Unbreak DJGPP build of GDB.
[deliverable/binutils-gdb.git] / bfd / elf.c
1 /* ELF executable support for BFD.
2
3 Copyright (C) 1993-2015 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
21
22
23 /*
24 SECTION
25 ELF backends
26
27 BFD support for ELF formats is being worked on.
28 Currently, the best supported back ends are for sparc and i386
29 (running svr4 or Solaris 2).
30
31 Documentation of the internals of the support code still needs
32 to be written. The code is changing quickly enough that we
33 haven't bothered yet. */
34
35 /* For sparc64-cross-sparc32. */
36 #define _SYSCALL32
37 #include "sysdep.h"
38 #include "bfd.h"
39 #include "bfdlink.h"
40 #include "libbfd.h"
41 #define ARCH_SIZE 0
42 #include "elf-bfd.h"
43 #include "libiberty.h"
44 #include "safe-ctype.h"
45 #include "elf-linux-psinfo.h"
46
47 #ifdef CORE_HEADER
48 #include CORE_HEADER
49 #endif
50
51 static int elf_sort_sections (const void *, const void *);
52 static bfd_boolean assign_file_positions_except_relocs (bfd *, struct bfd_link_info *);
53 static bfd_boolean prep_headers (bfd *);
54 static bfd_boolean swap_out_syms (bfd *, struct bfd_strtab_hash **, int) ;
55 static bfd_boolean elf_read_notes (bfd *, file_ptr, bfd_size_type) ;
56 static bfd_boolean elf_parse_notes (bfd *abfd, char *buf, size_t size,
57 file_ptr offset);
58
59 /* Swap version information in and out. The version information is
60 currently size independent. If that ever changes, this code will
61 need to move into elfcode.h. */
62
63 /* Swap in a Verdef structure. */
64
65 void
66 _bfd_elf_swap_verdef_in (bfd *abfd,
67 const Elf_External_Verdef *src,
68 Elf_Internal_Verdef *dst)
69 {
70 dst->vd_version = H_GET_16 (abfd, src->vd_version);
71 dst->vd_flags = H_GET_16 (abfd, src->vd_flags);
72 dst->vd_ndx = H_GET_16 (abfd, src->vd_ndx);
73 dst->vd_cnt = H_GET_16 (abfd, src->vd_cnt);
74 dst->vd_hash = H_GET_32 (abfd, src->vd_hash);
75 dst->vd_aux = H_GET_32 (abfd, src->vd_aux);
76 dst->vd_next = H_GET_32 (abfd, src->vd_next);
77 }
78
79 /* Swap out a Verdef structure. */
80
81 void
82 _bfd_elf_swap_verdef_out (bfd *abfd,
83 const Elf_Internal_Verdef *src,
84 Elf_External_Verdef *dst)
85 {
86 H_PUT_16 (abfd, src->vd_version, dst->vd_version);
87 H_PUT_16 (abfd, src->vd_flags, dst->vd_flags);
88 H_PUT_16 (abfd, src->vd_ndx, dst->vd_ndx);
89 H_PUT_16 (abfd, src->vd_cnt, dst->vd_cnt);
90 H_PUT_32 (abfd, src->vd_hash, dst->vd_hash);
91 H_PUT_32 (abfd, src->vd_aux, dst->vd_aux);
92 H_PUT_32 (abfd, src->vd_next, dst->vd_next);
93 }
94
95 /* Swap in a Verdaux structure. */
96
97 void
98 _bfd_elf_swap_verdaux_in (bfd *abfd,
99 const Elf_External_Verdaux *src,
100 Elf_Internal_Verdaux *dst)
101 {
102 dst->vda_name = H_GET_32 (abfd, src->vda_name);
103 dst->vda_next = H_GET_32 (abfd, src->vda_next);
104 }
105
106 /* Swap out a Verdaux structure. */
107
108 void
109 _bfd_elf_swap_verdaux_out (bfd *abfd,
110 const Elf_Internal_Verdaux *src,
111 Elf_External_Verdaux *dst)
112 {
113 H_PUT_32 (abfd, src->vda_name, dst->vda_name);
114 H_PUT_32 (abfd, src->vda_next, dst->vda_next);
115 }
116
117 /* Swap in a Verneed structure. */
118
119 void
120 _bfd_elf_swap_verneed_in (bfd *abfd,
121 const Elf_External_Verneed *src,
122 Elf_Internal_Verneed *dst)
123 {
124 dst->vn_version = H_GET_16 (abfd, src->vn_version);
125 dst->vn_cnt = H_GET_16 (abfd, src->vn_cnt);
126 dst->vn_file = H_GET_32 (abfd, src->vn_file);
127 dst->vn_aux = H_GET_32 (abfd, src->vn_aux);
128 dst->vn_next = H_GET_32 (abfd, src->vn_next);
129 }
130
131 /* Swap out a Verneed structure. */
132
133 void
134 _bfd_elf_swap_verneed_out (bfd *abfd,
135 const Elf_Internal_Verneed *src,
136 Elf_External_Verneed *dst)
137 {
138 H_PUT_16 (abfd, src->vn_version, dst->vn_version);
139 H_PUT_16 (abfd, src->vn_cnt, dst->vn_cnt);
140 H_PUT_32 (abfd, src->vn_file, dst->vn_file);
141 H_PUT_32 (abfd, src->vn_aux, dst->vn_aux);
142 H_PUT_32 (abfd, src->vn_next, dst->vn_next);
143 }
144
145 /* Swap in a Vernaux structure. */
146
147 void
148 _bfd_elf_swap_vernaux_in (bfd *abfd,
149 const Elf_External_Vernaux *src,
150 Elf_Internal_Vernaux *dst)
151 {
152 dst->vna_hash = H_GET_32 (abfd, src->vna_hash);
153 dst->vna_flags = H_GET_16 (abfd, src->vna_flags);
154 dst->vna_other = H_GET_16 (abfd, src->vna_other);
155 dst->vna_name = H_GET_32 (abfd, src->vna_name);
156 dst->vna_next = H_GET_32 (abfd, src->vna_next);
157 }
158
159 /* Swap out a Vernaux structure. */
160
161 void
162 _bfd_elf_swap_vernaux_out (bfd *abfd,
163 const Elf_Internal_Vernaux *src,
164 Elf_External_Vernaux *dst)
165 {
166 H_PUT_32 (abfd, src->vna_hash, dst->vna_hash);
167 H_PUT_16 (abfd, src->vna_flags, dst->vna_flags);
168 H_PUT_16 (abfd, src->vna_other, dst->vna_other);
169 H_PUT_32 (abfd, src->vna_name, dst->vna_name);
170 H_PUT_32 (abfd, src->vna_next, dst->vna_next);
171 }
172
173 /* Swap in a Versym structure. */
174
175 void
176 _bfd_elf_swap_versym_in (bfd *abfd,
177 const Elf_External_Versym *src,
178 Elf_Internal_Versym *dst)
179 {
180 dst->vs_vers = H_GET_16 (abfd, src->vs_vers);
181 }
182
183 /* Swap out a Versym structure. */
184
185 void
186 _bfd_elf_swap_versym_out (bfd *abfd,
187 const Elf_Internal_Versym *src,
188 Elf_External_Versym *dst)
189 {
190 H_PUT_16 (abfd, src->vs_vers, dst->vs_vers);
191 }
192
193 /* Standard ELF hash function. Do not change this function; you will
194 cause invalid hash tables to be generated. */
195
196 unsigned long
197 bfd_elf_hash (const char *namearg)
198 {
199 const unsigned char *name = (const unsigned char *) namearg;
200 unsigned long h = 0;
201 unsigned long g;
202 int ch;
203
204 while ((ch = *name++) != '\0')
205 {
206 h = (h << 4) + ch;
207 if ((g = (h & 0xf0000000)) != 0)
208 {
209 h ^= g >> 24;
210 /* The ELF ABI says `h &= ~g', but this is equivalent in
211 this case and on some machines one insn instead of two. */
212 h ^= g;
213 }
214 }
215 return h & 0xffffffff;
216 }
217
218 /* DT_GNU_HASH hash function. Do not change this function; you will
219 cause invalid hash tables to be generated. */
220
221 unsigned long
222 bfd_elf_gnu_hash (const char *namearg)
223 {
224 const unsigned char *name = (const unsigned char *) namearg;
225 unsigned long h = 5381;
226 unsigned char ch;
227
228 while ((ch = *name++) != '\0')
229 h = (h << 5) + h + ch;
230 return h & 0xffffffff;
231 }
232
233 /* Create a tdata field OBJECT_SIZE bytes in length, zeroed out and with
234 the object_id field of an elf_obj_tdata field set to OBJECT_ID. */
235 bfd_boolean
236 bfd_elf_allocate_object (bfd *abfd,
237 size_t object_size,
238 enum elf_target_id object_id)
239 {
240 BFD_ASSERT (object_size >= sizeof (struct elf_obj_tdata));
241 abfd->tdata.any = bfd_zalloc (abfd, object_size);
242 if (abfd->tdata.any == NULL)
243 return FALSE;
244
245 elf_object_id (abfd) = object_id;
246 if (abfd->direction != read_direction)
247 {
248 struct output_elf_obj_tdata *o = bfd_zalloc (abfd, sizeof *o);
249 if (o == NULL)
250 return FALSE;
251 elf_tdata (abfd)->o = o;
252 elf_program_header_size (abfd) = (bfd_size_type) -1;
253 }
254 return TRUE;
255 }
256
257
258 bfd_boolean
259 bfd_elf_make_object (bfd *abfd)
260 {
261 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
262 return bfd_elf_allocate_object (abfd, sizeof (struct elf_obj_tdata),
263 bed->target_id);
264 }
265
266 bfd_boolean
267 bfd_elf_mkcorefile (bfd *abfd)
268 {
269 /* I think this can be done just like an object file. */
270 if (!abfd->xvec->_bfd_set_format[(int) bfd_object] (abfd))
271 return FALSE;
272 elf_tdata (abfd)->core = bfd_zalloc (abfd, sizeof (*elf_tdata (abfd)->core));
273 return elf_tdata (abfd)->core != NULL;
274 }
275
276 static char *
277 bfd_elf_get_str_section (bfd *abfd, unsigned int shindex)
278 {
279 Elf_Internal_Shdr **i_shdrp;
280 bfd_byte *shstrtab = NULL;
281 file_ptr offset;
282 bfd_size_type shstrtabsize;
283
284 i_shdrp = elf_elfsections (abfd);
285 if (i_shdrp == 0
286 || shindex >= elf_numsections (abfd)
287 || i_shdrp[shindex] == 0)
288 return NULL;
289
290 shstrtab = i_shdrp[shindex]->contents;
291 if (shstrtab == NULL)
292 {
293 /* No cached one, attempt to read, and cache what we read. */
294 offset = i_shdrp[shindex]->sh_offset;
295 shstrtabsize = i_shdrp[shindex]->sh_size;
296
297 /* Allocate and clear an extra byte at the end, to prevent crashes
298 in case the string table is not terminated. */
299 if (shstrtabsize + 1 <= 1
300 || bfd_seek (abfd, offset, SEEK_SET) != 0
301 || (shstrtab = (bfd_byte *) bfd_alloc (abfd, shstrtabsize + 1)) == NULL)
302 shstrtab = NULL;
303 else if (bfd_bread (shstrtab, shstrtabsize, abfd) != shstrtabsize)
304 {
305 if (bfd_get_error () != bfd_error_system_call)
306 bfd_set_error (bfd_error_file_truncated);
307 bfd_release (abfd, shstrtab);
308 shstrtab = NULL;
309 /* Once we've failed to read it, make sure we don't keep
310 trying. Otherwise, we'll keep allocating space for
311 the string table over and over. */
312 i_shdrp[shindex]->sh_size = 0;
313 }
314 else
315 shstrtab[shstrtabsize] = '\0';
316 i_shdrp[shindex]->contents = shstrtab;
317 }
318 return (char *) shstrtab;
319 }
320
321 char *
322 bfd_elf_string_from_elf_section (bfd *abfd,
323 unsigned int shindex,
324 unsigned int strindex)
325 {
326 Elf_Internal_Shdr *hdr;
327
328 if (strindex == 0)
329 return "";
330
331 if (elf_elfsections (abfd) == NULL || shindex >= elf_numsections (abfd))
332 return NULL;
333
334 hdr = elf_elfsections (abfd)[shindex];
335
336 if (hdr->contents == NULL)
337 {
338 if (hdr->sh_type != SHT_STRTAB && hdr->sh_type < SHT_LOOS)
339 {
340 /* PR 17512: file: f057ec89. */
341 _bfd_error_handler (_("%B: attempt to load strings from a non-string section (number %d)"),
342 abfd, shindex);
343 return NULL;
344 }
345
346 if (bfd_elf_get_str_section (abfd, shindex) == NULL)
347 return NULL;
348 }
349
350 if (strindex >= hdr->sh_size)
351 {
352 unsigned int shstrndx = elf_elfheader(abfd)->e_shstrndx;
353 (*_bfd_error_handler)
354 (_("%B: invalid string offset %u >= %lu for section `%s'"),
355 abfd, strindex, (unsigned long) hdr->sh_size,
356 (shindex == shstrndx && strindex == hdr->sh_name
357 ? ".shstrtab"
358 : bfd_elf_string_from_elf_section (abfd, shstrndx, hdr->sh_name)));
359 return NULL;
360 }
361
362 return ((char *) hdr->contents) + strindex;
363 }
364
365 /* Read and convert symbols to internal format.
366 SYMCOUNT specifies the number of symbols to read, starting from
367 symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF
368 are non-NULL, they are used to store the internal symbols, external
369 symbols, and symbol section index extensions, respectively.
370 Returns a pointer to the internal symbol buffer (malloced if necessary)
371 or NULL if there were no symbols or some kind of problem. */
372
373 Elf_Internal_Sym *
374 bfd_elf_get_elf_syms (bfd *ibfd,
375 Elf_Internal_Shdr *symtab_hdr,
376 size_t symcount,
377 size_t symoffset,
378 Elf_Internal_Sym *intsym_buf,
379 void *extsym_buf,
380 Elf_External_Sym_Shndx *extshndx_buf)
381 {
382 Elf_Internal_Shdr *shndx_hdr;
383 void *alloc_ext;
384 const bfd_byte *esym;
385 Elf_External_Sym_Shndx *alloc_extshndx;
386 Elf_External_Sym_Shndx *shndx;
387 Elf_Internal_Sym *alloc_intsym;
388 Elf_Internal_Sym *isym;
389 Elf_Internal_Sym *isymend;
390 const struct elf_backend_data *bed;
391 size_t extsym_size;
392 bfd_size_type amt;
393 file_ptr pos;
394
395 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
396 abort ();
397
398 if (symcount == 0)
399 return intsym_buf;
400
401 /* Normal syms might have section extension entries. */
402 shndx_hdr = NULL;
403 if (symtab_hdr == &elf_tdata (ibfd)->symtab_hdr)
404 shndx_hdr = &elf_tdata (ibfd)->symtab_shndx_hdr;
405
406 /* Read the symbols. */
407 alloc_ext = NULL;
408 alloc_extshndx = NULL;
409 alloc_intsym = NULL;
410 bed = get_elf_backend_data (ibfd);
411 extsym_size = bed->s->sizeof_sym;
412 amt = symcount * extsym_size;
413 pos = symtab_hdr->sh_offset + symoffset * extsym_size;
414 if (extsym_buf == NULL)
415 {
416 alloc_ext = bfd_malloc2 (symcount, extsym_size);
417 extsym_buf = alloc_ext;
418 }
419 if (extsym_buf == NULL
420 || bfd_seek (ibfd, pos, SEEK_SET) != 0
421 || bfd_bread (extsym_buf, amt, ibfd) != amt)
422 {
423 intsym_buf = NULL;
424 goto out;
425 }
426
427 if (shndx_hdr == NULL || shndx_hdr->sh_size == 0)
428 extshndx_buf = NULL;
429 else
430 {
431 amt = symcount * sizeof (Elf_External_Sym_Shndx);
432 pos = shndx_hdr->sh_offset + symoffset * sizeof (Elf_External_Sym_Shndx);
433 if (extshndx_buf == NULL)
434 {
435 alloc_extshndx = (Elf_External_Sym_Shndx *)
436 bfd_malloc2 (symcount, sizeof (Elf_External_Sym_Shndx));
437 extshndx_buf = alloc_extshndx;
438 }
439 if (extshndx_buf == NULL
440 || bfd_seek (ibfd, pos, SEEK_SET) != 0
441 || bfd_bread (extshndx_buf, amt, ibfd) != amt)
442 {
443 intsym_buf = NULL;
444 goto out;
445 }
446 }
447
448 if (intsym_buf == NULL)
449 {
450 alloc_intsym = (Elf_Internal_Sym *)
451 bfd_malloc2 (symcount, sizeof (Elf_Internal_Sym));
452 intsym_buf = alloc_intsym;
453 if (intsym_buf == NULL)
454 goto out;
455 }
456
457 /* Convert the symbols to internal form. */
458 isymend = intsym_buf + symcount;
459 for (esym = (const bfd_byte *) extsym_buf, isym = intsym_buf,
460 shndx = extshndx_buf;
461 isym < isymend;
462 esym += extsym_size, isym++, shndx = shndx != NULL ? shndx + 1 : NULL)
463 if (!(*bed->s->swap_symbol_in) (ibfd, esym, shndx, isym))
464 {
465 symoffset += (esym - (bfd_byte *) extsym_buf) / extsym_size;
466 (*_bfd_error_handler) (_("%B symbol number %lu references "
467 "nonexistent SHT_SYMTAB_SHNDX section"),
468 ibfd, (unsigned long) symoffset);
469 if (alloc_intsym != NULL)
470 free (alloc_intsym);
471 intsym_buf = NULL;
472 goto out;
473 }
474
475 out:
476 if (alloc_ext != NULL)
477 free (alloc_ext);
478 if (alloc_extshndx != NULL)
479 free (alloc_extshndx);
480
481 return intsym_buf;
482 }
483
484 /* Look up a symbol name. */
485 const char *
486 bfd_elf_sym_name (bfd *abfd,
487 Elf_Internal_Shdr *symtab_hdr,
488 Elf_Internal_Sym *isym,
489 asection *sym_sec)
490 {
491 const char *name;
492 unsigned int iname = isym->st_name;
493 unsigned int shindex = symtab_hdr->sh_link;
494
495 if (iname == 0 && ELF_ST_TYPE (isym->st_info) == STT_SECTION
496 /* Check for a bogus st_shndx to avoid crashing. */
497 && isym->st_shndx < elf_numsections (abfd))
498 {
499 iname = elf_elfsections (abfd)[isym->st_shndx]->sh_name;
500 shindex = elf_elfheader (abfd)->e_shstrndx;
501 }
502
503 name = bfd_elf_string_from_elf_section (abfd, shindex, iname);
504 if (name == NULL)
505 name = "(null)";
506 else if (sym_sec && *name == '\0')
507 name = bfd_section_name (abfd, sym_sec);
508
509 return name;
510 }
511
512 /* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
513 sections. The first element is the flags, the rest are section
514 pointers. */
515
516 typedef union elf_internal_group {
517 Elf_Internal_Shdr *shdr;
518 unsigned int flags;
519 } Elf_Internal_Group;
520
521 /* Return the name of the group signature symbol. Why isn't the
522 signature just a string? */
523
524 static const char *
525 group_signature (bfd *abfd, Elf_Internal_Shdr *ghdr)
526 {
527 Elf_Internal_Shdr *hdr;
528 unsigned char esym[sizeof (Elf64_External_Sym)];
529 Elf_External_Sym_Shndx eshndx;
530 Elf_Internal_Sym isym;
531
532 /* First we need to ensure the symbol table is available. Make sure
533 that it is a symbol table section. */
534 if (ghdr->sh_link >= elf_numsections (abfd))
535 return NULL;
536 hdr = elf_elfsections (abfd) [ghdr->sh_link];
537 if (hdr->sh_type != SHT_SYMTAB
538 || ! bfd_section_from_shdr (abfd, ghdr->sh_link))
539 return NULL;
540
541 /* Go read the symbol. */
542 hdr = &elf_tdata (abfd)->symtab_hdr;
543 if (bfd_elf_get_elf_syms (abfd, hdr, 1, ghdr->sh_info,
544 &isym, esym, &eshndx) == NULL)
545 return NULL;
546
547 return bfd_elf_sym_name (abfd, hdr, &isym, NULL);
548 }
549
550 /* Set next_in_group list pointer, and group name for NEWSECT. */
551
552 static bfd_boolean
553 setup_group (bfd *abfd, Elf_Internal_Shdr *hdr, asection *newsect)
554 {
555 unsigned int num_group = elf_tdata (abfd)->num_group;
556
557 /* If num_group is zero, read in all SHT_GROUP sections. The count
558 is set to -1 if there are no SHT_GROUP sections. */
559 if (num_group == 0)
560 {
561 unsigned int i, shnum;
562
563 /* First count the number of groups. If we have a SHT_GROUP
564 section with just a flag word (ie. sh_size is 4), ignore it. */
565 shnum = elf_numsections (abfd);
566 num_group = 0;
567
568 #define IS_VALID_GROUP_SECTION_HEADER(shdr, minsize) \
569 ( (shdr)->sh_type == SHT_GROUP \
570 && (shdr)->sh_size >= minsize \
571 && (shdr)->sh_entsize == GRP_ENTRY_SIZE \
572 && ((shdr)->sh_size % GRP_ENTRY_SIZE) == 0)
573
574 for (i = 0; i < shnum; i++)
575 {
576 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
577
578 if (IS_VALID_GROUP_SECTION_HEADER (shdr, 2 * GRP_ENTRY_SIZE))
579 num_group += 1;
580 }
581
582 if (num_group == 0)
583 {
584 num_group = (unsigned) -1;
585 elf_tdata (abfd)->num_group = num_group;
586 }
587 else
588 {
589 /* We keep a list of elf section headers for group sections,
590 so we can find them quickly. */
591 bfd_size_type amt;
592
593 elf_tdata (abfd)->num_group = num_group;
594 elf_tdata (abfd)->group_sect_ptr = (Elf_Internal_Shdr **)
595 bfd_alloc2 (abfd, num_group, sizeof (Elf_Internal_Shdr *));
596 if (elf_tdata (abfd)->group_sect_ptr == NULL)
597 return FALSE;
598
599 num_group = 0;
600 for (i = 0; i < shnum; i++)
601 {
602 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
603
604 if (IS_VALID_GROUP_SECTION_HEADER (shdr, 2 * GRP_ENTRY_SIZE))
605 {
606 unsigned char *src;
607 Elf_Internal_Group *dest;
608
609 /* Add to list of sections. */
610 elf_tdata (abfd)->group_sect_ptr[num_group] = shdr;
611 num_group += 1;
612
613 /* Read the raw contents. */
614 BFD_ASSERT (sizeof (*dest) >= 4);
615 amt = shdr->sh_size * sizeof (*dest) / 4;
616 shdr->contents = (unsigned char *)
617 bfd_alloc2 (abfd, shdr->sh_size, sizeof (*dest) / 4);
618 /* PR binutils/4110: Handle corrupt group headers. */
619 if (shdr->contents == NULL)
620 {
621 _bfd_error_handler
622 (_("%B: corrupt size field in group section header: 0x%lx"), abfd, shdr->sh_size);
623 bfd_set_error (bfd_error_bad_value);
624 -- num_group;
625 continue;
626 }
627
628 memset (shdr->contents, 0, amt);
629
630 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0
631 || (bfd_bread (shdr->contents, shdr->sh_size, abfd)
632 != shdr->sh_size))
633 {
634 _bfd_error_handler
635 (_("%B: invalid size field in group section header: 0x%lx"), abfd, shdr->sh_size);
636 bfd_set_error (bfd_error_bad_value);
637 -- num_group;
638 /* PR 17510: If the group contents are even partially
639 corrupt, do not allow any of the contents to be used. */
640 memset (shdr->contents, 0, amt);
641 continue;
642 }
643
644 /* Translate raw contents, a flag word followed by an
645 array of elf section indices all in target byte order,
646 to the flag word followed by an array of elf section
647 pointers. */
648 src = shdr->contents + shdr->sh_size;
649 dest = (Elf_Internal_Group *) (shdr->contents + amt);
650
651 while (1)
652 {
653 unsigned int idx;
654
655 src -= 4;
656 --dest;
657 idx = H_GET_32 (abfd, src);
658 if (src == shdr->contents)
659 {
660 dest->flags = idx;
661 if (shdr->bfd_section != NULL && (idx & GRP_COMDAT))
662 shdr->bfd_section->flags
663 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
664 break;
665 }
666 if (idx >= shnum)
667 {
668 ((*_bfd_error_handler)
669 (_("%B: invalid SHT_GROUP entry"), abfd));
670 idx = 0;
671 }
672 dest->shdr = elf_elfsections (abfd)[idx];
673 }
674 }
675 }
676
677 /* PR 17510: Corrupt binaries might contain invalid groups. */
678 if (num_group != (unsigned) elf_tdata (abfd)->num_group)
679 {
680 elf_tdata (abfd)->num_group = num_group;
681
682 /* If all groups are invalid then fail. */
683 if (num_group == 0)
684 {
685 elf_tdata (abfd)->group_sect_ptr = NULL;
686 elf_tdata (abfd)->num_group = num_group = -1;
687 (*_bfd_error_handler) (_("%B: no valid group sections found"), abfd);
688 bfd_set_error (bfd_error_bad_value);
689 }
690 }
691 }
692 }
693
694 if (num_group != (unsigned) -1)
695 {
696 unsigned int i;
697
698 for (i = 0; i < num_group; i++)
699 {
700 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
701 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
702 unsigned int n_elt = shdr->sh_size / 4;
703
704 /* Look through this group's sections to see if current
705 section is a member. */
706 while (--n_elt != 0)
707 if ((++idx)->shdr == hdr)
708 {
709 asection *s = NULL;
710
711 /* We are a member of this group. Go looking through
712 other members to see if any others are linked via
713 next_in_group. */
714 idx = (Elf_Internal_Group *) shdr->contents;
715 n_elt = shdr->sh_size / 4;
716 while (--n_elt != 0)
717 if ((s = (++idx)->shdr->bfd_section) != NULL
718 && elf_next_in_group (s) != NULL)
719 break;
720 if (n_elt != 0)
721 {
722 /* Snarf the group name from other member, and
723 insert current section in circular list. */
724 elf_group_name (newsect) = elf_group_name (s);
725 elf_next_in_group (newsect) = elf_next_in_group (s);
726 elf_next_in_group (s) = newsect;
727 }
728 else
729 {
730 const char *gname;
731
732 gname = group_signature (abfd, shdr);
733 if (gname == NULL)
734 return FALSE;
735 elf_group_name (newsect) = gname;
736
737 /* Start a circular list with one element. */
738 elf_next_in_group (newsect) = newsect;
739 }
740
741 /* If the group section has been created, point to the
742 new member. */
743 if (shdr->bfd_section != NULL)
744 elf_next_in_group (shdr->bfd_section) = newsect;
745
746 i = num_group - 1;
747 break;
748 }
749 }
750 }
751
752 if (elf_group_name (newsect) == NULL)
753 {
754 (*_bfd_error_handler) (_("%B: no group info for section %A"),
755 abfd, newsect);
756 return FALSE;
757 }
758 return TRUE;
759 }
760
761 bfd_boolean
762 _bfd_elf_setup_sections (bfd *abfd)
763 {
764 unsigned int i;
765 unsigned int num_group = elf_tdata (abfd)->num_group;
766 bfd_boolean result = TRUE;
767 asection *s;
768
769 /* Process SHF_LINK_ORDER. */
770 for (s = abfd->sections; s != NULL; s = s->next)
771 {
772 Elf_Internal_Shdr *this_hdr = &elf_section_data (s)->this_hdr;
773 if ((this_hdr->sh_flags & SHF_LINK_ORDER) != 0)
774 {
775 unsigned int elfsec = this_hdr->sh_link;
776 /* FIXME: The old Intel compiler and old strip/objcopy may
777 not set the sh_link or sh_info fields. Hence we could
778 get the situation where elfsec is 0. */
779 if (elfsec == 0)
780 {
781 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
782 if (bed->link_order_error_handler)
783 bed->link_order_error_handler
784 (_("%B: warning: sh_link not set for section `%A'"),
785 abfd, s);
786 }
787 else
788 {
789 asection *linksec = NULL;
790
791 if (elfsec < elf_numsections (abfd))
792 {
793 this_hdr = elf_elfsections (abfd)[elfsec];
794 linksec = this_hdr->bfd_section;
795 }
796
797 /* PR 1991, 2008:
798 Some strip/objcopy may leave an incorrect value in
799 sh_link. We don't want to proceed. */
800 if (linksec == NULL)
801 {
802 (*_bfd_error_handler)
803 (_("%B: sh_link [%d] in section `%A' is incorrect"),
804 s->owner, s, elfsec);
805 result = FALSE;
806 }
807
808 elf_linked_to_section (s) = linksec;
809 }
810 }
811 }
812
813 /* Process section groups. */
814 if (num_group == (unsigned) -1)
815 return result;
816
817 for (i = 0; i < num_group; i++)
818 {
819 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
820 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
821 unsigned int n_elt = shdr->sh_size / 4;
822
823 while (--n_elt != 0)
824 if ((++idx)->shdr->bfd_section)
825 elf_sec_group (idx->shdr->bfd_section) = shdr->bfd_section;
826 else if (idx->shdr->sh_type == SHT_RELA
827 || idx->shdr->sh_type == SHT_REL)
828 /* We won't include relocation sections in section groups in
829 output object files. We adjust the group section size here
830 so that relocatable link will work correctly when
831 relocation sections are in section group in input object
832 files. */
833 shdr->bfd_section->size -= 4;
834 else
835 {
836 /* There are some unknown sections in the group. */
837 (*_bfd_error_handler)
838 (_("%B: unknown [%d] section `%s' in group [%s]"),
839 abfd,
840 (unsigned int) idx->shdr->sh_type,
841 bfd_elf_string_from_elf_section (abfd,
842 (elf_elfheader (abfd)
843 ->e_shstrndx),
844 idx->shdr->sh_name),
845 shdr->bfd_section->name);
846 result = FALSE;
847 }
848 }
849 return result;
850 }
851
852 bfd_boolean
853 bfd_elf_is_group_section (bfd *abfd ATTRIBUTE_UNUSED, const asection *sec)
854 {
855 return elf_next_in_group (sec) != NULL;
856 }
857
858 static char *
859 convert_debug_to_zdebug (bfd *abfd, const char *name)
860 {
861 unsigned int len = strlen (name);
862 char *new_name = bfd_alloc (abfd, len + 2);
863 if (new_name == NULL)
864 return NULL;
865 new_name[0] = '.';
866 new_name[1] = 'z';
867 memcpy (new_name + 2, name + 1, len);
868 return new_name;
869 }
870
871 static char *
872 convert_zdebug_to_debug (bfd *abfd, const char *name)
873 {
874 unsigned int len = strlen (name);
875 char *new_name = bfd_alloc (abfd, len);
876 if (new_name == NULL)
877 return NULL;
878 new_name[0] = '.';
879 memcpy (new_name + 1, name + 2, len - 1);
880 return new_name;
881 }
882
883 /* Make a BFD section from an ELF section. We store a pointer to the
884 BFD section in the bfd_section field of the header. */
885
886 bfd_boolean
887 _bfd_elf_make_section_from_shdr (bfd *abfd,
888 Elf_Internal_Shdr *hdr,
889 const char *name,
890 int shindex)
891 {
892 asection *newsect;
893 flagword flags;
894 const struct elf_backend_data *bed;
895
896 if (hdr->bfd_section != NULL)
897 return TRUE;
898
899 newsect = bfd_make_section_anyway (abfd, name);
900 if (newsect == NULL)
901 return FALSE;
902
903 hdr->bfd_section = newsect;
904 elf_section_data (newsect)->this_hdr = *hdr;
905 elf_section_data (newsect)->this_idx = shindex;
906
907 /* Always use the real type/flags. */
908 elf_section_type (newsect) = hdr->sh_type;
909 elf_section_flags (newsect) = hdr->sh_flags;
910
911 newsect->filepos = hdr->sh_offset;
912
913 if (! bfd_set_section_vma (abfd, newsect, hdr->sh_addr)
914 || ! bfd_set_section_size (abfd, newsect, hdr->sh_size)
915 || ! bfd_set_section_alignment (abfd, newsect,
916 bfd_log2 (hdr->sh_addralign)))
917 return FALSE;
918
919 flags = SEC_NO_FLAGS;
920 if (hdr->sh_type != SHT_NOBITS)
921 flags |= SEC_HAS_CONTENTS;
922 if (hdr->sh_type == SHT_GROUP)
923 flags |= SEC_GROUP | SEC_EXCLUDE;
924 if ((hdr->sh_flags & SHF_ALLOC) != 0)
925 {
926 flags |= SEC_ALLOC;
927 if (hdr->sh_type != SHT_NOBITS)
928 flags |= SEC_LOAD;
929 }
930 if ((hdr->sh_flags & SHF_WRITE) == 0)
931 flags |= SEC_READONLY;
932 if ((hdr->sh_flags & SHF_EXECINSTR) != 0)
933 flags |= SEC_CODE;
934 else if ((flags & SEC_LOAD) != 0)
935 flags |= SEC_DATA;
936 if ((hdr->sh_flags & SHF_MERGE) != 0)
937 {
938 flags |= SEC_MERGE;
939 newsect->entsize = hdr->sh_entsize;
940 if ((hdr->sh_flags & SHF_STRINGS) != 0)
941 flags |= SEC_STRINGS;
942 }
943 if (hdr->sh_flags & SHF_GROUP)
944 if (!setup_group (abfd, hdr, newsect))
945 return FALSE;
946 if ((hdr->sh_flags & SHF_TLS) != 0)
947 flags |= SEC_THREAD_LOCAL;
948 if ((hdr->sh_flags & SHF_EXCLUDE) != 0)
949 flags |= SEC_EXCLUDE;
950
951 if ((flags & SEC_ALLOC) == 0)
952 {
953 /* The debugging sections appear to be recognized only by name,
954 not any sort of flag. Their SEC_ALLOC bits are cleared. */
955 if (name [0] == '.')
956 {
957 const char *p;
958 int n;
959 if (name[1] == 'd')
960 p = ".debug", n = 6;
961 else if (name[1] == 'g' && name[2] == 'n')
962 p = ".gnu.linkonce.wi.", n = 17;
963 else if (name[1] == 'g' && name[2] == 'd')
964 p = ".gdb_index", n = 11; /* yes we really do mean 11. */
965 else if (name[1] == 'l')
966 p = ".line", n = 5;
967 else if (name[1] == 's')
968 p = ".stab", n = 5;
969 else if (name[1] == 'z')
970 p = ".zdebug", n = 7;
971 else
972 p = NULL, n = 0;
973 if (p != NULL && strncmp (name, p, n) == 0)
974 flags |= SEC_DEBUGGING;
975 }
976 }
977
978 /* As a GNU extension, if the name begins with .gnu.linkonce, we
979 only link a single copy of the section. This is used to support
980 g++. g++ will emit each template expansion in its own section.
981 The symbols will be defined as weak, so that multiple definitions
982 are permitted. The GNU linker extension is to actually discard
983 all but one of the sections. */
984 if (CONST_STRNEQ (name, ".gnu.linkonce")
985 && elf_next_in_group (newsect) == NULL)
986 flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
987
988 bed = get_elf_backend_data (abfd);
989 if (bed->elf_backend_section_flags)
990 if (! bed->elf_backend_section_flags (&flags, hdr))
991 return FALSE;
992
993 if (! bfd_set_section_flags (abfd, newsect, flags))
994 return FALSE;
995
996 /* We do not parse the PT_NOTE segments as we are interested even in the
997 separate debug info files which may have the segments offsets corrupted.
998 PT_NOTEs from the core files are currently not parsed using BFD. */
999 if (hdr->sh_type == SHT_NOTE)
1000 {
1001 bfd_byte *contents;
1002
1003 if (!bfd_malloc_and_get_section (abfd, newsect, &contents))
1004 return FALSE;
1005
1006 elf_parse_notes (abfd, (char *) contents, hdr->sh_size, -1);
1007 free (contents);
1008 }
1009
1010 if ((flags & SEC_ALLOC) != 0)
1011 {
1012 Elf_Internal_Phdr *phdr;
1013 unsigned int i, nload;
1014
1015 /* Some ELF linkers produce binaries with all the program header
1016 p_paddr fields zero. If we have such a binary with more than
1017 one PT_LOAD header, then leave the section lma equal to vma
1018 so that we don't create sections with overlapping lma. */
1019 phdr = elf_tdata (abfd)->phdr;
1020 for (nload = 0, i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
1021 if (phdr->p_paddr != 0)
1022 break;
1023 else if (phdr->p_type == PT_LOAD && phdr->p_memsz != 0)
1024 ++nload;
1025 if (i >= elf_elfheader (abfd)->e_phnum && nload > 1)
1026 return TRUE;
1027
1028 phdr = elf_tdata (abfd)->phdr;
1029 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
1030 {
1031 if (((phdr->p_type == PT_LOAD
1032 && (hdr->sh_flags & SHF_TLS) == 0)
1033 || phdr->p_type == PT_TLS)
1034 && ELF_SECTION_IN_SEGMENT (hdr, phdr))
1035 {
1036 if ((flags & SEC_LOAD) == 0)
1037 newsect->lma = (phdr->p_paddr
1038 + hdr->sh_addr - phdr->p_vaddr);
1039 else
1040 /* We used to use the same adjustment for SEC_LOAD
1041 sections, but that doesn't work if the segment
1042 is packed with code from multiple VMAs.
1043 Instead we calculate the section LMA based on
1044 the segment LMA. It is assumed that the
1045 segment will contain sections with contiguous
1046 LMAs, even if the VMAs are not. */
1047 newsect->lma = (phdr->p_paddr
1048 + hdr->sh_offset - phdr->p_offset);
1049
1050 /* With contiguous segments, we can't tell from file
1051 offsets whether a section with zero size should
1052 be placed at the end of one segment or the
1053 beginning of the next. Decide based on vaddr. */
1054 if (hdr->sh_addr >= phdr->p_vaddr
1055 && (hdr->sh_addr + hdr->sh_size
1056 <= phdr->p_vaddr + phdr->p_memsz))
1057 break;
1058 }
1059 }
1060 }
1061
1062 /* Compress/decompress DWARF debug sections with names: .debug_* and
1063 .zdebug_*, after the section flags is set. */
1064 if ((flags & SEC_DEBUGGING)
1065 && ((name[1] == 'd' && name[6] == '_')
1066 || (name[1] == 'z' && name[7] == '_')))
1067 {
1068 enum { nothing, compress, decompress } action = nothing;
1069 int compression_header_size;
1070 bfd_size_type uncompressed_size;
1071 bfd_boolean compressed
1072 = bfd_is_section_compressed_with_header (abfd, newsect,
1073 &compression_header_size,
1074 &uncompressed_size);
1075
1076 if (compressed)
1077 {
1078 /* Compressed section. Check if we should decompress. */
1079 if ((abfd->flags & BFD_DECOMPRESS))
1080 action = decompress;
1081 }
1082
1083 /* Compress the uncompressed section or convert from/to .zdebug*
1084 section. Check if we should compress. */
1085 if (action == nothing)
1086 {
1087 if (newsect->size != 0
1088 && (abfd->flags & BFD_COMPRESS)
1089 && compression_header_size >= 0
1090 && uncompressed_size > 0
1091 && (!compressed
1092 || ((compression_header_size > 0)
1093 != ((abfd->flags & BFD_COMPRESS_GABI) != 0))))
1094 action = compress;
1095 else
1096 return TRUE;
1097 }
1098
1099 if (action == compress)
1100 {
1101 if (!bfd_init_section_compress_status (abfd, newsect))
1102 {
1103 (*_bfd_error_handler)
1104 (_("%B: unable to initialize compress status for section %s"),
1105 abfd, name);
1106 return FALSE;
1107 }
1108 }
1109 else
1110 {
1111 if (!bfd_init_section_decompress_status (abfd, newsect))
1112 {
1113 (*_bfd_error_handler)
1114 (_("%B: unable to initialize decompress status for section %s"),
1115 abfd, name);
1116 return FALSE;
1117 }
1118 }
1119
1120 if (abfd->is_linker_input)
1121 {
1122 if (name[1] == 'z'
1123 && (action == decompress
1124 || (action == compress
1125 && (abfd->flags & BFD_COMPRESS_GABI) != 0)))
1126 {
1127 /* Convert section name from .zdebug_* to .debug_* so
1128 that linker will consider this section as a debug
1129 section. */
1130 char *new_name = convert_zdebug_to_debug (abfd, name);
1131 if (new_name == NULL)
1132 return FALSE;
1133 bfd_rename_section (abfd, newsect, new_name);
1134 }
1135 }
1136 else
1137 /* For objdump, don't rename the section. For objcopy, delay
1138 section rename to elf_fake_sections. */
1139 newsect->flags |= SEC_ELF_RENAME;
1140 }
1141
1142 return TRUE;
1143 }
1144
1145 const char *const bfd_elf_section_type_names[] = {
1146 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
1147 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
1148 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
1149 };
1150
1151 /* ELF relocs are against symbols. If we are producing relocatable
1152 output, and the reloc is against an external symbol, and nothing
1153 has given us any additional addend, the resulting reloc will also
1154 be against the same symbol. In such a case, we don't want to
1155 change anything about the way the reloc is handled, since it will
1156 all be done at final link time. Rather than put special case code
1157 into bfd_perform_relocation, all the reloc types use this howto
1158 function. It just short circuits the reloc if producing
1159 relocatable output against an external symbol. */
1160
1161 bfd_reloc_status_type
1162 bfd_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED,
1163 arelent *reloc_entry,
1164 asymbol *symbol,
1165 void *data ATTRIBUTE_UNUSED,
1166 asection *input_section,
1167 bfd *output_bfd,
1168 char **error_message ATTRIBUTE_UNUSED)
1169 {
1170 if (output_bfd != NULL
1171 && (symbol->flags & BSF_SECTION_SYM) == 0
1172 && (! reloc_entry->howto->partial_inplace
1173 || reloc_entry->addend == 0))
1174 {
1175 reloc_entry->address += input_section->output_offset;
1176 return bfd_reloc_ok;
1177 }
1178
1179 return bfd_reloc_continue;
1180 }
1181 \f
1182 /* Copy the program header and other data from one object module to
1183 another. */
1184
1185 bfd_boolean
1186 _bfd_elf_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
1187 {
1188 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
1189 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
1190 return TRUE;
1191
1192 if (!elf_flags_init (obfd))
1193 {
1194 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
1195 elf_flags_init (obfd) = TRUE;
1196 }
1197
1198 elf_gp (obfd) = elf_gp (ibfd);
1199
1200 /* Also copy the EI_OSABI field. */
1201 elf_elfheader (obfd)->e_ident[EI_OSABI] =
1202 elf_elfheader (ibfd)->e_ident[EI_OSABI];
1203
1204 /* Copy object attributes. */
1205 _bfd_elf_copy_obj_attributes (ibfd, obfd);
1206 return TRUE;
1207 }
1208
1209 static const char *
1210 get_segment_type (unsigned int p_type)
1211 {
1212 const char *pt;
1213 switch (p_type)
1214 {
1215 case PT_NULL: pt = "NULL"; break;
1216 case PT_LOAD: pt = "LOAD"; break;
1217 case PT_DYNAMIC: pt = "DYNAMIC"; break;
1218 case PT_INTERP: pt = "INTERP"; break;
1219 case PT_NOTE: pt = "NOTE"; break;
1220 case PT_SHLIB: pt = "SHLIB"; break;
1221 case PT_PHDR: pt = "PHDR"; break;
1222 case PT_TLS: pt = "TLS"; break;
1223 case PT_GNU_EH_FRAME: pt = "EH_FRAME"; break;
1224 case PT_GNU_STACK: pt = "STACK"; break;
1225 case PT_GNU_RELRO: pt = "RELRO"; break;
1226 default: pt = NULL; break;
1227 }
1228 return pt;
1229 }
1230
1231 /* Print out the program headers. */
1232
1233 bfd_boolean
1234 _bfd_elf_print_private_bfd_data (bfd *abfd, void *farg)
1235 {
1236 FILE *f = (FILE *) farg;
1237 Elf_Internal_Phdr *p;
1238 asection *s;
1239 bfd_byte *dynbuf = NULL;
1240
1241 p = elf_tdata (abfd)->phdr;
1242 if (p != NULL)
1243 {
1244 unsigned int i, c;
1245
1246 fprintf (f, _("\nProgram Header:\n"));
1247 c = elf_elfheader (abfd)->e_phnum;
1248 for (i = 0; i < c; i++, p++)
1249 {
1250 const char *pt = get_segment_type (p->p_type);
1251 char buf[20];
1252
1253 if (pt == NULL)
1254 {
1255 sprintf (buf, "0x%lx", p->p_type);
1256 pt = buf;
1257 }
1258 fprintf (f, "%8s off 0x", pt);
1259 bfd_fprintf_vma (abfd, f, p->p_offset);
1260 fprintf (f, " vaddr 0x");
1261 bfd_fprintf_vma (abfd, f, p->p_vaddr);
1262 fprintf (f, " paddr 0x");
1263 bfd_fprintf_vma (abfd, f, p->p_paddr);
1264 fprintf (f, " align 2**%u\n", bfd_log2 (p->p_align));
1265 fprintf (f, " filesz 0x");
1266 bfd_fprintf_vma (abfd, f, p->p_filesz);
1267 fprintf (f, " memsz 0x");
1268 bfd_fprintf_vma (abfd, f, p->p_memsz);
1269 fprintf (f, " flags %c%c%c",
1270 (p->p_flags & PF_R) != 0 ? 'r' : '-',
1271 (p->p_flags & PF_W) != 0 ? 'w' : '-',
1272 (p->p_flags & PF_X) != 0 ? 'x' : '-');
1273 if ((p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X)) != 0)
1274 fprintf (f, " %lx", p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X));
1275 fprintf (f, "\n");
1276 }
1277 }
1278
1279 s = bfd_get_section_by_name (abfd, ".dynamic");
1280 if (s != NULL)
1281 {
1282 unsigned int elfsec;
1283 unsigned long shlink;
1284 bfd_byte *extdyn, *extdynend;
1285 size_t extdynsize;
1286 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1287
1288 fprintf (f, _("\nDynamic Section:\n"));
1289
1290 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
1291 goto error_return;
1292
1293 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1294 if (elfsec == SHN_BAD)
1295 goto error_return;
1296 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1297
1298 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1299 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1300
1301 extdyn = dynbuf;
1302 /* PR 17512: file: 6f427532. */
1303 if (s->size < extdynsize)
1304 goto error_return;
1305 extdynend = extdyn + s->size;
1306 /* PR 17512: file: id:000006,sig:06,src:000000,op:flip4,pos:5664.
