* Makefile.am (BFD32_BACKENDS): Remove elf32-score and
[deliverable/binutils-gdb.git] / bfd / elf.c
1 /* ELF executable support for BFD.
2
3 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
4 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
5 Free Software Foundation, Inc.
6
7 This file is part of BFD, the Binary File Descriptor library.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22 MA 02110-1301, USA. */
23
24
25 /*
26 SECTION
27 ELF backends
28
29 BFD support for ELF formats is being worked on.
30 Currently, the best supported back ends are for sparc and i386
31 (running svr4 or Solaris 2).
32
33 Documentation of the internals of the support code still needs
34 to be written. The code is changing quickly enough that we
35 haven't bothered yet. */
36
37 /* For sparc64-cross-sparc32. */
38 #define _SYSCALL32
39 #include "sysdep.h"
40 #include "bfd.h"
41 #include "bfdlink.h"
42 #include "libbfd.h"
43 #define ARCH_SIZE 0
44 #include "elf-bfd.h"
45 #include "libiberty.h"
46 #include "safe-ctype.h"
47
48 static int elf_sort_sections (const void *, const void *);
49 static bfd_boolean assign_file_positions_except_relocs (bfd *, struct bfd_link_info *);
50 static bfd_boolean prep_headers (bfd *);
51 static bfd_boolean swap_out_syms (bfd *, struct bfd_strtab_hash **, int) ;
52 static bfd_boolean elf_read_notes (bfd *, file_ptr, bfd_size_type) ;
53 static bfd_boolean elf_parse_notes (bfd *abfd, char *buf, size_t size,
54 file_ptr offset);
55
56 /* Swap version information in and out. The version information is
57 currently size independent. If that ever changes, this code will
58 need to move into elfcode.h. */
59
60 /* Swap in a Verdef structure. */
61
62 void
63 _bfd_elf_swap_verdef_in (bfd *abfd,
64 const Elf_External_Verdef *src,
65 Elf_Internal_Verdef *dst)
66 {
67 dst->vd_version = H_GET_16 (abfd, src->vd_version);
68 dst->vd_flags = H_GET_16 (abfd, src->vd_flags);
69 dst->vd_ndx = H_GET_16 (abfd, src->vd_ndx);
70 dst->vd_cnt = H_GET_16 (abfd, src->vd_cnt);
71 dst->vd_hash = H_GET_32 (abfd, src->vd_hash);
72 dst->vd_aux = H_GET_32 (abfd, src->vd_aux);
73 dst->vd_next = H_GET_32 (abfd, src->vd_next);
74 }
75
76 /* Swap out a Verdef structure. */
77
78 void
79 _bfd_elf_swap_verdef_out (bfd *abfd,
80 const Elf_Internal_Verdef *src,
81 Elf_External_Verdef *dst)
82 {
83 H_PUT_16 (abfd, src->vd_version, dst->vd_version);
84 H_PUT_16 (abfd, src->vd_flags, dst->vd_flags);
85 H_PUT_16 (abfd, src->vd_ndx, dst->vd_ndx);
86 H_PUT_16 (abfd, src->vd_cnt, dst->vd_cnt);
87 H_PUT_32 (abfd, src->vd_hash, dst->vd_hash);
88 H_PUT_32 (abfd, src->vd_aux, dst->vd_aux);
89 H_PUT_32 (abfd, src->vd_next, dst->vd_next);
90 }
91
92 /* Swap in a Verdaux structure. */
93
94 void
95 _bfd_elf_swap_verdaux_in (bfd *abfd,
96 const Elf_External_Verdaux *src,
97 Elf_Internal_Verdaux *dst)
98 {
99 dst->vda_name = H_GET_32 (abfd, src->vda_name);
100 dst->vda_next = H_GET_32 (abfd, src->vda_next);
101 }
102
103 /* Swap out a Verdaux structure. */
104
105 void
106 _bfd_elf_swap_verdaux_out (bfd *abfd,
107 const Elf_Internal_Verdaux *src,
108 Elf_External_Verdaux *dst)
109 {
110 H_PUT_32 (abfd, src->vda_name, dst->vda_name);
111 H_PUT_32 (abfd, src->vda_next, dst->vda_next);
112 }
113
114 /* Swap in a Verneed structure. */
115
116 void
117 _bfd_elf_swap_verneed_in (bfd *abfd,
118 const Elf_External_Verneed *src,
119 Elf_Internal_Verneed *dst)
120 {
121 dst->vn_version = H_GET_16 (abfd, src->vn_version);
122 dst->vn_cnt = H_GET_16 (abfd, src->vn_cnt);
123 dst->vn_file = H_GET_32 (abfd, src->vn_file);
124 dst->vn_aux = H_GET_32 (abfd, src->vn_aux);
125 dst->vn_next = H_GET_32 (abfd, src->vn_next);
126 }
127
128 /* Swap out a Verneed structure. */
129
130 void
131 _bfd_elf_swap_verneed_out (bfd *abfd,
132 const Elf_Internal_Verneed *src,
133 Elf_External_Verneed *dst)
134 {
135 H_PUT_16 (abfd, src->vn_version, dst->vn_version);
136 H_PUT_16 (abfd, src->vn_cnt, dst->vn_cnt);
137 H_PUT_32 (abfd, src->vn_file, dst->vn_file);
138 H_PUT_32 (abfd, src->vn_aux, dst->vn_aux);
139 H_PUT_32 (abfd, src->vn_next, dst->vn_next);
140 }
141
142 /* Swap in a Vernaux structure. */
143
144 void
145 _bfd_elf_swap_vernaux_in (bfd *abfd,
146 const Elf_External_Vernaux *src,
147 Elf_Internal_Vernaux *dst)
148 {
149 dst->vna_hash = H_GET_32 (abfd, src->vna_hash);
150 dst->vna_flags = H_GET_16 (abfd, src->vna_flags);
151 dst->vna_other = H_GET_16 (abfd, src->vna_other);
152 dst->vna_name = H_GET_32 (abfd, src->vna_name);
153 dst->vna_next = H_GET_32 (abfd, src->vna_next);
154 }
155
156 /* Swap out a Vernaux structure. */
157
158 void
159 _bfd_elf_swap_vernaux_out (bfd *abfd,
160 const Elf_Internal_Vernaux *src,
161 Elf_External_Vernaux *dst)
162 {
163 H_PUT_32 (abfd, src->vna_hash, dst->vna_hash);
164 H_PUT_16 (abfd, src->vna_flags, dst->vna_flags);
165 H_PUT_16 (abfd, src->vna_other, dst->vna_other);
166 H_PUT_32 (abfd, src->vna_name, dst->vna_name);
167 H_PUT_32 (abfd, src->vna_next, dst->vna_next);
168 }
169
170 /* Swap in a Versym structure. */
171
172 void
173 _bfd_elf_swap_versym_in (bfd *abfd,
174 const Elf_External_Versym *src,
175 Elf_Internal_Versym *dst)
176 {
177 dst->vs_vers = H_GET_16 (abfd, src->vs_vers);
178 }
179
180 /* Swap out a Versym structure. */
181
182 void
183 _bfd_elf_swap_versym_out (bfd *abfd,
184 const Elf_Internal_Versym *src,
185 Elf_External_Versym *dst)
186 {
187 H_PUT_16 (abfd, src->vs_vers, dst->vs_vers);
188 }
189
190 /* Standard ELF hash function. Do not change this function; you will
191 cause invalid hash tables to be generated. */
192
193 unsigned long
194 bfd_elf_hash (const char *namearg)
195 {
196 const unsigned char *name = (const unsigned char *) namearg;
197 unsigned long h = 0;
198 unsigned long g;
199 int ch;
200
201 while ((ch = *name++) != '\0')
202 {
203 h = (h << 4) + ch;
204 if ((g = (h & 0xf0000000)) != 0)
205 {
206 h ^= g >> 24;
207 /* The ELF ABI says `h &= ~g', but this is equivalent in
208 this case and on some machines one insn instead of two. */
209 h ^= g;
210 }
211 }
212 return h & 0xffffffff;
213 }
214
215 /* DT_GNU_HASH hash function. Do not change this function; you will
216 cause invalid hash tables to be generated. */
217
218 unsigned long
219 bfd_elf_gnu_hash (const char *namearg)
220 {
221 const unsigned char *name = (const unsigned char *) namearg;
222 unsigned long h = 5381;
223 unsigned char ch;
224
225 while ((ch = *name++) != '\0')
226 h = (h << 5) + h + ch;
227 return h & 0xffffffff;
228 }
229
230 /* Create a tdata field OBJECT_SIZE bytes in length, zeroed out and with
231 the object_id field of an elf_obj_tdata field set to OBJECT_ID. */
232 bfd_boolean
233 bfd_elf_allocate_object (bfd *abfd,
234 size_t object_size,
235 enum elf_object_id object_id)
236 {
237 BFD_ASSERT (object_size >= sizeof (struct elf_obj_tdata));
238 abfd->tdata.any = bfd_zalloc (abfd, object_size);
239 if (abfd->tdata.any == NULL)
240 return FALSE;
241
242 elf_object_id (abfd) = object_id;
243 elf_program_header_size (abfd) = (bfd_size_type) -1;
244 return TRUE;
245 }
246
247
248 bfd_boolean
249 bfd_elf_make_generic_object (bfd *abfd)
250 {
251 return bfd_elf_allocate_object (abfd, sizeof (struct elf_obj_tdata),
252 GENERIC_ELF_TDATA);
253 }
254
255 bfd_boolean
256 bfd_elf_mkcorefile (bfd *abfd)
257 {
258 /* I think this can be done just like an object file. */
259 return bfd_elf_make_generic_object (abfd);
260 }
261
262 static char *
263 bfd_elf_get_str_section (bfd *abfd, unsigned int shindex)
264 {
265 Elf_Internal_Shdr **i_shdrp;
266 bfd_byte *shstrtab = NULL;
267 file_ptr offset;
268 bfd_size_type shstrtabsize;
269
270 i_shdrp = elf_elfsections (abfd);
271 if (i_shdrp == 0
272 || shindex >= elf_numsections (abfd)
273 || i_shdrp[shindex] == 0)
274 return NULL;
275
276 shstrtab = i_shdrp[shindex]->contents;
277 if (shstrtab == NULL)
278 {
279 /* No cached one, attempt to read, and cache what we read. */
280 offset = i_shdrp[shindex]->sh_offset;
281 shstrtabsize = i_shdrp[shindex]->sh_size;
282
283 /* Allocate and clear an extra byte at the end, to prevent crashes
284 in case the string table is not terminated. */
285 if (shstrtabsize + 1 <= 1
286 || (shstrtab = bfd_alloc (abfd, shstrtabsize + 1)) == NULL
287 || bfd_seek (abfd, offset, SEEK_SET) != 0)
288 shstrtab = NULL;
289 else if (bfd_bread (shstrtab, shstrtabsize, abfd) != shstrtabsize)
290 {
291 if (bfd_get_error () != bfd_error_system_call)
292 bfd_set_error (bfd_error_file_truncated);
293 shstrtab = NULL;
294 /* Once we've failed to read it, make sure we don't keep
295 trying. Otherwise, we'll keep allocating space for
296 the string table over and over. */
297 i_shdrp[shindex]->sh_size = 0;
298 }
299 else
300 shstrtab[shstrtabsize] = '\0';
301 i_shdrp[shindex]->contents = shstrtab;
302 }
303 return (char *) shstrtab;
304 }
305
306 char *
307 bfd_elf_string_from_elf_section (bfd *abfd,
308 unsigned int shindex,
309 unsigned int strindex)
310 {
311 Elf_Internal_Shdr *hdr;
312
313 if (strindex == 0)
314 return "";
315
316 if (elf_elfsections (abfd) == NULL || shindex >= elf_numsections (abfd))
317 return NULL;
318
319 hdr = elf_elfsections (abfd)[shindex];
320
321 if (hdr->contents == NULL
322 && bfd_elf_get_str_section (abfd, shindex) == NULL)
323 return NULL;
324
325 if (strindex >= hdr->sh_size)
326 {
327 unsigned int shstrndx = elf_elfheader(abfd)->e_shstrndx;
328 (*_bfd_error_handler)
329 (_("%B: invalid string offset %u >= %lu for section `%s'"),
330 abfd, strindex, (unsigned long) hdr->sh_size,
331 (shindex == shstrndx && strindex == hdr->sh_name
332 ? ".shstrtab"
333 : bfd_elf_string_from_elf_section (abfd, shstrndx, hdr->sh_name)));
334 return "";
335 }
336
337 return ((char *) hdr->contents) + strindex;
338 }
339
340 /* Read and convert symbols to internal format.
