 1; secn
< section_number
; ++secn
)
3222 if (i_shdrp
[secn
] == NULL
)
3223 i_shdrp
[secn
] = i_shdrp
[0];
3225 i_shdrp
[secn
]->sh_name
= _bfd_elf_strtab_offset (elf_shstrtab (abfd
),
3226 i_shdrp
[secn
]->sh_name
);
3230 /* Map symbol from it's internal number to the external number, moving
3231 all local symbols to be at the head of the list. */
3234 sym_is_global (bfd
*abfd
, asymbol
*sym
)
3236 /* If the backend has a special mapping, use it. */
3237 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
3238 if (bed
->elf_backend_sym_is_global
)
3239 return (*bed
->elf_backend_sym_is_global
) (abfd
, sym
);
3241 return ((sym
->flags
& (BSF_GLOBAL
| BSF_WEAK
)) != 0
3242 || bfd_is_und_section (bfd_get_section (sym
))
3243 || bfd_is_com_section (bfd_get_section (sym
)));
3247 elf_map_symbols (bfd
*abfd
)
3249 unsigned int symcount
= bfd_get_symcount (abfd
);
3250 asymbol
**syms
= bfd_get_outsymbols (abfd
);
3251 asymbol
**sect_syms
;
3252 unsigned int num_locals
= 0;
3253 unsigned int num_globals
= 0;
3254 unsigned int num_locals2
= 0;
3255 unsigned int num_globals2
= 0;
3262 fprintf (stderr
, "elf_map_symbols\n");
3266 for (asect
= abfd
->sections
; asect
; asect
= asect
->next
)
3268 if (max_index
< asect
->index
)
3269 max_index
= asect
->index
;
3273 sect_syms
= bfd_zalloc2 (abfd
, max_index
, sizeof (asymbol
*));
3274 if (sect_syms
== NULL
)
3276 elf_section_syms (abfd
) = sect_syms
;
3277 elf_num_section_syms (abfd
) = max_index
;
3279 /* Init sect_syms entries for any section symbols we have already
3280 decided to output. */
3281 for (idx
= 0; idx
< symcount
; idx
++)
3283 asymbol
*sym
= syms
[idx
];
3285 if ((sym
->flags
& BSF_SECTION_SYM
) != 0
3292 if (sec
->owner
!= NULL
)
3294 if (sec
->owner
!= abfd
)
3296 if (sec
->output_offset
!= 0)
3299 sec
= sec
->output_section
;
3301 /* Empty sections in the input files may have had a
3302 section symbol created for them. (See the comment
3303 near the end of _bfd_generic_link_output_symbols in
3304 linker.c). If the linker script discards such
3305 sections then we will reach this point. Since we know
3306 that we cannot avoid this case, we detect it and skip
3307 the abort and the assignment to the sect_syms array.
3308 To reproduce this particular case try running the
3309 linker testsuite test ld-scripts/weak.exp for an ELF
3310 port that uses the generic linker. */
3311 if (sec
->owner
== NULL
)
3314 BFD_ASSERT (sec
->owner
== abfd
);
3316 sect_syms
[sec
->index
] = syms
[idx
];
3321 /* Classify all of the symbols. */
3322 for (idx
= 0; idx
< symcount
; idx
++)
3324 if (!sym_is_global (abfd
, syms
[idx
]))
3330 /* We will be adding a section symbol for each BFD section. Most normal
3331 sections will already have a section symbol in outsymbols, but
3332 eg. SHT_GROUP sections will not, and we need the section symbol mapped
3333 at least in that case. */
3334 for (asect
= abfd
->sections
; asect
; asect
= asect
->next
)
3336 if (sect_syms
[asect
->index
] == NULL
)
3338 if (!sym_is_global (abfd
, asect
->symbol
))
3345 /* Now sort the symbols so the local symbols are first. */
3346 new_syms
= bfd_alloc2 (abfd
, num_locals
+ num_globals
, sizeof (asymbol
*));
3348 if (new_syms
== NULL
)
3351 for (idx
= 0; idx
< symcount
; idx
++)
3353 asymbol
*sym
= syms
[idx
];
3356 if (!sym_is_global (abfd
, sym
))
3359 i
= num_locals
+ num_globals2
++;
3361 sym
->udata
.i
= i
+ 1;
3363 for (asect
= abfd
->sections
; asect
; asect
= asect
->next
)
3365 if (sect_syms
[asect
->index
] == NULL
)
3367 asymbol
*sym
= asect
->symbol
;
3370 sect_syms
[asect
->index
] = sym
;
3371 if (!sym_is_global (abfd
, sym
))
3374 i
= num_locals
+ num_globals2
++;
3376 sym
->udata
.i
= i
+ 1;
3380 bfd_set_symtab (abfd
, new_syms
, num_locals
+ num_globals
);
3382 elf_num_locals (abfd
) = num_locals
;
3383 elf_num_globals (abfd
) = num_globals
;
3387 /* Align to the maximum file alignment that could be required for any
3388 ELF data structure. */
3390 static inline file_ptr
3391 align_file_position (file_ptr off
, int align
)
3393 return (off
+ align
- 1) & ~(align
- 1);
3396 /* Assign a file position to a section, optionally aligning to the
3397 required section alignment. */
3400 _bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr
*i_shdrp
,
3408 al
= i_shdrp
->sh_addralign
;
3410 offset
= BFD_ALIGN (offset
, al
);
3412 i_shdrp
->sh_offset
= offset
;
3413 if (i_shdrp
->bfd_section
!= NULL
)
3414 i_shdrp
->bfd_section
->filepos
= offset
;
3415 if (i_shdrp
->sh_type
!= SHT_NOBITS
)
3416 offset
+= i_shdrp
->sh_size
;
3420 /* Compute the file positions we are going to put the sections at, and
3421 otherwise prepare to begin writing out the ELF file. If LINK_INFO
3422 is not NULL, this is being called by the ELF backend linker. */
3425 _bfd_elf_compute_section_file_positions (bfd
*abfd
,
3426 struct bfd_link_info
*link_info
)
3428 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
3430 struct bfd_strtab_hash
*strtab
= NULL
;
3431 Elf_Internal_Shdr
*shstrtab_hdr
;
3433 if (abfd
->output_has_begun
)
3436 /* Do any elf backend specific processing first. */
3437 if (bed
->elf_backend_begin_write_processing
)
3438 (*bed
->elf_backend_begin_write_processing
) (abfd
, link_info
);
3440 if (! prep_headers (abfd
))
3443 /* Post process the headers if necessary. */
3444 if (bed
->elf_backend_post_process_headers
)
3445 (*bed
->elf_backend_post_process_headers
) (abfd
, link_info
);
3448 bfd_map_over_sections (abfd
, elf_fake_sections
, &failed
);
3452 if (!assign_section_numbers (abfd
, link_info
))
3455 /* The backend linker builds symbol table information itself. */
3456 if (link_info
== NULL
&& bfd_get_symcount (abfd
) > 0)
3458 /* Non-zero if doing a relocatable link. */
3459 int relocatable_p
= ! (abfd
->flags
& (EXEC_P
| DYNAMIC
));
3461 if (! swap_out_syms (abfd
, &strtab
, relocatable_p
))
3465 if (link_info
== NULL
)
3467 bfd_map_over_sections (abfd
, bfd_elf_set_group_contents
, &failed
);
3472 shstrtab_hdr
= &elf_tdata (abfd
)->shstrtab_hdr
;
3473 /* sh_name was set in prep_headers. */
3474 shstrtab_hdr
->sh_type
= SHT_STRTAB
;
3475 shstrtab_hdr
->sh_flags
= 0;
3476 shstrtab_hdr
->sh_addr
= 0;
3477 shstrtab_hdr
->sh_size
= _bfd_elf_strtab_size (elf_shstrtab (abfd
));
3478 shstrtab_hdr
->sh_entsize
= 0;
3479 shstrtab_hdr
->sh_link
= 0;
3480 shstrtab_hdr
->sh_info
= 0;
3481 /* sh_offset is set in assign_file_positions_except_relocs. */
3482 shstrtab_hdr
->sh_addralign
= 1;
3484 if (!assign_file_positions_except_relocs (abfd
, link_info
))
3487 if (link_info
== NULL
&& bfd_get_symcount (abfd
) > 0)
3490 Elf_Internal_Shdr
*hdr
;
3492 off
= elf_tdata (abfd
)->next_file_pos
;
3494 hdr
= &elf_tdata (abfd
)->symtab_hdr
;
3495 off
= _bfd_elf_assign_file_position_for_section (hdr
, off
, TRUE
);
3497 hdr
= &elf_tdata (abfd
)->symtab_shndx_hdr
;
3498 if (hdr
->sh_size
!= 0)
3499 off
= _bfd_elf_assign_file_position_for_section (hdr
, off
, TRUE
);
3501 hdr
= &elf_tdata (abfd
)->strtab_hdr
;
3502 off
= _bfd_elf_assign_file_position_for_section (hdr
, off
, TRUE
);
3504 elf_tdata (abfd
)->next_file_pos
= off
;
3506 /* Now that we know where the .strtab section goes, write it
3508 if (bfd_seek (abfd
, hdr
->sh_offset
, SEEK_SET
) != 0
3509 || ! _bfd_stringtab_emit (abfd
, strtab
))
3511 _bfd_stringtab_free (strtab
);
3514 abfd
->output_has_begun
= TRUE
;
3519 /* Create a mapping from a set of sections to a program segment. */
3521 static struct elf_segment_map
*
3522 make_mapping (bfd
*abfd
,
3523 asection
**sections
,
3528 struct elf_segment_map
*m
;
3533 amt
= sizeof (struct elf_segment_map
);
3534 amt
+= (to
- from
- 1) * sizeof (asection
*);
3535 m
= bfd_zalloc (abfd
, amt
);
3539 m
->p_type
= PT_LOAD
;
3540 for (i
= from
, hdrpp
= sections
+ from
; i
< to
; i
++, hdrpp
++)
3541 m
->sections
[i
- from
] = *hdrpp
;
3542 m
->count
= to
- from
;
3544 if (from
== 0 && phdr
)
3546 /* Include the headers in the first PT_LOAD segment. */
3547 m
->includes_filehdr
= 1;
3548 m
->includes_phdrs
= 1;
3554 /* Create the PT_DYNAMIC segment, which includes DYNSEC. Returns NULL
3557 struct elf_segment_map
*
3558 _bfd_elf_make_dynamic_segment (bfd
*abfd
, asection
*dynsec
)
3560 struct elf_segment_map
*m
;
3562 m
= bfd_zalloc (abfd
, sizeof (struct elf_segment_map
));
3566 m
->p_type
= PT_DYNAMIC
;
3568 m
->sections
[0] = dynsec
;
3573 /* Set up a mapping from BFD sections to program segments. */
3576 map_sections_to_segments (bfd
*abfd
)
3578 asection
**sections
= NULL
;
3582 struct elf_segment_map
*mfirst
;
3583 struct elf_segment_map
**pm
;
3584 struct elf_segment_map
*m
;
3587 unsigned int phdr_index
;
3588 bfd_vma maxpagesize
;
3590 bfd_boolean phdr_in_segment
= TRUE
;
3591 bfd_boolean writable
;
3593 asection
*first_tls
= NULL
;
3594 asection
*dynsec
, *eh_frame_hdr
;
3597 if (elf_tdata (abfd
)->segment_map
!= NULL
)
3600 if (bfd_count_sections (abfd
) == 0)
3603 /* Select the allocated sections, and sort them. */
3605 sections
= bfd_malloc2 (bfd_count_sections (abfd
), sizeof (asection
*));
3606 if (sections
== NULL
)
3610 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
3612 if ((s
->flags
& SEC_ALLOC
) != 0)
3618 BFD_ASSERT (i
<= bfd_count_sections (abfd
));
3621 qsort (sections
, (size_t) count
, sizeof (asection
*), elf_sort_sections
);
3623 /* Build the mapping. */
3628 /* If we have a .interp section, then create a PT_PHDR segment for
3629 the program headers and a PT_INTERP segment for the .interp
3631 s
= bfd_get_section_by_name (abfd
, ".interp");
3632 if (s
!= NULL
&& (s
->flags
& SEC_LOAD
) != 0)
3634 amt
= sizeof (struct elf_segment_map
);
3635 m
= bfd_zalloc (abfd
, amt
);
3639 m
->p_type
= PT_PHDR
;
3640 /* FIXME: UnixWare and Solaris set PF_X, Irix 5 does not. */
3641 m
->p_flags
= PF_R
| PF_X
;
3642 m
->p_flags_valid
= 1;
3643 m
->includes_phdrs
= 1;
3648 amt
= sizeof (struct elf_segment_map
);
3649 m
= bfd_zalloc (abfd
, amt
);
3653 m
->p_type
= PT_INTERP
;
3661 /* Look through the sections. We put sections in the same program
3662 segment when the start of the second section can be placed within
3663 a few bytes of the end of the first section. */
3667 maxpagesize
= get_elf_backend_data (abfd
)->maxpagesize
;
3669 dynsec
= bfd_get_section_by_name (abfd
, ".dynamic");
3671 && (dynsec
->flags
& SEC_LOAD
) == 0)
3674 /* Deal with -Ttext or something similar such that the first section
3675 is not adjacent to the program headers. This is an
3676 approximation, since at this point we don't know exactly how many
3677 program headers we will need. */
3680 bfd_size_type phdr_size
;
3682 phdr_size
= elf_tdata (abfd
)->program_header_size
;
3684 phdr_size
= get_elf_backend_data (abfd
)->s
->sizeof_phdr
;
3685 if ((abfd
->flags
& D_PAGED
) == 0
3686 || sections
[0]->lma
< phdr_size
3687 || sections
[0]->lma
% maxpagesize
< phdr_size
% maxpagesize
)
3688 phdr_in_segment
= FALSE
;
3691 for (i
= 0, hdrpp
= sections
; i
< count
; i
++, hdrpp
++)
3694 bfd_boolean new_segment
;
3698 /* See if this section and the last one will fit in the same
3701 if (last_hdr
== NULL
)
3703 /* If we don't have a segment yet, then we don't need a new
3704 one (we build the last one after this loop). */
3705 new_segment
= FALSE
;
3707 else if (last_hdr
->lma
- last_hdr
->vma
!= hdr
->lma
- hdr
->vma
)
3709 /* If this section has a different relation between the
3710 virtual address and the load address, then we need a new
3714 else if (BFD_ALIGN (last_hdr
->lma
+ last_size
, maxpagesize
)
3715 < BFD_ALIGN (hdr
->lma
, maxpagesize
))
3717 /* If putting this section in this segment would force us to
3718 skip a page in the segment, then we need a new segment. */
3721 else if ((last_hdr
->flags
& (SEC_LOAD
| SEC_THREAD_LOCAL
)) == 0
3722 && (hdr
->flags
& (SEC_LOAD
| SEC_THREAD_LOCAL
)) != 0)
3724 /* We don't want to put a loadable section after a
3725 nonloadable section in the same segment.
3726 Consider .tbss sections as loadable for this purpose. */
3729 else if ((abfd
->flags
& D_PAGED
) == 0)
3731 /* If the file is not demand paged, which means that we
3732 don't require the sections to be correctly aligned in the
3733 file, then there is no other reason for a new segment. */
3734 new_segment
= FALSE
;
3737 && (hdr
->flags
& SEC_READONLY
) == 0
3738 && (((last_hdr
->lma
+ last_size
- 1)
3739 & ~(maxpagesize
- 1))
3740 != (hdr
->lma
& ~(maxpagesize
- 1))))
3742 /* We don't want to put a writable section in a read only
3743 segment, unless they are on the same page in memory
3744 anyhow. We already know that the last section does not
3745 bring us past the current section on the page, so the
3746 only case in which the new section is not on the same
3747 page as the previous section is when the previous section
3748 ends precisely on a page boundary. */
3753 /* Otherwise, we can use the same segment. */
3754 new_segment
= FALSE
;
3759 if ((hdr
->flags
& SEC_READONLY
) == 0)
3762 /* .tbss sections effectively have zero size. */
3763 if ((hdr
->flags
& (SEC_THREAD_LOCAL
| SEC_LOAD
)) != SEC_THREAD_LOCAL
)
3764 last_size
= hdr
->size
;
3770 /* We need a new program segment. We must create a new program
3771 header holding all the sections from phdr_index until hdr. */
3773 m
= make_mapping (abfd
, sections
, phdr_index
, i
, phdr_in_segment
);
3780 if ((hdr
->flags
& SEC_READONLY
) == 0)
3786 /* .tbss sections effectively have zero size. */
3787 if ((hdr
->flags
& (SEC_THREAD_LOCAL
| SEC_LOAD
)) != SEC_THREAD_LOCAL
)
3788 last_size
= hdr
->size
;
3792 phdr_in_segment
= FALSE
;
3795 /* Create a final PT_LOAD program segment. */
3796 if (last_hdr
!= NULL
)
3798 m
= make_mapping (abfd
, sections
, phdr_index
, i
, phdr_in_segment
);
3806 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
3809 m
= _bfd_elf_make_dynamic_segment (abfd
, dynsec
);
3816 /* For each loadable .note section, add a PT_NOTE segment. We don't
3817 use bfd_get_section_by_name, because if we link together
3818 nonloadable .note sections and loadable .note sections, we will
3819 generate two .note sections in the output file. FIXME: Using
3820 names for section types is bogus anyhow. */
3821 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
3823 if ((s
->flags
& SEC_LOAD
) != 0
3824 && strncmp (s
->name
, ".note", 5) == 0)
3826 amt
= sizeof (struct elf_segment_map
);
3827 m
= bfd_zalloc (abfd
, amt
);
3831 m
->p_type
= PT_NOTE
;
3838 if (s
->flags
& SEC_THREAD_LOCAL
)
3846 /* If there are any SHF_TLS output sections, add PT_TLS segment. */
3851 amt
= sizeof (struct elf_segment_map
);
3852 amt
+= (tls_count
- 1) * sizeof (asection
*);
3853 m
= bfd_zalloc (abfd
, amt
);
3858 m
->count
= tls_count
;
3859 /* Mandated PF_R. */
3861 m
->p_flags_valid
= 1;
3862 for (i
= 0; i
< tls_count
; ++i
)
3864 BFD_ASSERT (first_tls
->flags
& SEC_THREAD_LOCAL
);
3865 m
->sections
[i
] = first_tls
;
3866 first_tls
= first_tls
->next
;
3873 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
3875 eh_frame_hdr
= elf_tdata (abfd
)->eh_frame_hdr
;
3876 if (eh_frame_hdr
!= NULL
3877 && (eh_frame_hdr
->output_section
->flags
& SEC_LOAD
) != 0)
3879 amt
= sizeof (struct elf_segment_map
);
3880 m
= bfd_zalloc (abfd
, amt
);
3884 m
->p_type
= PT_GNU_EH_FRAME
;
3886 m
->sections
[0] = eh_frame_hdr
->output_section
;
3892 if (elf_tdata (abfd
)->stack_flags
)
3894 amt
= sizeof (struct elf_segment_map
);
3895 m
= bfd_zalloc (abfd
, amt
);
3899 m
->p_type
= PT_GNU_STACK
;
3900 m
->p_flags
= elf_tdata (abfd
)->stack_flags
;
3901 m
->p_flags_valid
= 1;
3907 if (elf_tdata (abfd
)->relro
)
3909 amt
= sizeof (struct elf_segment_map
);
3910 m
= bfd_zalloc (abfd
, amt
);
3914 m
->p_type
= PT_GNU_RELRO
;
3916 m
->p_flags_valid
= 1;
3925 elf_tdata (abfd
)->segment_map
= mfirst
;
3929 if (sections
!= NULL
)
3934 /* Sort sections by address. */
3937 elf_sort_sections (const void *arg1
, const void *arg2
)
3939 const asection
*sec1
= *(const asection
**) arg1
;
3940 const asection
*sec2
= *(const asection
**) arg2
;
3941 bfd_size_type size1
, size2
;
3943 /* Sort by LMA first, since this is the address used to
3944 place the section into a segment. */
3945 if (sec1
->lma
< sec2
->lma
)
3947 else if (sec1
->lma
> sec2
->lma
)
3950 /* Then sort by VMA. Normally the LMA and the VMA will be
3951 the same, and this will do nothing. */
3952 if (sec1
->vma
< sec2
->vma
)
3954 else if (sec1
->vma
> sec2
->vma
)
3957 /* Put !SEC_LOAD sections after SEC_LOAD ones. */
3959 #define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0)
3965 /* If the indicies are the same, do not return 0
3966 here, but continue to try the next comparison. */
3967 if (sec1
->target_index
- sec2
->target_index
!= 0)
3968 return sec1
->target_index
- sec2
->target_index
;
3973 else if (TOEND (sec2
))
3978 /* Sort by size, to put zero sized sections
3979 before others at the same address. */
3981 size1
= (sec1
->flags
& SEC_LOAD
) ? sec1
->size
: 0;
3982 size2
= (sec2
->flags
& SEC_LOAD
) ? sec2
->size
: 0;
3989 return sec1
->target_index
- sec2
->target_index
;
3992 /* Ian Lance Taylor writes:
3994 We shouldn't be using % with a negative signed number. That's just
3995 not good. We have to make sure either that the number is not
3996 negative, or that the number has an unsigned type. When the types
3997 are all the same size they wind up as unsigned. When file_ptr is a
3998 larger signed type, the arithmetic winds up as signed long long,
4001 What we're trying to say here is something like ``increase OFF by
4002 the least amount that will cause it to be equal to the VMA modulo
4004 /* In other words, something like:
4006 vma_offset = m->sections[0]->vma % bed->maxpagesize;
4007 off_offset = off % bed->maxpagesize;
4008 if (vma_offset < off_offset)
4009 adjustment = vma_offset + bed->maxpagesize - off_offset;
4011 adjustment = vma_offset - off_offset;
4013 which can can be collapsed into the expression below. */
4016 vma_page_aligned_bias (bfd_vma vma
, ufile_ptr off
, bfd_vma maxpagesize
)
4018 return ((vma
- off
) % maxpagesize
);
4021 /* Assign file positions to the sections based on the mapping from
4022 sections to segments. This function also sets up some fields in
4023 the file header, and writes out the program headers. */
4026 assign_file_positions_for_segments (bfd
*abfd
, struct bfd_link_info
*link_info
)
4028 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
4030 struct elf_segment_map
*m
;
4032 Elf_Internal_Phdr
*phdrs
;
4034 bfd_vma filehdr_vaddr
, filehdr_paddr
;
4035 bfd_vma phdrs_vaddr
, phdrs_paddr
;
4036 Elf_Internal_Phdr
*p
;
4038 if (elf_tdata (abfd
)->segment_map
== NULL
)
4040 if (! map_sections_to_segments (abfd
))
4045 /* The placement algorithm assumes that non allocated sections are
4046 not in PT_LOAD segments. We ensure this here by removing such
4047 sections from the segment map. We also remove excluded
4049 for (m
= elf_tdata (abfd
)->segment_map
;
4053 unsigned int new_count
;
4057 for (i
= 0; i
< m
->count
; i
++)
4059 if ((m
->sections
[i
]->flags
& SEC_EXCLUDE
) == 0
4060 && ((m
->sections
[i
]->flags
& SEC_ALLOC
) != 0
4061 || m
->p_type
!= PT_LOAD
))
4064 m
->sections
[new_count
] = m
->sections
[i
];
4070 if (new_count
!= m
->count
)
4071 m
->count
= new_count
;
4075 if (bed
->elf_backend_modify_segment_map
)
4077 if (! (*bed
->elf_backend_modify_segment_map
) (abfd
, link_info
))
4082 for (m
= elf_tdata (abfd
)->segment_map
; m
!= NULL
; m
= m
->next
)
4085 elf_elfheader (abfd
)->e_phoff
= bed
->s
->sizeof_ehdr
;
4086 elf_elfheader (abfd
)->e_phentsize
= bed
->s
->sizeof_phdr
;
4087 elf_elfheader (abfd
)->e_phnum
= count
;
4091 elf_tdata (abfd
)->next_file_pos
= bed
->s
->sizeof_ehdr
;
4095 /* If we already counted the number of program segments, make sure
4096 that we allocated enough space. This happens when SIZEOF_HEADERS
4097 is used in a linker script. */
4098 alloc
= elf_tdata (abfd
)->program_header_size
/ bed
->s
->sizeof_phdr
;
4099 if (alloc
!= 0 && count
> alloc
)
4101 ((*_bfd_error_handler
)
4102 (_("%B: Not enough room for program headers (allocated %u, need %u)"),
4103 abfd
, alloc
, count
));
4104 bfd_set_error (bfd_error_bad_value
);
4111 phdrs
= bfd_alloc2 (abfd
, alloc
, sizeof (Elf_Internal_Phdr
));
4115 off
= bed
->s
->sizeof_ehdr
;
4116 off
+= alloc
* bed
->s
->sizeof_phdr
;
4123 for (m
= elf_tdata (abfd
)->segment_map
, p
= phdrs
;
4130 /* If elf_segment_map is not from map_sections_to_segments, the
4131 sections may not be correctly ordered. NOTE: sorting should
4132 not be done to the PT_NOTE section of a corefile, which may
4133 contain several pseudo-sections artificially created by bfd.