1307 Fix range check. */
1308 for (; extdyn <= (extdynend - extdynsize); extdyn += extdynsize)
1309 {
1310 Elf_Internal_Dyn dyn;
1311 const char *name = "";
1312 char ab[20];
1313 bfd_boolean stringp;
1314 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1315
1316 (*swap_dyn_in) (abfd, extdyn, &dyn);
1317
1318 if (dyn.d_tag == DT_NULL)
1319 break;
1320
1321 stringp = FALSE;
1322 switch (dyn.d_tag)
1323 {
1324 default:
1325 if (bed->elf_backend_get_target_dtag)
1326 name = (*bed->elf_backend_get_target_dtag) (dyn.d_tag);
1327
1328 if (!strcmp (name, ""))
1329 {
1330 sprintf (ab, "0x%lx", (unsigned long) dyn.d_tag);
1331 name = ab;
1332 }
1333 break;
1334
1335 case DT_NEEDED: name = "NEEDED"; stringp = TRUE; break;
1336 case DT_PLTRELSZ: name = "PLTRELSZ"; break;
1337 case DT_PLTGOT: name = "PLTGOT"; break;
1338 case DT_HASH: name = "HASH"; break;
1339 case DT_STRTAB: name = "STRTAB"; break;
1340 case DT_SYMTAB: name = "SYMTAB"; break;
1341 case DT_RELA: name = "RELA"; break;
1342 case DT_RELASZ: name = "RELASZ"; break;
1343 case DT_RELAENT: name = "RELAENT"; break;
1344 case DT_STRSZ: name = "STRSZ"; break;
1345 case DT_SYMENT: name = "SYMENT"; break;
1346 case DT_INIT: name = "INIT"; break;
1347 case DT_FINI: name = "FINI"; break;
1348 case DT_SONAME: name = "SONAME"; stringp = TRUE; break;
1349 case DT_RPATH: name = "RPATH"; stringp = TRUE; break;
1350 case DT_SYMBOLIC: name = "SYMBOLIC"; break;
1351 case DT_REL: name = "REL"; break;
1352 case DT_RELSZ: name = "RELSZ"; break;
1353 case DT_RELENT: name = "RELENT"; break;
1354 case DT_PLTREL: name = "PLTREL"; break;
1355 case DT_DEBUG: name = "DEBUG"; break;
1356 case DT_TEXTREL: name = "TEXTREL"; break;
1357 case DT_JMPREL: name = "JMPREL"; break;
1358 case DT_BIND_NOW: name = "BIND_NOW"; break;
1359 case DT_INIT_ARRAY: name = "INIT_ARRAY"; break;
1360 case DT_FINI_ARRAY: name = "FINI_ARRAY"; break;
1361 case DT_INIT_ARRAYSZ: name = "INIT_ARRAYSZ"; break;
1362 case DT_FINI_ARRAYSZ: name = "FINI_ARRAYSZ"; break;
1363 case DT_RUNPATH: name = "RUNPATH"; stringp = TRUE; break;
1364 case DT_FLAGS: name = "FLAGS"; break;
1365 case DT_PREINIT_ARRAY: name = "PREINIT_ARRAY"; break;
1366 case DT_PREINIT_ARRAYSZ: name = "PREINIT_ARRAYSZ"; break;
1367 case DT_CHECKSUM: name = "CHECKSUM"; break;
1368 case DT_PLTPADSZ: name = "PLTPADSZ"; break;
1369 case DT_MOVEENT: name = "MOVEENT"; break;
1370 case DT_MOVESZ: name = "MOVESZ"; break;
1371 case DT_FEATURE: name = "FEATURE"; break;
1372 case DT_POSFLAG_1: name = "POSFLAG_1"; break;
1373 case DT_SYMINSZ: name = "SYMINSZ"; break;
1374 case DT_SYMINENT: name = "SYMINENT"; break;
1375 case DT_CONFIG: name = "CONFIG"; stringp = TRUE; break;
1376 case DT_DEPAUDIT: name = "DEPAUDIT"; stringp = TRUE; break;
1377 case DT_AUDIT: name = "AUDIT"; stringp = TRUE; break;
1378 case DT_PLTPAD: name = "PLTPAD"; break;
1379 case DT_MOVETAB: name = "MOVETAB"; break;
1380 case DT_SYMINFO: name = "SYMINFO"; break;
1381 case DT_RELACOUNT: name = "RELACOUNT"; break;
1382 case DT_RELCOUNT: name = "RELCOUNT"; break;
1383 case DT_FLAGS_1: name = "FLAGS_1"; break;
1384 case DT_VERSYM: name = "VERSYM"; break;
1385 case DT_VERDEF: name = "VERDEF"; break;
1386 case DT_VERDEFNUM: name = "VERDEFNUM"; break;
1387 case DT_VERNEED: name = "VERNEED"; break;
1388 case DT_VERNEEDNUM: name = "VERNEEDNUM"; break;
1389 case DT_AUXILIARY: name = "AUXILIARY"; stringp = TRUE; break;
1390 case DT_USED: name = "USED"; break;
1391 case DT_FILTER: name = "FILTER"; stringp = TRUE; break;
1392 case DT_GNU_HASH: name = "GNU_HASH"; break;
1393 }
1394
1395 fprintf (f, " %-20s ", name);
1396 if (! stringp)
1397 {
1398 fprintf (f, "0x");
1399 bfd_fprintf_vma (abfd, f, dyn.d_un.d_val);
1400 }
1401 else
1402 {
1403 const char *string;
1404 unsigned int tagv = dyn.d_un.d_val;
1405
1406 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1407 if (string == NULL)
1408 goto error_return;
1409 fprintf (f, "%s", string);
1410 }
1411 fprintf (f, "\n");
1412 }
1413
1414 free (dynbuf);
1415 dynbuf = NULL;
1416 }
1417
1418 if ((elf_dynverdef (abfd) != 0 && elf_tdata (abfd)->verdef == NULL)
1419 || (elf_dynverref (abfd) != 0 && elf_tdata (abfd)->verref == NULL))
1420 {
1421 if (! _bfd_elf_slurp_version_tables (abfd, FALSE))
1422 return FALSE;
1423 }
1424
1425 if (elf_dynverdef (abfd) != 0)
1426 {
1427 Elf_Internal_Verdef *t;
1428
1429 fprintf (f, _("\nVersion definitions:\n"));
1430 for (t = elf_tdata (abfd)->verdef; t != NULL; t = t->vd_nextdef)
1431 {
1432 fprintf (f, "%d 0x%2.2x 0x%8.8lx %s\n", t->vd_ndx,
1433 t->vd_flags, t->vd_hash,
1434 t->vd_nodename ? t->vd_nodename : "<corrupt>");
1435 if (t->vd_auxptr != NULL && t->vd_auxptr->vda_nextptr != NULL)
1436 {
1437 Elf_Internal_Verdaux *a;
1438
1439 fprintf (f, "\t");
1440 for (a = t->vd_auxptr->vda_nextptr;
1441 a != NULL;
1442 a = a->vda_nextptr)
1443 fprintf (f, "%s ",
1444 a->vda_nodename ? a->vda_nodename : "<corrupt>");
1445 fprintf (f, "\n");
1446 }
1447 }
1448 }
1449
1450 if (elf_dynverref (abfd) != 0)
1451 {
1452 Elf_Internal_Verneed *t;
1453
1454 fprintf (f, _("\nVersion References:\n"));
1455 for (t = elf_tdata (abfd)->verref; t != NULL; t = t->vn_nextref)
1456 {
1457 Elf_Internal_Vernaux *a;
1458
1459 fprintf (f, _(" required from %s:\n"),
1460 t->vn_filename ? t->vn_filename : "<corrupt>");
1461 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1462 fprintf (f, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a->vna_hash,
1463 a->vna_flags, a->vna_other,
1464 a->vna_nodename ? a->vna_nodename : "<corrupt>");
1465 }
1466 }
1467
1468 return TRUE;
1469
1470 error_return:
1471 if (dynbuf != NULL)
1472 free (dynbuf);
1473 return FALSE;
1474 }
1475
1476 /* Get version string. */
1477
1478 const char *
1479 _bfd_elf_get_symbol_version_string (bfd *abfd, asymbol *symbol,
1480 bfd_boolean *hidden)
1481 {
1482 const char *version_string = NULL;
1483 if (elf_dynversym (abfd) != 0
1484 && (elf_dynverdef (abfd) != 0 || elf_dynverref (abfd) != 0))
1485 {
1486 unsigned int vernum = ((elf_symbol_type *) symbol)->version;
1487
1488 *hidden = (vernum & VERSYM_HIDDEN) != 0;
1489 vernum &= VERSYM_VERSION;
1490
1491 if (vernum == 0)
1492 version_string = "";
1493 else if (vernum == 1)
1494 version_string = "Base";
1495 else if (vernum <= elf_tdata (abfd)->cverdefs)
1496 version_string =
1497 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1498 else
1499 {
1500 Elf_Internal_Verneed *t;
1501
1502 version_string = "";
1503 for (t = elf_tdata (abfd)->verref;
1504 t != NULL;
1505 t = t->vn_nextref)
1506 {
1507 Elf_Internal_Vernaux *a;
1508
1509 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1510 {
1511 if (a->vna_other == vernum)
1512 {
1513 version_string = a->vna_nodename;
1514 break;
1515 }
1516 }
1517 }
1518 }
1519 }
1520 return version_string;
1521 }
1522
1523 /* Display ELF-specific fields of a symbol. */
1524
1525 void
1526 bfd_elf_print_symbol (bfd *abfd,
1527 void *filep,
1528 asymbol *symbol,
1529 bfd_print_symbol_type how)
1530 {
1531 FILE *file = (FILE *) filep;
1532 switch (how)
1533 {
1534 case bfd_print_symbol_name:
1535 fprintf (file, "%s", symbol->name);
1536 break;
1537 case bfd_print_symbol_more:
1538 fprintf (file, "elf ");
1539 bfd_fprintf_vma (abfd, file, symbol->value);
1540 fprintf (file, " %lx", (unsigned long) symbol->flags);
1541 break;
1542 case bfd_print_symbol_all:
1543 {
1544 const char *section_name;
1545 const char *name = NULL;
1546 const struct elf_backend_data *bed;
1547 unsigned char st_other;
1548 bfd_vma val;
1549 const char *version_string;
1550 bfd_boolean hidden;
1551
1552 section_name = symbol->section ? symbol->section->name : "(*none*)";
1553
1554 bed = get_elf_backend_data (abfd);
1555 if (bed->elf_backend_print_symbol_all)
1556 name = (*bed->elf_backend_print_symbol_all) (abfd, filep, symbol);
1557
1558 if (name == NULL)
1559 {
1560 name = symbol->name;
1561 bfd_print_symbol_vandf (abfd, file, symbol);
1562 }
1563
1564 fprintf (file, " %s\t", section_name);
1565 /* Print the "other" value for a symbol. For common symbols,
1566 we've already printed the size; now print the alignment.
1567 For other symbols, we have no specified alignment, and
1568 we've printed the address; now print the size. */
1569 if (symbol->section && bfd_is_com_section (symbol->section))
1570 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
1571 else
1572 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_size;
1573 bfd_fprintf_vma (abfd, file, val);
1574
1575 /* If we have version information, print it. */
1576 version_string = _bfd_elf_get_symbol_version_string (abfd,
1577 symbol,
1578 &hidden);
1579 if (version_string)
1580 {
1581 if (!hidden)
1582 fprintf (file, " %-11s", version_string);
1583 else
1584 {
1585 int i;
1586
1587 fprintf (file, " (%s)", version_string);
1588 for (i = 10 - strlen (version_string); i > 0; --i)
1589 putc (' ', file);
1590 }
1591 }
1592
1593 /* If the st_other field is not zero, print it. */
1594 st_other = ((elf_symbol_type *) symbol)->internal_elf_sym.st_other;
1595
1596 switch (st_other)
1597 {
1598 case 0: break;
1599 case STV_INTERNAL: fprintf (file, " .internal"); break;
1600 case STV_HIDDEN: fprintf (file, " .hidden"); break;
1601 case STV_PROTECTED: fprintf (file, " .protected"); break;
1602 default:
1603 /* Some other non-defined flags are also present, so print
1604 everything hex. */
1605 fprintf (file, " 0x%02x", (unsigned int) st_other);
1606 }
1607
1608 fprintf (file, " %s", name);
1609 }
1610 break;
1611 }
1612 }
1613
1614 /* Allocate an ELF string table--force the first byte to be zero. */
1615
1616 struct bfd_strtab_hash *
1617 _bfd_elf_stringtab_init (void)
1618 {
1619 struct bfd_strtab_hash *ret;
1620
1621 ret = _bfd_stringtab_init ();
1622 if (ret != NULL)
1623 {
1624 bfd_size_type loc;
1625
1626 loc = _bfd_stringtab_add (ret, "", TRUE, FALSE);
1627 BFD_ASSERT (loc == 0 || loc == (bfd_size_type) -1);
1628 if (loc == (bfd_size_type) -1)
1629 {
1630 _bfd_stringtab_free (ret);
1631 ret = NULL;
1632 }
1633 }
1634 return ret;
1635 }
1636 \f
1637 /* ELF .o/exec file reading */
1638
1639 /* Create a new bfd section from an ELF section header. */
1640
1641 bfd_boolean
1642 bfd_section_from_shdr (bfd *abfd, unsigned int shindex)
1643 {
1644 Elf_Internal_Shdr *hdr;
1645 Elf_Internal_Ehdr *ehdr;
1646 const struct elf_backend_data *bed;
1647 const char *name;
1648 bfd_boolean ret = TRUE;
1649 static bfd_boolean * sections_being_created = NULL;
1650 static bfd * sections_being_created_abfd = NULL;
1651 static unsigned int nesting = 0;
1652
1653 if (shindex >= elf_numsections (abfd))
1654 return FALSE;
1655
1656 if (++ nesting > 3)
1657 {
1658 /* PR17512: A corrupt ELF binary might contain a recursive group of
1659 sections, with each the string indicies pointing to the next in the
1660 loop. Detect this here, by refusing to load a section that we are
1661 already in the process of loading. We only trigger this test if
1662 we have nested at least three sections deep as normal ELF binaries
1663 can expect to recurse at least once.
1664
1665 FIXME: It would be better if this array was attached to the bfd,
1666 rather than being held in a static pointer. */
1667
1668 if (sections_being_created_abfd != abfd)
1669 sections_being_created = NULL;
1670 if (sections_being_created == NULL)
1671 {
1672 /* FIXME: It would be more efficient to attach this array to the bfd somehow. */
1673 sections_being_created = (bfd_boolean *)
1674 bfd_zalloc (abfd, elf_numsections (abfd) * sizeof (bfd_boolean));
1675 sections_being_created_abfd = abfd;
1676 }
1677 if (sections_being_created [shindex])
1678 {
1679 (*_bfd_error_handler)
1680 (_("%B: warning: loop in section dependencies detected"), abfd);
1681 return FALSE;
1682 }
1683 sections_being_created [shindex] = TRUE;
1684 }
1685
1686 hdr = elf_elfsections (abfd)[shindex];
1687 ehdr = elf_elfheader (abfd);
1688 name = bfd_elf_string_from_elf_section (abfd, ehdr->e_shstrndx,
1689 hdr->sh_name);
1690 if (name == NULL)
1691 goto fail;
1692
1693 bed = get_elf_backend_data (abfd);
1694 switch (hdr->sh_type)
1695 {
1696 case SHT_NULL:
1697 /* Inactive section. Throw it away. */
1698 goto success;
1699
1700 case SHT_PROGBITS: /* Normal section with contents. */
1701 case SHT_NOBITS: /* .bss section. */
1702 case SHT_HASH: /* .hash section. */
1703 case SHT_NOTE: /* .note section. */
1704 case SHT_INIT_ARRAY: /* .init_array section. */
1705 case SHT_FINI_ARRAY: /* .fini_array section. */
1706 case SHT_PREINIT_ARRAY: /* .preinit_array section. */
1707 case SHT_GNU_LIBLIST: /* .gnu.liblist section. */
1708 case SHT_GNU_HASH: /* .gnu.hash section. */
1709 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1710 goto success;
1711
1712 case SHT_DYNAMIC: /* Dynamic linking information. */
1713 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1714 goto fail;
1715
1716 if (hdr->sh_link > elf_numsections (abfd))
1717 {
1718 /* PR 10478: Accept Solaris binaries with a sh_link
1719 field set to SHN_BEFORE or SHN_AFTER. */
1720 switch (bfd_get_arch (abfd))
1721 {
1722 case bfd_arch_i386:
1723 case bfd_arch_sparc:
1724 if (hdr->sh_link == (SHN_LORESERVE & 0xffff) /* SHN_BEFORE */
1725 || hdr->sh_link == ((SHN_LORESERVE + 1) & 0xffff) /* SHN_AFTER */)
1726 break;
1727 /* Otherwise fall through. */
1728 default:
1729 goto fail;
1730 }
1731 }
1732 else if (elf_elfsections (abfd)[hdr->sh_link] == NULL)
1733 goto fail;
1734 else if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_STRTAB)
1735 {
1736 Elf_Internal_Shdr *dynsymhdr;
1737
1738 /* The shared libraries distributed with hpux11 have a bogus
1739 sh_link field for the ".dynamic" section. Find the
1740 string table for the ".dynsym" section instead. */
1741 if (elf_dynsymtab (abfd) != 0)
1742 {
1743 dynsymhdr = elf_elfsections (abfd)[elf_dynsymtab (abfd)];
1744 hdr->sh_link = dynsymhdr->sh_link;
1745 }
1746 else
1747 {
1748 unsigned int i, num_sec;
1749
1750 num_sec = elf_numsections (abfd);
1751 for (i = 1; i < num_sec; i++)
1752 {
1753 dynsymhdr = elf_elfsections (abfd)[i];
1754 if (dynsymhdr->sh_type == SHT_DYNSYM)
1755 {
1756 hdr->sh_link = dynsymhdr->sh_link;
1757 break;
1758 }
1759 }
1760 }
1761 }
1762 goto success;
1763
1764 case SHT_SYMTAB: /* A symbol table. */
1765 if (elf_onesymtab (abfd) == shindex)
1766 goto success;
1767
1768 if (hdr->sh_entsize != bed->s->sizeof_sym)
1769 goto fail;
1770
1771 if (hdr->sh_info * hdr->sh_entsize > hdr->sh_size)
1772 {
1773 if (hdr->sh_size != 0)
1774 goto fail;
1775 /* Some assemblers erroneously set sh_info to one with a
1776 zero sh_size. ld sees this as a global symbol count
1777 of (unsigned) -1. Fix it here. */
1778 hdr->sh_info = 0;
1779 goto success;
1780 }
1781
1782 BFD_ASSERT (elf_onesymtab (abfd) == 0);
1783 elf_onesymtab (abfd) = shindex;
1784 elf_tdata (abfd)->symtab_hdr = *hdr;
1785 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->symtab_hdr;
1786 abfd->flags |= HAS_SYMS;
1787
1788 /* Sometimes a shared object will map in the symbol table. If
1789 SHF_ALLOC is set, and this is a shared object, then we also
1790 treat this section as a BFD section. We can not base the
1791 decision purely on SHF_ALLOC, because that flag is sometimes
1792 set in a relocatable object file, which would confuse the
1793 linker. */
1794 if ((hdr->sh_flags & SHF_ALLOC) != 0
1795 && (abfd->flags & DYNAMIC) != 0
1796 && ! _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1797 shindex))
1798 goto fail;
1799
1800 /* Go looking for SHT_SYMTAB_SHNDX too, since if there is one we
1801 can't read symbols without that section loaded as well. It
1802 is most likely specified by the next section header. */
1803 if (elf_elfsections (abfd)[elf_symtab_shndx (abfd)]->sh_link != shindex)
1804 {
1805 unsigned int i, num_sec;
1806
1807 num_sec = elf_numsections (abfd);
1808 for (i = shindex + 1; i < num_sec; i++)
1809 {
1810 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1811 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
1812 && hdr2->sh_link == shindex)
1813 break;
1814 }
1815 if (i == num_sec)
1816 for (i = 1; i < shindex; i++)
1817 {
1818 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1819 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
1820 && hdr2->sh_link == shindex)
1821 break;
1822 }
1823 if (i != shindex)
1824 ret = bfd_section_from_shdr (abfd, i);
1825 }
1826 goto success;
1827
1828 case SHT_DYNSYM: /* A dynamic symbol table. */
1829 if (elf_dynsymtab (abfd) == shindex)
1830 goto success;
1831
1832 if (hdr->sh_entsize != bed->s->sizeof_sym)
1833 goto fail;
1834
1835 if (hdr->sh_info * hdr->sh_entsize > hdr->sh_size)
1836 {
1837 if (hdr->sh_size != 0)
1838 goto fail;
1839
1840 /* Some linkers erroneously set sh_info to one with a
1841 zero sh_size. ld sees this as a global symbol count
1842 of (unsigned) -1. Fix it here. */
1843 hdr->sh_info = 0;
1844 goto success;
1845 }
1846
1847 BFD_ASSERT (elf_dynsymtab (abfd) == 0);
1848 elf_dynsymtab (abfd) = shindex;
1849 elf_tdata (abfd)->dynsymtab_hdr = *hdr;
1850 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->dynsymtab_hdr;
1851 abfd->flags |= HAS_SYMS;
1852
1853 /* Besides being a symbol table, we also treat this as a regular
1854 section, so that objcopy can handle it. */
1855 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1856 goto success;
1857
1858 case SHT_SYMTAB_SHNDX: /* Symbol section indices when >64k sections. */
1859 if (elf_symtab_shndx (abfd) == shindex)
1860 goto success;
1861
1862 BFD_ASSERT (elf_symtab_shndx (abfd) == 0);
1863 elf_symtab_shndx (abfd) = shindex;
1864 elf_tdata (abfd)->symtab_shndx_hdr = *hdr;
1865 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->symtab_shndx_hdr;
1866 goto success;
1867
1868 case SHT_STRTAB: /* A string table. */
1869 if (hdr->bfd_section != NULL)
1870 goto success;
1871
1872 if (ehdr->e_shstrndx == shindex)
1873 {
1874 elf_tdata (abfd)->shstrtab_hdr = *hdr;
1875 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->shstrtab_hdr;
1876 goto success;
1877 }
1878
1879 if (elf_elfsections (abfd)[elf_onesymtab (abfd)]->sh_link == shindex)
1880 {
1881 symtab_strtab:
1882 elf_tdata (abfd)->strtab_hdr = *hdr;
1883 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->strtab_hdr;
1884 goto success;
1885 }
1886
1887 if (elf_elfsections (abfd)[elf_dynsymtab (abfd)]->sh_link == shindex)
1888 {
1889 dynsymtab_strtab:
1890 elf_tdata (abfd)->dynstrtab_hdr = *hdr;
1891 hdr = &elf_tdata (abfd)->dynstrtab_hdr;
1892 elf_elfsections (abfd)[shindex] = hdr;
1893 /* We also treat this as a regular section, so that objcopy
1894 can handle it. */
1895 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1896 shindex);
1897 goto success;
1898 }
1899
1900 /* If the string table isn't one of the above, then treat it as a
1901 regular section. We need to scan all the headers to be sure,
1902 just in case this strtab section appeared before the above. */
1903 if (elf_onesymtab (abfd) == 0 || elf_dynsymtab (abfd) == 0)
1904 {
1905 unsigned int i, num_sec;
1906
1907 num_sec = elf_numsections (abfd);
1908 for (i = 1; i < num_sec; i++)
1909 {
1910 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1911 if (hdr2->sh_link == shindex)
1912 {
1913 /* Prevent endless recursion on broken objects. */
1914 if (i == shindex)
1915 goto fail;
1916 if (! bfd_section_from_shdr (abfd, i))
1917 goto fail;
1918 if (elf_onesymtab (abfd) == i)
1919 goto symtab_strtab;
1920 if (elf_dynsymtab (abfd) == i)
1921 goto dynsymtab_strtab;
1922 }
1923 }
1924 }
1925 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1926 goto success;
1927
1928 case SHT_REL:
1929 case SHT_RELA:
1930 /* *These* do a lot of work -- but build no sections! */
1931 {
1932 asection *target_sect;
1933 Elf_Internal_Shdr *hdr2, **p_hdr;
1934 unsigned int num_sec = elf_numsections (abfd);
1935 struct bfd_elf_section_data *esdt;
1936 bfd_size_type amt;
1937
1938 if (hdr->sh_entsize
1939 != (bfd_size_type) (hdr->sh_type == SHT_REL
1940 ? bed->s->sizeof_rel : bed->s->sizeof_rela))
1941 goto fail;
1942
1943 /* Check for a bogus link to avoid crashing. */
1944 if (hdr->sh_link >= num_sec)
1945 {
1946 ((*_bfd_error_handler)
1947 (_("%B: invalid link %lu for reloc section %s (index %u)"),
1948 abfd, hdr->sh_link, name, shindex));
1949 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1950 shindex);
1951 goto success;
1952 }
1953
1954 /* For some incomprehensible reason Oracle distributes
1955 libraries for Solaris in which some of the objects have
1956 bogus sh_link fields. It would be nice if we could just
1957 reject them, but, unfortunately, some people need to use
1958 them. We scan through the section headers; if we find only
1959 one suitable symbol table, we clobber the sh_link to point
1960 to it. I hope this doesn't break anything.
1961
1962 Don't do it on executable nor shared library. */
1963 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0
1964 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_SYMTAB
1965 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_DYNSYM)
1966 {
1967 unsigned int scan;
1968 int found;
1969
1970 found = 0;
1971 for (scan = 1; scan < num_sec; scan++)
1972 {
1973 if (elf_elfsections (abfd)[scan]->sh_type == SHT_SYMTAB
1974 || elf_elfsections (abfd)[scan]->sh_type == SHT_DYNSYM)
1975 {
1976 if (found != 0)
1977 {
1978 found = 0;
1979 break;
1980 }
1981 found = scan;
1982 }
1983 }
1984 if (found != 0)
1985 hdr->sh_link = found;
1986 }
1987
1988 /* Get the symbol table. */
1989 if ((elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_SYMTAB
1990 || elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_DYNSYM)
1991 && ! bfd_section_from_shdr (abfd, hdr->sh_link))
1992 goto fail;
1993
1994 /* If this reloc section does not use the main symbol table we
1995 don't treat it as a reloc section. BFD can't adequately
1996 represent such a section, so at least for now, we don't
1997 try. We just present it as a normal section. We also
1998 can't use it as a reloc section if it points to the null
1999 section, an invalid section, another reloc section, or its
2000 sh_link points to the null section. */
2001 if (hdr->sh_link != elf_onesymtab (abfd)
2002 || hdr->sh_link == SHN_UNDEF
2003 || hdr->sh_info == SHN_UNDEF
2004 || hdr->sh_info >= num_sec
2005 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_REL
2006 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_RELA)
2007 {
2008 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2009 shindex);
2010 goto success;
2011 }
2012
2013 if (! bfd_section_from_shdr (abfd, hdr->sh_info))
2014 goto fail;
2015
2016 target_sect = bfd_section_from_elf_index (abfd, hdr->sh_info);
2017 if (target_sect == NULL)
2018 goto fail;
2019
2020 esdt = elf_section_data (target_sect);
2021 if (hdr->sh_type == SHT_RELA)
2022 p_hdr = &esdt->rela.hdr;
2023 else
2024 p_hdr = &esdt->rel.hdr;
2025
2026 /* PR 17512: file: 0b4f81b7. */
2027 if (*p_hdr != NULL)
2028 goto fail;
2029 amt = sizeof (*hdr2);
2030 hdr2 = (Elf_Internal_Shdr *) bfd_alloc (abfd, amt);
2031 if (hdr2 == NULL)
2032 goto fail;
2033 *hdr2 = *hdr;
2034 *p_hdr = hdr2;
2035 elf_elfsections (abfd)[shindex] = hdr2;
2036 target_sect->reloc_count += NUM_SHDR_ENTRIES (hdr);
2037 target_sect->flags |= SEC_RELOC;
2038 target_sect->relocation = NULL;
2039 target_sect->rel_filepos = hdr->sh_offset;
2040 /* In the section to which the relocations apply, mark whether
2041 its relocations are of the REL or RELA variety. */
2042 if (hdr->sh_size != 0)
2043 {
2044 if (hdr->sh_type == SHT_RELA)
2045 target_sect->use_rela_p = 1;
2046 }
2047 abfd->flags |= HAS_RELOC;
2048 goto success;
2049 }
2050
2051 case SHT_GNU_verdef:
2052 elf_dynverdef (abfd) = shindex;
2053 elf_tdata (abfd)->dynverdef_hdr = *hdr;
2054 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2055 goto success;
2056
2057 case SHT_GNU_versym:
2058 if (hdr->sh_entsize != sizeof (Elf_External_Versym))
2059 goto fail;
2060
2061 elf_dynversym (abfd) = shindex;
2062 elf_tdata (abfd)->dynversym_hdr = *hdr;
2063 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2064 goto success;
2065
2066 case SHT_GNU_verneed:
2067 elf_dynverref (abfd) = shindex;
2068 elf_tdata (abfd)->dynverref_hdr = *hdr;
2069 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2070 goto success;
2071
2072 case SHT_SHLIB:
2073 goto success;
2074
2075 case SHT_GROUP:
2076 if (! IS_VALID_GROUP_SECTION_HEADER (hdr, GRP_ENTRY_SIZE))
2077 goto fail;
2078
2079 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2080 goto fail;
2081
2082 if (hdr->contents != NULL)
2083 {
2084 Elf_Internal_Group *idx = (Elf_Internal_Group *) hdr->contents;
2085 unsigned int n_elt = hdr->sh_size / sizeof (* idx);
2086 asection *s;
2087
2088 if (n_elt == 0)
2089 goto fail;
2090 if (idx->flags & GRP_COMDAT)
2091 hdr->bfd_section->flags
2092 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
2093
2094 /* We try to keep the same section order as it comes in. */
2095 idx += n_elt;
2096
2097 while (--n_elt != 0)
2098 {
2099 --idx;
2100
2101 if (idx->shdr != NULL
2102 && (s = idx->shdr->bfd_section) != NULL
2103 && elf_next_in_group (s) != NULL)
2104 {
2105 elf_next_in_group (hdr->bfd_section) = s;
2106 break;
2107 }
2108 }
2109 }
2110 goto success;
2111
2112 default:
2113 /* Possibly an attributes section. */
2114 if (hdr->sh_type == SHT_GNU_ATTRIBUTES
2115 || hdr->sh_type == bed->obj_attrs_section_type)
2116 {
2117 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2118 goto fail;
2119 _bfd_elf_parse_attributes (abfd, hdr);
2120 goto success;
2121 }
2122
2123 /* Check for any processor-specific section types. */
2124 if (bed->elf_backend_section_from_shdr (abfd, hdr, name, shindex))
2125 goto success;
2126
2127 if (hdr->sh_type >= SHT_LOUSER && hdr->sh_type <= SHT_HIUSER)
2128 {
2129 if ((hdr->sh_flags & SHF_ALLOC) != 0)
2130 /* FIXME: How to properly handle allocated section reserved
2131 for applications? */
2132 (*_bfd_error_handler)
2133 (_("%B: don't know how to handle allocated, application "
2134 "specific section `%s' [0x%8x]"),
2135 abfd, name, hdr->sh_type);
2136 else
2137 {
2138 /* Allow sections reserved for applications. */
2139 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2140 shindex);
2141 goto success;
2142 }
2143 }
2144 else if (hdr->sh_type >= SHT_LOPROC
2145 && hdr->sh_type <= SHT_HIPROC)
2146 /* FIXME: We should handle this section. */
2147 (*_bfd_error_handler)
2148 (_("%B: don't know how to handle processor specific section "
2149 "`%s' [0x%8x]"),
2150 abfd, name, hdr->sh_type);
2151 else if (hdr->sh_type >= SHT_LOOS && hdr->sh_type <= SHT_HIOS)
2152 {
2153 /* Unrecognised OS-specific sections. */
2154 if ((hdr->sh_flags & SHF_OS_NONCONFORMING) != 0)
2155 /* SHF_OS_NONCONFORMING indicates that special knowledge is
2156 required to correctly process the section and the file should
2157 be rejected with an error message. */
2158 (*_bfd_error_handler)
2159 (_("%B: don't know how to handle OS specific section "
2160 "`%s' [0x%8x]"),
2161 abfd, name, hdr->sh_type);
2162 else
2163 {
2164 /* Otherwise it should be processed. */
2165 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2166 goto success;
2167 }
2168 }
2169 else
2170 /* FIXME: We should handle this section. */
2171 (*_bfd_error_handler)
2172 (_("%B: don't know how to handle section `%s' [0x%8x]"),
2173 abfd, name, hdr->sh_type);
2174
2175 goto fail;
2176 }
2177
2178 fail:
2179 ret = FALSE;
2180 success:
2181 if (sections_being_created && sections_being_created_abfd == abfd)
2182 sections_being_created [shindex] = FALSE;
2183 if (-- nesting == 0)
2184 {
2185 sections_being_created = NULL;
2186 sections_being_created_abfd = abfd;
2187 }
2188 return ret;
2189 }
2190
2191 /* Return the local symbol specified by ABFD, R_SYMNDX. */
2192
2193 Elf_Internal_Sym *
2194 bfd_sym_from_r_symndx (struct sym_cache *cache,
2195 bfd *abfd,
2196 unsigned long r_symndx)
2197 {
2198 unsigned int ent = r_symndx % LOCAL_SYM_CACHE_SIZE;
2199
2200 if (cache->abfd != abfd || cache->indx[ent] != r_symndx)
2201 {
2202 Elf_Internal_Shdr *symtab_hdr;
2203 unsigned char esym[sizeof (Elf64_External_Sym)];
2204 Elf_External_Sym_Shndx eshndx;
2205
2206 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2207 if (bfd_elf_get_elf_syms (abfd, symtab_hdr, 1, r_symndx,
2208 &cache->sym[ent], esym, &eshndx) == NULL)
2209 return NULL;
2210
2211 if (cache->abfd != abfd)
2212 {
2213 memset (cache->indx, -1, sizeof (cache->indx));
2214 cache->abfd = abfd;
2215 }
2216 cache->indx[ent] = r_symndx;
2217 }
2218
2219 return &cache->sym[ent];
2220 }
2221
2222 /* Given an ELF section number, retrieve the corresponding BFD
2223 section. */
2224
2225 asection *
2226 bfd_section_from_elf_index (bfd *abfd, unsigned int sec_index)
2227 {
2228 if (sec_index >= elf_numsections (abfd))
2229 return NULL;
2230 return elf_elfsections (abfd)[sec_index]->bfd_section;
2231 }
2232
2233 static const struct bfd_elf_special_section special_sections_b[] =
2234 {
2235 { STRING_COMMA_LEN (".bss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2236 { NULL, 0, 0, 0, 0 }
2237 };
2238
2239 static const struct bfd_elf_special_section special_sections_c[] =
2240 {
2241 { STRING_COMMA_LEN (".comment"), 0, SHT_PROGBITS, 0 },
2242 { NULL, 0, 0, 0, 0 }
2243 };
2244
2245 static const struct bfd_elf_special_section special_sections_d[] =
2246 {
2247 { STRING_COMMA_LEN (".data"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2248 { STRING_COMMA_LEN (".data1"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2249 /* There are more DWARF sections than these, but they needn't be added here
2250 unless you have to cope with broken compilers that don't emit section
2251 attributes or you want to help the user writing assembler. */
2252 { STRING_COMMA_LEN (".debug"), 0, SHT_PROGBITS, 0 },
2253 { STRING_COMMA_LEN (".debug_line"), 0, SHT_PROGBITS, 0 },
2254 { STRING_COMMA_LEN (".debug_info"), 0, SHT_PROGBITS, 0 },
2255 { STRING_COMMA_LEN (".debug_abbrev"), 0, SHT_PROGBITS, 0 },
2256 { STRING_COMMA_LEN (".debug_aranges"), 0, SHT_PROGBITS, 0 },
2257 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC, SHF_ALLOC },
2258 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB, SHF_ALLOC },
2259 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM, SHF_ALLOC },
2260 { NULL, 0, 0, 0, 0 }
2261 };
2262
2263 static const struct bfd_elf_special_section special_sections_f[] =
2264 {
2265 { STRING_COMMA_LEN (".fini"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2266 { STRING_COMMA_LEN (".fini_array"), 0, SHT_FINI_ARRAY, SHF_ALLOC + SHF_WRITE },
2267 { NULL, 0, 0, 0, 0 }
2268 };
2269
2270 static const struct bfd_elf_special_section special_sections_g[] =
2271 {
2272 { STRING_COMMA_LEN (".gnu.linkonce.b"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2273 { STRING_COMMA_LEN (".gnu.lto_"), -1, SHT_PROGBITS, SHF_EXCLUDE },
2274 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2275 { STRING_COMMA_LEN (".gnu.version"), 0, SHT_GNU_versym, 0 },
2276 { STRING_COMMA_LEN (".gnu.version_d"), 0, SHT_GNU_verdef, 0 },
2277 { STRING_COMMA_LEN (".gnu.version_r"), 0, SHT_GNU_verneed, 0 },
2278 { STRING_COMMA_LEN (".gnu.liblist"), 0, SHT_GNU_LIBLIST, SHF_ALLOC },
2279 { STRING_COMMA_LEN (".gnu.conflict"), 0, SHT_RELA, SHF_ALLOC },
2280 { STRING_COMMA_LEN (".gnu.hash"), 0, SHT_GNU_HASH, SHF_ALLOC },
2281 { NULL, 0, 0, 0, 0 }
2282 };
2283
2284 static const struct bfd_elf_special_section special_sections_h[] =
2285 {
2286 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH, SHF_ALLOC },
2287 { NULL, 0, 0, 0, 0 }
2288 };
2289
2290 static const struct bfd_elf_special_section special_sections_i[] =
2291 {
2292 { STRING_COMMA_LEN (".init"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2293 { STRING_COMMA_LEN (".init_array"), 0, SHT_INIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2294 { STRING_COMMA_LEN (".interp"), 0, SHT_PROGBITS, 0 },
2295 { NULL, 0, 0, 0, 0 }
2296 };
2297
2298 static const struct bfd_elf_special_section special_sections_l[] =
2299 {
2300 { STRING_COMMA_LEN (".line"), 0, SHT_PROGBITS, 0 },
2301 { NULL, 0, 0, 0, 0 }
2302 };
2303
2304 static const struct bfd_elf_special_section special_sections_n[] =
2305 {
2306 { STRING_COMMA_LEN (".note.GNU-stack"), 0, SHT_PROGBITS, 0 },
2307 { STRING_COMMA_LEN (".note"), -1, SHT_NOTE, 0 },
2308 { NULL, 0, 0, 0, 0 }
2309 };
2310
2311 static const struct bfd_elf_special_section special_sections_p[] =
2312 {
2313 { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2314 { STRING_COMMA_LEN (".plt"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2315 { NULL, 0, 0, 0, 0 }
2316 };
2317
2318 static const struct bfd_elf_special_section special_sections_r[] =
2319 {
2320 { STRING_COMMA_LEN (".rodata"), -2, SHT_PROGBITS, SHF_ALLOC },
2321 { STRING_COMMA_LEN (".rodata1"), 0, SHT_PROGBITS, SHF_ALLOC },
2322 { STRING_COMMA_LEN (".rela"), -1, SHT_RELA, 0 },
2323 { STRING_COMMA_LEN (".rel"), -1, SHT_REL, 0 },
2324 { NULL, 0, 0, 0, 0 }
2325 };
2326
2327 static const struct bfd_elf_special_section special_sections_s[] =
2328 {
2329 { STRING_COMMA_LEN (".shstrtab"), 0, SHT_STRTAB, 0 },
2330 { STRING_COMMA_LEN (".strtab"), 0, SHT_STRTAB, 0 },
2331 { STRING_COMMA_LEN (".symtab"), 0, SHT_SYMTAB, 0 },
2332 /* See struct bfd_elf_special_section declaration for the semantics of
2333 this special case where .prefix_length != strlen (.prefix). */
2334 { ".stabstr", 5, 3, SHT_STRTAB, 0 },
2335 { NULL, 0, 0, 0, 0 }
2336 };
2337
2338 static const struct bfd_elf_special_section special_sections_t[] =
2339 {
2340 { STRING_COMMA_LEN (".text"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2341 { STRING_COMMA_LEN (".tbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2342 { STRING_COMMA_LEN (".tdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2343 { NULL, 0, 0, 0, 0 }
2344 };
2345
2346 static const struct bfd_elf_special_section special_sections_z[] =
2347 {
2348 { STRING_COMMA_LEN (".zdebug_line"), 0, SHT_PROGBITS, 0 },
2349 { STRING_COMMA_LEN (".zdebug_info"), 0, SHT_PROGBITS, 0 },
2350 { STRING_COMMA_LEN (".zdebug_abbrev"), 0, SHT_PROGBITS, 0 },
2351 { STRING_COMMA_LEN (".zdebug_aranges"), 0, SHT_PROGBITS, 0 },
2352 { NULL, 0, 0, 0, 0 }
2353 };
2354
2355 static const struct bfd_elf_special_section * const special_sections[] =
2356 {
2357 special_sections_b, /* 'b' */
2358 special_sections_c, /* 'c' */
2359 special_sections_d, /* 'd' */
2360 NULL, /* 'e' */
2361 special_sections_f, /* 'f' */
2362 special_sections_g, /* 'g' */
2363 special_sections_h, /* 'h' */
2364 special_sections_i, /* 'i' */
2365 NULL, /* 'j' */
2366 NULL, /* 'k' */
2367 special_sections_l, /* 'l' */
2368 NULL, /* 'm' */
2369 special_sections_n, /* 'n' */
2370 NULL, /* 'o' */
2371 special_sections_p, /* 'p' */
2372 NULL, /* 'q' */
2373 special_sections_r, /* 'r' */
2374 special_sections_s, /* 's' */
2375 special_sections_t, /* 't' */
2376 NULL, /* 'u' */
2377 NULL, /* 'v' */
2378 NULL, /* 'w' */
2379 NULL, /* 'x' */
2380 NULL, /* 'y' */
2381 special_sections_z /* 'z' */
2382 };
2383
2384 const struct bfd_elf_special_section *
2385 _bfd_elf_get_special_section (const char *name,
2386 const struct bfd_elf_special_section *spec,
2387 unsigned int rela)
2388 {
2389 int i;
2390 int len;
2391
2392 len = strlen (name);
2393
2394 for (i = 0; spec[i].prefix != NULL; i++)
2395 {
2396 int suffix_len;
2397 int prefix_len = spec[i].prefix_length;
2398
2399 if (len < prefix_len)
2400 continue;
2401 if (memcmp (name, spec[i].prefix, prefix_len) != 0)
2402 continue;
2403
2404 suffix_len = spec[i].suffix_length;
2405 if (suffix_len <= 0)
2406 {
2407 if (name[prefix_len] != 0)
2408 {
2409 if (suffix_len == 0)
2410 continue;
2411 if (name[prefix_len] != '.'
2412 && (suffix_len == -2
2413 || (rela && spec[i].type == SHT_REL)))
2414 continue;
2415 }
2416 }
2417 else
2418 {
2419 if (len < prefix_len + suffix_len)
2420 continue;
2421 if (memcmp (name + len - suffix_len,
2422 spec[i].prefix + prefix_len,
2423 suffix_len) != 0)
2424 continue;
2425 }
2426 return &spec[i];
2427 }
2428
2429 return NULL;
2430 }
2431
2432 const struct bfd_elf_special_section *
2433 _bfd_elf_get_sec_type_attr (bfd *abfd, asection *sec)
2434 {
2435 int i;
2436 const struct bfd_elf_special_section *spec;
2437 const struct elf_backend_data *bed;
2438
2439 /* See if this is one of the special sections. */
2440 if (sec->name == NULL)
2441 return NULL;
2442
2443 bed = get_elf_backend_data (abfd);
2444 spec = bed->special_sections;
2445 if (spec)
2446 {
2447 spec = _bfd_elf_get_special_section (sec->name,
2448 bed->special_sections,
2449 sec->use_rela_p);
2450 if (spec != NULL)
2451 return spec;
2452 }
2453
2454 if (sec->name[0] != '.')
2455 return NULL;
2456
2457 i = sec->name[1] - 'b';
2458 if (i < 0 || i > 'z' - 'b')
2459 return NULL;
2460
2461 spec = special_sections[i];
2462
2463 if (spec == NULL)
2464 return NULL;
2465
2466 return _bfd_elf_get_special_section (sec->name, spec, sec->use_rela_p);
2467 }
2468
2469 bfd_boolean
2470 _bfd_elf_new_section_hook (bfd *abfd, asection *sec)
2471 {
2472 struct bfd_elf_section_data *sdata;
2473 const struct elf_backend_data *bed;
2474 const struct bfd_elf_special_section *ssect;
2475
2476 sdata = (struct bfd_elf_section_data *) sec->used_by_bfd;
2477 if (sdata == NULL)
2478 {
2479 sdata = (struct bfd_elf_section_data *) bfd_zalloc (abfd,
2480 sizeof (*sdata));
2481 if (sdata == NULL)
2482 return FALSE;
2483 sec->used_by_bfd = sdata;
2484 }
2485
2486 /* Indicate whether or not this section should use RELA relocations. */
2487 bed = get_elf_backend_data (abfd);
2488 sec->use_rela_p = bed->default_use_rela_p;
2489
2490 /* When we read a file, we don't need to set ELF section type and
2491 flags. They will be overridden in _bfd_elf_make_section_from_shdr
2492 anyway. We will set ELF section type and flags for all linker
2493 created sections. If user specifies BFD section flags, we will
2494 set ELF section type and flags based on BFD section flags in
2495 elf_fake_sections. Special handling for .init_array/.fini_array
2496 output sections since they may contain .ctors/.dtors input
2497 sections. We don't want _bfd_elf_init_private_section_data to
2498 copy ELF section type from .ctors/.dtors input sections. */
2499 if (abfd->direction != read_direction
2500 || (sec->flags & SEC_LINKER_CREATED) != 0)
2501 {
2502 ssect = (*bed->get_sec_type_attr) (abfd, sec);
2503 if (ssect != NULL
2504 && (!sec->flags
2505 || (sec->flags & SEC_LINKER_CREATED) != 0
2506 || ssect->type == SHT_INIT_ARRAY
2507 || ssect->type == SHT_FINI_ARRAY))
2508 {
2509 elf_section_type (sec) = ssect->type;
2510 elf_section_flags (sec) = ssect->attr;
2511 }
2512 }
2513
2514 return _bfd_generic_new_section_hook (abfd, sec);
2515 }
2516
2517 /* Create a new bfd section from an ELF program header.
2518
2519 Since program segments have no names, we generate a synthetic name
2520 of the form segment<NUM>, where NUM is generally the index in the
2521 program header table. For segments that are split (see below) we
2522 generate the names segment<NUM>a and segment<NUM>b.
2523
2524 Note that some program segments may have a file size that is different than
2525 (less than) the memory size. All this means is that at execution the
2526 system must allocate the amount of memory specified by the memory size,
2527 but only initialize it with the first "file size" bytes read from the
2528 file. This would occur for example, with program segments consisting
2529 of combined data+bss.
2530
2531 To handle the above situation, this routine generates TWO bfd sections
2532 for the single program segment. The first has the length specified by
2533 the file size of the segment, and the second has the length specified
2534 by the difference between the two sizes. In effect, the segment is split
2535 into its initialized and uninitialized parts.