341 SYMCOUNT specifies the number of symbols to read, starting from
342 symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF
343 are non-NULL, they are used to store the internal symbols, external
344 symbols, and symbol section index extensions, respectively.
345 Returns a pointer to the internal symbol buffer (malloced if necessary)
346 or NULL if there were no symbols or some kind of problem. */
347
348 Elf_Internal_Sym *
349 bfd_elf_get_elf_syms (bfd *ibfd,
350 Elf_Internal_Shdr *symtab_hdr,
351 size_t symcount,
352 size_t symoffset,
353 Elf_Internal_Sym *intsym_buf,
354 void *extsym_buf,
355 Elf_External_Sym_Shndx *extshndx_buf)
356 {
357 Elf_Internal_Shdr *shndx_hdr;
358 void *alloc_ext;
359 const bfd_byte *esym;
360 Elf_External_Sym_Shndx *alloc_extshndx;
361 Elf_External_Sym_Shndx *shndx;
362 Elf_Internal_Sym *alloc_intsym;
363 Elf_Internal_Sym *isym;
364 Elf_Internal_Sym *isymend;
365 const struct elf_backend_data *bed;
366 size_t extsym_size;
367 bfd_size_type amt;
368 file_ptr pos;
369
370 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
371 abort ();
372
373 if (symcount == 0)
374 return intsym_buf;
375
376 /* Normal syms might have section extension entries. */
377 shndx_hdr = NULL;
378 if (symtab_hdr == &elf_tdata (ibfd)->symtab_hdr)
379 shndx_hdr = &elf_tdata (ibfd)->symtab_shndx_hdr;
380
381 /* Read the symbols. */
382 alloc_ext = NULL;
383 alloc_extshndx = NULL;
384 alloc_intsym = NULL;
385 bed = get_elf_backend_data (ibfd);
386 extsym_size = bed->s->sizeof_sym;
387 amt = symcount * extsym_size;
388 pos = symtab_hdr->sh_offset + symoffset * extsym_size;
389 if (extsym_buf == NULL)
390 {
391 alloc_ext = bfd_malloc2 (symcount, extsym_size);
392 extsym_buf = alloc_ext;
393 }
394 if (extsym_buf == NULL
395 || bfd_seek (ibfd, pos, SEEK_SET) != 0
396 || bfd_bread (extsym_buf, amt, ibfd) != amt)
397 {
398 intsym_buf = NULL;
399 goto out;
400 }
401
402 if (shndx_hdr == NULL || shndx_hdr->sh_size == 0)
403 extshndx_buf = NULL;
404 else
405 {
406 amt = symcount * sizeof (Elf_External_Sym_Shndx);
407 pos = shndx_hdr->sh_offset + symoffset * sizeof (Elf_External_Sym_Shndx);
408 if (extshndx_buf == NULL)
409 {
410 alloc_extshndx = bfd_malloc2 (symcount,
411 sizeof (Elf_External_Sym_Shndx));
412 extshndx_buf = alloc_extshndx;
413 }
414 if (extshndx_buf == NULL
415 || bfd_seek (ibfd, pos, SEEK_SET) != 0
416 || bfd_bread (extshndx_buf, amt, ibfd) != amt)
417 {
418 intsym_buf = NULL;
419 goto out;
420 }
421 }
422
423 if (intsym_buf == NULL)
424 {
425 alloc_intsym = bfd_malloc2 (symcount, sizeof (Elf_Internal_Sym));
426 intsym_buf = alloc_intsym;
427 if (intsym_buf == NULL)
428 goto out;
429 }
430
431 /* Convert the symbols to internal form. */
432 isymend = intsym_buf + symcount;
433 for (esym = extsym_buf, isym = intsym_buf, shndx = extshndx_buf;
434 isym < isymend;
435 esym += extsym_size, isym++, shndx = shndx != NULL ? shndx + 1 : NULL)
436 if (!(*bed->s->swap_symbol_in) (ibfd, esym, shndx, isym))
437 {
438 symoffset += (esym - (bfd_byte *) extsym_buf) / extsym_size;
439 (*_bfd_error_handler) (_("%B symbol number %lu references "
440 "nonexistent SHT_SYMTAB_SHNDX section"),
441 ibfd, (unsigned long) symoffset);
442 if (alloc_intsym != NULL)
443 free (alloc_intsym);
444 intsym_buf = NULL;
445 goto out;
446 }
447
448 out:
449 if (alloc_ext != NULL)
450 free (alloc_ext);
451 if (alloc_extshndx != NULL)
452 free (alloc_extshndx);
453
454 return intsym_buf;
455 }
456
457 /* Look up a symbol name. */
458 const char *
459 bfd_elf_sym_name (bfd *abfd,
460 Elf_Internal_Shdr *symtab_hdr,
461 Elf_Internal_Sym *isym,
462 asection *sym_sec)
463 {
464 const char *name;
465 unsigned int iname = isym->st_name;
466 unsigned int shindex = symtab_hdr->sh_link;
467
468 if (iname == 0 && ELF_ST_TYPE (isym->st_info) == STT_SECTION
469 /* Check for a bogus st_shndx to avoid crashing. */
470 && isym->st_shndx < elf_numsections (abfd))
471 {
472 iname = elf_elfsections (abfd)[isym->st_shndx]->sh_name;
473 shindex = elf_elfheader (abfd)->e_shstrndx;
474 }
475
476 name = bfd_elf_string_from_elf_section (abfd, shindex, iname);
477 if (name == NULL)
478 name = "(null)";
479 else if (sym_sec && *name == '\0')
480 name = bfd_section_name (abfd, sym_sec);
481
482 return name;
483 }
484
485 /* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
486 sections. The first element is the flags, the rest are section
487 pointers. */
488
489 typedef union elf_internal_group {
490 Elf_Internal_Shdr *shdr;
491 unsigned int flags;
492 } Elf_Internal_Group;
493
494 /* Return the name of the group signature symbol. Why isn't the
495 signature just a string? */
496
497 static const char *
498 group_signature (bfd *abfd, Elf_Internal_Shdr *ghdr)
499 {
500 Elf_Internal_Shdr *hdr;
501 unsigned char esym[sizeof (Elf64_External_Sym)];
502 Elf_External_Sym_Shndx eshndx;
503 Elf_Internal_Sym isym;
504
505 /* First we need to ensure the symbol table is available. Make sure
506 that it is a symbol table section. */
507 if (ghdr->sh_link >= elf_numsections (abfd))
508 return NULL;
509 hdr = elf_elfsections (abfd) [ghdr->sh_link];
510 if (hdr->sh_type != SHT_SYMTAB
511 || ! bfd_section_from_shdr (abfd, ghdr->sh_link))
512 return NULL;
513
514 /* Go read the symbol. */
515 hdr = &elf_tdata (abfd)->symtab_hdr;
516 if (bfd_elf_get_elf_syms (abfd, hdr, 1, ghdr->sh_info,
517 &isym, esym, &eshndx) == NULL)
518 return NULL;
519
520 return bfd_elf_sym_name (abfd, hdr, &isym, NULL);
521 }
522
523 /* Set next_in_group list pointer, and group name for NEWSECT. */
524
525 static bfd_boolean
526 setup_group (bfd *abfd, Elf_Internal_Shdr *hdr, asection *newsect)
527 {
528 unsigned int num_group = elf_tdata (abfd)->num_group;
529
530 /* If num_group is zero, read in all SHT_GROUP sections. The count
531 is set to -1 if there are no SHT_GROUP sections. */
532 if (num_group == 0)
533 {
534 unsigned int i, shnum;
535
536 /* First count the number of groups. If we have a SHT_GROUP
537 section with just a flag word (ie. sh_size is 4), ignore it. */
538 shnum = elf_numsections (abfd);
539 num_group = 0;
540
541 #define IS_VALID_GROUP_SECTION_HEADER(shdr) \
542 ( (shdr)->sh_type == SHT_GROUP \
543 && (shdr)->sh_size >= (2 * GRP_ENTRY_SIZE) \
544 && (shdr)->sh_entsize == GRP_ENTRY_SIZE \
545 && ((shdr)->sh_size % GRP_ENTRY_SIZE) == 0)
546
547 for (i = 0; i < shnum; i++)
548 {
549 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
550
551 if (IS_VALID_GROUP_SECTION_HEADER (shdr))
552 num_group += 1;
553 }
554
555 if (num_group == 0)
556 {
557 num_group = (unsigned) -1;
558 elf_tdata (abfd)->num_group = num_group;
559 }
560 else
561 {
562 /* We keep a list of elf section headers for group sections,
563 so we can find them quickly. */
564 bfd_size_type amt;
565
566 elf_tdata (abfd)->num_group = num_group;
567 elf_tdata (abfd)->group_sect_ptr
568 = bfd_alloc2 (abfd, num_group, sizeof (Elf_Internal_Shdr *));
569 if (elf_tdata (abfd)->group_sect_ptr == NULL)
570 return FALSE;
571
572 num_group = 0;
573 for (i = 0; i < shnum; i++)
574 {
575 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
576
577 if (IS_VALID_GROUP_SECTION_HEADER (shdr))
578 {
579 unsigned char *src;
580 Elf_Internal_Group *dest;
581
582 /* Add to list of sections. */
583 elf_tdata (abfd)->group_sect_ptr[num_group] = shdr;
584 num_group += 1;
585
586 /* Read the raw contents. */
587 BFD_ASSERT (sizeof (*dest) >= 4);
588 amt = shdr->sh_size * sizeof (*dest) / 4;
589 shdr->contents = bfd_alloc2 (abfd, shdr->sh_size,
590 sizeof (*dest) / 4);
591 /* PR binutils/4110: Handle corrupt group headers. */
592 if (shdr->contents == NULL)
593 {
594 _bfd_error_handler
595 (_("%B: Corrupt size field in group section header: 0x%lx"), abfd, shdr->sh_size);
596 bfd_set_error (bfd_error_bad_value);
597 return FALSE;
598 }
599
600 memset (shdr->contents, 0, amt);
601
602 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0
603 || (bfd_bread (shdr->contents, shdr->sh_size, abfd)
604 != shdr->sh_size))
605 return FALSE;
606
607 /* Translate raw contents, a flag word followed by an
608 array of elf section indices all in target byte order,
609 to the flag word followed by an array of elf section
610 pointers. */
611 src = shdr->contents + shdr->sh_size;
612 dest = (Elf_Internal_Group *) (shdr->contents + amt);
613 while (1)
614 {
615 unsigned int idx;
616
617 src -= 4;
618 --dest;
619 idx = H_GET_32 (abfd, src);
620 if (src == shdr->contents)
621 {
622 dest->flags = idx;
623 if (shdr->bfd_section != NULL && (idx & GRP_COMDAT))
624 shdr->bfd_section->flags
625 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
626 break;
627 }
628 if (idx >= shnum)
629 {
630 ((*_bfd_error_handler)
631 (_("%B: invalid SHT_GROUP entry"), abfd));
632 idx = 0;
633 }
634 dest->shdr = elf_elfsections (abfd)[idx];
635 }
636 }
637 }
638 }
639 }
640
641 if (num_group != (unsigned) -1)
642 {
643 unsigned int i;
644
645 for (i = 0; i < num_group; i++)
646 {
647 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
648 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
649 unsigned int n_elt = shdr->sh_size / 4;
650
651 /* Look through this group's sections to see if current
652 section is a member. */
653 while (--n_elt != 0)
654 if ((++idx)->shdr == hdr)
655 {
656 asection *s = NULL;
657
658 /* We are a member of this group. Go looking through
659 other members to see if any others are linked via
660 next_in_group. */
661 idx = (Elf_Internal_Group *) shdr->contents;
