bfd/
[deliverable/binutils-gdb.git] / bfd / elf.c
1 /* ELF executable support for BFD.
2
3 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
4 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
5 Free Software Foundation, Inc.
6
7 This file is part of BFD, the Binary File Descriptor library.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22 MA 02110-1301, USA. */
23
24
25 /*
26 SECTION
27 ELF backends
28
29 BFD support for ELF formats is being worked on.
30 Currently, the best supported back ends are for sparc and i386
31 (running svr4 or Solaris 2).
32
33 Documentation of the internals of the support code still needs
34 to be written. The code is changing quickly enough that we
35 haven't bothered yet. */
36
37 /* For sparc64-cross-sparc32. */
38 #define _SYSCALL32
39 #include "sysdep.h"
40 #include "bfd.h"
41 #include "bfdlink.h"
42 #include "libbfd.h"
43 #define ARCH_SIZE 0
44 #include "elf-bfd.h"
45 #include "libiberty.h"
46 #include "safe-ctype.h"
47
48 #ifdef CORE_HEADER
49 #include CORE_HEADER
50 #endif
51
52 static int elf_sort_sections (const void *, const void *);
53 static bfd_boolean assign_file_positions_except_relocs (bfd *, struct bfd_link_info *);
54 static bfd_boolean prep_headers (bfd *);
55 static bfd_boolean swap_out_syms (bfd *, struct bfd_strtab_hash **, int) ;
56 static bfd_boolean elf_read_notes (bfd *, file_ptr, bfd_size_type) ;
57 static bfd_boolean elf_parse_notes (bfd *abfd, char *buf, size_t size,
58 file_ptr offset);
59
60 /* Swap version information in and out. The version information is
61 currently size independent. If that ever changes, this code will
62 need to move into elfcode.h. */
63
64 /* Swap in a Verdef structure. */
65
66 void
67 _bfd_elf_swap_verdef_in (bfd *abfd,
68 const Elf_External_Verdef *src,
69 Elf_Internal_Verdef *dst)
70 {
71 dst->vd_version = H_GET_16 (abfd, src->vd_version);
72 dst->vd_flags = H_GET_16 (abfd, src->vd_flags);
73 dst->vd_ndx = H_GET_16 (abfd, src->vd_ndx);
74 dst->vd_cnt = H_GET_16 (abfd, src->vd_cnt);
75 dst->vd_hash = H_GET_32 (abfd, src->vd_hash);
76 dst->vd_aux = H_GET_32 (abfd, src->vd_aux);
77 dst->vd_next = H_GET_32 (abfd, src->vd_next);
78 }
79
80 /* Swap out a Verdef structure. */
81
82 void
83 _bfd_elf_swap_verdef_out (bfd *abfd,
84 const Elf_Internal_Verdef *src,
85 Elf_External_Verdef *dst)
86 {
87 H_PUT_16 (abfd, src->vd_version, dst->vd_version);
88 H_PUT_16 (abfd, src->vd_flags, dst->vd_flags);
89 H_PUT_16 (abfd, src->vd_ndx, dst->vd_ndx);
90 H_PUT_16 (abfd, src->vd_cnt, dst->vd_cnt);
91 H_PUT_32 (abfd, src->vd_hash, dst->vd_hash);
92 H_PUT_32 (abfd, src->vd_aux, dst->vd_aux);
93 H_PUT_32 (abfd, src->vd_next, dst->vd_next);
94 }
95
96 /* Swap in a Verdaux structure. */
97
98 void
99 _bfd_elf_swap_verdaux_in (bfd *abfd,
100 const Elf_External_Verdaux *src,
101 Elf_Internal_Verdaux *dst)
102 {
103 dst->vda_name = H_GET_32 (abfd, src->vda_name);
104 dst->vda_next = H_GET_32 (abfd, src->vda_next);
105 }
106
107 /* Swap out a Verdaux structure. */
108
109 void
110 _bfd_elf_swap_verdaux_out (bfd *abfd,
111 const Elf_Internal_Verdaux *src,
112 Elf_External_Verdaux *dst)
113 {
114 H_PUT_32 (abfd, src->vda_name, dst->vda_name);
115 H_PUT_32 (abfd, src->vda_next, dst->vda_next);
116 }
117
118 /* Swap in a Verneed structure. */
119
120 void
121 _bfd_elf_swap_verneed_in (bfd *abfd,
122 const Elf_External_Verneed *src,
123 Elf_Internal_Verneed *dst)
124 {
125 dst->vn_version = H_GET_16 (abfd, src->vn_version);
126 dst->vn_cnt = H_GET_16 (abfd, src->vn_cnt);
127 dst->vn_file = H_GET_32 (abfd, src->vn_file);
128 dst->vn_aux = H_GET_32 (abfd, src->vn_aux);
129 dst->vn_next = H_GET_32 (abfd, src->vn_next);
130 }
131
132 /* Swap out a Verneed structure. */
133
134 void
135 _bfd_elf_swap_verneed_out (bfd *abfd,
136 const Elf_Internal_Verneed *src,
137 Elf_External_Verneed *dst)
138 {
139 H_PUT_16 (abfd, src->vn_version, dst->vn_version);
140 H_PUT_16 (abfd, src->vn_cnt, dst->vn_cnt);
141 H_PUT_32 (abfd, src->vn_file, dst->vn_file);
142 H_PUT_32 (abfd, src->vn_aux, dst->vn_aux);
143 H_PUT_32 (abfd, src->vn_next, dst->vn_next);
144 }
145
146 /* Swap in a Vernaux structure. */
147
148 void
149 _bfd_elf_swap_vernaux_in (bfd *abfd,
150 const Elf_External_Vernaux *src,
151 Elf_Internal_Vernaux *dst)
152 {
153 dst->vna_hash = H_GET_32 (abfd, src->vna_hash);
154 dst->vna_flags = H_GET_16 (abfd, src->vna_flags);
155 dst->vna_other = H_GET_16 (abfd, src->vna_other);
156 dst->vna_name = H_GET_32 (abfd, src->vna_name);
157 dst->vna_next = H_GET_32 (abfd, src->vna_next);
158 }
159
160 /* Swap out a Vernaux structure. */
161
162 void
163 _bfd_elf_swap_vernaux_out (bfd *abfd,
164 const Elf_Internal_Vernaux *src,
165 Elf_External_Vernaux *dst)
166 {
167 H_PUT_32 (abfd, src->vna_hash, dst->vna_hash);
168 H_PUT_16 (abfd, src->vna_flags, dst->vna_flags);
169 H_PUT_16 (abfd, src->vna_other, dst->vna_other);
170 H_PUT_32 (abfd, src->vna_name, dst->vna_name);
171 H_PUT_32 (abfd, src->vna_next, dst->vna_next);
172 }
173
174 /* Swap in a Versym structure. */
175
176 void
177 _bfd_elf_swap_versym_in (bfd *abfd,
178 const Elf_External_Versym *src,
179 Elf_Internal_Versym *dst)
180 {
181 dst->vs_vers = H_GET_16 (abfd, src->vs_vers);
182 }
183
184 /* Swap out a Versym structure. */
185
186 void
187 _bfd_elf_swap_versym_out (bfd *abfd,
188 const Elf_Internal_Versym *src,
189 Elf_External_Versym *dst)
190 {
191 H_PUT_16 (abfd, src->vs_vers, dst->vs_vers);
192 }
193
194 /* Standard ELF hash function. Do not change this function; you will
195 cause invalid hash tables to be generated. */
196
197 unsigned long
198 bfd_elf_hash (const char *namearg)
199 {
200 const unsigned char *name = (const unsigned char *) namearg;
201 unsigned long h = 0;
202 unsigned long g;
203 int ch;
204
205 while ((ch = *name++) != '\0')
206 {
207 h = (h << 4) + ch;
208 if ((g = (h & 0xf0000000)) != 0)
209 {
210 h ^= g >> 24;
211 /* The ELF ABI says `h &= ~g', but this is equivalent in
212 this case and on some machines one insn instead of two. */
213 h ^= g;
214 }
215 }
216 return h & 0xffffffff;
217 }
218
219 /* DT_GNU_HASH hash function. Do not change this function; you will
220 cause invalid hash tables to be generated. */
221
222 unsigned long
223 bfd_elf_gnu_hash (const char *namearg)
224 {
225 const unsigned char *name = (const unsigned char *) namearg;
226 unsigned long h = 5381;
227 unsigned char ch;
228
229 while ((ch = *name++) != '\0')
230 h = (h << 5) + h + ch;
231 return h & 0xffffffff;
232 }
233
234 /* Create a tdata field OBJECT_SIZE bytes in length, zeroed out and with
235 the object_id field of an elf_obj_tdata field set to OBJECT_ID. */
236 bfd_boolean
237 bfd_elf_allocate_object (bfd *abfd,
238 size_t object_size,
239 enum elf_target_id object_id)
240 {
241 BFD_ASSERT (object_size >= sizeof (struct elf_obj_tdata));
242 abfd->tdata.any = bfd_zalloc (abfd, object_size);
243 if (abfd->tdata.any == NULL)
244 return FALSE;
245
246 elf_object_id (abfd) = object_id;
247 elf_program_header_size (abfd) = (bfd_size_type) -1;
248 return TRUE;
249 }
250
251
252 bfd_boolean
253 bfd_elf_make_object (bfd *abfd)
254 {
255 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
256 return bfd_elf_allocate_object (abfd, sizeof (struct elf_obj_tdata),
257 bed->target_id);
258 }
259
260 bfd_boolean
261 bfd_elf_mkcorefile (bfd *abfd)
262 {
263 /* I think this can be done just like an object file. */
264 return abfd->xvec->_bfd_set_format[(int) bfd_object] (abfd);
265 }
266
267 static char *
268 bfd_elf_get_str_section (bfd *abfd, unsigned int shindex)
269 {
270 Elf_Internal_Shdr **i_shdrp;
271 bfd_byte *shstrtab = NULL;
272 file_ptr offset;
273 bfd_size_type shstrtabsize;
274
275 i_shdrp = elf_elfsections (abfd);
276 if (i_shdrp == 0
277 || shindex >= elf_numsections (abfd)
278 || i_shdrp[shindex] == 0)
279 return NULL;
280
281 shstrtab = i_shdrp[shindex]->contents;
282 if (shstrtab == NULL)
283 {
284 /* No cached one, attempt to read, and cache what we read. */
285 offset = i_shdrp[shindex]->sh_offset;
286 shstrtabsize = i_shdrp[shindex]->sh_size;
287
288 /* Allocate and clear an extra byte at the end, to prevent crashes
289 in case the string table is not terminated. */
290 if (shstrtabsize + 1 <= 1
291 || (shstrtab = (bfd_byte *) bfd_alloc (abfd, shstrtabsize + 1)) == NULL
292 || bfd_seek (abfd, offset, SEEK_SET) != 0)
293 shstrtab = NULL;
294 else if (bfd_bread (shstrtab, shstrtabsize, abfd) != shstrtabsize)
295 {
296 if (bfd_get_error () != bfd_error_system_call)
297 bfd_set_error (bfd_error_file_truncated);
298 shstrtab = NULL;
299 /* Once we've failed to read it, make sure we don't keep
300 trying. Otherwise, we'll keep allocating space for
301 the string table over and over. */
302 i_shdrp[shindex]->sh_size = 0;
303 }
304 else
305 shstrtab[shstrtabsize] = '\0';
306 i_shdrp[shindex]->contents = shstrtab;
307 }
308 return (char *) shstrtab;
309 }
310
311 char *
312 bfd_elf_string_from_elf_section (bfd *abfd,
313 unsigned int shindex,
314 unsigned int strindex)
315 {
316 Elf_Internal_Shdr *hdr;
317
318 if (strindex == 0)
319 return "";
320
321 if (elf_elfsections (abfd) == NULL || shindex >= elf_numsections (abfd))
322 return NULL;
323
324 hdr = elf_elfsections (abfd)[shindex];
325
326 if (hdr->contents == NULL
327 && bfd_elf_get_str_section (abfd, shindex) == NULL)
328 return NULL;
329
330 if (strindex >= hdr->sh_size)
331 {
332 unsigned int shstrndx = elf_elfheader(abfd)->e_shstrndx;
333 (*_bfd_error_handler)
334 (_("%B: invalid string offset %u >= %lu for section `%s'"),
335 abfd, strindex, (unsigned long) hdr->sh_size,
336 (shindex == shstrndx && strindex == hdr->sh_name
337 ? ".shstrtab"
338 : bfd_elf_string_from_elf_section (abfd, shstrndx, hdr->sh_name)));
339 return NULL;
340 }
341
342 return ((char *) hdr->contents) + strindex;
343 }
344
345 /* Read and convert symbols to internal format.
346 SYMCOUNT specifies the number of symbols to read, starting from
347 symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF
348 are non-NULL, they are used to store the internal symbols, external
349 symbols, and symbol section index extensions, respectively.
350 Returns a pointer to the internal symbol buffer (malloced if necessary)
351 or NULL if there were no symbols or some kind of problem. */
352
353 Elf_Internal_Sym *
354 bfd_elf_get_elf_syms (bfd *ibfd,
355 Elf_Internal_Shdr *symtab_hdr,
356 size_t symcount,
357 size_t symoffset,
358 Elf_Internal_Sym *intsym_buf,
359 void *extsym_buf,
360 Elf_External_Sym_Shndx *extshndx_buf)
361 {
362 Elf_Internal_Shdr *shndx_hdr;
363 void *alloc_ext;
364 const bfd_byte *esym;
365 Elf_External_Sym_Shndx *alloc_extshndx;
366 Elf_External_Sym_Shndx *shndx;
367 Elf_Internal_Sym *alloc_intsym;
368 Elf_Internal_Sym *isym;
369 Elf_Internal_Sym *isymend;
370 const struct elf_backend_data *bed;
371 size_t extsym_size;
372 bfd_size_type amt;
373 file_ptr pos;
374
375 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
376 abort ();
377
378 if (symcount == 0)
379 return intsym_buf;
380
381 /* Normal syms might have section extension entries. */
382 shndx_hdr = NULL;
383 if (symtab_hdr == &elf_tdata (ibfd)->symtab_hdr)
384 shndx_hdr = &elf_tdata (ibfd)->symtab_shndx_hdr;
385
386 /* Read the symbols. */
387 alloc_ext = NULL;
388 alloc_extshndx = NULL;
389 alloc_intsym = NULL;
390 bed = get_elf_backend_data (ibfd);
391 extsym_size = bed->s->sizeof_sym;
392 amt = symcount * extsym_size;
393 pos = symtab_hdr->sh_offset + symoffset * extsym_size;
394 if (extsym_buf == NULL)
395 {
396 alloc_ext = bfd_malloc2 (symcount, extsym_size);
397 extsym_buf = alloc_ext;
398 }
399 if (extsym_buf == NULL
400 || bfd_seek (ibfd, pos, SEEK_SET) != 0
401 || bfd_bread (extsym_buf, amt, ibfd) != amt)
402 {
403 intsym_buf = NULL;
404 goto out;
405 }
406
407 if (shndx_hdr == NULL || shndx_hdr->sh_size == 0)
408 extshndx_buf = NULL;
409 else
410 {
411 amt = symcount * sizeof (Elf_External_Sym_Shndx);
412 pos = shndx_hdr->sh_offset + symoffset * sizeof (Elf_External_Sym_Shndx);
413 if (extshndx_buf == NULL)
414 {
415 alloc_extshndx = (Elf_External_Sym_Shndx *)
416 bfd_malloc2 (symcount, sizeof (Elf_External_Sym_Shndx));
417 extshndx_buf = alloc_extshndx;
418 }
419 if (extshndx_buf == NULL
420 || bfd_seek (ibfd, pos, SEEK_SET) != 0
421 || bfd_bread (extshndx_buf, amt, ibfd) != amt)
422 {
423 intsym_buf = NULL;
424 goto out;
425 }
426 }
427
428 if (intsym_buf == NULL)
429 {
430 alloc_intsym = (Elf_Internal_Sym *)
431 bfd_malloc2 (symcount, sizeof (Elf_Internal_Sym));
432 intsym_buf = alloc_intsym;
433 if (intsym_buf == NULL)
434 goto out;
435 }
436
437 /* Convert the symbols to internal form. */
438 isymend = intsym_buf + symcount;
439 for (esym = (const bfd_byte *) extsym_buf, isym = intsym_buf,
440 shndx = extshndx_buf;
441 isym < isymend;
442 esym += extsym_size, isym++, shndx = shndx != NULL ? shndx + 1 : NULL)
443 if (!(*bed->s->swap_symbol_in) (ibfd, esym, shndx, isym))
444 {
445 symoffset += (esym - (bfd_byte *) extsym_buf) / extsym_size;
446 (*_bfd_error_handler) (_("%B symbol number %lu references "
447 "nonexistent SHT_SYMTAB_SHNDX section"),
448 ibfd, (unsigned long) symoffset);
449 if (alloc_intsym != NULL)
450 free (alloc_intsym);
451 intsym_buf = NULL;
452 goto out;
453 }
454
455 out:
456 if (alloc_ext != NULL)
457 free (alloc_ext);
458 if (alloc_extshndx != NULL)
459 free (alloc_extshndx);
460
461 return intsym_buf;
462 }
463
464 /* Look up a symbol name. */
465 const char *
466 bfd_elf_sym_name (bfd *abfd,
467 Elf_Internal_Shdr *symtab_hdr,
468 Elf_Internal_Sym *isym,
469 asection *sym_sec)
470 {
471 const char *name;
472 unsigned int iname = isym->st_name;
473 unsigned int shindex = symtab_hdr->sh_link;
474
475 if (iname == 0 && ELF_ST_TYPE (isym->st_info) == STT_SECTION
476 /* Check for a bogus st_shndx to avoid crashing. */
477 && isym->st_shndx < elf_numsections (abfd))
478 {
479 iname = elf_elfsections (abfd)[isym->st_shndx]->sh_name;
480 shindex = elf_elfheader (abfd)->e_shstrndx;
481 }
482
483 name = bfd_elf_string_from_elf_section (abfd, shindex, iname);
484 if (name == NULL)
485 name = "(null)";
486 else if (sym_sec && *name == '\0')
487 name = bfd_section_name (abfd, sym_sec);
488
489 return name;
490 }
491
492 /* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
493 sections. The first element is the flags, the rest are section
494 pointers. */
495
496 typedef union elf_internal_group {
497 Elf_Internal_Shdr *shdr;
498 unsigned int flags;
499 } Elf_Internal_Group;
500
501 /* Return the name of the group signature symbol. Why isn't the
502 signature just a string? */
503
504 static const char *
505 group_signature (bfd *abfd, Elf_Internal_Shdr *ghdr)
506 {
507 Elf_Internal_Shdr *hdr;
508 unsigned char esym[sizeof (Elf64_External_Sym)];
509 Elf_External_Sym_Shndx eshndx;
510 Elf_Internal_Sym isym;
511
512 /* First we need to ensure the symbol table is available. Make sure
513 that it is a symbol table section. */
514 if (ghdr->sh_link >= elf_numsections (abfd))
515 return NULL;
516 hdr = elf_elfsections (abfd) [ghdr->sh_link];
517 if (hdr->sh_type != SHT_SYMTAB
518 || ! bfd_section_from_shdr (abfd, ghdr->sh_link))
519 return NULL;
520
521 /* Go read the symbol. */
522 hdr = &elf_tdata (abfd)->symtab_hdr;
523 if (bfd_elf_get_elf_syms (abfd, hdr, 1, ghdr->sh_info,
524 &isym, esym, &eshndx) == NULL)
525 return NULL;
526
527 return bfd_elf_sym_name (abfd, hdr, &isym, NULL);
528 }
529
530 /* Set next_in_group list pointer, and group name for NEWSECT. */
531
532 static bfd_boolean
533 setup_group (bfd *abfd, Elf_Internal_Shdr *hdr, asection *newsect)
534 {
535 unsigned int num_group = elf_tdata (abfd)->num_group;
536
537 /* If num_group is zero, read in all SHT_GROUP sections. The count
538 is set to -1 if there are no SHT_GROUP sections. */
539 if (num_group == 0)
540 {
541 unsigned int i, shnum;
542
543 /* First count the number of groups. If we have a SHT_GROUP
544 section with just a flag word (ie. sh_size is 4), ignore it. */
545 shnum = elf_numsections (abfd);
546 num_group = 0;
547
548 #define IS_VALID_GROUP_SECTION_HEADER(shdr) \
549 ( (shdr)->sh_type == SHT_GROUP \
550 && (shdr)->sh_size >= (2 * GRP_ENTRY_SIZE) \
551 && (shdr)->sh_entsize == GRP_ENTRY_SIZE \
552 && ((shdr)->sh_size % GRP_ENTRY_SIZE) == 0)
553
554 for (i = 0; i < shnum; i++)
555 {
556 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
557
558 if (IS_VALID_GROUP_SECTION_HEADER (shdr))
559 num_group += 1;
560 }
561
562 if (num_group == 0)
563 {
564 num_group = (unsigned) -1;
565 elf_tdata (abfd)->num_group = num_group;
566 }
567 else
568 {
569 /* We keep a list of elf section headers for group sections,
570 so we can find them quickly. */
571 bfd_size_type amt;
572
573 elf_tdata (abfd)->num_group = num_group;
574 elf_tdata (abfd)->group_sect_ptr = (Elf_Internal_Shdr **)
575 bfd_alloc2 (abfd, num_group, sizeof (Elf_Internal_Shdr *));
576 if (elf_tdata (abfd)->group_sect_ptr == NULL)
577 return FALSE;
578
579 num_group = 0;
580 for (i = 0; i < shnum; i++)
581 {
582 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
583
584 if (IS_VALID_GROUP_SECTION_HEADER (shdr))
585 {
586 unsigned char *src;
587 Elf_Internal_Group *dest;
588
589 /* Add to list of sections. */
590 elf_tdata (abfd)->group_sect_ptr[num_group] = shdr;
591 num_group += 1;
592
593 /* Read the raw contents. */
594 BFD_ASSERT (sizeof (*dest) >= 4);
595 amt = shdr->sh_size * sizeof (*dest) / 4;
596 shdr->contents = (unsigned char *)
597 bfd_alloc2 (abfd, shdr->sh_size, sizeof (*dest) / 4);
598 /* PR binutils/4110: Handle corrupt group headers. */
599 if (shdr->contents == NULL)
600 {
601 _bfd_error_handler
602 (_("%B: Corrupt size field in group section header: 0x%lx"), abfd, shdr->sh_size);
603 bfd_set_error (bfd_error_bad_value);
604 return FALSE;
605 }
606
607 memset (shdr->contents, 0, amt);
608
609 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0
610 || (bfd_bread (shdr->contents, shdr->sh_size, abfd)
611 != shdr->sh_size))
612 return FALSE;
613
614 /* Translate raw contents, a flag word followed by an
615 array of elf section indices all in target byte order,
616 to the flag word followed by an array of elf section
617 pointers. */
618 src = shdr->contents + shdr->sh_size;
619 dest = (Elf_Internal_Group *) (shdr->contents + amt);
620 while (1)
621 {
622 unsigned int idx;
623
624 src -= 4;
625 --dest;
626 idx = H_GET_32 (abfd, src);
627 if (src == shdr->contents)
628 {
629 dest->flags = idx;
630 if (shdr->bfd_section != NULL && (idx & GRP_COMDAT))
631 shdr->bfd_section->flags
632 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
633 break;
634 }
635 if (idx >= shnum)
636 {
637 ((*_bfd_error_handler)
638 (_("%B: invalid SHT_GROUP entry"), abfd));
639 idx = 0;
640 }
641 dest->shdr = elf_elfsections (abfd)[idx];
642 }
643 }
644 }
645 }
646 }
647
648 if (num_group != (unsigned) -1)
649 {
650 unsigned int i;
651
652 for (i = 0; i < num_group; i++)
653 {
654 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
655 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
656 unsigned int n_elt = shdr->sh_size / 4;
657
658 /* Look through this group's sections to see if current
659 section is a member. */
660 while (--n_elt != 0)
661 if ((++idx)->shdr == hdr)
662 {
663 asection *s = NULL;
664
665 /* We are a member of this group. Go looking through
666 other members to see if any others are linked via
667 next_in_group. */
668 idx = (Elf_Internal_Group *) shdr->contents;
669 n_elt = shdr->sh_size / 4;
670 while (--n_elt != 0)
671 if ((s = (++idx)->shdr->bfd_section) != NULL
672 && elf_next_in_group (s) != NULL)
673 break;
674 if (n_elt != 0)
675 {
676 /* Snarf the group name from other member, and
677 insert current section in circular list. */
678 elf_group_name (newsect) = elf_group_name (s);
679 elf_next_in_group (newsect) = elf_next_in_group (s);
680 elf_next_in_group (s) = newsect;
681 }
682 else
683 {
684 const char *gname;
685
686 gname = group_signature (abfd, shdr);
687 if (gname == NULL)
688 return FALSE;
689 elf_group_name (newsect) = gname;
690
691 /* Start a circular list with one element. */
692 elf_next_in_group (newsect) = newsect;
693 }
694
695 /* If the group section has been created, point to the
696 new member. */
697 if (shdr->bfd_section != NULL)
698 elf_next_in_group (shdr->bfd_section) = newsect;
699
700 i = num_group - 1;
701 break;
702 }
703 }
704 }
705
706 if (elf_group_name (newsect) == NULL)
707 {
708 (*_bfd_error_handler) (_("%B: no group info for section %A"),
709 abfd, newsect);
710 }
711 return TRUE;
712 }
713
714 bfd_boolean
715 _bfd_elf_setup_sections (bfd *abfd)
716 {
717 unsigned int i;
718 unsigned int num_group = elf_tdata (abfd)->num_group;
719 bfd_boolean result = TRUE;
720 asection *s;
721
722 /* Process SHF_LINK_ORDER. */
723 for (s = abfd->sections; s != NULL; s = s->next)
724 {
725 Elf_Internal_Shdr *this_hdr = &elf_section_data (s)->this_hdr;
726 if ((this_hdr->sh_flags & SHF_LINK_ORDER) != 0)
727 {
728 unsigned int elfsec = this_hdr->sh_link;
729 /* FIXME: The old Intel compiler and old strip/objcopy may
730 not set the sh_link or sh_info fields. Hence we could
731 get the situation where elfsec is 0. */
732 if (elfsec == 0)
733 {
734 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
735 if (bed->link_order_error_handler)
736 bed->link_order_error_handler
737 (_("%B: warning: sh_link not set for section `%A'"),
738 abfd, s);
739 }
740 else
741 {
742 asection *linksec = NULL;
743
744 if (elfsec < elf_numsections (abfd))
745 {
746 this_hdr = elf_elfsections (abfd)[elfsec];
747 linksec = this_hdr->bfd_section;
748 }
749
750 /* PR 1991, 2008:
751 Some strip/objcopy may leave an incorrect value in
752 sh_link. We don't want to proceed. */
753 if (linksec == NULL)
754 {
755 (*_bfd_error_handler)
756 (_("%B: sh_link [%d] in section `%A' is incorrect"),
757 s->owner, s, elfsec);
758 result = FALSE;
759 }
760
761 elf_linked_to_section (s) = linksec;
762 }
763 }
764 }
765
766 /* Process section groups. */
767 if (num_group == (unsigned) -1)
768 return result;
769
770 for (i = 0; i < num_group; i++)
771 {
772 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
773 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
774 unsigned int n_elt = shdr->sh_size / 4;
775
776 while (--n_elt != 0)
777 if ((++idx)->shdr->bfd_section)
778 elf_sec_group (idx->shdr->bfd_section) = shdr->bfd_section;
779 else if (idx->shdr->sh_type == SHT_RELA
780 || idx->shdr->sh_type == SHT_REL)
781 /* We won't include relocation sections in section groups in
782 output object files. We adjust the group section size here
783 so that relocatable link will work correctly when
784 relocation sections are in section group in input object
785 files. */
786 shdr->bfd_section->size -= 4;
787 else
788 {
789 /* There are some unknown sections in the group. */
790 (*_bfd_error_handler)
791 (_("%B: unknown [%d] section `%s' in group [%s]"),
792 abfd,
793 (unsigned int) idx->shdr->sh_type,
794 bfd_elf_string_from_elf_section (abfd,
795 (elf_elfheader (abfd)
796 ->e_shstrndx),
797 idx->shdr->sh_name),
798 shdr->bfd_section->name);
799 result = FALSE;
800 }
801 }
802 return result;
803 }
804
805 bfd_boolean
806 bfd_elf_is_group_section (bfd *abfd ATTRIBUTE_UNUSED, const asection *sec)
807 {
808 return elf_next_in_group (sec) != NULL;
809 }
810
811 /* Make a BFD section from an ELF section. We store a pointer to the
812 BFD section in the bfd_section field of the header. */
813
814 bfd_boolean
815 _bfd_elf_make_section_from_shdr (bfd *abfd,
816 Elf_Internal_Shdr *hdr,
817 const char *name,
818 int shindex)
819 {
820 asection *newsect;
821 flagword flags;
822 const struct elf_backend_data *bed;
823
824 if (hdr->bfd_section != NULL)
825 {
826 BFD_ASSERT (strcmp (name,
827 bfd_get_section_name (abfd, hdr->bfd_section)) == 0);
828 return TRUE;
829 }
830
831 newsect = bfd_make_section_anyway (abfd, name);
832 if (newsect == NULL)
833 return FALSE;
834
835 hdr->bfd_section = newsect;
836 elf_section_data (newsect)->this_hdr = *hdr;
837 elf_section_data (newsect)->this_idx = shindex;
838
839 /* Always use the real type/flags. */
840 elf_section_type (newsect) = hdr->sh_type;
841 elf_section_flags (newsect) = hdr->sh_flags;
842
843 newsect->filepos = hdr->sh_offset;
844
845 if (! bfd_set_section_vma (abfd, newsect, hdr->sh_addr)
846 || ! bfd_set_section_size (abfd, newsect, hdr->sh_size)
847 || ! bfd_set_section_alignment (abfd, newsect,
848 bfd_log2 (hdr->sh_addralign)))
849 return FALSE;
850
851 flags = SEC_NO_FLAGS;
852 if (hdr->sh_type != SHT_NOBITS)
853 flags |= SEC_HAS_CONTENTS;
854 if (hdr->sh_type == SHT_GROUP)
855 flags |= SEC_GROUP | SEC_EXCLUDE;
856 if ((hdr->sh_flags & SHF_ALLOC) != 0)
857 {
858 flags |= SEC_ALLOC;
859 if (hdr->sh_type != SHT_NOBITS)
860 flags |= SEC_LOAD;
861 }
862 if ((hdr->sh_flags & SHF_WRITE) == 0)
863 flags |= SEC_READONLY;
864 if ((hdr->sh_flags & SHF_EXECINSTR) != 0)
865 flags |= SEC_CODE;
866 else if ((flags & SEC_LOAD) != 0)
867 flags |= SEC_DATA;
868 if ((hdr->sh_flags & SHF_MERGE) != 0)
869 {
870 flags |= SEC_MERGE;
871 newsect->entsize = hdr->sh_entsize;
872 if ((hdr->sh_flags & SHF_STRINGS) != 0)
873 flags |= SEC_STRINGS;
874 }
875 if (hdr->sh_flags & SHF_GROUP)
876 if (!setup_group (abfd, hdr, newsect))
877 return FALSE;
878 if ((hdr->sh_flags & SHF_TLS) != 0)
879 flags |= SEC_THREAD_LOCAL;
880 if ((hdr->sh_flags & SHF_EXCLUDE) != 0)
881 flags |= SEC_EXCLUDE;
882
883 if ((flags & SEC_ALLOC) == 0)
884 {
885 /* The debugging sections appear to be recognized only by name,
886 not any sort of flag. Their SEC_ALLOC bits are cleared. */
887 static const struct
888 {
889 const char *name;
890 int len;
891 } debug_sections [] =
892 {
893 { STRING_COMMA_LEN ("debug") }, /* 'd' */
894 { NULL, 0 }, /* 'e' */
895 { NULL, 0 }, /* 'f' */
896 { STRING_COMMA_LEN ("gnu.linkonce.wi.") }, /* 'g' */
897 { NULL, 0 }, /* 'h' */
898 { NULL, 0 }, /* 'i' */
899 { NULL, 0 }, /* 'j' */
900 { NULL, 0 }, /* 'k' */
901 { STRING_COMMA_LEN ("line") }, /* 'l' */
902 { NULL, 0 }, /* 'm' */
903 { NULL, 0 }, /* 'n' */
904 { NULL, 0 }, /* 'o' */
905 { NULL, 0 }, /* 'p' */
906 { NULL, 0 }, /* 'q' */
907 { NULL, 0 }, /* 'r' */
908 { STRING_COMMA_LEN ("stab") }, /* 's' */
909 { NULL, 0 }, /* 't' */
910 { NULL, 0 }, /* 'u' */
911 { NULL, 0 }, /* 'v' */
912 { NULL, 0 }, /* 'w' */
913 { NULL, 0 }, /* 'x' */
914 { NULL, 0 }, /* 'y' */
915 { STRING_COMMA_LEN ("zdebug") } /* 'z' */
916 };
917
918 if (name [0] == '.')
919 {
920 int i = name [1] - 'd';
921 if (i >= 0
922 && i < (int) ARRAY_SIZE (debug_sections)
923 && debug_sections [i].name != NULL
924 && strncmp (&name [1], debug_sections [i].name,
925 debug_sections [i].len) == 0)
926 flags |= SEC_DEBUGGING;
927 }
928 }
929
930 /* As a GNU extension, if the name begins with .gnu.linkonce, we
931 only link a single copy of the section. This is used to support
932 g++. g++ will emit each template expansion in its own section.
933 The symbols will be defined as weak, so that multiple definitions
934 are permitted. The GNU linker extension is to actually discard
935 all but one of the sections. */
936 if (CONST_STRNEQ (name, ".gnu.linkonce")
937 && elf_next_in_group (newsect) == NULL)
938 flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
939
940 bed = get_elf_backend_data (abfd);
941 if (bed->elf_backend_section_flags)
942 if (! bed->elf_backend_section_flags (&flags, hdr))
943 return FALSE;
944
945 if (! bfd_set_section_flags (abfd, newsect, flags))
946 return FALSE;
947
948 /* We do not parse the PT_NOTE segments as we are interested even in the
949 separate debug info files which may have the segments offsets corrupted.
950 PT_NOTEs from the core files are currently not parsed using BFD. */
951 if (hdr->sh_type == SHT_NOTE)
952 {
953 bfd_byte *contents;
954
955 if (!bfd_malloc_and_get_section (abfd, newsect, &contents))
956 return FALSE;
957
958 elf_parse_notes (abfd, (char *) contents, hdr->sh_size, -1);
959 free (contents);
960 }
961
962 if ((flags & SEC_ALLOC) != 0)
963 {
964 Elf_Internal_Phdr *phdr;
965 unsigned int i, nload;
966
967 /* Some ELF linkers produce binaries with all the program header
968 p_paddr fields zero. If we have such a binary with more than
969 one PT_LOAD header, then leave the section lma equal to vma
970 so that we don't create sections with overlapping lma. */
971 phdr = elf_tdata (abfd)->phdr;
972 for (nload = 0, i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
973 if (phdr->p_paddr != 0)
974 break;
975 else if (phdr->p_type == PT_LOAD && phdr->p_memsz != 0)
976 ++nload;
977 if (i >= elf_elfheader (abfd)->e_phnum && nload > 1)
978 return TRUE;
979
980 phdr = elf_tdata (abfd)->phdr;
981 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
982 {
983 if (phdr->p_type == PT_LOAD
984 && ELF_SECTION_IN_SEGMENT (hdr, phdr))
985 {
986 if ((flags & SEC_LOAD) == 0)
987 newsect->lma = (phdr->p_paddr
988 + hdr->sh_addr - phdr->p_vaddr);
989 else
990 /* We used to use the same adjustment for SEC_LOAD
991 sections, but that doesn't work if the segment
992 is packed with code from multiple VMAs.
