604971dd4cefcfe055232b6f8bbbe708bf599e75
[deliverable/binutils-gdb.git] / bfd / elf.c
1 /* ELF executable support for BFD.
2
3 Copyright (C) 1993-2018 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
21
22
23 /*
24 SECTION
25 ELF backends
26
27 BFD support for ELF formats is being worked on.
28 Currently, the best supported back ends are for sparc and i386
29 (running svr4 or Solaris 2).
30
31 Documentation of the internals of the support code still needs
32 to be written. The code is changing quickly enough that we
33 haven't bothered yet. */
34
35 /* For sparc64-cross-sparc32. */
36 #define _SYSCALL32
37 #include "sysdep.h"
38 #include "bfd.h"
39 #include "bfdlink.h"
40 #include "libbfd.h"
41 #define ARCH_SIZE 0
42 #include "elf-bfd.h"
43 #include "libiberty.h"
44 #include "safe-ctype.h"
45 #include "elf-linux-core.h"
46
47 #ifdef CORE_HEADER
48 #include CORE_HEADER
49 #endif
50
51 static int elf_sort_sections (const void *, const void *);
52 static bfd_boolean assign_file_positions_except_relocs (bfd *, struct bfd_link_info *);
53 static bfd_boolean prep_headers (bfd *);
54 static bfd_boolean swap_out_syms (bfd *, struct elf_strtab_hash **, int) ;
55 static bfd_boolean elf_read_notes (bfd *, file_ptr, bfd_size_type,
56 size_t align) ;
57 static bfd_boolean elf_parse_notes (bfd *abfd, char *buf, size_t size,
58 file_ptr offset, size_t align);
59
60 /* Swap version information in and out. The version information is
61 currently size independent. If that ever changes, this code will
62 need to move into elfcode.h. */
63
64 /* Swap in a Verdef structure. */
65
66 void
67 _bfd_elf_swap_verdef_in (bfd *abfd,
68 const Elf_External_Verdef *src,
69 Elf_Internal_Verdef *dst)
70 {
71 dst->vd_version = H_GET_16 (abfd, src->vd_version);
72 dst->vd_flags = H_GET_16 (abfd, src->vd_flags);
73 dst->vd_ndx = H_GET_16 (abfd, src->vd_ndx);
74 dst->vd_cnt = H_GET_16 (abfd, src->vd_cnt);
75 dst->vd_hash = H_GET_32 (abfd, src->vd_hash);
76 dst->vd_aux = H_GET_32 (abfd, src->vd_aux);
77 dst->vd_next = H_GET_32 (abfd, src->vd_next);
78 }
79
80 /* Swap out a Verdef structure. */
81
82 void
83 _bfd_elf_swap_verdef_out (bfd *abfd,
84 const Elf_Internal_Verdef *src,
85 Elf_External_Verdef *dst)
86 {
87 H_PUT_16 (abfd, src->vd_version, dst->vd_version);
88 H_PUT_16 (abfd, src->vd_flags, dst->vd_flags);
89 H_PUT_16 (abfd, src->vd_ndx, dst->vd_ndx);
90 H_PUT_16 (abfd, src->vd_cnt, dst->vd_cnt);
91 H_PUT_32 (abfd, src->vd_hash, dst->vd_hash);
92 H_PUT_32 (abfd, src->vd_aux, dst->vd_aux);
93 H_PUT_32 (abfd, src->vd_next, dst->vd_next);
94 }
95
96 /* Swap in a Verdaux structure. */
97
98 void
99 _bfd_elf_swap_verdaux_in (bfd *abfd,
100 const Elf_External_Verdaux *src,
101 Elf_Internal_Verdaux *dst)
102 {
103 dst->vda_name = H_GET_32 (abfd, src->vda_name);
104 dst->vda_next = H_GET_32 (abfd, src->vda_next);
105 }
106
107 /* Swap out a Verdaux structure. */
108
109 void
110 _bfd_elf_swap_verdaux_out (bfd *abfd,
111 const Elf_Internal_Verdaux *src,
112 Elf_External_Verdaux *dst)
113 {
114 H_PUT_32 (abfd, src->vda_name, dst->vda_name);
115 H_PUT_32 (abfd, src->vda_next, dst->vda_next);
116 }
117
118 /* Swap in a Verneed structure. */
119
120 void
121 _bfd_elf_swap_verneed_in (bfd *abfd,
122 const Elf_External_Verneed *src,
123 Elf_Internal_Verneed *dst)
124 {
125 dst->vn_version = H_GET_16 (abfd, src->vn_version);
126 dst->vn_cnt = H_GET_16 (abfd, src->vn_cnt);
127 dst->vn_file = H_GET_32 (abfd, src->vn_file);
128 dst->vn_aux = H_GET_32 (abfd, src->vn_aux);
129 dst->vn_next = H_GET_32 (abfd, src->vn_next);
130 }
131
132 /* Swap out a Verneed structure. */
133
134 void
135 _bfd_elf_swap_verneed_out (bfd *abfd,
136 const Elf_Internal_Verneed *src,
137 Elf_External_Verneed *dst)
138 {
139 H_PUT_16 (abfd, src->vn_version, dst->vn_version);
140 H_PUT_16 (abfd, src->vn_cnt, dst->vn_cnt);
141 H_PUT_32 (abfd, src->vn_file, dst->vn_file);
142 H_PUT_32 (abfd, src->vn_aux, dst->vn_aux);
143 H_PUT_32 (abfd, src->vn_next, dst->vn_next);
144 }
145
146 /* Swap in a Vernaux structure. */
147
148 void
149 _bfd_elf_swap_vernaux_in (bfd *abfd,
150 const Elf_External_Vernaux *src,
151 Elf_Internal_Vernaux *dst)
152 {
153 dst->vna_hash = H_GET_32 (abfd, src->vna_hash);
154 dst->vna_flags = H_GET_16 (abfd, src->vna_flags);
155 dst->vna_other = H_GET_16 (abfd, src->vna_other);
156 dst->vna_name = H_GET_32 (abfd, src->vna_name);
157 dst->vna_next = H_GET_32 (abfd, src->vna_next);
158 }
159
160 /* Swap out a Vernaux structure. */
161
162 void
163 _bfd_elf_swap_vernaux_out (bfd *abfd,
164 const Elf_Internal_Vernaux *src,
165 Elf_External_Vernaux *dst)
166 {
167 H_PUT_32 (abfd, src->vna_hash, dst->vna_hash);
168 H_PUT_16 (abfd, src->vna_flags, dst->vna_flags);
169 H_PUT_16 (abfd, src->vna_other, dst->vna_other);
170 H_PUT_32 (abfd, src->vna_name, dst->vna_name);
171 H_PUT_32 (abfd, src->vna_next, dst->vna_next);
172 }
173
174 /* Swap in a Versym structure. */
175
176 void
177 _bfd_elf_swap_versym_in (bfd *abfd,
178 const Elf_External_Versym *src,
179 Elf_Internal_Versym *dst)
180 {
181 dst->vs_vers = H_GET_16 (abfd, src->vs_vers);
182 }
183
184 /* Swap out a Versym structure. */
185
186 void
187 _bfd_elf_swap_versym_out (bfd *abfd,
188 const Elf_Internal_Versym *src,
189 Elf_External_Versym *dst)
190 {
191 H_PUT_16 (abfd, src->vs_vers, dst->vs_vers);
192 }
193
194 /* Standard ELF hash function. Do not change this function; you will
195 cause invalid hash tables to be generated. */
196
197 unsigned long
198 bfd_elf_hash (const char *namearg)
199 {
200 const unsigned char *name = (const unsigned char *) namearg;
201 unsigned long h = 0;
202 unsigned long g;
203 int ch;
204
205 while ((ch = *name++) != '\0')
206 {
207 h = (h << 4) + ch;
208 if ((g = (h & 0xf0000000)) != 0)
209 {
210 h ^= g >> 24;
211 /* The ELF ABI says `h &= ~g', but this is equivalent in
212 this case and on some machines one insn instead of two. */
213 h ^= g;
214 }
215 }
216 return h & 0xffffffff;
217 }
218
219 /* DT_GNU_HASH hash function. Do not change this function; you will
220 cause invalid hash tables to be generated. */
221
222 unsigned long
223 bfd_elf_gnu_hash (const char *namearg)
224 {
225 const unsigned char *name = (const unsigned char *) namearg;
226 unsigned long h = 5381;
227 unsigned char ch;
228
229 while ((ch = *name++) != '\0')
230 h = (h << 5) + h + ch;
231 return h & 0xffffffff;
232 }
233
234 /* Create a tdata field OBJECT_SIZE bytes in length, zeroed out and with
235 the object_id field of an elf_obj_tdata field set to OBJECT_ID. */
236 bfd_boolean
237 bfd_elf_allocate_object (bfd *abfd,
238 size_t object_size,
239 enum elf_target_id object_id)
240 {
241 BFD_ASSERT (object_size >= sizeof (struct elf_obj_tdata));
242 abfd->tdata.any = bfd_zalloc (abfd, object_size);
243 if (abfd->tdata.any == NULL)
244 return FALSE;
245
246 elf_object_id (abfd) = object_id;
247 if (abfd->direction != read_direction)
248 {
249 struct output_elf_obj_tdata *o = bfd_zalloc (abfd, sizeof *o);
250 if (o == NULL)
251 return FALSE;
252 elf_tdata (abfd)->o = o;
253 elf_program_header_size (abfd) = (bfd_size_type) -1;
254 }
255 return TRUE;
256 }
257
258
259 bfd_boolean
260 bfd_elf_make_object (bfd *abfd)
261 {
262 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
263 return bfd_elf_allocate_object (abfd, sizeof (struct elf_obj_tdata),
264 bed->target_id);
265 }
266
267 bfd_boolean
268 bfd_elf_mkcorefile (bfd *abfd)
269 {
270 /* I think this can be done just like an object file. */
271 if (!abfd->xvec->_bfd_set_format[(int) bfd_object] (abfd))
272 return FALSE;
273 elf_tdata (abfd)->core = bfd_zalloc (abfd, sizeof (*elf_tdata (abfd)->core));
274 return elf_tdata (abfd)->core != NULL;
275 }
276
277 static char *
278 bfd_elf_get_str_section (bfd *abfd, unsigned int shindex)
279 {
280 Elf_Internal_Shdr **i_shdrp;
281 bfd_byte *shstrtab = NULL;
282 file_ptr offset;
283 bfd_size_type shstrtabsize;
284
285 i_shdrp = elf_elfsections (abfd);
286 if (i_shdrp == 0
287 || shindex >= elf_numsections (abfd)
288 || i_shdrp[shindex] == 0)
289 return NULL;
290
291 shstrtab = i_shdrp[shindex]->contents;
292 if (shstrtab == NULL)
293 {
294 /* No cached one, attempt to read, and cache what we read. */
295 offset = i_shdrp[shindex]->sh_offset;
296 shstrtabsize = i_shdrp[shindex]->sh_size;
297
298 /* Allocate and clear an extra byte at the end, to prevent crashes
299 in case the string table is not terminated. */
300 if (shstrtabsize + 1 <= 1
301 || shstrtabsize > bfd_get_file_size (abfd)
302 || bfd_seek (abfd, offset, SEEK_SET) != 0
303 || (shstrtab = (bfd_byte *) bfd_alloc (abfd, shstrtabsize + 1)) == NULL)
304 shstrtab = NULL;
305 else if (bfd_bread (shstrtab, shstrtabsize, abfd) != shstrtabsize)
306 {
307 if (bfd_get_error () != bfd_error_system_call)
308 bfd_set_error (bfd_error_file_truncated);
309 bfd_release (abfd, shstrtab);
310 shstrtab = NULL;
311 /* Once we've failed to read it, make sure we don't keep
312 trying. Otherwise, we'll keep allocating space for
313 the string table over and over. */
314 i_shdrp[shindex]->sh_size = 0;
315 }
316 else
317 shstrtab[shstrtabsize] = '\0';
318 i_shdrp[shindex]->contents = shstrtab;
319 }
320 return (char *) shstrtab;
321 }
322
323 char *
324 bfd_elf_string_from_elf_section (bfd *abfd,
325 unsigned int shindex,
326 unsigned int strindex)
327 {
328 Elf_Internal_Shdr *hdr;
329
330 if (strindex == 0)
331 return "";
332
333 if (elf_elfsections (abfd) == NULL || shindex >= elf_numsections (abfd))
334 return NULL;
335
336 hdr = elf_elfsections (abfd)[shindex];
337
338 if (hdr->contents == NULL)
339 {
340 if (hdr->sh_type != SHT_STRTAB && hdr->sh_type < SHT_LOOS)
341 {
342 /* PR 17512: file: f057ec89. */
343 /* xgettext:c-format */
344 _bfd_error_handler (_("%pB: attempt to load strings from"
345 " a non-string section (number %d)"),
346 abfd, shindex);
347 return NULL;
348 }
349
350 if (bfd_elf_get_str_section (abfd, shindex) == NULL)
351 return NULL;
352 }
353
354 if (strindex >= hdr->sh_size)
355 {
356 unsigned int shstrndx = elf_elfheader(abfd)->e_shstrndx;
357 _bfd_error_handler
358 /* xgettext:c-format */
359 (_("%pB: invalid string offset %u >= %" PRIu64 " for section `%s'"),
360 abfd, strindex, (uint64_t) hdr->sh_size,
361 (shindex == shstrndx && strindex == hdr->sh_name
362 ? ".shstrtab"
363 : bfd_elf_string_from_elf_section (abfd, shstrndx, hdr->sh_name)));
364 return NULL;
365 }
366
367 return ((char *) hdr->contents) + strindex;
368 }
369
370 /* Read and convert symbols to internal format.
371 SYMCOUNT specifies the number of symbols to read, starting from
372 symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF
373 are non-NULL, they are used to store the internal symbols, external
374 symbols, and symbol section index extensions, respectively.
375 Returns a pointer to the internal symbol buffer (malloced if necessary)
376 or NULL if there were no symbols or some kind of problem. */
377
378 Elf_Internal_Sym *
379 bfd_elf_get_elf_syms (bfd *ibfd,
380 Elf_Internal_Shdr *symtab_hdr,
381 size_t symcount,
382 size_t symoffset,
383 Elf_Internal_Sym *intsym_buf,
384 void *extsym_buf,
385 Elf_External_Sym_Shndx *extshndx_buf)
386 {
387 Elf_Internal_Shdr *shndx_hdr;
388 void *alloc_ext;
389 const bfd_byte *esym;
390 Elf_External_Sym_Shndx *alloc_extshndx;
391 Elf_External_Sym_Shndx *shndx;
392 Elf_Internal_Sym *alloc_intsym;
393 Elf_Internal_Sym *isym;
394 Elf_Internal_Sym *isymend;
395 const struct elf_backend_data *bed;
396 size_t extsym_size;
397 bfd_size_type amt;
398 file_ptr pos;
399
400 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
401 abort ();
402
403 if (symcount == 0)
404 return intsym_buf;
405
406 /* Normal syms might have section extension entries. */
407 shndx_hdr = NULL;
408 if (elf_symtab_shndx_list (ibfd) != NULL)
409 {
410 elf_section_list * entry;
411 Elf_Internal_Shdr **sections = elf_elfsections (ibfd);
412
413 /* Find an index section that is linked to this symtab section. */
414 for (entry = elf_symtab_shndx_list (ibfd); entry != NULL; entry = entry->next)
415 {
416 /* PR 20063. */
417 if (entry->hdr.sh_link >= elf_numsections (ibfd))
418 continue;
419
420 if (sections[entry->hdr.sh_link] == symtab_hdr)
421 {
422 shndx_hdr = & entry->hdr;
423 break;
424 };
425 }
426
427 if (shndx_hdr == NULL)
428 {
429 if (symtab_hdr == & elf_symtab_hdr (ibfd))
430 /* Not really accurate, but this was how the old code used to work. */
431 shndx_hdr = & elf_symtab_shndx_list (ibfd)->hdr;
432 /* Otherwise we do nothing. The assumption is that
433 the index table will not be needed. */
434 }
435 }
436
437 /* Read the symbols. */
438 alloc_ext = NULL;
439 alloc_extshndx = NULL;
440 alloc_intsym = NULL;
441 bed = get_elf_backend_data (ibfd);
442 extsym_size = bed->s->sizeof_sym;
443 amt = (bfd_size_type) symcount * extsym_size;
444 pos = symtab_hdr->sh_offset + symoffset * extsym_size;
445 if (extsym_buf == NULL)
446 {
447 alloc_ext = bfd_malloc2 (symcount, extsym_size);
448 extsym_buf = alloc_ext;
449 }
450 if (extsym_buf == NULL
451 || bfd_seek (ibfd, pos, SEEK_SET) != 0
452 || bfd_bread (extsym_buf, amt, ibfd) != amt)
453 {
454 intsym_buf = NULL;
455 goto out;
456 }
457
458 if (shndx_hdr == NULL || shndx_hdr->sh_size == 0)
459 extshndx_buf = NULL;
460 else
461 {
462 amt = (bfd_size_type) symcount * sizeof (Elf_External_Sym_Shndx);
463 pos = shndx_hdr->sh_offset + symoffset * sizeof (Elf_External_Sym_Shndx);
464 if (extshndx_buf == NULL)
465 {
466 alloc_extshndx = (Elf_External_Sym_Shndx *)
467 bfd_malloc2 (symcount, sizeof (Elf_External_Sym_Shndx));
468 extshndx_buf = alloc_extshndx;
469 }
470 if (extshndx_buf == NULL
471 || bfd_seek (ibfd, pos, SEEK_SET) != 0
472 || bfd_bread (extshndx_buf, amt, ibfd) != amt)
473 {
474 intsym_buf = NULL;
475 goto out;
476 }
477 }
478
479 if (intsym_buf == NULL)
480 {
481 alloc_intsym = (Elf_Internal_Sym *)
482 bfd_malloc2 (symcount, sizeof (Elf_Internal_Sym));
483 intsym_buf = alloc_intsym;
484 if (intsym_buf == NULL)
485 goto out;
486 }
487
488 /* Convert the symbols to internal form. */
489 isymend = intsym_buf + symcount;
490 for (esym = (const bfd_byte *) extsym_buf, isym = intsym_buf,
491 shndx = extshndx_buf;
492 isym < isymend;
493 esym += extsym_size, isym++, shndx = shndx != NULL ? shndx + 1 : NULL)
494 if (!(*bed->s->swap_symbol_in) (ibfd, esym, shndx, isym))
495 {
496 symoffset += (esym - (bfd_byte *) extsym_buf) / extsym_size;
497 /* xgettext:c-format */
498 _bfd_error_handler (_("%pB symbol number %lu references"
499 " nonexistent SHT_SYMTAB_SHNDX section"),
500 ibfd, (unsigned long) symoffset);
501 if (alloc_intsym != NULL)
502 free (alloc_intsym);
503 intsym_buf = NULL;
504 goto out;
505 }
506
507 out:
508 if (alloc_ext != NULL)
509 free (alloc_ext);
510 if (alloc_extshndx != NULL)
511 free (alloc_extshndx);
512
513 return intsym_buf;
514 }
515
516 /* Look up a symbol name. */
517 const char *
518 bfd_elf_sym_name (bfd *abfd,
519 Elf_Internal_Shdr *symtab_hdr,
520 Elf_Internal_Sym *isym,
521 asection *sym_sec)
522 {
523 const char *name;
524 unsigned int iname = isym->st_name;
525 unsigned int shindex = symtab_hdr->sh_link;
526
527 if (iname == 0 && ELF_ST_TYPE (isym->st_info) == STT_SECTION
528 /* Check for a bogus st_shndx to avoid crashing. */
529 && isym->st_shndx < elf_numsections (abfd))
530 {
531 iname = elf_elfsections (abfd)[isym->st_shndx]->sh_name;
532 shindex = elf_elfheader (abfd)->e_shstrndx;
533 }
534
535 name = bfd_elf_string_from_elf_section (abfd, shindex, iname);
536 if (name == NULL)
537 name = "(null)";
538 else if (sym_sec && *name == '\0')
539 name = bfd_section_name (abfd, sym_sec);
540
541 return name;
542 }
543
544 /* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
545 sections. The first element is the flags, the rest are section
546 pointers. */
547
548 typedef union elf_internal_group {
549 Elf_Internal_Shdr *shdr;
550 unsigned int flags;
551 } Elf_Internal_Group;
552
553 /* Return the name of the group signature symbol. Why isn't the
554 signature just a string? */
555
556 static const char *
557 group_signature (bfd *abfd, Elf_Internal_Shdr *ghdr)
558 {
559 Elf_Internal_Shdr *hdr;
560 unsigned char esym[sizeof (Elf64_External_Sym)];
561 Elf_External_Sym_Shndx eshndx;
562 Elf_Internal_Sym isym;
563
564 /* First we need to ensure the symbol table is available. Make sure
565 that it is a symbol table section. */
566 if (ghdr->sh_link >= elf_numsections (abfd))
567 return NULL;
568 hdr = elf_elfsections (abfd) [ghdr->sh_link];
569 if (hdr->sh_type != SHT_SYMTAB
570 || ! bfd_section_from_shdr (abfd, ghdr->sh_link))
571 return NULL;
572
573 /* Go read the symbol. */
574 hdr = &elf_tdata (abfd)->symtab_hdr;
575 if (bfd_elf_get_elf_syms (abfd, hdr, 1, ghdr->sh_info,
576 &isym, esym, &eshndx) == NULL)
577 return NULL;
578
579 return bfd_elf_sym_name (abfd, hdr, &isym, NULL);
580 }
581
582 /* Set next_in_group list pointer, and group name for NEWSECT. */
583
584 static bfd_boolean
585 setup_group (bfd *abfd, Elf_Internal_Shdr *hdr, asection *newsect)
586 {
587 unsigned int num_group = elf_tdata (abfd)->num_group;
588
589 /* If num_group is zero, read in all SHT_GROUP sections. The count
590 is set to -1 if there are no SHT_GROUP sections. */
591 if (num_group == 0)
592 {
593 unsigned int i, shnum;
594
595 /* First count the number of groups. If we have a SHT_GROUP
596 section with just a flag word (ie. sh_size is 4), ignore it. */
597 shnum = elf_numsections (abfd);
598 num_group = 0;
599
600 #define IS_VALID_GROUP_SECTION_HEADER(shdr, minsize) \
601 ( (shdr)->sh_type == SHT_GROUP \
602 && (shdr)->sh_size >= minsize \
603 && (shdr)->sh_entsize == GRP_ENTRY_SIZE \
604 && ((shdr)->sh_size % GRP_ENTRY_SIZE) == 0)
605
606 for (i = 0; i < shnum; i++)
607 {
608 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
609
610 if (IS_VALID_GROUP_SECTION_HEADER (shdr, 2 * GRP_ENTRY_SIZE))
611 num_group += 1;
612 }
613
614 if (num_group == 0)
615 {
616 num_group = (unsigned) -1;
617 elf_tdata (abfd)->num_group = num_group;
618 elf_tdata (abfd)->group_sect_ptr = NULL;
619 }
620 else
621 {
622 /* We keep a list of elf section headers for group sections,
623 so we can find them quickly. */
624 bfd_size_type amt;
625
626 elf_tdata (abfd)->num_group = num_group;
627 elf_tdata (abfd)->group_sect_ptr = (Elf_Internal_Shdr **)
628 bfd_alloc2 (abfd, num_group, sizeof (Elf_Internal_Shdr *));
629 if (elf_tdata (abfd)->group_sect_ptr == NULL)
630 return FALSE;
631 memset (elf_tdata (abfd)->group_sect_ptr, 0,
632 num_group * sizeof (Elf_Internal_Shdr *));
633 num_group = 0;
634
635 for (i = 0; i < shnum; i++)
636 {
637 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
638
639 if (IS_VALID_GROUP_SECTION_HEADER (shdr, 2 * GRP_ENTRY_SIZE))
640 {
641 unsigned char *src;
642 Elf_Internal_Group *dest;
643
644 /* Make sure the group section has a BFD section
645 attached to it. */
646 if (!bfd_section_from_shdr (abfd, i))
647 return FALSE;
648
649 /* Add to list of sections. */
650 elf_tdata (abfd)->group_sect_ptr[num_group] = shdr;
651 num_group += 1;
652
653 /* Read the raw contents. */
654 BFD_ASSERT (sizeof (*dest) >= 4);
655 amt = shdr->sh_size * sizeof (*dest) / 4;
656 shdr->contents = (unsigned char *)
657 bfd_alloc2 (abfd, shdr->sh_size, sizeof (*dest) / 4);
658 /* PR binutils/4110: Handle corrupt group headers. */
659 if (shdr->contents == NULL)
660 {
661 _bfd_error_handler
662 /* xgettext:c-format */
663 (_("%pB: corrupt size field in group section"
664 " header: %#" PRIx64),
665 abfd, (uint64_t) shdr->sh_size);
666 bfd_set_error (bfd_error_bad_value);
667 -- num_group;
668 continue;
669 }
670
671 memset (shdr->contents, 0, amt);
672
673 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0
674 || (bfd_bread (shdr->contents, shdr->sh_size, abfd)
675 != shdr->sh_size))
676 {
677 _bfd_error_handler
678 /* xgettext:c-format */
679 (_("%pB: invalid size field in group section"
680 " header: %#" PRIx64 ""),
681 abfd, (uint64_t) shdr->sh_size);
682 bfd_set_error (bfd_error_bad_value);
683 -- num_group;
684 /* PR 17510: If the group contents are even
685 partially corrupt, do not allow any of the
686 contents to be used. */
687 memset (shdr->contents, 0, amt);
688 continue;
689 }
690
691 /* Translate raw contents, a flag word followed by an
692 array of elf section indices all in target byte order,
693 to the flag word followed by an array of elf section
694 pointers. */
695 src = shdr->contents + shdr->sh_size;
696 dest = (Elf_Internal_Group *) (shdr->contents + amt);
697
698 while (1)
699 {
700 unsigned int idx;
701
702 src -= 4;
703 --dest;
704 idx = H_GET_32 (abfd, src);
705 if (src == shdr->contents)
706 {
707 dest->flags = idx;
708 if (shdr->bfd_section != NULL && (idx & GRP_COMDAT))
709 shdr->bfd_section->flags
710 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
711 break;
712 }
713 if (idx < shnum)
714 {
715 dest->shdr = elf_elfsections (abfd)[idx];
716 /* PR binutils/23199: All sections in a
717 section group should be marked with
718 SHF_GROUP. But some tools generate
719 broken objects without SHF_GROUP. Fix
720 them up here. */
721 dest->shdr->sh_flags |= SHF_GROUP;
722 }
723 if (idx >= shnum
724 || dest->shdr->sh_type == SHT_GROUP)
725 {
726 _bfd_error_handler
727 (_("%pB: invalid entry in SHT_GROUP section [%u]"),
728 abfd, i);
729 dest->shdr = NULL;
730 }
731 }
732 }
733 }
734
735 /* PR 17510: Corrupt binaries might contain invalid groups. */
736 if (num_group != (unsigned) elf_tdata (abfd)->num_group)
737 {
738 elf_tdata (abfd)->num_group = num_group;
739
740 /* If all groups are invalid then fail. */
741 if (num_group == 0)
742 {
743 elf_tdata (abfd)->group_sect_ptr = NULL;
744 elf_tdata (abfd)->num_group = num_group = -1;
745 _bfd_error_handler
746 (_("%pB: no valid group sections found"), abfd);
747 bfd_set_error (bfd_error_bad_value);
748 }
749 }
750 }
751 }
752
753 if (num_group != (unsigned) -1)
754 {
755 unsigned int search_offset = elf_tdata (abfd)->group_search_offset;
756 unsigned int j;
757
758 for (j = 0; j < num_group; j++)
759 {
760 /* Begin search from previous found group. */
761 unsigned i = (j + search_offset) % num_group;
762
763 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
764 Elf_Internal_Group *idx;
765 bfd_size_type n_elt;
766
767 if (shdr == NULL)
768 continue;
769
770 idx = (Elf_Internal_Group *) shdr->contents;
771 if (idx == NULL || shdr->sh_size < 4)
772 {
773 /* See PR 21957 for a reproducer. */
774 /* xgettext:c-format */
775 _bfd_error_handler (_("%pB: group section '%pA' has no contents"),
776 abfd, shdr->bfd_section);
777 elf_tdata (abfd)->group_sect_ptr[i] = NULL;
778 bfd_set_error (bfd_error_bad_value);
779 return FALSE;
780 }
781 n_elt = shdr->sh_size / 4;
782
783 /* Look through this group's sections to see if current
784 section is a member. */
785 while (--n_elt != 0)
786 if ((++idx)->shdr == hdr)
787 {
788 asection *s = NULL;
789
790 /* We are a member of this group. Go looking through
791 other members to see if any others are linked via
792 next_in_group. */
793 idx = (Elf_Internal_Group *) shdr->contents;
794 n_elt = shdr->sh_size / 4;
795 while (--n_elt != 0)
796 if ((++idx)->shdr != NULL
797 && (s = idx->shdr->bfd_section) != NULL
798 && elf_next_in_group (s) != NULL)
799 break;
800 if (n_elt != 0)
801 {
802 /* Snarf the group name from other member, and
803 insert current section in circular list. */
804 elf_group_name (newsect) = elf_group_name (s);
805 elf_next_in_group (newsect) = elf_next_in_group (s);
806 elf_next_in_group (s) = newsect;
807 }
808 else
809 {
810 const char *gname;
811
812 gname = group_signature (abfd, shdr);
813 if (gname == NULL)
814 return FALSE;
815 elf_group_name (newsect) = gname;
816
817 /* Start a circular list with one element. */
818 elf_next_in_group (newsect) = newsect;
819 }
820
821 /* If the group section has been created, point to the
822 new member. */
823 if (shdr->bfd_section != NULL)
824 elf_next_in_group (shdr->bfd_section) = newsect;
825
826 elf_tdata (abfd)->group_search_offset = i;
827 j = num_group - 1;
828 break;
829 }
830 }
831 }
832
833 if (elf_group_name (newsect) == NULL)
834 {
835 /* xgettext:c-format */
836 _bfd_error_handler (_("%pB: no group info for section '%pA'"),
837 abfd, newsect);
838 return FALSE;
839 }
840 return TRUE;
841 }
842
843 bfd_boolean
844 _bfd_elf_setup_sections (bfd *abfd)
845 {
846 unsigned int i;
847 unsigned int num_group = elf_tdata (abfd)->num_group;
848 bfd_boolean result = TRUE;
849 asection *s;
850
851 /* Process SHF_LINK_ORDER. */
852 for (s = abfd->sections; s != NULL; s = s->next)
853 {
854 Elf_Internal_Shdr *this_hdr = &elf_section_data (s)->this_hdr;
855 if ((this_hdr->sh_flags & SHF_LINK_ORDER) != 0)
856 {
857 unsigned int elfsec = this_hdr->sh_link;
858 /* FIXME: The old Intel compiler and old strip/objcopy may
859 not set the sh_link or sh_info fields. Hence we could
860 get the situation where elfsec is 0. */
861 if (elfsec == 0)
862 {
863 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
864 if (bed->link_order_error_handler)
865 bed->link_order_error_handler
866 /* xgettext:c-format */
867 (_("%pB: warning: sh_link not set for section `%pA'"),
868 abfd, s);
869 }
870 else
871 {
872 asection *linksec = NULL;
873
874 if (elfsec < elf_numsections (abfd))
875 {
876 this_hdr = elf_elfsections (abfd)[elfsec];
877 linksec = this_hdr->bfd_section;
878 }
879
880 /* PR 1991, 2008:
881 Some strip/objcopy may leave an incorrect value in
882 sh_link. We don't want to proceed. */
883 if (linksec == NULL)
884 {
885 _bfd_error_handler
886 /* xgettext:c-format */
887 (_("%pB: sh_link [%d] in section `%pA' is incorrect"),
888 s->owner, elfsec, s);
889 result = FALSE;
890 }
891
892 elf_linked_to_section (s) = linksec;
893 }
894 }
895 else if (this_hdr->sh_type == SHT_GROUP
896 && elf_next_in_group (s) == NULL)
897 {
898 _bfd_error_handler
899 /* xgettext:c-format */
900 (_("%pB: SHT_GROUP section [index %d] has no SHF_GROUP sections"),
901 abfd, elf_section_data (s)->this_idx);
902 result = FALSE;
903 }
904 }
905
906 /* Process section groups. */
907 if (num_group == (unsigned) -1)
908 return result;
909
910 for (i = 0; i < num_group; i++)
911 {
912 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
913 Elf_Internal_Group *idx;
914 unsigned int n_elt;
915
916 /* PR binutils/18758: Beware of corrupt binaries with invalid group data. */
917 if (shdr == NULL || shdr->bfd_section == NULL || shdr->contents == NULL)
918 {
919 _bfd_error_handler
920 /* xgettext:c-format */
921 (_("%pB: section group entry number %u is corrupt"),
922 abfd, i);
923 result = FALSE;
924 continue;
925 }
926
927 idx = (Elf_Internal_Group *) shdr->contents;
928 n_elt = shdr->sh_size / 4;
929
930 while (--n_elt != 0)
931 {
932 ++ idx;
933
934 if (idx->shdr == NULL)
935 continue;
936 else if (idx->shdr->bfd_section)
937 elf_sec_group (idx->shdr->bfd_section) = shdr->bfd_section;
938 else if (idx->shdr->sh_type != SHT_RELA
939 && idx->shdr->sh_type != SHT_REL)
940 {
941 /* There are some unknown sections in the group. */
942 _bfd_error_handler
943 /* xgettext:c-format */
944 (_("%pB: unknown type [%#x] section `%s' in group [%pA]"),
945 abfd,
946 idx->shdr->sh_type,
947 bfd_elf_string_from_elf_section (abfd,
948 (elf_elfheader (abfd)
949 ->e_shstrndx),
950 idx->shdr->sh_name),
951 shdr->bfd_section);
952 result = FALSE;
953 }
954 }
955 }
956
957 return result;
958 }
959
960 bfd_boolean
961 bfd_elf_is_group_section (bfd *abfd ATTRIBUTE_UNUSED, const asection *sec)
962 {
963 return elf_next_in_group (sec) != NULL;
964 }
965
966 static char *
967 convert_debug_to_zdebug (bfd *abfd, const char *name)
968 {
969 unsigned int len = strlen (name);
970 char *new_name = bfd_alloc (abfd, len + 2);
971 if (new_name == NULL)
972 return NULL;
973 new_name[0] = '.';
974 new_name[1] = 'z';
975 memcpy (new_name + 2, name + 1, len);
976 return new_name;
977 }
978
979 static char *
980 convert_zdebug_to_debug (bfd *abfd, const char *name)
981 {
982 unsigned int len = strlen (name);
983 char *new_name = bfd_alloc (abfd, len);
984 if (new_name == NULL)
985 return NULL;
986 new_name[0] = '.';
987 memcpy (new_name + 1, name + 2, len - 1);
988 return new_name;
989 }
990
991 /* Make a BFD section from an ELF section. We store a pointer to the
992 BFD section in the bfd_section field of the header. */
993
994 bfd_boolean
995 _bfd_elf_make_section_from_shdr (bfd *abfd,
996 Elf_Internal_Shdr *hdr,
997 const char *name,
998 int shindex)
999 {
1000 asection *newsect;
1001 flagword flags;
1002 const struct elf_backend_data *bed;
1003
1004 if (hdr->bfd_section != NULL)
1005 return TRUE;
1006
1007 newsect = bfd_make_section_anyway (abfd, name);
1008 if (newsect == NULL)
1009 return FALSE;
1010
1011 hdr->bfd_section = newsect;
1012 elf_section_data (newsect)->this_hdr = *hdr;
1013 elf_section_data (newsect)->this_idx = shindex;
1014
1015 /* Always use the real type/flags. */
1016 elf_section_type (newsect) = hdr->sh_type;
1017 elf_section_flags (newsect) = hdr->sh_flags;
1018
1019 newsect->filepos = hdr->sh_offset;
1020
1021 if (! bfd_set_section_vma (abfd, newsect, hdr->sh_addr)
1022 || ! bfd_set_section_size (abfd, newsect, hdr->sh_size)
1023 || ! bfd_set_section_alignment (abfd, newsect,
1024 bfd_log2 (hdr->sh_addralign)))
1025 return FALSE;
1026
1027 flags = SEC_NO_FLAGS;
1028 if (hdr->sh_type != SHT_NOBITS)
1029 flags |= SEC_HAS_CONTENTS;
1030 if (hdr->sh_type == SHT_GROUP)
1031 flags |= SEC_GROUP;
1032 if ((hdr->sh_flags & SHF_ALLOC) != 0)
1033 {
1034 flags |= SEC_ALLOC;
1035 if (hdr->sh_type != SHT_NOBITS)
1036 flags |= SEC_LOAD;
1037 }
1038 if ((hdr->sh_flags & SHF_WRITE) == 0)
1039 flags |= SEC_READONLY;
1040 if ((hdr->sh_flags & SHF_EXECINSTR) != 0)
1041 flags |= SEC_CODE;
1042 else if ((flags & SEC_LOAD) != 0)
1043 flags |= SEC_DATA;
1044 if ((hdr->sh_flags & SHF_MERGE) != 0)
1045 {
1046 flags |= SEC_MERGE;
1047 newsect->entsize = hdr->sh_entsize;
1048 }
1049 if ((hdr->sh_flags & SHF_STRINGS) != 0)
1050 flags |= SEC_STRINGS;
1051 if (hdr->sh_flags & SHF_GROUP)
1052 if (!setup_group (abfd, hdr, newsect))
1053 return FALSE;
1054 if ((hdr->sh_flags & SHF_TLS) != 0)
1055 flags |= SEC_THREAD_LOCAL;
1056 if ((hdr->sh_flags & SHF_EXCLUDE) != 0)
1057 flags |= SEC_EXCLUDE;
1058
1059 if ((flags & SEC_ALLOC) == 0)
1060 {
1061 /* The debugging sections appear to be recognized only by name,
1062 not any sort of flag. Their SEC_ALLOC bits are cleared. */
1063 if (name [0] == '.')
1064 {
1065 const char *p;
1066 int n;
1067 if (name[1] == 'd')
1068 p = ".debug", n = 6;
1069 else if (name[1] == 'g' && name[2] == 'n')
1070 p = ".gnu.linkonce.wi.", n = 17;
1071 else if (name[1] == 'g' && name[2] == 'd')
1072 p = ".gdb_index", n = 11; /* yes we really do mean 11. */
1073 else if (name[1] == 'l')
1074 p = ".line", n = 5;
1075 else if (name[1] == 's')
1076 p = ".stab", n = 5;
1077 else if (name[1] == 'z')
1078 p = ".zdebug", n = 7;
1079 else
1080 p = NULL, n = 0;
1081 if (p != NULL && strncmp (name, p, n) == 0)
1082 flags |= SEC_DEBUGGING;
1083 }
1084 }
1085
1086 /* As a GNU extension, if the name begins with .gnu.linkonce, we
1087 only link a single copy of the section. This is used to support
1088 g++. g++ will emit each template expansion in its own section.
1089 The symbols will be defined as weak, so that multiple definitions
1090 are permitted. The GNU linker extension is to actually discard
1091 all but one of the sections. */
1092 if (CONST_STRNEQ (name, ".gnu.linkonce")
1093 && elf_next_in_group (newsect) == NULL)
1094 flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
1095
1096 bed = get_elf_backend_data (abfd);
1097 if (bed->elf_backend_section_flags)
1098 if (! bed->elf_backend_section_flags (&flags, hdr))
1099 return FALSE;
1100
1101 if (! bfd_set_section_flags (abfd, newsect, flags))
1102 return FALSE;
1103
1104 /* We do not parse the PT_NOTE segments as we are interested even in the
1105 separate debug info files which may have the segments offsets corrupted.
1106 PT_NOTEs from the core files are currently not parsed using BFD. */
1107 if (hdr->sh_type == SHT_NOTE)
1108 {
1109 bfd_byte *contents;
1110
1111 if (!bfd_malloc_and_get_section (abfd, newsect, &contents))
1112 return FALSE;
1113
1114 elf_parse_notes (abfd, (char *) contents, hdr->sh_size,
1115 hdr->sh_offset, hdr->sh_addralign);
1116 free (contents);
1117 }
1118
1119 if ((flags & SEC_ALLOC) != 0)
1120 {
1121 Elf_Internal_Phdr *phdr;
1122 unsigned int i, nload;
1123
1124 /* Some ELF linkers produce binaries with all the program header
1125 p_paddr fields zero. If we have such a binary with more than
1126 one PT_LOAD header, then leave the section lma equal to vma
1127 so that we don't create sections with overlapping lma. */
1128 phdr = elf_tdata (abfd)->phdr;
1129 for (nload = 0, i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
1130 if (phdr->p_paddr != 0)
1131 break;
1132 else if (phdr->p_type == PT_LOAD && phdr->p_memsz != 0)
1133 ++nload;
1134 if (i >= elf_elfheader (abfd)->e_phnum && nload > 1)
1135 return TRUE;
1136
1137 phdr = elf_tdata (abfd)->phdr;
1138 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
1139 {
1140 if (((phdr->p_type == PT_LOAD
1141 && (hdr->sh_flags & SHF_TLS) == 0)
1142 || phdr->p_type == PT_TLS)
1143 && ELF_SECTION_IN_SEGMENT (hdr, phdr))
1144 {
1145 if ((flags & SEC_LOAD) == 0)
1146 newsect->lma = (phdr->p_paddr
1147 + hdr->sh_addr - phdr->p_vaddr);
1148 else
1149 /* We used to use the same adjustment for SEC_LOAD
1150 sections, but that doesn't work if the segment
1151 is packed with code from multiple VMAs.
1152 Instead we calculate the section LMA based on
1153 the segment LMA. It is assumed that the
1154 segment will contain sections with contiguous
1155 LMAs, even if the VMAs are not. */
1156 newsect->lma = (phdr->p_paddr
1157 + hdr->sh_offset - phdr->p_offset);
1158
1159 /* With contiguous segments, we can't tell from file
1160 offsets whether a section with zero size should
1161 be placed at the end of one segment or the
1162 beginning of the next. Decide based on vaddr. */
1163 if (hdr->sh_addr >= phdr->p_vaddr
1164 && (hdr->sh_addr + hdr->sh_size
1165 <= phdr->p_vaddr + phdr->p_memsz))
1166 break;
1167 }
1168 }
1169 }
1170
1171 /* Compress/decompress DWARF debug sections with names: .debug_* and
1172 .zdebug_*, after the section flags is set. */
1173 if ((flags & SEC_DEBUGGING)
1174 && ((name[1] == 'd' && name[6] == '_')
1175 || (name[1] == 'z' && name[7] == '_')))
1176 {
1177 enum { nothing, compress, decompress } action = nothing;
1178 int compression_header_size;
1179 bfd_size_type uncompressed_size;
1180 unsigned int uncompressed_align_power;
1181 bfd_boolean compressed
1182 = bfd_is_section_compressed_with_header (abfd, newsect,
1183 &compression_header_size,
1184 &uncompressed_size,
1185 &uncompressed_align_power);
1186 if (compressed)
1187 {
1188 /* Compressed section. Check if we should decompress. */
1189 if ((abfd->flags & BFD_DECOMPRESS))
1190 action = decompress;
1191 }
1192
1193 /* Compress the uncompressed section or convert from/to .zdebug*
1194 section. Check if we should compress. */
1195 if (action == nothing)
1196 {
1197 if (newsect->size != 0
1198 && (abfd->flags & BFD_COMPRESS)
1199 && compression_header_size >= 0
1200 && uncompressed_size > 0
1201 && (!compressed
1202 || ((compression_header_size > 0)
1203 != ((abfd->flags & BFD_COMPRESS_GABI) != 0))))
1204 action = compress;
1205 else
1206 return TRUE;
1207 }
1208
1209 if (action == compress)
1210 {
1211 if (!bfd_init_section_compress_status (abfd, newsect))
1212 {
1213 _bfd_error_handler
1214 /* xgettext:c-format */
1215 (_("%pB: unable to initialize compress status for section %s"),
1216 abfd, name);
1217 return FALSE;
1218 }
1219 }
1220 else
1221 {
1222 if (!bfd_init_section_decompress_status (abfd, newsect))
1223 {
1224 _bfd_error_handler
1225 /* xgettext:c-format */
1226 (_("%pB: unable to initialize decompress status for section %s"),
1227 abfd, name);
1228 return FALSE;
1229 }
1230 }
1231
1232 if (abfd->is_linker_input)
1233 {
1234 if (name[1] == 'z'
1235 && (action == decompress
1236 || (action == compress
1237 && (abfd->flags & BFD_COMPRESS_GABI) != 0)))
1238 {
1239 /* Convert section name from .zdebug_* to .debug_* so
1240 that linker will consider this section as a debug
1241 section. */
1242 char *new_name = convert_zdebug_to_debug (abfd, name);
1243 if (new_name == NULL)
1244 return FALSE;
1245 bfd_rename_section (abfd, newsect, new_name);
1246 }
1247 }
1248 else
1249 /* For objdump, don't rename the section. For objcopy, delay
1250 section rename to elf_fake_sections. */
1251 newsect->flags |= SEC_ELF_RENAME;
1252 }
1253
1254 return TRUE;
1255 }
1256
1257 const char *const bfd_elf_section_type_names[] =
1258 {
1259 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
1260 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
1261 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
1262 };
1263
1264 /* ELF relocs are against symbols. If we are producing relocatable
1265 output, and the reloc is against an external symbol, and nothing
1266 has given us any additional addend, the resulting reloc will also
1267 be against the same symbol. In such a case, we don't want to
1268 change anything about the way the reloc is handled, since it will
1269 all be done at final link time. Rather than put special case code
1270 into bfd_perform_relocation, all the reloc types use this howto
1271 function. It just short circuits the reloc if producing
1272 relocatable output against an external symbol. */
1273
1274 bfd_reloc_status_type
1275 bfd_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED,
1276 arelent *reloc_entry,
1277 asymbol *symbol,
1278 void *data ATTRIBUTE_UNUSED,
1279 asection *input_section,
1280 bfd *output_bfd,
1281 char **error_message ATTRIBUTE_UNUSED)
1282 {
1283 if (output_bfd != NULL
1284 && (symbol->flags & BSF_SECTION_SYM) == 0
1285 && (! reloc_entry->howto->partial_inplace
1286 || reloc_entry->addend == 0))
1287 {
1288 reloc_entry->address += input_section->output_offset;
1289 return bfd_reloc_ok;
1290 }
1291
1292 return bfd_reloc_continue;
1293 }
1294 \f
1295 /* Returns TRUE if section A matches section B.
1296 Names, addresses and links may be different, but everything else
1297 should be the same. */
1298
1299 static bfd_boolean
1300 section_match (const Elf_Internal_Shdr * a,
1301 const Elf_Internal_Shdr * b)
1302 {
1303 if (a->sh_type != b->sh_type
1304 || ((a->sh_flags ^ b->sh_flags) & ~SHF_INFO_LINK) != 0
1305 || a->sh_addralign != b->sh_addralign
1306 || a->sh_entsize != b->sh_entsize)
1307 return FALSE;
1308 if (a->sh_type == SHT_SYMTAB
1309 || a->sh_type == SHT_STRTAB)
1310 return TRUE;
1311 return a->sh_size == b->sh_size;
1312 }
1313
1314 /* Find a section in OBFD that has the same characteristics
1315 as IHEADER. Return the index of this section or SHN_UNDEF if
1316 none can be found. Check's section HINT first, as this is likely
1317 to be the correct section. */
1318
1319 static unsigned int
1320 find_link (const bfd *obfd, const Elf_Internal_Shdr *iheader,
1321 const unsigned int hint)
1322 {
1323 Elf_Internal_Shdr ** oheaders = elf_elfsections (obfd);
1324 unsigned int i;
1325
1326 BFD_ASSERT (iheader != NULL);
1327
1328 /* See PR 20922 for a reproducer of the NULL test. */
1329 if (hint < elf_numsections (obfd)
1330 && oheaders[hint] != NULL
1331 && section_match (oheaders[hint], iheader))
1332 return hint;
1333
1334 for (i = 1; i < elf_numsections (obfd); i++)
1335 {
1336 Elf_Internal_Shdr * oheader = oheaders[i];
1337
1338 if (oheader == NULL)
1339 continue;
1340 if (section_match (oheader, iheader))
1341 /* FIXME: Do we care if there is a potential for
1342 multiple matches ? */
1343 return i;
1344 }
1345
1346 return SHN_UNDEF;
1347 }
1348
1349 /* PR 19938: Attempt to set the ELF section header fields of an OS or
1350 Processor specific section, based upon a matching input section.
1351 Returns TRUE upon success, FALSE otherwise. */
1352
1353 static bfd_boolean
1354 copy_special_section_fields (const bfd *ibfd,
1355 bfd *obfd,
1356 const Elf_Internal_Shdr *iheader,
1357 Elf_Internal_Shdr *oheader,
1358 const unsigned int secnum)
1359 {
1360 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
1361 const Elf_Internal_Shdr **iheaders = (const Elf_Internal_Shdr **) elf_elfsections (ibfd);
1362 bfd_boolean changed = FALSE;
1363 unsigned int sh_link;
1364
1365 if (oheader->sh_type == SHT_NOBITS)
1366 {
1367 /* This is a feature for objcopy --only-keep-debug:
1368 When a section's type is changed to NOBITS, we preserve
1369 the sh_link and sh_info fields so that they can be
1370 matched up with the original.
1371
1372 Note: Strictly speaking these assignments are wrong.
1373 The sh_link and sh_info fields should point to the
1374 relevent sections in the output BFD, which may not be in
1375 the same location as they were in the input BFD. But
1376 the whole point of this action is to preserve the
1377 original values of the sh_link and sh_info fields, so
1378 that they can be matched up with the section headers in
1379 the original file. So strictly speaking we may be
1380 creating an invalid ELF file, but it is only for a file
1381 that just contains debug info and only for sections
1382 without any contents. */
1383 if (oheader->sh_link == 0)
1384 oheader->sh_link = iheader->sh_link;
1385 if (oheader->sh_info == 0)
1386 oheader->sh_info = iheader->sh_info;
1387 return TRUE;
1388 }
1389
1390 /* Allow the target a chance to decide how these fields should be set. */
1391 if (bed->elf_backend_copy_special_section_fields != NULL
1392 && bed->elf_backend_copy_special_section_fields
1393 (ibfd, obfd, iheader, oheader))
1394 return TRUE;
1395
1396 /* We have an iheader which might match oheader, and which has non-zero
1397 sh_info and/or sh_link fields. Attempt to follow those links and find
1398 the section in the output bfd which corresponds to the linked section
1399 in the input bfd. */
1400 if (iheader->sh_link != SHN_UNDEF)
1401 {
1402 /* See PR 20931 for a reproducer. */
1403 if (iheader->sh_link >= elf_numsections (ibfd))
1404 {
1405 _bfd_error_handler
1406 /* xgettext:c-format */
1407 (_("%pB: invalid sh_link field (%d) in section number %d"),
1408 ibfd, iheader->sh_link, secnum);
1409 return FALSE;
1410 }
1411
1412 sh_link = find_link (obfd, iheaders[iheader->sh_link], iheader->sh_link);
1413 if (sh_link != SHN_UNDEF)
1414 {
1415 oheader->sh_link = sh_link;
1416 changed = TRUE;
1417 }
1418 else
1419 /* FIXME: Should we install iheader->sh_link
1420 if we could not find a match ? */
1421 _bfd_error_handler
1422 /* xgettext:c-format */
1423 (_("%pB: failed to find link section for section %d"), obfd, secnum);
1424 }
1425
1426 if (iheader->sh_info)
1427 {
1428 /* The sh_info field can hold arbitrary information, but if the
1429 SHF_LINK_INFO flag is set then it should be interpreted as a
1430 section index. */
1431 if (iheader->sh_flags & SHF_INFO_LINK)
1432 {
1433 sh_link = find_link (obfd, iheaders[iheader->sh_info],
1434 iheader->sh_info);
1435 if (sh_link != SHN_UNDEF)
1436 oheader->sh_flags |= SHF_INFO_LINK;
1437 }
1438 else
1439 /* No idea what it means - just copy it. */
1440 sh_link = iheader->sh_info;
1441
1442 if (sh_link != SHN_UNDEF)
1443 {
1444 oheader->sh_info = sh_link;
1445 changed = TRUE;
1446 }
1447 else
1448 _bfd_error_handler
1449 /* xgettext:c-format */
1450 (_("%pB: failed to find info section for section %d"), obfd, secnum);
1451 }
1452
1453 return changed;
1454 }
1455
1456 /* Copy the program header and other data from one object module to
1457 another. */
1458
1459 bfd_boolean
1460 _bfd_elf_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
1461 {
1462 const Elf_Internal_Shdr **iheaders = (const Elf_Internal_Shdr **) elf_elfsections (ibfd);
1463 Elf_Internal_Shdr **oheaders = elf_elfsections (obfd);
1464 const struct elf_backend_data *bed;
1465 unsigned int i;
1466
1467 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
1468 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
1469 return TRUE;
1470
1471 if (!elf_flags_init (obfd))
1472 {
1473 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
1474 elf_flags_init (obfd) = TRUE;
1475 }
1476
1477 elf_gp (obfd) = elf_gp (ibfd);
1478
1479 /* Also copy the EI_OSABI field. */
1480 elf_elfheader (obfd)->e_ident[EI_OSABI] =
1481 elf_elfheader (ibfd)->e_ident[EI_OSABI];
1482
1483 /* If set, copy the EI_ABIVERSION field. */
1484 if (elf_elfheader (ibfd)->e_ident[EI_ABIVERSION])
1485 elf_elfheader (obfd)->e_ident[EI_ABIVERSION]
1486 = elf_elfheader (ibfd)->e_ident[EI_ABIVERSION];
1487
1488 /* Copy object attributes. */
1489 _bfd_elf_copy_obj_attributes (ibfd, obfd);
1490
1491 if (iheaders == NULL || oheaders == NULL)
1492 return TRUE;
1493
1494 bed = get_elf_backend_data (obfd);
1495
1496 /* Possibly copy other fields in the section header. */
1497 for (i = 1; i < elf_numsections (obfd); i++)
1498 {
1499 unsigned int j;
1500 Elf_Internal_Shdr * oheader = oheaders[i];
1501
1502 /* Ignore ordinary sections. SHT_NOBITS sections are considered however
1503 because of a special case need for generating separate debug info
1504 files. See below for more details. */
1505 if (oheader == NULL
1506 || (oheader->sh_type != SHT_NOBITS
1507 && oheader->sh_type < SHT_LOOS))
1508 continue;
1509
1510 /* Ignore empty sections, and sections whose
1511 fields have already been initialised. */
1512 if (oheader->sh_size == 0
1513 || (oheader->sh_info != 0 && oheader->sh_link != 0))
1514 continue;
1515
1516 /* Scan for the matching section in the input bfd.