662 n_elt = shdr->sh_size / 4;
663 while (--n_elt != 0)
664 if ((s = (++idx)->shdr->bfd_section) != NULL
665 && elf_next_in_group (s) != NULL)
666 break;
667 if (n_elt != 0)
668 {
669 /* Snarf the group name from other member, and
670 insert current section in circular list. */
671 elf_group_name (newsect) = elf_group_name (s);
672 elf_next_in_group (newsect) = elf_next_in_group (s);
673 elf_next_in_group (s) = newsect;
674 }
675 else
676 {
677 const char *gname;
678
679 gname = group_signature (abfd, shdr);
680 if (gname == NULL)
681 return FALSE;
682 elf_group_name (newsect) = gname;
683
684 /* Start a circular list with one element. */
685 elf_next_in_group (newsect) = newsect;
686 }
687
688 /* If the group section has been created, point to the
689 new member. */
690 if (shdr->bfd_section != NULL)
691 elf_next_in_group (shdr->bfd_section) = newsect;
692
693 i = num_group - 1;
694 break;
695 }
696 }
697 }
698
699 if (elf_group_name (newsect) == NULL)
700 {
701 (*_bfd_error_handler) (_("%B: no group info for section %A"),
702 abfd, newsect);
703 }
704 return TRUE;
705 }
706
707 bfd_boolean
708 _bfd_elf_setup_sections (bfd *abfd)
709 {
710 unsigned int i;
711 unsigned int num_group = elf_tdata (abfd)->num_group;
712 bfd_boolean result = TRUE;
713 asection *s;
714
715 /* Process SHF_LINK_ORDER. */
716 for (s = abfd->sections; s != NULL; s = s->next)
717 {
718 Elf_Internal_Shdr *this_hdr = &elf_section_data (s)->this_hdr;
719 if ((this_hdr->sh_flags & SHF_LINK_ORDER) != 0)
720 {
721 unsigned int elfsec = this_hdr->sh_link;
722 /* FIXME: The old Intel compiler and old strip/objcopy may
723 not set the sh_link or sh_info fields. Hence we could
724 get the situation where elfsec is 0. */
725 if (elfsec == 0)
726 {
727 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
728 if (bed->link_order_error_handler)
729 bed->link_order_error_handler
730 (_("%B: warning: sh_link not set for section `%A'"),
731 abfd, s);
732 }
733 else
734 {
735 asection *link = NULL;
736
737 if (elfsec < elf_numsections (abfd))
738 {
739 this_hdr = elf_elfsections (abfd)[elfsec];
740 link = this_hdr->bfd_section;
741 }
742
743 /* PR 1991, 2008:
744 Some strip/objcopy may leave an incorrect value in
745 sh_link. We don't want to proceed. */
746 if (link == NULL)
747 {
748 (*_bfd_error_handler)
749 (_("%B: sh_link [%d] in section `%A' is incorrect"),
750 s->owner, s, elfsec);
751 result = FALSE;
752 }
753
754 elf_linked_to_section (s) = link;
755 }
756 }
757 }
758
759 /* Process section groups. */
760 if (num_group == (unsigned) -1)
761 return result;
762
763 for (i = 0; i < num_group; i++)
764 {
765 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
766 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
767 unsigned int n_elt = shdr->sh_size / 4;
768
769 while (--n_elt != 0)
770 if ((++idx)->shdr->bfd_section)
771 elf_sec_group (idx->shdr->bfd_section) = shdr->bfd_section;
772 else if (idx->shdr->sh_type == SHT_RELA
773 || idx->shdr->sh_type == SHT_REL)
774 /* We won't include relocation sections in section groups in
775 output object files. We adjust the group section size here
776 so that relocatable link will work correctly when
777 relocation sections are in section group in input object
778 files. */
779 shdr->bfd_section->size -= 4;
780 else
781 {
782 /* There are some unknown sections in the group. */
783 (*_bfd_error_handler)
784 (_("%B: unknown [%d] section `%s' in group [%s]"),
785 abfd,
786 (unsigned int) idx->shdr->sh_type,
787 bfd_elf_string_from_elf_section (abfd,
788 (elf_elfheader (abfd)
789 ->e_shstrndx),
790 idx->shdr->sh_name),
791 shdr->bfd_section->name);
792 result = FALSE;
793 }
794 }
795 return result;
796 }
797
798 bfd_boolean
799 bfd_elf_is_group_section (bfd *abfd ATTRIBUTE_UNUSED, const asection *sec)
800 {
801 return elf_next_in_group (sec) != NULL;
802 }
803
804 /* Make a BFD section from an ELF section. We store a pointer to the
805 BFD section in the bfd_section field of the header. */
806
807 bfd_boolean
808 _bfd_elf_make_section_from_shdr (bfd *abfd,
809 Elf_Internal_Shdr *hdr,
810 const char *name,
811 int shindex)
812 {
813 asection *newsect;
814 flagword flags;
815 const struct elf_backend_data *bed;
816
817 if (hdr->bfd_section != NULL)
818 {
819 BFD_ASSERT (strcmp (name,
820 bfd_get_section_name (abfd, hdr->bfd_section)) == 0);
821 return TRUE;
822 }
823
824 newsect = bfd_make_section_anyway (abfd, name);
825 if (newsect == NULL)
826 return FALSE;
827
828 hdr->bfd_section = newsect;
829 elf_section_data (newsect)->this_hdr = *hdr;
830 elf_section_data (newsect)->this_idx = shindex;
831
832 /* Always use the real type/flags. */
833 elf_section_type (newsect) = hdr->sh_type;
834 elf_section_flags (newsect) = hdr->sh_flags;
835
836 newsect->filepos = hdr->sh_offset;
837
838 if (! bfd_set_section_vma (abfd, newsect, hdr->sh_addr)
839 || ! bfd_set_section_size (abfd, newsect, hdr->sh_size)
840 || ! bfd_set_section_alignment (abfd, newsect,
841 bfd_log2 (hdr->sh_addralign)))
842 return FALSE;
843
844 flags = SEC_NO_FLAGS;
845 if (hdr->sh_type != SHT_NOBITS)
846 flags |= SEC_HAS_CONTENTS;
847 if (hdr->sh_type == SHT_GROUP)
848 flags |= SEC_GROUP | SEC_EXCLUDE;
849 if ((hdr->sh_flags & SHF_ALLOC) != 0)
850 {
851 flags |= SEC_ALLOC;
852 if (hdr->sh_type != SHT_NOBITS)
853 flags |= SEC_LOAD;
854 }
855 if ((hdr->sh_flags & SHF_WRITE) == 0)
856 flags |= SEC_READONLY;
857 if ((hdr->sh_flags & SHF_EXECINSTR) != 0)
858 flags |= SEC_CODE;
859 else if ((flags & SEC_LOAD) != 0)
860 flags |= SEC_DATA;
861 if ((hdr->sh_flags & SHF_MERGE) != 0)
862 {
863 flags |= SEC_MERGE;
864 newsect->entsize = hdr->sh_entsize;
865 if ((hdr->sh_flags & SHF_STRINGS) != 0)
866 flags |= SEC_STRINGS;
867 }
868 if (hdr->sh_flags & SHF_GROUP)
869 if (!setup_group (abfd, hdr, newsect))
870 return FALSE;
871 if ((hdr->sh_flags & SHF_TLS) != 0)
872 flags |= SEC_THREAD_LOCAL;
873
874 if ((flags & SEC_ALLOC) == 0)
875 {
876 /* The debugging sections appear to be recognized only by name,
877 not any sort of flag. Their SEC_ALLOC bits are cleared. */
878 static const struct
879 {
880 const char *name;
881 int len;
882 } debug_sections [] =
883 {
884 { STRING_COMMA_LEN ("debug") }, /* 'd' */
885 { NULL, 0 }, /* 'e' */
886 { NULL, 0 }, /* 'f' */
887 { STRING_COMMA_LEN ("gnu.linkonce.wi.") }, /* 'g' */
888 { NULL, 0 }, /* 'h' */
889 { NULL, 0 }, /* 'i' */
890 { NULL, 0 }, /* 'j' */
891 { NULL, 0 }, /* 'k' */
892 { STRING_COMMA_LEN ("line") }, /* 'l' */
893 { NULL, 0 }, /* 'm' */
894 { NULL, 0 }, /* 'n' */
895 { NULL, 0 }, /* 'o' */
896 { NULL, 0 }, /* 'p' */
897 { NULL, 0 }, /* 'q' */
898 { NULL, 0 }, /* 'r' */
899 { STRING_COMMA_LEN ("stab") }, /* 's' */
900 { NULL, 0 }, /* 't' */
901 { NULL, 0 }, /* 'u' */
902 { NULL, 0 }, /* 'v' */
903 { NULL, 0 }, /* 'w' */
904 { NULL, 0 }, /* 'x' */
905 { NULL, 0 }, /* 'y' */
906 { STRING_COMMA_LEN ("zdebug") } /* 'z' */
907 };
908
909 if (name [0] == '.')
910 {
911 int i = name [1] - 'd';
912 if (i >= 0
913 && i < (int) ARRAY_SIZE (debug_sections)
914 && debug_sections [i].name != NULL
915 && strncmp (&name [1], debug_sections [i].name,
916 debug_sections [i].len) == 0)
917 flags |= SEC_DEBUGGING;
918 }
919 }
920
921 /* As a GNU extension, if the name begins with .gnu.linkonce, we
922 only link a single copy of the section. This is used to support
923 g++. g++ will emit each template expansion in its own section.
924 The symbols will be defined as weak, so that multiple definitions
925 are permitted. The GNU linker extension is to actually discard
926 all but one of the sections. */
927 if (CONST_STRNEQ (name, ".gnu.linkonce")
928 && elf_next_in_group (newsect) == NULL)
929 flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
930
931 bed = get_elf_backend_data (abfd);
932 if (bed->elf_backend_section_flags)
933 if (! bed->elf_backend_section_flags (&flags, hdr))
934 return FALSE;
935
936 if (! bfd_set_section_flags (abfd, newsect, flags))
937 return FALSE;
938
939 /* We do not parse the PT_NOTE segments as we are interested even in the
940 separate debug info files which may have the segments offsets corrupted.
941 PT_NOTEs from the core files are currently not parsed using BFD. */
942 if (hdr->sh_type == SHT_NOTE)
943 {
944 bfd_byte *contents;
945
946 if (!bfd_malloc_and_get_section (abfd, newsect, &contents))
947 return FALSE;
948
949 elf_parse_notes (abfd, (char *) contents, hdr->sh_size, -1);
950 free (contents);
951 }
952
953 if ((flags & SEC_ALLOC) != 0)
954 {
955 Elf_Internal_Phdr *phdr;
956 unsigned int i, nload;
957
958 /* Some ELF linkers produce binaries with all the program header
959 p_paddr fields zero. If we have such a binary with more than
960 one PT_LOAD header, then leave the section lma equal to vma
961 so that we don't create sections with overlapping lma. */
962 phdr = elf_tdata (abfd)->phdr;
963 for (nload = 0, i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
964 if (phdr->p_paddr != 0)
965 break;
966 else if (phdr->p_type == PT_LOAD && phdr->p_memsz != 0)
967 ++nload;
968 if (i >= elf_elfheader (abfd)->e_phnum && nload > 1)
969 return TRUE;
970
971 phdr = elf_tdata (abfd)->phdr;
972 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
973 {
974 /* This section is part of this segment if its file
975 offset plus size lies within the segment's memory
976 span and, if the section is loaded, the extent of the
977 loaded data lies within the extent of the segment.