993 Instead we calculate the section LMA based on
994 the segment LMA. It is assumed that the
995 segment will contain sections with contiguous
996 LMAs, even if the VMAs are not. */
997 newsect->lma = (phdr->p_paddr
998 + hdr->sh_offset - phdr->p_offset);
999
1000 /* With contiguous segments, we can't tell from file
1001 offsets whether a section with zero size should
1002 be placed at the end of one segment or the
1003 beginning of the next. Decide based on vaddr. */
1004 if (hdr->sh_addr >= phdr->p_vaddr
1005 && (hdr->sh_addr + hdr->sh_size
1006 <= phdr->p_vaddr + phdr->p_memsz))
1007 break;
1008 }
1009 }
1010 }
1011
1012 return TRUE;
1013 }
1014
1015 const char *const bfd_elf_section_type_names[] = {
1016 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
1017 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
1018 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
1019 };
1020
1021 /* ELF relocs are against symbols. If we are producing relocatable
1022 output, and the reloc is against an external symbol, and nothing
1023 has given us any additional addend, the resulting reloc will also
1024 be against the same symbol. In such a case, we don't want to
1025 change anything about the way the reloc is handled, since it will
1026 all be done at final link time. Rather than put special case code
1027 into bfd_perform_relocation, all the reloc types use this howto
1028 function. It just short circuits the reloc if producing
1029 relocatable output against an external symbol. */
1030
1031 bfd_reloc_status_type
1032 bfd_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED,
1033 arelent *reloc_entry,
1034 asymbol *symbol,
1035 void *data ATTRIBUTE_UNUSED,
1036 asection *input_section,
1037 bfd *output_bfd,
1038 char **error_message ATTRIBUTE_UNUSED)
1039 {
1040 if (output_bfd != NULL
1041 && (symbol->flags & BSF_SECTION_SYM) == 0
1042 && (! reloc_entry->howto->partial_inplace
1043 || reloc_entry->addend == 0))
1044 {
1045 reloc_entry->address += input_section->output_offset;
1046 return bfd_reloc_ok;
1047 }
1048
1049 return bfd_reloc_continue;
1050 }
1051 \f
1052 /* Copy the program header and other data from one object module to
1053 another. */
1054
1055 bfd_boolean
1056 _bfd_elf_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
1057 {
1058 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
1059 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
1060 return TRUE;
1061
1062 BFD_ASSERT (!elf_flags_init (obfd)
1063 || (elf_elfheader (obfd)->e_flags
1064 == elf_elfheader (ibfd)->e_flags));
1065
1066 elf_gp (obfd) = elf_gp (ibfd);
1067 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
1068 elf_flags_init (obfd) = TRUE;
1069
1070 /* Copy object attributes. */
1071 _bfd_elf_copy_obj_attributes (ibfd, obfd);
1072 return TRUE;
1073 }
1074
1075 static const char *
1076 get_segment_type (unsigned int p_type)
1077 {
1078 const char *pt;
1079 switch (p_type)
1080 {
1081 case PT_NULL: pt = "NULL"; break;
1082 case PT_LOAD: pt = "LOAD"; break;
1083 case PT_DYNAMIC: pt = "DYNAMIC"; break;
1084 case PT_INTERP: pt = "INTERP"; break;
1085 case PT_NOTE: pt = "NOTE"; break;
1086 case PT_SHLIB: pt = "SHLIB"; break;
1087 case PT_PHDR: pt = "PHDR"; break;
1088 case PT_TLS: pt = "TLS"; break;
1089 case PT_GNU_EH_FRAME: pt = "EH_FRAME"; break;
1090 case PT_GNU_STACK: pt = "STACK"; break;
1091 case PT_GNU_RELRO: pt = "RELRO"; break;
1092 default: pt = NULL; break;
1093 }
1094 return pt;
1095 }
1096
1097 /* Print out the program headers. */
1098
1099 bfd_boolean
1100 _bfd_elf_print_private_bfd_data (bfd *abfd, void *farg)
1101 {
1102 FILE *f = (FILE *) farg;
1103 Elf_Internal_Phdr *p;
1104 asection *s;
1105 bfd_byte *dynbuf = NULL;
1106
1107 p = elf_tdata (abfd)->phdr;
1108 if (p != NULL)
1109 {
1110 unsigned int i, c;
1111
1112 fprintf (f, _("\nProgram Header:\n"));
1113 c = elf_elfheader (abfd)->e_phnum;
1114 for (i = 0; i < c; i++, p++)
1115 {
1116 const char *pt = get_segment_type (p->p_type);
1117 char buf[20];
1118
1119 if (pt == NULL)
1120 {
1121 sprintf (buf, "0x%lx", p->p_type);
1122 pt = buf;
1123 }
1124 fprintf (f, "%8s off 0x", pt);
1125 bfd_fprintf_vma (abfd, f, p->p_offset);
1126 fprintf (f, " vaddr 0x");
1127 bfd_fprintf_vma (abfd, f, p->p_vaddr);
1128 fprintf (f, " paddr 0x");
1129 bfd_fprintf_vma (abfd, f, p->p_paddr);
1130 fprintf (f, " align 2**%u\n", bfd_log2 (p->p_align));
1131 fprintf (f, " filesz 0x");
1132 bfd_fprintf_vma (abfd, f, p->p_filesz);
1133 fprintf (f, " memsz 0x");
1134 bfd_fprintf_vma (abfd, f, p->p_memsz);
1135 fprintf (f, " flags %c%c%c",
1136 (p->p_flags & PF_R) != 0 ? 'r' : '-',
1137 (p->p_flags & PF_W) != 0 ? 'w' : '-',
1138 (p->p_flags & PF_X) != 0 ? 'x' : '-');
1139 if ((p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X)) != 0)
1140 fprintf (f, " %lx", p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X));
1141 fprintf (f, "\n");
1142 }
1143 }
1144
1145 s = bfd_get_section_by_name (abfd, ".dynamic");
1146 if (s != NULL)
1147 {
1148 unsigned int elfsec;
1149 unsigned long shlink;
1150 bfd_byte *extdyn, *extdynend;
1151 size_t extdynsize;
1152 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1153
1154 fprintf (f, _("\nDynamic Section:\n"));
1155
1156 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
1157 goto error_return;
1158
1159 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1160 if (elfsec == SHN_BAD)
1161 goto error_return;
1162 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1163
1164 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1165 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1166
1167 extdyn = dynbuf;
1168 extdynend = extdyn + s->size;
1169 for (; extdyn < extdynend; extdyn += extdynsize)
1170 {
1171 Elf_Internal_Dyn dyn;
1172 const char *name = "";
1173 char ab[20];
1174 bfd_boolean stringp;
1175 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1176
1177 (*swap_dyn_in) (abfd, extdyn, &dyn);
1178
1179 if (dyn.d_tag == DT_NULL)
1180 break;
1181
1182 stringp = FALSE;
1183 switch (dyn.d_tag)
1184 {
1185 default:
1186 if (bed->elf_backend_get_target_dtag)
1187 name = (*bed->elf_backend_get_target_dtag) (dyn.d_tag);
1188
1189 if (!strcmp (name, ""))
1190 {
1191 sprintf (ab, "0x%lx", (unsigned long) dyn.d_tag);
1192 name = ab;
1193 }
1194 break;
1195
1196 case DT_NEEDED: name = "NEEDED"; stringp = TRUE; break;
1197 case DT_PLTRELSZ: name = "PLTRELSZ"; break;
1198 case DT_PLTGOT: name = "PLTGOT"; break;
1199 case DT_HASH: name = "HASH"; break;
1200 case DT_STRTAB: name = "STRTAB"; break;
1201 case DT_SYMTAB: name = "SYMTAB"; break;
1202 case DT_RELA: name = "RELA"; break;
1203 case DT_RELASZ: name = "RELASZ"; break;
1204 case DT_RELAENT: name = "RELAENT"; break;
1205 case DT_STRSZ: name = "STRSZ"; break;
1206 case DT_SYMENT: name = "SYMENT"; break;
1207 case DT_INIT: name = "INIT"; break;
1208 case DT_FINI: name = "FINI"; break;
1209 case DT_SONAME: name = "SONAME"; stringp = TRUE; break;
1210 case DT_RPATH: name = "RPATH"; stringp = TRUE; break;
1211 case DT_SYMBOLIC: name = "SYMBOLIC"; break;
1212 case DT_REL: name = "REL"; break;
1213 case DT_RELSZ: name = "RELSZ"; break;
1214 case DT_RELENT: name = "RELENT"; break;
1215 case DT_PLTREL: name = "PLTREL"; break;
1216 case DT_DEBUG: name = "DEBUG"; break;
1217 case DT_TEXTREL: name = "TEXTREL"; break;
1218 case DT_JMPREL: name = "JMPREL"; break;
1219 case DT_BIND_NOW: name = "BIND_NOW"; break;
1220 case DT_INIT_ARRAY: name = "INIT_ARRAY"; break;
1221 case DT_FINI_ARRAY: name = "FINI_ARRAY"; break;
1222 case DT_INIT_ARRAYSZ: name = "INIT_ARRAYSZ"; break;
1223 case DT_FINI_ARRAYSZ: name = "FINI_ARRAYSZ"; break;
1224 case DT_RUNPATH: name = "RUNPATH"; stringp = TRUE; break;
1225 case DT_FLAGS: name = "FLAGS"; break;
1226 case DT_PREINIT_ARRAY: name = "PREINIT_ARRAY"; break;
1227 case DT_PREINIT_ARRAYSZ: name = "PREINIT_ARRAYSZ"; break;
1228 case DT_CHECKSUM: name = "CHECKSUM"; break;
1229 case DT_PLTPADSZ: name = "PLTPADSZ"; break;
1230 case DT_MOVEENT: name = "MOVEENT"; break;
1231 case DT_MOVESZ: name = "MOVESZ"; break;
1232 case DT_FEATURE: name = "FEATURE"; break;
1233 case DT_POSFLAG_1: name = "POSFLAG_1"; break;
1234 case DT_SYMINSZ: name = "SYMINSZ"; break;
1235 case DT_SYMINENT: name = "SYMINENT"; break;
1236 case DT_CONFIG: name = "CONFIG"; stringp = TRUE; break;
1237 case DT_DEPAUDIT: name = "DEPAUDIT"; stringp = TRUE; break;
1238 case DT_AUDIT: name = "AUDIT"; stringp = TRUE; break;
1239 case DT_PLTPAD: name = "PLTPAD"; break;
1240 case DT_MOVETAB: name = "MOVETAB"; break;
1241 case DT_SYMINFO: name = "SYMINFO"; break;
1242 case DT_RELACOUNT: name = "RELACOUNT"; break;
1243 case DT_RELCOUNT: name = "RELCOUNT"; break;
1244 case DT_FLAGS_1: name = "FLAGS_1"; break;
1245 case DT_VERSYM: name = "VERSYM"; break;
1246 case DT_VERDEF: name = "VERDEF"; break;
1247 case DT_VERDEFNUM: name = "VERDEFNUM"; break;
1248 case DT_VERNEED: name = "VERNEED"; break;
1249 case DT_VERNEEDNUM: name = "VERNEEDNUM"; break;
1250 case DT_AUXILIARY: name = "AUXILIARY"; stringp = TRUE; break;
1251 case DT_USED: name = "USED"; break;
1252 case DT_FILTER: name = "FILTER"; stringp = TRUE; break;
1253 case DT_GNU_HASH: name = "GNU_HASH"; break;
1254 }
1255
1256 fprintf (f, " %-20s ", name);
1257 if (! stringp)
1258 {
1259 fprintf (f, "0x");
1260 bfd_fprintf_vma (abfd, f, dyn.d_un.d_val);
1261 }
1262 else
1263 {
1264 const char *string;
1265 unsigned int tagv = dyn.d_un.d_val;
1266
1267 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1268 if (string == NULL)
1269 goto error_return;
1270 fprintf (f, "%s", string);
1271 }
1272 fprintf (f, "\n");
1273 }
1274
1275 free (dynbuf);
1276 dynbuf = NULL;
1277 }
1278
1279 if ((elf_dynverdef (abfd) != 0 && elf_tdata (abfd)->verdef == NULL)
1280 || (elf_dynverref (abfd) != 0 && elf_tdata (abfd)->verref == NULL))
1281 {
1282 if (! _bfd_elf_slurp_version_tables (abfd, FALSE))
1283 return FALSE;
1284 }
1285
1286 if (elf_dynverdef (abfd) != 0)
1287 {
1288 Elf_Internal_Verdef *t;
1289
1290 fprintf (f, _("\nVersion definitions:\n"));
1291 for (t = elf_tdata (abfd)->verdef; t != NULL; t = t->vd_nextdef)
1292 {
1293 fprintf (f, "%d 0x%2.2x 0x%8.8lx %s\n", t->vd_ndx,
1294 t->vd_flags, t->vd_hash,
1295 t->vd_nodename ? t->vd_nodename : "<corrupt>");
1296 if (t->vd_auxptr != NULL && t->vd_auxptr->vda_nextptr != NULL)
1297 {
1298 Elf_Internal_Verdaux *a;
1299
1300 fprintf (f, "\t");
1301 for (a = t->vd_auxptr->vda_nextptr;
1302 a != NULL;
1303 a = a->vda_nextptr)
1304 fprintf (f, "%s ",
1305 a->vda_nodename ? a->vda_nodename : "<corrupt>");
1306 fprintf (f, "\n");
1307 }
1308 }
1309 }
1310
1311 if (elf_dynverref (abfd) != 0)
1312 {
1313 Elf_Internal_Verneed *t;
1314
1315 fprintf (f, _("\nVersion References:\n"));
1316 for (t = elf_tdata (abfd)->verref; t != NULL; t = t->vn_nextref)
1317 {
1318 Elf_Internal_Vernaux *a;
1319
1320 fprintf (f, _(" required from %s:\n"),
1321 t->vn_filename ? t->vn_filename : "<corrupt>");
1322 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1323 fprintf (f, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a->vna_hash,
1324 a->vna_flags, a->vna_other,
1325 a->vna_nodename ? a->vna_nodename : "<corrupt>");
1326 }
1327 }
1328
1329 return TRUE;
1330
1331 error_return:
1332 if (dynbuf != NULL)
1333 free (dynbuf);
1334 return FALSE;
1335 }
1336
1337 /* Display ELF-specific fields of a symbol. */
1338
1339 void
1340 bfd_elf_print_symbol (bfd *abfd,
1341 void *filep,
1342 asymbol *symbol,
1343 bfd_print_symbol_type how)
1344 {
1345 FILE *file = (FILE *) filep;
1346 switch (how)
1347 {
1348 case bfd_print_symbol_name:
1349 fprintf (file, "%s", symbol->name);
1350 break;
1351 case bfd_print_symbol_more:
1352 fprintf (file, "elf ");
1353 bfd_fprintf_vma (abfd, file, symbol->value);
1354 fprintf (file, " %lx", (unsigned long) symbol->flags);
1355 break;
1356 case bfd_print_symbol_all:
1357 {
1358 const char *section_name;
1359 const char *name = NULL;
1360 const struct elf_backend_data *bed;
1361 unsigned char st_other;
1362 bfd_vma val;
1363
1364 section_name = symbol->section ? symbol->section->name : "(*none*)";
1365
1366 bed = get_elf_backend_data (abfd);
1367 if (bed->elf_backend_print_symbol_all)
1368 name = (*bed->elf_backend_print_symbol_all) (abfd, filep, symbol);
1369
1370 if (name == NULL)
1371 {
1372 name = symbol->name;
1373 bfd_print_symbol_vandf (abfd, file, symbol);
1374 }
1375
1376 fprintf (file, " %s\t", section_name);
1377 /* Print the "other" value for a symbol. For common symbols,
1378 we've already printed the size; now print the alignment.
1379 For other symbols, we have no specified alignment, and
1380 we've printed the address; now print the size. */
1381 if (symbol->section && bfd_is_com_section (symbol->section))
1382 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
1383 else
1384 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_size;
1385 bfd_fprintf_vma (abfd, file, val);
1386
1387 /* If we have version information, print it. */
1388 if (elf_tdata (abfd)->dynversym_section != 0
1389 && (elf_tdata (abfd)->dynverdef_section != 0
1390 || elf_tdata (abfd)->dynverref_section != 0))
1391 {
1392 unsigned int vernum;
1393 const char *version_string;
1394
1395 vernum = ((elf_symbol_type *) symbol)->version & VERSYM_VERSION;
1396
1397 if (vernum == 0)
1398 version_string = "";
1399 else if (vernum == 1)
1400 version_string = "Base";
1401 else if (vernum <= elf_tdata (abfd)->cverdefs)
1402 version_string =
1403 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1404 else
1405 {
1406 Elf_Internal_Verneed *t;
1407
1408 version_string = "";
1409 for (t = elf_tdata (abfd)->verref;
1410 t != NULL;
1411 t = t->vn_nextref)
1412 {
1413 Elf_Internal_Vernaux *a;
1414
1415 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1416 {
1417 if (a->vna_other == vernum)
1418 {
1419 version_string = a->vna_nodename;
1420 break;
1421 }
1422 }
1423 }
1424 }
1425
1426 if ((((elf_symbol_type *) symbol)->version & VERSYM_HIDDEN) == 0)
1427 fprintf (file, " %-11s", version_string);
1428 else
1429 {
1430 int i;
1431
1432 fprintf (file, " (%s)", version_string);
1433 for (i = 10 - strlen (version_string); i > 0; --i)
1434 putc (' ', file);
1435 }
1436 }
1437
1438 /* If the st_other field is not zero, print it. */
1439 st_other = ((elf_symbol_type *) symbol)->internal_elf_sym.st_other;
1440
1441 switch (st_other)
1442 {
1443 case 0: break;
1444 case STV_INTERNAL: fprintf (file, " .internal"); break;
1445 case STV_HIDDEN: fprintf (file, " .hidden"); break;
1446 case STV_PROTECTED: fprintf (file, " .protected"); break;
1447 default:
1448 /* Some other non-defined flags are also present, so print
1449 everything hex. */
1450 fprintf (file, " 0x%02x", (unsigned int) st_other);
1451 }
1452
1453 fprintf (file, " %s", name);
1454 }
1455 break;
1456 }
1457 }
1458
1459 /* Allocate an ELF string table--force the first byte to be zero. */
1460
1461 struct bfd_strtab_hash *
1462 _bfd_elf_stringtab_init (void)
1463 {
1464 struct bfd_strtab_hash *ret;
1465
1466 ret = _bfd_stringtab_init ();
1467 if (ret != NULL)
1468 {
1469 bfd_size_type loc;
1470
1471 loc = _bfd_stringtab_add (ret, "", TRUE, FALSE);
1472 BFD_ASSERT (loc == 0 || loc == (bfd_size_type) -1);
1473 if (loc == (bfd_size_type) -1)
1474 {
1475 _bfd_stringtab_free (ret);
1476 ret = NULL;
1477 }
1478 }
1479 return ret;
1480 }
1481 \f
1482 /* ELF .o/exec file reading */
1483
1484 /* Create a new bfd section from an ELF section header. */
1485
1486 bfd_boolean
1487 bfd_section_from_shdr (bfd *abfd, unsigned int shindex)
1488 {
1489 Elf_Internal_Shdr *hdr;
1490 Elf_Internal_Ehdr *ehdr;
1491 const struct elf_backend_data *bed;
1492 const char *name;
1493
1494 if (shindex >= elf_numsections (abfd))
1495 return FALSE;
1496
1497 hdr = elf_elfsections (abfd)[shindex];
1498 ehdr = elf_elfheader (abfd);
1499 name = bfd_elf_string_from_elf_section (abfd, ehdr->e_shstrndx,
1500 hdr->sh_name);
1501 if (name == NULL)
1502 return FALSE;
1503
1504 bed = get_elf_backend_data (abfd);
1505 switch (hdr->sh_type)
1506 {
1507 case SHT_NULL:
1508 /* Inactive section. Throw it away. */
1509 return TRUE;
1510
1511 case SHT_PROGBITS: /* Normal section with contents. */
1512 case SHT_NOBITS: /* .bss section. */
1513 case SHT_HASH: /* .hash section. */
1514 case SHT_NOTE: /* .note section. */
1515 case SHT_INIT_ARRAY: /* .init_array section. */
1516 case SHT_FINI_ARRAY: /* .fini_array section. */
1517 case SHT_PREINIT_ARRAY: /* .preinit_array section. */
1518 case SHT_GNU_LIBLIST: /* .gnu.liblist section. */
1519 case SHT_GNU_HASH: /* .gnu.hash section. */
1520 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1521
1522 case SHT_DYNAMIC: /* Dynamic linking information. */
1523 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1524 return FALSE;
1525 if (hdr->sh_link > elf_numsections (abfd))
1526 {
1527 /* PR 10478: Accept Solaris binaries with a sh_link
1528 field set to SHN_BEFORE or SHN_AFTER. */
1529 switch (bfd_get_arch (abfd))
1530 {
1531 case bfd_arch_i386:
1532 case bfd_arch_sparc:
1533 if (hdr->sh_link == (SHN_LORESERVE & 0xffff) /* SHN_BEFORE */
1534 || hdr->sh_link == ((SHN_LORESERVE + 1) & 0xffff) /* SHN_AFTER */)
1535 break;
1536 /* Otherwise fall through. */
1537 default:
1538 return FALSE;
1539 }
1540 }
1541 else if (elf_elfsections (abfd)[hdr->sh_link] == NULL)
1542 return FALSE;
1543 else if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_STRTAB)
1544 {
1545 Elf_Internal_Shdr *dynsymhdr;
1546
1547 /* The shared libraries distributed with hpux11 have a bogus
1548 sh_link field for the ".dynamic" section. Find the
1549 string table for the ".dynsym" section instead. */
1550 if (elf_dynsymtab (abfd) != 0)
1551 {
1552 dynsymhdr = elf_elfsections (abfd)[elf_dynsymtab (abfd)];
1553 hdr->sh_link = dynsymhdr->sh_link;
1554 }
1555 else
1556 {
1557 unsigned int i, num_sec;
1558
1559 num_sec = elf_numsections (abfd);
1560 for (i = 1; i < num_sec; i++)
1561 {
1562 dynsymhdr = elf_elfsections (abfd)[i];
1563 if (dynsymhdr->sh_type == SHT_DYNSYM)
1564 {
1565 hdr->sh_link = dynsymhdr->sh_link;
1566 break;
1567 }
1568 }
1569 }
1570 }
1571 break;
1572
1573 case SHT_SYMTAB: /* A symbol table */
1574 if (elf_onesymtab (abfd) == shindex)
1575 return TRUE;
1576
1577 if (hdr->sh_entsize != bed->s->sizeof_sym)
1578 return FALSE;
1579 if (hdr->sh_info * hdr->sh_entsize > hdr->sh_size)
1580 return FALSE;
1581 BFD_ASSERT (elf_onesymtab (abfd) == 0);
1582 elf_onesymtab (abfd) = shindex;
1583 elf_tdata (abfd)->symtab_hdr = *hdr;
1584 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->symtab_hdr;
1585 abfd->flags |= HAS_SYMS;
1586
1587 /* Sometimes a shared object will map in the symbol table. If
1588 SHF_ALLOC is set, and this is a shared object, then we also
1589 treat this section as a BFD section. We can not base the
1590 decision purely on SHF_ALLOC, because that flag is sometimes
1591 set in a relocatable object file, which would confuse the
1592 linker. */
1593 if ((hdr->sh_flags & SHF_ALLOC) != 0
1594 && (abfd->flags & DYNAMIC) != 0
1595 && ! _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1596 shindex))
1597 return FALSE;
1598
1599 /* Go looking for SHT_SYMTAB_SHNDX too, since if there is one we
1600 can't read symbols without that section loaded as well. It
1601 is most likely specified by the next section header. */
1602 if (elf_elfsections (abfd)[elf_symtab_shndx (abfd)]->sh_link != shindex)
1603 {
1604 unsigned int i, num_sec;
1605
1606 num_sec = elf_numsections (abfd);
1607 for (i = shindex + 1; i < num_sec; i++)
1608 {
1609 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1610 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
1611 && hdr2->sh_link == shindex)
1612 break;
1613 }
1614 if (i == num_sec)
1615 for (i = 1; i < shindex; i++)
1616 {
1617 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1618 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
1619 && hdr2->sh_link == shindex)
1620 break;
1621 }
1622 if (i != shindex)
1623 return bfd_section_from_shdr (abfd, i);
1624 }
1625 return TRUE;
1626
1627 case SHT_DYNSYM: /* A dynamic symbol table */
1628 if (elf_dynsymtab (abfd) == shindex)
1629 return TRUE;
1630
1631 if (hdr->sh_entsize != bed->s->sizeof_sym)
1632 return FALSE;
1633 BFD_ASSERT (elf_dynsymtab (abfd) == 0);
1634 elf_dynsymtab (abfd) = shindex;
1635 elf_tdata (abfd)->dynsymtab_hdr = *hdr;
1636 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->dynsymtab_hdr;
1637 abfd->flags |= HAS_SYMS;
1638
1639 /* Besides being a symbol table, we also treat this as a regular
1640 section, so that objcopy can handle it. */
1641 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1642
1643 case SHT_SYMTAB_SHNDX: /* Symbol section indices when >64k sections */
1644 if (elf_symtab_shndx (abfd) == shindex)
1645 return TRUE;
1646
1647 BFD_ASSERT (elf_symtab_shndx (abfd) == 0);
1648 elf_symtab_shndx (abfd) = shindex;
1649 elf_tdata (abfd)->symtab_shndx_hdr = *hdr;
1650 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->symtab_shndx_hdr;
1651 return TRUE;
1652
1653 case SHT_STRTAB: /* A string table */
1654 if (hdr->bfd_section != NULL)
1655 return TRUE;
1656 if (ehdr->e_shstrndx == shindex)
1657 {
1658 elf_tdata (abfd)->shstrtab_hdr = *hdr;
1659 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->shstrtab_hdr;
1660 return TRUE;
1661 }
1662 if (elf_elfsections (abfd)[elf_onesymtab (abfd)]->sh_link == shindex)
1663 {
1664 symtab_strtab:
1665 elf_tdata (abfd)->strtab_hdr = *hdr;
1666 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->strtab_hdr;
1667 return TRUE;
1668 }
1669 if (elf_elfsections (abfd)[elf_dynsymtab (abfd)]->sh_link == shindex)
1670 {
1671 dynsymtab_strtab:
1672 elf_tdata (abfd)->dynstrtab_hdr = *hdr;
1673 hdr = &elf_tdata (abfd)->dynstrtab_hdr;
1674 elf_elfsections (abfd)[shindex] = hdr;
1675 /* We also treat this as a regular section, so that objcopy
1676 can handle it. */
1677 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1678 shindex);
1679 }
1680
1681 /* If the string table isn't one of the above, then treat it as a
1682 regular section. We need to scan all the headers to be sure,
1683 just in case this strtab section appeared before the above. */
1684 if (elf_onesymtab (abfd) == 0 || elf_dynsymtab (abfd) == 0)
1685 {
1686 unsigned int i, num_sec;
1687
1688 num_sec = elf_numsections (abfd);
1689 for (i = 1; i < num_sec; i++)
1690 {
1691 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1692 if (hdr2->sh_link == shindex)
1693 {
1694 /* Prevent endless recursion on broken objects. */
1695 if (i == shindex)
1696 return FALSE;
1697 if (! bfd_section_from_shdr (abfd, i))
1698 return FALSE;
1699 if (elf_onesymtab (abfd) == i)
1700 goto symtab_strtab;
1701 if (elf_dynsymtab (abfd) == i)
1702 goto dynsymtab_strtab;
1703 }
1704 }
1705 }
1706 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1707
1708 case SHT_REL:
1709 case SHT_RELA:
1710 /* *These* do a lot of work -- but build no sections! */
1711 {
1712 asection *target_sect;
1713 Elf_Internal_Shdr *hdr2;
1714 unsigned int num_sec = elf_numsections (abfd);
1715
1716 if (hdr->sh_entsize
1717 != (bfd_size_type) (hdr->sh_type == SHT_REL
1718 ? bed->s->sizeof_rel : bed->s->sizeof_rela))
1719 return FALSE;
1720
1721 /* Check for a bogus link to avoid crashing. */
1722 if (hdr->sh_link >= num_sec)
1723 {
1724 ((*_bfd_error_handler)
1725 (_("%B: invalid link %lu for reloc section %s (index %u)"),
1726 abfd, hdr->sh_link, name, shindex));
1727 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1728 shindex);
1729 }
1730
1731 /* For some incomprehensible reason Oracle distributes
1732 libraries for Solaris in which some of the objects have
1733 bogus sh_link fields. It would be nice if we could just
1734 reject them, but, unfortunately, some people need to use
1735 them. We scan through the section headers; if we find only
1736 one suitable symbol table, we clobber the sh_link to point
1737 to it. I hope this doesn't break anything.
1738
1739 Don't do it on executable nor shared library. */
1740 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0
1741 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_SYMTAB
1742 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_DYNSYM)
1743 {
1744 unsigned int scan;
1745 int found;
1746
1747 found = 0;
1748 for (scan = 1; scan < num_sec; scan++)
1749 {
1750 if (elf_elfsections (abfd)[scan]->sh_type == SHT_SYMTAB
1751 || elf_elfsections (abfd)[scan]->sh_type == SHT_DYNSYM)
1752 {
1753 if (found != 0)
1754 {
1755 found = 0;
1756 break;
1757 }
1758 found = scan;
1759 }
1760 }
1761 if (found != 0)
1762 hdr->sh_link = found;
1763 }
1764
1765 /* Get the symbol table. */
1766 if ((elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_SYMTAB
1767 || elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_DYNSYM)
1768 && ! bfd_section_from_shdr (abfd, hdr->sh_link))
1769 return FALSE;
1770
1771 /* If this reloc section does not use the main symbol table we
1772 don't treat it as a reloc section. BFD can't adequately
1773 represent such a section, so at least for now, we don't
1774 try. We just present it as a normal section. We also
1775 can't use it as a reloc section if it points to the null
1776 section, an invalid section, another reloc section, or its
1777 sh_link points to the null section. */
1778 if (hdr->sh_link != elf_onesymtab (abfd)
1779 || hdr->sh_link == SHN_UNDEF
1780 || hdr->sh_info == SHN_UNDEF
1781 || hdr->sh_info >= num_sec
1782 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_REL
1783 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_RELA)
1784 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1785 shindex);
1786
1787 if (! bfd_section_from_shdr (abfd, hdr->sh_info))
1788 return FALSE;
1789 target_sect = bfd_section_from_elf_index (abfd, hdr->sh_info);
1790 if (target_sect == NULL)
1791 return FALSE;
1792
1793 if ((target_sect->flags & SEC_RELOC) == 0
1794 || target_sect->reloc_count == 0)
1795 hdr2 = &elf_section_data (target_sect)->rel_hdr;
1796 else
1797 {
1798 bfd_size_type amt;
1799 BFD_ASSERT (elf_section_data (target_sect)->rel_hdr2 == NULL);
1800 amt = sizeof (*hdr2);
1801 hdr2 = (Elf_Internal_Shdr *) bfd_alloc (abfd, amt);
1802 if (hdr2 == NULL)
1803 return FALSE;
1804 elf_section_data (target_sect)->rel_hdr2 = hdr2;
1805 }
1806 *hdr2 = *hdr;
1807 elf_elfsections (abfd)[shindex] = hdr2;
1808 target_sect->reloc_count += NUM_SHDR_ENTRIES (hdr);
1809 target_sect->flags |= SEC_RELOC;
1810 target_sect->relocation = NULL;
1811 target_sect->rel_filepos = hdr->sh_offset;
1812 /* In the section to which the relocations apply, mark whether
1813 its relocations are of the REL or RELA variety. */
1814 if (hdr->sh_size != 0)
1815 target_sect->use_rela_p = hdr->sh_type == SHT_RELA;
1816 abfd->flags |= HAS_RELOC;
1817 return TRUE;
1818 }
1819
1820 case SHT_GNU_verdef:
1821 elf_dynverdef (abfd) = shindex;
1822 elf_tdata (abfd)->dynverdef_hdr = *hdr;
1823 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1824
1825 case SHT_GNU_versym:
1826 if (hdr->sh_entsize != sizeof (Elf_External_Versym))
1827 return FALSE;
1828 elf_dynversym (abfd) = shindex;
1829 elf_tdata (abfd)->dynversym_hdr = *hdr;
1830 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1831
1832 case SHT_GNU_verneed:
1833 elf_dynverref (abfd) = shindex;
1834 elf_tdata (abfd)->dynverref_hdr = *hdr;
1835 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1836
1837 case SHT_SHLIB:
1838 return TRUE;
1839
1840 case SHT_GROUP:
1841 if (! IS_VALID_GROUP_SECTION_HEADER (hdr))
1842 return FALSE;
1843 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1844 return FALSE;
1845 if (hdr->contents != NULL)
1846 {
1847 Elf_Internal_Group *idx = (Elf_Internal_Group *) hdr->contents;
1848 unsigned int n_elt = hdr->sh_size / GRP_ENTRY_SIZE;
1849 asection *s;
1850
1851 if (idx->flags & GRP_COMDAT)
1852 hdr->bfd_section->flags
1853 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
1854
1855 /* We try to keep the same section order as it comes in. */
1856 idx += n_elt;
1857 while (--n_elt != 0)
1858 {
1859 --idx;
1860
1861 if (idx->shdr != NULL
1862 && (s = idx->shdr->bfd_section) != NULL
1863 && elf_next_in_group (s) != NULL)
1864 {
1865 elf_next_in_group (hdr->bfd_section) = s;
1866 break;
1867 }
1868 }
1869 }
1870 break;
1871
1872 default:
1873 /* Possibly an attributes section. */
1874 if (hdr->sh_type == SHT_GNU_ATTRIBUTES
1875 || hdr->sh_type == bed->obj_attrs_section_type)
1876 {
1877 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1878 return FALSE;
1879 _bfd_elf_parse_attributes (abfd, hdr);
1880 return TRUE;
1881 }
1882
1883 /* Check for any processor-specific section types. */
1884 if (bed->elf_backend_section_from_shdr (abfd, hdr, name, shindex))
1885 return TRUE;
1886
1887 if (hdr->sh_type >= SHT_LOUSER && hdr->sh_type <= SHT_HIUSER)
1888 {
1889 if ((hdr->sh_flags & SHF_ALLOC) != 0)
1890 /* FIXME: How to properly handle allocated section reserved
1891 for applications? */
1892 (*_bfd_error_handler)
1893 (_("%B: don't know how to handle allocated, application "
1894 "specific section `%s' [0x%8x]"),
1895 abfd, name, hdr->sh_type);
1896 else
1897 /* Allow sections reserved for applications. */
1898 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1899 shindex);
1900 }
1901 else if (hdr->sh_type >= SHT_LOPROC
1902 && hdr->sh_type <= SHT_HIPROC)
1903 /* FIXME: We should handle this section. */
1904 (*_bfd_error_handler)
1905 (_("%B: don't know how to handle processor specific section "
1906 "`%s' [0x%8x]"),
1907 abfd, name, hdr->sh_type);
1908 else if (hdr->sh_type >= SHT_LOOS && hdr->sh_type <= SHT_HIOS)
1909 {
1910 /* Unrecognised OS-specific sections. */
1911 if ((hdr->sh_flags & SHF_OS_NONCONFORMING) != 0)
1912 /* SHF_OS_NONCONFORMING indicates that special knowledge is
1913 required to correctly process the section and the file should
1914 be rejected with an error message. */
1915 (*_bfd_error_handler)
1916 (_("%B: don't know how to handle OS specific section "
1917 "`%s' [0x%8x]"),
1918 abfd, name, hdr->sh_type);
1919 else
1920 /* Otherwise it should be processed. */
1921 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1922 }
1923 else
1924 /* FIXME: We should handle this section. */
1925 (*_bfd_error_handler)
1926 (_("%B: don't know how to handle section `%s' [0x%8x]"),
1927 abfd, name, hdr->sh_type);
1928
1929 return FALSE;
1930 }
1931
1932 return TRUE;
1933 }
1934
1935 /* Return the local symbol specified by ABFD, R_SYMNDX. */
1936
1937 Elf_Internal_Sym *
1938 bfd_sym_from_r_symndx (struct sym_cache *cache,
1939 bfd *abfd,
1940 unsigned long r_symndx)
1941 {
1942 unsigned int ent = r_symndx % LOCAL_SYM_CACHE_SIZE;
1943
1944 if (cache->abfd != abfd || cache->indx[ent] != r_symndx)
1945 {
1946 Elf_Internal_Shdr *symtab_hdr;
1947 unsigned char esym[sizeof (Elf64_External_Sym)];
1948 Elf_External_Sym_Shndx eshndx;
1949
1950 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1951 if (bfd_elf_get_elf_syms (abfd, symtab_hdr, 1, r_symndx,
1952 &cache->sym[ent], esym, &eshndx) == NULL)
1953 return NULL;
1954
1955 if (cache->abfd != abfd)
1956 {
1957 memset (cache->indx, -1, sizeof (cache->indx));
1958 cache->abfd = abfd;
1959 }
1960 cache->indx[ent] = r_symndx;
1961 }
1962
1963 return &cache->sym[ent];
1964 }
1965
1966 /* Given an ELF section number, retrieve the corresponding BFD
1967 section. */
1968
1969 asection *
1970 bfd_section_from_elf_index (bfd *abfd, unsigned int sec_index)
1971 {
1972 if (sec_index >= elf_numsections (abfd))
1973 return NULL;
1974 return elf_elfsections (abfd)[sec_index]->bfd_section;
1975 }
1976
1977 static const struct bfd_elf_special_section special_sections_b[] =
1978 {
1979 { STRING_COMMA_LEN (".bss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
1980 { NULL, 0, 0, 0, 0 }
1981 };
1982
1983 static const struct bfd_elf_special_section special_sections_c[] =
1984 {
1985 { STRING_COMMA_LEN (".comment"), 0, SHT_PROGBITS, 0 },
1986 { NULL, 0, 0, 0, 0 }
1987 };
1988
1989 static const struct bfd_elf_special_section special_sections_d[] =
1990 {
1991 { STRING_COMMA_LEN (".data"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
1992 { STRING_COMMA_LEN (".data1"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
1993 { STRING_COMMA_LEN (".debug"), 0, SHT_PROGBITS, 0 },
1994 { STRING_COMMA_LEN (".debug_line"), 0, SHT_PROGBITS, 0 },
1995 { STRING_COMMA_LEN (".debug_info"), 0, SHT_PROGBITS, 0 },
1996 { STRING_COMMA_LEN (".debug_abbrev"), 0, SHT_PROGBITS, 0 },
1997 { STRING_COMMA_LEN (".debug_aranges"), 0, SHT_PROGBITS, 0 },
1998 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC, SHF_ALLOC },
1999 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB, SHF_ALLOC },
2000 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM, SHF_ALLOC },
2001 { NULL, 0, 0, 0, 0 }
2002 };
2003
2004 static const struct bfd_elf_special_section special_sections_f[] =
2005 {
2006 { STRING_COMMA_LEN (".fini"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2007 { STRING_COMMA_LEN (".fini_array"), 0, SHT_FINI_ARRAY, SHF_ALLOC + SHF_WRITE },
2008 { NULL, 0, 0, 0, 0 }
2009 };
2010
2011 static const struct bfd_elf_special_section special_sections_g[] =
2012 {
2013 { STRING_COMMA_LEN (".gnu.linkonce.b"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2014 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2015 { STRING_COMMA_LEN (".gnu.version"), 0, SHT_GNU_versym, 0 },
2016 { STRING_COMMA_LEN (".gnu.version_d"), 0, SHT_GNU_verdef, 0 },
2017 { STRING_COMMA_LEN (".gnu.version_r"), 0, SHT_GNU_verneed, 0 },
2018 { STRING_COMMA_LEN (".gnu.liblist"), 0, SHT_GNU_LIBLIST, SHF_ALLOC },
2019 { STRING_COMMA_LEN (".gnu.conflict"), 0, SHT_RELA, SHF_ALLOC },
2020 { STRING_COMMA_LEN (".gnu.hash"), 0, SHT_GNU_HASH, SHF_ALLOC },
2021 { NULL, 0, 0, 0, 0 }
2022 };
2023
2024 static const struct bfd_elf_special_section special_sections_h[] =
2025 {
2026 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH, SHF_ALLOC },
2027 { NULL, 0, 0, 0, 0 }
2028 };
2029
2030 static const struct bfd_elf_special_section special_sections_i[] =
2031 {
2032 { STRING_COMMA_LEN (".init"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2033 { STRING_COMMA_LEN (".init_array"), 0, SHT_INIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2034 { STRING_COMMA_LEN (".interp"), 0, SHT_PROGBITS, 0 },
2035 { NULL, 0, 0, 0, 0 }
2036 };
2037
2038 static const struct bfd_elf_special_section special_sections_l[] =
2039 {
2040 { STRING_COMMA_LEN (".line"), 0, SHT_PROGBITS, 0 },
2041 { NULL, 0, 0, 0, 0 }
2042 };
2043
2044 static const struct bfd_elf_special_section special_sections_n[] =
2045 {
2046 { STRING_COMMA_LEN (".note.GNU-stack"), 0, SHT_PROGBITS, 0 },
2047 { STRING_COMMA_LEN (".note"), -1, SHT_NOTE, 0 },
2048 { NULL, 0, 0, 0, 0 }
2049 };
2050
2051 static const struct bfd_elf_special_section special_sections_p[] =
2052 {
2053 { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2054 { STRING_COMMA_LEN (".plt"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2055 { NULL, 0, 0, 0, 0 }
2056 };
2057
2058 static const struct bfd_elf_special_section special_sections_r[] =
2059 {
2060 { STRING_COMMA_LEN (".rodata"), -2, SHT_PROGBITS, SHF_ALLOC },
2061 { STRING_COMMA_LEN (".rodata1"), 0, SHT_PROGBITS, SHF_ALLOC },
2062 { STRING_COMMA_LEN (".rela"), -1, SHT_RELA, 0 },
2063 { STRING_COMMA_LEN (".rel"), -1, SHT_REL, 0 },
2064 { NULL, 0, 0, 0, 0 }
2065 };
2066
2067 static const struct bfd_elf_special_section special_sections_s[] =
2068 {
2069 { STRING_COMMA_LEN (".shstrtab"), 0, SHT_STRTAB, 0 },
2070 { STRING_COMMA_LEN (".strtab"), 0, SHT_STRTAB, 0 },
2071 { STRING_COMMA_LEN (".symtab"), 0, SHT_SYMTAB, 0 },
2072 /* See struct bfd_elf_special_section declaration for the semantics of
2073 this special case where .prefix_length != strlen (.prefix). */
2074 { ".stabstr", 5, 3, SHT_STRTAB, 0 },
2075 { NULL, 0, 0, 0, 0 }
2076 };
2077
2078 static const struct bfd_elf_special_section special_sections_t[] =
2079 {
2080 { STRING_COMMA_LEN (".text"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2081 { STRING_COMMA_LEN (".tbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2082 { STRING_COMMA_LEN (".tdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2083 { NULL, 0, 0, 0, 0 }
2084 };
2085
2086 static const struct bfd_elf_special_section special_sections_z[] =
2087 {
2088 { STRING_COMMA_LEN (".zdebug_line"), 0, SHT_PROGBITS, 0 },
2089 { STRING_COMMA_LEN (".zdebug_info"), 0, SHT_PROGBITS, 0 },
2090 { STRING_COMMA_LEN (".zdebug_abbrev"), 0, SHT_PROGBITS, 0 },
2091 { STRING_COMMA_LEN (".zdebug_aranges"), 0, SHT_PROGBITS, 0 },
2092 { NULL, 0, 0, 0, 0 }
2093 };
2094
2095 static const struct bfd_elf_special_section *special_sections[] =
2096 {
2097 special_sections_b, /* 'b' */
2098 special_sections_c, /* 'c' */
2099 special_sections_d, /* 'd' */
2100 NULL, /* 'e' */
2101 special_sections_f, /* 'f' */
2102 special_sections_g, /* 'g' */
2103 special_sections_h, /* 'h' */
2104 special_sections_i, /* 'i' */
2105 NULL, /* 'j' */
2106 NULL, /* 'k' */
2107 special_sections_l, /* 'l' */
2108 NULL, /* 'm' */
2109 special_sections_n, /* 'n' */
2110 NULL, /* 'o' */
2111 special_sections_p, /* 'p' */
2112 NULL, /* 'q' */
2113 special_sections_r, /* 'r' */
2114 special_sections_s, /* 's' */
2115 special_sections_t, /* 't' */
2116 NULL, /* 'u' */
2117 NULL, /* 'v' */
2118 NULL, /* 'w' */
2119 NULL, /* 'x' */
2120 NULL, /* 'y' */
2121 special_sections_z /* 'z' */
2122 };
2123
2124 const struct bfd_elf_special_section *
2125 _bfd_elf_get_special_section (const char *name,
2126 const struct bfd_elf_special_section *spec,
2127 unsigned int rela)
2128 {
2129 int i;
2130 int len;
2131
2132 len = strlen (name);
2133
2134 for (i = 0; spec[i].prefix != NULL; i++)
2135 {
2136 int suffix_len;
2137 int prefix_len = spec[i].prefix_length;
2138
2139 if (len < prefix_len)
2140 continue;
2141 if (memcmp (name, spec[i].prefix, prefix_len) != 0)
2142 continue;
2143
2144 suffix_len = spec[i].suffix_length;
2145 if (suffix_len <= 0)
2146 {
2147 if (name[prefix_len] != 0)
2148 {
2149 if (suffix_len == 0)
2150 continue;
2151 if (name[prefix_len] != '.'
2152 && (suffix_len == -2
2153 || (rela && spec[i].type == SHT_REL)))
2154 continue;
2155 }
2156 }
2157 else
2158 {
2159 if (len < prefix_len + suffix_len)
2160 continue;
2161 if (memcmp (name + len - suffix_len,
2162 spec[i].prefix + prefix_len,
2163 suffix_len) != 0)
2164 continue;
2165 }
2166 return &spec[i];
2167 }
2168
2169 return NULL;
2170 }
2171
2172 const struct bfd_elf_special_section *
2173 _bfd_elf_get_sec_type_attr (bfd *abfd, asection *sec)
2174 {
2175 int i;
2176 const struct bfd_elf_special_section *spec;
2177 const struct elf_backend_data *bed;
2178
2179 /* See if this is one of the special sections. */
2180 if (sec->name == NULL)
2181 return NULL;
2182
2183 bed = get_elf_backend_data (abfd);
2184 spec = bed->special_sections;
2185 if (spec)
2186 {
2187 spec = _bfd_elf_get_special_section (sec->name,
2188 bed->special_sections,
2189 sec->use_rela_p);
2190 if (spec != NULL)
2191 return spec;
2192 }
2193
2194 if (sec->name[0] != '.')