4134 Sorting these pseudo-sections breaks things badly. */
4136 && !(elf_elfheader (abfd
)->e_type
== ET_CORE
4137 && m
->p_type
== PT_NOTE
))
4138 qsort (m
->sections
, (size_t) m
->count
, sizeof (asection
*),
4141 /* An ELF segment (described by Elf_Internal_Phdr) may contain a
4142 number of sections with contents contributing to both p_filesz
4143 and p_memsz, followed by a number of sections with no contents
4144 that just contribute to p_memsz. In this loop, OFF tracks next
4145 available file offset for PT_LOAD and PT_NOTE segments. VOFF is
4146 an adjustment we use for segments that have no file contents
4147 but need zero filled memory allocation. */
4149 p
->p_type
= m
->p_type
;
4150 p
->p_flags
= m
->p_flags
;
4152 if (p
->p_type
== PT_LOAD
4155 bfd_size_type align
;
4157 unsigned int align_power
= 0;
4159 for (i
= 0, secpp
= m
->sections
; i
< m
->count
; i
++, secpp
++)
4161 unsigned int secalign
;
4163 secalign
= bfd_get_section_alignment (abfd
, *secpp
);
4164 if (secalign
> align_power
)
4165 align_power
= secalign
;
4167 align
= (bfd_size_type
) 1 << align_power
;
4169 if ((abfd
->flags
& D_PAGED
) != 0 && bed
->maxpagesize
> align
)
4170 align
= bed
->maxpagesize
;
4172 adjust
= vma_page_aligned_bias (m
->sections
[0]->vma
, off
, align
);
4175 && !m
->includes_filehdr
4176 && !m
->includes_phdrs
4177 && (ufile_ptr
) off
>= align
)
4179 /* If the first section isn't loadable, the same holds for
4180 any other sections. Since the segment won't need file
4181 space, we can make p_offset overlap some prior segment.
4182 However, .tbss is special. If a segment starts with
4183 .tbss, we need to look at the next section to decide
4184 whether the segment has any loadable sections. */
4186 while ((m
->sections
[i
]->flags
& SEC_LOAD
) == 0)
4188 if ((m
->sections
[i
]->flags
& SEC_THREAD_LOCAL
) == 0
4192 voff
= adjust
- align
;
4198 /* Make sure the .dynamic section is the first section in the
4199 PT_DYNAMIC segment. */
4200 else if (p
->p_type
== PT_DYNAMIC
4202 && strcmp (m
->sections
[0]->name
, ".dynamic") != 0)
4205 (_("%B: The first section in the PT_DYNAMIC segment is not the .dynamic section"),
4207 bfd_set_error (bfd_error_bad_value
);
4214 p
->p_vaddr
= m
->sections
[0]->vma
;
4216 if (m
->p_paddr_valid
)
4217 p
->p_paddr
= m
->p_paddr
;
4218 else if (m
->count
== 0)
4221 p
->p_paddr
= m
->sections
[0]->lma
;
4223 if (p
->p_type
== PT_LOAD
4224 && (abfd
->flags
& D_PAGED
) != 0)
4225 p
->p_align
= bed
->maxpagesize
;
4226 else if (m
->count
== 0)
4227 p
->p_align
= 1 << bed
->s
->log_file_align
;
4235 if (m
->includes_filehdr
)
4237 if (! m
->p_flags_valid
)
4240 p
->p_filesz
= bed
->s
->sizeof_ehdr
;
4241 p
->p_memsz
= bed
->s
->sizeof_ehdr
;
4244 BFD_ASSERT (p
->p_type
== PT_LOAD
);
4246 if (p
->p_vaddr
< (bfd_vma
) off
)
4248 (*_bfd_error_handler
)
4249 (_("%B: Not enough room for program headers, try linking with -N"),
4251 bfd_set_error (bfd_error_bad_value
);
4256 if (! m
->p_paddr_valid
)
4259 if (p
->p_type
== PT_LOAD
)
4261 filehdr_vaddr
= p
->p_vaddr
;
4262 filehdr_paddr
= p
->p_paddr
;
4266 if (m
->includes_phdrs
)
4268 if (! m
->p_flags_valid
)
4271 if (m
->includes_filehdr
)
4273 if (p
->p_type
== PT_LOAD
)
4275 phdrs_vaddr
= p
->p_vaddr
+ bed
->s
->sizeof_ehdr
;
4276 phdrs_paddr
= p
->p_paddr
+ bed
->s
->sizeof_ehdr
;
4281 p
->p_offset
= bed
->s
->sizeof_ehdr
;
4285 BFD_ASSERT (p
->p_type
== PT_LOAD
);
4286 p
->p_vaddr
-= off
- p
->p_offset
;
4287 if (! m
->p_paddr_valid
)
4288 p
->p_paddr
-= off
- p
->p_offset
;
4291 if (p
->p_type
== PT_LOAD
)
4293 phdrs_vaddr
= p
->p_vaddr
;
4294 phdrs_paddr
= p
->p_paddr
;
4297 phdrs_vaddr
= bed
->maxpagesize
+ bed
->s
->sizeof_ehdr
;
4300 p
->p_filesz
+= alloc
* bed
->s
->sizeof_phdr
;
4301 p
->p_memsz
+= alloc
* bed
->s
->sizeof_phdr
;
4304 if (p
->p_type
== PT_LOAD
4305 || (p
->p_type
== PT_NOTE
&& bfd_get_format (abfd
) == bfd_core
))
4307 if (! m
->includes_filehdr
&& ! m
->includes_phdrs
)
4308 p
->p_offset
= off
+ voff
;
4313 adjust
= off
- (p
->p_offset
+ p
->p_filesz
);
4314 p
->p_filesz
+= adjust
;
4315 p
->p_memsz
+= adjust
;
4319 for (i
= 0, secpp
= m
->sections
; i
< m
->count
; i
++, secpp
++)
4323 bfd_size_type align
;
4327 align
= 1 << bfd_get_section_alignment (abfd
, sec
);
4329 if (p
->p_type
== PT_LOAD
4330 || p
->p_type
== PT_TLS
)
4332 bfd_signed_vma adjust
;
4334 if ((flags
& SEC_LOAD
) != 0)
4336 adjust
= sec
->lma
- (p
->p_paddr
+ p
->p_filesz
);
4339 (*_bfd_error_handler
)
4340 (_("%B: section %A lma 0x%lx overlaps previous sections"),
4341 abfd
, sec
, (unsigned long) sec
->lma
);
4345 p
->p_filesz
+= adjust
;
4346 p
->p_memsz
+= adjust
;
4348 /* .tbss is special. It doesn't contribute to p_memsz of
4350 else if ((flags
& SEC_THREAD_LOCAL
) == 0
4351 || p
->p_type
== PT_TLS
)
4353 /* The section VMA must equal the file position
4354 modulo the page size. */
4355 bfd_size_type page
= align
;
4356 if ((abfd
->flags
& D_PAGED
) != 0 && bed
->maxpagesize
> page
)
4357 page
= bed
->maxpagesize
;
4358 adjust
= vma_page_aligned_bias (sec
->vma
,
4359 p
->p_vaddr
+ p
->p_memsz
,
4361 p
->p_memsz
+= adjust
;
4365 if (p
->p_type
== PT_NOTE
&& bfd_get_format (abfd
) == bfd_core
)
4367 /* The section at i == 0 is the one that actually contains
4373 p
->p_filesz
= sec
->size
;
4379 /* The rest are fake sections that shouldn't be written. */
4388 if (p
->p_type
== PT_LOAD
)
4391 /* FIXME: The SEC_HAS_CONTENTS test here dates back to
4392 1997, and the exact reason for it isn't clear. One
4393 plausible explanation is that it is to work around
4394 a problem we have with linker scripts using data
4395 statements in NOLOAD sections. I don't think it
4396 makes a great deal of sense to have such a section
4397 assigned to a PT_LOAD segment, but apparently
4398 people do this. The data statement results in a
4399 bfd_data_link_order being built, and these need
4400 section contents to write into. Eventually, we get
4401 to _bfd_elf_write_object_contents which writes any
4402 section with contents to the output. Make room
4403 here for the write, so that following segments are
4405 if ((flags
& SEC_LOAD
) != 0
4406 || (flags
& SEC_HAS_CONTENTS
) != 0)
4410 if ((flags
& SEC_LOAD
) != 0)
4412 p
->p_filesz
+= sec
->size
;
4413 p
->p_memsz
+= sec
->size
;
4415 /* PR ld/594: Sections in note segments which are not loaded
4416 contribute to the file size but not the in-memory size. */
4417 else if (p
->p_type
== PT_NOTE
4418 && (flags
& SEC_HAS_CONTENTS
) != 0)
4419 p
->p_filesz
+= sec
->size
;
4421 /* .tbss is special. It doesn't contribute to p_memsz of
4423 else if ((flags
& SEC_THREAD_LOCAL
) == 0
4424 || p
->p_type
== PT_TLS
)
4425 p
->p_memsz
+= sec
->size
;
4427 if (p
->p_type
== PT_TLS
4429 && (sec
->flags
& SEC_HAS_CONTENTS
) == 0)
4431 struct bfd_link_order
*o
= sec
->map_tail
.link_order
;
4433 p
->p_memsz
+= o
->offset
+ o
->size
;
4436 if (align
> p
->p_align
4437 && (p
->p_type
!= PT_LOAD
|| (abfd
->flags
& D_PAGED
) == 0))
4441 if (! m
->p_flags_valid
)
4444 if ((flags
& SEC_CODE
) != 0)
4446 if ((flags
& SEC_READONLY
) == 0)
4452 /* Now that we have set the section file positions, we can set up
4453 the file positions for the non PT_LOAD segments. */
4454 for (m
= elf_tdata (abfd
)->segment_map
, p
= phdrs
;
4458 if (p
->p_type
!= PT_LOAD
&& m
->count
> 0)
4460 BFD_ASSERT (! m
->includes_filehdr
&& ! m
->includes_phdrs
);
4461 /* If the section has not yet been assigned a file position,
4462 do so now. The ARM BPABI requires that .dynamic section
4463 not be marked SEC_ALLOC because it is not part of any
4464 PT_LOAD segment, so it will not be processed above. */
4465 if (p
->p_type
== PT_DYNAMIC
&& m
->sections
[0]->filepos
== 0)
4468 Elf_Internal_Shdr
** const i_shdrpp
= elf_elfsections (abfd
);
4471 while (i_shdrpp
[i
]->bfd_section
!= m
->sections
[0])
4473 off
= (_bfd_elf_assign_file_position_for_section
4474 (i_shdrpp
[i
], off
, TRUE
));
4475 p
->p_filesz
= m
->sections
[0]->size
;
4477 p
->p_offset
= m
->sections
[0]->filepos
;
4481 if (m
->includes_filehdr
)
4483 p
->p_vaddr
= filehdr_vaddr
;
4484 if (! m
->p_paddr_valid
)
4485 p
->p_paddr
= filehdr_paddr
;
4487 else if (m
->includes_phdrs
)
4489 p
->p_vaddr
= phdrs_vaddr
;
4490 if (! m
->p_paddr_valid
)
4491 p
->p_paddr
= phdrs_paddr
;
4493 else if (p
->p_type
== PT_GNU_RELRO
)
4495 Elf_Internal_Phdr
*lp
;
4497 for (lp
= phdrs
; lp
< phdrs
+ count
; ++lp
)
4499 if (lp
->p_type
== PT_LOAD
4500 && lp
->p_vaddr
<= link_info
->relro_end
4501 && lp
->p_vaddr
>= link_info
->relro_start
4502 && lp
->p_vaddr
+ lp
->p_filesz
4503 >= link_info
->relro_end
)
4507 if (lp
< phdrs
+ count
4508 && link_info
->relro_end
> lp
->p_vaddr
)
4510 p
->p_vaddr
= lp
->p_vaddr
;
4511 p
->p_paddr
= lp
->p_paddr
;
4512 p
->p_offset
= lp
->p_offset
;
4513 p
->p_filesz
= link_info
->relro_end
- lp
->p_vaddr
;
4514 p
->p_memsz
= p
->p_filesz
;
4516 p
->p_flags
= (lp
->p_flags
& ~PF_W
);
4520 memset (p
, 0, sizeof *p
);
4521 p
->p_type
= PT_NULL
;
4527 /* Clear out any program headers we allocated but did not use. */
4528 for (; count
< alloc
; count
++, p
++)
4530 memset (p
, 0, sizeof *p
);
4531 p
->p_type
= PT_NULL
;
4534 elf_tdata (abfd
)->phdr
= phdrs
;
4536 elf_tdata (abfd
)->next_file_pos
= off
;
4538 /* Write out the program headers. */
4539 if (bfd_seek (abfd
, (bfd_signed_vma
) bed
->s
->sizeof_ehdr
, SEEK_SET
) != 0
4540 || bed
->s
->write_out_phdrs (abfd
, phdrs
, alloc
) != 0)
4546 /* Get the size of the program header.
4548 If this is called by the linker before any of the section VMA's are set, it
4549 can't calculate the correct value for a strange memory layout. This only
4550 happens when SIZEOF_HEADERS is used in a linker script. In this case,
4551 SORTED_HDRS is NULL and we assume the normal scenario of one text and one
4552 data segment (exclusive of .interp and .dynamic).
4554 ??? User written scripts must either not use SIZEOF_HEADERS, or assume there
4555 will be two segments. */
4557 static bfd_size_type
4558 get_program_header_size (bfd
*abfd
)
4562 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
4564 /* We can't return a different result each time we're called. */
4565 if (elf_tdata (abfd
)->program_header_size
!= 0)
4566 return elf_tdata (abfd
)->program_header_size
;
4568 if (elf_tdata (abfd
)->segment_map
!= NULL
)
4570 struct elf_segment_map
*m
;
4573 for (m
= elf_tdata (abfd
)->segment_map
; m
!= NULL
; m
= m
->next
)
4575 elf_tdata (abfd
)->program_header_size
= segs
* bed
->s
->sizeof_phdr
;
4576 return elf_tdata (abfd
)->program_header_size
;
4579 /* Assume we will need exactly two PT_LOAD segments: one for text
4580 and one for data. */
4583 s
= bfd_get_section_by_name (abfd
, ".interp");
4584 if (s
!= NULL
&& (s
->flags
& SEC_LOAD
) != 0)
4586 /* If we have a loadable interpreter section, we need a
4587 PT_INTERP segment. In this case, assume we also need a
4588 PT_PHDR segment, although that may not be true for all
4593 if (bfd_get_section_by_name (abfd
, ".dynamic") != NULL
)
4595 /* We need a PT_DYNAMIC segment. */
4599 if (elf_tdata (abfd
)->eh_frame_hdr
)
4601 /* We need a PT_GNU_EH_FRAME segment. */
4605 if (elf_tdata (abfd
)->stack_flags
)
4607 /* We need a PT_GNU_STACK segment. */
4611 if (elf_tdata (abfd
)->relro
)
4613 /* We need a PT_GNU_RELRO segment. */
4617 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
4619 if ((s
->flags
& SEC_LOAD
) != 0
4620 && strncmp (s
->name
, ".note", 5) == 0)
4622 /* We need a PT_NOTE segment. */
4627 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
4629 if (s
->flags
& SEC_THREAD_LOCAL
)
4631 /* We need a PT_TLS segment. */
4637 /* Let the backend count up any program headers it might need. */
4638 if (bed
->elf_backend_additional_program_headers
)
4642 a
= (*bed
->elf_backend_additional_program_headers
) (abfd
);
4648 elf_tdata (abfd
)->program_header_size
= segs
* bed
->s
->sizeof_phdr
;
4649 return elf_tdata (abfd
)->program_header_size
;
4652 /* Work out the file positions of all the sections. This is called by
4653 _bfd_elf_compute_section_file_positions. All the section sizes and
4654 VMAs must be known before this is called.
4656 Reloc sections come in two flavours: Those processed specially as
4657 "side-channel" data attached to a section to which they apply, and
4658 those that bfd doesn't process as relocations. The latter sort are
4659 stored in a normal bfd section by bfd_section_from_shdr. We don't
4660 consider the former sort here, unless they form part of the loadable
4661 image. Reloc sections not assigned here will be handled later by
4662 assign_file_positions_for_relocs.