978
979 Note - we used to check the p_paddr field as well, and
980 refuse to set the LMA if it was 0. This is wrong
981 though, as a perfectly valid initialised segment can
982 have a p_paddr of zero. Some architectures, eg ARM,
983 place special significance on the address 0 and
984 executables need to be able to have a segment which
985 covers this address. */
986 if (phdr->p_type == PT_LOAD
987 && (bfd_vma) hdr->sh_offset >= phdr->p_offset
988 && (hdr->sh_offset + hdr->sh_size
989 <= phdr->p_offset + phdr->p_memsz)
990 && ((flags & SEC_LOAD) == 0
991 || (hdr->sh_offset + hdr->sh_size
992 <= phdr->p_offset + phdr->p_filesz)))
993 {
994 if ((flags & SEC_LOAD) == 0)
995 newsect->lma = (phdr->p_paddr
996 + hdr->sh_addr - phdr->p_vaddr);
997 else
998 /* We used to use the same adjustment for SEC_LOAD
999 sections, but that doesn't work if the segment
1000 is packed with code from multiple VMAs.
1001 Instead we calculate the section LMA based on
1002 the segment LMA. It is assumed that the
1003 segment will contain sections with contiguous
1004 LMAs, even if the VMAs are not. */
1005 newsect->lma = (phdr->p_paddr
1006 + hdr->sh_offset - phdr->p_offset);
1007
1008 /* With contiguous segments, we can't tell from file
1009 offsets whether a section with zero size should
1010 be placed at the end of one segment or the
1011 beginning of the next. Decide based on vaddr. */
1012 if (hdr->sh_addr >= phdr->p_vaddr
1013 && (hdr->sh_addr + hdr->sh_size
1014 <= phdr->p_vaddr + phdr->p_memsz))
1015 break;
1016 }
1017 }
1018 }
1019
1020 return TRUE;
1021 }
1022
1023 const char *const bfd_elf_section_type_names[] = {
1024 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
1025 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
1026 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
1027 };
1028
1029 /* ELF relocs are against symbols. If we are producing relocatable
1030 output, and the reloc is against an external symbol, and nothing
1031 has given us any additional addend, the resulting reloc will also
1032 be against the same symbol. In such a case, we don't want to
1033 change anything about the way the reloc is handled, since it will
1034 all be done at final link time. Rather than put special case code
1035 into bfd_perform_relocation, all the reloc types use this howto
1036 function. It just short circuits the reloc if producing
1037 relocatable output against an external symbol. */
1038
1039 bfd_reloc_status_type
1040 bfd_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED,
1041 arelent *reloc_entry,
1042 asymbol *symbol,
1043 void *data ATTRIBUTE_UNUSED,
1044 asection *input_section,
1045 bfd *output_bfd,
1046 char **error_message ATTRIBUTE_UNUSED)
1047 {
1048 if (output_bfd != NULL
1049 && (symbol->flags & BSF_SECTION_SYM) == 0
1050 && (! reloc_entry->howto->partial_inplace
1051 || reloc_entry->addend == 0))
1052 {
1053 reloc_entry->address += input_section->output_offset;
1054 return bfd_reloc_ok;
1055 }
1056
1057 return bfd_reloc_continue;
1058 }
1059 \f
1060 /* Copy the program header and other data from one object module to
1061 another. */
1062
1063 bfd_boolean
1064 _bfd_elf_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
1065 {
1066 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
1067 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
1068 return TRUE;
1069
1070 BFD_ASSERT (!elf_flags_init (obfd)
1071 || (elf_elfheader (obfd)->e_flags
1072 == elf_elfheader (ibfd)->e_flags));
1073
1074 elf_gp (obfd) = elf_gp (ibfd);
1075 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
1076 elf_flags_init (obfd) = TRUE;
1077
1078 /* Copy object attributes. */
1079 _bfd_elf_copy_obj_attributes (ibfd, obfd);
1080
1081 return TRUE;
1082 }
1083
1084 static const char *
1085 get_segment_type (unsigned int p_type)
1086 {
1087 const char *pt;
1088 switch (p_type)
1089 {
1090 case PT_NULL: pt = "NULL"; break;
1091 case PT_LOAD: pt = "LOAD"; break;
1092 case PT_DYNAMIC: pt = "DYNAMIC"; break;
1093 case PT_INTERP: pt = "INTERP"; break;
1094 case PT_NOTE: pt = "NOTE"; break;
1095 case PT_SHLIB: pt = "SHLIB"; break;
1096 case PT_PHDR: pt = "PHDR"; break;
1097 case PT_TLS: pt = "TLS"; break;
1098 case PT_GNU_EH_FRAME: pt = "EH_FRAME"; break;
1099 case PT_GNU_STACK: pt = "STACK"; break;
1100 case PT_GNU_RELRO: pt = "RELRO"; break;
1101 default: pt = NULL; break;
1102 }
1103 return pt;
1104 }
1105
1106 /* Print out the program headers. */
1107
1108 bfd_boolean
1109 _bfd_elf_print_private_bfd_data (bfd *abfd, void *farg)
1110 {
1111 FILE *f = farg;
1112 Elf_Internal_Phdr *p;
1113 asection *s;
1114 bfd_byte *dynbuf = NULL;
1115
1116 p = elf_tdata (abfd)->phdr;
1117 if (p != NULL)
1118 {
1119 unsigned int i, c;
1120
1121 fprintf (f, _("\nProgram Header:\n"));
1122 c = elf_elfheader (abfd)->e_phnum;
1123 for (i = 0; i < c; i++, p++)
1124 {
1125 const char *pt = get_segment_type (p->p_type);
1126 char buf[20];
1127
1128 if (pt == NULL)
1129 {
1130 sprintf (buf, "0x%lx", p->p_type);
1131 pt = buf;
1132 }
1133 fprintf (f, "%8s off 0x", pt);
1134 bfd_fprintf_vma (abfd, f, p->p_offset);
1135 fprintf (f, " vaddr 0x");
1136 bfd_fprintf_vma (abfd, f, p->p_vaddr);
1137 fprintf (f, " paddr 0x");
1138 bfd_fprintf_vma (abfd, f, p->p_paddr);
1139 fprintf (f, " align 2**%u\n", bfd_log2 (p->p_align));
1140 fprintf (f, " filesz 0x");
1141 bfd_fprintf_vma (abfd, f, p->p_filesz);
1142 fprintf (f, " memsz 0x");
1143 bfd_fprintf_vma (abfd, f, p->p_memsz);
1144 fprintf (f, " flags %c%c%c",
1145 (p->p_flags & PF_R) != 0 ? 'r' : '-',
1146 (p->p_flags & PF_W) != 0 ? 'w' : '-',
1147 (p->p_flags & PF_X) != 0 ? 'x' : '-');
1148 if ((p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X)) != 0)
1149 fprintf (f, " %lx", p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X));
1150 fprintf (f, "\n");
1151 }
1152 }
1153
1154 s = bfd_get_section_by_name (abfd, ".dynamic");
1155 if (s != NULL)
1156 {
1157 unsigned int elfsec;
1158 unsigned long shlink;
1159 bfd_byte *extdyn, *extdynend;
1160 size_t extdynsize;
1161 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1162
1163 fprintf (f, _("\nDynamic Section:\n"));
1164
1165 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
1166 goto error_return;
1167
1168 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1169 if (elfsec == SHN_BAD)
1170 goto error_return;
1171 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1172
1173 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1174 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1175
1176 extdyn = dynbuf;
1177 extdynend = extdyn + s->size;
1178 for (; extdyn < extdynend; extdyn += extdynsize)
1179 {
1180 Elf_Internal_Dyn dyn;
1181 const char *name = "";
1182 char ab[20];
1183 bfd_boolean stringp;
1184 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1185
1186 (*swap_dyn_in) (abfd, extdyn, &dyn);
1187
1188 if (dyn.d_tag == DT_NULL)
1189 break;
1190
1191 stringp = FALSE;
1192 switch (dyn.d_tag)
1193 {
1194 default:
1195 if (bed->elf_backend_get_target_dtag)
1196 name = (*bed->elf_backend_get_target_dtag) (dyn.d_tag);
1197
1198 if (!strcmp (name, ""))
1199 {
1200 sprintf (ab, "0x%lx", (unsigned long) dyn.d_tag);
1201 name = ab;
1202 }
1203 break;
1204
1205 case DT_NEEDED: name = "NEEDED"; stringp = TRUE; break;
1206 case DT_PLTRELSZ: name = "PLTRELSZ"; break;
1207 case DT_PLTGOT: name = "PLTGOT"; break;
1208 case DT_HASH: name = "HASH"; break;
1209 case DT_STRTAB: name = "STRTAB"; break;
1210 case DT_SYMTAB: name = "SYMTAB"; break;
1211 case DT_RELA: name = "RELA"; break;
1212 case DT_RELASZ: name = "RELASZ"; break;
1213 case DT_RELAENT: name = "RELAENT"; break;
1214 case DT_STRSZ: name = "STRSZ"; break;
1215 case DT_SYMENT: name = "SYMENT"; break;
1216 case DT_INIT: name = "INIT"; break;
1217 case DT_FINI: name = "FINI"; break;
1218 case DT_SONAME: name = "SONAME"; stringp = TRUE; break;
1219 case DT_RPATH: name = "RPATH"; stringp = TRUE; break;
1220 case DT_SYMBOLIC: name = "SYMBOLIC"; break;
1221 case DT_REL: name = "REL"; break;
1222 case DT_RELSZ: name = "RELSZ"; break;
1223 case DT_RELENT: name = "RELENT"; break;
1224 case DT_PLTREL: name = "PLTREL"; break;
1225 case DT_DEBUG: name = "DEBUG"; break;
1226 case DT_TEXTREL: name = "TEXTREL"; break;
1227 case DT_JMPREL: name = "JMPREL"; break;
1228 case DT_BIND_NOW: name = "BIND_NOW"; break;
1229 case DT_INIT_ARRAY: name = "INIT_ARRAY"; break;
1230 case DT_FINI_ARRAY: name = "FINI_ARRAY"; break;
1231 case DT_INIT_ARRAYSZ: name = "INIT_ARRAYSZ"; break;
1232 case DT_FINI_ARRAYSZ: name = "FINI_ARRAYSZ"; break;
1233 case DT_RUNPATH: name = "RUNPATH"; stringp = TRUE; break;
1234 case DT_FLAGS: name = "FLAGS"; break;
1235 case DT_PREINIT_ARRAY: name = "PREINIT_ARRAY"; break;
1236 case DT_PREINIT_ARRAYSZ: name = "PREINIT_ARRAYSZ"; break;
1237 case DT_CHECKSUM: name = "CHECKSUM"; break;
1238 case DT_PLTPADSZ: name = "PLTPADSZ"; break;
1239 case DT_MOVEENT: name = "MOVEENT"; break;
1240 case DT_MOVESZ: name = "MOVESZ"; break;
1241 case DT_FEATURE: name = "FEATURE"; break;
1242 case DT_POSFLAG_1: name = "POSFLAG_1"; break;
1243 case DT_SYMINSZ: name = "SYMINSZ"; break;
1244 case DT_SYMINENT: name = "SYMINENT"; break;
1245 case DT_CONFIG: name = "CONFIG"; stringp = TRUE; break;
1246 case DT_DEPAUDIT: name = "DEPAUDIT"; stringp = TRUE; break;
1247 case DT_AUDIT: name = "AUDIT"; stringp = TRUE; break;
1248 case DT_PLTPAD: name = "PLTPAD"; break;
1249 case DT_MOVETAB: name = "MOVETAB"; break;
1250 case DT_SYMINFO: name = "SYMINFO"; break;
1251 case DT_RELACOUNT: name = "RELACOUNT"; break;
1252 case DT_RELCOUNT: name = "RELCOUNT"; break;
1253 case DT_FLAGS_1: name = "FLAGS_1"; break;
1254 case DT_VERSYM: name = "VERSYM"; break;
1255 case DT_VERDEF: name = "VERDEF"; break;
1256 case DT_VERDEFNUM: name = "VERDEFNUM"; break;
1257 case DT_VERNEED: name = "VERNEED"; break;
1258 case DT_VERNEEDNUM: name = "VERNEEDNUM"; break;
1259 case DT_AUXILIARY: name = "AUXILIARY"; stringp = TRUE; break;
1260 case DT_USED: name = "USED"; break;
1261 case DT_FILTER: name = "FILTER"; stringp = TRUE; break;
1262 case DT_GNU_HASH: name = "GNU_HASH"; break;
1263 }
1264
1265 fprintf (f, " %-20s ", name);
1266 if (! stringp)
1267 {
1268 fprintf (f, "0x");
1269 bfd_fprintf_vma (abfd, f, dyn.d_un.d_val);