2195 return NULL;
2196
2197 i = sec->name[1] - 'b';
2198 if (i < 0 || i > 'z' - 'b')
2199 return NULL;
2200
2201 spec = special_sections[i];
2202
2203 if (spec == NULL)
2204 return NULL;
2205
2206 return _bfd_elf_get_special_section (sec->name, spec, sec->use_rela_p);
2207 }
2208
2209 bfd_boolean
2210 _bfd_elf_new_section_hook (bfd *abfd, asection *sec)
2211 {
2212 struct bfd_elf_section_data *sdata;
2213 const struct elf_backend_data *bed;
2214 const struct bfd_elf_special_section *ssect;
2215
2216 sdata = (struct bfd_elf_section_data *) sec->used_by_bfd;
2217 if (sdata == NULL)
2218 {
2219 sdata = (struct bfd_elf_section_data *) bfd_zalloc (abfd,
2220 sizeof (*sdata));
2221 if (sdata == NULL)
2222 return FALSE;
2223 sec->used_by_bfd = sdata;
2224 }
2225
2226 /* Indicate whether or not this section should use RELA relocations. */
2227 bed = get_elf_backend_data (abfd);
2228 sec->use_rela_p = bed->default_use_rela_p;
2229
2230 /* When we read a file, we don't need to set ELF section type and
2231 flags. They will be overridden in _bfd_elf_make_section_from_shdr
2232 anyway. We will set ELF section type and flags for all linker
2233 created sections. If user specifies BFD section flags, we will
2234 set ELF section type and flags based on BFD section flags in
2235 elf_fake_sections. */
2236 if ((!sec->flags && abfd->direction != read_direction)
2237 || (sec->flags & SEC_LINKER_CREATED) != 0)
2238 {
2239 ssect = (*bed->get_sec_type_attr) (abfd, sec);
2240 if (ssect != NULL)
2241 {
2242 elf_section_type (sec) = ssect->type;
2243 elf_section_flags (sec) = ssect->attr;
2244 }
2245 }
2246
2247 return _bfd_generic_new_section_hook (abfd, sec);
2248 }
2249
2250 /* Create a new bfd section from an ELF program header.
2251
2252 Since program segments have no names, we generate a synthetic name
2253 of the form segment<NUM>, where NUM is generally the index in the
2254 program header table. For segments that are split (see below) we
2255 generate the names segment<NUM>a and segment<NUM>b.
2256
2257 Note that some program segments may have a file size that is different than
2258 (less than) the memory size. All this means is that at execution the
2259 system must allocate the amount of memory specified by the memory size,
2260 but only initialize it with the first "file size" bytes read from the
2261 file. This would occur for example, with program segments consisting
2262 of combined data+bss.
2263
2264 To handle the above situation, this routine generates TWO bfd sections
2265 for the single program segment. The first has the length specified by
2266 the file size of the segment, and the second has the length specified
2267 by the difference between the two sizes. In effect, the segment is split
2268 into its initialized and uninitialized parts.
2269
2270 */
2271
2272 bfd_boolean
2273 _bfd_elf_make_section_from_phdr (bfd *abfd,
2274 Elf_Internal_Phdr *hdr,
2275 int hdr_index,
2276 const char *type_name)
2277 {
2278 asection *newsect;
2279 char *name;
2280 char namebuf[64];
2281 size_t len;
2282 int split;
2283
2284 split = ((hdr->p_memsz > 0)
2285 && (hdr->p_filesz > 0)
2286 && (hdr->p_memsz > hdr->p_filesz));
2287
2288 if (hdr->p_filesz > 0)
2289 {
2290 sprintf (namebuf, "%s%d%s", type_name, hdr_index, split ? "a" : "");
2291 len = strlen (namebuf) + 1;
2292 name = (char *) bfd_alloc (abfd, len);
2293 if (!name)
2294 return FALSE;
2295 memcpy (name, namebuf, len);
2296 newsect = bfd_make_section (abfd, name);
2297 if (newsect == NULL)
2298 return FALSE;
2299 newsect->vma = hdr->p_vaddr;
2300 newsect->lma = hdr->p_paddr;
2301 newsect->size = hdr->p_filesz;
2302 newsect->filepos = hdr->p_offset;
2303 newsect->flags |= SEC_HAS_CONTENTS;
2304 newsect->alignment_power = bfd_log2 (hdr->p_align);
2305 if (hdr->p_type == PT_LOAD)
2306 {
2307 newsect->flags |= SEC_ALLOC;
2308 newsect->flags |= SEC_LOAD;
2309 if (hdr->p_flags & PF_X)
2310 {
2311 /* FIXME: all we known is that it has execute PERMISSION,
2312 may be data. */
2313 newsect->flags |= SEC_CODE;
2314 }
2315 }
2316 if (!(hdr->p_flags & PF_W))
2317 {
2318 newsect->flags |= SEC_READONLY;
2319 }
2320 }
2321
2322 if (hdr->p_memsz > hdr->p_filesz)
2323 {
2324 bfd_vma align;
2325
2326 sprintf (namebuf, "%s%d%s", type_name, hdr_index, split ? "b" : "");
2327 len = strlen (namebuf) + 1;
2328 name = (char *) bfd_alloc (abfd, len);
2329 if (!name)
2330 return FALSE;
2331 memcpy (name, namebuf, len);
2332 newsect = bfd_make_section (abfd, name);
2333 if (newsect == NULL)
2334 return FALSE;
2335 newsect->vma = hdr->p_vaddr + hdr->p_filesz;
2336 newsect->lma = hdr->p_paddr + hdr->p_filesz;
2337 newsect->size = hdr->p_memsz - hdr->p_filesz;
2338 newsect->filepos = hdr->p_offset + hdr->p_filesz;
2339 align = newsect->vma & -newsect->vma;
2340 if (align == 0 || align > hdr->p_align)
2341 align = hdr->p_align;
2342 newsect->alignment_power = bfd_log2 (align);
2343 if (hdr->p_type == PT_LOAD)
2344 {
2345 /* Hack for gdb. Segments that have not been modified do
2346 not have their contents written to a core file, on the
2347 assumption that a debugger can find the contents in the
2348 executable. We flag this case by setting the fake
2349 section size to zero. Note that "real" bss sections will
2350 always have their contents dumped to the core file. */
2351 if (bfd_get_format (abfd) == bfd_core)
2352 newsect->size = 0;
2353 newsect->flags |= SEC_ALLOC;
2354 if (hdr->p_flags & PF_X)
2355 newsect->flags |= SEC_CODE;
2356 }
2357 if (!(hdr->p_flags & PF_W))
2358 newsect->flags |= SEC_READONLY;
2359 }
2360
2361 return TRUE;
2362 }
2363
2364 bfd_boolean
2365 bfd_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int hdr_index)
2366 {
2367 const struct elf_backend_data *bed;
2368
2369 switch (hdr->p_type)
2370 {
2371 case PT_NULL:
2372 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "null");
2373
2374 case PT_LOAD:
2375 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "load");
2376
2377 case PT_DYNAMIC:
2378 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "dynamic");
2379
2380 case PT_INTERP:
2381 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "interp");
2382
2383 case PT_NOTE:
2384 if (! _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "note"))
2385 return FALSE;
2386 if (! elf_read_notes (abfd, hdr->p_offset, hdr->p_filesz))
2387 return FALSE;
2388 return TRUE;
2389
2390 case PT_SHLIB:
2391 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "shlib");
2392
2393 case PT_PHDR:
2394 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "phdr");
2395
2396 case PT_GNU_EH_FRAME:
2397 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index,
2398 "eh_frame_hdr");
2399
2400 case PT_GNU_STACK:
2401 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "stack");
2402
2403 case PT_GNU_RELRO:
2404 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "relro");
2405
2406 default:
2407 /* Check for any processor-specific program segment types. */
2408 bed = get_elf_backend_data (abfd);
2409 return bed->elf_backend_section_from_phdr (abfd, hdr, hdr_index, "proc");
2410 }
2411 }
2412
2413 /* Initialize REL_HDR, the section-header for new section, containing
2414 relocations against ASECT. If USE_RELA_P is TRUE, we use RELA
2415 relocations; otherwise, we use REL relocations. */
2416
2417 bfd_boolean
2418 _bfd_elf_init_reloc_shdr (bfd *abfd,
2419 Elf_Internal_Shdr *rel_hdr,
2420 asection *asect,
2421 bfd_boolean use_rela_p)
2422 {
2423 char *name;
2424 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2425 bfd_size_type amt = sizeof ".rela" + strlen (asect->name);
2426
2427 name = (char *) bfd_alloc (abfd, amt);
2428 if (name == NULL)
2429 return FALSE;
2430 sprintf (name, "%s%s", use_rela_p ? ".rela" : ".rel", asect->name);
2431 rel_hdr->sh_name =
2432 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd), name,
2433 FALSE);
2434 if (rel_hdr->sh_name == (unsigned int) -1)
2435 return FALSE;
2436 rel_hdr->sh_type = use_rela_p ? SHT_RELA : SHT_REL;
2437 rel_hdr->sh_entsize = (use_rela_p
2438 ? bed->s->sizeof_rela
2439 : bed->s->sizeof_rel);
2440 rel_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
2441 rel_hdr->sh_flags = 0;
2442 rel_hdr->sh_addr = 0;
2443 rel_hdr->sh_size = 0;
2444 rel_hdr->sh_offset = 0;
2445
2446 return TRUE;
2447 }
2448
2449 /* Return the default section type based on the passed in section flags. */
2450
2451 int
2452 bfd_elf_get_default_section_type (flagword flags)
2453 {
2454 if ((flags & SEC_ALLOC) != 0
2455 && (flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
2456 return SHT_NOBITS;
2457 return SHT_PROGBITS;
2458 }
2459
2460 /* Set up an ELF internal section header for a section. */
2461
2462 static void
2463 elf_fake_sections (bfd *abfd, asection *asect, void *failedptrarg)
2464 {
2465 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2466 bfd_boolean *failedptr = (bfd_boolean *) failedptrarg;
2467 Elf_Internal_Shdr *this_hdr;
2468 unsigned int sh_type;
2469
2470 if (*failedptr)
2471 {
2472 /* We already failed; just get out of the bfd_map_over_sections
2473 loop. */
2474 return;
2475 }
2476
2477 this_hdr = &elf_section_data (asect)->this_hdr;
2478
2479 this_hdr->sh_name = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
2480 asect->name, FALSE);
2481 if (this_hdr->sh_name == (unsigned int) -1)
2482 {
2483 *failedptr = TRUE;
2484 return;
2485 }
2486
2487 /* Don't clear sh_flags. Assembler may set additional bits. */
2488
2489 if ((asect->flags & SEC_ALLOC) != 0
2490 || asect->user_set_vma)
2491 this_hdr->sh_addr = asect->vma;
2492 else
2493 this_hdr->sh_addr = 0;
2494
2495 this_hdr->sh_offset = 0;
2496 this_hdr->sh_size = asect->size;
2497 this_hdr->sh_link = 0;
2498 this_hdr->sh_addralign = (bfd_vma) 1 << asect->alignment_power;
2499 /* The sh_entsize and sh_info fields may have been set already by
2500 copy_private_section_data. */
2501
2502 this_hdr->bfd_section = asect;
2503 this_hdr->contents = NULL;
2504
2505 /* If the section type is unspecified, we set it based on
2506 asect->flags. */
2507 if ((asect->flags & SEC_GROUP) != 0)
2508 sh_type = SHT_GROUP;
2509 else
2510 sh_type = bfd_elf_get_default_section_type (asect->flags);
2511
2512 if (this_hdr->sh_type == SHT_NULL)
2513 this_hdr->sh_type = sh_type;
2514 else if (this_hdr->sh_type == SHT_NOBITS
2515 && sh_type == SHT_PROGBITS
2516 && (asect->flags & SEC_ALLOC) != 0)
2517 {
2518 /* Warn if we are changing a NOBITS section to PROGBITS, but
2519 allow the link to proceed. This can happen when users link
2520 non-bss input sections to bss output sections, or emit data
2521 to a bss output section via a linker script. */
2522 (*_bfd_error_handler)
2523 (_("warning: section `%A' type changed to PROGBITS"), asect);
2524 this_hdr->sh_type = sh_type;
2525 }
2526
2527 switch (this_hdr->sh_type)
2528 {
2529 default:
2530 break;
2531
2532 case SHT_STRTAB:
2533 case SHT_INIT_ARRAY:
2534 case SHT_FINI_ARRAY:
2535 case SHT_PREINIT_ARRAY:
2536 case SHT_NOTE:
2537 case SHT_NOBITS:
2538 case SHT_PROGBITS:
2539 break;
2540
2541 case SHT_HASH:
2542 this_hdr->sh_entsize = bed->s->sizeof_hash_entry;
2543 break;
2544
2545 case SHT_DYNSYM:
2546 this_hdr->sh_entsize = bed->s->sizeof_sym;
2547 break;
2548
2549 case SHT_DYNAMIC:
2550 this_hdr->sh_entsize = bed->s->sizeof_dyn;
2551 break;
2552
2553 case SHT_RELA:
2554 if (get_elf_backend_data (abfd)->may_use_rela_p)
2555 this_hdr->sh_entsize = bed->s->sizeof_rela;
2556 break;
2557
2558 case SHT_REL:
2559 if (get_elf_backend_data (abfd)->may_use_rel_p)
2560 this_hdr->sh_entsize = bed->s->sizeof_rel;
2561 break;
2562
2563 case SHT_GNU_versym:
2564 this_hdr->sh_entsize = sizeof (Elf_External_Versym);
2565 break;
2566
2567 case SHT_GNU_verdef:
2568 this_hdr->sh_entsize = 0;
2569 /* objcopy or strip will copy over sh_info, but may not set
2570 cverdefs. The linker will set cverdefs, but sh_info will be
2571 zero. */
2572 if (this_hdr->sh_info == 0)
2573 this_hdr->sh_info = elf_tdata (abfd)->cverdefs;
2574 else
2575 BFD_ASSERT (elf_tdata (abfd)->cverdefs == 0
2576 || this_hdr->sh_info == elf_tdata (abfd)->cverdefs);
2577 break;
2578
2579 case SHT_GNU_verneed:
2580 this_hdr->sh_entsize = 0;
2581 /* objcopy or strip will copy over sh_info, but may not set
2582 cverrefs. The linker will set cverrefs, but sh_info will be
2583 zero. */
2584 if (this_hdr->sh_info == 0)
2585 this_hdr->sh_info = elf_tdata (abfd)->cverrefs;
2586 else
2587 BFD_ASSERT (elf_tdata (abfd)->cverrefs == 0
2588 || this_hdr->sh_info == elf_tdata (abfd)->cverrefs);
2589 break;
2590
2591 case SHT_GROUP:
2592 this_hdr->sh_entsize = GRP_ENTRY_SIZE;
2593 break;
2594
2595 case SHT_GNU_HASH:
2596 this_hdr->sh_entsize = bed->s->arch_size == 64 ? 0 : 4;
2597 break;
2598 }
2599
2600 if ((asect->flags & SEC_ALLOC) != 0)
2601 this_hdr->sh_flags |= SHF_ALLOC;
2602 if ((asect->flags & SEC_READONLY) == 0)
2603 this_hdr->sh_flags |= SHF_WRITE;
2604 if ((asect->flags & SEC_CODE) != 0)
2605 this_hdr->sh_flags |= SHF_EXECINSTR;
2606 if ((asect->flags & SEC_MERGE) != 0)
2607 {
2608 this_hdr->sh_flags |= SHF_MERGE;
2609 this_hdr->sh_entsize = asect->entsize;
2610 if ((asect->flags & SEC_STRINGS) != 0)
2611 this_hdr->sh_flags |= SHF_STRINGS;
2612 }
2613 if ((asect->flags & SEC_GROUP) == 0 && elf_group_name (asect) != NULL)
2614 this_hdr->sh_flags |= SHF_GROUP;
2615 if ((asect->flags & SEC_THREAD_LOCAL) != 0)
2616 {
2617 this_hdr->sh_flags |= SHF_TLS;
2618 if (asect->size == 0
2619 && (asect->flags & SEC_HAS_CONTENTS) == 0)
2620 {
2621 struct bfd_link_order *o = asect->map_tail.link_order;
2622
2623 this_hdr->sh_size = 0;
2624 if (o != NULL)
2625 {
2626 this_hdr->sh_size = o->offset + o->size;
2627 if (this_hdr->sh_size != 0)
2628 this_hdr->sh_type = SHT_NOBITS;
2629 }
2630 }
2631 }
2632 if ((asect->flags & (SEC_GROUP | SEC_EXCLUDE)) == SEC_EXCLUDE)
2633 this_hdr->sh_flags |= SHF_EXCLUDE;
2634
2635 /* Check for processor-specific section types. */
2636 sh_type = this_hdr->sh_type;
2637 if (bed->elf_backend_fake_sections
2638 && !(*bed->elf_backend_fake_sections) (abfd, this_hdr, asect))
2639 *failedptr = TRUE;
2640
2641 if (sh_type == SHT_NOBITS && asect->size != 0)
2642 {
2643 /* Don't change the header type from NOBITS if we are being
2644 called for objcopy --only-keep-debug. */
2645 this_hdr->sh_type = sh_type;
2646 }
2647
2648 /* If the section has relocs, set up a section header for the
2649 SHT_REL[A] section. If two relocation sections are required for
2650 this section, it is up to the processor-specific back-end to
2651 create the other. */
2652 if ((asect->flags & SEC_RELOC) != 0
2653 && !_bfd_elf_init_reloc_shdr (abfd,
2654 &elf_section_data (asect)->rel_hdr,
2655 asect,
2656 asect->use_rela_p))
2657 *failedptr = TRUE;
2658 }
2659
2660 /* Fill in the contents of a SHT_GROUP section. Called from
2661 _bfd_elf_compute_section_file_positions for gas, objcopy, and
2662 when ELF targets use the generic linker, ld. Called for ld -r
2663 from bfd_elf_final_link. */
2664
2665 void
2666 bfd_elf_set_group_contents (bfd *abfd, asection *sec, void *failedptrarg)
2667 {
2668 bfd_boolean *failedptr = (bfd_boolean *) failedptrarg;
2669 asection *elt, *first;
2670 unsigned char *loc;
2671 bfd_boolean gas;
2672
2673 /* Ignore linker created group section. See elfNN_ia64_object_p in
2674 elfxx-ia64.c. */
2675 if (((sec->flags & (SEC_GROUP | SEC_LINKER_CREATED)) != SEC_GROUP)
2676 || *failedptr)
2677 return;
2678
2679 if (elf_section_data (sec)->this_hdr.sh_info == 0)
2680 {
2681 unsigned long symindx = 0;
2682
2683 /* elf_group_id will have been set up by objcopy and the
2684 generic linker. */
2685 if (elf_group_id (sec) != NULL)
2686 symindx = elf_group_id (sec)->udata.i;
2687
2688 if (symindx == 0)
2689 {
2690 /* If called from the assembler, swap_out_syms will have set up
2691 elf_section_syms. */
2692 BFD_ASSERT (elf_section_syms (abfd) != NULL);
2693 symindx = elf_section_syms (abfd)[sec->index]->udata.i;
2694 }
2695 elf_section_data (sec)->this_hdr.sh_info = symindx;
2696 }
2697 else if (elf_section_data (sec)->this_hdr.sh_info == (unsigned int) -2)
2698 {
2699 /* The ELF backend linker sets sh_info to -2 when the group
2700 signature symbol is global, and thus the index can't be
2701 set until all local symbols are output. */
2702 asection *igroup = elf_sec_group (elf_next_in_group (sec));
2703 struct bfd_elf_section_data *sec_data = elf_section_data (igroup);
2704 unsigned long symndx = sec_data->this_hdr.sh_info;
2705 unsigned long extsymoff = 0;
2706 struct elf_link_hash_entry *h;
2707
2708 if (!elf_bad_symtab (igroup->owner))
2709 {
2710 Elf_Internal_Shdr *symtab_hdr;
2711
2712 symtab_hdr = &elf_tdata (igroup->owner)->symtab_hdr;
2713 extsymoff = symtab_hdr->sh_info;
2714 }
2715 h = elf_sym_hashes (igroup->owner)[symndx - extsymoff];
2716 while (h->root.type == bfd_link_hash_indirect
2717 || h->root.type == bfd_link_hash_warning)
2718 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2719
2720 elf_section_data (sec)->this_hdr.sh_info = h->indx;
2721 }
2722
2723 /* The contents won't be allocated for "ld -r" or objcopy. */
2724 gas = TRUE;
2725 if (sec->contents == NULL)
2726 {
2727 gas = FALSE;
2728 sec->contents = (unsigned char *) bfd_alloc (abfd, sec->size);
2729
2730 /* Arrange for the section to be written out. */
2731 elf_section_data (sec)->this_hdr.contents = sec->contents;
2732 if (sec->contents == NULL)
2733 {
2734 *failedptr = TRUE;
2735 return;
2736 }
2737 }
2738
2739 loc = sec->contents + sec->size;
2740
2741 /* Get the pointer to the first section in the group that gas
2742 squirreled away here. objcopy arranges for this to be set to the
2743 start of the input section group. */
2744 first = elt = elf_next_in_group (sec);
2745
2746 /* First element is a flag word. Rest of section is elf section
2747 indices for all the sections of the group. Write them backwards
2748 just to keep the group in the same order as given in .section
2749 directives, not that it matters. */
2750 while (elt != NULL)
2751 {
2752 asection *s;
2753
2754 s = elt;
2755 if (!gas)
2756 s = s->output_section;
2757 if (s != NULL
2758 && !bfd_is_abs_section (s))
2759 {
2760 unsigned int idx = elf_section_data (s)->this_idx;
2761
2762 loc -= 4;
2763 H_PUT_32 (abfd, idx, loc);
2764 }
2765 elt = elf_next_in_group (elt);
2766 if (elt == first)
2767 break;
2768 }
2769
2770 if ((loc -= 4) != sec->contents)
2771 abort ();
2772
2773 H_PUT_32 (abfd, sec->flags & SEC_LINK_ONCE ? GRP_COMDAT : 0, loc);
2774 }
2775
2776 /* Assign all ELF section numbers. The dummy first section is handled here
2777 too. The link/info pointers for the standard section types are filled
2778 in here too, while we're at it. */
2779
2780 static bfd_boolean
2781 assign_section_numbers (bfd *abfd, struct bfd_link_info *link_info)
2782 {
2783 struct elf_obj_tdata *t = elf_tdata (abfd);
2784 asection *sec;
2785 unsigned int section_number, secn;
2786 Elf_Internal_Shdr **i_shdrp;
2787 struct bfd_elf_section_data *d;
2788 bfd_boolean need_symtab;
2789
2790 section_number = 1;
2791
2792 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd));
2793
2794 /* SHT_GROUP sections are in relocatable files only. */
2795 if (link_info == NULL || link_info->relocatable)
2796 {
2797 /* Put SHT_GROUP sections first. */
2798 for (sec = abfd->sections; sec != NULL; sec = sec->next)
2799 {
2800 d = elf_section_data (sec);
2801
2802 if (d->this_hdr.sh_type == SHT_GROUP)
2803 {
2804 if (sec->flags & SEC_LINKER_CREATED)
2805 {
2806 /* Remove the linker created SHT_GROUP sections. */
2807 bfd_section_list_remove (abfd, sec);
2808 abfd->section_count--;
2809 }
2810 else
2811 d->this_idx = section_number++;
2812 }
2813 }
2814 }
2815
2816 for (sec = abfd->sections; sec; sec = sec->next)
2817 {
2818 d = elf_section_data (sec);
2819
2820 if (d->this_hdr.sh_type != SHT_GROUP)
2821 d->this_idx = section_number++;
2822 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->this_hdr.sh_name);
2823 if ((sec->flags & SEC_RELOC) == 0)
2824 d->rel_idx = 0;
2825 else
2826 {
2827 d->rel_idx = section_number++;
2828 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel_hdr.sh_name);
2829 }
2830
2831 if (d->rel_hdr2)
2832 {
2833 d->rel_idx2 = section_number++;
2834 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel_hdr2->sh_name);
2835 }
2836 else
2837 d->rel_idx2 = 0;
2838 }
2839
2840 t->shstrtab_section = section_number++;
2841 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->shstrtab_hdr.sh_name);
2842 elf_elfheader (abfd)->e_shstrndx = t->shstrtab_section;
2843
2844 need_symtab = (bfd_get_symcount (abfd) > 0
2845 || (link_info == NULL
2846 && ((abfd->flags & (EXEC_P | DYNAMIC | HAS_RELOC))
2847 == HAS_RELOC)));
2848 if (need_symtab)
2849 {
2850 t->symtab_section = section_number++;
2851 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->symtab_hdr.sh_name);
2852 if (section_number > ((SHN_LORESERVE - 2) & 0xFFFF))
2853 {
2854 t->symtab_shndx_section = section_number++;
2855 t->symtab_shndx_hdr.sh_name
2856 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
2857 ".symtab_shndx", FALSE);
2858 if (t->symtab_shndx_hdr.sh_name == (unsigned int) -1)
2859 return FALSE;
2860 }
2861 t->strtab_section = section_number++;
2862 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->strtab_hdr.sh_name);
2863 }
2864
2865 _bfd_elf_strtab_finalize (elf_shstrtab (abfd));
2866 t->shstrtab_hdr.sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
2867
2868 elf_numsections (abfd) = section_number;
2869 elf_elfheader (abfd)->e_shnum = section_number;
2870
2871 /* Set up the list of section header pointers, in agreement with the
2872 indices. */
2873 i_shdrp = (Elf_Internal_Shdr **) bfd_zalloc2 (abfd, section_number,
2874 sizeof (Elf_Internal_Shdr *));
2875 if (i_shdrp == NULL)
2876 return FALSE;
2877
2878 i_shdrp[0] = (Elf_Internal_Shdr *) bfd_zalloc (abfd,
2879 sizeof (Elf_Internal_Shdr));
2880 if (i_shdrp[0] == NULL)
2881 {
2882 bfd_release (abfd, i_shdrp);
2883 return FALSE;
2884 }
2885
2886 elf_elfsections (abfd) = i_shdrp;
2887
2888 i_shdrp[t->shstrtab_section] = &t->shstrtab_hdr;
2889 if (need_symtab)
2890 {
2891 i_shdrp[t->symtab_section] = &t->symtab_hdr;
2892 if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
2893 {
2894 i_shdrp[t->symtab_shndx_section] = &t->symtab_shndx_hdr;
2895 t->symtab_shndx_hdr.sh_link = t->symtab_section;
2896 }
2897 i_shdrp[t->strtab_section] = &t->strtab_hdr;
2898 t->symtab_hdr.sh_link = t->strtab_section;
2899 }
2900
2901 for (sec = abfd->sections; sec; sec = sec->next)
2902 {
2903 asection *s;
2904 const char *name;
2905
2906 d = elf_section_data (sec);
2907
2908 i_shdrp[d->this_idx] = &d->this_hdr;
2909 if (d->rel_idx != 0)
2910 i_shdrp[d->rel_idx] = &d->rel_hdr;
2911 if (d->rel_idx2 != 0)
2912 i_shdrp[d->rel_idx2] = d->rel_hdr2;
2913
2914 /* Fill in the sh_link and sh_info fields while we're at it. */
2915
2916 /* sh_link of a reloc section is the section index of the symbol
2917 table. sh_info is the section index of the section to which
2918 the relocation entries apply. */
2919 if (d->rel_idx != 0)
2920 {
2921 d->rel_hdr.sh_link = t->symtab_section;
2922 d->rel_hdr.sh_info = d->this_idx;
2923 }
2924 if (d->rel_idx2 != 0)
2925 {
2926 d->rel_hdr2->sh_link = t->symtab_section;
2927 d->rel_hdr2->sh_info = d->this_idx;
2928 }
2929
2930 /* We need to set up sh_link for SHF_LINK_ORDER. */
2931 if ((d->this_hdr.sh_flags & SHF_LINK_ORDER) != 0)
2932 {
2933 s = elf_linked_to_section (sec);
2934 if (s)
2935 {
2936 /* elf_linked_to_section points to the input section. */
2937 if (link_info != NULL)
2938 {
2939 /* Check discarded linkonce section. */
2940 if (elf_discarded_section (s))
2941 {
2942 asection *kept;
2943 (*_bfd_error_handler)
2944 (_("%B: sh_link of section `%A' points to discarded section `%A' of `%B'"),
2945 abfd, d->this_hdr.bfd_section,
2946 s, s->owner);
2947 /* Point to the kept section if it has the same
2948 size as the discarded one. */
2949 kept = _bfd_elf_check_kept_section (s, link_info);
2950 if (kept == NULL)
2951 {
2952 bfd_set_error (bfd_error_bad_value);
2953 return FALSE;
2954 }
2955 s = kept;
2956 }
2957
2958 s = s->output_section;
2959 BFD_ASSERT (s != NULL);
2960 }
2961 else
2962 {
2963 /* Handle objcopy. */
2964 if (s->output_section == NULL)
2965 {
2966 (*_bfd_error_handler)
2967 (_("%B: sh_link of section `%A' points to removed section `%A' of `%B'"),
2968 abfd, d->this_hdr.bfd_section, s, s->owner);
2969 bfd_set_error (bfd_error_bad_value);
2970 return FALSE;
2971 }
2972 s = s->output_section;
2973 }
2974 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
2975 }
2976 else
2977 {
2978 /* PR 290:
2979 The Intel C compiler generates SHT_IA_64_UNWIND with
2980 SHF_LINK_ORDER. But it doesn't set the sh_link or
2981 sh_info fields. Hence we could get the situation
2982 where s is NULL. */
2983 const struct elf_backend_data *bed
2984 = get_elf_backend_data (abfd);
2985 if (bed->link_order_error_handler)
2986 bed->link_order_error_handler
2987 (_("%B: warning: sh_link not set for section `%A'"),
2988 abfd, sec);
2989 }
2990 }
2991
2992 switch (d->this_hdr.sh_type)
2993 {
2994 case SHT_REL:
2995 case SHT_RELA:
2996 /* A reloc section which we are treating as a normal BFD
2997 section. sh_link is the section index of the symbol
2998 table. sh_info is the section index of the section to
2999 which the relocation entries apply. We assume that an
3000 allocated reloc section uses the dynamic symbol table.
3001 FIXME: How can we be sure? */
3002 s = bfd_get_section_by_name (abfd, ".dynsym");
3003 if (s != NULL)
3004 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3005
3006 /* We look up the section the relocs apply to by name. */
3007 name = sec->name;
3008 if (d->this_hdr.sh_type == SHT_REL)
3009 name += 4;
3010 else
3011 name += 5;
3012 s = bfd_get_section_by_name (abfd, name);
3013 if (s != NULL)
3014 d->this_hdr.sh_info = elf_section_data (s)->this_idx;
3015 break;
3016
3017 case SHT_STRTAB:
3018 /* We assume that a section named .stab*str is a stabs
3019 string section. We look for a section with the same name
3020 but without the trailing ``str'', and set its sh_link
3021 field to point to this section. */
3022 if (CONST_STRNEQ (sec->name, ".stab")
3023 && strcmp (sec->name + strlen (sec->name) - 3, "str") == 0)
3024 {
3025 size_t len;
3026 char *alc;
3027
3028 len = strlen (sec->name);
3029 alc = (char *) bfd_malloc (len - 2);
3030 if (alc == NULL)
3031 return FALSE;
3032 memcpy (alc, sec->name, len - 3);
3033 alc[len - 3] = '\0';
3034 s = bfd_get_section_by_name (abfd, alc);
3035 free (alc);
3036 if (s != NULL)
3037 {
3038 elf_section_data (s)->this_hdr.sh_link = d->this_idx;
3039
3040 /* This is a .stab section. */
3041 if (elf_section_data (s)->this_hdr.sh_entsize == 0)
3042 elf_section_data (s)->this_hdr.sh_entsize
3043 = 4 + 2 * bfd_get_arch_size (abfd) / 8;
3044 }
3045 }
3046 break;
3047
3048 case SHT_DYNAMIC:
3049 case SHT_DYNSYM:
3050 case SHT_GNU_verneed:
3051 case SHT_GNU_verdef:
3052 /* sh_link is the section header index of the string table
3053 used for the dynamic entries, or the symbol table, or the
3054 version strings. */
3055 s = bfd_get_section_by_name (abfd, ".dynstr");
3056 if (s != NULL)
3057 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3058 break;
3059
3060 case SHT_GNU_LIBLIST:
3061 /* sh_link is the section header index of the prelink library
3062 list used for the dynamic entries, or the symbol table, or
3063 the version strings. */
3064 s = bfd_get_section_by_name (abfd, (sec->flags & SEC_ALLOC)
3065 ? ".dynstr" : ".gnu.libstr");
3066 if (s != NULL)
3067 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3068 break;
3069
3070 case SHT_HASH:
3071 case SHT_GNU_HASH:
3072 case SHT_GNU_versym:
3073 /* sh_link is the section header index of the symbol table
3074 this hash table or version table is for. */
3075 s = bfd_get_section_by_name (abfd, ".dynsym");
3076 if (s != NULL)
3077 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3078 break;
3079
3080 case SHT_GROUP:
3081 d->this_hdr.sh_link = t->symtab_section;
3082 }
3083 }
3084
3085 for (secn = 1; secn < section_number; ++secn)
3086 if (i_shdrp[secn] == NULL)
3087 i_shdrp[secn] = i_shdrp[0];
3088 else
3089 i_shdrp[secn]->sh_name = _bfd_elf_strtab_offset (elf_shstrtab (abfd),
3090 i_shdrp[secn]->sh_name);
3091 return TRUE;
3092 }
3093
3094 /* Map symbol from it's internal number to the external number, moving
3095 all local symbols to be at the head of the list. */
3096
3097 static bfd_boolean
3098 sym_is_global (bfd *abfd, asymbol *sym)
3099 {
3100 /* If the backend has a special mapping, use it. */
3101 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3102 if (bed->elf_backend_sym_is_global)
3103 return (*bed->elf_backend_sym_is_global) (abfd, sym);
3104
3105 return ((sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE)) != 0
3106 || bfd_is_und_section (bfd_get_section (sym))
3107 || bfd_is_com_section (bfd_get_section (sym)));
3108 }
3109
3110 /* Don't output section symbols for sections that are not going to be
3111 output. */
3112
3113 static bfd_boolean
3114 ignore_section_sym (bfd *abfd, asymbol *sym)
3115 {
3116 return ((sym->flags & BSF_SECTION_SYM) != 0
3117 && !(sym->section->owner == abfd
3118 || (sym->section->output_section->owner == abfd
3119 && sym->section->output_offset == 0)));
3120 }
3121
3122 static bfd_boolean
3123 elf_map_symbols (bfd *abfd)
3124 {
3125 unsigned int symcount = bfd_get_symcount (abfd);
3126 asymbol **syms = bfd_get_outsymbols (abfd);
3127 asymbol **sect_syms;
3128 unsigned int num_locals = 0;
3129 unsigned int num_globals = 0;
3130 unsigned int num_locals2 = 0;
3131 unsigned int num_globals2 = 0;
3132 int max_index = 0;
3133 unsigned int idx;
3134 asection *asect;
3135 asymbol **new_syms;
3136
3137 #ifdef DEBUG
3138 fprintf (stderr, "elf_map_symbols\n");
3139 fflush (stderr);
3140 #endif
3141
3142 for (asect = abfd->sections; asect; asect = asect->next)
3143 {
3144 if (max_index < asect->index)
3145 max_index = asect->index;
3146 }
3147
3148 max_index++;
3149 sect_syms = (asymbol **) bfd_zalloc2 (abfd, max_index, sizeof (asymbol *));
3150 if (sect_syms == NULL)
3151 return FALSE;
3152 elf_section_syms (abfd) = sect_syms;
3153 elf_num_section_syms (abfd) = max_index;
3154
3155 /* Init sect_syms entries for any section symbols we have already
3156 decided to output. */
3157 for (idx = 0; idx < symcount; idx++)
3158 {
3159 asymbol *sym = syms[idx];
3160
3161 if ((sym->flags & BSF_SECTION_SYM) != 0
3162 && sym->value == 0
3163 && !ignore_section_sym (abfd, sym))
3164 {
3165 asection *sec = sym->section;
3166
3167 if (sec->owner != abfd)
3168 sec = sec->output_section;
3169
3170 sect_syms[sec->index] = syms[idx];
3171 }
3172 }
3173
3174 /* Classify all of the symbols. */
3175 for (idx = 0; idx < symcount; idx++)
3176 {
3177 if (ignore_section_sym (abfd, syms[idx]))
3178 continue;
3179 if (!sym_is_global (abfd, syms[idx]))
3180 num_locals++;
3181 else
3182 num_globals++;
3183 }
3184
3185 /* We will be adding a section symbol for each normal BFD section. Most
3186 sections will already have a section symbol in outsymbols, but
3187 eg. SHT_GROUP sections will not, and we need the section symbol mapped
3188 at least in that case. */
3189 for (asect = abfd->sections; asect; asect = asect->next)
3190 {
3191 if (sect_syms[asect->index] == NULL)
3192 {
3193 if (!sym_is_global (abfd, asect->symbol))
3194 num_locals++;
3195 else
3196 num_globals++;
3197 }
3198 }
3199
3200 /* Now sort the symbols so the local symbols are first. */
3201 new_syms = (asymbol **) bfd_alloc2 (abfd, num_locals + num_globals,
3202 sizeof (asymbol *));
3203
3204 if (new_syms == NULL)
3205 return FALSE;
3206
3207 for (idx = 0; idx < symcount; idx++)
3208 {
3209 asymbol *sym = syms[idx];
3210 unsigned int i;
3211
3212 if (ignore_section_sym (abfd, sym))
3213 continue;
3214 if (!sym_is_global (abfd, sym))
3215 i = num_locals2++;
3216 else
3217 i = num_locals + num_globals2++;
3218 new_syms[i] = sym;
3219 sym->udata.i = i + 1;
3220 }
3221 for (asect = abfd->sections; asect; asect = asect->next)
3222 {
3223 if (sect_syms[asect->index] == NULL)
3224 {
3225 asymbol *sym = asect->symbol;
3226 unsigned int i;
3227
3228 sect_syms[asect->index] = sym;
3229 if (!sym_is_global (abfd, sym))
3230 i = num_locals2++;
3231 else
3232 i = num_locals + num_globals2++;
3233 new_syms[i] = sym;
3234 sym->udata.i = i + 1;
3235 }
3236 }
3237
3238 bfd_set_symtab (abfd, new_syms, num_locals + num_globals);
3239
3240 elf_num_locals (abfd) = num_locals;
3241 elf_num_globals (abfd) = num_globals;
3242 return TRUE;
3243 }
3244
3245 /* Align to the maximum file alignment that could be required for any
3246 ELF data structure. */
3247
3248 static inline file_ptr
3249 align_file_position (file_ptr off, int align)
3250 {
3251 return (off + align - 1) & ~(align - 1);
3252 }
3253
3254 /* Assign a file position to a section, optionally aligning to the
3255 required section alignment. */
3256
3257 file_ptr
3258 _bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr *i_shdrp,
3259 file_ptr offset,
3260 bfd_boolean align)
3261 {
3262 if (align && i_shdrp->sh_addralign > 1)
3263 offset = BFD_ALIGN (offset, i_shdrp->sh_addralign);
3264 i_shdrp->sh_offset = offset;
3265 if (i_shdrp->bfd_section != NULL)
3266 i_shdrp->bfd_section->filepos = offset;
3267 if (i_shdrp->sh_type != SHT_NOBITS)
3268 offset += i_shdrp->sh_size;
3269 return offset;
3270 }
3271
3272 /* Compute the file positions we are going to put the sections at, and
3273 otherwise prepare to begin writing out the ELF file. If LINK_INFO
3274 is not NULL, this is being called by the ELF backend linker. */
3275
3276 bfd_boolean
3277 _bfd_elf_compute_section_file_positions (bfd *abfd,
3278 struct bfd_link_info *link_info)
3279 {
3280 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3281 bfd_boolean failed;
3282 struct bfd_strtab_hash *strtab = NULL;
3283 Elf_Internal_Shdr *shstrtab_hdr;
3284 bfd_boolean need_symtab;
3285
3286 if (abfd->output_has_begun)
3287 return TRUE;
3288
3289 /* Do any elf backend specific processing first. */
3290 if (bed->elf_backend_begin_write_processing)
3291 (*bed->elf_backend_begin_write_processing) (abfd, link_info);
3292
3293 if (! prep_headers (abfd))
3294 return FALSE;
3295
3296 /* Post process the headers if necessary. */
3297 if (bed->elf_backend_post_process_headers)
3298 (*bed->elf_backend_post_process_headers) (abfd, link_info);
3299
3300 failed = FALSE;
3301 bfd_map_over_sections (abfd, elf_fake_sections, &failed);
3302 if (failed)
3303 return FALSE;
3304
3305 if (!assign_section_numbers (abfd, link_info))
3306 return FALSE;
3307
3308 /* The backend linker builds symbol table information itself. */
3309 need_symtab = (link_info == NULL
3310 && (bfd_get_symcount (abfd) > 0
3311 || ((abfd->flags & (EXEC_P | DYNAMIC | HAS_RELOC))
3312 == HAS_RELOC)));
3313 if (need_symtab)
3314 {
3315 /* Non-zero if doing a relocatable link. */
3316 int relocatable_p = ! (abfd->flags & (EXEC_P | DYNAMIC));
3317
3318 if (! swap_out_syms (abfd, &strtab, relocatable_p))
3319 return FALSE;
3320 }
3321
3322 if (link_info == NULL)
3323 {
3324 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
3325 if (failed)
3326 return FALSE;
3327 }
3328
3329 shstrtab_hdr = &elf_tdata (abfd)->shstrtab_hdr;
3330 /* sh_name was set in prep_headers. */
3331 shstrtab_hdr->sh_type = SHT_STRTAB;
3332 shstrtab_hdr->sh_flags = 0;
3333 shstrtab_hdr->sh_addr = 0;
3334 shstrtab_hdr->sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
3335 shstrtab_hdr->sh_entsize = 0;
3336 shstrtab_hdr->sh_link = 0;
3337 shstrtab_hdr->sh_info = 0;
3338 /* sh_offset is set in assign_file_positions_except_relocs. */
3339 shstrtab_hdr->sh_addralign = 1;
3340
3341 if (!assign_file_positions_except_relocs (abfd, link_info))
3342 return FALSE;
3343
3344 if (need_symtab)
3345 {
3346 file_ptr off;
3347 Elf_Internal_Shdr *hdr;
3348
3349 off = elf_tdata (abfd)->next_file_pos;
3350
3351 hdr = &elf_tdata (abfd)->symtab_hdr;
3352 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3353
3354 hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
3355 if (hdr->sh_size != 0)
3356 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3357
3358 hdr = &elf_tdata (abfd)->strtab_hdr;
3359 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3360
3361 elf_tdata (abfd)->next_file_pos = off;
3362
3363 /* Now that we know where the .strtab section goes, write it
3364 out. */
3365 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
3366 || ! _bfd_stringtab_emit (abfd, strtab))
3367 return FALSE;
3368 _bfd_stringtab_free (strtab);
3369 }
3370
3371 abfd->output_has_begun = TRUE;
3372
3373 return TRUE;
3374 }
3375
3376 /* Make an initial estimate of the size of the program header. If we
3377 get the number wrong here, we'll redo section placement. */
3378
3379 static bfd_size_type
3380 get_program_header_size (bfd *abfd, struct bfd_link_info *info)
3381 {
3382 size_t segs;
3383 asection *s;
3384 const struct elf_backend_data *bed;
3385
3386 /* Assume we will need exactly two PT_LOAD segments: one for text
3387 and one for data. */
3388 segs = 2;
3389
3390 s = bfd_get_section_by_name (abfd, ".interp");
3391 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3392 {
3393 /* If we have a loadable interpreter section, we need a
3394 PT_INTERP segment. In this case, assume we also need a
3395 PT_PHDR segment, although that may not be true for all
3396 targets. */
3397 segs += 2;
3398 }
3399
3400 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
3401 {
3402 /* We need a PT_DYNAMIC segment. */
3403 ++segs;
3404 }
3405
3406 if (info != NULL && info->relro)
3407 {
3408 /* We need a PT_GNU_RELRO segment. */
3409 ++segs;
3410 }
3411
3412 if (elf_tdata (abfd)->eh_frame_hdr)
3413 {
3414 /* We need a PT_GNU_EH_FRAME segment. */
3415 ++segs;
3416 }
3417
3418 if (elf_tdata (abfd)->stack_flags)
3419 {
3420 /* We need a PT_GNU_STACK segment. */
3421 ++segs;
3422 }
3423
3424 for (s = abfd->sections; s != NULL; s = s->next)
3425 {
3426 if ((s->flags & SEC_LOAD) != 0
3427 && CONST_STRNEQ (s->name, ".note"))
3428 {
3429 /* We need a PT_NOTE segment. */
3430 ++segs;
3431 /* Try to create just one PT_NOTE segment
3432 for all adjacent loadable .note* sections.