4664 We also don't set the positions of the .symtab and .strtab here. */
4667 assign_file_positions_except_relocs (bfd
*abfd
,
4668 struct bfd_link_info
*link_info
)
4670 struct elf_obj_tdata
* const tdata
= elf_tdata (abfd
);
4671 Elf_Internal_Ehdr
* const i_ehdrp
= elf_elfheader (abfd
);
4672 Elf_Internal_Shdr
** const i_shdrpp
= elf_elfsections (abfd
);
4673 unsigned int num_sec
= elf_numsections (abfd
);
4675 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
4677 if ((abfd
->flags
& (EXEC_P
| DYNAMIC
)) == 0
4678 && bfd_get_format (abfd
) != bfd_core
)
4680 Elf_Internal_Shdr
**hdrpp
;
4683 /* Start after the ELF header. */
4684 off
= i_ehdrp
->e_ehsize
;
4686 /* We are not creating an executable, which means that we are
4687 not creating a program header, and that the actual order of
4688 the sections in the file is unimportant. */
4689 for (i
= 1, hdrpp
= i_shdrpp
+ 1; i
< num_sec
; i
++, hdrpp
++)
4691 Elf_Internal_Shdr
*hdr
;
4694 if (((hdr
->sh_type
== SHT_REL
|| hdr
->sh_type
== SHT_RELA
)
4695 && hdr
->bfd_section
== NULL
)
4696 || i
== tdata
->symtab_section
4697 || i
== tdata
->symtab_shndx_section
4698 || i
== tdata
->strtab_section
)
4700 hdr
->sh_offset
= -1;
4703 off
= _bfd_elf_assign_file_position_for_section (hdr
, off
, TRUE
);
4705 if (i
== SHN_LORESERVE
- 1)
4707 i
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
4708 hdrpp
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
4715 Elf_Internal_Shdr
**hdrpp
;
4717 /* Assign file positions for the loaded sections based on the
4718 assignment of sections to segments. */
4719 if (! assign_file_positions_for_segments (abfd
, link_info
))
4722 /* Assign file positions for the other sections. */
4724 off
= elf_tdata (abfd
)->next_file_pos
;
4725 for (i
= 1, hdrpp
= i_shdrpp
+ 1; i
< num_sec
; i
++, hdrpp
++)
4727 Elf_Internal_Shdr
*hdr
;
4730 if (hdr
->bfd_section
!= NULL
4731 && hdr
->bfd_section
->filepos
!= 0)
4732 hdr
->sh_offset
= hdr
->bfd_section
->filepos
;
4733 else if ((hdr
->sh_flags
& SHF_ALLOC
) != 0)
4735 ((*_bfd_error_handler
)
4736 (_("%B: warning: allocated section `%s' not in segment"),
4738 (hdr
->bfd_section
== NULL
4740 : hdr
->bfd_section
->name
)));
4741 if ((abfd
->flags
& D_PAGED
) != 0)
4742 off
+= vma_page_aligned_bias (hdr
->sh_addr
, off
,
4745 off
+= vma_page_aligned_bias (hdr
->sh_addr
, off
,
4747 off
= _bfd_elf_assign_file_position_for_section (hdr
, off
,
4750 else if (((hdr
->sh_type
== SHT_REL
|| hdr
->sh_type
== SHT_RELA
)
4751 && hdr
->bfd_section
== NULL
)
4752 || hdr
== i_shdrpp
[tdata
->symtab_section
]
4753 || hdr
== i_shdrpp
[tdata
->symtab_shndx_section
]
4754 || hdr
== i_shdrpp
[tdata
->strtab_section
])
4755 hdr
->sh_offset
= -1;
4757 off
= _bfd_elf_assign_file_position_for_section (hdr
, off
, TRUE
);
4759 if (i
== SHN_LORESERVE
- 1)
4761 i
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
4762 hdrpp
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
4767 /* Place the section headers. */
4768 off
= align_file_position (off
, 1 << bed
->s
->log_file_align
);
4769 i_ehdrp
->e_shoff
= off
;
4770 off
+= i_ehdrp
->e_shnum
* i_ehdrp
->e_shentsize
;
4772 elf_tdata (abfd
)->next_file_pos
= off
;
4778 prep_headers (bfd
*abfd
)
4780 Elf_Internal_Ehdr
*i_ehdrp
; /* Elf file header, internal form */
4781 Elf_Internal_Phdr
*i_phdrp
= 0; /* Program header table, internal form */
4782 Elf_Internal_Shdr
**i_shdrp
; /* Section header table, internal form */
4783 struct elf_strtab_hash
*shstrtab
;
4784 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
4786 i_ehdrp
= elf_elfheader (abfd
);
4787 i_shdrp
= elf_elfsections (abfd
);
4789 shstrtab
= _bfd_elf_strtab_init ();
4790 if (shstrtab
== NULL
)
4793 elf_shstrtab (abfd
) = shstrtab
;
4795 i_ehdrp
->e_ident
[EI_MAG0
] = ELFMAG0
;
4796 i_ehdrp
->e_ident
[EI_MAG1
] = ELFMAG1
;
4797 i_ehdrp
->e_ident
[EI_MAG2
] = ELFMAG2
;
4798 i_ehdrp
->e_ident
[EI_MAG3
] = ELFMAG3
;
4800 i_ehdrp
->e_ident
[EI_CLASS
] = bed
->s
->elfclass
;
4801 i_ehdrp
->e_ident
[EI_DATA
] =
4802 bfd_big_endian (abfd
) ? ELFDATA2MSB
: ELFDATA2LSB
;
4803 i_ehdrp
->e_ident
[EI_VERSION
] = bed
->s
->ev_current
;
4805 if ((abfd
->flags
& DYNAMIC
) != 0)
4806 i_ehdrp
->e_type
= ET_DYN
;
4807 else if ((abfd
->flags
& EXEC_P
) != 0)
4808 i_ehdrp
->e_type
= ET_EXEC
;
4809 else if (bfd_get_format (abfd
) == bfd_core
)
4810 i_ehdrp
->e_type
= ET_CORE
;
4812 i_ehdrp
->e_type
= ET_REL
;
4814 switch (bfd_get_arch (abfd
))
4816 case bfd_arch_unknown
:
4817 i_ehdrp
->e_machine
= EM_NONE
;
4820 /* There used to be a long list of cases here, each one setting
4821 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
4822 in the corresponding bfd definition. To avoid duplication,
4823 the switch was removed. Machines that need special handling
4824 can generally do it in elf_backend_final_write_processing(),
4825 unless they need the information earlier than the final write.
4826 Such need can generally be supplied by replacing the tests for
4827 e_machine with the conditions used to determine it. */
4829 i_ehdrp
->e_machine
= bed
->elf_machine_code
;
4832 i_ehdrp
->e_version
= bed
->s
->ev_current
;
4833 i_ehdrp
->e_ehsize
= bed
->s
->sizeof_ehdr
;
4835 /* No program header, for now. */
4836 i_ehdrp
->e_phoff
= 0;
4837 i_ehdrp
->e_phentsize
= 0;
4838 i_ehdrp
->e_phnum
= 0;
4840 /* Each bfd section is section header entry. */
4841 i_ehdrp
->e_entry
= bfd_get_start_address (abfd
);
4842 i_ehdrp
->e_shentsize
= bed
->s
->sizeof_shdr
;
4844 /* If we're building an executable, we'll need a program header table. */
4845 if (abfd
->flags
& EXEC_P
)
4846 /* It all happens later. */
4850 i_ehdrp
->e_phentsize
= 0;
4852 i_ehdrp
->e_phoff
= 0;
4855 elf_tdata (abfd
)->symtab_hdr
.sh_name
=
4856 (unsigned int) _bfd_elf_strtab_add (shstrtab
, ".symtab", FALSE
);
4857 elf_tdata (abfd
)->strtab_hdr
.sh_name
=
4858 (unsigned int) _bfd_elf_strtab_add (shstrtab
, ".strtab", FALSE
);
4859 elf_tdata (abfd
)->shstrtab_hdr
.sh_name
=
4860 (unsigned int) _bfd_elf_strtab_add (shstrtab
, ".shstrtab", FALSE
);
4861 if (elf_tdata (abfd
)->symtab_hdr
.sh_name
== (unsigned int) -1
4862 || elf_tdata (abfd
)->symtab_hdr
.sh_name
== (unsigned int) -1
4863 || elf_tdata (abfd
)->shstrtab_hdr
.sh_name
== (unsigned int) -1)
4869 /* Assign file positions for all the reloc sections which are not part
4870 of the loadable file image. */
4873 _bfd_elf_assign_file_positions_for_relocs (bfd
*abfd
)
4876 unsigned int i
, num_sec
;
4877 Elf_Internal_Shdr
**shdrpp
;
4879 off
= elf_tdata (abfd
)->next_file_pos
;
4881 num_sec
= elf_numsections (abfd
);
4882 for (i
= 1, shdrpp
= elf_elfsections (abfd
) + 1; i
< num_sec
; i
++, shdrpp
++)
4884 Elf_Internal_Shdr
*shdrp
;
4887 if ((shdrp
->sh_type
== SHT_REL
|| shdrp
->sh_type
== SHT_RELA
)
4888 && shdrp
->sh_offset
== -1)
4889 off
= _bfd_elf_assign_file_position_for_section (shdrp
, off
, TRUE
);
4892 elf_tdata (abfd
)->next_file_pos
= off
;
4896 _bfd_elf_write_object_contents (bfd
*abfd
)
4898 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
4899 Elf_Internal_Ehdr
*i_ehdrp
;
4900 Elf_Internal_Shdr
**i_shdrp
;
4902 unsigned int count
, num_sec
;
4904 if (! abfd
->output_has_begun
4905 && ! _bfd_elf_compute_section_file_positions (abfd
, NULL
))
4908 i_shdrp
= elf_elfsections (abfd
);
4909 i_ehdrp
= elf_elfheader (abfd
);
4912 bfd_map_over_sections (abfd
, bed
->s
->write_relocs
, &failed
);
4916 _bfd_elf_assign_file_positions_for_relocs (abfd
);
4918 /* After writing the headers, we need to write the sections too... */
4919 num_sec
= elf_numsections (abfd
);
4920 for (count
= 1; count
< num_sec
; count
++)
4922 if (bed
->elf_backend_section_processing
)
4923 (*bed
->elf_backend_section_processing
) (abfd
, i_shdrp
[count
]);
4924 if (i_shdrp
[count
]->contents
)
4926 bfd_size_type amt
= i_shdrp
[count
]->sh_size
;
4928 if (bfd_seek (abfd
, i_shdrp
[count
]->sh_offset
, SEEK_SET
) != 0
4929 || bfd_bwrite (i_shdrp
[count
]->contents
, amt
, abfd
) != amt
)
4932 if (count
== SHN_LORESERVE
- 1)
4933 count
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
4936 /* Write out the section header names. */
4937 if (elf_shstrtab (abfd
) != NULL
4938 && (bfd_seek (abfd
, elf_tdata (abfd
)->shstrtab_hdr
.sh_offset
, SEEK_SET
) != 0
4939 || ! _bfd_elf_strtab_emit (abfd
, elf_shstrtab (abfd
))))
4942 if (bed
->elf_backend_final_write_processing
)
4943 (*bed
->elf_backend_final_write_processing
) (abfd
,
4944 elf_tdata (abfd
)->linker
);
4946 return bed
->s
->write_shdrs_and_ehdr (abfd
);
4950 _bfd_elf_write_corefile_contents (bfd
*abfd
)
4952 /* Hopefully this can be done just like an object file. */
4953 return _bfd_elf_write_object_contents (abfd
);
4956 /* Given a section, search the header to find them. */
4959 _bfd_elf_section_from_bfd_section (bfd
*abfd
, struct bfd_section
*asect
)
4961 const struct elf_backend_data
*bed
;
4964 if (elf_section_data (asect
) != NULL
4965 && elf_section_data (asect
)->this_idx
!= 0)
4966 return elf_section_data (asect
)->this_idx
;
4968 if (bfd_is_abs_section (asect
))
4970 else if (bfd_is_com_section (asect
))
4972 else if (bfd_is_und_section (asect
))
4977 bed
= get_elf_backend_data (abfd
);
4978 if (bed
->elf_backend_section_from_bfd_section
)
4982 if ((*bed
->elf_backend_section_from_bfd_section
) (abfd
, asect
, &retval
))
4987 bfd_set_error (bfd_error_nonrepresentable_section
);
4992 /* Given a BFD symbol, return the index in the ELF symbol table, or -1
4996 _bfd_elf_symbol_from_bfd_symbol (bfd
*abfd
, asymbol
**asym_ptr_ptr
)
4998 asymbol
*asym_ptr
= *asym_ptr_ptr
;
5000 flagword flags
= asym_ptr
->flags
;
5002 /* When gas creates relocations against local labels, it creates its
5003 own symbol for the section, but does put the symbol into the
5004 symbol chain, so udata is 0. When the linker is generating
5005 relocatable output, this section symbol may be for one of the
5006 input sections rather than the output section. */
5007 if (asym_ptr
->udata
.i
== 0
5008 && (flags
& BSF_SECTION_SYM
)
5009 && asym_ptr
->section
)
5013 if (asym_ptr
->section
->output_section
!= NULL
)
5014 indx
= asym_ptr
->section
->output_section
->index
;
5016 indx
= asym_ptr
->section
->index
;
5017 if (indx
< elf_num_section_syms (abfd
)
5018 && elf_section_syms (abfd
)[indx
] != NULL
)
5019 asym_ptr
->udata
.i
= elf_section_syms (abfd
)[indx
]->udata
.i
;
5022 idx
= asym_ptr
->udata
.i
;
5026 /* This case can occur when using --strip-symbol on a symbol
5027 which is used in a relocation entry. */
5028 (*_bfd_error_handler
)
5029 (_("%B: symbol `%s' required but not present"),
5030 abfd
, bfd_asymbol_name (asym_ptr
));
5031 bfd_set_error (bfd_error_no_symbols
);
5038 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8lx%s\n",
5039 (long) asym_ptr
, asym_ptr
->name
, idx
, flags
,
5040 elf_symbol_flags (flags
));
5048 /* Copy private BFD data. This copies any program header information. */
5051 copy_private_bfd_data (bfd
*ibfd
, bfd
*obfd
)
5053 Elf_Internal_Ehdr
*iehdr
;
5054 struct elf_segment_map
*map
;
5055 struct elf_segment_map
*map_first
;
5056 struct elf_segment_map
**pointer_to_map
;
5057 Elf_Internal_Phdr
*segment
;
5060 unsigned int num_segments
;
5061 bfd_boolean phdr_included
= FALSE
;
5062 bfd_vma maxpagesize
;
5063 struct elf_segment_map
*phdr_adjust_seg
= NULL
;
5064 unsigned int phdr_adjust_num
= 0;
5065 const struct elf_backend_data
*bed
;
5067 if (bfd_get_flavour (ibfd
) != bfd_target_elf_flavour
5068 || bfd_get_flavour (obfd
) != bfd_target_elf_flavour
)
5071 if (elf_tdata (ibfd
)->phdr
== NULL
)
5074 bed
= get_elf_backend_data (ibfd
);
5075 iehdr
= elf_elfheader (ibfd
);
5078 pointer_to_map
= &map_first
;
5080 num_segments
= elf_elfheader (ibfd
)->e_phnum
;
5081 maxpagesize
= get_elf_backend_data (obfd
)->maxpagesize
;
5083 /* Returns the end address of the segment + 1. */
5084 #define SEGMENT_END(segment, start) \
5085 (start + (segment->p_memsz > segment->p_filesz \
5086 ? segment->p_memsz : segment->p_filesz))
5088 #define SECTION_SIZE(section, segment) \
5089 (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL)) \
5090 != SEC_THREAD_LOCAL || segment->p_type == PT_TLS) \
5091 ? section->size : 0)
5093 /* Returns TRUE if the given section is contained within
5094 the given segment. VMA addresses are compared. */
5095 #define IS_CONTAINED_BY_VMA(section, segment) \
5096 (section->vma >= segment->p_vaddr \
5097 && (section->vma + SECTION_SIZE (section, segment) \
5098 <= (SEGMENT_END (segment, segment->p_vaddr))))
5100 /* Returns TRUE if the given section is contained within
5101 the given segment. LMA addresses are compared. */
5102 #define IS_CONTAINED_BY_LMA(section, segment, base) \
5103 (section->lma >= base \
5104 && (section->lma + SECTION_SIZE (section, segment) \
5105 <= SEGMENT_END (segment, base)))
5107 /* Special case: corefile "NOTE" section containing regs, prpsinfo etc. */
5108 #define IS_COREFILE_NOTE(p, s) \
5109 (p->p_type == PT_NOTE \
5110 && bfd_get_format (ibfd) == bfd_core \
5111 && s->vma == 0 && s->lma == 0 \
5112 && (bfd_vma) s->filepos >= p->p_offset \
5113 && ((bfd_vma) s->filepos + s->size \
5114 <= p->p_offset + p->p_filesz))
5116 /* The complicated case when p_vaddr is 0 is to handle the Solaris
5117 linker, which generates a PT_INTERP section with p_vaddr and
5118 p_memsz set to 0. */
5119 #define IS_SOLARIS_PT_INTERP(p, s) \
5121 && p->p_paddr == 0 \
5122 && p->p_memsz == 0 \
5123 && p->p_filesz > 0 \
5124 && (s->flags & SEC_HAS_CONTENTS) != 0 \
5126 && (bfd_vma) s->filepos >= p->p_offset \
5127 && ((bfd_vma) s->filepos + s->size \
5128 <= p->p_offset + p->p_filesz))
5130 /* Decide if the given section should be included in the given segment.
5131 A section will be included if:
5132 1. It is within the address space of the segment -- we use the LMA
5133 if that is set for the segment and the VMA otherwise,
5134 2. It is an allocated segment,
5135 3. There is an output section associated with it,
5136 4. The section has not already been allocated to a previous segment.
5137 5. PT_GNU_STACK segments do not include any sections.
5138 6. PT_TLS segment includes only SHF_TLS sections.
5139 7. SHF_TLS sections are only in PT_TLS or PT_LOAD segments.
5140 8. PT_DYNAMIC should not contain empty sections at the beginning
5141 (with the possible exception of .dynamic). */
5142 #define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed) \
5143 ((((segment->p_paddr \
5144 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr) \
5145 : IS_CONTAINED_BY_VMA (section, segment)) \
5146 && (section->flags & SEC_ALLOC) != 0) \
5147 || IS_COREFILE_NOTE (segment, section)) \
5148 && section->output_section != NULL \
5149 && segment->p_type != PT_GNU_STACK \
5150 && (segment->p_type != PT_TLS \
5151 || (section->flags & SEC_THREAD_LOCAL)) \
5152 && (segment->p_type == PT_LOAD \
5153 || segment->p_type == PT_TLS \
5154 || (section->flags & SEC_THREAD_LOCAL) == 0) \
5155 && (segment->p_type != PT_DYNAMIC \
5156 || SECTION_SIZE (section, segment) > 0 \
5157 || (segment->p_paddr \
5158 ? segment->p_paddr != section->lma \
5159 : segment->p_vaddr != section->vma) \
5160 || (strcmp (bfd_get_section_name (ibfd, section), ".dynamic") \
5162 && ! section->segment_mark)
5164 /* Returns TRUE iff seg1 starts after the end of seg2. */
5165 #define SEGMENT_AFTER_SEGMENT(seg1, seg2, field) \
5166 (seg1->field >= SEGMENT_END (seg2, seg2->field))
5168 /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both
5169 their VMA address ranges and their LMA address ranges overlap.