1517 First we try for a direct mapping between the input and output sections. */
1518 for (j = 1; j < elf_numsections (ibfd); j++)
1519 {
1520 const Elf_Internal_Shdr * iheader = iheaders[j];
1521
1522 if (iheader == NULL)
1523 continue;
1524
1525 if (oheader->bfd_section != NULL
1526 && iheader->bfd_section != NULL
1527 && iheader->bfd_section->output_section != NULL
1528 && iheader->bfd_section->output_section == oheader->bfd_section)
1529 {
1530 /* We have found a connection from the input section to the
1531 output section. Attempt to copy the header fields. If
1532 this fails then do not try any further sections - there
1533 should only be a one-to-one mapping between input and output. */
1534 if (! copy_special_section_fields (ibfd, obfd, iheader, oheader, i))
1535 j = elf_numsections (ibfd);
1536 break;
1537 }
1538 }
1539
1540 if (j < elf_numsections (ibfd))
1541 continue;
1542
1543 /* That failed. So try to deduce the corresponding input section.
1544 Unfortunately we cannot compare names as the output string table
1545 is empty, so instead we check size, address and type. */
1546 for (j = 1; j < elf_numsections (ibfd); j++)
1547 {
1548 const Elf_Internal_Shdr * iheader = iheaders[j];
1549
1550 if (iheader == NULL)
1551 continue;
1552
1553 /* Try matching fields in the input section's header.
1554 Since --only-keep-debug turns all non-debug sections into
1555 SHT_NOBITS sections, the output SHT_NOBITS type matches any
1556 input type. */
1557 if ((oheader->sh_type == SHT_NOBITS
1558 || iheader->sh_type == oheader->sh_type)
1559 && (iheader->sh_flags & ~ SHF_INFO_LINK)
1560 == (oheader->sh_flags & ~ SHF_INFO_LINK)
1561 && iheader->sh_addralign == oheader->sh_addralign
1562 && iheader->sh_entsize == oheader->sh_entsize
1563 && iheader->sh_size == oheader->sh_size
1564 && iheader->sh_addr == oheader->sh_addr
1565 && (iheader->sh_info != oheader->sh_info
1566 || iheader->sh_link != oheader->sh_link))
1567 {
1568 if (copy_special_section_fields (ibfd, obfd, iheader, oheader, i))
1569 break;
1570 }
1571 }
1572
1573 if (j == elf_numsections (ibfd) && oheader->sh_type >= SHT_LOOS)
1574 {
1575 /* Final attempt. Call the backend copy function
1576 with a NULL input section. */
1577 if (bed->elf_backend_copy_special_section_fields != NULL)
1578 bed->elf_backend_copy_special_section_fields (ibfd, obfd, NULL, oheader);
1579 }
1580 }
1581
1582 return TRUE;
1583 }
1584
1585 static const char *
1586 get_segment_type (unsigned int p_type)
1587 {
1588 const char *pt;
1589 switch (p_type)
1590 {
1591 case PT_NULL: pt = "NULL"; break;
1592 case PT_LOAD: pt = "LOAD"; break;
1593 case PT_DYNAMIC: pt = "DYNAMIC"; break;
1594 case PT_INTERP: pt = "INTERP"; break;
1595 case PT_NOTE: pt = "NOTE"; break;
1596 case PT_SHLIB: pt = "SHLIB"; break;
1597 case PT_PHDR: pt = "PHDR"; break;
1598 case PT_TLS: pt = "TLS"; break;
1599 case PT_GNU_EH_FRAME: pt = "EH_FRAME"; break;
1600 case PT_GNU_STACK: pt = "STACK"; break;
1601 case PT_GNU_RELRO: pt = "RELRO"; break;
1602 default: pt = NULL; break;
1603 }
1604 return pt;
1605 }
1606
1607 /* Print out the program headers. */
1608
1609 bfd_boolean
1610 _bfd_elf_print_private_bfd_data (bfd *abfd, void *farg)
1611 {
1612 FILE *f = (FILE *) farg;
1613 Elf_Internal_Phdr *p;
1614 asection *s;
1615 bfd_byte *dynbuf = NULL;
1616
1617 p = elf_tdata (abfd)->phdr;
1618 if (p != NULL)
1619 {
1620 unsigned int i, c;
1621
1622 fprintf (f, _("\nProgram Header:\n"));
1623 c = elf_elfheader (abfd)->e_phnum;
1624 for (i = 0; i < c; i++, p++)
1625 {
1626 const char *pt = get_segment_type (p->p_type);
1627 char buf[20];
1628
1629 if (pt == NULL)
1630 {
1631 sprintf (buf, "0x%lx", p->p_type);
1632 pt = buf;
1633 }
1634 fprintf (f, "%8s off 0x", pt);
1635 bfd_fprintf_vma (abfd, f, p->p_offset);
1636 fprintf (f, " vaddr 0x");
1637 bfd_fprintf_vma (abfd, f, p->p_vaddr);
1638 fprintf (f, " paddr 0x");
1639 bfd_fprintf_vma (abfd, f, p->p_paddr);
1640 fprintf (f, " align 2**%u\n", bfd_log2 (p->p_align));
1641 fprintf (f, " filesz 0x");
1642 bfd_fprintf_vma (abfd, f, p->p_filesz);
1643 fprintf (f, " memsz 0x");
1644 bfd_fprintf_vma (abfd, f, p->p_memsz);
1645 fprintf (f, " flags %c%c%c",
1646 (p->p_flags & PF_R) != 0 ? 'r' : '-',
1647 (p->p_flags & PF_W) != 0 ? 'w' : '-',
1648 (p->p_flags & PF_X) != 0 ? 'x' : '-');
1649 if ((p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X)) != 0)
1650 fprintf (f, " %lx", p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X));
1651 fprintf (f, "\n");
1652 }
1653 }
1654
1655 s = bfd_get_section_by_name (abfd, ".dynamic");
1656 if (s != NULL)
1657 {
1658 unsigned int elfsec;
1659 unsigned long shlink;
1660 bfd_byte *extdyn, *extdynend;
1661 size_t extdynsize;
1662 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1663
1664 fprintf (f, _("\nDynamic Section:\n"));
1665
1666 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
1667 goto error_return;
1668
1669 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1670 if (elfsec == SHN_BAD)
1671 goto error_return;
1672 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1673
1674 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1675 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1676
1677 extdyn = dynbuf;
1678 /* PR 17512: file: 6f427532. */
1679 if (s->size < extdynsize)
1680 goto error_return;
1681 extdynend = extdyn + s->size;
1682 /* PR 17512: file: id:000006,sig:06,src:000000,op:flip4,pos:5664.
1683 Fix range check. */
1684 for (; extdyn <= (extdynend - extdynsize); extdyn += extdynsize)
1685 {
1686 Elf_Internal_Dyn dyn;
1687 const char *name = "";
1688 char ab[20];
1689 bfd_boolean stringp;
1690 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1691
1692 (*swap_dyn_in) (abfd, extdyn, &dyn);
1693
1694 if (dyn.d_tag == DT_NULL)
1695 break;
1696
1697 stringp = FALSE;
1698 switch (dyn.d_tag)
1699 {
1700 default:
1701 if (bed->elf_backend_get_target_dtag)
1702 name = (*bed->elf_backend_get_target_dtag) (dyn.d_tag);
1703
1704 if (!strcmp (name, ""))
1705 {
1706 sprintf (ab, "%#" BFD_VMA_FMT "x", dyn.d_tag);
1707 name = ab;
1708 }
1709 break;
1710
1711 case DT_NEEDED: name = "NEEDED"; stringp = TRUE; break;
1712 case DT_PLTRELSZ: name = "PLTRELSZ"; break;
1713 case DT_PLTGOT: name = "PLTGOT"; break;
1714 case DT_HASH: name = "HASH"; break;
1715 case DT_STRTAB: name = "STRTAB"; break;
1716 case DT_SYMTAB: name = "SYMTAB"; break;
1717 case DT_RELA: name = "RELA"; break;
1718 case DT_RELASZ: name = "RELASZ"; break;
1719 case DT_RELAENT: name = "RELAENT"; break;
1720 case DT_STRSZ: name = "STRSZ"; break;
1721 case DT_SYMENT: name = "SYMENT"; break;
1722 case DT_INIT: name = "INIT"; break;
1723 case DT_FINI: name = "FINI"; break;
1724 case DT_SONAME: name = "SONAME"; stringp = TRUE; break;
1725 case DT_RPATH: name = "RPATH"; stringp = TRUE; break;
1726 case DT_SYMBOLIC: name = "SYMBOLIC"; break;
1727 case DT_REL: name = "REL"; break;
1728 case DT_RELSZ: name = "RELSZ"; break;
1729 case DT_RELENT: name = "RELENT"; break;
1730 case DT_PLTREL: name = "PLTREL"; break;
1731 case DT_DEBUG: name = "DEBUG"; break;
1732 case DT_TEXTREL: name = "TEXTREL"; break;
1733 case DT_JMPREL: name = "JMPREL"; break;
1734 case DT_BIND_NOW: name = "BIND_NOW"; break;
1735 case DT_INIT_ARRAY: name = "INIT_ARRAY"; break;
1736 case DT_FINI_ARRAY: name = "FINI_ARRAY"; break;
1737 case DT_INIT_ARRAYSZ: name = "INIT_ARRAYSZ"; break;
1738 case DT_FINI_ARRAYSZ: name = "FINI_ARRAYSZ"; break;
1739 case DT_RUNPATH: name = "RUNPATH"; stringp = TRUE; break;
1740 case DT_FLAGS: name = "FLAGS"; break;
1741 case DT_PREINIT_ARRAY: name = "PREINIT_ARRAY"; break;
1742 case DT_PREINIT_ARRAYSZ: name = "PREINIT_ARRAYSZ"; break;
1743 case DT_CHECKSUM: name = "CHECKSUM"; break;
1744 case DT_PLTPADSZ: name = "PLTPADSZ"; break;
1745 case DT_MOVEENT: name = "MOVEENT"; break;
1746 case DT_MOVESZ: name = "MOVESZ"; break;
1747 case DT_FEATURE: name = "FEATURE"; break;
1748 case DT_POSFLAG_1: name = "POSFLAG_1"; break;
1749 case DT_SYMINSZ: name = "SYMINSZ"; break;
1750 case DT_SYMINENT: name = "SYMINENT"; break;
1751 case DT_CONFIG: name = "CONFIG"; stringp = TRUE; break;
1752 case DT_DEPAUDIT: name = "DEPAUDIT"; stringp = TRUE; break;
1753 case DT_AUDIT: name = "AUDIT"; stringp = TRUE; break;
1754 case DT_PLTPAD: name = "PLTPAD"; break;
1755 case DT_MOVETAB: name = "MOVETAB"; break;
1756 case DT_SYMINFO: name = "SYMINFO"; break;
1757 case DT_RELACOUNT: name = "RELACOUNT"; break;
1758 case DT_RELCOUNT: name = "RELCOUNT"; break;
1759 case DT_FLAGS_1: name = "FLAGS_1"; break;
1760 case DT_VERSYM: name = "VERSYM"; break;
1761 case DT_VERDEF: name = "VERDEF"; break;
1762 case DT_VERDEFNUM: name = "VERDEFNUM"; break;
1763 case DT_VERNEED: name = "VERNEED"; break;
1764 case DT_VERNEEDNUM: name = "VERNEEDNUM"; break;
1765 case DT_AUXILIARY: name = "AUXILIARY"; stringp = TRUE; break;
1766 case DT_USED: name = "USED"; break;
1767 case DT_FILTER: name = "FILTER"; stringp = TRUE; break;
1768 case DT_GNU_HASH: name = "GNU_HASH"; break;
1769 }
1770
1771 fprintf (f, " %-20s ", name);
1772 if (! stringp)
1773 {
1774 fprintf (f, "0x");
1775 bfd_fprintf_vma (abfd, f, dyn.d_un.d_val);
1776 }
1777 else
1778 {
1779 const char *string;
1780 unsigned int tagv = dyn.d_un.d_val;
1781
1782 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1783 if (string == NULL)
1784 goto error_return;
1785 fprintf (f, "%s", string);
1786 }
1787 fprintf (f, "\n");
1788 }
1789
1790 free (dynbuf);
1791 dynbuf = NULL;
1792 }
1793
1794 if ((elf_dynverdef (abfd) != 0 && elf_tdata (abfd)->verdef == NULL)
1795 || (elf_dynverref (abfd) != 0 && elf_tdata (abfd)->verref == NULL))
1796 {
1797 if (! _bfd_elf_slurp_version_tables (abfd, FALSE))
1798 return FALSE;
1799 }
1800
1801 if (elf_dynverdef (abfd) != 0)
1802 {
1803 Elf_Internal_Verdef *t;
1804
1805 fprintf (f, _("\nVersion definitions:\n"));
1806 for (t = elf_tdata (abfd)->verdef; t != NULL; t = t->vd_nextdef)
1807 {
1808 fprintf (f, "%d 0x%2.2x 0x%8.8lx %s\n", t->vd_ndx,
1809 t->vd_flags, t->vd_hash,
1810 t->vd_nodename ? t->vd_nodename : "<corrupt>");
1811 if (t->vd_auxptr != NULL && t->vd_auxptr->vda_nextptr != NULL)
1812 {
1813 Elf_Internal_Verdaux *a;
1814
1815 fprintf (f, "\t");
1816 for (a = t->vd_auxptr->vda_nextptr;
1817 a != NULL;
1818 a = a->vda_nextptr)
1819 fprintf (f, "%s ",
1820 a->vda_nodename ? a->vda_nodename : "<corrupt>");
1821 fprintf (f, "\n");
1822 }
1823 }
1824 }
1825
1826 if (elf_dynverref (abfd) != 0)
1827 {
1828 Elf_Internal_Verneed *t;
1829
1830 fprintf (f, _("\nVersion References:\n"));
1831 for (t = elf_tdata (abfd)->verref; t != NULL; t = t->vn_nextref)
1832 {
1833 Elf_Internal_Vernaux *a;
1834
1835 fprintf (f, _(" required from %s:\n"),
1836 t->vn_filename ? t->vn_filename : "<corrupt>");
1837 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1838 fprintf (f, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a->vna_hash,
1839 a->vna_flags, a->vna_other,
1840 a->vna_nodename ? a->vna_nodename : "<corrupt>");
1841 }
1842 }
1843
1844 return TRUE;
1845
1846 error_return:
1847 if (dynbuf != NULL)
1848 free (dynbuf);
1849 return FALSE;
1850 }
1851
1852 /* Get version string. */
1853
1854 const char *
1855 _bfd_elf_get_symbol_version_string (bfd *abfd, asymbol *symbol,
1856 bfd_boolean *hidden)
1857 {
1858 const char *version_string = NULL;
1859 if (elf_dynversym (abfd) != 0
1860 && (elf_dynverdef (abfd) != 0 || elf_dynverref (abfd) != 0))
1861 {
1862 unsigned int vernum = ((elf_symbol_type *) symbol)->version;
1863
1864 *hidden = (vernum & VERSYM_HIDDEN) != 0;
1865 vernum &= VERSYM_VERSION;
1866
1867 if (vernum == 0)
1868 version_string = "";
1869 else if (vernum == 1
1870 && (vernum > elf_tdata (abfd)->cverdefs
1871 || (elf_tdata (abfd)->verdef[0].vd_flags
1872 == VER_FLG_BASE)))
1873 version_string = "Base";
1874 else if (vernum <= elf_tdata (abfd)->cverdefs)
1875 version_string =
1876 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1877 else
1878 {
1879 Elf_Internal_Verneed *t;
1880
1881 version_string = _("<corrupt>");
1882 for (t = elf_tdata (abfd)->verref;
1883 t != NULL;
1884 t = t->vn_nextref)
1885 {
1886 Elf_Internal_Vernaux *a;
1887
1888 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1889 {
1890 if (a->vna_other == vernum)
1891 {
1892 version_string = a->vna_nodename;
1893 break;
1894 }
1895 }
1896 }
1897 }
1898 }
1899 return version_string;
1900 }
1901
1902 /* Display ELF-specific fields of a symbol. */
1903
1904 void
1905 bfd_elf_print_symbol (bfd *abfd,
1906 void *filep,
1907 asymbol *symbol,
1908 bfd_print_symbol_type how)
1909 {
1910 FILE *file = (FILE *) filep;
1911 switch (how)
1912 {
1913 case bfd_print_symbol_name:
1914 fprintf (file, "%s", symbol->name);
1915 break;
1916 case bfd_print_symbol_more:
1917 fprintf (file, "elf ");
1918 bfd_fprintf_vma (abfd, file, symbol->value);
1919 fprintf (file, " %x", symbol->flags);
1920 break;
1921 case bfd_print_symbol_all:
1922 {
1923 const char *section_name;
1924 const char *name = NULL;
1925 const struct elf_backend_data *bed;
1926 unsigned char st_other;
1927 bfd_vma val;
1928 const char *version_string;
1929 bfd_boolean hidden;
1930
1931 section_name = symbol->section ? symbol->section->name : "(*none*)";
1932
1933 bed = get_elf_backend_data (abfd);
1934 if (bed->elf_backend_print_symbol_all)
1935 name = (*bed->elf_backend_print_symbol_all) (abfd, filep, symbol);
1936
1937 if (name == NULL)
1938 {
1939 name = symbol->name;
1940 bfd_print_symbol_vandf (abfd, file, symbol);
1941 }
1942
1943 fprintf (file, " %s\t", section_name);
1944 /* Print the "other" value for a symbol. For common symbols,
1945 we've already printed the size; now print the alignment.
1946 For other symbols, we have no specified alignment, and
1947 we've printed the address; now print the size. */
1948 if (symbol->section && bfd_is_com_section (symbol->section))
1949 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
1950 else
1951 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_size;
1952 bfd_fprintf_vma (abfd, file, val);
1953
1954 /* If we have version information, print it. */
1955 version_string = _bfd_elf_get_symbol_version_string (abfd,
1956 symbol,
1957 &hidden);
1958 if (version_string)
1959 {
1960 if (!hidden)
1961 fprintf (file, " %-11s", version_string);
1962 else
1963 {
1964 int i;
1965
1966 fprintf (file, " (%s)", version_string);
1967 for (i = 10 - strlen (version_string); i > 0; --i)
1968 putc (' ', file);
1969 }
1970 }
1971
1972 /* If the st_other field is not zero, print it. */
1973 st_other = ((elf_symbol_type *) symbol)->internal_elf_sym.st_other;
1974
1975 switch (st_other)
1976 {
1977 case 0: break;
1978 case STV_INTERNAL: fprintf (file, " .internal"); break;
1979 case STV_HIDDEN: fprintf (file, " .hidden"); break;
1980 case STV_PROTECTED: fprintf (file, " .protected"); break;
1981 default:
1982 /* Some other non-defined flags are also present, so print
1983 everything hex. */
1984 fprintf (file, " 0x%02x", (unsigned int) st_other);
1985 }
1986
1987 fprintf (file, " %s", name);
1988 }
1989 break;
1990 }
1991 }
1992 \f
1993 /* ELF .o/exec file reading */
1994
1995 /* Create a new bfd section from an ELF section header. */
1996
1997 bfd_boolean
1998 bfd_section_from_shdr (bfd *abfd, unsigned int shindex)
1999 {
2000 Elf_Internal_Shdr *hdr;
2001 Elf_Internal_Ehdr *ehdr;
2002 const struct elf_backend_data *bed;
2003 const char *name;
2004 bfd_boolean ret = TRUE;
2005 static bfd_boolean * sections_being_created = NULL;
2006 static bfd * sections_being_created_abfd = NULL;
2007 static unsigned int nesting = 0;
2008
2009 if (shindex >= elf_numsections (abfd))
2010 return FALSE;
2011
2012 if (++ nesting > 3)
2013 {
2014 /* PR17512: A corrupt ELF binary might contain a recursive group of
2015 sections, with each the string indices pointing to the next in the
2016 loop. Detect this here, by refusing to load a section that we are
2017 already in the process of loading. We only trigger this test if
2018 we have nested at least three sections deep as normal ELF binaries
2019 can expect to recurse at least once.
2020
2021 FIXME: It would be better if this array was attached to the bfd,
2022 rather than being held in a static pointer. */
2023
2024 if (sections_being_created_abfd != abfd)
2025 sections_being_created = NULL;
2026 if (sections_being_created == NULL)
2027 {
2028 /* FIXME: It would be more efficient to attach this array to the bfd somehow. */
2029 sections_being_created = (bfd_boolean *)
2030 bfd_zalloc (abfd, elf_numsections (abfd) * sizeof (bfd_boolean));
2031 sections_being_created_abfd = abfd;
2032 }
2033 if (sections_being_created [shindex])
2034 {
2035 _bfd_error_handler
2036 (_("%pB: warning: loop in section dependencies detected"), abfd);
2037 return FALSE;
2038 }
2039 sections_being_created [shindex] = TRUE;
2040 }
2041
2042 hdr = elf_elfsections (abfd)[shindex];
2043 ehdr = elf_elfheader (abfd);
2044 name = bfd_elf_string_from_elf_section (abfd, ehdr->e_shstrndx,
2045 hdr->sh_name);
2046 if (name == NULL)
2047 goto fail;
2048
2049 bed = get_elf_backend_data (abfd);
2050 switch (hdr->sh_type)
2051 {
2052 case SHT_NULL:
2053 /* Inactive section. Throw it away. */
2054 goto success;
2055
2056 case SHT_PROGBITS: /* Normal section with contents. */
2057 case SHT_NOBITS: /* .bss section. */
2058 case SHT_HASH: /* .hash section. */
2059 case SHT_NOTE: /* .note section. */
2060 case SHT_INIT_ARRAY: /* .init_array section. */
2061 case SHT_FINI_ARRAY: /* .fini_array section. */
2062 case SHT_PREINIT_ARRAY: /* .preinit_array section. */
2063 case SHT_GNU_LIBLIST: /* .gnu.liblist section. */
2064 case SHT_GNU_HASH: /* .gnu.hash section. */
2065 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2066 goto success;
2067
2068 case SHT_DYNAMIC: /* Dynamic linking information. */
2069 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2070 goto fail;
2071
2072 if (hdr->sh_link > elf_numsections (abfd))
2073 {
2074 /* PR 10478: Accept Solaris binaries with a sh_link
2075 field set to SHN_BEFORE or SHN_AFTER. */
2076 switch (bfd_get_arch (abfd))
2077 {
2078 case bfd_arch_i386:
2079 case bfd_arch_sparc:
2080 if (hdr->sh_link == (SHN_LORESERVE & 0xffff) /* SHN_BEFORE */
2081 || hdr->sh_link == ((SHN_LORESERVE + 1) & 0xffff) /* SHN_AFTER */)
2082 break;
2083 /* Otherwise fall through. */
2084 default:
2085 goto fail;
2086 }
2087 }
2088 else if (elf_elfsections (abfd)[hdr->sh_link] == NULL)
2089 goto fail;
2090 else if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_STRTAB)
2091 {
2092 Elf_Internal_Shdr *dynsymhdr;
2093
2094 /* The shared libraries distributed with hpux11 have a bogus
2095 sh_link field for the ".dynamic" section. Find the
2096 string table for the ".dynsym" section instead. */
2097 if (elf_dynsymtab (abfd) != 0)
2098 {
2099 dynsymhdr = elf_elfsections (abfd)[elf_dynsymtab (abfd)];
2100 hdr->sh_link = dynsymhdr->sh_link;
2101 }
2102 else
2103 {
2104 unsigned int i, num_sec;
2105
2106 num_sec = elf_numsections (abfd);
2107 for (i = 1; i < num_sec; i++)
2108 {
2109 dynsymhdr = elf_elfsections (abfd)[i];
2110 if (dynsymhdr->sh_type == SHT_DYNSYM)
2111 {
2112 hdr->sh_link = dynsymhdr->sh_link;
2113 break;
2114 }
2115 }
2116 }
2117 }
2118 goto success;
2119
2120 case SHT_SYMTAB: /* A symbol table. */
2121 if (elf_onesymtab (abfd) == shindex)
2122 goto success;
2123
2124 if (hdr->sh_entsize != bed->s->sizeof_sym)
2125 goto fail;
2126
2127 if (hdr->sh_info * hdr->sh_entsize > hdr->sh_size)
2128 {
2129 if (hdr->sh_size != 0)
2130 goto fail;
2131 /* Some assemblers erroneously set sh_info to one with a
2132 zero sh_size. ld sees this as a global symbol count
2133 of (unsigned) -1. Fix it here. */
2134 hdr->sh_info = 0;
2135 goto success;
2136 }
2137
2138 /* PR 18854: A binary might contain more than one symbol table.
2139 Unusual, but possible. Warn, but continue. */
2140 if (elf_onesymtab (abfd) != 0)
2141 {
2142 _bfd_error_handler
2143 /* xgettext:c-format */
2144 (_("%pB: warning: multiple symbol tables detected"
2145 " - ignoring the table in section %u"),
2146 abfd, shindex);
2147 goto success;
2148 }
2149 elf_onesymtab (abfd) = shindex;
2150 elf_symtab_hdr (abfd) = *hdr;
2151 elf_elfsections (abfd)[shindex] = hdr = & elf_symtab_hdr (abfd);
2152 abfd->flags |= HAS_SYMS;
2153
2154 /* Sometimes a shared object will map in the symbol table. If
2155 SHF_ALLOC is set, and this is a shared object, then we also
2156 treat this section as a BFD section. We can not base the
2157 decision purely on SHF_ALLOC, because that flag is sometimes
2158 set in a relocatable object file, which would confuse the
2159 linker. */
2160 if ((hdr->sh_flags & SHF_ALLOC) != 0
2161 && (abfd->flags & DYNAMIC) != 0
2162 && ! _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2163 shindex))
2164 goto fail;
2165
2166 /* Go looking for SHT_SYMTAB_SHNDX too, since if there is one we
2167 can't read symbols without that section loaded as well. It
2168 is most likely specified by the next section header. */
2169 {
2170 elf_section_list * entry;
2171 unsigned int i, num_sec;
2172
2173 for (entry = elf_symtab_shndx_list (abfd); entry != NULL; entry = entry->next)
2174 if (entry->hdr.sh_link == shindex)
2175 goto success;
2176
2177 num_sec = elf_numsections (abfd);
2178 for (i = shindex + 1; i < num_sec; i++)
2179 {
2180 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
2181
2182 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
2183 && hdr2->sh_link == shindex)
2184 break;
2185 }
2186
2187 if (i == num_sec)
2188 for (i = 1; i < shindex; i++)
2189 {
2190 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
2191
2192 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
2193 && hdr2->sh_link == shindex)
2194 break;
2195 }
2196
2197 if (i != shindex)
2198 ret = bfd_section_from_shdr (abfd, i);
2199 /* else FIXME: we have failed to find the symbol table - should we issue an error ? */
2200 goto success;
2201 }
2202
2203 case SHT_DYNSYM: /* A dynamic symbol table. */
2204 if (elf_dynsymtab (abfd) == shindex)
2205 goto success;
2206
2207 if (hdr->sh_entsize != bed->s->sizeof_sym)
2208 goto fail;
2209
2210 if (hdr->sh_info * hdr->sh_entsize > hdr->sh_size)
2211 {
2212 if (hdr->sh_size != 0)
2213 goto fail;
2214
2215 /* Some linkers erroneously set sh_info to one with a
2216 zero sh_size. ld sees this as a global symbol count
2217 of (unsigned) -1. Fix it here. */
2218 hdr->sh_info = 0;
2219 goto success;
2220 }
2221
2222 /* PR 18854: A binary might contain more than one dynamic symbol table.
2223 Unusual, but possible. Warn, but continue. */
2224 if (elf_dynsymtab (abfd) != 0)
2225 {
2226 _bfd_error_handler
2227 /* xgettext:c-format */
2228 (_("%pB: warning: multiple dynamic symbol tables detected"
2229 " - ignoring the table in section %u"),
2230 abfd, shindex);
2231 goto success;
2232 }
2233 elf_dynsymtab (abfd) = shindex;
2234 elf_tdata (abfd)->dynsymtab_hdr = *hdr;
2235 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->dynsymtab_hdr;
2236 abfd->flags |= HAS_SYMS;
2237
2238 /* Besides being a symbol table, we also treat this as a regular
2239 section, so that objcopy can handle it. */
2240 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2241 goto success;
2242
2243 case SHT_SYMTAB_SHNDX: /* Symbol section indices when >64k sections. */
2244 {
2245 elf_section_list * entry;
2246
2247 for (entry = elf_symtab_shndx_list (abfd); entry != NULL; entry = entry->next)
2248 if (entry->ndx == shindex)
2249 goto success;
2250
2251 entry = bfd_alloc (abfd, sizeof * entry);
2252 if (entry == NULL)
2253 goto fail;
2254 entry->ndx = shindex;
2255 entry->hdr = * hdr;
2256 entry->next = elf_symtab_shndx_list (abfd);
2257 elf_symtab_shndx_list (abfd) = entry;
2258 elf_elfsections (abfd)[shindex] = & entry->hdr;
2259 goto success;
2260 }
2261
2262 case SHT_STRTAB: /* A string table. */
2263 if (hdr->bfd_section != NULL)
2264 goto success;
2265
2266 if (ehdr->e_shstrndx == shindex)
2267 {
2268 elf_tdata (abfd)->shstrtab_hdr = *hdr;
2269 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->shstrtab_hdr;
2270 goto success;
2271 }
2272
2273 if (elf_elfsections (abfd)[elf_onesymtab (abfd)]->sh_link == shindex)
2274 {
2275 symtab_strtab:
2276 elf_tdata (abfd)->strtab_hdr = *hdr;
2277 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->strtab_hdr;
2278 goto success;
2279 }
2280
2281 if (elf_elfsections (abfd)[elf_dynsymtab (abfd)]->sh_link == shindex)
2282 {
2283 dynsymtab_strtab:
2284 elf_tdata (abfd)->dynstrtab_hdr = *hdr;
2285 hdr = &elf_tdata (abfd)->dynstrtab_hdr;
2286 elf_elfsections (abfd)[shindex] = hdr;
2287 /* We also treat this as a regular section, so that objcopy
2288 can handle it. */
2289 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2290 shindex);
2291 goto success;
2292 }
2293
2294 /* If the string table isn't one of the above, then treat it as a
2295 regular section. We need to scan all the headers to be sure,
2296 just in case this strtab section appeared before the above. */
2297 if (elf_onesymtab (abfd) == 0 || elf_dynsymtab (abfd) == 0)
2298 {
2299 unsigned int i, num_sec;
2300
2301 num_sec = elf_numsections (abfd);
2302 for (i = 1; i < num_sec; i++)
2303 {
2304 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
2305 if (hdr2->sh_link == shindex)
2306 {
2307 /* Prevent endless recursion on broken objects. */
2308 if (i == shindex)
2309 goto fail;
2310 if (! bfd_section_from_shdr (abfd, i))
2311 goto fail;
2312 if (elf_onesymtab (abfd) == i)
2313 goto symtab_strtab;
2314 if (elf_dynsymtab (abfd) == i)
2315 goto dynsymtab_strtab;
2316 }
2317 }
2318 }
2319 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2320 goto success;
2321
2322 case SHT_REL:
2323 case SHT_RELA:
2324 /* *These* do a lot of work -- but build no sections! */
2325 {
2326 asection *target_sect;
2327 Elf_Internal_Shdr *hdr2, **p_hdr;
2328 unsigned int num_sec = elf_numsections (abfd);
2329 struct bfd_elf_section_data *esdt;
2330
2331 if (hdr->sh_entsize
2332 != (bfd_size_type) (hdr->sh_type == SHT_REL
2333 ? bed->s->sizeof_rel : bed->s->sizeof_rela))
2334 goto fail;
2335
2336 /* Check for a bogus link to avoid crashing. */
2337 if (hdr->sh_link >= num_sec)
2338 {
2339 _bfd_error_handler
2340 /* xgettext:c-format */
2341 (_("%pB: invalid link %u for reloc section %s (index %u)"),
2342 abfd, hdr->sh_link, name, shindex);
2343 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2344 shindex);
2345 goto success;
2346 }
2347
2348 /* For some incomprehensible reason Oracle distributes
2349 libraries for Solaris in which some of the objects have
2350 bogus sh_link fields. It would be nice if we could just
2351 reject them, but, unfortunately, some people need to use
2352 them. We scan through the section headers; if we find only
2353 one suitable symbol table, we clobber the sh_link to point
2354 to it. I hope this doesn't break anything.
2355
2356 Don't do it on executable nor shared library. */
2357 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0
2358 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_SYMTAB
2359 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_DYNSYM)
2360 {
2361 unsigned int scan;
2362 int found;
2363
2364 found = 0;
2365 for (scan = 1; scan < num_sec; scan++)
2366 {
2367 if (elf_elfsections (abfd)[scan]->sh_type == SHT_SYMTAB
2368 || elf_elfsections (abfd)[scan]->sh_type == SHT_DYNSYM)
2369 {
2370 if (found != 0)
2371 {
2372 found = 0;
2373 break;
2374 }
2375 found = scan;
2376 }
2377 }
2378 if (found != 0)
2379 hdr->sh_link = found;
2380 }
2381
2382 /* Get the symbol table. */
2383 if ((elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_SYMTAB
2384 || elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_DYNSYM)
2385 && ! bfd_section_from_shdr (abfd, hdr->sh_link))
2386 goto fail;
2387
2388 /* If this is an alloc section in an executable or shared
2389 library, or the reloc section does not use the main symbol
2390 table we don't treat it as a reloc section. BFD can't
2391 adequately represent such a section, so at least for now,
2392 we don't try. We just present it as a normal section. We
2393 also can't use it as a reloc section if it points to the
2394 null section, an invalid section, another reloc section, or
2395 its sh_link points to the null section. */
2396 if (((abfd->flags & (DYNAMIC | EXEC_P)) != 0
2397 && (hdr->sh_flags & SHF_ALLOC) != 0)
2398 || hdr->sh_link == SHN_UNDEF
2399 || hdr->sh_link != elf_onesymtab (abfd)
2400 || hdr->sh_info == SHN_UNDEF
2401 || hdr->sh_info >= num_sec
2402 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_REL
2403 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_RELA)
2404 {
2405 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2406 shindex);
2407 goto success;
2408 }
2409
2410 if (! bfd_section_from_shdr (abfd, hdr->sh_info))
2411 goto fail;
2412
2413 target_sect = bfd_section_from_elf_index (abfd, hdr->sh_info);
2414 if (target_sect == NULL)
2415 goto fail;
2416
2417 esdt = elf_section_data (target_sect);
2418 if (hdr->sh_type == SHT_RELA)
2419 p_hdr = &esdt->rela.hdr;
2420 else
2421 p_hdr = &esdt->rel.hdr;
2422
2423 /* PR 17512: file: 0b4f81b7. */
2424 if (*p_hdr != NULL)
2425 goto fail;
2426 hdr2 = (Elf_Internal_Shdr *) bfd_alloc (abfd, sizeof (*hdr2));
2427 if (hdr2 == NULL)
2428 goto fail;
2429 *hdr2 = *hdr;
2430 *p_hdr = hdr2;
2431 elf_elfsections (abfd)[shindex] = hdr2;
2432 target_sect->reloc_count += (NUM_SHDR_ENTRIES (hdr)
2433 * bed->s->int_rels_per_ext_rel);
2434 target_sect->flags |= SEC_RELOC;
2435 target_sect->relocation = NULL;
2436 target_sect->rel_filepos = hdr->sh_offset;
2437 /* In the section to which the relocations apply, mark whether
2438 its relocations are of the REL or RELA variety. */
2439 if (hdr->sh_size != 0)
2440 {
2441 if (hdr->sh_type == SHT_RELA)
2442 target_sect->use_rela_p = 1;
2443 }
2444 abfd->flags |= HAS_RELOC;
2445 goto success;
2446 }
2447
2448 case SHT_GNU_verdef:
2449 elf_dynverdef (abfd) = shindex;
2450 elf_tdata (abfd)->dynverdef_hdr = *hdr;
2451 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2452 goto success;
2453
2454 case SHT_GNU_versym:
2455 if (hdr->sh_entsize != sizeof (Elf_External_Versym))
2456 goto fail;
2457
2458 elf_dynversym (abfd) = shindex;
2459 elf_tdata (abfd)->dynversym_hdr = *hdr;
2460 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2461 goto success;
2462
2463 case SHT_GNU_verneed:
2464 elf_dynverref (abfd) = shindex;
2465 elf_tdata (abfd)->dynverref_hdr = *hdr;
2466 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2467 goto success;
2468
2469 case SHT_SHLIB:
2470 goto success;
2471
2472 case SHT_GROUP:
2473 if (! IS_VALID_GROUP_SECTION_HEADER (hdr, GRP_ENTRY_SIZE))
2474 goto fail;
2475
2476 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2477 goto fail;
2478
2479 goto success;
2480
2481 default:
2482 /* Possibly an attributes section. */
2483 if (hdr->sh_type == SHT_GNU_ATTRIBUTES
2484 || hdr->sh_type == bed->obj_attrs_section_type)
2485 {
2486 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2487 goto fail;
2488 _bfd_elf_parse_attributes (abfd, hdr);
2489 goto success;
2490 }
2491
2492 /* Check for any processor-specific section types. */
2493 if (bed->elf_backend_section_from_shdr (abfd, hdr, name, shindex))
2494 goto success;
2495
2496 if (hdr->sh_type >= SHT_LOUSER && hdr->sh_type <= SHT_HIUSER)
2497 {
2498 if ((hdr->sh_flags & SHF_ALLOC) != 0)
2499 /* FIXME: How to properly handle allocated section reserved
2500 for applications? */
2501 _bfd_error_handler
2502 /* xgettext:c-format */
2503 (_("%pB: unknown type [%#x] section `%s'"),
2504 abfd, hdr->sh_type, name);
2505 else
2506 {
2507 /* Allow sections reserved for applications. */
2508 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2509 shindex);
2510 goto success;
2511 }
2512 }
2513 else if (hdr->sh_type >= SHT_LOPROC
2514 && hdr->sh_type <= SHT_HIPROC)
2515 /* FIXME: We should handle this section. */
2516 _bfd_error_handler
2517 /* xgettext:c-format */
2518 (_("%pB: unknown type [%#x] section `%s'"),
2519 abfd, hdr->sh_type, name);
2520 else if (hdr->sh_type >= SHT_LOOS && hdr->sh_type <= SHT_HIOS)
2521 {
2522 /* Unrecognised OS-specific sections. */
2523 if ((hdr->sh_flags & SHF_OS_NONCONFORMING) != 0)
2524 /* SHF_OS_NONCONFORMING indicates that special knowledge is
2525 required to correctly process the section and the file should
2526 be rejected with an error message. */
2527 _bfd_error_handler
2528 /* xgettext:c-format */
2529 (_("%pB: unknown type [%#x] section `%s'"),
2530 abfd, hdr->sh_type, name);
2531 else
2532 {
2533 /* Otherwise it should be processed. */
2534 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2535 goto success;
2536 }
2537 }
2538 else
2539 /* FIXME: We should handle this section. */
2540 _bfd_error_handler
2541 /* xgettext:c-format */
2542 (_("%pB: unknown type [%#x] section `%s'"),
2543 abfd, hdr->sh_type, name);
2544
2545 goto fail;
2546 }
2547
2548 fail:
2549 ret = FALSE;
2550 success:
2551 if (sections_being_created && sections_being_created_abfd == abfd)
2552 sections_being_created [shindex] = FALSE;
2553 if (-- nesting == 0)
2554 {
2555 sections_being_created = NULL;
2556 sections_being_created_abfd = abfd;
2557 }
2558 return ret;
2559 }
2560
2561 /* Return the local symbol specified by ABFD, R_SYMNDX. */
2562
2563 Elf_Internal_Sym *
2564 bfd_sym_from_r_symndx (struct sym_cache *cache,
2565 bfd *abfd,
2566 unsigned long r_symndx)
2567 {
2568 unsigned int ent = r_symndx % LOCAL_SYM_CACHE_SIZE;
2569
2570 if (cache->abfd != abfd || cache->indx[ent] != r_symndx)
2571 {
2572 Elf_Internal_Shdr *symtab_hdr;
2573 unsigned char esym[sizeof (Elf64_External_Sym)];
2574 Elf_External_Sym_Shndx eshndx;
2575
2576 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2577 if (bfd_elf_get_elf_syms (abfd, symtab_hdr, 1, r_symndx,
2578 &cache->sym[ent], esym, &eshndx) == NULL)
2579 return NULL;
2580
2581 if (cache->abfd != abfd)
2582 {
2583 memset (cache->indx, -1, sizeof (cache->indx));
2584 cache->abfd = abfd;
2585 }
2586 cache->indx[ent] = r_symndx;
2587 }
2588
2589 return &cache->sym[ent];
2590 }
2591
2592 /* Given an ELF section number, retrieve the corresponding BFD
2593 section. */
2594
2595 asection *
2596 bfd_section_from_elf_index (bfd *abfd, unsigned int sec_index)
2597 {
2598 if (sec_index >= elf_numsections (abfd))
2599 return NULL;
2600 return elf_elfsections (abfd)[sec_index]->bfd_section;
2601 }
2602
2603 static const struct bfd_elf_special_section special_sections_b[] =
2604 {
2605 { STRING_COMMA_LEN (".bss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2606 { NULL, 0, 0, 0, 0 }
2607 };
2608
2609 static const struct bfd_elf_special_section special_sections_c[] =
2610 {
2611 { STRING_COMMA_LEN (".comment"), 0, SHT_PROGBITS, 0 },
2612 { NULL, 0, 0, 0, 0 }
2613 };
2614
2615 static const struct bfd_elf_special_section special_sections_d[] =
2616 {
2617 { STRING_COMMA_LEN (".data"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2618 { STRING_COMMA_LEN (".data1"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2619 /* There are more DWARF sections than these, but they needn't be added here
2620 unless you have to cope with broken compilers that don't emit section
2621 attributes or you want to help the user writing assembler. */
2622 { STRING_COMMA_LEN (".debug"), 0, SHT_PROGBITS, 0 },
2623 { STRING_COMMA_LEN (".debug_line"), 0, SHT_PROGBITS, 0 },
2624 { STRING_COMMA_LEN (".debug_info"), 0, SHT_PROGBITS, 0 },
2625 { STRING_COMMA_LEN (".debug_abbrev"), 0, SHT_PROGBITS, 0 },
2626 { STRING_COMMA_LEN (".debug_aranges"), 0, SHT_PROGBITS, 0 },
2627 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC, SHF_ALLOC },
2628 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB, SHF_ALLOC },
2629 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM, SHF_ALLOC },
2630 { NULL, 0, 0, 0, 0 }
2631 };
2632
2633 static const struct bfd_elf_special_section special_sections_f[] =
2634 {
2635 { STRING_COMMA_LEN (".fini"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2636 { STRING_COMMA_LEN (".fini_array"), -2, SHT_FINI_ARRAY, SHF_ALLOC + SHF_WRITE },
2637 { NULL, 0 , 0, 0, 0 }
2638 };
2639
2640 static const struct bfd_elf_special_section special_sections_g[] =
2641 {
2642 { STRING_COMMA_LEN (".gnu.linkonce.b"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2643 { STRING_COMMA_LEN (".gnu.lto_"), -1, SHT_PROGBITS, SHF_EXCLUDE },
2644 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2645 { STRING_COMMA_LEN (".gnu.version"), 0, SHT_GNU_versym, 0 },
2646 { STRING_COMMA_LEN (".gnu.version_d"), 0, SHT_GNU_verdef, 0 },
2647 { STRING_COMMA_LEN (".gnu.version_r"), 0, SHT_GNU_verneed, 0 },
2648 { STRING_COMMA_LEN (".gnu.liblist"), 0, SHT_GNU_LIBLIST, SHF_ALLOC },
2649 { STRING_COMMA_LEN (".gnu.conflict"), 0, SHT_RELA, SHF_ALLOC },
2650 { STRING_COMMA_LEN (".gnu.hash"), 0, SHT_GNU_HASH, SHF_ALLOC },
2651 { NULL, 0, 0, 0, 0 }
2652 };
2653
2654 static const struct bfd_elf_special_section special_sections_h[] =
2655 {
2656 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH, SHF_ALLOC },
2657 { NULL, 0, 0, 0, 0 }
2658 };
2659
2660 static const struct bfd_elf_special_section special_sections_i[] =
2661 {
2662 { STRING_COMMA_LEN (".init"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2663 { STRING_COMMA_LEN (".init_array"), -2, SHT_INIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2664 { STRING_COMMA_LEN (".interp"), 0, SHT_PROGBITS, 0 },
2665 { NULL, 0, 0, 0, 0 }
2666 };
2667
2668 static const struct bfd_elf_special_section special_sections_l[] =
2669 {
2670 { STRING_COMMA_LEN (".line"), 0, SHT_PROGBITS, 0 },
2671 { NULL, 0, 0, 0, 0 }
2672 };
2673
2674 static const struct bfd_elf_special_section special_sections_n[] =
2675 {
2676 { STRING_COMMA_LEN (".note.GNU-stack"), 0, SHT_PROGBITS, 0 },
2677 { STRING_COMMA_LEN (".note"), -1, SHT_NOTE, 0 },
2678 { NULL, 0, 0, 0, 0 }
2679 };
2680
2681 static const struct bfd_elf_special_section special_sections_p[] =
2682 {
2683 { STRING_COMMA_LEN (".preinit_array"), -2, SHT_PREINIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2684 { STRING_COMMA_LEN (".plt"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2685 { NULL, 0, 0, 0, 0 }
2686 };
2687
2688 static const struct bfd_elf_special_section special_sections_r[] =
2689 {
2690 { STRING_COMMA_LEN (".rodata"), -2, SHT_PROGBITS, SHF_ALLOC },
2691 { STRING_COMMA_LEN (".rodata1"), 0, SHT_PROGBITS, SHF_ALLOC },
2692 { STRING_COMMA_LEN (".rela"), -1, SHT_RELA, 0 },
2693 { STRING_COMMA_LEN (".rel"), -1, SHT_REL, 0 },
2694 { NULL, 0, 0, 0, 0 }
2695 };
2696
2697 static const struct bfd_elf_special_section special_sections_s[] =
2698 {
2699 { STRING_COMMA_LEN (".shstrtab"), 0, SHT_STRTAB, 0 },
2700 { STRING_COMMA_LEN (".strtab"), 0, SHT_STRTAB, 0 },
2701 { STRING_COMMA_LEN (".symtab"), 0, SHT_SYMTAB, 0 },
2702 /* See struct bfd_elf_special_section declaration for the semantics of
2703 this special case where .prefix_length != strlen (.prefix). */
2704 { ".stabstr", 5, 3, SHT_STRTAB, 0 },
2705 { NULL, 0, 0, 0, 0 }
2706 };
2707
2708 static const struct bfd_elf_special_section special_sections_t[] =
2709 {
2710 { STRING_COMMA_LEN (".text"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2711 { STRING_COMMA_LEN (".tbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2712 { STRING_COMMA_LEN (".tdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2713 { NULL, 0, 0, 0, 0 }
2714 };
2715
2716 static const struct bfd_elf_special_section special_sections_z[] =
2717 {
2718 { STRING_COMMA_LEN (".zdebug_line"), 0, SHT_PROGBITS, 0 },
2719 { STRING_COMMA_LEN (".zdebug_info"), 0, SHT_PROGBITS, 0 },
2720 { STRING_COMMA_LEN (".zdebug_abbrev"), 0, SHT_PROGBITS, 0 },
2721 { STRING_COMMA_LEN (".zdebug_aranges"), 0, SHT_PROGBITS, 0 },
2722 { NULL, 0, 0, 0, 0 }
2723 };
2724
2725 static const struct bfd_elf_special_section * const special_sections[] =
2726 {
2727 special_sections_b, /* 'b' */
2728 special_sections_c, /* 'c' */
2729 special_sections_d, /* 'd' */
2730 NULL, /* 'e' */
2731 special_sections_f, /* 'f' */
2732 special_sections_g, /* 'g' */
2733 special_sections_h, /* 'h' */
2734 special_sections_i, /* 'i' */
2735 NULL, /* 'j' */
2736 NULL, /* 'k' */
2737 special_sections_l, /* 'l' */
2738 NULL, /* 'm' */
2739 special_sections_n, /* 'n' */
2740 NULL, /* 'o' */
2741 special_sections_p, /* 'p' */
2742 NULL, /* 'q' */
2743 special_sections_r, /* 'r' */
2744 special_sections_s, /* 's' */
2745 special_sections_t, /* 't' */
2746 NULL, /* 'u' */
2747 NULL, /* 'v' */
2748 NULL, /* 'w' */
2749 NULL, /* 'x' */
2750 NULL, /* 'y' */
2751 special_sections_z /* 'z' */
2752 };
2753
2754 const struct bfd_elf_special_section *
2755 _bfd_elf_get_special_section (const char *name,
2756 const struct bfd_elf_special_section *spec,
2757 unsigned int rela)
2758 {
2759 int i;
2760 int len;
2761
2762 len = strlen (name);
2763
2764 for (i = 0; spec[i].prefix != NULL; i++)
2765 {
2766 int suffix_len;
2767 int prefix_len = spec[i].prefix_length;
2768
2769 if (len < prefix_len)
2770 continue;
2771 if (memcmp (name, spec[i].prefix, prefix_len) != 0)
2772 continue;
2773
2774 suffix_len = spec[i].suffix_length;
2775 if (suffix_len <= 0)
2776 {
2777 if (name[prefix_len] != 0)
2778 {
2779 if (suffix_len == 0)
2780 continue;
2781 if (name[prefix_len] != '.'
2782 && (suffix_len == -2
2783 || (rela && spec[i].type == SHT_REL)))
2784 continue;
2785 }
2786 }
2787 else
2788 {
2789 if (len < prefix_len + suffix_len)
2790 continue;
2791 if (memcmp (name + len - suffix_len,
2792 spec[i].prefix + prefix_len,
2793 suffix_len) != 0)
2794 continue;
2795 }
2796 return &spec[i];
2797 }
2798
2799 return NULL;
2800 }
2801
2802 const struct bfd_elf_special_section *
2803 _bfd_elf_get_sec_type_attr (bfd *abfd, asection *sec)
2804 {
2805 int i;
2806 const struct bfd_elf_special_section *spec;
2807 const struct elf_backend_data *bed;
2808
2809 /* See if this is one of the special sections. */
2810 if (sec->name == NULL)
2811 return NULL;
2812
2813 bed = get_elf_backend_data (abfd);
2814 spec = bed->special_sections;
2815 if (spec)
2816 {
2817 spec = _bfd_elf_get_special_section (sec->name,
2818 bed->special_sections,
2819 sec->use_rela_p);
2820 if (spec != NULL)
2821 return spec;
2822 }
2823
2824 if (sec->name[0] != '.')
2825 return NULL;
2826
2827 i = sec->name[1] - 'b';
2828 if (i < 0 || i > 'z' - 'b')
2829 return NULL;
2830
2831 spec = special_sections[i];
2832
2833 if (spec == NULL)
2834 return NULL;
2835
2836 return _bfd_elf_get_special_section (sec->name, spec, sec->use_rela_p);
2837 }
2838
2839 bfd_boolean
2840 _bfd_elf_new_section_hook (bfd *abfd, asection *sec)
2841 {
2842 struct bfd_elf_section_data *sdata;
2843 const struct elf_backend_data *bed;
2844 const struct bfd_elf_special_section *ssect;
2845
2846 sdata = (struct bfd_elf_section_data *) sec->used_by_bfd;
2847 if (sdata == NULL)
2848 {
2849 sdata = (struct bfd_elf_section_data *) bfd_zalloc (abfd,
2850 sizeof (*sdata));
2851 if (sdata == NULL)
2852 return FALSE;
2853 sec->used_by_bfd = sdata;
2854 }
2855
2856 /* Indicate whether or not this section should use RELA relocations. */
2857 bed = get_elf_backend_data (abfd);
2858 sec->use_rela_p = bed->default_use_rela_p;
2859
2860 /* When we read a file, we don't need to set ELF section type and
2861 flags. They will be overridden in _bfd_elf_make_section_from_shdr
2862 anyway. We will set ELF section type and flags for all linker
2863 created sections. If user specifies BFD section flags, we will
2864 set ELF section type and flags based on BFD section flags in
2865 elf_fake_sections. Special handling for .init_array/.fini_array
2866 output sections since they may contain .ctors/.dtors input
2867 sections. We don't want _bfd_elf_init_private_section_data to
2868 copy ELF section type from .ctors/.dtors input sections. */
2869 if (abfd->direction != read_direction
2870 || (sec->flags & SEC_LINKER_CREATED) != 0)
2871 {
2872 ssect = (*bed->get_sec_type_attr) (abfd, sec);
2873 if (ssect != NULL
2874 && (!sec->flags
2875 || (sec->flags & SEC_LINKER_CREATED) != 0
2876 || ssect->type == SHT_INIT_ARRAY
2877 || ssect->type == SHT_FINI_ARRAY))
2878 {
2879 elf_section_type (sec) = ssect->type;
2880 elf_section_flags (sec) = ssect->attr;
2881 }
2882 }
2883
2884 return _bfd_generic_new_section_hook (abfd, sec);
2885 }
2886
2887 /* Create a new bfd section from an ELF program header.
2888
2889 Since program segments have no names, we generate a synthetic name
2890 of the form segment<NUM>, where NUM is generally the index in the
2891 program header table. For segments that are split (see below) we
2892 generate the names segment<NUM>a and segment<NUM>b.
2893
2894 Note that some program segments may have a file size that is different than
2895 (less than) the memory size. All this means is that at execution the
2896 system must allocate the amount of memory specified by the memory size,
2897 but only initialize it with the first "file size" bytes read from the
2898 file. This would occur for example, with program segments consisting
2899 of combined data+bss.
2900
2901 To handle the above situation, this routine generates TWO bfd sections
2902 for the single program segment. The first has the length specified by
2903 the file size of the segment, and the second has the length specified
2904 by the difference between the two sizes. In effect, the segment is split
2905 into its initialized and uninitialized parts.