3433 gABI requires that within a PT_NOTE segment
3434 (and also inside of each SHT_NOTE section)
3435 each note is padded to a multiple of 4 size,
3436 so we check whether the sections are correctly
3437 aligned. */
3438 if (s->alignment_power == 2)
3439 while (s->next != NULL
3440 && s->next->alignment_power == 2
3441 && (s->next->flags & SEC_LOAD) != 0
3442 && CONST_STRNEQ (s->next->name, ".note"))
3443 s = s->next;
3444 }
3445 }
3446
3447 for (s = abfd->sections; s != NULL; s = s->next)
3448 {
3449 if (s->flags & SEC_THREAD_LOCAL)
3450 {
3451 /* We need a PT_TLS segment. */
3452 ++segs;
3453 break;
3454 }
3455 }
3456
3457 /* Let the backend count up any program headers it might need. */
3458 bed = get_elf_backend_data (abfd);
3459 if (bed->elf_backend_additional_program_headers)
3460 {
3461 int a;
3462
3463 a = (*bed->elf_backend_additional_program_headers) (abfd, info);
3464 if (a == -1)
3465 abort ();
3466 segs += a;
3467 }
3468
3469 return segs * bed->s->sizeof_phdr;
3470 }
3471
3472 /* Find the segment that contains the output_section of section. */
3473
3474 Elf_Internal_Phdr *
3475 _bfd_elf_find_segment_containing_section (bfd * abfd, asection * section)
3476 {
3477 struct elf_segment_map *m;
3478 Elf_Internal_Phdr *p;
3479
3480 for (m = elf_tdata (abfd)->segment_map,
3481 p = elf_tdata (abfd)->phdr;
3482 m != NULL;
3483 m = m->next, p++)
3484 {
3485 int i;
3486
3487 for (i = m->count - 1; i >= 0; i--)
3488 if (m->sections[i] == section)
3489 return p;
3490 }
3491
3492 return NULL;
3493 }
3494
3495 /* Create a mapping from a set of sections to a program segment. */
3496
3497 static struct elf_segment_map *
3498 make_mapping (bfd *abfd,
3499 asection **sections,
3500 unsigned int from,
3501 unsigned int to,
3502 bfd_boolean phdr)
3503 {
3504 struct elf_segment_map *m;
3505 unsigned int i;
3506 asection **hdrpp;
3507 bfd_size_type amt;
3508
3509 amt = sizeof (struct elf_segment_map);
3510 amt += (to - from - 1) * sizeof (asection *);
3511 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
3512 if (m == NULL)
3513 return NULL;
3514 m->next = NULL;
3515 m->p_type = PT_LOAD;
3516 for (i = from, hdrpp = sections + from; i < to; i++, hdrpp++)
3517 m->sections[i - from] = *hdrpp;
3518 m->count = to - from;
3519
3520 if (from == 0 && phdr)
3521 {
3522 /* Include the headers in the first PT_LOAD segment. */
3523 m->includes_filehdr = 1;
3524 m->includes_phdrs = 1;
3525 }
3526
3527 return m;
3528 }
3529
3530 /* Create the PT_DYNAMIC segment, which includes DYNSEC. Returns NULL
3531 on failure. */
3532
3533 struct elf_segment_map *
3534 _bfd_elf_make_dynamic_segment (bfd *abfd, asection *dynsec)
3535 {
3536 struct elf_segment_map *m;
3537
3538 m = (struct elf_segment_map *) bfd_zalloc (abfd,
3539 sizeof (struct elf_segment_map));
3540 if (m == NULL)
3541 return NULL;
3542 m->next = NULL;
3543 m->p_type = PT_DYNAMIC;
3544 m->count = 1;
3545 m->sections[0] = dynsec;
3546
3547 return m;
3548 }
3549
3550 /* Possibly add or remove segments from the segment map. */
3551
3552 static bfd_boolean
3553 elf_modify_segment_map (bfd *abfd,
3554 struct bfd_link_info *info,
3555 bfd_boolean remove_empty_load)
3556 {
3557 struct elf_segment_map **m;
3558 const struct elf_backend_data *bed;
3559
3560 /* The placement algorithm assumes that non allocated sections are
3561 not in PT_LOAD segments. We ensure this here by removing such
3562 sections from the segment map. We also remove excluded
3563 sections. Finally, any PT_LOAD segment without sections is
3564 removed. */
3565 m = &elf_tdata (abfd)->segment_map;
3566 while (*m)
3567 {
3568 unsigned int i, new_count;
3569
3570 for (new_count = 0, i = 0; i < (*m)->count; i++)
3571 {
3572 if (((*m)->sections[i]->flags & SEC_EXCLUDE) == 0
3573 && (((*m)->sections[i]->flags & SEC_ALLOC) != 0
3574 || (*m)->p_type != PT_LOAD))
3575 {
3576 (*m)->sections[new_count] = (*m)->sections[i];
3577 new_count++;
3578 }
3579 }
3580 (*m)->count = new_count;
3581
3582 if (remove_empty_load && (*m)->p_type == PT_LOAD && (*m)->count == 0)
3583 *m = (*m)->next;
3584 else
3585 m = &(*m)->next;
3586 }
3587
3588 bed = get_elf_backend_data (abfd);
3589 if (bed->elf_backend_modify_segment_map != NULL)
3590 {
3591 if (!(*bed->elf_backend_modify_segment_map) (abfd, info))
3592 return FALSE;
3593 }
3594
3595 return TRUE;
3596 }
3597
3598 /* Set up a mapping from BFD sections to program segments. */
3599
3600 bfd_boolean
3601 _bfd_elf_map_sections_to_segments (bfd *abfd, struct bfd_link_info *info)
3602 {
3603 unsigned int count;
3604 struct elf_segment_map *m;
3605 asection **sections = NULL;
3606 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3607 bfd_boolean no_user_phdrs;
3608
3609 no_user_phdrs = elf_tdata (abfd)->segment_map == NULL;
3610 if (no_user_phdrs && bfd_count_sections (abfd) != 0)
3611 {
3612 asection *s;
3613 unsigned int i;
3614 struct elf_segment_map *mfirst;
3615 struct elf_segment_map **pm;
3616 asection *last_hdr;
3617 bfd_vma last_size;
3618 unsigned int phdr_index;
3619 bfd_vma maxpagesize;
3620 asection **hdrpp;
3621 bfd_boolean phdr_in_segment = TRUE;
3622 bfd_boolean writable;
3623 int tls_count = 0;
3624 asection *first_tls = NULL;
3625 asection *dynsec, *eh_frame_hdr;
3626 bfd_size_type amt;
3627 bfd_vma addr_mask, wrap_to = 0;
3628
3629 /* Select the allocated sections, and sort them. */
3630
3631 sections = (asection **) bfd_malloc2 (bfd_count_sections (abfd),
3632 sizeof (asection *));
3633 if (sections == NULL)
3634 goto error_return;
3635
3636 /* Calculate top address, avoiding undefined behaviour of shift
3637 left operator when shift count is equal to size of type
3638 being shifted. */
3639 addr_mask = ((bfd_vma) 1 << (bfd_arch_bits_per_address (abfd) - 1)) - 1;
3640 addr_mask = (addr_mask << 1) + 1;
3641
3642 i = 0;
3643 for (s = abfd->sections; s != NULL; s = s->next)
3644 {
3645 if ((s->flags & SEC_ALLOC) != 0)
3646 {
3647 sections[i] = s;
3648 ++i;
3649 /* A wrapping section potentially clashes with header. */
3650 if (((s->lma + s->size) & addr_mask) < (s->lma & addr_mask))
3651 wrap_to = (s->lma + s->size) & addr_mask;
3652 }
3653 }
3654 BFD_ASSERT (i <= bfd_count_sections (abfd));
3655 count = i;
3656
3657 qsort (sections, (size_t) count, sizeof (asection *), elf_sort_sections);
3658
3659 /* Build the mapping. */
3660
3661 mfirst = NULL;
3662 pm = &mfirst;
3663
3664 /* If we have a .interp section, then create a PT_PHDR segment for
3665 the program headers and a PT_INTERP segment for the .interp
3666 section. */
3667 s = bfd_get_section_by_name (abfd, ".interp");
3668 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3669 {
3670 amt = sizeof (struct elf_segment_map);
3671 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
3672 if (m == NULL)
3673 goto error_return;
3674 m->next = NULL;
3675 m->p_type = PT_PHDR;
3676 /* FIXME: UnixWare and Solaris set PF_X, Irix 5 does not. */
3677 m->p_flags = PF_R | PF_X;
3678 m->p_flags_valid = 1;
3679 m->includes_phdrs = 1;
3680
3681 *pm = m;
3682 pm = &m->next;
3683
3684 amt = sizeof (struct elf_segment_map);
3685 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
3686 if (m == NULL)
3687 goto error_return;
3688 m->next = NULL;
3689 m->p_type = PT_INTERP;
3690 m->count = 1;
3691 m->sections[0] = s;
3692
3693 *pm = m;
3694 pm = &m->next;
3695 }
3696
3697 /* Look through the sections. We put sections in the same program
3698 segment when the start of the second section can be placed within
3699 a few bytes of the end of the first section. */
3700 last_hdr = NULL;
3701 last_size = 0;
3702 phdr_index = 0;
3703 maxpagesize = bed->maxpagesize;
3704 writable = FALSE;
3705 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
3706 if (dynsec != NULL
3707 && (dynsec->flags & SEC_LOAD) == 0)
3708 dynsec = NULL;
3709
3710 /* Deal with -Ttext or something similar such that the first section
3711 is not adjacent to the program headers. This is an
3712 approximation, since at this point we don't know exactly how many
3713 program headers we will need. */
3714 if (count > 0)
3715 {
3716 bfd_size_type phdr_size = elf_tdata (abfd)->program_header_size;
3717
3718 if (phdr_size == (bfd_size_type) -1)
3719 phdr_size = get_program_header_size (abfd, info);
3720 if ((abfd->flags & D_PAGED) == 0
3721 || (sections[0]->lma & addr_mask) < phdr_size
3722 || ((sections[0]->lma & addr_mask) % maxpagesize
3723 < phdr_size % maxpagesize)
3724 || (sections[0]->lma & addr_mask & -maxpagesize) < wrap_to)
3725 phdr_in_segment = FALSE;
3726 }
3727
3728 for (i = 0, hdrpp = sections; i < count; i++, hdrpp++)
3729 {
3730 asection *hdr;
3731 bfd_boolean new_segment;
3732
3733 hdr = *hdrpp;
3734
3735 /* See if this section and the last one will fit in the same
3736 segment. */
3737
3738 if (last_hdr == NULL)
3739 {
3740 /* If we don't have a segment yet, then we don't need a new
3741 one (we build the last one after this loop). */
3742 new_segment = FALSE;
3743 }
3744 else if (last_hdr->lma - last_hdr->vma != hdr->lma - hdr->vma)
3745 {
3746 /* If this section has a different relation between the
3747 virtual address and the load address, then we need a new
3748 segment. */
3749 new_segment = TRUE;
3750 }
3751 else if (hdr->lma < last_hdr->lma + last_size
3752 || last_hdr->lma + last_size < last_hdr->lma)
3753 {
3754 /* If this section has a load address that makes it overlap
3755 the previous section, then we need a new segment. */
3756 new_segment = TRUE;
3757 }
3758 /* In the next test we have to be careful when last_hdr->lma is close
3759 to the end of the address space. If the aligned address wraps
3760 around to the start of the address space, then there are no more
3761 pages left in memory and it is OK to assume that the current
3762 section can be included in the current segment. */
3763 else if ((BFD_ALIGN (last_hdr->lma + last_size, maxpagesize) + maxpagesize
3764 > last_hdr->lma)
3765 && (BFD_ALIGN (last_hdr->lma + last_size, maxpagesize) + maxpagesize
3766 <= hdr->lma))
3767 {
3768 /* If putting this section in this segment would force us to
3769 skip a page in the segment, then we need a new segment. */
3770 new_segment = TRUE;
3771 }
3772 else if ((last_hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0
3773 && (hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) != 0)
3774 {
3775 /* We don't want to put a loadable section after a
3776 nonloadable section in the same segment.
3777 Consider .tbss sections as loadable for this purpose. */
3778 new_segment = TRUE;
3779 }
3780 else if ((abfd->flags & D_PAGED) == 0)
3781 {
3782 /* If the file is not demand paged, which means that we
3783 don't require the sections to be correctly aligned in the
3784 file, then there is no other reason for a new segment. */
3785 new_segment = FALSE;
3786 }
3787 else if (! writable
3788 && (hdr->flags & SEC_READONLY) == 0
3789 && (((last_hdr->lma + last_size - 1) & -maxpagesize)
3790 != (hdr->lma & -maxpagesize)))
3791 {
3792 /* We don't want to put a writable section in a read only
3793 segment, unless they are on the same page in memory
3794 anyhow. We already know that the last section does not
3795 bring us past the current section on the page, so the
3796 only case in which the new section is not on the same
3797 page as the previous section is when the previous section
3798 ends precisely on a page boundary. */
3799 new_segment = TRUE;
3800 }
3801 else
3802 {
3803 /* Otherwise, we can use the same segment. */
3804 new_segment = FALSE;
3805 }
3806
3807 /* Allow interested parties a chance to override our decision. */
3808 if (last_hdr != NULL
3809 && info != NULL
3810 && info->callbacks->override_segment_assignment != NULL)
3811 new_segment
3812 = info->callbacks->override_segment_assignment (info, abfd, hdr,
3813 last_hdr,
3814 new_segment);
3815
3816 if (! new_segment)
3817 {
3818 if ((hdr->flags & SEC_READONLY) == 0)
3819 writable = TRUE;
3820 last_hdr = hdr;
3821 /* .tbss sections effectively have zero size. */
3822 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD))
3823 != SEC_THREAD_LOCAL)
3824 last_size = hdr->size;
3825 else
3826 last_size = 0;
3827 continue;
3828 }
3829
3830 /* We need a new program segment. We must create a new program
3831 header holding all the sections from phdr_index until hdr. */
3832
3833 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
3834 if (m == NULL)
3835 goto error_return;
3836
3837 *pm = m;
3838 pm = &m->next;
3839
3840 if ((hdr->flags & SEC_READONLY) == 0)
3841 writable = TRUE;
3842 else
3843 writable = FALSE;
3844
3845 last_hdr = hdr;
3846 /* .tbss sections effectively have zero size. */
3847 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) != SEC_THREAD_LOCAL)
3848 last_size = hdr->size;
3849 else
3850 last_size = 0;
3851 phdr_index = i;
3852 phdr_in_segment = FALSE;
3853 }
3854
3855 /* Create a final PT_LOAD program segment. */
3856 if (last_hdr != NULL)
3857 {
3858 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
3859 if (m == NULL)
3860 goto error_return;
3861
3862 *pm = m;
3863 pm = &m->next;
3864 }
3865
3866 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
3867 if (dynsec != NULL)
3868 {
3869 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
3870 if (m == NULL)
3871 goto error_return;
3872 *pm = m;
3873 pm = &m->next;
3874 }
3875
3876 /* For each batch of consecutive loadable .note sections,
3877 add a PT_NOTE segment. We don't use bfd_get_section_by_name,
3878 because if we link together nonloadable .note sections and
3879 loadable .note sections, we will generate two .note sections
3880 in the output file. FIXME: Using names for section types is
3881 bogus anyhow. */
3882 for (s = abfd->sections; s != NULL; s = s->next)
3883 {
3884 if ((s->flags & SEC_LOAD) != 0
3885 && CONST_STRNEQ (s->name, ".note"))
3886 {
3887 asection *s2;
3888
3889 count = 1;
3890 amt = sizeof (struct elf_segment_map);
3891 if (s->alignment_power == 2)
3892 for (s2 = s; s2->next != NULL; s2 = s2->next)
3893 {
3894 if (s2->next->alignment_power == 2
3895 && (s2->next->flags & SEC_LOAD) != 0
3896 && CONST_STRNEQ (s2->next->name, ".note")
3897 && align_power (s2->lma + s2->size, 2)
3898 == s2->next->lma)
3899 count++;
3900 else
3901 break;
3902 }
3903 amt += (count - 1) * sizeof (asection *);
3904 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
3905 if (m == NULL)
3906 goto error_return;
3907 m->next = NULL;
3908 m->p_type = PT_NOTE;
3909 m->count = count;
3910 while (count > 1)
3911 {
3912 m->sections[m->count - count--] = s;
3913 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
3914 s = s->next;
3915 }
3916 m->sections[m->count - 1] = s;
3917 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
3918 *pm = m;
3919 pm = &m->next;
3920 }
3921 if (s->flags & SEC_THREAD_LOCAL)
3922 {
3923 if (! tls_count)
3924 first_tls = s;
3925 tls_count++;
3926 }
3927 }
3928
3929 /* If there are any SHF_TLS output sections, add PT_TLS segment. */
3930 if (tls_count > 0)
3931 {
3932 amt = sizeof (struct elf_segment_map);
3933 amt += (tls_count - 1) * sizeof (asection *);
3934 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
3935 if (m == NULL)
3936 goto error_return;
3937 m->next = NULL;
3938 m->p_type = PT_TLS;
3939 m->count = tls_count;
3940 /* Mandated PF_R. */
3941 m->p_flags = PF_R;
3942 m->p_flags_valid = 1;
3943 for (i = 0; i < (unsigned int) tls_count; ++i)
3944 {
3945 BFD_ASSERT (first_tls->flags & SEC_THREAD_LOCAL);
3946 m->sections[i] = first_tls;
3947 first_tls = first_tls->next;
3948 }
3949
3950 *pm = m;
3951 pm = &m->next;
3952 }
3953
3954 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
3955 segment. */
3956 eh_frame_hdr = elf_tdata (abfd)->eh_frame_hdr;
3957 if (eh_frame_hdr != NULL
3958 && (eh_frame_hdr->output_section->flags & SEC_LOAD) != 0)
3959 {
3960 amt = sizeof (struct elf_segment_map);
3961 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
3962 if (m == NULL)
3963 goto error_return;
3964 m->next = NULL;
3965 m->p_type = PT_GNU_EH_FRAME;
3966 m->count = 1;
3967 m->sections[0] = eh_frame_hdr->output_section;
3968
3969 *pm = m;
3970 pm = &m->next;
3971 }
3972
3973 if (elf_tdata (abfd)->stack_flags)
3974 {
3975 amt = sizeof (struct elf_segment_map);
3976 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
3977 if (m == NULL)
3978 goto error_return;
3979 m->next = NULL;
3980 m->p_type = PT_GNU_STACK;
3981 m->p_flags = elf_tdata (abfd)->stack_flags;
3982 m->p_flags_valid = 1;
3983
3984 *pm = m;
3985 pm = &m->next;
3986 }
3987
3988 if (info != NULL && info->relro)
3989 {
3990 for (m = mfirst; m != NULL; m = m->next)
3991 {
3992 if (m->p_type == PT_LOAD)
3993 {
3994 asection *last = m->sections[m->count - 1];
3995 bfd_vma vaddr = m->sections[0]->vma;
3996 bfd_vma filesz = last->vma - vaddr + last->size;
3997
3998 if (vaddr < info->relro_end
3999 && vaddr >= info->relro_start
4000 && (vaddr + filesz) >= info->relro_end)
4001 break;
4002 }
4003 }
4004
4005 /* Make a PT_GNU_RELRO segment only when it isn't empty. */
4006 if (m != NULL)
4007 {
4008 amt = sizeof (struct elf_segment_map);
4009 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4010 if (m == NULL)
4011 goto error_return;
4012 m->next = NULL;
4013 m->p_type = PT_GNU_RELRO;
4014 m->p_flags = PF_R;
4015 m->p_flags_valid = 1;
4016
4017 *pm = m;
4018 pm = &m->next;
4019 }
4020 }
4021
4022 free (sections);
4023 elf_tdata (abfd)->segment_map = mfirst;
4024 }
4025
4026 if (!elf_modify_segment_map (abfd, info, no_user_phdrs))
4027 return FALSE;
4028
4029 for (count = 0, m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
4030 ++count;
4031 elf_tdata (abfd)->program_header_size = count * bed->s->sizeof_phdr;
4032
4033 return TRUE;
4034
4035 error_return:
4036 if (sections != NULL)
4037 free (sections);
4038 return FALSE;
4039 }
4040
4041 /* Sort sections by address. */
4042
4043 static int
4044 elf_sort_sections (const void *arg1, const void *arg2)
4045 {
4046 const asection *sec1 = *(const asection **) arg1;
4047 const asection *sec2 = *(const asection **) arg2;
4048 bfd_size_type size1, size2;
4049
4050 /* Sort by LMA first, since this is the address used to
4051 place the section into a segment. */
4052 if (sec1->lma < sec2->lma)
4053 return -1;
4054 else if (sec1->lma > sec2->lma)
4055 return 1;
4056
4057 /* Then sort by VMA. Normally the LMA and the VMA will be
4058 the same, and this will do nothing. */
4059 if (sec1->vma < sec2->vma)
4060 return -1;
4061 else if (sec1->vma > sec2->vma)
4062 return 1;
4063
4064 /* Put !SEC_LOAD sections after SEC_LOAD ones. */
4065
4066 #define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0)
4067
4068 if (TOEND (sec1))
4069 {
4070 if (TOEND (sec2))
4071 {
4072 /* If the indicies are the same, do not return 0
4073 here, but continue to try the next comparison. */
4074 if (sec1->target_index - sec2->target_index != 0)
4075 return sec1->target_index - sec2->target_index;
4076 }
4077 else
4078 return 1;
4079 }
4080 else if (TOEND (sec2))
4081 return -1;
4082
4083 #undef TOEND
4084
4085 /* Sort by size, to put zero sized sections
4086 before others at the same address. */
4087
4088 size1 = (sec1->flags & SEC_LOAD) ? sec1->size : 0;
4089 size2 = (sec2->flags & SEC_LOAD) ? sec2->size : 0;
4090
4091 if (size1 < size2)
4092 return -1;
4093 if (size1 > size2)
4094 return 1;
4095
4096 return sec1->target_index - sec2->target_index;
4097 }
4098
4099 /* Ian Lance Taylor writes:
4100
4101 We shouldn't be using % with a negative signed number. That's just
4102 not good. We have to make sure either that the number is not
4103 negative, or that the number has an unsigned type. When the types
4104 are all the same size they wind up as unsigned. When file_ptr is a
4105 larger signed type, the arithmetic winds up as signed long long,
4106 which is wrong.
4107
4108 What we're trying to say here is something like ``increase OFF by
4109 the least amount that will cause it to be equal to the VMA modulo
4110 the page size.'' */
4111 /* In other words, something like:
4112
4113 vma_offset = m->sections[0]->vma % bed->maxpagesize;
4114 off_offset = off % bed->maxpagesize;
4115 if (vma_offset < off_offset)
4116 adjustment = vma_offset + bed->maxpagesize - off_offset;
4117 else
4118 adjustment = vma_offset - off_offset;
4119
4120 which can can be collapsed into the expression below. */
4121
4122 static file_ptr
4123 vma_page_aligned_bias (bfd_vma vma, ufile_ptr off, bfd_vma maxpagesize)
4124 {
4125 return ((vma - off) % maxpagesize);
4126 }
4127
4128 static void
4129 print_segment_map (const struct elf_segment_map *m)
4130 {
4131 unsigned int j;
4132 const char *pt = get_segment_type (m->p_type);
4133 char buf[32];
4134
4135 if (pt == NULL)
4136 {
4137 if (m->p_type >= PT_LOPROC && m->p_type <= PT_HIPROC)
4138 sprintf (buf, "LOPROC+%7.7x",
4139 (unsigned int) (m->p_type - PT_LOPROC));
4140 else if (m->p_type >= PT_LOOS && m->p_type <= PT_HIOS)
4141 sprintf (buf, "LOOS+%7.7x",
4142 (unsigned int) (m->p_type - PT_LOOS));
4143 else
4144 snprintf (buf, sizeof (buf), "%8.8x",
4145 (unsigned int) m->p_type);
4146 pt = buf;
4147 }
4148 fprintf (stderr, "%s:", pt);
4149 for (j = 0; j < m->count; j++)
4150 fprintf (stderr, " %s", m->sections [j]->name);
4151 putc ('\n',stderr);
4152 }
4153
4154 static bfd_boolean
4155 write_zeros (bfd *abfd, file_ptr pos, bfd_size_type len)
4156 {
4157 void *buf;
4158 bfd_boolean ret;
4159
4160 if (bfd_seek (abfd, pos, SEEK_SET) != 0)
4161 return FALSE;
4162 buf = bfd_zmalloc (len);
4163 if (buf == NULL)
4164 return FALSE;
4165 ret = bfd_bwrite (buf, len, abfd) == len;
4166 free (buf);
4167 return ret;
4168 }
4169
4170 /* Assign file positions to the sections based on the mapping from
4171 sections to segments. This function also sets up some fields in
4172 the file header. */
4173
4174 static bfd_boolean
4175 assign_file_positions_for_load_sections (bfd *abfd,
4176 struct bfd_link_info *link_info)
4177 {
4178 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4179 struct elf_segment_map *m;
4180 Elf_Internal_Phdr *phdrs;
4181 Elf_Internal_Phdr *p;
4182 file_ptr off;
4183 bfd_size_type maxpagesize;
4184 unsigned int alloc;
4185 unsigned int i, j;
4186 bfd_vma header_pad = 0;
4187
4188 if (link_info == NULL
4189 && !_bfd_elf_map_sections_to_segments (abfd, link_info))
4190 return FALSE;
4191
4192 alloc = 0;
4193 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
4194 {
4195 ++alloc;
4196 if (m->header_size)
4197 header_pad = m->header_size;
4198 }
4199
4200 elf_elfheader (abfd)->e_phoff = bed->s->sizeof_ehdr;
4201 elf_elfheader (abfd)->e_phentsize = bed->s->sizeof_phdr;
4202 elf_elfheader (abfd)->e_phnum = alloc;
4203
4204 if (elf_tdata (abfd)->program_header_size == (bfd_size_type) -1)
4205 elf_tdata (abfd)->program_header_size = alloc * bed->s->sizeof_phdr;
4206 else
4207 BFD_ASSERT (elf_tdata (abfd)->program_header_size
4208 >= alloc * bed->s->sizeof_phdr);
4209
4210 if (alloc == 0)
4211 {
4212 elf_tdata (abfd)->next_file_pos = bed->s->sizeof_ehdr;
4213 return TRUE;
4214 }
4215
4216 /* We're writing the size in elf_tdata (abfd)->program_header_size,
4217 see assign_file_positions_except_relocs, so make sure we have
4218 that amount allocated, with trailing space cleared.
4219 The variable alloc contains the computed need, while elf_tdata
4220 (abfd)->program_header_size contains the size used for the
4221 layout.
4222 See ld/emultempl/elf-generic.em:gld${EMULATION_NAME}_map_segments
4223 where the layout is forced to according to a larger size in the
4224 last iterations for the testcase ld-elf/header. */
4225 BFD_ASSERT (elf_tdata (abfd)->program_header_size % bed->s->sizeof_phdr
4226 == 0);
4227 phdrs = (Elf_Internal_Phdr *)
4228 bfd_zalloc2 (abfd,
4229 (elf_tdata (abfd)->program_header_size / bed->s->sizeof_phdr),
4230 sizeof (Elf_Internal_Phdr));
4231 elf_tdata (abfd)->phdr = phdrs;
4232 if (phdrs == NULL)
4233 return FALSE;
4234
4235 maxpagesize = 1;
4236 if ((abfd->flags & D_PAGED) != 0)
4237 maxpagesize = bed->maxpagesize;
4238
4239 off = bed->s->sizeof_ehdr;
4240 off += alloc * bed->s->sizeof_phdr;
4241 if (header_pad < (bfd_vma) off)
4242 header_pad = 0;
4243 else
4244 header_pad -= off;
4245 off += header_pad;
4246
4247 for (m = elf_tdata (abfd)->segment_map, p = phdrs, j = 0;
4248 m != NULL;
4249 m = m->next, p++, j++)
4250 {
4251 asection **secpp;
4252 bfd_vma off_adjust;
4253 bfd_boolean no_contents;
4254
4255 /* If elf_segment_map is not from map_sections_to_segments, the
4256 sections may not be correctly ordered. NOTE: sorting should
4257 not be done to the PT_NOTE section of a corefile, which may
4258 contain several pseudo-sections artificially created by bfd.
4259 Sorting these pseudo-sections breaks things badly. */
4260 if (m->count > 1
4261 && !(elf_elfheader (abfd)->e_type == ET_CORE
4262 && m->p_type == PT_NOTE))
4263 qsort (m->sections, (size_t) m->count, sizeof (asection *),
4264 elf_sort_sections);
4265
4266 /* An ELF segment (described by Elf_Internal_Phdr) may contain a
4267 number of sections with contents contributing to both p_filesz
4268 and p_memsz, followed by a number of sections with no contents
4269 that just contribute to p_memsz. In this loop, OFF tracks next
4270 available file offset for PT_LOAD and PT_NOTE segments. */
4271 p->p_type = m->p_type;
4272 p->p_flags = m->p_flags;
4273
4274 if (m->count == 0)
4275 p->p_vaddr = 0;
4276 else
4277 p->p_vaddr = m->sections[0]->vma - m->p_vaddr_offset;
4278
4279 if (m->p_paddr_valid)
4280 p->p_paddr = m->p_paddr;
4281 else if (m->count == 0)
4282 p->p_paddr = 0;
4283 else
4284 p->p_paddr = m->sections[0]->lma - m->p_vaddr_offset;
4285
4286 if (p->p_type == PT_LOAD
4287 && (abfd->flags & D_PAGED) != 0)
4288 {
4289 /* p_align in demand paged PT_LOAD segments effectively stores
4290 the maximum page size. When copying an executable with
4291 objcopy, we set m->p_align from the input file. Use this
4292 value for maxpagesize rather than bed->maxpagesize, which
4293 may be different. Note that we use maxpagesize for PT_TLS
4294 segment alignment later in this function, so we are relying
4295 on at least one PT_LOAD segment appearing before a PT_TLS
4296 segment. */
4297 if (m->p_align_valid)
4298 maxpagesize = m->p_align;
4299
4300 p->p_align = maxpagesize;
4301 }
4302 else if (m->p_align_valid)
4303 p->p_align = m->p_align;
4304 else if (m->count == 0)
4305 p->p_align = 1 << bed->s->log_file_align;
4306 else
4307 p->p_align = 0;
4308
4309 no_contents = FALSE;
4310 off_adjust = 0;
4311 if (p->p_type == PT_LOAD
4312 && m->count > 0)
4313 {
4314 bfd_size_type align;
4315 unsigned int align_power = 0;
4316
4317 if (m->p_align_valid)
4318 align = p->p_align;
4319 else
4320 {
4321 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4322 {
4323 unsigned int secalign;
4324
4325 secalign = bfd_get_section_alignment (abfd, *secpp);
4326 if (secalign > align_power)
4327 align_power = secalign;
4328 }
4329 align = (bfd_size_type) 1 << align_power;
4330 if (align < maxpagesize)
4331 align = maxpagesize;
4332 }
4333
4334 for (i = 0; i < m->count; i++)
4335 if ((m->sections[i]->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
4336 /* If we aren't making room for this section, then
4337 it must be SHT_NOBITS regardless of what we've
4338 set via struct bfd_elf_special_section. */
4339 elf_section_type (m->sections[i]) = SHT_NOBITS;
4340
4341 /* Find out whether this segment contains any loadable
4342 sections. */
4343 no_contents = TRUE;
4344 for (i = 0; i < m->count; i++)
4345 if (elf_section_type (m->sections[i]) != SHT_NOBITS)
4346 {
4347 no_contents = FALSE;
4348 break;
4349 }
4350
4351 off_adjust = vma_page_aligned_bias (p->p_vaddr, off, align);
4352 off += off_adjust;
4353 if (no_contents)
4354 {
4355 /* We shouldn't need to align the segment on disk since
4356 the segment doesn't need file space, but the gABI
4357 arguably requires the alignment and glibc ld.so
4358 checks it. So to comply with the alignment
4359 requirement but not waste file space, we adjust
4360 p_offset for just this segment. (OFF_ADJUST is
4361 subtracted from OFF later.) This may put p_offset
4362 past the end of file, but that shouldn't matter. */
4363 }
4364 else
4365 off_adjust = 0;
4366 }
4367 /* Make sure the .dynamic section is the first section in the
4368 PT_DYNAMIC segment. */
4369 else if (p->p_type == PT_DYNAMIC
4370 && m->count > 1
4371 && strcmp (m->sections[0]->name, ".dynamic") != 0)
4372 {
4373 _bfd_error_handler
4374 (_("%B: The first section in the PT_DYNAMIC segment is not the .dynamic section"),
4375 abfd);
4376 bfd_set_error (bfd_error_bad_value);
4377 return FALSE;
4378 }
4379 /* Set the note section type to SHT_NOTE. */
4380 else if (p->p_type == PT_NOTE)
4381 for (i = 0; i < m->count; i++)
4382 elf_section_type (m->sections[i]) = SHT_NOTE;
4383
4384 p->p_offset = 0;
4385 p->p_filesz = 0;
4386 p->p_memsz = 0;
4387
4388 if (m->includes_filehdr)
4389 {
4390 if (!m->p_flags_valid)
4391 p->p_flags |= PF_R;
4392 p->p_filesz = bed->s->sizeof_ehdr;
4393 p->p_memsz = bed->s->sizeof_ehdr;
4394 if (m->count > 0)
4395 {
4396 BFD_ASSERT (p->p_type == PT_LOAD);
4397
4398 if (p->p_vaddr < (bfd_vma) off)
4399 {
4400 (*_bfd_error_handler)
4401 (_("%B: Not enough room for program headers, try linking with -N"),
4402 abfd);
4403 bfd_set_error (bfd_error_bad_value);
4404 return FALSE;
4405 }
4406
4407 p->p_vaddr -= off;
4408 if (!m->p_paddr_valid)
4409 p->p_paddr -= off;
4410 }
4411 }
4412
4413 if (m->includes_phdrs)
4414 {
4415 if (!m->p_flags_valid)
4416 p->p_flags |= PF_R;
4417
4418 if (!m->includes_filehdr)
4419 {
4420 p->p_offset = bed->s->sizeof_ehdr;
4421
4422 if (m->count > 0)
4423 {
4424 BFD_ASSERT (p->p_type == PT_LOAD);
4425 p->p_vaddr -= off - p->p_offset;
4426 if (!m->p_paddr_valid)
4427 p->p_paddr -= off - p->p_offset;
4428 }
4429 }
4430
4431 p->p_filesz += alloc * bed->s->sizeof_phdr;
4432 p->p_memsz += alloc * bed->s->sizeof_phdr;
4433 if (m->count)
4434 {
4435 p->p_filesz += header_pad;
4436 p->p_memsz += header_pad;
4437 }
4438 }
4439
4440 if (p->p_type == PT_LOAD
4441 || (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core))
4442 {
4443 if (!m->includes_filehdr && !m->includes_phdrs)
4444 p->p_offset = off;
4445 else
4446 {
4447 file_ptr adjust;
4448
4449 adjust = off - (p->p_offset + p->p_filesz);
4450 if (!no_contents)
4451 p->p_filesz += adjust;
4452 p->p_memsz += adjust;
4453 }
4454 }
4455
4456 /* Set up p_filesz, p_memsz, p_align and p_flags from the section
4457 maps. Set filepos for sections in PT_LOAD segments, and in
4458 core files, for sections in PT_NOTE segments.
4459 assign_file_positions_for_non_load_sections will set filepos
4460 for other sections and update p_filesz for other segments. */
4461 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4462 {
4463 asection *sec;
4464 bfd_size_type align;
4465 Elf_Internal_Shdr *this_hdr;
4466
4467 sec = *secpp;
4468 this_hdr = &elf_section_data (sec)->this_hdr;
4469 align = (bfd_size_type) 1 << bfd_get_section_alignment (abfd, sec);
4470
4471 if ((p->p_type == PT_LOAD
4472 || p->p_type == PT_TLS)
4473 && (this_hdr->sh_type != SHT_NOBITS
4474 || ((this_hdr->sh_flags & SHF_ALLOC) != 0
4475 && ((this_hdr->sh_flags & SHF_TLS) == 0
4476 || p->p_type == PT_TLS))))
4477 {
4478 bfd_vma p_start = p->p_paddr;
4479 bfd_vma p_end = p_start + p->p_memsz;
4480 bfd_vma s_start = sec->lma;
4481 bfd_vma adjust = s_start - p_end;
4482
4483 if (adjust != 0
4484 && (s_start < p_end
4485 || p_end < p_start))
4486 {
4487 (*_bfd_error_handler)
4488 (_("%B: section %A lma %#lx adjusted to %#lx"), abfd, sec,
4489 (unsigned long) s_start, (unsigned long) p_end);
4490 adjust = 0;
4491 sec->lma = p_end;
4492 }
4493 p->p_memsz += adjust;
4494
4495 if (this_hdr->sh_type != SHT_NOBITS)
4496 {
4497 if (p->p_filesz + adjust < p->p_memsz)
4498 {
4499 /* We have a PROGBITS section following NOBITS ones.
4500 Allocate file space for the NOBITS section(s) and
4501 zero it. */
4502 adjust = p->p_memsz - p->p_filesz;
4503 if (!write_zeros (abfd, off, adjust))
4504 return FALSE;
4505 }
4506 off += adjust;
4507 p->p_filesz += adjust;
4508 }
4509 }
4510
4511 if (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core)
4512 {
4513 /* The section at i == 0 is the one that actually contains
4514 everything. */
4515 if (i == 0)
4516 {
4517 this_hdr->sh_offset = sec->filepos = off;
4518 off += this_hdr->sh_size;
4519 p->p_filesz = this_hdr->sh_size;
4520 p->p_memsz = 0;
4521 p->p_align = 1;
4522 }
4523 else
4524 {
4525 /* The rest are fake sections that shouldn't be written. */
4526 sec->filepos = 0;
4527 sec->size = 0;
4528 sec->flags = 0;
4529 continue;
4530 }
4531 }
4532 else
4533 {
4534 if (p->p_type == PT_LOAD)
4535 {
4536 this_hdr->sh_offset = sec->filepos = off;
4537 if (this_hdr->sh_type != SHT_NOBITS)
4538 off += this_hdr->sh_size;
4539 }
4540
4541 if (this_hdr->sh_type != SHT_NOBITS)
4542 {
4543 p->p_filesz += this_hdr->sh_size;
4544 /* A load section without SHF_ALLOC is something like
4545 a note section in a PT_NOTE segment. These take
4546 file space but are not loaded into memory. */
4547 if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
4548 p->p_memsz += this_hdr->sh_size;
4549 }
4550 else if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
4551 {
4552 if (p->p_type == PT_TLS)
4553 p->p_memsz += this_hdr->sh_size;
4554
4555 /* .tbss is special. It doesn't contribute to p_memsz of
4556 normal segments. */
4557 else if ((this_hdr->sh_flags & SHF_TLS) == 0)
4558 p->p_memsz += this_hdr->sh_size;
4559 }
4560
4561 if (align > p->p_align
4562 && !m->p_align_valid
4563 && (p->p_type != PT_LOAD
4564 || (abfd->flags & D_PAGED) == 0))
4565 p->p_align = align;
4566 }
4567
4568 if (!m->p_flags_valid)
4569 {
4570 p->p_flags |= PF_R;
4571 if ((this_hdr->sh_flags & SHF_EXECINSTR) != 0)
4572 p->p_flags |= PF_X;
4573 if ((this_hdr->sh_flags & SHF_WRITE) != 0)
4574 p->p_flags |= PF_W;
4575 }
4576 }
4577 off -= off_adjust;
4578
4579 /* Check that all sections are in a PT_LOAD segment.