5170 It is possible to have overlapping VMA ranges without overlapping LMA
5171 ranges. RedBoot images for example can have both .data and .bss mapped
5172 to the same VMA range, but with the .data section mapped to a different
5174 #define SEGMENT_OVERLAPS(seg1, seg2) \
5175 ( !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr) \
5176 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr)) \
5177 && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr) \
5178 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr)))
5180 /* Initialise the segment mark field. */
5181 for (section
= ibfd
->sections
; section
!= NULL
; section
= section
->next
)
5182 section
->segment_mark
= FALSE
;
5184 /* Scan through the segments specified in the program header
5185 of the input BFD. For this first scan we look for overlaps
5186 in the loadable segments. These can be created by weird
5187 parameters to objcopy. Also, fix some solaris weirdness. */
5188 for (i
= 0, segment
= elf_tdata (ibfd
)->phdr
;
5193 Elf_Internal_Phdr
*segment2
;
5195 if (segment
->p_type
== PT_INTERP
)
5196 for (section
= ibfd
->sections
; section
; section
= section
->next
)
5197 if (IS_SOLARIS_PT_INTERP (segment
, section
))
5199 /* Mininal change so that the normal section to segment
5200 assignment code will work. */
5201 segment
->p_vaddr
= section
->vma
;
5205 if (segment
->p_type
!= PT_LOAD
)
5208 /* Determine if this segment overlaps any previous segments. */
5209 for (j
= 0, segment2
= elf_tdata (ibfd
)->phdr
; j
< i
; j
++, segment2
++)
5211 bfd_signed_vma extra_length
;
5213 if (segment2
->p_type
!= PT_LOAD
5214 || ! SEGMENT_OVERLAPS (segment
, segment2
))
5217 /* Merge the two segments together. */
5218 if (segment2
->p_vaddr
< segment
->p_vaddr
)
5220 /* Extend SEGMENT2 to include SEGMENT and then delete
5223 SEGMENT_END (segment
, segment
->p_vaddr
)
5224 - SEGMENT_END (segment2
, segment2
->p_vaddr
);
5226 if (extra_length
> 0)
5228 segment2
->p_memsz
+= extra_length
;
5229 segment2
->p_filesz
+= extra_length
;
5232 segment
->p_type
= PT_NULL
;
5234 /* Since we have deleted P we must restart the outer loop. */
5236 segment
= elf_tdata (ibfd
)->phdr
;
5241 /* Extend SEGMENT to include SEGMENT2 and then delete
5244 SEGMENT_END (segment2
, segment2
->p_vaddr
)
5245 - SEGMENT_END (segment
, segment
->p_vaddr
);
5247 if (extra_length
> 0)
5249 segment
->p_memsz
+= extra_length
;
5250 segment
->p_filesz
+= extra_length
;
5253 segment2
->p_type
= PT_NULL
;
5258 /* The second scan attempts to assign sections to segments. */
5259 for (i
= 0, segment
= elf_tdata (ibfd
)->phdr
;
5263 unsigned int section_count
;
5264 asection
** sections
;
5265 asection
* output_section
;
5267 bfd_vma matching_lma
;
5268 bfd_vma suggested_lma
;
5272 if (segment
->p_type
== PT_NULL
)
5275 /* Compute how many sections might be placed into this segment. */
5276 for (section
= ibfd
->sections
, section_count
= 0;
5278 section
= section
->next
)
5279 if (INCLUDE_SECTION_IN_SEGMENT (section
, segment
, bed
))
5282 /* Allocate a segment map big enough to contain
5283 all of the sections we have selected. */
5284 amt
= sizeof (struct elf_segment_map
);
5285 amt
+= ((bfd_size_type
) section_count
- 1) * sizeof (asection
*);
5286 map
= bfd_alloc (obfd
, amt
);
5290 /* Initialise the fields of the segment map. Default to
5291 using the physical address of the segment in the input BFD. */
5293 map
->p_type
= segment
->p_type
;
5294 map
->p_flags
= segment
->p_flags
;
5295 map
->p_flags_valid
= 1;
5296 map
->p_paddr
= segment
->p_paddr
;
5297 map
->p_paddr_valid
= 1;
5299 /* Determine if this segment contains the ELF file header
5300 and if it contains the program headers themselves. */
5301 map
->includes_filehdr
= (segment
->p_offset
== 0
5302 && segment
->p_filesz
>= iehdr
->e_ehsize
);
5304 map
->includes_phdrs
= 0;
5306 if (! phdr_included
|| segment
->p_type
!= PT_LOAD
)
5308 map
->includes_phdrs
=
5309 (segment
->p_offset
<= (bfd_vma
) iehdr
->e_phoff
5310 && (segment
->p_offset
+ segment
->p_filesz
5311 >= ((bfd_vma
) iehdr
->e_phoff
5312 + iehdr
->e_phnum
* iehdr
->e_phentsize
)));
5314 if (segment
->p_type
== PT_LOAD
&& map
->includes_phdrs
)
5315 phdr_included
= TRUE
;
5318 if (section_count
== 0)
5320 /* Special segments, such as the PT_PHDR segment, may contain
5321 no sections, but ordinary, loadable segments should contain
5322 something. They are allowed by the ELF spec however, so only
5323 a warning is produced. */
5324 if (segment
->p_type
== PT_LOAD
)
5325 (*_bfd_error_handler
)
5326 (_("%B: warning: Empty loadable segment detected, is this intentional ?\n"),
5330 *pointer_to_map
= map
;
5331 pointer_to_map
= &map
->next
;
5336 /* Now scan the sections in the input BFD again and attempt
5337 to add their corresponding output sections to the segment map.
5338 The problem here is how to handle an output section which has
5339 been moved (ie had its LMA changed). There are four possibilities:
5341 1. None of the sections have been moved.
5342 In this case we can continue to use the segment LMA from the
5345 2. All of the sections have been moved by the same amount.
5346 In this case we can change the segment's LMA to match the LMA
5347 of the first section.
5349 3. Some of the sections have been moved, others have not.
5350 In this case those sections which have not been moved can be
5351 placed in the current segment which will have to have its size,
5352 and possibly its LMA changed, and a new segment or segments will
5353 have to be created to contain the other sections.
5355 4. The sections have been moved, but not by the same amount.
5356 In this case we can change the segment's LMA to match the LMA
5357 of the first section and we will have to create a new segment
5358 or segments to contain the other sections.
5360 In order to save time, we allocate an array to hold the section
5361 pointers that we are interested in. As these sections get assigned
5362 to a segment, they are removed from this array. */
5364 /* Gcc 2.96 miscompiles this code on mips. Don't do casting here
5365 to work around this long long bug. */
5366 sections
= bfd_malloc2 (section_count
, sizeof (asection
*));
5367 if (sections
== NULL
)
5370 /* Step One: Scan for segment vs section LMA conflicts.
5371 Also add the sections to the section array allocated above.
5372 Also add the sections to the current segment. In the common
5373 case, where the sections have not been moved, this means that
5374 we have completely filled the segment, and there is nothing
5380 for (j
= 0, section
= ibfd
->sections
;
5382 section
= section
->next
)
5384 if (INCLUDE_SECTION_IN_SEGMENT (section
, segment
, bed
))
5386 output_section
= section
->output_section
;
5388 sections
[j
++] = section
;
5390 /* The Solaris native linker always sets p_paddr to 0.
5391 We try to catch that case here, and set it to the
5392 correct value. Note - some backends require that
5393 p_paddr be left as zero. */
5394 if (segment
->p_paddr
== 0
5395 && segment
->p_vaddr
!= 0
5396 && (! bed
->want_p_paddr_set_to_zero
)
5398 && output_section
->lma
!= 0
5399 && (output_section
->vma
== (segment
->p_vaddr
5400 + (map
->includes_filehdr
5403 + (map
->includes_phdrs
5405 * iehdr
->e_phentsize
)
5407 map
->p_paddr
= segment
->p_vaddr
;
5409 /* Match up the physical address of the segment with the
5410 LMA address of the output section. */
5411 if (IS_CONTAINED_BY_LMA (output_section
, segment
, map
->p_paddr
)
5412 || IS_COREFILE_NOTE (segment
, section
)
5413 || (bed
->want_p_paddr_set_to_zero
&&
5414 IS_CONTAINED_BY_VMA (output_section
, segment
))
5417 if (matching_lma
== 0)
5418 matching_lma
= output_section
->lma
;
5420 /* We assume that if the section fits within the segment
5421 then it does not overlap any other section within that
5423 map
->sections
[isec
++] = output_section
;
5425 else if (suggested_lma
== 0)
5426 suggested_lma
= output_section
->lma
;
5430 BFD_ASSERT (j
== section_count
);
5432 /* Step Two: Adjust the physical address of the current segment,
5434 if (isec
== section_count
)
5436 /* All of the sections fitted within the segment as currently
5437 specified. This is the default case. Add the segment to
5438 the list of built segments and carry on to process the next
5439 program header in the input BFD. */
5440 map
->count
= section_count
;
5441 *pointer_to_map
= map
;
5442 pointer_to_map
= &map
->next
;
5449 if (matching_lma
!= 0)
5451 /* At least one section fits inside the current segment.
5452 Keep it, but modify its physical address to match the
5453 LMA of the first section that fitted. */
5454 map
->p_paddr
= matching_lma
;
5458 /* None of the sections fitted inside the current segment.
5459 Change the current segment's physical address to match
5460 the LMA of the first section. */
5461 map
->p_paddr
= suggested_lma
;
5464 /* Offset the segment physical address from the lma
5465 to allow for space taken up by elf headers. */
5466 if (map
->includes_filehdr
)
5467 map
->p_paddr
-= iehdr
->e_ehsize
;
5469 if (map
->includes_phdrs
)
5471 map
->p_paddr
-= iehdr
->e_phnum
* iehdr
->e_phentsize
;
5473 /* iehdr->e_phnum is just an estimate of the number
5474 of program headers that we will need. Make a note
5475 here of the number we used and the segment we chose
5476 to hold these headers, so that we can adjust the
5477 offset when we know the correct value. */
5478 phdr_adjust_num
= iehdr
->e_phnum
;
5479 phdr_adjust_seg
= map
;
5483 /* Step Three: Loop over the sections again, this time assigning
5484 those that fit to the current segment and removing them from the
5485 sections array; but making sure not to leave large gaps. Once all
5486 possible sections have been assigned to the current segment it is
5487 added to the list of built segments and if sections still remain
5488 to be assigned, a new segment is constructed before repeating
5496 /* Fill the current segment with sections that fit. */
5497 for (j
= 0; j
< section_count
; j
++)
5499 section
= sections
[j
];
5501 if (section
== NULL
)
5504 output_section
= section
->output_section
;
5506 BFD_ASSERT (output_section
!= NULL
);
5508 if (IS_CONTAINED_BY_LMA (output_section
, segment
, map
->p_paddr
)
5509 || IS_COREFILE_NOTE (segment
, section
))
5511 if (map
->count
== 0)
5513 /* If the first section in a segment does not start at
5514 the beginning of the segment, then something is
5516 if (output_section
->lma
!=
5518 + (map
->includes_filehdr
? iehdr
->e_ehsize
: 0)
5519 + (map
->includes_phdrs
5520 ? iehdr
->e_phnum
* iehdr
->e_phentsize
5526 asection
* prev_sec
;
5528 prev_sec
= map
->sections
[map
->count
- 1];
5530 /* If the gap between the end of the previous section
5531 and the start of this section is more than
5532 maxpagesize then we need to start a new segment. */
5533 if ((BFD_ALIGN (prev_sec
->lma
+ prev_sec
->size
,
5535 < BFD_ALIGN (output_section
->lma
, maxpagesize
))
5536 || ((prev_sec
->lma
+ prev_sec
->size
)
5537 > output_section
->lma
))
5539 if (suggested_lma
== 0)
5540 suggested_lma
= output_section
->lma
;
5546 map
->sections
[map
->count
++] = output_section
;
5549 section
->segment_mark
= TRUE
;
5551 else if (suggested_lma
== 0)
5552 suggested_lma
= output_section
->lma
;
5555 BFD_ASSERT (map
->count
> 0);
5557 /* Add the current segment to the list of built segments. */
5558 *pointer_to_map
= map
;
5559 pointer_to_map
= &map
->next
;
5561 if (isec
< section_count
)
5563 /* We still have not allocated all of the sections to
5564 segments. Create a new segment here, initialise it
5565 and carry on looping. */
5566 amt
= sizeof (struct elf_segment_map
);
5567 amt
+= ((bfd_size_type
) section_count
- 1) * sizeof (asection
*);
5568 map
= bfd_alloc (obfd
, amt
);
5575 /* Initialise the fields of the segment map. Set the physical
5576 physical address to the LMA of the first section that has
5577 not yet been assigned. */
5579 map
->p_type
= segment
->p_type
;
5580 map
->p_flags
= segment
->p_flags
;
5581 map
->p_flags_valid
= 1;
5582 map
->p_paddr
= suggested_lma
;
5583 map
->p_paddr_valid
= 1;
5584 map
->includes_filehdr
= 0;
5585 map
->includes_phdrs
= 0;
5588 while (isec
< section_count
);
5593 /* The Solaris linker creates program headers in which all the
5594 p_paddr fields are zero. When we try to objcopy or strip such a
5595 file, we get confused. Check for this case, and if we find it
5596 reset the p_paddr_valid fields. */
5597 for (map
= map_first
; map
!= NULL
; map
= map
->next
)
5598 if (map
->p_paddr
!= 0)
5601 for (map
= map_first
; map
!= NULL
; map
= map
->next
)
5602 map
->p_paddr_valid
= 0;
5604 elf_tdata (obfd
)->segment_map
= map_first
;
5606 /* If we had to estimate the number of program headers that were
5607 going to be needed, then check our estimate now and adjust
5608 the offset if necessary. */
5609 if (phdr_adjust_seg
!= NULL
)
5613 for (count
= 0, map
= map_first
; map
!= NULL
; map
= map
->next
)
5616 if (count
> phdr_adjust_num
)
5617 phdr_adjust_seg
->p_paddr
5618 -= (count
- phdr_adjust_num
) * iehdr
->e_phentsize
;
5623 #undef IS_CONTAINED_BY_VMA
5624 #undef IS_CONTAINED_BY_LMA
5625 #undef IS_COREFILE_NOTE
5626 #undef IS_SOLARIS_PT_INTERP
5627 #undef INCLUDE_SECTION_IN_SEGMENT
5628 #undef SEGMENT_AFTER_SEGMENT
5629 #undef SEGMENT_OVERLAPS
5633 /* Initialize private output section information from input section. */
5636 _bfd_elf_init_private_section_data (bfd
*ibfd
,
5640 struct bfd_link_info
*link_info
)
5643 Elf_Internal_Shdr
*ihdr
, *ohdr
;
5644 bfd_boolean need_group
= link_info
== NULL
|| link_info
->relocatable
;
5646 if (ibfd
->xvec
->flavour
!= bfd_target_elf_flavour
5647 || obfd
->xvec
->flavour
!= bfd_target_elf_flavour
)
5650 /* FIXME: What if the output ELF section type has been set to
5651 something different? */
5652 if (elf_section_type (osec
) == SHT_NULL
)
5653 elf_section_type (osec
) = elf_section_type (isec
);
5655 /* Set things up for objcopy and relocatable link. The output
5656 SHT_GROUP section will have its elf_next_in_group pointing back
5657 to the input group members. Ignore linker created group section.
5658 See elfNN_ia64_object_p in elfxx-ia64.c. */
5662 if (elf_sec_group (isec
) == NULL
5663 || (elf_sec_group (isec
)->flags
& SEC_LINKER_CREATED
) == 0)
5665 if (elf_section_flags (isec
) & SHF_GROUP
)
5666 elf_section_flags (osec
) |= SHF_GROUP
;
5667 elf_next_in_group (osec
) = elf_next_in_group (isec
);
5668 elf_group_name (osec
) = elf_group_name (isec
);
5672 ihdr
= &elf_section_data (isec
)->this_hdr
;
5674 /* We need to handle elf_linked_to_section for SHF_LINK_ORDER. We
5675 don't use the output section of the linked-to section since it
5676 may be NULL at this point. */
5677 if ((ihdr
->sh_flags
& SHF_LINK_ORDER
) != 0)
5679 ohdr
= &elf_section_data (osec
)->this_hdr
;
5680 ohdr
->sh_flags
|= SHF_LINK_ORDER
;
5681 elf_linked_to_section (osec
) = elf_linked_to_section (isec
);
5684 osec
->use_rela_p
= isec
->use_rela_p
;
5689 /* Copy private section information. This copies over the entsize
5690 field, and sometimes the info field. */
5693 _bfd_elf_copy_private_section_data (bfd
*ibfd
,
5698 Elf_Internal_Shdr
*ihdr
, *ohdr
;
5700 if (ibfd
->xvec
->flavour
!= bfd_target_elf_flavour
5701 || obfd
->xvec
->flavour
!= bfd_target_elf_flavour
)
5704 ihdr
= &elf_section_data (isec
)->this_hdr
;
5705 ohdr
= &elf_section_data (osec
)->this_hdr
;
5707 ohdr
->sh_entsize
= ihdr
->sh_entsize
;
5709 if (ihdr
->sh_type
== SHT_SYMTAB
5710 || ihdr
->sh_type
== SHT_DYNSYM
5711 || ihdr
->sh_type
== SHT_GNU_verneed
5712 || ihdr
->sh_type
== SHT_GNU_verdef
)
5713 ohdr
->sh_info
= ihdr
->sh_info
;
5715 return _bfd_elf_init_private_section_data (ibfd
, isec
, obfd
, osec
,
5719 /* Copy private header information. */
5722 _bfd_elf_copy_private_header_data (bfd
*ibfd
, bfd
*obfd
)
5724 if (bfd_get_flavour (ibfd
) != bfd_target_elf_flavour
5725 || bfd_get_flavour (obfd
) != bfd_target_elf_flavour
)
5728 /* Copy over private BFD data if it has not already been copied.