1270 }
1271 else
1272 {
1273 const char *string;
1274 unsigned int tagv = dyn.d_un.d_val;
1275
1276 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1277 if (string == NULL)
1278 goto error_return;
1279 fprintf (f, "%s", string);
1280 }
1281 fprintf (f, "\n");
1282 }
1283
1284 free (dynbuf);
1285 dynbuf = NULL;
1286 }
1287
1288 if ((elf_dynverdef (abfd) != 0 && elf_tdata (abfd)->verdef == NULL)
1289 || (elf_dynverref (abfd) != 0 && elf_tdata (abfd)->verref == NULL))
1290 {
1291 if (! _bfd_elf_slurp_version_tables (abfd, FALSE))
1292 return FALSE;
1293 }
1294
1295 if (elf_dynverdef (abfd) != 0)
1296 {
1297 Elf_Internal_Verdef *t;
1298
1299 fprintf (f, _("\nVersion definitions:\n"));
1300 for (t = elf_tdata (abfd)->verdef; t != NULL; t = t->vd_nextdef)
1301 {
1302 fprintf (f, "%d 0x%2.2x 0x%8.8lx %s\n", t->vd_ndx,
1303 t->vd_flags, t->vd_hash,
1304 t->vd_nodename ? t->vd_nodename : "<corrupt>");
1305 if (t->vd_auxptr != NULL && t->vd_auxptr->vda_nextptr != NULL)
1306 {
1307 Elf_Internal_Verdaux *a;
1308
1309 fprintf (f, "\t");
1310 for (a = t->vd_auxptr->vda_nextptr;
1311 a != NULL;
1312 a = a->vda_nextptr)
1313 fprintf (f, "%s ",
1314 a->vda_nodename ? a->vda_nodename : "<corrupt>");
1315 fprintf (f, "\n");
1316 }
1317 }
1318 }
1319
1320 if (elf_dynverref (abfd) != 0)
1321 {
1322 Elf_Internal_Verneed *t;
1323
1324 fprintf (f, _("\nVersion References:\n"));
1325 for (t = elf_tdata (abfd)->verref; t != NULL; t = t->vn_nextref)
1326 {
1327 Elf_Internal_Vernaux *a;
1328
1329 fprintf (f, _(" required from %s:\n"),
1330 t->vn_filename ? t->vn_filename : "<corrupt>");
1331 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1332 fprintf (f, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a->vna_hash,
1333 a->vna_flags, a->vna_other,
1334 a->vna_nodename ? a->vna_nodename : "<corrupt>");
1335 }
1336 }
1337
1338 return TRUE;
1339
1340 error_return:
1341 if (dynbuf != NULL)
1342 free (dynbuf);
1343 return FALSE;
1344 }
1345
1346 /* Display ELF-specific fields of a symbol. */
1347
1348 void
1349 bfd_elf_print_symbol (bfd *abfd,
1350 void *filep,
1351 asymbol *symbol,
1352 bfd_print_symbol_type how)
1353 {
1354 FILE *file = filep;
1355 switch (how)
1356 {
1357 case bfd_print_symbol_name:
1358 fprintf (file, "%s", symbol->name);
1359 break;
1360 case bfd_print_symbol_more:
1361 fprintf (file, "elf ");
1362 bfd_fprintf_vma (abfd, file, symbol->value);
1363 fprintf (file, " %lx", (unsigned long) symbol->flags);
1364 break;
1365 case bfd_print_symbol_all:
1366 {
1367 const char *section_name;
1368 const char *name = NULL;
1369 const struct elf_backend_data *bed;
1370 unsigned char st_other;
1371 bfd_vma val;
1372
1373 section_name = symbol->section ? symbol->section->name : "(*none*)";
1374
1375 bed = get_elf_backend_data (abfd);
1376 if (bed->elf_backend_print_symbol_all)
1377 name = (*bed->elf_backend_print_symbol_all) (abfd, filep, symbol);
1378
1379 if (name == NULL)
1380 {
1381 name = symbol->name;
1382 bfd_print_symbol_vandf (abfd, file, symbol);
1383 }
1384
1385 fprintf (file, " %s\t", section_name);
1386 /* Print the "other" value for a symbol. For common symbols,
1387 we've already printed the size; now print the alignment.
1388 For other symbols, we have no specified alignment, and
1389 we've printed the address; now print the size. */
1390 if (symbol->section && bfd_is_com_section (symbol->section))
1391 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
1392 else
1393 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_size;
1394 bfd_fprintf_vma (abfd, file, val);
1395
1396 /* If we have version information, print it. */
1397 if (elf_tdata (abfd)->dynversym_section != 0
1398 && (elf_tdata (abfd)->dynverdef_section != 0
1399 || elf_tdata (abfd)->dynverref_section != 0))
1400 {
1401 unsigned int vernum;
1402 const char *version_string;
1403
1404 vernum = ((elf_symbol_type *) symbol)->version & VERSYM_VERSION;
1405
1406 if (vernum == 0)
1407 version_string = "";
1408 else if (vernum == 1)
1409 version_string = "Base";
1410 else if (vernum <= elf_tdata (abfd)->cverdefs)
1411 version_string =
1412 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1413 else
1414 {
1415 Elf_Internal_Verneed *t;
1416
1417 version_string = "";
1418 for (t = elf_tdata (abfd)->verref;
1419 t != NULL;
1420 t = t->vn_nextref)
1421 {
1422 Elf_Internal_Vernaux *a;
1423
1424 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1425 {
1426 if (a->vna_other == vernum)
1427 {
1428 version_string = a->vna_nodename;
1429 break;
1430 }
1431 }
1432 }
1433 }
1434
1435 if ((((elf_symbol_type *) symbol)->version & VERSYM_HIDDEN) == 0)
1436 fprintf (file, " %-11s", version_string);
1437 else
1438 {
1439 int i;
1440
1441 fprintf (file, " (%s)", version_string);
1442 for (i = 10 - strlen (version_string); i > 0; --i)
1443 putc (' ', file);
1444 }
1445 }
1446
1447 /* If the st_other field is not zero, print it. */
1448 st_other = ((elf_symbol_type *) symbol)->internal_elf_sym.st_other;
1449
1450 switch (st_other)
1451 {
1452 case 0: break;
1453 case STV_INTERNAL: fprintf (file, " .internal"); break;
1454 case STV_HIDDEN: fprintf (file, " .hidden"); break;
1455 case STV_PROTECTED: fprintf (file, " .protected"); break;
1456 default:
1457 /* Some other non-defined flags are also present, so print
1458 everything hex. */
1459 fprintf (file, " 0x%02x", (unsigned int) st_other);
1460 }
1461
1462 fprintf (file, " %s", name);
1463 }
1464 break;
1465 }
1466 }
1467
1468 /* Allocate an ELF string table--force the first byte to be zero. */
1469
1470 struct bfd_strtab_hash *
1471 _bfd_elf_stringtab_init (void)
1472 {
1473 struct bfd_strtab_hash *ret;
1474
1475 ret = _bfd_stringtab_init ();
1476 if (ret != NULL)
1477 {
1478 bfd_size_type loc;
1479
1480 loc = _bfd_stringtab_add (ret, "", TRUE, FALSE);
1481 BFD_ASSERT (loc == 0 || loc == (bfd_size_type) -1);
1482 if (loc == (bfd_size_type) -1)
1483 {
1484 _bfd_stringtab_free (ret);
1485 ret = NULL;
1486 }
1487 }
1488 return ret;
1489 }
1490 \f
1491 /* ELF .o/exec file reading */
1492
1493 /* Create a new bfd section from an ELF section header. */
1494
1495 bfd_boolean
1496 bfd_section_from_shdr (bfd *abfd, unsigned int shindex)
1497 {
1498 Elf_Internal_Shdr *hdr;
1499 Elf_Internal_Ehdr *ehdr;
1500 const struct elf_backend_data *bed;
1501 const char *name;
1502
1503 if (shindex >= elf_numsections (abfd))
1504 return FALSE;
1505
1506 hdr = elf_elfsections (abfd)[shindex];
1507 ehdr = elf_elfheader (abfd);
1508 name = bfd_elf_string_from_elf_section (abfd, ehdr->e_shstrndx,
1509 hdr->sh_name);
1510 if (name == NULL)
1511 return FALSE;
1512
1513 bed = get_elf_backend_data (abfd);
1514 switch (hdr->sh_type)
1515 {
1516 case SHT_NULL:
1517 /* Inactive section. Throw it away. */
1518 return TRUE;
1519
1520 case SHT_PROGBITS: /* Normal section with contents. */
1521 case SHT_NOBITS: /* .bss section. */
1522 case SHT_HASH: /* .hash section. */
1523 case SHT_NOTE: /* .note section. */
1524 case SHT_INIT_ARRAY: /* .init_array section. */
1525 case SHT_FINI_ARRAY: /* .fini_array section. */
1526 case SHT_PREINIT_ARRAY: /* .preinit_array section. */
1527 case SHT_GNU_LIBLIST: /* .gnu.liblist section. */
1528 case SHT_GNU_HASH: /* .gnu.hash section. */
1529 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1530
1531 case SHT_DYNAMIC: /* Dynamic linking information. */
1532 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1533 return FALSE;
1534 if (hdr->sh_link > elf_numsections (abfd)
1535 || elf_elfsections (abfd)[hdr->sh_link] == NULL)
1536 return FALSE;
1537 if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_STRTAB)
1538 {
1539 Elf_Internal_Shdr *dynsymhdr;
1540
1541 /* The shared libraries distributed with hpux11 have a bogus
1542 sh_link field for the ".dynamic" section. Find the
1543 string table for the ".dynsym" section instead. */
1544 if (elf_dynsymtab (abfd) != 0)
1545 {
1546 dynsymhdr = elf_elfsections (abfd)[elf_dynsymtab (abfd)];
1547 hdr->sh_link = dynsymhdr->sh_link;
1548 }
1549 else
1550 {
1551 unsigned int i, num_sec;
1552
1553 num_sec = elf_numsections (abfd);
1554 for (i = 1; i < num_sec; i++)
1555 {
1556 dynsymhdr = elf_elfsections (abfd)[i];
1557 if (dynsymhdr->sh_type == SHT_DYNSYM)
1558 {
1559 hdr->sh_link = dynsymhdr->sh_link;
1560 break;
1561 }
1562 }
1563 }
1564 }
1565 break;
1566
1567 case SHT_SYMTAB: /* A symbol table */
1568 if (elf_onesymtab (abfd) == shindex)
1569 return TRUE;
1570
1571 if (hdr->sh_entsize != bed->s->sizeof_sym)
1572 return FALSE;
1573 if (hdr->sh_info * hdr->sh_entsize > hdr->sh_size)
1574 return FALSE;
1575 BFD_ASSERT (elf_onesymtab (abfd) == 0);
1576 elf_onesymtab (abfd) = shindex;
1577 elf_tdata (abfd)->symtab_hdr = *hdr;
1578 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->symtab_hdr;
1579 abfd->flags |= HAS_SYMS;
1580
1581 /* Sometimes a shared object will map in the symbol table. If
1582 SHF_ALLOC is set, and this is a shared object, then we also
1583 treat this section as a BFD section. We can not base the
1584 decision purely on SHF_ALLOC, because that flag is sometimes
1585 set in a relocatable object file, which would confuse the
1586 linker. */
1587 if ((hdr->sh_flags & SHF_ALLOC) != 0
1588 && (abfd->flags & DYNAMIC) != 0
1589 && ! _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1590 shindex))
1591 return FALSE;
1592
1593 /* Go looking for SHT_SYMTAB_SHNDX too, since if there is one we
1594 can't read symbols without that section loaded as well. It
1595 is most likely specified by the next section header. */
1596 if (elf_elfsections (abfd)[elf_symtab_shndx (abfd)]->sh_link != shindex)
1597 {
1598 unsigned int i, num_sec;
1599
1600 num_sec = elf_numsections (abfd);
1601 for (i = shindex + 1; i < num_sec; i++)
1602 {
1603 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1604 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
1605 && hdr2->sh_link == shindex)
1606 break;
1607 }
1608 if (i == num_sec)
1609 for (i = 1; i < shindex; i++)
1610 {
1611 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1612 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
1613 && hdr2->sh_link == shindex)
1614 break;
1615 }
1616 if (i != shindex)
1617 return bfd_section_from_shdr (abfd, i);
1618 }