2536
2537 */
2538
2539 bfd_boolean
2540 _bfd_elf_make_section_from_phdr (bfd *abfd,
2541 Elf_Internal_Phdr *hdr,
2542 int hdr_index,
2543 const char *type_name)
2544 {
2545 asection *newsect;
2546 char *name;
2547 char namebuf[64];
2548 size_t len;
2549 int split;
2550
2551 split = ((hdr->p_memsz > 0)
2552 && (hdr->p_filesz > 0)
2553 && (hdr->p_memsz > hdr->p_filesz));
2554
2555 if (hdr->p_filesz > 0)
2556 {
2557 sprintf (namebuf, "%s%d%s", type_name, hdr_index, split ? "a" : "");
2558 len = strlen (namebuf) + 1;
2559 name = (char *) bfd_alloc (abfd, len);
2560 if (!name)
2561 return FALSE;
2562 memcpy (name, namebuf, len);
2563 newsect = bfd_make_section (abfd, name);
2564 if (newsect == NULL)
2565 return FALSE;
2566 newsect->vma = hdr->p_vaddr;
2567 newsect->lma = hdr->p_paddr;
2568 newsect->size = hdr->p_filesz;
2569 newsect->filepos = hdr->p_offset;
2570 newsect->flags |= SEC_HAS_CONTENTS;
2571 newsect->alignment_power = bfd_log2 (hdr->p_align);
2572 if (hdr->p_type == PT_LOAD)
2573 {
2574 newsect->flags |= SEC_ALLOC;
2575 newsect->flags |= SEC_LOAD;
2576 if (hdr->p_flags & PF_X)
2577 {
2578 /* FIXME: all we known is that it has execute PERMISSION,
2579 may be data. */
2580 newsect->flags |= SEC_CODE;
2581 }
2582 }
2583 if (!(hdr->p_flags & PF_W))
2584 {
2585 newsect->flags |= SEC_READONLY;
2586 }
2587 }
2588
2589 if (hdr->p_memsz > hdr->p_filesz)
2590 {
2591 bfd_vma align;
2592
2593 sprintf (namebuf, "%s%d%s", type_name, hdr_index, split ? "b" : "");
2594 len = strlen (namebuf) + 1;
2595 name = (char *) bfd_alloc (abfd, len);
2596 if (!name)
2597 return FALSE;
2598 memcpy (name, namebuf, len);
2599 newsect = bfd_make_section (abfd, name);
2600 if (newsect == NULL)
2601 return FALSE;
2602 newsect->vma = hdr->p_vaddr + hdr->p_filesz;
2603 newsect->lma = hdr->p_paddr + hdr->p_filesz;
2604 newsect->size = hdr->p_memsz - hdr->p_filesz;
2605 newsect->filepos = hdr->p_offset + hdr->p_filesz;
2606 align = newsect->vma & -newsect->vma;
2607 if (align == 0 || align > hdr->p_align)
2608 align = hdr->p_align;
2609 newsect->alignment_power = bfd_log2 (align);
2610 if (hdr->p_type == PT_LOAD)
2611 {
2612 /* Hack for gdb. Segments that have not been modified do
2613 not have their contents written to a core file, on the
2614 assumption that a debugger can find the contents in the
2615 executable. We flag this case by setting the fake
2616 section size to zero. Note that "real" bss sections will
2617 always have their contents dumped to the core file. */
2618 if (bfd_get_format (abfd) == bfd_core)
2619 newsect->size = 0;
2620 newsect->flags |= SEC_ALLOC;
2621 if (hdr->p_flags & PF_X)
2622 newsect->flags |= SEC_CODE;
2623 }
2624 if (!(hdr->p_flags & PF_W))
2625 newsect->flags |= SEC_READONLY;
2626 }
2627
2628 return TRUE;
2629 }
2630
2631 bfd_boolean
2632 bfd_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int hdr_index)
2633 {
2634 const struct elf_backend_data *bed;
2635
2636 switch (hdr->p_type)
2637 {
2638 case PT_NULL:
2639 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "null");
2640
2641 case PT_LOAD:
2642 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "load");
2643
2644 case PT_DYNAMIC:
2645 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "dynamic");
2646
2647 case PT_INTERP:
2648 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "interp");
2649
2650 case PT_NOTE:
2651 if (! _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "note"))
2652 return FALSE;
2653 if (! elf_read_notes (abfd, hdr->p_offset, hdr->p_filesz))
2654 return FALSE;
2655 return TRUE;
2656
2657 case PT_SHLIB:
2658 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "shlib");
2659
2660 case PT_PHDR:
2661 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "phdr");
2662
2663 case PT_GNU_EH_FRAME:
2664 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index,
2665 "eh_frame_hdr");
2666
2667 case PT_GNU_STACK:
2668 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "stack");
2669
2670 case PT_GNU_RELRO:
2671 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "relro");
2672
2673 default:
2674 /* Check for any processor-specific program segment types. */
2675 bed = get_elf_backend_data (abfd);
2676 return bed->elf_backend_section_from_phdr (abfd, hdr, hdr_index, "proc");
2677 }
2678 }
2679
2680 /* Return the REL_HDR for SEC, assuming there is only a single one, either
2681 REL or RELA. */
2682
2683 Elf_Internal_Shdr *
2684 _bfd_elf_single_rel_hdr (asection *sec)
2685 {
2686 if (elf_section_data (sec)->rel.hdr)
2687 {
2688 BFD_ASSERT (elf_section_data (sec)->rela.hdr == NULL);
2689 return elf_section_data (sec)->rel.hdr;
2690 }
2691 else
2692 return elf_section_data (sec)->rela.hdr;
2693 }
2694
2695 static bfd_boolean
2696 _bfd_elf_set_reloc_sh_name (bfd *abfd,
2697 Elf_Internal_Shdr *rel_hdr,
2698 const char *sec_name,
2699 bfd_boolean use_rela_p)
2700 {
2701 char *name = (char *) bfd_alloc (abfd,
2702 sizeof ".rela" + strlen (sec_name));
2703 if (name == NULL)
2704 return FALSE;
2705
2706 sprintf (name, "%s%s", use_rela_p ? ".rela" : ".rel", sec_name);
2707 rel_hdr->sh_name =
2708 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd), name,
2709 FALSE);
2710 if (rel_hdr->sh_name == (unsigned int) -1)
2711 return FALSE;
2712
2713 return TRUE;
2714 }
2715
2716 /* Allocate and initialize a section-header for a new reloc section,
2717 containing relocations against ASECT. It is stored in RELDATA. If
2718 USE_RELA_P is TRUE, we use RELA relocations; otherwise, we use REL
2719 relocations. */
2720
2721 static bfd_boolean
2722 _bfd_elf_init_reloc_shdr (bfd *abfd,
2723 struct bfd_elf_section_reloc_data *reldata,
2724 const char *sec_name,
2725 bfd_boolean use_rela_p,
2726 bfd_boolean delay_st_name_p)
2727 {
2728 Elf_Internal_Shdr *rel_hdr;
2729 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2730 bfd_size_type amt;
2731
2732 amt = sizeof (Elf_Internal_Shdr);
2733 BFD_ASSERT (reldata->hdr == NULL);
2734 rel_hdr = bfd_zalloc (abfd, amt);
2735 reldata->hdr = rel_hdr;
2736
2737 if (delay_st_name_p)
2738 rel_hdr->sh_name = (unsigned int) -1;
2739 else if (!_bfd_elf_set_reloc_sh_name (abfd, rel_hdr, sec_name,
2740 use_rela_p))
2741 return FALSE;
2742 rel_hdr->sh_type = use_rela_p ? SHT_RELA : SHT_REL;
2743 rel_hdr->sh_entsize = (use_rela_p
2744 ? bed->s->sizeof_rela
2745 : bed->s->sizeof_rel);
2746 rel_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
2747 rel_hdr->sh_flags = 0;
2748 rel_hdr->sh_addr = 0;
2749 rel_hdr->sh_size = 0;
2750 rel_hdr->sh_offset = 0;
2751
2752 return TRUE;
2753 }
2754
2755 /* Return the default section type based on the passed in section flags. */
2756
2757 int
2758 bfd_elf_get_default_section_type (flagword flags)
2759 {
2760 if ((flags & SEC_ALLOC) != 0
2761 && (flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
2762 return SHT_NOBITS;
2763 return SHT_PROGBITS;
2764 }
2765
2766 struct fake_section_arg
2767 {
2768 struct bfd_link_info *link_info;
2769 bfd_boolean failed;
2770 };
2771
2772 /* Set up an ELF internal section header for a section. */
2773
2774 static void
2775 elf_fake_sections (bfd *abfd, asection *asect, void *fsarg)
2776 {
2777 struct fake_section_arg *arg = (struct fake_section_arg *)fsarg;
2778 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2779 struct bfd_elf_section_data *esd = elf_section_data (asect);
2780 Elf_Internal_Shdr *this_hdr;
2781 unsigned int sh_type;
2782 const char *name = asect->name;
2783 bfd_boolean delay_st_name_p = FALSE;
2784
2785 if (arg->failed)
2786 {
2787 /* We already failed; just get out of the bfd_map_over_sections
2788 loop. */
2789 return;
2790 }
2791
2792 this_hdr = &esd->this_hdr;
2793
2794 if (arg->link_info)
2795 {
2796 /* ld: compress DWARF debug sections with names: .debug_*. */
2797 if ((arg->link_info->compress_debug & COMPRESS_DEBUG)
2798 && (asect->flags & SEC_DEBUGGING)
2799 && name[1] == 'd'
2800 && name[6] == '_')
2801 {
2802 /* Set SEC_ELF_COMPRESS to indicate this section should be
2803 compressed. */
2804 asect->flags |= SEC_ELF_COMPRESS;
2805
2806 /* If this section will be compressed, delay adding setion
2807 name to section name section after it is compressed in
2808 _bfd_elf_assign_file_positions_for_non_load. */
2809 delay_st_name_p = TRUE;
2810 }
2811 }
2812 else if ((asect->flags & SEC_ELF_RENAME))
2813 {
2814 /* objcopy: rename output DWARF debug section. */
2815 if ((abfd->flags & (BFD_DECOMPRESS | BFD_COMPRESS_GABI)))
2816 {
2817 /* When we decompress or compress with SHF_COMPRESSED,
2818 convert section name from .zdebug_* to .debug_* if
2819 needed. */
2820 if (name[1] == 'z')
2821 {
2822 char *new_name = convert_zdebug_to_debug (abfd, name);
2823 if (new_name == NULL)
2824 {
2825 arg->failed = TRUE;
2826 return;
2827 }
2828 name = new_name;
2829 }
2830 }
2831 else if (asect->compress_status == COMPRESS_SECTION_DONE)
2832 {
2833 /* PR binutils/18087: Compression does not always make a
2834 section smaller. So only rename the section when
2835 compression has actually taken place. If input section
2836 name is .zdebug_*, we should never compress it again. */
2837 char *new_name = convert_debug_to_zdebug (abfd, name);
2838 if (new_name == NULL)
2839 {
2840 arg->failed = TRUE;
2841 return;
2842 }
2843 BFD_ASSERT (name[1] != 'z');
2844 name = new_name;
2845 }
2846 }
2847
2848 if (delay_st_name_p)
2849 this_hdr->sh_name = (unsigned int) -1;
2850 else
2851 {
2852 this_hdr->sh_name
2853 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
2854 name, FALSE);
2855 if (this_hdr->sh_name == (unsigned int) -1)
2856 {
2857 arg->failed = TRUE;
2858 return;
2859 }
2860 }
2861
2862 /* Don't clear sh_flags. Assembler may set additional bits. */
2863
2864 if ((asect->flags & SEC_ALLOC) != 0
2865 || asect->user_set_vma)
2866 this_hdr->sh_addr = asect->vma;
2867 else
2868 this_hdr->sh_addr = 0;
2869
2870 this_hdr->sh_offset = 0;
2871 this_hdr->sh_size = asect->size;
2872 this_hdr->sh_link = 0;
2873 /* PR 17512: file: 0eb809fe, 8b0535ee. */
2874 if (asect->alignment_power >= (sizeof (bfd_vma) * 8) - 1)
2875 {
2876 (*_bfd_error_handler)
2877 (_("%B: error: Alignment power %d of section `%A' is too big"),
2878 abfd, asect, asect->alignment_power);
2879 arg->failed = TRUE;
2880 return;
2881 }
2882 this_hdr->sh_addralign = (bfd_vma) 1 << asect->alignment_power;
2883 /* The sh_entsize and sh_info fields may have been set already by
2884 copy_private_section_data. */
2885
2886 this_hdr->bfd_section = asect;
2887 this_hdr->contents = NULL;
2888
2889 /* If the section type is unspecified, we set it based on
2890 asect->flags. */
2891 if ((asect->flags & SEC_GROUP) != 0)
2892 sh_type = SHT_GROUP;
2893 else
2894 sh_type = bfd_elf_get_default_section_type (asect->flags);
2895
2896 if (this_hdr->sh_type == SHT_NULL)
2897 this_hdr->sh_type = sh_type;
2898 else if (this_hdr->sh_type == SHT_NOBITS
2899 && sh_type == SHT_PROGBITS
2900 && (asect->flags & SEC_ALLOC) != 0)
2901 {
2902 /* Warn if we are changing a NOBITS section to PROGBITS, but
2903 allow the link to proceed. This can happen when users link
2904 non-bss input sections to bss output sections, or emit data
2905 to a bss output section via a linker script. */
2906 (*_bfd_error_handler)
2907 (_("warning: section `%A' type changed to PROGBITS"), asect);
2908 this_hdr->sh_type = sh_type;
2909 }
2910
2911 switch (this_hdr->sh_type)
2912 {
2913 default:
2914 break;
2915
2916 case SHT_STRTAB:
2917 case SHT_INIT_ARRAY:
2918 case SHT_FINI_ARRAY:
2919 case SHT_PREINIT_ARRAY:
2920 case SHT_NOTE:
2921 case SHT_NOBITS:
2922 case SHT_PROGBITS:
2923 break;
2924
2925 case SHT_HASH:
2926 this_hdr->sh_entsize = bed->s->sizeof_hash_entry;
2927 break;
2928
2929 case SHT_DYNSYM:
2930 this_hdr->sh_entsize = bed->s->sizeof_sym;
2931 break;
2932
2933 case SHT_DYNAMIC:
2934 this_hdr->sh_entsize = bed->s->sizeof_dyn;
2935 break;
2936
2937 case SHT_RELA:
2938 if (get_elf_backend_data (abfd)->may_use_rela_p)
2939 this_hdr->sh_entsize = bed->s->sizeof_rela;
2940 break;
2941
2942 case SHT_REL:
2943 if (get_elf_backend_data (abfd)->may_use_rel_p)
2944 this_hdr->sh_entsize = bed->s->sizeof_rel;
2945 break;
2946
2947 case SHT_GNU_versym:
2948 this_hdr->sh_entsize = sizeof (Elf_External_Versym);
2949 break;
2950
2951 case SHT_GNU_verdef:
2952 this_hdr->sh_entsize = 0;
2953 /* objcopy or strip will copy over sh_info, but may not set
2954 cverdefs. The linker will set cverdefs, but sh_info will be
2955 zero. */
2956 if (this_hdr->sh_info == 0)
2957 this_hdr->sh_info = elf_tdata (abfd)->cverdefs;
2958 else
2959 BFD_ASSERT (elf_tdata (abfd)->cverdefs == 0
2960 || this_hdr->sh_info == elf_tdata (abfd)->cverdefs);
2961 break;
2962
2963 case SHT_GNU_verneed:
2964 this_hdr->sh_entsize = 0;
2965 /* objcopy or strip will copy over sh_info, but may not set
2966 cverrefs. The linker will set cverrefs, but sh_info will be
2967 zero. */
2968 if (this_hdr->sh_info == 0)
2969 this_hdr->sh_info = elf_tdata (abfd)->cverrefs;
2970 else
2971 BFD_ASSERT (elf_tdata (abfd)->cverrefs == 0
2972 || this_hdr->sh_info == elf_tdata (abfd)->cverrefs);
2973 break;
2974
2975 case SHT_GROUP:
2976 this_hdr->sh_entsize = GRP_ENTRY_SIZE;
2977 break;
2978
2979 case SHT_GNU_HASH:
2980 this_hdr->sh_entsize = bed->s->arch_size == 64 ? 0 : 4;
2981 break;
2982 }
2983
2984 if ((asect->flags & SEC_ALLOC) != 0)
2985 this_hdr->sh_flags |= SHF_ALLOC;
2986 if ((asect->flags & SEC_READONLY) == 0)
2987 this_hdr->sh_flags |= SHF_WRITE;
2988 if ((asect->flags & SEC_CODE) != 0)
2989 this_hdr->sh_flags |= SHF_EXECINSTR;
2990 if ((asect->flags & SEC_MERGE) != 0)
2991 {
2992 this_hdr->sh_flags |= SHF_MERGE;
2993 this_hdr->sh_entsize = asect->entsize;
2994 if ((asect->flags & SEC_STRINGS) != 0)
2995 this_hdr->sh_flags |= SHF_STRINGS;
2996 }
2997 if ((asect->flags & SEC_GROUP) == 0 && elf_group_name (asect) != NULL)
2998 this_hdr->sh_flags |= SHF_GROUP;
2999 if ((asect->flags & SEC_THREAD_LOCAL) != 0)
3000 {
3001 this_hdr->sh_flags |= SHF_TLS;
3002 if (asect->size == 0
3003 && (asect->flags & SEC_HAS_CONTENTS) == 0)
3004 {
3005 struct bfd_link_order *o = asect->map_tail.link_order;
3006
3007 this_hdr->sh_size = 0;
3008 if (o != NULL)
3009 {
3010 this_hdr->sh_size = o->offset + o->size;
3011 if (this_hdr->sh_size != 0)
3012 this_hdr->sh_type = SHT_NOBITS;
3013 }
3014 }
3015 }
3016 if ((asect->flags & (SEC_GROUP | SEC_EXCLUDE)) == SEC_EXCLUDE)
3017 this_hdr->sh_flags |= SHF_EXCLUDE;
3018
3019 /* If the section has relocs, set up a section header for the
3020 SHT_REL[A] section. If two relocation sections are required for
3021 this section, it is up to the processor-specific back-end to
3022 create the other. */
3023 if ((asect->flags & SEC_RELOC) != 0)
3024 {
3025 /* When doing a relocatable link, create both REL and RELA sections if
3026 needed. */
3027 if (arg->link_info
3028 /* Do the normal setup if we wouldn't create any sections here. */
3029 && esd->rel.count + esd->rela.count > 0
3030 && (arg->link_info->relocatable || arg->link_info->emitrelocations))
3031 {
3032 if (esd->rel.count && esd->rel.hdr == NULL
3033 && !_bfd_elf_init_reloc_shdr (abfd, &esd->rel, name, FALSE,
3034 delay_st_name_p))
3035 {
3036 arg->failed = TRUE;
3037 return;
3038 }
3039 if (esd->rela.count && esd->rela.hdr == NULL
3040 && !_bfd_elf_init_reloc_shdr (abfd, &esd->rela, name, TRUE,
3041 delay_st_name_p))
3042 {
3043 arg->failed = TRUE;
3044 return;
3045 }
3046 }
3047 else if (!_bfd_elf_init_reloc_shdr (abfd,
3048 (asect->use_rela_p
3049 ? &esd->rela : &esd->rel),
3050 name,
3051 asect->use_rela_p,
3052 delay_st_name_p))
3053 arg->failed = TRUE;
3054 }
3055
3056 /* Check for processor-specific section types. */
3057 sh_type = this_hdr->sh_type;
3058 if (bed->elf_backend_fake_sections
3059 && !(*bed->elf_backend_fake_sections) (abfd, this_hdr, asect))
3060 arg->failed = TRUE;
3061
3062 if (sh_type == SHT_NOBITS && asect->size != 0)
3063 {
3064 /* Don't change the header type from NOBITS if we are being
3065 called for objcopy --only-keep-debug. */
3066 this_hdr->sh_type = sh_type;
3067 }
3068 }
3069
3070 /* Fill in the contents of a SHT_GROUP section. Called from
3071 _bfd_elf_compute_section_file_positions for gas, objcopy, and
3072 when ELF targets use the generic linker, ld. Called for ld -r
3073 from bfd_elf_final_link. */
3074
3075 void
3076 bfd_elf_set_group_contents (bfd *abfd, asection *sec, void *failedptrarg)
3077 {
3078 bfd_boolean *failedptr = (bfd_boolean *) failedptrarg;
3079 asection *elt, *first;
3080 unsigned char *loc;
3081 bfd_boolean gas;
3082
3083 /* Ignore linker created group section. See elfNN_ia64_object_p in
3084 elfxx-ia64.c. */
3085 if (((sec->flags & (SEC_GROUP | SEC_LINKER_CREATED)) != SEC_GROUP)
3086 || *failedptr)
3087 return;
3088
3089 if (elf_section_data (sec)->this_hdr.sh_info == 0)
3090 {
3091 unsigned long symindx = 0;
3092
3093 /* elf_group_id will have been set up by objcopy and the
3094 generic linker. */
3095 if (elf_group_id (sec) != NULL)
3096 symindx = elf_group_id (sec)->udata.i;
3097
3098 if (symindx == 0)
3099 {
3100 /* If called from the assembler, swap_out_syms will have set up
3101 elf_section_syms. */
3102 BFD_ASSERT (elf_section_syms (abfd) != NULL);
3103 symindx = elf_section_syms (abfd)[sec->index]->udata.i;
3104 }
3105 elf_section_data (sec)->this_hdr.sh_info = symindx;
3106 }
3107 else if (elf_section_data (sec)->this_hdr.sh_info == (unsigned int) -2)
3108 {
3109 /* The ELF backend linker sets sh_info to -2 when the group
3110 signature symbol is global, and thus the index can't be
3111 set until all local symbols are output. */
3112 asection *igroup = elf_sec_group (elf_next_in_group (sec));
3113 struct bfd_elf_section_data *sec_data = elf_section_data (igroup);
3114 unsigned long symndx = sec_data->this_hdr.sh_info;
3115 unsigned long extsymoff = 0;
3116 struct elf_link_hash_entry *h;
3117
3118 if (!elf_bad_symtab (igroup->owner))
3119 {
3120 Elf_Internal_Shdr *symtab_hdr;
3121
3122 symtab_hdr = &elf_tdata (igroup->owner)->symtab_hdr;
3123 extsymoff = symtab_hdr->sh_info;
3124 }
3125 h = elf_sym_hashes (igroup->owner)[symndx - extsymoff];
3126 while (h->root.type == bfd_link_hash_indirect
3127 || h->root.type == bfd_link_hash_warning)
3128 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3129
3130 elf_section_data (sec)->this_hdr.sh_info = h->indx;
3131 }
3132
3133 /* The contents won't be allocated for "ld -r" or objcopy. */
3134 gas = TRUE;
3135 if (sec->contents == NULL)
3136 {
3137 gas = FALSE;
3138 sec->contents = (unsigned char *) bfd_alloc (abfd, sec->size);
3139
3140 /* Arrange for the section to be written out. */
3141 elf_section_data (sec)->this_hdr.contents = sec->contents;
3142 if (sec->contents == NULL)
3143 {
3144 *failedptr = TRUE;
3145 return;
3146 }
3147 }
3148
3149 loc = sec->contents + sec->size;
3150
3151 /* Get the pointer to the first section in the group that gas
3152 squirreled away here. objcopy arranges for this to be set to the
3153 start of the input section group. */
3154 first = elt = elf_next_in_group (sec);
3155
3156 /* First element is a flag word. Rest of section is elf section
3157 indices for all the sections of the group. Write them backwards
3158 just to keep the group in the same order as given in .section
3159 directives, not that it matters. */
3160 while (elt != NULL)
3161 {
3162 asection *s;
3163
3164 s = elt;
3165 if (!gas)
3166 s = s->output_section;
3167 if (s != NULL
3168 && !bfd_is_abs_section (s))
3169 {
3170 unsigned int idx = elf_section_data (s)->this_idx;
3171
3172 loc -= 4;
3173 H_PUT_32 (abfd, idx, loc);
3174 }
3175 elt = elf_next_in_group (elt);
3176 if (elt == first)
3177 break;
3178 }
3179
3180 if ((loc -= 4) != sec->contents)
3181 abort ();
3182
3183 H_PUT_32 (abfd, sec->flags & SEC_LINK_ONCE ? GRP_COMDAT : 0, loc);
3184 }
3185
3186 /* Return the section which RELOC_SEC applies to. */
3187
3188 asection *
3189 _bfd_elf_get_reloc_section (asection *reloc_sec)
3190 {
3191 const char *name;
3192 unsigned int type;
3193 bfd *abfd;
3194
3195 if (reloc_sec == NULL)
3196 return NULL;
3197
3198 type = elf_section_data (reloc_sec)->this_hdr.sh_type;
3199 if (type != SHT_REL && type != SHT_RELA)
3200 return NULL;
3201
3202 /* We look up the section the relocs apply to by name. */
3203 name = reloc_sec->name;
3204 if (type == SHT_REL)
3205 name += 4;
3206 else
3207 name += 5;
3208
3209 /* If a target needs .got.plt section, relocations in rela.plt/rel.plt
3210 section apply to .got.plt section. */
3211 abfd = reloc_sec->owner;
3212 if (get_elf_backend_data (abfd)->want_got_plt
3213 && strcmp (name, ".plt") == 0)
3214 {
3215 /* .got.plt is a linker created input section. It may be mapped
3216 to some other output section. Try two likely sections. */
3217 name = ".got.plt";
3218 reloc_sec = bfd_get_section_by_name (abfd, name);
3219 if (reloc_sec != NULL)
3220 return reloc_sec;
3221 name = ".got";
3222 }
3223
3224 reloc_sec = bfd_get_section_by_name (abfd, name);
3225 return reloc_sec;
3226 }
3227
3228 /* Assign all ELF section numbers. The dummy first section is handled here
3229 too. The link/info pointers for the standard section types are filled
3230 in here too, while we're at it. */
3231
3232 static bfd_boolean
3233 assign_section_numbers (bfd *abfd, struct bfd_link_info *link_info)
3234 {
3235 struct elf_obj_tdata *t = elf_tdata (abfd);
3236 asection *sec;
3237 unsigned int section_number;
3238 Elf_Internal_Shdr **i_shdrp;
3239 struct bfd_elf_section_data *d;
3240 bfd_boolean need_symtab;
3241
3242 section_number = 1;
3243
3244 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd));
3245
3246 /* SHT_GROUP sections are in relocatable files only. */
3247 if (link_info == NULL || link_info->relocatable)
3248 {
3249 /* Put SHT_GROUP sections first. */
3250 for (sec = abfd->sections; sec != NULL; sec = sec->next)
3251 {
3252 d = elf_section_data (sec);
3253
3254 if (d->this_hdr.sh_type == SHT_GROUP)
3255 {
3256 if (sec->flags & SEC_LINKER_CREATED)
3257 {
3258 /* Remove the linker created SHT_GROUP sections. */
3259 bfd_section_list_remove (abfd, sec);
3260 abfd->section_count--;
3261 }
3262 else
3263 d->this_idx = section_number++;
3264 }
3265 }
3266 }
3267
3268 for (sec = abfd->sections; sec; sec = sec->next)
3269 {
3270 d = elf_section_data (sec);
3271
3272 if (d->this_hdr.sh_type != SHT_GROUP)
3273 d->this_idx = section_number++;
3274 if (d->this_hdr.sh_name != (unsigned int) -1)
3275 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->this_hdr.sh_name);
3276 if (d->rel.hdr)
3277 {
3278 d->rel.idx = section_number++;
3279 if (d->rel.hdr->sh_name != (unsigned int) -1)
3280 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel.hdr->sh_name);
3281 }
3282 else
3283 d->rel.idx = 0;
3284
3285 if (d->rela.hdr)
3286 {
3287 d->rela.idx = section_number++;
3288 if (d->rela.hdr->sh_name != (unsigned int) -1)
3289 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rela.hdr->sh_name);
3290 }
3291 else
3292 d->rela.idx = 0;
3293 }
3294
3295 elf_shstrtab_sec (abfd) = section_number++;
3296 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->shstrtab_hdr.sh_name);
3297 elf_elfheader (abfd)->e_shstrndx = elf_shstrtab_sec (abfd);
3298
3299 need_symtab = (bfd_get_symcount (abfd) > 0
3300 || (link_info == NULL
3301 && ((abfd->flags & (EXEC_P | DYNAMIC | HAS_RELOC))
3302 == HAS_RELOC)));
3303 if (need_symtab)
3304 {
3305 elf_onesymtab (abfd) = section_number++;
3306 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->symtab_hdr.sh_name);
3307 if (section_number > ((SHN_LORESERVE - 2) & 0xFFFF))
3308 {
3309 elf_symtab_shndx (abfd) = section_number++;
3310 t->symtab_shndx_hdr.sh_name
3311 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
3312 ".symtab_shndx", FALSE);
3313 if (t->symtab_shndx_hdr.sh_name == (unsigned int) -1)
3314 return FALSE;
3315 }
3316 elf_strtab_sec (abfd) = section_number++;
3317 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->strtab_hdr.sh_name);
3318 }
3319
3320 if (section_number >= SHN_LORESERVE)
3321 {
3322 _bfd_error_handler (_("%B: too many sections: %u"),
3323 abfd, section_number);
3324 return FALSE;
3325 }
3326
3327 elf_numsections (abfd) = section_number;
3328 elf_elfheader (abfd)->e_shnum = section_number;
3329
3330 /* Set up the list of section header pointers, in agreement with the
3331 indices. */
3332 i_shdrp = (Elf_Internal_Shdr **) bfd_zalloc2 (abfd, section_number,
3333 sizeof (Elf_Internal_Shdr *));
3334 if (i_shdrp == NULL)
3335 return FALSE;
3336
3337 i_shdrp[0] = (Elf_Internal_Shdr *) bfd_zalloc (abfd,
3338 sizeof (Elf_Internal_Shdr));
3339 if (i_shdrp[0] == NULL)
3340 {
3341 bfd_release (abfd, i_shdrp);
3342 return FALSE;
3343 }
3344
3345 elf_elfsections (abfd) = i_shdrp;
3346
3347 i_shdrp[elf_shstrtab_sec (abfd)] = &t->shstrtab_hdr;
3348 if (need_symtab)
3349 {
3350 i_shdrp[elf_onesymtab (abfd)] = &t->symtab_hdr;
3351 if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
3352 {
3353 i_shdrp[elf_symtab_shndx (abfd)] = &t->symtab_shndx_hdr;
3354 t->symtab_shndx_hdr.sh_link = elf_onesymtab (abfd);
3355 }
3356 i_shdrp[elf_strtab_sec (abfd)] = &t->strtab_hdr;
3357 t->symtab_hdr.sh_link = elf_strtab_sec (abfd);
3358 }
3359
3360 for (sec = abfd->sections; sec; sec = sec->next)
3361 {
3362 asection *s;
3363
3364 d = elf_section_data (sec);
3365
3366 i_shdrp[d->this_idx] = &d->this_hdr;
3367 if (d->rel.idx != 0)
3368 i_shdrp[d->rel.idx] = d->rel.hdr;
3369 if (d->rela.idx != 0)
3370 i_shdrp[d->rela.idx] = d->rela.hdr;
3371
3372 /* Fill in the sh_link and sh_info fields while we're at it. */
3373
3374 /* sh_link of a reloc section is the section index of the symbol
3375 table. sh_info is the section index of the section to which
3376 the relocation entries apply. */
3377 if (d->rel.idx != 0)
3378 {
3379 d->rel.hdr->sh_link = elf_onesymtab (abfd);
3380 d->rel.hdr->sh_info = d->this_idx;
3381 d->rel.hdr->sh_flags |= SHF_INFO_LINK;
3382 }
3383 if (d->rela.idx != 0)
3384 {
3385 d->rela.hdr->sh_link = elf_onesymtab (abfd);
3386 d->rela.hdr->sh_info = d->this_idx;
3387 d->rela.hdr->sh_flags |= SHF_INFO_LINK;
3388 }
3389
3390 /* We need to set up sh_link for SHF_LINK_ORDER. */
3391 if ((d->this_hdr.sh_flags & SHF_LINK_ORDER) != 0)
3392 {
3393 s = elf_linked_to_section (sec);
3394 if (s)
3395 {
3396 /* elf_linked_to_section points to the input section. */
3397 if (link_info != NULL)
3398 {
3399 /* Check discarded linkonce section. */
3400 if (discarded_section (s))
3401 {
3402 asection *kept;
3403 (*_bfd_error_handler)
3404 (_("%B: sh_link of section `%A' points to discarded section `%A' of `%B'"),
3405 abfd, d->this_hdr.bfd_section,
3406 s, s->owner);
3407 /* Point to the kept section if it has the same
3408 size as the discarded one. */
3409 kept = _bfd_elf_check_kept_section (s, link_info);
3410 if (kept == NULL)
3411 {
3412 bfd_set_error (bfd_error_bad_value);
3413 return FALSE;
3414 }
3415 s = kept;
3416 }
3417
3418 s = s->output_section;
3419 BFD_ASSERT (s != NULL);
3420 }
3421 else
3422 {
3423 /* Handle objcopy. */
3424 if (s->output_section == NULL)
3425 {
3426 (*_bfd_error_handler)
3427 (_("%B: sh_link of section `%A' points to removed section `%A' of `%B'"),
3428 abfd, d->this_hdr.bfd_section, s, s->owner);
3429 bfd_set_error (bfd_error_bad_value);
3430 return FALSE;
3431 }
3432 s = s->output_section;
3433 }
3434 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3435 }
3436 else
3437 {
3438 /* PR 290:
3439 The Intel C compiler generates SHT_IA_64_UNWIND with
3440 SHF_LINK_ORDER. But it doesn't set the sh_link or
3441 sh_info fields. Hence we could get the situation
3442 where s is NULL. */
3443 const struct elf_backend_data *bed
3444 = get_elf_backend_data (abfd);
3445 if (bed->link_order_error_handler)
3446 bed->link_order_error_handler
3447 (_("%B: warning: sh_link not set for section `%A'"),
3448 abfd, sec);
3449 }
3450 }
3451
3452 switch (d->this_hdr.sh_type)
3453 {
3454 case SHT_REL:
3455 case SHT_RELA:
3456 /* A reloc section which we are treating as a normal BFD
3457 section. sh_link is the section index of the symbol
3458 table. sh_info is the section index of the section to
3459 which the relocation entries apply. We assume that an
3460 allocated reloc section uses the dynamic symbol table.
3461 FIXME: How can we be sure? */
3462 s = bfd_get_section_by_name (abfd, ".dynsym");
3463 if (s != NULL)
3464 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3465
3466 s = get_elf_backend_data (abfd)->get_reloc_section (sec);
3467 if (s != NULL)
3468 {
3469 d->this_hdr.sh_info = elf_section_data (s)->this_idx;
3470 d->this_hdr.sh_flags |= SHF_INFO_LINK;
3471 }
3472 break;
3473
3474 case SHT_STRTAB:
3475 /* We assume that a section named .stab*str is a stabs
3476 string section. We look for a section with the same name
3477 but without the trailing ``str'', and set its sh_link
3478 field to point to this section. */
3479 if (CONST_STRNEQ (sec->name, ".stab")
3480 && strcmp (sec->name + strlen (sec->name) - 3, "str") == 0)
3481 {
3482 size_t len;
3483 char *alc;
3484
3485 len = strlen (sec->name);
3486 alc = (char *) bfd_malloc (len - 2);
3487 if (alc == NULL)
3488 return FALSE;
3489 memcpy (alc, sec->name, len - 3);
3490 alc[len - 3] = '\0';
3491 s = bfd_get_section_by_name (abfd, alc);
3492 free (alc);
3493 if (s != NULL)
3494 {
3495 elf_section_data (s)->this_hdr.sh_link = d->this_idx;
3496
3497 /* This is a .stab section. */
3498 if (elf_section_data (s)->this_hdr.sh_entsize == 0)
3499 elf_section_data (s)->this_hdr.sh_entsize
3500 = 4 + 2 * bfd_get_arch_size (abfd) / 8;
3501 }
3502 }
3503 break;
3504
3505 case SHT_DYNAMIC:
3506 case SHT_DYNSYM:
3507 case SHT_GNU_verneed:
3508 case SHT_GNU_verdef:
3509 /* sh_link is the section header index of the string table
3510 used for the dynamic entries, or the symbol table, or the
3511 version strings. */
3512 s = bfd_get_section_by_name (abfd, ".dynstr");
3513 if (s != NULL)
3514 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3515 break;
3516
3517 case SHT_GNU_LIBLIST:
3518 /* sh_link is the section header index of the prelink library
3519 list used for the dynamic entries, or the symbol table, or
3520 the version strings. */
3521 s = bfd_get_section_by_name (abfd, (sec->flags & SEC_ALLOC)
3522 ? ".dynstr" : ".gnu.libstr");
3523 if (s != NULL)
3524 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3525 break;
3526
3527 case SHT_HASH:
3528 case SHT_GNU_HASH:
3529 case SHT_GNU_versym:
3530 /* sh_link is the section header index of the symbol table
3531 this hash table or version table is for. */
3532 s = bfd_get_section_by_name (abfd, ".dynsym");
3533 if (s != NULL)
3534 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3535 break;
3536
3537 case SHT_GROUP:
3538 d->this_hdr.sh_link = elf_onesymtab (abfd);
3539 }
3540 }
3541
3542 /* Delay setting sh_name to _bfd_elf_write_object_contents so that
3543 _bfd_elf_assign_file_positions_for_non_load can convert DWARF
3544 debug section name from .debug_* to .zdebug_* if needed. */
3545
3546 return TRUE;
3547 }
3548
3549 static bfd_boolean
3550 sym_is_global (bfd *abfd, asymbol *sym)
3551 {
3552 /* If the backend has a special mapping, use it. */
3553 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3554 if (bed->elf_backend_sym_is_global)
3555 return (*bed->elf_backend_sym_is_global) (abfd, sym);
3556
3557 return ((sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE)) != 0
3558 || bfd_is_und_section (bfd_get_section (sym))
3559 || bfd_is_com_section (bfd_get_section (sym)));
3560 }
3561
3562 /* Don't output section symbols for sections that are not going to be
3563 output, that are duplicates or there is no BFD section. */
3564
3565 static bfd_boolean
3566 ignore_section_sym (bfd *abfd, asymbol *sym)
3567 {
3568 elf_symbol_type *type_ptr;
3569
3570 if ((sym->flags & BSF_SECTION_SYM) == 0)
3571 return FALSE;
3572
3573 type_ptr = elf_symbol_from (abfd, sym);
3574 return ((type_ptr != NULL
3575 && type_ptr->internal_elf_sym.st_shndx != 0
3576 && bfd_is_abs_section (sym->section))
3577 || !(sym->section->owner == abfd
3578 || (sym->section->output_section->owner == abfd
3579 && sym->section->output_offset == 0)
3580 || bfd_is_abs_section (sym->section)));
3581 }
3582
3583 /* Map symbol from it's internal number to the external number, moving
3584 all local symbols to be at the head of the list. */
3585
3586 static bfd_boolean
3587 elf_map_symbols (bfd *abfd, unsigned int *pnum_locals)
3588 {
3589 unsigned int symcount = bfd_get_symcount (abfd);
3590 asymbol **syms = bfd_get_outsymbols (abfd);
3591 asymbol **sect_syms;
3592 unsigned int num_locals = 0;
3593 unsigned int num_globals = 0;
3594 unsigned int num_locals2 = 0;
3595 unsigned int num_globals2 = 0;
3596 int max_index = 0;
3597 unsigned int idx;
3598 asection *asect;
3599 asymbol **new_syms;
3600
3601 #ifdef DEBUG
3602 fprintf (stderr, "elf_map_symbols\n");
3603 fflush (stderr);
3604 #endif
3605
3606 for (asect = abfd->sections; asect; asect = asect->next)
3607 {
3608 if (max_index < asect->index)
3609 max_index = asect->index;
3610 }
3611
3612 max_index++;
3613 sect_syms = (asymbol **) bfd_zalloc2 (abfd, max_index, sizeof (asymbol *));
3614 if (sect_syms == NULL)
3615 return FALSE;
3616 elf_section_syms (abfd) = sect_syms;
3617 elf_num_section_syms (abfd) = max_index;
3618
3619 /* Init sect_syms entries for any section symbols we have already
3620 decided to output. */
3621 for (idx = 0; idx < symcount; idx++)
3622 {
3623 asymbol *sym = syms[idx];
3624
3625 if ((sym->flags & BSF_SECTION_SYM) != 0
3626 && sym->value == 0
3627 && !ignore_section_sym (abfd, sym)
3628 && !bfd_is_abs_section (sym->section))
3629 {
3630 asection *sec = sym->section;
3631
3632 if (sec->owner != abfd)
3633 sec = sec->output_section;
3634
3635 sect_syms[sec->index] = syms[idx];
3636 }
3637 }
3638
3639 /* Classify all of the symbols. */
3640 for (idx = 0; idx < symcount; idx++)
3641 {
3642 if (sym_is_global (abfd, syms[idx]))
3643 num_globals++;
3644 else if (!ignore_section_sym (abfd, syms[idx]))
3645 num_locals++;
3646 }
3647
3648 /* We will be adding a section symbol for each normal BFD section. Most
3649 sections will already have a section symbol in outsymbols, but
3650 eg. SHT_GROUP sections will not, and we need the section symbol mapped
3651 at least in that case. */
3652 for (asect = abfd->sections; asect; asect = asect->next)
3653 {
3654 if (sect_syms[asect->index] == NULL)
3655 {
3656 if (!sym_is_global (abfd, asect->symbol))
3657 num_locals++;
3658 else
3659 num_globals++;
3660 }
3661 }
3662
3663 /* Now sort the symbols so the local symbols are first. */
3664 new_syms = (asymbol **) bfd_alloc2 (abfd, num_locals + num_globals,
3665 sizeof (asymbol *));
3666
3667 if (new_syms == NULL)
3668 return FALSE;
3669
3670 for (idx = 0; idx < symcount; idx++)
3671 {
3672 asymbol *sym = syms[idx];
3673 unsigned int i;
3674
3675 if (sym_is_global (abfd, sym))
3676 i = num_locals + num_globals2++;
3677 else if (!ignore_section_sym (abfd, sym))
3678 i = num_locals2++;
3679 else
3680 continue;
3681 new_syms[i] = sym;
3682 sym->udata.i = i + 1;
3683 }
3684 for (asect = abfd->sections; asect; asect = asect->next)
3685 {
3686 if (sect_syms[asect->index] == NULL)
3687 {
3688 asymbol *sym = asect->symbol;
3689 unsigned int i;
3690
3691 sect_syms[asect->index] = sym;
3692 if (!sym_is_global (abfd, sym))
3693 i = num_locals2++;
3694 else
3695 i = num_locals + num_globals2++;
3696 new_syms[i] = sym;
3697 sym->udata.i = i + 1;
3698 }
3699 }
3700
3701 bfd_set_symtab (abfd, new_syms, num_locals + num_globals);
3702
3703 *pnum_locals = num_locals;
3704 return TRUE;
3705 }
3706
3707 /* Align to the maximum file alignment that could be required for any
3708 ELF data structure. */
3709
3710 static inline file_ptr
3711 align_file_position (file_ptr off, int align)
3712 {
3713 return (off + align - 1) & ~(align - 1);
3714 }
3715
3716 /* Assign a file position to a section, optionally aligning to the
3717 required section alignment. */
3718
3719 file_ptr
3720 _bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr *i_shdrp,
3721 file_ptr offset,
3722 bfd_boolean align)
3723 {
3724 if (align && i_shdrp->sh_addralign > 1)
3725 offset = BFD_ALIGN (offset, i_shdrp->sh_addralign);
3726 i_shdrp->sh_offset = offset;
3727 if (i_shdrp->bfd_section != NULL)
3728 i_shdrp->bfd_section->filepos = offset;
3729 if (i_shdrp->sh_type != SHT_NOBITS)
3730 offset += i_shdrp->sh_size;
3731 return offset;
3732 }
3733
3734 /* Compute the file positions we are going to put the sections at, and
3735 otherwise prepare to begin writing out the ELF file. If LINK_INFO
3736 is not NULL, this is being called by the ELF backend linker. */
3737
3738 bfd_boolean
3739 _bfd_elf_compute_section_file_positions (bfd *abfd,
3740 struct bfd_link_info *link_info)
3741 {
3742 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3743 struct fake_section_arg fsargs;
3744 bfd_boolean failed;
3745 struct bfd_strtab_hash *strtab = NULL;
3746 Elf_Internal_Shdr *shstrtab_hdr;
3747 bfd_boolean need_symtab;
3748
3749 if (abfd->output_has_begun)
3750 return TRUE;
3751
3752 /* Do any elf backend specific processing first. */
3753 if (bed->elf_backend_begin_write_processing)
3754 (*bed->elf_backend_begin_write_processing) (abfd, link_info);
3755
3756 if (! prep_headers (abfd))
3757 return FALSE;
3758
3759 /* Post process the headers if necessary. */
3760 (*bed->elf_backend_post_process_headers) (abfd, link_info);
3761
3762 fsargs.failed = FALSE;
3763 fsargs.link_info = link_info;
3764 bfd_map_over_sections (abfd, elf_fake_sections, &fsargs);
3765 if (fsargs.failed)
3766 return FALSE;
3767
3768 if (!assign_section_numbers (abfd, link_info))
3769 return FALSE;
3770
3771 /* The backend linker builds symbol table information itself. */
3772 need_symtab = (link_info == NULL
3773 && (bfd_get_symcount (abfd) > 0
3774 || ((abfd->flags & (EXEC_P | DYNAMIC | HAS_RELOC))
3775 == HAS_RELOC)));
3776 if (need_symtab)
3777 {
3778 /* Non-zero if doing a relocatable link. */
3779 int relocatable_p = ! (abfd->flags & (EXEC_P | DYNAMIC));
3780
3781 if (! swap_out_syms (abfd, &strtab, relocatable_p))
3782 return FALSE;
3783 }
3784
3785 failed = FALSE;
3786 if (link_info == NULL)
3787 {
3788 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
3789 if (failed)
3790 return FALSE;
3791 }
3792
3793 shstrtab_hdr = &elf_tdata (abfd)->shstrtab_hdr;
3794 /* sh_name was set in prep_headers. */
3795 shstrtab_hdr->sh_type = SHT_STRTAB;
3796 shstrtab_hdr->sh_flags = 0;
3797 shstrtab_hdr->sh_addr = 0;
3798 shstrtab_hdr->sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
3799 shstrtab_hdr->sh_entsize = 0;
3800 shstrtab_hdr->sh_link = 0;
3801 shstrtab_hdr->sh_info = 0;
3802 /* sh_offset is set in _bfd_elf_assign_file_positions_for_non_load. */
3803 shstrtab_hdr->sh_addralign = 1;
3804
3805 if (!assign_file_positions_except_relocs (abfd, link_info))
3806 return FALSE;
3807
3808 if (need_symtab)
3809 {
3810 file_ptr off;
3811 Elf_Internal_Shdr *hdr;
3812
3813 off = elf_next_file_pos (abfd);
3814
3815 hdr = &elf_tdata (abfd)->symtab_hdr;
3816 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3817
3818 hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
3819 if (hdr->sh_size != 0)
3820 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3821
3822 hdr = &elf_tdata (abfd)->strtab_hdr;
3823 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3824
3825 elf_next_file_pos (abfd) = off;
3826
3827 /* Now that we know where the .strtab section goes, write it
3828 out. */
3829 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
3830 || ! _bfd_stringtab_emit (abfd, strtab))
3831 return FALSE;
3832 _bfd_stringtab_free (strtab);
3833 }
3834
3835 abfd->output_has_begun = TRUE;
3836
3837 return TRUE;
3838 }
3839
3840 /* Make an initial estimate of the size of the program header. If we
3841 get the number wrong here, we'll redo section placement. */
3842
3843 static bfd_size_type
3844 get_program_header_size (bfd *abfd, struct bfd_link_info *info)
3845 {
3846 size_t segs;
3847 asection *s;
3848 const struct elf_backend_data *bed;
3849
3850 /* Assume we will need exactly two PT_LOAD segments: one for text
3851 and one for data. */
3852 segs = 2;
3853
3854 s = bfd_get_section_by_name (abfd, ".interp");
3855 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3856 {
3857 /* If we have a loadable interpreter section, we need a
3858 PT_INTERP segment. In this case, assume we also need a
3859 PT_PHDR segment, although that may not be true for all
3860 targets. */
3861 segs += 2;
3862 }
3863
3864 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
3865 {
3866 /* We need a PT_DYNAMIC segment. */
3867 ++segs;
3868 }
3869
3870 if (info != NULL && info->relro)
3871 {
3872 /* We need a PT_GNU_RELRO segment. */
3873 ++segs;
3874 }
3875
3876 if (elf_eh_frame_hdr (abfd))
3877 {
3878 /* We need a PT_GNU_EH_FRAME segment. */
3879 ++segs;
3880 }
3881
3882 if (elf_stack_flags (abfd))
3883 {
3884 /* We need a PT_GNU_STACK segment. */
3885 ++segs;
3886 }
3887
3888 for (s = abfd->sections; s != NULL; s = s->next)
3889 {
3890 if ((s->flags & SEC_LOAD) != 0
3891 && CONST_STRNEQ (s->name, ".note"))
3892 {
3893 /* We need a PT_NOTE segment. */
3894 ++segs;
3895 /* Try to create just one PT_NOTE segment
3896 for all adjacent loadable .note* sections.