2906
2907 */
2908
2909 bfd_boolean
2910 _bfd_elf_make_section_from_phdr (bfd *abfd,
2911 Elf_Internal_Phdr *hdr,
2912 int hdr_index,
2913 const char *type_name)
2914 {
2915 asection *newsect;
2916 char *name;
2917 char namebuf[64];
2918 size_t len;
2919 int split;
2920
2921 split = ((hdr->p_memsz > 0)
2922 && (hdr->p_filesz > 0)
2923 && (hdr->p_memsz > hdr->p_filesz));
2924
2925 if (hdr->p_filesz > 0)
2926 {
2927 sprintf (namebuf, "%s%d%s", type_name, hdr_index, split ? "a" : "");
2928 len = strlen (namebuf) + 1;
2929 name = (char *) bfd_alloc (abfd, len);
2930 if (!name)
2931 return FALSE;
2932 memcpy (name, namebuf, len);
2933 newsect = bfd_make_section (abfd, name);
2934 if (newsect == NULL)
2935 return FALSE;
2936 newsect->vma = hdr->p_vaddr;
2937 newsect->lma = hdr->p_paddr;
2938 newsect->size = hdr->p_filesz;
2939 newsect->filepos = hdr->p_offset;
2940 newsect->flags |= SEC_HAS_CONTENTS;
2941 newsect->alignment_power = bfd_log2 (hdr->p_align);
2942 if (hdr->p_type == PT_LOAD)
2943 {
2944 newsect->flags |= SEC_ALLOC;
2945 newsect->flags |= SEC_LOAD;
2946 if (hdr->p_flags & PF_X)
2947 {
2948 /* FIXME: all we known is that it has execute PERMISSION,
2949 may be data. */
2950 newsect->flags |= SEC_CODE;
2951 }
2952 }
2953 if (!(hdr->p_flags & PF_W))
2954 {
2955 newsect->flags |= SEC_READONLY;
2956 }
2957 }
2958
2959 if (hdr->p_memsz > hdr->p_filesz)
2960 {
2961 bfd_vma align;
2962
2963 sprintf (namebuf, "%s%d%s", type_name, hdr_index, split ? "b" : "");
2964 len = strlen (namebuf) + 1;
2965 name = (char *) bfd_alloc (abfd, len);
2966 if (!name)
2967 return FALSE;
2968 memcpy (name, namebuf, len);
2969 newsect = bfd_make_section (abfd, name);
2970 if (newsect == NULL)
2971 return FALSE;
2972 newsect->vma = hdr->p_vaddr + hdr->p_filesz;
2973 newsect->lma = hdr->p_paddr + hdr->p_filesz;
2974 newsect->size = hdr->p_memsz - hdr->p_filesz;
2975 newsect->filepos = hdr->p_offset + hdr->p_filesz;
2976 align = newsect->vma & -newsect->vma;
2977 if (align == 0 || align > hdr->p_align)
2978 align = hdr->p_align;
2979 newsect->alignment_power = bfd_log2 (align);
2980 if (hdr->p_type == PT_LOAD)
2981 {
2982 /* Hack for gdb. Segments that have not been modified do
2983 not have their contents written to a core file, on the
2984 assumption that a debugger can find the contents in the
2985 executable. We flag this case by setting the fake
2986 section size to zero. Note that "real" bss sections will
2987 always have their contents dumped to the core file. */
2988 if (bfd_get_format (abfd) == bfd_core)
2989 newsect->size = 0;
2990 newsect->flags |= SEC_ALLOC;
2991 if (hdr->p_flags & PF_X)
2992 newsect->flags |= SEC_CODE;
2993 }
2994 if (!(hdr->p_flags & PF_W))
2995 newsect->flags |= SEC_READONLY;
2996 }
2997
2998 return TRUE;
2999 }
3000
3001 bfd_boolean
3002 bfd_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int hdr_index)
3003 {
3004 const struct elf_backend_data *bed;
3005
3006 switch (hdr->p_type)
3007 {
3008 case PT_NULL:
3009 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "null");
3010
3011 case PT_LOAD:
3012 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "load");
3013
3014 case PT_DYNAMIC:
3015 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "dynamic");
3016
3017 case PT_INTERP:
3018 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "interp");
3019
3020 case PT_NOTE:
3021 if (! _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "note"))
3022 return FALSE;
3023 if (! elf_read_notes (abfd, hdr->p_offset, hdr->p_filesz,
3024 hdr->p_align))
3025 return FALSE;
3026 return TRUE;
3027
3028 case PT_SHLIB:
3029 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "shlib");
3030
3031 case PT_PHDR:
3032 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "phdr");
3033
3034 case PT_GNU_EH_FRAME:
3035 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index,
3036 "eh_frame_hdr");
3037
3038 case PT_GNU_STACK:
3039 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "stack");
3040
3041 case PT_GNU_RELRO:
3042 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "relro");
3043
3044 default:
3045 /* Check for any processor-specific program segment types. */
3046 bed = get_elf_backend_data (abfd);
3047 return bed->elf_backend_section_from_phdr (abfd, hdr, hdr_index, "proc");
3048 }
3049 }
3050
3051 /* Return the REL_HDR for SEC, assuming there is only a single one, either
3052 REL or RELA. */
3053
3054 Elf_Internal_Shdr *
3055 _bfd_elf_single_rel_hdr (asection *sec)
3056 {
3057 if (elf_section_data (sec)->rel.hdr)
3058 {
3059 BFD_ASSERT (elf_section_data (sec)->rela.hdr == NULL);
3060 return elf_section_data (sec)->rel.hdr;
3061 }
3062 else
3063 return elf_section_data (sec)->rela.hdr;
3064 }
3065
3066 static bfd_boolean
3067 _bfd_elf_set_reloc_sh_name (bfd *abfd,
3068 Elf_Internal_Shdr *rel_hdr,
3069 const char *sec_name,
3070 bfd_boolean use_rela_p)
3071 {
3072 char *name = (char *) bfd_alloc (abfd,
3073 sizeof ".rela" + strlen (sec_name));
3074 if (name == NULL)
3075 return FALSE;
3076
3077 sprintf (name, "%s%s", use_rela_p ? ".rela" : ".rel", sec_name);
3078 rel_hdr->sh_name =
3079 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd), name,
3080 FALSE);
3081 if (rel_hdr->sh_name == (unsigned int) -1)
3082 return FALSE;
3083
3084 return TRUE;
3085 }
3086
3087 /* Allocate and initialize a section-header for a new reloc section,
3088 containing relocations against ASECT. It is stored in RELDATA. If
3089 USE_RELA_P is TRUE, we use RELA relocations; otherwise, we use REL
3090 relocations. */
3091
3092 static bfd_boolean
3093 _bfd_elf_init_reloc_shdr (bfd *abfd,
3094 struct bfd_elf_section_reloc_data *reldata,
3095 const char *sec_name,
3096 bfd_boolean use_rela_p,
3097 bfd_boolean delay_st_name_p)
3098 {
3099 Elf_Internal_Shdr *rel_hdr;
3100 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3101
3102 BFD_ASSERT (reldata->hdr == NULL);
3103 rel_hdr = bfd_zalloc (abfd, sizeof (*rel_hdr));
3104 reldata->hdr = rel_hdr;
3105
3106 if (delay_st_name_p)
3107 rel_hdr->sh_name = (unsigned int) -1;
3108 else if (!_bfd_elf_set_reloc_sh_name (abfd, rel_hdr, sec_name,
3109 use_rela_p))
3110 return FALSE;
3111 rel_hdr->sh_type = use_rela_p ? SHT_RELA : SHT_REL;
3112 rel_hdr->sh_entsize = (use_rela_p
3113 ? bed->s->sizeof_rela
3114 : bed->s->sizeof_rel);
3115 rel_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
3116 rel_hdr->sh_flags = 0;
3117 rel_hdr->sh_addr = 0;
3118 rel_hdr->sh_size = 0;
3119 rel_hdr->sh_offset = 0;
3120
3121 return TRUE;
3122 }
3123
3124 /* Return the default section type based on the passed in section flags. */
3125
3126 int
3127 bfd_elf_get_default_section_type (flagword flags)
3128 {
3129 if ((flags & SEC_ALLOC) != 0
3130 && (flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
3131 return SHT_NOBITS;
3132 return SHT_PROGBITS;
3133 }
3134
3135 struct fake_section_arg
3136 {
3137 struct bfd_link_info *link_info;
3138 bfd_boolean failed;
3139 };
3140
3141 /* Set up an ELF internal section header for a section. */
3142
3143 static void
3144 elf_fake_sections (bfd *abfd, asection *asect, void *fsarg)
3145 {
3146 struct fake_section_arg *arg = (struct fake_section_arg *)fsarg;
3147 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3148 struct bfd_elf_section_data *esd = elf_section_data (asect);
3149 Elf_Internal_Shdr *this_hdr;
3150 unsigned int sh_type;
3151 const char *name = asect->name;
3152 bfd_boolean delay_st_name_p = FALSE;
3153
3154 if (arg->failed)
3155 {
3156 /* We already failed; just get out of the bfd_map_over_sections
3157 loop. */
3158 return;
3159 }
3160
3161 this_hdr = &esd->this_hdr;
3162
3163 if (arg->link_info)
3164 {
3165 /* ld: compress DWARF debug sections with names: .debug_*. */
3166 if ((arg->link_info->compress_debug & COMPRESS_DEBUG)
3167 && (asect->flags & SEC_DEBUGGING)
3168 && name[1] == 'd'
3169 && name[6] == '_')
3170 {
3171 /* Set SEC_ELF_COMPRESS to indicate this section should be
3172 compressed. */
3173 asect->flags |= SEC_ELF_COMPRESS;
3174
3175 /* If this section will be compressed, delay adding section
3176 name to section name section after it is compressed in
3177 _bfd_elf_assign_file_positions_for_non_load. */
3178 delay_st_name_p = TRUE;
3179 }
3180 }
3181 else if ((asect->flags & SEC_ELF_RENAME))
3182 {
3183 /* objcopy: rename output DWARF debug section. */
3184 if ((abfd->flags & (BFD_DECOMPRESS | BFD_COMPRESS_GABI)))
3185 {
3186 /* When we decompress or compress with SHF_COMPRESSED,
3187 convert section name from .zdebug_* to .debug_* if
3188 needed. */
3189 if (name[1] == 'z')
3190 {
3191 char *new_name = convert_zdebug_to_debug (abfd, name);
3192 if (new_name == NULL)
3193 {
3194 arg->failed = TRUE;
3195 return;
3196 }
3197 name = new_name;
3198 }
3199 }
3200 else if (asect->compress_status == COMPRESS_SECTION_DONE)
3201 {
3202 /* PR binutils/18087: Compression does not always make a
3203 section smaller. So only rename the section when
3204 compression has actually taken place. If input section
3205 name is .zdebug_*, we should never compress it again. */
3206 char *new_name = convert_debug_to_zdebug (abfd, name);
3207 if (new_name == NULL)
3208 {
3209 arg->failed = TRUE;
3210 return;
3211 }
3212 BFD_ASSERT (name[1] != 'z');
3213 name = new_name;
3214 }
3215 }
3216
3217 if (delay_st_name_p)
3218 this_hdr->sh_name = (unsigned int) -1;
3219 else
3220 {
3221 this_hdr->sh_name
3222 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
3223 name, FALSE);
3224 if (this_hdr->sh_name == (unsigned int) -1)
3225 {
3226 arg->failed = TRUE;
3227 return;
3228 }
3229 }
3230
3231 /* Don't clear sh_flags. Assembler may set additional bits. */
3232
3233 if ((asect->flags & SEC_ALLOC) != 0
3234 || asect->user_set_vma)
3235 this_hdr->sh_addr = asect->vma;
3236 else
3237 this_hdr->sh_addr = 0;
3238
3239 this_hdr->sh_offset = 0;
3240 this_hdr->sh_size = asect->size;
3241 this_hdr->sh_link = 0;
3242 /* PR 17512: file: 0eb809fe, 8b0535ee. */
3243 if (asect->alignment_power >= (sizeof (bfd_vma) * 8) - 1)
3244 {
3245 _bfd_error_handler
3246 /* xgettext:c-format */
3247 (_("%pB: error: alignment power %d of section `%pA' is too big"),
3248 abfd, asect->alignment_power, asect);
3249 arg->failed = TRUE;
3250 return;
3251 }
3252 this_hdr->sh_addralign = (bfd_vma) 1 << asect->alignment_power;
3253 /* The sh_entsize and sh_info fields may have been set already by
3254 copy_private_section_data. */
3255
3256 this_hdr->bfd_section = asect;
3257 this_hdr->contents = NULL;
3258
3259 /* If the section type is unspecified, we set it based on
3260 asect->flags. */
3261 if ((asect->flags & SEC_GROUP) != 0)
3262 sh_type = SHT_GROUP;
3263 else
3264 sh_type = bfd_elf_get_default_section_type (asect->flags);
3265
3266 if (this_hdr->sh_type == SHT_NULL)
3267 this_hdr->sh_type = sh_type;
3268 else if (this_hdr->sh_type == SHT_NOBITS
3269 && sh_type == SHT_PROGBITS
3270 && (asect->flags & SEC_ALLOC) != 0)
3271 {
3272 /* Warn if we are changing a NOBITS section to PROGBITS, but
3273 allow the link to proceed. This can happen when users link
3274 non-bss input sections to bss output sections, or emit data
3275 to a bss output section via a linker script. */
3276 _bfd_error_handler
3277 (_("warning: section `%pA' type changed to PROGBITS"), asect);
3278 this_hdr->sh_type = sh_type;
3279 }
3280
3281 switch (this_hdr->sh_type)
3282 {
3283 default:
3284 break;
3285
3286 case SHT_STRTAB:
3287 case SHT_NOTE:
3288 case SHT_NOBITS:
3289 case SHT_PROGBITS:
3290 break;
3291
3292 case SHT_INIT_ARRAY:
3293 case SHT_FINI_ARRAY:
3294 case SHT_PREINIT_ARRAY:
3295 this_hdr->sh_entsize = bed->s->arch_size / 8;
3296 break;
3297
3298 case SHT_HASH:
3299 this_hdr->sh_entsize = bed->s->sizeof_hash_entry;
3300 break;
3301
3302 case SHT_DYNSYM:
3303 this_hdr->sh_entsize = bed->s->sizeof_sym;
3304 break;
3305
3306 case SHT_DYNAMIC:
3307 this_hdr->sh_entsize = bed->s->sizeof_dyn;
3308 break;
3309
3310 case SHT_RELA:
3311 if (get_elf_backend_data (abfd)->may_use_rela_p)
3312 this_hdr->sh_entsize = bed->s->sizeof_rela;
3313 break;
3314
3315 case SHT_REL:
3316 if (get_elf_backend_data (abfd)->may_use_rel_p)
3317 this_hdr->sh_entsize = bed->s->sizeof_rel;
3318 break;
3319
3320 case SHT_GNU_versym:
3321 this_hdr->sh_entsize = sizeof (Elf_External_Versym);
3322 break;
3323
3324 case SHT_GNU_verdef:
3325 this_hdr->sh_entsize = 0;
3326 /* objcopy or strip will copy over sh_info, but may not set
3327 cverdefs. The linker will set cverdefs, but sh_info will be
3328 zero. */
3329 if (this_hdr->sh_info == 0)
3330 this_hdr->sh_info = elf_tdata (abfd)->cverdefs;
3331 else
3332 BFD_ASSERT (elf_tdata (abfd)->cverdefs == 0
3333 || this_hdr->sh_info == elf_tdata (abfd)->cverdefs);
3334 break;
3335
3336 case SHT_GNU_verneed:
3337 this_hdr->sh_entsize = 0;
3338 /* objcopy or strip will copy over sh_info, but may not set
3339 cverrefs. The linker will set cverrefs, but sh_info will be
3340 zero. */
3341 if (this_hdr->sh_info == 0)
3342 this_hdr->sh_info = elf_tdata (abfd)->cverrefs;
3343 else
3344 BFD_ASSERT (elf_tdata (abfd)->cverrefs == 0
3345 || this_hdr->sh_info == elf_tdata (abfd)->cverrefs);
3346 break;
3347
3348 case SHT_GROUP:
3349 this_hdr->sh_entsize = GRP_ENTRY_SIZE;
3350 break;
3351
3352 case SHT_GNU_HASH:
3353 this_hdr->sh_entsize = bed->s->arch_size == 64 ? 0 : 4;
3354 break;
3355 }
3356
3357 if ((asect->flags & SEC_ALLOC) != 0)
3358 this_hdr->sh_flags |= SHF_ALLOC;
3359 if ((asect->flags & SEC_READONLY) == 0)
3360 this_hdr->sh_flags |= SHF_WRITE;
3361 if ((asect->flags & SEC_CODE) != 0)
3362 this_hdr->sh_flags |= SHF_EXECINSTR;
3363 if ((asect->flags & SEC_MERGE) != 0)
3364 {
3365 this_hdr->sh_flags |= SHF_MERGE;
3366 this_hdr->sh_entsize = asect->entsize;
3367 }
3368 if ((asect->flags & SEC_STRINGS) != 0)
3369 this_hdr->sh_flags |= SHF_STRINGS;
3370 if ((asect->flags & SEC_GROUP) == 0 && elf_group_name (asect) != NULL)
3371 this_hdr->sh_flags |= SHF_GROUP;
3372 if ((asect->flags & SEC_THREAD_LOCAL) != 0)
3373 {
3374 this_hdr->sh_flags |= SHF_TLS;
3375 if (asect->size == 0
3376 && (asect->flags & SEC_HAS_CONTENTS) == 0)
3377 {
3378 struct bfd_link_order *o = asect->map_tail.link_order;
3379
3380 this_hdr->sh_size = 0;
3381 if (o != NULL)
3382 {
3383 this_hdr->sh_size = o->offset + o->size;
3384 if (this_hdr->sh_size != 0)
3385 this_hdr->sh_type = SHT_NOBITS;
3386 }
3387 }
3388 }
3389 if ((asect->flags & (SEC_GROUP | SEC_EXCLUDE)) == SEC_EXCLUDE)
3390 this_hdr->sh_flags |= SHF_EXCLUDE;
3391
3392 /* If the section has relocs, set up a section header for the
3393 SHT_REL[A] section. If two relocation sections are required for
3394 this section, it is up to the processor-specific back-end to
3395 create the other. */
3396 if ((asect->flags & SEC_RELOC) != 0)
3397 {
3398 /* When doing a relocatable link, create both REL and RELA sections if
3399 needed. */
3400 if (arg->link_info
3401 /* Do the normal setup if we wouldn't create any sections here. */
3402 && esd->rel.count + esd->rela.count > 0
3403 && (bfd_link_relocatable (arg->link_info)
3404 || arg->link_info->emitrelocations))
3405 {
3406 if (esd->rel.count && esd->rel.hdr == NULL
3407 && !_bfd_elf_init_reloc_shdr (abfd, &esd->rel, name,
3408 FALSE, delay_st_name_p))
3409 {
3410 arg->failed = TRUE;
3411 return;
3412 }
3413 if (esd->rela.count && esd->rela.hdr == NULL
3414 && !_bfd_elf_init_reloc_shdr (abfd, &esd->rela, name,
3415 TRUE, delay_st_name_p))
3416 {
3417 arg->failed = TRUE;
3418 return;
3419 }
3420 }
3421 else if (!_bfd_elf_init_reloc_shdr (abfd,
3422 (asect->use_rela_p
3423 ? &esd->rela : &esd->rel),
3424 name,
3425 asect->use_rela_p,
3426 delay_st_name_p))
3427 {
3428 arg->failed = TRUE;
3429 return;
3430 }
3431 }
3432
3433 /* Check for processor-specific section types. */
3434 sh_type = this_hdr->sh_type;
3435 if (bed->elf_backend_fake_sections
3436 && !(*bed->elf_backend_fake_sections) (abfd, this_hdr, asect))
3437 {
3438 arg->failed = TRUE;
3439 return;
3440 }
3441
3442 if (sh_type == SHT_NOBITS && asect->size != 0)
3443 {
3444 /* Don't change the header type from NOBITS if we are being
3445 called for objcopy --only-keep-debug. */
3446 this_hdr->sh_type = sh_type;
3447 }
3448 }
3449
3450 /* Fill in the contents of a SHT_GROUP section. Called from
3451 _bfd_elf_compute_section_file_positions for gas, objcopy, and
3452 when ELF targets use the generic linker, ld. Called for ld -r
3453 from bfd_elf_final_link. */
3454
3455 void
3456 bfd_elf_set_group_contents (bfd *abfd, asection *sec, void *failedptrarg)
3457 {
3458 bfd_boolean *failedptr = (bfd_boolean *) failedptrarg;
3459 asection *elt, *first;
3460 unsigned char *loc;
3461 bfd_boolean gas;
3462
3463 /* Ignore linker created group section. See elfNN_ia64_object_p in
3464 elfxx-ia64.c. */
3465 if (((sec->flags & (SEC_GROUP | SEC_LINKER_CREATED)) != SEC_GROUP)
3466 || *failedptr)
3467 return;
3468
3469 if (elf_section_data (sec)->this_hdr.sh_info == 0)
3470 {
3471 unsigned long symindx = 0;
3472
3473 /* elf_group_id will have been set up by objcopy and the
3474 generic linker. */
3475 if (elf_group_id (sec) != NULL)
3476 symindx = elf_group_id (sec)->udata.i;
3477
3478 if (symindx == 0)
3479 {
3480 /* If called from the assembler, swap_out_syms will have set up
3481 elf_section_syms. */
3482 BFD_ASSERT (elf_section_syms (abfd) != NULL);
3483 symindx = elf_section_syms (abfd)[sec->index]->udata.i;
3484 }
3485 elf_section_data (sec)->this_hdr.sh_info = symindx;
3486 }
3487 else if (elf_section_data (sec)->this_hdr.sh_info == (unsigned int) -2)
3488 {
3489 /* The ELF backend linker sets sh_info to -2 when the group
3490 signature symbol is global, and thus the index can't be
3491 set until all local symbols are output. */
3492 asection *igroup;
3493 struct bfd_elf_section_data *sec_data;
3494 unsigned long symndx;
3495 unsigned long extsymoff;
3496 struct elf_link_hash_entry *h;
3497
3498 /* The point of this little dance to the first SHF_GROUP section
3499 then back to the SHT_GROUP section is that this gets us to
3500 the SHT_GROUP in the input object. */
3501 igroup = elf_sec_group (elf_next_in_group (sec));
3502 sec_data = elf_section_data (igroup);
3503 symndx = sec_data->this_hdr.sh_info;
3504 extsymoff = 0;
3505 if (!elf_bad_symtab (igroup->owner))
3506 {
3507 Elf_Internal_Shdr *symtab_hdr;
3508
3509 symtab_hdr = &elf_tdata (igroup->owner)->symtab_hdr;
3510 extsymoff = symtab_hdr->sh_info;
3511 }
3512 h = elf_sym_hashes (igroup->owner)[symndx - extsymoff];
3513 while (h->root.type == bfd_link_hash_indirect
3514 || h->root.type == bfd_link_hash_warning)
3515 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3516
3517 elf_section_data (sec)->this_hdr.sh_info = h->indx;
3518 }
3519
3520 /* The contents won't be allocated for "ld -r" or objcopy. */
3521 gas = TRUE;
3522 if (sec->contents == NULL)
3523 {
3524 gas = FALSE;
3525 sec->contents = (unsigned char *) bfd_alloc (abfd, sec->size);
3526
3527 /* Arrange for the section to be written out. */
3528 elf_section_data (sec)->this_hdr.contents = sec->contents;
3529 if (sec->contents == NULL)
3530 {
3531 *failedptr = TRUE;
3532 return;
3533 }
3534 }
3535
3536 loc = sec->contents + sec->size;
3537
3538 /* Get the pointer to the first section in the group that gas
3539 squirreled away here. objcopy arranges for this to be set to the
3540 start of the input section group. */
3541 first = elt = elf_next_in_group (sec);
3542
3543 /* First element is a flag word. Rest of section is elf section
3544 indices for all the sections of the group. Write them backwards
3545 just to keep the group in the same order as given in .section
3546 directives, not that it matters. */
3547 while (elt != NULL)
3548 {
3549 asection *s;
3550
3551 s = elt;
3552 if (!gas)
3553 s = s->output_section;
3554 if (s != NULL
3555 && !bfd_is_abs_section (s))
3556 {
3557 struct bfd_elf_section_data *elf_sec = elf_section_data (s);
3558 struct bfd_elf_section_data *input_elf_sec = elf_section_data (elt);
3559
3560 if (elf_sec->rel.hdr != NULL
3561 && (gas
3562 || (input_elf_sec->rel.hdr != NULL
3563 && input_elf_sec->rel.hdr->sh_flags & SHF_GROUP) != 0))
3564 {
3565 elf_sec->rel.hdr->sh_flags |= SHF_GROUP;
3566 loc -= 4;
3567 H_PUT_32 (abfd, elf_sec->rel.idx, loc);
3568 }
3569 if (elf_sec->rela.hdr != NULL
3570 && (gas
3571 || (input_elf_sec->rela.hdr != NULL
3572 && input_elf_sec->rela.hdr->sh_flags & SHF_GROUP) != 0))
3573 {
3574 elf_sec->rela.hdr->sh_flags |= SHF_GROUP;
3575 loc -= 4;
3576 H_PUT_32 (abfd, elf_sec->rela.idx, loc);
3577 }
3578 loc -= 4;
3579 H_PUT_32 (abfd, elf_sec->this_idx, loc);
3580 }
3581 elt = elf_next_in_group (elt);
3582 if (elt == first)
3583 break;
3584 }
3585
3586 loc -= 4;
3587 BFD_ASSERT (loc == sec->contents);
3588
3589 H_PUT_32 (abfd, sec->flags & SEC_LINK_ONCE ? GRP_COMDAT : 0, loc);
3590 }
3591
3592 /* Given NAME, the name of a relocation section stripped of its
3593 .rel/.rela prefix, return the section in ABFD to which the
3594 relocations apply. */
3595
3596 asection *
3597 _bfd_elf_plt_get_reloc_section (bfd *abfd, const char *name)
3598 {
3599 /* If a target needs .got.plt section, relocations in rela.plt/rel.plt
3600 section likely apply to .got.plt or .got section. */
3601 if (get_elf_backend_data (abfd)->want_got_plt
3602 && strcmp (name, ".plt") == 0)
3603 {
3604 asection *sec;
3605
3606 name = ".got.plt";
3607 sec = bfd_get_section_by_name (abfd, name);
3608 if (sec != NULL)
3609 return sec;
3610 name = ".got";
3611 }
3612
3613 return bfd_get_section_by_name (abfd, name);
3614 }
3615
3616 /* Return the section to which RELOC_SEC applies. */
3617
3618 static asection *
3619 elf_get_reloc_section (asection *reloc_sec)
3620 {
3621 const char *name;
3622 unsigned int type;
3623 bfd *abfd;
3624 const struct elf_backend_data *bed;
3625
3626 type = elf_section_data (reloc_sec)->this_hdr.sh_type;
3627 if (type != SHT_REL && type != SHT_RELA)
3628 return NULL;
3629
3630 /* We look up the section the relocs apply to by name. */
3631 name = reloc_sec->name;
3632 if (strncmp (name, ".rel", 4) != 0)
3633 return NULL;
3634 name += 4;
3635 if (type == SHT_RELA && *name++ != 'a')
3636 return NULL;
3637
3638 abfd = reloc_sec->owner;
3639 bed = get_elf_backend_data (abfd);
3640 return bed->get_reloc_section (abfd, name);
3641 }
3642
3643 /* Assign all ELF section numbers. The dummy first section is handled here
3644 too. The link/info pointers for the standard section types are filled
3645 in here too, while we're at it. */
3646
3647 static bfd_boolean
3648 assign_section_numbers (bfd *abfd, struct bfd_link_info *link_info)
3649 {
3650 struct elf_obj_tdata *t = elf_tdata (abfd);
3651 asection *sec;
3652 unsigned int section_number;
3653 Elf_Internal_Shdr **i_shdrp;
3654 struct bfd_elf_section_data *d;
3655 bfd_boolean need_symtab;
3656
3657 section_number = 1;
3658
3659 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd));
3660
3661 /* SHT_GROUP sections are in relocatable files only. */
3662 if (link_info == NULL || !link_info->resolve_section_groups)
3663 {
3664 size_t reloc_count = 0;
3665
3666 /* Put SHT_GROUP sections first. */
3667 for (sec = abfd->sections; sec != NULL; sec = sec->next)
3668 {
3669 d = elf_section_data (sec);
3670
3671 if (d->this_hdr.sh_type == SHT_GROUP)
3672 {
3673 if (sec->flags & SEC_LINKER_CREATED)
3674 {
3675 /* Remove the linker created SHT_GROUP sections. */
3676 bfd_section_list_remove (abfd, sec);
3677 abfd->section_count--;
3678 }
3679 else
3680 d->this_idx = section_number++;
3681 }
3682
3683 /* Count relocations. */
3684 reloc_count += sec->reloc_count;
3685 }
3686
3687 /* Clear HAS_RELOC if there are no relocations. */
3688 if (reloc_count == 0)
3689 abfd->flags &= ~HAS_RELOC;
3690 }
3691
3692 for (sec = abfd->sections; sec; sec = sec->next)
3693 {
3694 d = elf_section_data (sec);
3695
3696 if (d->this_hdr.sh_type != SHT_GROUP)
3697 d->this_idx = section_number++;
3698 if (d->this_hdr.sh_name != (unsigned int) -1)
3699 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->this_hdr.sh_name);
3700 if (d->rel.hdr)
3701 {
3702 d->rel.idx = section_number++;
3703 if (d->rel.hdr->sh_name != (unsigned int) -1)
3704 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel.hdr->sh_name);
3705 }
3706 else
3707 d->rel.idx = 0;
3708
3709 if (d->rela.hdr)
3710 {
3711 d->rela.idx = section_number++;
3712 if (d->rela.hdr->sh_name != (unsigned int) -1)
3713 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rela.hdr->sh_name);
3714 }
3715 else
3716 d->rela.idx = 0;
3717 }
3718
3719 need_symtab = (bfd_get_symcount (abfd) > 0
3720 || (link_info == NULL
3721 && ((abfd->flags & (EXEC_P | DYNAMIC | HAS_RELOC))
3722 == HAS_RELOC)));
3723 if (need_symtab)
3724 {
3725 elf_onesymtab (abfd) = section_number++;
3726 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->symtab_hdr.sh_name);
3727 if (section_number > ((SHN_LORESERVE - 2) & 0xFFFF))
3728 {
3729 elf_section_list * entry;
3730
3731 BFD_ASSERT (elf_symtab_shndx_list (abfd) == NULL);
3732
3733 entry = bfd_zalloc (abfd, sizeof * entry);
3734 entry->ndx = section_number++;
3735 elf_symtab_shndx_list (abfd) = entry;
3736 entry->hdr.sh_name
3737 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
3738 ".symtab_shndx", FALSE);
3739 if (entry->hdr.sh_name == (unsigned int) -1)
3740 return FALSE;
3741 }
3742 elf_strtab_sec (abfd) = section_number++;
3743 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->strtab_hdr.sh_name);
3744 }
3745
3746 elf_shstrtab_sec (abfd) = section_number++;
3747 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->shstrtab_hdr.sh_name);
3748 elf_elfheader (abfd)->e_shstrndx = elf_shstrtab_sec (abfd);
3749
3750 if (section_number >= SHN_LORESERVE)
3751 {
3752 /* xgettext:c-format */
3753 _bfd_error_handler (_("%pB: too many sections: %u"),
3754 abfd, section_number);
3755 return FALSE;
3756 }
3757
3758 elf_numsections (abfd) = section_number;
3759 elf_elfheader (abfd)->e_shnum = section_number;
3760
3761 /* Set up the list of section header pointers, in agreement with the
3762 indices. */
3763 i_shdrp = (Elf_Internal_Shdr **) bfd_zalloc2 (abfd, section_number,
3764 sizeof (Elf_Internal_Shdr *));
3765 if (i_shdrp == NULL)
3766 return FALSE;
3767
3768 i_shdrp[0] = (Elf_Internal_Shdr *) bfd_zalloc (abfd,
3769 sizeof (Elf_Internal_Shdr));
3770 if (i_shdrp[0] == NULL)
3771 {
3772 bfd_release (abfd, i_shdrp);
3773 return FALSE;
3774 }
3775
3776 elf_elfsections (abfd) = i_shdrp;
3777
3778 i_shdrp[elf_shstrtab_sec (abfd)] = &t->shstrtab_hdr;
3779 if (need_symtab)
3780 {
3781 i_shdrp[elf_onesymtab (abfd)] = &t->symtab_hdr;
3782 if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
3783 {
3784 elf_section_list * entry = elf_symtab_shndx_list (abfd);
3785 BFD_ASSERT (entry != NULL);
3786 i_shdrp[entry->ndx] = & entry->hdr;
3787 entry->hdr.sh_link = elf_onesymtab (abfd);
3788 }
3789 i_shdrp[elf_strtab_sec (abfd)] = &t->strtab_hdr;
3790 t->symtab_hdr.sh_link = elf_strtab_sec (abfd);
3791 }
3792
3793 for (sec = abfd->sections; sec; sec = sec->next)
3794 {
3795 asection *s;
3796
3797 d = elf_section_data (sec);
3798
3799 i_shdrp[d->this_idx] = &d->this_hdr;
3800 if (d->rel.idx != 0)
3801 i_shdrp[d->rel.idx] = d->rel.hdr;
3802 if (d->rela.idx != 0)
3803 i_shdrp[d->rela.idx] = d->rela.hdr;
3804
3805 /* Fill in the sh_link and sh_info fields while we're at it. */
3806
3807 /* sh_link of a reloc section is the section index of the symbol
3808 table. sh_info is the section index of the section to which
3809 the relocation entries apply. */
3810 if (d->rel.idx != 0)
3811 {
3812 d->rel.hdr->sh_link = elf_onesymtab (abfd);
3813 d->rel.hdr->sh_info = d->this_idx;
3814 d->rel.hdr->sh_flags |= SHF_INFO_LINK;
3815 }
3816 if (d->rela.idx != 0)
3817 {
3818 d->rela.hdr->sh_link = elf_onesymtab (abfd);
3819 d->rela.hdr->sh_info = d->this_idx;
3820 d->rela.hdr->sh_flags |= SHF_INFO_LINK;
3821 }
3822
3823 /* We need to set up sh_link for SHF_LINK_ORDER. */
3824 if ((d->this_hdr.sh_flags & SHF_LINK_ORDER) != 0)
3825 {
3826 s = elf_linked_to_section (sec);
3827 if (s)
3828 {
3829 /* elf_linked_to_section points to the input section. */
3830 if (link_info != NULL)
3831 {
3832 /* Check discarded linkonce section. */
3833 if (discarded_section (s))
3834 {
3835 asection *kept;
3836 _bfd_error_handler
3837 /* xgettext:c-format */
3838 (_("%pB: sh_link of section `%pA' points to"
3839 " discarded section `%pA' of `%pB'"),
3840 abfd, d->this_hdr.bfd_section,
3841 s, s->owner);
3842 /* Point to the kept section if it has the same
3843 size as the discarded one. */
3844 kept = _bfd_elf_check_kept_section (s, link_info);
3845 if (kept == NULL)
3846 {
3847 bfd_set_error (bfd_error_bad_value);
3848 return FALSE;
3849 }
3850 s = kept;
3851 }
3852
3853 s = s->output_section;
3854 BFD_ASSERT (s != NULL);
3855 }
3856 else
3857 {
3858 /* Handle objcopy. */
3859 if (s->output_section == NULL)
3860 {
3861 _bfd_error_handler
3862 /* xgettext:c-format */
3863 (_("%pB: sh_link of section `%pA' points to"
3864 " removed section `%pA' of `%pB'"),
3865 abfd, d->this_hdr.bfd_section, s, s->owner);
3866 bfd_set_error (bfd_error_bad_value);
3867 return FALSE;
3868 }
3869 s = s->output_section;
3870 }
3871 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3872 }
3873 else
3874 {
3875 /* PR 290:
3876 The Intel C compiler generates SHT_IA_64_UNWIND with
3877 SHF_LINK_ORDER. But it doesn't set the sh_link or
3878 sh_info fields. Hence we could get the situation
3879 where s is NULL. */
3880 const struct elf_backend_data *bed
3881 = get_elf_backend_data (abfd);
3882 if (bed->link_order_error_handler)
3883 bed->link_order_error_handler
3884 /* xgettext:c-format */
3885 (_("%pB: warning: sh_link not set for section `%pA'"),
3886 abfd, sec);
3887 }
3888 }
3889
3890 switch (d->this_hdr.sh_type)
3891 {
3892 case SHT_REL:
3893 case SHT_RELA:
3894 /* A reloc section which we are treating as a normal BFD
3895 section. sh_link is the section index of the symbol
3896 table. sh_info is the section index of the section to
3897 which the relocation entries apply. We assume that an
3898 allocated reloc section uses the dynamic symbol table.
3899 FIXME: How can we be sure? */
3900 s = bfd_get_section_by_name (abfd, ".dynsym");
3901 if (s != NULL)
3902 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3903
3904 s = elf_get_reloc_section (sec);
3905 if (s != NULL)
3906 {
3907 d->this_hdr.sh_info = elf_section_data (s)->this_idx;
3908 d->this_hdr.sh_flags |= SHF_INFO_LINK;
3909 }
3910 break;
3911
3912 case SHT_STRTAB:
3913 /* We assume that a section named .stab*str is a stabs
3914 string section. We look for a section with the same name
3915 but without the trailing ``str'', and set its sh_link
3916 field to point to this section. */
3917 if (CONST_STRNEQ (sec->name, ".stab")
3918 && strcmp (sec->name + strlen (sec->name) - 3, "str") == 0)
3919 {
3920 size_t len;
3921 char *alc;
3922
3923 len = strlen (sec->name);
3924 alc = (char *) bfd_malloc (len - 2);
3925 if (alc == NULL)
3926 return FALSE;
3927 memcpy (alc, sec->name, len - 3);
3928 alc[len - 3] = '\0';
3929 s = bfd_get_section_by_name (abfd, alc);
3930 free (alc);
3931 if (s != NULL)
3932 {
3933 elf_section_data (s)->this_hdr.sh_link = d->this_idx;
3934
3935 /* This is a .stab section. */
3936 if (elf_section_data (s)->this_hdr.sh_entsize == 0)
3937 elf_section_data (s)->this_hdr.sh_entsize
3938 = 4 + 2 * bfd_get_arch_size (abfd) / 8;
3939 }
3940 }
3941 break;
3942
3943 case SHT_DYNAMIC:
3944 case SHT_DYNSYM:
3945 case SHT_GNU_verneed:
3946 case SHT_GNU_verdef:
3947 /* sh_link is the section header index of the string table
3948 used for the dynamic entries, or the symbol table, or the
3949 version strings. */
3950 s = bfd_get_section_by_name (abfd, ".dynstr");
3951 if (s != NULL)
3952 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3953 break;
3954
3955 case SHT_GNU_LIBLIST:
3956 /* sh_link is the section header index of the prelink library
3957 list used for the dynamic entries, or the symbol table, or
3958 the version strings. */
3959 s = bfd_get_section_by_name (abfd, (sec->flags & SEC_ALLOC)
3960 ? ".dynstr" : ".gnu.libstr");
3961 if (s != NULL)
3962 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3963 break;
3964
3965 case SHT_HASH:
3966 case SHT_GNU_HASH:
3967 case SHT_GNU_versym:
3968 /* sh_link is the section header index of the symbol table
3969 this hash table or version table is for. */
3970 s = bfd_get_section_by_name (abfd, ".dynsym");
3971 if (s != NULL)
3972 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3973 break;
3974
3975 case SHT_GROUP:
3976 d->this_hdr.sh_link = elf_onesymtab (abfd);
3977 }
3978 }
3979
3980 /* Delay setting sh_name to _bfd_elf_write_object_contents so that
3981 _bfd_elf_assign_file_positions_for_non_load can convert DWARF
3982 debug section name from .debug_* to .zdebug_* if needed. */
3983
3984 return TRUE;
3985 }
3986
3987 static bfd_boolean
3988 sym_is_global (bfd *abfd, asymbol *sym)
3989 {
3990 /* If the backend has a special mapping, use it. */
3991 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3992 if (bed->elf_backend_sym_is_global)
3993 return (*bed->elf_backend_sym_is_global) (abfd, sym);
3994
3995 return ((sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE)) != 0
3996 || bfd_is_und_section (bfd_get_section (sym))
3997 || bfd_is_com_section (bfd_get_section (sym)));
3998 }
3999
4000 /* Filter global symbols of ABFD to include in the import library. All
4001 SYMCOUNT symbols of ABFD can be examined from their pointers in
4002 SYMS. Pointers of symbols to keep should be stored contiguously at
4003 the beginning of that array.