1619 return TRUE;
1620
1621 case SHT_DYNSYM: /* A dynamic symbol table */
1622 if (elf_dynsymtab (abfd) == shindex)
1623 return TRUE;
1624
1625 if (hdr->sh_entsize != bed->s->sizeof_sym)
1626 return FALSE;
1627 BFD_ASSERT (elf_dynsymtab (abfd) == 0);
1628 elf_dynsymtab (abfd) = shindex;
1629 elf_tdata (abfd)->dynsymtab_hdr = *hdr;
1630 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->dynsymtab_hdr;
1631 abfd->flags |= HAS_SYMS;
1632
1633 /* Besides being a symbol table, we also treat this as a regular
1634 section, so that objcopy can handle it. */
1635 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1636
1637 case SHT_SYMTAB_SHNDX: /* Symbol section indices when >64k sections */
1638 if (elf_symtab_shndx (abfd) == shindex)
1639 return TRUE;
1640
1641 BFD_ASSERT (elf_symtab_shndx (abfd) == 0);
1642 elf_symtab_shndx (abfd) = shindex;
1643 elf_tdata (abfd)->symtab_shndx_hdr = *hdr;
1644 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->symtab_shndx_hdr;
1645 return TRUE;
1646
1647 case SHT_STRTAB: /* A string table */
1648 if (hdr->bfd_section != NULL)
1649 return TRUE;
1650 if (ehdr->e_shstrndx == shindex)
1651 {
1652 elf_tdata (abfd)->shstrtab_hdr = *hdr;
1653 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->shstrtab_hdr;
1654 return TRUE;
1655 }
1656 if (elf_elfsections (abfd)[elf_onesymtab (abfd)]->sh_link == shindex)
1657 {
1658 symtab_strtab:
1659 elf_tdata (abfd)->strtab_hdr = *hdr;
1660 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->strtab_hdr;
1661 return TRUE;
1662 }
1663 if (elf_elfsections (abfd)[elf_dynsymtab (abfd)]->sh_link == shindex)
1664 {
1665 dynsymtab_strtab:
1666 elf_tdata (abfd)->dynstrtab_hdr = *hdr;
1667 hdr = &elf_tdata (abfd)->dynstrtab_hdr;
1668 elf_elfsections (abfd)[shindex] = hdr;
1669 /* We also treat this as a regular section, so that objcopy
1670 can handle it. */
1671 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1672 shindex);
1673 }
1674
1675 /* If the string table isn't one of the above, then treat it as a
1676 regular section. We need to scan all the headers to be sure,
1677 just in case this strtab section appeared before the above. */
1678 if (elf_onesymtab (abfd) == 0 || elf_dynsymtab (abfd) == 0)
1679 {
1680 unsigned int i, num_sec;
1681
1682 num_sec = elf_numsections (abfd);
1683 for (i = 1; i < num_sec; i++)
1684 {
1685 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1686 if (hdr2->sh_link == shindex)
1687 {
1688 /* Prevent endless recursion on broken objects. */
1689 if (i == shindex)
1690 return FALSE;
1691 if (! bfd_section_from_shdr (abfd, i))
1692 return FALSE;
1693 if (elf_onesymtab (abfd) == i)
1694 goto symtab_strtab;
1695 if (elf_dynsymtab (abfd) == i)
1696 goto dynsymtab_strtab;
1697 }
1698 }
1699 }
1700 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1701
1702 case SHT_REL:
1703 case SHT_RELA:
1704 /* *These* do a lot of work -- but build no sections! */
1705 {
1706 asection *target_sect;
1707 Elf_Internal_Shdr *hdr2;
1708 unsigned int num_sec = elf_numsections (abfd);
1709
1710 if (hdr->sh_entsize
1711 != (bfd_size_type) (hdr->sh_type == SHT_REL
1712 ? bed->s->sizeof_rel : bed->s->sizeof_rela))
1713 return FALSE;
1714
1715 /* Check for a bogus link to avoid crashing. */
1716 if (hdr->sh_link >= num_sec)
1717 {
1718 ((*_bfd_error_handler)
1719 (_("%B: invalid link %lu for reloc section %s (index %u)"),
1720 abfd, hdr->sh_link, name, shindex));
1721 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1722 shindex);
1723 }
1724
1725 /* For some incomprehensible reason Oracle distributes
1726 libraries for Solaris in which some of the objects have
1727 bogus sh_link fields. It would be nice if we could just
1728 reject them, but, unfortunately, some people need to use
1729 them. We scan through the section headers; if we find only
1730 one suitable symbol table, we clobber the sh_link to point
1731 to it. I hope this doesn't break anything. */
1732 if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_SYMTAB
1733 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_DYNSYM)
1734 {
1735 unsigned int scan;
1736 int found;
1737
1738 found = 0;
1739 for (scan = 1; scan < num_sec; scan++)
1740 {
1741 if (elf_elfsections (abfd)[scan]->sh_type == SHT_SYMTAB
1742 || elf_elfsections (abfd)[scan]->sh_type == SHT_DYNSYM)
1743 {
1744 if (found != 0)
1745 {
1746 found = 0;
1747 break;
1748 }
1749 found = scan;
1750 }
1751 }
1752 if (found != 0)
1753 hdr->sh_link = found;
1754 }
1755
1756 /* Get the symbol table. */
1757 if ((elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_SYMTAB
1758 || elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_DYNSYM)
1759 && ! bfd_section_from_shdr (abfd, hdr->sh_link))
1760 return FALSE;
1761
1762 /* If this reloc section does not use the main symbol table we
1763 don't treat it as a reloc section. BFD can't adequately
1764 represent such a section, so at least for now, we don't
1765 try. We just present it as a normal section. We also
1766 can't use it as a reloc section if it points to the null
1767 section, an invalid section, or another reloc section. */
1768 if (hdr->sh_link != elf_onesymtab (abfd)
1769 || hdr->sh_info == SHN_UNDEF
1770 || hdr->sh_info >= num_sec
1771 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_REL
1772 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_RELA)
1773 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1774 shindex);
1775
1776 if (! bfd_section_from_shdr (abfd, hdr->sh_info))
1777 return FALSE;
1778 target_sect = bfd_section_from_elf_index (abfd, hdr->sh_info);
1779 if (target_sect == NULL)
1780 return FALSE;
1781
1782 if ((target_sect->flags & SEC_RELOC) == 0
1783 || target_sect->reloc_count == 0)
1784 hdr2 = &elf_section_data (target_sect)->rel_hdr;
1785 else
1786 {
1787 bfd_size_type amt;
1788 BFD_ASSERT (elf_section_data (target_sect)->rel_hdr2 == NULL);
1789 amt = sizeof (*hdr2);
1790 hdr2 = bfd_alloc (abfd, amt);
1791 if (hdr2 == NULL)
1792 return FALSE;
1793 elf_section_data (target_sect)->rel_hdr2 = hdr2;
1794 }
1795 *hdr2 = *hdr;
1796 elf_elfsections (abfd)[shindex] = hdr2;
1797 target_sect->reloc_count += NUM_SHDR_ENTRIES (hdr);
1798 target_sect->flags |= SEC_RELOC;
1799 target_sect->relocation = NULL;
1800 target_sect->rel_filepos = hdr->sh_offset;
1801 /* In the section to which the relocations apply, mark whether
1802 its relocations are of the REL or RELA variety. */
1803 if (hdr->sh_size != 0)
1804 target_sect->use_rela_p = hdr->sh_type == SHT_RELA;
1805 abfd->flags |= HAS_RELOC;
1806 return TRUE;
1807 }
1808
1809 case SHT_GNU_verdef:
1810 elf_dynverdef (abfd) = shindex;
1811 elf_tdata (abfd)->dynverdef_hdr = *hdr;
1812 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1813
1814 case SHT_GNU_versym:
1815 if (hdr->sh_entsize != sizeof (Elf_External_Versym))
1816 return FALSE;
1817 elf_dynversym (abfd) = shindex;
1818 elf_tdata (abfd)->dynversym_hdr = *hdr;
1819 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1820
1821 case SHT_GNU_verneed:
1822 elf_dynverref (abfd) = shindex;
1823 elf_tdata (abfd)->dynverref_hdr = *hdr;
1824 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1825
1826 case SHT_SHLIB:
1827 return TRUE;
1828
1829 case SHT_GROUP:
1830 if (! IS_VALID_GROUP_SECTION_HEADER (hdr))
1831 return FALSE;
1832 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1833 return FALSE;
1834 if (hdr->contents != NULL)
1835 {
1836 Elf_Internal_Group *idx = (Elf_Internal_Group *) hdr->contents;
1837 unsigned int n_elt = hdr->sh_size / GRP_ENTRY_SIZE;
1838 asection *s;
1839
1840 if (idx->flags & GRP_COMDAT)
1841 hdr->bfd_section->flags
1842 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
1843
1844 /* We try to keep the same section order as it comes in. */
1845 idx += n_elt;
1846 while (--n_elt != 0)
1847 {
1848 --idx;
1849
1850 if (idx->shdr != NULL
1851 && (s = idx->shdr->bfd_section) != NULL
1852 && elf_next_in_group (s) != NULL)
1853 {
1854 elf_next_in_group (hdr->bfd_section) = s;
1855 break;
1856 }
1857 }
1858 }
1859 break;
1860
1861 default:
1862 /* Possibly an attributes section. */
1863 if (hdr->sh_type == SHT_GNU_ATTRIBUTES
1864 || hdr->sh_type == bed->obj_attrs_section_type)
1865 {
1866 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1867 return FALSE;
1868 _bfd_elf_parse_attributes (abfd, hdr);
1869 return TRUE;
1870 }
1871
1872 /* Check for any processor-specific section types. */
1873 if (bed->elf_backend_section_from_shdr (abfd, hdr, name, shindex))
1874 return TRUE;
1875
1876 if (hdr->sh_type >= SHT_LOUSER && hdr->sh_type <= SHT_HIUSER)
1877 {
1878 if ((hdr->sh_flags & SHF_ALLOC) != 0)
1879 /* FIXME: How to properly handle allocated section reserved
1880 for applications? */
1881 (*_bfd_error_handler)
1882 (_("%B: don't know how to handle allocated, application "
1883 "specific section `%s' [0x%8x]"),
1884 abfd, name, hdr->sh_type);
1885 else
1886 /* Allow sections reserved for applications. */
1887 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1888 shindex);
1889 }
1890 else if (hdr->sh_type >= SHT_LOPROC
1891 && hdr->sh_type <= SHT_HIPROC)
1892 /* FIXME: We should handle this section. */
1893 (*_bfd_error_handler)
1894 (_("%B: don't know how to handle processor specific section "
1895 "`%s' [0x%8x]"),
1896 abfd, name, hdr->sh_type);
1897 else if (hdr->sh_type >= SHT_LOOS && hdr->sh_type <= SHT_HIOS)
1898 {
1899 /* Unrecognised OS-specific sections. */
1900 if ((hdr->sh_flags & SHF_OS_NONCONFORMING) != 0)
1901 /* SHF_OS_NONCONFORMING indicates that special knowledge is
1902 required to correctly process the section and the file should
1903 be rejected with an error message. */
1904 (*_bfd_error_handler)
1905 (_("%B: don't know how to handle OS specific section "
1906 "`%s' [0x%8x]"),
1907 abfd, name, hdr->sh_type);
1908 else
1909 /* Otherwise it should be processed. */
1910 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1911 }
1912 else
1913 /* FIXME: We should handle this section. */
1914 (*_bfd_error_handler)
1915 (_("%B: don't know how to handle section `%s' [0x%8x]"),
1916 abfd, name, hdr->sh_type);
1917
1918 return FALSE;
1919 }
1920
1921 return TRUE;
1922 }
1923
1924 /* Return the section for the local symbol specified by ABFD, R_SYMNDX.