4580 Don't check funky gdb generated core files. */
4581 if (p->p_type == PT_LOAD && bfd_get_format (abfd) != bfd_core)
4582 {
4583 bfd_boolean check_vma = TRUE;
4584
4585 for (i = 1; i < m->count; i++)
4586 if (m->sections[i]->vma == m->sections[i - 1]->vma
4587 && ELF_SECTION_SIZE (&(elf_section_data (m->sections[i])
4588 ->this_hdr), p) != 0
4589 && ELF_SECTION_SIZE (&(elf_section_data (m->sections[i - 1])
4590 ->this_hdr), p) != 0)
4591 {
4592 /* Looks like we have overlays packed into the segment. */
4593 check_vma = FALSE;
4594 break;
4595 }
4596
4597 for (i = 0; i < m->count; i++)
4598 {
4599 Elf_Internal_Shdr *this_hdr;
4600 asection *sec;
4601
4602 sec = m->sections[i];
4603 this_hdr = &(elf_section_data(sec)->this_hdr);
4604 if (!ELF_SECTION_IN_SEGMENT_1 (this_hdr, p, check_vma, 0))
4605 {
4606 (*_bfd_error_handler)
4607 (_("%B: section `%A' can't be allocated in segment %d"),
4608 abfd, sec, j);
4609 print_segment_map (m);
4610 }
4611 }
4612 }
4613 }
4614
4615 elf_tdata (abfd)->next_file_pos = off;
4616 return TRUE;
4617 }
4618
4619 /* Assign file positions for the other sections. */
4620
4621 static bfd_boolean
4622 assign_file_positions_for_non_load_sections (bfd *abfd,
4623 struct bfd_link_info *link_info)
4624 {
4625 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4626 Elf_Internal_Shdr **i_shdrpp;
4627 Elf_Internal_Shdr **hdrpp;
4628 Elf_Internal_Phdr *phdrs;
4629 Elf_Internal_Phdr *p;
4630 struct elf_segment_map *m;
4631 bfd_vma filehdr_vaddr, filehdr_paddr;
4632 bfd_vma phdrs_vaddr, phdrs_paddr;
4633 file_ptr off;
4634 unsigned int num_sec;
4635 unsigned int i;
4636 unsigned int count;
4637
4638 i_shdrpp = elf_elfsections (abfd);
4639 num_sec = elf_numsections (abfd);
4640 off = elf_tdata (abfd)->next_file_pos;
4641 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
4642 {
4643 struct elf_obj_tdata *tdata = elf_tdata (abfd);
4644 Elf_Internal_Shdr *hdr;
4645
4646 hdr = *hdrpp;
4647 if (hdr->bfd_section != NULL
4648 && (hdr->bfd_section->filepos != 0
4649 || (hdr->sh_type == SHT_NOBITS
4650 && hdr->contents == NULL)))
4651 BFD_ASSERT (hdr->sh_offset == hdr->bfd_section->filepos);
4652 else if ((hdr->sh_flags & SHF_ALLOC) != 0)
4653 {
4654 (*_bfd_error_handler)
4655 (_("%B: warning: allocated section `%s' not in segment"),
4656 abfd,
4657 (hdr->bfd_section == NULL
4658 ? "*unknown*"
4659 : hdr->bfd_section->name));
4660 /* We don't need to page align empty sections. */
4661 if ((abfd->flags & D_PAGED) != 0 && hdr->sh_size != 0)
4662 off += vma_page_aligned_bias (hdr->sh_addr, off,
4663 bed->maxpagesize);
4664 else
4665 off += vma_page_aligned_bias (hdr->sh_addr, off,
4666 hdr->sh_addralign);
4667 off = _bfd_elf_assign_file_position_for_section (hdr, off,
4668 FALSE);
4669 }
4670 else if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
4671 && hdr->bfd_section == NULL)
4672 || hdr == i_shdrpp[tdata->symtab_section]
4673 || hdr == i_shdrpp[tdata->symtab_shndx_section]
4674 || hdr == i_shdrpp[tdata->strtab_section])
4675 hdr->sh_offset = -1;
4676 else
4677 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4678 }
4679
4680 /* Now that we have set the section file positions, we can set up
4681 the file positions for the non PT_LOAD segments. */
4682 count = 0;
4683 filehdr_vaddr = 0;
4684 filehdr_paddr = 0;
4685 phdrs_vaddr = bed->maxpagesize + bed->s->sizeof_ehdr;
4686 phdrs_paddr = 0;
4687 phdrs = elf_tdata (abfd)->phdr;
4688 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
4689 m != NULL;
4690 m = m->next, p++)
4691 {
4692 ++count;
4693 if (p->p_type != PT_LOAD)
4694 continue;
4695
4696 if (m->includes_filehdr)
4697 {
4698 filehdr_vaddr = p->p_vaddr;
4699 filehdr_paddr = p->p_paddr;
4700 }
4701 if (m->includes_phdrs)
4702 {
4703 phdrs_vaddr = p->p_vaddr;
4704 phdrs_paddr = p->p_paddr;
4705 if (m->includes_filehdr)
4706 {
4707 phdrs_vaddr += bed->s->sizeof_ehdr;
4708 phdrs_paddr += bed->s->sizeof_ehdr;
4709 }
4710 }
4711 }
4712
4713 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
4714 m != NULL;
4715 m = m->next, p++)
4716 {
4717 if (p->p_type == PT_GNU_RELRO)
4718 {
4719 const Elf_Internal_Phdr *lp;
4720
4721 BFD_ASSERT (!m->includes_filehdr && !m->includes_phdrs);
4722
4723 if (link_info != NULL)
4724 {
4725 /* During linking the range of the RELRO segment is passed
4726 in link_info. */
4727 for (lp = phdrs; lp < phdrs + count; ++lp)
4728 {
4729 if (lp->p_type == PT_LOAD
4730 && lp->p_vaddr >= link_info->relro_start
4731 && lp->p_vaddr < link_info->relro_end
4732 && lp->p_vaddr + lp->p_filesz >= link_info->relro_end)
4733 break;
4734 }
4735 }
4736 else
4737 {
4738 /* Otherwise we are copying an executable or shared
4739 library, but we need to use the same linker logic. */
4740 for (lp = phdrs; lp < phdrs + count; ++lp)
4741 {
4742 if (lp->p_type == PT_LOAD
4743 && lp->p_paddr == p->p_paddr)
4744 break;
4745 }
4746 }
4747
4748 if (lp < phdrs + count)
4749 {
4750 p->p_vaddr = lp->p_vaddr;
4751 p->p_paddr = lp->p_paddr;
4752 p->p_offset = lp->p_offset;
4753 if (link_info != NULL)
4754 p->p_filesz = link_info->relro_end - lp->p_vaddr;
4755 else if (m->p_size_valid)
4756 p->p_filesz = m->p_size;
4757 else
4758 abort ();
4759 p->p_memsz = p->p_filesz;
4760 p->p_align = 1;
4761 p->p_flags = (lp->p_flags & ~PF_W);
4762 }
4763 else
4764 {
4765 memset (p, 0, sizeof *p);
4766 p->p_type = PT_NULL;
4767 }
4768 }
4769 else if (m->count != 0)
4770 {
4771 if (p->p_type != PT_LOAD
4772 && (p->p_type != PT_NOTE
4773 || bfd_get_format (abfd) != bfd_core))
4774 {
4775 Elf_Internal_Shdr *hdr;
4776 asection *sect;
4777
4778 BFD_ASSERT (!m->includes_filehdr && !m->includes_phdrs);
4779
4780 sect = m->sections[m->count - 1];
4781 hdr = &elf_section_data (sect)->this_hdr;
4782 p->p_filesz = sect->filepos - m->sections[0]->filepos;
4783 if (hdr->sh_type != SHT_NOBITS)
4784 p->p_filesz += hdr->sh_size;
4785 p->p_offset = m->sections[0]->filepos;
4786 }
4787 }
4788 else if (m->includes_filehdr)
4789 {
4790 p->p_vaddr = filehdr_vaddr;
4791 if (! m->p_paddr_valid)
4792 p->p_paddr = filehdr_paddr;
4793 }
4794 else if (m->includes_phdrs)
4795 {
4796 p->p_vaddr = phdrs_vaddr;
4797 if (! m->p_paddr_valid)
4798 p->p_paddr = phdrs_paddr;
4799 }
4800 }
4801
4802 elf_tdata (abfd)->next_file_pos = off;
4803
4804 return TRUE;
4805 }
4806
4807 /* Work out the file positions of all the sections. This is called by
4808 _bfd_elf_compute_section_file_positions. All the section sizes and
4809 VMAs must be known before this is called.
4810
4811 Reloc sections come in two flavours: Those processed specially as
4812 "side-channel" data attached to a section to which they apply, and
4813 those that bfd doesn't process as relocations. The latter sort are
4814 stored in a normal bfd section by bfd_section_from_shdr. We don't
4815 consider the former sort here, unless they form part of the loadable
4816 image. Reloc sections not assigned here will be handled later by
4817 assign_file_positions_for_relocs.
4818
4819 We also don't set the positions of the .symtab and .strtab here. */
4820
4821 static bfd_boolean
4822 assign_file_positions_except_relocs (bfd *abfd,
4823 struct bfd_link_info *link_info)
4824 {
4825 struct elf_obj_tdata *tdata = elf_tdata (abfd);
4826 Elf_Internal_Ehdr *i_ehdrp = elf_elfheader (abfd);
4827 file_ptr off;
4828 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4829
4830 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
4831 && bfd_get_format (abfd) != bfd_core)
4832 {
4833 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
4834 unsigned int num_sec = elf_numsections (abfd);
4835 Elf_Internal_Shdr **hdrpp;
4836 unsigned int i;
4837
4838 /* Start after the ELF header. */
4839 off = i_ehdrp->e_ehsize;
4840
4841 /* We are not creating an executable, which means that we are
4842 not creating a program header, and that the actual order of
4843 the sections in the file is unimportant. */
4844 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
4845 {
4846 Elf_Internal_Shdr *hdr;
4847
4848 hdr = *hdrpp;
4849 if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
4850 && hdr->bfd_section == NULL)
4851 || i == tdata->symtab_section
4852 || i == tdata->symtab_shndx_section
4853 || i == tdata->strtab_section)
4854 {
4855 hdr->sh_offset = -1;
4856 }
4857 else
4858 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4859 }
4860 }
4861 else
4862 {
4863 unsigned int alloc;
4864
4865 /* Assign file positions for the loaded sections based on the
4866 assignment of sections to segments. */
4867 if (!assign_file_positions_for_load_sections (abfd, link_info))
4868 return FALSE;
4869
4870 /* And for non-load sections. */
4871 if (!assign_file_positions_for_non_load_sections (abfd, link_info))
4872 return FALSE;
4873
4874 if (bed->elf_backend_modify_program_headers != NULL)
4875 {
4876 if (!(*bed->elf_backend_modify_program_headers) (abfd, link_info))
4877 return FALSE;
4878 }
4879
4880 /* Write out the program headers. */
4881 alloc = tdata->program_header_size / bed->s->sizeof_phdr;
4882 if (bfd_seek (abfd, (bfd_signed_vma) bed->s->sizeof_ehdr, SEEK_SET) != 0
4883 || bed->s->write_out_phdrs (abfd, tdata->phdr, alloc) != 0)
4884 return FALSE;
4885
4886 off = tdata->next_file_pos;
4887 }
4888
4889 /* Place the section headers. */
4890 off = align_file_position (off, 1 << bed->s->log_file_align);
4891 i_ehdrp->e_shoff = off;
4892 off += i_ehdrp->e_shnum * i_ehdrp->e_shentsize;
4893
4894 tdata->next_file_pos = off;
4895
4896 return TRUE;
4897 }
4898
4899 static bfd_boolean
4900 prep_headers (bfd *abfd)
4901 {
4902 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form. */
4903 struct elf_strtab_hash *shstrtab;
4904 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4905
4906 i_ehdrp = elf_elfheader (abfd);
4907
4908 shstrtab = _bfd_elf_strtab_init ();
4909 if (shstrtab == NULL)
4910 return FALSE;
4911
4912 elf_shstrtab (abfd) = shstrtab;
4913
4914 i_ehdrp->e_ident[EI_MAG0] = ELFMAG0;
4915 i_ehdrp->e_ident[EI_MAG1] = ELFMAG1;
4916 i_ehdrp->e_ident[EI_MAG2] = ELFMAG2;
4917 i_ehdrp->e_ident[EI_MAG3] = ELFMAG3;
4918
4919 i_ehdrp->e_ident[EI_CLASS] = bed->s->elfclass;
4920 i_ehdrp->e_ident[EI_DATA] =
4921 bfd_big_endian (abfd) ? ELFDATA2MSB : ELFDATA2LSB;
4922 i_ehdrp->e_ident[EI_VERSION] = bed->s->ev_current;
4923
4924 if ((abfd->flags & DYNAMIC) != 0)
4925 i_ehdrp->e_type = ET_DYN;
4926 else if ((abfd->flags & EXEC_P) != 0)
4927 i_ehdrp->e_type = ET_EXEC;
4928 else if (bfd_get_format (abfd) == bfd_core)
4929 i_ehdrp->e_type = ET_CORE;
4930 else
4931 i_ehdrp->e_type = ET_REL;
4932
4933 switch (bfd_get_arch (abfd))
4934 {
4935 case bfd_arch_unknown:
4936 i_ehdrp->e_machine = EM_NONE;
4937 break;
4938
4939 /* There used to be a long list of cases here, each one setting
4940 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
4941 in the corresponding bfd definition. To avoid duplication,
4942 the switch was removed. Machines that need special handling
4943 can generally do it in elf_backend_final_write_processing(),
4944 unless they need the information earlier than the final write.
4945 Such need can generally be supplied by replacing the tests for
4946 e_machine with the conditions used to determine it. */
4947 default:
4948 i_ehdrp->e_machine = bed->elf_machine_code;
4949 }
4950
4951 i_ehdrp->e_version = bed->s->ev_current;
4952 i_ehdrp->e_ehsize = bed->s->sizeof_ehdr;
4953
4954 /* No program header, for now. */
4955 i_ehdrp->e_phoff = 0;
4956 i_ehdrp->e_phentsize = 0;
4957 i_ehdrp->e_phnum = 0;
4958
4959 /* Each bfd section is section header entry. */
4960 i_ehdrp->e_entry = bfd_get_start_address (abfd);
4961 i_ehdrp->e_shentsize = bed->s->sizeof_shdr;
4962
4963 /* If we're building an executable, we'll need a program header table. */
4964 if (abfd->flags & EXEC_P)
4965 /* It all happens later. */
4966 ;
4967 else
4968 {
4969 i_ehdrp->e_phentsize = 0;
4970 i_ehdrp->e_phoff = 0;
4971 }
4972
4973 elf_tdata (abfd)->symtab_hdr.sh_name =
4974 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".symtab", FALSE);
4975 elf_tdata (abfd)->strtab_hdr.sh_name =
4976 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".strtab", FALSE);
4977 elf_tdata (abfd)->shstrtab_hdr.sh_name =
4978 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".shstrtab", FALSE);
4979 if (elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
4980 || elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
4981 || elf_tdata (abfd)->shstrtab_hdr.sh_name == (unsigned int) -1)
4982 return FALSE;
4983
4984 return TRUE;
4985 }
4986
4987 /* Assign file positions for all the reloc sections which are not part
4988 of the loadable file image. */
4989
4990 void
4991 _bfd_elf_assign_file_positions_for_relocs (bfd *abfd)
4992 {
4993 file_ptr off;
4994 unsigned int i, num_sec;
4995 Elf_Internal_Shdr **shdrpp;
4996
4997 off = elf_tdata (abfd)->next_file_pos;
4998
4999 num_sec = elf_numsections (abfd);
5000 for (i = 1, shdrpp = elf_elfsections (abfd) + 1; i < num_sec; i++, shdrpp++)
5001 {
5002 Elf_Internal_Shdr *shdrp;
5003
5004 shdrp = *shdrpp;
5005 if ((shdrp->sh_type == SHT_REL || shdrp->sh_type == SHT_RELA)
5006 && shdrp->sh_offset == -1)
5007 off = _bfd_elf_assign_file_position_for_section (shdrp, off, TRUE);
5008 }
5009
5010 elf_tdata (abfd)->next_file_pos = off;
5011 }
5012
5013 bfd_boolean
5014 _bfd_elf_write_object_contents (bfd *abfd)
5015 {
5016 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5017 Elf_Internal_Shdr **i_shdrp;
5018 bfd_boolean failed;
5019 unsigned int count, num_sec;
5020
5021 if (! abfd->output_has_begun
5022 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
5023 return FALSE;
5024
5025 i_shdrp = elf_elfsections (abfd);
5026
5027 failed = FALSE;
5028 bfd_map_over_sections (abfd, bed->s->write_relocs, &failed);
5029 if (failed)
5030 return FALSE;
5031
5032 _bfd_elf_assign_file_positions_for_relocs (abfd);
5033
5034 /* After writing the headers, we need to write the sections too... */
5035 num_sec = elf_numsections (abfd);
5036 for (count = 1; count < num_sec; count++)
5037 {
5038 if (bed->elf_backend_section_processing)
5039 (*bed->elf_backend_section_processing) (abfd, i_shdrp[count]);
5040 if (i_shdrp[count]->contents)
5041 {
5042 bfd_size_type amt = i_shdrp[count]->sh_size;
5043
5044 if (bfd_seek (abfd, i_shdrp[count]->sh_offset, SEEK_SET) != 0
5045 || bfd_bwrite (i_shdrp[count]->contents, amt, abfd) != amt)
5046 return FALSE;
5047 }
5048 }
5049
5050 /* Write out the section header names. */
5051 if (elf_shstrtab (abfd) != NULL
5052 && (bfd_seek (abfd, elf_tdata (abfd)->shstrtab_hdr.sh_offset, SEEK_SET) != 0
5053 || !_bfd_elf_strtab_emit (abfd, elf_shstrtab (abfd))))
5054 return FALSE;
5055
5056 if (bed->elf_backend_final_write_processing)
5057 (*bed->elf_backend_final_write_processing) (abfd,
5058 elf_tdata (abfd)->linker);
5059
5060 if (!bed->s->write_shdrs_and_ehdr (abfd))
5061 return FALSE;
5062
5063 /* This is last since write_shdrs_and_ehdr can touch i_shdrp[0]. */
5064 if (elf_tdata (abfd)->after_write_object_contents)
5065 return (*elf_tdata (abfd)->after_write_object_contents) (abfd);
5066
5067 return TRUE;
5068 }
5069
5070 bfd_boolean
5071 _bfd_elf_write_corefile_contents (bfd *abfd)
5072 {
5073 /* Hopefully this can be done just like an object file. */
5074 return _bfd_elf_write_object_contents (abfd);
5075 }
5076
5077 /* Given a section, search the header to find them. */
5078
5079 unsigned int
5080 _bfd_elf_section_from_bfd_section (bfd *abfd, struct bfd_section *asect)
5081 {
5082 const struct elf_backend_data *bed;
5083 unsigned int sec_index;
5084
5085 if (elf_section_data (asect) != NULL
5086 && elf_section_data (asect)->this_idx != 0)
5087 return elf_section_data (asect)->this_idx;
5088
5089 if (bfd_is_abs_section (asect))
5090 sec_index = SHN_ABS;
5091 else if (bfd_is_com_section (asect))
5092 sec_index = SHN_COMMON;
5093 else if (bfd_is_und_section (asect))
5094 sec_index = SHN_UNDEF;
5095 else
5096 sec_index = SHN_BAD;
5097
5098 bed = get_elf_backend_data (abfd);
5099 if (bed->elf_backend_section_from_bfd_section)
5100 {
5101 int retval = sec_index;
5102
5103 if ((*bed->elf_backend_section_from_bfd_section) (abfd, asect, &retval))
5104 return retval;
5105 }
5106
5107 if (sec_index == SHN_BAD)
5108 bfd_set_error (bfd_error_nonrepresentable_section);
5109
5110 return sec_index;
5111 }
5112
5113 /* Given a BFD symbol, return the index in the ELF symbol table, or -1
5114 on error. */
5115
5116 int
5117 _bfd_elf_symbol_from_bfd_symbol (bfd *abfd, asymbol **asym_ptr_ptr)
5118 {
5119 asymbol *asym_ptr = *asym_ptr_ptr;
5120 int idx;
5121 flagword flags = asym_ptr->flags;
5122
5123 /* When gas creates relocations against local labels, it creates its
5124 own symbol for the section, but does put the symbol into the
5125 symbol chain, so udata is 0. When the linker is generating
5126 relocatable output, this section symbol may be for one of the
5127 input sections rather than the output section. */
5128 if (asym_ptr->udata.i == 0
5129 && (flags & BSF_SECTION_SYM)
5130 && asym_ptr->section)
5131 {
5132 asection *sec;
5133 int indx;
5134
5135 sec = asym_ptr->section;
5136 if (sec->owner != abfd && sec->output_section != NULL)
5137 sec = sec->output_section;
5138 if (sec->owner == abfd
5139 && (indx = sec->index) < elf_num_section_syms (abfd)
5140 && elf_section_syms (abfd)[indx] != NULL)
5141 asym_ptr->udata.i = elf_section_syms (abfd)[indx]->udata.i;
5142 }
5143
5144 idx = asym_ptr->udata.i;
5145
5146 if (idx == 0)
5147 {
5148 /* This case can occur when using --strip-symbol on a symbol
5149 which is used in a relocation entry. */
5150 (*_bfd_error_handler)
5151 (_("%B: symbol `%s' required but not present"),
5152 abfd, bfd_asymbol_name (asym_ptr));
5153 bfd_set_error (bfd_error_no_symbols);
5154 return -1;
5155 }
5156
5157 #if DEBUG & 4
5158 {
5159 fprintf (stderr,
5160 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8lx%s\n",
5161 (long) asym_ptr, asym_ptr->name, idx, flags,
5162 elf_symbol_flags (flags));
5163 fflush (stderr);
5164 }
5165 #endif
5166
5167 return idx;
5168 }
5169
5170 /* Rewrite program header information. */
5171
5172 static bfd_boolean
5173 rewrite_elf_program_header (bfd *ibfd, bfd *obfd)
5174 {
5175 Elf_Internal_Ehdr *iehdr;
5176 struct elf_segment_map *map;
5177 struct elf_segment_map *map_first;
5178 struct elf_segment_map **pointer_to_map;
5179 Elf_Internal_Phdr *segment;
5180 asection *section;
5181 unsigned int i;
5182 unsigned int num_segments;
5183 bfd_boolean phdr_included = FALSE;
5184 bfd_boolean p_paddr_valid;
5185 bfd_vma maxpagesize;
5186 struct elf_segment_map *phdr_adjust_seg = NULL;
5187 unsigned int phdr_adjust_num = 0;
5188 const struct elf_backend_data *bed;
5189
5190 bed = get_elf_backend_data (ibfd);
5191 iehdr = elf_elfheader (ibfd);
5192
5193 map_first = NULL;
5194 pointer_to_map = &map_first;
5195
5196 num_segments = elf_elfheader (ibfd)->e_phnum;
5197 maxpagesize = get_elf_backend_data (obfd)->maxpagesize;
5198
5199 /* Returns the end address of the segment + 1. */
5200 #define SEGMENT_END(segment, start) \
5201 (start + (segment->p_memsz > segment->p_filesz \
5202 ? segment->p_memsz : segment->p_filesz))
5203
5204 #define SECTION_SIZE(section, segment) \
5205 (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL)) \
5206 != SEC_THREAD_LOCAL || segment->p_type == PT_TLS) \
5207 ? section->size : 0)
5208
5209 /* Returns TRUE if the given section is contained within
5210 the given segment. VMA addresses are compared. */
5211 #define IS_CONTAINED_BY_VMA(section, segment) \
5212 (section->vma >= segment->p_vaddr \
5213 && (section->vma + SECTION_SIZE (section, segment) \
5214 <= (SEGMENT_END (segment, segment->p_vaddr))))
5215
5216 /* Returns TRUE if the given section is contained within
5217 the given segment. LMA addresses are compared. */
5218 #define IS_CONTAINED_BY_LMA(section, segment, base) \
5219 (section->lma >= base \
5220 && (section->lma + SECTION_SIZE (section, segment) \
5221 <= SEGMENT_END (segment, base)))
5222
5223 /* Handle PT_NOTE segment. */
5224 #define IS_NOTE(p, s) \
5225 (p->p_type == PT_NOTE \
5226 && elf_section_type (s) == SHT_NOTE \
5227 && (bfd_vma) s->filepos >= p->p_offset \
5228 && ((bfd_vma) s->filepos + s->size \
5229 <= p->p_offset + p->p_filesz))
5230
5231 /* Special case: corefile "NOTE" section containing regs, prpsinfo
5232 etc. */
5233 #define IS_COREFILE_NOTE(p, s) \
5234 (IS_NOTE (p, s) \
5235 && bfd_get_format (ibfd) == bfd_core \
5236 && s->vma == 0 \
5237 && s->lma == 0)
5238
5239 /* The complicated case when p_vaddr is 0 is to handle the Solaris
5240 linker, which generates a PT_INTERP section with p_vaddr and
5241 p_memsz set to 0. */
5242 #define IS_SOLARIS_PT_INTERP(p, s) \
5243 (p->p_vaddr == 0 \
5244 && p->p_paddr == 0 \
5245 && p->p_memsz == 0 \
5246 && p->p_filesz > 0 \
5247 && (s->flags & SEC_HAS_CONTENTS) != 0 \
5248 && s->size > 0 \
5249 && (bfd_vma) s->filepos >= p->p_offset \
5250 && ((bfd_vma) s->filepos + s->size \
5251 <= p->p_offset + p->p_filesz))
5252
5253 /* Decide if the given section should be included in the given segment.
5254 A section will be included if:
5255 1. It is within the address space of the segment -- we use the LMA
5256 if that is set for the segment and the VMA otherwise,
5257 2. It is an allocated section or a NOTE section in a PT_NOTE
5258 segment.
5259 3. There is an output section associated with it,
5260 4. The section has not already been allocated to a previous segment.
5261 5. PT_GNU_STACK segments do not include any sections.
5262 6. PT_TLS segment includes only SHF_TLS sections.
5263 7. SHF_TLS sections are only in PT_TLS or PT_LOAD segments.
5264 8. PT_DYNAMIC should not contain empty sections at the beginning
5265 (with the possible exception of .dynamic). */
5266 #define IS_SECTION_IN_INPUT_SEGMENT(section, segment, bed) \
5267 ((((segment->p_paddr \
5268 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr) \
5269 : IS_CONTAINED_BY_VMA (section, segment)) \
5270 && (section->flags & SEC_ALLOC) != 0) \
5271 || IS_NOTE (segment, section)) \
5272 && segment->p_type != PT_GNU_STACK \
5273 && (segment->p_type != PT_TLS \
5274 || (section->flags & SEC_THREAD_LOCAL)) \
5275 && (segment->p_type == PT_LOAD \
5276 || segment->p_type == PT_TLS \
5277 || (section->flags & SEC_THREAD_LOCAL) == 0) \
5278 && (segment->p_type != PT_DYNAMIC \
5279 || SECTION_SIZE (section, segment) > 0 \
5280 || (segment->p_paddr \
5281 ? segment->p_paddr != section->lma \
5282 : segment->p_vaddr != section->vma) \
5283 || (strcmp (bfd_get_section_name (ibfd, section), ".dynamic") \
5284 == 0)) \
5285 && !section->segment_mark)
5286
5287 /* If the output section of a section in the input segment is NULL,
5288 it is removed from the corresponding output segment. */
5289 #define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed) \
5290 (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed) \
5291 && section->output_section != NULL)
5292
5293 /* Returns TRUE iff seg1 starts after the end of seg2. */
5294 #define SEGMENT_AFTER_SEGMENT(seg1, seg2, field) \
5295 (seg1->field >= SEGMENT_END (seg2, seg2->field))
5296
5297 /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both
5298 their VMA address ranges and their LMA address ranges overlap.
5299 It is possible to have overlapping VMA ranges without overlapping LMA
5300 ranges. RedBoot images for example can have both .data and .bss mapped
5301 to the same VMA range, but with the .data section mapped to a different
5302 LMA. */
5303 #define SEGMENT_OVERLAPS(seg1, seg2) \
5304 ( !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr) \
5305 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr)) \
5306 && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr) \
5307 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr)))
5308
5309 /* Initialise the segment mark field. */
5310 for (section = ibfd->sections; section != NULL; section = section->next)
5311 section->segment_mark = FALSE;
5312
5313 /* The Solaris linker creates program headers in which all the
5314 p_paddr fields are zero. When we try to objcopy or strip such a
5315 file, we get confused. Check for this case, and if we find it
5316 don't set the p_paddr_valid fields. */
5317 p_paddr_valid = FALSE;
5318 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5319 i < num_segments;
5320 i++, segment++)
5321 if (segment->p_paddr != 0)
5322 {
5323 p_paddr_valid = TRUE;
5324 break;
5325 }
5326
5327 /* Scan through the segments specified in the program header
5328 of the input BFD. For this first scan we look for overlaps
5329 in the loadable segments. These can be created by weird
5330 parameters to objcopy. Also, fix some solaris weirdness. */
5331 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5332 i < num_segments;
5333 i++, segment++)
5334 {
5335 unsigned int j;
5336 Elf_Internal_Phdr *segment2;
5337
5338 if (segment->p_type == PT_INTERP)
5339 for (section = ibfd->sections; section; section = section->next)
5340 if (IS_SOLARIS_PT_INTERP (segment, section))
5341 {
5342 /* Mininal change so that the normal section to segment
5343 assignment code will work. */
5344 segment->p_vaddr = section->vma;
5345 break;
5346 }
5347
5348 if (segment->p_type != PT_LOAD)
5349 {
5350 /* Remove PT_GNU_RELRO segment. */
5351 if (segment->p_type == PT_GNU_RELRO)
5352 segment->p_type = PT_NULL;
5353 continue;
5354 }
5355
5356 /* Determine if this segment overlaps any previous segments. */
5357 for (j = 0, segment2 = elf_tdata (ibfd)->phdr; j < i; j++, segment2++)
5358 {
5359 bfd_signed_vma extra_length;
5360
5361 if (segment2->p_type != PT_LOAD
5362 || !SEGMENT_OVERLAPS (segment, segment2))
5363 continue;
5364
5365 /* Merge the two segments together. */
5366 if (segment2->p_vaddr < segment->p_vaddr)
5367 {
5368 /* Extend SEGMENT2 to include SEGMENT and then delete
5369 SEGMENT. */
5370 extra_length = (SEGMENT_END (segment, segment->p_vaddr)
5371 - SEGMENT_END (segment2, segment2->p_vaddr));
5372
5373 if (extra_length > 0)
5374 {
5375 segment2->p_memsz += extra_length;
5376 segment2->p_filesz += extra_length;
5377 }
5378
5379 segment->p_type = PT_NULL;
5380
5381 /* Since we have deleted P we must restart the outer loop. */
5382 i = 0;
5383 segment = elf_tdata (ibfd)->phdr;
5384 break;
5385 }
5386 else
5387 {
5388 /* Extend SEGMENT to include SEGMENT2 and then delete
5389 SEGMENT2. */
5390 extra_length = (SEGMENT_END (segment2, segment2->p_vaddr)
5391 - SEGMENT_END (segment, segment->p_vaddr));
5392
5393 if (extra_length > 0)
5394 {
5395 segment->p_memsz += extra_length;
5396 segment->p_filesz += extra_length;
5397 }
5398
5399 segment2->p_type = PT_NULL;
5400 }
5401 }
5402 }
5403
5404 /* The second scan attempts to assign sections to segments. */
5405 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5406 i < num_segments;
5407 i++, segment++)
5408 {
5409 unsigned int section_count;
5410 asection **sections;
5411 asection *output_section;
5412 unsigned int isec;
5413 bfd_vma matching_lma;
5414 bfd_vma suggested_lma;
5415 unsigned int j;
5416 bfd_size_type amt;
5417 asection *first_section;
5418 bfd_boolean first_matching_lma;
5419 bfd_boolean first_suggested_lma;
5420
5421 if (segment->p_type == PT_NULL)
5422 continue;
5423
5424 first_section = NULL;
5425 /* Compute how many sections might be placed into this segment. */
5426 for (section = ibfd->sections, section_count = 0;
5427 section != NULL;
5428 section = section->next)
5429 {
5430 /* Find the first section in the input segment, which may be
5431 removed from the corresponding output segment. */
5432 if (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed))
5433 {
5434 if (first_section == NULL)
5435 first_section = section;
5436 if (section->output_section != NULL)
5437 ++section_count;
5438 }
5439 }
5440
5441 /* Allocate a segment map big enough to contain
5442 all of the sections we have selected. */
5443 amt = sizeof (struct elf_segment_map);
5444 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5445 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
5446 if (map == NULL)
5447 return FALSE;
5448
5449 /* Initialise the fields of the segment map. Default to
5450 using the physical address of the segment in the input BFD. */
5451 map->next = NULL;
5452 map->p_type = segment->p_type;
5453 map->p_flags = segment->p_flags;
5454 map->p_flags_valid = 1;
5455
5456 /* If the first section in the input segment is removed, there is
5457 no need to preserve segment physical address in the corresponding
5458 output segment. */
5459 if (!first_section || first_section->output_section != NULL)
5460 {
5461 map->p_paddr = segment->p_paddr;
5462 map->p_paddr_valid = p_paddr_valid;
5463 }
5464
5465 /* Determine if this segment contains the ELF file header
5466 and if it contains the program headers themselves. */
5467 map->includes_filehdr = (segment->p_offset == 0
5468 && segment->p_filesz >= iehdr->e_ehsize);
5469 map->includes_phdrs = 0;
5470
5471 if (!phdr_included || segment->p_type != PT_LOAD)
5472 {
5473 map->includes_phdrs =
5474 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
5475 && (segment->p_offset + segment->p_filesz
5476 >= ((bfd_vma) iehdr->e_phoff
5477 + iehdr->e_phnum * iehdr->e_phentsize)));
5478
5479 if (segment->p_type == PT_LOAD && map->includes_phdrs)
5480 phdr_included = TRUE;
5481 }
5482
5483 if (section_count == 0)
5484 {
5485 /* Special segments, such as the PT_PHDR segment, may contain
5486 no sections, but ordinary, loadable segments should contain
5487 something. They are allowed by the ELF spec however, so only
5488 a warning is produced. */
5489 if (segment->p_type == PT_LOAD)
5490 (*_bfd_error_handler) (_("%B: warning: Empty loadable segment"
5491 " detected, is this intentional ?\n"),
5492 ibfd);
5493
5494 map->count = 0;
5495 *pointer_to_map = map;
5496 pointer_to_map = &map->next;
5497
5498 continue;
5499 }
5500
5501 /* Now scan the sections in the input BFD again and attempt
5502 to add their corresponding output sections to the segment map.
5503 The problem here is how to handle an output section which has
5504 been moved (ie had its LMA changed). There are four possibilities:
5505
5506 1. None of the sections have been moved.
5507 In this case we can continue to use the segment LMA from the
5508 input BFD.
5509
5510 2. All of the sections have been moved by the same amount.
5511 In this case we can change the segment's LMA to match the LMA
5512 of the first section.
5513
5514 3. Some of the sections have been moved, others have not.
5515 In this case those sections which have not been moved can be
5516 placed in the current segment which will have to have its size,
5517 and possibly its LMA changed, and a new segment or segments will
5518 have to be created to contain the other sections.
5519
5520 4. The sections have been moved, but not by the same amount.
5521 In this case we can change the segment's LMA to match the LMA
5522 of the first section and we will have to create a new segment
5523 or segments to contain the other sections.
5524
5525 In order to save time, we allocate an array to hold the section
5526 pointers that we are interested in. As these sections get assigned
5527 to a segment, they are removed from this array. */
5528
5529 sections = (asection **) bfd_malloc2 (section_count, sizeof (asection *));
5530 if (sections == NULL)
5531 return FALSE;
5532
5533 /* Step One: Scan for segment vs section LMA conflicts.
5534 Also add the sections to the section array allocated above.
5535 Also add the sections to the current segment. In the common
5536 case, where the sections have not been moved, this means that
5537 we have completely filled the segment, and there is nothing
5538 more to do. */
5539 isec = 0;
5540 matching_lma = 0;
5541 suggested_lma = 0;
5542 first_matching_lma = TRUE;
5543 first_suggested_lma = TRUE;
5544
5545 for (section = ibfd->sections;
5546 section != NULL;
5547 section = section->next)
5548 if (section == first_section)
5549 break;
5550
5551 for (j = 0; section != NULL; section = section->next)
5552 {
5553 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
5554 {
5555 output_section = section->output_section;
5556
5557 sections[j++] = section;
5558
5559 /* The Solaris native linker always sets p_paddr to 0.
5560 We try to catch that case here, and set it to the
5561 correct value. Note - some backends require that
5562 p_paddr be left as zero. */
5563 if (!p_paddr_valid
5564 && segment->p_vaddr != 0
5565 && !bed->want_p_paddr_set_to_zero
5566 && isec == 0
5567 && output_section->lma != 0
5568 && output_section->vma == (segment->p_vaddr
5569 + (map->includes_filehdr
5570 ? iehdr->e_ehsize
5571 : 0)
5572 + (map->includes_phdrs
5573 ? (iehdr->e_phnum
5574 * iehdr->e_phentsize)
5575 : 0)))
5576 map->p_paddr = segment->p_vaddr;
5577
5578 /* Match up the physical address of the segment with the
5579 LMA address of the output section. */
5580 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
5581 || IS_COREFILE_NOTE (segment, section)
5582 || (bed->want_p_paddr_set_to_zero
5583 && IS_CONTAINED_BY_VMA (output_section, segment)))
5584 {
5585 if (first_matching_lma || output_section->lma < matching_lma)
5586 {
5587 matching_lma = output_section->lma;
5588 first_matching_lma = FALSE;
5589 }
5590
5591 /* We assume that if the section fits within the segment
5592 then it does not overlap any other section within that
5593 segment. */
5594 map->sections[isec++] = output_section;
5595 }
5596 else if (first_suggested_lma)
5597 {
5598 suggested_lma = output_section->lma;
5599 first_suggested_lma = FALSE;
5600 }
5601
5602 if (j == section_count)
5603 break;
5604 }
5605 }
5606
5607 BFD_ASSERT (j == section_count);
5608
5609 /* Step Two: Adjust the physical address of the current segment,
5610 if necessary. */
5611 if (isec == section_count)
5612 {
5613 /* All of the sections fitted within the segment as currently
5614 specified. This is the default case. Add the segment to
5615 the list of built segments and carry on to process the next
5616 program header in the input BFD. */
5617 map->count = section_count;
5618 *pointer_to_map = map;
5619 pointer_to_map = &map->next;
5620
5621 if (p_paddr_valid
5622 && !bed->want_p_paddr_set_to_zero
5623 && matching_lma != map->p_paddr
5624 && !map->includes_filehdr
5625 && !map->includes_phdrs)
5626 /* There is some padding before the first section in the
5627 segment. So, we must account for that in the output
5628 segment's vma. */
5629 map->p_vaddr_offset = matching_lma - map->p_paddr;
5630
5631 free (sections);
5632 continue;
5633 }
5634 else
5635 {
5636 if (!first_matching_lma)
5637 {
5638 /* At least one section fits inside the current segment.
5639 Keep it, but modify its physical address to match the
5640 LMA of the first section that fitted. */
5641 map->p_paddr = matching_lma;
5642 }
5643 else
5644 {
5645 /* None of the sections fitted inside the current segment.