4004
4005 Returns the number of symbols to keep. */
4006
4007 unsigned int
4008 _bfd_elf_filter_global_symbols (bfd *abfd, struct bfd_link_info *info,
4009 asymbol **syms, long symcount)
4010 {
4011 long src_count, dst_count = 0;
4012
4013 for (src_count = 0; src_count < symcount; src_count++)
4014 {
4015 asymbol *sym = syms[src_count];
4016 char *name = (char *) bfd_asymbol_name (sym);
4017 struct bfd_link_hash_entry *h;
4018
4019 if (!sym_is_global (abfd, sym))
4020 continue;
4021
4022 h = bfd_link_hash_lookup (info->hash, name, FALSE, FALSE, FALSE);
4023 if (h == NULL)
4024 continue;
4025 if (h->type != bfd_link_hash_defined && h->type != bfd_link_hash_defweak)
4026 continue;
4027 if (h->linker_def || h->ldscript_def)
4028 continue;
4029
4030 syms[dst_count++] = sym;
4031 }
4032
4033 syms[dst_count] = NULL;
4034
4035 return dst_count;
4036 }
4037
4038 /* Don't output section symbols for sections that are not going to be
4039 output, that are duplicates or there is no BFD section. */
4040
4041 static bfd_boolean
4042 ignore_section_sym (bfd *abfd, asymbol *sym)
4043 {
4044 elf_symbol_type *type_ptr;
4045
4046 if (sym == NULL)
4047 return FALSE;
4048
4049 if ((sym->flags & BSF_SECTION_SYM) == 0)
4050 return FALSE;
4051
4052 if (sym->section == NULL)
4053 return TRUE;
4054
4055 type_ptr = elf_symbol_from (abfd, sym);
4056 return ((type_ptr != NULL
4057 && type_ptr->internal_elf_sym.st_shndx != 0
4058 && bfd_is_abs_section (sym->section))
4059 || !(sym->section->owner == abfd
4060 || (sym->section->output_section != NULL
4061 && sym->section->output_section->owner == abfd
4062 && sym->section->output_offset == 0)
4063 || bfd_is_abs_section (sym->section)));
4064 }
4065
4066 /* Map symbol from it's internal number to the external number, moving
4067 all local symbols to be at the head of the list. */
4068
4069 static bfd_boolean
4070 elf_map_symbols (bfd *abfd, unsigned int *pnum_locals)
4071 {
4072 unsigned int symcount = bfd_get_symcount (abfd);
4073 asymbol **syms = bfd_get_outsymbols (abfd);
4074 asymbol **sect_syms;
4075 unsigned int num_locals = 0;
4076 unsigned int num_globals = 0;
4077 unsigned int num_locals2 = 0;
4078 unsigned int num_globals2 = 0;
4079 unsigned int max_index = 0;
4080 unsigned int idx;
4081 asection *asect;
4082 asymbol **new_syms;
4083
4084 #ifdef DEBUG
4085 fprintf (stderr, "elf_map_symbols\n");
4086 fflush (stderr);
4087 #endif
4088
4089 for (asect = abfd->sections; asect; asect = asect->next)
4090 {
4091 if (max_index < asect->index)
4092 max_index = asect->index;
4093 }
4094
4095 max_index++;
4096 sect_syms = (asymbol **) bfd_zalloc2 (abfd, max_index, sizeof (asymbol *));
4097 if (sect_syms == NULL)
4098 return FALSE;
4099 elf_section_syms (abfd) = sect_syms;
4100 elf_num_section_syms (abfd) = max_index;
4101
4102 /* Init sect_syms entries for any section symbols we have already
4103 decided to output. */
4104 for (idx = 0; idx < symcount; idx++)
4105 {
4106 asymbol *sym = syms[idx];
4107
4108 if ((sym->flags & BSF_SECTION_SYM) != 0
4109 && sym->value == 0
4110 && !ignore_section_sym (abfd, sym)
4111 && !bfd_is_abs_section (sym->section))
4112 {
4113 asection *sec = sym->section;
4114
4115 if (sec->owner != abfd)
4116 sec = sec->output_section;
4117
4118 sect_syms[sec->index] = syms[idx];
4119 }
4120 }
4121
4122 /* Classify all of the symbols. */
4123 for (idx = 0; idx < symcount; idx++)
4124 {
4125 if (sym_is_global (abfd, syms[idx]))
4126 num_globals++;
4127 else if (!ignore_section_sym (abfd, syms[idx]))
4128 num_locals++;
4129 }
4130
4131 /* We will be adding a section symbol for each normal BFD section. Most
4132 sections will already have a section symbol in outsymbols, but
4133 eg. SHT_GROUP sections will not, and we need the section symbol mapped
4134 at least in that case. */
4135 for (asect = abfd->sections; asect; asect = asect->next)
4136 {
4137 if (sect_syms[asect->index] == NULL)
4138 {
4139 if (!sym_is_global (abfd, asect->symbol))
4140 num_locals++;
4141 else
4142 num_globals++;
4143 }
4144 }
4145
4146 /* Now sort the symbols so the local symbols are first. */
4147 new_syms = (asymbol **) bfd_alloc2 (abfd, num_locals + num_globals,
4148 sizeof (asymbol *));
4149
4150 if (new_syms == NULL)
4151 return FALSE;
4152
4153 for (idx = 0; idx < symcount; idx++)
4154 {
4155 asymbol *sym = syms[idx];
4156 unsigned int i;
4157
4158 if (sym_is_global (abfd, sym))
4159 i = num_locals + num_globals2++;
4160 else if (!ignore_section_sym (abfd, sym))
4161 i = num_locals2++;
4162 else
4163 continue;
4164 new_syms[i] = sym;
4165 sym->udata.i = i + 1;
4166 }
4167 for (asect = abfd->sections; asect; asect = asect->next)
4168 {
4169 if (sect_syms[asect->index] == NULL)
4170 {
4171 asymbol *sym = asect->symbol;
4172 unsigned int i;
4173
4174 sect_syms[asect->index] = sym;
4175 if (!sym_is_global (abfd, sym))
4176 i = num_locals2++;
4177 else
4178 i = num_locals + num_globals2++;
4179 new_syms[i] = sym;
4180 sym->udata.i = i + 1;
4181 }
4182 }
4183
4184 bfd_set_symtab (abfd, new_syms, num_locals + num_globals);
4185
4186 *pnum_locals = num_locals;
4187 return TRUE;
4188 }
4189
4190 /* Align to the maximum file alignment that could be required for any
4191 ELF data structure. */
4192
4193 static inline file_ptr
4194 align_file_position (file_ptr off, int align)
4195 {
4196 return (off + align - 1) & ~(align - 1);
4197 }
4198
4199 /* Assign a file position to a section, optionally aligning to the
4200 required section alignment. */
4201
4202 file_ptr
4203 _bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr *i_shdrp,
4204 file_ptr offset,
4205 bfd_boolean align)
4206 {
4207 if (align && i_shdrp->sh_addralign > 1)
4208 offset = BFD_ALIGN (offset, i_shdrp->sh_addralign);
4209 i_shdrp->sh_offset = offset;
4210 if (i_shdrp->bfd_section != NULL)
4211 i_shdrp->bfd_section->filepos = offset;
4212 if (i_shdrp->sh_type != SHT_NOBITS)
4213 offset += i_shdrp->sh_size;
4214 return offset;
4215 }
4216
4217 /* Compute the file positions we are going to put the sections at, and
4218 otherwise prepare to begin writing out the ELF file. If LINK_INFO
4219 is not NULL, this is being called by the ELF backend linker. */
4220
4221 bfd_boolean
4222 _bfd_elf_compute_section_file_positions (bfd *abfd,
4223 struct bfd_link_info *link_info)
4224 {
4225 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4226 struct fake_section_arg fsargs;
4227 bfd_boolean failed;
4228 struct elf_strtab_hash *strtab = NULL;
4229 Elf_Internal_Shdr *shstrtab_hdr;
4230 bfd_boolean need_symtab;
4231
4232 if (abfd->output_has_begun)
4233 return TRUE;
4234
4235 /* Do any elf backend specific processing first. */
4236 if (bed->elf_backend_begin_write_processing)
4237 (*bed->elf_backend_begin_write_processing) (abfd, link_info);
4238
4239 if (! prep_headers (abfd))
4240 return FALSE;
4241
4242 /* Post process the headers if necessary. */
4243 (*bed->elf_backend_post_process_headers) (abfd, link_info);
4244
4245 fsargs.failed = FALSE;
4246 fsargs.link_info = link_info;
4247 bfd_map_over_sections (abfd, elf_fake_sections, &fsargs);
4248 if (fsargs.failed)
4249 return FALSE;
4250
4251 if (!assign_section_numbers (abfd, link_info))
4252 return FALSE;
4253
4254 /* The backend linker builds symbol table information itself. */
4255 need_symtab = (link_info == NULL
4256 && (bfd_get_symcount (abfd) > 0
4257 || ((abfd->flags & (EXEC_P | DYNAMIC | HAS_RELOC))
4258 == HAS_RELOC)));
4259 if (need_symtab)
4260 {
4261 /* Non-zero if doing a relocatable link. */
4262 int relocatable_p = ! (abfd->flags & (EXEC_P | DYNAMIC));
4263
4264 if (! swap_out_syms (abfd, &strtab, relocatable_p))
4265 return FALSE;
4266 }
4267
4268 failed = FALSE;
4269 if (link_info == NULL)
4270 {
4271 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
4272 if (failed)
4273 return FALSE;
4274 }
4275
4276 shstrtab_hdr = &elf_tdata (abfd)->shstrtab_hdr;
4277 /* sh_name was set in prep_headers. */
4278 shstrtab_hdr->sh_type = SHT_STRTAB;
4279 shstrtab_hdr->sh_flags = bed->elf_strtab_flags;
4280 shstrtab_hdr->sh_addr = 0;
4281 /* sh_size is set in _bfd_elf_assign_file_positions_for_non_load. */
4282 shstrtab_hdr->sh_entsize = 0;
4283 shstrtab_hdr->sh_link = 0;
4284 shstrtab_hdr->sh_info = 0;
4285 /* sh_offset is set in _bfd_elf_assign_file_positions_for_non_load. */
4286 shstrtab_hdr->sh_addralign = 1;
4287
4288 if (!assign_file_positions_except_relocs (abfd, link_info))
4289 return FALSE;
4290
4291 if (need_symtab)
4292 {
4293 file_ptr off;
4294 Elf_Internal_Shdr *hdr;
4295
4296 off = elf_next_file_pos (abfd);
4297
4298 hdr = & elf_symtab_hdr (abfd);
4299 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4300
4301 if (elf_symtab_shndx_list (abfd) != NULL)
4302 {
4303 hdr = & elf_symtab_shndx_list (abfd)->hdr;
4304 if (hdr->sh_size != 0)
4305 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4306 /* FIXME: What about other symtab_shndx sections in the list ? */
4307 }
4308
4309 hdr = &elf_tdata (abfd)->strtab_hdr;
4310 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4311
4312 elf_next_file_pos (abfd) = off;
4313
4314 /* Now that we know where the .strtab section goes, write it
4315 out. */
4316 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
4317 || ! _bfd_elf_strtab_emit (abfd, strtab))
4318 return FALSE;
4319 _bfd_elf_strtab_free (strtab);
4320 }
4321
4322 abfd->output_has_begun = TRUE;
4323
4324 return TRUE;
4325 }
4326
4327 /* Make an initial estimate of the size of the program header. If we
4328 get the number wrong here, we'll redo section placement. */
4329
4330 static bfd_size_type
4331 get_program_header_size (bfd *abfd, struct bfd_link_info *info)
4332 {
4333 size_t segs;
4334 asection *s;
4335 const struct elf_backend_data *bed;
4336
4337 /* Assume we will need exactly two PT_LOAD segments: one for text
4338 and one for data. */
4339 segs = 2;
4340
4341 s = bfd_get_section_by_name (abfd, ".interp");
4342 if (s != NULL && (s->flags & SEC_LOAD) != 0 && s->size != 0)
4343 {
4344 /* If we have a loadable interpreter section, we need a
4345 PT_INTERP segment. In this case, assume we also need a
4346 PT_PHDR segment, although that may not be true for all
4347 targets. */
4348 segs += 2;
4349 }
4350
4351 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
4352 {
4353 /* We need a PT_DYNAMIC segment. */
4354 ++segs;
4355 }
4356
4357 if (info != NULL && info->relro)
4358 {
4359 /* We need a PT_GNU_RELRO segment. */
4360 ++segs;
4361 }
4362
4363 if (elf_eh_frame_hdr (abfd))
4364 {
4365 /* We need a PT_GNU_EH_FRAME segment. */
4366 ++segs;
4367 }
4368
4369 if (elf_stack_flags (abfd))
4370 {
4371 /* We need a PT_GNU_STACK segment. */
4372 ++segs;
4373 }
4374
4375 for (s = abfd->sections; s != NULL; s = s->next)
4376 {
4377 if ((s->flags & SEC_LOAD) != 0
4378 && elf_section_type (s) == SHT_NOTE)
4379 {
4380 unsigned int alignment_power;
4381 /* We need a PT_NOTE segment. */
4382 ++segs;
4383 /* Try to create just one PT_NOTE segment for all adjacent
4384 loadable SHT_NOTE sections. gABI requires that within a
4385 PT_NOTE segment (and also inside of each SHT_NOTE section)
4386 each note should have the same alignment. So we check
4387 whether the sections are correctly aligned. */
4388 alignment_power = s->alignment_power;
4389 while (s->next != NULL
4390 && s->next->alignment_power == alignment_power
4391 && (s->next->flags & SEC_LOAD) != 0
4392 && elf_section_type (s->next) == SHT_NOTE)
4393 s = s->next;
4394 }
4395 }
4396
4397 for (s = abfd->sections; s != NULL; s = s->next)
4398 {
4399 if (s->flags & SEC_THREAD_LOCAL)
4400 {
4401 /* We need a PT_TLS segment. */
4402 ++segs;
4403 break;
4404 }
4405 }
4406
4407 bed = get_elf_backend_data (abfd);
4408
4409 if ((abfd->flags & D_PAGED) != 0)
4410 {
4411 /* Add a PT_GNU_MBIND segment for each mbind section. */
4412 unsigned int page_align_power = bfd_log2 (bed->commonpagesize);
4413 for (s = abfd->sections; s != NULL; s = s->next)
4414 if (elf_section_flags (s) & SHF_GNU_MBIND)
4415 {
4416 if (elf_section_data (s)->this_hdr.sh_info
4417 > PT_GNU_MBIND_NUM)
4418 {
4419 _bfd_error_handler
4420 /* xgettext:c-format */
4421 (_("%pB: GNU_MBIN section `%pA' has invalid sh_info field: %d"),
4422 abfd, s, elf_section_data (s)->this_hdr.sh_info);
4423 continue;
4424 }
4425 /* Align mbind section to page size. */
4426 if (s->alignment_power < page_align_power)
4427 s->alignment_power = page_align_power;
4428 segs ++;
4429 }
4430 }
4431
4432 /* Let the backend count up any program headers it might need. */
4433 if (bed->elf_backend_additional_program_headers)
4434 {
4435 int a;
4436
4437 a = (*bed->elf_backend_additional_program_headers) (abfd, info);
4438 if (a == -1)
4439 abort ();
4440 segs += a;
4441 }
4442
4443 return segs * bed->s->sizeof_phdr;
4444 }
4445
4446 /* Find the segment that contains the output_section of section. */
4447
4448 Elf_Internal_Phdr *
4449 _bfd_elf_find_segment_containing_section (bfd * abfd, asection * section)
4450 {
4451 struct elf_segment_map *m;
4452 Elf_Internal_Phdr *p;
4453
4454 for (m = elf_seg_map (abfd), p = elf_tdata (abfd)->phdr;
4455 m != NULL;
4456 m = m->next, p++)
4457 {
4458 int i;
4459
4460 for (i = m->count - 1; i >= 0; i--)
4461 if (m->sections[i] == section)
4462 return p;
4463 }
4464
4465 return NULL;
4466 }
4467
4468 /* Create a mapping from a set of sections to a program segment. */
4469
4470 static struct elf_segment_map *
4471 make_mapping (bfd *abfd,
4472 asection **sections,
4473 unsigned int from,
4474 unsigned int to,
4475 bfd_boolean phdr)
4476 {
4477 struct elf_segment_map *m;
4478 unsigned int i;
4479 asection **hdrpp;
4480 bfd_size_type amt;
4481
4482 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
4483 amt += (to - from) * sizeof (asection *);
4484 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4485 if (m == NULL)
4486 return NULL;
4487 m->next = NULL;
4488 m->p_type = PT_LOAD;
4489 for (i = from, hdrpp = sections + from; i < to; i++, hdrpp++)
4490 m->sections[i - from] = *hdrpp;
4491 m->count = to - from;
4492
4493 if (from == 0 && phdr)
4494 {
4495 /* Include the headers in the first PT_LOAD segment. */
4496 m->includes_filehdr = 1;
4497 m->includes_phdrs = 1;
4498 }
4499
4500 return m;
4501 }
4502
4503 /* Create the PT_DYNAMIC segment, which includes DYNSEC. Returns NULL
4504 on failure. */
4505
4506 struct elf_segment_map *
4507 _bfd_elf_make_dynamic_segment (bfd *abfd, asection *dynsec)
4508 {
4509 struct elf_segment_map *m;
4510
4511 m = (struct elf_segment_map *) bfd_zalloc (abfd,
4512 sizeof (struct elf_segment_map));
4513 if (m == NULL)
4514 return NULL;
4515 m->next = NULL;
4516 m->p_type = PT_DYNAMIC;
4517 m->count = 1;
4518 m->sections[0] = dynsec;
4519
4520 return m;
4521 }
4522
4523 /* Possibly add or remove segments from the segment map. */
4524
4525 static bfd_boolean
4526 elf_modify_segment_map (bfd *abfd,
4527 struct bfd_link_info *info,
4528 bfd_boolean remove_empty_load)
4529 {
4530 struct elf_segment_map **m;
4531 const struct elf_backend_data *bed;
4532
4533 /* The placement algorithm assumes that non allocated sections are
4534 not in PT_LOAD segments. We ensure this here by removing such
4535 sections from the segment map. We also remove excluded
4536 sections. Finally, any PT_LOAD segment without sections is
4537 removed. */
4538 m = &elf_seg_map (abfd);
4539 while (*m)
4540 {
4541 unsigned int i, new_count;
4542
4543 for (new_count = 0, i = 0; i < (*m)->count; i++)
4544 {
4545 if (((*m)->sections[i]->flags & SEC_EXCLUDE) == 0
4546 && (((*m)->sections[i]->flags & SEC_ALLOC) != 0
4547 || (*m)->p_type != PT_LOAD))
4548 {
4549 (*m)->sections[new_count] = (*m)->sections[i];
4550 new_count++;
4551 }
4552 }
4553 (*m)->count = new_count;
4554
4555 if (remove_empty_load
4556 && (*m)->p_type == PT_LOAD
4557 && (*m)->count == 0
4558 && !(*m)->includes_phdrs)
4559 *m = (*m)->next;
4560 else
4561 m = &(*m)->next;
4562 }
4563
4564 bed = get_elf_backend_data (abfd);
4565 if (bed->elf_backend_modify_segment_map != NULL)
4566 {
4567 if (!(*bed->elf_backend_modify_segment_map) (abfd, info))
4568 return FALSE;
4569 }
4570
4571 return TRUE;
4572 }
4573
4574 #define IS_TBSS(s) \
4575 ((s->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) == SEC_THREAD_LOCAL)
4576
4577 /* Set up a mapping from BFD sections to program segments. */
4578
4579 bfd_boolean
4580 _bfd_elf_map_sections_to_segments (bfd *abfd, struct bfd_link_info *info)
4581 {
4582 unsigned int count;
4583 struct elf_segment_map *m;
4584 asection **sections = NULL;
4585 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4586 bfd_boolean no_user_phdrs;
4587
4588 no_user_phdrs = elf_seg_map (abfd) == NULL;
4589
4590 if (info != NULL)
4591 info->user_phdrs = !no_user_phdrs;
4592
4593 if (no_user_phdrs && bfd_count_sections (abfd) != 0)
4594 {
4595 asection *s;
4596 unsigned int i;
4597 struct elf_segment_map *mfirst;
4598 struct elf_segment_map **pm;
4599 asection *last_hdr;
4600 bfd_vma last_size;
4601 unsigned int hdr_index;
4602 bfd_vma maxpagesize;
4603 asection **hdrpp;
4604 bfd_boolean phdr_in_segment;
4605 bfd_boolean writable;
4606 bfd_boolean executable;
4607 int tls_count = 0;
4608 asection *first_tls = NULL;
4609 asection *first_mbind = NULL;
4610 asection *dynsec, *eh_frame_hdr;
4611 bfd_size_type amt;
4612 bfd_vma addr_mask, wrap_to = 0;
4613 bfd_size_type phdr_size;
4614
4615 /* Select the allocated sections, and sort them. */
4616
4617 sections = (asection **) bfd_malloc2 (bfd_count_sections (abfd),
4618 sizeof (asection *));
4619 if (sections == NULL)
4620 goto error_return;
4621
4622 /* Calculate top address, avoiding undefined behaviour of shift
4623 left operator when shift count is equal to size of type
4624 being shifted. */
4625 addr_mask = ((bfd_vma) 1 << (bfd_arch_bits_per_address (abfd) - 1)) - 1;
4626 addr_mask = (addr_mask << 1) + 1;
4627
4628 i = 0;
4629 for (s = abfd->sections; s != NULL; s = s->next)
4630 {
4631 if ((s->flags & SEC_ALLOC) != 0)
4632 {
4633 sections[i] = s;
4634 ++i;
4635 /* A wrapping section potentially clashes with header. */
4636 if (((s->lma + s->size) & addr_mask) < (s->lma & addr_mask))
4637 wrap_to = (s->lma + s->size) & addr_mask;
4638 }
4639 }
4640 BFD_ASSERT (i <= bfd_count_sections (abfd));
4641 count = i;
4642
4643 qsort (sections, (size_t) count, sizeof (asection *), elf_sort_sections);
4644
4645 phdr_size = elf_program_header_size (abfd);
4646 if (phdr_size == (bfd_size_type) -1)
4647 phdr_size = get_program_header_size (abfd, info);
4648 phdr_size += bed->s->sizeof_ehdr;
4649 maxpagesize = bed->maxpagesize;
4650 if (maxpagesize == 0)
4651 maxpagesize = 1;
4652 phdr_in_segment = info != NULL && info->load_phdrs;
4653 if (count != 0
4654 && (((sections[0]->lma & addr_mask) & (maxpagesize - 1))
4655 >= (phdr_size & (maxpagesize - 1))))
4656 /* For compatibility with old scripts that may not be using
4657 SIZEOF_HEADERS, add headers when it looks like space has
4658 been left for them. */
4659 phdr_in_segment = TRUE;
4660
4661 /* Build the mapping. */
4662 mfirst = NULL;
4663 pm = &mfirst;
4664
4665 /* If we have a .interp section, then create a PT_PHDR segment for
4666 the program headers and a PT_INTERP segment for the .interp
4667 section. */
4668 s = bfd_get_section_by_name (abfd, ".interp");
4669 if (s != NULL && (s->flags & SEC_LOAD) != 0 && s->size != 0)
4670 {
4671 amt = sizeof (struct elf_segment_map);
4672 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4673 if (m == NULL)
4674 goto error_return;
4675 m->next = NULL;
4676 m->p_type = PT_PHDR;
4677 m->p_flags = PF_R;
4678 m->p_flags_valid = 1;
4679 m->includes_phdrs = 1;
4680 phdr_in_segment = TRUE;
4681 *pm = m;
4682 pm = &m->next;
4683
4684 amt = sizeof (struct elf_segment_map);
4685 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4686 if (m == NULL)
4687 goto error_return;
4688 m->next = NULL;
4689 m->p_type = PT_INTERP;
4690 m->count = 1;
4691 m->sections[0] = s;
4692
4693 *pm = m;
4694 pm = &m->next;
4695 }
4696
4697 /* Look through the sections. We put sections in the same program
4698 segment when the start of the second section can be placed within
4699 a few bytes of the end of the first section. */
4700 last_hdr = NULL;
4701 last_size = 0;
4702 hdr_index = 0;
4703 writable = FALSE;
4704 executable = FALSE;
4705 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
4706 if (dynsec != NULL
4707 && (dynsec->flags & SEC_LOAD) == 0)
4708 dynsec = NULL;
4709
4710 if ((abfd->flags & D_PAGED) == 0)
4711 phdr_in_segment = FALSE;
4712
4713 /* Deal with -Ttext or something similar such that the first section
4714 is not adjacent to the program headers. This is an
4715 approximation, since at this point we don't know exactly how many
4716 program headers we will need. */
4717 if (phdr_in_segment && count > 0)
4718 {
4719 bfd_vma phdr_lma;
4720 bfd_boolean separate_phdr = FALSE;
4721
4722 phdr_lma = (sections[0]->lma - phdr_size) & addr_mask & -maxpagesize;
4723 if (info != NULL
4724 && info->separate_code
4725 && (sections[0]->flags & SEC_CODE) != 0)
4726 {
4727 /* If data sections should be separate from code and
4728 thus not executable, and the first section is
4729 executable then put the file and program headers in
4730 their own PT_LOAD. */
4731 separate_phdr = TRUE;
4732 if ((((phdr_lma + phdr_size - 1) & addr_mask & -maxpagesize)
4733 == (sections[0]->lma & addr_mask & -maxpagesize)))
4734 {
4735 /* The file and program headers are currently on the
4736 same page as the first section. Put them on the
4737 previous page if we can. */
4738 if (phdr_lma >= maxpagesize)
4739 phdr_lma -= maxpagesize;
4740 else
4741 separate_phdr = FALSE;
4742 }
4743 }
4744 if ((sections[0]->lma & addr_mask) < phdr_lma
4745 || (sections[0]->lma & addr_mask) < phdr_size)
4746 /* If file and program headers would be placed at the end
4747 of memory then it's probably better to omit them. */
4748 phdr_in_segment = FALSE;
4749 else if (phdr_lma < wrap_to)
4750 /* If a section wraps around to where we'll be placing
4751 file and program headers, then the headers will be
4752 overwritten. */
4753 phdr_in_segment = FALSE;
4754 else if (separate_phdr)
4755 {
4756 m = make_mapping (abfd, sections, 0, 0, phdr_in_segment);
4757 if (m == NULL)
4758 goto error_return;
4759 m->p_paddr = phdr_lma;
4760 m->p_vaddr_offset
4761 = (sections[0]->vma - phdr_size) & addr_mask & -maxpagesize;
4762 m->p_paddr_valid = 1;
4763 *pm = m;
4764 pm = &m->next;
4765 phdr_in_segment = FALSE;
4766 }
4767 }
4768
4769 for (i = 0, hdrpp = sections; i < count; i++, hdrpp++)
4770 {
4771 asection *hdr;
4772 bfd_boolean new_segment;
4773
4774 hdr = *hdrpp;
4775
4776 /* See if this section and the last one will fit in the same
4777 segment. */
4778
4779 if (last_hdr == NULL)
4780 {
4781 /* If we don't have a segment yet, then we don't need a new
4782 one (we build the last one after this loop). */
4783 new_segment = FALSE;
4784 }
4785 else if (last_hdr->lma - last_hdr->vma != hdr->lma - hdr->vma)
4786 {
4787 /* If this section has a different relation between the
4788 virtual address and the load address, then we need a new
4789 segment. */
4790 new_segment = TRUE;
4791 }
4792 else if (hdr->lma < last_hdr->lma + last_size
4793 || last_hdr->lma + last_size < last_hdr->lma)
4794 {
4795 /* If this section has a load address that makes it overlap
4796 the previous section, then we need a new segment. */
4797 new_segment = TRUE;
4798 }
4799 else if ((abfd->flags & D_PAGED) != 0
4800 && (((last_hdr->lma + last_size - 1) & -maxpagesize)
4801 == (hdr->lma & -maxpagesize)))
4802 {
4803 /* If we are demand paged then we can't map two disk
4804 pages onto the same memory page. */
4805 new_segment = FALSE;
4806 }
4807 /* In the next test we have to be careful when last_hdr->lma is close
4808 to the end of the address space. If the aligned address wraps
4809 around to the start of the address space, then there are no more
4810 pages left in memory and it is OK to assume that the current
4811 section can be included in the current segment. */
4812 else if ((BFD_ALIGN (last_hdr->lma + last_size, maxpagesize)
4813 + maxpagesize > last_hdr->lma)
4814 && (BFD_ALIGN (last_hdr->lma + last_size, maxpagesize)
4815 + maxpagesize <= hdr->lma))
4816 {
4817 /* If putting this section in this segment would force us to
4818 skip a page in the segment, then we need a new segment. */
4819 new_segment = TRUE;
4820 }
4821 else if ((last_hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0
4822 && (hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) != 0)
4823 {
4824 /* We don't want to put a loaded section after a
4825 nonloaded (ie. bss style) section in the same segment
4826 as that will force the non-loaded section to be loaded.
4827 Consider .tbss sections as loaded for this purpose. */
4828 new_segment = TRUE;
4829 }
4830 else if ((abfd->flags & D_PAGED) == 0)
4831 {
4832 /* If the file is not demand paged, which means that we
4833 don't require the sections to be correctly aligned in the
4834 file, then there is no other reason for a new segment. */
4835 new_segment = FALSE;
4836 }
4837 else if (info != NULL
4838 && info->separate_code
4839 && executable != ((hdr->flags & SEC_CODE) != 0))
4840 {
4841 new_segment = TRUE;
4842 }
4843 else if (! writable
4844 && (hdr->flags & SEC_READONLY) == 0)
4845 {
4846 /* We don't want to put a writable section in a read only
4847 segment. */
4848 new_segment = TRUE;
4849 }
4850 else
4851 {
4852 /* Otherwise, we can use the same segment. */
4853 new_segment = FALSE;
4854 }
4855
4856 /* Allow interested parties a chance to override our decision. */
4857 if (last_hdr != NULL
4858 && info != NULL
4859 && info->callbacks->override_segment_assignment != NULL)
4860 new_segment
4861 = info->callbacks->override_segment_assignment (info, abfd, hdr,
4862 last_hdr,
4863 new_segment);
4864
4865 if (! new_segment)
4866 {
4867 if ((hdr->flags & SEC_READONLY) == 0)
4868 writable = TRUE;
4869 if ((hdr->flags & SEC_CODE) != 0)
4870 executable = TRUE;
4871 last_hdr = hdr;
4872 /* .tbss sections effectively have zero size. */
4873 last_size = !IS_TBSS (hdr) ? hdr->size : 0;
4874 continue;
4875 }
4876
4877 /* We need a new program segment. We must create a new program
4878 header holding all the sections from hdr_index until hdr. */
4879
4880 m = make_mapping (abfd, sections, hdr_index, i, phdr_in_segment);
4881 if (m == NULL)
4882 goto error_return;
4883
4884 *pm = m;
4885 pm = &m->next;
4886
4887 if ((hdr->flags & SEC_READONLY) == 0)
4888 writable = TRUE;
4889 else
4890 writable = FALSE;
4891
4892 if ((hdr->flags & SEC_CODE) == 0)
4893 executable = FALSE;
4894 else
4895 executable = TRUE;
4896
4897 last_hdr = hdr;
4898 /* .tbss sections effectively have zero size. */
4899 last_size = !IS_TBSS (hdr) ? hdr->size : 0;
4900 hdr_index = i;
4901 phdr_in_segment = FALSE;
4902 }
4903
4904 /* Create a final PT_LOAD program segment, but not if it's just
4905 for .tbss. */
4906 if (last_hdr != NULL
4907 && (i - hdr_index != 1
4908 || !IS_TBSS (last_hdr)))
4909 {
4910 m = make_mapping (abfd, sections, hdr_index, i, phdr_in_segment);
4911 if (m == NULL)
4912 goto error_return;
4913
4914 *pm = m;
4915 pm = &m->next;
4916 }
4917
4918 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
4919 if (dynsec != NULL)
4920 {
4921 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
4922 if (m == NULL)
4923 goto error_return;
4924 *pm = m;
4925 pm = &m->next;
4926 }
4927
4928 /* For each batch of consecutive loadable SHT_NOTE sections,
4929 add a PT_NOTE segment. We don't use bfd_get_section_by_name,
4930 because if we link together nonloadable .note sections and
4931 loadable .note sections, we will generate two .note sections
4932 in the output file. */
4933 for (s = abfd->sections; s != NULL; s = s->next)
4934 {
4935 if ((s->flags & SEC_LOAD) != 0
4936 && elf_section_type (s) == SHT_NOTE)
4937 {
4938 asection *s2;
4939 unsigned int alignment_power = s->alignment_power;
4940
4941 count = 1;
4942 for (s2 = s; s2->next != NULL; s2 = s2->next)
4943 {
4944 if (s2->next->alignment_power == alignment_power
4945 && (s2->next->flags & SEC_LOAD) != 0
4946 && elf_section_type (s2->next) == SHT_NOTE
4947 && align_power (s2->lma + s2->size,
4948 alignment_power)
4949 == s2->next->lma)
4950 count++;
4951 else
4952 break;
4953 }
4954 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
4955 amt += count * sizeof (asection *);
4956 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4957 if (m == NULL)
4958 goto error_return;
4959 m->next = NULL;
4960 m->p_type = PT_NOTE;
4961 m->count = count;
4962 while (count > 1)
4963 {
4964 m->sections[m->count - count--] = s;
4965 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
4966 s = s->next;
4967 }
4968 m->sections[m->count - 1] = s;
4969 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
4970 *pm = m;
4971 pm = &m->next;
4972 }
4973 if (s->flags & SEC_THREAD_LOCAL)
4974 {
4975 if (! tls_count)
4976 first_tls = s;
4977 tls_count++;
4978 }
4979 if (first_mbind == NULL
4980 && (elf_section_flags (s) & SHF_GNU_MBIND) != 0)
4981 first_mbind = s;
4982 }
4983
4984 /* If there are any SHF_TLS output sections, add PT_TLS segment. */
4985 if (tls_count > 0)
4986 {
4987 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
4988 amt += tls_count * sizeof (asection *);
4989 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4990 if (m == NULL)
4991 goto error_return;
4992 m->next = NULL;
4993 m->p_type = PT_TLS;
4994 m->count = tls_count;
4995 /* Mandated PF_R. */
4996 m->p_flags = PF_R;
4997 m->p_flags_valid = 1;
4998 s = first_tls;
4999 for (i = 0; i < (unsigned int) tls_count; ++i)
5000 {
5001 if ((s->flags & SEC_THREAD_LOCAL) == 0)
5002 {
5003 _bfd_error_handler
5004 (_("%pB: TLS sections are not adjacent:"), abfd);
5005 s = first_tls;
5006 i = 0;
5007 while (i < (unsigned int) tls_count)
5008 {
5009 if ((s->flags & SEC_THREAD_LOCAL) != 0)
5010 {
5011 _bfd_error_handler (_(" TLS: %pA"), s);
5012 i++;
5013 }
5014 else
5015 _bfd_error_handler (_(" non-TLS: %pA"), s);
5016 s = s->next;
5017 }
5018 bfd_set_error (bfd_error_bad_value);
5019 goto error_return;
5020 }
5021 m->sections[i] = s;
5022 s = s->next;
5023 }
5024
5025 *pm = m;
5026 pm = &m->next;
5027 }
5028
5029 if (first_mbind && (abfd->flags & D_PAGED) != 0)
5030 for (s = first_mbind; s != NULL; s = s->next)
5031 if ((elf_section_flags (s) & SHF_GNU_MBIND) != 0
5032 && (elf_section_data (s)->this_hdr.sh_info
5033 <= PT_GNU_MBIND_NUM))
5034 {
5035 /* Mandated PF_R. */
5036 unsigned long p_flags = PF_R;
5037 if ((s->flags & SEC_READONLY) == 0)
5038 p_flags |= PF_W;
5039 if ((s->flags & SEC_CODE) != 0)
5040 p_flags |= PF_X;
5041
5042 amt = sizeof (struct elf_segment_map) + sizeof (asection *);
5043 m = bfd_zalloc (abfd, amt);
5044 if (m == NULL)
5045 goto error_return;
5046 m->next = NULL;
5047 m->p_type = (PT_GNU_MBIND_LO
5048 + elf_section_data (s)->this_hdr.sh_info);
5049 m->count = 1;
5050 m->p_flags_valid = 1;
5051 m->sections[0] = s;
5052 m->p_flags = p_flags;
5053
5054 *pm = m;
5055 pm = &m->next;
5056 }
5057
5058 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
5059 segment. */
5060 eh_frame_hdr = elf_eh_frame_hdr (abfd);
5061 if (eh_frame_hdr != NULL
5062 && (eh_frame_hdr->output_section->flags & SEC_LOAD) != 0)
5063 {
5064 amt = sizeof (struct elf_segment_map);
5065 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
5066 if (m == NULL)
5067 goto error_return;
5068 m->next = NULL;
5069 m->p_type = PT_GNU_EH_FRAME;
5070 m->count = 1;
5071 m->sections[0] = eh_frame_hdr->output_section;
5072
5073 *pm = m;
5074 pm = &m->next;
5075 }
5076
5077 if (elf_stack_flags (abfd))
5078 {
5079 amt = sizeof (struct elf_segment_map);
5080 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
5081 if (m == NULL)
5082 goto error_return;
5083 m->next = NULL;
5084 m->p_type = PT_GNU_STACK;
5085 m->p_flags = elf_stack_flags (abfd);
5086 m->p_align = bed->stack_align;
5087 m->p_flags_valid = 1;
5088 m->p_align_valid = m->p_align != 0;
5089 if (info->stacksize > 0)
5090 {
5091 m->p_size = info->stacksize;
5092 m->p_size_valid = 1;
5093 }
5094
5095 *pm = m;
5096 pm = &m->next;
5097 }
5098
5099 if (info != NULL && info->relro)
5100 {
5101 for (m = mfirst; m != NULL; m = m->next)
5102 {
5103 if (m->p_type == PT_LOAD
5104 && m->count != 0
5105 && m->sections[0]->vma >= info->relro_start
5106 && m->sections[0]->vma < info->relro_end)
5107 {
5108 i = m->count;
5109 while (--i != (unsigned) -1)
5110 if ((m->sections[i]->flags & (SEC_LOAD | SEC_HAS_CONTENTS))
5111 == (SEC_LOAD | SEC_HAS_CONTENTS))
5112 break;
5113
5114 if (i != (unsigned) -1)
5115 break;
5116 }
5117 }
5118
5119 /* Make a PT_GNU_RELRO segment only when it isn't empty. */
5120 if (m != NULL)
5121 {
5122 amt = sizeof (struct elf_segment_map);
5123 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
5124 if (m == NULL)
5125 goto error_return;
5126 m->next = NULL;
5127 m->p_type = PT_GNU_RELRO;
5128 *pm = m;
5129 pm = &m->next;
5130 }
5131 }
5132
5133 free (sections);
5134 elf_seg_map (abfd) = mfirst;
5135 }
5136
5137 if (!elf_modify_segment_map (abfd, info, no_user_phdrs))
5138 return FALSE;
5139
5140 for (count = 0, m = elf_seg_map (abfd); m != NULL; m = m->next)
5141 ++count;
5142 elf_program_header_size (abfd) = count * bed->s->sizeof_phdr;
5143
5144 return TRUE;
5145
5146 error_return:
5147 if (sections != NULL)
5148 free (sections);
5149 return FALSE;
5150 }
5151
5152 /* Sort sections by address. */
5153
5154 static int
5155 elf_sort_sections (const void *arg1, const void *arg2)
5156 {
5157 const asection *sec1 = *(const asection **) arg1;
5158 const asection *sec2 = *(const asection **) arg2;
5159 bfd_size_type size1, size2;
5160
5161 /* Sort by LMA first, since this is the address used to
5162 place the section into a segment. */
5163 if (sec1->lma < sec2->lma)
5164 return -1;
5165 else if (sec1->lma > sec2->lma)
5166 return 1;
5167
5168 /* Then sort by VMA. Normally the LMA and the VMA will be
5169 the same, and this will do nothing. */
5170 if (sec1->vma < sec2->vma)
5171 return -1;
5172 else if (sec1->vma > sec2->vma)
5173 return 1;
5174
5175 /* Put !SEC_LOAD sections after SEC_LOAD ones. */
5176
5177 #define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0)
5178
5179 if (TOEND (sec1))
5180 {
5181 if (TOEND (sec2))
5182 {
5183 /* If the indices are the same, do not return 0
5184 here, but continue to try the next comparison. */
5185 if (sec1->target_index - sec2->target_index != 0)
5186 return sec1->target_index - sec2->target_index;
5187 }
5188 else
5189 return 1;
5190 }
5191 else if (TOEND (sec2))
5192 return -1;
5193
5194 #undef TOEND
5195
5196 /* Sort by size, to put zero sized sections
5197 before others at the same address. */
5198
5199 size1 = (sec1->flags & SEC_LOAD) ? sec1->size : 0;
5200 size2 = (sec2->flags & SEC_LOAD) ? sec2->size : 0;
5201
5202 if (size1 < size2)
5203 return -1;
5204 if (size1 > size2)
5205 return 1;
5206
5207 return sec1->target_index - sec2->target_index;
5208 }
5209
5210 /* Ian Lance Taylor writes:
5211
5212 We shouldn't be using % with a negative signed number. That's just
5213 not good. We have to make sure either that the number is not
5214 negative, or that the number has an unsigned type. When the types
5215 are all the same size they wind up as unsigned. When file_ptr is a
5216 larger signed type, the arithmetic winds up as signed long long,
5217 which is wrong.
5218
5219 What we're trying to say here is something like ``increase OFF by
5220 the least amount that will cause it to be equal to the VMA modulo
5221 the page size.'' */
5222 /* In other words, something like:
5223
5224 vma_offset = m->sections[0]->vma % bed->maxpagesize;
5225 off_offset = off % bed->maxpagesize;
5226 if (vma_offset < off_offset)
5227 adjustment = vma_offset + bed->maxpagesize - off_offset;
5228 else
5229 adjustment = vma_offset - off_offset;
5230
5231 which can be collapsed into the expression below. */
5232
5233 static file_ptr
5234 vma_page_aligned_bias (bfd_vma vma, ufile_ptr off, bfd_vma maxpagesize)
5235 {
5236 /* PR binutils/16199: Handle an alignment of zero. */
5237 if (maxpagesize == 0)
5238 maxpagesize = 1;
5239 return ((vma - off) % maxpagesize);
5240 }
5241
5242 static void
5243 print_segment_map (const struct elf_segment_map *m)
5244 {
5245 unsigned int j;
5246 const char *pt = get_segment_type (m->p_type);
5247 char buf[32];
5248
5249 if (pt == NULL)
5250 {
5251 if (m->p_type >= PT_LOPROC && m->p_type <= PT_HIPROC)
5252 sprintf (buf, "LOPROC+%7.7x",
5253 (unsigned int) (m->p_type - PT_LOPROC));
5254 else if (m->p_type >= PT_LOOS && m->p_type <= PT_HIOS)
5255 sprintf (buf, "LOOS+%7.7x",
5256 (unsigned int) (m->p_type - PT_LOOS));
5257 else
5258 snprintf (buf, sizeof (buf), "%8.8x",
5259 (unsigned int) m->p_type);
5260 pt = buf;
5261 }
5262 fflush (stdout);
5263 fprintf (stderr, "%s:", pt);
5264 for (j = 0; j < m->count; j++)
5265 fprintf (stderr, " %s", m->sections [j]->name);
5266 putc ('\n',stderr);
5267 fflush (stderr);
5268 }
5269
5270 static bfd_boolean
5271 write_zeros (bfd *abfd, file_ptr pos, bfd_size_type len)
5272 {
5273 void *buf;
5274 bfd_boolean ret;
5275
5276 if (bfd_seek (abfd, pos, SEEK_SET) != 0)
5277 return FALSE;
5278 buf = bfd_zmalloc (len);
5279 if (buf == NULL)
5280 return FALSE;
5281 ret = bfd_bwrite (buf, len, abfd) == len;
5282 free (buf);
5283 return ret;
5284 }
5285
5286 /* Assign file positions to the sections based on the mapping from
5287 sections to segments. This function also sets up some fields in
5288 the file header. */
5289
5290 static bfd_boolean
5291 assign_file_positions_for_load_sections (bfd *abfd,
5292 struct bfd_link_info *link_info)
5293 {
5294 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5295 struct elf_segment_map *m;
5296 Elf_Internal_Phdr *phdrs;
5297 Elf_Internal_Phdr *p;
5298 file_ptr off;
5299 bfd_size_type maxpagesize;
5300 unsigned int pt_load_count = 0;
5301 unsigned int alloc;
5302 unsigned int i, j;
5303 bfd_vma header_pad = 0;
5304
5305 if (link_info == NULL
5306 && !_bfd_elf_map_sections_to_segments (abfd, link_info))
5307 return FALSE;
5308
5309 alloc = 0;
5310 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
5311 {
5312 ++alloc;
5313 if (m->header_size)
5314 header_pad = m->header_size;
5315 }
5316
5317 if (alloc)
5318 {
5319 elf_elfheader (abfd)->e_phoff = bed->s->sizeof_ehdr;
5320 elf_elfheader (abfd)->e_phentsize = bed->s->sizeof_phdr;
5321 }
5322 else
5323 {
5324 /* PR binutils/12467. */
5325 elf_elfheader (abfd)->e_phoff = 0;
5326 elf_elfheader (abfd)->e_phentsize = 0;
5327 }
5328
5329 elf_elfheader (abfd)->e_phnum = alloc;
5330
5331 if (elf_program_header_size (abfd) == (bfd_size_type) -1)
5332 elf_program_header_size (abfd) = alloc * bed->s->sizeof_phdr;
5333 else
5334 BFD_ASSERT (elf_program_header_size (abfd)
5335 >= alloc * bed->s->sizeof_phdr);
5336
5337 if (alloc == 0)
5338 {
5339 elf_next_file_pos (abfd) = bed->s->sizeof_ehdr;
5340 return TRUE;
5341 }
5342
5343 /* We're writing the size in elf_program_header_size (abfd),
5344 see assign_file_positions_except_relocs, so make sure we have
5345 that amount allocated, with trailing space cleared.
5346 The variable alloc contains the computed need, while
5347 elf_program_header_size (abfd) contains the size used for the
5348 layout.
5349 See ld/emultempl/elf-generic.em:gld${EMULATION_NAME}_map_segments
5350 where the layout is forced to according to a larger size in the
5351 last iterations for the testcase ld-elf/header. */
5352 BFD_ASSERT (elf_program_header_size (abfd) % bed->s->sizeof_phdr
5353 == 0);
5354 phdrs = (Elf_Internal_Phdr *)
5355 bfd_zalloc2 (abfd,
5356 (elf_program_header_size (abfd) / bed->s->sizeof_phdr),
5357 sizeof (Elf_Internal_Phdr));
5358 elf_tdata (abfd)->phdr = phdrs;
5359 if (phdrs == NULL)
5360 return FALSE;
5361
5362 maxpagesize = 1;
5363 if ((abfd->flags & D_PAGED) != 0)
5364 maxpagesize = bed->maxpagesize;
5365
5366 off = bed->s->sizeof_ehdr;
5367 off += alloc * bed->s->sizeof_phdr;
5368 if (header_pad < (bfd_vma) off)
5369 header_pad = 0;
5370 else
5371 header_pad -= off;
5372 off += header_pad;
5373
5374 for (m = elf_seg_map (abfd), p = phdrs, j = 0;
5375 m != NULL;
5376 m = m->next, p++, j++)
5377 {
5378 asection **secpp;
5379 bfd_vma off_adjust;
5380 bfd_boolean no_contents;
5381
5382 /* If elf_segment_map is not from map_sections_to_segments, the
5383 sections may not be correctly ordered. NOTE: sorting should
5384 not be done to the PT_NOTE section of a corefile, which may
5385 contain several pseudo-sections artificially created by bfd.
5386 Sorting these pseudo-sections breaks things badly. */
5387 if (m->count > 1
5388 && !(elf_elfheader (abfd)->e_type == ET_CORE
5389 && m->p_type == PT_NOTE))
5390 qsort (m->sections, (size_t) m->count, sizeof (asection *),
5391 elf_sort_sections);
5392
5393 /* An ELF segment (described by Elf_Internal_Phdr) may contain a
5394 number of sections with contents contributing to both p_filesz
5395 and p_memsz, followed by a number of sections with no contents
5396 that just contribute to p_memsz. In this loop, OFF tracks next
5397 available file offset for PT_LOAD and PT_NOTE segments. */
5398 p->p_type = m->p_type;
5399 p->p_flags = m->p_flags;
5400
5401 if (m->count == 0)
5402 p->p_vaddr = m->p_vaddr_offset;
5403 else
5404 p->p_vaddr = m->sections[0]->vma + m->p_vaddr_offset;
5405
5406 if (m->p_paddr_valid)
5407 p->p_paddr = m->p_paddr;
5408 else if (m->count == 0)
5409 p->p_paddr = 0;
5410 else
5411 p->p_paddr = m->sections[0]->lma + m->p_vaddr_offset;
5412
5413 if (p->p_type == PT_LOAD
5414 && (abfd->flags & D_PAGED) != 0)
5415 {
5416 /* p_align in demand paged PT_LOAD segments effectively stores
5417 the maximum page size. When copying an executable with
5418 objcopy, we set m->p_align from the input file. Use this
5419 value for maxpagesize rather than bed->maxpagesize, which
5420 may be different. Note that we use maxpagesize for PT_TLS
5421 segment alignment later in this function, so we are relying
5422 on at least one PT_LOAD segment appearing before a PT_TLS
5423 segment. */
5424 if (m->p_align_valid)
5425 maxpagesize = m->p_align;
5426
5427 p->p_align = maxpagesize;
5428 pt_load_count += 1;
5429 }
5430 else if (m->p_align_valid)
5431 p->p_align = m->p_align;
5432 else if (m->count == 0)
5433 p->p_align = 1 << bed->s->log_file_align;
5434 else
5435 p->p_align = 0;
5436
5437 no_contents = FALSE;
5438 off_adjust = 0;
5439 if (p->p_type == PT_LOAD
5440 && m->count > 0)
5441 {
5442 bfd_size_type align;
5443 unsigned int align_power = 0;
5444
5445 if (m->p_align_valid)
5446 align = p->p_align;
5447 else
5448 {
5449 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
5450 {
5451 unsigned int secalign;
5452
5453 secalign = bfd_get_section_alignment (abfd, *secpp);
5454 if (secalign > align_power)
5455 align_power = secalign;
5456 }
5457 align = (bfd_size_type) 1 << align_power;
5458 if (align < maxpagesize)
5459 align = maxpagesize;
5460 }
5461
5462 for (i = 0; i < m->count; i++)
5463 if ((m->sections[i]->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
5464 /* If we aren't making room for this section, then
5465 it must be SHT_NOBITS regardless of what we've
5466 set via struct bfd_elf_special_section. */
5467 elf_section_type (m->sections[i]) = SHT_NOBITS;
5468
5469 /* Find out whether this segment contains any loadable
5470 sections. */
5471 no_contents = TRUE;
5472 for (i = 0; i < m->count; i++)
5473 if (elf_section_type (m->sections[i]) != SHT_NOBITS)
5474 {
5475 no_contents = FALSE;
5476 break;
5477 }
5478
5479 off_adjust = vma_page_aligned_bias (p->p_vaddr, off, align);
5480
5481 /* Broken hardware and/or kernel require that files do not
5482 map the same page with different permissions on some hppa
5483 processors. */
5484 if (pt_load_count > 1
5485 && bed->no_page_alias
5486 && (off & (maxpagesize - 1)) != 0
5487 && (off & -maxpagesize) == ((off + off_adjust) & -maxpagesize))
5488 off_adjust += maxpagesize;
5489 off += off_adjust;
5490 if (no_contents)
5491 {
5492 /* We shouldn't need to align the segment on disk since
5493 the segment doesn't need file space, but the gABI
5494 arguably requires the alignment and glibc ld.so
5495 checks it. So to comply with the alignment
5496 requirement but not waste file space, we adjust
5497 p_offset for just this segment. (OFF_ADJUST is
5498 subtracted from OFF later.) This may put p_offset
5499 past the end of file, but that shouldn't matter. */
5500 }
5501 else
5502 off_adjust = 0;
5503 }
5504 /* Make sure the .dynamic section is the first section in the
5505 PT_DYNAMIC segment. */
5506 else if (p->p_type == PT_DYNAMIC
5507 && m->count > 1
5508 && strcmp (m->sections[0]->name, ".dynamic") != 0)
5509 {
5510 _bfd_error_handler
5511 (_("%pB: The first section in the PT_DYNAMIC segment"
5512 " is not the .dynamic section"),
5513 abfd);
5514 bfd_set_error (bfd_error_bad_value);
5515 return FALSE;
5516 }
5517 /* Set the note section type to SHT_NOTE. */
5518 else if (p->p_type == PT_NOTE)
5519 for (i = 0; i < m->count; i++)
5520 elf_section_type (m->sections[i]) = SHT_NOTE;
5521
5522 p->p_offset = 0;
5523 p->p_filesz = 0;
5524 p->p_memsz = 0;
5525
5526 if (m->includes_filehdr)
5527 {
5528 if (!m->p_flags_valid)
5529 p->p_flags |= PF_R;
5530 p->p_filesz = bed->s->sizeof_ehdr;
5531 p->p_memsz = bed->s->sizeof_ehdr;
5532 if (m->count > 0)
5533 {
5534 if (p->p_vaddr < (bfd_vma) off
5535 || (!m->p_paddr_valid
5536 && p->p_paddr < (bfd_vma) off))
5537 {
5538 _bfd_error_handler
5539 (_("%pB: not enough room for program headers,"
5540 " try linking with -N"),
5541 abfd);
5542 bfd_set_error (bfd_error_bad_value);
5543 return FALSE;
5544 }
5545
5546 p->p_vaddr -= off;
5547 if (!m->p_paddr_valid)
5548 p->p_paddr -= off;
5549 }
5550 }
5551
5552 if (m->includes_phdrs)
5553 {
5554 if (!m->p_flags_valid)
5555 p->p_flags |= PF_R;
5556
5557 if (!m->includes_filehdr)
5558 {
5559 p->p_offset = bed->s->sizeof_ehdr;
5560
5561 if (m->count > 0)
5562 {
5563 p->p_vaddr -= off - p->p_offset;
5564 if (!m->p_paddr_valid)
5565 p->p_paddr -= off - p->p_offset;
5566 }
5567 }
5568
5569 p->p_filesz += alloc * bed->s->sizeof_phdr;
5570 p->p_memsz += alloc * bed->s->sizeof_phdr;
5571 if (m->count)
5572 {
5573 p->p_filesz += header_pad;
5574 p->p_memsz += header_pad;
5575 }
5576 }
5577
5578 if (p->p_type == PT_LOAD
5579 || (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core))
5580 {
5581 if (!m->includes_filehdr && !m->includes_phdrs)
5582 p->p_offset = off;
5583 else
5584 {
5585 file_ptr adjust;
5586
5587 adjust = off - (p->p_offset + p->p_filesz);
5588 if (!no_contents)
5589 p->p_filesz += adjust;
5590 p->p_memsz += adjust;
5591 }
5592 }
5593
5594 /* Set up p_filesz, p_memsz, p_align and p_flags from the section
5595 maps. Set filepos for sections in PT_LOAD segments, and in
5596 core files, for sections in PT_NOTE segments.
5597 assign_file_positions_for_non_load_sections will set filepos
5598 for other sections and update p_filesz for other segments. */
5599 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
5600 {
5601 asection *sec;
5602 bfd_size_type align;
5603 Elf_Internal_Shdr *this_hdr;
5604
5605 sec = *secpp;
5606 this_hdr = &elf_section_data (sec)->this_hdr;
5607 align = (bfd_size_type) 1 << bfd_get_section_alignment (abfd, sec);
5608
5609 if ((p->p_type == PT_LOAD
5610 || p->p_type == PT_TLS)
5611 && (this_hdr->sh_type != SHT_NOBITS
5612 || ((this_hdr->sh_flags & SHF_ALLOC) != 0
5613 && ((this_hdr->sh_flags & SHF_TLS) == 0
5614 || p->p_type == PT_TLS))))
5615 {
5616 bfd_vma p_start = p->p_paddr;
5617 bfd_vma p_end = p_start + p->p_memsz;
5618 bfd_vma s_start = sec->lma;
5619 bfd_vma adjust = s_start - p_end;
5620
5621 if (adjust != 0
5622 && (s_start < p_end
5623 || p_end < p_start))
5624 {
5625 _bfd_error_handler
5626 /* xgettext:c-format */
5627 (_("%pB: section %pA lma %#" PRIx64 " adjusted to %#" PRIx64),
5628 abfd, sec, (uint64_t) s_start, (uint64_t) p_end);
5629 adjust = 0;
5630 sec->lma = p_end;
5631 }
5632 p->p_memsz += adjust;
5633
5634 if (this_hdr->sh_type != SHT_NOBITS)
5635 {
5636 if (p->p_filesz + adjust < p->p_memsz)
5637 {
5638 /* We have a PROGBITS section following NOBITS ones.
5639 Allocate file space for the NOBITS section(s) and
5640 zero it. */
5641 adjust = p->p_memsz - p->p_filesz;
5642 if (!write_zeros (abfd, off, adjust))
5643 return FALSE;
5644 }
5645 off += adjust;
5646 p->p_filesz += adjust;
5647 }
5648 }
5649
5650 if (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core)
5651 {
5652 /* The section at i == 0 is the one that actually contains
5653 everything. */
5654 if (i == 0)
5655 {
5656 this_hdr->sh_offset = sec->filepos = off;
5657 off += this_hdr->sh_size;
5658 p->p_filesz = this_hdr->sh_size;
5659 p->p_memsz = 0;
5660 p->p_align = 1;
5661 }
5662 else
5663 {
5664 /* The rest are fake sections that shouldn't be written. */
5665 sec->filepos = 0;
5666 sec->size = 0;
5667 sec->flags = 0;
5668 continue;
5669 }
5670 }
5671 else
5672 {
5673 if (p->p_type == PT_LOAD)
5674 {
5675 this_hdr->sh_offset = sec->filepos = off;
5676 if (this_hdr->sh_type != SHT_NOBITS)
5677 off += this_hdr->sh_size;
5678 }
5679 else if (this_hdr->sh_type == SHT_NOBITS
5680 && (this_hdr->sh_flags & SHF_TLS) != 0
5681 && this_hdr->sh_offset == 0)
5682 {
5683 /* This is a .tbss section that didn't get a PT_LOAD.
5684 (See _bfd_elf_map_sections_to_segments "Create a
5685 final PT_LOAD".) Set sh_offset to the value it
5686 would have if we had created a zero p_filesz and
5687 p_memsz PT_LOAD header for the section. This
5688 also makes the PT_TLS header have the same
5689 p_offset value. */
5690 bfd_vma adjust = vma_page_aligned_bias (this_hdr->sh_addr,
5691 off, align);
5692 this_hdr->sh_offset = sec->filepos = off + adjust;
5693 }
5694
5695 if (this_hdr->sh_type != SHT_NOBITS)
5696 {
5697 p->p_filesz += this_hdr->sh_size;
5698 /* A load section without SHF_ALLOC is something like
5699 a note section in a PT_NOTE segment. These take
5700 file space but are not loaded into memory. */
5701 if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
5702 p->p_memsz += this_hdr->sh_size;
5703 }
5704 else if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
5705 {
5706 if (p->p_type == PT_TLS)
5707 p->p_memsz += this_hdr->sh_size;
5708
5709 /* .tbss is special. It doesn't contribute to p_memsz of
5710 normal segments. */
5711 else if ((this_hdr->sh_flags & SHF_TLS) == 0)
5712 p->p_memsz += this_hdr->sh_size;
5713 }
5714
5715 if (align > p->p_align
5716 && !m->p_align_valid
5717 && (p->p_type != PT_LOAD
5718 || (abfd->flags & D_PAGED) == 0))
5719 p->p_align = align;
5720 }
5721
5722 if (!m->p_flags_valid)
5723 {
5724 p->p_flags |= PF_R;
5725 if ((this_hdr->sh_flags & SHF_EXECINSTR) != 0)
5726 p->p_flags |= PF_X;
5727 if ((this_hdr->sh_flags & SHF_WRITE) != 0)
5728 p->p_flags |= PF_W;
5729 }
5730 }
5731
5732 off -= off_adjust;
5733
5734 /* Check that all sections are in a PT_LOAD segment.
5735 Don't check funky gdb generated core files. */
5736 if (p->p_type == PT_LOAD && bfd_get_format (abfd) != bfd_core)
5737 {
5738 bfd_boolean check_vma = TRUE;
5739
5740 for (i = 1; i < m->count; i++)
5741 if (m->sections[i]->vma == m->sections[i - 1]->vma
5742 && ELF_SECTION_SIZE (&(elf_section_data (m->sections[i])
5743 ->this_hdr), p) != 0
5744 && ELF_SECTION_SIZE (&(elf_section_data (m->sections[i - 1])
5745 ->this_hdr), p) != 0)
5746 {
5747 /* Looks like we have overlays packed into the segment. */
5748 check_vma = FALSE;
5749 break;
5750 }
5751
5752 for (i = 0; i < m->count; i++)
5753 {
5754 Elf_Internal_Shdr *this_hdr;
5755 asection *sec;
5756
5757 sec = m->sections[i];
5758 this_hdr = &(elf_section_data(sec)->this_hdr);
5759 if (!ELF_SECTION_IN_SEGMENT_1 (this_hdr, p, check_vma, 0)
5760 && !ELF_TBSS_SPECIAL (this_hdr, p))
5761 {
5762 _bfd_error_handler
5763 /* xgettext:c-format */
5764 (_("%pB: section `%pA' can't be allocated in segment %d"),
5765 abfd, sec, j);
5766 print_segment_map (m);
5767 }
5768 }
5769 }
5770 }
5771
5772 elf_next_file_pos (abfd) = off;
5773 return TRUE;
5774 }
5775
5776 /* Assign file positions for the other sections. */
5777
5778 static bfd_boolean
5779 assign_file_positions_for_non_load_sections (bfd *abfd,
5780 struct bfd_link_info *link_info)
5781 {
5782 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5783 Elf_Internal_Shdr **i_shdrpp;
5784 Elf_Internal_Shdr **hdrpp, **end_hdrpp;
5785 Elf_Internal_Phdr *phdrs;
5786 Elf_Internal_Phdr *p;
5787 struct elf_segment_map *m;
5788 struct elf_segment_map *hdrs_segment;
5789 bfd_vma filehdr_vaddr, filehdr_paddr;
5790 bfd_vma phdrs_vaddr, phdrs_paddr;
5791 file_ptr off;
5792 unsigned int count;
5793
5794 i_shdrpp = elf_elfsections (abfd);
5795 end_hdrpp = i_shdrpp + elf_numsections (abfd);
5796 off = elf_next_file_pos (abfd);
5797 for (hdrpp = i_shdrpp + 1; hdrpp < end_hdrpp; hdrpp++)
5798 {
5799 Elf_Internal_Shdr *hdr;
5800
5801 hdr = *hdrpp;
5802 if (hdr->bfd_section != NULL
5803 && (hdr->bfd_section->filepos != 0
5804 || (hdr->sh_type == SHT_NOBITS
5805 && hdr->contents == NULL)))
5806 BFD_ASSERT (hdr->sh_offset == hdr->bfd_section->filepos);
5807 else if ((hdr->sh_flags & SHF_ALLOC) != 0)
5808 {
5809 if (hdr->sh_size != 0)
5810 _bfd_error_handler
5811 /* xgettext:c-format */
5812 (_("%pB: warning: allocated section `%s' not in segment"),
5813 abfd,
5814 (hdr->bfd_section == NULL
5815 ? "*unknown*"
5816 : hdr->bfd_section->name));
5817 /* We don't need to page align empty sections. */
5818 if ((abfd->flags & D_PAGED) != 0 && hdr->sh_size != 0)
5819 off += vma_page_aligned_bias (hdr->sh_addr, off,
5820 bed->maxpagesize);
5821 else
5822 off += vma_page_aligned_bias (hdr->sh_addr, off,
5823 hdr->sh_addralign);
5824 off = _bfd_elf_assign_file_position_for_section (hdr, off,
5825 FALSE);
5826 }
5827 else if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
5828 && hdr->bfd_section == NULL)
5829 || (hdr->bfd_section != NULL
5830 && (hdr->bfd_section->flags & SEC_ELF_COMPRESS))
5831 /* Compress DWARF debug sections. */
5832 || hdr == i_shdrpp[elf_onesymtab (abfd)]
5833 || (elf_symtab_shndx_list (abfd) != NULL
5834 && hdr == i_shdrpp[elf_symtab_shndx_list (abfd)->ndx])
5835 || hdr == i_shdrpp[elf_strtab_sec (abfd)]
5836 || hdr == i_shdrpp[elf_shstrtab_sec (abfd)])
5837 hdr->sh_offset = -1;
5838 else
5839 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
5840 }
5841
5842 /* Now that we have set the section file positions, we can set up
5843 the file positions for the non PT_LOAD segments. */
5844 count = 0;
5845 filehdr_vaddr = 0;
5846 filehdr_paddr = 0;
5847 phdrs_vaddr = bed->maxpagesize + bed->s->sizeof_ehdr;
5848 phdrs_paddr = 0;
5849 hdrs_segment = NULL;
5850 phdrs = elf_tdata (abfd)->phdr;
5851 for (m = elf_seg_map (abfd), p = phdrs; m != NULL; m = m->next, p++)
5852 {
5853 ++count;
5854 if (p->p_type != PT_LOAD)
5855 continue;
5856
5857 if (m->includes_filehdr)
5858 {
5859 filehdr_vaddr = p->p_vaddr;
5860 filehdr_paddr = p->p_paddr;
5861 }
5862 if (m->includes_phdrs)
5863 {
5864 phdrs_vaddr = p->p_vaddr;
5865 phdrs_paddr = p->p_paddr;
5866 if (m->includes_filehdr)
5867 {
5868 hdrs_segment = m;
5869 phdrs_vaddr += bed->s->sizeof_ehdr;
5870 phdrs_paddr += bed->s->sizeof_ehdr;
5871 }
5872 }
5873 }
5874
5875 if (hdrs_segment != NULL && link_info != NULL)
5876 {
5877 /* There is a segment that contains both the file headers and the
5878 program headers, so provide a symbol __ehdr_start pointing there.