3897 gABI requires that within a PT_NOTE segment
3898 (and also inside of each SHT_NOTE section)
3899 each note is padded to a multiple of 4 size,
3900 so we check whether the sections are correctly
3901 aligned. */
3902 if (s->alignment_power == 2)
3903 while (s->next != NULL
3904 && s->next->alignment_power == 2
3905 && (s->next->flags & SEC_LOAD) != 0
3906 && CONST_STRNEQ (s->next->name, ".note"))
3907 s = s->next;
3908 }
3909 }
3910
3911 for (s = abfd->sections; s != NULL; s = s->next)
3912 {
3913 if (s->flags & SEC_THREAD_LOCAL)
3914 {
3915 /* We need a PT_TLS segment. */
3916 ++segs;
3917 break;
3918 }
3919 }
3920
3921 /* Let the backend count up any program headers it might need. */
3922 bed = get_elf_backend_data (abfd);
3923 if (bed->elf_backend_additional_program_headers)
3924 {
3925 int a;
3926
3927 a = (*bed->elf_backend_additional_program_headers) (abfd, info);
3928 if (a == -1)
3929 abort ();
3930 segs += a;
3931 }
3932
3933 return segs * bed->s->sizeof_phdr;
3934 }
3935
3936 /* Find the segment that contains the output_section of section. */
3937
3938 Elf_Internal_Phdr *
3939 _bfd_elf_find_segment_containing_section (bfd * abfd, asection * section)
3940 {
3941 struct elf_segment_map *m;
3942 Elf_Internal_Phdr *p;
3943
3944 for (m = elf_seg_map (abfd), p = elf_tdata (abfd)->phdr;
3945 m != NULL;
3946 m = m->next, p++)
3947 {
3948 int i;
3949
3950 for (i = m->count - 1; i >= 0; i--)
3951 if (m->sections[i] == section)
3952 return p;
3953 }
3954
3955 return NULL;
3956 }
3957
3958 /* Create a mapping from a set of sections to a program segment. */
3959
3960 static struct elf_segment_map *
3961 make_mapping (bfd *abfd,
3962 asection **sections,
3963 unsigned int from,
3964 unsigned int to,
3965 bfd_boolean phdr)
3966 {
3967 struct elf_segment_map *m;
3968 unsigned int i;
3969 asection **hdrpp;
3970 bfd_size_type amt;
3971
3972 amt = sizeof (struct elf_segment_map);
3973 amt += (to - from - 1) * sizeof (asection *);
3974 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
3975 if (m == NULL)
3976 return NULL;
3977 m->next = NULL;
3978 m->p_type = PT_LOAD;
3979 for (i = from, hdrpp = sections + from; i < to; i++, hdrpp++)
3980 m->sections[i - from] = *hdrpp;
3981 m->count = to - from;
3982
3983 if (from == 0 && phdr)
3984 {
3985 /* Include the headers in the first PT_LOAD segment. */
3986 m->includes_filehdr = 1;
3987 m->includes_phdrs = 1;
3988 }
3989
3990 return m;
3991 }
3992
3993 /* Create the PT_DYNAMIC segment, which includes DYNSEC. Returns NULL
3994 on failure. */
3995
3996 struct elf_segment_map *
3997 _bfd_elf_make_dynamic_segment (bfd *abfd, asection *dynsec)
3998 {
3999 struct elf_segment_map *m;
4000
4001 m = (struct elf_segment_map *) bfd_zalloc (abfd,
4002 sizeof (struct elf_segment_map));
4003 if (m == NULL)
4004 return NULL;
4005 m->next = NULL;
4006 m->p_type = PT_DYNAMIC;
4007 m->count = 1;
4008 m->sections[0] = dynsec;
4009
4010 return m;
4011 }
4012
4013 /* Possibly add or remove segments from the segment map. */
4014
4015 static bfd_boolean
4016 elf_modify_segment_map (bfd *abfd,
4017 struct bfd_link_info *info,
4018 bfd_boolean remove_empty_load)
4019 {
4020 struct elf_segment_map **m;
4021 const struct elf_backend_data *bed;
4022
4023 /* The placement algorithm assumes that non allocated sections are
4024 not in PT_LOAD segments. We ensure this here by removing such
4025 sections from the segment map. We also remove excluded
4026 sections. Finally, any PT_LOAD segment without sections is
4027 removed. */
4028 m = &elf_seg_map (abfd);
4029 while (*m)
4030 {
4031 unsigned int i, new_count;
4032
4033 for (new_count = 0, i = 0; i < (*m)->count; i++)
4034 {
4035 if (((*m)->sections[i]->flags & SEC_EXCLUDE) == 0
4036 && (((*m)->sections[i]->flags & SEC_ALLOC) != 0
4037 || (*m)->p_type != PT_LOAD))
4038 {
4039 (*m)->sections[new_count] = (*m)->sections[i];
4040 new_count++;
4041 }
4042 }
4043 (*m)->count = new_count;
4044
4045 if (remove_empty_load && (*m)->p_type == PT_LOAD && (*m)->count == 0)
4046 *m = (*m)->next;
4047 else
4048 m = &(*m)->next;
4049 }
4050
4051 bed = get_elf_backend_data (abfd);
4052 if (bed->elf_backend_modify_segment_map != NULL)
4053 {
4054 if (!(*bed->elf_backend_modify_segment_map) (abfd, info))
4055 return FALSE;
4056 }
4057
4058 return TRUE;
4059 }
4060
4061 /* Set up a mapping from BFD sections to program segments. */
4062
4063 bfd_boolean
4064 _bfd_elf_map_sections_to_segments (bfd *abfd, struct bfd_link_info *info)
4065 {
4066 unsigned int count;
4067 struct elf_segment_map *m;
4068 asection **sections = NULL;
4069 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4070 bfd_boolean no_user_phdrs;
4071
4072 no_user_phdrs = elf_seg_map (abfd) == NULL;
4073
4074 if (info != NULL)
4075 info->user_phdrs = !no_user_phdrs;
4076
4077 if (no_user_phdrs && bfd_count_sections (abfd) != 0)
4078 {
4079 asection *s;
4080 unsigned int i;
4081 struct elf_segment_map *mfirst;
4082 struct elf_segment_map **pm;
4083 asection *last_hdr;
4084 bfd_vma last_size;
4085 unsigned int phdr_index;
4086 bfd_vma maxpagesize;
4087 asection **hdrpp;
4088 bfd_boolean phdr_in_segment = TRUE;
4089 bfd_boolean writable;
4090 int tls_count = 0;
4091 asection *first_tls = NULL;
4092 asection *dynsec, *eh_frame_hdr;
4093 bfd_size_type amt;
4094 bfd_vma addr_mask, wrap_to = 0;
4095
4096 /* Select the allocated sections, and sort them. */
4097
4098 sections = (asection **) bfd_malloc2 (bfd_count_sections (abfd),
4099 sizeof (asection *));
4100 if (sections == NULL)
4101 goto error_return;
4102
4103 /* Calculate top address, avoiding undefined behaviour of shift
4104 left operator when shift count is equal to size of type
4105 being shifted. */
4106 addr_mask = ((bfd_vma) 1 << (bfd_arch_bits_per_address (abfd) - 1)) - 1;
4107 addr_mask = (addr_mask << 1) + 1;
4108
4109 i = 0;
4110 for (s = abfd->sections; s != NULL; s = s->next)
4111 {
4112 if ((s->flags & SEC_ALLOC) != 0)
4113 {
4114 sections[i] = s;
4115 ++i;
4116 /* A wrapping section potentially clashes with header. */
4117 if (((s->lma + s->size) & addr_mask) < (s->lma & addr_mask))
4118 wrap_to = (s->lma + s->size) & addr_mask;
4119 }
4120 }
4121 BFD_ASSERT (i <= bfd_count_sections (abfd));
4122 count = i;
4123
4124 qsort (sections, (size_t) count, sizeof (asection *), elf_sort_sections);
4125
4126 /* Build the mapping. */
4127
4128 mfirst = NULL;
4129 pm = &mfirst;
4130
4131 /* If we have a .interp section, then create a PT_PHDR segment for
4132 the program headers and a PT_INTERP segment for the .interp
4133 section. */
4134 s = bfd_get_section_by_name (abfd, ".interp");
4135 if (s != NULL && (s->flags & SEC_LOAD) != 0)
4136 {
4137 amt = sizeof (struct elf_segment_map);
4138 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4139 if (m == NULL)
4140 goto error_return;
4141 m->next = NULL;
4142 m->p_type = PT_PHDR;
4143 /* FIXME: UnixWare and Solaris set PF_X, Irix 5 does not. */
4144 m->p_flags = PF_R | PF_X;
4145 m->p_flags_valid = 1;
4146 m->includes_phdrs = 1;
4147
4148 *pm = m;
4149 pm = &m->next;
4150
4151 amt = sizeof (struct elf_segment_map);
4152 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4153 if (m == NULL)
4154 goto error_return;
4155 m->next = NULL;
4156 m->p_type = PT_INTERP;
4157 m->count = 1;
4158 m->sections[0] = s;
4159
4160 *pm = m;
4161 pm = &m->next;
4162 }
4163
4164 /* Look through the sections. We put sections in the same program
4165 segment when the start of the second section can be placed within
4166 a few bytes of the end of the first section. */
4167 last_hdr = NULL;
4168 last_size = 0;
4169 phdr_index = 0;
4170 maxpagesize = bed->maxpagesize;
4171 /* PR 17512: file: c8455299.
4172 Avoid divide-by-zero errors later on.
4173 FIXME: Should we abort if the maxpagesize is zero ? */
4174 if (maxpagesize == 0)
4175 maxpagesize = 1;
4176 writable = FALSE;
4177 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
4178 if (dynsec != NULL
4179 && (dynsec->flags & SEC_LOAD) == 0)
4180 dynsec = NULL;
4181
4182 /* Deal with -Ttext or something similar such that the first section
4183 is not adjacent to the program headers. This is an
4184 approximation, since at this point we don't know exactly how many
4185 program headers we will need. */
4186 if (count > 0)
4187 {
4188 bfd_size_type phdr_size = elf_program_header_size (abfd);
4189
4190 if (phdr_size == (bfd_size_type) -1)
4191 phdr_size = get_program_header_size (abfd, info);
4192 phdr_size += bed->s->sizeof_ehdr;
4193 if ((abfd->flags & D_PAGED) == 0
4194 || (sections[0]->lma & addr_mask) < phdr_size
4195 || ((sections[0]->lma & addr_mask) % maxpagesize
4196 < phdr_size % maxpagesize)
4197 || (sections[0]->lma & addr_mask & -maxpagesize) < wrap_to)
4198 phdr_in_segment = FALSE;
4199 }
4200
4201 for (i = 0, hdrpp = sections; i < count; i++, hdrpp++)
4202 {
4203 asection *hdr;
4204 bfd_boolean new_segment;
4205
4206 hdr = *hdrpp;
4207
4208 /* See if this section and the last one will fit in the same
4209 segment. */
4210
4211 if (last_hdr == NULL)
4212 {
4213 /* If we don't have a segment yet, then we don't need a new
4214 one (we build the last one after this loop). */
4215 new_segment = FALSE;
4216 }
4217 else if (last_hdr->lma - last_hdr->vma != hdr->lma - hdr->vma)
4218 {
4219 /* If this section has a different relation between the
4220 virtual address and the load address, then we need a new
4221 segment. */
4222 new_segment = TRUE;
4223 }
4224 else if (hdr->lma < last_hdr->lma + last_size
4225 || last_hdr->lma + last_size < last_hdr->lma)
4226 {
4227 /* If this section has a load address that makes it overlap
4228 the previous section, then we need a new segment. */
4229 new_segment = TRUE;
4230 }
4231 /* In the next test we have to be careful when last_hdr->lma is close
4232 to the end of the address space. If the aligned address wraps
4233 around to the start of the address space, then there are no more
4234 pages left in memory and it is OK to assume that the current
4235 section can be included in the current segment. */
4236 else if ((BFD_ALIGN (last_hdr->lma + last_size, maxpagesize) + maxpagesize
4237 > last_hdr->lma)
4238 && (BFD_ALIGN (last_hdr->lma + last_size, maxpagesize) + maxpagesize
4239 <= hdr->lma))
4240 {
4241 /* If putting this section in this segment would force us to
4242 skip a page in the segment, then we need a new segment. */
4243 new_segment = TRUE;
4244 }
4245 else if ((last_hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0
4246 && (hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) != 0)
4247 {
4248 /* We don't want to put a loadable section after a
4249 nonloadable section in the same segment.
4250 Consider .tbss sections as loadable for this purpose. */
4251 new_segment = TRUE;
4252 }
4253 else if ((abfd->flags & D_PAGED) == 0)
4254 {
4255 /* If the file is not demand paged, which means that we
4256 don't require the sections to be correctly aligned in the
4257 file, then there is no other reason for a new segment. */
4258 new_segment = FALSE;
4259 }
4260 else if (! writable
4261 && (hdr->flags & SEC_READONLY) == 0
4262 && (((last_hdr->lma + last_size - 1) & -maxpagesize)
4263 != (hdr->lma & -maxpagesize)))
4264 {
4265 /* We don't want to put a writable section in a read only
4266 segment, unless they are on the same page in memory
4267 anyhow. We already know that the last section does not
4268 bring us past the current section on the page, so the
4269 only case in which the new section is not on the same
4270 page as the previous section is when the previous section
4271 ends precisely on a page boundary. */
4272 new_segment = TRUE;
4273 }
4274 else
4275 {
4276 /* Otherwise, we can use the same segment. */
4277 new_segment = FALSE;
4278 }
4279
4280 /* Allow interested parties a chance to override our decision. */
4281 if (last_hdr != NULL
4282 && info != NULL
4283 && info->callbacks->override_segment_assignment != NULL)
4284 new_segment
4285 = info->callbacks->override_segment_assignment (info, abfd, hdr,
4286 last_hdr,
4287 new_segment);
4288
4289 if (! new_segment)
4290 {
4291 if ((hdr->flags & SEC_READONLY) == 0)
4292 writable = TRUE;
4293 last_hdr = hdr;
4294 /* .tbss sections effectively have zero size. */
4295 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD))
4296 != SEC_THREAD_LOCAL)
4297 last_size = hdr->size;
4298 else
4299 last_size = 0;
4300 continue;
4301 }
4302
4303 /* We need a new program segment. We must create a new program
4304 header holding all the sections from phdr_index until hdr. */
4305
4306 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
4307 if (m == NULL)
4308 goto error_return;
4309
4310 *pm = m;
4311 pm = &m->next;
4312
4313 if ((hdr->flags & SEC_READONLY) == 0)
4314 writable = TRUE;
4315 else
4316 writable = FALSE;
4317
4318 last_hdr = hdr;
4319 /* .tbss sections effectively have zero size. */
4320 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) != SEC_THREAD_LOCAL)
4321 last_size = hdr->size;
4322 else
4323 last_size = 0;
4324 phdr_index = i;
4325 phdr_in_segment = FALSE;
4326 }
4327
4328 /* Create a final PT_LOAD program segment, but not if it's just
4329 for .tbss. */
4330 if (last_hdr != NULL
4331 && (i - phdr_index != 1
4332 || ((last_hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD))
4333 != SEC_THREAD_LOCAL)))
4334 {
4335 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
4336 if (m == NULL)
4337 goto error_return;
4338
4339 *pm = m;
4340 pm = &m->next;
4341 }
4342
4343 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
4344 if (dynsec != NULL)
4345 {
4346 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
4347 if (m == NULL)
4348 goto error_return;
4349 *pm = m;
4350 pm = &m->next;
4351 }
4352
4353 /* For each batch of consecutive loadable .note sections,
4354 add a PT_NOTE segment. We don't use bfd_get_section_by_name,
4355 because if we link together nonloadable .note sections and
4356 loadable .note sections, we will generate two .note sections
4357 in the output file. FIXME: Using names for section types is
4358 bogus anyhow. */
4359 for (s = abfd->sections; s != NULL; s = s->next)
4360 {
4361 if ((s->flags & SEC_LOAD) != 0
4362 && CONST_STRNEQ (s->name, ".note"))
4363 {
4364 asection *s2;
4365
4366 count = 1;
4367 amt = sizeof (struct elf_segment_map);
4368 if (s->alignment_power == 2)
4369 for (s2 = s; s2->next != NULL; s2 = s2->next)
4370 {
4371 if (s2->next->alignment_power == 2
4372 && (s2->next->flags & SEC_LOAD) != 0
4373 && CONST_STRNEQ (s2->next->name, ".note")
4374 && align_power (s2->lma + s2->size, 2)
4375 == s2->next->lma)
4376 count++;
4377 else
4378 break;
4379 }
4380 amt += (count - 1) * sizeof (asection *);
4381 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4382 if (m == NULL)
4383 goto error_return;
4384 m->next = NULL;
4385 m->p_type = PT_NOTE;
4386 m->count = count;
4387 while (count > 1)
4388 {
4389 m->sections[m->count - count--] = s;
4390 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
4391 s = s->next;
4392 }
4393 m->sections[m->count - 1] = s;
4394 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
4395 *pm = m;
4396 pm = &m->next;
4397 }
4398 if (s->flags & SEC_THREAD_LOCAL)
4399 {
4400 if (! tls_count)
4401 first_tls = s;
4402 tls_count++;
4403 }
4404 }
4405
4406 /* If there are any SHF_TLS output sections, add PT_TLS segment. */
4407 if (tls_count > 0)
4408 {
4409 amt = sizeof (struct elf_segment_map);
4410 amt += (tls_count - 1) * sizeof (asection *);
4411 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4412 if (m == NULL)
4413 goto error_return;
4414 m->next = NULL;
4415 m->p_type = PT_TLS;
4416 m->count = tls_count;
4417 /* Mandated PF_R. */
4418 m->p_flags = PF_R;
4419 m->p_flags_valid = 1;
4420 s = first_tls;
4421 for (i = 0; i < (unsigned int) tls_count; ++i)
4422 {
4423 if ((s->flags & SEC_THREAD_LOCAL) == 0)
4424 {
4425 _bfd_error_handler
4426 (_("%B: TLS sections are not adjacent:"), abfd);
4427 s = first_tls;
4428 i = 0;
4429 while (i < (unsigned int) tls_count)
4430 {
4431 if ((s->flags & SEC_THREAD_LOCAL) != 0)
4432 {
4433 _bfd_error_handler (_(" TLS: %A"), s);
4434 i++;
4435 }
4436 else
4437 _bfd_error_handler (_(" non-TLS: %A"), s);
4438 s = s->next;
4439 }
4440 bfd_set_error (bfd_error_bad_value);
4441 goto error_return;
4442 }
4443 m->sections[i] = s;
4444 s = s->next;
4445 }
4446
4447 *pm = m;
4448 pm = &m->next;
4449 }
4450
4451 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
4452 segment. */
4453 eh_frame_hdr = elf_eh_frame_hdr (abfd);
4454 if (eh_frame_hdr != NULL
4455 && (eh_frame_hdr->output_section->flags & SEC_LOAD) != 0)
4456 {
4457 amt = sizeof (struct elf_segment_map);
4458 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4459 if (m == NULL)
4460 goto error_return;
4461 m->next = NULL;
4462 m->p_type = PT_GNU_EH_FRAME;
4463 m->count = 1;
4464 m->sections[0] = eh_frame_hdr->output_section;
4465
4466 *pm = m;
4467 pm = &m->next;
4468 }
4469
4470 if (elf_stack_flags (abfd))
4471 {
4472 amt = sizeof (struct elf_segment_map);
4473 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4474 if (m == NULL)
4475 goto error_return;
4476 m->next = NULL;
4477 m->p_type = PT_GNU_STACK;
4478 m->p_flags = elf_stack_flags (abfd);
4479 m->p_align = bed->stack_align;
4480 m->p_flags_valid = 1;
4481 m->p_align_valid = m->p_align != 0;
4482 if (info->stacksize > 0)
4483 {
4484 m->p_size = info->stacksize;
4485 m->p_size_valid = 1;
4486 }
4487
4488 *pm = m;
4489 pm = &m->next;
4490 }
4491
4492 if (info != NULL && info->relro)
4493 {
4494 for (m = mfirst; m != NULL; m = m->next)
4495 {
4496 if (m->p_type == PT_LOAD
4497 && m->count != 0
4498 && m->sections[0]->vma >= info->relro_start
4499 && m->sections[0]->vma < info->relro_end)
4500 {
4501 i = m->count;
4502 while (--i != (unsigned) -1)
4503 if ((m->sections[i]->flags & (SEC_LOAD | SEC_HAS_CONTENTS))
4504 == (SEC_LOAD | SEC_HAS_CONTENTS))
4505 break;
4506
4507 if (i != (unsigned) -1)
4508 break;
4509 }
4510 }
4511
4512 /* Make a PT_GNU_RELRO segment only when it isn't empty. */
4513 if (m != NULL)
4514 {
4515 amt = sizeof (struct elf_segment_map);
4516 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4517 if (m == NULL)
4518 goto error_return;
4519 m->next = NULL;
4520 m->p_type = PT_GNU_RELRO;
4521 m->p_flags = PF_R;
4522 m->p_flags_valid = 1;
4523
4524 *pm = m;
4525 pm = &m->next;
4526 }
4527 }
4528
4529 free (sections);
4530 elf_seg_map (abfd) = mfirst;
4531 }
4532
4533 if (!elf_modify_segment_map (abfd, info, no_user_phdrs))
4534 return FALSE;
4535
4536 for (count = 0, m = elf_seg_map (abfd); m != NULL; m = m->next)
4537 ++count;
4538 elf_program_header_size (abfd) = count * bed->s->sizeof_phdr;
4539
4540 return TRUE;
4541
4542 error_return:
4543 if (sections != NULL)
4544 free (sections);
4545 return FALSE;
4546 }
4547
4548 /* Sort sections by address. */
4549
4550 static int
4551 elf_sort_sections (const void *arg1, const void *arg2)
4552 {
4553 const asection *sec1 = *(const asection **) arg1;
4554 const asection *sec2 = *(const asection **) arg2;
4555 bfd_size_type size1, size2;
4556
4557 /* Sort by LMA first, since this is the address used to
4558 place the section into a segment. */
4559 if (sec1->lma < sec2->lma)
4560 return -1;
4561 else if (sec1->lma > sec2->lma)
4562 return 1;
4563
4564 /* Then sort by VMA. Normally the LMA and the VMA will be
4565 the same, and this will do nothing. */
4566 if (sec1->vma < sec2->vma)
4567 return -1;
4568 else if (sec1->vma > sec2->vma)
4569 return 1;
4570
4571 /* Put !SEC_LOAD sections after SEC_LOAD ones. */
4572
4573 #define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0)
4574
4575 if (TOEND (sec1))
4576 {
4577 if (TOEND (sec2))
4578 {
4579 /* If the indicies are the same, do not return 0
4580 here, but continue to try the next comparison. */
4581 if (sec1->target_index - sec2->target_index != 0)
4582 return sec1->target_index - sec2->target_index;
4583 }
4584 else
4585 return 1;
4586 }
4587 else if (TOEND (sec2))
4588 return -1;
4589
4590 #undef TOEND
4591
4592 /* Sort by size, to put zero sized sections
4593 before others at the same address. */
4594
4595 size1 = (sec1->flags & SEC_LOAD) ? sec1->size : 0;
4596 size2 = (sec2->flags & SEC_LOAD) ? sec2->size : 0;
4597
4598 if (size1 < size2)
4599 return -1;
4600 if (size1 > size2)
4601 return 1;
4602
4603 return sec1->target_index - sec2->target_index;
4604 }
4605
4606 /* Ian Lance Taylor writes:
4607
4608 We shouldn't be using % with a negative signed number. That's just
4609 not good. We have to make sure either that the number is not
4610 negative, or that the number has an unsigned type. When the types
4611 are all the same size they wind up as unsigned. When file_ptr is a
4612 larger signed type, the arithmetic winds up as signed long long,
4613 which is wrong.
4614
4615 What we're trying to say here is something like ``increase OFF by
4616 the least amount that will cause it to be equal to the VMA modulo
4617 the page size.'' */
4618 /* In other words, something like:
4619
4620 vma_offset = m->sections[0]->vma % bed->maxpagesize;
4621 off_offset = off % bed->maxpagesize;
4622 if (vma_offset < off_offset)
4623 adjustment = vma_offset + bed->maxpagesize - off_offset;
4624 else
4625 adjustment = vma_offset - off_offset;
4626
4627 which can can be collapsed into the expression below. */
4628
4629 static file_ptr
4630 vma_page_aligned_bias (bfd_vma vma, ufile_ptr off, bfd_vma maxpagesize)
4631 {
4632 /* PR binutils/16199: Handle an alignment of zero. */
4633 if (maxpagesize == 0)
4634 maxpagesize = 1;
4635 return ((vma - off) % maxpagesize);
4636 }
4637
4638 static void
4639 print_segment_map (const struct elf_segment_map *m)
4640 {
4641 unsigned int j;
4642 const char *pt = get_segment_type (m->p_type);
4643 char buf[32];
4644
4645 if (pt == NULL)
4646 {
4647 if (m->p_type >= PT_LOPROC && m->p_type <= PT_HIPROC)
4648 sprintf (buf, "LOPROC+%7.7x",
4649 (unsigned int) (m->p_type - PT_LOPROC));
4650 else if (m->p_type >= PT_LOOS && m->p_type <= PT_HIOS)
4651 sprintf (buf, "LOOS+%7.7x",
4652 (unsigned int) (m->p_type - PT_LOOS));
4653 else
4654 snprintf (buf, sizeof (buf), "%8.8x",
4655 (unsigned int) m->p_type);
4656 pt = buf;
4657 }
4658 fflush (stdout);
4659 fprintf (stderr, "%s:", pt);
4660 for (j = 0; j < m->count; j++)
4661 fprintf (stderr, " %s", m->sections [j]->name);
4662 putc ('\n',stderr);
4663 fflush (stderr);
4664 }
4665
4666 static bfd_boolean
4667 write_zeros (bfd *abfd, file_ptr pos, bfd_size_type len)
4668 {
4669 void *buf;
4670 bfd_boolean ret;
4671
4672 if (bfd_seek (abfd, pos, SEEK_SET) != 0)
4673 return FALSE;
4674 buf = bfd_zmalloc (len);
4675 if (buf == NULL)
4676 return FALSE;
4677 ret = bfd_bwrite (buf, len, abfd) == len;
4678 free (buf);
4679 return ret;
4680 }
4681
4682 /* Assign file positions to the sections based on the mapping from
4683 sections to segments. This function also sets up some fields in
4684 the file header. */
4685
4686 static bfd_boolean
4687 assign_file_positions_for_load_sections (bfd *abfd,
4688 struct bfd_link_info *link_info)
4689 {
4690 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4691 struct elf_segment_map *m;
4692 Elf_Internal_Phdr *phdrs;
4693 Elf_Internal_Phdr *p;
4694 file_ptr off;
4695 bfd_size_type maxpagesize;
4696 unsigned int alloc;
4697 unsigned int i, j;
4698 bfd_vma header_pad = 0;
4699
4700 if (link_info == NULL
4701 && !_bfd_elf_map_sections_to_segments (abfd, link_info))
4702 return FALSE;
4703
4704 alloc = 0;
4705 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
4706 {
4707 ++alloc;
4708 if (m->header_size)
4709 header_pad = m->header_size;
4710 }
4711
4712 if (alloc)
4713 {
4714 elf_elfheader (abfd)->e_phoff = bed->s->sizeof_ehdr;
4715 elf_elfheader (abfd)->e_phentsize = bed->s->sizeof_phdr;
4716 }
4717 else
4718 {
4719 /* PR binutils/12467. */
4720 elf_elfheader (abfd)->e_phoff = 0;
4721 elf_elfheader (abfd)->e_phentsize = 0;
4722 }
4723
4724 elf_elfheader (abfd)->e_phnum = alloc;
4725
4726 if (elf_program_header_size (abfd) == (bfd_size_type) -1)
4727 elf_program_header_size (abfd) = alloc * bed->s->sizeof_phdr;
4728 else
4729 BFD_ASSERT (elf_program_header_size (abfd)
4730 >= alloc * bed->s->sizeof_phdr);
4731
4732 if (alloc == 0)
4733 {
4734 elf_next_file_pos (abfd) = bed->s->sizeof_ehdr;
4735 return TRUE;
4736 }
4737
4738 /* We're writing the size in elf_program_header_size (abfd),
4739 see assign_file_positions_except_relocs, so make sure we have
4740 that amount allocated, with trailing space cleared.
4741 The variable alloc contains the computed need, while
4742 elf_program_header_size (abfd) contains the size used for the
4743 layout.
4744 See ld/emultempl/elf-generic.em:gld${EMULATION_NAME}_map_segments
4745 where the layout is forced to according to a larger size in the
4746 last iterations for the testcase ld-elf/header. */
4747 BFD_ASSERT (elf_program_header_size (abfd) % bed->s->sizeof_phdr
4748 == 0);
4749 phdrs = (Elf_Internal_Phdr *)
4750 bfd_zalloc2 (abfd,
4751 (elf_program_header_size (abfd) / bed->s->sizeof_phdr),
4752 sizeof (Elf_Internal_Phdr));
4753 elf_tdata (abfd)->phdr = phdrs;
4754 if (phdrs == NULL)
4755 return FALSE;
4756
4757 maxpagesize = 1;
4758 if ((abfd->flags & D_PAGED) != 0)
4759 maxpagesize = bed->maxpagesize;
4760
4761 off = bed->s->sizeof_ehdr;
4762 off += alloc * bed->s->sizeof_phdr;
4763 if (header_pad < (bfd_vma) off)
4764 header_pad = 0;
4765 else
4766 header_pad -= off;
4767 off += header_pad;
4768
4769 for (m = elf_seg_map (abfd), p = phdrs, j = 0;
4770 m != NULL;
4771 m = m->next, p++, j++)
4772 {
4773 asection **secpp;
4774 bfd_vma off_adjust;
4775 bfd_boolean no_contents;
4776
4777 /* If elf_segment_map is not from map_sections_to_segments, the
4778 sections may not be correctly ordered. NOTE: sorting should
4779 not be done to the PT_NOTE section of a corefile, which may
4780 contain several pseudo-sections artificially created by bfd.
4781 Sorting these pseudo-sections breaks things badly. */
4782 if (m->count > 1
4783 && !(elf_elfheader (abfd)->e_type == ET_CORE
4784 && m->p_type == PT_NOTE))
4785 qsort (m->sections, (size_t) m->count, sizeof (asection *),
4786 elf_sort_sections);
4787
4788 /* An ELF segment (described by Elf_Internal_Phdr) may contain a
4789 number of sections with contents contributing to both p_filesz
4790 and p_memsz, followed by a number of sections with no contents
4791 that just contribute to p_memsz. In this loop, OFF tracks next
4792 available file offset for PT_LOAD and PT_NOTE segments. */
4793 p->p_type = m->p_type;
4794 p->p_flags = m->p_flags;
4795
4796 if (m->count == 0)
4797 p->p_vaddr = 0;
4798 else
4799 p->p_vaddr = m->sections[0]->vma - m->p_vaddr_offset;
4800
4801 if (m->p_paddr_valid)
4802 p->p_paddr = m->p_paddr;
4803 else if (m->count == 0)
4804 p->p_paddr = 0;
4805 else
4806 p->p_paddr = m->sections[0]->lma - m->p_vaddr_offset;
4807
4808 if (p->p_type == PT_LOAD
4809 && (abfd->flags & D_PAGED) != 0)
4810 {
4811 /* p_align in demand paged PT_LOAD segments effectively stores
4812 the maximum page size. When copying an executable with
4813 objcopy, we set m->p_align from the input file. Use this
4814 value for maxpagesize rather than bed->maxpagesize, which
4815 may be different. Note that we use maxpagesize for PT_TLS
4816 segment alignment later in this function, so we are relying
4817 on at least one PT_LOAD segment appearing before a PT_TLS
4818 segment. */
4819 if (m->p_align_valid)
4820 maxpagesize = m->p_align;
4821
4822 p->p_align = maxpagesize;
4823 }
4824 else if (m->p_align_valid)
4825 p->p_align = m->p_align;
4826 else if (m->count == 0)
4827 p->p_align = 1 << bed->s->log_file_align;
4828 else
4829 p->p_align = 0;
4830
4831 no_contents = FALSE;
4832 off_adjust = 0;
4833 if (p->p_type == PT_LOAD
4834 && m->count > 0)
4835 {
4836 bfd_size_type align;
4837 unsigned int align_power = 0;
4838
4839 if (m->p_align_valid)
4840 align = p->p_align;
4841 else
4842 {
4843 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4844 {
4845 unsigned int secalign;
4846
4847 secalign = bfd_get_section_alignment (abfd, *secpp);
4848 if (secalign > align_power)
4849 align_power = secalign;
4850 }
4851 align = (bfd_size_type) 1 << align_power;
4852 if (align < maxpagesize)
4853 align = maxpagesize;
4854 }
4855
4856 for (i = 0; i < m->count; i++)
4857 if ((m->sections[i]->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
4858 /* If we aren't making room for this section, then
4859 it must be SHT_NOBITS regardless of what we've
4860 set via struct bfd_elf_special_section. */
4861 elf_section_type (m->sections[i]) = SHT_NOBITS;
4862
4863 /* Find out whether this segment contains any loadable
4864 sections. */
4865 no_contents = TRUE;
4866 for (i = 0; i < m->count; i++)
4867 if (elf_section_type (m->sections[i]) != SHT_NOBITS)
4868 {
4869 no_contents = FALSE;
4870 break;
4871 }
4872
4873 off_adjust = vma_page_aligned_bias (p->p_vaddr, off, align);
4874 off += off_adjust;
4875 if (no_contents)
4876 {
4877 /* We shouldn't need to align the segment on disk since
4878 the segment doesn't need file space, but the gABI
4879 arguably requires the alignment and glibc ld.so
4880 checks it. So to comply with the alignment
4881 requirement but not waste file space, we adjust
4882 p_offset for just this segment. (OFF_ADJUST is
4883 subtracted from OFF later.) This may put p_offset
4884 past the end of file, but that shouldn't matter. */
4885 }
4886 else
4887 off_adjust = 0;
4888 }
4889 /* Make sure the .dynamic section is the first section in the
4890 PT_DYNAMIC segment. */
4891 else if (p->p_type == PT_DYNAMIC
4892 && m->count > 1
4893 && strcmp (m->sections[0]->name, ".dynamic") != 0)
4894 {
4895 _bfd_error_handler
4896 (_("%B: The first section in the PT_DYNAMIC segment is not the .dynamic section"),
4897 abfd);
4898 bfd_set_error (bfd_error_bad_value);
4899 return FALSE;
4900 }
4901 /* Set the note section type to SHT_NOTE. */
4902 else if (p->p_type == PT_NOTE)
4903 for (i = 0; i < m->count; i++)
4904 elf_section_type (m->sections[i]) = SHT_NOTE;
4905
4906 p->p_offset = 0;
4907 p->p_filesz = 0;
4908 p->p_memsz = 0;
4909
4910 if (m->includes_filehdr)
4911 {
4912 if (!m->p_flags_valid)
4913 p->p_flags |= PF_R;
4914 p->p_filesz = bed->s->sizeof_ehdr;
4915 p->p_memsz = bed->s->sizeof_ehdr;
4916 if (m->count > 0)
4917 {
4918 if (p->p_vaddr < (bfd_vma) off)
4919 {
4920 (*_bfd_error_handler)
4921 (_("%B: Not enough room for program headers, try linking with -N"),
4922 abfd);
4923 bfd_set_error (bfd_error_bad_value);
4924 return FALSE;
4925 }
4926
4927 p->p_vaddr -= off;
4928 if (!m->p_paddr_valid)
4929 p->p_paddr -= off;
4930 }
4931 }
4932
4933 if (m->includes_phdrs)
4934 {
4935 if (!m->p_flags_valid)
4936 p->p_flags |= PF_R;
4937
4938 if (!m->includes_filehdr)
4939 {
4940 p->p_offset = bed->s->sizeof_ehdr;
4941
4942 if (m->count > 0)
4943 {
4944 p->p_vaddr -= off - p->p_offset;
4945 if (!m->p_paddr_valid)
4946 p->p_paddr -= off - p->p_offset;
4947 }
4948 }
4949
4950 p->p_filesz += alloc * bed->s->sizeof_phdr;
4951 p->p_memsz += alloc * bed->s->sizeof_phdr;
4952 if (m->count)
4953 {
4954 p->p_filesz += header_pad;
4955 p->p_memsz += header_pad;
4956 }
4957 }
4958
4959 if (p->p_type == PT_LOAD
4960 || (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core))
4961 {
4962 if (!m->includes_filehdr && !m->includes_phdrs)
4963 p->p_offset = off;
4964 else
4965 {
4966 file_ptr adjust;
4967
4968 adjust = off - (p->p_offset + p->p_filesz);
4969 if (!no_contents)
4970 p->p_filesz += adjust;
4971 p->p_memsz += adjust;
4972 }
4973 }
4974
4975 /* Set up p_filesz, p_memsz, p_align and p_flags from the section
4976 maps. Set filepos for sections in PT_LOAD segments, and in
4977 core files, for sections in PT_NOTE segments.
4978 assign_file_positions_for_non_load_sections will set filepos
4979 for other sections and update p_filesz for other segments. */
4980 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4981 {
4982 asection *sec;
4983 bfd_size_type align;
4984 Elf_Internal_Shdr *this_hdr;
4985
4986 sec = *secpp;
4987 this_hdr = &elf_section_data (sec)->this_hdr;
4988 align = (bfd_size_type) 1 << bfd_get_section_alignment (abfd, sec);
4989
4990 if ((p->p_type == PT_LOAD
4991 || p->p_type == PT_TLS)
4992 && (this_hdr->sh_type != SHT_NOBITS
4993 || ((this_hdr->sh_flags & SHF_ALLOC) != 0
4994 && ((this_hdr->sh_flags & SHF_TLS) == 0
4995 || p->p_type == PT_TLS))))
4996 {
4997 bfd_vma p_start = p->p_paddr;
4998 bfd_vma p_end = p_start + p->p_memsz;
4999 bfd_vma s_start = sec->lma;
5000 bfd_vma adjust = s_start - p_end;
5001
5002 if (adjust != 0
5003 && (s_start < p_end
5004 || p_end < p_start))
5005 {
5006 (*_bfd_error_handler)
5007 (_("%B: section %A lma %#lx adjusted to %#lx"), abfd, sec,
5008 (unsigned long) s_start, (unsigned long) p_end);
5009 adjust = 0;
5010 sec->lma = p_end;
5011 }
5012 p->p_memsz += adjust;
5013
5014 if (this_hdr->sh_type != SHT_NOBITS)
5015 {
5016 if (p->p_filesz + adjust < p->p_memsz)
5017 {
5018 /* We have a PROGBITS section following NOBITS ones.
5019 Allocate file space for the NOBITS section(s) and
5020 zero it. */
5021 adjust = p->p_memsz - p->p_filesz;
5022 if (!write_zeros (abfd, off, adjust))
5023 return FALSE;
5024 }
5025 off += adjust;
5026 p->p_filesz += adjust;
5027 }
5028 }
5029
5030 if (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core)
5031 {
5032 /* The section at i == 0 is the one that actually contains
5033 everything. */
5034 if (i == 0)
5035 {
5036 this_hdr->sh_offset = sec->filepos = off;
5037 off += this_hdr->sh_size;
5038 p->p_filesz = this_hdr->sh_size;
5039 p->p_memsz = 0;
5040 p->p_align = 1;
5041 }
5042 else
5043 {
5044 /* The rest are fake sections that shouldn't be written. */
5045 sec->filepos = 0;
5046 sec->size = 0;
5047 sec->flags = 0;
5048 continue;
5049 }
5050 }
5051 else
5052 {
5053 if (p->p_type == PT_LOAD)
5054 {
5055 this_hdr->sh_offset = sec->filepos = off;
5056 if (this_hdr->sh_type != SHT_NOBITS)
5057 off += this_hdr->sh_size;
5058 }
5059 else if (this_hdr->sh_type == SHT_NOBITS
5060 && (this_hdr->sh_flags & SHF_TLS) != 0
5061 && this_hdr->sh_offset == 0)
5062 {
5063 /* This is a .tbss section that didn't get a PT_LOAD.
5064 (See _bfd_elf_map_sections_to_segments "Create a
5065 final PT_LOAD".) Set sh_offset to the value it
5066 would have if we had created a zero p_filesz and
5067 p_memsz PT_LOAD header for the section. This
5068 also makes the PT_TLS header have the same
5069 p_offset value. */
5070 bfd_vma adjust = vma_page_aligned_bias (this_hdr->sh_addr,
5071 off, align);
5072 this_hdr->sh_offset = sec->filepos = off + adjust;
5073 }
5074
5075 if (this_hdr->sh_type != SHT_NOBITS)
5076 {
5077 p->p_filesz += this_hdr->sh_size;
5078 /* A load section without SHF_ALLOC is something like
5079 a note section in a PT_NOTE segment. These take
5080 file space but are not loaded into memory. */
5081 if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
5082 p->p_memsz += this_hdr->sh_size;
5083 }
5084 else if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
5085 {
5086 if (p->p_type == PT_TLS)
5087 p->p_memsz += this_hdr->sh_size;
5088
5089 /* .tbss is special. It doesn't contribute to p_memsz of
5090 normal segments. */
5091 else if ((this_hdr->sh_flags & SHF_TLS) == 0)
5092 p->p_memsz += this_hdr->sh_size;
5093 }
5094
5095 if (align > p->p_align
5096 && !m->p_align_valid
5097 && (p->p_type != PT_LOAD
5098 || (abfd->flags & D_PAGED) == 0))
5099 p->p_align = align;
5100 }
5101
5102 if (!m->p_flags_valid)
5103 {
5104 p->p_flags |= PF_R;
5105 if ((this_hdr->sh_flags & SHF_EXECINSTR) != 0)
5106 p->p_flags |= PF_X;
5107 if ((this_hdr->sh_flags & SHF_WRITE) != 0)
5108 p->p_flags |= PF_W;
5109 }
5110 }
5111
5112 off -= off_adjust;
5113
5114 /* Check that all sections are in a PT_LOAD segment.