5646 Change the current segment's physical address to match
5647 the LMA of the first section. */
5648 map->p_paddr = suggested_lma;
5649 }
5650
5651 /* Offset the segment physical address from the lma
5652 to allow for space taken up by elf headers. */
5653 if (map->includes_filehdr)
5654 {
5655 if (map->p_paddr >= iehdr->e_ehsize)
5656 map->p_paddr -= iehdr->e_ehsize;
5657 else
5658 {
5659 map->includes_filehdr = FALSE;
5660 map->includes_phdrs = FALSE;
5661 }
5662 }
5663
5664 if (map->includes_phdrs)
5665 {
5666 if (map->p_paddr >= iehdr->e_phnum * iehdr->e_phentsize)
5667 {
5668 map->p_paddr -= iehdr->e_phnum * iehdr->e_phentsize;
5669
5670 /* iehdr->e_phnum is just an estimate of the number
5671 of program headers that we will need. Make a note
5672 here of the number we used and the segment we chose
5673 to hold these headers, so that we can adjust the
5674 offset when we know the correct value. */
5675 phdr_adjust_num = iehdr->e_phnum;
5676 phdr_adjust_seg = map;
5677 }
5678 else
5679 map->includes_phdrs = FALSE;
5680 }
5681 }
5682
5683 /* Step Three: Loop over the sections again, this time assigning
5684 those that fit to the current segment and removing them from the
5685 sections array; but making sure not to leave large gaps. Once all
5686 possible sections have been assigned to the current segment it is
5687 added to the list of built segments and if sections still remain
5688 to be assigned, a new segment is constructed before repeating
5689 the loop. */
5690 isec = 0;
5691 do
5692 {
5693 map->count = 0;
5694 suggested_lma = 0;
5695 first_suggested_lma = TRUE;
5696
5697 /* Fill the current segment with sections that fit. */
5698 for (j = 0; j < section_count; j++)
5699 {
5700 section = sections[j];
5701
5702 if (section == NULL)
5703 continue;
5704
5705 output_section = section->output_section;
5706
5707 BFD_ASSERT (output_section != NULL);
5708
5709 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
5710 || IS_COREFILE_NOTE (segment, section))
5711 {
5712 if (map->count == 0)
5713 {
5714 /* If the first section in a segment does not start at
5715 the beginning of the segment, then something is
5716 wrong. */
5717 if (output_section->lma
5718 != (map->p_paddr
5719 + (map->includes_filehdr ? iehdr->e_ehsize : 0)
5720 + (map->includes_phdrs
5721 ? iehdr->e_phnum * iehdr->e_phentsize
5722 : 0)))
5723 abort ();
5724 }
5725 else
5726 {
5727 asection *prev_sec;
5728
5729 prev_sec = map->sections[map->count - 1];
5730
5731 /* If the gap between the end of the previous section
5732 and the start of this section is more than
5733 maxpagesize then we need to start a new segment. */
5734 if ((BFD_ALIGN (prev_sec->lma + prev_sec->size,
5735 maxpagesize)
5736 < BFD_ALIGN (output_section->lma, maxpagesize))
5737 || (prev_sec->lma + prev_sec->size
5738 > output_section->lma))
5739 {
5740 if (first_suggested_lma)
5741 {
5742 suggested_lma = output_section->lma;
5743 first_suggested_lma = FALSE;
5744 }
5745
5746 continue;
5747 }
5748 }
5749
5750 map->sections[map->count++] = output_section;
5751 ++isec;
5752 sections[j] = NULL;
5753 section->segment_mark = TRUE;
5754 }
5755 else if (first_suggested_lma)
5756 {
5757 suggested_lma = output_section->lma;
5758 first_suggested_lma = FALSE;
5759 }
5760 }
5761
5762 BFD_ASSERT (map->count > 0);
5763
5764 /* Add the current segment to the list of built segments. */
5765 *pointer_to_map = map;
5766 pointer_to_map = &map->next;
5767
5768 if (isec < section_count)
5769 {
5770 /* We still have not allocated all of the sections to
5771 segments. Create a new segment here, initialise it
5772 and carry on looping. */
5773 amt = sizeof (struct elf_segment_map);
5774 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5775 map = (struct elf_segment_map *) bfd_alloc (obfd, amt);
5776 if (map == NULL)
5777 {
5778 free (sections);
5779 return FALSE;
5780 }
5781
5782 /* Initialise the fields of the segment map. Set the physical
5783 physical address to the LMA of the first section that has
5784 not yet been assigned. */
5785 map->next = NULL;
5786 map->p_type = segment->p_type;
5787 map->p_flags = segment->p_flags;
5788 map->p_flags_valid = 1;
5789 map->p_paddr = suggested_lma;
5790 map->p_paddr_valid = p_paddr_valid;
5791 map->includes_filehdr = 0;
5792 map->includes_phdrs = 0;
5793 }
5794 }
5795 while (isec < section_count);
5796
5797 free (sections);
5798 }
5799
5800 elf_tdata (obfd)->segment_map = map_first;
5801
5802 /* If we had to estimate the number of program headers that were
5803 going to be needed, then check our estimate now and adjust
5804 the offset if necessary. */
5805 if (phdr_adjust_seg != NULL)
5806 {
5807 unsigned int count;
5808
5809 for (count = 0, map = map_first; map != NULL; map = map->next)
5810 count++;
5811
5812 if (count > phdr_adjust_num)
5813 phdr_adjust_seg->p_paddr
5814 -= (count - phdr_adjust_num) * iehdr->e_phentsize;
5815 }
5816
5817 #undef SEGMENT_END
5818 #undef SECTION_SIZE
5819 #undef IS_CONTAINED_BY_VMA
5820 #undef IS_CONTAINED_BY_LMA
5821 #undef IS_NOTE
5822 #undef IS_COREFILE_NOTE
5823 #undef IS_SOLARIS_PT_INTERP
5824 #undef IS_SECTION_IN_INPUT_SEGMENT
5825 #undef INCLUDE_SECTION_IN_SEGMENT
5826 #undef SEGMENT_AFTER_SEGMENT
5827 #undef SEGMENT_OVERLAPS
5828 return TRUE;
5829 }
5830
5831 /* Copy ELF program header information. */
5832
5833 static bfd_boolean
5834 copy_elf_program_header (bfd *ibfd, bfd *obfd)
5835 {
5836 Elf_Internal_Ehdr *iehdr;
5837 struct elf_segment_map *map;
5838 struct elf_segment_map *map_first;
5839 struct elf_segment_map **pointer_to_map;
5840 Elf_Internal_Phdr *segment;
5841 unsigned int i;
5842 unsigned int num_segments;
5843 bfd_boolean phdr_included = FALSE;
5844 bfd_boolean p_paddr_valid;
5845
5846 iehdr = elf_elfheader (ibfd);
5847
5848 map_first = NULL;
5849 pointer_to_map = &map_first;
5850
5851 /* If all the segment p_paddr fields are zero, don't set
5852 map->p_paddr_valid. */
5853 p_paddr_valid = FALSE;
5854 num_segments = elf_elfheader (ibfd)->e_phnum;
5855 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5856 i < num_segments;
5857 i++, segment++)
5858 if (segment->p_paddr != 0)
5859 {
5860 p_paddr_valid = TRUE;
5861 break;
5862 }
5863
5864 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5865 i < num_segments;
5866 i++, segment++)
5867 {
5868 asection *section;
5869 unsigned int section_count;
5870 bfd_size_type amt;
5871 Elf_Internal_Shdr *this_hdr;
5872 asection *first_section = NULL;
5873 asection *lowest_section;
5874
5875 /* Compute how many sections are in this segment. */
5876 for (section = ibfd->sections, section_count = 0;
5877 section != NULL;
5878 section = section->next)
5879 {
5880 this_hdr = &(elf_section_data(section)->this_hdr);
5881 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
5882 {
5883 if (first_section == NULL)
5884 first_section = section;
5885 section_count++;
5886 }
5887 }
5888
5889 /* Allocate a segment map big enough to contain
5890 all of the sections we have selected. */
5891 amt = sizeof (struct elf_segment_map);
5892 if (section_count != 0)
5893 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5894 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
5895 if (map == NULL)
5896 return FALSE;
5897
5898 /* Initialize the fields of the output segment map with the
5899 input segment. */
5900 map->next = NULL;
5901 map->p_type = segment->p_type;
5902 map->p_flags = segment->p_flags;
5903 map->p_flags_valid = 1;
5904 map->p_paddr = segment->p_paddr;
5905 map->p_paddr_valid = p_paddr_valid;
5906 map->p_align = segment->p_align;
5907 map->p_align_valid = 1;
5908 map->p_vaddr_offset = 0;
5909
5910 if (map->p_type == PT_GNU_RELRO)
5911 {
5912 /* The PT_GNU_RELRO segment may contain the first a few
5913 bytes in the .got.plt section even if the whole .got.plt
5914 section isn't in the PT_GNU_RELRO segment. We won't
5915 change the size of the PT_GNU_RELRO segment. */
5916 map->p_size = segment->p_memsz;
5917 map->p_size_valid = 1;
5918 }
5919
5920 /* Determine if this segment contains the ELF file header
5921 and if it contains the program headers themselves. */
5922 map->includes_filehdr = (segment->p_offset == 0
5923 && segment->p_filesz >= iehdr->e_ehsize);
5924
5925 map->includes_phdrs = 0;
5926 if (! phdr_included || segment->p_type != PT_LOAD)
5927 {
5928 map->includes_phdrs =
5929 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
5930 && (segment->p_offset + segment->p_filesz
5931 >= ((bfd_vma) iehdr->e_phoff
5932 + iehdr->e_phnum * iehdr->e_phentsize)));
5933
5934 if (segment->p_type == PT_LOAD && map->includes_phdrs)
5935 phdr_included = TRUE;
5936 }
5937
5938 lowest_section = first_section;
5939 if (section_count != 0)
5940 {
5941 unsigned int isec = 0;
5942
5943 for (section = first_section;
5944 section != NULL;
5945 section = section->next)
5946 {
5947 this_hdr = &(elf_section_data(section)->this_hdr);
5948 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
5949 {
5950 map->sections[isec++] = section->output_section;
5951 if (section->lma < lowest_section->lma)
5952 lowest_section = section;
5953 if ((section->flags & SEC_ALLOC) != 0)
5954 {
5955 bfd_vma seg_off;
5956
5957 /* Section lmas are set up from PT_LOAD header
5958 p_paddr in _bfd_elf_make_section_from_shdr.
5959 If this header has a p_paddr that disagrees
5960 with the section lma, flag the p_paddr as
5961 invalid. */
5962 if ((section->flags & SEC_LOAD) != 0)
5963 seg_off = this_hdr->sh_offset - segment->p_offset;
5964 else
5965 seg_off = this_hdr->sh_addr - segment->p_vaddr;
5966 if (section->lma - segment->p_paddr != seg_off)
5967 map->p_paddr_valid = FALSE;
5968 }
5969 if (isec == section_count)
5970 break;
5971 }
5972 }
5973 }
5974
5975 if (map->includes_filehdr && lowest_section != NULL)
5976 /* We need to keep the space used by the headers fixed. */
5977 map->header_size = lowest_section->vma - segment->p_vaddr;
5978
5979 if (!map->includes_phdrs
5980 && !map->includes_filehdr
5981 && map->p_paddr_valid)
5982 /* There is some other padding before the first section. */
5983 map->p_vaddr_offset = ((lowest_section ? lowest_section->lma : 0)
5984 - segment->p_paddr);
5985
5986 map->count = section_count;
5987 *pointer_to_map = map;
5988 pointer_to_map = &map->next;
5989 }
5990
5991 elf_tdata (obfd)->segment_map = map_first;
5992 return TRUE;
5993 }
5994
5995 /* Copy private BFD data. This copies or rewrites ELF program header
5996 information. */
5997
5998 static bfd_boolean
5999 copy_private_bfd_data (bfd *ibfd, bfd *obfd)
6000 {
6001 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
6002 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
6003 return TRUE;
6004
6005 if (elf_tdata (ibfd)->phdr == NULL)
6006 return TRUE;
6007
6008 if (ibfd->xvec == obfd->xvec)
6009 {
6010 /* Check to see if any sections in the input BFD
6011 covered by ELF program header have changed. */
6012 Elf_Internal_Phdr *segment;
6013 asection *section, *osec;
6014 unsigned int i, num_segments;
6015 Elf_Internal_Shdr *this_hdr;
6016 const struct elf_backend_data *bed;
6017
6018 bed = get_elf_backend_data (ibfd);
6019
6020 /* Regenerate the segment map if p_paddr is set to 0. */
6021 if (bed->want_p_paddr_set_to_zero)
6022 goto rewrite;
6023
6024 /* Initialize the segment mark field. */
6025 for (section = obfd->sections; section != NULL;
6026 section = section->next)
6027 section->segment_mark = FALSE;
6028
6029 num_segments = elf_elfheader (ibfd)->e_phnum;
6030 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6031 i < num_segments;
6032 i++, segment++)
6033 {
6034 /* PR binutils/3535. The Solaris linker always sets the p_paddr
6035 and p_memsz fields of special segments (DYNAMIC, INTERP) to 0
6036 which severly confuses things, so always regenerate the segment
6037 map in this case. */
6038 if (segment->p_paddr == 0
6039 && segment->p_memsz == 0
6040 && (segment->p_type == PT_INTERP || segment->p_type == PT_DYNAMIC))
6041 goto rewrite;
6042
6043 for (section = ibfd->sections;
6044 section != NULL; section = section->next)
6045 {
6046 /* We mark the output section so that we know it comes
6047 from the input BFD. */
6048 osec = section->output_section;
6049 if (osec)
6050 osec->segment_mark = TRUE;
6051
6052 /* Check if this section is covered by the segment. */
6053 this_hdr = &(elf_section_data(section)->this_hdr);
6054 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
6055 {
6056 /* FIXME: Check if its output section is changed or
6057 removed. What else do we need to check? */
6058 if (osec == NULL
6059 || section->flags != osec->flags
6060 || section->lma != osec->lma
6061 || section->vma != osec->vma
6062 || section->size != osec->size
6063 || section->rawsize != osec->rawsize
6064 || section->alignment_power != osec->alignment_power)
6065 goto rewrite;
6066 }
6067 }
6068 }
6069
6070 /* Check to see if any output section do not come from the
6071 input BFD. */
6072 for (section = obfd->sections; section != NULL;
6073 section = section->next)
6074 {
6075 if (section->segment_mark == FALSE)
6076 goto rewrite;
6077 else
6078 section->segment_mark = FALSE;
6079 }
6080
6081 return copy_elf_program_header (ibfd, obfd);
6082 }
6083
6084 rewrite:
6085 return rewrite_elf_program_header (ibfd, obfd);
6086 }
6087
6088 /* Initialize private output section information from input section. */
6089
6090 bfd_boolean
6091 _bfd_elf_init_private_section_data (bfd *ibfd,
6092 asection *isec,
6093 bfd *obfd,
6094 asection *osec,
6095 struct bfd_link_info *link_info)
6096
6097 {
6098 Elf_Internal_Shdr *ihdr, *ohdr;
6099 bfd_boolean final_link = link_info != NULL && !link_info->relocatable;
6100
6101 if (ibfd->xvec->flavour != bfd_target_elf_flavour
6102 || obfd->xvec->flavour != bfd_target_elf_flavour)
6103 return TRUE;
6104
6105 /* For objcopy and relocatable link, don't copy the output ELF
6106 section type from input if the output BFD section flags have been
6107 set to something different. For a final link allow some flags
6108 that the linker clears to differ. */
6109 if (elf_section_type (osec) == SHT_NULL
6110 && (osec->flags == isec->flags
6111 || (final_link
6112 && ((osec->flags ^ isec->flags)
6113 & ~ (SEC_LINK_ONCE | SEC_LINK_DUPLICATES)) == 0)))
6114 elf_section_type (osec) = elf_section_type (isec);
6115
6116 /* FIXME: Is this correct for all OS/PROC specific flags? */
6117 elf_section_flags (osec) |= (elf_section_flags (isec)
6118 & (SHF_MASKOS | SHF_MASKPROC));
6119
6120 /* Set things up for objcopy and relocatable link. The output
6121 SHT_GROUP section will have its elf_next_in_group pointing back
6122 to the input group members. Ignore linker created group section.
6123 See elfNN_ia64_object_p in elfxx-ia64.c. */
6124 if (!final_link)
6125 {
6126 if (elf_sec_group (isec) == NULL
6127 || (elf_sec_group (isec)->flags & SEC_LINKER_CREATED) == 0)
6128 {
6129 if (elf_section_flags (isec) & SHF_GROUP)
6130 elf_section_flags (osec) |= SHF_GROUP;
6131 elf_next_in_group (osec) = elf_next_in_group (isec);
6132 elf_section_data (osec)->group = elf_section_data (isec)->group;
6133 }
6134 }
6135
6136 ihdr = &elf_section_data (isec)->this_hdr;
6137
6138 /* We need to handle elf_linked_to_section for SHF_LINK_ORDER. We
6139 don't use the output section of the linked-to section since it
6140 may be NULL at this point. */
6141 if ((ihdr->sh_flags & SHF_LINK_ORDER) != 0)
6142 {
6143 ohdr = &elf_section_data (osec)->this_hdr;
6144 ohdr->sh_flags |= SHF_LINK_ORDER;
6145 elf_linked_to_section (osec) = elf_linked_to_section (isec);
6146 }
6147
6148 osec->use_rela_p = isec->use_rela_p;
6149
6150 return TRUE;
6151 }
6152
6153 /* Copy private section information. This copies over the entsize
6154 field, and sometimes the info field. */
6155
6156 bfd_boolean
6157 _bfd_elf_copy_private_section_data (bfd *ibfd,
6158 asection *isec,
6159 bfd *obfd,
6160 asection *osec)
6161 {
6162 Elf_Internal_Shdr *ihdr, *ohdr;
6163
6164 if (ibfd->xvec->flavour != bfd_target_elf_flavour
6165 || obfd->xvec->flavour != bfd_target_elf_flavour)
6166 return TRUE;
6167
6168 ihdr = &elf_section_data (isec)->this_hdr;
6169 ohdr = &elf_section_data (osec)->this_hdr;
6170
6171 ohdr->sh_entsize = ihdr->sh_entsize;
6172
6173 if (ihdr->sh_type == SHT_SYMTAB
6174 || ihdr->sh_type == SHT_DYNSYM
6175 || ihdr->sh_type == SHT_GNU_verneed
6176 || ihdr->sh_type == SHT_GNU_verdef)
6177 ohdr->sh_info = ihdr->sh_info;
6178
6179 return _bfd_elf_init_private_section_data (ibfd, isec, obfd, osec,
6180 NULL);
6181 }
6182
6183 /* Look at all the SHT_GROUP sections in IBFD, making any adjustments
6184 necessary if we are removing either the SHT_GROUP section or any of
6185 the group member sections. DISCARDED is the value that a section's
6186 output_section has if the section will be discarded, NULL when this
6187 function is called from objcopy, bfd_abs_section_ptr when called
6188 from the linker. */
6189
6190 bfd_boolean
6191 _bfd_elf_fixup_group_sections (bfd *ibfd, asection *discarded)
6192 {
6193 asection *isec;
6194
6195 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
6196 if (elf_section_type (isec) == SHT_GROUP)
6197 {
6198 asection *first = elf_next_in_group (isec);
6199 asection *s = first;
6200 bfd_size_type removed = 0;
6201
6202 while (s != NULL)
6203 {
6204 /* If this member section is being output but the
6205 SHT_GROUP section is not, then clear the group info
6206 set up by _bfd_elf_copy_private_section_data. */
6207 if (s->output_section != discarded
6208 && isec->output_section == discarded)
6209 {
6210 elf_section_flags (s->output_section) &= ~SHF_GROUP;
6211 elf_group_name (s->output_section) = NULL;
6212 }
6213 /* Conversely, if the member section is not being output
6214 but the SHT_GROUP section is, then adjust its size. */
6215 else if (s->output_section == discarded
6216 && isec->output_section != discarded)
6217 removed += 4;
6218 s = elf_next_in_group (s);
6219 if (s == first)
6220 break;
6221 }
6222 if (removed != 0)
6223 {
6224 if (discarded != NULL)
6225 {
6226 /* If we've been called for ld -r, then we need to
6227 adjust the input section size. This function may
6228 be called multiple times, so save the original
6229 size. */
6230 if (isec->rawsize == 0)
6231 isec->rawsize = isec->size;
6232 isec->size = isec->rawsize - removed;
6233 }
6234 else
6235 {
6236 /* Adjust the output section size when called from
6237 objcopy. */
6238 isec->output_section->size -= removed;
6239 }
6240 }
6241 }
6242
6243 return TRUE;
6244 }
6245
6246 /* Copy private header information. */
6247
6248 bfd_boolean
6249 _bfd_elf_copy_private_header_data (bfd *ibfd, bfd *obfd)
6250 {
6251 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
6252 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
6253 return TRUE;
6254
6255 /* Copy over private BFD data if it has not already been copied.
6256 This must be done here, rather than in the copy_private_bfd_data
6257 entry point, because the latter is called after the section
6258 contents have been set, which means that the program headers have
6259 already been worked out. */
6260 if (elf_tdata (obfd)->segment_map == NULL && elf_tdata (ibfd)->phdr != NULL)
6261 {
6262 if (! copy_private_bfd_data (ibfd, obfd))
6263 return FALSE;
6264 }
6265
6266 return _bfd_elf_fixup_group_sections (ibfd, NULL);
6267 }
6268
6269 /* Copy private symbol information. If this symbol is in a section
6270 which we did not map into a BFD section, try to map the section
6271 index correctly. We use special macro definitions for the mapped
6272 section indices; these definitions are interpreted by the
6273 swap_out_syms function. */
6274
6275 #define MAP_ONESYMTAB (SHN_HIOS + 1)
6276 #define MAP_DYNSYMTAB (SHN_HIOS + 2)
6277 #define MAP_STRTAB (SHN_HIOS + 3)
6278 #define MAP_SHSTRTAB (SHN_HIOS + 4)
6279 #define MAP_SYM_SHNDX (SHN_HIOS + 5)
6280
6281 bfd_boolean
6282 _bfd_elf_copy_private_symbol_data (bfd *ibfd,
6283 asymbol *isymarg,
6284 bfd *obfd,
6285 asymbol *osymarg)
6286 {
6287 elf_symbol_type *isym, *osym;
6288
6289 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
6290 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
6291 return TRUE;
6292
6293 isym = elf_symbol_from (ibfd, isymarg);
6294 osym = elf_symbol_from (obfd, osymarg);
6295
6296 if (isym != NULL
6297 && isym->internal_elf_sym.st_shndx != 0
6298 && osym != NULL
6299 && bfd_is_abs_section (isym->symbol.section))
6300 {
6301 unsigned int shndx;
6302
6303 shndx = isym->internal_elf_sym.st_shndx;
6304 if (shndx == elf_onesymtab (ibfd))
6305 shndx = MAP_ONESYMTAB;
6306 else if (shndx == elf_dynsymtab (ibfd))
6307 shndx = MAP_DYNSYMTAB;
6308 else if (shndx == elf_tdata (ibfd)->strtab_section)
6309 shndx = MAP_STRTAB;
6310 else if (shndx == elf_tdata (ibfd)->shstrtab_section)
6311 shndx = MAP_SHSTRTAB;
6312 else if (shndx == elf_tdata (ibfd)->symtab_shndx_section)
6313 shndx = MAP_SYM_SHNDX;
6314 osym->internal_elf_sym.st_shndx = shndx;
6315 }
6316
6317 return TRUE;
6318 }
6319
6320 /* Swap out the symbols. */
6321
6322 static bfd_boolean
6323 swap_out_syms (bfd *abfd,
6324 struct bfd_strtab_hash **sttp,
6325 int relocatable_p)
6326 {
6327 const struct elf_backend_data *bed;
6328 int symcount;
6329 asymbol **syms;
6330 struct bfd_strtab_hash *stt;
6331 Elf_Internal_Shdr *symtab_hdr;
6332 Elf_Internal_Shdr *symtab_shndx_hdr;
6333 Elf_Internal_Shdr *symstrtab_hdr;
6334 bfd_byte *outbound_syms;
6335 bfd_byte *outbound_shndx;
6336 int idx;
6337 bfd_size_type amt;
6338 bfd_boolean name_local_sections;
6339
6340 if (!elf_map_symbols (abfd))
6341 return FALSE;
6342
6343 /* Dump out the symtabs. */
6344 stt = _bfd_elf_stringtab_init ();
6345 if (stt == NULL)
6346 return FALSE;
6347
6348 bed = get_elf_backend_data (abfd);
6349 symcount = bfd_get_symcount (abfd);
6350 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
6351 symtab_hdr->sh_type = SHT_SYMTAB;
6352 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
6353 symtab_hdr->sh_size = symtab_hdr->sh_entsize * (symcount + 1);
6354 symtab_hdr->sh_info = elf_num_locals (abfd) + 1;
6355 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
6356
6357 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
6358 symstrtab_hdr->sh_type = SHT_STRTAB;
6359
6360 outbound_syms = (bfd_byte *) bfd_alloc2 (abfd, 1 + symcount,
6361 bed->s->sizeof_sym);
6362 if (outbound_syms == NULL)
6363 {
6364 _bfd_stringtab_free (stt);
6365 return FALSE;
6366 }
6367 symtab_hdr->contents = outbound_syms;
6368
6369 outbound_shndx = NULL;
6370 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
6371 if (symtab_shndx_hdr->sh_name != 0)
6372 {
6373 amt = (bfd_size_type) (1 + symcount) * sizeof (Elf_External_Sym_Shndx);
6374 outbound_shndx = (bfd_byte *)
6375 bfd_zalloc2 (abfd, 1 + symcount, sizeof (Elf_External_Sym_Shndx));
6376 if (outbound_shndx == NULL)
6377 {
6378 _bfd_stringtab_free (stt);
6379 return FALSE;
6380 }
6381
6382 symtab_shndx_hdr->contents = outbound_shndx;
6383 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
6384 symtab_shndx_hdr->sh_size = amt;
6385 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
6386 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
6387 }
6388
6389 /* Now generate the data (for "contents"). */
6390 {
6391 /* Fill in zeroth symbol and swap it out. */
6392 Elf_Internal_Sym sym;
6393 sym.st_name = 0;
6394 sym.st_value = 0;
6395 sym.st_size = 0;
6396 sym.st_info = 0;
6397 sym.st_other = 0;
6398 sym.st_shndx = SHN_UNDEF;
6399 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
6400 outbound_syms += bed->s->sizeof_sym;
6401 if (outbound_shndx != NULL)
6402 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
6403 }
6404
6405 name_local_sections
6406 = (bed->elf_backend_name_local_section_symbols
6407 && bed->elf_backend_name_local_section_symbols (abfd));
6408
6409 syms = bfd_get_outsymbols (abfd);
6410 for (idx = 0; idx < symcount; idx++)
6411 {
6412 Elf_Internal_Sym sym;
6413 bfd_vma value = syms[idx]->value;
6414 elf_symbol_type *type_ptr;
6415 flagword flags = syms[idx]->flags;
6416 int type;
6417
6418 if (!name_local_sections
6419 && (flags & (BSF_SECTION_SYM | BSF_GLOBAL)) == BSF_SECTION_SYM)
6420 {
6421 /* Local section symbols have no name. */
6422 sym.st_name = 0;
6423 }
6424 else
6425 {
6426 sym.st_name = (unsigned long) _bfd_stringtab_add (stt,
6427 syms[idx]->name,
6428 TRUE, FALSE);
6429 if (sym.st_name == (unsigned long) -1)
6430 {
6431 _bfd_stringtab_free (stt);
6432 return FALSE;
6433 }
6434 }
6435
6436 type_ptr = elf_symbol_from (abfd, syms[idx]);
6437
6438 if ((flags & BSF_SECTION_SYM) == 0
6439 && bfd_is_com_section (syms[idx]->section))
6440 {
6441 /* ELF common symbols put the alignment into the `value' field,
6442 and the size into the `size' field. This is backwards from
6443 how BFD handles it, so reverse it here. */
6444 sym.st_size = value;
6445 if (type_ptr == NULL
6446 || type_ptr->internal_elf_sym.st_value == 0)
6447 sym.st_value = value >= 16 ? 16 : (1 << bfd_log2 (value));
6448 else
6449 sym.st_value = type_ptr->internal_elf_sym.st_value;
6450 sym.st_shndx = _bfd_elf_section_from_bfd_section
6451 (abfd, syms[idx]->section);
6452 }
6453 else
6454 {
6455 asection *sec = syms[idx]->section;
6456 unsigned int shndx;
6457
6458 if (sec->output_section)
6459 {
6460 value += sec->output_offset;
6461 sec = sec->output_section;
6462 }
6463
6464 /* Don't add in the section vma for relocatable output. */
6465 if (! relocatable_p)
6466 value += sec->vma;
6467 sym.st_value = value;
6468 sym.st_size = type_ptr ? type_ptr->internal_elf_sym.st_size : 0;
6469
6470 if (bfd_is_abs_section (sec)
6471 && type_ptr != NULL
6472 && type_ptr->internal_elf_sym.st_shndx != 0)
6473 {
6474 /* This symbol is in a real ELF section which we did
6475 not create as a BFD section. Undo the mapping done
6476 by copy_private_symbol_data. */
6477 shndx = type_ptr->internal_elf_sym.st_shndx;
6478 switch (shndx)
6479 {
6480 case MAP_ONESYMTAB:
6481 shndx = elf_onesymtab (abfd);
6482 break;
6483 case MAP_DYNSYMTAB:
6484 shndx = elf_dynsymtab (abfd);
6485 break;
6486 case MAP_STRTAB:
6487 shndx = elf_tdata (abfd)->strtab_section;
6488 break;
6489 case MAP_SHSTRTAB:
6490 shndx = elf_tdata (abfd)->shstrtab_section;
6491 break;
6492 case MAP_SYM_SHNDX:
6493 shndx = elf_tdata (abfd)->symtab_shndx_section;
6494 break;
6495 default:
6496 break;
6497 }
6498 }
6499 else
6500 {
6501 shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
6502
6503 if (shndx == SHN_BAD)
6504 {
6505 asection *sec2;
6506
6507 /* Writing this would be a hell of a lot easier if
6508 we had some decent documentation on bfd, and
6509 knew what to expect of the library, and what to
6510 demand of applications. For example, it
6511 appears that `objcopy' might not set the
6512 section of a symbol to be a section that is
6513 actually in the output file. */
6514 sec2 = bfd_get_section_by_name (abfd, sec->name);
6515 if (sec2 == NULL)
6516 {
6517 _bfd_error_handler (_("\
6518 Unable to find equivalent output section for symbol '%s' from section '%s'"),
6519 syms[idx]->name ? syms[idx]->name : "<Local sym>",
6520 sec->name);
6521 bfd_set_error (bfd_error_invalid_operation);
6522 _bfd_stringtab_free (stt);
6523 return FALSE;
6524 }
6525
6526 shndx = _bfd_elf_section_from_bfd_section (abfd, sec2);
6527 BFD_ASSERT (shndx != SHN_BAD);
6528 }
6529 }
6530
6531 sym.st_shndx = shndx;
6532 }
6533
6534 if ((flags & BSF_THREAD_LOCAL) != 0)
6535 type = STT_TLS;
6536 else if ((flags & BSF_GNU_INDIRECT_FUNCTION) != 0)
6537 type = STT_GNU_IFUNC;
6538 else if ((flags & BSF_FUNCTION) != 0)
6539 type = STT_FUNC;
6540 else if ((flags & BSF_OBJECT) != 0)
6541 type = STT_OBJECT;
6542 else if ((flags & BSF_RELC) != 0)
6543 type = STT_RELC;
6544 else if ((flags & BSF_SRELC) != 0)
6545 type = STT_SRELC;
6546 else
6547 type = STT_NOTYPE;
6548
6549 if (syms[idx]->section->flags & SEC_THREAD_LOCAL)
6550 type = STT_TLS;
6551
6552 /* Processor-specific types. */
6553 if (type_ptr != NULL
6554 && bed->elf_backend_get_symbol_type)
6555 type = ((*bed->elf_backend_get_symbol_type)
6556 (&type_ptr->internal_elf_sym, type));
6557
6558 if (flags & BSF_SECTION_SYM)
6559 {
6560 if (flags & BSF_GLOBAL)
6561 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6562 else
6563 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
6564 }
6565 else if (bfd_is_com_section (syms[idx]->section))
6566 {
6567 #ifdef USE_STT_COMMON
6568 if (type == STT_OBJECT)
6569 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_COMMON);
6570 else
6571 #endif
6572 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
6573 }
6574 else if (bfd_is_und_section (syms[idx]->section))
6575 sym.st_info = ELF_ST_INFO (((flags & BSF_WEAK)
6576 ? STB_WEAK
6577 : STB_GLOBAL),
6578 type);
6579 else if (flags & BSF_FILE)
6580 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
6581 else
6582 {
6583 int bind = STB_LOCAL;
6584
6585 if (flags & BSF_LOCAL)
6586 bind = STB_LOCAL;
6587 else if (flags & BSF_GNU_UNIQUE)
6588 bind = STB_GNU_UNIQUE;
6589 else if (flags & BSF_WEAK)
6590 bind = STB_WEAK;
6591 else if (flags & BSF_GLOBAL)
6592 bind = STB_GLOBAL;
6593
6594 sym.st_info = ELF_ST_INFO (bind, type);
6595 }
6596
6597 if (type_ptr != NULL)
6598 sym.st_other = type_ptr->internal_elf_sym.st_other;
6599 else
6600 sym.st_other = 0;
6601
6602 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
6603 outbound_syms += bed->s->sizeof_sym;
6604 if (outbound_shndx != NULL)
6605 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
6606 }
6607
6608 *sttp = stt;
6609 symstrtab_hdr->sh_size = _bfd_stringtab_size (stt);
6610 symstrtab_hdr->sh_type = SHT_STRTAB;
6611
6612 symstrtab_hdr->sh_flags = 0;
6613 symstrtab_hdr->sh_addr = 0;
6614 symstrtab_hdr->sh_entsize = 0;
6615 symstrtab_hdr->sh_link = 0;
6616 symstrtab_hdr->sh_info = 0;
6617 symstrtab_hdr->sh_addralign = 1;
6618
6619 return TRUE;
6620 }
6621
6622 /* Return the number of bytes required to hold the symtab vector.
6623
6624 Note that we base it on the count plus 1, since we will null terminate
6625 the vector allocated based on this size. However, the ELF symbol table
6626 always has a dummy entry as symbol #0, so it ends up even. */
6627
6628 long
6629 _bfd_elf_get_symtab_upper_bound (bfd *abfd)
6630 {
6631 long symcount;
6632 long symtab_size;
6633 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->symtab_hdr;
6634
6635 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
6636 symtab_size = (symcount + 1) * (sizeof (asymbol *));
6637 if (symcount > 0)
6638 symtab_size -= sizeof (asymbol *);
6639
6640 return symtab_size;
6641 }
6642
6643 long
6644 _bfd_elf_get_dynamic_symtab_upper_bound (bfd *abfd)
6645 {
6646 long symcount;
6647 long symtab_size;
6648 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->dynsymtab_hdr;
6649
6650 if (elf_dynsymtab (abfd) == 0)
6651 {
6652 bfd_set_error (bfd_error_invalid_operation);
6653 return -1;
6654 }
6655
6656 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
6657 symtab_size = (symcount + 1) * (sizeof (asymbol *));
6658 if (symcount > 0)
6659 symtab_size -= sizeof (asymbol *);
6660
6661 return symtab_size;
6662 }
6663
6664 long
6665 _bfd_elf_get_reloc_upper_bound (bfd *abfd ATTRIBUTE_UNUSED,
6666 sec_ptr asect)
6667 {
6668 return (asect->reloc_count + 1) * sizeof (arelent *);
6669 }
6670
6671 /* Canonicalize the relocs. */
6672
6673 long
6674 _bfd_elf_canonicalize_reloc (bfd *abfd,
6675 sec_ptr section,
6676 arelent **relptr,
6677 asymbol **symbols)
6678 {
6679 arelent *tblptr;
6680 unsigned int i;
6681 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6682
6683 if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE))
6684 return -1;
6685
6686 tblptr = section->relocation;
6687 for (i = 0; i < section->reloc_count; i++)
6688 *relptr++ = tblptr++;
6689
6690 *relptr = NULL;
6691
6692 return section->reloc_count;
6693 }
6694
6695 long
6696 _bfd_elf_canonicalize_symtab (bfd *abfd, asymbol **allocation)
6697 {
6698 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6699 long symcount = bed->s->slurp_symbol_table (abfd, allocation, FALSE);
6700
6701 if (symcount >= 0)
6702 bfd_get_symcount (abfd) = symcount;
6703 return symcount;
6704 }
6705
6706 long
6707 _bfd_elf_canonicalize_dynamic_symtab (bfd *abfd,
6708 asymbol **allocation)
6709 {
6710 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6711 long symcount = bed->s->slurp_symbol_table (abfd, allocation, TRUE);
6712
6713 if (symcount >= 0)
6714 bfd_get_dynamic_symcount (abfd) = symcount;
6715 return symcount;
6716 }
6717
6718 /* Return the size required for the dynamic reloc entries. Any loadable
6719 section that was actually installed in the BFD, and has type SHT_REL
6720 or SHT_RELA, and uses the dynamic symbol table, is considered to be a
6721 dynamic reloc section. */
6722
6723 long
6724 _bfd_elf_get_dynamic_reloc_upper_bound (bfd *abfd)
6725 {
6726 long ret;
6727 asection *s;
6728
6729 if (elf_dynsymtab (abfd) == 0)
6730 {
6731 bfd_set_error (bfd_error_invalid_operation);
6732 return -1;
6733 }
6734
6735 ret = sizeof (arelent *);
6736 for (s = abfd->sections; s != NULL; s = s->next)
6737 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
6738 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
6739 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
6740 ret += ((s->size / elf_section_data (s)->this_hdr.sh_entsize)
6741 * sizeof (arelent *));
6742
6743 return ret;
6744 }
6745
6746 /* Canonicalize the dynamic relocation entries. Note that we return the
6747 dynamic relocations as a single block, although they are actually
6748 associated with particular sections; the interface, which was
6749 designed for SunOS style shared libraries, expects that there is only
6750 one set of dynamic relocs. Any loadable section that was actually
6751 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses the
6752 dynamic symbol table, is considered to be a dynamic reloc section. */
6753
6754 long
6755 _bfd_elf_canonicalize_dynamic_reloc (bfd *abfd,
6756 arelent **storage,
6757 asymbol **syms)
6758 {
6759 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
6760 asection *s;
6761 long ret;
6762
6763 if (elf_dynsymtab (abfd) == 0)
6764 {
6765 bfd_set_error (bfd_error_invalid_operation);
6766 return -1;
6767 }
6768
6769 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
6770 ret = 0;
6771 for (s = abfd->sections; s != NULL; s = s->next)
6772 {
6773 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
6774 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
6775 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
6776 {
6777 arelent *p;
6778 long count, i;
6779
6780 if (! (*slurp_relocs) (abfd, s, syms, TRUE))
6781 return -1;
6782 count = s->size / elf_section_data (s)->this_hdr.sh_entsize;
6783 p = s->relocation;
6784 for (i = 0; i < count; i++)
6785 *storage++ = p++;
6786 ret += count;
6787 }
6788 }
6789
6790 *storage = NULL;
6791
6792 return ret;
6793 }
6794 \f
6795 /* Read in the version information. */
6796
6797 bfd_boolean
6798 _bfd_elf_slurp_version_tables (bfd *abfd, bfd_boolean default_imported_symver)
6799 {
6800 bfd_byte *contents = NULL;
6801 unsigned int freeidx = 0;
6802
6803 if (elf_dynverref (abfd) != 0)
6804 {
6805 Elf_Internal_Shdr *hdr;
6806 Elf_External_Verneed *everneed;
6807 Elf_Internal_Verneed *iverneed;
6808 unsigned int i;
6809 bfd_byte *contents_end;
6810
6811 hdr = &elf_tdata (abfd)->dynverref_hdr;
6812
6813 elf_tdata (abfd)->verref = (Elf_Internal_Verneed *)
6814 bfd_zalloc2 (abfd, hdr->sh_info, sizeof (Elf_Internal_Verneed));
6815 if (elf_tdata (abfd)->verref == NULL)
6816 goto error_return;
6817
6818 elf_tdata (abfd)->cverrefs = hdr->sh_info;
6819
6820 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
6821 if (contents == NULL)
6822 {
6823 error_return_verref:
6824 elf_tdata (abfd)->verref = NULL;
6825 elf_tdata (abfd)->cverrefs = 0;
6826 goto error_return;
6827 }
6828 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
6829 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
6830 goto error_return_verref;
6831
6832 if (hdr->sh_info && hdr->sh_size < sizeof (Elf_External_Verneed))
6833 goto error_return_verref;
6834
6835 BFD_ASSERT (sizeof (Elf_External_Verneed)
6836 == sizeof (Elf_External_Vernaux));
6837 contents_end = contents + hdr->sh_size - sizeof (Elf_External_Verneed);
6838 everneed = (Elf_External_Verneed *) contents;
6839 iverneed = elf_tdata (abfd)->verref;
6840 for (i = 0; i < hdr->sh_info; i++, iverneed++)
6841 {
6842 Elf_External_Vernaux *evernaux;
6843 Elf_Internal_Vernaux *ivernaux;
6844 unsigned int j;
6845
6846 _bfd_elf_swap_verneed_in (abfd, everneed, iverneed);
6847
6848 iverneed->vn_bfd = abfd;
6849
6850 iverneed->vn_filename =
6851 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
6852 iverneed->vn_file);
6853 if (iverneed->vn_filename == NULL)
6854 goto error_return_verref;
6855
6856 if (iverneed->vn_cnt == 0)
6857 iverneed->vn_auxptr = NULL;
6858 else
6859 {
6860 iverneed->vn_auxptr = (struct elf_internal_vernaux *)
6861 bfd_alloc2 (abfd, iverneed->vn_cnt,
6862 sizeof (Elf_Internal_Vernaux));
6863 if (iverneed->vn_auxptr == NULL)
6864 goto error_return_verref;
6865 }
6866
6867 if (iverneed->vn_aux
6868 > (size_t) (contents_end - (bfd_byte *) everneed))
6869 goto error_return_verref;
6870
6871 evernaux = ((Elf_External_Vernaux *)
6872 ((bfd_byte *) everneed + iverneed->vn_aux));
6873 ivernaux = iverneed->vn_auxptr;
6874 for (j = 0; j < iverneed->vn_cnt; j++, ivernaux++)
6875 {
6876 _bfd_elf_swap_vernaux_in (abfd, evernaux, ivernaux);
6877
6878 ivernaux->vna_nodename =
6879 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
6880 ivernaux->vna_name);
6881 if (ivernaux->vna_nodename == NULL)
6882 goto error_return_verref;
6883
6884 if (j + 1 < iverneed->vn_cnt)
6885 ivernaux->vna_nextptr = ivernaux + 1;
6886 else
6887 ivernaux->vna_nextptr = NULL;
6888
6889 if (ivernaux->vna_next
6890 > (size_t) (contents_end - (bfd_byte *) evernaux))
6891 goto error_return_verref;
6892
6893 evernaux = ((Elf_External_Vernaux *)
6894 ((bfd_byte *) evernaux + ivernaux->vna_next));
6895
6896 if (ivernaux->vna_other > freeidx)
6897 freeidx = ivernaux->vna_other;
6898 }
6899
6900 if (i + 1 < hdr->sh_info)
6901 iverneed->vn_nextref = iverneed + 1;
6902 else
6903 iverneed->vn_nextref = NULL;
6904
6905 if (iverneed->vn_next
6906 > (size_t) (contents_end - (bfd_byte *) everneed))
6907 goto error_return_verref;
6908
6909 everneed = ((Elf_External_Verneed *)
6910 ((bfd_byte *) everneed + iverneed->vn_next));
6911 }
6912
6913 free (contents);
6914 contents = NULL;
6915 }
6916
6917 if (elf_dynverdef (abfd) != 0)
6918 {
6919 Elf_Internal_Shdr *hdr;
6920 Elf_External_Verdef *everdef;
6921 Elf_Internal_Verdef *iverdef;
6922 Elf_Internal_Verdef *iverdefarr;
6923 Elf_Internal_Verdef iverdefmem;
6924 unsigned int i;
6925 unsigned int maxidx;
6926 bfd_byte *contents_end_def, *contents_end_aux;
6927
6928 hdr = &elf_tdata (abfd)->dynverdef_hdr;
6929
6930 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
6931 if (contents == NULL)
6932 goto error_return;
6933 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
6934 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
6935 goto error_return;
6936
6937 if (hdr->sh_info && hdr->sh_size < sizeof (Elf_External_Verdef))
6938 goto error_return;
6939
6940 BFD_ASSERT (sizeof (Elf_External_Verdef)
6941 >= sizeof (Elf_External_Verdaux));
6942 contents_end_def = contents + hdr->sh_size
6943 - sizeof (Elf_External_Verdef);
6944 contents_end_aux = contents + hdr->sh_size
6945 - sizeof (Elf_External_Verdaux);
6946
6947 /* We know the number of entries in the section but not the maximum
6948 index. Therefore we have to run through all entries and find
6949 the maximum. */
6950 everdef = (Elf_External_Verdef *) contents;
6951 maxidx = 0;
6952 for (i = 0; i < hdr->sh_info; ++i)
6953 {
6954 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
6955
6956 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) > maxidx)
6957 maxidx = iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION);
6958
6959 if (iverdefmem.vd_next
6960 > (size_t) (contents_end_def - (bfd_byte *) everdef))
6961 goto error_return;
6962
6963 everdef = ((Elf_External_Verdef *)
6964 ((bfd_byte *) everdef + iverdefmem.vd_next));
6965 }
6966
6967 if (default_imported_symver)
6968 {
6969 if (freeidx > maxidx)
6970 maxidx = ++freeidx;
6971 else
6972 freeidx = ++maxidx;
6973 }
6974 elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *)
6975 bfd_zalloc2 (abfd, maxidx, sizeof (Elf_Internal_Verdef));
6976 if (elf_tdata (abfd)->verdef == NULL)
6977 goto error_return;
6978
6979 elf_tdata (abfd)->cverdefs = maxidx;
6980
6981 everdef = (Elf_External_Verdef *) contents;
6982 iverdefarr = elf_tdata (abfd)->verdef;
6983 for (i = 0; i < hdr->sh_info; i++)
6984 {
6985 Elf_External_Verdaux *everdaux;
6986 Elf_Internal_Verdaux *iverdaux;
6987 unsigned int j;
6988
6989 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
6990
6991 if ((iverdefmem.vd_ndx & VERSYM_VERSION) == 0)
6992 {
6993 error_return_verdef:
6994 elf_tdata (abfd)->verdef = NULL;
6995 elf_tdata (abfd)->cverdefs = 0;
6996 goto error_return;
6997 }
6998
6999 iverdef = &iverdefarr[(iverdefmem.vd_ndx & VERSYM_VERSION) - 1];
7000 memcpy (iverdef, &iverdefmem, sizeof (Elf_Internal_Verdef));
7001
7002 iverdef->vd_bfd = abfd;
7003
7004 if (iverdef->vd_cnt == 0)
7005 iverdef->vd_auxptr = NULL;
7006 else
7007 {
7008 iverdef->vd_auxptr = (struct elf_internal_verdaux *)
7009 bfd_alloc2 (abfd, iverdef->vd_cnt,
7010 sizeof (Elf_Internal_Verdaux));
7011 if (iverdef->vd_auxptr == NULL)
7012 goto error_return_verdef;
7013 }
7014
7015 if (iverdef->vd_aux
7016 > (size_t) (contents_end_aux - (bfd_byte *) everdef))
7017 goto error_return_verdef;
7018
7019 everdaux = ((Elf_External_Verdaux *)
7020 ((bfd_byte *) everdef + iverdef->vd_aux));
7021 iverdaux = iverdef->vd_auxptr;
7022 for (j = 0; j < iverdef->vd_cnt; j++, iverdaux++)
7023 {
7024 _bfd_elf_swap_verdaux_in (abfd, everdaux, iverdaux);
7025
7026 iverdaux->vda_nodename =
7027 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
7028 iverdaux->vda_name);
7029 if (iverdaux->vda_nodename == NULL)
7030 goto error_return_verdef;
7031
7032 if (j + 1 < iverdef->vd_cnt)
7033 iverdaux->vda_nextptr = iverdaux + 1;
7034 else
7035 iverdaux->vda_nextptr = NULL;
7036
7037 if (iverdaux->vda_next
7038 > (size_t) (contents_end_aux - (bfd_byte *) everdaux))
7039 goto error_return_verdef;
7040
7041 everdaux = ((Elf_External_Verdaux *)
7042 ((bfd_byte *) everdaux + iverdaux->vda_next));
7043 }
7044
7045 if (iverdef->vd_cnt)
7046 iverdef->vd_nodename = iverdef->vd_auxptr->vda_nodename;
7047
7048 if ((size_t) (iverdef - iverdefarr) + 1 < maxidx)
7049 iverdef->vd_nextdef = iverdef + 1;
7050 else
7051 iverdef->vd_nextdef = NULL;
7052
7053 everdef = ((Elf_External_Verdef *)
7054 ((bfd_byte *) everdef + iverdef->vd_next));
7055 }
7056
7057 free (contents);
7058 contents = NULL;
7059 }
7060 else if (default_imported_symver)
7061 {
7062 if (freeidx < 3)
7063 freeidx = 3;
7064 else
7065 freeidx++;
7066
7067 elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *)
7068 bfd_zalloc2 (abfd, freeidx, sizeof (Elf_Internal_Verdef));
7069 if (elf_tdata (abfd)->verdef == NULL)
7070 goto error_return;
7071
7072 elf_tdata (abfd)->cverdefs = freeidx;
7073 }
7074
7075 /* Create a default version based on the soname. */
7076 if (default_imported_symver)
7077 {
7078 Elf_Internal_Verdef *iverdef;
7079 Elf_Internal_Verdaux *iverdaux;
7080
7081 iverdef = &elf_tdata (abfd)->verdef[freeidx - 1];;
7082
7083 iverdef->vd_version = VER_DEF_CURRENT;
7084 iverdef->vd_flags = 0;
7085 iverdef->vd_ndx = freeidx;
7086 iverdef->vd_cnt = 1;
7087
7088 iverdef->vd_bfd = abfd;
7089
7090 iverdef->vd_nodename = bfd_elf_get_dt_soname (abfd);
7091 if (iverdef->vd_nodename == NULL)
7092 goto error_return_verdef;
7093 iverdef->vd_nextdef = NULL;
7094 iverdef->vd_auxptr = (struct elf_internal_verdaux *)
7095 bfd_alloc (abfd, sizeof (Elf_Internal_Verdaux));
7096 if (iverdef->vd_auxptr == NULL)
7097 goto error_return_verdef;
7098
7099 iverdaux = iverdef->vd_auxptr;
7100 iverdaux->vda_nodename = iverdef->vd_nodename;
7101 iverdaux->vda_nextptr = NULL;
7102 }
7103
7104 return TRUE;
7105
7106 error_return:
7107 if (contents != NULL)
7108 free (contents);
7109 return FALSE;
7110 }
7111 \f
7112 asymbol *
7113 _bfd_elf_make_empty_symbol (bfd *abfd)
7114 {
7115 elf_symbol_type *newsym;
7116 bfd_size_type amt = sizeof (elf_symbol_type);
7117
7118 newsym = (elf_symbol_type *) bfd_zalloc (abfd, amt);
7119 if (!newsym)
7120 return NULL;
7121 else
7122 {
7123 newsym->symbol.the_bfd = abfd;
7124 return &newsym->symbol;
7125 }
7126 }
7127
7128 void
7129 _bfd_elf_get_symbol_info (bfd *abfd ATTRIBUTE_UNUSED,
7130 asymbol *symbol,
7131 symbol_info *ret)
7132 {
7133 bfd_symbol_info (symbol, ret);
7134 }
7135
7136 /* Return whether a symbol name implies a local symbol. Most targets
7137 use this function for the is_local_label_name entry point, but some
7138 override it. */
7139
7140 bfd_boolean
7141 _bfd_elf_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED,
7142 const char *name)
7143 {
7144 /* Normal local symbols start with ``.L''. */
7145 if (name[0] == '.' && name[1] == 'L')
7146 return TRUE;
7147
7148 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
7149 DWARF debugging symbols starting with ``..''. */
7150 if (name[0] == '.' && name[1] == '.')