5729 This must be done here, rather than in the copy_private_bfd_data
5730 entry point, because the latter is called after the section
5731 contents have been set, which means that the program headers have
5732 already been worked out. */
5733 if (elf_tdata (obfd
)->segment_map
== NULL
&& elf_tdata (ibfd
)->phdr
!= NULL
)
5735 if (! copy_private_bfd_data (ibfd
, obfd
))
5742 /* Copy private symbol information. If this symbol is in a section
5743 which we did not map into a BFD section, try to map the section
5744 index correctly. We use special macro definitions for the mapped
5745 section indices; these definitions are interpreted by the
5746 swap_out_syms function. */
5748 #define MAP_ONESYMTAB (SHN_HIOS + 1)
5749 #define MAP_DYNSYMTAB (SHN_HIOS + 2)
5750 #define MAP_STRTAB (SHN_HIOS + 3)
5751 #define MAP_SHSTRTAB (SHN_HIOS + 4)
5752 #define MAP_SYM_SHNDX (SHN_HIOS + 5)
5755 _bfd_elf_copy_private_symbol_data (bfd
*ibfd
,
5760 elf_symbol_type
*isym
, *osym
;
5762 if (bfd_get_flavour (ibfd
) != bfd_target_elf_flavour
5763 || bfd_get_flavour (obfd
) != bfd_target_elf_flavour
)
5766 isym
= elf_symbol_from (ibfd
, isymarg
);
5767 osym
= elf_symbol_from (obfd
, osymarg
);
5771 && bfd_is_abs_section (isym
->symbol
.section
))
5775 shndx
= isym
->internal_elf_sym
.st_shndx
;
5776 if (shndx
== elf_onesymtab (ibfd
))
5777 shndx
= MAP_ONESYMTAB
;
5778 else if (shndx
== elf_dynsymtab (ibfd
))
5779 shndx
= MAP_DYNSYMTAB
;
5780 else if (shndx
== elf_tdata (ibfd
)->strtab_section
)
5782 else if (shndx
== elf_tdata (ibfd
)->shstrtab_section
)
5783 shndx
= MAP_SHSTRTAB
;
5784 else if (shndx
== elf_tdata (ibfd
)->symtab_shndx_section
)
5785 shndx
= MAP_SYM_SHNDX
;
5786 osym
->internal_elf_sym
.st_shndx
= shndx
;
5792 /* Swap out the symbols. */
5795 swap_out_syms (bfd
*abfd
,
5796 struct bfd_strtab_hash
**sttp
,
5799 const struct elf_backend_data
*bed
;
5802 struct bfd_strtab_hash
*stt
;
5803 Elf_Internal_Shdr
*symtab_hdr
;
5804 Elf_Internal_Shdr
*symtab_shndx_hdr
;
5805 Elf_Internal_Shdr
*symstrtab_hdr
;
5806 bfd_byte
*outbound_syms
;
5807 bfd_byte
*outbound_shndx
;
5810 bfd_boolean name_local_sections
;
5812 if (!elf_map_symbols (abfd
))
5815 /* Dump out the symtabs. */
5816 stt
= _bfd_elf_stringtab_init ();
5820 bed
= get_elf_backend_data (abfd
);
5821 symcount
= bfd_get_symcount (abfd
);
5822 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
5823 symtab_hdr
->sh_type
= SHT_SYMTAB
;
5824 symtab_hdr
->sh_entsize
= bed
->s
->sizeof_sym
;
5825 symtab_hdr
->sh_size
= symtab_hdr
->sh_entsize
* (symcount
+ 1);
5826 symtab_hdr
->sh_info
= elf_num_locals (abfd
) + 1;
5827 symtab_hdr
->sh_addralign
= 1 << bed
->s
->log_file_align
;
5829 symstrtab_hdr
= &elf_tdata (abfd
)->strtab_hdr
;
5830 symstrtab_hdr
->sh_type
= SHT_STRTAB
;
5832 outbound_syms
= bfd_alloc2 (abfd
, 1 + symcount
, bed
->s
->sizeof_sym
);
5833 if (outbound_syms
== NULL
)
5835 _bfd_stringtab_free (stt
);
5838 symtab_hdr
->contents
= outbound_syms
;
5840 outbound_shndx
= NULL
;
5841 symtab_shndx_hdr
= &elf_tdata (abfd
)->symtab_shndx_hdr
;
5842 if (symtab_shndx_hdr
->sh_name
!= 0)
5844 amt
= (bfd_size_type
) (1 + symcount
) * sizeof (Elf_External_Sym_Shndx
);
5845 outbound_shndx
= bfd_zalloc2 (abfd
, 1 + symcount
,
5846 sizeof (Elf_External_Sym_Shndx
));
5847 if (outbound_shndx
== NULL
)
5849 _bfd_stringtab_free (stt
);
5853 symtab_shndx_hdr
->contents
= outbound_shndx
;
5854 symtab_shndx_hdr
->sh_type
= SHT_SYMTAB_SHNDX
;
5855 symtab_shndx_hdr
->sh_size
= amt
;
5856 symtab_shndx_hdr
->sh_addralign
= sizeof (Elf_External_Sym_Shndx
);
5857 symtab_shndx_hdr
->sh_entsize
= sizeof (Elf_External_Sym_Shndx
);
5860 /* Now generate the data (for "contents"). */
5862 /* Fill in zeroth symbol and swap it out. */
5863 Elf_Internal_Sym sym
;
5869 sym
.st_shndx
= SHN_UNDEF
;
5870 bed
->s
->swap_symbol_out (abfd
, &sym
, outbound_syms
, outbound_shndx
);
5871 outbound_syms
+= bed
->s
->sizeof_sym
;
5872 if (outbound_shndx
!= NULL
)
5873 outbound_shndx
+= sizeof (Elf_External_Sym_Shndx
);
5877 = (bed
->elf_backend_name_local_section_symbols
5878 && bed
->elf_backend_name_local_section_symbols (abfd
));
5880 syms
= bfd_get_outsymbols (abfd
);
5881 for (idx
= 0; idx
< symcount
; idx
++)
5883 Elf_Internal_Sym sym
;
5884 bfd_vma value
= syms
[idx
]->value
;
5885 elf_symbol_type
*type_ptr
;
5886 flagword flags
= syms
[idx
]->flags
;
5889 if (!name_local_sections
5890 && (flags
& (BSF_SECTION_SYM
| BSF_GLOBAL
)) == BSF_SECTION_SYM
)
5892 /* Local section symbols have no name. */
5897 sym
.st_name
= (unsigned long) _bfd_stringtab_add (stt
,
5900 if (sym
.st_name
== (unsigned long) -1)
5902 _bfd_stringtab_free (stt
);
5907 type_ptr
= elf_symbol_from (abfd
, syms
[idx
]);
5909 if ((flags
& BSF_SECTION_SYM
) == 0
5910 && bfd_is_com_section (syms
[idx
]->section
))
5912 /* ELF common symbols put the alignment into the `value' field,
5913 and the size into the `size' field. This is backwards from
5914 how BFD handles it, so reverse it here. */
5915 sym
.st_size
= value
;
5916 if (type_ptr
== NULL
5917 || type_ptr
->internal_elf_sym
.st_value
== 0)
5918 sym
.st_value
= value
>= 16 ? 16 : (1 << bfd_log2 (value
));
5920 sym
.st_value
= type_ptr
->internal_elf_sym
.st_value
;
5921 sym
.st_shndx
= _bfd_elf_section_from_bfd_section
5922 (abfd
, syms
[idx
]->section
);
5926 asection
*sec
= syms
[idx
]->section
;
5929 if (sec
->output_section
)
5931 value
+= sec
->output_offset
;
5932 sec
= sec
->output_section
;
5935 /* Don't add in the section vma for relocatable output. */
5936 if (! relocatable_p
)
5938 sym
.st_value
= value
;
5939 sym
.st_size
= type_ptr
? type_ptr
->internal_elf_sym
.st_size
: 0;
5941 if (bfd_is_abs_section (sec
)
5943 && type_ptr
->internal_elf_sym
.st_shndx
!= 0)
5945 /* This symbol is in a real ELF section which we did
5946 not create as a BFD section. Undo the mapping done
5947 by copy_private_symbol_data. */
5948 shndx
= type_ptr
->internal_elf_sym
.st_shndx
;
5952 shndx
= elf_onesymtab (abfd
);
5955 shndx
= elf_dynsymtab (abfd
);
5958 shndx
= elf_tdata (abfd
)->strtab_section
;
5961 shndx
= elf_tdata (abfd
)->shstrtab_section
;
5964 shndx
= elf_tdata (abfd
)->symtab_shndx_section
;
5972 shndx
= _bfd_elf_section_from_bfd_section (abfd
, sec
);
5978 /* Writing this would be a hell of a lot easier if
5979 we had some decent documentation on bfd, and
5980 knew what to expect of the library, and what to
5981 demand of applications. For example, it
5982 appears that `objcopy' might not set the
5983 section of a symbol to be a section that is
5984 actually in the output file. */
5985 sec2
= bfd_get_section_by_name (abfd
, sec
->name
);
5988 _bfd_error_handler (_("\
5989 Unable to find equivalent output section for symbol '%s' from section '%s'"),
5990 syms
[idx
]->name
? syms
[idx
]->name
: "<Local sym>",
5992 bfd_set_error (bfd_error_invalid_operation
);
5993 _bfd_stringtab_free (stt
);
5997 shndx
= _bfd_elf_section_from_bfd_section (abfd
, sec2
);
5998 BFD_ASSERT (shndx
!= -1);
6002 sym
.st_shndx
= shndx
;
6005 if ((flags
& BSF_THREAD_LOCAL
) != 0)
6007 else if ((flags
& BSF_FUNCTION
) != 0)
6009 else if ((flags
& BSF_OBJECT
) != 0)
6014 if (syms
[idx
]->section
->flags
& SEC_THREAD_LOCAL
)
6017 /* Processor-specific types. */
6018 if (type_ptr
!= NULL
6019 && bed
->elf_backend_get_symbol_type
)
6020 type
= ((*bed
->elf_backend_get_symbol_type
)
6021 (&type_ptr
->internal_elf_sym
, type
));
6023 if (flags
& BSF_SECTION_SYM
)
6025 if (flags
& BSF_GLOBAL
)
6026 sym
.st_info
= ELF_ST_INFO (STB_GLOBAL
, STT_SECTION
);
6028 sym
.st_info
= ELF_ST_INFO (STB_LOCAL
, STT_SECTION
);
6030 else if (bfd_is_com_section (syms
[idx
]->section
))
6031 sym
.st_info
= ELF_ST_INFO (STB_GLOBAL
, type
);
6032 else if (bfd_is_und_section (syms
[idx
]->section
))
6033 sym
.st_info
= ELF_ST_INFO (((flags
& BSF_WEAK
)
6037 else if (flags
& BSF_FILE
)
6038 sym
.st_info
= ELF_ST_INFO (STB_LOCAL
, STT_FILE
);
6041 int bind
= STB_LOCAL
;
6043 if (flags
& BSF_LOCAL
)
6045 else if (flags
& BSF_WEAK
)
6047 else if (flags
& BSF_GLOBAL
)
6050 sym
.st_info
= ELF_ST_INFO (bind
, type
);
6053 if (type_ptr
!= NULL
)
6054 sym
.st_other
= type_ptr
->internal_elf_sym
.st_other
;
6058 bed
->s
->swap_symbol_out (abfd
, &sym
, outbound_syms
, outbound_shndx
);
6059 outbound_syms
+= bed
->s
->sizeof_sym
;
6060 if (outbound_shndx
!= NULL
)
6061 outbound_shndx
+= sizeof (Elf_External_Sym_Shndx
);
6065 symstrtab_hdr
->sh_size
= _bfd_stringtab_size (stt
);
6066 symstrtab_hdr
->sh_type
= SHT_STRTAB
;
6068 symstrtab_hdr
->sh_flags
= 0;
6069 symstrtab_hdr
->sh_addr
= 0;
6070 symstrtab_hdr
->sh_entsize
= 0;
6071 symstrtab_hdr
->sh_link
= 0;
6072 symstrtab_hdr
->sh_info
= 0;
6073 symstrtab_hdr
->sh_addralign
= 1;
6078 /* Return the number of bytes required to hold the symtab vector.
6080 Note that we base it on the count plus 1, since we will null terminate
6081 the vector allocated based on this size. However, the ELF symbol table
6082 always has a dummy entry as symbol #0, so it ends up even. */
6085 _bfd_elf_get_symtab_upper_bound (bfd
*abfd
)
6089 Elf_Internal_Shdr
*hdr
= &elf_tdata (abfd
)->symtab_hdr
;
6091 symcount
= hdr
->sh_size
/ get_elf_backend_data (abfd
)->s
->sizeof_sym
;
6092 symtab_size
= (symcount
+ 1) * (sizeof (asymbol
*));
6094 symtab_size
-= sizeof (asymbol
*);
6100 _bfd_elf_get_dynamic_symtab_upper_bound (bfd
*abfd
)
6104 Elf_Internal_Shdr
*hdr
= &elf_tdata (abfd
)->dynsymtab_hdr
;
6106 if (elf_dynsymtab (abfd
) == 0)
6108 bfd_set_error (bfd_error_invalid_operation
);
6112 symcount
= hdr
->sh_size
/ get_elf_backend_data (abfd
)->s
->sizeof_sym
;
6113 symtab_size
= (symcount
+ 1) * (sizeof (asymbol
*));
6115 symtab_size
-= sizeof (asymbol
*);
6121 _bfd_elf_get_reloc_upper_bound (bfd
*abfd ATTRIBUTE_UNUSED
,
6124 return (asect
->reloc_count
+ 1) * sizeof (arelent
*);
6127 /* Canonicalize the relocs. */
6130 _bfd_elf_canonicalize_reloc (bfd
*abfd
,
6137 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
6139 if (! bed
->s
->slurp_reloc_table (abfd
, section
, symbols
, FALSE
))
6142 tblptr
= section
->relocation
;
6143 for (i
= 0; i
< section
->reloc_count
; i
++)
6144 *relptr
++ = tblptr
++;
6148 return section
->reloc_count
;
6152 _bfd_elf_canonicalize_symtab (bfd
*abfd
, asymbol
**allocation
)
6154 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
6155 long symcount
= bed
->s
->slurp_symbol_table (abfd
, allocation
, FALSE
);
6158 bfd_get_symcount (abfd
) = symcount
;
6163 _bfd_elf_canonicalize_dynamic_symtab (bfd
*abfd
,
6164 asymbol
**allocation
)
6166 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
6167 long symcount
= bed
->s
->slurp_symbol_table (abfd
, allocation
, TRUE
);
6170 bfd_get_dynamic_symcount (abfd
) = symcount
;
6174 /* Return the size required for the dynamic reloc entries. Any loadable
6175 section that was actually installed in the BFD, and has type SHT_REL
6176 or SHT_RELA, and uses the dynamic symbol table, is considered to be a
6177 dynamic reloc section. */
6180 _bfd_elf_get_dynamic_reloc_upper_bound (bfd
*abfd
)
6185 if (elf_dynsymtab (abfd
) == 0)
6187 bfd_set_error (bfd_error_invalid_operation
);
6191 ret
= sizeof (arelent
*);
6192 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
6193 if ((s
->flags
& SEC_LOAD
) != 0
6194 && elf_section_data (s
)->this_hdr
.sh_link
== elf_dynsymtab (abfd
)
6195 && (elf_section_data (s
)->this_hdr
.sh_type
== SHT_REL
6196 || elf_section_data (s
)->this_hdr
.sh_type
== SHT_RELA
))
6197 ret
+= ((s
->size
/ elf_section_data (s
)->this_hdr
.sh_entsize
)
6198 * sizeof (arelent
*));
6203 /* Canonicalize the dynamic relocation entries. Note that we return the
6204 dynamic relocations as a single block, although they are actually
6205 associated with particular sections; the interface, which was
6206 designed for SunOS style shared libraries, expects that there is only
6207 one set of dynamic relocs. Any loadable section that was actually
6208 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses the
6209 dynamic symbol table, is considered to be a dynamic reloc section. */
6212 _bfd_elf_canonicalize_dynamic_reloc (bfd
*abfd
,
6216 bfd_boolean (*slurp_relocs
) (bfd
*, asection
*, asymbol
**, bfd_boolean
);
6220 if (elf_dynsymtab (abfd
) == 0)
6222 bfd_set_error (bfd_error_invalid_operation
);
6226 slurp_relocs
= get_elf_backend_data (abfd
)->s
->slurp_reloc_table
;
6228 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
6230 if ((s
->flags
& SEC_LOAD
) != 0
6231 && elf_section_data (s
)->this_hdr
.sh_link
== elf_dynsymtab (abfd
)
6232 && (elf_section_data (s
)->this_hdr
.sh_type
== SHT_REL
6233 || elf_section_data (s
)->this_hdr
.sh_type
== SHT_RELA
))
6238 if (! (*slurp_relocs
) (abfd
, s
, syms
, TRUE
))
6240 count
= s
->size
/ elf_section_data (s
)->this_hdr
.sh_entsize
;
6242 for (i
= 0; i
< count
; i
++)
6253 /* Read in the version information. */
6256 _bfd_elf_slurp_version_tables (bfd
*abfd
, bfd_boolean default_imported_symver
)
6258 bfd_byte
*contents
= NULL
;
6259 unsigned int freeidx
= 0;
6261 if (elf_dynverref (abfd
) != 0)
6263 Elf_Internal_Shdr
*hdr
;
6264 Elf_External_Verneed
*everneed
;
6265 Elf_Internal_Verneed
*iverneed
;
6267 bfd_byte
*contents_end
;
6269 hdr
= &elf_tdata (abfd
)->dynverref_hdr
;
6271 elf_tdata (abfd
)->verref
= bfd_zalloc2 (abfd
, hdr
->sh_info
,
6272 sizeof (Elf_Internal_Verneed
));
6273 if (elf_tdata (abfd
)->verref
== NULL
)
6276 elf_tdata (abfd
)->cverrefs
= hdr
->sh_info
;
6278 contents
= bfd_malloc (hdr
->sh_size
);
6279 if (contents
== NULL
)
6281 error_return_verref
:
6282 elf_tdata (abfd
)->verref
= NULL
;
6283 elf_tdata (abfd
)->cverrefs
= 0;
6286 if (bfd_seek (abfd
, hdr
->sh_offset
, SEEK_SET
) != 0
6287 || bfd_bread (contents
, hdr
->sh_size
, abfd
) != hdr
->sh_size
)
6288 goto error_return_verref
;
6290 if (hdr
->sh_info
&& hdr
->sh_size
< sizeof (Elf_External_Verneed
))
6291 goto error_return_verref
;
6293 BFD_ASSERT (sizeof (Elf_External_Verneed
)
6294 == sizeof (Elf_External_Vernaux
));
6295 contents_end
= contents
+ hdr
->sh_size
- sizeof (Elf_External_Verneed
);
6296 everneed
= (Elf_External_Verneed
*) contents
;
6297 iverneed
= elf_tdata (abfd
)->verref
;
6298 for (i
= 0; i
< hdr
->sh_info
; i
++, iverneed
++)
6300 Elf_External_Vernaux
*evernaux
;
6301 Elf_Internal_Vernaux
*ivernaux
;
6304 _bfd_elf_swap_verneed_in (abfd
, everneed
, iverneed
);
6306 iverneed
->vn_bfd
= abfd
;
6308 iverneed
->vn_filename
=
6309 bfd_elf_string_from_elf_section (abfd
, hdr
->sh_link
,
6311 if (iverneed
->vn_filename
== NULL
)
6312 goto error_return_verref
;
6314 if (iverneed
->vn_cnt
== 0)
6315 iverneed
->vn_auxptr
= NULL
;
6318 iverneed
->vn_auxptr
= bfd_alloc2 (abfd
, iverneed
->vn_cnt
,
6319 sizeof (Elf_Internal_Vernaux
));
6320 if (iverneed
->vn_auxptr
== NULL
)
6321 goto error_return_verref
;
6324 if (iverneed
->vn_aux
6325 > (size_t) (contents_end
- (bfd_byte
*) everneed
))
6326 goto error_return_verref
;
6328 evernaux
= ((Elf_External_Vernaux
*)
6329 ((bfd_byte
*) everneed
+ iverneed
->vn_aux
));
6330 ivernaux
= iverneed
->vn_auxptr
;
6331 for (j
= 0; j
< iverneed
->vn_cnt
; j
++, ivernaux
++)
6333 _bfd_elf_swap_vernaux_in (abfd
, evernaux
, ivernaux
);
6335 ivernaux
->vna_nodename
=
6336 bfd_elf_string_from_elf_section (abfd
, hdr
->sh_link
,
6337 ivernaux
->vna_name
);
6338 if (ivernaux
->vna_nodename
== NULL
)
6339 goto error_return_verref
;
6341 if (j
+ 1 < iverneed
->vn_cnt
)
6342 ivernaux
->vna_nextptr
= ivernaux
+ 1;
6344 ivernaux
->vna_nextptr
= NULL
;
6346 if (ivernaux
->vna_next
6347 > (size_t) (contents_end
- (bfd_byte
*) evernaux
))
6348 goto error_return_verref
;
6350 evernaux
= ((Elf_External_Vernaux
*)
6351 ((bfd_byte
*) evernaux
+ ivernaux
->vna_next
));
6353 if (ivernaux
->vna_other
> freeidx
)
6354 freeidx
= ivernaux
->vna_other
;
6357 if (i
+ 1 < hdr
->sh_info
)
6358 iverneed
->vn_nextref
= iverneed
+ 1;
6360 iverneed
->vn_nextref
= NULL
;
6362 if (iverneed
->vn_next
6363 > (size_t) (contents_end
- (bfd_byte
*) everneed
))
6364 goto error_return_verref
;
6366 everneed
= ((Elf_External_Verneed
*)
6367 ((bfd_byte
*) everneed
+ iverneed
->vn_next
));
6374 if (elf_dynverdef (abfd
) != 0)
6376 Elf_Internal_Shdr
*hdr
;
6377 Elf_External_Verdef
*everdef
;
6378 Elf_Internal_Verdef
*iverdef
;
6379 Elf_Internal_Verdef
*iverdefarr
;
6380 Elf_Internal_Verdef iverdefmem
;
6382 unsigned int maxidx
;
6383 bfd_byte
*contents_end_def
, *contents_end_aux
;
6385 hdr
= &elf_tdata (abfd
)->dynverdef_hdr
;
6387 contents
= bfd_malloc (hdr
->sh_size
);
6388 if (contents
== NULL
)
6390 if (bfd_seek (abfd
, hdr
->sh_offset
, SEEK_SET
) != 0
6391 || bfd_bread (contents
, hdr
->sh_size
, abfd
) != hdr
->sh_size
)
6394 if (hdr
->sh_info
&& hdr
->sh_size
< sizeof (Elf_External_Verdef
))
6397 BFD_ASSERT (sizeof (Elf_External_Verdef
)
6398 >= sizeof (Elf_External_Verdaux
));
6399 contents_end_def
= contents
+ hdr
->sh_size
6400 - sizeof (Elf_External_Verdef
);
6401 contents_end_aux
= contents
+ hdr
->sh_size
6402 - sizeof (Elf_External_Verdaux
);
6404 /* We know the number of entries in the section but not the maximum
6405 index. Therefore we have to run through all entries and find
6407 everdef
= (Elf_External_Verdef
*) contents
;
6409 for (i
= 0; i
< hdr
->sh_info
; ++i
)
6411 _bfd_elf_swap_verdef_in (abfd
, everdef
, &iverdefmem
);
6413 if ((iverdefmem
.vd_ndx
& ((unsigned) VERSYM_VERSION
)) > maxidx
)
6414 maxidx
= iverdefmem
.vd_ndx
& ((unsigned) VERSYM_VERSION
);
6416 if (iverdefmem
.vd_next
6417 > (size_t) (contents_end_def
- (bfd_byte
*) everdef
))
6420 everdef
= ((Elf_External_Verdef
*)
6421 ((bfd_byte
*) everdef
+ iverdefmem
.vd_next
));
6424 if (default_imported_symver
)
6426 if (freeidx
> maxidx
)
6431 elf_tdata (abfd
)->verdef
= bfd_zalloc2 (abfd
, maxidx
,
6432 sizeof (Elf_Internal_Verdef
));
6433 if (elf_tdata (abfd
)->verdef
== NULL
)
6436 elf_tdata (abfd
)->cverdefs
= maxidx
;
6438 everdef
= (Elf_External_Verdef
*) contents
;
6439 iverdefarr
= elf_tdata (abfd
)->verdef
;
6440 for (i
= 0; i
< hdr
->sh_info
; i
++)
6442 Elf_External_Verdaux
*everdaux
;
6443 Elf_Internal_Verdaux
*iverdaux
;
6446 _bfd_elf_swap_verdef_in (abfd
, everdef
, &iverdefmem
);
6448 if ((iverdefmem
.vd_ndx
& VERSYM_VERSION
) == 0)
6450 error_return_verdef
:
6451 elf_tdata (abfd
)->verdef
= NULL
;
6452 elf_tdata (abfd
)->cverdefs
= 0;
6456 iverdef
= &iverdefarr
[(iverdefmem
.vd_ndx
& VERSYM_VERSION
) - 1];
6457 memcpy (iverdef
, &iverdefmem
, sizeof (Elf_Internal_Verdef
));
6459 iverdef
->vd_bfd
= abfd
;
6461 if (iverdef
->vd_cnt
== 0)
6462 iverdef
->vd_auxptr
= NULL
;
6465 iverdef
->vd_auxptr
= bfd_alloc2 (abfd
, iverdef
->vd_cnt
,
6466 sizeof (Elf_Internal_Verdaux
));
6467 if (iverdef
->vd_auxptr
== NULL
)
6468 goto error_return_verdef
;
6472 > (size_t) (contents_end_aux
- (bfd_byte
*) everdef
))
6473 goto error_return_verdef
;
6475 everdaux
= ((Elf_External_Verdaux
*)
6476 ((bfd_byte
*) everdef
+ iverdef
->vd_aux
));
6477 iverdaux
= iverdef
->vd_auxptr
;
6478 for (j
= 0; j
< iverdef
->vd_cnt
; j
++, iverdaux
++)
6480 _bfd_elf_swap_verdaux_in (abfd
, everdaux
, iverdaux
);
6482 iverdaux
->vda_nodename
=
6483 bfd_elf_string_from_elf_section (abfd
, hdr
->sh_link
,
6484 iverdaux
->vda_name
);
6485 if (iverdaux
->vda_nodename
== NULL
)
6486 goto error_return_verdef
;
6488 if (j
+ 1 < iverdef
->vd_cnt
)
6489 iverdaux
->vda_nextptr
= iverdaux
+ 1;
6491 iverdaux
->vda_nextptr
= NULL
;
6493 if (iverdaux
->vda_next
6494 > (size_t) (contents_end_aux
- (bfd_byte
*) everdaux
))
6495 goto error_return_verdef
;
6497 everdaux
= ((Elf_External_Verdaux
*)
6498 ((bfd_byte
*) everdaux
+ iverdaux
->vda_next
));
6501 if (iverdef
->vd_cnt
)
6502 iverdef
->vd_nodename
= iverdef
->vd_auxptr
->vda_nodename
;
6504 if ((size_t) (iverdef
- iverdefarr
) + 1 < maxidx
)
6505 iverdef
->vd_nextdef
= iverdef
+ 1;
6507 iverdef
->vd_nextdef
= NULL
;
6509 everdef
= ((Elf_External_Verdef
*)
6510 ((bfd_byte
*) everdef
+ iverdef
->vd_next
));
6516 else if (default_imported_symver
)
6523 elf_tdata (abfd
)->verdef
= bfd_zalloc2 (abfd
, freeidx
,
6524 sizeof (Elf_Internal_Verdef
));
6525 if (elf_tdata (abfd
)->verdef
== NULL
)
6528 elf_tdata (abfd
)->cverdefs
= freeidx
;
6531 /* Create a default version based on the soname. */
6532 if (default_imported_symver
)
6534 Elf_Internal_Verdef
*iverdef
;
6535 Elf_Internal_Verdaux
*iverdaux
;
6537 iverdef
= &elf_tdata (abfd
)->verdef
[freeidx
- 1];;
6539 iverdef
->vd_version
= VER_DEF_CURRENT
;
6540 iverdef
->vd_flags
= 0;
6541 iverdef
->vd_ndx
= freeidx
;
6542 iverdef
->vd_cnt
= 1;
6544 iverdef
->vd_bfd
= abfd
;
6546 iverdef
->vd_nodename
= bfd_elf_get_dt_soname (abfd
);
6547 if (iverdef
->vd_nodename
== NULL
)
6548 goto error_return_verdef
;
6549 iverdef
->vd_nextdef
= NULL
;
6550 iverdef
->vd_auxptr
= bfd_alloc (abfd
, sizeof (Elf_Internal_Verdaux
));
6551 if (iverdef
->vd_auxptr
== NULL
)
6552 goto error_return_verdef
;
6554 iverdaux
= iverdef
->vd_auxptr
;
6555 iverdaux
->vda_nodename
= iverdef
->vd_nodename
;
6556 iverdaux
->vda_nextptr
= NULL
;
6562 if (contents
!= NULL
)
6568 _bfd_elf_make_empty_symbol (bfd
*abfd
)
6570 elf_symbol_type
*newsym
;
6571 bfd_size_type amt
= sizeof (elf_symbol_type
);
6573 newsym
= bfd_zalloc (abfd
, amt
);
6578 newsym
->symbol
.the_bfd
= abfd
;
6579 return &newsym
->symbol
;
6584 _bfd_elf_get_symbol_info (bfd
*abfd ATTRIBUTE_UNUSED
,
6588 bfd_symbol_info (symbol
, ret
);
6591 /* Return whether a symbol name implies a local symbol. Most targets
6592 use this function for the is_local_label_name entry point, but some
6596 _bfd_elf_is_local_label_name (bfd
*abfd ATTRIBUTE_UNUSED
,
6599 /* Normal local symbols start with ``.L''. */
6600 if (name
[0] == '.' && name
[1] == 'L')
6603 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
6604 DWARF debugging symbols starting with ``..''. */
6605 if (name
[0] == '.' && name
[1] == '.')