5115 Don't check funky gdb generated core files. */
5116 if (p->p_type == PT_LOAD && bfd_get_format (abfd) != bfd_core)
5117 {
5118 bfd_boolean check_vma = TRUE;
5119
5120 for (i = 1; i < m->count; i++)
5121 if (m->sections[i]->vma == m->sections[i - 1]->vma
5122 && ELF_SECTION_SIZE (&(elf_section_data (m->sections[i])
5123 ->this_hdr), p) != 0
5124 && ELF_SECTION_SIZE (&(elf_section_data (m->sections[i - 1])
5125 ->this_hdr), p) != 0)
5126 {
5127 /* Looks like we have overlays packed into the segment. */
5128 check_vma = FALSE;
5129 break;
5130 }
5131
5132 for (i = 0; i < m->count; i++)
5133 {
5134 Elf_Internal_Shdr *this_hdr;
5135 asection *sec;
5136
5137 sec = m->sections[i];
5138 this_hdr = &(elf_section_data(sec)->this_hdr);
5139 if (!ELF_SECTION_IN_SEGMENT_1 (this_hdr, p, check_vma, 0)
5140 && !ELF_TBSS_SPECIAL (this_hdr, p))
5141 {
5142 (*_bfd_error_handler)
5143 (_("%B: section `%A' can't be allocated in segment %d"),
5144 abfd, sec, j);
5145 print_segment_map (m);
5146 }
5147 }
5148 }
5149 }
5150
5151 elf_next_file_pos (abfd) = off;
5152 return TRUE;
5153 }
5154
5155 /* Assign file positions for the other sections. */
5156
5157 static bfd_boolean
5158 assign_file_positions_for_non_load_sections (bfd *abfd,
5159 struct bfd_link_info *link_info)
5160 {
5161 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5162 Elf_Internal_Shdr **i_shdrpp;
5163 Elf_Internal_Shdr **hdrpp, **end_hdrpp;
5164 Elf_Internal_Phdr *phdrs;
5165 Elf_Internal_Phdr *p;
5166 struct elf_segment_map *m;
5167 struct elf_segment_map *hdrs_segment;
5168 bfd_vma filehdr_vaddr, filehdr_paddr;
5169 bfd_vma phdrs_vaddr, phdrs_paddr;
5170 file_ptr off;
5171 unsigned int count;
5172
5173 i_shdrpp = elf_elfsections (abfd);
5174 end_hdrpp = i_shdrpp + elf_numsections (abfd);
5175 off = elf_next_file_pos (abfd);
5176 for (hdrpp = i_shdrpp + 1; hdrpp < end_hdrpp; hdrpp++)
5177 {
5178 Elf_Internal_Shdr *hdr;
5179
5180 hdr = *hdrpp;
5181 if (hdr->bfd_section != NULL
5182 && (hdr->bfd_section->filepos != 0
5183 || (hdr->sh_type == SHT_NOBITS
5184 && hdr->contents == NULL)))
5185 BFD_ASSERT (hdr->sh_offset == hdr->bfd_section->filepos);
5186 else if ((hdr->sh_flags & SHF_ALLOC) != 0)
5187 {
5188 if (hdr->sh_size != 0)
5189 (*_bfd_error_handler)
5190 (_("%B: warning: allocated section `%s' not in segment"),
5191 abfd,
5192 (hdr->bfd_section == NULL
5193 ? "*unknown*"
5194 : hdr->bfd_section->name));
5195 /* We don't need to page align empty sections. */
5196 if ((abfd->flags & D_PAGED) != 0 && hdr->sh_size != 0)
5197 off += vma_page_aligned_bias (hdr->sh_addr, off,
5198 bed->maxpagesize);
5199 else
5200 off += vma_page_aligned_bias (hdr->sh_addr, off,
5201 hdr->sh_addralign);
5202 off = _bfd_elf_assign_file_position_for_section (hdr, off,
5203 FALSE);
5204 }
5205 else if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
5206 && hdr->bfd_section == NULL)
5207 || (hdr->bfd_section != NULL
5208 && (hdr->bfd_section->flags & SEC_ELF_COMPRESS))
5209 /* Compress DWARF debug sections. */
5210 || hdr == i_shdrpp[elf_onesymtab (abfd)]
5211 || hdr == i_shdrpp[elf_symtab_shndx (abfd)]
5212 || hdr == i_shdrpp[elf_strtab_sec (abfd)]
5213 || hdr == i_shdrpp[elf_shstrtab_sec (abfd)])
5214 hdr->sh_offset = -1;
5215 else
5216 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
5217 }
5218
5219 /* Now that we have set the section file positions, we can set up
5220 the file positions for the non PT_LOAD segments. */
5221 count = 0;
5222 filehdr_vaddr = 0;
5223 filehdr_paddr = 0;
5224 phdrs_vaddr = bed->maxpagesize + bed->s->sizeof_ehdr;
5225 phdrs_paddr = 0;
5226 hdrs_segment = NULL;
5227 phdrs = elf_tdata (abfd)->phdr;
5228 for (m = elf_seg_map (abfd), p = phdrs; m != NULL; m = m->next, p++)
5229 {
5230 ++count;
5231 if (p->p_type != PT_LOAD)
5232 continue;
5233
5234 if (m->includes_filehdr)
5235 {
5236 filehdr_vaddr = p->p_vaddr;
5237 filehdr_paddr = p->p_paddr;
5238 }
5239 if (m->includes_phdrs)
5240 {
5241 phdrs_vaddr = p->p_vaddr;
5242 phdrs_paddr = p->p_paddr;
5243 if (m->includes_filehdr)
5244 {
5245 hdrs_segment = m;
5246 phdrs_vaddr += bed->s->sizeof_ehdr;
5247 phdrs_paddr += bed->s->sizeof_ehdr;
5248 }
5249 }
5250 }
5251
5252 if (hdrs_segment != NULL && link_info != NULL)
5253 {
5254 /* There is a segment that contains both the file headers and the
5255 program headers, so provide a symbol __ehdr_start pointing there.
5256 A program can use this to examine itself robustly. */
5257
5258 struct elf_link_hash_entry *hash
5259 = elf_link_hash_lookup (elf_hash_table (link_info), "__ehdr_start",
5260 FALSE, FALSE, TRUE);
5261 /* If the symbol was referenced and not defined, define it. */
5262 if (hash != NULL
5263 && (hash->root.type == bfd_link_hash_new
5264 || hash->root.type == bfd_link_hash_undefined
5265 || hash->root.type == bfd_link_hash_undefweak
5266 || hash->root.type == bfd_link_hash_common))
5267 {
5268 asection *s = NULL;
5269 if (hdrs_segment->count != 0)
5270 /* The segment contains sections, so use the first one. */
5271 s = hdrs_segment->sections[0];
5272 else
5273 /* Use the first (i.e. lowest-addressed) section in any segment. */
5274 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
5275 if (m->count != 0)
5276 {
5277 s = m->sections[0];
5278 break;
5279 }
5280
5281 if (s != NULL)
5282 {
5283 hash->root.u.def.value = filehdr_vaddr - s->vma;
5284 hash->root.u.def.section = s;
5285 }
5286 else
5287 {
5288 hash->root.u.def.value = filehdr_vaddr;
5289 hash->root.u.def.section = bfd_abs_section_ptr;
5290 }
5291
5292 hash->root.type = bfd_link_hash_defined;
5293 hash->def_regular = 1;
5294 hash->non_elf = 0;
5295 }
5296 }
5297
5298 for (m = elf_seg_map (abfd), p = phdrs; m != NULL; m = m->next, p++)
5299 {
5300 if (p->p_type == PT_GNU_RELRO)
5301 {
5302 const Elf_Internal_Phdr *lp;
5303 struct elf_segment_map *lm;
5304
5305 if (link_info != NULL)
5306 {
5307 /* During linking the range of the RELRO segment is passed
5308 in link_info. */
5309 for (lm = elf_seg_map (abfd), lp = phdrs;
5310 lm != NULL;
5311 lm = lm->next, lp++)
5312 {
5313 if (lp->p_type == PT_LOAD
5314 && lp->p_vaddr < link_info->relro_end
5315 && lm->count != 0
5316 && lm->sections[0]->vma >= link_info->relro_start)
5317 break;
5318 }
5319
5320 BFD_ASSERT (lm != NULL);
5321 }
5322 else
5323 {
5324 /* Otherwise we are copying an executable or shared
5325 library, but we need to use the same linker logic. */
5326 for (lp = phdrs; lp < phdrs + count; ++lp)
5327 {
5328 if (lp->p_type == PT_LOAD
5329 && lp->p_paddr == p->p_paddr)
5330 break;
5331 }
5332 }
5333
5334 if (lp < phdrs + count)
5335 {
5336 p->p_vaddr = lp->p_vaddr;
5337 p->p_paddr = lp->p_paddr;
5338 p->p_offset = lp->p_offset;
5339 if (link_info != NULL)
5340 p->p_filesz = link_info->relro_end - lp->p_vaddr;
5341 else if (m->p_size_valid)
5342 p->p_filesz = m->p_size;
5343 else
5344 abort ();
5345 p->p_memsz = p->p_filesz;
5346 /* Preserve the alignment and flags if they are valid. The
5347 gold linker generates RW/4 for the PT_GNU_RELRO section.
5348 It is better for objcopy/strip to honor these attributes
5349 otherwise gdb will choke when using separate debug files.
5350 */
5351 if (!m->p_align_valid)
5352 p->p_align = 1;
5353 if (!m->p_flags_valid)
5354 p->p_flags = (lp->p_flags & ~PF_W);
5355 }
5356 else
5357 {
5358 memset (p, 0, sizeof *p);
5359 p->p_type = PT_NULL;
5360 }
5361 }
5362 else if (p->p_type == PT_GNU_STACK)
5363 {
5364 if (m->p_size_valid)
5365 p->p_memsz = m->p_size;
5366 }
5367 else if (m->count != 0)
5368 {
5369 unsigned int i;
5370 if (p->p_type != PT_LOAD
5371 && (p->p_type != PT_NOTE
5372 || bfd_get_format (abfd) != bfd_core))
5373 {
5374 if (m->includes_filehdr || m->includes_phdrs)
5375 {
5376 /* PR 17512: file: 2195325e. */
5377 (*_bfd_error_handler)
5378 (_("%B: warning: non-load segment includes file header and/or program header"),
5379 abfd);
5380 return FALSE;
5381 }
5382
5383 p->p_filesz = 0;
5384 p->p_offset = m->sections[0]->filepos;
5385 for (i = m->count; i-- != 0;)
5386 {
5387 asection *sect = m->sections[i];
5388 Elf_Internal_Shdr *hdr = &elf_section_data (sect)->this_hdr;
5389 if (hdr->sh_type != SHT_NOBITS)
5390 {
5391 p->p_filesz = (sect->filepos - m->sections[0]->filepos
5392 + hdr->sh_size);
5393 break;
5394 }
5395 }
5396 }
5397 }
5398 else if (m->includes_filehdr)
5399 {
5400 p->p_vaddr = filehdr_vaddr;
5401 if (! m->p_paddr_valid)
5402 p->p_paddr = filehdr_paddr;
5403 }
5404 else if (m->includes_phdrs)
5405 {
5406 p->p_vaddr = phdrs_vaddr;
5407 if (! m->p_paddr_valid)
5408 p->p_paddr = phdrs_paddr;
5409 }
5410 }
5411
5412 elf_next_file_pos (abfd) = off;
5413
5414 return TRUE;
5415 }
5416
5417 /* Work out the file positions of all the sections. This is called by
5418 _bfd_elf_compute_section_file_positions. All the section sizes and
5419 VMAs must be known before this is called.
5420
5421 Reloc sections come in two flavours: Those processed specially as
5422 "side-channel" data attached to a section to which they apply, and
5423 those that bfd doesn't process as relocations. The latter sort are
5424 stored in a normal bfd section by bfd_section_from_shdr. We don't
5425 consider the former sort here, unless they form part of the loadable
5426 image. Reloc sections not assigned here will be handled later by
5427 assign_file_positions_for_relocs.
5428
5429 We also don't set the positions of the .symtab and .strtab here. */
5430
5431 static bfd_boolean
5432 assign_file_positions_except_relocs (bfd *abfd,
5433 struct bfd_link_info *link_info)
5434 {
5435 struct elf_obj_tdata *tdata = elf_tdata (abfd);
5436 Elf_Internal_Ehdr *i_ehdrp = elf_elfheader (abfd);
5437 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5438
5439 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
5440 && bfd_get_format (abfd) != bfd_core)
5441 {
5442 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
5443 unsigned int num_sec = elf_numsections (abfd);
5444 Elf_Internal_Shdr **hdrpp;
5445 unsigned int i;
5446 file_ptr off;
5447
5448 /* Start after the ELF header. */
5449 off = i_ehdrp->e_ehsize;
5450
5451 /* We are not creating an executable, which means that we are
5452 not creating a program header, and that the actual order of
5453 the sections in the file is unimportant. */
5454 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
5455 {
5456 Elf_Internal_Shdr *hdr;
5457
5458 hdr = *hdrpp;
5459 if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
5460 && hdr->bfd_section == NULL)
5461 || (hdr->bfd_section != NULL
5462 && (hdr->bfd_section->flags & SEC_ELF_COMPRESS))
5463 /* Compress DWARF debug sections. */
5464 || i == elf_onesymtab (abfd)
5465 || i == elf_symtab_shndx (abfd)
5466 || i == elf_strtab_sec (abfd)
5467 || i == elf_shstrtab_sec (abfd))
5468 {
5469 hdr->sh_offset = -1;
5470 }
5471 else
5472 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
5473 }
5474
5475 elf_next_file_pos (abfd) = off;
5476 }
5477 else
5478 {
5479 unsigned int alloc;
5480
5481 /* Assign file positions for the loaded sections based on the
5482 assignment of sections to segments. */
5483 if (!assign_file_positions_for_load_sections (abfd, link_info))
5484 return FALSE;
5485
5486 /* And for non-load sections. */
5487 if (!assign_file_positions_for_non_load_sections (abfd, link_info))
5488 return FALSE;
5489
5490 if (bed->elf_backend_modify_program_headers != NULL)
5491 {
5492 if (!(*bed->elf_backend_modify_program_headers) (abfd, link_info))
5493 return FALSE;
5494 }
5495
5496 /* Set e_type in ELF header to ET_EXEC for -pie -Ttext-segment=. */
5497 if (link_info != NULL
5498 && link_info->executable
5499 && link_info->shared)
5500 {
5501 unsigned int num_segments = elf_elfheader (abfd)->e_phnum;
5502 Elf_Internal_Phdr *segment = elf_tdata (abfd)->phdr;
5503 Elf_Internal_Phdr *end_segment = &segment[num_segments];
5504
5505 /* Find the lowest p_vaddr in PT_LOAD segments. */
5506 bfd_vma p_vaddr = (bfd_vma) -1;
5507 for (; segment < end_segment; segment++)
5508 if (segment->p_type == PT_LOAD && p_vaddr > segment->p_vaddr)
5509 p_vaddr = segment->p_vaddr;
5510
5511 /* Set e_type to ET_EXEC if the lowest p_vaddr in PT_LOAD
5512 segments is non-zero. */
5513 if (p_vaddr)
5514 i_ehdrp->e_type = ET_EXEC;
5515 }
5516
5517 /* Write out the program headers. */
5518 alloc = elf_program_header_size (abfd) / bed->s->sizeof_phdr;
5519 if (bfd_seek (abfd, (bfd_signed_vma) bed->s->sizeof_ehdr, SEEK_SET) != 0
5520 || bed->s->write_out_phdrs (abfd, tdata->phdr, alloc) != 0)
5521 return FALSE;
5522 }
5523
5524 return TRUE;
5525 }
5526
5527 static bfd_boolean
5528 prep_headers (bfd *abfd)
5529 {
5530 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form. */
5531 struct elf_strtab_hash *shstrtab;
5532 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5533
5534 i_ehdrp = elf_elfheader (abfd);
5535
5536 shstrtab = _bfd_elf_strtab_init ();
5537 if (shstrtab == NULL)
5538 return FALSE;
5539
5540 elf_shstrtab (abfd) = shstrtab;
5541
5542 i_ehdrp->e_ident[EI_MAG0] = ELFMAG0;
5543 i_ehdrp->e_ident[EI_MAG1] = ELFMAG1;
5544 i_ehdrp->e_ident[EI_MAG2] = ELFMAG2;
5545 i_ehdrp->e_ident[EI_MAG3] = ELFMAG3;
5546
5547 i_ehdrp->e_ident[EI_CLASS] = bed->s->elfclass;
5548 i_ehdrp->e_ident[EI_DATA] =
5549 bfd_big_endian (abfd) ? ELFDATA2MSB : ELFDATA2LSB;
5550 i_ehdrp->e_ident[EI_VERSION] = bed->s->ev_current;
5551
5552 if ((abfd->flags & DYNAMIC) != 0)
5553 i_ehdrp->e_type = ET_DYN;
5554 else if ((abfd->flags & EXEC_P) != 0)
5555 i_ehdrp->e_type = ET_EXEC;
5556 else if (bfd_get_format (abfd) == bfd_core)
5557 i_ehdrp->e_type = ET_CORE;
5558 else
5559 i_ehdrp->e_type = ET_REL;
5560
5561 switch (bfd_get_arch (abfd))
5562 {
5563 case bfd_arch_unknown:
5564 i_ehdrp->e_machine = EM_NONE;
5565 break;
5566
5567 /* There used to be a long list of cases here, each one setting
5568 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
5569 in the corresponding bfd definition. To avoid duplication,
5570 the switch was removed. Machines that need special handling
5571 can generally do it in elf_backend_final_write_processing(),
5572 unless they need the information earlier than the final write.
5573 Such need can generally be supplied by replacing the tests for
5574 e_machine with the conditions used to determine it. */
5575 default:
5576 i_ehdrp->e_machine = bed->elf_machine_code;
5577 }
5578
5579 i_ehdrp->e_version = bed->s->ev_current;
5580 i_ehdrp->e_ehsize = bed->s->sizeof_ehdr;
5581
5582 /* No program header, for now. */
5583 i_ehdrp->e_phoff = 0;
5584 i_ehdrp->e_phentsize = 0;
5585 i_ehdrp->e_phnum = 0;
5586
5587 /* Each bfd section is section header entry. */
5588 i_ehdrp->e_entry = bfd_get_start_address (abfd);
5589 i_ehdrp->e_shentsize = bed->s->sizeof_shdr;
5590
5591 /* If we're building an executable, we'll need a program header table. */
5592 if (abfd->flags & EXEC_P)
5593 /* It all happens later. */
5594 ;
5595 else
5596 {
5597 i_ehdrp->e_phentsize = 0;
5598 i_ehdrp->e_phoff = 0;
5599 }
5600
5601 elf_tdata (abfd)->symtab_hdr.sh_name =
5602 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".symtab", FALSE);
5603 elf_tdata (abfd)->strtab_hdr.sh_name =
5604 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".strtab", FALSE);
5605 elf_tdata (abfd)->shstrtab_hdr.sh_name =
5606 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".shstrtab", FALSE);
5607 if (elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
5608 || elf_tdata (abfd)->strtab_hdr.sh_name == (unsigned int) -1
5609 || elf_tdata (abfd)->shstrtab_hdr.sh_name == (unsigned int) -1)
5610 return FALSE;
5611
5612 return TRUE;
5613 }
5614
5615 /* Assign file positions for all the reloc sections which are not part
5616 of the loadable file image, and the file position of section headers. */
5617
5618 static bfd_boolean
5619 _bfd_elf_assign_file_positions_for_non_load (bfd *abfd)
5620 {
5621 file_ptr off;
5622 Elf_Internal_Shdr **shdrpp, **end_shdrpp;
5623 Elf_Internal_Shdr *shdrp;
5624 Elf_Internal_Ehdr *i_ehdrp;
5625 const struct elf_backend_data *bed;
5626
5627 off = elf_next_file_pos (abfd);
5628
5629 shdrpp = elf_elfsections (abfd);
5630 end_shdrpp = shdrpp + elf_numsections (abfd);
5631 for (shdrpp++; shdrpp < end_shdrpp; shdrpp++)
5632 {
5633 shdrp = *shdrpp;
5634 if (shdrp->sh_offset == -1)
5635 {
5636 asection *sec = shdrp->bfd_section;
5637 bfd_boolean is_rel = (shdrp->sh_type == SHT_REL
5638 || shdrp->sh_type == SHT_RELA);
5639 if (is_rel
5640 || (sec != NULL && (sec->flags & SEC_ELF_COMPRESS)))
5641 {
5642 if (!is_rel)
5643 {
5644 const char *name = sec->name;
5645 struct bfd_elf_section_data *d;
5646
5647 /* Compress DWARF debug sections. */
5648 if (!bfd_compress_section (abfd, sec,
5649 shdrp->contents))
5650 return FALSE;
5651
5652 if (sec->compress_status == COMPRESS_SECTION_DONE
5653 && (abfd->flags & BFD_COMPRESS_GABI) == 0)
5654 {
5655 /* If section is compressed with zlib-gnu, convert
5656 section name from .debug_* to .zdebug_*. */
5657 char *new_name
5658 = convert_debug_to_zdebug (abfd, name);
5659 if (new_name == NULL)
5660 return FALSE;
5661 name = new_name;
5662 }
5663 /* Add setion name to section name section. */
5664 if (shdrp->sh_name != (unsigned int) -1)
5665 abort ();
5666 shdrp->sh_name
5667 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
5668 name, FALSE);
5669 d = elf_section_data (sec);
5670
5671 /* Add reloc setion name to section name section. */
5672 if (d->rel.hdr
5673 && !_bfd_elf_set_reloc_sh_name (abfd,
5674 d->rel.hdr,
5675 name, FALSE))
5676 return FALSE;
5677 if (d->rela.hdr
5678 && !_bfd_elf_set_reloc_sh_name (abfd,
5679 d->rela.hdr,
5680 name, FALSE))
5681 return FALSE;
5682
5683 /* Update section size and contents. */
5684 shdrp->sh_size = sec->size;
5685 shdrp->contents = sec->contents;
5686 shdrp->bfd_section->contents = NULL;
5687 }
5688 off = _bfd_elf_assign_file_position_for_section (shdrp,
5689 off,
5690 TRUE);
5691 }
5692 }
5693 }
5694
5695 /* Place section name section after DWARF debug sections have been
5696 compressed. */
5697 _bfd_elf_strtab_finalize (elf_shstrtab (abfd));
5698 shdrp = &elf_tdata (abfd)->shstrtab_hdr;
5699 shdrp->sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
5700 off = _bfd_elf_assign_file_position_for_section (shdrp, off, TRUE);
5701
5702 /* Place the section headers. */
5703 i_ehdrp = elf_elfheader (abfd);
5704 bed = get_elf_backend_data (abfd);
5705 off = align_file_position (off, 1 << bed->s->log_file_align);
5706 i_ehdrp->e_shoff = off;
5707 off += i_ehdrp->e_shnum * i_ehdrp->e_shentsize;
5708 elf_next_file_pos (abfd) = off;
5709
5710 return TRUE;
5711 }
5712
5713 bfd_boolean
5714 _bfd_elf_write_object_contents (bfd *abfd)
5715 {
5716 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5717 Elf_Internal_Shdr **i_shdrp;
5718 bfd_boolean failed;
5719 unsigned int count, num_sec;
5720 struct elf_obj_tdata *t;
5721
5722 if (! abfd->output_has_begun
5723 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
5724 return FALSE;
5725
5726 i_shdrp = elf_elfsections (abfd);
5727
5728 failed = FALSE;
5729 bfd_map_over_sections (abfd, bed->s->write_relocs, &failed);
5730 if (failed)
5731 return FALSE;
5732
5733 if (!_bfd_elf_assign_file_positions_for_non_load (abfd))
5734 return FALSE;
5735
5736 /* After writing the headers, we need to write the sections too... */
5737 num_sec = elf_numsections (abfd);
5738 for (count = 1; count < num_sec; count++)
5739 {
5740 i_shdrp[count]->sh_name
5741 = _bfd_elf_strtab_offset (elf_shstrtab (abfd),
5742 i_shdrp[count]->sh_name);
5743 if (bed->elf_backend_section_processing)
5744 (*bed->elf_backend_section_processing) (abfd, i_shdrp[count]);
5745 if (i_shdrp[count]->contents)
5746 {
5747 bfd_size_type amt = i_shdrp[count]->sh_size;
5748
5749 if (bfd_seek (abfd, i_shdrp[count]->sh_offset, SEEK_SET) != 0
5750 || bfd_bwrite (i_shdrp[count]->contents, amt, abfd) != amt)
5751 return FALSE;
5752 }
5753 }
5754
5755 /* Write out the section header names. */
5756 t = elf_tdata (abfd);
5757 if (elf_shstrtab (abfd) != NULL
5758 && (bfd_seek (abfd, t->shstrtab_hdr.sh_offset, SEEK_SET) != 0
5759 || !_bfd_elf_strtab_emit (abfd, elf_shstrtab (abfd))))
5760 return FALSE;
5761
5762 if (bed->elf_backend_final_write_processing)
5763 (*bed->elf_backend_final_write_processing) (abfd, elf_linker (abfd));
5764
5765 if (!bed->s->write_shdrs_and_ehdr (abfd))
5766 return FALSE;
5767
5768 /* This is last since write_shdrs_and_ehdr can touch i_shdrp[0]. */
5769 if (t->o->build_id.after_write_object_contents != NULL)
5770 return (*t->o->build_id.after_write_object_contents) (abfd);
5771
5772 return TRUE;
5773 }
5774
5775 bfd_boolean
5776 _bfd_elf_write_corefile_contents (bfd *abfd)
5777 {
5778 /* Hopefully this can be done just like an object file. */
5779 return _bfd_elf_write_object_contents (abfd);
5780 }
5781
5782 /* Given a section, search the header to find them. */
5783
5784 unsigned int
5785 _bfd_elf_section_from_bfd_section (bfd *abfd, struct bfd_section *asect)
5786 {
5787 const struct elf_backend_data *bed;
5788 unsigned int sec_index;
5789
5790 if (elf_section_data (asect) != NULL
5791 && elf_section_data (asect)->this_idx != 0)
5792 return elf_section_data (asect)->this_idx;
5793
5794 if (bfd_is_abs_section (asect))
5795 sec_index = SHN_ABS;
5796 else if (bfd_is_com_section (asect))
5797 sec_index = SHN_COMMON;
5798 else if (bfd_is_und_section (asect))
5799 sec_index = SHN_UNDEF;
5800 else
5801 sec_index = SHN_BAD;
5802
5803 bed = get_elf_backend_data (abfd);
5804 if (bed->elf_backend_section_from_bfd_section)
5805 {
5806 int retval = sec_index;
5807
5808 if ((*bed->elf_backend_section_from_bfd_section) (abfd, asect, &retval))
5809 return retval;
5810 }
5811
5812 if (sec_index == SHN_BAD)
5813 bfd_set_error (bfd_error_nonrepresentable_section);
5814
5815 return sec_index;
5816 }
5817
5818 /* Given a BFD symbol, return the index in the ELF symbol table, or -1
5819 on error. */
5820
5821 int
5822 _bfd_elf_symbol_from_bfd_symbol (bfd *abfd, asymbol **asym_ptr_ptr)
5823 {
5824 asymbol *asym_ptr = *asym_ptr_ptr;
5825 int idx;
5826 flagword flags = asym_ptr->flags;
5827
5828 /* When gas creates relocations against local labels, it creates its
5829 own symbol for the section, but does put the symbol into the
5830 symbol chain, so udata is 0. When the linker is generating
5831 relocatable output, this section symbol may be for one of the
5832 input sections rather than the output section. */
5833 if (asym_ptr->udata.i == 0
5834 && (flags & BSF_SECTION_SYM)
5835 && asym_ptr->section)
5836 {
5837 asection *sec;
5838 int indx;
5839
5840 sec = asym_ptr->section;
5841 if (sec->owner != abfd && sec->output_section != NULL)
5842 sec = sec->output_section;
5843 if (sec->owner == abfd
5844 && (indx = sec->index) < elf_num_section_syms (abfd)
5845 && elf_section_syms (abfd)[indx] != NULL)
5846 asym_ptr->udata.i = elf_section_syms (abfd)[indx]->udata.i;
5847 }
5848
5849 idx = asym_ptr->udata.i;
5850
5851 if (idx == 0)
5852 {
5853 /* This case can occur when using --strip-symbol on a symbol
5854 which is used in a relocation entry. */
5855 (*_bfd_error_handler)
5856 (_("%B: symbol `%s' required but not present"),
5857 abfd, bfd_asymbol_name (asym_ptr));
5858 bfd_set_error (bfd_error_no_symbols);
5859 return -1;
5860 }
5861
5862 #if DEBUG & 4
5863 {
5864 fprintf (stderr,
5865 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8lx\n",
5866 (long) asym_ptr, asym_ptr->name, idx, (long) flags);
5867 fflush (stderr);
5868 }
5869 #endif
5870
5871 return idx;
5872 }
5873
5874 /* Rewrite program header information. */
5875
5876 static bfd_boolean
5877 rewrite_elf_program_header (bfd *ibfd, bfd *obfd)
5878 {
5879 Elf_Internal_Ehdr *iehdr;
5880 struct elf_segment_map *map;
5881 struct elf_segment_map *map_first;
5882 struct elf_segment_map **pointer_to_map;
5883 Elf_Internal_Phdr *segment;
5884 asection *section;
5885 unsigned int i;
5886 unsigned int num_segments;
5887 bfd_boolean phdr_included = FALSE;
5888 bfd_boolean p_paddr_valid;
5889 bfd_vma maxpagesize;
5890 struct elf_segment_map *phdr_adjust_seg = NULL;
5891 unsigned int phdr_adjust_num = 0;
5892 const struct elf_backend_data *bed;
5893
5894 bed = get_elf_backend_data (ibfd);
5895 iehdr = elf_elfheader (ibfd);
5896
5897 map_first = NULL;
5898 pointer_to_map = &map_first;
5899
5900 num_segments = elf_elfheader (ibfd)->e_phnum;
5901 maxpagesize = get_elf_backend_data (obfd)->maxpagesize;
5902
5903 /* Returns the end address of the segment + 1. */
5904 #define SEGMENT_END(segment, start) \
5905 (start + (segment->p_memsz > segment->p_filesz \
5906 ? segment->p_memsz : segment->p_filesz))
5907
5908 #define SECTION_SIZE(section, segment) \
5909 (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL)) \
5910 != SEC_THREAD_LOCAL || segment->p_type == PT_TLS) \
5911 ? section->size : 0)
5912
5913 /* Returns TRUE if the given section is contained within
5914 the given segment. VMA addresses are compared. */
5915 #define IS_CONTAINED_BY_VMA(section, segment) \
5916 (section->vma >= segment->p_vaddr \
5917 && (section->vma + SECTION_SIZE (section, segment) \
5918 <= (SEGMENT_END (segment, segment->p_vaddr))))
5919
5920 /* Returns TRUE if the given section is contained within
5921 the given segment. LMA addresses are compared. */
5922 #define IS_CONTAINED_BY_LMA(section, segment, base) \
5923 (section->lma >= base \
5924 && (section->lma + SECTION_SIZE (section, segment) \
5925 <= SEGMENT_END (segment, base)))
5926
5927 /* Handle PT_NOTE segment. */
5928 #define IS_NOTE(p, s) \
5929 (p->p_type == PT_NOTE \
5930 && elf_section_type (s) == SHT_NOTE \
5931 && (bfd_vma) s->filepos >= p->p_offset \
5932 && ((bfd_vma) s->filepos + s->size \
5933 <= p->p_offset + p->p_filesz))
5934
5935 /* Special case: corefile "NOTE" section containing regs, prpsinfo
5936 etc. */
5937 #define IS_COREFILE_NOTE(p, s) \
5938 (IS_NOTE (p, s) \
5939 && bfd_get_format (ibfd) == bfd_core \
5940 && s->vma == 0 \
5941 && s->lma == 0)
5942
5943 /* The complicated case when p_vaddr is 0 is to handle the Solaris
5944 linker, which generates a PT_INTERP section with p_vaddr and
5945 p_memsz set to 0. */
5946 #define IS_SOLARIS_PT_INTERP(p, s) \
5947 (p->p_vaddr == 0 \
5948 && p->p_paddr == 0 \
5949 && p->p_memsz == 0 \
5950 && p->p_filesz > 0 \
5951 && (s->flags & SEC_HAS_CONTENTS) != 0 \
5952 && s->size > 0 \
5953 && (bfd_vma) s->filepos >= p->p_offset \
5954 && ((bfd_vma) s->filepos + s->size \
5955 <= p->p_offset + p->p_filesz))
5956
5957 /* Decide if the given section should be included in the given segment.
5958 A section will be included if:
5959 1. It is within the address space of the segment -- we use the LMA
5960 if that is set for the segment and the VMA otherwise,
5961 2. It is an allocated section or a NOTE section in a PT_NOTE
5962 segment.
5963 3. There is an output section associated with it,
5964 4. The section has not already been allocated to a previous segment.
5965 5. PT_GNU_STACK segments do not include any sections.
5966 6. PT_TLS segment includes only SHF_TLS sections.
5967 7. SHF_TLS sections are only in PT_TLS or PT_LOAD segments.
5968 8. PT_DYNAMIC should not contain empty sections at the beginning
5969 (with the possible exception of .dynamic). */
5970 #define IS_SECTION_IN_INPUT_SEGMENT(section, segment, bed) \
5971 ((((segment->p_paddr \
5972 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr) \
5973 : IS_CONTAINED_BY_VMA (section, segment)) \
5974 && (section->flags & SEC_ALLOC) != 0) \
5975 || IS_NOTE (segment, section)) \
5976 && segment->p_type != PT_GNU_STACK \
5977 && (segment->p_type != PT_TLS \
5978 || (section->flags & SEC_THREAD_LOCAL)) \
5979 && (segment->p_type == PT_LOAD \
5980 || segment->p_type == PT_TLS \
5981 || (section->flags & SEC_THREAD_LOCAL) == 0) \
5982 && (segment->p_type != PT_DYNAMIC \
5983 || SECTION_SIZE (section, segment) > 0 \
5984 || (segment->p_paddr \
5985 ? segment->p_paddr != section->lma \
5986 : segment->p_vaddr != section->vma) \
5987 || (strcmp (bfd_get_section_name (ibfd, section), ".dynamic") \
5988 == 0)) \
5989 && !section->segment_mark)
5990
5991 /* If the output section of a section in the input segment is NULL,
5992 it is removed from the corresponding output segment. */
5993 #define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed) \
5994 (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed) \
5995 && section->output_section != NULL)
5996
5997 /* Returns TRUE iff seg1 starts after the end of seg2. */
5998 #define SEGMENT_AFTER_SEGMENT(seg1, seg2, field) \
5999 (seg1->field >= SEGMENT_END (seg2, seg2->field))
6000
6001 /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both
6002 their VMA address ranges and their LMA address ranges overlap.
6003 It is possible to have overlapping VMA ranges without overlapping LMA
6004 ranges. RedBoot images for example can have both .data and .bss mapped
6005 to the same VMA range, but with the .data section mapped to a different
6006 LMA. */
6007 #define SEGMENT_OVERLAPS(seg1, seg2) \
6008 ( !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr) \
6009 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr)) \
6010 && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr) \
6011 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr)))
6012
6013 /* Initialise the segment mark field. */
6014 for (section = ibfd->sections; section != NULL; section = section->next)
6015 section->segment_mark = FALSE;
6016
6017 /* The Solaris linker creates program headers in which all the
6018 p_paddr fields are zero. When we try to objcopy or strip such a
6019 file, we get confused. Check for this case, and if we find it
6020 don't set the p_paddr_valid fields. */
6021 p_paddr_valid = FALSE;
6022 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6023 i < num_segments;
6024 i++, segment++)
6025 if (segment->p_paddr != 0)
6026 {
6027 p_paddr_valid = TRUE;
6028 break;
6029 }
6030
6031 /* Scan through the segments specified in the program header
6032 of the input BFD. For this first scan we look for overlaps
6033 in the loadable segments. These can be created by weird
6034 parameters to objcopy. Also, fix some solaris weirdness. */
6035 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6036 i < num_segments;
6037 i++, segment++)
6038 {
6039 unsigned int j;
6040 Elf_Internal_Phdr *segment2;
6041
6042 if (segment->p_type == PT_INTERP)
6043 for (section = ibfd->sections; section; section = section->next)
6044 if (IS_SOLARIS_PT_INTERP (segment, section))
6045 {
6046 /* Mininal change so that the normal section to segment
6047 assignment code will work. */
6048 segment->p_vaddr = section->vma;
6049 break;
6050 }
6051
6052 if (segment->p_type != PT_LOAD)
6053 {
6054 /* Remove PT_GNU_RELRO segment. */
6055 if (segment->p_type == PT_GNU_RELRO)
6056 segment->p_type = PT_NULL;
6057 continue;
6058 }
6059
6060 /* Determine if this segment overlaps any previous segments. */
6061 for (j = 0, segment2 = elf_tdata (ibfd)->phdr; j < i; j++, segment2++)
6062 {
6063 bfd_signed_vma extra_length;
6064
6065 if (segment2->p_type != PT_LOAD
6066 || !SEGMENT_OVERLAPS (segment, segment2))
6067 continue;
6068
6069 /* Merge the two segments together. */
6070 if (segment2->p_vaddr < segment->p_vaddr)
6071 {
6072 /* Extend SEGMENT2 to include SEGMENT and then delete
6073 SEGMENT. */
6074 extra_length = (SEGMENT_END (segment, segment->p_vaddr)
6075 - SEGMENT_END (segment2, segment2->p_vaddr));
6076
6077 if (extra_length > 0)
6078 {
6079 segment2->p_memsz += extra_length;
6080 segment2->p_filesz += extra_length;
6081 }
6082
6083 segment->p_type = PT_NULL;
6084
6085 /* Since we have deleted P we must restart the outer loop. */
6086 i = 0;
6087 segment = elf_tdata (ibfd)->phdr;
6088 break;
6089 }
6090 else
6091 {
6092 /* Extend SEGMENT to include SEGMENT2 and then delete
6093 SEGMENT2. */
6094 extra_length = (SEGMENT_END (segment2, segment2->p_vaddr)
6095 - SEGMENT_END (segment, segment->p_vaddr));
6096
6097 if (extra_length > 0)
6098 {
6099 segment->p_memsz += extra_length;
6100 segment->p_filesz += extra_length;
6101 }
6102
6103 segment2->p_type = PT_NULL;
6104 }
6105 }
6106 }
6107
6108 /* The second scan attempts to assign sections to segments. */
6109 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6110 i < num_segments;
6111 i++, segment++)
6112 {
6113 unsigned int section_count;
6114 asection **sections;
6115 asection *output_section;
6116 unsigned int isec;
6117 bfd_vma matching_lma;
6118 bfd_vma suggested_lma;
6119 unsigned int j;
6120 bfd_size_type amt;
6121 asection *first_section;
6122 bfd_boolean first_matching_lma;
6123 bfd_boolean first_suggested_lma;
6124
6125 if (segment->p_type == PT_NULL)
6126 continue;
6127
6128 first_section = NULL;
6129 /* Compute how many sections might be placed into this segment. */
6130 for (section = ibfd->sections, section_count = 0;
6131 section != NULL;
6132 section = section->next)
6133 {
6134 /* Find the first section in the input segment, which may be
6135 removed from the corresponding output segment. */
6136 if (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed))
6137 {
6138 if (first_section == NULL)
6139 first_section = section;
6140 if (section->output_section != NULL)
6141 ++section_count;
6142 }
6143 }
6144
6145 /* Allocate a segment map big enough to contain
6146 all of the sections we have selected. */
6147 amt = sizeof (struct elf_segment_map);
6148 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
6149 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
6150 if (map == NULL)
6151 return FALSE;
6152
6153 /* Initialise the fields of the segment map. Default to
6154 using the physical address of the segment in the input BFD. */
6155 map->next = NULL;
6156 map->p_type = segment->p_type;
6157 map->p_flags = segment->p_flags;
6158 map->p_flags_valid = 1;
6159
6160 /* If the first section in the input segment is removed, there is
6161 no need to preserve segment physical address in the corresponding
6162 output segment. */
6163 if (!first_section || first_section->output_section != NULL)
6164 {
6165 map->p_paddr = segment->p_paddr;
6166 map->p_paddr_valid = p_paddr_valid;
6167 }
6168
6169 /* Determine if this segment contains the ELF file header
6170 and if it contains the program headers themselves. */
6171 map->includes_filehdr = (segment->p_offset == 0
6172 && segment->p_filesz >= iehdr->e_ehsize);
6173 map->includes_phdrs = 0;
6174
6175 if (!phdr_included || segment->p_type != PT_LOAD)
6176 {
6177 map->includes_phdrs =
6178 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
6179 && (segment->p_offset + segment->p_filesz
6180 >= ((bfd_vma) iehdr->e_phoff
6181 + iehdr->e_phnum * iehdr->e_phentsize)));
6182
6183 if (segment->p_type == PT_LOAD && map->includes_phdrs)
6184 phdr_included = TRUE;
6185 }
6186
6187 if (section_count == 0)
6188 {
6189 /* Special segments, such as the PT_PHDR segment, may contain
6190 no sections, but ordinary, loadable segments should contain
6191 something. They are allowed by the ELF spec however, so only
6192 a warning is produced. */
6193 if (segment->p_type == PT_LOAD)
6194 (*_bfd_error_handler) (_("\
6195 %B: warning: Empty loadable segment detected, is this intentional ?"),
6196 ibfd);
6197
6198 map->count = 0;
6199 *pointer_to_map = map;
6200 pointer_to_map = &map->next;
6201
6202 continue;
6203 }
6204
6205 /* Now scan the sections in the input BFD again and attempt
6206 to add their corresponding output sections to the segment map.
6207 The problem here is how to handle an output section which has
6208 been moved (ie had its LMA changed). There are four possibilities:
6209
6210 1. None of the sections have been moved.
6211 In this case we can continue to use the segment LMA from the
6212 input BFD.
6213
6214 2. All of the sections have been moved by the same amount.
6215 In this case we can change the segment's LMA to match the LMA
6216 of the first section.
6217
6218 3. Some of the sections have been moved, others have not.
6219 In this case those sections which have not been moved can be
6220 placed in the current segment which will have to have its size,
6221 and possibly its LMA changed, and a new segment or segments will
6222 have to be created to contain the other sections.
6223
6224 4. The sections have been moved, but not by the same amount.
6225 In this case we can change the segment's LMA to match the LMA
6226 of the first section and we will have to create a new segment
6227 or segments to contain the other sections.
6228
6229 In order to save time, we allocate an array to hold the section
6230 pointers that we are interested in. As these sections get assigned
6231 to a segment, they are removed from this array. */
6232
6233 sections = (asection **) bfd_malloc2 (section_count, sizeof (asection *));
6234 if (sections == NULL)
6235 return FALSE;
6236
6237 /* Step One: Scan for segment vs section LMA conflicts.
6238 Also add the sections to the section array allocated above.
6239 Also add the sections to the current segment. In the common
6240 case, where the sections have not been moved, this means that
6241 we have completely filled the segment, and there is nothing
6242 more to do. */
6243 isec = 0;
6244 matching_lma = 0;
6245 suggested_lma = 0;
6246 first_matching_lma = TRUE;
6247 first_suggested_lma = TRUE;
6248
6249 for (section = ibfd->sections;
6250 section != NULL;
6251 section = section->next)
6252 if (section == first_section)
6253 break;
6254
6255 for (j = 0; section != NULL; section = section->next)
6256 {
6257 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
6258 {
6259 output_section = section->output_section;
6260
6261 sections[j++] = section;
6262
6263 /* The Solaris native linker always sets p_paddr to 0.
6264 We try to catch that case here, and set it to the
6265 correct value. Note - some backends require that
6266 p_paddr be left as zero. */
6267 if (!p_paddr_valid
6268 && segment->p_vaddr != 0
6269 && !bed->want_p_paddr_set_to_zero
6270 && isec == 0
6271 && output_section->lma != 0
6272 && output_section->vma == (segment->p_vaddr
6273 + (map->includes_filehdr
6274 ? iehdr->e_ehsize
6275 : 0)
6276 + (map->includes_phdrs
6277 ? (iehdr->e_phnum
6278 * iehdr->e_phentsize)
6279 : 0)))
6280 map->p_paddr = segment->p_vaddr;
6281
6282 /* Match up the physical address of the segment with the
6283 LMA address of the output section. */
6284 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
6285 || IS_COREFILE_NOTE (segment, section)
6286 || (bed->want_p_paddr_set_to_zero
6287 && IS_CONTAINED_BY_VMA (output_section, segment)))
6288 {
6289 if (first_matching_lma || output_section->lma < matching_lma)
6290 {
6291 matching_lma = output_section->lma;
6292 first_matching_lma = FALSE;
6293 }
6294
6295 /* We assume that if the section fits within the segment
6296 then it does not overlap any other section within that
6297 segment. */
6298 map->sections[isec++] = output_section;
6299 }
6300 else if (first_suggested_lma)
6301 {
6302 suggested_lma = output_section->lma;
6303 first_suggested_lma = FALSE;
6304 }
6305
6306 if (j == section_count)
6307 break;
6308 }
6309 }
6310
6311 BFD_ASSERT (j == section_count);
6312
6313 /* Step Two: Adjust the physical address of the current segment,
6314 if necessary. */
6315 if (isec == section_count)
6316 {
6317 /* All of the sections fitted within the segment as currently
6318 specified. This is the default case. Add the segment to
6319 the list of built segments and carry on to process the next
6320 program header in the input BFD. */
6321 map->count = section_count;
6322 *pointer_to_map = map;
6323 pointer_to_map = &map->next;
6324
6325 if (p_paddr_valid
6326 && !bed->want_p_paddr_set_to_zero
6327 && matching_lma != map->p_paddr
6328 && !map->includes_filehdr
6329 && !map->includes_phdrs)
6330 /* There is some padding before the first section in the
6331 segment. So, we must account for that in the output
6332 segment's vma. */
6333 map->p_vaddr_offset = matching_lma - map->p_paddr;
6334
6335 free (sections);
6336 continue;
6337 }
6338 else
6339 {
6340 if (!first_matching_lma)
6341 {
6342 /* At least one section fits inside the current segment.
6343 Keep it, but modify its physical address to match the
6344 LMA of the first section that fitted. */
6345 map->p_paddr = matching_lma;
6346 }
6347 else
6348 {
6349 /* None of the sections fitted inside the current segment.