5879 A program can use this to examine itself robustly. */
5880
5881 struct elf_link_hash_entry *hash
5882 = elf_link_hash_lookup (elf_hash_table (link_info), "__ehdr_start",
5883 FALSE, FALSE, TRUE);
5884 /* If the symbol was referenced and not defined, define it. */
5885 if (hash != NULL
5886 && (hash->root.type == bfd_link_hash_new
5887 || hash->root.type == bfd_link_hash_undefined
5888 || hash->root.type == bfd_link_hash_undefweak
5889 || hash->root.type == bfd_link_hash_common))
5890 {
5891 asection *s = NULL;
5892 if (hdrs_segment->count != 0)
5893 /* The segment contains sections, so use the first one. */
5894 s = hdrs_segment->sections[0];
5895 else
5896 /* Use the first (i.e. lowest-addressed) section in any segment. */
5897 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
5898 if (m->count != 0)
5899 {
5900 s = m->sections[0];
5901 break;
5902 }
5903
5904 if (s != NULL)
5905 {
5906 hash->root.u.def.value = filehdr_vaddr - s->vma;
5907 hash->root.u.def.section = s;
5908 }
5909 else
5910 {
5911 hash->root.u.def.value = filehdr_vaddr;
5912 hash->root.u.def.section = bfd_abs_section_ptr;
5913 }
5914
5915 hash->root.type = bfd_link_hash_defined;
5916 hash->def_regular = 1;
5917 hash->non_elf = 0;
5918 }
5919 }
5920
5921 for (m = elf_seg_map (abfd), p = phdrs; m != NULL; m = m->next, p++)
5922 {
5923 if (p->p_type == PT_GNU_RELRO)
5924 {
5925 bfd_vma start, end;
5926 bfd_boolean ok;
5927
5928 if (link_info != NULL)
5929 {
5930 /* During linking the range of the RELRO segment is passed
5931 in link_info. Note that there may be padding between
5932 relro_start and the first RELRO section. */
5933 start = link_info->relro_start;
5934 end = link_info->relro_end;
5935 }
5936 else if (m->count != 0)
5937 {
5938 if (!m->p_size_valid)
5939 abort ();
5940 start = m->sections[0]->vma;
5941 end = start + m->p_size;
5942 }
5943 else
5944 {
5945 start = 0;
5946 end = 0;
5947 }
5948
5949 ok = FALSE;
5950 if (start < end)
5951 {
5952 struct elf_segment_map *lm;
5953 const Elf_Internal_Phdr *lp;
5954 unsigned int i;
5955
5956 /* Find a LOAD segment containing a section in the RELRO
5957 segment. */
5958 for (lm = elf_seg_map (abfd), lp = phdrs;
5959 lm != NULL;
5960 lm = lm->next, lp++)
5961 {
5962 if (lp->p_type == PT_LOAD
5963 && lm->count != 0
5964 && (lm->sections[lm->count - 1]->vma
5965 + (!IS_TBSS (lm->sections[lm->count - 1])
5966 ? lm->sections[lm->count - 1]->size
5967 : 0)) > start
5968 && lm->sections[0]->vma < end)
5969 break;
5970 }
5971
5972 if (lm != NULL)
5973 {
5974 /* Find the section starting the RELRO segment. */
5975 for (i = 0; i < lm->count; i++)
5976 {
5977 asection *s = lm->sections[i];
5978 if (s->vma >= start
5979 && s->vma < end
5980 && s->size != 0)
5981 break;
5982 }
5983
5984 if (i < lm->count)
5985 {
5986 p->p_vaddr = lm->sections[i]->vma;
5987 p->p_paddr = lm->sections[i]->lma;
5988 p->p_offset = lm->sections[i]->filepos;
5989 p->p_memsz = end - p->p_vaddr;
5990 p->p_filesz = p->p_memsz;
5991
5992 /* The RELRO segment typically ends a few bytes
5993 into .got.plt but other layouts are possible.
5994 In cases where the end does not match any
5995 loaded section (for instance is in file
5996 padding), trim p_filesz back to correspond to
5997 the end of loaded section contents. */
5998 if (p->p_filesz > lp->p_vaddr + lp->p_filesz - p->p_vaddr)
5999 p->p_filesz = lp->p_vaddr + lp->p_filesz - p->p_vaddr;
6000
6001 /* Preserve the alignment and flags if they are
6002 valid. The gold linker generates RW/4 for
6003 the PT_GNU_RELRO section. It is better for
6004 objcopy/strip to honor these attributes
6005 otherwise gdb will choke when using separate
6006 debug files. */
6007 if (!m->p_align_valid)
6008 p->p_align = 1;
6009 if (!m->p_flags_valid)
6010 p->p_flags = PF_R;
6011 ok = TRUE;
6012 }
6013 }
6014 }
6015 if (link_info != NULL)
6016 BFD_ASSERT (ok);
6017 if (!ok)
6018 memset (p, 0, sizeof *p);
6019 }
6020 else if (p->p_type == PT_GNU_STACK)
6021 {
6022 if (m->p_size_valid)
6023 p->p_memsz = m->p_size;
6024 }
6025 else if (m->count != 0)
6026 {
6027 unsigned int i;
6028
6029 if (p->p_type != PT_LOAD
6030 && (p->p_type != PT_NOTE
6031 || bfd_get_format (abfd) != bfd_core))
6032 {
6033 /* A user specified segment layout may include a PHDR
6034 segment that overlaps with a LOAD segment... */
6035 if (p->p_type == PT_PHDR)
6036 {
6037 m->count = 0;
6038 continue;
6039 }
6040
6041 if (m->includes_filehdr || m->includes_phdrs)
6042 {
6043 /* PR 17512: file: 2195325e. */
6044 _bfd_error_handler
6045 (_("%pB: error: non-load segment %d includes file header "
6046 "and/or program header"),
6047 abfd, (int) (p - phdrs));
6048 return FALSE;
6049 }
6050
6051 p->p_filesz = 0;
6052 p->p_offset = m->sections[0]->filepos;
6053 for (i = m->count; i-- != 0;)
6054 {
6055 asection *sect = m->sections[i];
6056 Elf_Internal_Shdr *hdr = &elf_section_data (sect)->this_hdr;
6057 if (hdr->sh_type != SHT_NOBITS)
6058 {
6059 p->p_filesz = (sect->filepos - m->sections[0]->filepos
6060 + hdr->sh_size);
6061 break;
6062 }
6063 }
6064 }
6065 }
6066 else if (m->includes_filehdr)
6067 {
6068 p->p_vaddr = filehdr_vaddr;
6069 if (! m->p_paddr_valid)
6070 p->p_paddr = filehdr_paddr;
6071 }
6072 else if (m->includes_phdrs)
6073 {
6074 p->p_vaddr = phdrs_vaddr;
6075 if (! m->p_paddr_valid)
6076 p->p_paddr = phdrs_paddr;
6077 }
6078 }
6079
6080 elf_next_file_pos (abfd) = off;
6081
6082 return TRUE;
6083 }
6084
6085 static elf_section_list *
6086 find_section_in_list (unsigned int i, elf_section_list * list)
6087 {
6088 for (;list != NULL; list = list->next)
6089 if (list->ndx == i)
6090 break;
6091 return list;
6092 }
6093
6094 /* Work out the file positions of all the sections. This is called by
6095 _bfd_elf_compute_section_file_positions. All the section sizes and
6096 VMAs must be known before this is called.
6097
6098 Reloc sections come in two flavours: Those processed specially as
6099 "side-channel" data attached to a section to which they apply, and
6100 those that bfd doesn't process as relocations. The latter sort are
6101 stored in a normal bfd section by bfd_section_from_shdr. We don't
6102 consider the former sort here, unless they form part of the loadable
6103 image. Reloc sections not assigned here will be handled later by
6104 assign_file_positions_for_relocs.
6105
6106 We also don't set the positions of the .symtab and .strtab here. */
6107
6108 static bfd_boolean
6109 assign_file_positions_except_relocs (bfd *abfd,
6110 struct bfd_link_info *link_info)
6111 {
6112 struct elf_obj_tdata *tdata = elf_tdata (abfd);
6113 Elf_Internal_Ehdr *i_ehdrp = elf_elfheader (abfd);
6114 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6115
6116 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
6117 && bfd_get_format (abfd) != bfd_core)
6118 {
6119 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
6120 unsigned int num_sec = elf_numsections (abfd);
6121 Elf_Internal_Shdr **hdrpp;
6122 unsigned int i;
6123 file_ptr off;
6124
6125 /* Start after the ELF header. */
6126 off = i_ehdrp->e_ehsize;
6127
6128 /* We are not creating an executable, which means that we are
6129 not creating a program header, and that the actual order of
6130 the sections in the file is unimportant. */
6131 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
6132 {
6133 Elf_Internal_Shdr *hdr;
6134
6135 hdr = *hdrpp;
6136 if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
6137 && hdr->bfd_section == NULL)
6138 || (hdr->bfd_section != NULL
6139 && (hdr->bfd_section->flags & SEC_ELF_COMPRESS))
6140 /* Compress DWARF debug sections. */
6141 || i == elf_onesymtab (abfd)
6142 || (elf_symtab_shndx_list (abfd) != NULL
6143 && hdr == i_shdrpp[elf_symtab_shndx_list (abfd)->ndx])
6144 || i == elf_strtab_sec (abfd)
6145 || i == elf_shstrtab_sec (abfd))
6146 {
6147 hdr->sh_offset = -1;
6148 }
6149 else
6150 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
6151 }
6152
6153 elf_next_file_pos (abfd) = off;
6154 }
6155 else
6156 {
6157 unsigned int alloc;
6158
6159 /* Assign file positions for the loaded sections based on the
6160 assignment of sections to segments. */
6161 if (!assign_file_positions_for_load_sections (abfd, link_info))
6162 return FALSE;
6163
6164 /* And for non-load sections. */
6165 if (!assign_file_positions_for_non_load_sections (abfd, link_info))
6166 return FALSE;
6167
6168 if (bed->elf_backend_modify_program_headers != NULL)
6169 {
6170 if (!(*bed->elf_backend_modify_program_headers) (abfd, link_info))
6171 return FALSE;
6172 }
6173
6174 /* Set e_type in ELF header to ET_EXEC for -pie -Ttext-segment=. */
6175 if (link_info != NULL && bfd_link_pie (link_info))
6176 {
6177 unsigned int num_segments = elf_elfheader (abfd)->e_phnum;
6178 Elf_Internal_Phdr *segment = elf_tdata (abfd)->phdr;
6179 Elf_Internal_Phdr *end_segment = &segment[num_segments];
6180
6181 /* Find the lowest p_vaddr in PT_LOAD segments. */
6182 bfd_vma p_vaddr = (bfd_vma) -1;
6183 for (; segment < end_segment; segment++)
6184 if (segment->p_type == PT_LOAD && p_vaddr > segment->p_vaddr)
6185 p_vaddr = segment->p_vaddr;
6186
6187 /* Set e_type to ET_EXEC if the lowest p_vaddr in PT_LOAD
6188 segments is non-zero. */
6189 if (p_vaddr)
6190 i_ehdrp->e_type = ET_EXEC;
6191 }
6192
6193 /* Write out the program headers. */
6194 alloc = elf_elfheader (abfd)->e_phnum;
6195 if (alloc == 0)
6196 return TRUE;
6197
6198 /* PR ld/20815 - Check that the program header segment, if present, will
6199 be loaded into memory. FIXME: The check below is not sufficient as
6200 really all PT_LOAD segments should be checked before issuing an error
6201 message. Plus the PHDR segment does not have to be the first segment
6202 in the program header table. But this version of the check should
6203 catch all real world use cases.
6204
6205 FIXME: We used to have code here to sort the PT_LOAD segments into
6206 ascending order, as per the ELF spec. But this breaks some programs,
6207 including the Linux kernel. But really either the spec should be
6208 changed or the programs updated. */
6209 if (alloc > 1
6210 && tdata->phdr[0].p_type == PT_PHDR
6211 && (bed->elf_backend_allow_non_load_phdr == NULL
6212 || !bed->elf_backend_allow_non_load_phdr (abfd, tdata->phdr,
6213 alloc))
6214 && tdata->phdr[1].p_type == PT_LOAD
6215 && (tdata->phdr[1].p_vaddr > tdata->phdr[0].p_vaddr
6216 || (tdata->phdr[1].p_vaddr + tdata->phdr[1].p_memsz
6217 < tdata->phdr[0].p_vaddr + tdata->phdr[0].p_memsz)))
6218 {
6219 /* The fix for this error is usually to edit the linker script being
6220 used and set up the program headers manually. Either that or
6221 leave room for the headers at the start of the SECTIONS. */
6222 _bfd_error_handler (_("%pB: error: PHDR segment not covered"
6223 " by LOAD segment"),
6224 abfd);
6225 return FALSE;
6226 }
6227
6228 if (bfd_seek (abfd, (bfd_signed_vma) bed->s->sizeof_ehdr, SEEK_SET) != 0
6229 || bed->s->write_out_phdrs (abfd, tdata->phdr, alloc) != 0)
6230 return FALSE;
6231 }
6232
6233 return TRUE;
6234 }
6235
6236 static bfd_boolean
6237 prep_headers (bfd *abfd)
6238 {
6239 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form. */
6240 struct elf_strtab_hash *shstrtab;
6241 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6242
6243 i_ehdrp = elf_elfheader (abfd);
6244
6245 shstrtab = _bfd_elf_strtab_init ();
6246 if (shstrtab == NULL)
6247 return FALSE;
6248
6249 elf_shstrtab (abfd) = shstrtab;
6250
6251 i_ehdrp->e_ident[EI_MAG0] = ELFMAG0;
6252 i_ehdrp->e_ident[EI_MAG1] = ELFMAG1;
6253 i_ehdrp->e_ident[EI_MAG2] = ELFMAG2;
6254 i_ehdrp->e_ident[EI_MAG3] = ELFMAG3;
6255
6256 i_ehdrp->e_ident[EI_CLASS] = bed->s->elfclass;
6257 i_ehdrp->e_ident[EI_DATA] =
6258 bfd_big_endian (abfd) ? ELFDATA2MSB : ELFDATA2LSB;
6259 i_ehdrp->e_ident[EI_VERSION] = bed->s->ev_current;
6260
6261 if ((abfd->flags & DYNAMIC) != 0)
6262 i_ehdrp->e_type = ET_DYN;
6263 else if ((abfd->flags & EXEC_P) != 0)
6264 i_ehdrp->e_type = ET_EXEC;
6265 else if (bfd_get_format (abfd) == bfd_core)
6266 i_ehdrp->e_type = ET_CORE;
6267 else
6268 i_ehdrp->e_type = ET_REL;
6269
6270 switch (bfd_get_arch (abfd))
6271 {
6272 case bfd_arch_unknown:
6273 i_ehdrp->e_machine = EM_NONE;
6274 break;
6275
6276 /* There used to be a long list of cases here, each one setting
6277 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
6278 in the corresponding bfd definition. To avoid duplication,
6279 the switch was removed. Machines that need special handling
6280 can generally do it in elf_backend_final_write_processing(),
6281 unless they need the information earlier than the final write.
6282 Such need can generally be supplied by replacing the tests for
6283 e_machine with the conditions used to determine it. */
6284 default:
6285 i_ehdrp->e_machine = bed->elf_machine_code;
6286 }
6287
6288 i_ehdrp->e_version = bed->s->ev_current;
6289 i_ehdrp->e_ehsize = bed->s->sizeof_ehdr;
6290
6291 /* No program header, for now. */
6292 i_ehdrp->e_phoff = 0;
6293 i_ehdrp->e_phentsize = 0;
6294 i_ehdrp->e_phnum = 0;
6295
6296 /* Each bfd section is section header entry. */
6297 i_ehdrp->e_entry = bfd_get_start_address (abfd);
6298 i_ehdrp->e_shentsize = bed->s->sizeof_shdr;
6299
6300 /* If we're building an executable, we'll need a program header table. */
6301 if (abfd->flags & EXEC_P)
6302 /* It all happens later. */
6303 ;
6304 else
6305 {
6306 i_ehdrp->e_phentsize = 0;
6307 i_ehdrp->e_phoff = 0;
6308 }
6309
6310 elf_tdata (abfd)->symtab_hdr.sh_name =
6311 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".symtab", FALSE);
6312 elf_tdata (abfd)->strtab_hdr.sh_name =
6313 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".strtab", FALSE);
6314 elf_tdata (abfd)->shstrtab_hdr.sh_name =
6315 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".shstrtab", FALSE);
6316 if (elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
6317 || elf_tdata (abfd)->strtab_hdr.sh_name == (unsigned int) -1
6318 || elf_tdata (abfd)->shstrtab_hdr.sh_name == (unsigned int) -1)
6319 return FALSE;
6320
6321 return TRUE;
6322 }
6323
6324 /* Assign file positions for all the reloc sections which are not part
6325 of the loadable file image, and the file position of section headers. */
6326
6327 static bfd_boolean
6328 _bfd_elf_assign_file_positions_for_non_load (bfd *abfd)
6329 {
6330 file_ptr off;
6331 Elf_Internal_Shdr **shdrpp, **end_shdrpp;
6332 Elf_Internal_Shdr *shdrp;
6333 Elf_Internal_Ehdr *i_ehdrp;
6334 const struct elf_backend_data *bed;
6335
6336 off = elf_next_file_pos (abfd);
6337
6338 shdrpp = elf_elfsections (abfd);
6339 end_shdrpp = shdrpp + elf_numsections (abfd);
6340 for (shdrpp++; shdrpp < end_shdrpp; shdrpp++)
6341 {
6342 shdrp = *shdrpp;
6343 if (shdrp->sh_offset == -1)
6344 {
6345 asection *sec = shdrp->bfd_section;
6346 bfd_boolean is_rel = (shdrp->sh_type == SHT_REL
6347 || shdrp->sh_type == SHT_RELA);
6348 if (is_rel
6349 || (sec != NULL && (sec->flags & SEC_ELF_COMPRESS)))
6350 {
6351 if (!is_rel)
6352 {
6353 const char *name = sec->name;
6354 struct bfd_elf_section_data *d;
6355
6356 /* Compress DWARF debug sections. */
6357 if (!bfd_compress_section (abfd, sec,
6358 shdrp->contents))
6359 return FALSE;
6360
6361 if (sec->compress_status == COMPRESS_SECTION_DONE
6362 && (abfd->flags & BFD_COMPRESS_GABI) == 0)
6363 {
6364 /* If section is compressed with zlib-gnu, convert
6365 section name from .debug_* to .zdebug_*. */
6366 char *new_name
6367 = convert_debug_to_zdebug (abfd, name);
6368 if (new_name == NULL)
6369 return FALSE;
6370 name = new_name;
6371 }
6372 /* Add section name to section name section. */
6373 if (shdrp->sh_name != (unsigned int) -1)
6374 abort ();
6375 shdrp->sh_name
6376 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
6377 name, FALSE);
6378 d = elf_section_data (sec);
6379
6380 /* Add reloc section name to section name section. */
6381 if (d->rel.hdr
6382 && !_bfd_elf_set_reloc_sh_name (abfd,
6383 d->rel.hdr,
6384 name, FALSE))
6385 return FALSE;
6386 if (d->rela.hdr
6387 && !_bfd_elf_set_reloc_sh_name (abfd,
6388 d->rela.hdr,
6389 name, TRUE))
6390 return FALSE;
6391
6392 /* Update section size and contents. */
6393 shdrp->sh_size = sec->size;
6394 shdrp->contents = sec->contents;
6395 shdrp->bfd_section->contents = NULL;
6396 }
6397 off = _bfd_elf_assign_file_position_for_section (shdrp,
6398 off,
6399 TRUE);
6400 }
6401 }
6402 }
6403
6404 /* Place section name section after DWARF debug sections have been
6405 compressed. */
6406 _bfd_elf_strtab_finalize (elf_shstrtab (abfd));
6407 shdrp = &elf_tdata (abfd)->shstrtab_hdr;
6408 shdrp->sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
6409 off = _bfd_elf_assign_file_position_for_section (shdrp, off, TRUE);
6410
6411 /* Place the section headers. */
6412 i_ehdrp = elf_elfheader (abfd);
6413 bed = get_elf_backend_data (abfd);
6414 off = align_file_position (off, 1 << bed->s->log_file_align);
6415 i_ehdrp->e_shoff = off;
6416 off += i_ehdrp->e_shnum * i_ehdrp->e_shentsize;
6417 elf_next_file_pos (abfd) = off;
6418
6419 return TRUE;
6420 }
6421
6422 bfd_boolean
6423 _bfd_elf_write_object_contents (bfd *abfd)
6424 {
6425 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6426 Elf_Internal_Shdr **i_shdrp;
6427 bfd_boolean failed;
6428 unsigned int count, num_sec;
6429 struct elf_obj_tdata *t;
6430
6431 if (! abfd->output_has_begun
6432 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
6433 return FALSE;
6434 /* Do not rewrite ELF data when the BFD has been opened for update.
6435 abfd->output_has_begun was set to TRUE on opening, so creation of new
6436 sections, and modification of existing section sizes was restricted.
6437 This means the ELF header, program headers and section headers can't have
6438 changed.
6439 If the contents of any sections has been modified, then those changes have
6440 already been written to the BFD. */
6441 else if (abfd->direction == both_direction)
6442 {
6443 BFD_ASSERT (abfd->output_has_begun);
6444 return TRUE;
6445 }
6446
6447 i_shdrp = elf_elfsections (abfd);
6448
6449 failed = FALSE;
6450 bfd_map_over_sections (abfd, bed->s->write_relocs, &failed);
6451 if (failed)
6452 return FALSE;
6453
6454 if (!_bfd_elf_assign_file_positions_for_non_load (abfd))
6455 return FALSE;
6456
6457 /* After writing the headers, we need to write the sections too... */
6458 num_sec = elf_numsections (abfd);
6459 for (count = 1; count < num_sec; count++)
6460 {
6461 i_shdrp[count]->sh_name
6462 = _bfd_elf_strtab_offset (elf_shstrtab (abfd),
6463 i_shdrp[count]->sh_name);
6464 if (bed->elf_backend_section_processing)
6465 if (!(*bed->elf_backend_section_processing) (abfd, i_shdrp[count]))
6466 return FALSE;
6467 if (i_shdrp[count]->contents)
6468 {
6469 bfd_size_type amt = i_shdrp[count]->sh_size;
6470
6471 if (bfd_seek (abfd, i_shdrp[count]->sh_offset, SEEK_SET) != 0
6472 || bfd_bwrite (i_shdrp[count]->contents, amt, abfd) != amt)
6473 return FALSE;
6474 }
6475 }
6476
6477 /* Write out the section header names. */
6478 t = elf_tdata (abfd);
6479 if (elf_shstrtab (abfd) != NULL
6480 && (bfd_seek (abfd, t->shstrtab_hdr.sh_offset, SEEK_SET) != 0
6481 || !_bfd_elf_strtab_emit (abfd, elf_shstrtab (abfd))))
6482 return FALSE;
6483
6484 if (bed->elf_backend_final_write_processing)
6485 (*bed->elf_backend_final_write_processing) (abfd, elf_linker (abfd));
6486
6487 if (!bed->s->write_shdrs_and_ehdr (abfd))
6488 return FALSE;
6489
6490 /* This is last since write_shdrs_and_ehdr can touch i_shdrp[0]. */
6491 if (t->o->build_id.after_write_object_contents != NULL)
6492 return (*t->o->build_id.after_write_object_contents) (abfd);
6493
6494 return TRUE;
6495 }
6496
6497 bfd_boolean
6498 _bfd_elf_write_corefile_contents (bfd *abfd)
6499 {
6500 /* Hopefully this can be done just like an object file. */
6501 return _bfd_elf_write_object_contents (abfd);
6502 }
6503
6504 /* Given a section, search the header to find them. */
6505
6506 unsigned int
6507 _bfd_elf_section_from_bfd_section (bfd *abfd, struct bfd_section *asect)
6508 {
6509 const struct elf_backend_data *bed;
6510 unsigned int sec_index;
6511
6512 if (elf_section_data (asect) != NULL
6513 && elf_section_data (asect)->this_idx != 0)
6514 return elf_section_data (asect)->this_idx;
6515
6516 if (bfd_is_abs_section (asect))
6517 sec_index = SHN_ABS;
6518 else if (bfd_is_com_section (asect))
6519 sec_index = SHN_COMMON;
6520 else if (bfd_is_und_section (asect))
6521 sec_index = SHN_UNDEF;
6522 else
6523 sec_index = SHN_BAD;
6524
6525 bed = get_elf_backend_data (abfd);
6526 if (bed->elf_backend_section_from_bfd_section)
6527 {
6528 int retval = sec_index;
6529
6530 if ((*bed->elf_backend_section_from_bfd_section) (abfd, asect, &retval))
6531 return retval;
6532 }
6533
6534 if (sec_index == SHN_BAD)
6535 bfd_set_error (bfd_error_nonrepresentable_section);
6536
6537 return sec_index;
6538 }
6539
6540 /* Given a BFD symbol, return the index in the ELF symbol table, or -1
6541 on error. */
6542
6543 int
6544 _bfd_elf_symbol_from_bfd_symbol (bfd *abfd, asymbol **asym_ptr_ptr)
6545 {
6546 asymbol *asym_ptr = *asym_ptr_ptr;
6547 int idx;
6548 flagword flags = asym_ptr->flags;
6549
6550 /* When gas creates relocations against local labels, it creates its
6551 own symbol for the section, but does put the symbol into the
6552 symbol chain, so udata is 0. When the linker is generating
6553 relocatable output, this section symbol may be for one of the
6554 input sections rather than the output section. */
6555 if (asym_ptr->udata.i == 0
6556 && (flags & BSF_SECTION_SYM)
6557 && asym_ptr->section)
6558 {
6559 asection *sec;
6560 int indx;
6561
6562 sec = asym_ptr->section;
6563 if (sec->owner != abfd && sec->output_section != NULL)
6564 sec = sec->output_section;
6565 if (sec->owner == abfd
6566 && (indx = sec->index) < elf_num_section_syms (abfd)
6567 && elf_section_syms (abfd)[indx] != NULL)
6568 asym_ptr->udata.i = elf_section_syms (abfd)[indx]->udata.i;
6569 }
6570
6571 idx = asym_ptr->udata.i;
6572
6573 if (idx == 0)
6574 {
6575 /* This case can occur when using --strip-symbol on a symbol
6576 which is used in a relocation entry. */
6577 _bfd_error_handler
6578 /* xgettext:c-format */
6579 (_("%pB: symbol `%s' required but not present"),
6580 abfd, bfd_asymbol_name (asym_ptr));
6581 bfd_set_error (bfd_error_no_symbols);
6582 return -1;
6583 }
6584
6585 #if DEBUG & 4
6586 {
6587 fprintf (stderr,
6588 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8x\n",
6589 (long) asym_ptr, asym_ptr->name, idx, flags);
6590 fflush (stderr);
6591 }
6592 #endif
6593
6594 return idx;
6595 }
6596
6597 /* Rewrite program header information. */
6598
6599 static bfd_boolean
6600 rewrite_elf_program_header (bfd *ibfd, bfd *obfd)
6601 {
6602 Elf_Internal_Ehdr *iehdr;
6603 struct elf_segment_map *map;
6604 struct elf_segment_map *map_first;
6605 struct elf_segment_map **pointer_to_map;
6606 Elf_Internal_Phdr *segment;
6607 asection *section;
6608 unsigned int i;
6609 unsigned int num_segments;
6610 bfd_boolean phdr_included = FALSE;
6611 bfd_boolean p_paddr_valid;
6612 bfd_vma maxpagesize;
6613 struct elf_segment_map *phdr_adjust_seg = NULL;
6614 unsigned int phdr_adjust_num = 0;
6615 const struct elf_backend_data *bed;
6616
6617 bed = get_elf_backend_data (ibfd);
6618 iehdr = elf_elfheader (ibfd);
6619
6620 map_first = NULL;
6621 pointer_to_map = &map_first;
6622
6623 num_segments = elf_elfheader (ibfd)->e_phnum;
6624 maxpagesize = get_elf_backend_data (obfd)->maxpagesize;
6625
6626 /* Returns the end address of the segment + 1. */
6627 #define SEGMENT_END(segment, start) \
6628 (start + (segment->p_memsz > segment->p_filesz \
6629 ? segment->p_memsz : segment->p_filesz))
6630
6631 #define SECTION_SIZE(section, segment) \
6632 (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL)) \
6633 != SEC_THREAD_LOCAL || segment->p_type == PT_TLS) \
6634 ? section->size : 0)
6635
6636 /* Returns TRUE if the given section is contained within
6637 the given segment. VMA addresses are compared. */
6638 #define IS_CONTAINED_BY_VMA(section, segment) \
6639 (section->vma >= segment->p_vaddr \
6640 && (section->vma + SECTION_SIZE (section, segment) \
6641 <= (SEGMENT_END (segment, segment->p_vaddr))))
6642
6643 /* Returns TRUE if the given section is contained within
6644 the given segment. LMA addresses are compared. */
6645 #define IS_CONTAINED_BY_LMA(section, segment, base) \
6646 (section->lma >= base \
6647 && (section->lma + SECTION_SIZE (section, segment) \
6648 <= SEGMENT_END (segment, base)))
6649
6650 /* Handle PT_NOTE segment. */
6651 #define IS_NOTE(p, s) \
6652 (p->p_type == PT_NOTE \
6653 && elf_section_type (s) == SHT_NOTE \
6654 && (bfd_vma) s->filepos >= p->p_offset \
6655 && ((bfd_vma) s->filepos + s->size \
6656 <= p->p_offset + p->p_filesz))
6657
6658 /* Special case: corefile "NOTE" section containing regs, prpsinfo
6659 etc. */
6660 #define IS_COREFILE_NOTE(p, s) \
6661 (IS_NOTE (p, s) \
6662 && bfd_get_format (ibfd) == bfd_core \
6663 && s->vma == 0 \
6664 && s->lma == 0)
6665
6666 /* The complicated case when p_vaddr is 0 is to handle the Solaris
6667 linker, which generates a PT_INTERP section with p_vaddr and
6668 p_memsz set to 0. */
6669 #define IS_SOLARIS_PT_INTERP(p, s) \
6670 (p->p_vaddr == 0 \
6671 && p->p_paddr == 0 \
6672 && p->p_memsz == 0 \
6673 && p->p_filesz > 0 \
6674 && (s->flags & SEC_HAS_CONTENTS) != 0 \
6675 && s->size > 0 \
6676 && (bfd_vma) s->filepos >= p->p_offset \
6677 && ((bfd_vma) s->filepos + s->size \
6678 <= p->p_offset + p->p_filesz))
6679
6680 /* Decide if the given section should be included in the given segment.
6681 A section will be included if:
6682 1. It is within the address space of the segment -- we use the LMA
6683 if that is set for the segment and the VMA otherwise,
6684 2. It is an allocated section or a NOTE section in a PT_NOTE
6685 segment.
6686 3. There is an output section associated with it,
6687 4. The section has not already been allocated to a previous segment.
6688 5. PT_GNU_STACK segments do not include any sections.
6689 6. PT_TLS segment includes only SHF_TLS sections.
6690 7. SHF_TLS sections are only in PT_TLS or PT_LOAD segments.
6691 8. PT_DYNAMIC should not contain empty sections at the beginning
6692 (with the possible exception of .dynamic). */
6693 #define IS_SECTION_IN_INPUT_SEGMENT(section, segment, bed) \
6694 ((((segment->p_paddr \
6695 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr) \
6696 : IS_CONTAINED_BY_VMA (section, segment)) \
6697 && (section->flags & SEC_ALLOC) != 0) \
6698 || IS_NOTE (segment, section)) \
6699 && segment->p_type != PT_GNU_STACK \
6700 && (segment->p_type != PT_TLS \
6701 || (section->flags & SEC_THREAD_LOCAL)) \
6702 && (segment->p_type == PT_LOAD \
6703 || segment->p_type == PT_TLS \
6704 || (section->flags & SEC_THREAD_LOCAL) == 0) \
6705 && (segment->p_type != PT_DYNAMIC \
6706 || SECTION_SIZE (section, segment) > 0 \
6707 || (segment->p_paddr \
6708 ? segment->p_paddr != section->lma \
6709 : segment->p_vaddr != section->vma) \
6710 || (strcmp (bfd_get_section_name (ibfd, section), ".dynamic") \
6711 == 0)) \
6712 && (segment->p_type != PT_LOAD || !section->segment_mark))
6713
6714 /* If the output section of a section in the input segment is NULL,
6715 it is removed from the corresponding output segment. */
6716 #define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed) \
6717 (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed) \
6718 && section->output_section != NULL)
6719
6720 /* Returns TRUE iff seg1 starts after the end of seg2. */
6721 #define SEGMENT_AFTER_SEGMENT(seg1, seg2, field) \
6722 (seg1->field >= SEGMENT_END (seg2, seg2->field))
6723
6724 /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both
6725 their VMA address ranges and their LMA address ranges overlap.
6726 It is possible to have overlapping VMA ranges without overlapping LMA
6727 ranges. RedBoot images for example can have both .data and .bss mapped
6728 to the same VMA range, but with the .data section mapped to a different
6729 LMA. */
6730 #define SEGMENT_OVERLAPS(seg1, seg2) \
6731 ( !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr) \
6732 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr)) \
6733 && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr) \
6734 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr)))
6735
6736 /* Initialise the segment mark field. */
6737 for (section = ibfd->sections; section != NULL; section = section->next)
6738 section->segment_mark = FALSE;
6739
6740 /* The Solaris linker creates program headers in which all the
6741 p_paddr fields are zero. When we try to objcopy or strip such a
6742 file, we get confused. Check for this case, and if we find it
6743 don't set the p_paddr_valid fields. */
6744 p_paddr_valid = FALSE;
6745 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6746 i < num_segments;
6747 i++, segment++)
6748 if (segment->p_paddr != 0)
6749 {
6750 p_paddr_valid = TRUE;
6751 break;
6752 }
6753
6754 /* Scan through the segments specified in the program header
6755 of the input BFD. For this first scan we look for overlaps
6756 in the loadable segments. These can be created by weird
6757 parameters to objcopy. Also, fix some solaris weirdness. */
6758 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6759 i < num_segments;
6760 i++, segment++)
6761 {
6762 unsigned int j;
6763 Elf_Internal_Phdr *segment2;
6764
6765 if (segment->p_type == PT_INTERP)
6766 for (section = ibfd->sections; section; section = section->next)
6767 if (IS_SOLARIS_PT_INTERP (segment, section))
6768 {
6769 /* Mininal change so that the normal section to segment
6770 assignment code will work. */
6771 segment->p_vaddr = section->vma;
6772 break;
6773 }
6774
6775 if (segment->p_type != PT_LOAD)
6776 {
6777 /* Remove PT_GNU_RELRO segment. */
6778 if (segment->p_type == PT_GNU_RELRO)
6779 segment->p_type = PT_NULL;
6780 continue;
6781 }
6782
6783 /* Determine if this segment overlaps any previous segments. */
6784 for (j = 0, segment2 = elf_tdata (ibfd)->phdr; j < i; j++, segment2++)
6785 {
6786 bfd_signed_vma extra_length;
6787
6788 if (segment2->p_type != PT_LOAD
6789 || !SEGMENT_OVERLAPS (segment, segment2))
6790 continue;
6791
6792 /* Merge the two segments together. */
6793 if (segment2->p_vaddr < segment->p_vaddr)
6794 {
6795 /* Extend SEGMENT2 to include SEGMENT and then delete
6796 SEGMENT. */
6797 extra_length = (SEGMENT_END (segment, segment->p_vaddr)
6798 - SEGMENT_END (segment2, segment2->p_vaddr));
6799
6800 if (extra_length > 0)
6801 {
6802 segment2->p_memsz += extra_length;
6803 segment2->p_filesz += extra_length;
6804 }
6805
6806 segment->p_type = PT_NULL;
6807
6808 /* Since we have deleted P we must restart the outer loop. */
6809 i = 0;
6810 segment = elf_tdata (ibfd)->phdr;
6811 break;
6812 }
6813 else
6814 {
6815 /* Extend SEGMENT to include SEGMENT2 and then delete
6816 SEGMENT2. */
6817 extra_length = (SEGMENT_END (segment2, segment2->p_vaddr)
6818 - SEGMENT_END (segment, segment->p_vaddr));
6819
6820 if (extra_length > 0)
6821 {
6822 segment->p_memsz += extra_length;
6823 segment->p_filesz += extra_length;
6824 }
6825
6826 segment2->p_type = PT_NULL;
6827 }
6828 }
6829 }
6830
6831 /* The second scan attempts to assign sections to segments. */
6832 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6833 i < num_segments;
6834 i++, segment++)
6835 {
6836 unsigned int section_count;
6837 asection **sections;
6838 asection *output_section;
6839 unsigned int isec;
6840 asection *matching_lma;
6841 asection *suggested_lma;
6842 unsigned int j;
6843 bfd_size_type amt;
6844 asection *first_section;
6845
6846 if (segment->p_type == PT_NULL)
6847 continue;
6848
6849 first_section = NULL;
6850 /* Compute how many sections might be placed into this segment. */
6851 for (section = ibfd->sections, section_count = 0;
6852 section != NULL;
6853 section = section->next)
6854 {
6855 /* Find the first section in the input segment, which may be
6856 removed from the corresponding output segment. */
6857 if (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed))
6858 {
6859 if (first_section == NULL)
6860 first_section = section;
6861 if (section->output_section != NULL)
6862 ++section_count;
6863 }
6864 }
6865
6866 /* Allocate a segment map big enough to contain
6867 all of the sections we have selected. */
6868 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
6869 amt += (bfd_size_type) section_count * sizeof (asection *);
6870 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
6871 if (map == NULL)
6872 return FALSE;
6873
6874 /* Initialise the fields of the segment map. Default to
6875 using the physical address of the segment in the input BFD. */
6876 map->next = NULL;
6877 map->p_type = segment->p_type;
6878 map->p_flags = segment->p_flags;
6879 map->p_flags_valid = 1;
6880
6881 /* If the first section in the input segment is removed, there is
6882 no need to preserve segment physical address in the corresponding
6883 output segment. */
6884 if (!first_section || first_section->output_section != NULL)
6885 {
6886 map->p_paddr = segment->p_paddr;
6887 map->p_paddr_valid = p_paddr_valid;
6888 }
6889
6890 /* Determine if this segment contains the ELF file header
6891 and if it contains the program headers themselves. */
6892 map->includes_filehdr = (segment->p_offset == 0
6893 && segment->p_filesz >= iehdr->e_ehsize);
6894 map->includes_phdrs = 0;
6895
6896 if (!phdr_included || segment->p_type != PT_LOAD)
6897 {
6898 map->includes_phdrs =
6899 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
6900 && (segment->p_offset + segment->p_filesz
6901 >= ((bfd_vma) iehdr->e_phoff
6902 + iehdr->e_phnum * iehdr->e_phentsize)));
6903
6904 if (segment->p_type == PT_LOAD && map->includes_phdrs)
6905 phdr_included = TRUE;
6906 }
6907
6908 if (section_count == 0)
6909 {
6910 /* Special segments, such as the PT_PHDR segment, may contain
6911 no sections, but ordinary, loadable segments should contain
6912 something. They are allowed by the ELF spec however, so only
6913 a warning is produced.
6914 There is however the valid use case of embedded systems which
6915 have segments with p_filesz of 0 and a p_memsz > 0 to initialize
6916 flash memory with zeros. No warning is shown for that case. */
6917 if (segment->p_type == PT_LOAD
6918 && (segment->p_filesz > 0 || segment->p_memsz == 0))
6919 /* xgettext:c-format */
6920 _bfd_error_handler
6921 (_("%pB: warning: empty loadable segment detected"
6922 " at vaddr=%#" PRIx64 ", is this intentional?"),
6923 ibfd, (uint64_t) segment->p_vaddr);
6924
6925 map->p_vaddr_offset = segment->p_vaddr;
6926 map->count = 0;
6927 *pointer_to_map = map;
6928 pointer_to_map = &map->next;
6929
6930 continue;
6931 }
6932
6933 /* Now scan the sections in the input BFD again and attempt
6934 to add their corresponding output sections to the segment map.
6935 The problem here is how to handle an output section which has
6936 been moved (ie had its LMA changed). There are four possibilities:
6937
6938 1. None of the sections have been moved.
6939 In this case we can continue to use the segment LMA from the
6940 input BFD.
6941
6942 2. All of the sections have been moved by the same amount.
6943 In this case we can change the segment's LMA to match the LMA
6944 of the first section.
6945
6946 3. Some of the sections have been moved, others have not.
6947 In this case those sections which have not been moved can be
6948 placed in the current segment which will have to have its size,
6949 and possibly its LMA changed, and a new segment or segments will
6950 have to be created to contain the other sections.
6951
6952 4. The sections have been moved, but not by the same amount.
6953 In this case we can change the segment's LMA to match the LMA
6954 of the first section and we will have to create a new segment
6955 or segments to contain the other sections.
6956
6957 In order to save time, we allocate an array to hold the section
6958 pointers that we are interested in. As these sections get assigned
6959 to a segment, they are removed from this array. */
6960
6961 sections = (asection **) bfd_malloc2 (section_count, sizeof (asection *));
6962 if (sections == NULL)
6963 return FALSE;
6964
6965 /* Step One: Scan for segment vs section LMA conflicts.
6966 Also add the sections to the section array allocated above.
6967 Also add the sections to the current segment. In the common
6968 case, where the sections have not been moved, this means that
6969 we have completely filled the segment, and there is nothing
6970 more to do. */
6971 isec = 0;
6972 matching_lma = NULL;
6973 suggested_lma = NULL;
6974
6975 for (section = first_section, j = 0;
6976 section != NULL;
6977 section = section->next)
6978 {
6979 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
6980 {
6981 output_section = section->output_section;
6982
6983 sections[j++] = section;
6984
6985 /* The Solaris native linker always sets p_paddr to 0.
6986 We try to catch that case here, and set it to the
6987 correct value. Note - some backends require that
6988 p_paddr be left as zero. */
6989 if (!p_paddr_valid
6990 && segment->p_vaddr != 0
6991 && !bed->want_p_paddr_set_to_zero
6992 && isec == 0
6993 && output_section->lma != 0
6994 && (align_power (segment->p_vaddr
6995 + (map->includes_filehdr
6996 ? iehdr->e_ehsize : 0)
6997 + (map->includes_phdrs
6998 ? iehdr->e_phnum * iehdr->e_phentsize
6999 : 0),
7000 output_section->alignment_power)
7001 == output_section->vma))
7002 map->p_paddr = segment->p_vaddr;
7003
7004 /* Match up the physical address of the segment with the
7005 LMA address of the output section. */
7006 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
7007 || IS_COREFILE_NOTE (segment, section)
7008 || (bed->want_p_paddr_set_to_zero
7009 && IS_CONTAINED_BY_VMA (output_section, segment)))
7010 {
7011 if (matching_lma == NULL
7012 || output_section->lma < matching_lma->lma)
7013 matching_lma = output_section;
7014
7015 /* We assume that if the section fits within the segment
7016 then it does not overlap any other section within that
7017 segment. */
7018 map->sections[isec++] = output_section;
7019 }
7020 else if (suggested_lma == NULL)
7021 suggested_lma = output_section;
7022
7023 if (j == section_count)
7024 break;
7025 }
7026 }
7027
7028 BFD_ASSERT (j == section_count);
7029
7030 /* Step Two: Adjust the physical address of the current segment,
7031 if necessary. */
7032 if (isec == section_count)
7033 {
7034 /* All of the sections fitted within the segment as currently
7035 specified. This is the default case. Add the segment to
7036 the list of built segments and carry on to process the next
7037 program header in the input BFD. */
7038 map->count = section_count;
7039 *pointer_to_map = map;
7040 pointer_to_map = &map->next;
7041
7042 if (p_paddr_valid
7043 && !bed->want_p_paddr_set_to_zero
7044 && matching_lma->lma != map->p_paddr
7045 && !map->includes_filehdr
7046 && !map->includes_phdrs)
7047 /* There is some padding before the first section in the
7048 segment. So, we must account for that in the output
7049 segment's vma. */
7050 map->p_vaddr_offset = map->p_paddr - matching_lma->lma;
7051
7052 free (sections);
7053 continue;
7054 }
7055 else
7056 {
7057 /* Change the current segment's physical address to match
7058 the LMA of the first section that fitted, or if no
7059 section fitted, the first section. */
7060 if (matching_lma == NULL)
7061 matching_lma = suggested_lma;
7062
7063 map->p_paddr = matching_lma->lma;
7064
7065 /* Offset the segment physical address from the lma
7066 to allow for space taken up by elf headers. */
7067 if (map->includes_phdrs)
7068 {
7069 map->p_paddr -= iehdr->e_phnum * iehdr->e_phentsize;
7070
7071 /* iehdr->e_phnum is just an estimate of the number
7072 of program headers that we will need. Make a note
7073 here of the number we used and the segment we chose
7074 to hold these headers, so that we can adjust the
7075 offset when we know the correct value. */
7076 phdr_adjust_num = iehdr->e_phnum;
7077 phdr_adjust_seg = map;
7078 }
7079
7080 if (map->includes_filehdr)
7081 {
7082 bfd_vma align = (bfd_vma) 1 << matching_lma->alignment_power;
7083 map->p_paddr -= iehdr->e_ehsize;
7084 /* We've subtracted off the size of headers from the
7085 first section lma, but there may have been some
7086 alignment padding before that section too. Try to
7087 account for that by adjusting the segment lma down to
7088 the same alignment. */
7089 if (segment->p_align != 0 && segment->p_align < align)
7090 align = segment->p_align;
7091 map->p_paddr &= -align;
7092 }
7093 }
7094
7095 /* Step Three: Loop over the sections again, this time assigning
7096 those that fit to the current segment and removing them from the
7097 sections array; but making sure not to leave large gaps. Once all
7098 possible sections have been assigned to the current segment it is
7099 added to the list of built segments and if sections still remain
7100 to be assigned, a new segment is constructed before repeating
7101 the loop. */
7102 isec = 0;
7103 do
7104 {
7105 map->count = 0;
7106 suggested_lma = NULL;
7107
7108 /* Fill the current segment with sections that fit. */
7109 for (j = 0; j < section_count; j++)
7110 {
7111 section = sections[j];
7112
7113 if (section == NULL)
7114 continue;
7115
7116 output_section = section->output_section;
7117
7118 BFD_ASSERT (output_section != NULL);
7119
7120 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
7121 || IS_COREFILE_NOTE (segment, section))
7122 {
7123 if (map->count == 0)
7124 {
7125 /* If the first section in a segment does not start at
7126 the beginning of the segment, then something is
7127 wrong. */
7128 if (align_power (map->p_paddr
7129 + (map->includes_filehdr
7130 ? iehdr->e_ehsize : 0)
7131 + (map->includes_phdrs
7132 ? iehdr->e_phnum * iehdr->e_phentsize
7133 : 0),
7134 output_section->alignment_power)
7135 != output_section->lma)
7136 abort ();
7137 }
7138 else
7139 {
7140 asection *prev_sec;
7141
7142 prev_sec = map->sections[map->count - 1];
7143
7144 /* If the gap between the end of the previous section
7145 and the start of this section is more than
7146 maxpagesize then we need to start a new segment. */
7147 if ((BFD_ALIGN (prev_sec->lma + prev_sec->size,
7148 maxpagesize)
7149 < BFD_ALIGN (output_section->lma, maxpagesize))
7150 || (prev_sec->lma + prev_sec->size
7151 > output_section->lma))
7152 {
7153 if (suggested_lma == NULL)
7154 suggested_lma = output_section;
7155
7156 continue;
7157 }
7158 }
7159
7160 map->sections[map->count++] = output_section;
7161 ++isec;
7162 sections[j] = NULL;
7163 if (segment->p_type == PT_LOAD)
7164 section->segment_mark = TRUE;
7165 }
7166 else if (suggested_lma == NULL)
7167 suggested_lma = output_section;
7168 }
7169
7170 BFD_ASSERT (map->count > 0);
7171
7172 /* Add the current segment to the list of built segments. */
7173 *pointer_to_map = map;
7174 pointer_to_map = &map->next;
7175
7176 if (isec < section_count)
7177 {
7178 /* We still have not allocated all of the sections to
7179 segments. Create a new segment here, initialise it
7180 and carry on looping. */
7181 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
7182 amt += (bfd_size_type) section_count * sizeof (asection *);
7183 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
7184 if (map == NULL)
7185 {
7186 free (sections);
7187 return FALSE;
7188 }
7189
7190 /* Initialise the fields of the segment map. Set the physical
7191 physical address to the LMA of the first section that has
7192 not yet been assigned. */
7193 map->next = NULL;
7194 map->p_type = segment->p_type;
7195 map->p_flags = segment->p_flags;
7196 map->p_flags_valid = 1;
7197 map->p_paddr = suggested_lma->lma;
7198 map->p_paddr_valid = p_paddr_valid;
7199 map->includes_filehdr = 0;
7200 map->includes_phdrs = 0;
7201 }
7202 }
7203 while (isec < section_count);
7204
7205 free (sections);
7206 }
7207
7208 elf_seg_map (obfd) = map_first;
7209
7210 /* If we had to estimate the number of program headers that were
7211 going to be needed, then check our estimate now and adjust
7212 the offset if necessary. */
7213 if (phdr_adjust_seg != NULL)
7214 {
7215 unsigned int count;
7216
7217 for (count = 0, map = map_first; map != NULL; map = map->next)
7218 count++;
7219
7220 if (count > phdr_adjust_num)
7221 phdr_adjust_seg->p_paddr
7222 -= (count - phdr_adjust_num) * iehdr->e_phentsize;
7223
7224 for (map = map_first; map != NULL; map = map->next)
7225 if (map->p_type == PT_PHDR)
7226 {
7227 bfd_vma adjust
7228 = phdr_adjust_seg->includes_filehdr ? iehdr->e_ehsize : 0;
7229 map->p_paddr = phdr_adjust_seg->p_paddr + adjust;
7230 break;
7231 }
7232 }
7233
7234 #undef SEGMENT_END
7235 #undef SECTION_SIZE
7236 #undef IS_CONTAINED_BY_VMA
7237 #undef IS_CONTAINED_BY_LMA
7238 #undef IS_NOTE
7239 #undef IS_COREFILE_NOTE
7240 #undef IS_SOLARIS_PT_INTERP
7241 #undef IS_SECTION_IN_INPUT_SEGMENT
7242 #undef INCLUDE_SECTION_IN_SEGMENT
7243 #undef SEGMENT_AFTER_SEGMENT
7244 #undef SEGMENT_OVERLAPS
7245 return TRUE;
7246 }
7247
7248 /* Copy ELF program header information. */
7249
7250 static bfd_boolean
7251 copy_elf_program_header (bfd *ibfd, bfd *obfd)
7252 {
7253 Elf_Internal_Ehdr *iehdr;
7254 struct elf_segment_map *map;
7255 struct elf_segment_map *map_first;
7256 struct elf_segment_map **pointer_to_map;
7257 Elf_Internal_Phdr *segment;
7258 unsigned int i;
7259 unsigned int num_segments;
7260 bfd_boolean phdr_included = FALSE;
7261 bfd_boolean p_paddr_valid;
7262
7263 iehdr = elf_elfheader (ibfd);
7264
7265 map_first = NULL;
7266 pointer_to_map = &map_first;
7267
7268 /* If all the segment p_paddr fields are zero, don't set
7269 map->p_paddr_valid. */
7270 p_paddr_valid = FALSE;
7271 num_segments = elf_elfheader (ibfd)->e_phnum;
7272 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7273 i < num_segments;
7274 i++, segment++)
7275 if (segment->p_paddr != 0)
7276 {
7277 p_paddr_valid = TRUE;
7278 break;
7279 }
7280
7281 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7282 i < num_segments;
7283 i++, segment++)
7284 {
7285 asection *section;
7286 unsigned int section_count;
7287 bfd_size_type amt;
7288 Elf_Internal_Shdr *this_hdr;
7289 asection *first_section = NULL;
7290 asection *lowest_section;
7291 bfd_boolean no_contents = TRUE;
7292
7293 /* Compute how many sections are in this segment. */
7294 for (section = ibfd->sections, section_count = 0;
7295 section != NULL;
7296 section = section->next)
7297 {
7298 this_hdr = &(elf_section_data(section)->this_hdr);
7299 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
7300 {
7301 if (first_section == NULL)
7302 first_section = section;
7303 if (elf_section_type (section) != SHT_NOBITS)
7304 no_contents = FALSE;
7305 section_count++;
7306 }
7307 }
7308
7309 /* Allocate a segment map big enough to contain
7310 all of the sections we have selected. */
7311 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
7312 amt += (bfd_size_type) section_count * sizeof (asection *);
7313 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
7314 if (map == NULL)
7315 return FALSE;
7316
7317 /* Initialize the fields of the output segment map with the
7318 input segment. */
7319 map->next = NULL;
7320 map->p_type = segment->p_type;
7321 map->p_flags = segment->p_flags;
7322 map->p_flags_valid = 1;
7323 map->p_paddr = segment->p_paddr;
7324 map->p_paddr_valid = p_paddr_valid;
7325 map->p_align = segment->p_align;
7326 map->p_align_valid = 1;
7327 map->p_vaddr_offset = 0;
7328
7329 if (map->p_type == PT_GNU_RELRO
7330 || map->p_type == PT_GNU_STACK)
7331 {
7332 /* The PT_GNU_RELRO segment may contain the first a few
7333 bytes in the .got.plt section even if the whole .got.plt
7334 section isn't in the PT_GNU_RELRO segment. We won't
7335 change the size of the PT_GNU_RELRO segment.
7336 Similarly, PT_GNU_STACK size is significant on uclinux
7337 systems. */
7338 map->p_size = segment->p_memsz;
7339 map->p_size_valid = 1;
7340 }
7341
7342 /* Determine if this segment contains the ELF file header
7343 and if it contains the program headers themselves. */
7344 map->includes_filehdr = (segment->p_offset == 0
7345 && segment->p_filesz >= iehdr->e_ehsize);
7346
7347 map->includes_phdrs = 0;
7348 if (! phdr_included || segment->p_type != PT_LOAD)
7349 {
7350 map->includes_phdrs =
7351 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
7352 && (segment->p_offset + segment->p_filesz
7353 >= ((bfd_vma) iehdr->e_phoff
7354 + iehdr->e_phnum * iehdr->e_phentsize)));
7355
7356 if (segment->p_type == PT_LOAD && map->includes_phdrs)
7357 phdr_included = TRUE;
7358 }
7359
7360 lowest_section = NULL;
7361 if (section_count != 0)
7362 {
7363 unsigned int isec = 0;
7364
7365 for (section = first_section;
7366 section != NULL;
7367 section = section->next)
7368 {
7369 this_hdr = &(elf_section_data(section)->this_hdr);
7370 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
7371 {
7372 map->sections[isec++] = section->output_section;
7373 if ((section->flags & SEC_ALLOC) != 0)
7374 {
7375 bfd_vma seg_off;
7376
7377 if (lowest_section == NULL
7378 || section->lma < lowest_section->lma)
7379 lowest_section = section;
7380
7381 /* Section lmas are set up from PT_LOAD header
7382 p_paddr in _bfd_elf_make_section_from_shdr.