6608 /* gcc will sometimes generate symbols beginning with ``_.L_'' when
6609 emitting DWARF debugging output. I suspect this is actually a
6610 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
6611 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
6612 underscore to be emitted on some ELF targets). For ease of use,
6613 we treat such symbols as local. */
6614 if (name
[0] == '_' && name
[1] == '.' && name
[2] == 'L' && name
[3] == '_')
6621 _bfd_elf_get_lineno (bfd
*abfd ATTRIBUTE_UNUSED
,
6622 asymbol
*symbol ATTRIBUTE_UNUSED
)
6629 _bfd_elf_set_arch_mach (bfd
*abfd
,
6630 enum bfd_architecture arch
,
6631 unsigned long machine
)
6633 /* If this isn't the right architecture for this backend, and this
6634 isn't the generic backend, fail. */
6635 if (arch
!= get_elf_backend_data (abfd
)->arch
6636 && arch
!= bfd_arch_unknown
6637 && get_elf_backend_data (abfd
)->arch
!= bfd_arch_unknown
)
6640 return bfd_default_set_arch_mach (abfd
, arch
, machine
);
6643 /* Find the function to a particular section and offset,
6644 for error reporting. */
6647 elf_find_function (bfd
*abfd ATTRIBUTE_UNUSED
,
6651 const char **filename_ptr
,
6652 const char **functionname_ptr
)
6654 const char *filename
;
6655 asymbol
*func
, *file
;
6658 /* ??? Given multiple file symbols, it is impossible to reliably
6659 choose the right file name for global symbols. File symbols are
6660 local symbols, and thus all file symbols must sort before any
6661 global symbols. The ELF spec may be interpreted to say that a
6662 file symbol must sort before other local symbols, but currently
6663 ld -r doesn't do this. So, for ld -r output, it is possible to
6664 make a better choice of file name for local symbols by ignoring
6665 file symbols appearing after a given local symbol. */
6666 enum { nothing_seen
, symbol_seen
, file_after_symbol_seen
} state
;
6672 state
= nothing_seen
;
6674 for (p
= symbols
; *p
!= NULL
; p
++)
6678 q
= (elf_symbol_type
*) *p
;
6680 switch (ELF_ST_TYPE (q
->internal_elf_sym
.st_info
))
6686 if (state
== symbol_seen
)
6687 state
= file_after_symbol_seen
;
6691 if (bfd_get_section (&q
->symbol
) == section
6692 && q
->symbol
.value
>= low_func
6693 && q
->symbol
.value
<= offset
)
6695 func
= (asymbol
*) q
;
6696 low_func
= q
->symbol
.value
;
6699 && (ELF_ST_BIND (q
->internal_elf_sym
.st_info
) == STB_LOCAL
6700 || state
!= file_after_symbol_seen
))
6701 filename
= bfd_asymbol_name (file
);
6705 if (state
== nothing_seen
)
6706 state
= symbol_seen
;
6713 *filename_ptr
= filename
;
6714 if (functionname_ptr
)
6715 *functionname_ptr
= bfd_asymbol_name (func
);
6720 /* Find the nearest line to a particular section and offset,
6721 for error reporting. */
6724 _bfd_elf_find_nearest_line (bfd
*abfd
,
6728 const char **filename_ptr
,
6729 const char **functionname_ptr
,
6730 unsigned int *line_ptr
)
6734 if (_bfd_dwarf1_find_nearest_line (abfd
, section
, symbols
, offset
,
6735 filename_ptr
, functionname_ptr
,
6738 if (!*functionname_ptr
)
6739 elf_find_function (abfd
, section
, symbols
, offset
,
6740 *filename_ptr
? NULL
: filename_ptr
,
6746 if (_bfd_dwarf2_find_nearest_line (abfd
, section
, symbols
, offset
,
6747 filename_ptr
, functionname_ptr
,
6749 &elf_tdata (abfd
)->dwarf2_find_line_info
))
6751 if (!*functionname_ptr
)
6752 elf_find_function (abfd
, section
, symbols
, offset
,
6753 *filename_ptr
? NULL
: filename_ptr
,
6759 if (! _bfd_stab_section_find_nearest_line (abfd
, symbols
, section
, offset
,
6760 &found
, filename_ptr
,
6761 functionname_ptr
, line_ptr
,
6762 &elf_tdata (abfd
)->line_info
))
6764 if (found
&& (*functionname_ptr
|| *line_ptr
))
6767 if (symbols
== NULL
)
6770 if (! elf_find_function (abfd
, section
, symbols
, offset
,
6771 filename_ptr
, functionname_ptr
))
6778 /* Find the line for a symbol. */
6781 _bfd_elf_find_line (bfd
*abfd
, asymbol
**symbols
, asymbol
*symbol
,
6782 const char **filename_ptr
, unsigned int *line_ptr
)
6784 return _bfd_dwarf2_find_line (abfd
, symbols
, symbol
,
6785 filename_ptr
, line_ptr
, 0,
6786 &elf_tdata (abfd
)->dwarf2_find_line_info
);
6789 /* After a call to bfd_find_nearest_line, successive calls to
6790 bfd_find_inliner_info can be used to get source information about
6791 each level of function inlining that terminated at the address
6792 passed to bfd_find_nearest_line. Currently this is only supported
6793 for DWARF2 with appropriate DWARF3 extensions. */
6796 _bfd_elf_find_inliner_info (bfd
*abfd
,
6797 const char **filename_ptr
,
6798 const char **functionname_ptr
,
6799 unsigned int *line_ptr
)
6802 found
= _bfd_dwarf2_find_inliner_info (abfd
, filename_ptr
,
6803 functionname_ptr
, line_ptr
,
6804 & elf_tdata (abfd
)->dwarf2_find_line_info
);
6809 _bfd_elf_sizeof_headers (bfd
*abfd
, bfd_boolean reloc
)
6813 ret
= get_elf_backend_data (abfd
)->s
->sizeof_ehdr
;
6815 ret
+= get_program_header_size (abfd
);
6820 _bfd_elf_set_section_contents (bfd
*abfd
,
6822 const void *location
,
6824 bfd_size_type count
)
6826 Elf_Internal_Shdr
*hdr
;
6829 if (! abfd
->output_has_begun
6830 && ! _bfd_elf_compute_section_file_positions (abfd
, NULL
))
6833 hdr
= &elf_section_data (section
)->this_hdr
;
6834 pos
= hdr
->sh_offset
+ offset
;
6835 if (bfd_seek (abfd
, pos
, SEEK_SET
) != 0
6836 || bfd_bwrite (location
, count
, abfd
) != count
)
6843 _bfd_elf_no_info_to_howto (bfd
*abfd ATTRIBUTE_UNUSED
,
6844 arelent
*cache_ptr ATTRIBUTE_UNUSED
,
6845 Elf_Internal_Rela
*dst ATTRIBUTE_UNUSED
)
6850 /* Try to convert a non-ELF reloc into an ELF one. */
6853 _bfd_elf_validate_reloc (bfd
*abfd
, arelent
*areloc
)
6855 /* Check whether we really have an ELF howto. */
6857 if ((*areloc
->sym_ptr_ptr
)->the_bfd
->xvec
!= abfd
->xvec
)
6859 bfd_reloc_code_real_type code
;
6860 reloc_howto_type
*howto
;
6862 /* Alien reloc: Try to determine its type to replace it with an
6863 equivalent ELF reloc. */
6865 if (areloc
->howto
->pc_relative
)
6867 switch (areloc
->howto
->bitsize
)
6870 code
= BFD_RELOC_8_PCREL
;
6873 code
= BFD_RELOC_12_PCREL
;
6876 code
= BFD_RELOC_16_PCREL
;
6879 code
= BFD_RELOC_24_PCREL
;
6882 code
= BFD_RELOC_32_PCREL
;
6885 code
= BFD_RELOC_64_PCREL
;
6891 howto
= bfd_reloc_type_lookup (abfd
, code
);
6893 if (areloc
->howto
->pcrel_offset
!= howto
->pcrel_offset
)
6895 if (howto
->pcrel_offset
)
6896 areloc
->addend
+= areloc
->address
;
6898 areloc
->addend
-= areloc
->address
; /* addend is unsigned!! */
6903 switch (areloc
->howto
->bitsize
)
6909 code
= BFD_RELOC_14
;
6912 code
= BFD_RELOC_16
;
6915 code
= BFD_RELOC_26
;
6918 code
= BFD_RELOC_32
;
6921 code
= BFD_RELOC_64
;
6927 howto
= bfd_reloc_type_lookup (abfd
, code
);
6931 areloc
->howto
= howto
;
6939 (*_bfd_error_handler
)
6940 (_("%B: unsupported relocation type %s"),
6941 abfd
, areloc
->howto
->name
);
6942 bfd_set_error (bfd_error_bad_value
);
6947 _bfd_elf_close_and_cleanup (bfd
*abfd
)
6949 if (bfd_get_format (abfd
) == bfd_object
)
6951 if (elf_shstrtab (abfd
) != NULL
)
6952 _bfd_elf_strtab_free (elf_shstrtab (abfd
));
6953 _bfd_dwarf2_cleanup_debug_info (abfd
);
6956 return _bfd_generic_close_and_cleanup (abfd
);
6959 /* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
6960 in the relocation's offset. Thus we cannot allow any sort of sanity
6961 range-checking to interfere. There is nothing else to do in processing
6964 bfd_reloc_status_type
6965 _bfd_elf_rel_vtable_reloc_fn
6966 (bfd
*abfd ATTRIBUTE_UNUSED
, arelent
*re ATTRIBUTE_UNUSED
,
6967 struct bfd_symbol
*symbol ATTRIBUTE_UNUSED
,
6968 void *data ATTRIBUTE_UNUSED
, asection
*is ATTRIBUTE_UNUSED
,
6969 bfd
*obfd ATTRIBUTE_UNUSED
, char **errmsg ATTRIBUTE_UNUSED
)
6971 return bfd_reloc_ok
;
6974 /* Elf core file support. Much of this only works on native
6975 toolchains, since we rely on knowing the
6976 machine-dependent procfs structure in order to pick
6977 out details about the corefile. */
6979 #ifdef HAVE_SYS_PROCFS_H
6980 # include <sys/procfs.h>
6983 /* FIXME: this is kinda wrong, but it's what gdb wants. */
6986 elfcore_make_pid (bfd
*abfd
)
6988 return ((elf_tdata (abfd
)->core_lwpid
<< 16)
6989 + (elf_tdata (abfd
)->core_pid
));
6992 /* If there isn't a section called NAME, make one, using
6993 data from SECT. Note, this function will generate a
6994 reference to NAME, so you shouldn't deallocate or
6998 elfcore_maybe_make_sect (bfd
*abfd
, char *name
, asection
*sect
)
7002 if (bfd_get_section_by_name (abfd
, name
) != NULL
)
7005 sect2
= bfd_make_section (abfd
, name
);
7009 sect2
->size
= sect
->size
;
7010 sect2
->filepos
= sect
->filepos
;
7011 sect2
->flags
= sect
->flags
;
7012 sect2
->alignment_power
= sect
->alignment_power
;
7016 /* Create a pseudosection containing SIZE bytes at FILEPOS. This
7017 actually creates up to two pseudosections:
7018 - For the single-threaded case, a section named NAME, unless
7019 such a section already exists.
7020 - For the multi-threaded case, a section named "NAME/PID", where
7021 PID is elfcore_make_pid (abfd).
7022 Both pseudosections have identical contents. */
7024 _bfd_elfcore_make_pseudosection (bfd
*abfd
,
7030 char *threaded_name
;
7034 /* Build the section name. */
7036 sprintf (buf
, "%s/%d", name
, elfcore_make_pid (abfd
));
7037 len
= strlen (buf
) + 1;
7038 threaded_name
= bfd_alloc (abfd
, len
);
7039 if (threaded_name
== NULL
)
7041 memcpy (threaded_name
, buf
, len
);
7043 sect
= bfd_make_section_anyway (abfd
, threaded_name
);
7047 sect
->filepos
= filepos
;
7048 sect
->flags
= SEC_HAS_CONTENTS
;
7049 sect
->alignment_power
= 2;
7051 return elfcore_maybe_make_sect (abfd
, name
, sect
);
7054 /* prstatus_t exists on:
7056 linux 2.[01] + glibc
7060 #if defined (HAVE_PRSTATUS_T)
7063 elfcore_grok_prstatus (bfd
*abfd
, Elf_Internal_Note
*note
)
7068 if (note
->descsz
== sizeof (prstatus_t
))
7072 size
= sizeof (prstat
.pr_reg
);
7073 offset
= offsetof (prstatus_t
, pr_reg
);
7074 memcpy (&prstat
, note
->descdata
, sizeof (prstat
));
7076 /* Do not overwrite the core signal if it
7077 has already been set by another thread. */
7078 if (elf_tdata (abfd
)->core_signal
== 0)
7079 elf_tdata (abfd
)->core_signal
= prstat
.pr_cursig
;
7080 elf_tdata (abfd
)->core_pid
= prstat
.pr_pid
;
7082 /* pr_who exists on:
7085 pr_who doesn't exist on:
7088 #if defined (HAVE_PRSTATUS_T_PR_WHO)
7089 elf_tdata (abfd
)->core_lwpid
= prstat
.pr_who
;
7092 #if defined (HAVE_PRSTATUS32_T)
7093 else if (note
->descsz
== sizeof (prstatus32_t
))
7095 /* 64-bit host, 32-bit corefile */
7096 prstatus32_t prstat
;
7098 size
= sizeof (prstat
.pr_reg
);
7099 offset
= offsetof (prstatus32_t
, pr_reg
);
7100 memcpy (&prstat
, note
->descdata
, sizeof (prstat
));
7102 /* Do not overwrite the core signal if it
7103 has already been set by another thread. */
7104 if (elf_tdata (abfd
)->core_signal
== 0)
7105 elf_tdata (abfd
)->core_signal
= prstat
.pr_cursig
;
7106 elf_tdata (abfd
)->core_pid
= prstat
.pr_pid
;
7108 /* pr_who exists on:
7111 pr_who doesn't exist on:
7114 #if defined (HAVE_PRSTATUS32_T_PR_WHO)
7115 elf_tdata (abfd
)->core_lwpid
= prstat
.pr_who
;
7118 #endif /* HAVE_PRSTATUS32_T */
7121 /* Fail - we don't know how to handle any other
7122 note size (ie. data object type). */
7126 /* Make a ".reg/999" section and a ".reg" section. */
7127 return _bfd_elfcore_make_pseudosection (abfd
, ".reg",
7128 size
, note
->descpos
+ offset
);
7130 #endif /* defined (HAVE_PRSTATUS_T) */
7132 /* Create a pseudosection containing the exact contents of NOTE. */
7134 elfcore_make_note_pseudosection (bfd
*abfd
,
7136 Elf_Internal_Note
*note
)
7138 return _bfd_elfcore_make_pseudosection (abfd
, name
,
7139 note
->descsz
, note
->descpos
);
7142 /* There isn't a consistent prfpregset_t across platforms,
7143 but it doesn't matter, because we don't have to pick this
7144 data structure apart. */
7147 elfcore_grok_prfpreg (bfd
*abfd
, Elf_Internal_Note
*note
)
7149 return elfcore_make_note_pseudosection (abfd
, ".reg2", note
);
7152 /* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
7153 type of 5 (NT_PRXFPREG). Just include the whole note's contents
7157 elfcore_grok_prxfpreg (bfd
*abfd
, Elf_Internal_Note
*note
)
7159 return elfcore_make_note_pseudosection (abfd
, ".reg-xfp", note
);
7162 #if defined (HAVE_PRPSINFO_T)
7163 typedef prpsinfo_t elfcore_psinfo_t
;
7164 #if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
7165 typedef prpsinfo32_t elfcore_psinfo32_t
;
7169 #if defined (HAVE_PSINFO_T)
7170 typedef psinfo_t elfcore_psinfo_t
;
7171 #if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
7172 typedef psinfo32_t elfcore_psinfo32_t
;
7176 /* return a malloc'ed copy of a string at START which is at
7177 most MAX bytes long, possibly without a terminating '\0'.