6350 Change the current segment's physical address to match
6351 the LMA of the first section. */
6352 map->p_paddr = suggested_lma;
6353 }
6354
6355 /* Offset the segment physical address from the lma
6356 to allow for space taken up by elf headers. */
6357 if (map->includes_filehdr)
6358 {
6359 if (map->p_paddr >= iehdr->e_ehsize)
6360 map->p_paddr -= iehdr->e_ehsize;
6361 else
6362 {
6363 map->includes_filehdr = FALSE;
6364 map->includes_phdrs = FALSE;
6365 }
6366 }
6367
6368 if (map->includes_phdrs)
6369 {
6370 if (map->p_paddr >= iehdr->e_phnum * iehdr->e_phentsize)
6371 {
6372 map->p_paddr -= iehdr->e_phnum * iehdr->e_phentsize;
6373
6374 /* iehdr->e_phnum is just an estimate of the number
6375 of program headers that we will need. Make a note
6376 here of the number we used and the segment we chose
6377 to hold these headers, so that we can adjust the
6378 offset when we know the correct value. */
6379 phdr_adjust_num = iehdr->e_phnum;
6380 phdr_adjust_seg = map;
6381 }
6382 else
6383 map->includes_phdrs = FALSE;
6384 }
6385 }
6386
6387 /* Step Three: Loop over the sections again, this time assigning
6388 those that fit to the current segment and removing them from the
6389 sections array; but making sure not to leave large gaps. Once all
6390 possible sections have been assigned to the current segment it is
6391 added to the list of built segments and if sections still remain
6392 to be assigned, a new segment is constructed before repeating
6393 the loop. */
6394 isec = 0;
6395 do
6396 {
6397 map->count = 0;
6398 suggested_lma = 0;
6399 first_suggested_lma = TRUE;
6400
6401 /* Fill the current segment with sections that fit. */
6402 for (j = 0; j < section_count; j++)
6403 {
6404 section = sections[j];
6405
6406 if (section == NULL)
6407 continue;
6408
6409 output_section = section->output_section;
6410
6411 BFD_ASSERT (output_section != NULL);
6412
6413 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
6414 || IS_COREFILE_NOTE (segment, section))
6415 {
6416 if (map->count == 0)
6417 {
6418 /* If the first section in a segment does not start at
6419 the beginning of the segment, then something is
6420 wrong. */
6421 if (output_section->lma
6422 != (map->p_paddr
6423 + (map->includes_filehdr ? iehdr->e_ehsize : 0)
6424 + (map->includes_phdrs
6425 ? iehdr->e_phnum * iehdr->e_phentsize
6426 : 0)))
6427 abort ();
6428 }
6429 else
6430 {
6431 asection *prev_sec;
6432
6433 prev_sec = map->sections[map->count - 1];
6434
6435 /* If the gap between the end of the previous section
6436 and the start of this section is more than
6437 maxpagesize then we need to start a new segment. */
6438 if ((BFD_ALIGN (prev_sec->lma + prev_sec->size,
6439 maxpagesize)
6440 < BFD_ALIGN (output_section->lma, maxpagesize))
6441 || (prev_sec->lma + prev_sec->size
6442 > output_section->lma))
6443 {
6444 if (first_suggested_lma)
6445 {
6446 suggested_lma = output_section->lma;
6447 first_suggested_lma = FALSE;
6448 }
6449
6450 continue;
6451 }
6452 }
6453
6454 map->sections[map->count++] = output_section;
6455 ++isec;
6456 sections[j] = NULL;
6457 section->segment_mark = TRUE;
6458 }
6459 else if (first_suggested_lma)
6460 {
6461 suggested_lma = output_section->lma;
6462 first_suggested_lma = FALSE;
6463 }
6464 }
6465
6466 BFD_ASSERT (map->count > 0);
6467
6468 /* Add the current segment to the list of built segments. */
6469 *pointer_to_map = map;
6470 pointer_to_map = &map->next;
6471
6472 if (isec < section_count)
6473 {
6474 /* We still have not allocated all of the sections to
6475 segments. Create a new segment here, initialise it
6476 and carry on looping. */
6477 amt = sizeof (struct elf_segment_map);
6478 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
6479 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
6480 if (map == NULL)
6481 {
6482 free (sections);
6483 return FALSE;
6484 }
6485
6486 /* Initialise the fields of the segment map. Set the physical
6487 physical address to the LMA of the first section that has
6488 not yet been assigned. */
6489 map->next = NULL;
6490 map->p_type = segment->p_type;
6491 map->p_flags = segment->p_flags;
6492 map->p_flags_valid = 1;
6493 map->p_paddr = suggested_lma;
6494 map->p_paddr_valid = p_paddr_valid;
6495 map->includes_filehdr = 0;
6496 map->includes_phdrs = 0;
6497 }
6498 }
6499 while (isec < section_count);
6500
6501 free (sections);
6502 }
6503
6504 elf_seg_map (obfd) = map_first;
6505
6506 /* If we had to estimate the number of program headers that were
6507 going to be needed, then check our estimate now and adjust
6508 the offset if necessary. */
6509 if (phdr_adjust_seg != NULL)
6510 {
6511 unsigned int count;
6512
6513 for (count = 0, map = map_first; map != NULL; map = map->next)
6514 count++;
6515
6516 if (count > phdr_adjust_num)
6517 phdr_adjust_seg->p_paddr
6518 -= (count - phdr_adjust_num) * iehdr->e_phentsize;
6519 }
6520
6521 #undef SEGMENT_END
6522 #undef SECTION_SIZE
6523 #undef IS_CONTAINED_BY_VMA
6524 #undef IS_CONTAINED_BY_LMA
6525 #undef IS_NOTE
6526 #undef IS_COREFILE_NOTE
6527 #undef IS_SOLARIS_PT_INTERP
6528 #undef IS_SECTION_IN_INPUT_SEGMENT
6529 #undef INCLUDE_SECTION_IN_SEGMENT
6530 #undef SEGMENT_AFTER_SEGMENT
6531 #undef SEGMENT_OVERLAPS
6532 return TRUE;
6533 }
6534
6535 /* Copy ELF program header information. */
6536
6537 static bfd_boolean
6538 copy_elf_program_header (bfd *ibfd, bfd *obfd)
6539 {
6540 Elf_Internal_Ehdr *iehdr;
6541 struct elf_segment_map *map;
6542 struct elf_segment_map *map_first;
6543 struct elf_segment_map **pointer_to_map;
6544 Elf_Internal_Phdr *segment;
6545 unsigned int i;
6546 unsigned int num_segments;
6547 bfd_boolean phdr_included = FALSE;
6548 bfd_boolean p_paddr_valid;
6549
6550 iehdr = elf_elfheader (ibfd);
6551
6552 map_first = NULL;
6553 pointer_to_map = &map_first;
6554
6555 /* If all the segment p_paddr fields are zero, don't set
6556 map->p_paddr_valid. */
6557 p_paddr_valid = FALSE;
6558 num_segments = elf_elfheader (ibfd)->e_phnum;
6559 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6560 i < num_segments;
6561 i++, segment++)
6562 if (segment->p_paddr != 0)
6563 {
6564 p_paddr_valid = TRUE;
6565 break;
6566 }
6567
6568 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6569 i < num_segments;
6570 i++, segment++)
6571 {
6572 asection *section;
6573 unsigned int section_count;
6574 bfd_size_type amt;
6575 Elf_Internal_Shdr *this_hdr;
6576 asection *first_section = NULL;
6577 asection *lowest_section;
6578
6579 /* Compute how many sections are in this segment. */
6580 for (section = ibfd->sections, section_count = 0;
6581 section != NULL;
6582 section = section->next)
6583 {
6584 this_hdr = &(elf_section_data(section)->this_hdr);
6585 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
6586 {
6587 if (first_section == NULL)
6588 first_section = section;
6589 section_count++;
6590 }
6591 }
6592
6593 /* Allocate a segment map big enough to contain
6594 all of the sections we have selected. */
6595 amt = sizeof (struct elf_segment_map);
6596 if (section_count != 0)
6597 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
6598 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
6599 if (map == NULL)
6600 return FALSE;
6601
6602 /* Initialize the fields of the output segment map with the
6603 input segment. */
6604 map->next = NULL;
6605 map->p_type = segment->p_type;
6606 map->p_flags = segment->p_flags;
6607 map->p_flags_valid = 1;
6608 map->p_paddr = segment->p_paddr;
6609 map->p_paddr_valid = p_paddr_valid;
6610 map->p_align = segment->p_align;
6611 map->p_align_valid = 1;
6612 map->p_vaddr_offset = 0;
6613
6614 if (map->p_type == PT_GNU_RELRO
6615 || map->p_type == PT_GNU_STACK)
6616 {
6617 /* The PT_GNU_RELRO segment may contain the first a few
6618 bytes in the .got.plt section even if the whole .got.plt
6619 section isn't in the PT_GNU_RELRO segment. We won't
6620 change the size of the PT_GNU_RELRO segment.
6621 Similarly, PT_GNU_STACK size is significant on uclinux
6622 systems. */
6623 map->p_size = segment->p_memsz;
6624 map->p_size_valid = 1;
6625 }
6626
6627 /* Determine if this segment contains the ELF file header
6628 and if it contains the program headers themselves. */
6629 map->includes_filehdr = (segment->p_offset == 0
6630 && segment->p_filesz >= iehdr->e_ehsize);
6631
6632 map->includes_phdrs = 0;
6633 if (! phdr_included || segment->p_type != PT_LOAD)
6634 {
6635 map->includes_phdrs =
6636 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
6637 && (segment->p_offset + segment->p_filesz
6638 >= ((bfd_vma) iehdr->e_phoff
6639 + iehdr->e_phnum * iehdr->e_phentsize)));
6640
6641 if (segment->p_type == PT_LOAD && map->includes_phdrs)
6642 phdr_included = TRUE;
6643 }
6644
6645 lowest_section = NULL;
6646 if (section_count != 0)
6647 {
6648 unsigned int isec = 0;
6649
6650 for (section = first_section;
6651 section != NULL;
6652 section = section->next)
6653 {
6654 this_hdr = &(elf_section_data(section)->this_hdr);
6655 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
6656 {
6657 map->sections[isec++] = section->output_section;
6658 if ((section->flags & SEC_ALLOC) != 0)
6659 {
6660 bfd_vma seg_off;
6661
6662 if (lowest_section == NULL
6663 || section->lma < lowest_section->lma)
6664 lowest_section = section;
6665
6666 /* Section lmas are set up from PT_LOAD header
6667 p_paddr in _bfd_elf_make_section_from_shdr.
6668 If this header has a p_paddr that disagrees
6669 with the section lma, flag the p_paddr as
6670 invalid. */
6671 if ((section->flags & SEC_LOAD) != 0)
6672 seg_off = this_hdr->sh_offset - segment->p_offset;
6673 else
6674 seg_off = this_hdr->sh_addr - segment->p_vaddr;
6675 if (section->lma - segment->p_paddr != seg_off)
6676 map->p_paddr_valid = FALSE;
6677 }
6678 if (isec == section_count)
6679 break;
6680 }
6681 }
6682 }
6683
6684 if (map->includes_filehdr && lowest_section != NULL)
6685 /* We need to keep the space used by the headers fixed. */
6686 map->header_size = lowest_section->vma - segment->p_vaddr;
6687
6688 if (!map->includes_phdrs
6689 && !map->includes_filehdr
6690 && map->p_paddr_valid)
6691 /* There is some other padding before the first section. */
6692 map->p_vaddr_offset = ((lowest_section ? lowest_section->lma : 0)
6693 - segment->p_paddr);
6694
6695 map->count = section_count;
6696 *pointer_to_map = map;
6697 pointer_to_map = &map->next;
6698 }
6699
6700 elf_seg_map (obfd) = map_first;
6701 return TRUE;
6702 }
6703
6704 /* Copy private BFD data. This copies or rewrites ELF program header
6705 information. */
6706
6707 static bfd_boolean
6708 copy_private_bfd_data (bfd *ibfd, bfd *obfd)
6709 {
6710 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
6711 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
6712 return TRUE;
6713
6714 if (elf_tdata (ibfd)->phdr == NULL)
6715 return TRUE;
6716
6717 if (ibfd->xvec == obfd->xvec)
6718 {
6719 /* Check to see if any sections in the input BFD
6720 covered by ELF program header have changed. */
6721 Elf_Internal_Phdr *segment;
6722 asection *section, *osec;
6723 unsigned int i, num_segments;
6724 Elf_Internal_Shdr *this_hdr;
6725 const struct elf_backend_data *bed;
6726
6727 bed = get_elf_backend_data (ibfd);
6728
6729 /* Regenerate the segment map if p_paddr is set to 0. */
6730 if (bed->want_p_paddr_set_to_zero)
6731 goto rewrite;
6732
6733 /* Initialize the segment mark field. */
6734 for (section = obfd->sections; section != NULL;
6735 section = section->next)
6736 section->segment_mark = FALSE;
6737
6738 num_segments = elf_elfheader (ibfd)->e_phnum;
6739 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6740 i < num_segments;
6741 i++, segment++)
6742 {
6743 /* PR binutils/3535. The Solaris linker always sets the p_paddr
6744 and p_memsz fields of special segments (DYNAMIC, INTERP) to 0
6745 which severly confuses things, so always regenerate the segment
6746 map in this case. */
6747 if (segment->p_paddr == 0
6748 && segment->p_memsz == 0
6749 && (segment->p_type == PT_INTERP || segment->p_type == PT_DYNAMIC))
6750 goto rewrite;
6751
6752 for (section = ibfd->sections;
6753 section != NULL; section = section->next)
6754 {
6755 /* We mark the output section so that we know it comes
6756 from the input BFD. */
6757 osec = section->output_section;
6758 if (osec)
6759 osec->segment_mark = TRUE;
6760
6761 /* Check if this section is covered by the segment. */
6762 this_hdr = &(elf_section_data(section)->this_hdr);
6763 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
6764 {
6765 /* FIXME: Check if its output section is changed or
6766 removed. What else do we need to check? */
6767 if (osec == NULL
6768 || section->flags != osec->flags
6769 || section->lma != osec->lma
6770 || section->vma != osec->vma
6771 || section->size != osec->size
6772 || section->rawsize != osec->rawsize
6773 || section->alignment_power != osec->alignment_power)
6774 goto rewrite;
6775 }
6776 }
6777 }
6778
6779 /* Check to see if any output section do not come from the
6780 input BFD. */
6781 for (section = obfd->sections; section != NULL;
6782 section = section->next)
6783 {
6784 if (section->segment_mark == FALSE)
6785 goto rewrite;
6786 else
6787 section->segment_mark = FALSE;
6788 }
6789
6790 return copy_elf_program_header (ibfd, obfd);
6791 }
6792
6793 rewrite:
6794 if (ibfd->xvec == obfd->xvec)
6795 {
6796 /* When rewriting program header, set the output maxpagesize to
6797 the maximum alignment of input PT_LOAD segments. */
6798 Elf_Internal_Phdr *segment;
6799 unsigned int i;
6800 unsigned int num_segments = elf_elfheader (ibfd)->e_phnum;
6801 bfd_vma maxpagesize = 0;
6802
6803 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6804 i < num_segments;
6805 i++, segment++)
6806 if (segment->p_type == PT_LOAD
6807 && maxpagesize < segment->p_align)
6808 {
6809 /* PR 17512: file: f17299af. */
6810 if (segment->p_align > (bfd_vma) 1 << ((sizeof (bfd_vma) * 8) - 2))
6811 (*_bfd_error_handler) (_("\
6812 %B: warning: segment alignment of 0x%llx is too large"),
6813 ibfd, (long long) segment->p_align);
6814 else
6815 maxpagesize = segment->p_align;
6816 }
6817
6818 if (maxpagesize != get_elf_backend_data (obfd)->maxpagesize)
6819 bfd_emul_set_maxpagesize (bfd_get_target (obfd), maxpagesize);
6820 }
6821
6822 return rewrite_elf_program_header (ibfd, obfd);
6823 }
6824
6825 /* Initialize private output section information from input section. */
6826
6827 bfd_boolean
6828 _bfd_elf_init_private_section_data (bfd *ibfd,
6829 asection *isec,
6830 bfd *obfd,
6831 asection *osec,
6832 struct bfd_link_info *link_info)
6833
6834 {
6835 Elf_Internal_Shdr *ihdr, *ohdr;
6836 bfd_boolean final_link = link_info != NULL && !link_info->relocatable;
6837
6838 if (ibfd->xvec->flavour != bfd_target_elf_flavour
6839 || obfd->xvec->flavour != bfd_target_elf_flavour)
6840 return TRUE;
6841
6842 BFD_ASSERT (elf_section_data (osec) != NULL);
6843
6844 /* For objcopy and relocatable link, don't copy the output ELF
6845 section type from input if the output BFD section flags have been
6846 set to something different. For a final link allow some flags
6847 that the linker clears to differ. */
6848 if (elf_section_type (osec) == SHT_NULL
6849 && (osec->flags == isec->flags
6850 || (final_link
6851 && ((osec->flags ^ isec->flags)
6852 & ~(SEC_LINK_ONCE | SEC_LINK_DUPLICATES | SEC_RELOC)) == 0)))
6853 elf_section_type (osec) = elf_section_type (isec);
6854
6855 /* FIXME: Is this correct for all OS/PROC specific flags? */
6856 elf_section_flags (osec) |= (elf_section_flags (isec)
6857 & (SHF_MASKOS | SHF_MASKPROC));
6858
6859 /* Set things up for objcopy and relocatable link. The output
6860 SHT_GROUP section will have its elf_next_in_group pointing back
6861 to the input group members. Ignore linker created group section.
6862 See elfNN_ia64_object_p in elfxx-ia64.c. */
6863 if (!final_link)
6864 {
6865 if (elf_sec_group (isec) == NULL
6866 || (elf_sec_group (isec)->flags & SEC_LINKER_CREATED) == 0)
6867 {
6868 if (elf_section_flags (isec) & SHF_GROUP)
6869 elf_section_flags (osec) |= SHF_GROUP;
6870 elf_next_in_group (osec) = elf_next_in_group (isec);
6871 elf_section_data (osec)->group = elf_section_data (isec)->group;
6872 }
6873
6874 /* If not decompress, preserve SHF_COMPRESSED. */
6875 if ((ibfd->flags & BFD_DECOMPRESS) == 0)
6876 elf_section_flags (osec) |= (elf_section_flags (isec)
6877 & SHF_COMPRESSED);
6878 }
6879
6880 ihdr = &elf_section_data (isec)->this_hdr;
6881
6882 /* We need to handle elf_linked_to_section for SHF_LINK_ORDER. We
6883 don't use the output section of the linked-to section since it
6884 may be NULL at this point. */
6885 if ((ihdr->sh_flags & SHF_LINK_ORDER) != 0)
6886 {
6887 ohdr = &elf_section_data (osec)->this_hdr;
6888 ohdr->sh_flags |= SHF_LINK_ORDER;
6889 elf_linked_to_section (osec) = elf_linked_to_section (isec);
6890 }
6891
6892 osec->use_rela_p = isec->use_rela_p;
6893
6894 return TRUE;
6895 }
6896
6897 /* Copy private section information. This copies over the entsize
6898 field, and sometimes the info field. */
6899
6900 bfd_boolean
6901 _bfd_elf_copy_private_section_data (bfd *ibfd,
6902 asection *isec,
6903 bfd *obfd,
6904 asection *osec)
6905 {
6906 Elf_Internal_Shdr *ihdr, *ohdr;
6907
6908 if (ibfd->xvec->flavour != bfd_target_elf_flavour
6909 || obfd->xvec->flavour != bfd_target_elf_flavour)
6910 return TRUE;
6911
6912 ihdr = &elf_section_data (isec)->this_hdr;
6913 ohdr = &elf_section_data (osec)->this_hdr;
6914
6915 ohdr->sh_entsize = ihdr->sh_entsize;
6916
6917 if (ihdr->sh_type == SHT_SYMTAB
6918 || ihdr->sh_type == SHT_DYNSYM
6919 || ihdr->sh_type == SHT_GNU_verneed
6920 || ihdr->sh_type == SHT_GNU_verdef)
6921 ohdr->sh_info = ihdr->sh_info;
6922
6923 return _bfd_elf_init_private_section_data (ibfd, isec, obfd, osec,
6924 NULL);
6925 }
6926
6927 /* Look at all the SHT_GROUP sections in IBFD, making any adjustments
6928 necessary if we are removing either the SHT_GROUP section or any of
6929 the group member sections. DISCARDED is the value that a section's
6930 output_section has if the section will be discarded, NULL when this
6931 function is called from objcopy, bfd_abs_section_ptr when called
6932 from the linker. */
6933
6934 bfd_boolean
6935 _bfd_elf_fixup_group_sections (bfd *ibfd, asection *discarded)
6936 {
6937 asection *isec;
6938
6939 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
6940 if (elf_section_type (isec) == SHT_GROUP)
6941 {
6942 asection *first = elf_next_in_group (isec);
6943 asection *s = first;
6944 bfd_size_type removed = 0;
6945
6946 while (s != NULL)
6947 {
6948 /* If this member section is being output but the
6949 SHT_GROUP section is not, then clear the group info
6950 set up by _bfd_elf_copy_private_section_data. */
6951 if (s->output_section != discarded
6952 && isec->output_section == discarded)
6953 {
6954 elf_section_flags (s->output_section) &= ~SHF_GROUP;
6955 elf_group_name (s->output_section) = NULL;
6956 }
6957 /* Conversely, if the member section is not being output
6958 but the SHT_GROUP section is, then adjust its size. */
6959 else if (s->output_section == discarded
6960 && isec->output_section != discarded)
6961 removed += 4;
6962 s = elf_next_in_group (s);
6963 if (s == first)
6964 break;
6965 }
6966 if (removed != 0)
6967 {
6968 if (discarded != NULL)
6969 {
6970 /* If we've been called for ld -r, then we need to
6971 adjust the input section size. This function may
6972 be called multiple times, so save the original
6973 size. */
6974 if (isec->rawsize == 0)
6975 isec->rawsize = isec->size;
6976 isec->size = isec->rawsize - removed;
6977 }
6978 else
6979 {
6980 /* Adjust the output section size when called from
6981 objcopy. */
6982 isec->output_section->size -= removed;
6983 }
6984 }
6985 }
6986
6987 return TRUE;
6988 }
6989
6990 /* Copy private header information. */
6991
6992 bfd_boolean
6993 _bfd_elf_copy_private_header_data (bfd *ibfd, bfd *obfd)
6994 {
6995 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
6996 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
6997 return TRUE;
6998
6999 /* Copy over private BFD data if it has not already been copied.
7000 This must be done here, rather than in the copy_private_bfd_data
7001 entry point, because the latter is called after the section
7002 contents have been set, which means that the program headers have
7003 already been worked out. */
7004 if (elf_seg_map (obfd) == NULL && elf_tdata (ibfd)->phdr != NULL)
7005 {
7006 if (! copy_private_bfd_data (ibfd, obfd))
7007 return FALSE;
7008 }
7009
7010 return _bfd_elf_fixup_group_sections (ibfd, NULL);
7011 }
7012
7013 /* Copy private symbol information. If this symbol is in a section
7014 which we did not map into a BFD section, try to map the section
7015 index correctly. We use special macro definitions for the mapped
7016 section indices; these definitions are interpreted by the
7017 swap_out_syms function. */
7018
7019 #define MAP_ONESYMTAB (SHN_HIOS + 1)
7020 #define MAP_DYNSYMTAB (SHN_HIOS + 2)
7021 #define MAP_STRTAB (SHN_HIOS + 3)
7022 #define MAP_SHSTRTAB (SHN_HIOS + 4)
7023 #define MAP_SYM_SHNDX (SHN_HIOS + 5)
7024
7025 bfd_boolean
7026 _bfd_elf_copy_private_symbol_data (bfd *ibfd,
7027 asymbol *isymarg,
7028 bfd *obfd,
7029 asymbol *osymarg)
7030 {
7031 elf_symbol_type *isym, *osym;
7032
7033 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
7034 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
7035 return TRUE;
7036
7037 isym = elf_symbol_from (ibfd, isymarg);
7038 osym = elf_symbol_from (obfd, osymarg);
7039
7040 if (isym != NULL
7041 && isym->internal_elf_sym.st_shndx != 0
7042 && osym != NULL
7043 && bfd_is_abs_section (isym->symbol.section))
7044 {
7045 unsigned int shndx;
7046
7047 shndx = isym->internal_elf_sym.st_shndx;
7048 if (shndx == elf_onesymtab (ibfd))
7049 shndx = MAP_ONESYMTAB;
7050 else if (shndx == elf_dynsymtab (ibfd))
7051 shndx = MAP_DYNSYMTAB;
7052 else if (shndx == elf_strtab_sec (ibfd))
7053 shndx = MAP_STRTAB;
7054 else if (shndx == elf_shstrtab_sec (ibfd))
7055 shndx = MAP_SHSTRTAB;
7056 else if (shndx == elf_symtab_shndx (ibfd))
7057 shndx = MAP_SYM_SHNDX;
7058 osym->internal_elf_sym.st_shndx = shndx;
7059 }
7060
7061 return TRUE;
7062 }
7063
7064 /* Swap out the symbols. */
7065
7066 static bfd_boolean
7067 swap_out_syms (bfd *abfd,
7068 struct bfd_strtab_hash **sttp,
7069 int relocatable_p)
7070 {
7071 const struct elf_backend_data *bed;
7072 int symcount;
7073 asymbol **syms;
7074 struct bfd_strtab_hash *stt;
7075 Elf_Internal_Shdr *symtab_hdr;
7076 Elf_Internal_Shdr *symtab_shndx_hdr;
7077 Elf_Internal_Shdr *symstrtab_hdr;
7078 bfd_byte *outbound_syms;
7079 bfd_byte *outbound_shndx;
7080 int idx;
7081 unsigned int num_locals;
7082 bfd_size_type amt;
7083 bfd_boolean name_local_sections;
7084
7085 if (!elf_map_symbols (abfd, &num_locals))
7086 return FALSE;
7087
7088 /* Dump out the symtabs. */
7089 stt = _bfd_elf_stringtab_init ();
7090 if (stt == NULL)
7091 return FALSE;
7092
7093 bed = get_elf_backend_data (abfd);
7094 symcount = bfd_get_symcount (abfd);
7095 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7096 symtab_hdr->sh_type = SHT_SYMTAB;
7097 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
7098 symtab_hdr->sh_size = symtab_hdr->sh_entsize * (symcount + 1);
7099 symtab_hdr->sh_info = num_locals + 1;
7100 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
7101
7102 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
7103 symstrtab_hdr->sh_type = SHT_STRTAB;
7104
7105 outbound_syms = (bfd_byte *) bfd_alloc2 (abfd, 1 + symcount,
7106 bed->s->sizeof_sym);
7107 if (outbound_syms == NULL)
7108 {
7109 _bfd_stringtab_free (stt);
7110 return FALSE;
7111 }
7112 symtab_hdr->contents = outbound_syms;
7113
7114 outbound_shndx = NULL;
7115 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
7116 if (symtab_shndx_hdr->sh_name != 0)
7117 {
7118 amt = (bfd_size_type) (1 + symcount) * sizeof (Elf_External_Sym_Shndx);
7119 outbound_shndx = (bfd_byte *)
7120 bfd_zalloc2 (abfd, 1 + symcount, sizeof (Elf_External_Sym_Shndx));
7121 if (outbound_shndx == NULL)
7122 {
7123 _bfd_stringtab_free (stt);
7124 return FALSE;
7125 }
7126
7127 symtab_shndx_hdr->contents = outbound_shndx;
7128 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
7129 symtab_shndx_hdr->sh_size = amt;
7130 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
7131 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
7132 }
7133
7134 /* Now generate the data (for "contents"). */
7135 {
7136 /* Fill in zeroth symbol and swap it out. */
7137 Elf_Internal_Sym sym;
7138 sym.st_name = 0;
7139 sym.st_value = 0;
7140 sym.st_size = 0;
7141 sym.st_info = 0;
7142 sym.st_other = 0;
7143 sym.st_shndx = SHN_UNDEF;
7144 sym.st_target_internal = 0;
7145 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
7146 outbound_syms += bed->s->sizeof_sym;
7147 if (outbound_shndx != NULL)
7148 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
7149 }
7150
7151 name_local_sections
7152 = (bed->elf_backend_name_local_section_symbols
7153 && bed->elf_backend_name_local_section_symbols (abfd));
7154
7155 syms = bfd_get_outsymbols (abfd);
7156 for (idx = 0; idx < symcount; idx++)
7157 {
7158 Elf_Internal_Sym sym;
7159 bfd_vma value = syms[idx]->value;
7160 elf_symbol_type *type_ptr;
7161 flagword flags = syms[idx]->flags;
7162 int type;
7163
7164 if (!name_local_sections
7165 && (flags & (BSF_SECTION_SYM | BSF_GLOBAL)) == BSF_SECTION_SYM)
7166 {
7167 /* Local section symbols have no name. */
7168 sym.st_name = 0;
7169 }
7170 else
7171 {
7172 sym.st_name = (unsigned long) _bfd_stringtab_add (stt,
7173 syms[idx]->name,
7174 TRUE, FALSE);
7175 if (sym.st_name == (unsigned long) -1)
7176 {
7177 _bfd_stringtab_free (stt);
7178 return FALSE;
7179 }
7180 }
7181
7182 type_ptr = elf_symbol_from (abfd, syms[idx]);
7183
7184 if ((flags & BSF_SECTION_SYM) == 0
7185 && bfd_is_com_section (syms[idx]->section))
7186 {
7187 /* ELF common symbols put the alignment into the `value' field,
7188 and the size into the `size' field. This is backwards from
7189 how BFD handles it, so reverse it here. */
7190 sym.st_size = value;
7191 if (type_ptr == NULL
7192 || type_ptr->internal_elf_sym.st_value == 0)
7193 sym.st_value = value >= 16 ? 16 : (1 << bfd_log2 (value));
7194 else
7195 sym.st_value = type_ptr->internal_elf_sym.st_value;
7196 sym.st_shndx = _bfd_elf_section_from_bfd_section
7197 (abfd, syms[idx]->section);
7198 }
7199 else
7200 {
7201 asection *sec = syms[idx]->section;
7202 unsigned int shndx;
7203
7204 if (sec->output_section)
7205 {
7206 value += sec->output_offset;
7207 sec = sec->output_section;
7208 }
7209
7210 /* Don't add in the section vma for relocatable output. */
7211 if (! relocatable_p)
7212 value += sec->vma;
7213 sym.st_value = value;
7214 sym.st_size = type_ptr ? type_ptr->internal_elf_sym.st_size : 0;
7215
7216 if (bfd_is_abs_section (sec)
7217 && type_ptr != NULL
7218 && type_ptr->internal_elf_sym.st_shndx != 0)
7219 {
7220 /* This symbol is in a real ELF section which we did
7221 not create as a BFD section. Undo the mapping done
7222 by copy_private_symbol_data. */
7223 shndx = type_ptr->internal_elf_sym.st_shndx;
7224 switch (shndx)
7225 {
7226 case MAP_ONESYMTAB:
7227 shndx = elf_onesymtab (abfd);
7228 break;
7229 case MAP_DYNSYMTAB:
7230 shndx = elf_dynsymtab (abfd);
7231 break;
7232 case MAP_STRTAB:
7233 shndx = elf_strtab_sec (abfd);
7234 break;
7235 case MAP_SHSTRTAB:
7236 shndx = elf_shstrtab_sec (abfd);
7237 break;
7238 case MAP_SYM_SHNDX:
7239 shndx = elf_symtab_shndx (abfd);
7240 break;
7241 default:
7242 shndx = SHN_ABS;
7243 break;
7244 }
7245 }
7246 else
7247 {
7248 shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
7249
7250 if (shndx == SHN_BAD)
7251 {
7252 asection *sec2;
7253
7254 /* Writing this would be a hell of a lot easier if
7255 we had some decent documentation on bfd, and
7256 knew what to expect of the library, and what to
7257 demand of applications. For example, it
7258 appears that `objcopy' might not set the
7259 section of a symbol to be a section that is
7260 actually in the output file. */
7261 sec2 = bfd_get_section_by_name (abfd, sec->name);
7262 if (sec2 == NULL)
7263 {
7264 _bfd_error_handler (_("\
7265 Unable to find equivalent output section for symbol '%s' from section '%s'"),
7266 syms[idx]->name ? syms[idx]->name : "<Local sym>",
7267 sec->name);
7268 bfd_set_error (bfd_error_invalid_operation);
7269 _bfd_stringtab_free (stt);
7270 return FALSE;
7271 }
7272
7273 shndx = _bfd_elf_section_from_bfd_section (abfd, sec2);
7274 BFD_ASSERT (shndx != SHN_BAD);
7275 }
7276 }
7277
7278 sym.st_shndx = shndx;
7279 }
7280
7281 if ((flags & BSF_THREAD_LOCAL) != 0)
7282 type = STT_TLS;
7283 else if ((flags & BSF_GNU_INDIRECT_FUNCTION) != 0)
7284 type = STT_GNU_IFUNC;
7285 else if ((flags & BSF_FUNCTION) != 0)
7286 type = STT_FUNC;
7287 else if ((flags & BSF_OBJECT) != 0)
7288 type = STT_OBJECT;
7289 else if ((flags & BSF_RELC) != 0)
7290 type = STT_RELC;
7291 else if ((flags & BSF_SRELC) != 0)
7292 type = STT_SRELC;
7293 else
7294 type = STT_NOTYPE;
7295
7296 if (syms[idx]->section->flags & SEC_THREAD_LOCAL)
7297 type = STT_TLS;
7298
7299 /* Processor-specific types. */
7300 if (type_ptr != NULL
7301 && bed->elf_backend_get_symbol_type)
7302 type = ((*bed->elf_backend_get_symbol_type)
7303 (&type_ptr->internal_elf_sym, type));
7304
7305 if (flags & BSF_SECTION_SYM)
7306 {
7307 if (flags & BSF_GLOBAL)
7308 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
7309 else
7310 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
7311 }
7312 else if (bfd_is_com_section (syms[idx]->section))
7313 {
7314 #ifdef USE_STT_COMMON
7315 if (type == STT_OBJECT)
7316 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_COMMON);
7317 else
7318 #endif
7319 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
7320 }
7321 else if (bfd_is_und_section (syms[idx]->section))
7322 sym.st_info = ELF_ST_INFO (((flags & BSF_WEAK)
7323 ? STB_WEAK
7324 : STB_GLOBAL),
7325 type);
7326 else if (flags & BSF_FILE)
7327 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
7328 else
7329 {
7330 int bind = STB_LOCAL;
7331
7332 if (flags & BSF_LOCAL)
7333 bind = STB_LOCAL;
7334 else if (flags & BSF_GNU_UNIQUE)
7335 bind = STB_GNU_UNIQUE;
7336 else if (flags & BSF_WEAK)
7337 bind = STB_WEAK;
7338 else if (flags & BSF_GLOBAL)
7339 bind = STB_GLOBAL;
7340
7341 sym.st_info = ELF_ST_INFO (bind, type);
7342 }
7343
7344 if (type_ptr != NULL)
7345 {
7346 sym.st_other = type_ptr->internal_elf_sym.st_other;
7347 sym.st_target_internal
7348 = type_ptr->internal_elf_sym.st_target_internal;
7349 }
7350 else
7351 {
7352 sym.st_other = 0;
7353 sym.st_target_internal = 0;
7354 }
7355
7356 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
7357 outbound_syms += bed->s->sizeof_sym;
7358 if (outbound_shndx != NULL)
7359 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
7360 }
7361
7362 *sttp = stt;
7363 symstrtab_hdr->sh_size = _bfd_stringtab_size (stt);
7364 symstrtab_hdr->sh_type = SHT_STRTAB;
7365
7366 symstrtab_hdr->sh_flags = 0;
7367 symstrtab_hdr->sh_addr = 0;
7368 symstrtab_hdr->sh_entsize = 0;
7369 symstrtab_hdr->sh_link = 0;
7370 symstrtab_hdr->sh_info = 0;
7371 symstrtab_hdr->sh_addralign = 1;
7372
7373 return TRUE;
7374 }
7375
7376 /* Return the number of bytes required to hold the symtab vector.
7377
7378 Note that we base it on the count plus 1, since we will null terminate
7379 the vector allocated based on this size. However, the ELF symbol table
7380 always has a dummy entry as symbol #0, so it ends up even. */
7381
7382 long
7383 _bfd_elf_get_symtab_upper_bound (bfd *abfd)
7384 {
7385 long symcount;
7386 long symtab_size;
7387 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->symtab_hdr;
7388
7389 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
7390 symtab_size = (symcount + 1) * (sizeof (asymbol *));
7391 if (symcount > 0)
7392 symtab_size -= sizeof (asymbol *);
7393
7394 return symtab_size;
7395 }
7396
7397 long
7398 _bfd_elf_get_dynamic_symtab_upper_bound (bfd *abfd)
7399 {
7400 long symcount;
7401 long symtab_size;
7402 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->dynsymtab_hdr;
7403
7404 if (elf_dynsymtab (abfd) == 0)
7405 {
7406 bfd_set_error (bfd_error_invalid_operation);
7407 return -1;
7408 }
7409
7410 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
7411 symtab_size = (symcount + 1) * (sizeof (asymbol *));
7412 if (symcount > 0)
7413 symtab_size -= sizeof (asymbol *);
7414
7415 return symtab_size;
7416 }
7417
7418 long
7419 _bfd_elf_get_reloc_upper_bound (bfd *abfd ATTRIBUTE_UNUSED,
7420 sec_ptr asect)
7421 {
7422 return (asect->reloc_count + 1) * sizeof (arelent *);
7423 }
7424
7425 /* Canonicalize the relocs. */
7426
7427 long
7428 _bfd_elf_canonicalize_reloc (bfd *abfd,
7429 sec_ptr section,
7430 arelent **relptr,
7431 asymbol **symbols)
7432 {
7433 arelent *tblptr;
7434 unsigned int i;
7435 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7436
7437 if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE))
7438 return -1;
7439
7440 tblptr = section->relocation;
7441 for (i = 0; i < section->reloc_count; i++)
7442 *relptr++ = tblptr++;
7443
7444 *relptr = NULL;
7445
7446 return section->reloc_count;
7447 }
7448
7449 long
7450 _bfd_elf_canonicalize_symtab (bfd *abfd, asymbol **allocation)
7451 {
7452 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7453 long symcount = bed->s->slurp_symbol_table (abfd, allocation, FALSE);
7454
7455 if (symcount >= 0)
7456 bfd_get_symcount (abfd) = symcount;
7457 return symcount;
7458 }
7459
7460 long
7461 _bfd_elf_canonicalize_dynamic_symtab (bfd *abfd,
7462 asymbol **allocation)
7463 {
7464 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7465 long symcount = bed->s->slurp_symbol_table (abfd, allocation, TRUE);
7466
7467 if (symcount >= 0)
7468 bfd_get_dynamic_symcount (abfd) = symcount;
7469 return symcount;
7470 }
7471
7472 /* Return the size required for the dynamic reloc entries. Any loadable
7473 section that was actually installed in the BFD, and has type SHT_REL
7474 or SHT_RELA, and uses the dynamic symbol table, is considered to be a
7475 dynamic reloc section. */
7476
7477 long
7478 _bfd_elf_get_dynamic_reloc_upper_bound (bfd *abfd)
7479 {
7480 long ret;
7481 asection *s;
7482
7483 if (elf_dynsymtab (abfd) == 0)
7484 {
7485 bfd_set_error (bfd_error_invalid_operation);
7486 return -1;
7487 }
7488
7489 ret = sizeof (arelent *);
7490 for (s = abfd->sections; s != NULL; s = s->next)
7491 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
7492 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
7493 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
7494 ret += ((s->size / elf_section_data (s)->this_hdr.sh_entsize)
7495 * sizeof (arelent *));
7496
7497 return ret;
7498 }
7499
7500 /* Canonicalize the dynamic relocation entries. Note that we return the
7501 dynamic relocations as a single block, although they are actually
7502 associated with particular sections; the interface, which was
7503 designed for SunOS style shared libraries, expects that there is only
7504 one set of dynamic relocs. Any loadable section that was actually
7505 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses the
7506 dynamic symbol table, is considered to be a dynamic reloc section. */
7507
7508 long
7509 _bfd_elf_canonicalize_dynamic_reloc (bfd *abfd,
7510 arelent **storage,
7511 asymbol **syms)
7512 {
7513 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
7514 asection *s;
7515 long ret;
7516
7517 if (elf_dynsymtab (abfd) == 0)
7518 {
7519 bfd_set_error (bfd_error_invalid_operation);
7520 return -1;
7521 }
7522
7523 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
7524 ret = 0;
7525 for (s = abfd->sections; s != NULL; s = s->next)
7526 {
7527 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
7528 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
7529 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
7530 {
7531 arelent *p;
7532 long count, i;
7533
7534 if (! (*slurp_relocs) (abfd, s, syms, TRUE))
7535 return -1;
7536 count = s->size / elf_section_data (s)->this_hdr.sh_entsize;
7537 p = s->relocation;
7538 for (i = 0; i < count; i++)
7539 *storage++ = p++;
7540 ret += count;
7541 }
7542 }
7543
7544 *storage = NULL;
7545
7546 return ret;
7547 }
7548 \f
7549 /* Read in the version information. */
7550
7551 bfd_boolean
7552 _bfd_elf_slurp_version_tables (bfd *abfd, bfd_boolean default_imported_symver)
7553 {
7554 bfd_byte *contents = NULL;
7555 unsigned int freeidx = 0;
7556
7557 if (elf_dynverref (abfd) != 0)
7558 {
7559 Elf_Internal_Shdr *hdr;
7560 Elf_External_Verneed *everneed;
7561 Elf_Internal_Verneed *iverneed;
7562 unsigned int i;
7563 bfd_byte *contents_end;
7564
7565 hdr = &elf_tdata (abfd)->dynverref_hdr;
7566
7567 if (hdr->sh_info == 0 || hdr->sh_size < sizeof (Elf_External_Verneed))
7568 {
7569 error_return_bad_verref:
7570 (*_bfd_error_handler)
7571 (_("%B: .gnu.version_r invalid entry"), abfd);
7572 bfd_set_error (bfd_error_bad_value);
7573 error_return_verref:
7574 elf_tdata (abfd)->verref = NULL;
7575 elf_tdata (abfd)->cverrefs = 0;
7576 goto error_return;
7577 }
7578
7579 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
7580 if (contents == NULL)
7581 goto error_return_verref;
7582
7583 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
7584 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
7585 goto error_return_verref;
7586
7587 elf_tdata (abfd)->verref = (Elf_Internal_Verneed *)
7588 bfd_zalloc2 (abfd, hdr->sh_info, sizeof (Elf_Internal_Verneed));
7589
7590 if (elf_tdata (abfd)->verref == NULL)
7591 goto error_return_verref;
7592
7593 BFD_ASSERT (sizeof (Elf_External_Verneed)
7594 == sizeof (Elf_External_Vernaux));
7595 contents_end = contents + hdr->sh_size - sizeof (Elf_External_Verneed);
7596 everneed = (Elf_External_Verneed *) contents;
7597 iverneed = elf_tdata (abfd)->verref;
7598 for (i = 0; i < hdr->sh_info; i++, iverneed++)
7599 {
7600 Elf_External_Vernaux *evernaux;
7601 Elf_Internal_Vernaux *ivernaux;
7602 unsigned int j;
7603
7604 _bfd_elf_swap_verneed_in (abfd, everneed, iverneed);
7605
7606 iverneed->vn_bfd = abfd;
7607
7608 iverneed->vn_filename =
7609 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
7610 iverneed->vn_file);
7611 if (iverneed->vn_filename == NULL)
7612 goto error_return_bad_verref;
7613
7614 if (iverneed->vn_cnt == 0)
7615 iverneed->vn_auxptr = NULL;
7616 else
7617 {
7618 iverneed->vn_auxptr = (struct elf_internal_vernaux *)
7619 bfd_alloc2 (abfd, iverneed->vn_cnt,
7620 sizeof (Elf_Internal_Vernaux));
7621 if (iverneed->vn_auxptr == NULL)
7622 goto error_return_verref;
7623 }
7624
7625 if (iverneed->vn_aux
7626 > (size_t) (contents_end - (bfd_byte *) everneed))
7627 goto error_return_bad_verref;
7628
7629 evernaux = ((Elf_External_Vernaux *)
7630 ((bfd_byte *) everneed + iverneed->vn_aux));
7631 ivernaux = iverneed->vn_auxptr;
7632 for (j = 0; j < iverneed->vn_cnt; j++, ivernaux++)
7633 {
7634 _bfd_elf_swap_vernaux_in (abfd, evernaux, ivernaux);
7635
7636 ivernaux->vna_nodename =
7637 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
7638 ivernaux->vna_name);
7639 if (ivernaux->vna_nodename == NULL)
7640 goto error_return_bad_verref;
7641
7642 if (ivernaux->vna_other > freeidx)
7643 freeidx = ivernaux->vna_other;
7644
7645 ivernaux->vna_nextptr = NULL;
7646 if (ivernaux->vna_next == 0)
7647 {
7648 iverneed->vn_cnt = j + 1;
7649 break;
7650 }
7651 if (j + 1 < iverneed->vn_cnt)
7652 ivernaux->vna_nextptr = ivernaux + 1;
7653
7654 if (ivernaux->vna_next
7655 > (size_t) (contents_end - (bfd_byte *) evernaux))
7656 goto error_return_bad_verref;
7657
7658 evernaux = ((Elf_External_Vernaux *)
7659 ((bfd_byte *) evernaux + ivernaux->vna_next));
7660 }
7661
7662 iverneed->vn_nextref = NULL;
7663 if (iverneed->vn_next == 0)
7664 break;
7665 if (i + 1 < hdr->sh_info)
7666 iverneed->vn_nextref = iverneed + 1;
7667
7668 if (iverneed->vn_next
7669 > (size_t) (contents_end - (bfd_byte *) everneed))
7670 goto error_return_bad_verref;
7671
7672 everneed = ((Elf_External_Verneed *)
7673 ((bfd_byte *) everneed + iverneed->vn_next));
7674 }
7675 elf_tdata (abfd)->cverrefs = i;
7676
7677 free (contents);
7678 contents = NULL;
7679 }
7680
7681 if (elf_dynverdef (abfd) != 0)
7682 {
7683 Elf_Internal_Shdr *hdr;
7684 Elf_External_Verdef *everdef;
7685 Elf_Internal_Verdef *iverdef;
7686 Elf_Internal_Verdef *iverdefarr;
7687 Elf_Internal_Verdef iverdefmem;
7688 unsigned int i;
7689 unsigned int maxidx;
7690 bfd_byte *contents_end_def, *contents_end_aux;
7691
7692 hdr = &elf_tdata (abfd)->dynverdef_hdr;
7693
7694 if (hdr->sh_info == 0 || hdr->sh_size < sizeof (Elf_External_Verdef))
7695 {
7696 error_return_bad_verdef:
7697 (*_bfd_error_handler)
7698 (_("%B: .gnu.version_d invalid entry"), abfd);
7699 bfd_set_error (bfd_error_bad_value);
7700 error_return_verdef:
7701 elf_tdata (abfd)->verdef = NULL;
7702 elf_tdata (abfd)->cverdefs = 0;
7703 goto error_return;
7704 }
7705
7706 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
7707 if (contents == NULL)
7708 goto error_return_verdef;
7709 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
7710 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
7711 goto error_return_verdef;
7712
7713 BFD_ASSERT (sizeof (Elf_External_Verdef)
7714 >= sizeof (Elf_External_Verdaux));
7715 contents_end_def = contents + hdr->sh_size
7716 - sizeof (Elf_External_Verdef);
7717 contents_end_aux = contents + hdr->sh_size
7718 - sizeof (Elf_External_Verdaux);
7719
7720 /* We know the number of entries in the section but not the maximum
7721 index. Therefore we have to run through all entries and find
7722 the maximum. */
7723 everdef = (Elf_External_Verdef *) contents;
7724 maxidx = 0;
7725 for (i = 0; i < hdr->sh_info; ++i)
7726 {
7727 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
7728
7729 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) == 0)
7730 goto error_return_bad_verdef;
7731 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) > maxidx)
7732 maxidx = iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION);
7733
7734 if (iverdefmem.vd_next == 0)
7735 break;
7736
7737 if (iverdefmem.vd_next
7738 > (size_t) (contents_end_def - (bfd_byte *) everdef))
7739 goto error_return_bad_verdef;
7740
7741 everdef = ((Elf_External_Verdef *)
7742 ((bfd_byte *) everdef + iverdefmem.vd_next));
7743 }
7744
7745 if (default_imported_symver)
7746 {
7747 if (freeidx > maxidx)
7748 maxidx = ++freeidx;
7749 else
7750 freeidx = ++maxidx;
7751 }
7752
7753 elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *)
7754 bfd_zalloc2 (abfd, maxidx, sizeof (Elf_Internal_Verdef));
7755 if (elf_tdata (abfd)->verdef == NULL)
7756 goto error_return_verdef;
7757
7758 elf_tdata (abfd)->cverdefs = maxidx;
7759
7760 everdef = (Elf_External_Verdef *) contents;
7761 iverdefarr = elf_tdata (abfd)->verdef;
7762 for (i = 0; i < hdr->sh_info; i++)
7763 {
7764 Elf_External_Verdaux *everdaux;
7765 Elf_Internal_Verdaux *iverdaux;
7766 unsigned int j;
7767
7768 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
7769
7770 if ((iverdefmem.vd_ndx & VERSYM_VERSION) == 0)
7771 goto error_return_bad_verdef;
7772
7773 iverdef = &iverdefarr[(iverdefmem.vd_ndx & VERSYM_VERSION) - 1];
7774 memcpy (iverdef, &iverdefmem, sizeof (Elf_Internal_Verdef));
7775
7776 iverdef->vd_bfd = abfd;
7777
7778 if (iverdef->vd_cnt == 0)
7779 iverdef->vd_auxptr = NULL;
7780 else
7781 {
7782 iverdef->vd_auxptr = (struct elf_internal_verdaux *)
7783 bfd_alloc2 (abfd, iverdef->vd_cnt,
7784 sizeof (Elf_Internal_Verdaux));
7785 if (iverdef->vd_auxptr == NULL)
7786 goto error_return_verdef;
7787 }
7788
7789 if (iverdef->vd_aux
7790 > (size_t) (contents_end_aux - (bfd_byte *) everdef))
7791 goto error_return_bad_verdef;
7792
7793 everdaux = ((Elf_External_Verdaux *)
7794 ((bfd_byte *) everdef + iverdef->vd_aux));
7795 iverdaux = iverdef->vd_auxptr;
7796 for (j = 0; j < iverdef->vd_cnt; j++, iverdaux++)
7797 {
7798 _bfd_elf_swap_verdaux_in (abfd, everdaux, iverdaux);
7799
7800 iverdaux->vda_nodename =
7801 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
7802 iverdaux->vda_name);
7803 if (iverdaux->vda_nodename == NULL)
7804 goto error_return_bad_verdef;
7805
7806 iverdaux->vda_nextptr = NULL;
7807 if (iverdaux->vda_next == 0)
7808 {
7809 iverdef->vd_cnt = j + 1;
7810 break;
7811 }
7812 if (j + 1 < iverdef->vd_cnt)
7813 iverdaux->vda_nextptr = iverdaux + 1;
7814
7815 if (iverdaux->vda_next
7816 > (size_t) (contents_end_aux - (bfd_byte *) everdaux))
7817 goto error_return_bad_verdef;
7818
7819 everdaux = ((Elf_External_Verdaux *)
7820 ((bfd_byte *) everdaux + iverdaux->vda_next));
7821 }
7822
7823 if (iverdef->vd_cnt)
7824 iverdef->vd_nodename = iverdef->vd_auxptr->vda_nodename;
7825
7826 iverdef->vd_nextdef = NULL;
7827 if (iverdef->vd_next == 0)
7828 break;
7829 if ((size_t) (iverdef - iverdefarr) + 1 < maxidx)
7830 iverdef->vd_nextdef = iverdef + 1;
7831
7832 everdef = ((Elf_External_Verdef *)
7833 ((bfd_byte *) everdef + iverdef->vd_next));
7834 }
7835
7836 free (contents);
7837 contents = NULL;
7838 }
7839 else if (default_imported_symver)
7840 {
7841 if (freeidx < 3)
7842 freeidx = 3;
7843 else
7844 freeidx++;
7845
7846 elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *)
7847 bfd_zalloc2 (abfd, freeidx, sizeof (Elf_Internal_Verdef));
7848 if (elf_tdata (abfd)->verdef == NULL)
7849 goto error_return;
7850
7851 elf_tdata (abfd)->cverdefs = freeidx;
7852 }
7853
7854 /* Create a default version based on the soname. */
7855 if (default_imported_symver)
7856 {
7857 Elf_Internal_Verdef *iverdef;
7858 Elf_Internal_Verdaux *iverdaux;
7859
7860 iverdef = &elf_tdata (abfd)->verdef[freeidx - 1];
7861
7862 iverdef->vd_version = VER_DEF_CURRENT;
7863 iverdef->vd_flags = 0;
7864 iverdef->vd_ndx = freeidx;
7865 iverdef->vd_cnt = 1;
7866
7867 iverdef->vd_bfd = abfd;
7868
7869 iverdef->vd_nodename = bfd_elf_get_dt_soname (abfd);
7870 if (iverdef->vd_nodename == NULL)
7871 goto error_return_verdef;
7872 iverdef->vd_nextdef = NULL;
7873 iverdef->vd_auxptr = ((struct elf_internal_verdaux *)
7874 bfd_zalloc (abfd, sizeof (Elf_Internal_Verdaux)));
7875 if (iverdef->vd_auxptr == NULL)
7876 goto error_return_verdef;
7877
7878 iverdaux = iverdef->vd_auxptr;
7879 iverdaux->vda_nodename = iverdef->vd_nodename;
7880 }
7881
7882 return TRUE;
7883
7884 error_return:
7885 if (contents != NULL)
7886 free (contents);
7887 return FALSE;
7888 }
7889 \f
7890 asymbol *
7891 _bfd_elf_make_empty_symbol (bfd *abfd)
7892 {
7893 elf_symbol_type *newsym;
7894
7895 newsym = (elf_symbol_type *) bfd_zalloc (abfd, sizeof * newsym);
7896 if (!newsym)
7897 return NULL;
7898 newsym->symbol.the_bfd = abfd;
7899 return &newsym->symbol;
7900 }
7901
7902 void
7903 _bfd_elf_get_symbol_info (bfd *abfd ATTRIBUTE_UNUSED,
7904 asymbol *symbol,
7905 symbol_info *ret)
7906 {
7907 bfd_symbol_info (symbol, ret);
7908 }
7909
7910 /* Return whether a symbol name implies a local symbol. Most targets
7911 use this function for the is_local_label_name entry point, but some
7912 override it. */
7913
7914 bfd_boolean
7915 _bfd_elf_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED,
7916 const char *name)
7917 {
7918 /* Normal local symbols start with ``.L''. */
7919 if (name[0] == '.' && name[1] == 'L')
7920 return TRUE;
7921
7922 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
7923 DWARF debugging symbols starting with ``..''. */
7924 if (name[0] == '.' && name[1] == '.')