7383 If this header has a p_paddr that disagrees
7384 with the section lma, flag the p_paddr as
7385 invalid. */
7386 if ((section->flags & SEC_LOAD) != 0)
7387 seg_off = this_hdr->sh_offset - segment->p_offset;
7388 else
7389 seg_off = this_hdr->sh_addr - segment->p_vaddr;
7390 if (section->lma - segment->p_paddr != seg_off)
7391 map->p_paddr_valid = FALSE;
7392 }
7393 if (isec == section_count)
7394 break;
7395 }
7396 }
7397 }
7398
7399 if (map->includes_filehdr && lowest_section != NULL)
7400 {
7401 /* Try to keep the space used by the headers plus any
7402 padding fixed. If there are sections with file contents
7403 in this segment then the lowest sh_offset is the best
7404 guess. Otherwise the segment only has file contents for
7405 the headers, and p_filesz is the best guess. */
7406 if (no_contents)
7407 map->header_size = segment->p_filesz;
7408 else
7409 map->header_size = lowest_section->filepos;
7410 }
7411
7412 if (section_count == 0)
7413 map->p_vaddr_offset = segment->p_vaddr;
7414 else if (!map->includes_phdrs
7415 && !map->includes_filehdr
7416 && map->p_paddr_valid)
7417 /* Account for padding before the first section. */
7418 map->p_vaddr_offset = (segment->p_paddr
7419 - (lowest_section ? lowest_section->lma : 0));
7420
7421 map->count = section_count;
7422 *pointer_to_map = map;
7423 pointer_to_map = &map->next;
7424 }
7425
7426 elf_seg_map (obfd) = map_first;
7427 return TRUE;
7428 }
7429
7430 /* Copy private BFD data. This copies or rewrites ELF program header
7431 information. */
7432
7433 static bfd_boolean
7434 copy_private_bfd_data (bfd *ibfd, bfd *obfd)
7435 {
7436 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
7437 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
7438 return TRUE;
7439
7440 if (elf_tdata (ibfd)->phdr == NULL)
7441 return TRUE;
7442
7443 if (ibfd->xvec == obfd->xvec)
7444 {
7445 /* Check to see if any sections in the input BFD
7446 covered by ELF program header have changed. */
7447 Elf_Internal_Phdr *segment;
7448 asection *section, *osec;
7449 unsigned int i, num_segments;
7450 Elf_Internal_Shdr *this_hdr;
7451 const struct elf_backend_data *bed;
7452
7453 bed = get_elf_backend_data (ibfd);
7454
7455 /* Regenerate the segment map if p_paddr is set to 0. */
7456 if (bed->want_p_paddr_set_to_zero)
7457 goto rewrite;
7458
7459 /* Initialize the segment mark field. */
7460 for (section = obfd->sections; section != NULL;
7461 section = section->next)
7462 section->segment_mark = FALSE;
7463
7464 num_segments = elf_elfheader (ibfd)->e_phnum;
7465 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7466 i < num_segments;
7467 i++, segment++)
7468 {
7469 /* PR binutils/3535. The Solaris linker always sets the p_paddr
7470 and p_memsz fields of special segments (DYNAMIC, INTERP) to 0
7471 which severly confuses things, so always regenerate the segment
7472 map in this case. */
7473 if (segment->p_paddr == 0
7474 && segment->p_memsz == 0
7475 && (segment->p_type == PT_INTERP || segment->p_type == PT_DYNAMIC))
7476 goto rewrite;
7477
7478 for (section = ibfd->sections;
7479 section != NULL; section = section->next)
7480 {
7481 /* We mark the output section so that we know it comes
7482 from the input BFD. */
7483 osec = section->output_section;
7484 if (osec)
7485 osec->segment_mark = TRUE;
7486
7487 /* Check if this section is covered by the segment. */
7488 this_hdr = &(elf_section_data(section)->this_hdr);
7489 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
7490 {
7491 /* FIXME: Check if its output section is changed or
7492 removed. What else do we need to check? */
7493 if (osec == NULL
7494 || section->flags != osec->flags
7495 || section->lma != osec->lma
7496 || section->vma != osec->vma
7497 || section->size != osec->size
7498 || section->rawsize != osec->rawsize
7499 || section->alignment_power != osec->alignment_power)
7500 goto rewrite;
7501 }
7502 }
7503 }
7504
7505 /* Check to see if any output section do not come from the
7506 input BFD. */
7507 for (section = obfd->sections; section != NULL;
7508 section = section->next)
7509 {
7510 if (!section->segment_mark)
7511 goto rewrite;
7512 else
7513 section->segment_mark = FALSE;
7514 }
7515
7516 return copy_elf_program_header (ibfd, obfd);
7517 }
7518
7519 rewrite:
7520 if (ibfd->xvec == obfd->xvec)
7521 {
7522 /* When rewriting program header, set the output maxpagesize to
7523 the maximum alignment of input PT_LOAD segments. */
7524 Elf_Internal_Phdr *segment;
7525 unsigned int i;
7526 unsigned int num_segments = elf_elfheader (ibfd)->e_phnum;
7527 bfd_vma maxpagesize = 0;
7528
7529 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7530 i < num_segments;
7531 i++, segment++)
7532 if (segment->p_type == PT_LOAD
7533 && maxpagesize < segment->p_align)
7534 {
7535 /* PR 17512: file: f17299af. */
7536 if (segment->p_align > (bfd_vma) 1 << ((sizeof (bfd_vma) * 8) - 2))
7537 /* xgettext:c-format */
7538 _bfd_error_handler (_("%pB: warning: segment alignment of %#"
7539 PRIx64 " is too large"),
7540 ibfd, (uint64_t) segment->p_align);
7541 else
7542 maxpagesize = segment->p_align;
7543 }
7544
7545 if (maxpagesize != get_elf_backend_data (obfd)->maxpagesize)
7546 bfd_emul_set_maxpagesize (bfd_get_target (obfd), maxpagesize);
7547 }
7548
7549 return rewrite_elf_program_header (ibfd, obfd);
7550 }
7551
7552 /* Initialize private output section information from input section. */
7553
7554 bfd_boolean
7555 _bfd_elf_init_private_section_data (bfd *ibfd,
7556 asection *isec,
7557 bfd *obfd,
7558 asection *osec,
7559 struct bfd_link_info *link_info)
7560
7561 {
7562 Elf_Internal_Shdr *ihdr, *ohdr;
7563 bfd_boolean final_link = (link_info != NULL
7564 && !bfd_link_relocatable (link_info));
7565
7566 if (ibfd->xvec->flavour != bfd_target_elf_flavour
7567 || obfd->xvec->flavour != bfd_target_elf_flavour)
7568 return TRUE;
7569
7570 BFD_ASSERT (elf_section_data (osec) != NULL);
7571
7572 /* For objcopy and relocatable link, don't copy the output ELF
7573 section type from input if the output BFD section flags have been
7574 set to something different. For a final link allow some flags
7575 that the linker clears to differ. */
7576 if (elf_section_type (osec) == SHT_NULL
7577 && (osec->flags == isec->flags
7578 || (final_link
7579 && ((osec->flags ^ isec->flags)
7580 & ~(SEC_LINK_ONCE | SEC_LINK_DUPLICATES | SEC_RELOC)) == 0)))
7581 elf_section_type (osec) = elf_section_type (isec);
7582
7583 /* FIXME: Is this correct for all OS/PROC specific flags? */
7584 elf_section_flags (osec) |= (elf_section_flags (isec)
7585 & (SHF_MASKOS | SHF_MASKPROC));
7586
7587 /* Copy sh_info from input for mbind section. */
7588 if (elf_section_flags (isec) & SHF_GNU_MBIND)
7589 elf_section_data (osec)->this_hdr.sh_info
7590 = elf_section_data (isec)->this_hdr.sh_info;
7591
7592 /* Set things up for objcopy and relocatable link. The output
7593 SHT_GROUP section will have its elf_next_in_group pointing back
7594 to the input group members. Ignore linker created group section.
7595 See elfNN_ia64_object_p in elfxx-ia64.c. */
7596 if ((link_info == NULL
7597 || !link_info->resolve_section_groups)
7598 && (elf_sec_group (isec) == NULL
7599 || (elf_sec_group (isec)->flags & SEC_LINKER_CREATED) == 0))
7600 {
7601 if (elf_section_flags (isec) & SHF_GROUP)
7602 elf_section_flags (osec) |= SHF_GROUP;
7603 elf_next_in_group (osec) = elf_next_in_group (isec);
7604 elf_section_data (osec)->group = elf_section_data (isec)->group;
7605 }
7606
7607 /* If not decompress, preserve SHF_COMPRESSED. */
7608 if (!final_link && (ibfd->flags & BFD_DECOMPRESS) == 0)
7609 elf_section_flags (osec) |= (elf_section_flags (isec)
7610 & SHF_COMPRESSED);
7611
7612 ihdr = &elf_section_data (isec)->this_hdr;
7613
7614 /* We need to handle elf_linked_to_section for SHF_LINK_ORDER. We
7615 don't use the output section of the linked-to section since it
7616 may be NULL at this point. */
7617 if ((ihdr->sh_flags & SHF_LINK_ORDER) != 0)
7618 {
7619 ohdr = &elf_section_data (osec)->this_hdr;
7620 ohdr->sh_flags |= SHF_LINK_ORDER;
7621 elf_linked_to_section (osec) = elf_linked_to_section (isec);
7622 }
7623
7624 osec->use_rela_p = isec->use_rela_p;
7625
7626 return TRUE;
7627 }
7628
7629 /* Copy private section information. This copies over the entsize
7630 field, and sometimes the info field. */
7631
7632 bfd_boolean
7633 _bfd_elf_copy_private_section_data (bfd *ibfd,
7634 asection *isec,
7635 bfd *obfd,
7636 asection *osec)
7637 {
7638 Elf_Internal_Shdr *ihdr, *ohdr;
7639
7640 if (ibfd->xvec->flavour != bfd_target_elf_flavour
7641 || obfd->xvec->flavour != bfd_target_elf_flavour)
7642 return TRUE;
7643
7644 ihdr = &elf_section_data (isec)->this_hdr;
7645 ohdr = &elf_section_data (osec)->this_hdr;
7646
7647 ohdr->sh_entsize = ihdr->sh_entsize;
7648
7649 if (ihdr->sh_type == SHT_SYMTAB
7650 || ihdr->sh_type == SHT_DYNSYM
7651 || ihdr->sh_type == SHT_GNU_verneed
7652 || ihdr->sh_type == SHT_GNU_verdef)
7653 ohdr->sh_info = ihdr->sh_info;
7654
7655 return _bfd_elf_init_private_section_data (ibfd, isec, obfd, osec,
7656 NULL);
7657 }
7658
7659 /* Look at all the SHT_GROUP sections in IBFD, making any adjustments
7660 necessary if we are removing either the SHT_GROUP section or any of
7661 the group member sections. DISCARDED is the value that a section's
7662 output_section has if the section will be discarded, NULL when this
7663 function is called from objcopy, bfd_abs_section_ptr when called
7664 from the linker. */
7665
7666 bfd_boolean
7667 _bfd_elf_fixup_group_sections (bfd *ibfd, asection *discarded)
7668 {
7669 asection *isec;
7670
7671 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
7672 if (elf_section_type (isec) == SHT_GROUP)
7673 {
7674 asection *first = elf_next_in_group (isec);
7675 asection *s = first;
7676 bfd_size_type removed = 0;
7677
7678 while (s != NULL)
7679 {
7680 /* If this member section is being output but the
7681 SHT_GROUP section is not, then clear the group info
7682 set up by _bfd_elf_copy_private_section_data. */
7683 if (s->output_section != discarded
7684 && isec->output_section == discarded)
7685 {
7686 elf_section_flags (s->output_section) &= ~SHF_GROUP;
7687 elf_group_name (s->output_section) = NULL;
7688 }
7689 /* Conversely, if the member section is not being output
7690 but the SHT_GROUP section is, then adjust its size. */
7691 else if (s->output_section == discarded
7692 && isec->output_section != discarded)
7693 {
7694 struct bfd_elf_section_data *elf_sec = elf_section_data (s);
7695 removed += 4;
7696 if (elf_sec->rel.hdr != NULL
7697 && (elf_sec->rel.hdr->sh_flags & SHF_GROUP) != 0)
7698 removed += 4;
7699 if (elf_sec->rela.hdr != NULL
7700 && (elf_sec->rela.hdr->sh_flags & SHF_GROUP) != 0)
7701 removed += 4;
7702 }
7703 s = elf_next_in_group (s);
7704 if (s == first)
7705 break;
7706 }
7707 if (removed != 0)
7708 {
7709 if (discarded != NULL)
7710 {
7711 /* If we've been called for ld -r, then we need to
7712 adjust the input section size. */
7713 if (isec->rawsize == 0)
7714 isec->rawsize = isec->size;
7715 isec->size = isec->rawsize - removed;
7716 if (isec->size <= 4)
7717 {
7718 isec->size = 0;
7719 isec->flags |= SEC_EXCLUDE;
7720 }
7721 }
7722 else
7723 {
7724 /* Adjust the output section size when called from
7725 objcopy. */
7726 isec->output_section->size -= removed;
7727 if (isec->output_section->size <= 4)
7728 {
7729 isec->output_section->size = 0;
7730 isec->output_section->flags |= SEC_EXCLUDE;
7731 }
7732 }
7733 }
7734 }
7735
7736 return TRUE;
7737 }
7738
7739 /* Copy private header information. */
7740
7741 bfd_boolean
7742 _bfd_elf_copy_private_header_data (bfd *ibfd, bfd *obfd)
7743 {
7744 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
7745 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
7746 return TRUE;
7747
7748 /* Copy over private BFD data if it has not already been copied.
7749 This must be done here, rather than in the copy_private_bfd_data
7750 entry point, because the latter is called after the section
7751 contents have been set, which means that the program headers have
7752 already been worked out. */
7753 if (elf_seg_map (obfd) == NULL && elf_tdata (ibfd)->phdr != NULL)
7754 {
7755 if (! copy_private_bfd_data (ibfd, obfd))
7756 return FALSE;
7757 }
7758
7759 return _bfd_elf_fixup_group_sections (ibfd, NULL);
7760 }
7761
7762 /* Copy private symbol information. If this symbol is in a section
7763 which we did not map into a BFD section, try to map the section
7764 index correctly. We use special macro definitions for the mapped
7765 section indices; these definitions are interpreted by the
7766 swap_out_syms function. */
7767
7768 #define MAP_ONESYMTAB (SHN_HIOS + 1)
7769 #define MAP_DYNSYMTAB (SHN_HIOS + 2)
7770 #define MAP_STRTAB (SHN_HIOS + 3)
7771 #define MAP_SHSTRTAB (SHN_HIOS + 4)
7772 #define MAP_SYM_SHNDX (SHN_HIOS + 5)
7773
7774 bfd_boolean
7775 _bfd_elf_copy_private_symbol_data (bfd *ibfd,
7776 asymbol *isymarg,
7777 bfd *obfd,
7778 asymbol *osymarg)
7779 {
7780 elf_symbol_type *isym, *osym;
7781
7782 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
7783 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
7784 return TRUE;
7785
7786 isym = elf_symbol_from (ibfd, isymarg);
7787 osym = elf_symbol_from (obfd, osymarg);
7788
7789 if (isym != NULL
7790 && isym->internal_elf_sym.st_shndx != 0
7791 && osym != NULL
7792 && bfd_is_abs_section (isym->symbol.section))
7793 {
7794 unsigned int shndx;
7795
7796 shndx = isym->internal_elf_sym.st_shndx;
7797 if (shndx == elf_onesymtab (ibfd))
7798 shndx = MAP_ONESYMTAB;
7799 else if (shndx == elf_dynsymtab (ibfd))
7800 shndx = MAP_DYNSYMTAB;
7801 else if (shndx == elf_strtab_sec (ibfd))
7802 shndx = MAP_STRTAB;
7803 else if (shndx == elf_shstrtab_sec (ibfd))
7804 shndx = MAP_SHSTRTAB;
7805 else if (find_section_in_list (shndx, elf_symtab_shndx_list (ibfd)))
7806 shndx = MAP_SYM_SHNDX;
7807 osym->internal_elf_sym.st_shndx = shndx;
7808 }
7809
7810 return TRUE;
7811 }
7812
7813 /* Swap out the symbols. */
7814
7815 static bfd_boolean
7816 swap_out_syms (bfd *abfd,
7817 struct elf_strtab_hash **sttp,
7818 int relocatable_p)
7819 {
7820 const struct elf_backend_data *bed;
7821 int symcount;
7822 asymbol **syms;
7823 struct elf_strtab_hash *stt;
7824 Elf_Internal_Shdr *symtab_hdr;
7825 Elf_Internal_Shdr *symtab_shndx_hdr;
7826 Elf_Internal_Shdr *symstrtab_hdr;
7827 struct elf_sym_strtab *symstrtab;
7828 bfd_byte *outbound_syms;
7829 bfd_byte *outbound_shndx;
7830 unsigned long outbound_syms_index;
7831 unsigned long outbound_shndx_index;
7832 int idx;
7833 unsigned int num_locals;
7834 bfd_size_type amt;
7835 bfd_boolean name_local_sections;
7836
7837 if (!elf_map_symbols (abfd, &num_locals))
7838 return FALSE;
7839
7840 /* Dump out the symtabs. */
7841 stt = _bfd_elf_strtab_init ();
7842 if (stt == NULL)
7843 return FALSE;
7844
7845 bed = get_elf_backend_data (abfd);
7846 symcount = bfd_get_symcount (abfd);
7847 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7848 symtab_hdr->sh_type = SHT_SYMTAB;
7849 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
7850 symtab_hdr->sh_size = symtab_hdr->sh_entsize * (symcount + 1);
7851 symtab_hdr->sh_info = num_locals + 1;
7852 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
7853
7854 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
7855 symstrtab_hdr->sh_type = SHT_STRTAB;
7856
7857 /* Allocate buffer to swap out the .strtab section. */
7858 symstrtab = (struct elf_sym_strtab *) bfd_malloc ((symcount + 1)
7859 * sizeof (*symstrtab));
7860 if (symstrtab == NULL)
7861 {
7862 _bfd_elf_strtab_free (stt);
7863 return FALSE;
7864 }
7865
7866 outbound_syms = (bfd_byte *) bfd_alloc2 (abfd, 1 + symcount,
7867 bed->s->sizeof_sym);
7868 if (outbound_syms == NULL)
7869 {
7870 error_return:
7871 _bfd_elf_strtab_free (stt);
7872 free (symstrtab);
7873 return FALSE;
7874 }
7875 symtab_hdr->contents = outbound_syms;
7876 outbound_syms_index = 0;
7877
7878 outbound_shndx = NULL;
7879 outbound_shndx_index = 0;
7880
7881 if (elf_symtab_shndx_list (abfd))
7882 {
7883 symtab_shndx_hdr = & elf_symtab_shndx_list (abfd)->hdr;
7884 if (symtab_shndx_hdr->sh_name != 0)
7885 {
7886 amt = (bfd_size_type) (1 + symcount) * sizeof (Elf_External_Sym_Shndx);
7887 outbound_shndx = (bfd_byte *)
7888 bfd_zalloc2 (abfd, 1 + symcount, sizeof (Elf_External_Sym_Shndx));
7889 if (outbound_shndx == NULL)
7890 goto error_return;
7891
7892 symtab_shndx_hdr->contents = outbound_shndx;
7893 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
7894 symtab_shndx_hdr->sh_size = amt;
7895 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
7896 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
7897 }
7898 /* FIXME: What about any other headers in the list ? */
7899 }
7900
7901 /* Now generate the data (for "contents"). */
7902 {
7903 /* Fill in zeroth symbol and swap it out. */
7904 Elf_Internal_Sym sym;
7905 sym.st_name = 0;
7906 sym.st_value = 0;
7907 sym.st_size = 0;
7908 sym.st_info = 0;
7909 sym.st_other = 0;
7910 sym.st_shndx = SHN_UNDEF;
7911 sym.st_target_internal = 0;
7912 symstrtab[0].sym = sym;
7913 symstrtab[0].dest_index = outbound_syms_index;
7914 symstrtab[0].destshndx_index = outbound_shndx_index;
7915 outbound_syms_index++;
7916 if (outbound_shndx != NULL)
7917 outbound_shndx_index++;
7918 }
7919
7920 name_local_sections
7921 = (bed->elf_backend_name_local_section_symbols
7922 && bed->elf_backend_name_local_section_symbols (abfd));
7923
7924 syms = bfd_get_outsymbols (abfd);
7925 for (idx = 0; idx < symcount;)
7926 {
7927 Elf_Internal_Sym sym;
7928 bfd_vma value = syms[idx]->value;
7929 elf_symbol_type *type_ptr;
7930 flagword flags = syms[idx]->flags;
7931 int type;
7932
7933 if (!name_local_sections
7934 && (flags & (BSF_SECTION_SYM | BSF_GLOBAL)) == BSF_SECTION_SYM)
7935 {
7936 /* Local section symbols have no name. */
7937 sym.st_name = (unsigned long) -1;
7938 }
7939 else
7940 {
7941 /* Call _bfd_elf_strtab_offset after _bfd_elf_strtab_finalize
7942 to get the final offset for st_name. */
7943 sym.st_name
7944 = (unsigned long) _bfd_elf_strtab_add (stt, syms[idx]->name,
7945 FALSE);
7946 if (sym.st_name == (unsigned long) -1)
7947 goto error_return;
7948 }
7949
7950 type_ptr = elf_symbol_from (abfd, syms[idx]);
7951
7952 if ((flags & BSF_SECTION_SYM) == 0
7953 && bfd_is_com_section (syms[idx]->section))
7954 {
7955 /* ELF common symbols put the alignment into the `value' field,
7956 and the size into the `size' field. This is backwards from
7957 how BFD handles it, so reverse it here. */
7958 sym.st_size = value;
7959 if (type_ptr == NULL
7960 || type_ptr->internal_elf_sym.st_value == 0)
7961 sym.st_value = value >= 16 ? 16 : (1 << bfd_log2 (value));
7962 else
7963 sym.st_value = type_ptr->internal_elf_sym.st_value;
7964 sym.st_shndx = _bfd_elf_section_from_bfd_section
7965 (abfd, syms[idx]->section);
7966 }
7967 else
7968 {
7969 asection *sec = syms[idx]->section;
7970 unsigned int shndx;
7971
7972 if (sec->output_section)
7973 {
7974 value += sec->output_offset;
7975 sec = sec->output_section;
7976 }
7977
7978 /* Don't add in the section vma for relocatable output. */
7979 if (! relocatable_p)
7980 value += sec->vma;
7981 sym.st_value = value;
7982 sym.st_size = type_ptr ? type_ptr->internal_elf_sym.st_size : 0;
7983
7984 if (bfd_is_abs_section (sec)
7985 && type_ptr != NULL
7986 && type_ptr->internal_elf_sym.st_shndx != 0)
7987 {
7988 /* This symbol is in a real ELF section which we did
7989 not create as a BFD section. Undo the mapping done
7990 by copy_private_symbol_data. */
7991 shndx = type_ptr->internal_elf_sym.st_shndx;
7992 switch (shndx)
7993 {
7994 case MAP_ONESYMTAB:
7995 shndx = elf_onesymtab (abfd);
7996 break;
7997 case MAP_DYNSYMTAB:
7998 shndx = elf_dynsymtab (abfd);
7999 break;
8000 case MAP_STRTAB:
8001 shndx = elf_strtab_sec (abfd);
8002 break;
8003 case MAP_SHSTRTAB:
8004 shndx = elf_shstrtab_sec (abfd);
8005 break;
8006 case MAP_SYM_SHNDX:
8007 if (elf_symtab_shndx_list (abfd))
8008 shndx = elf_symtab_shndx_list (abfd)->ndx;
8009 break;
8010 default:
8011 shndx = SHN_ABS;
8012 break;
8013 }
8014 }
8015 else
8016 {
8017 shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
8018
8019 if (shndx == SHN_BAD)
8020 {
8021 asection *sec2;
8022
8023 /* Writing this would be a hell of a lot easier if
8024 we had some decent documentation on bfd, and
8025 knew what to expect of the library, and what to
8026 demand of applications. For example, it
8027 appears that `objcopy' might not set the
8028 section of a symbol to be a section that is
8029 actually in the output file. */
8030 sec2 = bfd_get_section_by_name (abfd, sec->name);
8031 if (sec2 != NULL)
8032 shndx = _bfd_elf_section_from_bfd_section (abfd, sec2);
8033 if (shndx == SHN_BAD)
8034 {
8035 /* xgettext:c-format */
8036 _bfd_error_handler
8037 (_("unable to find equivalent output section"
8038 " for symbol '%s' from section '%s'"),
8039 syms[idx]->name ? syms[idx]->name : "<Local sym>",
8040 sec->name);
8041 bfd_set_error (bfd_error_invalid_operation);
8042 goto error_return;
8043 }
8044 }
8045 }
8046
8047 sym.st_shndx = shndx;
8048 }
8049
8050 if ((flags & BSF_THREAD_LOCAL) != 0)
8051 type = STT_TLS;
8052 else if ((flags & BSF_GNU_INDIRECT_FUNCTION) != 0)
8053 type = STT_GNU_IFUNC;
8054 else if ((flags & BSF_FUNCTION) != 0)
8055 type = STT_FUNC;
8056 else if ((flags & BSF_OBJECT) != 0)
8057 type = STT_OBJECT;
8058 else if ((flags & BSF_RELC) != 0)
8059 type = STT_RELC;
8060 else if ((flags & BSF_SRELC) != 0)
8061 type = STT_SRELC;
8062 else
8063 type = STT_NOTYPE;
8064
8065 if (syms[idx]->section->flags & SEC_THREAD_LOCAL)
8066 type = STT_TLS;
8067
8068 /* Processor-specific types. */
8069 if (type_ptr != NULL
8070 && bed->elf_backend_get_symbol_type)
8071 type = ((*bed->elf_backend_get_symbol_type)
8072 (&type_ptr->internal_elf_sym, type));
8073
8074 if (flags & BSF_SECTION_SYM)
8075 {
8076 if (flags & BSF_GLOBAL)
8077 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8078 else
8079 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
8080 }
8081 else if (bfd_is_com_section (syms[idx]->section))
8082 {
8083 if (type != STT_TLS)
8084 {
8085 if ((abfd->flags & BFD_CONVERT_ELF_COMMON))
8086 type = ((abfd->flags & BFD_USE_ELF_STT_COMMON)
8087 ? STT_COMMON : STT_OBJECT);
8088 else
8089 type = ((flags & BSF_ELF_COMMON) != 0
8090 ? STT_COMMON : STT_OBJECT);
8091 }
8092 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
8093 }
8094 else if (bfd_is_und_section (syms[idx]->section))
8095 sym.st_info = ELF_ST_INFO (((flags & BSF_WEAK)
8096 ? STB_WEAK
8097 : STB_GLOBAL),
8098 type);
8099 else if (flags & BSF_FILE)
8100 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
8101 else
8102 {
8103 int bind = STB_LOCAL;
8104
8105 if (flags & BSF_LOCAL)
8106 bind = STB_LOCAL;
8107 else if (flags & BSF_GNU_UNIQUE)
8108 bind = STB_GNU_UNIQUE;
8109 else if (flags & BSF_WEAK)
8110 bind = STB_WEAK;
8111 else if (flags & BSF_GLOBAL)
8112 bind = STB_GLOBAL;
8113
8114 sym.st_info = ELF_ST_INFO (bind, type);
8115 }
8116
8117 if (type_ptr != NULL)
8118 {
8119 sym.st_other = type_ptr->internal_elf_sym.st_other;
8120 sym.st_target_internal
8121 = type_ptr->internal_elf_sym.st_target_internal;
8122 }
8123 else
8124 {
8125 sym.st_other = 0;
8126 sym.st_target_internal = 0;
8127 }
8128
8129 idx++;
8130 symstrtab[idx].sym = sym;
8131 symstrtab[idx].dest_index = outbound_syms_index;
8132 symstrtab[idx].destshndx_index = outbound_shndx_index;
8133
8134 outbound_syms_index++;
8135 if (outbound_shndx != NULL)
8136 outbound_shndx_index++;
8137 }
8138
8139 /* Finalize the .strtab section. */
8140 _bfd_elf_strtab_finalize (stt);
8141
8142 /* Swap out the .strtab section. */
8143 for (idx = 0; idx <= symcount; idx++)
8144 {
8145 struct elf_sym_strtab *elfsym = &symstrtab[idx];
8146 if (elfsym->sym.st_name == (unsigned long) -1)
8147 elfsym->sym.st_name = 0;
8148 else
8149 elfsym->sym.st_name = _bfd_elf_strtab_offset (stt,
8150 elfsym->sym.st_name);
8151 bed->s->swap_symbol_out (abfd, &elfsym->sym,
8152 (outbound_syms
8153 + (elfsym->dest_index
8154 * bed->s->sizeof_sym)),
8155 (outbound_shndx
8156 + (elfsym->destshndx_index
8157 * sizeof (Elf_External_Sym_Shndx))));
8158 }
8159 free (symstrtab);
8160
8161 *sttp = stt;
8162 symstrtab_hdr->sh_size = _bfd_elf_strtab_size (stt);
8163 symstrtab_hdr->sh_type = SHT_STRTAB;
8164 symstrtab_hdr->sh_flags = bed->elf_strtab_flags;
8165 symstrtab_hdr->sh_addr = 0;
8166 symstrtab_hdr->sh_entsize = 0;
8167 symstrtab_hdr->sh_link = 0;
8168 symstrtab_hdr->sh_info = 0;
8169 symstrtab_hdr->sh_addralign = 1;
8170
8171 return TRUE;
8172 }
8173
8174 /* Return the number of bytes required to hold the symtab vector.
8175
8176 Note that we base it on the count plus 1, since we will null terminate
8177 the vector allocated based on this size. However, the ELF symbol table
8178 always has a dummy entry as symbol #0, so it ends up even. */
8179
8180 long
8181 _bfd_elf_get_symtab_upper_bound (bfd *abfd)
8182 {
8183 long symcount;
8184 long symtab_size;
8185 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->symtab_hdr;
8186
8187 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
8188 symtab_size = (symcount + 1) * (sizeof (asymbol *));
8189 if (symcount > 0)
8190 symtab_size -= sizeof (asymbol *);
8191
8192 return symtab_size;
8193 }
8194
8195 long
8196 _bfd_elf_get_dynamic_symtab_upper_bound (bfd *abfd)
8197 {
8198 long symcount;
8199 long symtab_size;
8200 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->dynsymtab_hdr;
8201
8202 if (elf_dynsymtab (abfd) == 0)
8203 {
8204 bfd_set_error (bfd_error_invalid_operation);
8205 return -1;
8206 }
8207
8208 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
8209 symtab_size = (symcount + 1) * (sizeof (asymbol *));
8210 if (symcount > 0)
8211 symtab_size -= sizeof (asymbol *);
8212
8213 return symtab_size;
8214 }
8215
8216 long
8217 _bfd_elf_get_reloc_upper_bound (bfd *abfd ATTRIBUTE_UNUSED,
8218 sec_ptr asect)
8219 {
8220 return (asect->reloc_count + 1) * sizeof (arelent *);
8221 }
8222
8223 /* Canonicalize the relocs. */
8224
8225 long
8226 _bfd_elf_canonicalize_reloc (bfd *abfd,
8227 sec_ptr section,
8228 arelent **relptr,
8229 asymbol **symbols)
8230 {
8231 arelent *tblptr;
8232 unsigned int i;
8233 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8234
8235 if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE))
8236 return -1;
8237
8238 tblptr = section->relocation;
8239 for (i = 0; i < section->reloc_count; i++)
8240 *relptr++ = tblptr++;
8241
8242 *relptr = NULL;
8243
8244 return section->reloc_count;
8245 }
8246
8247 long
8248 _bfd_elf_canonicalize_symtab (bfd *abfd, asymbol **allocation)
8249 {
8250 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8251 long symcount = bed->s->slurp_symbol_table (abfd, allocation, FALSE);
8252
8253 if (symcount >= 0)
8254 bfd_get_symcount (abfd) = symcount;
8255 return symcount;
8256 }
8257
8258 long
8259 _bfd_elf_canonicalize_dynamic_symtab (bfd *abfd,
8260 asymbol **allocation)
8261 {
8262 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8263 long symcount = bed->s->slurp_symbol_table (abfd, allocation, TRUE);
8264
8265 if (symcount >= 0)
8266 bfd_get_dynamic_symcount (abfd) = symcount;
8267 return symcount;
8268 }
8269
8270 /* Return the size required for the dynamic reloc entries. Any loadable
8271 section that was actually installed in the BFD, and has type SHT_REL
8272 or SHT_RELA, and uses the dynamic symbol table, is considered to be a
8273 dynamic reloc section. */
8274
8275 long
8276 _bfd_elf_get_dynamic_reloc_upper_bound (bfd *abfd)
8277 {
8278 long ret;
8279 asection *s;
8280
8281 if (elf_dynsymtab (abfd) == 0)
8282 {
8283 bfd_set_error (bfd_error_invalid_operation);
8284 return -1;
8285 }
8286
8287 ret = sizeof (arelent *);
8288 for (s = abfd->sections; s != NULL; s = s->next)
8289 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
8290 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
8291 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
8292 ret += ((s->size / elf_section_data (s)->this_hdr.sh_entsize)
8293 * sizeof (arelent *));
8294
8295 return ret;
8296 }
8297
8298 /* Canonicalize the dynamic relocation entries. Note that we return the
8299 dynamic relocations as a single block, although they are actually
8300 associated with particular sections; the interface, which was
8301 designed for SunOS style shared libraries, expects that there is only
8302 one set of dynamic relocs. Any loadable section that was actually
8303 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses the
8304 dynamic symbol table, is considered to be a dynamic reloc section. */
8305
8306 long
8307 _bfd_elf_canonicalize_dynamic_reloc (bfd *abfd,
8308 arelent **storage,
8309 asymbol **syms)
8310 {
8311 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
8312 asection *s;
8313 long ret;
8314
8315 if (elf_dynsymtab (abfd) == 0)
8316 {
8317 bfd_set_error (bfd_error_invalid_operation);
8318 return -1;
8319 }
8320
8321 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
8322 ret = 0;
8323 for (s = abfd->sections; s != NULL; s = s->next)
8324 {
8325 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
8326 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
8327 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
8328 {
8329 arelent *p;
8330 long count, i;
8331
8332 if (! (*slurp_relocs) (abfd, s, syms, TRUE))
8333 return -1;
8334 count = s->size / elf_section_data (s)->this_hdr.sh_entsize;
8335 p = s->relocation;
8336 for (i = 0; i < count; i++)
8337 *storage++ = p++;
8338 ret += count;
8339 }
8340 }
8341
8342 *storage = NULL;
8343
8344 return ret;
8345 }
8346 \f
8347 /* Read in the version information. */
8348
8349 bfd_boolean
8350 _bfd_elf_slurp_version_tables (bfd *abfd, bfd_boolean default_imported_symver)
8351 {
8352 bfd_byte *contents = NULL;
8353 unsigned int freeidx = 0;
8354
8355 if (elf_dynverref (abfd) != 0)
8356 {
8357 Elf_Internal_Shdr *hdr;
8358 Elf_External_Verneed *everneed;
8359 Elf_Internal_Verneed *iverneed;
8360 unsigned int i;
8361 bfd_byte *contents_end;
8362
8363 hdr = &elf_tdata (abfd)->dynverref_hdr;
8364
8365 if (hdr->sh_info == 0
8366 || hdr->sh_info > hdr->sh_size / sizeof (Elf_External_Verneed))
8367 {
8368 error_return_bad_verref:
8369 _bfd_error_handler
8370 (_("%pB: .gnu.version_r invalid entry"), abfd);
8371 bfd_set_error (bfd_error_bad_value);
8372 error_return_verref:
8373 elf_tdata (abfd)->verref = NULL;
8374 elf_tdata (abfd)->cverrefs = 0;
8375 goto error_return;
8376 }
8377
8378 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
8379 if (contents == NULL)
8380 goto error_return_verref;
8381
8382 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
8383 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
8384 goto error_return_verref;
8385
8386 elf_tdata (abfd)->verref = (Elf_Internal_Verneed *)
8387 bfd_alloc2 (abfd, hdr->sh_info, sizeof (Elf_Internal_Verneed));
8388
8389 if (elf_tdata (abfd)->verref == NULL)
8390 goto error_return_verref;
8391
8392 BFD_ASSERT (sizeof (Elf_External_Verneed)
8393 == sizeof (Elf_External_Vernaux));
8394 contents_end = contents + hdr->sh_size - sizeof (Elf_External_Verneed);
8395 everneed = (Elf_External_Verneed *) contents;
8396 iverneed = elf_tdata (abfd)->verref;
8397 for (i = 0; i < hdr->sh_info; i++, iverneed++)
8398 {
8399 Elf_External_Vernaux *evernaux;
8400 Elf_Internal_Vernaux *ivernaux;
8401 unsigned int j;
8402
8403 _bfd_elf_swap_verneed_in (abfd, everneed, iverneed);
8404
8405 iverneed->vn_bfd = abfd;
8406
8407 iverneed->vn_filename =
8408 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
8409 iverneed->vn_file);
8410 if (iverneed->vn_filename == NULL)
8411 goto error_return_bad_verref;
8412
8413 if (iverneed->vn_cnt == 0)
8414 iverneed->vn_auxptr = NULL;
8415 else
8416 {
8417 iverneed->vn_auxptr = (struct elf_internal_vernaux *)
8418 bfd_alloc2 (abfd, iverneed->vn_cnt,
8419 sizeof (Elf_Internal_Vernaux));
8420 if (iverneed->vn_auxptr == NULL)
8421 goto error_return_verref;
8422 }
8423
8424 if (iverneed->vn_aux
8425 > (size_t) (contents_end - (bfd_byte *) everneed))
8426 goto error_return_bad_verref;
8427
8428 evernaux = ((Elf_External_Vernaux *)
8429 ((bfd_byte *) everneed + iverneed->vn_aux));
8430 ivernaux = iverneed->vn_auxptr;
8431 for (j = 0; j < iverneed->vn_cnt; j++, ivernaux++)
8432 {
8433 _bfd_elf_swap_vernaux_in (abfd, evernaux, ivernaux);
8434
8435 ivernaux->vna_nodename =
8436 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
8437 ivernaux->vna_name);
8438 if (ivernaux->vna_nodename == NULL)
8439 goto error_return_bad_verref;
8440
8441 if (ivernaux->vna_other > freeidx)
8442 freeidx = ivernaux->vna_other;
8443
8444 ivernaux->vna_nextptr = NULL;
8445 if (ivernaux->vna_next == 0)
8446 {
8447 iverneed->vn_cnt = j + 1;
8448 break;
8449 }
8450 if (j + 1 < iverneed->vn_cnt)
8451 ivernaux->vna_nextptr = ivernaux + 1;
8452
8453 if (ivernaux->vna_next
8454 > (size_t) (contents_end - (bfd_byte *) evernaux))
8455 goto error_return_bad_verref;
8456
8457 evernaux = ((Elf_External_Vernaux *)
8458 ((bfd_byte *) evernaux + ivernaux->vna_next));
8459 }
8460
8461 iverneed->vn_nextref = NULL;
8462 if (iverneed->vn_next == 0)
8463 break;
8464 if (i + 1 < hdr->sh_info)
8465 iverneed->vn_nextref = iverneed + 1;
8466
8467 if (iverneed->vn_next
8468 > (size_t) (contents_end - (bfd_byte *) everneed))
8469 goto error_return_bad_verref;
8470
8471 everneed = ((Elf_External_Verneed *)
8472 ((bfd_byte *) everneed + iverneed->vn_next));
8473 }
8474 elf_tdata (abfd)->cverrefs = i;
8475
8476 free (contents);
8477 contents = NULL;
8478 }
8479
8480 if (elf_dynverdef (abfd) != 0)
8481 {
8482 Elf_Internal_Shdr *hdr;
8483 Elf_External_Verdef *everdef;
8484 Elf_Internal_Verdef *iverdef;
8485 Elf_Internal_Verdef *iverdefarr;
8486 Elf_Internal_Verdef iverdefmem;
8487 unsigned int i;
8488 unsigned int maxidx;
8489 bfd_byte *contents_end_def, *contents_end_aux;
8490
8491 hdr = &elf_tdata (abfd)->dynverdef_hdr;
8492
8493 if (hdr->sh_info == 0 || hdr->sh_size < sizeof (Elf_External_Verdef))
8494 {
8495 error_return_bad_verdef:
8496 _bfd_error_handler
8497 (_("%pB: .gnu.version_d invalid entry"), abfd);
8498 bfd_set_error (bfd_error_bad_value);
8499 error_return_verdef:
8500 elf_tdata (abfd)->verdef = NULL;
8501 elf_tdata (abfd)->cverdefs = 0;
8502 goto error_return;
8503 }
8504
8505 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
8506 if (contents == NULL)
8507 goto error_return_verdef;
8508 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
8509 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
8510 goto error_return_verdef;
8511
8512 BFD_ASSERT (sizeof (Elf_External_Verdef)
8513 >= sizeof (Elf_External_Verdaux));
8514 contents_end_def = contents + hdr->sh_size
8515 - sizeof (Elf_External_Verdef);
8516 contents_end_aux = contents + hdr->sh_size
8517 - sizeof (Elf_External_Verdaux);
8518
8519 /* We know the number of entries in the section but not the maximum
8520 index. Therefore we have to run through all entries and find
8521 the maximum. */
8522 everdef = (Elf_External_Verdef *) contents;
8523 maxidx = 0;
8524 for (i = 0; i < hdr->sh_info; ++i)
8525 {
8526 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
8527
8528 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) == 0)
8529 goto error_return_bad_verdef;
8530 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) > maxidx)
8531 maxidx = iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION);
8532
8533 if (iverdefmem.vd_next == 0)
8534 break;
8535
8536 if (iverdefmem.vd_next
8537 > (size_t) (contents_end_def - (bfd_byte *) everdef))
8538 goto error_return_bad_verdef;
8539
8540 everdef = ((Elf_External_Verdef *)
8541 ((bfd_byte *) everdef + iverdefmem.vd_next));
8542 }
8543
8544 if (default_imported_symver)
8545 {
8546 if (freeidx > maxidx)
8547 maxidx = ++freeidx;
8548 else
8549 freeidx = ++maxidx;
8550 }
8551
8552 elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *)
8553 bfd_zalloc2 (abfd, maxidx, sizeof (Elf_Internal_Verdef));
8554 if (elf_tdata (abfd)->verdef == NULL)
8555 goto error_return_verdef;
8556
8557 elf_tdata (abfd)->cverdefs = maxidx;
8558
8559 everdef = (Elf_External_Verdef *) contents;
8560 iverdefarr = elf_tdata (abfd)->verdef;
8561 for (i = 0; i < hdr->sh_info; i++)
8562 {
8563 Elf_External_Verdaux *everdaux;
8564 Elf_Internal_Verdaux *iverdaux;
8565 unsigned int j;
8566
8567 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
8568
8569 if ((iverdefmem.vd_ndx & VERSYM_VERSION) == 0)
8570 goto error_return_bad_verdef;
8571
8572 iverdef = &iverdefarr[(iverdefmem.vd_ndx & VERSYM_VERSION) - 1];
8573 memcpy (iverdef, &iverdefmem, offsetof (Elf_Internal_Verdef, vd_bfd));
8574
8575 iverdef->vd_bfd = abfd;
8576
8577 if (iverdef->vd_cnt == 0)
8578 iverdef->vd_auxptr = NULL;
8579 else
8580 {
8581 iverdef->vd_auxptr = (struct elf_internal_verdaux *)
8582 bfd_alloc2 (abfd, iverdef->vd_cnt,
8583 sizeof (Elf_Internal_Verdaux));
8584 if (iverdef->vd_auxptr == NULL)
8585 goto error_return_verdef;
8586 }
8587
8588 if (iverdef->vd_aux
8589 > (size_t) (contents_end_aux - (bfd_byte *) everdef))
8590 goto error_return_bad_verdef;
8591
8592 everdaux = ((Elf_External_Verdaux *)
8593 ((bfd_byte *) everdef + iverdef->vd_aux));
8594 iverdaux = iverdef->vd_auxptr;
8595 for (j = 0; j < iverdef->vd_cnt; j++, iverdaux++)
8596 {
8597 _bfd_elf_swap_verdaux_in (abfd, everdaux, iverdaux);
8598
8599 iverdaux->vda_nodename =
8600 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
8601 iverdaux->vda_name);
8602 if (iverdaux->vda_nodename == NULL)
8603 goto error_return_bad_verdef;
8604
8605 iverdaux->vda_nextptr = NULL;
8606 if (iverdaux->vda_next == 0)
8607 {
8608 iverdef->vd_cnt = j + 1;
8609 break;
8610 }
8611 if (j + 1 < iverdef->vd_cnt)
8612 iverdaux->vda_nextptr = iverdaux + 1;
8613
8614 if (iverdaux->vda_next
8615 > (size_t) (contents_end_aux - (bfd_byte *) everdaux))
8616 goto error_return_bad_verdef;
8617
8618 everdaux = ((Elf_External_Verdaux *)
8619 ((bfd_byte *) everdaux + iverdaux->vda_next));
8620 }
8621
8622 iverdef->vd_nodename = NULL;
8623 if (iverdef->vd_cnt)
8624 iverdef->vd_nodename = iverdef->vd_auxptr->vda_nodename;
8625
8626 iverdef->vd_nextdef = NULL;
8627 if (iverdef->vd_next == 0)
8628 break;
8629 if ((size_t) (iverdef - iverdefarr) + 1 < maxidx)
8630 iverdef->vd_nextdef = iverdef + 1;
8631
8632 everdef = ((Elf_External_Verdef *)
8633 ((bfd_byte *) everdef + iverdef->vd_next));
8634 }
8635
8636 free (contents);
8637 contents = NULL;
8638 }
8639 else if (default_imported_symver)
8640 {
8641 if (freeidx < 3)
8642 freeidx = 3;
8643 else
8644 freeidx++;
8645
8646 elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *)
8647 bfd_zalloc2 (abfd, freeidx, sizeof (Elf_Internal_Verdef));
8648 if (elf_tdata (abfd)->verdef == NULL)
8649 goto error_return;
8650
8651 elf_tdata (abfd)->cverdefs = freeidx;
8652 }
8653
8654 /* Create a default version based on the soname. */
8655 if (default_imported_symver)
8656 {
8657 Elf_Internal_Verdef *iverdef;
8658 Elf_Internal_Verdaux *iverdaux;
8659
8660 iverdef = &elf_tdata (abfd)->verdef[freeidx - 1];
8661
8662 iverdef->vd_version = VER_DEF_CURRENT;
8663 iverdef->vd_flags = 0;
8664 iverdef->vd_ndx = freeidx;
8665 iverdef->vd_cnt = 1;
8666
8667 iverdef->vd_bfd = abfd;
8668
8669 iverdef->vd_nodename = bfd_elf_get_dt_soname (abfd);
8670 if (iverdef->vd_nodename == NULL)
8671 goto error_return_verdef;
8672 iverdef->vd_nextdef = NULL;
8673 iverdef->vd_auxptr = ((struct elf_internal_verdaux *)
8674 bfd_zalloc (abfd, sizeof (Elf_Internal_Verdaux)));
8675 if (iverdef->vd_auxptr == NULL)
8676 goto error_return_verdef;
8677
8678 iverdaux = iverdef->vd_auxptr;
8679 iverdaux->vda_nodename = iverdef->vd_nodename;
8680 }
8681
8682 return TRUE;
8683
8684 error_return:
8685 if (contents != NULL)
8686 free (contents);
8687 return FALSE;
8688 }
8689 \f
8690 asymbol *
8691 _bfd_elf_make_empty_symbol (bfd *abfd)
8692 {
8693 elf_symbol_type *newsym;
8694
8695 newsym = (elf_symbol_type *) bfd_zalloc (abfd, sizeof * newsym);
8696 if (!newsym)
8697 return NULL;
8698 newsym->symbol.the_bfd = abfd;
8699 return &newsym->symbol;
8700 }
8701
8702 void
8703 _bfd_elf_get_symbol_info (bfd *abfd ATTRIBUTE_UNUSED,
8704 asymbol *symbol,
8705 symbol_info *ret)
8706 {
8707 bfd_symbol_info (symbol, ret);
8708 }
8709
8710 /* Return whether a symbol name implies a local symbol. Most targets
8711 use this function for the is_local_label_name entry point, but some
8712 override it. */
8713
8714 bfd_boolean
8715 _bfd_elf_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED,
8716 const char *name)
8717 {
8718 /* Normal local symbols start with ``.L''. */
8719 if (name[0] == '.' && name[1] == 'L')
8720 return TRUE;
8721
8722 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
8723 DWARF debugging symbols starting with ``..''. */
8724 if (name[0] == '.' && name[1] == '.')
8725 return TRUE;
8726
8727 /* gcc will sometimes generate symbols beginning with ``_.L_'' when
8728 emitting DWARF debugging output. I suspect this is actually a
8729 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
8730 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
8731 underscore to be emitted on some ELF targets). For ease of use,
8732 we treat such symbols as local. */
8733 if (name[0] == '_' && name[1] == '.' && name[2] == 'L' && name[3] == '_')
8734 return TRUE;
8735
8736 /* Treat assembler generated fake symbols, dollar local labels and
8737 forward-backward labels (aka local labels) as locals.