1925 Return SEC for sections that have no elf section, and NULL on error. */
1926
1927 asection *
1928 bfd_section_from_r_symndx (bfd *abfd,
1929 struct sym_sec_cache *cache,
1930 asection *sec,
1931 unsigned long r_symndx)
1932 {
1933 unsigned int ent = r_symndx % LOCAL_SYM_CACHE_SIZE;
1934 asection *s;
1935
1936 if (cache->abfd != abfd || cache->indx[ent] != r_symndx)
1937 {
1938 Elf_Internal_Shdr *symtab_hdr;
1939 unsigned char esym[sizeof (Elf64_External_Sym)];
1940 Elf_External_Sym_Shndx eshndx;
1941 Elf_Internal_Sym isym;
1942
1943 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1944 if (bfd_elf_get_elf_syms (abfd, symtab_hdr, 1, r_symndx,
1945 &isym, esym, &eshndx) == NULL)
1946 return NULL;
1947
1948 if (cache->abfd != abfd)
1949 {
1950 memset (cache->indx, -1, sizeof (cache->indx));
1951 cache->abfd = abfd;
1952 }
1953 cache->indx[ent] = r_symndx;
1954 cache->shndx[ent] = isym.st_shndx;
1955 }
1956
1957 s = bfd_section_from_elf_index (abfd, cache->shndx[ent]);
1958 if (s != NULL)
1959 return s;
1960
1961 return sec;
1962 }
1963
1964 /* Given an ELF section number, retrieve the corresponding BFD
1965 section. */
1966
1967 asection *
1968 bfd_section_from_elf_index (bfd *abfd, unsigned int index)
1969 {
1970 if (index >= elf_numsections (abfd))
1971 return NULL;
1972 return elf_elfsections (abfd)[index]->bfd_section;
1973 }
1974
1975 static const struct bfd_elf_special_section special_sections_b[] =
1976 {
1977 { STRING_COMMA_LEN (".bss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
1978 { NULL, 0, 0, 0, 0 }
1979 };
1980
1981 static const struct bfd_elf_special_section special_sections_c[] =
1982 {
1983 { STRING_COMMA_LEN (".comment"), 0, SHT_PROGBITS, 0 },
1984 { NULL, 0, 0, 0, 0 }
1985 };
1986
1987 static const struct bfd_elf_special_section special_sections_d[] =
1988 {
1989 { STRING_COMMA_LEN (".data"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
1990 { STRING_COMMA_LEN (".data1"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
1991 { STRING_COMMA_LEN (".debug"), 0, SHT_PROGBITS, 0 },
1992 { STRING_COMMA_LEN (".debug_line"), 0, SHT_PROGBITS, 0 },
1993 { STRING_COMMA_LEN (".debug_info"), 0, SHT_PROGBITS, 0 },
1994 { STRING_COMMA_LEN (".debug_abbrev"), 0, SHT_PROGBITS, 0 },
1995 { STRING_COMMA_LEN (".debug_aranges"), 0, SHT_PROGBITS, 0 },
1996 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC, SHF_ALLOC },
1997 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB, SHF_ALLOC },
1998 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM, SHF_ALLOC },
1999 { NULL, 0, 0, 0, 0 }
2000 };
2001
2002 static const struct bfd_elf_special_section special_sections_f[] =
2003 {
2004 { STRING_COMMA_LEN (".fini"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2005 { STRING_COMMA_LEN (".fini_array"), 0, SHT_FINI_ARRAY, SHF_ALLOC + SHF_WRITE },
2006 { NULL, 0, 0, 0, 0 }
2007 };
2008
2009 static const struct bfd_elf_special_section special_sections_g[] =
2010 {
2011 { STRING_COMMA_LEN (".gnu.linkonce.b"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2012 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2013 { STRING_COMMA_LEN (".gnu.version"), 0, SHT_GNU_versym, 0 },
2014 { STRING_COMMA_LEN (".gnu.version_d"), 0, SHT_GNU_verdef, 0 },
2015 { STRING_COMMA_LEN (".gnu.version_r"), 0, SHT_GNU_verneed, 0 },
2016 { STRING_COMMA_LEN (".gnu.liblist"), 0, SHT_GNU_LIBLIST, SHF_ALLOC },
2017 { STRING_COMMA_LEN (".gnu.conflict"), 0, SHT_RELA, SHF_ALLOC },
2018 { STRING_COMMA_LEN (".gnu.hash"), 0, SHT_GNU_HASH, SHF_ALLOC },
2019 { NULL, 0, 0, 0, 0 }
2020 };
2021
2022 static const struct bfd_elf_special_section special_sections_h[] =
2023 {
2024 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH, SHF_ALLOC },
2025 { NULL, 0, 0, 0, 0 }
2026 };
2027
2028 static const struct bfd_elf_special_section special_sections_i[] =
2029 {
2030 { STRING_COMMA_LEN (".init"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2031 { STRING_COMMA_LEN (".init_array"), 0, SHT_INIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2032 { STRING_COMMA_LEN (".interp"), 0, SHT_PROGBITS, 0 },
2033 { NULL, 0, 0, 0, 0 }
2034 };
2035
2036 static const struct bfd_elf_special_section special_sections_l[] =
2037 {
2038 { STRING_COMMA_LEN (".line"), 0, SHT_PROGBITS, 0 },
2039 { NULL, 0, 0, 0, 0 }
2040 };
2041
2042 static const struct bfd_elf_special_section special_sections_n[] =
2043 {
2044 { STRING_COMMA_LEN (".note.GNU-stack"), 0, SHT_PROGBITS, 0 },
2045 { STRING_COMMA_LEN (".note"), -1, SHT_NOTE, 0 },
2046 { NULL, 0, 0, 0, 0 }
2047 };
2048
2049 static const struct bfd_elf_special_section special_sections_p[] =
2050 {
2051 { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2052 { STRING_COMMA_LEN (".plt"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2053 { NULL, 0, 0, 0, 0 }
2054 };
2055
2056 static const struct bfd_elf_special_section special_sections_r[] =
2057 {
2058 { STRING_COMMA_LEN (".rodata"), -2, SHT_PROGBITS, SHF_ALLOC },
2059 { STRING_COMMA_LEN (".rodata1"), 0, SHT_PROGBITS, SHF_ALLOC },
2060 { STRING_COMMA_LEN (".rela"), -1, SHT_RELA, 0 },
2061 { STRING_COMMA_LEN (".rel"), -1, SHT_REL, 0 },
2062 { NULL, 0, 0, 0, 0 }
2063 };
2064
2065 static const struct bfd_elf_special_section special_sections_s[] =
2066 {
2067 { STRING_COMMA_LEN (".shstrtab"), 0, SHT_STRTAB, 0 },
2068 { STRING_COMMA_LEN (".strtab"), 0, SHT_STRTAB, 0 },
2069 { STRING_COMMA_LEN (".symtab"), 0, SHT_SYMTAB, 0 },
2070 /* See struct bfd_elf_special_section declaration for the semantics of
2071 this special case where .prefix_length != strlen (.prefix). */
2072 { ".stabstr", 5, 3, SHT_STRTAB, 0 },
2073 { NULL, 0, 0, 0, 0 }
2074 };
2075
2076 static const struct bfd_elf_special_section special_sections_t[] =
2077 {
2078 { STRING_COMMA_LEN (".text"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2079 { STRING_COMMA_LEN (".tbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2080 { STRING_COMMA_LEN (".tdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2081 { NULL, 0, 0, 0, 0 }
2082 };
2083
2084 static const struct bfd_elf_special_section special_sections_z[] =
2085 {
2086 { STRING_COMMA_LEN (".zdebug_line"), 0, SHT_PROGBITS, 0 },
2087 { STRING_COMMA_LEN (".zdebug_info"), 0, SHT_PROGBITS, 0 },
2088 { STRING_COMMA_LEN (".zdebug_abbrev"), 0, SHT_PROGBITS, 0 },
2089 { STRING_COMMA_LEN (".zdebug_aranges"), 0, SHT_PROGBITS, 0 },
2090 { NULL, 0, 0, 0, 0 }
2091 };
2092
2093 static const struct bfd_elf_special_section *special_sections[] =
2094 {
2095 special_sections_b, /* 'b' */
2096 special_sections_c, /* 'c' */
2097 special_sections_d, /* 'd' */
2098 NULL, /* 'e' */
2099 special_sections_f, /* 'f' */
2100 special_sections_g, /* 'g' */
2101 special_sections_h, /* 'h' */
2102 special_sections_i, /* 'i' */
2103 NULL, /* 'j' */
2104 NULL, /* 'k' */
2105 special_sections_l, /* 'l' */
2106 NULL, /* 'm' */
2107 special_sections_n, /* 'n' */
2108 NULL, /* 'o' */
2109 special_sections_p, /* 'p' */
2110 NULL, /* 'q' */
2111 special_sections_r, /* 'r' */
2112 special_sections_s, /* 's' */
2113 special_sections_t, /* 't' */
2114 NULL, /* 'u' */
2115 NULL, /* 'v' */
2116 NULL, /* 'w' */
2117 NULL, /* 'x' */
2118 NULL, /* 'y' */
2119 special_sections_z /* 'z' */
2120 };
2121
2122 const struct bfd_elf_special_section *
2123 _bfd_elf_get_special_section (const char *name,
2124 const struct bfd_elf_special_section *spec,
2125 unsigned int rela)
2126 {
2127 int i;
2128 int len;
2129
2130 len = strlen (name);
2131
2132 for (i = 0; spec[i].prefix != NULL; i++)
2133 {
2134 int suffix_len;
2135 int prefix_len = spec[i].prefix_length;
2136
2137 if (len < prefix_len)
2138 continue;
2139 if (memcmp (name, spec[i].prefix, prefix_len) != 0)
2140 continue;
2141
2142 suffix_len = spec[i].suffix_length;
2143 if (suffix_len <= 0)
2144 {
2145 if (name[prefix_len] != 0)
2146 {
2147 if (suffix_len == 0)
2148 continue;
2149 if (name[prefix_len] != '.'
2150 && (suffix_len == -2
2151 || (rela && spec[i].type == SHT_REL)))
2152 continue;
2153 }
2154 }
2155 else
2156 {
2157 if (len < prefix_len + suffix_len)
2158 continue;
2159 if (memcmp (name + len - suffix_len,
2160 spec[i].prefix + prefix_len,
2161 suffix_len) != 0)
2162 continue;
2163 }
2164 return &spec[i];
2165 }
2166
2167 return NULL;
2168 }
2169
2170 const struct bfd_elf_special_section *
2171 _bfd_elf_get_sec_type_attr (bfd *abfd, asection *sec)
2172 {
2173 int i;
2174 const struct bfd_elf_special_section *spec;
2175 const struct elf_backend_data *bed;
2176
2177 /* See if this is one of the special sections. */
2178 if (sec->name == NULL)
2179 return NULL;
2180
2181 bed = get_elf_backend_data (abfd);
2182 spec = bed->special_sections;
2183 if (spec)
2184 {
2185 spec = _bfd_elf_get_special_section (sec->name,
2186 bed->special_sections,
2187 sec->use_rela_p);
2188 if (spec != NULL)
2189 return spec;
2190 }
2191
2192 if (sec->name[0] != '.')