7925 return TRUE;
7926
7927 /* gcc will sometimes generate symbols beginning with ``_.L_'' when
7928 emitting DWARF debugging output. I suspect this is actually a
7929 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
7930 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
7931 underscore to be emitted on some ELF targets). For ease of use,
7932 we treat such symbols as local. */
7933 if (name[0] == '_' && name[1] == '.' && name[2] == 'L' && name[3] == '_')
7934 return TRUE;
7935
7936 /* Treat assembler generated fake symbols, dollar local labels and
7937 forward-backward labels (aka local labels) as locals.
7938 These labels have the form:
7939
7940 L0^A.* (fake symbols)
7941
7942 [.]?L[0123456789]+{^A|^B}[0123456789]* (local labels)
7943
7944 Versions which start with .L will have already been matched above,
7945 so we only need to match the rest. */
7946 if (name[0] == 'L' && ISDIGIT (name[1]))
7947 {
7948 bfd_boolean ret = FALSE;
7949 const char * p;
7950 char c;
7951
7952 for (p = name + 2; (c = *p); p++)
7953 {
7954 if (c == 1 || c == 2)
7955 {
7956 if (c == 1 && p == name + 2)
7957 /* A fake symbol. */
7958 return TRUE;
7959
7960 /* FIXME: We are being paranoid here and treating symbols like
7961 L0^Bfoo as if there were non-local, on the grounds that the
7962 assembler will never generate them. But can any symbol
7963 containing an ASCII value in the range 1-31 ever be anything
7964 other than some kind of local ? */
7965 ret = TRUE;
7966 }
7967
7968 if (! ISDIGIT (c))
7969 {
7970 ret = FALSE;
7971 break;
7972 }
7973 }
7974 return ret;
7975 }
7976
7977 return FALSE;
7978 }
7979
7980 alent *
7981 _bfd_elf_get_lineno (bfd *abfd ATTRIBUTE_UNUSED,
7982 asymbol *symbol ATTRIBUTE_UNUSED)
7983 {
7984 abort ();
7985 return NULL;
7986 }
7987
7988 bfd_boolean
7989 _bfd_elf_set_arch_mach (bfd *abfd,
7990 enum bfd_architecture arch,
7991 unsigned long machine)
7992 {
7993 /* If this isn't the right architecture for this backend, and this
7994 isn't the generic backend, fail. */
7995 if (arch != get_elf_backend_data (abfd)->arch
7996 && arch != bfd_arch_unknown
7997 && get_elf_backend_data (abfd)->arch != bfd_arch_unknown)
7998 return FALSE;
7999
8000 return bfd_default_set_arch_mach (abfd, arch, machine);
8001 }
8002
8003 /* Find the nearest line to a particular section and offset,
8004 for error reporting. */
8005
8006 bfd_boolean
8007 _bfd_elf_find_nearest_line (bfd *abfd,
8008 asymbol **symbols,
8009 asection *section,
8010 bfd_vma offset,
8011 const char **filename_ptr,
8012 const char **functionname_ptr,
8013 unsigned int *line_ptr,
8014 unsigned int *discriminator_ptr)
8015 {
8016 bfd_boolean found;
8017
8018 if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset,
8019 filename_ptr, functionname_ptr,
8020 line_ptr, discriminator_ptr,
8021 dwarf_debug_sections, 0,
8022 &elf_tdata (abfd)->dwarf2_find_line_info)
8023 || _bfd_dwarf1_find_nearest_line (abfd, symbols, section, offset,
8024 filename_ptr, functionname_ptr,
8025 line_ptr))
8026 {
8027 if (!*functionname_ptr)
8028 _bfd_elf_find_function (abfd, symbols, section, offset,
8029 *filename_ptr ? NULL : filename_ptr,
8030 functionname_ptr);
8031 return TRUE;
8032 }
8033
8034 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
8035 &found, filename_ptr,
8036 functionname_ptr, line_ptr,
8037 &elf_tdata (abfd)->line_info))
8038 return FALSE;
8039 if (found && (*functionname_ptr || *line_ptr))
8040 return TRUE;
8041
8042 if (symbols == NULL)
8043 return FALSE;
8044
8045 if (! _bfd_elf_find_function (abfd, symbols, section, offset,
8046 filename_ptr, functionname_ptr))
8047 return FALSE;
8048
8049 *line_ptr = 0;
8050 return TRUE;
8051 }
8052
8053 /* Find the line for a symbol. */
8054
8055 bfd_boolean
8056 _bfd_elf_find_line (bfd *abfd, asymbol **symbols, asymbol *symbol,
8057 const char **filename_ptr, unsigned int *line_ptr)
8058 {
8059 return _bfd_dwarf2_find_nearest_line (abfd, symbols, symbol, NULL, 0,
8060 filename_ptr, NULL, line_ptr, NULL,
8061 dwarf_debug_sections, 0,
8062 &elf_tdata (abfd)->dwarf2_find_line_info);
8063 }
8064
8065 /* After a call to bfd_find_nearest_line, successive calls to
8066 bfd_find_inliner_info can be used to get source information about
8067 each level of function inlining that terminated at the address
8068 passed to bfd_find_nearest_line. Currently this is only supported
8069 for DWARF2 with appropriate DWARF3 extensions. */
8070
8071 bfd_boolean
8072 _bfd_elf_find_inliner_info (bfd *abfd,
8073 const char **filename_ptr,
8074 const char **functionname_ptr,
8075 unsigned int *line_ptr)
8076 {
8077 bfd_boolean found;
8078 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
8079 functionname_ptr, line_ptr,
8080 & elf_tdata (abfd)->dwarf2_find_line_info);
8081 return found;
8082 }
8083
8084 int
8085 _bfd_elf_sizeof_headers (bfd *abfd, struct bfd_link_info *info)
8086 {
8087 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8088 int ret = bed->s->sizeof_ehdr;
8089
8090 if (!info->relocatable)
8091 {
8092 bfd_size_type phdr_size = elf_program_header_size (abfd);
8093
8094 if (phdr_size == (bfd_size_type) -1)
8095 {
8096 struct elf_segment_map *m;
8097
8098 phdr_size = 0;
8099 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
8100 phdr_size += bed->s->sizeof_phdr;
8101
8102 if (phdr_size == 0)
8103 phdr_size = get_program_header_size (abfd, info);
8104 }
8105
8106 elf_program_header_size (abfd) = phdr_size;
8107 ret += phdr_size;
8108 }
8109
8110 return ret;
8111 }
8112
8113 bfd_boolean
8114 _bfd_elf_set_section_contents (bfd *abfd,
8115 sec_ptr section,
8116 const void *location,
8117 file_ptr offset,
8118 bfd_size_type count)
8119 {
8120 Elf_Internal_Shdr *hdr;
8121 file_ptr pos;
8122
8123 if (! abfd->output_has_begun
8124 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
8125 return FALSE;
8126
8127 if (!count)
8128 return TRUE;
8129
8130 hdr = &elf_section_data (section)->this_hdr;
8131 if (hdr->sh_offset == (file_ptr) -1)
8132 {
8133 /* We must compress this section. Write output to the buffer. */
8134 unsigned char *contents = hdr->contents;
8135 if ((offset + count) > hdr->sh_size
8136 || (section->flags & SEC_ELF_COMPRESS) == 0
8137 || contents == NULL)
8138 abort ();
8139 memcpy (contents + offset, location, count);
8140 return TRUE;
8141 }
8142 pos = hdr->sh_offset + offset;
8143 if (bfd_seek (abfd, pos, SEEK_SET) != 0
8144 || bfd_bwrite (location, count, abfd) != count)
8145 return FALSE;
8146
8147 return TRUE;
8148 }
8149
8150 void
8151 _bfd_elf_no_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED,
8152 arelent *cache_ptr ATTRIBUTE_UNUSED,
8153 Elf_Internal_Rela *dst ATTRIBUTE_UNUSED)
8154 {
8155 abort ();
8156 }
8157
8158 /* Try to convert a non-ELF reloc into an ELF one. */
8159
8160 bfd_boolean
8161 _bfd_elf_validate_reloc (bfd *abfd, arelent *areloc)
8162 {
8163 /* Check whether we really have an ELF howto. */
8164
8165 if ((*areloc->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec)
8166 {
8167 bfd_reloc_code_real_type code;
8168 reloc_howto_type *howto;
8169
8170 /* Alien reloc: Try to determine its type to replace it with an
8171 equivalent ELF reloc. */
8172
8173 if (areloc->howto->pc_relative)
8174 {
8175 switch (areloc->howto->bitsize)
8176 {
8177 case 8:
8178 code = BFD_RELOC_8_PCREL;
8179 break;
8180 case 12:
8181 code = BFD_RELOC_12_PCREL;
8182 break;
8183 case 16:
8184 code = BFD_RELOC_16_PCREL;
8185 break;
8186 case 24:
8187 code = BFD_RELOC_24_PCREL;
8188 break;
8189 case 32:
8190 code = BFD_RELOC_32_PCREL;
8191 break;
8192 case 64:
8193 code = BFD_RELOC_64_PCREL;
8194 break;
8195 default:
8196 goto fail;
8197 }
8198
8199 howto = bfd_reloc_type_lookup (abfd, code);
8200
8201 if (areloc->howto->pcrel_offset != howto->pcrel_offset)
8202 {
8203 if (howto->pcrel_offset)
8204 areloc->addend += areloc->address;
8205 else
8206 areloc->addend -= areloc->address; /* addend is unsigned!! */
8207 }
8208 }
8209 else
8210 {
8211 switch (areloc->howto->bitsize)
8212 {
8213 case 8:
8214 code = BFD_RELOC_8;
8215 break;
8216 case 14:
8217 code = BFD_RELOC_14;
8218 break;
8219 case 16:
8220 code = BFD_RELOC_16;
8221 break;
8222 case 26:
8223 code = BFD_RELOC_26;
8224 break;
8225 case 32:
8226 code = BFD_RELOC_32;
8227 break;
8228 case 64:
8229 code = BFD_RELOC_64;
8230 break;
8231 default:
8232 goto fail;
8233 }
8234
8235 howto = bfd_reloc_type_lookup (abfd, code);
8236 }
8237
8238 if (howto)
8239 areloc->howto = howto;
8240 else
8241 goto fail;
8242 }
8243
8244 return TRUE;
8245
8246 fail:
8247 (*_bfd_error_handler)
8248 (_("%B: unsupported relocation type %s"),
8249 abfd, areloc->howto->name);
8250 bfd_set_error (bfd_error_bad_value);
8251 return FALSE;
8252 }
8253
8254 bfd_boolean
8255 _bfd_elf_close_and_cleanup (bfd *abfd)
8256 {
8257 struct elf_obj_tdata *tdata = elf_tdata (abfd);
8258 if (bfd_get_format (abfd) == bfd_object && tdata != NULL)
8259 {
8260 if (elf_tdata (abfd)->o != NULL && elf_shstrtab (abfd) != NULL)
8261 _bfd_elf_strtab_free (elf_shstrtab (abfd));
8262 _bfd_dwarf2_cleanup_debug_info (abfd, &tdata->dwarf2_find_line_info);
8263 }
8264
8265 return _bfd_generic_close_and_cleanup (abfd);
8266 }
8267
8268 /* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
8269 in the relocation's offset. Thus we cannot allow any sort of sanity
8270 range-checking to interfere. There is nothing else to do in processing
8271 this reloc. */
8272
8273 bfd_reloc_status_type
8274 _bfd_elf_rel_vtable_reloc_fn
8275 (bfd *abfd ATTRIBUTE_UNUSED, arelent *re ATTRIBUTE_UNUSED,
8276 struct bfd_symbol *symbol ATTRIBUTE_UNUSED,
8277 void *data ATTRIBUTE_UNUSED, asection *is ATTRIBUTE_UNUSED,
8278 bfd *obfd ATTRIBUTE_UNUSED, char **errmsg ATTRIBUTE_UNUSED)
8279 {
8280 return bfd_reloc_ok;
8281 }
8282 \f
8283 /* Elf core file support. Much of this only works on native
8284 toolchains, since we rely on knowing the
8285 machine-dependent procfs structure in order to pick
8286 out details about the corefile. */
8287
8288 #ifdef HAVE_SYS_PROCFS_H
8289 /* Needed for new procfs interface on sparc-solaris. */
8290 # define _STRUCTURED_PROC 1
8291 # include <sys/procfs.h>
8292 #endif
8293
8294 /* Return a PID that identifies a "thread" for threaded cores, or the
8295 PID of the main process for non-threaded cores. */
8296
8297 static int
8298 elfcore_make_pid (bfd *abfd)
8299 {
8300 int pid;
8301
8302 pid = elf_tdata (abfd)->core->lwpid;
8303 if (pid == 0)
8304 pid = elf_tdata (abfd)->core->pid;
8305
8306 return pid;
8307 }
8308
8309 /* If there isn't a section called NAME, make one, using
8310 data from SECT. Note, this function will generate a
8311 reference to NAME, so you shouldn't deallocate or
8312 overwrite it. */
8313
8314 static bfd_boolean
8315 elfcore_maybe_make_sect (bfd *abfd, char *name, asection *sect)
8316 {
8317 asection *sect2;
8318
8319 if (bfd_get_section_by_name (abfd, name) != NULL)
8320 return TRUE;
8321
8322 sect2 = bfd_make_section_with_flags (abfd, name, sect->flags);
8323 if (sect2 == NULL)
8324 return FALSE;
8325
8326 sect2->size = sect->size;
8327 sect2->filepos = sect->filepos;
8328 sect2->alignment_power = sect->alignment_power;
8329 return TRUE;
8330 }
8331
8332 /* Create a pseudosection containing SIZE bytes at FILEPOS. This
8333 actually creates up to two pseudosections:
8334 - For the single-threaded case, a section named NAME, unless
8335 such a section already exists.
8336 - For the multi-threaded case, a section named "NAME/PID", where
8337 PID is elfcore_make_pid (abfd).
8338 Both pseudosections have identical contents. */
8339 bfd_boolean
8340 _bfd_elfcore_make_pseudosection (bfd *abfd,
8341 char *name,
8342 size_t size,
8343 ufile_ptr filepos)
8344 {
8345 char buf[100];
8346 char *threaded_name;
8347 size_t len;
8348 asection *sect;
8349
8350 /* Build the section name. */
8351
8352 sprintf (buf, "%s/%d", name, elfcore_make_pid (abfd));
8353 len = strlen (buf) + 1;
8354 threaded_name = (char *) bfd_alloc (abfd, len);
8355 if (threaded_name == NULL)
8356 return FALSE;
8357 memcpy (threaded_name, buf, len);
8358
8359 sect = bfd_make_section_anyway_with_flags (abfd, threaded_name,
8360 SEC_HAS_CONTENTS);
8361 if (sect == NULL)
8362 return FALSE;
8363 sect->size = size;
8364 sect->filepos = filepos;
8365 sect->alignment_power = 2;
8366
8367 return elfcore_maybe_make_sect (abfd, name, sect);
8368 }
8369
8370 /* prstatus_t exists on:
8371 solaris 2.5+
8372 linux 2.[01] + glibc
8373 unixware 4.2
8374 */
8375
8376 #if defined (HAVE_PRSTATUS_T)
8377
8378 static bfd_boolean
8379 elfcore_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
8380 {
8381 size_t size;
8382 int offset;
8383
8384 if (note->descsz == sizeof (prstatus_t))
8385 {
8386 prstatus_t prstat;
8387
8388 size = sizeof (prstat.pr_reg);
8389 offset = offsetof (prstatus_t, pr_reg);
8390 memcpy (&prstat, note->descdata, sizeof (prstat));
8391
8392 /* Do not overwrite the core signal if it
8393 has already been set by another thread. */
8394 if (elf_tdata (abfd)->core->signal == 0)
8395 elf_tdata (abfd)->core->signal = prstat.pr_cursig;
8396 if (elf_tdata (abfd)->core->pid == 0)
8397 elf_tdata (abfd)->core->pid = prstat.pr_pid;
8398
8399 /* pr_who exists on:
8400 solaris 2.5+
8401 unixware 4.2
8402 pr_who doesn't exist on:
8403 linux 2.[01]
8404 */
8405 #if defined (HAVE_PRSTATUS_T_PR_WHO)
8406 elf_tdata (abfd)->core->lwpid = prstat.pr_who;
8407 #else
8408 elf_tdata (abfd)->core->lwpid = prstat.pr_pid;
8409 #endif
8410 }
8411 #if defined (HAVE_PRSTATUS32_T)
8412 else if (note->descsz == sizeof (prstatus32_t))
8413 {
8414 /* 64-bit host, 32-bit corefile */
8415 prstatus32_t prstat;
8416
8417 size = sizeof (prstat.pr_reg);
8418 offset = offsetof (prstatus32_t, pr_reg);
8419 memcpy (&prstat, note->descdata, sizeof (prstat));
8420
8421 /* Do not overwrite the core signal if it
8422 has already been set by another thread. */
8423 if (elf_tdata (abfd)->core->signal == 0)
8424 elf_tdata (abfd)->core->signal = prstat.pr_cursig;
8425 if (elf_tdata (abfd)->core->pid == 0)
8426 elf_tdata (abfd)->core->pid = prstat.pr_pid;
8427
8428 /* pr_who exists on:
8429 solaris 2.5+
8430 unixware 4.2
8431 pr_who doesn't exist on:
8432 linux 2.[01]
8433 */
8434 #if defined (HAVE_PRSTATUS32_T_PR_WHO)
8435 elf_tdata (abfd)->core->lwpid = prstat.pr_who;
8436 #else
8437 elf_tdata (abfd)->core->lwpid = prstat.pr_pid;
8438 #endif
8439 }
8440 #endif /* HAVE_PRSTATUS32_T */
8441 else
8442 {
8443 /* Fail - we don't know how to handle any other
8444 note size (ie. data object type). */
8445 return TRUE;
8446 }
8447
8448 /* Make a ".reg/999" section and a ".reg" section. */
8449 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
8450 size, note->descpos + offset);
8451 }
8452 #endif /* defined (HAVE_PRSTATUS_T) */
8453
8454 /* Create a pseudosection containing the exact contents of NOTE. */
8455 static bfd_boolean
8456 elfcore_make_note_pseudosection (bfd *abfd,
8457 char *name,
8458 Elf_Internal_Note *note)
8459 {
8460 return _bfd_elfcore_make_pseudosection (abfd, name,
8461 note->descsz, note->descpos);
8462 }
8463
8464 /* There isn't a consistent prfpregset_t across platforms,
8465 but it doesn't matter, because we don't have to pick this
8466 data structure apart. */
8467
8468 static bfd_boolean
8469 elfcore_grok_prfpreg (bfd *abfd, Elf_Internal_Note *note)
8470 {
8471 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
8472 }
8473
8474 /* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
8475 type of NT_PRXFPREG. Just include the whole note's contents
8476 literally. */
8477
8478 static bfd_boolean
8479 elfcore_grok_prxfpreg (bfd *abfd, Elf_Internal_Note *note)
8480 {
8481 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
8482 }
8483
8484 /* Linux dumps the Intel XSAVE extended state in a note named "LINUX"
8485 with a note type of NT_X86_XSTATE. Just include the whole note's
8486 contents literally. */
8487
8488 static bfd_boolean
8489 elfcore_grok_xstatereg (bfd *abfd, Elf_Internal_Note *note)
8490 {
8491 return elfcore_make_note_pseudosection (abfd, ".reg-xstate", note);
8492 }
8493
8494 static bfd_boolean
8495 elfcore_grok_ppc_vmx (bfd *abfd, Elf_Internal_Note *note)
8496 {
8497 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vmx", note);
8498 }
8499
8500 static bfd_boolean
8501 elfcore_grok_ppc_vsx (bfd *abfd, Elf_Internal_Note *note)
8502 {
8503 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vsx", note);
8504 }
8505
8506 static bfd_boolean
8507 elfcore_grok_s390_high_gprs (bfd *abfd, Elf_Internal_Note *note)
8508 {
8509 return elfcore_make_note_pseudosection (abfd, ".reg-s390-high-gprs", note);
8510 }
8511
8512 static bfd_boolean
8513 elfcore_grok_s390_timer (bfd *abfd, Elf_Internal_Note *note)
8514 {
8515 return elfcore_make_note_pseudosection (abfd, ".reg-s390-timer", note);
8516 }
8517
8518 static bfd_boolean
8519 elfcore_grok_s390_todcmp (bfd *abfd, Elf_Internal_Note *note)
8520 {
8521 return elfcore_make_note_pseudosection (abfd, ".reg-s390-todcmp", note);
8522 }
8523
8524 static bfd_boolean
8525 elfcore_grok_s390_todpreg (bfd *abfd, Elf_Internal_Note *note)
8526 {
8527 return elfcore_make_note_pseudosection (abfd, ".reg-s390-todpreg", note);
8528 }
8529
8530 static bfd_boolean
8531 elfcore_grok_s390_ctrs (bfd *abfd, Elf_Internal_Note *note)
8532 {
8533 return elfcore_make_note_pseudosection (abfd, ".reg-s390-ctrs", note);
8534 }
8535
8536 static bfd_boolean
8537 elfcore_grok_s390_prefix (bfd *abfd, Elf_Internal_Note *note)
8538 {
8539 return elfcore_make_note_pseudosection (abfd, ".reg-s390-prefix", note);
8540 }
8541
8542 static bfd_boolean
8543 elfcore_grok_s390_last_break (bfd *abfd, Elf_Internal_Note *note)
8544 {
8545 return elfcore_make_note_pseudosection (abfd, ".reg-s390-last-break", note);
8546 }
8547
8548 static bfd_boolean
8549 elfcore_grok_s390_system_call (bfd *abfd, Elf_Internal_Note *note)
8550 {
8551 return elfcore_make_note_pseudosection (abfd, ".reg-s390-system-call", note);
8552 }
8553
8554 static bfd_boolean
8555 elfcore_grok_s390_tdb (bfd *abfd, Elf_Internal_Note *note)
8556 {
8557 return elfcore_make_note_pseudosection (abfd, ".reg-s390-tdb", note);
8558 }
8559
8560 static bfd_boolean
8561 elfcore_grok_s390_vxrs_low (bfd *abfd, Elf_Internal_Note *note)
8562 {
8563 return elfcore_make_note_pseudosection (abfd, ".reg-s390-vxrs-low", note);
8564 }
8565
8566 static bfd_boolean
8567 elfcore_grok_s390_vxrs_high (bfd *abfd, Elf_Internal_Note *note)
8568 {
8569 return elfcore_make_note_pseudosection (abfd, ".reg-s390-vxrs-high", note);
8570 }
8571
8572 static bfd_boolean
8573 elfcore_grok_arm_vfp (bfd *abfd, Elf_Internal_Note *note)
8574 {
8575 return elfcore_make_note_pseudosection (abfd, ".reg-arm-vfp", note);
8576 }
8577
8578 static bfd_boolean
8579 elfcore_grok_aarch_tls (bfd *abfd, Elf_Internal_Note *note)
8580 {
8581 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-tls", note);
8582 }
8583
8584 static bfd_boolean
8585 elfcore_grok_aarch_hw_break (bfd *abfd, Elf_Internal_Note *note)
8586 {
8587 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-hw-break", note);
8588 }
8589
8590 static bfd_boolean
8591 elfcore_grok_aarch_hw_watch (bfd *abfd, Elf_Internal_Note *note)
8592 {
8593 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-hw-watch", note);
8594 }
8595
8596 #if defined (HAVE_PRPSINFO_T)
8597 typedef prpsinfo_t elfcore_psinfo_t;
8598 #if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
8599 typedef prpsinfo32_t elfcore_psinfo32_t;
8600 #endif
8601 #endif
8602
8603 #if defined (HAVE_PSINFO_T)
8604 typedef psinfo_t elfcore_psinfo_t;
8605 #if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
8606 typedef psinfo32_t elfcore_psinfo32_t;
8607 #endif
8608 #endif
8609
8610 /* return a malloc'ed copy of a string at START which is at
8611 most MAX bytes long, possibly without a terminating '\0'.
8612 the copy will always have a terminating '\0'. */
8613
8614 char *
8615 _bfd_elfcore_strndup (bfd *abfd, char *start, size_t max)
8616 {
8617 char *dups;
8618 char *end = (char *) memchr (start, '\0', max);
8619 size_t len;
8620
8621 if (end == NULL)
8622 len = max;
8623 else
8624 len = end - start;
8625
8626 dups = (char *) bfd_alloc (abfd, len + 1);
8627 if (dups == NULL)
8628 return NULL;
8629
8630 memcpy (dups, start, len);
8631 dups[len] = '\0';
8632
8633 return dups;
8634 }
8635
8636 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
8637 static bfd_boolean
8638 elfcore_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
8639 {
8640 if (note->descsz == sizeof (elfcore_psinfo_t))
8641 {
8642 elfcore_psinfo_t psinfo;
8643
8644 memcpy (&psinfo, note->descdata, sizeof (psinfo));
8645
8646 #if defined (HAVE_PSINFO_T_PR_PID) || defined (HAVE_PRPSINFO_T_PR_PID)
8647 elf_tdata (abfd)->core->pid = psinfo.pr_pid;
8648 #endif
8649 elf_tdata (abfd)->core->program
8650 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
8651 sizeof (psinfo.pr_fname));
8652
8653 elf_tdata (abfd)->core->command
8654 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
8655 sizeof (psinfo.pr_psargs));
8656 }
8657 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
8658 else if (note->descsz == sizeof (elfcore_psinfo32_t))
8659 {
8660 /* 64-bit host, 32-bit corefile */
8661 elfcore_psinfo32_t psinfo;
8662
8663 memcpy (&psinfo, note->descdata, sizeof (psinfo));
8664
8665 #if defined (HAVE_PSINFO32_T_PR_PID) || defined (HAVE_PRPSINFO32_T_PR_PID)
8666 elf_tdata (abfd)->core->pid = psinfo.pr_pid;
8667 #endif
8668 elf_tdata (abfd)->core->program
8669 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
8670 sizeof (psinfo.pr_fname));
8671
8672 elf_tdata (abfd)->core->command
8673 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
8674 sizeof (psinfo.pr_psargs));
8675 }
8676 #endif
8677
8678 else
8679 {
8680 /* Fail - we don't know how to handle any other
8681 note size (ie. data object type). */
8682 return TRUE;
8683 }
8684
8685 /* Note that for some reason, a spurious space is tacked
8686 onto the end of the args in some (at least one anyway)
8687 implementations, so strip it off if it exists. */
8688
8689 {
8690 char *command = elf_tdata (abfd)->core->command;
8691 int n = strlen (command);
8692
8693 if (0 < n && command[n - 1] == ' ')
8694 command[n - 1] = '\0';
8695 }
8696
8697 return TRUE;
8698 }
8699 #endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
8700
8701 #if defined (HAVE_PSTATUS_T)
8702 static bfd_boolean
8703 elfcore_grok_pstatus (bfd *abfd, Elf_Internal_Note *note)
8704 {
8705 if (note->descsz == sizeof (pstatus_t)
8706 #if defined (HAVE_PXSTATUS_T)
8707 || note->descsz == sizeof (pxstatus_t)
8708 #endif
8709 )
8710 {
8711 pstatus_t pstat;
8712
8713 memcpy (&pstat, note->descdata, sizeof (pstat));
8714
8715 elf_tdata (abfd)->core->pid = pstat.pr_pid;
8716 }
8717 #if defined (HAVE_PSTATUS32_T)
8718 else if (note->descsz == sizeof (pstatus32_t))
8719 {
8720 /* 64-bit host, 32-bit corefile */
8721 pstatus32_t pstat;
8722
8723 memcpy (&pstat, note->descdata, sizeof (pstat));
8724
8725 elf_tdata (abfd)->core->pid = pstat.pr_pid;
8726 }
8727 #endif
8728 /* Could grab some more details from the "representative"
8729 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
8730 NT_LWPSTATUS note, presumably. */
8731
8732 return TRUE;
8733 }
8734 #endif /* defined (HAVE_PSTATUS_T) */
8735
8736 #if defined (HAVE_LWPSTATUS_T)
8737 static bfd_boolean
8738 elfcore_grok_lwpstatus (bfd *abfd, Elf_Internal_Note *note)
8739 {
8740 lwpstatus_t lwpstat;
8741 char buf[100];
8742 char *name;
8743 size_t len;
8744 asection *sect;
8745
8746 if (note->descsz != sizeof (lwpstat)
8747 #if defined (HAVE_LWPXSTATUS_T)
8748 && note->descsz != sizeof (lwpxstatus_t)
8749 #endif
8750 )
8751 return TRUE;
8752
8753 memcpy (&lwpstat, note->descdata, sizeof (lwpstat));
8754
8755 elf_tdata (abfd)->core->lwpid = lwpstat.pr_lwpid;
8756 /* Do not overwrite the core signal if it has already been set by
8757 another thread. */
8758 if (elf_tdata (abfd)->core->signal == 0)
8759 elf_tdata (abfd)->core->signal = lwpstat.pr_cursig;
8760
8761 /* Make a ".reg/999" section. */
8762
8763 sprintf (buf, ".reg/%d", elfcore_make_pid (abfd));
8764 len = strlen (buf) + 1;
8765 name = bfd_alloc (abfd, len);
8766 if (name == NULL)
8767 return FALSE;
8768 memcpy (name, buf, len);
8769
8770 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8771 if (sect == NULL)
8772 return FALSE;
8773
8774 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
8775 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.gregs);
8776 sect->filepos = note->descpos
8777 + offsetof (lwpstatus_t, pr_context.uc_mcontext.gregs);
8778 #endif
8779
8780 #if defined (HAVE_LWPSTATUS_T_PR_REG)
8781 sect->size = sizeof (lwpstat.pr_reg);
8782 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_reg);
8783 #endif
8784
8785 sect->alignment_power = 2;
8786
8787 if (!elfcore_maybe_make_sect (abfd, ".reg", sect))
8788 return FALSE;
8789
8790 /* Make a ".reg2/999" section */
8791
8792 sprintf (buf, ".reg2/%d", elfcore_make_pid (abfd));
8793 len = strlen (buf) + 1;
8794 name = bfd_alloc (abfd, len);
8795 if (name == NULL)
8796 return FALSE;
8797 memcpy (name, buf, len);
8798
8799 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8800 if (sect == NULL)
8801 return FALSE;
8802
8803 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
8804 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.fpregs);
8805 sect->filepos = note->descpos
8806 + offsetof (lwpstatus_t, pr_context.uc_mcontext.fpregs);
8807 #endif
8808
8809 #if defined (HAVE_LWPSTATUS_T_PR_FPREG)
8810 sect->size = sizeof (lwpstat.pr_fpreg);
8811 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_fpreg);
8812 #endif
8813
8814 sect->alignment_power = 2;
8815
8816 return elfcore_maybe_make_sect (abfd, ".reg2", sect);
8817 }
8818 #endif /* defined (HAVE_LWPSTATUS_T) */
8819
8820 static bfd_boolean
8821 elfcore_grok_win32pstatus (bfd *abfd, Elf_Internal_Note *note)
8822 {
8823 char buf[30];
8824 char *name;
8825 size_t len;
8826 asection *sect;
8827 int type;
8828 int is_active_thread;
8829 bfd_vma base_addr;
8830
8831 if (note->descsz < 728)
8832 return TRUE;
8833
8834 if (! CONST_STRNEQ (note->namedata, "win32"))
8835 return TRUE;
8836
8837 type = bfd_get_32 (abfd, note->descdata);
8838
8839 switch (type)
8840 {
8841 case 1 /* NOTE_INFO_PROCESS */:
8842 /* FIXME: need to add ->core->command. */
8843 /* process_info.pid */
8844 elf_tdata (abfd)->core->pid = bfd_get_32 (abfd, note->descdata + 8);
8845 /* process_info.signal */
8846 elf_tdata (abfd)->core->signal = bfd_get_32 (abfd, note->descdata + 12);
8847 break;
8848
8849 case 2 /* NOTE_INFO_THREAD */:
8850 /* Make a ".reg/999" section. */
8851 /* thread_info.tid */
8852 sprintf (buf, ".reg/%ld", (long) bfd_get_32 (abfd, note->descdata + 8));
8853
8854 len = strlen (buf) + 1;
8855 name = (char *) bfd_alloc (abfd, len);
8856 if (name == NULL)
8857 return FALSE;
8858
8859 memcpy (name, buf, len);
8860
8861 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8862 if (sect == NULL)
8863 return FALSE;
8864
8865 /* sizeof (thread_info.thread_context) */
8866 sect->size = 716;
8867 /* offsetof (thread_info.thread_context) */
8868 sect->filepos = note->descpos + 12;
8869 sect->alignment_power = 2;
8870
8871 /* thread_info.is_active_thread */
8872 is_active_thread = bfd_get_32 (abfd, note->descdata + 8);
8873
8874 if (is_active_thread)
8875 if (! elfcore_maybe_make_sect (abfd, ".reg", sect))
8876 return FALSE;
8877 break;
8878
8879 case 3 /* NOTE_INFO_MODULE */:
8880 /* Make a ".module/xxxxxxxx" section. */
8881 /* module_info.base_address */
8882 base_addr = bfd_get_32 (abfd, note->descdata + 4);
8883 sprintf (buf, ".module/%08lx", (unsigned long) base_addr);
8884
8885 len = strlen (buf) + 1;
8886 name = (char *) bfd_alloc (abfd, len);
8887 if (name == NULL)
8888 return FALSE;
8889
8890 memcpy (name, buf, len);
8891
8892 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8893
8894 if (sect == NULL)
8895 return FALSE;
8896
8897 sect->size = note->descsz;
8898 sect->filepos = note->descpos;
8899 sect->alignment_power = 2;
8900 break;
8901
8902 default:
8903 return TRUE;
8904 }
8905
8906 return TRUE;
8907 }
8908
8909 static bfd_boolean
8910 elfcore_grok_note (bfd *abfd, Elf_Internal_Note *note)
8911 {
8912 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8913
8914 switch (note->type)
8915 {
8916 default:
8917 return TRUE;
8918
8919 case NT_PRSTATUS:
8920 if (bed->elf_backend_grok_prstatus)
8921 if ((*bed->elf_backend_grok_prstatus) (abfd, note))
8922 return TRUE;
8923 #if defined (HAVE_PRSTATUS_T)
8924 return elfcore_grok_prstatus (abfd, note);
8925 #else
8926 return TRUE;
8927 #endif
8928
8929 #if defined (HAVE_PSTATUS_T)
8930 case NT_PSTATUS:
8931 return elfcore_grok_pstatus (abfd, note);
8932 #endif
8933
8934 #if defined (HAVE_LWPSTATUS_T)
8935 case NT_LWPSTATUS:
8936 return elfcore_grok_lwpstatus (abfd, note);
8937 #endif
8938
8939 case NT_FPREGSET: /* FIXME: rename to NT_PRFPREG */
8940 return elfcore_grok_prfpreg (abfd, note);
8941
8942 case NT_WIN32PSTATUS:
8943 return elfcore_grok_win32pstatus (abfd, note);
8944
8945 case NT_PRXFPREG: /* Linux SSE extension */
8946 if (note->namesz == 6
8947 && strcmp (note->namedata, "LINUX") == 0)
8948 return elfcore_grok_prxfpreg (abfd, note);
8949 else
8950 return TRUE;
8951
8952 case NT_X86_XSTATE: /* Linux XSAVE extension */
8953 if (note->namesz == 6
8954 && strcmp (note->namedata, "LINUX") == 0)
8955 return elfcore_grok_xstatereg (abfd, note);
8956 else if (note->namesz == 8
8957 && strcmp (note->namedata, "FreeBSD") == 0)
8958 return elfcore_grok_xstatereg (abfd, note);
8959 else
8960 return TRUE;
8961
8962 case NT_PPC_VMX:
8963 if (note->namesz == 6
8964 && strcmp (note->namedata, "LINUX") == 0)
8965 return elfcore_grok_ppc_vmx (abfd, note);
8966 else
8967 return TRUE;
8968
8969 case NT_PPC_VSX:
8970 if (note->namesz == 6
8971 && strcmp (note->namedata, "LINUX") == 0)
8972 return elfcore_grok_ppc_vsx (abfd, note);
8973 else
8974 return TRUE;
8975
8976 case NT_S390_HIGH_GPRS:
8977 if (note->namesz == 6
8978 && strcmp (note->namedata, "LINUX") == 0)
8979 return elfcore_grok_s390_high_gprs (abfd, note);
8980 else
8981 return TRUE;
8982
8983 case NT_S390_TIMER:
8984 if (note->namesz == 6
8985 && strcmp (note->namedata, "LINUX") == 0)
8986 return elfcore_grok_s390_timer (abfd, note);
8987 else
8988 return TRUE;
8989
8990 case NT_S390_TODCMP:
8991 if (note->namesz == 6
8992 && strcmp (note->namedata, "LINUX") == 0)
8993 return elfcore_grok_s390_todcmp (abfd, note);
8994 else
8995 return TRUE;
8996
8997 case NT_S390_TODPREG:
8998 if (note->namesz == 6
8999 && strcmp (note->namedata, "LINUX") == 0)
9000 return elfcore_grok_s390_todpreg (abfd, note);
9001 else
9002 return TRUE;
9003
9004 case NT_S390_CTRS:
9005 if (note->namesz == 6
9006 && strcmp (note->namedata, "LINUX") == 0)
9007 return elfcore_grok_s390_ctrs (abfd, note);
9008 else
9009 return TRUE;
9010
9011 case NT_S390_PREFIX:
9012 if (note->namesz == 6
9013 && strcmp (note->namedata, "LINUX") == 0)
9014 return elfcore_grok_s390_prefix (abfd, note);
9015 else
9016 return TRUE;
9017
9018 case NT_S390_LAST_BREAK:
9019 if (note->namesz == 6
9020 && strcmp (note->namedata, "LINUX") == 0)
9021 return elfcore_grok_s390_last_break (abfd, note);
9022 else
9023 return TRUE;
9024
9025 case NT_S390_SYSTEM_CALL:
9026 if (note->namesz == 6
9027 && strcmp (note->namedata, "LINUX") == 0)
9028 return elfcore_grok_s390_system_call (abfd, note);
9029 else
9030 return TRUE;
9031
9032 case NT_S390_TDB:
9033 if (note->namesz == 6
9034 && strcmp (note->namedata, "LINUX") == 0)
9035 return elfcore_grok_s390_tdb (abfd, note);
9036 else
9037 return TRUE;
9038
9039 case NT_S390_VXRS_LOW:
9040 if (note->namesz == 6
9041 && strcmp (note->namedata, "LINUX") == 0)
9042 return elfcore_grok_s390_vxrs_low (abfd, note);
9043 else
9044 return TRUE;
9045
9046 case NT_S390_VXRS_HIGH:
9047 if (note->namesz == 6
9048 && strcmp (note->namedata, "LINUX") == 0)
9049 return elfcore_grok_s390_vxrs_high (abfd, note);
9050 else
9051 return TRUE;
9052
9053 case NT_ARM_VFP:
9054 if (note->namesz == 6
9055 && strcmp (note->namedata, "LINUX") == 0)
9056 return elfcore_grok_arm_vfp (abfd, note);
9057 else
9058 return TRUE;
9059
9060 case NT_ARM_TLS:
9061 if (note->namesz == 6
9062 && strcmp (note->namedata, "LINUX") == 0)
9063 return elfcore_grok_aarch_tls (abfd, note);
9064 else
9065 return TRUE;
9066
9067 case NT_ARM_HW_BREAK:
9068 if (note->namesz == 6
9069 && strcmp (note->namedata, "LINUX") == 0)
9070 return elfcore_grok_aarch_hw_break (abfd, note);
9071 else
9072 return TRUE;
9073
9074 case NT_ARM_HW_WATCH:
9075 if (note->namesz == 6
9076 && strcmp (note->namedata, "LINUX") == 0)
9077 return elfcore_grok_aarch_hw_watch (abfd, note);
9078 else
9079 return TRUE;
9080
9081 case NT_PRPSINFO:
9082 case NT_PSINFO:
9083 if (bed->elf_backend_grok_psinfo)
9084 if ((*bed->elf_backend_grok_psinfo) (abfd, note))
9085 return TRUE;
9086 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
9087 return elfcore_grok_psinfo (abfd, note);
9088 #else
9089 return TRUE;
9090 #endif
9091
9092 case NT_AUXV:
9093 {
9094 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
9095 SEC_HAS_CONTENTS);
9096
9097 if (sect == NULL)
9098 return FALSE;
9099 sect->size = note->descsz;
9100 sect->filepos = note->descpos;
9101 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
9102
9103 return TRUE;
9104 }
9105
9106 case NT_FILE:
9107 return elfcore_make_note_pseudosection (abfd, ".note.linuxcore.file",
9108 note);
9109
9110 case NT_SIGINFO:
9111 return elfcore_make_note_pseudosection (abfd, ".note.linuxcore.siginfo",
9112 note);
9113 }
9114 }
9115
9116 static bfd_boolean
9117 elfobj_grok_gnu_build_id (bfd *abfd, Elf_Internal_Note *note)
9118 {
9119 struct elf_obj_tdata *t;
9120
9121 if (note->descsz == 0)
9122 return FALSE;
9123
9124 t = elf_tdata (abfd);
9125 t->build_id = bfd_alloc (abfd, sizeof (*t->build_id) - 1 + note->descsz);
9126 if (t->build_id == NULL)
9127 return FALSE;
9128
9129 t->build_id->size = note->descsz;
9130 memcpy (t->build_id->data, note->descdata, note->descsz);
9131
9132 return TRUE;
9133 }
9134
9135 static bfd_boolean
9136 elfobj_grok_gnu_note (bfd *abfd, Elf_Internal_Note *note)
9137 {
9138 switch (note->type)
9139 {
9140 default:
9141 return TRUE;
9142
9143 case NT_GNU_BUILD_ID:
9144 return elfobj_grok_gnu_build_id (abfd, note);
9145 }
9146 }
9147
9148 static bfd_boolean
9149 elfobj_grok_stapsdt_note_1 (bfd *abfd, Elf_Internal_Note *note)
9150 {
9151 struct sdt_note *cur =
9152 (struct sdt_note *) bfd_alloc (abfd, sizeof (struct sdt_note)
9153 + note->descsz);
9154
9155 cur->next = (struct sdt_note *) (elf_tdata (abfd))->sdt_note_head;
9156 cur->size = (bfd_size_type) note->descsz;
9157 memcpy (cur->data, note->descdata, note->descsz);
9158
9159 elf_tdata (abfd)->sdt_note_head = cur;
9160
9161 return TRUE;
9162 }
9163
9164 static bfd_boolean
9165 elfobj_grok_stapsdt_note (bfd *abfd, Elf_Internal_Note *note)
9166 {
9167 switch (note->type)
9168 {
9169 case NT_STAPSDT:
9170 return elfobj_grok_stapsdt_note_1 (abfd, note);
9171
9172 default:
9173 return TRUE;
9174 }
9175 }
9176
9177 static bfd_boolean
9178 elfcore_netbsd_get_lwpid (Elf_Internal_Note *note, int *lwpidp)
9179 {
9180 char *cp;
9181
9182 cp = strchr (note->namedata, '@');
9183 if (cp != NULL)
9184 {
9185 *lwpidp = atoi(cp + 1);
9186 return TRUE;
9187 }
9188 return FALSE;
9189 }
9190
9191 static bfd_boolean
9192 elfcore_grok_netbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
9193 {
9194 /* Signal number at offset 0x08. */
9195 elf_tdata (abfd)->core->signal
9196 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
9197
9198 /* Process ID at offset 0x50. */
9199 elf_tdata (abfd)->core->pid
9200 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x50);
9201
9202 /* Command name at 0x7c (max 32 bytes, including nul). */
9203 elf_tdata (abfd)->core->command
9204 = _bfd_elfcore_strndup (abfd, note->descdata + 0x7c, 31);
9205
9206 return elfcore_make_note_pseudosection (abfd, ".note.netbsdcore.procinfo",
9207 note);
9208 }
9209
9210 static bfd_boolean
9211 elfcore_grok_netbsd_note (bfd *abfd, Elf_Internal_Note *note)
9212 {
9213 int lwp;
9214
9215 if (elfcore_netbsd_get_lwpid (note, &lwp))
9216 elf_tdata (abfd)->core->lwpid = lwp;
9217
9218 if (note->type == NT_NETBSDCORE_PROCINFO)
9219 {
9220 /* NetBSD-specific core "procinfo". Note that we expect to
9221 find this note before any of the others, which is fine,
9222 since the kernel writes this note out first when it
9223 creates a core file. */
9224
9225 return elfcore_grok_netbsd_procinfo (abfd, note);
9226 }
9227
9228 /* As of Jan 2002 there are no other machine-independent notes
9229 defined for NetBSD core files. If the note type is less
9230 than the start of the machine-dependent note types, we don't
9231 understand it. */
9232
9233 if (note->type < NT_NETBSDCORE_FIRSTMACH)
9234 return TRUE;
9235
9236
9237 switch (bfd_get_arch (abfd))
9238 {
9239 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
9240 PT_GETFPREGS == mach+2. */
9241
9242 case bfd_arch_alpha:
9243 case bfd_arch_sparc:
9244 switch (note->type)
9245 {
9246 case NT_NETBSDCORE_FIRSTMACH+0:
9247 return elfcore_make_note_pseudosection (abfd, ".reg", note);
9248
9249 case NT_NETBSDCORE_FIRSTMACH+2:
9250 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
9251
9252 default:
9253 return TRUE;
9254 }
9255
9256 /* On all other arch's, PT_GETREGS == mach+1 and
9257 PT_GETFPREGS == mach+3. */
9258
9259 default:
9260 switch (note->type)
9261 {
9262 case NT_NETBSDCORE_FIRSTMACH+1:
9263 return elfcore_make_note_pseudosection (abfd, ".reg", note);
9264
9265 case NT_NETBSDCORE_FIRSTMACH+3:
9266 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
9267
9268 default:
9269 return TRUE;
9270 }
9271 }
9272 /* NOTREACHED */
9273 }
9274
9275 static bfd_boolean
9276 elfcore_grok_openbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
9277 {
9278 /* Signal number at offset 0x08. */
9279 elf_tdata (abfd)->core->signal
9280 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
9281
9282 /* Process ID at offset 0x20. */
9283 elf_tdata (abfd)->core->pid
9284 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x20);
9285
9286 /* Command name at 0x48 (max 32 bytes, including nul). */
9287 elf_tdata (abfd)->core->command
9288 = _bfd_elfcore_strndup (abfd, note->descdata + 0x48, 31);
9289
9290 return TRUE;
9291 }
9292
9293 static bfd_boolean
9294 elfcore_grok_openbsd_note (bfd *abfd, Elf_Internal_Note *note)
9295 {
9296 if (note->type == NT_OPENBSD_PROCINFO)
9297 return elfcore_grok_openbsd_procinfo (abfd, note);
9298
9299 if (note->type == NT_OPENBSD_REGS)
9300 return elfcore_make_note_pseudosection (abfd, ".reg", note);
9301
9302 if (note->type == NT_OPENBSD_FPREGS)
9303 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
9304
9305 if (note->type == NT_OPENBSD_XFPREGS)
9306 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
9307
9308 if (note->type == NT_OPENBSD_AUXV)
9309 {
9310 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
9311 SEC_HAS_CONTENTS);
9312
9313 if (sect == NULL)
9314 return FALSE;
9315 sect->size = note->descsz;
9316 sect->filepos = note->descpos;
9317 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
9318
9319 return TRUE;
9320 }
9321
9322 if (note->type == NT_OPENBSD_WCOOKIE)
9323 {
9324 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".wcookie",
9325 SEC_HAS_CONTENTS);
9326
9327 if (sect == NULL)
9328 return FALSE;
9329 sect->size = note->descsz;
9330 sect->filepos = note->descpos;
9331 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
9332
9333 return TRUE;
9334 }
9335
9336 return TRUE;
9337 }
9338
9339 static bfd_boolean
9340 elfcore_grok_nto_status (bfd *abfd, Elf_Internal_Note *note, long *tid)
9341 {
9342 void *ddata = note->descdata;
9343 char buf[100];
9344 char *name;
9345 asection *sect;
9346 short sig;
9347 unsigned flags;
9348
9349 /* nto_procfs_status 'pid' field is at offset 0. */
9350 elf_tdata (abfd)->core->pid = bfd_get_32 (abfd, (bfd_byte *) ddata);
9351
9352 /* nto_procfs_status 'tid' field is at offset 4. Pass it back. */
9353 *tid = bfd_get_32 (abfd, (bfd_byte *) ddata + 4);
9354
9355 /* nto_procfs_status 'flags' field is at offset 8. */
9356 flags = bfd_get_32 (abfd, (bfd_byte *) ddata + 8);
9357
9358 /* nto_procfs_status 'what' field is at offset 14. */
9359 if ((sig = bfd_get_16 (abfd, (bfd_byte *) ddata + 14)) > 0)
9360 {
9361 elf_tdata (abfd)->core->signal = sig;
9362 elf_tdata (abfd)->core->lwpid = *tid;
9363 }
9364
9365 /* _DEBUG_FLAG_CURTID (current thread) is 0x80. Some cores
9366 do not come from signals so we make sure we set the current
9367 thread just in case. */
9368 if (flags & 0x00000080)
9369 elf_tdata (abfd)->core->lwpid = *tid;
9370
9371 /* Make a ".qnx_core_status/%d" section. */
9372 sprintf (buf, ".qnx_core_status/%ld", *tid);
9373
9374 name = (char *) bfd_alloc (abfd, strlen (buf) + 1);
9375 if (name == NULL)
9376 return FALSE;
9377 strcpy (name, buf);
9378
9379 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
9380 if (sect == NULL)
9381 return FALSE;
9382
9383 sect->size = note->descsz;
9384 sect->filepos = note->descpos;
9385 sect->alignment_power = 2;
9386
9387 return (elfcore_maybe_make_sect (abfd, ".qnx_core_status", sect));
9388 }
9389
9390 static bfd_boolean
9391 elfcore_grok_nto_regs (bfd *abfd,
9392 Elf_Internal_Note *note,
9393 long tid,
9394 char *base)
9395 {
9396 char buf[100];
9397 char *name;
9398 asection *sect;
9399
9400 /* Make a "(base)/%d" section. */
9401 sprintf (buf, "%s/%ld", base, tid);
9402
9403 name = (char *) bfd_alloc (abfd, strlen (buf) + 1);
9404 if (name == NULL)
9405 return FALSE;
9406 strcpy (name, buf);
9407
9408 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
9409 if (sect == NULL)
9410 return FALSE;
9411
9412 sect->size = note->descsz;
9413 sect->filepos = note->descpos;
9414 sect->alignment_power = 2;
9415
9416 /* This is the current thread. */
9417 if (elf_tdata (abfd)->core->lwpid == tid)
9418 return elfcore_maybe_make_sect (abfd, base, sect);
9419
9420 return TRUE;
9421 }
9422
9423 #define BFD_QNT_CORE_INFO 7
9424 #define BFD_QNT_CORE_STATUS 8
9425 #define BFD_QNT_CORE_GREG 9
9426 #define BFD_QNT_CORE_FPREG 10
9427
9428 static bfd_boolean
9429 elfcore_grok_nto_note (bfd *abfd, Elf_Internal_Note *note)
9430 {
9431 /* Every GREG section has a STATUS section before it. Store the
9432 tid from the previous call to pass down to the next gregs
9433 function. */
9434 static long tid = 1;
9435
9436 switch (note->type)
9437 {
9438 case BFD_QNT_CORE_INFO:
9439 return elfcore_make_note_pseudosection (abfd, ".qnx_core_info", note);
9440 case BFD_QNT_CORE_STATUS:
9441 return elfcore_grok_nto_status (abfd, note, &tid);
9442 case BFD_QNT_CORE_GREG:
9443 return elfcore_grok_nto_regs (abfd, note, tid, ".reg");
9444 case BFD_QNT_CORE_FPREG:
9445 return elfcore_grok_nto_regs (abfd, note, tid, ".reg2");
9446 default:
9447 return TRUE;
9448 }
9449 }
9450
9451 static bfd_boolean
9452 elfcore_grok_spu_note (bfd *abfd, Elf_Internal_Note *note)
9453 {
9454 char *name;
9455 asection *sect;
9456 size_t len;
9457
9458 /* Use note name as section name. */
9459 len = note->namesz;
9460 name = (char *) bfd_alloc (abfd, len);
9461 if (name == NULL)
9462 return FALSE;
9463 memcpy (name, note->namedata, len);
9464 name[len - 1] = '\0';
9465
9466 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
9467 if (sect == NULL)
9468 return FALSE;
9469
9470 sect->size = note->descsz;
9471 sect->filepos = note->descpos;
9472 sect->alignment_power = 1;
9473
9474 return TRUE;
9475 }
9476
9477 /* Function: elfcore_write_note
9478
9479 Inputs:
9480 buffer to hold note, and current size of buffer
9481 name of note
9482 type of note
9483 data for note
9484 size of data for note
9485
9486 Writes note to end of buffer. ELF64 notes are written exactly as
9487 for ELF32, despite the current (as of 2006) ELF gabi specifying
9488 that they ought to have 8-byte namesz and descsz field, and have
9489 8-byte alignment. Other writers, eg. Linux kernel, do the same.