8738 These labels have the form:
8739
8740 L0^A.* (fake symbols)
8741
8742 [.]?L[0123456789]+{^A|^B}[0123456789]* (local labels)
8743
8744 Versions which start with .L will have already been matched above,
8745 so we only need to match the rest. */
8746 if (name[0] == 'L' && ISDIGIT (name[1]))
8747 {
8748 bfd_boolean ret = FALSE;
8749 const char * p;
8750 char c;
8751
8752 for (p = name + 2; (c = *p); p++)
8753 {
8754 if (c == 1 || c == 2)
8755 {
8756 if (c == 1 && p == name + 2)
8757 /* A fake symbol. */
8758 return TRUE;
8759
8760 /* FIXME: We are being paranoid here and treating symbols like
8761 L0^Bfoo as if there were non-local, on the grounds that the
8762 assembler will never generate them. But can any symbol
8763 containing an ASCII value in the range 1-31 ever be anything
8764 other than some kind of local ? */
8765 ret = TRUE;
8766 }
8767
8768 if (! ISDIGIT (c))
8769 {
8770 ret = FALSE;
8771 break;
8772 }
8773 }
8774 return ret;
8775 }
8776
8777 return FALSE;
8778 }
8779
8780 alent *
8781 _bfd_elf_get_lineno (bfd *abfd ATTRIBUTE_UNUSED,
8782 asymbol *symbol ATTRIBUTE_UNUSED)
8783 {
8784 abort ();
8785 return NULL;
8786 }
8787
8788 bfd_boolean
8789 _bfd_elf_set_arch_mach (bfd *abfd,
8790 enum bfd_architecture arch,
8791 unsigned long machine)
8792 {
8793 /* If this isn't the right architecture for this backend, and this
8794 isn't the generic backend, fail. */
8795 if (arch != get_elf_backend_data (abfd)->arch
8796 && arch != bfd_arch_unknown
8797 && get_elf_backend_data (abfd)->arch != bfd_arch_unknown)
8798 return FALSE;
8799
8800 return bfd_default_set_arch_mach (abfd, arch, machine);
8801 }
8802
8803 /* Find the nearest line to a particular section and offset,
8804 for error reporting. */
8805
8806 bfd_boolean
8807 _bfd_elf_find_nearest_line (bfd *abfd,
8808 asymbol **symbols,
8809 asection *section,
8810 bfd_vma offset,
8811 const char **filename_ptr,
8812 const char **functionname_ptr,
8813 unsigned int *line_ptr,
8814 unsigned int *discriminator_ptr)
8815 {
8816 bfd_boolean found;
8817
8818 if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset,
8819 filename_ptr, functionname_ptr,
8820 line_ptr, discriminator_ptr,
8821 dwarf_debug_sections, 0,
8822 &elf_tdata (abfd)->dwarf2_find_line_info)
8823 || _bfd_dwarf1_find_nearest_line (abfd, symbols, section, offset,
8824 filename_ptr, functionname_ptr,
8825 line_ptr))
8826 {
8827 if (!*functionname_ptr)
8828 _bfd_elf_find_function (abfd, symbols, section, offset,
8829 *filename_ptr ? NULL : filename_ptr,
8830 functionname_ptr);
8831 return TRUE;
8832 }
8833
8834 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
8835 &found, filename_ptr,
8836 functionname_ptr, line_ptr,
8837 &elf_tdata (abfd)->line_info))
8838 return FALSE;
8839 if (found && (*functionname_ptr || *line_ptr))
8840 return TRUE;
8841
8842 if (symbols == NULL)
8843 return FALSE;
8844
8845 if (! _bfd_elf_find_function (abfd, symbols, section, offset,
8846 filename_ptr, functionname_ptr))
8847 return FALSE;
8848
8849 *line_ptr = 0;
8850 return TRUE;
8851 }
8852
8853 /* Find the line for a symbol. */
8854
8855 bfd_boolean
8856 _bfd_elf_find_line (bfd *abfd, asymbol **symbols, asymbol *symbol,
8857 const char **filename_ptr, unsigned int *line_ptr)
8858 {
8859 return _bfd_dwarf2_find_nearest_line (abfd, symbols, symbol, NULL, 0,
8860 filename_ptr, NULL, line_ptr, NULL,
8861 dwarf_debug_sections, 0,
8862 &elf_tdata (abfd)->dwarf2_find_line_info);
8863 }
8864
8865 /* After a call to bfd_find_nearest_line, successive calls to
8866 bfd_find_inliner_info can be used to get source information about
8867 each level of function inlining that terminated at the address
8868 passed to bfd_find_nearest_line. Currently this is only supported
8869 for DWARF2 with appropriate DWARF3 extensions. */
8870
8871 bfd_boolean
8872 _bfd_elf_find_inliner_info (bfd *abfd,
8873 const char **filename_ptr,
8874 const char **functionname_ptr,
8875 unsigned int *line_ptr)
8876 {
8877 bfd_boolean found;
8878 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
8879 functionname_ptr, line_ptr,
8880 & elf_tdata (abfd)->dwarf2_find_line_info);
8881 return found;
8882 }
8883
8884 int
8885 _bfd_elf_sizeof_headers (bfd *abfd, struct bfd_link_info *info)
8886 {
8887 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8888 int ret = bed->s->sizeof_ehdr;
8889
8890 if (!bfd_link_relocatable (info))
8891 {
8892 bfd_size_type phdr_size = elf_program_header_size (abfd);
8893
8894 if (phdr_size == (bfd_size_type) -1)
8895 {
8896 struct elf_segment_map *m;
8897
8898 phdr_size = 0;
8899 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
8900 phdr_size += bed->s->sizeof_phdr;
8901
8902 if (phdr_size == 0)
8903 phdr_size = get_program_header_size (abfd, info);
8904 }
8905
8906 elf_program_header_size (abfd) = phdr_size;
8907 ret += phdr_size;
8908 }
8909
8910 return ret;
8911 }
8912
8913 bfd_boolean
8914 _bfd_elf_set_section_contents (bfd *abfd,
8915 sec_ptr section,
8916 const void *location,
8917 file_ptr offset,
8918 bfd_size_type count)
8919 {
8920 Elf_Internal_Shdr *hdr;
8921 file_ptr pos;
8922
8923 if (! abfd->output_has_begun
8924 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
8925 return FALSE;
8926
8927 if (!count)
8928 return TRUE;
8929
8930 hdr = &elf_section_data (section)->this_hdr;
8931 if (hdr->sh_offset == (file_ptr) -1)
8932 {
8933 /* We must compress this section. Write output to the buffer. */
8934 unsigned char *contents = hdr->contents;
8935 if ((offset + count) > hdr->sh_size
8936 || (section->flags & SEC_ELF_COMPRESS) == 0
8937 || contents == NULL)
8938 abort ();
8939 memcpy (contents + offset, location, count);
8940 return TRUE;
8941 }
8942 pos = hdr->sh_offset + offset;
8943 if (bfd_seek (abfd, pos, SEEK_SET) != 0
8944 || bfd_bwrite (location, count, abfd) != count)
8945 return FALSE;
8946
8947 return TRUE;
8948 }
8949
8950 bfd_boolean
8951 _bfd_elf_no_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED,
8952 arelent *cache_ptr ATTRIBUTE_UNUSED,
8953 Elf_Internal_Rela *dst ATTRIBUTE_UNUSED)
8954 {
8955 abort ();
8956 return FALSE;
8957 }
8958
8959 /* Try to convert a non-ELF reloc into an ELF one. */
8960
8961 bfd_boolean
8962 _bfd_elf_validate_reloc (bfd *abfd, arelent *areloc)
8963 {
8964 /* Check whether we really have an ELF howto. */
8965
8966 if ((*areloc->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec)
8967 {
8968 bfd_reloc_code_real_type code;
8969 reloc_howto_type *howto;
8970
8971 /* Alien reloc: Try to determine its type to replace it with an
8972 equivalent ELF reloc. */
8973
8974 if (areloc->howto->pc_relative)
8975 {
8976 switch (areloc->howto->bitsize)
8977 {
8978 case 8:
8979 code = BFD_RELOC_8_PCREL;
8980 break;
8981 case 12:
8982 code = BFD_RELOC_12_PCREL;
8983 break;
8984 case 16:
8985 code = BFD_RELOC_16_PCREL;
8986 break;
8987 case 24:
8988 code = BFD_RELOC_24_PCREL;
8989 break;
8990 case 32:
8991 code = BFD_RELOC_32_PCREL;
8992 break;
8993 case 64:
8994 code = BFD_RELOC_64_PCREL;
8995 break;
8996 default:
8997 goto fail;
8998 }
8999
9000 howto = bfd_reloc_type_lookup (abfd, code);
9001
9002 if (areloc->howto->pcrel_offset != howto->pcrel_offset)
9003 {
9004 if (howto->pcrel_offset)
9005 areloc->addend += areloc->address;
9006 else
9007 areloc->addend -= areloc->address; /* addend is unsigned!! */
9008 }
9009 }
9010 else
9011 {
9012 switch (areloc->howto->bitsize)
9013 {
9014 case 8:
9015 code = BFD_RELOC_8;
9016 break;
9017 case 14:
9018 code = BFD_RELOC_14;
9019 break;
9020 case 16:
9021 code = BFD_RELOC_16;
9022 break;
9023 case 26:
9024 code = BFD_RELOC_26;
9025 break;
9026 case 32:
9027 code = BFD_RELOC_32;
9028 break;
9029 case 64:
9030 code = BFD_RELOC_64;
9031 break;
9032 default:
9033 goto fail;
9034 }
9035
9036 howto = bfd_reloc_type_lookup (abfd, code);
9037 }
9038
9039 if (howto)
9040 areloc->howto = howto;
9041 else
9042 goto fail;
9043 }
9044
9045 return TRUE;
9046
9047 fail:
9048 /* xgettext:c-format */
9049 _bfd_error_handler (_("%pB: %s unsupported"),
9050 abfd, areloc->howto->name);
9051 bfd_set_error (bfd_error_bad_value);
9052 return FALSE;
9053 }
9054
9055 bfd_boolean
9056 _bfd_elf_close_and_cleanup (bfd *abfd)
9057 {
9058 struct elf_obj_tdata *tdata = elf_tdata (abfd);
9059 if (bfd_get_format (abfd) == bfd_object && tdata != NULL)
9060 {
9061 if (elf_tdata (abfd)->o != NULL && elf_shstrtab (abfd) != NULL)
9062 _bfd_elf_strtab_free (elf_shstrtab (abfd));
9063 _bfd_dwarf2_cleanup_debug_info (abfd, &tdata->dwarf2_find_line_info);
9064 }
9065
9066 return _bfd_generic_close_and_cleanup (abfd);
9067 }
9068
9069 /* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
9070 in the relocation's offset. Thus we cannot allow any sort of sanity
9071 range-checking to interfere. There is nothing else to do in processing
9072 this reloc. */
9073
9074 bfd_reloc_status_type
9075 _bfd_elf_rel_vtable_reloc_fn
9076 (bfd *abfd ATTRIBUTE_UNUSED, arelent *re ATTRIBUTE_UNUSED,
9077 struct bfd_symbol *symbol ATTRIBUTE_UNUSED,
9078 void *data ATTRIBUTE_UNUSED, asection *is ATTRIBUTE_UNUSED,
9079 bfd *obfd ATTRIBUTE_UNUSED, char **errmsg ATTRIBUTE_UNUSED)
9080 {
9081 return bfd_reloc_ok;
9082 }
9083 \f
9084 /* Elf core file support. Much of this only works on native
9085 toolchains, since we rely on knowing the
9086 machine-dependent procfs structure in order to pick
9087 out details about the corefile. */
9088
9089 #ifdef HAVE_SYS_PROCFS_H
9090 /* Needed for new procfs interface on sparc-solaris. */
9091 # define _STRUCTURED_PROC 1
9092 # include <sys/procfs.h>
9093 #endif
9094
9095 /* Return a PID that identifies a "thread" for threaded cores, or the
9096 PID of the main process for non-threaded cores. */
9097
9098 static int
9099 elfcore_make_pid (bfd *abfd)
9100 {
9101 int pid;
9102
9103 pid = elf_tdata (abfd)->core->lwpid;
9104 if (pid == 0)
9105 pid = elf_tdata (abfd)->core->pid;
9106
9107 return pid;
9108 }
9109
9110 /* If there isn't a section called NAME, make one, using
9111 data from SECT. Note, this function will generate a
9112 reference to NAME, so you shouldn't deallocate or
9113 overwrite it. */
9114
9115 static bfd_boolean
9116 elfcore_maybe_make_sect (bfd *abfd, char *name, asection *sect)
9117 {
9118 asection *sect2;
9119
9120 if (bfd_get_section_by_name (abfd, name) != NULL)
9121 return TRUE;
9122
9123 sect2 = bfd_make_section_with_flags (abfd, name, sect->flags);
9124 if (sect2 == NULL)
9125 return FALSE;
9126
9127 sect2->size = sect->size;
9128 sect2->filepos = sect->filepos;
9129 sect2->alignment_power = sect->alignment_power;
9130 return TRUE;
9131 }
9132
9133 /* Create a pseudosection containing SIZE bytes at FILEPOS. This
9134 actually creates up to two pseudosections:
9135 - For the single-threaded case, a section named NAME, unless
9136 such a section already exists.
9137 - For the multi-threaded case, a section named "NAME/PID", where
9138 PID is elfcore_make_pid (abfd).
9139 Both pseudosections have identical contents. */
9140 bfd_boolean
9141 _bfd_elfcore_make_pseudosection (bfd *abfd,
9142 char *name,
9143 size_t size,
9144 ufile_ptr filepos)
9145 {
9146 char buf[100];
9147 char *threaded_name;
9148 size_t len;
9149 asection *sect;
9150
9151 /* Build the section name. */
9152
9153 sprintf (buf, "%s/%d", name, elfcore_make_pid (abfd));
9154 len = strlen (buf) + 1;
9155 threaded_name = (char *) bfd_alloc (abfd, len);
9156 if (threaded_name == NULL)
9157 return FALSE;
9158 memcpy (threaded_name, buf, len);
9159
9160 sect = bfd_make_section_anyway_with_flags (abfd, threaded_name,
9161 SEC_HAS_CONTENTS);
9162 if (sect == NULL)
9163 return FALSE;
9164 sect->size = size;
9165 sect->filepos = filepos;
9166 sect->alignment_power = 2;
9167
9168 return elfcore_maybe_make_sect (abfd, name, sect);
9169 }
9170
9171 /* prstatus_t exists on:
9172 solaris 2.5+
9173 linux 2.[01] + glibc
9174 unixware 4.2
9175 */
9176
9177 #if defined (HAVE_PRSTATUS_T)
9178
9179 static bfd_boolean
9180 elfcore_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
9181 {
9182 size_t size;
9183 int offset;
9184
9185 if (note->descsz == sizeof (prstatus_t))
9186 {
9187 prstatus_t prstat;
9188
9189 size = sizeof (prstat.pr_reg);
9190 offset = offsetof (prstatus_t, pr_reg);
9191 memcpy (&prstat, note->descdata, sizeof (prstat));
9192
9193 /* Do not overwrite the core signal if it
9194 has already been set by another thread. */
9195 if (elf_tdata (abfd)->core->signal == 0)
9196 elf_tdata (abfd)->core->signal = prstat.pr_cursig;
9197 if (elf_tdata (abfd)->core->pid == 0)
9198 elf_tdata (abfd)->core->pid = prstat.pr_pid;
9199
9200 /* pr_who exists on:
9201 solaris 2.5+
9202 unixware 4.2
9203 pr_who doesn't exist on:
9204 linux 2.[01]
9205 */
9206 #if defined (HAVE_PRSTATUS_T_PR_WHO)
9207 elf_tdata (abfd)->core->lwpid = prstat.pr_who;
9208 #else
9209 elf_tdata (abfd)->core->lwpid = prstat.pr_pid;
9210 #endif
9211 }
9212 #if defined (HAVE_PRSTATUS32_T)
9213 else if (note->descsz == sizeof (prstatus32_t))
9214 {
9215 /* 64-bit host, 32-bit corefile */
9216 prstatus32_t prstat;
9217
9218 size = sizeof (prstat.pr_reg);
9219 offset = offsetof (prstatus32_t, pr_reg);
9220 memcpy (&prstat, note->descdata, sizeof (prstat));
9221
9222 /* Do not overwrite the core signal if it
9223 has already been set by another thread. */
9224 if (elf_tdata (abfd)->core->signal == 0)
9225 elf_tdata (abfd)->core->signal = prstat.pr_cursig;
9226 if (elf_tdata (abfd)->core->pid == 0)
9227 elf_tdata (abfd)->core->pid = prstat.pr_pid;
9228
9229 /* pr_who exists on:
9230 solaris 2.5+
9231 unixware 4.2
9232 pr_who doesn't exist on:
9233 linux 2.[01]
9234 */
9235 #if defined (HAVE_PRSTATUS32_T_PR_WHO)
9236 elf_tdata (abfd)->core->lwpid = prstat.pr_who;
9237 #else
9238 elf_tdata (abfd)->core->lwpid = prstat.pr_pid;
9239 #endif
9240 }
9241 #endif /* HAVE_PRSTATUS32_T */
9242 else
9243 {
9244 /* Fail - we don't know how to handle any other
9245 note size (ie. data object type). */
9246 return TRUE;
9247 }
9248
9249 /* Make a ".reg/999" section and a ".reg" section. */
9250 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
9251 size, note->descpos + offset);
9252 }
9253 #endif /* defined (HAVE_PRSTATUS_T) */
9254
9255 /* Create a pseudosection containing the exact contents of NOTE. */
9256 static bfd_boolean
9257 elfcore_make_note_pseudosection (bfd *abfd,
9258 char *name,
9259 Elf_Internal_Note *note)
9260 {
9261 return _bfd_elfcore_make_pseudosection (abfd, name,
9262 note->descsz, note->descpos);
9263 }
9264
9265 /* There isn't a consistent prfpregset_t across platforms,
9266 but it doesn't matter, because we don't have to pick this
9267 data structure apart. */
9268
9269 static bfd_boolean
9270 elfcore_grok_prfpreg (bfd *abfd, Elf_Internal_Note *note)
9271 {
9272 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
9273 }
9274
9275 /* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
9276 type of NT_PRXFPREG. Just include the whole note's contents
9277 literally. */
9278
9279 static bfd_boolean
9280 elfcore_grok_prxfpreg (bfd *abfd, Elf_Internal_Note *note)
9281 {
9282 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
9283 }
9284
9285 /* Linux dumps the Intel XSAVE extended state in a note named "LINUX"
9286 with a note type of NT_X86_XSTATE. Just include the whole note's
9287 contents literally. */
9288
9289 static bfd_boolean
9290 elfcore_grok_xstatereg (bfd *abfd, Elf_Internal_Note *note)
9291 {
9292 return elfcore_make_note_pseudosection (abfd, ".reg-xstate", note);
9293 }
9294
9295 static bfd_boolean
9296 elfcore_grok_ppc_vmx (bfd *abfd, Elf_Internal_Note *note)
9297 {
9298 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vmx", note);
9299 }
9300
9301 static bfd_boolean
9302 elfcore_grok_ppc_vsx (bfd *abfd, Elf_Internal_Note *note)
9303 {
9304 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vsx", note);
9305 }
9306
9307 static bfd_boolean
9308 elfcore_grok_ppc_tar (bfd *abfd, Elf_Internal_Note *note)
9309 {
9310 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tar", note);
9311 }
9312
9313 static bfd_boolean
9314 elfcore_grok_ppc_ppr (bfd *abfd, Elf_Internal_Note *note)
9315 {
9316 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-ppr", note);
9317 }
9318
9319 static bfd_boolean
9320 elfcore_grok_ppc_dscr (bfd *abfd, Elf_Internal_Note *note)
9321 {
9322 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-dscr", note);
9323 }
9324
9325 static bfd_boolean
9326 elfcore_grok_ppc_ebb (bfd *abfd, Elf_Internal_Note *note)
9327 {
9328 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-ebb", note);
9329 }
9330
9331 static bfd_boolean
9332 elfcore_grok_ppc_pmu (bfd *abfd, Elf_Internal_Note *note)
9333 {
9334 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-pmu", note);
9335 }
9336
9337 static bfd_boolean
9338 elfcore_grok_ppc_tm_cgpr (bfd *abfd, Elf_Internal_Note *note)
9339 {
9340 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cgpr", note);
9341 }
9342
9343 static bfd_boolean
9344 elfcore_grok_ppc_tm_cfpr (bfd *abfd, Elf_Internal_Note *note)
9345 {
9346 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cfpr", note);
9347 }
9348
9349 static bfd_boolean
9350 elfcore_grok_ppc_tm_cvmx (bfd *abfd, Elf_Internal_Note *note)
9351 {
9352 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cvmx", note);
9353 }
9354
9355 static bfd_boolean
9356 elfcore_grok_ppc_tm_cvsx (bfd *abfd, Elf_Internal_Note *note)
9357 {
9358 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cvsx", note);
9359 }
9360
9361 static bfd_boolean
9362 elfcore_grok_ppc_tm_spr (bfd *abfd, Elf_Internal_Note *note)
9363 {
9364 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-spr", note);
9365 }
9366
9367 static bfd_boolean
9368 elfcore_grok_ppc_tm_ctar (bfd *abfd, Elf_Internal_Note *note)
9369 {
9370 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-ctar", note);
9371 }
9372
9373 static bfd_boolean
9374 elfcore_grok_ppc_tm_cppr (bfd *abfd, Elf_Internal_Note *note)
9375 {
9376 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cppr", note);
9377 }
9378
9379 static bfd_boolean
9380 elfcore_grok_ppc_tm_cdscr (bfd *abfd, Elf_Internal_Note *note)
9381 {
9382 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cdscr", note);
9383 }
9384
9385 static bfd_boolean
9386 elfcore_grok_s390_high_gprs (bfd *abfd, Elf_Internal_Note *note)
9387 {
9388 return elfcore_make_note_pseudosection (abfd, ".reg-s390-high-gprs", note);
9389 }
9390
9391 static bfd_boolean
9392 elfcore_grok_s390_timer (bfd *abfd, Elf_Internal_Note *note)
9393 {
9394 return elfcore_make_note_pseudosection (abfd, ".reg-s390-timer", note);
9395 }
9396
9397 static bfd_boolean
9398 elfcore_grok_s390_todcmp (bfd *abfd, Elf_Internal_Note *note)
9399 {
9400 return elfcore_make_note_pseudosection (abfd, ".reg-s390-todcmp", note);
9401 }
9402
9403 static bfd_boolean
9404 elfcore_grok_s390_todpreg (bfd *abfd, Elf_Internal_Note *note)
9405 {
9406 return elfcore_make_note_pseudosection (abfd, ".reg-s390-todpreg", note);
9407 }
9408
9409 static bfd_boolean
9410 elfcore_grok_s390_ctrs (bfd *abfd, Elf_Internal_Note *note)
9411 {
9412 return elfcore_make_note_pseudosection (abfd, ".reg-s390-ctrs", note);
9413 }
9414
9415 static bfd_boolean
9416 elfcore_grok_s390_prefix (bfd *abfd, Elf_Internal_Note *note)
9417 {
9418 return elfcore_make_note_pseudosection (abfd, ".reg-s390-prefix", note);
9419 }
9420
9421 static bfd_boolean
9422 elfcore_grok_s390_last_break (bfd *abfd, Elf_Internal_Note *note)
9423 {
9424 return elfcore_make_note_pseudosection (abfd, ".reg-s390-last-break", note);
9425 }
9426
9427 static bfd_boolean
9428 elfcore_grok_s390_system_call (bfd *abfd, Elf_Internal_Note *note)
9429 {
9430 return elfcore_make_note_pseudosection (abfd, ".reg-s390-system-call", note);
9431 }
9432
9433 static bfd_boolean
9434 elfcore_grok_s390_tdb (bfd *abfd, Elf_Internal_Note *note)
9435 {
9436 return elfcore_make_note_pseudosection (abfd, ".reg-s390-tdb", note);
9437 }
9438
9439 static bfd_boolean
9440 elfcore_grok_s390_vxrs_low (bfd *abfd, Elf_Internal_Note *note)
9441 {
9442 return elfcore_make_note_pseudosection (abfd, ".reg-s390-vxrs-low", note);
9443 }
9444
9445 static bfd_boolean
9446 elfcore_grok_s390_vxrs_high (bfd *abfd, Elf_Internal_Note *note)
9447 {
9448 return elfcore_make_note_pseudosection (abfd, ".reg-s390-vxrs-high", note);
9449 }
9450
9451 static bfd_boolean
9452 elfcore_grok_s390_gs_cb (bfd *abfd, Elf_Internal_Note *note)
9453 {
9454 return elfcore_make_note_pseudosection (abfd, ".reg-s390-gs-cb", note);
9455 }
9456
9457 static bfd_boolean
9458 elfcore_grok_s390_gs_bc (bfd *abfd, Elf_Internal_Note *note)
9459 {
9460 return elfcore_make_note_pseudosection (abfd, ".reg-s390-gs-bc", note);
9461 }
9462
9463 static bfd_boolean
9464 elfcore_grok_arm_vfp (bfd *abfd, Elf_Internal_Note *note)
9465 {
9466 return elfcore_make_note_pseudosection (abfd, ".reg-arm-vfp", note);
9467 }
9468
9469 static bfd_boolean
9470 elfcore_grok_aarch_tls (bfd *abfd, Elf_Internal_Note *note)
9471 {
9472 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-tls", note);
9473 }
9474
9475 static bfd_boolean
9476 elfcore_grok_aarch_hw_break (bfd *abfd, Elf_Internal_Note *note)
9477 {
9478 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-hw-break", note);
9479 }
9480
9481 static bfd_boolean
9482 elfcore_grok_aarch_hw_watch (bfd *abfd, Elf_Internal_Note *note)
9483 {
9484 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-hw-watch", note);
9485 }
9486
9487 static bfd_boolean
9488 elfcore_grok_aarch_sve (bfd *abfd, Elf_Internal_Note *note)
9489 {
9490 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-sve", note);
9491 }
9492
9493 #if defined (HAVE_PRPSINFO_T)
9494 typedef prpsinfo_t elfcore_psinfo_t;
9495 #if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
9496 typedef prpsinfo32_t elfcore_psinfo32_t;
9497 #endif
9498 #endif
9499
9500 #if defined (HAVE_PSINFO_T)
9501 typedef psinfo_t elfcore_psinfo_t;
9502 #if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
9503 typedef psinfo32_t elfcore_psinfo32_t;
9504 #endif
9505 #endif
9506
9507 /* return a malloc'ed copy of a string at START which is at
9508 most MAX bytes long, possibly without a terminating '\0'.
9509 the copy will always have a terminating '\0'. */
9510
9511 char *
9512 _bfd_elfcore_strndup (bfd *abfd, char *start, size_t max)
9513 {
9514 char *dups;
9515 char *end = (char *) memchr (start, '\0', max);
9516 size_t len;
9517
9518 if (end == NULL)
9519 len = max;
9520 else
9521 len = end - start;
9522
9523 dups = (char *) bfd_alloc (abfd, len + 1);
9524 if (dups == NULL)
9525 return NULL;
9526
9527 memcpy (dups, start, len);
9528 dups[len] = '\0';
9529
9530 return dups;
9531 }
9532
9533 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
9534 static bfd_boolean
9535 elfcore_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
9536 {
9537 if (note->descsz == sizeof (elfcore_psinfo_t))
9538 {
9539 elfcore_psinfo_t psinfo;
9540
9541 memcpy (&psinfo, note->descdata, sizeof (psinfo));
9542
9543 #if defined (HAVE_PSINFO_T_PR_PID) || defined (HAVE_PRPSINFO_T_PR_PID)
9544 elf_tdata (abfd)->core->pid = psinfo.pr_pid;
9545 #endif
9546 elf_tdata (abfd)->core->program
9547 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
9548 sizeof (psinfo.pr_fname));
9549
9550 elf_tdata (abfd)->core->command
9551 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
9552 sizeof (psinfo.pr_psargs));
9553 }
9554 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
9555 else if (note->descsz == sizeof (elfcore_psinfo32_t))
9556 {
9557 /* 64-bit host, 32-bit corefile */
9558 elfcore_psinfo32_t psinfo;
9559
9560 memcpy (&psinfo, note->descdata, sizeof (psinfo));
9561
9562 #if defined (HAVE_PSINFO32_T_PR_PID) || defined (HAVE_PRPSINFO32_T_PR_PID)
9563 elf_tdata (abfd)->core->pid = psinfo.pr_pid;
9564 #endif
9565 elf_tdata (abfd)->core->program
9566 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
9567 sizeof (psinfo.pr_fname));
9568
9569 elf_tdata (abfd)->core->command
9570 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
9571 sizeof (psinfo.pr_psargs));
9572 }
9573 #endif
9574
9575 else
9576 {
9577 /* Fail - we don't know how to handle any other
9578 note size (ie. data object type). */
9579 return TRUE;
9580 }
9581
9582 /* Note that for some reason, a spurious space is tacked
9583 onto the end of the args in some (at least one anyway)
9584 implementations, so strip it off if it exists. */
9585
9586 {
9587 char *command = elf_tdata (abfd)->core->command;
9588 int n = strlen (command);
9589
9590 if (0 < n && command[n - 1] == ' ')
9591 command[n - 1] = '\0';
9592 }
9593
9594 return TRUE;
9595 }
9596 #endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
9597
9598 #if defined (HAVE_PSTATUS_T)
9599 static bfd_boolean
9600 elfcore_grok_pstatus (bfd *abfd, Elf_Internal_Note *note)
9601 {
9602 if (note->descsz == sizeof (pstatus_t)
9603 #if defined (HAVE_PXSTATUS_T)
9604 || note->descsz == sizeof (pxstatus_t)
9605 #endif
9606 )
9607 {
9608 pstatus_t pstat;
9609
9610 memcpy (&pstat, note->descdata, sizeof (pstat));
9611
9612 elf_tdata (abfd)->core->pid = pstat.pr_pid;
9613 }
9614 #if defined (HAVE_PSTATUS32_T)
9615 else if (note->descsz == sizeof (pstatus32_t))
9616 {
9617 /* 64-bit host, 32-bit corefile */
9618 pstatus32_t pstat;
9619
9620 memcpy (&pstat, note->descdata, sizeof (pstat));
9621
9622 elf_tdata (abfd)->core->pid = pstat.pr_pid;
9623 }
9624 #endif
9625 /* Could grab some more details from the "representative"
9626 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
9627 NT_LWPSTATUS note, presumably. */
9628
9629 return TRUE;
9630 }
9631 #endif /* defined (HAVE_PSTATUS_T) */
9632
9633 #if defined (HAVE_LWPSTATUS_T)
9634 static bfd_boolean
9635 elfcore_grok_lwpstatus (bfd *abfd, Elf_Internal_Note *note)
9636 {
9637 lwpstatus_t lwpstat;
9638 char buf[100];
9639 char *name;
9640 size_t len;
9641 asection *sect;
9642
9643 if (note->descsz != sizeof (lwpstat)
9644 #if defined (HAVE_LWPXSTATUS_T)
9645 && note->descsz != sizeof (lwpxstatus_t)
9646 #endif
9647 )
9648 return TRUE;
9649
9650 memcpy (&lwpstat, note->descdata, sizeof (lwpstat));
9651
9652 elf_tdata (abfd)->core->lwpid = lwpstat.pr_lwpid;
9653 /* Do not overwrite the core signal if it has already been set by
9654 another thread. */
9655 if (elf_tdata (abfd)->core->signal == 0)
9656 elf_tdata (abfd)->core->signal = lwpstat.pr_cursig;
9657
9658 /* Make a ".reg/999" section. */
9659
9660 sprintf (buf, ".reg/%d", elfcore_make_pid (abfd));
9661 len = strlen (buf) + 1;
9662 name = bfd_alloc (abfd, len);
9663 if (name == NULL)
9664 return FALSE;
9665 memcpy (name, buf, len);
9666
9667 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
9668 if (sect == NULL)
9669 return FALSE;
9670
9671 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
9672 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.gregs);
9673 sect->filepos = note->descpos
9674 + offsetof (lwpstatus_t, pr_context.uc_mcontext.gregs);
9675 #endif
9676
9677 #if defined (HAVE_LWPSTATUS_T_PR_REG)
9678 sect->size = sizeof (lwpstat.pr_reg);
9679 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_reg);
9680 #endif
9681
9682 sect->alignment_power = 2;
9683
9684 if (!elfcore_maybe_make_sect (abfd, ".reg", sect))
9685 return FALSE;
9686
9687 /* Make a ".reg2/999" section */
9688
9689 sprintf (buf, ".reg2/%d", elfcore_make_pid (abfd));
9690 len = strlen (buf) + 1;
9691 name = bfd_alloc (abfd, len);
9692 if (name == NULL)
9693 return FALSE;
9694 memcpy (name, buf, len);
9695
9696 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
9697 if (sect == NULL)
9698 return FALSE;
9699
9700 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
9701 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.fpregs);
9702 sect->filepos = note->descpos
9703 + offsetof (lwpstatus_t, pr_context.uc_mcontext.fpregs);
9704 #endif
9705
9706 #if defined (HAVE_LWPSTATUS_T_PR_FPREG)
9707 sect->size = sizeof (lwpstat.pr_fpreg);
9708 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_fpreg);
9709 #endif
9710
9711 sect->alignment_power = 2;
9712
9713 return elfcore_maybe_make_sect (abfd, ".reg2", sect);
9714 }
9715 #endif /* defined (HAVE_LWPSTATUS_T) */
9716
9717 static bfd_boolean
9718 elfcore_grok_win32pstatus (bfd *abfd, Elf_Internal_Note *note)
9719 {
9720 char buf[30];
9721 char *name;
9722 size_t len;
9723 asection *sect;
9724 int type;
9725 int is_active_thread;
9726 bfd_vma base_addr;
9727
9728 if (note->descsz < 728)
9729 return TRUE;
9730
9731 if (! CONST_STRNEQ (note->namedata, "win32"))
9732 return TRUE;
9733
9734 type = bfd_get_32 (abfd, note->descdata);
9735
9736 switch (type)
9737 {
9738 case 1 /* NOTE_INFO_PROCESS */:
9739 /* FIXME: need to add ->core->command. */
9740 /* process_info.pid */
9741 elf_tdata (abfd)->core->pid = bfd_get_32 (abfd, note->descdata + 8);
9742 /* process_info.signal */
9743 elf_tdata (abfd)->core->signal = bfd_get_32 (abfd, note->descdata + 12);
9744 break;
9745
9746 case 2 /* NOTE_INFO_THREAD */:
9747 /* Make a ".reg/999" section. */
9748 /* thread_info.tid */
9749 sprintf (buf, ".reg/%ld", (long) bfd_get_32 (abfd, note->descdata + 8));
9750
9751 len = strlen (buf) + 1;
9752 name = (char *) bfd_alloc (abfd, len);
9753 if (name == NULL)
9754 return FALSE;
9755
9756 memcpy (name, buf, len);
9757
9758 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
9759 if (sect == NULL)
9760 return FALSE;
9761
9762 /* sizeof (thread_info.thread_context) */
9763 sect->size = 716;
9764 /* offsetof (thread_info.thread_context) */
9765 sect->filepos = note->descpos + 12;
9766 sect->alignment_power = 2;
9767
9768 /* thread_info.is_active_thread */
9769 is_active_thread = bfd_get_32 (abfd, note->descdata + 8);
9770
9771 if (is_active_thread)
9772 if (! elfcore_maybe_make_sect (abfd, ".reg", sect))
9773 return FALSE;
9774 break;
9775
9776 case 3 /* NOTE_INFO_MODULE */:
9777 /* Make a ".module/xxxxxxxx" section. */
9778 /* module_info.base_address */
9779 base_addr = bfd_get_32 (abfd, note->descdata + 4);
9780 sprintf (buf, ".module/%08lx", (unsigned long) base_addr);
9781
9782 len = strlen (buf) + 1;
9783 name = (char *) bfd_alloc (abfd, len);
9784 if (name == NULL)
9785 return FALSE;
9786
9787 memcpy (name, buf, len);
9788
9789 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
9790
9791 if (sect == NULL)
9792 return FALSE;
9793
9794 sect->size = note->descsz;
9795 sect->filepos = note->descpos;
9796 sect->alignment_power = 2;
9797 break;
9798
9799 default:
9800 return TRUE;
9801 }
9802
9803 return TRUE;
9804 }
9805
9806 static bfd_boolean
9807 elfcore_grok_note (bfd *abfd, Elf_Internal_Note *note)
9808 {
9809 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9810
9811 switch (note->type)
9812 {
9813 default:
9814 return TRUE;
9815
9816 case NT_PRSTATUS:
9817 if (bed->elf_backend_grok_prstatus)
9818 if ((*bed->elf_backend_grok_prstatus) (abfd, note))
9819 return TRUE;
9820 #if defined (HAVE_PRSTATUS_T)
9821 return elfcore_grok_prstatus (abfd, note);
9822 #else
9823 return TRUE;
9824 #endif
9825
9826 #if defined (HAVE_PSTATUS_T)
9827 case NT_PSTATUS:
9828 return elfcore_grok_pstatus (abfd, note);
9829 #endif
9830
9831 #if defined (HAVE_LWPSTATUS_T)
9832 case NT_LWPSTATUS:
9833 return elfcore_grok_lwpstatus (abfd, note);
9834 #endif
9835
9836 case NT_FPREGSET: /* FIXME: rename to NT_PRFPREG */
9837 return elfcore_grok_prfpreg (abfd, note);
9838
9839 case NT_WIN32PSTATUS:
9840 return elfcore_grok_win32pstatus (abfd, note);
9841
9842 case NT_PRXFPREG: /* Linux SSE extension */
9843 if (note->namesz == 6
9844 && strcmp (note->namedata, "LINUX") == 0)
9845 return elfcore_grok_prxfpreg (abfd, note);
9846 else
9847 return TRUE;
9848
9849 case NT_X86_XSTATE: /* Linux XSAVE extension */
9850 if (note->namesz == 6
9851 && strcmp (note->namedata, "LINUX") == 0)
9852 return elfcore_grok_xstatereg (abfd, note);
9853 else
9854 return TRUE;
9855
9856 case NT_PPC_VMX:
9857 if (note->namesz == 6
9858 && strcmp (note->namedata, "LINUX") == 0)
9859 return elfcore_grok_ppc_vmx (abfd, note);
9860 else
9861 return TRUE;
9862
9863 case NT_PPC_VSX:
9864 if (note->namesz == 6
9865 && strcmp (note->namedata, "LINUX") == 0)
9866 return elfcore_grok_ppc_vsx (abfd, note);
9867 else
9868 return TRUE;
9869
9870 case NT_PPC_TAR:
9871 if (note->namesz == 6
9872 && strcmp (note->namedata, "LINUX") == 0)
9873 return elfcore_grok_ppc_tar (abfd, note);
9874 else
9875 return TRUE;
9876
9877 case NT_PPC_PPR:
9878 if (note->namesz == 6
9879 && strcmp (note->namedata, "LINUX") == 0)
9880 return elfcore_grok_ppc_ppr (abfd, note);
9881 else
9882 return TRUE;
9883
9884 case NT_PPC_DSCR:
9885 if (note->namesz == 6
9886 && strcmp (note->namedata, "LINUX") == 0)
9887 return elfcore_grok_ppc_dscr (abfd, note);
9888 else
9889 return TRUE;
9890
9891 case NT_PPC_EBB:
9892 if (note->namesz == 6
9893 && strcmp (note->namedata, "LINUX") == 0)
9894 return elfcore_grok_ppc_ebb (abfd, note);
9895 else
9896 return TRUE;
9897
9898 case NT_PPC_PMU:
9899 if (note->namesz == 6
9900 && strcmp (note->namedata, "LINUX") == 0)
9901 return elfcore_grok_ppc_pmu (abfd, note);
9902 else
9903 return TRUE;
9904
9905 case NT_PPC_TM_CGPR:
9906 if (note->namesz == 6
9907 && strcmp (note->namedata, "LINUX") == 0)
9908 return elfcore_grok_ppc_tm_cgpr (abfd, note);
9909 else
9910 return TRUE;
9911
9912 case NT_PPC_TM_CFPR:
9913 if (note->namesz == 6
9914 && strcmp (note->namedata, "LINUX") == 0)
9915 return elfcore_grok_ppc_tm_cfpr (abfd, note);
9916 else
9917 return TRUE;
9918
9919 case NT_PPC_TM_CVMX:
9920 if (note->namesz == 6
9921 && strcmp (note->namedata, "LINUX") == 0)
9922 return elfcore_grok_ppc_tm_cvmx (abfd, note);
9923 else
9924 return TRUE;
9925
9926 case NT_PPC_TM_CVSX:
9927 if (note->namesz == 6
9928 && strcmp (note->namedata, "LINUX") == 0)
9929 return elfcore_grok_ppc_tm_cvsx (abfd, note);
9930 else
9931 return TRUE;
9932
9933 case NT_PPC_TM_SPR:
9934 if (note->namesz == 6
9935 && strcmp (note->namedata, "LINUX") == 0)
9936 return elfcore_grok_ppc_tm_spr (abfd, note);
9937 else
9938 return TRUE;
9939
9940 case NT_PPC_TM_CTAR:
9941 if (note->namesz == 6
9942 && strcmp (note->namedata, "LINUX") == 0)
9943 return elfcore_grok_ppc_tm_ctar (abfd, note);
9944 else
9945 return TRUE;
9946
9947 case NT_PPC_TM_CPPR:
9948 if (note->namesz == 6
9949 && strcmp (note->namedata, "LINUX") == 0)
9950 return elfcore_grok_ppc_tm_cppr (abfd, note);
9951 else
9952 return TRUE;
9953
9954 case NT_PPC_TM_CDSCR:
9955 if (note->namesz == 6
9956 && strcmp (note->namedata, "LINUX") == 0)
9957 return elfcore_grok_ppc_tm_cdscr (abfd, note);
9958 else
9959 return TRUE;
9960
9961 case NT_S390_HIGH_GPRS:
9962 if (note->namesz == 6
9963 && strcmp (note->namedata, "LINUX") == 0)
9964 return elfcore_grok_s390_high_gprs (abfd, note);
9965 else
9966 return TRUE;
9967
9968 case NT_S390_TIMER:
9969 if (note->namesz == 6
9970 && strcmp (note->namedata, "LINUX") == 0)
9971 return elfcore_grok_s390_timer (abfd, note);
9972 else
9973 return TRUE;
9974
9975 case NT_S390_TODCMP:
9976 if (note->namesz == 6
9977 && strcmp (note->namedata, "LINUX") == 0)
9978 return elfcore_grok_s390_todcmp (abfd, note);
9979 else
9980 return TRUE;
9981
9982 case NT_S390_TODPREG:
9983 if (note->namesz == 6
9984 && strcmp (note->namedata, "LINUX") == 0)
9985 return elfcore_grok_s390_todpreg (abfd, note);
9986 else
9987 return TRUE;
9988
9989 case NT_S390_CTRS:
9990 if (note->namesz == 6
9991 && strcmp (note->namedata, "LINUX") == 0)
9992 return elfcore_grok_s390_ctrs (abfd, note);
9993 else
9994 return TRUE;
9995
9996 case NT_S390_PREFIX:
9997 if (note->namesz == 6
9998 && strcmp (note->namedata, "LINUX") == 0)
9999 return elfcore_grok_s390_prefix (abfd, note);
10000 else
10001 return TRUE;
10002
10003 case NT_S390_LAST_BREAK:
10004 if (note->namesz == 6
10005 && strcmp (note->namedata, "LINUX") == 0)
10006 return elfcore_grok_s390_last_break (abfd, note);
10007 else
10008 return TRUE;
10009
10010 case NT_S390_SYSTEM_CALL:
10011 if (note->namesz == 6
10012 && strcmp (note->namedata, "LINUX") == 0)
10013 return elfcore_grok_s390_system_call (abfd, note);
10014 else
10015 return TRUE;
10016
10017 case NT_S390_TDB:
10018 if (note->namesz == 6
10019 && strcmp (note->namedata, "LINUX") == 0)
10020 return elfcore_grok_s390_tdb (abfd, note);
10021 else
10022 return TRUE;
10023
10024 case NT_S390_VXRS_LOW:
10025 if (note->namesz == 6
10026 && strcmp (note->namedata, "LINUX") == 0)
10027 return elfcore_grok_s390_vxrs_low (abfd, note);
10028 else
10029 return TRUE;
10030
10031 case NT_S390_VXRS_HIGH:
10032 if (note->namesz == 6
10033 && strcmp (note->namedata, "LINUX") == 0)
10034 return elfcore_grok_s390_vxrs_high (abfd, note);
10035 else
10036 return TRUE;
10037
10038 case NT_S390_GS_CB:
10039 if (note->namesz == 6
10040 && strcmp (note->namedata, "LINUX") == 0)
10041 return elfcore_grok_s390_gs_cb (abfd, note);
10042 else
10043 return TRUE;
10044
10045 case NT_S390_GS_BC:
10046 if (note->namesz == 6
10047 && strcmp (note->namedata, "LINUX") == 0)
10048 return elfcore_grok_s390_gs_bc (abfd, note);
10049 else
10050 return TRUE;
10051
10052 case NT_ARM_VFP:
10053 if (note->namesz == 6
10054 && strcmp (note->namedata, "LINUX") == 0)
10055 return elfcore_grok_arm_vfp (abfd, note);
10056 else
10057 return TRUE;
10058
10059 case NT_ARM_TLS:
10060 if (note->namesz == 6
10061 && strcmp (note->namedata, "LINUX") == 0)
10062 return elfcore_grok_aarch_tls (abfd, note);
10063 else
10064 return TRUE;
10065
10066 case NT_ARM_HW_BREAK:
10067 if (note->namesz == 6
10068 && strcmp (note->namedata, "LINUX") == 0)
10069 return elfcore_grok_aarch_hw_break (abfd, note);
10070 else
10071 return TRUE;
10072
10073 case NT_ARM_HW_WATCH:
10074 if (note->namesz == 6
10075 && strcmp (note->namedata, "LINUX") == 0)
10076 return elfcore_grok_aarch_hw_watch (abfd, note);
10077 else
10078 return TRUE;
10079
10080 case NT_ARM_SVE:
10081 if (note->namesz == 6
10082 && strcmp (note->namedata, "LINUX") == 0)
10083 return elfcore_grok_aarch_sve (abfd, note);
10084 else
10085 return TRUE;
10086
10087 case NT_PRPSINFO:
10088 case NT_PSINFO:
10089 if (bed->elf_backend_grok_psinfo)
10090 if ((*bed->elf_backend_grok_psinfo) (abfd, note))
10091 return TRUE;
10092 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
10093 return elfcore_grok_psinfo (abfd, note);
10094 #else
10095 return TRUE;
10096 #endif
10097
10098 case NT_AUXV:
10099 {
10100 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
10101 SEC_HAS_CONTENTS);
10102
10103 if (sect == NULL)
10104 return FALSE;
10105 sect->size = note->descsz;
10106 sect->filepos = note->descpos;
10107 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
10108
10109 return TRUE;
10110 }
10111
10112 case NT_FILE:
10113 return elfcore_make_note_pseudosection (abfd, ".note.linuxcore.file",
10114 note);
10115
10116 case NT_SIGINFO:
10117 return elfcore_make_note_pseudosection (abfd, ".note.linuxcore.siginfo",
10118 note);
10119
10120 }
10121 }
10122
10123 static bfd_boolean
10124 elfobj_grok_gnu_build_id (bfd *abfd, Elf_Internal_Note *note)
10125 {
10126 struct bfd_build_id* build_id;
10127
10128 if (note->descsz == 0)
10129 return FALSE;
10130
10131 build_id = bfd_alloc (abfd, sizeof (struct bfd_build_id) - 1 + note->descsz);
10132 if (build_id == NULL)
10133 return FALSE;
10134
10135 build_id->size = note->descsz;
10136 memcpy (build_id->data, note->descdata, note->descsz);
10137 abfd->build_id = build_id;
10138
10139 return TRUE;
10140 }
10141
10142 static bfd_boolean
10143 elfobj_grok_gnu_note (bfd *abfd, Elf_Internal_Note *note)
10144 {
10145 switch (note->type)
10146 {
10147 default:
10148 return TRUE;
10149
10150 case NT_GNU_PROPERTY_TYPE_0:
10151 return _bfd_elf_parse_gnu_properties (abfd, note);
10152
10153 case NT_GNU_BUILD_ID:
10154 return elfobj_grok_gnu_build_id (abfd, note);
10155 }
10156 }
10157
10158 static bfd_boolean
10159 elfobj_grok_stapsdt_note_1 (bfd *abfd, Elf_Internal_Note *note)
10160 {
10161 struct sdt_note *cur =
10162 (struct sdt_note *) bfd_alloc (abfd, sizeof (struct sdt_note)
10163 + note->descsz);
10164
10165 cur->next = (struct sdt_note *) (elf_tdata (abfd))->sdt_note_head;
10166 cur->size = (bfd_size_type) note->descsz;
10167 memcpy (cur->data, note->descdata, note->descsz);
10168
10169 elf_tdata (abfd)->sdt_note_head = cur;
10170
10171 return TRUE;
10172 }
10173
10174 static bfd_boolean
10175 elfobj_grok_stapsdt_note (bfd *abfd, Elf_Internal_Note *note)
10176 {
10177 switch (note->type)
10178 {
10179 case NT_STAPSDT:
10180 return elfobj_grok_stapsdt_note_1 (abfd, note);
10181
10182 default:
10183 return TRUE;
10184 }
10185 }
10186
10187 static bfd_boolean
10188 elfcore_grok_freebsd_psinfo (bfd *abfd, Elf_Internal_Note *note)
10189 {
10190 size_t offset;
10191
10192 switch (elf_elfheader (abfd)->e_ident[EI_CLASS])
10193 {
10194 case ELFCLASS32:
10195 if (note->descsz < 108)
10196 return FALSE;
10197 break;
10198
10199 case ELFCLASS64:
10200 if (note->descsz < 120)
10201 return FALSE;
10202 break;
10203
10204 default:
10205 return FALSE;
10206 }
10207
10208 /* Check for version 1 in pr_version. */
10209 if (bfd_h_get_32 (abfd, (bfd_byte *) note->descdata) != 1)
10210 return FALSE;
10211
10212 offset = 4;
10213
10214 /* Skip over pr_psinfosz. */
10215 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS32)
10216 offset += 4;
10217 else
10218 {
10219 offset += 4; /* Padding before pr_psinfosz. */
10220 offset += 8;
10221 }
10222
10223 /* pr_fname is PRFNAMESZ (16) + 1 bytes in size. */
10224 elf_tdata (abfd)->core->program
10225 = _bfd_elfcore_strndup (abfd, note->descdata + offset, 17);
10226 offset += 17;
10227
10228 /* pr_psargs is PRARGSZ (80) + 1 bytes in size. */
10229 elf_tdata (abfd)->core->command
10230 = _bfd_elfcore_strndup (abfd, note->descdata + offset, 81);
10231 offset += 81;
10232
10233 /* Padding before pr_pid. */
10234 offset += 2;
10235
10236 /* The pr_pid field was added in version "1a". */
10237 if (note->descsz < offset + 4)
10238 return TRUE;
10239
10240 elf_tdata (abfd)->core->pid
10241 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset);
10242
10243 return TRUE;
10244 }
10245
10246 static bfd_boolean
10247 elfcore_grok_freebsd_prstatus (bfd *abfd, Elf_Internal_Note *note)
10248 {
10249 size_t offset;
10250 size_t size;
10251 size_t min_size;
10252
10253 /* Compute offset of pr_getregsz, skipping over pr_statussz.
10254 Also compute minimum size of this note. */
10255 switch (elf_elfheader (abfd)->e_ident[EI_CLASS])
10256 {
10257 case ELFCLASS32:
10258 offset = 4 + 4;
10259 min_size = offset + (4 * 2) + 4 + 4 + 4;
10260 break;
10261
10262 case ELFCLASS64:
10263 offset = 4 + 4 + 8; /* Includes padding before pr_statussz. */
10264 min_size = offset + (8 * 2) + 4 + 4 + 4 + 4;
10265 break;
10266
10267 default:
10268 return FALSE;
10269 }
10270
10271 if (note->descsz < min_size)
10272 return FALSE;
10273
10274 /* Check for version 1 in pr_version. */
10275 if (bfd_h_get_32 (abfd, (bfd_byte *) note->descdata) != 1)
10276 return FALSE;
10277
10278 /* Extract size of pr_reg from pr_gregsetsz. */
10279 /* Skip over pr_gregsetsz and pr_fpregsetsz. */
10280 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS32)
10281 {
10282 size = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset);
10283 offset += 4 * 2;
10284 }
10285 else
10286 {
10287 size = bfd_h_get_64 (abfd, (bfd_byte *) note->descdata + offset);
10288 offset += 8 * 2;
10289 }
10290
10291 /* Skip over pr_osreldate. */
10292 offset += 4;
10293
10294 /* Read signal from pr_cursig. */
10295 if (elf_tdata (abfd)->core->signal == 0)
10296 elf_tdata (abfd)->core->signal
10297 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset);
10298 offset += 4;
10299
10300 /* Read TID from pr_pid. */
10301 elf_tdata (abfd)->core->lwpid
10302 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset);
10303 offset += 4;
10304
10305 /* Padding before pr_reg. */
10306 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
10307 offset += 4;
10308
10309 /* Make sure that there is enough data remaining in the note. */
10310 if ((note->descsz - offset) < size)
10311 return FALSE;
10312
10313 /* Make a ".reg/999" section and a ".reg" section. */
10314 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
10315 size, note->descpos + offset);
10316 }
10317
10318 static bfd_boolean
10319 elfcore_grok_freebsd_note (bfd *abfd, Elf_Internal_Note *note)
10320 {
10321 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10322
10323 switch (note->type)
10324 {
10325 case NT_PRSTATUS:
10326 if (bed->elf_backend_grok_freebsd_prstatus)
10327 if ((*bed->elf_backend_grok_freebsd_prstatus) (abfd, note))
10328 return TRUE;
10329 return elfcore_grok_freebsd_prstatus (abfd, note);
10330
10331 case NT_FPREGSET:
10332 return elfcore_grok_prfpreg (abfd, note);
10333
10334 case NT_PRPSINFO:
10335 return elfcore_grok_freebsd_psinfo (abfd, note);
10336
10337 case NT_FREEBSD_THRMISC:
10338 if (note->namesz == 8)
10339 return elfcore_make_note_pseudosection (abfd, ".thrmisc", note);
10340 else
10341 return TRUE;
10342
10343 case NT_FREEBSD_PROCSTAT_PROC:
10344 return elfcore_make_note_pseudosection (abfd, ".note.freebsdcore.proc",
10345 note);
10346
10347 case NT_FREEBSD_PROCSTAT_FILES:
10348 return elfcore_make_note_pseudosection (abfd, ".note.freebsdcore.files",
10349 note);
10350
10351 case NT_FREEBSD_PROCSTAT_VMMAP:
10352 return elfcore_make_note_pseudosection (abfd, ".note.freebsdcore.vmmap",
10353 note);
10354
10355 case NT_FREEBSD_PROCSTAT_AUXV:
10356 {
10357 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
10358 SEC_HAS_CONTENTS);
10359
10360 if (sect == NULL)
10361 return FALSE;
10362 sect->size = note->descsz - 4;
10363 sect->filepos = note->descpos + 4;
10364 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
10365
10366 return TRUE;
10367 }
10368
10369 case NT_X86_XSTATE:
10370 if (note->namesz == 8)
10371 return elfcore_grok_xstatereg (abfd, note);
10372 else
10373 return TRUE;
10374
10375 case NT_FREEBSD_PTLWPINFO:
10376 return elfcore_make_note_pseudosection (abfd, ".note.freebsdcore.lwpinfo",
10377 note);
10378
10379 case NT_ARM_VFP:
10380 return elfcore_grok_arm_vfp (abfd, note);
10381
10382 default:
10383 return TRUE;
10384 }
10385 }
10386
10387 static bfd_boolean
10388 elfcore_netbsd_get_lwpid (Elf_Internal_Note *note, int *lwpidp)
10389 {
10390 char *cp;
10391
10392 cp = strchr (note->namedata, '@');
10393 if (cp != NULL)
10394 {
10395 *lwpidp = atoi(cp + 1);
10396 return TRUE;
10397 }
10398 return FALSE;
10399 }
10400
10401 static bfd_boolean
10402 elfcore_grok_netbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
10403 {
10404 if (note->descsz <= 0x7c + 31)
10405 return FALSE;
10406
10407 /* Signal number at offset 0x08. */
10408 elf_tdata (abfd)->core->signal
10409 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
10410
10411 /* Process ID at offset 0x50. */
10412 elf_tdata (abfd)->core->pid
10413 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x50);
10414
10415 /* Command name at 0x7c (max 32 bytes, including nul). */
10416 elf_tdata (abfd)->core->command
10417 = _bfd_elfcore_strndup (abfd, note->descdata + 0x7c, 31);
10418
10419 return elfcore_make_note_pseudosection (abfd, ".note.netbsdcore.procinfo",
10420 note);
10421 }
10422
10423 static bfd_boolean
10424 elfcore_grok_netbsd_note (bfd *abfd, Elf_Internal_Note *note)
10425 {
10426 int lwp;
10427
10428 if (elfcore_netbsd_get_lwpid (note, &lwp))
10429 elf_tdata (abfd)->core->lwpid = lwp;
10430
10431 if (note->type == NT_NETBSDCORE_PROCINFO)
10432 {
10433 /* NetBSD-specific core "procinfo". Note that we expect to
10434 find this note before any of the others, which is fine,
10435 since the kernel writes this note out first when it
10436 creates a core file. */
10437
10438 return elfcore_grok_netbsd_procinfo (abfd, note);
10439 }
10440
10441 /* As of Jan 2002 there are no other machine-independent notes
10442 defined for NetBSD core files. If the note type is less
10443 than the start of the machine-dependent note types, we don't
10444 understand it. */
10445
10446 if (note->type < NT_NETBSDCORE_FIRSTMACH)
10447 return TRUE;
10448
10449
10450 switch (bfd_get_arch (abfd))
10451 {
10452 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
10453 PT_GETFPREGS == mach+2. */
10454
10455 case bfd_arch_alpha:
10456 case bfd_arch_sparc:
10457 switch (note->type)
10458 {
10459 case NT_NETBSDCORE_FIRSTMACH+0:
10460 return elfcore_make_note_pseudosection (abfd, ".reg", note);
10461
10462 case NT_NETBSDCORE_FIRSTMACH+2:
10463 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
10464
10465 default:
10466 return TRUE;
10467 }
10468
10469 /* On all other arch's, PT_GETREGS == mach+1 and
10470 PT_GETFPREGS == mach+3. */
10471
10472 default:
10473 switch (note->type)
10474 {
10475 case NT_NETBSDCORE_FIRSTMACH+1:
10476 return elfcore_make_note_pseudosection (abfd, ".reg", note);
10477
10478 case NT_NETBSDCORE_FIRSTMACH+3:
10479 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
10480
10481 default:
10482 return TRUE;
10483 }
10484 }
10485 /* NOTREACHED */
10486 }
10487
10488 static bfd_boolean
10489 elfcore_grok_openbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
10490 {
10491 if (note->descsz <= 0x48 + 31)
10492 return FALSE;
10493
10494 /* Signal number at offset 0x08. */
10495 elf_tdata (abfd)->core->signal
10496 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
10497
10498 /* Process ID at offset 0x20. */
10499 elf_tdata (abfd)->core->pid
10500 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x20);
10501
10502 /* Command name at 0x48 (max 32 bytes, including nul). */
10503 elf_tdata (abfd)->core->command
10504 = _bfd_elfcore_strndup (abfd, note->descdata + 0x48, 31);
10505
10506 return TRUE;
10507 }
10508
10509 static bfd_boolean
10510 elfcore_grok_openbsd_note (bfd *abfd, Elf_Internal_Note *note)
10511 {
10512 if (note->type == NT_OPENBSD_PROCINFO)
10513 return elfcore_grok_openbsd_procinfo (abfd, note);
10514
10515 if (note->type == NT_OPENBSD_REGS)
10516 return elfcore_make_note_pseudosection (abfd, ".reg", note);
10517
10518 if (note->type == NT_OPENBSD_FPREGS)
10519 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
10520
10521 if (note->type == NT_OPENBSD_XFPREGS)
10522 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
10523
10524 if (note->type == NT_OPENBSD_AUXV)
10525 {
10526 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
10527 SEC_HAS_CONTENTS);
10528
10529 if (sect == NULL)
10530 return FALSE;
10531 sect->size = note->descsz;
10532 sect->filepos = note->descpos;
10533 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
10534
10535 return TRUE;
10536 }
10537
10538 if (note->type == NT_OPENBSD_WCOOKIE)
10539 {
10540 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".wcookie",
10541 SEC_HAS_CONTENTS);
10542
10543 if (sect == NULL)
10544 return FALSE;
10545 sect->size = note->descsz;
10546 sect->filepos = note->descpos;
10547 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
10548
10549 return TRUE;
10550 }
10551
10552 return TRUE;
10553 }
10554
10555 static bfd_boolean
10556 elfcore_grok_nto_status (bfd *abfd, Elf_Internal_Note *note, long *tid)
10557 {
10558 void *ddata = note->descdata;
10559 char buf[100];
10560 char *name;
10561 asection *sect;
10562 short sig;
10563 unsigned flags;
10564
10565 if (note->descsz < 16)
10566 return FALSE;
10567
10568 /* nto_procfs_status 'pid' field is at offset 0. */
10569 elf_tdata (abfd)->core->pid = bfd_get_32 (abfd, (bfd_byte *) ddata);
10570
10571 /* nto_procfs_status 'tid' field is at offset 4. Pass it back. */
10572 *tid = bfd_get_32 (abfd, (bfd_byte *) ddata + 4);
10573
10574 /* nto_procfs_status 'flags' field is at offset 8. */
10575 flags = bfd_get_32 (abfd, (bfd_byte *) ddata + 8);
10576
10577 /* nto_procfs_status 'what' field is at offset 14. */
10578 if ((sig = bfd_get_16 (abfd, (bfd_byte *) ddata + 14)) > 0)
10579 {
10580 elf_tdata (abfd)->core->signal = sig;
10581 elf_tdata (abfd)->core->lwpid = *tid;
10582 }
10583
10584 /* _DEBUG_FLAG_CURTID (current thread) is 0x80. Some cores
10585 do not come from signals so we make sure we set the current
10586 thread just in case. */
10587 if (flags & 0x00000080)
10588 elf_tdata (abfd)->core->lwpid = *tid;
10589
10590 /* Make a ".qnx_core_status/%d" section. */
10591 sprintf (buf, ".qnx_core_status/%ld", *tid);
10592
10593 name = (char *) bfd_alloc (abfd, strlen (buf) + 1);
10594 if (name == NULL)
10595 return FALSE;
10596 strcpy (name, buf);
10597
10598 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
10599 if (sect == NULL)
10600 return FALSE;
10601
10602 sect->size = note->descsz;
10603 sect->filepos = note->descpos;
10604 sect->alignment_power = 2;
10605
10606 return (elfcore_maybe_make_sect (abfd, ".qnx_core_status", sect));
10607 }
10608
10609 static bfd_boolean
10610 elfcore_grok_nto_regs (bfd *abfd,
10611 Elf_Internal_Note *note,
10612 long tid,
10613 char *base)
10614 {
10615 char buf[100];
10616 char *name;
10617 asection *sect;
10618
10619 /* Make a "(base)/%d" section. */
10620 sprintf (buf, "%s/%ld", base, tid);
10621
10622 name = (char *) bfd_alloc (abfd, strlen (buf) + 1);
10623 if (name == NULL)
10624 return FALSE;
10625 strcpy (name, buf);
10626
10627 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
10628 if (sect == NULL)
10629 return FALSE;
10630
10631 sect->size = note->descsz;
10632 sect->filepos = note->descpos;
10633 sect->alignment_power = 2;
10634
10635 /* This is the current thread. */
10636 if (elf_tdata (abfd)->core->lwpid == tid)
10637 return elfcore_maybe_make_sect (abfd, base, sect);
10638
10639 return TRUE;
10640 }
10641
10642 #define BFD_QNT_CORE_INFO 7
10643 #define BFD_QNT_CORE_STATUS 8
10644 #define BFD_QNT_CORE_GREG 9
10645 #define BFD_QNT_CORE_FPREG 10
10646
10647 static bfd_boolean
10648 elfcore_grok_nto_note (bfd *abfd, Elf_Internal_Note *note)
10649 {
10650 /* Every GREG section has a STATUS section before it. Store the
10651 tid from the previous call to pass down to the next gregs
10652 function. */
10653 static long tid = 1;
10654
10655 switch (note->type)
10656 {
10657 case BFD_QNT_CORE_INFO:
10658 return elfcore_make_note_pseudosection (abfd, ".qnx_core_info", note);
10659 case BFD_QNT_CORE_STATUS:
10660 return elfcore_grok_nto_status (abfd, note, &tid);
10661 case BFD_QNT_CORE_GREG:
10662 return elfcore_grok_nto_regs (abfd, note, tid, ".reg");
10663 case BFD_QNT_CORE_FPREG:
10664 return elfcore_grok_nto_regs (abfd, note, tid, ".reg2");
10665 default:
10666 return TRUE;
10667 }
10668 }
10669
10670 static bfd_boolean
10671 elfcore_grok_spu_note (bfd *abfd, Elf_Internal_Note *note)
10672 {
10673 char *name;
10674 asection *sect;
10675 size_t len;
10676
10677 /* Use note name as section name. */
10678 len = note->namesz;
10679 name = (char *) bfd_alloc (abfd, len);
10680 if (name == NULL)
10681 return FALSE;
10682 memcpy (name, note->namedata, len);
10683 name[len - 1] = '\0';
10684
10685 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
10686 if (sect == NULL)
10687 return FALSE;
10688
10689 sect->size = note->descsz;
10690 sect->filepos = note->descpos;
10691 sect->alignment_power = 1;
10692
10693 return TRUE;
10694 }
10695
10696 /* Function: elfcore_write_note
10697
10698 Inputs:
10699 buffer to hold note, and current size of buffer
10700 name of note
10701 type of note
10702 data for note
10703 size of data for note
10704
10705 Writes note to end of buffer. ELF64 notes are written exactly as
10706 for ELF32, despite the current (as of 2006) ELF gabi specifying
10707 that they ought to have 8-byte namesz and descsz field, and have
10708 8-byte alignment. Other writers, eg. Linux kernel, do the same.