7151 return TRUE;
7152
7153 /* gcc will sometimes generate symbols beginning with ``_.L_'' when
7154 emitting DWARF debugging output. I suspect this is actually a
7155 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
7156 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
7157 underscore to be emitted on some ELF targets). For ease of use,
7158 we treat such symbols as local. */
7159 if (name[0] == '_' && name[1] == '.' && name[2] == 'L' && name[3] == '_')
7160 return TRUE;
7161
7162 return FALSE;
7163 }
7164
7165 alent *
7166 _bfd_elf_get_lineno (bfd *abfd ATTRIBUTE_UNUSED,
7167 asymbol *symbol ATTRIBUTE_UNUSED)
7168 {
7169 abort ();
7170 return NULL;
7171 }
7172
7173 bfd_boolean
7174 _bfd_elf_set_arch_mach (bfd *abfd,
7175 enum bfd_architecture arch,
7176 unsigned long machine)
7177 {
7178 /* If this isn't the right architecture for this backend, and this
7179 isn't the generic backend, fail. */
7180 if (arch != get_elf_backend_data (abfd)->arch
7181 && arch != bfd_arch_unknown
7182 && get_elf_backend_data (abfd)->arch != bfd_arch_unknown)
7183 return FALSE;
7184
7185 return bfd_default_set_arch_mach (abfd, arch, machine);
7186 }
7187
7188 /* Find the function to a particular section and offset,
7189 for error reporting. */
7190
7191 static bfd_boolean
7192 elf_find_function (bfd *abfd,
7193 asection *section,
7194 asymbol **symbols,
7195 bfd_vma offset,
7196 const char **filename_ptr,
7197 const char **functionname_ptr)
7198 {
7199 const char *filename;
7200 asymbol *func, *file;
7201 bfd_vma low_func;
7202 asymbol **p;
7203 /* ??? Given multiple file symbols, it is impossible to reliably
7204 choose the right file name for global symbols. File symbols are
7205 local symbols, and thus all file symbols must sort before any
7206 global symbols. The ELF spec may be interpreted to say that a
7207 file symbol must sort before other local symbols, but currently
7208 ld -r doesn't do this. So, for ld -r output, it is possible to
7209 make a better choice of file name for local symbols by ignoring
7210 file symbols appearing after a given local symbol. */
7211 enum { nothing_seen, symbol_seen, file_after_symbol_seen } state;
7212 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7213
7214 filename = NULL;
7215 func = NULL;
7216 file = NULL;
7217 low_func = 0;
7218 state = nothing_seen;
7219
7220 for (p = symbols; *p != NULL; p++)
7221 {
7222 elf_symbol_type *q;
7223 unsigned int type;
7224
7225 q = (elf_symbol_type *) *p;
7226
7227 type = ELF_ST_TYPE (q->internal_elf_sym.st_info);
7228 switch (type)
7229 {
7230 case STT_FILE:
7231 file = &q->symbol;
7232 if (state == symbol_seen)
7233 state = file_after_symbol_seen;
7234 continue;
7235 default:
7236 if (!bed->is_function_type (type))
7237 break;
7238 case STT_NOTYPE:
7239 if (bfd_get_section (&q->symbol) == section
7240 && q->symbol.value >= low_func
7241 && q->symbol.value <= offset)
7242 {
7243 func = (asymbol *) q;
7244 low_func = q->symbol.value;
7245 filename = NULL;
7246 if (file != NULL
7247 && (ELF_ST_BIND (q->internal_elf_sym.st_info) == STB_LOCAL
7248 || state != file_after_symbol_seen))
7249 filename = bfd_asymbol_name (file);
7250 }
7251 break;
7252 }
7253 if (state == nothing_seen)
7254 state = symbol_seen;
7255 }
7256
7257 if (func == NULL)
7258 return FALSE;
7259
7260 if (filename_ptr)
7261 *filename_ptr = filename;
7262 if (functionname_ptr)
7263 *functionname_ptr = bfd_asymbol_name (func);
7264
7265 return TRUE;
7266 }
7267
7268 /* Find the nearest line to a particular section and offset,
7269 for error reporting. */
7270
7271 bfd_boolean
7272 _bfd_elf_find_nearest_line (bfd *abfd,
7273 asection *section,
7274 asymbol **symbols,
7275 bfd_vma offset,
7276 const char **filename_ptr,
7277 const char **functionname_ptr,
7278 unsigned int *line_ptr)
7279 {
7280 bfd_boolean found;
7281
7282 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
7283 filename_ptr, functionname_ptr,
7284 line_ptr))
7285 {
7286 if (!*functionname_ptr)
7287 elf_find_function (abfd, section, symbols, offset,
7288 *filename_ptr ? NULL : filename_ptr,
7289 functionname_ptr);
7290
7291 return TRUE;
7292 }
7293
7294 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
7295 filename_ptr, functionname_ptr,
7296 line_ptr, 0,
7297 &elf_tdata (abfd)->dwarf2_find_line_info))
7298 {
7299 if (!*functionname_ptr)
7300 elf_find_function (abfd, section, symbols, offset,
7301 *filename_ptr ? NULL : filename_ptr,
7302 functionname_ptr);
7303
7304 return TRUE;
7305 }
7306
7307 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
7308 &found, filename_ptr,
7309 functionname_ptr, line_ptr,
7310 &elf_tdata (abfd)->line_info))
7311 return FALSE;
7312 if (found && (*functionname_ptr || *line_ptr))
7313 return TRUE;
7314
7315 if (symbols == NULL)
7316 return FALSE;
7317
7318 if (! elf_find_function (abfd, section, symbols, offset,
7319 filename_ptr, functionname_ptr))
7320 return FALSE;
7321
7322 *line_ptr = 0;
7323 return TRUE;
7324 }
7325
7326 /* Find the line for a symbol. */
7327
7328 bfd_boolean
7329 _bfd_elf_find_line (bfd *abfd, asymbol **symbols, asymbol *symbol,
7330 const char **filename_ptr, unsigned int *line_ptr)
7331 {
7332 return _bfd_dwarf2_find_line (abfd, symbols, symbol,
7333 filename_ptr, line_ptr, 0,
7334 &elf_tdata (abfd)->dwarf2_find_line_info);
7335 }
7336
7337 /* After a call to bfd_find_nearest_line, successive calls to
7338 bfd_find_inliner_info can be used to get source information about
7339 each level of function inlining that terminated at the address
7340 passed to bfd_find_nearest_line. Currently this is only supported
7341 for DWARF2 with appropriate DWARF3 extensions. */
7342
7343 bfd_boolean
7344 _bfd_elf_find_inliner_info (bfd *abfd,
7345 const char **filename_ptr,
7346 const char **functionname_ptr,
7347 unsigned int *line_ptr)
7348 {
7349 bfd_boolean found;
7350 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
7351 functionname_ptr, line_ptr,
7352 & elf_tdata (abfd)->dwarf2_find_line_info);
7353 return found;
7354 }
7355
7356 int
7357 _bfd_elf_sizeof_headers (bfd *abfd, struct bfd_link_info *info)
7358 {
7359 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7360 int ret = bed->s->sizeof_ehdr;
7361
7362 if (!info->relocatable)
7363 {
7364 bfd_size_type phdr_size = elf_tdata (abfd)->program_header_size;
7365
7366 if (phdr_size == (bfd_size_type) -1)
7367 {
7368 struct elf_segment_map *m;
7369
7370 phdr_size = 0;
7371 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
7372 phdr_size += bed->s->sizeof_phdr;
7373
7374 if (phdr_size == 0)
7375 phdr_size = get_program_header_size (abfd, info);
7376 }
7377
7378 elf_tdata (abfd)->program_header_size = phdr_size;
7379 ret += phdr_size;
7380 }
7381
7382 return ret;
7383 }
7384
7385 bfd_boolean
7386 _bfd_elf_set_section_contents (bfd *abfd,
7387 sec_ptr section,
7388 const void *location,
7389 file_ptr offset,
7390 bfd_size_type count)
7391 {
7392 Elf_Internal_Shdr *hdr;
7393 bfd_signed_vma pos;
7394
7395 if (! abfd->output_has_begun
7396 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
7397 return FALSE;
7398
7399 hdr = &elf_section_data (section)->this_hdr;
7400 pos = hdr->sh_offset + offset;
7401 if (bfd_seek (abfd, pos, SEEK_SET) != 0
7402 || bfd_bwrite (location, count, abfd) != count)
7403 return FALSE;
7404
7405 return TRUE;
7406 }
7407
7408 void
7409 _bfd_elf_no_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED,
7410 arelent *cache_ptr ATTRIBUTE_UNUSED,
7411 Elf_Internal_Rela *dst ATTRIBUTE_UNUSED)
7412 {
7413 abort ();
7414 }
7415
7416 /* Try to convert a non-ELF reloc into an ELF one. */
7417
7418 bfd_boolean
7419 _bfd_elf_validate_reloc (bfd *abfd, arelent *areloc)
7420 {
7421 /* Check whether we really have an ELF howto. */
7422
7423 if ((*areloc->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec)
7424 {
7425 bfd_reloc_code_real_type code;
7426 reloc_howto_type *howto;
7427
7428 /* Alien reloc: Try to determine its type to replace it with an
7429 equivalent ELF reloc. */
7430
7431 if (areloc->howto->pc_relative)
7432 {
7433 switch (areloc->howto->bitsize)
7434 {
7435 case 8:
7436 code = BFD_RELOC_8_PCREL;
7437 break;
7438 case 12:
7439 code = BFD_RELOC_12_PCREL;
7440 break;
7441 case 16:
7442 code = BFD_RELOC_16_PCREL;
7443 break;
7444 case 24:
7445 code = BFD_RELOC_24_PCREL;
7446 break;
7447 case 32:
7448 code = BFD_RELOC_32_PCREL;
7449 break;
7450 case 64:
7451 code = BFD_RELOC_64_PCREL;
7452 break;
7453 default:
7454 goto fail;
7455 }
7456
7457 howto = bfd_reloc_type_lookup (abfd, code);
7458
7459 if (areloc->howto->pcrel_offset != howto->pcrel_offset)
7460 {
7461 if (howto->pcrel_offset)
7462 areloc->addend += areloc->address;
7463 else
7464 areloc->addend -= areloc->address; /* addend is unsigned!! */
7465 }
7466 }
7467 else
7468 {
7469 switch (areloc->howto->bitsize)
7470 {
7471 case 8:
7472 code = BFD_RELOC_8;
7473 break;
7474 case 14:
7475 code = BFD_RELOC_14;
7476 break;
7477 case 16:
7478 code = BFD_RELOC_16;
7479 break;
7480 case 26:
7481 code = BFD_RELOC_26;
7482 break;
7483 case 32:
7484 code = BFD_RELOC_32;
7485 break;
7486 case 64:
7487 code = BFD_RELOC_64;
7488 break;
7489 default:
7490 goto fail;
7491 }
7492
7493 howto = bfd_reloc_type_lookup (abfd, code);
7494 }
7495
7496 if (howto)
7497 areloc->howto = howto;
7498 else
7499 goto fail;
7500 }
7501
7502 return TRUE;
7503
7504 fail:
7505 (*_bfd_error_handler)
7506 (_("%B: unsupported relocation type %s"),
7507 abfd, areloc->howto->name);
7508 bfd_set_error (bfd_error_bad_value);
7509 return FALSE;
7510 }
7511
7512 bfd_boolean
7513 _bfd_elf_close_and_cleanup (bfd *abfd)
7514 {
7515 if (bfd_get_format (abfd) == bfd_object)
7516 {
7517 if (elf_tdata (abfd) != NULL && elf_shstrtab (abfd) != NULL)
7518 _bfd_elf_strtab_free (elf_shstrtab (abfd));
7519 _bfd_dwarf2_cleanup_debug_info (abfd);
7520 }
7521
7522 return _bfd_generic_close_and_cleanup (abfd);
7523 }
7524
7525 /* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
7526 in the relocation's offset. Thus we cannot allow any sort of sanity
7527 range-checking to interfere. There is nothing else to do in processing
7528 this reloc. */
7529
7530 bfd_reloc_status_type
7531 _bfd_elf_rel_vtable_reloc_fn
7532 (bfd *abfd ATTRIBUTE_UNUSED, arelent *re ATTRIBUTE_UNUSED,
7533 struct bfd_symbol *symbol ATTRIBUTE_UNUSED,
7534 void *data ATTRIBUTE_UNUSED, asection *is ATTRIBUTE_UNUSED,
7535 bfd *obfd ATTRIBUTE_UNUSED, char **errmsg ATTRIBUTE_UNUSED)
7536 {
7537 return bfd_reloc_ok;
7538 }
7539 \f
7540 /* Elf core file support. Much of this only works on native
7541 toolchains, since we rely on knowing the
7542 machine-dependent procfs structure in order to pick
7543 out details about the corefile. */
7544
7545 #ifdef HAVE_SYS_PROCFS_H
7546 /* Needed for new procfs interface on sparc-solaris. */
7547 # define _STRUCTURED_PROC 1
7548 # include <sys/procfs.h>
7549 #endif
7550
7551 /* Return a PID that identifies a "thread" for threaded cores, or the
7552 PID of the main process for non-threaded cores. */
7553
7554 static int
7555 elfcore_make_pid (bfd *abfd)
7556 {
7557 int pid;
7558
7559 pid = elf_tdata (abfd)->core_lwpid;
7560 if (pid == 0)
7561 pid = elf_tdata (abfd)->core_pid;
7562
7563 return pid;
7564 }
7565
7566 /* If there isn't a section called NAME, make one, using
7567 data from SECT. Note, this function will generate a
7568 reference to NAME, so you shouldn't deallocate or
7569 overwrite it. */
7570
7571 static bfd_boolean
7572 elfcore_maybe_make_sect (bfd *abfd, char *name, asection *sect)
7573 {
7574 asection *sect2;
7575
7576 if (bfd_get_section_by_name (abfd, name) != NULL)
7577 return TRUE;
7578
7579 sect2 = bfd_make_section_with_flags (abfd, name, sect->flags);
7580 if (sect2 == NULL)
7581 return FALSE;
7582
7583 sect2->size = sect->size;
7584 sect2->filepos = sect->filepos;
7585 sect2->alignment_power = sect->alignment_power;
7586 return TRUE;
7587 }
7588
7589 /* Create a pseudosection containing SIZE bytes at FILEPOS. This
7590 actually creates up to two pseudosections:
7591 - For the single-threaded case, a section named NAME, unless
7592 such a section already exists.
7593 - For the multi-threaded case, a section named "NAME/PID", where
7594 PID is elfcore_make_pid (abfd).
7595 Both pseudosections have identical contents. */
7596 bfd_boolean
7597 _bfd_elfcore_make_pseudosection (bfd *abfd,
7598 char *name,
7599 size_t size,
7600 ufile_ptr filepos)
7601 {
7602 char buf[100];
7603 char *threaded_name;
7604 size_t len;
7605 asection *sect;
7606
7607 /* Build the section name. */
7608
7609 sprintf (buf, "%s/%d", name, elfcore_make_pid (abfd));
7610 len = strlen (buf) + 1;
7611 threaded_name = (char *) bfd_alloc (abfd, len);
7612 if (threaded_name == NULL)
7613 return FALSE;
7614 memcpy (threaded_name, buf, len);
7615
7616 sect = bfd_make_section_anyway_with_flags (abfd, threaded_name,
7617 SEC_HAS_CONTENTS);
7618 if (sect == NULL)
7619 return FALSE;
7620 sect->size = size;
7621 sect->filepos = filepos;
7622 sect->alignment_power = 2;
7623
7624 return elfcore_maybe_make_sect (abfd, name, sect);
7625 }
7626
7627 /* prstatus_t exists on:
7628 solaris 2.5+
7629 linux 2.[01] + glibc
7630 unixware 4.2
7631 */
7632
7633 #if defined (HAVE_PRSTATUS_T)
7634
7635 static bfd_boolean
7636 elfcore_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
7637 {
7638 size_t size;
7639 int offset;
7640
7641 if (note->descsz == sizeof (prstatus_t))
7642 {
7643 prstatus_t prstat;
7644
7645 size = sizeof (prstat.pr_reg);
7646 offset = offsetof (prstatus_t, pr_reg);
7647 memcpy (&prstat, note->descdata, sizeof (prstat));
7648
7649 /* Do not overwrite the core signal if it
7650 has already been set by another thread. */
7651 if (elf_tdata (abfd)->core_signal == 0)
7652 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
7653 if (elf_tdata (abfd)->core_pid == 0)
7654 elf_tdata (abfd)->core_pid = prstat.pr_pid;
7655
7656 /* pr_who exists on:
7657 solaris 2.5+
7658 unixware 4.2
7659 pr_who doesn't exist on:
7660 linux 2.[01]
7661 */
7662 #if defined (HAVE_PRSTATUS_T_PR_WHO)
7663 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
7664 #else
7665 elf_tdata (abfd)->core_lwpid = prstat.pr_pid;
7666 #endif
7667 }
7668 #if defined (HAVE_PRSTATUS32_T)
7669 else if (note->descsz == sizeof (prstatus32_t))
7670 {
7671 /* 64-bit host, 32-bit corefile */
7672 prstatus32_t prstat;
7673
7674 size = sizeof (prstat.pr_reg);
7675 offset = offsetof (prstatus32_t, pr_reg);
7676 memcpy (&prstat, note->descdata, sizeof (prstat));
7677
7678 /* Do not overwrite the core signal if it
7679 has already been set by another thread. */
7680 if (elf_tdata (abfd)->core_signal == 0)
7681 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
7682 if (elf_tdata (abfd)->core_pid == 0)
7683 elf_tdata (abfd)->core_pid = prstat.pr_pid;
7684
7685 /* pr_who exists on:
7686 solaris 2.5+
7687 unixware 4.2
7688 pr_who doesn't exist on:
7689 linux 2.[01]
7690 */
7691 #if defined (HAVE_PRSTATUS32_T_PR_WHO)
7692 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
7693 #else
7694 elf_tdata (abfd)->core_lwpid = prstat.pr_pid;
7695 #endif
7696 }
7697 #endif /* HAVE_PRSTATUS32_T */
7698 else
7699 {
7700 /* Fail - we don't know how to handle any other
7701 note size (ie. data object type). */
7702 return TRUE;
7703 }
7704
7705 /* Make a ".reg/999" section and a ".reg" section. */
7706 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
7707 size, note->descpos + offset);
7708 }
7709 #endif /* defined (HAVE_PRSTATUS_T) */
7710
7711 /* Create a pseudosection containing the exact contents of NOTE. */
7712 static bfd_boolean
7713 elfcore_make_note_pseudosection (bfd *abfd,
7714 char *name,
7715 Elf_Internal_Note *note)
7716 {
7717 return _bfd_elfcore_make_pseudosection (abfd, name,
7718 note->descsz, note->descpos);
7719 }
7720
7721 /* There isn't a consistent prfpregset_t across platforms,
7722 but it doesn't matter, because we don't have to pick this
7723 data structure apart. */
7724
7725 static bfd_boolean
7726 elfcore_grok_prfpreg (bfd *abfd, Elf_Internal_Note *note)
7727 {
7728 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
7729 }
7730
7731 /* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
7732 type of NT_PRXFPREG. Just include the whole note's contents
7733 literally. */
7734
7735 static bfd_boolean
7736 elfcore_grok_prxfpreg (bfd *abfd, Elf_Internal_Note *note)
7737 {
7738 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
7739 }
7740
7741 /* Linux dumps the Intel XSAVE extended state in a note named "LINUX"
7742 with a note type of NT_X86_XSTATE. Just include the whole note's
7743 contents literally. */
7744
7745 static bfd_boolean
7746 elfcore_grok_xstatereg (bfd *abfd, Elf_Internal_Note *note)
7747 {
7748 return elfcore_make_note_pseudosection (abfd, ".reg-xstate", note);
7749 }
7750
7751 static bfd_boolean
7752 elfcore_grok_ppc_vmx (bfd *abfd, Elf_Internal_Note *note)
7753 {
7754 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vmx", note);
7755 }
7756
7757 static bfd_boolean
7758 elfcore_grok_ppc_vsx (bfd *abfd, Elf_Internal_Note *note)
7759 {
7760 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vsx", note);
7761 }
7762
7763 static bfd_boolean
7764 elfcore_grok_s390_high_gprs (bfd *abfd, Elf_Internal_Note *note)
7765 {
7766 return elfcore_make_note_pseudosection (abfd, ".reg-s390-high-gprs", note);
7767 }
7768
7769 static bfd_boolean
7770 elfcore_grok_s390_timer (bfd *abfd, Elf_Internal_Note *note)
7771 {
7772 return elfcore_make_note_pseudosection (abfd, ".reg-s390-timer", note);
7773 }
7774
7775 static bfd_boolean
7776 elfcore_grok_s390_todcmp (bfd *abfd, Elf_Internal_Note *note)
7777 {
7778 return elfcore_make_note_pseudosection (abfd, ".reg-s390-todcmp", note);
7779 }
7780
7781 static bfd_boolean
7782 elfcore_grok_s390_todpreg (bfd *abfd, Elf_Internal_Note *note)
7783 {
7784 return elfcore_make_note_pseudosection (abfd, ".reg-s390-todpreg", note);
7785 }
7786
7787 static bfd_boolean
7788 elfcore_grok_s390_ctrs (bfd *abfd, Elf_Internal_Note *note)
7789 {
7790 return elfcore_make_note_pseudosection (abfd, ".reg-s390-ctrs", note);
7791 }
7792
7793 static bfd_boolean
7794 elfcore_grok_s390_prefix (bfd *abfd, Elf_Internal_Note *note)
7795 {
7796 return elfcore_make_note_pseudosection (abfd, ".reg-s390-prefix", note);
7797 }
7798
7799 #if defined (HAVE_PRPSINFO_T)
7800 typedef prpsinfo_t elfcore_psinfo_t;
7801 #if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
7802 typedef prpsinfo32_t elfcore_psinfo32_t;
7803 #endif
7804 #endif
7805
7806 #if defined (HAVE_PSINFO_T)
7807 typedef psinfo_t elfcore_psinfo_t;
7808 #if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
7809 typedef psinfo32_t elfcore_psinfo32_t;
7810 #endif
7811 #endif
7812
7813 /* return a malloc'ed copy of a string at START which is at
7814 most MAX bytes long, possibly without a terminating '\0'.