7178 the copy will always have a terminating '\0'. */
7181 _bfd_elfcore_strndup (bfd
*abfd
, char *start
, size_t max
)
7184 char *end
= memchr (start
, '\0', max
);
7192 dups
= bfd_alloc (abfd
, len
+ 1);
7196 memcpy (dups
, start
, len
);
7202 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7204 elfcore_grok_psinfo (bfd
*abfd
, Elf_Internal_Note
*note
)
7206 if (note
->descsz
== sizeof (elfcore_psinfo_t
))
7208 elfcore_psinfo_t psinfo
;
7210 memcpy (&psinfo
, note
->descdata
, sizeof (psinfo
));
7212 elf_tdata (abfd
)->core_program
7213 = _bfd_elfcore_strndup (abfd
, psinfo
.pr_fname
,
7214 sizeof (psinfo
.pr_fname
));
7216 elf_tdata (abfd
)->core_command
7217 = _bfd_elfcore_strndup (abfd
, psinfo
.pr_psargs
,
7218 sizeof (psinfo
.pr_psargs
));
7220 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
7221 else if (note
->descsz
== sizeof (elfcore_psinfo32_t
))
7223 /* 64-bit host, 32-bit corefile */
7224 elfcore_psinfo32_t psinfo
;
7226 memcpy (&psinfo
, note
->descdata
, sizeof (psinfo
));
7228 elf_tdata (abfd
)->core_program
7229 = _bfd_elfcore_strndup (abfd
, psinfo
.pr_fname
,
7230 sizeof (psinfo
.pr_fname
));
7232 elf_tdata (abfd
)->core_command
7233 = _bfd_elfcore_strndup (abfd
, psinfo
.pr_psargs
,
7234 sizeof (psinfo
.pr_psargs
));
7240 /* Fail - we don't know how to handle any other
7241 note size (ie. data object type). */
7245 /* Note that for some reason, a spurious space is tacked
7246 onto the end of the args in some (at least one anyway)
7247 implementations, so strip it off if it exists. */
7250 char *command
= elf_tdata (abfd
)->core_command
;
7251 int n
= strlen (command
);
7253 if (0 < n
&& command
[n
- 1] == ' ')
7254 command
[n
- 1] = '\0';
7259 #endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
7261 #if defined (HAVE_PSTATUS_T)
7263 elfcore_grok_pstatus (bfd
*abfd
, Elf_Internal_Note
*note
)
7265 if (note
->descsz
== sizeof (pstatus_t
)
7266 #if defined (HAVE_PXSTATUS_T)
7267 || note
->descsz
== sizeof (pxstatus_t
)
7273 memcpy (&pstat
, note
->descdata
, sizeof (pstat
));
7275 elf_tdata (abfd
)->core_pid
= pstat
.pr_pid
;
7277 #if defined (HAVE_PSTATUS32_T)
7278 else if (note
->descsz
== sizeof (pstatus32_t
))
7280 /* 64-bit host, 32-bit corefile */
7283 memcpy (&pstat
, note
->descdata
, sizeof (pstat
));
7285 elf_tdata (abfd
)->core_pid
= pstat
.pr_pid
;
7288 /* Could grab some more details from the "representative"
7289 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
7290 NT_LWPSTATUS note, presumably. */
7294 #endif /* defined (HAVE_PSTATUS_T) */
7296 #if defined (HAVE_LWPSTATUS_T)
7298 elfcore_grok_lwpstatus (bfd
*abfd
, Elf_Internal_Note
*note
)
7300 lwpstatus_t lwpstat
;
7306 if (note
->descsz
!= sizeof (lwpstat
)
7307 #if defined (HAVE_LWPXSTATUS_T)
7308 && note
->descsz
!= sizeof (lwpxstatus_t
)
7313 memcpy (&lwpstat
, note
->descdata
, sizeof (lwpstat
));
7315 elf_tdata (abfd
)->core_lwpid
= lwpstat
.pr_lwpid
;
7316 elf_tdata (abfd
)->core_signal
= lwpstat
.pr_cursig
;
7318 /* Make a ".reg/999" section. */
7320 sprintf (buf
, ".reg/%d", elfcore_make_pid (abfd
));
7321 len
= strlen (buf
) + 1;
7322 name
= bfd_alloc (abfd
, len
);
7325 memcpy (name
, buf
, len
);
7327 sect
= bfd_make_section_anyway (abfd
, name
);
7331 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7332 sect
->size
= sizeof (lwpstat
.pr_context
.uc_mcontext
.gregs
);
7333 sect
->filepos
= note
->descpos
7334 + offsetof (lwpstatus_t
, pr_context
.uc_mcontext
.gregs
);
7337 #if defined (HAVE_LWPSTATUS_T_PR_REG)
7338 sect
->size
= sizeof (lwpstat
.pr_reg
);
7339 sect
->filepos
= note
->descpos
+ offsetof (lwpstatus_t
, pr_reg
);
7342 sect
->flags
= SEC_HAS_CONTENTS
;
7343 sect
->alignment_power
= 2;
7345 if (!elfcore_maybe_make_sect (abfd
, ".reg", sect
))
7348 /* Make a ".reg2/999" section */
7350 sprintf (buf
, ".reg2/%d", elfcore_make_pid (abfd
));
7351 len
= strlen (buf
) + 1;
7352 name
= bfd_alloc (abfd
, len
);
7355 memcpy (name
, buf
, len
);
7357 sect
= bfd_make_section_anyway (abfd
, name
);
7361 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7362 sect
->size
= sizeof (lwpstat
.pr_context
.uc_mcontext
.fpregs
);
7363 sect
->filepos
= note
->descpos
7364 + offsetof (lwpstatus_t
, pr_context
.uc_mcontext
.fpregs
);
7367 #if defined (HAVE_LWPSTATUS_T_PR_FPREG)
7368 sect
->size
= sizeof (lwpstat
.pr_fpreg
);
7369 sect
->filepos
= note
->descpos
+ offsetof (lwpstatus_t
, pr_fpreg
);
7372 sect
->flags
= SEC_HAS_CONTENTS
;
7373 sect
->alignment_power
= 2;
7375 return elfcore_maybe_make_sect (abfd
, ".reg2", sect
);
7377 #endif /* defined (HAVE_LWPSTATUS_T) */
7379 #if defined (HAVE_WIN32_PSTATUS_T)
7381 elfcore_grok_win32pstatus (bfd
*abfd
, Elf_Internal_Note
*note
)
7387 win32_pstatus_t pstatus
;
7389 if (note
->descsz
< sizeof (pstatus
))
7392 memcpy (&pstatus
, note
->descdata
, sizeof (pstatus
));
7394 switch (pstatus
.data_type
)
7396 case NOTE_INFO_PROCESS
:
7397 /* FIXME: need to add ->core_command. */
7398 elf_tdata (abfd
)->core_signal
= pstatus
.data
.process_info
.signal
;
7399 elf_tdata (abfd
)->core_pid
= pstatus
.data
.process_info
.pid
;
7402 case NOTE_INFO_THREAD
:
7403 /* Make a ".reg/999" section. */
7404 sprintf (buf
, ".reg/%ld", (long) pstatus
.data
.thread_info
.tid
);
7406 len
= strlen (buf
) + 1;
7407 name
= bfd_alloc (abfd
, len
);
7411 memcpy (name
, buf
, len
);
7413 sect
= bfd_make_section_anyway (abfd
, name
);
7417 sect
->size
= sizeof (pstatus
.data
.thread_info
.thread_context
);
7418 sect
->filepos
= (note
->descpos
7419 + offsetof (struct win32_pstatus
,
7420 data
.thread_info
.thread_context
));
7421 sect
->flags
= SEC_HAS_CONTENTS
;
7422 sect
->alignment_power
= 2;
7424 if (pstatus
.data
.thread_info
.is_active_thread
)
7425 if (! elfcore_maybe_make_sect (abfd
, ".reg", sect
))
7429 case NOTE_INFO_MODULE
:
7430 /* Make a ".module/xxxxxxxx" section. */
7431 sprintf (buf
, ".module/%08lx",
7432 (long) pstatus
.data
.module_info
.base_address
);
7434 len
= strlen (buf
) + 1;
7435 name
= bfd_alloc (abfd
, len
);
7439 memcpy (name
, buf
, len
);
7441 sect
= bfd_make_section_anyway (abfd
, name
);
7446 sect
->size
= note
->descsz
;
7447 sect
->filepos
= note
->descpos
;
7448 sect
->flags
= SEC_HAS_CONTENTS
;
7449 sect
->alignment_power
= 2;
7458 #endif /* HAVE_WIN32_PSTATUS_T */
7461 elfcore_grok_note (bfd
*abfd
, Elf_Internal_Note
*note
)
7463 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
7471 if (bed
->elf_backend_grok_prstatus
)
7472 if ((*bed
->elf_backend_grok_prstatus
) (abfd
, note
))
7474 #if defined (HAVE_PRSTATUS_T)
7475 return elfcore_grok_prstatus (abfd
, note
);
7480 #if defined (HAVE_PSTATUS_T)
7482 return elfcore_grok_pstatus (abfd
, note
);
7485 #if defined (HAVE_LWPSTATUS_T)
7487 return elfcore_grok_lwpstatus (abfd
, note
);
7490 case NT_FPREGSET
: /* FIXME: rename to NT_PRFPREG */
7491 return elfcore_grok_prfpreg (abfd
, note
);
7493 #if defined (HAVE_WIN32_PSTATUS_T)
7494 case NT_WIN32PSTATUS
:
7495 return elfcore_grok_win32pstatus (abfd
, note
);
7498 case NT_PRXFPREG
: /* Linux SSE extension */
7499 if (note
->namesz
== 6
7500 && strcmp (note
->namedata
, "LINUX") == 0)
7501 return elfcore_grok_prxfpreg (abfd
, note
);
7507 if (bed
->elf_backend_grok_psinfo
)
7508 if ((*bed
->elf_backend_grok_psinfo
) (abfd
, note
))
7510 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7511 return elfcore_grok_psinfo (abfd
, note
);
7518 asection
*sect
= bfd_make_section_anyway (abfd
, ".auxv");
7522 sect
->size
= note
->descsz
;
7523 sect
->filepos
= note
->descpos
;
7524 sect
->flags
= SEC_HAS_CONTENTS
;
7525 sect
->alignment_power
= 1 + bfd_get_arch_size (abfd
) / 32;
7533 elfcore_netbsd_get_lwpid (Elf_Internal_Note
*note
, int *lwpidp
)
7537 cp
= strchr (note
->namedata
, '@');
7540 *lwpidp
= atoi(cp
+ 1);
7547 elfcore_grok_netbsd_procinfo (bfd
*abfd
, Elf_Internal_Note
*note
)
7550 /* Signal number at offset 0x08. */
7551 elf_tdata (abfd
)->core_signal
7552 = bfd_h_get_32 (abfd
, (bfd_byte
*) note
->descdata
+ 0x08);
7554 /* Process ID at offset 0x50. */
7555 elf_tdata (abfd
)->core_pid
7556 = bfd_h_get_32 (abfd
, (bfd_byte
*) note
->descdata
+ 0x50);
7558 /* Command name at 0x7c (max 32 bytes, including nul). */
7559 elf_tdata (abfd
)->core_command
7560 = _bfd_elfcore_strndup (abfd
, note
->descdata
+ 0x7c, 31);
7562 return elfcore_make_note_pseudosection (abfd
, ".note.netbsdcore.procinfo",
7567 elfcore_grok_netbsd_note (bfd
*abfd
, Elf_Internal_Note
*note
)
7571 if (elfcore_netbsd_get_lwpid (note
, &lwp
))
7572 elf_tdata (abfd
)->core_lwpid
= lwp
;
7574 if (note
->type
== NT_NETBSDCORE_PROCINFO
)
7576 /* NetBSD-specific core "procinfo". Note that we expect to
7577 find this note before any of the others, which is fine,
7578 since the kernel writes this note out first when it
7579 creates a core file. */
7581 return elfcore_grok_netbsd_procinfo (abfd
, note
);
7584 /* As of Jan 2002 there are no other machine-independent notes
7585 defined for NetBSD core files. If the note type is less
7586 than the start of the machine-dependent note types, we don't
7589 if (note
->type
< NT_NETBSDCORE_FIRSTMACH
)
7593 switch (bfd_get_arch (abfd
))
7595 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
7596 PT_GETFPREGS == mach+2. */
7598 case bfd_arch_alpha
:
7599 case bfd_arch_sparc
:
7602 case NT_NETBSDCORE_FIRSTMACH
+0:
7603 return elfcore_make_note_pseudosection (abfd
, ".reg", note
);
7605 case NT_NETBSDCORE_FIRSTMACH
+2:
7606 return elfcore_make_note_pseudosection (abfd
, ".reg2", note
);
7612 /* On all other arch's, PT_GETREGS == mach+1 and
7613 PT_GETFPREGS == mach+3. */
7618 case NT_NETBSDCORE_FIRSTMACH
+1:
7619 return elfcore_make_note_pseudosection (abfd
, ".reg", note
);
7621 case NT_NETBSDCORE_FIRSTMACH
+3:
7622 return elfcore_make_note_pseudosection (abfd
, ".reg2", note
);
7632 elfcore_grok_nto_status (bfd
*abfd
, Elf_Internal_Note
*note
, pid_t
*tid
)
7634 void *ddata
= note
->descdata
;
7641 /* nto_procfs_status 'pid' field is at offset 0. */
7642 elf_tdata (abfd
)->core_pid
= bfd_get_32 (abfd
, (bfd_byte
*) ddata
);
7644 /* nto_procfs_status 'tid' field is at offset 4. Pass it back. */
7645 *tid
= bfd_get_32 (abfd
, (bfd_byte
*) ddata
+ 4);
7647 /* nto_procfs_status 'flags' field is at offset 8. */
7648 flags
= bfd_get_32 (abfd
, (bfd_byte
*) ddata
+ 8);
7650 /* nto_procfs_status 'what' field is at offset 14. */
7651 if ((sig
= bfd_get_16 (abfd
, (bfd_byte
*) ddata
+ 14)) > 0)
7653 elf_tdata (abfd
)->core_signal
= sig
;
7654 elf_tdata (abfd
)->core_lwpid
= *tid
;
7657 /* _DEBUG_FLAG_CURTID (current thread) is 0x80. Some cores
7658 do not come from signals so we make sure we set the current
7659 thread just in case. */
7660 if (flags
& 0x00000080)
7661 elf_tdata (abfd
)->core_lwpid
= *tid
;
7663 /* Make a ".qnx_core_status/%d" section. */
7664 sprintf (buf
, ".qnx_core_status/%ld", (long) *tid
);
7666 name
= bfd_alloc (abfd
, strlen (buf
) + 1);
7671 sect
= bfd_make_section_anyway (abfd
, name
);
7675 sect
->size
= note
->descsz
;
7676 sect
->filepos
= note
->descpos
;
7677 sect
->flags
= SEC_HAS_CONTENTS
;
7678 sect
->alignment_power
= 2;
7680 return (elfcore_maybe_make_sect (abfd
, ".qnx_core_status", sect
));
7684 elfcore_grok_nto_regs (bfd
*abfd
,
7685 Elf_Internal_Note
*note
,
7693 /* Make a "(base)/%d" section. */
7694 sprintf (buf
, "%s/%ld", base
, (long) tid
);
7696 name
= bfd_alloc (abfd
, strlen (buf
) + 1);
7701 sect
= bfd_make_section_anyway (abfd
, name
);
7705 sect
->size
= note
->descsz
;
7706 sect
->filepos
= note
->descpos
;
7707 sect
->flags
= SEC_HAS_CONTENTS
;
7708 sect
->alignment_power
= 2;
7710 /* This is the current thread. */
7711 if (elf_tdata (abfd
)->core_lwpid
== tid
)
7712 return elfcore_maybe_make_sect (abfd
, base
, sect
);
7717 #define BFD_QNT_CORE_INFO 7
7718 #define BFD_QNT_CORE_STATUS 8
7719 #define BFD_QNT_CORE_GREG 9
7720 #define BFD_QNT_CORE_FPREG 10
7723 elfcore_grok_nto_note (bfd
*abfd
, Elf_Internal_Note
*note
)
7725 /* Every GREG section has a STATUS section before it. Store the
7726 tid from the previous call to pass down to the next gregs
7728 static pid_t tid
= 1;
7732 case BFD_QNT_CORE_INFO
:
7733 return elfcore_make_note_pseudosection (abfd
, ".qnx_core_info", note
);
7734 case BFD_QNT_CORE_STATUS
:
7735 return elfcore_grok_nto_status (abfd
, note
, &tid
);
7736 case BFD_QNT_CORE_GREG
:
7737 return elfcore_grok_nto_regs (abfd
, note
, tid
, ".reg");
7738 case BFD_QNT_CORE_FPREG
:
7739 return elfcore_grok_nto_regs (abfd
, note
, tid
, ".reg2");
7745 /* Function: elfcore_write_note
7752 size of data for note
7755 End of buffer containing note. */
7758 elfcore_write_note (bfd
*abfd
,
7766 Elf_External_Note
*xnp
;
7776 const struct elf_backend_data
*bed
;
7778 namesz
= strlen (name
) + 1;
7779 bed
= get_elf_backend_data (abfd
);
7780 pad
= -namesz
& ((1 << bed
->s
->log_file_align
) - 1);
7783 newspace
= 12 + namesz
+ pad
+ size
;
7785 p
= realloc (buf
, *bufsiz
+ newspace
);
7787 *bufsiz
+= newspace
;
7788 xnp
= (Elf_External_Note
*) dest
;
7789 H_PUT_32 (abfd
, namesz
, xnp
->namesz
);
7790 H_PUT_32 (abfd
, size
, xnp
->descsz
);
7791 H_PUT_32 (abfd
, type
, xnp
->type
);
7795 memcpy (dest
, name
, namesz
);
7803 memcpy (dest
, input
, size
);
7807 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7809 elfcore_write_prpsinfo (bfd
*abfd
,
7816 char *note_name
= "CORE";
7818 #if defined (HAVE_PSINFO_T)
7820 note_type
= NT_PSINFO
;
7823 note_type
= NT_PRPSINFO
;
7826 memset (&data
, 0, sizeof (data
));
7827 strncpy (data
.pr_fname
, fname
, sizeof (data
.pr_fname
));
7828 strncpy (data
.pr_psargs
, psargs
, sizeof (data
.pr_psargs
));
7829 return elfcore_write_note (abfd
, buf
, bufsiz
,
7830 note_name
, note_type
, &data
, sizeof (data
));
7832 #endif /* PSINFO_T or PRPSINFO_T */
7834 #if defined (HAVE_PRSTATUS_T)
7836 elfcore_write_prstatus (bfd
*abfd
,
7844 char *note_name
= "CORE";
7846 memset (&prstat
, 0, sizeof (prstat
));
7847 prstat
.pr_pid
= pid
;
7848 prstat
.pr_cursig
= cursig
;
7849 memcpy (&prstat
.pr_reg
, gregs
, sizeof (prstat
.pr_reg
));
7850 return elfcore_write_note (abfd
, buf
, bufsiz
,
7851 note_name
, NT_PRSTATUS
, &prstat
, sizeof (prstat
));
7853 #endif /* HAVE_PRSTATUS_T */
7855 #if defined (HAVE_LWPSTATUS_T)
7857 elfcore_write_lwpstatus (bfd
*abfd
,
7864 lwpstatus_t lwpstat
;
7865 char *note_name
= "CORE";
7867 memset (&lwpstat
, 0, sizeof (lwpstat
));
7868 lwpstat
.pr_lwpid
= pid
>> 16;
7869 lwpstat
.pr_cursig
= cursig
;
7870 #if defined (HAVE_LWPSTATUS_T_PR_REG)
7871 memcpy (lwpstat
.pr_reg
, gregs
, sizeof (lwpstat
.pr_reg
));
7872 #elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7874 memcpy (lwpstat
.pr_context
.uc_mcontext
.gregs
,
7875 gregs
, sizeof (lwpstat
.pr_context
.uc_mcontext
.gregs
));
7877 memcpy (lwpstat
.pr_context
.uc_mcontext
.__gregs
,
7878 gregs
, sizeof (lwpstat
.pr_context
.uc_mcontext
.__gregs
));
7881 return elfcore_write_note (abfd
, buf
, bufsiz
, note_name
,
7882 NT_LWPSTATUS
, &lwpstat
, sizeof (lwpstat
));
7884 #endif /* HAVE_LWPSTATUS_T */
7886 #if defined (HAVE_PSTATUS_T)
7888 elfcore_write_pstatus (bfd
*abfd
,
7892 int cursig ATTRIBUTE_UNUSED
,
7893 const void *gregs ATTRIBUTE_UNUSED
)
7896 char *note_name
= "CORE";
7898 memset (&pstat
, 0, sizeof (pstat
));
7899 pstat
.pr_pid
= pid
& 0xffff;
7900 buf
= elfcore_write_note (abfd
, buf
, bufsiz
, note_name
,
7901 NT_PSTATUS
, &pstat
, sizeof (pstat
));
7904 #endif /* HAVE_PSTATUS_T */
7907 elfcore_write_prfpreg (bfd
*abfd
,
7913 char *note_name
= "CORE";
7914 return elfcore_write_note (abfd
, buf
, bufsiz
,
7915 note_name
, NT_FPREGSET
, fpregs
, size
);
7919 elfcore_write_prxfpreg (bfd
*abfd
,
7922 const void *xfpregs
,
7925 char *note_name
= "LINUX";
7926 return elfcore_write_note (abfd
, buf
, bufsiz
,
7927 note_name
, NT_PRXFPREG
, xfpregs
, size
);
7931 elfcore_read_notes (bfd
*abfd
, file_ptr offset
, bfd_size_type size
)
7939 if (bfd_seek (abfd
, offset
, SEEK_SET
) != 0)
7942 buf
= bfd_malloc (size
);
7946 if (bfd_bread (buf
, size
, abfd
) != size
)
7954 while (p
< buf
+ size
)
7956 /* FIXME: bad alignment assumption. */
7957 Elf_External_Note
*xnp
= (Elf_External_Note
*) p
;
7958 Elf_Internal_Note in
;
7960 in
.type
= H_GET_32 (abfd
, xnp
->type
);
7962 in
.namesz
= H_GET_32 (abfd
, xnp
->namesz
);
7963 in
.namedata
= xnp
->name
;
7965 in
.descsz
= H_GET_32 (abfd
, xnp
->descsz
);
7966 in
.descdata
= in
.namedata
+ BFD_ALIGN (in
.namesz
, 4);
7967 in
.descpos
= offset
+ (in
.descdata
- buf
);
7969 if (strncmp (in
.namedata
, "NetBSD-CORE", 11) == 0)
7971 if (! elfcore_grok_netbsd_note (abfd
, &in
))
7974 else if (strncmp (in
.namedata
, "QNX", 3) == 0)
7976 if (! elfcore_grok_nto_note (abfd
, &in
))
7981 if (! elfcore_grok_note (abfd
, &in
))
7985 p
= in
.descdata
+ BFD_ALIGN (in
.descsz
, 4);
7992 /* Providing external access to the ELF program header table. */
7994 /* Return an upper bound on the number of bytes required to store a
7995 copy of ABFD's program header table entries. Return -1 if an error
7996 occurs; bfd_get_error will return an appropriate code. */
7999 bfd_get_elf_phdr_upper_bound (bfd
*abfd
)
8001 if (abfd
->xvec
->flavour
!= bfd_target_elf_flavour
)
8003 bfd_set_error (bfd_error_wrong_format
);
8007 return elf_elfheader (abfd
)->e_phnum
* sizeof (Elf_Internal_Phdr
);
8010 /* Copy ABFD's program header table entries to *PHDRS. The entries
8011 will be stored as an array of Elf_Internal_Phdr structures, as
8012 defined in include/elf/internal.h. To find out how large the
8013 buffer needs to be, call bfd_get_elf_phdr_upper_bound.