10709
10710 Return:
10711 Pointer to realloc'd buffer, *BUFSIZ updated. */
10712
10713 char *
10714 elfcore_write_note (bfd *abfd,
10715 char *buf,
10716 int *bufsiz,
10717 const char *name,
10718 int type,
10719 const void *input,
10720 int size)
10721 {
10722 Elf_External_Note *xnp;
10723 size_t namesz;
10724 size_t newspace;
10725 char *dest;
10726
10727 namesz = 0;
10728 if (name != NULL)
10729 namesz = strlen (name) + 1;
10730
10731 newspace = 12 + ((namesz + 3) & -4) + ((size + 3) & -4);
10732
10733 buf = (char *) realloc (buf, *bufsiz + newspace);
10734 if (buf == NULL)
10735 return buf;
10736 dest = buf + *bufsiz;
10737 *bufsiz += newspace;
10738 xnp = (Elf_External_Note *) dest;
10739 H_PUT_32 (abfd, namesz, xnp->namesz);
10740 H_PUT_32 (abfd, size, xnp->descsz);
10741 H_PUT_32 (abfd, type, xnp->type);
10742 dest = xnp->name;
10743 if (name != NULL)
10744 {
10745 memcpy (dest, name, namesz);
10746 dest += namesz;
10747 while (namesz & 3)
10748 {
10749 *dest++ = '\0';
10750 ++namesz;
10751 }
10752 }
10753 memcpy (dest, input, size);
10754 dest += size;
10755 while (size & 3)
10756 {
10757 *dest++ = '\0';
10758 ++size;
10759 }
10760 return buf;
10761 }
10762
10763 /* gcc-8 warns (*) on all the strncpy calls in this function about
10764 possible string truncation. The "truncation" is not a bug. We
10765 have an external representation of structs with fields that are not
10766 necessarily NULL terminated and corresponding internal
10767 representation fields that are one larger so that they can always
10768 be NULL terminated.
10769 gcc versions between 4.2 and 4.6 do not allow pragma control of
10770 diagnostics inside functions, giving a hard error if you try to use
10771 the finer control available with later versions.
10772 gcc prior to 4.2 warns about diagnostic push and pop.
10773 gcc-5, gcc-6 and gcc-7 warn that -Wstringop-truncation is unknown,
10774 unless you also add #pragma GCC diagnostic ignored "-Wpragma".
10775 (*) Depending on your system header files! */
10776 #if GCC_VERSION >= 8000
10777 # pragma GCC diagnostic push
10778 # pragma GCC diagnostic ignored "-Wstringop-truncation"
10779 #endif
10780 char *
10781 elfcore_write_prpsinfo (bfd *abfd,
10782 char *buf,
10783 int *bufsiz,
10784 const char *fname,
10785 const char *psargs)
10786 {
10787 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10788
10789 if (bed->elf_backend_write_core_note != NULL)
10790 {
10791 char *ret;
10792 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
10793 NT_PRPSINFO, fname, psargs);
10794 if (ret != NULL)
10795 return ret;
10796 }
10797
10798 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
10799 # if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
10800 if (bed->s->elfclass == ELFCLASS32)
10801 {
10802 # if defined (HAVE_PSINFO32_T)
10803 psinfo32_t data;
10804 int note_type = NT_PSINFO;
10805 # else
10806 prpsinfo32_t data;
10807 int note_type = NT_PRPSINFO;
10808 # endif
10809
10810 memset (&data, 0, sizeof (data));
10811 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
10812 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
10813 return elfcore_write_note (abfd, buf, bufsiz,
10814 "CORE", note_type, &data, sizeof (data));
10815 }
10816 else
10817 # endif
10818 {
10819 # if defined (HAVE_PSINFO_T)
10820 psinfo_t data;
10821 int note_type = NT_PSINFO;
10822 # else
10823 prpsinfo_t data;
10824 int note_type = NT_PRPSINFO;
10825 # endif
10826
10827 memset (&data, 0, sizeof (data));
10828 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
10829 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
10830 return elfcore_write_note (abfd, buf, bufsiz,
10831 "CORE", note_type, &data, sizeof (data));
10832 }
10833 #endif /* PSINFO_T or PRPSINFO_T */
10834
10835 free (buf);
10836 return NULL;
10837 }
10838 #if GCC_VERSION >= 8000
10839 # pragma GCC diagnostic pop
10840 #endif
10841
10842 char *
10843 elfcore_write_linux_prpsinfo32
10844 (bfd *abfd, char *buf, int *bufsiz,
10845 const struct elf_internal_linux_prpsinfo *prpsinfo)
10846 {
10847 if (get_elf_backend_data (abfd)->linux_prpsinfo32_ugid16)
10848 {
10849 struct elf_external_linux_prpsinfo32_ugid16 data;
10850
10851 swap_linux_prpsinfo32_ugid16_out (abfd, prpsinfo, &data);
10852 return elfcore_write_note (abfd, buf, bufsiz, "CORE", NT_PRPSINFO,
10853 &data, sizeof (data));
10854 }
10855 else
10856 {
10857 struct elf_external_linux_prpsinfo32_ugid32 data;
10858
10859 swap_linux_prpsinfo32_ugid32_out (abfd, prpsinfo, &data);
10860 return elfcore_write_note (abfd, buf, bufsiz, "CORE", NT_PRPSINFO,
10861 &data, sizeof (data));
10862 }
10863 }
10864
10865 char *
10866 elfcore_write_linux_prpsinfo64
10867 (bfd *abfd, char *buf, int *bufsiz,
10868 const struct elf_internal_linux_prpsinfo *prpsinfo)
10869 {
10870 if (get_elf_backend_data (abfd)->linux_prpsinfo64_ugid16)
10871 {
10872 struct elf_external_linux_prpsinfo64_ugid16 data;
10873
10874 swap_linux_prpsinfo64_ugid16_out (abfd, prpsinfo, &data);
10875 return elfcore_write_note (abfd, buf, bufsiz,
10876 "CORE", NT_PRPSINFO, &data, sizeof (data));
10877 }
10878 else
10879 {
10880 struct elf_external_linux_prpsinfo64_ugid32 data;
10881
10882 swap_linux_prpsinfo64_ugid32_out (abfd, prpsinfo, &data);
10883 return elfcore_write_note (abfd, buf, bufsiz,
10884 "CORE", NT_PRPSINFO, &data, sizeof (data));
10885 }
10886 }
10887
10888 char *
10889 elfcore_write_prstatus (bfd *abfd,
10890 char *buf,
10891 int *bufsiz,
10892 long pid,
10893 int cursig,
10894 const void *gregs)
10895 {
10896 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10897
10898 if (bed->elf_backend_write_core_note != NULL)
10899 {
10900 char *ret;
10901 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
10902 NT_PRSTATUS,
10903 pid, cursig, gregs);
10904 if (ret != NULL)
10905 return ret;
10906 }
10907
10908 #if defined (HAVE_PRSTATUS_T)
10909 #if defined (HAVE_PRSTATUS32_T)
10910 if (bed->s->elfclass == ELFCLASS32)
10911 {
10912 prstatus32_t prstat;
10913
10914 memset (&prstat, 0, sizeof (prstat));
10915 prstat.pr_pid = pid;
10916 prstat.pr_cursig = cursig;
10917 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
10918 return elfcore_write_note (abfd, buf, bufsiz, "CORE",
10919 NT_PRSTATUS, &prstat, sizeof (prstat));
10920 }
10921 else
10922 #endif
10923 {
10924 prstatus_t prstat;
10925
10926 memset (&prstat, 0, sizeof (prstat));
10927 prstat.pr_pid = pid;
10928 prstat.pr_cursig = cursig;
10929 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
10930 return elfcore_write_note (abfd, buf, bufsiz, "CORE",
10931 NT_PRSTATUS, &prstat, sizeof (prstat));
10932 }
10933 #endif /* HAVE_PRSTATUS_T */
10934
10935 free (buf);
10936 return NULL;
10937 }
10938
10939 #if defined (HAVE_LWPSTATUS_T)
10940 char *
10941 elfcore_write_lwpstatus (bfd *abfd,
10942 char *buf,
10943 int *bufsiz,
10944 long pid,
10945 int cursig,
10946 const void *gregs)
10947 {
10948 lwpstatus_t lwpstat;
10949 const char *note_name = "CORE";
10950
10951 memset (&lwpstat, 0, sizeof (lwpstat));
10952 lwpstat.pr_lwpid = pid >> 16;
10953 lwpstat.pr_cursig = cursig;
10954 #if defined (HAVE_LWPSTATUS_T_PR_REG)
10955 memcpy (&lwpstat.pr_reg, gregs, sizeof (lwpstat.pr_reg));
10956 #elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
10957 #if !defined(gregs)
10958 memcpy (lwpstat.pr_context.uc_mcontext.gregs,
10959 gregs, sizeof (lwpstat.pr_context.uc_mcontext.gregs));
10960 #else
10961 memcpy (lwpstat.pr_context.uc_mcontext.__gregs,
10962 gregs, sizeof (lwpstat.pr_context.uc_mcontext.__gregs));
10963 #endif
10964 #endif
10965 return elfcore_write_note (abfd, buf, bufsiz, note_name,
10966 NT_LWPSTATUS, &lwpstat, sizeof (lwpstat));
10967 }
10968 #endif /* HAVE_LWPSTATUS_T */
10969
10970 #if defined (HAVE_PSTATUS_T)
10971 char *
10972 elfcore_write_pstatus (bfd *abfd,
10973 char *buf,
10974 int *bufsiz,
10975 long pid,
10976 int cursig ATTRIBUTE_UNUSED,
10977 const void *gregs ATTRIBUTE_UNUSED)
10978 {
10979 const char *note_name = "CORE";
10980 #if defined (HAVE_PSTATUS32_T)
10981 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10982
10983 if (bed->s->elfclass == ELFCLASS32)
10984 {
10985 pstatus32_t pstat;
10986
10987 memset (&pstat, 0, sizeof (pstat));
10988 pstat.pr_pid = pid & 0xffff;
10989 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
10990 NT_PSTATUS, &pstat, sizeof (pstat));
10991 return buf;
10992 }
10993 else
10994 #endif
10995 {
10996 pstatus_t pstat;
10997
10998 memset (&pstat, 0, sizeof (pstat));
10999 pstat.pr_pid = pid & 0xffff;
11000 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
11001 NT_PSTATUS, &pstat, sizeof (pstat));
11002 return buf;
11003 }
11004 }
11005 #endif /* HAVE_PSTATUS_T */
11006
11007 char *
11008 elfcore_write_prfpreg (bfd *abfd,
11009 char *buf,
11010 int *bufsiz,
11011 const void *fpregs,
11012 int size)
11013 {
11014 const char *note_name = "CORE";
11015 return elfcore_write_note (abfd, buf, bufsiz,
11016 note_name, NT_FPREGSET, fpregs, size);
11017 }
11018
11019 char *
11020 elfcore_write_prxfpreg (bfd *abfd,
11021 char *buf,
11022 int *bufsiz,
11023 const void *xfpregs,
11024 int size)
11025 {
11026 char *note_name = "LINUX";
11027 return elfcore_write_note (abfd, buf, bufsiz,
11028 note_name, NT_PRXFPREG, xfpregs, size);
11029 }
11030
11031 char *
11032 elfcore_write_xstatereg (bfd *abfd, char *buf, int *bufsiz,
11033 const void *xfpregs, int size)
11034 {
11035 char *note_name;
11036 if (get_elf_backend_data (abfd)->elf_osabi == ELFOSABI_FREEBSD)
11037 note_name = "FreeBSD";
11038 else
11039 note_name = "LINUX";
11040 return elfcore_write_note (abfd, buf, bufsiz,
11041 note_name, NT_X86_XSTATE, xfpregs, size);
11042 }
11043
11044 char *
11045 elfcore_write_ppc_vmx (bfd *abfd,
11046 char *buf,
11047 int *bufsiz,
11048 const void *ppc_vmx,
11049 int size)
11050 {
11051 char *note_name = "LINUX";
11052 return elfcore_write_note (abfd, buf, bufsiz,
11053 note_name, NT_PPC_VMX, ppc_vmx, size);
11054 }
11055
11056 char *
11057 elfcore_write_ppc_vsx (bfd *abfd,
11058 char *buf,
11059 int *bufsiz,
11060 const void *ppc_vsx,
11061 int size)
11062 {
11063 char *note_name = "LINUX";
11064 return elfcore_write_note (abfd, buf, bufsiz,
11065 note_name, NT_PPC_VSX, ppc_vsx, size);
11066 }
11067
11068 char *
11069 elfcore_write_ppc_tar (bfd *abfd,
11070 char *buf,
11071 int *bufsiz,
11072 const void *ppc_tar,
11073 int size)
11074 {
11075 char *note_name = "LINUX";
11076 return elfcore_write_note (abfd, buf, bufsiz,
11077 note_name, NT_PPC_TAR, ppc_tar, size);
11078 }
11079
11080 char *
11081 elfcore_write_ppc_ppr (bfd *abfd,
11082 char *buf,
11083 int *bufsiz,
11084 const void *ppc_ppr,
11085 int size)
11086 {
11087 char *note_name = "LINUX";
11088 return elfcore_write_note (abfd, buf, bufsiz,
11089 note_name, NT_PPC_PPR, ppc_ppr, size);
11090 }
11091
11092 char *
11093 elfcore_write_ppc_dscr (bfd *abfd,
11094 char *buf,
11095 int *bufsiz,
11096 const void *ppc_dscr,
11097 int size)
11098 {
11099 char *note_name = "LINUX";
11100 return elfcore_write_note (abfd, buf, bufsiz,
11101 note_name, NT_PPC_DSCR, ppc_dscr, size);
11102 }
11103
11104 char *
11105 elfcore_write_ppc_ebb (bfd *abfd,
11106 char *buf,
11107 int *bufsiz,
11108 const void *ppc_ebb,
11109 int size)
11110 {
11111 char *note_name = "LINUX";
11112 return elfcore_write_note (abfd, buf, bufsiz,
11113 note_name, NT_PPC_EBB, ppc_ebb, size);
11114 }
11115
11116 char *
11117 elfcore_write_ppc_pmu (bfd *abfd,
11118 char *buf,
11119 int *bufsiz,
11120 const void *ppc_pmu,
11121 int size)
11122 {
11123 char *note_name = "LINUX";
11124 return elfcore_write_note (abfd, buf, bufsiz,
11125 note_name, NT_PPC_PMU, ppc_pmu, size);
11126 }
11127
11128 char *
11129 elfcore_write_ppc_tm_cgpr (bfd *abfd,
11130 char *buf,
11131 int *bufsiz,
11132 const void *ppc_tm_cgpr,
11133 int size)
11134 {
11135 char *note_name = "LINUX";
11136 return elfcore_write_note (abfd, buf, bufsiz,
11137 note_name, NT_PPC_TM_CGPR, ppc_tm_cgpr, size);
11138 }
11139
11140 char *
11141 elfcore_write_ppc_tm_cfpr (bfd *abfd,
11142 char *buf,
11143 int *bufsiz,
11144 const void *ppc_tm_cfpr,
11145 int size)
11146 {
11147 char *note_name = "LINUX";
11148 return elfcore_write_note (abfd, buf, bufsiz,
11149 note_name, NT_PPC_TM_CFPR, ppc_tm_cfpr, size);
11150 }
11151
11152 char *
11153 elfcore_write_ppc_tm_cvmx (bfd *abfd,
11154 char *buf,
11155 int *bufsiz,
11156 const void *ppc_tm_cvmx,
11157 int size)
11158 {
11159 char *note_name = "LINUX";
11160 return elfcore_write_note (abfd, buf, bufsiz,
11161 note_name, NT_PPC_TM_CVMX, ppc_tm_cvmx, size);
11162 }
11163
11164 char *
11165 elfcore_write_ppc_tm_cvsx (bfd *abfd,
11166 char *buf,
11167 int *bufsiz,
11168 const void *ppc_tm_cvsx,
11169 int size)
11170 {
11171 char *note_name = "LINUX";
11172 return elfcore_write_note (abfd, buf, bufsiz,
11173 note_name, NT_PPC_TM_CVSX, ppc_tm_cvsx, size);
11174 }
11175
11176 char *
11177 elfcore_write_ppc_tm_spr (bfd *abfd,
11178 char *buf,
11179 int *bufsiz,
11180 const void *ppc_tm_spr,
11181 int size)
11182 {
11183 char *note_name = "LINUX";
11184 return elfcore_write_note (abfd, buf, bufsiz,
11185 note_name, NT_PPC_TM_SPR, ppc_tm_spr, size);
11186 }
11187
11188 char *
11189 elfcore_write_ppc_tm_ctar (bfd *abfd,
11190 char *buf,
11191 int *bufsiz,
11192 const void *ppc_tm_ctar,
11193 int size)
11194 {
11195 char *note_name = "LINUX";
11196 return elfcore_write_note (abfd, buf, bufsiz,
11197 note_name, NT_PPC_TM_CTAR, ppc_tm_ctar, size);
11198 }
11199
11200 char *
11201 elfcore_write_ppc_tm_cppr (bfd *abfd,
11202 char *buf,
11203 int *bufsiz,
11204 const void *ppc_tm_cppr,
11205 int size)
11206 {
11207 char *note_name = "LINUX";
11208 return elfcore_write_note (abfd, buf, bufsiz,
11209 note_name, NT_PPC_TM_CPPR, ppc_tm_cppr, size);
11210 }
11211
11212 char *
11213 elfcore_write_ppc_tm_cdscr (bfd *abfd,
11214 char *buf,
11215 int *bufsiz,
11216 const void *ppc_tm_cdscr,
11217 int size)
11218 {
11219 char *note_name = "LINUX";
11220 return elfcore_write_note (abfd, buf, bufsiz,
11221 note_name, NT_PPC_TM_CDSCR, ppc_tm_cdscr, size);
11222 }
11223
11224 static char *
11225 elfcore_write_s390_high_gprs (bfd *abfd,
11226 char *buf,
11227 int *bufsiz,
11228 const void *s390_high_gprs,
11229 int size)
11230 {
11231 char *note_name = "LINUX";
11232 return elfcore_write_note (abfd, buf, bufsiz,
11233 note_name, NT_S390_HIGH_GPRS,
11234 s390_high_gprs, size);
11235 }
11236
11237 char *
11238 elfcore_write_s390_timer (bfd *abfd,
11239 char *buf,
11240 int *bufsiz,
11241 const void *s390_timer,
11242 int size)
11243 {
11244 char *note_name = "LINUX";
11245 return elfcore_write_note (abfd, buf, bufsiz,
11246 note_name, NT_S390_TIMER, s390_timer, size);
11247 }
11248
11249 char *
11250 elfcore_write_s390_todcmp (bfd *abfd,
11251 char *buf,
11252 int *bufsiz,
11253 const void *s390_todcmp,
11254 int size)
11255 {
11256 char *note_name = "LINUX";
11257 return elfcore_write_note (abfd, buf, bufsiz,
11258 note_name, NT_S390_TODCMP, s390_todcmp, size);
11259 }
11260
11261 char *
11262 elfcore_write_s390_todpreg (bfd *abfd,
11263 char *buf,
11264 int *bufsiz,
11265 const void *s390_todpreg,
11266 int size)
11267 {
11268 char *note_name = "LINUX";
11269 return elfcore_write_note (abfd, buf, bufsiz,
11270 note_name, NT_S390_TODPREG, s390_todpreg, size);
11271 }
11272
11273 char *
11274 elfcore_write_s390_ctrs (bfd *abfd,
11275 char *buf,
11276 int *bufsiz,
11277 const void *s390_ctrs,
11278 int size)
11279 {
11280 char *note_name = "LINUX";
11281 return elfcore_write_note (abfd, buf, bufsiz,
11282 note_name, NT_S390_CTRS, s390_ctrs, size);
11283 }
11284
11285 char *
11286 elfcore_write_s390_prefix (bfd *abfd,
11287 char *buf,
11288 int *bufsiz,
11289 const void *s390_prefix,
11290 int size)
11291 {
11292 char *note_name = "LINUX";
11293 return elfcore_write_note (abfd, buf, bufsiz,
11294 note_name, NT_S390_PREFIX, s390_prefix, size);
11295 }
11296
11297 char *
11298 elfcore_write_s390_last_break (bfd *abfd,
11299 char *buf,
11300 int *bufsiz,
11301 const void *s390_last_break,
11302 int size)
11303 {
11304 char *note_name = "LINUX";
11305 return elfcore_write_note (abfd, buf, bufsiz,
11306 note_name, NT_S390_LAST_BREAK,
11307 s390_last_break, size);
11308 }
11309
11310 char *
11311 elfcore_write_s390_system_call (bfd *abfd,
11312 char *buf,
11313 int *bufsiz,
11314 const void *s390_system_call,
11315 int size)
11316 {
11317 char *note_name = "LINUX";
11318 return elfcore_write_note (abfd, buf, bufsiz,
11319 note_name, NT_S390_SYSTEM_CALL,
11320 s390_system_call, size);
11321 }
11322
11323 char *
11324 elfcore_write_s390_tdb (bfd *abfd,
11325 char *buf,
11326 int *bufsiz,
11327 const void *s390_tdb,
11328 int size)
11329 {
11330 char *note_name = "LINUX";
11331 return elfcore_write_note (abfd, buf, bufsiz,
11332 note_name, NT_S390_TDB, s390_tdb, size);
11333 }
11334
11335 char *
11336 elfcore_write_s390_vxrs_low (bfd *abfd,
11337 char *buf,
11338 int *bufsiz,
11339 const void *s390_vxrs_low,
11340 int size)
11341 {
11342 char *note_name = "LINUX";
11343 return elfcore_write_note (abfd, buf, bufsiz,
11344 note_name, NT_S390_VXRS_LOW, s390_vxrs_low, size);
11345 }
11346
11347 char *
11348 elfcore_write_s390_vxrs_high (bfd *abfd,
11349 char *buf,
11350 int *bufsiz,
11351 const void *s390_vxrs_high,
11352 int size)
11353 {
11354 char *note_name = "LINUX";
11355 return elfcore_write_note (abfd, buf, bufsiz,
11356 note_name, NT_S390_VXRS_HIGH,
11357 s390_vxrs_high, size);
11358 }
11359
11360 char *
11361 elfcore_write_s390_gs_cb (bfd *abfd,
11362 char *buf,
11363 int *bufsiz,
11364 const void *s390_gs_cb,
11365 int size)
11366 {
11367 char *note_name = "LINUX";
11368 return elfcore_write_note (abfd, buf, bufsiz,
11369 note_name, NT_S390_GS_CB,
11370 s390_gs_cb, size);
11371 }
11372
11373 char *
11374 elfcore_write_s390_gs_bc (bfd *abfd,
11375 char *buf,
11376 int *bufsiz,
11377 const void *s390_gs_bc,
11378 int size)
11379 {
11380 char *note_name = "LINUX";
11381 return elfcore_write_note (abfd, buf, bufsiz,
11382 note_name, NT_S390_GS_BC,
11383 s390_gs_bc, size);
11384 }
11385
11386 char *
11387 elfcore_write_arm_vfp (bfd *abfd,
11388 char *buf,
11389 int *bufsiz,
11390 const void *arm_vfp,
11391 int size)
11392 {
11393 char *note_name = "LINUX";
11394 return elfcore_write_note (abfd, buf, bufsiz,
11395 note_name, NT_ARM_VFP, arm_vfp, size);
11396 }
11397
11398 char *
11399 elfcore_write_aarch_tls (bfd *abfd,
11400 char *buf,
11401 int *bufsiz,
11402 const void *aarch_tls,
11403 int size)
11404 {
11405 char *note_name = "LINUX";
11406 return elfcore_write_note (abfd, buf, bufsiz,
11407 note_name, NT_ARM_TLS, aarch_tls, size);
11408 }
11409
11410 char *
11411 elfcore_write_aarch_hw_break (bfd *abfd,
11412 char *buf,
11413 int *bufsiz,
11414 const void *aarch_hw_break,
11415 int size)
11416 {
11417 char *note_name = "LINUX";
11418 return elfcore_write_note (abfd, buf, bufsiz,
11419 note_name, NT_ARM_HW_BREAK, aarch_hw_break, size);
11420 }
11421
11422 char *
11423 elfcore_write_aarch_hw_watch (bfd *abfd,
11424 char *buf,
11425 int *bufsiz,
11426 const void *aarch_hw_watch,
11427 int size)
11428 {
11429 char *note_name = "LINUX";
11430 return elfcore_write_note (abfd, buf, bufsiz,
11431 note_name, NT_ARM_HW_WATCH, aarch_hw_watch, size);
11432 }
11433
11434 char *
11435 elfcore_write_aarch_sve (bfd *abfd,
11436 char *buf,
11437 int *bufsiz,
11438 const void *aarch_sve,
11439 int size)
11440 {
11441 char *note_name = "LINUX";
11442 return elfcore_write_note (abfd, buf, bufsiz,
11443 note_name, NT_ARM_SVE, aarch_sve, size);
11444 }
11445
11446 char *
11447 elfcore_write_register_note (bfd *abfd,
11448 char *buf,
11449 int *bufsiz,
11450 const char *section,
11451 const void *data,
11452 int size)
11453 {
11454 if (strcmp (section, ".reg2") == 0)
11455 return elfcore_write_prfpreg (abfd, buf, bufsiz, data, size);
11456 if (strcmp (section, ".reg-xfp") == 0)
11457 return elfcore_write_prxfpreg (abfd, buf, bufsiz, data, size);
11458 if (strcmp (section, ".reg-xstate") == 0)
11459 return elfcore_write_xstatereg (abfd, buf, bufsiz, data, size);
11460 if (strcmp (section, ".reg-ppc-vmx") == 0)
11461 return elfcore_write_ppc_vmx (abfd, buf, bufsiz, data, size);
11462 if (strcmp (section, ".reg-ppc-vsx") == 0)
11463 return elfcore_write_ppc_vsx (abfd, buf, bufsiz, data, size);
11464 if (strcmp (section, ".reg-ppc-tar") == 0)
11465 return elfcore_write_ppc_tar (abfd, buf, bufsiz, data, size);
11466 if (strcmp (section, ".reg-ppc-ppr") == 0)
11467 return elfcore_write_ppc_ppr (abfd, buf, bufsiz, data, size);
11468 if (strcmp (section, ".reg-ppc-dscr") == 0)
11469 return elfcore_write_ppc_dscr (abfd, buf, bufsiz, data, size);
11470 if (strcmp (section, ".reg-ppc-ebb") == 0)
11471 return elfcore_write_ppc_ebb (abfd, buf, bufsiz, data, size);
11472 if (strcmp (section, ".reg-ppc-pmu") == 0)
11473 return elfcore_write_ppc_pmu (abfd, buf, bufsiz, data, size);
11474 if (strcmp (section, ".reg-ppc-tm-cgpr") == 0)
11475 return elfcore_write_ppc_tm_cgpr (abfd, buf, bufsiz, data, size);
11476 if (strcmp (section, ".reg-ppc-tm-cfpr") == 0)
11477 return elfcore_write_ppc_tm_cfpr (abfd, buf, bufsiz, data, size);
11478 if (strcmp (section, ".reg-ppc-tm-cvmx") == 0)
11479 return elfcore_write_ppc_tm_cvmx (abfd, buf, bufsiz, data, size);
11480 if (strcmp (section, ".reg-ppc-tm-cvsx") == 0)
11481 return elfcore_write_ppc_tm_cvsx (abfd, buf, bufsiz, data, size);
11482 if (strcmp (section, ".reg-ppc-tm-spr") == 0)
11483 return elfcore_write_ppc_tm_spr (abfd, buf, bufsiz, data, size);
11484 if (strcmp (section, ".reg-ppc-tm-ctar") == 0)
11485 return elfcore_write_ppc_tm_ctar (abfd, buf, bufsiz, data, size);
11486 if (strcmp (section, ".reg-ppc-tm-cppr") == 0)
11487 return elfcore_write_ppc_tm_cppr (abfd, buf, bufsiz, data, size);
11488 if (strcmp (section, ".reg-ppc-tm-cdscr") == 0)
11489 return elfcore_write_ppc_tm_cdscr (abfd, buf, bufsiz, data, size);
11490 if (strcmp (section, ".reg-s390-high-gprs") == 0)
11491 return elfcore_write_s390_high_gprs (abfd, buf, bufsiz, data, size);
11492 if (strcmp (section, ".reg-s390-timer") == 0)
11493 return elfcore_write_s390_timer (abfd, buf, bufsiz, data, size);
11494 if (strcmp (section, ".reg-s390-todcmp") == 0)
11495 return elfcore_write_s390_todcmp (abfd, buf, bufsiz, data, size);
11496 if (strcmp (section, ".reg-s390-todpreg") == 0)
11497 return elfcore_write_s390_todpreg (abfd, buf, bufsiz, data, size);
11498 if (strcmp (section, ".reg-s390-ctrs") == 0)
11499 return elfcore_write_s390_ctrs (abfd, buf, bufsiz, data, size);
11500 if (strcmp (section, ".reg-s390-prefix") == 0)
11501 return elfcore_write_s390_prefix (abfd, buf, bufsiz, data, size);
11502 if (strcmp (section, ".reg-s390-last-break") == 0)
11503 return elfcore_write_s390_last_break (abfd, buf, bufsiz, data, size);
11504 if (strcmp (section, ".reg-s390-system-call") == 0)
11505 return elfcore_write_s390_system_call (abfd, buf, bufsiz, data, size);
11506 if (strcmp (section, ".reg-s390-tdb") == 0)
11507 return elfcore_write_s390_tdb (abfd, buf, bufsiz, data, size);
11508 if (strcmp (section, ".reg-s390-vxrs-low") == 0)
11509 return elfcore_write_s390_vxrs_low (abfd, buf, bufsiz, data, size);
11510 if (strcmp (section, ".reg-s390-vxrs-high") == 0)
11511 return elfcore_write_s390_vxrs_high (abfd, buf, bufsiz, data, size);
11512 if (strcmp (section, ".reg-s390-gs-cb") == 0)
11513 return elfcore_write_s390_gs_cb (abfd, buf, bufsiz, data, size);
11514 if (strcmp (section, ".reg-s390-gs-bc") == 0)
11515 return elfcore_write_s390_gs_bc (abfd, buf, bufsiz, data, size);
11516 if (strcmp (section, ".reg-arm-vfp") == 0)
11517 return elfcore_write_arm_vfp (abfd, buf, bufsiz, data, size);
11518 if (strcmp (section, ".reg-aarch-tls") == 0)
11519 return elfcore_write_aarch_tls (abfd, buf, bufsiz, data, size);
11520 if (strcmp (section, ".reg-aarch-hw-break") == 0)
11521 return elfcore_write_aarch_hw_break (abfd, buf, bufsiz, data, size);
11522 if (strcmp (section, ".reg-aarch-hw-watch") == 0)
11523 return elfcore_write_aarch_hw_watch (abfd, buf, bufsiz, data, size);
11524 if (strcmp (section, ".reg-aarch-sve") == 0)
11525 return elfcore_write_aarch_sve (abfd, buf, bufsiz, data, size);
11526 return NULL;
11527 }
11528
11529 static bfd_boolean
11530 elf_parse_notes (bfd *abfd, char *buf, size_t size, file_ptr offset,
11531 size_t align)
11532 {
11533 char *p;
11534
11535 /* NB: CORE PT_NOTE segments may have p_align values of 0 or 1.
11536 gABI specifies that PT_NOTE alignment should be aligned to 4
11537 bytes for 32-bit objects and to 8 bytes for 64-bit objects. If
11538 align is less than 4, we use 4 byte alignment. */
11539 if (align < 4)
11540 align = 4;
11541 if (align != 4 && align != 8)
11542 return FALSE;
11543
11544 p = buf;
11545 while (p < buf + size)
11546 {
11547 Elf_External_Note *xnp = (Elf_External_Note *) p;
11548 Elf_Internal_Note in;
11549
11550 if (offsetof (Elf_External_Note, name) > buf - p + size)
11551 return FALSE;
11552
11553 in.type = H_GET_32 (abfd, xnp->type);
11554
11555 in.namesz = H_GET_32 (abfd, xnp->namesz);
11556 in.namedata = xnp->name;
11557 if (in.namesz > buf - in.namedata + size)
11558 return FALSE;
11559
11560 in.descsz = H_GET_32 (abfd, xnp->descsz);
11561 in.descdata = p + ELF_NOTE_DESC_OFFSET (in.namesz, align);
11562 in.descpos = offset + (in.descdata - buf);
11563 if (in.descsz != 0
11564 && (in.descdata >= buf + size
11565 || in.descsz > buf - in.descdata + size))
11566 return FALSE;
11567
11568 switch (bfd_get_format (abfd))
11569 {
11570 default:
11571 return TRUE;
11572
11573 case bfd_core:
11574 {
11575 #define GROKER_ELEMENT(S,F) {S, sizeof (S) - 1, F}
11576 struct
11577 {
11578 const char * string;
11579 size_t len;
11580 bfd_boolean (* func)(bfd *, Elf_Internal_Note *);
11581 }
11582 grokers[] =
11583 {
11584 GROKER_ELEMENT ("", elfcore_grok_note),
11585 GROKER_ELEMENT ("FreeBSD", elfcore_grok_freebsd_note),
11586 GROKER_ELEMENT ("NetBSD-CORE", elfcore_grok_netbsd_note),
11587 GROKER_ELEMENT ( "OpenBSD", elfcore_grok_openbsd_note),
11588 GROKER_ELEMENT ("QNX", elfcore_grok_nto_note),
11589 GROKER_ELEMENT ("SPU/", elfcore_grok_spu_note)
11590 };
11591 #undef GROKER_ELEMENT
11592 int i;
11593
11594 for (i = ARRAY_SIZE (grokers); i--;)
11595 {
11596 if (in.namesz >= grokers[i].len
11597 && strncmp (in.namedata, grokers[i].string,
11598 grokers[i].len) == 0)
11599 {
11600 if (! grokers[i].func (abfd, & in))
11601 return FALSE;
11602 break;
11603 }
11604 }
11605 break;
11606 }
11607
11608 case bfd_object:
11609 if (in.namesz == sizeof "GNU" && strcmp (in.namedata, "GNU") == 0)
11610 {
11611 if (! elfobj_grok_gnu_note (abfd, &in))
11612 return FALSE;
11613 }
11614 else if (in.namesz == sizeof "stapsdt"
11615 && strcmp (in.namedata, "stapsdt") == 0)
11616 {
11617 if (! elfobj_grok_stapsdt_note (abfd, &in))
11618 return FALSE;
11619 }
11620 break;
11621 }
11622
11623 p += ELF_NOTE_NEXT_OFFSET (in.namesz, in.descsz, align);
11624 }
11625
11626 return TRUE;
11627 }
11628
11629 static bfd_boolean
11630 elf_read_notes (bfd *abfd, file_ptr offset, bfd_size_type size,
11631 size_t align)
11632 {
11633 char *buf;
11634
11635 if (size == 0 || (size + 1) == 0)
11636 return TRUE;
11637
11638 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
11639 return FALSE;
11640
11641 buf = (char *) bfd_malloc (size + 1);
11642 if (buf == NULL)
11643 return FALSE;
11644
11645 /* PR 17512: file: ec08f814
11646 0-termintate the buffer so that string searches will not overflow. */
11647 buf[size] = 0;
11648
11649 if (bfd_bread (buf, size, abfd) != size
11650 || !elf_parse_notes (abfd, buf, size, offset, align))
11651 {
11652 free (buf);
11653 return FALSE;
11654 }
11655
11656 free (buf);
11657 return TRUE;
11658 }
11659 \f
11660 /* Providing external access to the ELF program header table. */
11661
11662 /* Return an upper bound on the number of bytes required to store a
11663 copy of ABFD's program header table entries. Return -1 if an error
11664 occurs; bfd_get_error will return an appropriate code. */
11665
11666 long
11667 bfd_get_elf_phdr_upper_bound (bfd *abfd)
11668 {
11669 if (abfd->xvec->flavour != bfd_target_elf_flavour)
11670 {
11671 bfd_set_error (bfd_error_wrong_format);
11672 return -1;
11673 }
11674
11675 return elf_elfheader (abfd)->e_phnum * sizeof (Elf_Internal_Phdr);
11676 }
11677
11678 /* Copy ABFD's program header table entries to *PHDRS. The entries
11679 will be stored as an array of Elf_Internal_Phdr structures, as
11680 defined in include/elf/internal.h. To find out how large the
11681 buffer needs to be, call bfd_get_elf_phdr_upper_bound.
11682
11683 Return the number of program header table entries read, or -1 if an
11684 error occurs; bfd_get_error will return an appropriate code. */
11685
11686 int
11687 bfd_get_elf_phdrs (bfd *abfd, void *phdrs)
11688 {
11689 int num_phdrs;
11690
11691 if (abfd->xvec->flavour != bfd_target_elf_flavour)
11692 {
11693 bfd_set_error (bfd_error_wrong_format);
11694 return -1;
11695 }
11696
11697 num_phdrs = elf_elfheader (abfd)->e_phnum;
11698 if (num_phdrs != 0)
11699 memcpy (phdrs, elf_tdata (abfd)->phdr,
11700 num_phdrs * sizeof (Elf_Internal_Phdr));
11701
11702 return num_phdrs;
11703 }
11704
11705 enum elf_reloc_type_class
11706 _bfd_elf_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
11707 const asection *rel_sec ATTRIBUTE_UNUSED,
11708 const Elf_Internal_Rela *rela ATTRIBUTE_UNUSED)
11709 {
11710 return reloc_class_normal;
11711 }
11712
11713 /* For RELA architectures, return the relocation value for a
11714 relocation against a local symbol. */
11715
11716 bfd_vma
11717 _bfd_elf_rela_local_sym (bfd *abfd,
11718 Elf_Internal_Sym *sym,
11719 asection **psec,
11720 Elf_Internal_Rela *rel)
11721 {
11722 asection *sec = *psec;
11723 bfd_vma relocation;
11724
11725 relocation = (sec->output_section->vma
11726 + sec->output_offset
11727 + sym->st_value);
11728 if ((sec->flags & SEC_MERGE)
11729 && ELF_ST_TYPE (sym->st_info) == STT_SECTION
11730 && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
11731 {
11732 rel->r_addend =
11733 _bfd_merged_section_offset (abfd, psec,
11734 elf_section_data (sec)->sec_info,
11735 sym->st_value + rel->r_addend);
11736 if (sec != *psec)
11737 {
11738 /* If we have changed the section, and our original section is
11739 marked with SEC_EXCLUDE, it means that the original
11740 SEC_MERGE section has been completely subsumed in some
11741 other SEC_MERGE section. In this case, we need to leave
11742 some info around for --emit-relocs. */
11743 if ((sec->flags & SEC_EXCLUDE) != 0)
11744 sec->kept_section = *psec;
11745 sec = *psec;
11746 }
11747 rel->r_addend -= relocation;
11748 rel->r_addend += sec->output_section->vma + sec->output_offset;
11749 }
11750 return relocation;
11751 }
11752
11753 bfd_vma
11754 _bfd_elf_rel_local_sym (bfd *abfd,
11755 Elf_Internal_Sym *sym,
11756 asection **psec,
11757 bfd_vma addend)
11758 {
11759 asection *sec = *psec;
11760
11761 if (sec->sec_info_type != SEC_INFO_TYPE_MERGE)
11762 return sym->st_value + addend;
11763
11764 return _bfd_merged_section_offset (abfd, psec,
11765 elf_section_data (sec)->sec_info,
11766 sym->st_value + addend);
11767 }
11768
11769 /* Adjust an address within a section. Given OFFSET within SEC, return
11770 the new offset within the section, based upon changes made to the
11771 section. Returns -1 if the offset is now invalid.
11772 The offset (in abnd out) is in target sized bytes, however big a
11773 byte may be. */
11774
11775 bfd_vma
11776 _bfd_elf_section_offset (bfd *abfd,
11777 struct bfd_link_info *info,
11778 asection *sec,
11779 bfd_vma offset)
11780 {
11781 switch (sec->sec_info_type)
11782 {
11783 case SEC_INFO_TYPE_STABS:
11784 return _bfd_stab_section_offset (sec, elf_section_data (sec)->sec_info,
11785 offset);
11786 case SEC_INFO_TYPE_EH_FRAME:
11787 return _bfd_elf_eh_frame_section_offset (abfd, info, sec, offset);
11788
11789 default:
11790 if ((sec->flags & SEC_ELF_REVERSE_COPY) != 0)
11791 {
11792 /* Reverse the offset. */
11793 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11794 bfd_size_type address_size = bed->s->arch_size / 8;
11795
11796 /* address_size and sec->size are in octets. Convert
11797 to bytes before subtracting the original offset. */
11798 offset = (sec->size - address_size) / bfd_octets_per_byte (abfd) - offset;
11799 }
11800 return offset;
11801 }
11802 }
11803 \f
11804 /* Create a new BFD as if by bfd_openr. Rather than opening a file,
11805 reconstruct an ELF file by reading the segments out of remote memory
11806 based on the ELF file header at EHDR_VMA and the ELF program headers it
11807 points to. If not null, *LOADBASEP is filled in with the difference
11808 between the VMAs from which the segments were read, and the VMAs the
11809 file headers (and hence BFD's idea of each section's VMA) put them at.
11810
11811 The function TARGET_READ_MEMORY is called to copy LEN bytes from the
11812 remote memory at target address VMA into the local buffer at MYADDR; it
11813 should return zero on success or an `errno' code on failure. TEMPL must
11814 be a BFD for an ELF target with the word size and byte order found in
11815 the remote memory. */
11816
11817 bfd *
11818 bfd_elf_bfd_from_remote_memory
11819 (bfd *templ,
11820 bfd_vma ehdr_vma,
11821 bfd_size_type size,
11822 bfd_vma *loadbasep,
11823 int (*target_read_memory) (bfd_vma, bfd_byte *, bfd_size_type))
11824 {
11825 return (*get_elf_backend_data (templ)->elf_backend_bfd_from_remote_memory)
11826 (templ, ehdr_vma, size, loadbasep, target_read_memory);
11827 }
11828 \f
11829 long
11830 _bfd_elf_get_synthetic_symtab (bfd *abfd,
11831 long symcount ATTRIBUTE_UNUSED,
11832 asymbol **syms ATTRIBUTE_UNUSED,
11833 long dynsymcount,
11834 asymbol **dynsyms,
11835 asymbol **ret)
11836 {
11837 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11838 asection *relplt;
11839 asymbol *s;
11840 const char *relplt_name;
11841 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
11842 arelent *p;
11843 long count, i, n;
11844 size_t size;
11845 Elf_Internal_Shdr *hdr;
11846 char *names;
11847 asection *plt;
11848
11849 *ret = NULL;
11850
11851 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0)
11852 return 0;
11853
11854 if (dynsymcount <= 0)
11855 return 0;
11856
11857 if (!bed->plt_sym_val)
11858 return 0;
11859
11860 relplt_name = bed->relplt_name;
11861 if (relplt_name == NULL)
11862 relplt_name = bed->rela_plts_and_copies_p ? ".rela.plt" : ".rel.plt";
11863 relplt = bfd_get_section_by_name (abfd, relplt_name);
11864 if (relplt == NULL)
11865 return 0;
11866
11867 hdr = &elf_section_data (relplt)->this_hdr;
11868 if (hdr->sh_link != elf_dynsymtab (abfd)
11869 || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA))
11870 return 0;
11871
11872 plt = bfd_get_section_by_name (abfd, ".plt");
11873 if (plt == NULL)
11874 return 0;
11875
11876 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
11877 if (! (*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
11878 return -1;
11879
11880 count = relplt->size / hdr->sh_entsize;
11881 size = count * sizeof (asymbol);
11882 p = relplt->relocation;
11883 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
11884 {
11885 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
11886 if (p->addend != 0)
11887 {
11888 #ifdef BFD64
11889 size += sizeof ("+0x") - 1 + 8 + 8 * (bed->s->elfclass == ELFCLASS64);
11890 #else
11891 size += sizeof ("+0x") - 1 + 8;
11892 #endif
11893 }
11894 }
11895
11896 s = *ret = (asymbol *) bfd_malloc (size);
11897 if (s == NULL)
11898 return -1;
11899
11900 names = (char *) (s + count);
11901 p = relplt->relocation;
11902 n = 0;
11903 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
11904 {
11905 size_t len;
11906 bfd_vma addr;
11907
11908 addr = bed->plt_sym_val (i, plt, p);
11909 if (addr == (bfd_vma) -1)
11910 continue;
11911
11912 *s = **p->sym_ptr_ptr;
11913 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
11914 we are defining a symbol, ensure one of them is set. */
11915 if ((s->flags & BSF_LOCAL) == 0)
11916 s->flags |= BSF_GLOBAL;
11917 s->flags |= BSF_SYNTHETIC;
11918 s->section = plt;
11919 s->value = addr - plt->vma;
11920 s->name = names;
11921 s->udata.p = NULL;
11922 len = strlen ((*p->sym_ptr_ptr)->name);
11923 memcpy (names, (*p->sym_ptr_ptr)->name, len);
11924 names += len;
11925 if (p->addend != 0)
11926 {
11927 char buf[30], *a;
11928
11929 memcpy (names, "+0x", sizeof ("+0x") - 1);
11930 names += sizeof ("+0x") - 1;
11931 bfd_sprintf_vma (abfd, buf, p->addend);
11932 for (a = buf; *a == '0'; ++a)
11933 ;
11934 len = strlen (a);
11935 memcpy (names, a, len);
11936 names += len;
11937 }
11938 memcpy (names, "@plt", sizeof ("@plt"));
11939 names += sizeof ("@plt");
11940 ++s, ++n;
11941 }
11942
11943 return n;
11944 }
11945
11946 /* It is only used by x86-64 so far.
11947 ??? This repeats *COM* id of zero. sec->id is supposed to be unique,
11948 but current usage would allow all of _bfd_std_section to be zero. */
11949 static const asymbol lcomm_sym
11950 = GLOBAL_SYM_INIT ("LARGE_COMMON", &_bfd_elf_large_com_section);
11951 asection _bfd_elf_large_com_section
11952 = BFD_FAKE_SECTION (_bfd_elf_large_com_section, &lcomm_sym,
11953 "LARGE_COMMON", 0, SEC_IS_COMMON);
11954
11955 void
11956 _bfd_elf_post_process_headers (bfd * abfd,
11957 struct bfd_link_info * link_info ATTRIBUTE_UNUSED)
11958 {
11959 Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */
11960
11961 i_ehdrp = elf_elfheader (abfd);
11962
11963 i_ehdrp->e_ident[EI_OSABI] = get_elf_backend_data (abfd)->elf_osabi;
11964
11965 /* To make things simpler for the loader on Linux systems we set the
11966 osabi field to ELFOSABI_GNU if the binary contains symbols of
11967 the STT_GNU_IFUNC type or STB_GNU_UNIQUE binding. */
11968 if (i_ehdrp->e_ident[EI_OSABI] == ELFOSABI_NONE
11969 && elf_tdata (abfd)->has_gnu_symbols)
11970 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_GNU;
11971 }
11972
11973
11974 /* Return TRUE for ELF symbol types that represent functions.
11975 This is the default version of this function, which is sufficient for
11976 most targets. It returns true if TYPE is STT_FUNC or STT_GNU_IFUNC. */
11977
11978 bfd_boolean
11979 _bfd_elf_is_function_type (unsigned int type)
11980 {
11981 return (type == STT_FUNC
11982 || type == STT_GNU_IFUNC);
11983 }
11984
11985 /* If the ELF symbol SYM might be a function in SEC, return the
11986 function size and set *CODE_OFF to the function's entry point,
11987 otherwise return zero. */
11988
11989 bfd_size_type
11990 _bfd_elf_maybe_function_sym (const asymbol *sym, asection *sec,
11991 bfd_vma *code_off)
11992 {
11993 bfd_size_type size;
11994
11995 if ((sym->flags & (BSF_SECTION_SYM | BSF_FILE | BSF_OBJECT
11996 | BSF_THREAD_LOCAL | BSF_RELC | BSF_SRELC)) != 0
11997 || sym->section != sec)
11998 return 0;
11999
12000 *code_off = sym->value;
12001 size = 0;
12002 if (!(sym->flags & BSF_SYNTHETIC))
12003 size = ((elf_symbol_type *) sym)->internal_elf_sym.st_size;
12004 if (size == 0)
12005 size = 1;
12006 return size;
12007 }
This page took 0.579195 seconds and 4 git commands to generate.