7815 the copy will always have a terminating '\0'. */
7816
7817 char *
7818 _bfd_elfcore_strndup (bfd *abfd, char *start, size_t max)
7819 {
7820 char *dups;
7821 char *end = (char *) memchr (start, '\0', max);
7822 size_t len;
7823
7824 if (end == NULL)
7825 len = max;
7826 else
7827 len = end - start;
7828
7829 dups = (char *) bfd_alloc (abfd, len + 1);
7830 if (dups == NULL)
7831 return NULL;
7832
7833 memcpy (dups, start, len);
7834 dups[len] = '\0';
7835
7836 return dups;
7837 }
7838
7839 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7840 static bfd_boolean
7841 elfcore_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
7842 {
7843 if (note->descsz == sizeof (elfcore_psinfo_t))
7844 {
7845 elfcore_psinfo_t psinfo;
7846
7847 memcpy (&psinfo, note->descdata, sizeof (psinfo));
7848
7849 elf_tdata (abfd)->core_program
7850 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
7851 sizeof (psinfo.pr_fname));
7852
7853 elf_tdata (abfd)->core_command
7854 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
7855 sizeof (psinfo.pr_psargs));
7856 }
7857 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
7858 else if (note->descsz == sizeof (elfcore_psinfo32_t))
7859 {
7860 /* 64-bit host, 32-bit corefile */
7861 elfcore_psinfo32_t psinfo;
7862
7863 memcpy (&psinfo, note->descdata, sizeof (psinfo));
7864
7865 elf_tdata (abfd)->core_program
7866 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
7867 sizeof (psinfo.pr_fname));
7868
7869 elf_tdata (abfd)->core_command
7870 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
7871 sizeof (psinfo.pr_psargs));
7872 }
7873 #endif
7874
7875 else
7876 {
7877 /* Fail - we don't know how to handle any other
7878 note size (ie. data object type). */
7879 return TRUE;
7880 }
7881
7882 /* Note that for some reason, a spurious space is tacked
7883 onto the end of the args in some (at least one anyway)
7884 implementations, so strip it off if it exists. */
7885
7886 {
7887 char *command = elf_tdata (abfd)->core_command;
7888 int n = strlen (command);
7889
7890 if (0 < n && command[n - 1] == ' ')
7891 command[n - 1] = '\0';
7892 }
7893
7894 return TRUE;
7895 }
7896 #endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
7897
7898 #if defined (HAVE_PSTATUS_T)
7899 static bfd_boolean
7900 elfcore_grok_pstatus (bfd *abfd, Elf_Internal_Note *note)
7901 {
7902 if (note->descsz == sizeof (pstatus_t)
7903 #if defined (HAVE_PXSTATUS_T)
7904 || note->descsz == sizeof (pxstatus_t)
7905 #endif
7906 )
7907 {
7908 pstatus_t pstat;
7909
7910 memcpy (&pstat, note->descdata, sizeof (pstat));
7911
7912 elf_tdata (abfd)->core_pid = pstat.pr_pid;
7913 }
7914 #if defined (HAVE_PSTATUS32_T)
7915 else if (note->descsz == sizeof (pstatus32_t))
7916 {
7917 /* 64-bit host, 32-bit corefile */
7918 pstatus32_t pstat;
7919
7920 memcpy (&pstat, note->descdata, sizeof (pstat));
7921
7922 elf_tdata (abfd)->core_pid = pstat.pr_pid;
7923 }
7924 #endif
7925 /* Could grab some more details from the "representative"
7926 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
7927 NT_LWPSTATUS note, presumably. */
7928
7929 return TRUE;
7930 }
7931 #endif /* defined (HAVE_PSTATUS_T) */
7932
7933 #if defined (HAVE_LWPSTATUS_T)
7934 static bfd_boolean
7935 elfcore_grok_lwpstatus (bfd *abfd, Elf_Internal_Note *note)
7936 {
7937 lwpstatus_t lwpstat;
7938 char buf[100];
7939 char *name;
7940 size_t len;
7941 asection *sect;
7942
7943 if (note->descsz != sizeof (lwpstat)
7944 #if defined (HAVE_LWPXSTATUS_T)
7945 && note->descsz != sizeof (lwpxstatus_t)
7946 #endif
7947 )
7948 return TRUE;
7949
7950 memcpy (&lwpstat, note->descdata, sizeof (lwpstat));
7951
7952 elf_tdata (abfd)->core_lwpid = lwpstat.pr_lwpid;
7953 /* Do not overwrite the core signal if it has already been set by
7954 another thread. */
7955 if (elf_tdata (abfd)->core_signal == 0)
7956 elf_tdata (abfd)->core_signal = lwpstat.pr_cursig;
7957
7958 /* Make a ".reg/999" section. */
7959
7960 sprintf (buf, ".reg/%d", elfcore_make_pid (abfd));
7961 len = strlen (buf) + 1;
7962 name = bfd_alloc (abfd, len);
7963 if (name == NULL)
7964 return FALSE;
7965 memcpy (name, buf, len);
7966
7967 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
7968 if (sect == NULL)
7969 return FALSE;
7970
7971 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7972 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.gregs);
7973 sect->filepos = note->descpos
7974 + offsetof (lwpstatus_t, pr_context.uc_mcontext.gregs);
7975 #endif
7976
7977 #if defined (HAVE_LWPSTATUS_T_PR_REG)
7978 sect->size = sizeof (lwpstat.pr_reg);
7979 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_reg);
7980 #endif
7981
7982 sect->alignment_power = 2;
7983
7984 if (!elfcore_maybe_make_sect (abfd, ".reg", sect))
7985 return FALSE;
7986
7987 /* Make a ".reg2/999" section */
7988
7989 sprintf (buf, ".reg2/%d", elfcore_make_pid (abfd));
7990 len = strlen (buf) + 1;
7991 name = bfd_alloc (abfd, len);
7992 if (name == NULL)
7993 return FALSE;
7994 memcpy (name, buf, len);
7995
7996 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
7997 if (sect == NULL)
7998 return FALSE;
7999
8000 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
8001 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.fpregs);
8002 sect->filepos = note->descpos
8003 + offsetof (lwpstatus_t, pr_context.uc_mcontext.fpregs);
8004 #endif
8005
8006 #if defined (HAVE_LWPSTATUS_T_PR_FPREG)
8007 sect->size = sizeof (lwpstat.pr_fpreg);
8008 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_fpreg);
8009 #endif
8010
8011 sect->alignment_power = 2;
8012
8013 return elfcore_maybe_make_sect (abfd, ".reg2", sect);
8014 }
8015 #endif /* defined (HAVE_LWPSTATUS_T) */
8016
8017 static bfd_boolean
8018 elfcore_grok_win32pstatus (bfd *abfd, Elf_Internal_Note *note)
8019 {
8020 char buf[30];
8021 char *name;
8022 size_t len;
8023 asection *sect;
8024 int type;
8025 int is_active_thread;
8026 bfd_vma base_addr;
8027
8028 if (note->descsz < 728)
8029 return TRUE;
8030
8031 if (! CONST_STRNEQ (note->namedata, "win32"))
8032 return TRUE;
8033
8034 type = bfd_get_32 (abfd, note->descdata);
8035
8036 switch (type)
8037 {
8038 case 1 /* NOTE_INFO_PROCESS */:
8039 /* FIXME: need to add ->core_command. */
8040 /* process_info.pid */
8041 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 8);
8042 /* process_info.signal */
8043 elf_tdata (abfd)->core_signal = bfd_get_32 (abfd, note->descdata + 12);
8044 break;
8045
8046 case 2 /* NOTE_INFO_THREAD */:
8047 /* Make a ".reg/999" section. */
8048 /* thread_info.tid */
8049 sprintf (buf, ".reg/%ld", (long) bfd_get_32 (abfd, note->descdata + 8));
8050
8051 len = strlen (buf) + 1;
8052 name = (char *) bfd_alloc (abfd, len);
8053 if (name == NULL)
8054 return FALSE;
8055
8056 memcpy (name, buf, len);
8057
8058 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8059 if (sect == NULL)
8060 return FALSE;
8061
8062 /* sizeof (thread_info.thread_context) */
8063 sect->size = 716;
8064 /* offsetof (thread_info.thread_context) */
8065 sect->filepos = note->descpos + 12;
8066 sect->alignment_power = 2;
8067
8068 /* thread_info.is_active_thread */
8069 is_active_thread = bfd_get_32 (abfd, note->descdata + 8);
8070
8071 if (is_active_thread)
8072 if (! elfcore_maybe_make_sect (abfd, ".reg", sect))
8073 return FALSE;
8074 break;
8075
8076 case 3 /* NOTE_INFO_MODULE */:
8077 /* Make a ".module/xxxxxxxx" section. */
8078 /* module_info.base_address */
8079 base_addr = bfd_get_32 (abfd, note->descdata + 4);
8080 sprintf (buf, ".module/%08lx", (unsigned long) base_addr);
8081
8082 len = strlen (buf) + 1;
8083 name = (char *) bfd_alloc (abfd, len);
8084 if (name == NULL)
8085 return FALSE;
8086
8087 memcpy (name, buf, len);
8088
8089 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8090
8091 if (sect == NULL)
8092 return FALSE;
8093
8094 sect->size = note->descsz;
8095 sect->filepos = note->descpos;
8096 sect->alignment_power = 2;
8097 break;
8098
8099 default:
8100 return TRUE;
8101 }
8102
8103 return TRUE;
8104 }
8105
8106 static bfd_boolean
8107 elfcore_grok_note (bfd *abfd, Elf_Internal_Note *note)
8108 {
8109 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8110
8111 switch (note->type)
8112 {
8113 default:
8114 return TRUE;
8115
8116 case NT_PRSTATUS:
8117 if (bed->elf_backend_grok_prstatus)
8118 if ((*bed->elf_backend_grok_prstatus) (abfd, note))
8119 return TRUE;
8120 #if defined (HAVE_PRSTATUS_T)
8121 return elfcore_grok_prstatus (abfd, note);
8122 #else
8123 return TRUE;
8124 #endif
8125
8126 #if defined (HAVE_PSTATUS_T)
8127 case NT_PSTATUS:
8128 return elfcore_grok_pstatus (abfd, note);
8129 #endif
8130
8131 #if defined (HAVE_LWPSTATUS_T)
8132 case NT_LWPSTATUS:
8133 return elfcore_grok_lwpstatus (abfd, note);
8134 #endif
8135
8136 case NT_FPREGSET: /* FIXME: rename to NT_PRFPREG */
8137 return elfcore_grok_prfpreg (abfd, note);
8138
8139 case NT_WIN32PSTATUS:
8140 return elfcore_grok_win32pstatus (abfd, note);
8141
8142 case NT_PRXFPREG: /* Linux SSE extension */
8143 if (note->namesz == 6
8144 && strcmp (note->namedata, "LINUX") == 0)
8145 return elfcore_grok_prxfpreg (abfd, note);
8146 else
8147 return TRUE;
8148
8149 case NT_X86_XSTATE: /* Linux XSAVE extension */
8150 if (note->namesz == 6
8151 && strcmp (note->namedata, "LINUX") == 0)
8152 return elfcore_grok_xstatereg (abfd, note);
8153 else
8154 return TRUE;
8155
8156 case NT_PPC_VMX:
8157 if (note->namesz == 6
8158 && strcmp (note->namedata, "LINUX") == 0)
8159 return elfcore_grok_ppc_vmx (abfd, note);
8160 else
8161 return TRUE;
8162
8163 case NT_PPC_VSX:
8164 if (note->namesz == 6
8165 && strcmp (note->namedata, "LINUX") == 0)
8166 return elfcore_grok_ppc_vsx (abfd, note);
8167 else
8168 return TRUE;
8169
8170 case NT_S390_HIGH_GPRS:
8171 if (note->namesz == 6
8172 && strcmp (note->namedata, "LINUX") == 0)
8173 return elfcore_grok_s390_high_gprs (abfd, note);
8174 else
8175 return TRUE;
8176
8177 case NT_S390_TIMER:
8178 if (note->namesz == 6
8179 && strcmp (note->namedata, "LINUX") == 0)
8180 return elfcore_grok_s390_timer (abfd, note);
8181 else
8182 return TRUE;
8183
8184 case NT_S390_TODCMP:
8185 if (note->namesz == 6
8186 && strcmp (note->namedata, "LINUX") == 0)
8187 return elfcore_grok_s390_todcmp (abfd, note);
8188 else
8189 return TRUE;
8190
8191 case NT_S390_TODPREG:
8192 if (note->namesz == 6
8193 && strcmp (note->namedata, "LINUX") == 0)
8194 return elfcore_grok_s390_todpreg (abfd, note);
8195 else
8196 return TRUE;
8197
8198 case NT_S390_CTRS:
8199 if (note->namesz == 6
8200 && strcmp (note->namedata, "LINUX") == 0)
8201 return elfcore_grok_s390_ctrs (abfd, note);
8202 else
8203 return TRUE;
8204
8205 case NT_S390_PREFIX:
8206 if (note->namesz == 6
8207 && strcmp (note->namedata, "LINUX") == 0)
8208 return elfcore_grok_s390_prefix (abfd, note);
8209 else
8210 return TRUE;
8211
8212 case NT_PRPSINFO:
8213 case NT_PSINFO:
8214 if (bed->elf_backend_grok_psinfo)
8215 if ((*bed->elf_backend_grok_psinfo) (abfd, note))
8216 return TRUE;
8217 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
8218 return elfcore_grok_psinfo (abfd, note);
8219 #else
8220 return TRUE;
8221 #endif
8222
8223 case NT_AUXV:
8224 {
8225 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
8226 SEC_HAS_CONTENTS);
8227
8228 if (sect == NULL)
8229 return FALSE;
8230 sect->size = note->descsz;
8231 sect->filepos = note->descpos;
8232 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
8233
8234 return TRUE;
8235 }
8236 }
8237 }
8238
8239 static bfd_boolean
8240 elfobj_grok_gnu_build_id (bfd *abfd, Elf_Internal_Note *note)
8241 {
8242 elf_tdata (abfd)->build_id_size = note->descsz;
8243 elf_tdata (abfd)->build_id = (bfd_byte *) bfd_alloc (abfd, note->descsz);
8244 if (elf_tdata (abfd)->build_id == NULL)
8245 return FALSE;
8246
8247 memcpy (elf_tdata (abfd)->build_id, note->descdata, note->descsz);
8248
8249 return TRUE;
8250 }
8251
8252 static bfd_boolean
8253 elfobj_grok_gnu_note (bfd *abfd, Elf_Internal_Note *note)
8254 {
8255 switch (note->type)
8256 {
8257 default:
8258 return TRUE;
8259
8260 case NT_GNU_BUILD_ID:
8261 return elfobj_grok_gnu_build_id (abfd, note);
8262 }
8263 }
8264
8265 static bfd_boolean
8266 elfcore_netbsd_get_lwpid (Elf_Internal_Note *note, int *lwpidp)
8267 {
8268 char *cp;
8269
8270 cp = strchr (note->namedata, '@');
8271 if (cp != NULL)
8272 {
8273 *lwpidp = atoi(cp + 1);
8274 return TRUE;
8275 }
8276 return FALSE;
8277 }
8278
8279 static bfd_boolean
8280 elfcore_grok_netbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
8281 {
8282 /* Signal number at offset 0x08. */
8283 elf_tdata (abfd)->core_signal
8284 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
8285
8286 /* Process ID at offset 0x50. */
8287 elf_tdata (abfd)->core_pid
8288 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x50);
8289
8290 /* Command name at 0x7c (max 32 bytes, including nul). */
8291 elf_tdata (abfd)->core_command
8292 = _bfd_elfcore_strndup (abfd, note->descdata + 0x7c, 31);
8293
8294 return elfcore_make_note_pseudosection (abfd, ".note.netbsdcore.procinfo",
8295 note);
8296 }
8297
8298 static bfd_boolean
8299 elfcore_grok_netbsd_note (bfd *abfd, Elf_Internal_Note *note)
8300 {
8301 int lwp;
8302
8303 if (elfcore_netbsd_get_lwpid (note, &lwp))
8304 elf_tdata (abfd)->core_lwpid = lwp;
8305
8306 if (note->type == NT_NETBSDCORE_PROCINFO)
8307 {
8308 /* NetBSD-specific core "procinfo". Note that we expect to
8309 find this note before any of the others, which is fine,
8310 since the kernel writes this note out first when it
8311 creates a core file. */
8312
8313 return elfcore_grok_netbsd_procinfo (abfd, note);
8314 }
8315
8316 /* As of Jan 2002 there are no other machine-independent notes
8317 defined for NetBSD core files. If the note type is less
8318 than the start of the machine-dependent note types, we don't
8319 understand it. */
8320
8321 if (note->type < NT_NETBSDCORE_FIRSTMACH)
8322 return TRUE;
8323
8324
8325 switch (bfd_get_arch (abfd))
8326 {
8327 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
8328 PT_GETFPREGS == mach+2. */
8329
8330 case bfd_arch_alpha:
8331 case bfd_arch_sparc:
8332 switch (note->type)
8333 {
8334 case NT_NETBSDCORE_FIRSTMACH+0:
8335 return elfcore_make_note_pseudosection (abfd, ".reg", note);
8336
8337 case NT_NETBSDCORE_FIRSTMACH+2:
8338 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
8339
8340 default:
8341 return TRUE;
8342 }
8343
8344 /* On all other arch's, PT_GETREGS == mach+1 and
8345 PT_GETFPREGS == mach+3. */
8346
8347 default:
8348 switch (note->type)
8349 {
8350 case NT_NETBSDCORE_FIRSTMACH+1:
8351 return elfcore_make_note_pseudosection (abfd, ".reg", note);
8352
8353 case NT_NETBSDCORE_FIRSTMACH+3:
8354 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
8355
8356 default:
8357 return TRUE;
8358 }
8359 }
8360 /* NOTREACHED */
8361 }
8362
8363 static bfd_boolean
8364 elfcore_grok_openbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
8365 {
8366 /* Signal number at offset 0x08. */
8367 elf_tdata (abfd)->core_signal
8368 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
8369
8370 /* Process ID at offset 0x20. */
8371 elf_tdata (abfd)->core_pid
8372 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x20);
8373
8374 /* Command name at 0x48 (max 32 bytes, including nul). */
8375 elf_tdata (abfd)->core_command
8376 = _bfd_elfcore_strndup (abfd, note->descdata + 0x48, 31);
8377
8378 return TRUE;
8379 }
8380
8381 static bfd_boolean
8382 elfcore_grok_openbsd_note (bfd *abfd, Elf_Internal_Note *note)
8383 {
8384 if (note->type == NT_OPENBSD_PROCINFO)
8385 return elfcore_grok_openbsd_procinfo (abfd, note);
8386
8387 if (note->type == NT_OPENBSD_REGS)
8388 return elfcore_make_note_pseudosection (abfd, ".reg", note);
8389
8390 if (note->type == NT_OPENBSD_FPREGS)
8391 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
8392
8393 if (note->type == NT_OPENBSD_XFPREGS)
8394 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
8395
8396 if (note->type == NT_OPENBSD_AUXV)
8397 {
8398 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
8399 SEC_HAS_CONTENTS);
8400
8401 if (sect == NULL)
8402 return FALSE;
8403 sect->size = note->descsz;
8404 sect->filepos = note->descpos;
8405 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
8406
8407 return TRUE;
8408 }
8409
8410 if (note->type == NT_OPENBSD_WCOOKIE)
8411 {
8412 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".wcookie",
8413 SEC_HAS_CONTENTS);
8414
8415 if (sect == NULL)
8416 return FALSE;
8417 sect->size = note->descsz;
8418 sect->filepos = note->descpos;
8419 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
8420
8421 return TRUE;
8422 }
8423
8424 return TRUE;
8425 }
8426
8427 static bfd_boolean
8428 elfcore_grok_nto_status (bfd *abfd, Elf_Internal_Note *note, long *tid)
8429 {
8430 void *ddata = note->descdata;
8431 char buf[100];
8432 char *name;
8433 asection *sect;
8434 short sig;
8435 unsigned flags;
8436
8437 /* nto_procfs_status 'pid' field is at offset 0. */
8438 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, (bfd_byte *) ddata);
8439
8440 /* nto_procfs_status 'tid' field is at offset 4. Pass it back. */
8441 *tid = bfd_get_32 (abfd, (bfd_byte *) ddata + 4);
8442
8443 /* nto_procfs_status 'flags' field is at offset 8. */
8444 flags = bfd_get_32 (abfd, (bfd_byte *) ddata + 8);
8445
8446 /* nto_procfs_status 'what' field is at offset 14. */
8447 if ((sig = bfd_get_16 (abfd, (bfd_byte *) ddata + 14)) > 0)
8448 {
8449 elf_tdata (abfd)->core_signal = sig;
8450 elf_tdata (abfd)->core_lwpid = *tid;
8451 }
8452
8453 /* _DEBUG_FLAG_CURTID (current thread) is 0x80. Some cores
8454 do not come from signals so we make sure we set the current
8455 thread just in case. */
8456 if (flags & 0x00000080)
8457 elf_tdata (abfd)->core_lwpid = *tid;
8458
8459 /* Make a ".qnx_core_status/%d" section. */
8460 sprintf (buf, ".qnx_core_status/%ld", *tid);
8461
8462 name = (char *) bfd_alloc (abfd, strlen (buf) + 1);
8463 if (name == NULL)
8464 return FALSE;
8465 strcpy (name, buf);
8466
8467 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8468 if (sect == NULL)
8469 return FALSE;
8470
8471 sect->size = note->descsz;
8472 sect->filepos = note->descpos;
8473 sect->alignment_power = 2;
8474
8475 return (elfcore_maybe_make_sect (abfd, ".qnx_core_status", sect));
8476 }
8477
8478 static bfd_boolean
8479 elfcore_grok_nto_regs (bfd *abfd,
8480 Elf_Internal_Note *note,
8481 long tid,
8482 char *base)
8483 {
8484 char buf[100];
8485 char *name;
8486 asection *sect;
8487
8488 /* Make a "(base)/%d" section. */
8489 sprintf (buf, "%s/%ld", base, tid);
8490
8491 name = (char *) bfd_alloc (abfd, strlen (buf) + 1);
8492 if (name == NULL)
8493 return FALSE;
8494 strcpy (name, buf);
8495
8496 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8497 if (sect == NULL)
8498 return FALSE;
8499
8500 sect->size = note->descsz;
8501 sect->filepos = note->descpos;
8502 sect->alignment_power = 2;
8503
8504 /* This is the current thread. */
8505 if (elf_tdata (abfd)->core_lwpid == tid)
8506 return elfcore_maybe_make_sect (abfd, base, sect);
8507
8508 return TRUE;
8509 }
8510
8511 #define BFD_QNT_CORE_INFO 7
8512 #define BFD_QNT_CORE_STATUS 8
8513 #define BFD_QNT_CORE_GREG 9
8514 #define BFD_QNT_CORE_FPREG 10
8515
8516 static bfd_boolean
8517 elfcore_grok_nto_note (bfd *abfd, Elf_Internal_Note *note)
8518 {
8519 /* Every GREG section has a STATUS section before it. Store the
8520 tid from the previous call to pass down to the next gregs
8521 function. */
8522 static long tid = 1;
8523
8524 switch (note->type)
8525 {
8526 case BFD_QNT_CORE_INFO:
8527 return elfcore_make_note_pseudosection (abfd, ".qnx_core_info", note);
8528 case BFD_QNT_CORE_STATUS:
8529 return elfcore_grok_nto_status (abfd, note, &tid);
8530 case BFD_QNT_CORE_GREG:
8531 return elfcore_grok_nto_regs (abfd, note, tid, ".reg");
8532 case BFD_QNT_CORE_FPREG:
8533 return elfcore_grok_nto_regs (abfd, note, tid, ".reg2");
8534 default:
8535 return TRUE;
8536 }
8537 }
8538
8539 static bfd_boolean
8540 elfcore_grok_spu_note (bfd *abfd, Elf_Internal_Note *note)
8541 {
8542 char *name;
8543 asection *sect;
8544 size_t len;
8545
8546 /* Use note name as section name. */
8547 len = note->namesz;
8548 name = (char *) bfd_alloc (abfd, len);
8549 if (name == NULL)
8550 return FALSE;
8551 memcpy (name, note->namedata, len);
8552 name[len - 1] = '\0';
8553
8554 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8555 if (sect == NULL)
8556 return FALSE;
8557
8558 sect->size = note->descsz;
8559 sect->filepos = note->descpos;
8560 sect->alignment_power = 1;
8561
8562 return TRUE;
8563 }
8564
8565 /* Function: elfcore_write_note
8566
8567 Inputs:
8568 buffer to hold note, and current size of buffer
8569 name of note
8570 type of note
8571 data for note
8572 size of data for note
8573
8574 Writes note to end of buffer. ELF64 notes are written exactly as
8575 for ELF32, despite the current (as of 2006) ELF gabi specifying
8576 that they ought to have 8-byte namesz and descsz field, and have
8577 8-byte alignment. Other writers, eg. Linux kernel, do the same.
8578
8579 Return:
8580 Pointer to realloc'd buffer, *BUFSIZ updated. */
8581
8582 char *
8583 elfcore_write_note (bfd *abfd,
8584 char *buf,
8585 int *bufsiz,
8586 const char *name,
8587 int type,
8588 const void *input,
8589 int size)
8590 {
8591 Elf_External_Note *xnp;
8592 size_t namesz;
8593 size_t newspace;
8594 char *dest;
8595
8596 namesz = 0;
8597 if (name != NULL)
8598 namesz = strlen (name) + 1;
8599
8600 newspace = 12 + ((namesz + 3) & -4) + ((size + 3) & -4);
8601
8602 buf = (char *) realloc (buf, *bufsiz + newspace);
8603 if (buf == NULL)
8604 return buf;
8605 dest = buf + *bufsiz;
8606 *bufsiz += newspace;
8607 xnp = (Elf_External_Note *) dest;
8608 H_PUT_32 (abfd, namesz, xnp->namesz);
8609 H_PUT_32 (abfd, size, xnp->descsz);
8610 H_PUT_32 (abfd, type, xnp->type);
8611 dest = xnp->name;
8612 if (name != NULL)
8613 {
8614 memcpy (dest, name, namesz);
8615 dest += namesz;
8616 while (namesz & 3)
8617 {
8618 *dest++ = '\0';
8619 ++namesz;
8620 }
8621 }
8622 memcpy (dest, input, size);
8623 dest += size;
8624 while (size & 3)
8625 {
8626 *dest++ = '\0';
8627 ++size;
8628 }
8629 return buf;
8630 }
8631
8632 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
8633 char *
8634 elfcore_write_prpsinfo (bfd *abfd,
8635 char *buf,
8636 int *bufsiz,
8637 const char *fname,
8638 const char *psargs)
8639 {
8640 const char *note_name = "CORE";
8641 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8642
8643 if (bed->elf_backend_write_core_note != NULL)
8644 {
8645 char *ret;
8646 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
8647 NT_PRPSINFO, fname, psargs);
8648 if (ret != NULL)
8649 return ret;
8650 }
8651
8652 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
8653 if (bed->s->elfclass == ELFCLASS32)
8654 {
8655 #if defined (HAVE_PSINFO32_T)
8656 psinfo32_t data;
8657 int note_type = NT_PSINFO;
8658 #else
8659 prpsinfo32_t data;
8660 int note_type = NT_PRPSINFO;
8661 #endif
8662
8663 memset (&data, 0, sizeof (data));
8664 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
8665 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
8666 return elfcore_write_note (abfd, buf, bufsiz,
8667 note_name, note_type, &data, sizeof (data));
8668 }
8669 else
8670 #endif
8671 {
8672 #if defined (HAVE_PSINFO_T)
8673 psinfo_t data;
8674 int note_type = NT_PSINFO;
8675 #else
8676 prpsinfo_t data;
8677 int note_type = NT_PRPSINFO;
8678 #endif
8679
8680 memset (&data, 0, sizeof (data));
8681 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
8682 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
8683 return elfcore_write_note (abfd, buf, bufsiz,
8684 note_name, note_type, &data, sizeof (data));
8685 }
8686 }
8687 #endif /* PSINFO_T or PRPSINFO_T */
8688
8689 #if defined (HAVE_PRSTATUS_T)
8690 char *
8691 elfcore_write_prstatus (bfd *abfd,
8692 char *buf,
8693 int *bufsiz,
8694 long pid,
8695 int cursig,
8696 const void *gregs)
8697 {
8698 const char *note_name = "CORE";
8699 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8700
8701 if (bed->elf_backend_write_core_note != NULL)
8702 {
8703 char *ret;
8704 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
8705 NT_PRSTATUS,
8706 pid, cursig, gregs);
8707 if (ret != NULL)
8708 return ret;
8709 }
8710
8711 #if defined (HAVE_PRSTATUS32_T)
8712 if (bed->s->elfclass == ELFCLASS32)
8713 {
8714 prstatus32_t prstat;
8715
8716 memset (&prstat, 0, sizeof (prstat));
8717 prstat.pr_pid = pid;
8718 prstat.pr_cursig = cursig;
8719 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
8720 return elfcore_write_note (abfd, buf, bufsiz, note_name,
8721 NT_PRSTATUS, &prstat, sizeof (prstat));
8722 }
8723 else
8724 #endif
8725 {
8726 prstatus_t prstat;
8727
8728 memset (&prstat, 0, sizeof (prstat));
8729 prstat.pr_pid = pid;
8730 prstat.pr_cursig = cursig;
8731 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
8732 return elfcore_write_note (abfd, buf, bufsiz, note_name,
8733 NT_PRSTATUS, &prstat, sizeof (prstat));
8734 }
8735 }
8736 #endif /* HAVE_PRSTATUS_T */
8737
8738 #if defined (HAVE_LWPSTATUS_T)
8739 char *
8740 elfcore_write_lwpstatus (bfd *abfd,
8741 char *buf,
8742 int *bufsiz,
8743 long pid,
8744 int cursig,
8745 const void *gregs)
8746 {
8747 lwpstatus_t lwpstat;
8748 const char *note_name = "CORE";
8749
8750 memset (&lwpstat, 0, sizeof (lwpstat));
8751 lwpstat.pr_lwpid = pid >> 16;
8752 lwpstat.pr_cursig = cursig;
8753 #if defined (HAVE_LWPSTATUS_T_PR_REG)
8754 memcpy (lwpstat.pr_reg, gregs, sizeof (lwpstat.pr_reg));
8755 #elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
8756 #if !defined(gregs)
8757 memcpy (lwpstat.pr_context.uc_mcontext.gregs,
8758 gregs, sizeof (lwpstat.pr_context.uc_mcontext.gregs));
8759 #else
8760 memcpy (lwpstat.pr_context.uc_mcontext.__gregs,
8761 gregs, sizeof (lwpstat.pr_context.uc_mcontext.__gregs));
8762 #endif
8763 #endif
8764 return elfcore_write_note (abfd, buf, bufsiz, note_name,
8765 NT_LWPSTATUS, &lwpstat, sizeof (lwpstat));
8766 }
8767 #endif /* HAVE_LWPSTATUS_T */
8768
8769 #if defined (HAVE_PSTATUS_T)
8770 char *
8771 elfcore_write_pstatus (bfd *abfd,
8772 char *buf,
8773 int *bufsiz,
8774 long pid,
8775 int cursig ATTRIBUTE_UNUSED,
8776 const void *gregs ATTRIBUTE_UNUSED)
8777 {
8778 const char *note_name = "CORE";
8779 #if defined (HAVE_PSTATUS32_T)
8780 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8781
8782 if (bed->s->elfclass == ELFCLASS32)
8783 {
8784 pstatus32_t pstat;
8785
8786 memset (&pstat, 0, sizeof (pstat));
8787 pstat.pr_pid = pid & 0xffff;
8788 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
8789 NT_PSTATUS, &pstat, sizeof (pstat));
8790 return buf;
8791 }
8792 else
8793 #endif
8794 {
8795 pstatus_t pstat;
8796
8797 memset (&pstat, 0, sizeof (pstat));
8798 pstat.pr_pid = pid & 0xffff;
8799 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
8800 NT_PSTATUS, &pstat, sizeof (pstat));
8801 return buf;
8802 }
8803 }
8804 #endif /* HAVE_PSTATUS_T */
8805
8806 char *
8807 elfcore_write_prfpreg (bfd *abfd,
8808 char *buf,
8809 int *bufsiz,
8810 const void *fpregs,
8811 int size)
8812 {
8813 const char *note_name = "CORE";
8814 return elfcore_write_note (abfd, buf, bufsiz,
8815 note_name, NT_FPREGSET, fpregs, size);
8816 }
8817
8818 char *
8819 elfcore_write_prxfpreg (bfd *abfd,
8820 char *buf,
8821 int *bufsiz,
8822 const void *xfpregs,
8823 int size)
8824 {
8825 char *note_name = "LINUX";
8826 return elfcore_write_note (abfd, buf, bufsiz,
8827 note_name, NT_PRXFPREG, xfpregs, size);
8828 }
8829
8830 char *
8831 elfcore_write_xstatereg (bfd *abfd, char *buf, int *bufsiz,
8832 const void *xfpregs, int size)
8833 {
8834 char *note_name = "LINUX";
8835 return elfcore_write_note (abfd, buf, bufsiz,
8836 note_name, NT_X86_XSTATE, xfpregs, size);
8837 }
8838
8839 char *
8840 elfcore_write_ppc_vmx (bfd *abfd,
8841 char *buf,
8842 int *bufsiz,
8843 const void *ppc_vmx,
8844 int size)
8845 {
8846 char *note_name = "LINUX";
8847 return elfcore_write_note (abfd, buf, bufsiz,
8848 note_name, NT_PPC_VMX, ppc_vmx, size);
8849 }
8850
8851 char *
8852 elfcore_write_ppc_vsx (bfd *abfd,
8853 char *buf,
8854 int *bufsiz,
8855 const void *ppc_vsx,
8856 int size)
8857 {
8858 char *note_name = "LINUX";
8859 return elfcore_write_note (abfd, buf, bufsiz,
8860 note_name, NT_PPC_VSX, ppc_vsx, size);
8861 }
8862
8863 static char *
8864 elfcore_write_s390_high_gprs (bfd *abfd,
8865 char *buf,
8866 int *bufsiz,
8867 const void *s390_high_gprs,
8868 int size)
8869 {
8870 char *note_name = "LINUX";
8871 return elfcore_write_note (abfd, buf, bufsiz,
8872 note_name, NT_S390_HIGH_GPRS,
8873 s390_high_gprs, size);
8874 }
8875
8876 char *
8877 elfcore_write_s390_timer (bfd *abfd,
8878 char *buf,
8879 int *bufsiz,
8880 const void *s390_timer,
8881 int size)
8882 {
8883 char *note_name = "LINUX";
8884 return elfcore_write_note (abfd, buf, bufsiz,
8885 note_name, NT_S390_TIMER, s390_timer, size);
8886 }
8887
8888 char *
8889 elfcore_write_s390_todcmp (bfd *abfd,
8890 char *buf,
8891 int *bufsiz,
8892 const void *s390_todcmp,
8893 int size)
8894 {
8895 char *note_name = "LINUX";
8896 return elfcore_write_note (abfd, buf, bufsiz,
8897 note_name, NT_S390_TODCMP, s390_todcmp, size);
8898 }
8899
8900 char *
8901 elfcore_write_s390_todpreg (bfd *abfd,
8902 char *buf,
8903 int *bufsiz,
8904 const void *s390_todpreg,
8905 int size)
8906 {
8907 char *note_name = "LINUX";
8908 return elfcore_write_note (abfd, buf, bufsiz,
8909 note_name, NT_S390_TODPREG, s390_todpreg, size);
8910 }
8911
8912 char *
8913 elfcore_write_s390_ctrs (bfd *abfd,
8914 char *buf,
8915 int *bufsiz,
8916 const void *s390_ctrs,
8917 int size)
8918 {
8919 char *note_name = "LINUX";
8920 return elfcore_write_note (abfd, buf, bufsiz,
8921 note_name, NT_S390_CTRS, s390_ctrs, size);
8922 }
8923
8924 char *
8925 elfcore_write_s390_prefix (bfd *abfd,
8926 char *buf,
8927 int *bufsiz,
8928 const void *s390_prefix,
8929 int size)
8930 {
8931 char *note_name = "LINUX";
8932 return elfcore_write_note (abfd, buf, bufsiz,
8933 note_name, NT_S390_PREFIX, s390_prefix, size);
8934 }
8935
8936 char *
8937 elfcore_write_register_note (bfd *abfd,
8938 char *buf,
8939 int *bufsiz,
8940 const char *section,
8941 const void *data,
8942 int size)
8943 {
8944 if (strcmp (section, ".reg2") == 0)
8945 return elfcore_write_prfpreg (abfd, buf, bufsiz, data, size);
8946 if (strcmp (section, ".reg-xfp") == 0)
8947 return elfcore_write_prxfpreg (abfd, buf, bufsiz, data, size);
8948 if (strcmp (section, ".reg-xstate") == 0)
8949 return elfcore_write_xstatereg (abfd, buf, bufsiz, data, size);
8950 if (strcmp (section, ".reg-ppc-vmx") == 0)
8951 return elfcore_write_ppc_vmx (abfd, buf, bufsiz, data, size);
8952 if (strcmp (section, ".reg-ppc-vsx") == 0)
8953 return elfcore_write_ppc_vsx (abfd, buf, bufsiz, data, size);
8954 if (strcmp (section, ".reg-s390-high-gprs") == 0)
8955 return elfcore_write_s390_high_gprs (abfd, buf, bufsiz, data, size);
8956 if (strcmp (section, ".reg-s390-timer") == 0)
8957 return elfcore_write_s390_timer (abfd, buf, bufsiz, data, size);
8958 if (strcmp (section, ".reg-s390-todcmp") == 0)
8959 return elfcore_write_s390_todcmp (abfd, buf, bufsiz, data, size);
8960 if (strcmp (section, ".reg-s390-todpreg") == 0)
8961 return elfcore_write_s390_todpreg (abfd, buf, bufsiz, data, size);
8962 if (strcmp (section, ".reg-s390-ctrs") == 0)
8963 return elfcore_write_s390_ctrs (abfd, buf, bufsiz, data, size);
8964 if (strcmp (section, ".reg-s390-prefix") == 0)
8965 return elfcore_write_s390_prefix (abfd, buf, bufsiz, data, size);
8966 return NULL;
8967 }
8968
8969 static bfd_boolean
8970 elf_parse_notes (bfd *abfd, char *buf, size_t size, file_ptr offset)
8971 {
8972 char *p;
8973
8974 p = buf;
8975 while (p < buf + size)
8976 {
8977 /* FIXME: bad alignment assumption. */
8978 Elf_External_Note *xnp = (Elf_External_Note *) p;
8979 Elf_Internal_Note in;
8980
8981 if (offsetof (Elf_External_Note, name) > buf - p + size)
8982 return FALSE;
8983
8984 in.type = H_GET_32 (abfd, xnp->type);
8985
8986 in.namesz = H_GET_32 (abfd, xnp->namesz);
8987 in.namedata = xnp->name;
8988 if (in.namesz > buf - in.namedata + size)
8989 return FALSE;
8990
8991 in.descsz = H_GET_32 (abfd, xnp->descsz);
8992 in.descdata = in.namedata + BFD_ALIGN (in.namesz, 4);
8993 in.descpos = offset + (in.descdata - buf);
8994 if (in.descsz != 0
8995 && (in.descdata >= buf + size
8996 || in.descsz > buf - in.descdata + size))
8997 return FALSE;
8998
8999 switch (bfd_get_format (abfd))
9000 {
9001 default:
9002 return TRUE;
9003
9004 case bfd_core:
9005 if (CONST_STRNEQ (in.namedata, "NetBSD-CORE"))
9006 {
9007 if (! elfcore_grok_netbsd_note (abfd, &in))
9008 return FALSE;
9009 }
9010 else if (CONST_STRNEQ (in.namedata, "OpenBSD"))
9011 {
9012 if (! elfcore_grok_openbsd_note (abfd, &in))
9013 return FALSE;
9014 }
9015 else if (CONST_STRNEQ (in.namedata, "QNX"))
9016 {
9017 if (! elfcore_grok_nto_note (abfd, &in))
9018 return FALSE;
9019 }
9020 else if (CONST_STRNEQ (in.namedata, "SPU/"))
9021 {
9022 if (! elfcore_grok_spu_note (abfd, &in))
9023 return FALSE;
9024 }
9025 else
9026 {
9027 if (! elfcore_grok_note (abfd, &in))
9028 return FALSE;
9029 }
9030 break;
9031
9032 case bfd_object:
9033 if (in.namesz == sizeof "GNU" && strcmp (in.namedata, "GNU") == 0)
9034 {
9035 if (! elfobj_grok_gnu_note (abfd, &in))
9036 return FALSE;
9037 }
9038 break;
9039 }
9040
9041 p = in.descdata + BFD_ALIGN (in.descsz, 4);
9042 }
9043
9044 return TRUE;
9045 }
9046
9047 static bfd_boolean
9048 elf_read_notes (bfd *abfd, file_ptr offset, bfd_size_type size)
9049 {
9050 char *buf;
9051
9052 if (size <= 0)
9053 return TRUE;
9054
9055 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
9056 return FALSE;
9057
9058 buf = (char *) bfd_malloc (size);
9059 if (buf == NULL)
9060 return FALSE;
9061
9062 if (bfd_bread (buf, size, abfd) != size
9063 || !elf_parse_notes (abfd, buf, size, offset))
9064 {
9065 free (buf);
9066 return FALSE;
9067 }
9068
9069 free (buf);
9070 return TRUE;
9071 }
9072 \f
9073 /* Providing external access to the ELF program header table. */
9074
9075 /* Return an upper bound on the number of bytes required to store a
9076 copy of ABFD's program header table entries. Return -1 if an error
9077 occurs; bfd_get_error will return an appropriate code. */
9078
9079 long
9080 bfd_get_elf_phdr_upper_bound (bfd *abfd)
9081 {
9082 if (abfd->xvec->flavour != bfd_target_elf_flavour)
9083 {
9084 bfd_set_error (bfd_error_wrong_format);
9085 return -1;
9086 }
9087
9088 return elf_elfheader (abfd)->e_phnum * sizeof (Elf_Internal_Phdr);
9089 }
9090
9091 /* Copy ABFD's program header table entries to *PHDRS. The entries
9092 will be stored as an array of Elf_Internal_Phdr structures, as
9093 defined in include/elf/internal.h. To find out how large the
9094 buffer needs to be, call bfd_get_elf_phdr_upper_bound.
9095
9096 Return the number of program header table entries read, or -1 if an
9097 error occurs; bfd_get_error will return an appropriate code. */
9098
9099 int
9100 bfd_get_elf_phdrs (bfd *abfd, void *phdrs)
9101 {
9102 int num_phdrs;
9103
9104 if (abfd->xvec->flavour != bfd_target_elf_flavour)
9105 {
9106 bfd_set_error (bfd_error_wrong_format);
9107 return -1;
9108 }
9109
9110 num_phdrs = elf_elfheader (abfd)->e_phnum;
9111 memcpy (phdrs, elf_tdata (abfd)->phdr,
9112 num_phdrs * sizeof (Elf_Internal_Phdr));
9113
9114 return num_phdrs;
9115 }
9116
9117 enum elf_reloc_type_class
9118 _bfd_elf_reloc_type_class (const Elf_Internal_Rela *rela ATTRIBUTE_UNUSED)
9119 {
9120 return reloc_class_normal;
9121 }
9122
9123 /* For RELA architectures, return the relocation value for a
9124 relocation against a local symbol. */
9125
9126 bfd_vma
9127 _bfd_elf_rela_local_sym (bfd *abfd,
9128 Elf_Internal_Sym *sym,
9129 asection **psec,
9130 Elf_Internal_Rela *rel)
9131 {
9132 asection *sec = *psec;
9133 bfd_vma relocation;
9134
9135 relocation = (sec->output_section->vma
9136 + sec->output_offset
9137 + sym->st_value);
9138 if ((sec->flags & SEC_MERGE)
9139 && ELF_ST_TYPE (sym->st_info) == STT_SECTION
9140 && sec->sec_info_type == ELF_INFO_TYPE_MERGE)
9141 {
9142 rel->r_addend =
9143 _bfd_merged_section_offset (abfd, psec,
9144 elf_section_data (sec)->sec_info,
9145 sym->st_value + rel->r_addend);
9146 if (sec != *psec)
9147 {
9148 /* If we have changed the section, and our original section is
9149 marked with SEC_EXCLUDE, it means that the original
9150 SEC_MERGE section has been completely subsumed in some
9151 other SEC_MERGE section. In this case, we need to leave
9152 some info around for --emit-relocs. */
9153 if ((sec->flags & SEC_EXCLUDE) != 0)
9154 sec->kept_section = *psec;
9155 sec = *psec;
9156 }
9157 rel->r_addend -= relocation;
9158 rel->r_addend += sec->output_section->vma + sec->output_offset;
9159 }
9160 return relocation;
9161 }
9162
9163 bfd_vma
9164 _bfd_elf_rel_local_sym (bfd *abfd,
9165 Elf_Internal_Sym *sym,
9166 asection **psec,
9167 bfd_vma addend)
9168 {
9169 asection *sec = *psec;
9170
9171 if (sec->sec_info_type != ELF_INFO_TYPE_MERGE)
9172 return sym->st_value + addend;
9173
9174 return _bfd_merged_section_offset (abfd, psec,
9175 elf_section_data (sec)->sec_info,
9176 sym->st_value + addend);
9177 }
9178
9179 bfd_vma
9180 _bfd_elf_section_offset (bfd *abfd,
9181 struct bfd_link_info *info,
9182 asection *sec,
9183 bfd_vma offset)
9184 {
9185 switch (sec->sec_info_type)
9186 {
9187 case ELF_INFO_TYPE_STABS:
9188 return _bfd_stab_section_offset (sec, elf_section_data (sec)->sec_info,
9189 offset);
9190 case ELF_INFO_TYPE_EH_FRAME:
9191 return _bfd_elf_eh_frame_section_offset (abfd, info, sec, offset);
9192 default:
9193 return offset;
9194 }
9195 }
9196 \f
9197 /* Create a new BFD as if by bfd_openr. Rather than opening a file,
9198 reconstruct an ELF file by reading the segments out of remote memory
9199 based on the ELF file header at EHDR_VMA and the ELF program headers it
9200 points to. If not null, *LOADBASEP is filled in with the difference
9201 between the VMAs from which the segments were read, and the VMAs the
9202 file headers (and hence BFD's idea of each section's VMA) put them at.
9203
9204 The function TARGET_READ_MEMORY is called to copy LEN bytes from the
9205 remote memory at target address VMA into the local buffer at MYADDR; it
9206 should return zero on success or an `errno' code on failure. TEMPL must
9207 be a BFD for an ELF target with the word size and byte order found in
9208 the remote memory. */
9209
9210 bfd *
9211 bfd_elf_bfd_from_remote_memory
9212 (bfd *templ,
9213 bfd_vma ehdr_vma,
9214 bfd_vma *loadbasep,
9215 int (*target_read_memory) (bfd_vma, bfd_byte *, int))
9216 {
9217 return (*get_elf_backend_data (templ)->elf_backend_bfd_from_remote_memory)
9218 (templ, ehdr_vma, loadbasep, target_read_memory);
9219 }
9220 \f
9221 long
9222 _bfd_elf_get_synthetic_symtab (bfd *abfd,
9223 long symcount ATTRIBUTE_UNUSED,
9224 asymbol **syms ATTRIBUTE_UNUSED,
9225 long dynsymcount,
9226 asymbol **dynsyms,
9227 asymbol **ret)
9228 {
9229 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9230 asection *relplt;
9231 asymbol *s;
9232 const char *relplt_name;
9233 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
9234 arelent *p;
9235 long count, i, n;
9236 size_t size;
9237 Elf_Internal_Shdr *hdr;
9238 char *names;
9239 asection *plt;
9240
9241 *ret = NULL;
9242
9243 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0)
9244 return 0;
9245
9246 if (dynsymcount <= 0)
9247 return 0;
9248
9249 if (!bed->plt_sym_val)
9250 return 0;
9251
9252 relplt_name = bed->relplt_name;
9253 if (relplt_name == NULL)
9254 relplt_name = bed->rela_plts_and_copies_p ? ".rela.plt" : ".rel.plt";
9255 relplt = bfd_get_section_by_name (abfd, relplt_name);
9256 if (relplt == NULL)
9257 return 0;
9258
9259 hdr = &elf_section_data (relplt)->this_hdr;
9260 if (hdr->sh_link != elf_dynsymtab (abfd)
9261 || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA))
9262 return 0;
9263
9264 plt = bfd_get_section_by_name (abfd, ".plt");
9265 if (plt == NULL)
9266 return 0;
9267
9268 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
9269 if (! (*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
9270 return -1;
9271
9272 count = relplt->size / hdr->sh_entsize;
9273 size = count * sizeof (asymbol);
9274 p = relplt->relocation;
9275 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
9276 {
9277 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
9278 if (p->addend != 0)
9279 {
9280 #ifdef BFD64
9281 size += sizeof ("+0x") - 1 + 8 + 8 * (bed->s->elfclass == ELFCLASS64);
9282 #else
9283 size += sizeof ("+0x") - 1 + 8;
9284 #endif
9285 }
9286 }
9287
9288 s = *ret = (asymbol *) bfd_malloc (size);
9289 if (s == NULL)
9290 return -1;
9291
9292 names = (char *) (s + count);
9293 p = relplt->relocation;
9294 n = 0;
9295 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
9296 {
9297 size_t len;
9298 bfd_vma addr;
9299
9300 addr = bed->plt_sym_val (i, plt, p);
9301 if (addr == (bfd_vma) -1)
9302 continue;
9303
9304 *s = **p->sym_ptr_ptr;
9305 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
9306 we are defining a symbol, ensure one of them is set. */
9307 if ((s->flags & BSF_LOCAL) == 0)
9308 s->flags |= BSF_GLOBAL;
9309 s->flags |= BSF_SYNTHETIC;
9310 s->section = plt;
9311 s->value = addr - plt->vma;
9312 s->name = names;
9313 s->udata.p = NULL;
9314 len = strlen ((*p->sym_ptr_ptr)->name);
9315 memcpy (names, (*p->sym_ptr_ptr)->name, len);
9316 names += len;
9317 if (p->addend != 0)
9318 {
9319 char buf[30], *a;
9320
9321 memcpy (names, "+0x", sizeof ("+0x") - 1);
9322 names += sizeof ("+0x") - 1;
9323 bfd_sprintf_vma (abfd, buf, p->addend);
9324 for (a = buf; *a == '0'; ++a)
9325 ;
9326 len = strlen (a);
9327 memcpy (names, a, len);
9328 names += len;
9329 }
9330 memcpy (names, "@plt", sizeof ("@plt"));
9331 names += sizeof ("@plt");
9332 ++s, ++n;
9333 }
9334
9335 return n;
9336 }
9337
9338 /* It is only used by x86-64 so far. */
9339 asection _bfd_elf_large_com_section
9340 = BFD_FAKE_SECTION (_bfd_elf_large_com_section,
9341 SEC_IS_COMMON, NULL, "LARGE_COMMON", 0);
9342
9343 void
9344 _bfd_elf_set_osabi (bfd * abfd,
9345 struct bfd_link_info * link_info ATTRIBUTE_UNUSED)
9346 {
9347 Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */
9348
9349 i_ehdrp = elf_elfheader (abfd);
9350
9351 i_ehdrp->e_ident[EI_OSABI] = get_elf_backend_data (abfd)->elf_osabi;
9352
9353 /* To make things simpler for the loader on Linux systems we set the
9354 osabi field to ELFOSABI_LINUX if the binary contains symbols of
9355 the STT_GNU_IFUNC type. */
9356 if (i_ehdrp->e_ident[EI_OSABI] == ELFOSABI_NONE
9357 && elf_tdata (abfd)->has_ifunc_symbols)
9358 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_LINUX;
9359 }
9360
9361
9362 /* Return TRUE for ELF symbol types that represent functions.
9363 This is the default version of this function, which is sufficient for
9364 most targets. It returns true if TYPE is STT_FUNC or STT_GNU_IFUNC. */
9365
9366 bfd_boolean
9367 _bfd_elf_is_function_type (unsigned int type)
9368 {
9369 return (type == STT_FUNC
9370 || type == STT_GNU_IFUNC);
9371 }
This page took 0.234976 seconds and 4 git commands to generate.