8015 Return the number of program header table entries read, or -1 if an
8016 error occurs; bfd_get_error will return an appropriate code. */
8019 bfd_get_elf_phdrs (bfd
*abfd
, void *phdrs
)
8023 if (abfd
->xvec
->flavour
!= bfd_target_elf_flavour
)
8025 bfd_set_error (bfd_error_wrong_format
);
8029 num_phdrs
= elf_elfheader (abfd
)->e_phnum
;
8030 memcpy (phdrs
, elf_tdata (abfd
)->phdr
,
8031 num_phdrs
* sizeof (Elf_Internal_Phdr
));
8037 _bfd_elf_sprintf_vma (bfd
*abfd ATTRIBUTE_UNUSED
, char *buf
, bfd_vma value
)
8040 Elf_Internal_Ehdr
*i_ehdrp
; /* Elf file header, internal form */
8042 i_ehdrp
= elf_elfheader (abfd
);
8043 if (i_ehdrp
== NULL
)
8044 sprintf_vma (buf
, value
);
8047 if (i_ehdrp
->e_ident
[EI_CLASS
] == ELFCLASS64
)
8049 #if BFD_HOST_64BIT_LONG
8050 sprintf (buf
, "%016lx", value
);
8052 sprintf (buf
, "%08lx%08lx", _bfd_int64_high (value
),
8053 _bfd_int64_low (value
));
8057 sprintf (buf
, "%08lx", (unsigned long) (value
& 0xffffffff));
8060 sprintf_vma (buf
, value
);
8065 _bfd_elf_fprintf_vma (bfd
*abfd ATTRIBUTE_UNUSED
, void *stream
, bfd_vma value
)
8068 Elf_Internal_Ehdr
*i_ehdrp
; /* Elf file header, internal form */
8070 i_ehdrp
= elf_elfheader (abfd
);
8071 if (i_ehdrp
== NULL
)
8072 fprintf_vma ((FILE *) stream
, value
);
8075 if (i_ehdrp
->e_ident
[EI_CLASS
] == ELFCLASS64
)
8077 #if BFD_HOST_64BIT_LONG
8078 fprintf ((FILE *) stream
, "%016lx", value
);
8080 fprintf ((FILE *) stream
, "%08lx%08lx",
8081 _bfd_int64_high (value
), _bfd_int64_low (value
));
8085 fprintf ((FILE *) stream
, "%08lx",
8086 (unsigned long) (value
& 0xffffffff));
8089 fprintf_vma ((FILE *) stream
, value
);
8093 enum elf_reloc_type_class
8094 _bfd_elf_reloc_type_class (const Elf_Internal_Rela
*rela ATTRIBUTE_UNUSED
)
8096 return reloc_class_normal
;
8099 /* For RELA architectures, return the relocation value for a
8100 relocation against a local symbol. */
8103 _bfd_elf_rela_local_sym (bfd
*abfd
,
8104 Elf_Internal_Sym
*sym
,
8106 Elf_Internal_Rela
*rel
)
8108 asection
*sec
= *psec
;
8111 relocation
= (sec
->output_section
->vma
8112 + sec
->output_offset
8114 if ((sec
->flags
& SEC_MERGE
)
8115 && ELF_ST_TYPE (sym
->st_info
) == STT_SECTION
8116 && sec
->sec_info_type
== ELF_INFO_TYPE_MERGE
)
8119 _bfd_merged_section_offset (abfd
, psec
,
8120 elf_section_data (sec
)->sec_info
,
8121 sym
->st_value
+ rel
->r_addend
);
8124 /* If we have changed the section, and our original section is
8125 marked with SEC_EXCLUDE, it means that the original
8126 SEC_MERGE section has been completely subsumed in some
8127 other SEC_MERGE section. In this case, we need to leave
8128 some info around for --emit-relocs. */
8129 if ((sec
->flags
& SEC_EXCLUDE
) != 0)
8130 sec
->kept_section
= *psec
;
8133 rel
->r_addend
-= relocation
;
8134 rel
->r_addend
+= sec
->output_section
->vma
+ sec
->output_offset
;
8140 _bfd_elf_rel_local_sym (bfd
*abfd
,
8141 Elf_Internal_Sym
*sym
,
8145 asection
*sec
= *psec
;
8147 if (sec
->sec_info_type
!= ELF_INFO_TYPE_MERGE
)
8148 return sym
->st_value
+ addend
;
8150 return _bfd_merged_section_offset (abfd
, psec
,
8151 elf_section_data (sec
)->sec_info
,
8152 sym
->st_value
+ addend
);
8156 _bfd_elf_section_offset (bfd
*abfd
,
8157 struct bfd_link_info
*info
,
8161 switch (sec
->sec_info_type
)
8163 case ELF_INFO_TYPE_STABS
:
8164 return _bfd_stab_section_offset (sec
, elf_section_data (sec
)->sec_info
,
8166 case ELF_INFO_TYPE_EH_FRAME
:
8167 return _bfd_elf_eh_frame_section_offset (abfd
, info
, sec
, offset
);
8173 /* Create a new BFD as if by bfd_openr. Rather than opening a file,
8174 reconstruct an ELF file by reading the segments out of remote memory
8175 based on the ELF file header at EHDR_VMA and the ELF program headers it
8176 points to. If not null, *LOADBASEP is filled in with the difference
8177 between the VMAs from which the segments were read, and the VMAs the
8178 file headers (and hence BFD's idea of each section's VMA) put them at.
8180 The function TARGET_READ_MEMORY is called to copy LEN bytes from the
8181 remote memory at target address VMA into the local buffer at MYADDR; it
8182 should return zero on success or an `errno' code on failure. TEMPL must
8183 be a BFD for an ELF target with the word size and byte order found in
8184 the remote memory. */
8187 bfd_elf_bfd_from_remote_memory
8191 int (*target_read_memory
) (bfd_vma
, bfd_byte
*, int))
8193 return (*get_elf_backend_data (templ
)->elf_backend_bfd_from_remote_memory
)
8194 (templ
, ehdr_vma
, loadbasep
, target_read_memory
);
8198 _bfd_elf_get_synthetic_symtab (bfd
*abfd
,
8199 long symcount ATTRIBUTE_UNUSED
,
8200 asymbol
**syms ATTRIBUTE_UNUSED
,
8205 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
8208 const char *relplt_name
;
8209 bfd_boolean (*slurp_relocs
) (bfd
*, asection
*, asymbol
**, bfd_boolean
);
8213 Elf_Internal_Shdr
*hdr
;
8219 if ((abfd
->flags
& (DYNAMIC
| EXEC_P
)) == 0)
8222 if (dynsymcount
<= 0)
8225 if (!bed
->plt_sym_val
)
8228 relplt_name
= bed
->relplt_name
;
8229 if (relplt_name
== NULL
)
8230 relplt_name
= bed
->default_use_rela_p
? ".rela.plt" : ".rel.plt";
8231 relplt
= bfd_get_section_by_name (abfd
, relplt_name
);
8235 hdr
= &elf_section_data (relplt
)->this_hdr
;
8236 if (hdr
->sh_link
!= elf_dynsymtab (abfd
)
8237 || (hdr
->sh_type
!= SHT_REL
&& hdr
->sh_type
!= SHT_RELA
))
8240 plt
= bfd_get_section_by_name (abfd
, ".plt");
8244 slurp_relocs
= get_elf_backend_data (abfd
)->s
->slurp_reloc_table
;
8245 if (! (*slurp_relocs
) (abfd
, relplt
, dynsyms
, TRUE
))
8248 count
= relplt
->size
/ hdr
->sh_entsize
;
8249 size
= count
* sizeof (asymbol
);
8250 p
= relplt
->relocation
;
8251 for (i
= 0; i
< count
; i
++, s
++, p
++)
8252 size
+= strlen ((*p
->sym_ptr_ptr
)->name
) + sizeof ("@plt");
8254 s
= *ret
= bfd_malloc (size
);
8258 names
= (char *) (s
+ count
);
8259 p
= relplt
->relocation
;
8261 for (i
= 0; i
< count
; i
++, s
++, p
++)
8266 addr
= bed
->plt_sym_val (i
, plt
, p
);
8267 if (addr
== (bfd_vma
) -1)
8270 *s
= **p
->sym_ptr_ptr
;
8271 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
8272 we are defining a symbol, ensure one of them is set. */
8273 if ((s
->flags
& BSF_LOCAL
) == 0)
8274 s
->flags
|= BSF_GLOBAL
;
8276 s
->value
= addr
- plt
->vma
;
8278 len
= strlen ((*p
->sym_ptr_ptr
)->name
);
8279 memcpy (names
, (*p
->sym_ptr_ptr
)->name
, len
);
8281 memcpy (names
, "@plt", sizeof ("@plt"));
8282 names
+= sizeof ("@plt");
8289 /* Sort symbol by binding and section. We want to put definitions
8290 sorted by section at the beginning. */
8293 elf_sort_elf_symbol (const void *arg1
, const void *arg2
)
8295 const Elf_Internal_Sym
*s1
;
8296 const Elf_Internal_Sym
*s2
;
8299 /* Make sure that undefined symbols are at the end. */
8300 s1
= (const Elf_Internal_Sym
*) arg1
;
8301 if (s1
->st_shndx
== SHN_UNDEF
)
8303 s2
= (const Elf_Internal_Sym
*) arg2
;
8304 if (s2
->st_shndx
== SHN_UNDEF
)
8307 /* Sorted by section index. */
8308 shndx
= s1
->st_shndx
- s2
->st_shndx
;
8312 /* Sorted by binding. */
8313 return ELF_ST_BIND (s1
->st_info
) - ELF_ST_BIND (s2
->st_info
);
8318 Elf_Internal_Sym
*sym
;
8323 elf_sym_name_compare (const void *arg1
, const void *arg2
)
8325 const struct elf_symbol
*s1
= (const struct elf_symbol
*) arg1
;
8326 const struct elf_symbol
*s2
= (const struct elf_symbol
*) arg2
;
8327 return strcmp (s1
->name
, s2
->name
);
8330 /* Check if 2 sections define the same set of local and global
8334 bfd_elf_match_symbols_in_sections (asection
*sec1
, asection
*sec2
)
8337 const struct elf_backend_data
*bed1
, *bed2
;
8338 Elf_Internal_Shdr
*hdr1
, *hdr2
;
8339 bfd_size_type symcount1
, symcount2
;
8340 Elf_Internal_Sym
*isymbuf1
, *isymbuf2
;
8341 Elf_Internal_Sym
*isymstart1
= NULL
, *isymstart2
= NULL
, *isym
;
8342 Elf_Internal_Sym
*isymend
;
8343 struct elf_symbol
*symp
, *symtable1
= NULL
, *symtable2
= NULL
;
8344 bfd_size_type count1
, count2
, i
;
8351 /* If both are .gnu.linkonce sections, they have to have the same
8353 if (strncmp (sec1
->name
, ".gnu.linkonce",
8354 sizeof ".gnu.linkonce" - 1) == 0
8355 && strncmp (sec2
->name
, ".gnu.linkonce",
8356 sizeof ".gnu.linkonce" - 1) == 0)
8357 return strcmp (sec1
->name
+ sizeof ".gnu.linkonce",
8358 sec2
->name
+ sizeof ".gnu.linkonce") == 0;
8360 /* Both sections have to be in ELF. */
8361 if (bfd_get_flavour (bfd1
) != bfd_target_elf_flavour
8362 || bfd_get_flavour (bfd2
) != bfd_target_elf_flavour
)
8365 if (elf_section_type (sec1
) != elf_section_type (sec2
))
8368 if ((elf_section_flags (sec1
) & SHF_GROUP
) != 0
8369 && (elf_section_flags (sec2
) & SHF_GROUP
) != 0)
8371 /* If both are members of section groups, they have to have the
8373 if (strcmp (elf_group_name (sec1
), elf_group_name (sec2
)) != 0)
8377 shndx1
= _bfd_elf_section_from_bfd_section (bfd1
, sec1
);
8378 shndx2
= _bfd_elf_section_from_bfd_section (bfd2
, sec2
);
8379 if (shndx1
== -1 || shndx2
== -1)
8382 bed1
= get_elf_backend_data (bfd1
);
8383 bed2
= get_elf_backend_data (bfd2
);
8384 hdr1
= &elf_tdata (bfd1
)->symtab_hdr
;
8385 symcount1
= hdr1
->sh_size
/ bed1
->s
->sizeof_sym
;
8386 hdr2
= &elf_tdata (bfd2
)->symtab_hdr
;
8387 symcount2
= hdr2
->sh_size
/ bed2
->s
->sizeof_sym
;
8389 if (symcount1
== 0 || symcount2
== 0)
8392 isymbuf1
= bfd_elf_get_elf_syms (bfd1
, hdr1
, symcount1
, 0,
8394 isymbuf2
= bfd_elf_get_elf_syms (bfd2
, hdr2
, symcount2
, 0,
8398 if (isymbuf1
== NULL
|| isymbuf2
== NULL
)
8401 /* Sort symbols by binding and section. Global definitions are at
8403 qsort (isymbuf1
, symcount1
, sizeof (Elf_Internal_Sym
),
8404 elf_sort_elf_symbol
);
8405 qsort (isymbuf2
, symcount2
, sizeof (Elf_Internal_Sym
),
8406 elf_sort_elf_symbol
);
8408 /* Count definitions in the section. */
8410 for (isym
= isymbuf1
, isymend
= isym
+ symcount1
;
8411 isym
< isymend
; isym
++)
8413 if (isym
->st_shndx
== (unsigned int) shndx1
)
8420 if (count1
&& isym
->st_shndx
!= (unsigned int) shndx1
)
8425 for (isym
= isymbuf2
, isymend
= isym
+ symcount2
;
8426 isym
< isymend
; isym
++)
8428 if (isym
->st_shndx
== (unsigned int) shndx2
)
8435 if (count2
&& isym
->st_shndx
!= (unsigned int) shndx2
)
8439 if (count1
== 0 || count2
== 0 || count1
!= count2
)
8442 symtable1
= bfd_malloc (count1
* sizeof (struct elf_symbol
));
8443 symtable2
= bfd_malloc (count1
* sizeof (struct elf_symbol
));
8445 if (symtable1
== NULL
|| symtable2
== NULL
)
8449 for (isym
= isymstart1
, isymend
= isym
+ count1
;
8450 isym
< isymend
; isym
++)
8453 symp
->name
= bfd_elf_string_from_elf_section (bfd1
,
8460 for (isym
= isymstart2
, isymend
= isym
+ count1
;
8461 isym
< isymend
; isym
++)
8464 symp
->name
= bfd_elf_string_from_elf_section (bfd2
,
8470 /* Sort symbol by name. */
8471 qsort (symtable1
, count1
, sizeof (struct elf_symbol
),
8472 elf_sym_name_compare
);
8473 qsort (symtable2
, count1
, sizeof (struct elf_symbol
),
8474 elf_sym_name_compare
);
8476 for (i
= 0; i
< count1
; i
++)
8477 /* Two symbols must have the same binding, type and name. */
8478 if (symtable1
[i
].sym
->st_info
!= symtable2
[i
].sym
->st_info
8479 || symtable1
[i
].sym
->st_other
!= symtable2
[i
].sym
->st_other
8480 || strcmp (symtable1
[i
].name
, symtable2
[i
].name
) != 0)
8498 /* It is only used by x86-64 so far. */
8499 asection _bfd_elf_large_com_section
8500 = BFD_FAKE_SECTION (_bfd_elf_large_com_section
,
8501 SEC_IS_COMMON
, NULL
, NULL
, "LARGE_COMMON",
8504 /* Return TRUE if 2 section types are compatible. */
8507 _bfd_elf_match_sections_by_type (bfd
*abfd
, const asection
*asec
,
8508 bfd
*bbfd
, const asection
*bsec
)
8512 || abfd
->xvec
->flavour
!= bfd_target_elf_flavour
8513 || bbfd
->xvec
->flavour
!= bfd_target_elf_flavour
)
8516 return elf_section_type (asec
) == elf_section_type (bsec
);