9490
9491 Return:
9492 Pointer to realloc'd buffer, *BUFSIZ updated. */
9493
9494 char *
9495 elfcore_write_note (bfd *abfd,
9496 char *buf,
9497 int *bufsiz,
9498 const char *name,
9499 int type,
9500 const void *input,
9501 int size)
9502 {
9503 Elf_External_Note *xnp;
9504 size_t namesz;
9505 size_t newspace;
9506 char *dest;
9507
9508 namesz = 0;
9509 if (name != NULL)
9510 namesz = strlen (name) + 1;
9511
9512 newspace = 12 + ((namesz + 3) & -4) + ((size + 3) & -4);
9513
9514 buf = (char *) realloc (buf, *bufsiz + newspace);
9515 if (buf == NULL)
9516 return buf;
9517 dest = buf + *bufsiz;
9518 *bufsiz += newspace;
9519 xnp = (Elf_External_Note *) dest;
9520 H_PUT_32 (abfd, namesz, xnp->namesz);
9521 H_PUT_32 (abfd, size, xnp->descsz);
9522 H_PUT_32 (abfd, type, xnp->type);
9523 dest = xnp->name;
9524 if (name != NULL)
9525 {
9526 memcpy (dest, name, namesz);
9527 dest += namesz;
9528 while (namesz & 3)
9529 {
9530 *dest++ = '\0';
9531 ++namesz;
9532 }
9533 }
9534 memcpy (dest, input, size);
9535 dest += size;
9536 while (size & 3)
9537 {
9538 *dest++ = '\0';
9539 ++size;
9540 }
9541 return buf;
9542 }
9543
9544 char *
9545 elfcore_write_prpsinfo (bfd *abfd,
9546 char *buf,
9547 int *bufsiz,
9548 const char *fname,
9549 const char *psargs)
9550 {
9551 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9552
9553 if (bed->elf_backend_write_core_note != NULL)
9554 {
9555 char *ret;
9556 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
9557 NT_PRPSINFO, fname, psargs);
9558 if (ret != NULL)
9559 return ret;
9560 }
9561
9562 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
9563 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
9564 if (bed->s->elfclass == ELFCLASS32)
9565 {
9566 #if defined (HAVE_PSINFO32_T)
9567 psinfo32_t data;
9568 int note_type = NT_PSINFO;
9569 #else
9570 prpsinfo32_t data;
9571 int note_type = NT_PRPSINFO;
9572 #endif
9573
9574 memset (&data, 0, sizeof (data));
9575 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
9576 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
9577 return elfcore_write_note (abfd, buf, bufsiz,
9578 "CORE", note_type, &data, sizeof (data));
9579 }
9580 else
9581 #endif
9582 {
9583 #if defined (HAVE_PSINFO_T)
9584 psinfo_t data;
9585 int note_type = NT_PSINFO;
9586 #else
9587 prpsinfo_t data;
9588 int note_type = NT_PRPSINFO;
9589 #endif
9590
9591 memset (&data, 0, sizeof (data));
9592 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
9593 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
9594 return elfcore_write_note (abfd, buf, bufsiz,
9595 "CORE", note_type, &data, sizeof (data));
9596 }
9597 #endif /* PSINFO_T or PRPSINFO_T */
9598
9599 free (buf);
9600 return NULL;
9601 }
9602
9603 char *
9604 elfcore_write_linux_prpsinfo32
9605 (bfd *abfd, char *buf, int *bufsiz,
9606 const struct elf_internal_linux_prpsinfo *prpsinfo)
9607 {
9608 struct elf_external_linux_prpsinfo32 data;
9609
9610 memset (&data, 0, sizeof (data));
9611 LINUX_PRPSINFO32_SWAP_FIELDS (abfd, prpsinfo, data);
9612
9613 return elfcore_write_note (abfd, buf, bufsiz, "CORE", NT_PRPSINFO,
9614 &data, sizeof (data));
9615 }
9616
9617 char *
9618 elfcore_write_linux_prpsinfo64
9619 (bfd *abfd, char *buf, int *bufsiz,
9620 const struct elf_internal_linux_prpsinfo *prpsinfo)
9621 {
9622 struct elf_external_linux_prpsinfo64 data;
9623
9624 memset (&data, 0, sizeof (data));
9625 LINUX_PRPSINFO64_SWAP_FIELDS (abfd, prpsinfo, data);
9626
9627 return elfcore_write_note (abfd, buf, bufsiz,
9628 "CORE", NT_PRPSINFO, &data, sizeof (data));
9629 }
9630
9631 char *
9632 elfcore_write_prstatus (bfd *abfd,
9633 char *buf,
9634 int *bufsiz,
9635 long pid,
9636 int cursig,
9637 const void *gregs)
9638 {
9639 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9640
9641 if (bed->elf_backend_write_core_note != NULL)
9642 {
9643 char *ret;
9644 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
9645 NT_PRSTATUS,
9646 pid, cursig, gregs);
9647 if (ret != NULL)
9648 return ret;
9649 }
9650
9651 #if defined (HAVE_PRSTATUS_T)
9652 #if defined (HAVE_PRSTATUS32_T)
9653 if (bed->s->elfclass == ELFCLASS32)
9654 {
9655 prstatus32_t prstat;
9656
9657 memset (&prstat, 0, sizeof (prstat));
9658 prstat.pr_pid = pid;
9659 prstat.pr_cursig = cursig;
9660 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
9661 return elfcore_write_note (abfd, buf, bufsiz, "CORE",
9662 NT_PRSTATUS, &prstat, sizeof (prstat));
9663 }
9664 else
9665 #endif
9666 {
9667 prstatus_t prstat;
9668
9669 memset (&prstat, 0, sizeof (prstat));
9670 prstat.pr_pid = pid;
9671 prstat.pr_cursig = cursig;
9672 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
9673 return elfcore_write_note (abfd, buf, bufsiz, "CORE",
9674 NT_PRSTATUS, &prstat, sizeof (prstat));
9675 }
9676 #endif /* HAVE_PRSTATUS_T */
9677
9678 free (buf);
9679 return NULL;
9680 }
9681
9682 #if defined (HAVE_LWPSTATUS_T)
9683 char *
9684 elfcore_write_lwpstatus (bfd *abfd,
9685 char *buf,
9686 int *bufsiz,
9687 long pid,
9688 int cursig,
9689 const void *gregs)
9690 {
9691 lwpstatus_t lwpstat;
9692 const char *note_name = "CORE";
9693
9694 memset (&lwpstat, 0, sizeof (lwpstat));
9695 lwpstat.pr_lwpid = pid >> 16;
9696 lwpstat.pr_cursig = cursig;
9697 #if defined (HAVE_LWPSTATUS_T_PR_REG)
9698 memcpy (&lwpstat.pr_reg, gregs, sizeof (lwpstat.pr_reg));
9699 #elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
9700 #if !defined(gregs)
9701 memcpy (lwpstat.pr_context.uc_mcontext.gregs,
9702 gregs, sizeof (lwpstat.pr_context.uc_mcontext.gregs));
9703 #else
9704 memcpy (lwpstat.pr_context.uc_mcontext.__gregs,
9705 gregs, sizeof (lwpstat.pr_context.uc_mcontext.__gregs));
9706 #endif
9707 #endif
9708 return elfcore_write_note (abfd, buf, bufsiz, note_name,
9709 NT_LWPSTATUS, &lwpstat, sizeof (lwpstat));
9710 }
9711 #endif /* HAVE_LWPSTATUS_T */
9712
9713 #if defined (HAVE_PSTATUS_T)
9714 char *
9715 elfcore_write_pstatus (bfd *abfd,
9716 char *buf,
9717 int *bufsiz,
9718 long pid,
9719 int cursig ATTRIBUTE_UNUSED,
9720 const void *gregs ATTRIBUTE_UNUSED)
9721 {
9722 const char *note_name = "CORE";
9723 #if defined (HAVE_PSTATUS32_T)
9724 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9725
9726 if (bed->s->elfclass == ELFCLASS32)
9727 {
9728 pstatus32_t pstat;
9729
9730 memset (&pstat, 0, sizeof (pstat));
9731 pstat.pr_pid = pid & 0xffff;
9732 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
9733 NT_PSTATUS, &pstat, sizeof (pstat));
9734 return buf;
9735 }
9736 else
9737 #endif
9738 {
9739 pstatus_t pstat;
9740
9741 memset (&pstat, 0, sizeof (pstat));
9742 pstat.pr_pid = pid & 0xffff;
9743 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
9744 NT_PSTATUS, &pstat, sizeof (pstat));
9745 return buf;
9746 }
9747 }
9748 #endif /* HAVE_PSTATUS_T */
9749
9750 char *
9751 elfcore_write_prfpreg (bfd *abfd,
9752 char *buf,
9753 int *bufsiz,
9754 const void *fpregs,
9755 int size)
9756 {
9757 const char *note_name = "CORE";
9758 return elfcore_write_note (abfd, buf, bufsiz,
9759 note_name, NT_FPREGSET, fpregs, size);
9760 }
9761
9762 char *
9763 elfcore_write_prxfpreg (bfd *abfd,
9764 char *buf,
9765 int *bufsiz,
9766 const void *xfpregs,
9767 int size)
9768 {
9769 char *note_name = "LINUX";
9770 return elfcore_write_note (abfd, buf, bufsiz,
9771 note_name, NT_PRXFPREG, xfpregs, size);
9772 }
9773
9774 char *
9775 elfcore_write_xstatereg (bfd *abfd, char *buf, int *bufsiz,
9776 const void *xfpregs, int size)
9777 {
9778 char *note_name;
9779 if (get_elf_backend_data (abfd)->elf_osabi == ELFOSABI_FREEBSD)
9780 note_name = "FreeBSD";
9781 else
9782 note_name = "LINUX";
9783 return elfcore_write_note (abfd, buf, bufsiz,
9784 note_name, NT_X86_XSTATE, xfpregs, size);
9785 }
9786
9787 char *
9788 elfcore_write_ppc_vmx (bfd *abfd,
9789 char *buf,
9790 int *bufsiz,
9791 const void *ppc_vmx,
9792 int size)
9793 {
9794 char *note_name = "LINUX";
9795 return elfcore_write_note (abfd, buf, bufsiz,
9796 note_name, NT_PPC_VMX, ppc_vmx, size);
9797 }
9798
9799 char *
9800 elfcore_write_ppc_vsx (bfd *abfd,
9801 char *buf,
9802 int *bufsiz,
9803 const void *ppc_vsx,
9804 int size)
9805 {
9806 char *note_name = "LINUX";
9807 return elfcore_write_note (abfd, buf, bufsiz,
9808 note_name, NT_PPC_VSX, ppc_vsx, size);
9809 }
9810
9811 static char *
9812 elfcore_write_s390_high_gprs (bfd *abfd,
9813 char *buf,
9814 int *bufsiz,
9815 const void *s390_high_gprs,
9816 int size)
9817 {
9818 char *note_name = "LINUX";
9819 return elfcore_write_note (abfd, buf, bufsiz,
9820 note_name, NT_S390_HIGH_GPRS,
9821 s390_high_gprs, size);
9822 }
9823
9824 char *
9825 elfcore_write_s390_timer (bfd *abfd,
9826 char *buf,
9827 int *bufsiz,
9828 const void *s390_timer,
9829 int size)
9830 {
9831 char *note_name = "LINUX";
9832 return elfcore_write_note (abfd, buf, bufsiz,
9833 note_name, NT_S390_TIMER, s390_timer, size);
9834 }
9835
9836 char *
9837 elfcore_write_s390_todcmp (bfd *abfd,
9838 char *buf,
9839 int *bufsiz,
9840 const void *s390_todcmp,
9841 int size)
9842 {
9843 char *note_name = "LINUX";
9844 return elfcore_write_note (abfd, buf, bufsiz,
9845 note_name, NT_S390_TODCMP, s390_todcmp, size);
9846 }
9847
9848 char *
9849 elfcore_write_s390_todpreg (bfd *abfd,
9850 char *buf,
9851 int *bufsiz,
9852 const void *s390_todpreg,
9853 int size)
9854 {
9855 char *note_name = "LINUX";
9856 return elfcore_write_note (abfd, buf, bufsiz,
9857 note_name, NT_S390_TODPREG, s390_todpreg, size);
9858 }
9859
9860 char *
9861 elfcore_write_s390_ctrs (bfd *abfd,
9862 char *buf,
9863 int *bufsiz,
9864 const void *s390_ctrs,
9865 int size)
9866 {
9867 char *note_name = "LINUX";
9868 return elfcore_write_note (abfd, buf, bufsiz,
9869 note_name, NT_S390_CTRS, s390_ctrs, size);
9870 }
9871
9872 char *
9873 elfcore_write_s390_prefix (bfd *abfd,
9874 char *buf,
9875 int *bufsiz,
9876 const void *s390_prefix,
9877 int size)
9878 {
9879 char *note_name = "LINUX";
9880 return elfcore_write_note (abfd, buf, bufsiz,
9881 note_name, NT_S390_PREFIX, s390_prefix, size);
9882 }
9883
9884 char *
9885 elfcore_write_s390_last_break (bfd *abfd,
9886 char *buf,
9887 int *bufsiz,
9888 const void *s390_last_break,
9889 int size)
9890 {
9891 char *note_name = "LINUX";
9892 return elfcore_write_note (abfd, buf, bufsiz,
9893 note_name, NT_S390_LAST_BREAK,
9894 s390_last_break, size);
9895 }
9896
9897 char *
9898 elfcore_write_s390_system_call (bfd *abfd,
9899 char *buf,
9900 int *bufsiz,
9901 const void *s390_system_call,
9902 int size)
9903 {
9904 char *note_name = "LINUX";
9905 return elfcore_write_note (abfd, buf, bufsiz,
9906 note_name, NT_S390_SYSTEM_CALL,
9907 s390_system_call, size);
9908 }
9909
9910 char *
9911 elfcore_write_s390_tdb (bfd *abfd,
9912 char *buf,
9913 int *bufsiz,
9914 const void *s390_tdb,
9915 int size)
9916 {
9917 char *note_name = "LINUX";
9918 return elfcore_write_note (abfd, buf, bufsiz,
9919 note_name, NT_S390_TDB, s390_tdb, size);
9920 }
9921
9922 char *
9923 elfcore_write_s390_vxrs_low (bfd *abfd,
9924 char *buf,
9925 int *bufsiz,
9926 const void *s390_vxrs_low,
9927 int size)
9928 {
9929 char *note_name = "LINUX";
9930 return elfcore_write_note (abfd, buf, bufsiz,
9931 note_name, NT_S390_VXRS_LOW, s390_vxrs_low, size);
9932 }
9933
9934 char *
9935 elfcore_write_s390_vxrs_high (bfd *abfd,
9936 char *buf,
9937 int *bufsiz,
9938 const void *s390_vxrs_high,
9939 int size)
9940 {
9941 char *note_name = "LINUX";
9942 return elfcore_write_note (abfd, buf, bufsiz,
9943 note_name, NT_S390_VXRS_HIGH,
9944 s390_vxrs_high, size);
9945 }
9946
9947 char *
9948 elfcore_write_arm_vfp (bfd *abfd,
9949 char *buf,
9950 int *bufsiz,
9951 const void *arm_vfp,
9952 int size)
9953 {
9954 char *note_name = "LINUX";
9955 return elfcore_write_note (abfd, buf, bufsiz,
9956 note_name, NT_ARM_VFP, arm_vfp, size);
9957 }
9958
9959 char *
9960 elfcore_write_aarch_tls (bfd *abfd,
9961 char *buf,
9962 int *bufsiz,
9963 const void *aarch_tls,
9964 int size)
9965 {
9966 char *note_name = "LINUX";
9967 return elfcore_write_note (abfd, buf, bufsiz,
9968 note_name, NT_ARM_TLS, aarch_tls, size);
9969 }
9970
9971 char *
9972 elfcore_write_aarch_hw_break (bfd *abfd,
9973 char *buf,
9974 int *bufsiz,
9975 const void *aarch_hw_break,
9976 int size)
9977 {
9978 char *note_name = "LINUX";
9979 return elfcore_write_note (abfd, buf, bufsiz,
9980 note_name, NT_ARM_HW_BREAK, aarch_hw_break, size);
9981 }
9982
9983 char *
9984 elfcore_write_aarch_hw_watch (bfd *abfd,
9985 char *buf,
9986 int *bufsiz,
9987 const void *aarch_hw_watch,
9988 int size)
9989 {
9990 char *note_name = "LINUX";
9991 return elfcore_write_note (abfd, buf, bufsiz,
9992 note_name, NT_ARM_HW_WATCH, aarch_hw_watch, size);
9993 }
9994
9995 char *
9996 elfcore_write_register_note (bfd *abfd,
9997 char *buf,
9998 int *bufsiz,
9999 const char *section,
10000 const void *data,
10001 int size)
10002 {
10003 if (strcmp (section, ".reg2") == 0)
10004 return elfcore_write_prfpreg (abfd, buf, bufsiz, data, size);
10005 if (strcmp (section, ".reg-xfp") == 0)
10006 return elfcore_write_prxfpreg (abfd, buf, bufsiz, data, size);
10007 if (strcmp (section, ".reg-xstate") == 0)
10008 return elfcore_write_xstatereg (abfd, buf, bufsiz, data, size);
10009 if (strcmp (section, ".reg-ppc-vmx") == 0)
10010 return elfcore_write_ppc_vmx (abfd, buf, bufsiz, data, size);
10011 if (strcmp (section, ".reg-ppc-vsx") == 0)
10012 return elfcore_write_ppc_vsx (abfd, buf, bufsiz, data, size);
10013 if (strcmp (section, ".reg-s390-high-gprs") == 0)
10014 return elfcore_write_s390_high_gprs (abfd, buf, bufsiz, data, size);
10015 if (strcmp (section, ".reg-s390-timer") == 0)
10016 return elfcore_write_s390_timer (abfd, buf, bufsiz, data, size);
10017 if (strcmp (section, ".reg-s390-todcmp") == 0)
10018 return elfcore_write_s390_todcmp (abfd, buf, bufsiz, data, size);
10019 if (strcmp (section, ".reg-s390-todpreg") == 0)
10020 return elfcore_write_s390_todpreg (abfd, buf, bufsiz, data, size);
10021 if (strcmp (section, ".reg-s390-ctrs") == 0)
10022 return elfcore_write_s390_ctrs (abfd, buf, bufsiz, data, size);
10023 if (strcmp (section, ".reg-s390-prefix") == 0)
10024 return elfcore_write_s390_prefix (abfd, buf, bufsiz, data, size);
10025 if (strcmp (section, ".reg-s390-last-break") == 0)
10026 return elfcore_write_s390_last_break (abfd, buf, bufsiz, data, size);
10027 if (strcmp (section, ".reg-s390-system-call") == 0)
10028 return elfcore_write_s390_system_call (abfd, buf, bufsiz, data, size);
10029 if (strcmp (section, ".reg-s390-tdb") == 0)
10030 return elfcore_write_s390_tdb (abfd, buf, bufsiz, data, size);
10031 if (strcmp (section, ".reg-s390-vxrs-low") == 0)
10032 return elfcore_write_s390_vxrs_low (abfd, buf, bufsiz, data, size);
10033 if (strcmp (section, ".reg-s390-vxrs-high") == 0)
10034 return elfcore_write_s390_vxrs_high (abfd, buf, bufsiz, data, size);
10035 if (strcmp (section, ".reg-arm-vfp") == 0)
10036 return elfcore_write_arm_vfp (abfd, buf, bufsiz, data, size);
10037 if (strcmp (section, ".reg-aarch-tls") == 0)
10038 return elfcore_write_aarch_tls (abfd, buf, bufsiz, data, size);
10039 if (strcmp (section, ".reg-aarch-hw-break") == 0)
10040 return elfcore_write_aarch_hw_break (abfd, buf, bufsiz, data, size);
10041 if (strcmp (section, ".reg-aarch-hw-watch") == 0)
10042 return elfcore_write_aarch_hw_watch (abfd, buf, bufsiz, data, size);
10043 return NULL;
10044 }
10045
10046 static bfd_boolean
10047 elf_parse_notes (bfd *abfd, char *buf, size_t size, file_ptr offset)
10048 {
10049 char *p;
10050
10051 p = buf;
10052 while (p < buf + size)
10053 {
10054 /* FIXME: bad alignment assumption. */
10055 Elf_External_Note *xnp = (Elf_External_Note *) p;
10056 Elf_Internal_Note in;
10057
10058 if (offsetof (Elf_External_Note, name) > buf - p + size)
10059 return FALSE;
10060
10061 in.type = H_GET_32 (abfd, xnp->type);
10062
10063 in.namesz = H_GET_32 (abfd, xnp->namesz);
10064 in.namedata = xnp->name;
10065 if (in.namesz > buf - in.namedata + size)
10066 return FALSE;
10067
10068 in.descsz = H_GET_32 (abfd, xnp->descsz);
10069 in.descdata = in.namedata + BFD_ALIGN (in.namesz, 4);
10070 in.descpos = offset + (in.descdata - buf);
10071 if (in.descsz != 0
10072 && (in.descdata >= buf + size
10073 || in.descsz > buf - in.descdata + size))
10074 return FALSE;
10075
10076 switch (bfd_get_format (abfd))
10077 {
10078 default:
10079 return TRUE;
10080
10081 case bfd_core:
10082 {
10083 #define GROKER_ELEMENT(S,F) {S, sizeof (S) - 1, F}
10084 struct
10085 {
10086 const char * string;
10087 size_t len;
10088 bfd_boolean (* func)(bfd *, Elf_Internal_Note *);
10089 }
10090 grokers[] =
10091 {
10092 GROKER_ELEMENT ("", elfcore_grok_note),
10093 GROKER_ELEMENT ("NetBSD-CORE", elfcore_grok_netbsd_note),
10094 GROKER_ELEMENT ( "OpenBSD", elfcore_grok_openbsd_note),
10095 GROKER_ELEMENT ("QNX", elfcore_grok_nto_note),
10096 GROKER_ELEMENT ("SPU/", elfcore_grok_spu_note)
10097 };
10098 #undef GROKER_ELEMENT
10099 int i;
10100
10101 for (i = ARRAY_SIZE (grokers); i--;)
10102 {
10103 if (in.namesz >= grokers[i].len
10104 && strncmp (in.namedata, grokers[i].string,
10105 grokers[i].len) == 0)
10106 {
10107 if (! grokers[i].func (abfd, & in))
10108 return FALSE;
10109 break;
10110 }
10111 }
10112 break;
10113 }
10114
10115 case bfd_object:
10116 if (in.namesz == sizeof "GNU" && strcmp (in.namedata, "GNU") == 0)
10117 {
10118 if (! elfobj_grok_gnu_note (abfd, &in))
10119 return FALSE;
10120 }
10121 else if (in.namesz == sizeof "stapsdt"
10122 && strcmp (in.namedata, "stapsdt") == 0)
10123 {
10124 if (! elfobj_grok_stapsdt_note (abfd, &in))
10125 return FALSE;
10126 }
10127 break;
10128 }
10129
10130 p = in.descdata + BFD_ALIGN (in.descsz, 4);
10131 }
10132
10133 return TRUE;
10134 }
10135
10136 static bfd_boolean
10137 elf_read_notes (bfd *abfd, file_ptr offset, bfd_size_type size)
10138 {
10139 char *buf;
10140
10141 if (size <= 0)
10142 return TRUE;
10143
10144 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
10145 return FALSE;
10146
10147 buf = (char *) bfd_malloc (size + 1);
10148 if (buf == NULL)
10149 return FALSE;
10150
10151 /* PR 17512: file: ec08f814
10152 0-termintate the buffer so that string searches will not overflow. */
10153 buf[size] = 0;
10154
10155 if (bfd_bread (buf, size, abfd) != size
10156 || !elf_parse_notes (abfd, buf, size, offset))
10157 {
10158 free (buf);
10159 return FALSE;
10160 }
10161
10162 free (buf);
10163 return TRUE;
10164 }
10165 \f
10166 /* Providing external access to the ELF program header table. */
10167
10168 /* Return an upper bound on the number of bytes required to store a
10169 copy of ABFD's program header table entries. Return -1 if an error
10170 occurs; bfd_get_error will return an appropriate code. */
10171
10172 long
10173 bfd_get_elf_phdr_upper_bound (bfd *abfd)
10174 {
10175 if (abfd->xvec->flavour != bfd_target_elf_flavour)
10176 {
10177 bfd_set_error (bfd_error_wrong_format);
10178 return -1;
10179 }
10180
10181 return elf_elfheader (abfd)->e_phnum * sizeof (Elf_Internal_Phdr);
10182 }
10183
10184 /* Copy ABFD's program header table entries to *PHDRS. The entries
10185 will be stored as an array of Elf_Internal_Phdr structures, as
10186 defined in include/elf/internal.h. To find out how large the
10187 buffer needs to be, call bfd_get_elf_phdr_upper_bound.
10188
10189 Return the number of program header table entries read, or -1 if an
10190 error occurs; bfd_get_error will return an appropriate code. */
10191
10192 int
10193 bfd_get_elf_phdrs (bfd *abfd, void *phdrs)
10194 {
10195 int num_phdrs;
10196
10197 if (abfd->xvec->flavour != bfd_target_elf_flavour)
10198 {
10199 bfd_set_error (bfd_error_wrong_format);
10200 return -1;
10201 }
10202
10203 num_phdrs = elf_elfheader (abfd)->e_phnum;
10204 memcpy (phdrs, elf_tdata (abfd)->phdr,
10205 num_phdrs * sizeof (Elf_Internal_Phdr));
10206
10207 return num_phdrs;
10208 }
10209
10210 enum elf_reloc_type_class
10211 _bfd_elf_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
10212 const asection *rel_sec ATTRIBUTE_UNUSED,
10213 const Elf_Internal_Rela *rela ATTRIBUTE_UNUSED)
10214 {
10215 return reloc_class_normal;
10216 }
10217
10218 /* For RELA architectures, return the relocation value for a
10219 relocation against a local symbol. */
10220
10221 bfd_vma
10222 _bfd_elf_rela_local_sym (bfd *abfd,
10223 Elf_Internal_Sym *sym,
10224 asection **psec,
10225 Elf_Internal_Rela *rel)
10226 {
10227 asection *sec = *psec;
10228 bfd_vma relocation;
10229
10230 relocation = (sec->output_section->vma
10231 + sec->output_offset
10232 + sym->st_value);
10233 if ((sec->flags & SEC_MERGE)
10234 && ELF_ST_TYPE (sym->st_info) == STT_SECTION
10235 && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
10236 {
10237 rel->r_addend =
10238 _bfd_merged_section_offset (abfd, psec,
10239 elf_section_data (sec)->sec_info,
10240 sym->st_value + rel->r_addend);
10241 if (sec != *psec)
10242 {
10243 /* If we have changed the section, and our original section is
10244 marked with SEC_EXCLUDE, it means that the original
10245 SEC_MERGE section has been completely subsumed in some
10246 other SEC_MERGE section. In this case, we need to leave
10247 some info around for --emit-relocs. */
10248 if ((sec->flags & SEC_EXCLUDE) != 0)
10249 sec->kept_section = *psec;
10250 sec = *psec;
10251 }
10252 rel->r_addend -= relocation;
10253 rel->r_addend += sec->output_section->vma + sec->output_offset;
10254 }
10255 return relocation;
10256 }
10257
10258 bfd_vma
10259 _bfd_elf_rel_local_sym (bfd *abfd,
10260 Elf_Internal_Sym *sym,
10261 asection **psec,
10262 bfd_vma addend)
10263 {
10264 asection *sec = *psec;
10265
10266 if (sec->sec_info_type != SEC_INFO_TYPE_MERGE)
10267 return sym->st_value + addend;
10268
10269 return _bfd_merged_section_offset (abfd, psec,
10270 elf_section_data (sec)->sec_info,
10271 sym->st_value + addend);
10272 }
10273
10274 bfd_vma
10275 _bfd_elf_section_offset (bfd *abfd,
10276 struct bfd_link_info *info,
10277 asection *sec,
10278 bfd_vma offset)
10279 {
10280 switch (sec->sec_info_type)
10281 {
10282 case SEC_INFO_TYPE_STABS:
10283 return _bfd_stab_section_offset (sec, elf_section_data (sec)->sec_info,
10284 offset);
10285 case SEC_INFO_TYPE_EH_FRAME:
10286 return _bfd_elf_eh_frame_section_offset (abfd, info, sec, offset);
10287 default:
10288 if ((sec->flags & SEC_ELF_REVERSE_COPY) != 0)
10289 {
10290 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10291 bfd_size_type address_size = bed->s->arch_size / 8;
10292 offset = sec->size - offset - address_size;
10293 }
10294 return offset;
10295 }
10296 }
10297 \f
10298 /* Create a new BFD as if by bfd_openr. Rather than opening a file,
10299 reconstruct an ELF file by reading the segments out of remote memory
10300 based on the ELF file header at EHDR_VMA and the ELF program headers it
10301 points to. If not null, *LOADBASEP is filled in with the difference
10302 between the VMAs from which the segments were read, and the VMAs the
10303 file headers (and hence BFD's idea of each section's VMA) put them at.
10304
10305 The function TARGET_READ_MEMORY is called to copy LEN bytes from the
10306 remote memory at target address VMA into the local buffer at MYADDR; it
10307 should return zero on success or an `errno' code on failure. TEMPL must
10308 be a BFD for an ELF target with the word size and byte order found in
10309 the remote memory. */
10310
10311 bfd *
10312 bfd_elf_bfd_from_remote_memory
10313 (bfd *templ,
10314 bfd_vma ehdr_vma,
10315 bfd_size_type size,
10316 bfd_vma *loadbasep,
10317 int (*target_read_memory) (bfd_vma, bfd_byte *, bfd_size_type))
10318 {
10319 return (*get_elf_backend_data (templ)->elf_backend_bfd_from_remote_memory)
10320 (templ, ehdr_vma, size, loadbasep, target_read_memory);
10321 }
10322 \f
10323 long
10324 _bfd_elf_get_synthetic_symtab (bfd *abfd,
10325 long symcount ATTRIBUTE_UNUSED,
10326 asymbol **syms ATTRIBUTE_UNUSED,
10327 long dynsymcount,
10328 asymbol **dynsyms,
10329 asymbol **ret)
10330 {
10331 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10332 asection *relplt;
10333 asymbol *s;
10334 const char *relplt_name;
10335 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
10336 arelent *p;
10337 long count, i, n;
10338 size_t size;
10339 Elf_Internal_Shdr *hdr;
10340 char *names;
10341 asection *plt;
10342
10343 *ret = NULL;
10344
10345 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0)
10346 return 0;
10347
10348 if (dynsymcount <= 0)
10349 return 0;
10350
10351 if (!bed->plt_sym_val)
10352 return 0;
10353
10354 relplt_name = bed->relplt_name;
10355 if (relplt_name == NULL)
10356 relplt_name = bed->rela_plts_and_copies_p ? ".rela.plt" : ".rel.plt";
10357 relplt = bfd_get_section_by_name (abfd, relplt_name);
10358 if (relplt == NULL)
10359 return 0;
10360
10361 hdr = &elf_section_data (relplt)->this_hdr;
10362 if (hdr->sh_link != elf_dynsymtab (abfd)
10363 || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA))
10364 return 0;
10365
10366 plt = bfd_get_section_by_name (abfd, ".plt");
10367 if (plt == NULL)
10368 return 0;
10369
10370 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
10371 if (! (*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
10372 return -1;
10373
10374 count = relplt->size / hdr->sh_entsize;
10375 size = count * sizeof (asymbol);
10376 p = relplt->relocation;
10377 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
10378 {
10379 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
10380 if (p->addend != 0)
10381 {
10382 #ifdef BFD64
10383 size += sizeof ("+0x") - 1 + 8 + 8 * (bed->s->elfclass == ELFCLASS64);
10384 #else
10385 size += sizeof ("+0x") - 1 + 8;
10386 #endif
10387 }
10388 }
10389
10390 s = *ret = (asymbol *) bfd_malloc (size);
10391 if (s == NULL)
10392 return -1;
10393
10394 names = (char *) (s + count);
10395 p = relplt->relocation;
10396 n = 0;
10397 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
10398 {
10399 size_t len;
10400 bfd_vma addr;
10401
10402 addr = bed->plt_sym_val (i, plt, p);
10403 if (addr == (bfd_vma) -1)
10404 continue;
10405
10406 *s = **p->sym_ptr_ptr;
10407 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
10408 we are defining a symbol, ensure one of them is set. */
10409 if ((s->flags & BSF_LOCAL) == 0)
10410 s->flags |= BSF_GLOBAL;
10411 s->flags |= BSF_SYNTHETIC;
10412 s->section = plt;
10413 s->value = addr - plt->vma;
10414 s->name = names;
10415 s->udata.p = NULL;
10416 len = strlen ((*p->sym_ptr_ptr)->name);
10417 memcpy (names, (*p->sym_ptr_ptr)->name, len);
10418 names += len;
10419 if (p->addend != 0)
10420 {
10421 char buf[30], *a;
10422
10423 memcpy (names, "+0x", sizeof ("+0x") - 1);
10424 names += sizeof ("+0x") - 1;
10425 bfd_sprintf_vma (abfd, buf, p->addend);
10426 for (a = buf; *a == '0'; ++a)
10427 ;
10428 len = strlen (a);
10429 memcpy (names, a, len);
10430 names += len;
10431 }
10432 memcpy (names, "@plt", sizeof ("@plt"));
10433 names += sizeof ("@plt");
10434 ++s, ++n;
10435 }
10436
10437 return n;
10438 }
10439
10440 /* It is only used by x86-64 so far. */
10441 asection _bfd_elf_large_com_section
10442 = BFD_FAKE_SECTION (_bfd_elf_large_com_section,
10443 SEC_IS_COMMON, NULL, "LARGE_COMMON", 0);
10444
10445 void
10446 _bfd_elf_post_process_headers (bfd * abfd,
10447 struct bfd_link_info * link_info ATTRIBUTE_UNUSED)
10448 {
10449 Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */
10450
10451 i_ehdrp = elf_elfheader (abfd);
10452
10453 i_ehdrp->e_ident[EI_OSABI] = get_elf_backend_data (abfd)->elf_osabi;
10454
10455 /* To make things simpler for the loader on Linux systems we set the
10456 osabi field to ELFOSABI_GNU if the binary contains symbols of
10457 the STT_GNU_IFUNC type or STB_GNU_UNIQUE binding. */
10458 if (i_ehdrp->e_ident[EI_OSABI] == ELFOSABI_NONE
10459 && elf_tdata (abfd)->has_gnu_symbols)
10460 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_GNU;
10461 }
10462
10463
10464 /* Return TRUE for ELF symbol types that represent functions.
10465 This is the default version of this function, which is sufficient for
10466 most targets. It returns true if TYPE is STT_FUNC or STT_GNU_IFUNC. */
10467
10468 bfd_boolean
10469 _bfd_elf_is_function_type (unsigned int type)
10470 {
10471 return (type == STT_FUNC
10472 || type == STT_GNU_IFUNC);
10473 }
10474
10475 /* If the ELF symbol SYM might be a function in SEC, return the
10476 function size and set *CODE_OFF to the function's entry point,
10477 otherwise return zero. */
10478
10479 bfd_size_type
10480 _bfd_elf_maybe_function_sym (const asymbol *sym, asection *sec,
10481 bfd_vma *code_off)
10482 {
10483 bfd_size_type size;
10484
10485 if ((sym->flags & (BSF_SECTION_SYM | BSF_FILE | BSF_OBJECT
10486 | BSF_THREAD_LOCAL | BSF_RELC | BSF_SRELC)) != 0
10487 || sym->section != sec)
10488 return 0;
10489
10490 *code_off = sym->value;
10491 size = 0;
10492 if (!(sym->flags & BSF_SYNTHETIC))
10493 size = ((elf_symbol_type *) sym)->internal_elf_sym.st_size;
10494 if (size == 0)
10495 size = 1;
10496 return size;
10497 }
This page took 0.256839 seconds and 4 git commands to generate.