2193 return NULL;
2194
2195 i = sec->name[1] - 'b';
2196 if (i < 0 || i > 'z' - 'b')
2197 return NULL;
2198
2199 spec = special_sections[i];
2200
2201 if (spec == NULL)
2202 return NULL;
2203
2204 return _bfd_elf_get_special_section (sec->name, spec, sec->use_rela_p);
2205 }
2206
2207 bfd_boolean
2208 _bfd_elf_new_section_hook (bfd *abfd, asection *sec)
2209 {
2210 struct bfd_elf_section_data *sdata;
2211 const struct elf_backend_data *bed;
2212 const struct bfd_elf_special_section *ssect;
2213
2214 sdata = (struct bfd_elf_section_data *) sec->used_by_bfd;
2215 if (sdata == NULL)
2216 {
2217 sdata = bfd_zalloc (abfd, sizeof (*sdata));
2218 if (sdata == NULL)
2219 return FALSE;
2220 sec->used_by_bfd = sdata;
2221 }
2222
2223 /* Indicate whether or not this section should use RELA relocations. */
2224 bed = get_elf_backend_data (abfd);
2225 sec->use_rela_p = bed->default_use_rela_p;
2226
2227 /* When we read a file, we don't need to set ELF section type and
2228 flags. They will be overridden in _bfd_elf_make_section_from_shdr
2229 anyway. We will set ELF section type and flags for all linker
2230 created sections. If user specifies BFD section flags, we will
2231 set ELF section type and flags based on BFD section flags in
2232 elf_fake_sections. */
2233 if ((!sec->flags && abfd->direction != read_direction)
2234 || (sec->flags & SEC_LINKER_CREATED) != 0)
2235 {
2236 ssect = (*bed->get_sec_type_attr) (abfd, sec);
2237 if (ssect != NULL)
2238 {
2239 elf_section_type (sec) = ssect->type;
2240 elf_section_flags (sec) = ssect->attr;
2241 }
2242 }
2243
2244 return _bfd_generic_new_section_hook (abfd, sec);
2245 }
2246
2247 /* Create a new bfd section from an ELF program header.
2248
2249 Since program segments have no names, we generate a synthetic name
2250 of the form segment<NUM>, where NUM is generally the index in the
2251 program header table. For segments that are split (see below) we
2252 generate the names segment<NUM>a and segment<NUM>b.
2253
2254 Note that some program segments may have a file size that is different than
2255 (less than) the memory size. All this means is that at execution the
2256 system must allocate the amount of memory specified by the memory size,
2257 but only initialize it with the first "file size" bytes read from the
2258 file. This would occur for example, with program segments consisting
2259 of combined data+bss.
2260
2261 To handle the above situation, this routine generates TWO bfd sections
2262 for the single program segment. The first has the length specified by
2263 the file size of the segment, and the second has the length specified
2264 by the difference between the two sizes. In effect, the segment is split
2265 into its initialized and uninitialized parts.
2266
2267 */
2268
2269 bfd_boolean
2270 _bfd_elf_make_section_from_phdr (bfd *abfd,
2271 Elf_Internal_Phdr *hdr,
2272 int index,
2273 const char *typename)
2274 {
2275 asection *newsect;
2276 char *name;
2277 char namebuf[64];
2278 size_t len;
2279 int split;
2280
2281 split = ((hdr->p_memsz > 0)
2282 && (hdr->p_filesz > 0)
2283 && (hdr->p_memsz > hdr->p_filesz));
2284
2285 if (hdr->p_filesz > 0)
2286 {
2287 sprintf (namebuf, "%s%d%s", typename, index, split ? "a" : "");
2288 len = strlen (namebuf) + 1;
2289 name = bfd_alloc (abfd, len);
2290 if (!name)
2291 return FALSE;
2292 memcpy (name, namebuf, len);
2293 newsect = bfd_make_section (abfd, name);
2294 if (newsect == NULL)
2295 return FALSE;
2296 newsect->vma = hdr->p_vaddr;
2297 newsect->lma = hdr->p_paddr;
2298 newsect->size = hdr->p_filesz;
2299 newsect->filepos = hdr->p_offset;
2300 newsect->flags |= SEC_HAS_CONTENTS;
2301 newsect->alignment_power = bfd_log2 (hdr->p_align);
2302 if (hdr->p_type == PT_LOAD)
2303 {
2304 newsect->flags |= SEC_ALLOC;
2305 newsect->flags |= SEC_LOAD;
2306 if (hdr->p_flags & PF_X)
2307 {
2308 /* FIXME: all we known is that it has execute PERMISSION,
2309 may be data. */
2310 newsect->flags |= SEC_CODE;
2311 }
2312 }
2313 if (!(hdr->p_flags & PF_W))
2314 {
2315 newsect->flags |= SEC_READONLY;
2316 }
2317 }
2318
2319 if (hdr->p_memsz > hdr->p_filesz)
2320 {
2321 bfd_vma align;
2322
2323 sprintf (namebuf, "%s%d%s", typename, index, split ? "b" : "");
2324 len = strlen (namebuf) + 1;
2325 name = bfd_alloc (abfd, len);
2326 if (!name)
2327 return FALSE;
2328 memcpy (name, namebuf, len);
2329 newsect = bfd_make_section (abfd, name);
2330 if (newsect == NULL)
2331 return FALSE;
2332 newsect->vma = hdr->p_vaddr + hdr->p_filesz;
2333 newsect->lma = hdr->p_paddr + hdr->p_filesz;
2334 newsect->size = hdr->p_memsz - hdr->p_filesz;
2335 newsect->filepos = hdr->p_offset + hdr->p_filesz;
2336 align = newsect->vma & -newsect->vma;
2337 if (align == 0 || align > hdr->p_align)
2338 align = hdr->p_align;
2339 newsect->alignment_power = bfd_log2 (align);
2340 if (hdr->p_type == PT_LOAD)
2341 {
2342 /* Hack for gdb. Segments that have not been modified do
2343 not have their contents written to a core file, on the
2344 assumption that a debugger can find the contents in the
2345 executable. We flag this case by setting the fake
2346 section size to zero. Note that "real" bss sections will
2347 always have their contents dumped to the core file. */
2348 if (bfd_get_format (abfd) == bfd_core)
2349 newsect->size = 0;
2350 newsect->flags |= SEC_ALLOC;
2351 if (hdr->p_flags & PF_X)
2352 newsect->flags |= SEC_CODE;
2353 }
2354 if (!(hdr->p_flags & PF_W))
2355 newsect->flags |= SEC_READONLY;
2356 }
2357
2358 return TRUE;
2359 }
2360
2361 bfd_boolean
2362 bfd_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int index)
2363 {
2364 const struct elf_backend_data *bed;
2365
2366 switch (hdr->p_type)
2367 {
2368 case PT_NULL:
2369 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "null");
2370
2371 case PT_LOAD:
2372 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "load");
2373
2374 case PT_DYNAMIC:
2375 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "dynamic");
2376
2377 case PT_INTERP:
2378 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "interp");
2379
2380 case PT_NOTE:
2381 if (! _bfd_elf_make_section_from_phdr (abfd, hdr, index, "note"))
2382 return FALSE;
2383 if (! elf_read_notes (abfd, hdr->p_offset, hdr->p_filesz))
2384 return FALSE;
2385 return TRUE;
2386
2387 case PT_SHLIB:
2388 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "shlib");
2389
2390 case PT_PHDR:
2391 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "phdr");
2392
2393 case PT_GNU_EH_FRAME:
2394 return _bfd_elf_make_section_from_phdr (abfd, hdr, index,
2395 "eh_frame_hdr");
2396
2397 case PT_GNU_STACK:
2398 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "stack");
2399
2400 case PT_GNU_RELRO:
2401 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "relro");
2402
2403 default:
2404 /* Check for any processor-specific program segment types. */
2405 bed = get_elf_backend_data (abfd);
2406 return bed->elf_backend_section_from_phdr (abfd, hdr, index, "proc");
2407 }
2408 }
2409
2410 /* Initialize REL_HDR, the section-header for new section, containing
2411 relocations against ASECT. If USE_RELA_P is TRUE, we use RELA
2412 relocations; otherwise, we use REL relocations. */
2413
2414 bfd_boolean
2415 _bfd_elf_init_reloc_shdr (bfd *abfd,
2416 Elf_Internal_Shdr *rel_hdr,
2417 asection *asect,
2418 bfd_boolean use_rela_p)
2419 {
2420 char *name;
2421 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2422 bfd_size_type amt = sizeof ".rela" + strlen (asect->name);
2423
2424 name = bfd_alloc (abfd, amt);
2425 if (name == NULL)
2426 return FALSE;
2427 sprintf (name, "%s%s", use_rela_p ? ".rela" : ".rel", asect->name);
2428 rel_hdr->sh_name =
2429 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd), name,
2430 FALSE);
2431 if (rel_hdr->sh_name == (unsigned int) -1)
2432 return FALSE;
2433 rel_hdr->sh_type = use_rela_p ? SHT_RELA : SHT_REL;
2434 rel_hdr->sh_entsize = (use_rela_p
2435 ? bed->s->sizeof_rela
2436 : bed->s->sizeof_rel);
2437 rel_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
2438 rel_hdr->sh_flags = 0;
2439 rel_hdr->sh_addr = 0;
2440 rel_hdr->sh_size = 0;
2441 rel_hdr->sh_offset = 0;
2442
2443 return TRUE;
2444 }
2445
2446 /* Set up an ELF internal section header for a section. */
2447
2448 static void
2449 elf_fake_sections (bfd *abfd, asection *asect, void *failedptrarg)
2450 {
2451 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2452 bfd_boolean *failedptr = failedptrarg;
2453 Elf_Internal_Shdr *this_hdr;
2454 unsigned int sh_type;
2455
2456 if (*failedptr)
2457 {
2458 /* We already failed; just get out of the bfd_map_over_sections
2459 loop. */
2460 return;
2461 }
2462
2463 this_hdr = &elf_section_data (asect)->this_hdr;
2464
2465 this_hdr->sh_name = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
2466 asect->name, FALSE);
2467 if (this_hdr->sh_name == (unsigned int) -1)
2468 {
2469 *failedptr = TRUE;
2470 return;
2471 }
2472
2473 /* Don't clear sh_flags. Assembler may set additional bits. */
2474
2475 if ((asect->flags & SEC_ALLOC) != 0
2476 || asect->user_set_vma)
2477 this_hdr->sh_addr = asect->vma;
2478 else
2479 this_hdr->sh_addr = 0;
2480
2481 this_hdr->sh_offset = 0;
2482 this_hdr->sh_size = asect->size;
2483 this_hdr->sh_link = 0;
2484 this_hdr->sh_addralign = (bfd_vma) 1 << asect->alignment_power;
2485 /* The sh_entsize and sh_info fields may have been set already by
2486 copy_private_section_data. */
2487
2488 this_hdr->bfd_section = asect;
2489 this_hdr->contents = NULL;
2490
2491 /* If the section type is unspecified, we set it based on
2492 asect->flags. */
2493 if ((asect->flags & SEC_GROUP) != 0)
2494 sh_type = SHT_GROUP;
2495 else if ((asect->flags & SEC_ALLOC) != 0
2496 && (((asect->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
2497 || (asect->flags & SEC_NEVER_LOAD) != 0))
2498 sh_type = SHT_NOBITS;
2499 else
2500 sh_type = SHT_PROGBITS;
2501
2502 if (this_hdr->sh_type == SHT_NULL)
2503 this_hdr->sh_type = sh_type;
2504 else if (this_hdr->sh_type == SHT_NOBITS
2505 && sh_type == SHT_PROGBITS
2506 && (asect->flags & SEC_ALLOC) != 0)
2507 {
2508 /* Warn if we are changing a NOBITS section to PROGBITS, but
2509 allow the link to proceed. This can happen when users link
2510 non-bss input sections to bss output sections, or emit data
2511 to a bss output section via a linker script. */
2512 (*_bfd_error_handler)
2513 (_("warning: section `%A' type changed to PROGBITS"), asect);
2514 this_hdr->sh_type = sh_type;
2515 }
2516
2517 switch (this_hdr->sh_type)
2518 {
2519 default:
2520 break;
2521
2522 case SHT_STRTAB:
2523 case SHT_INIT_ARRAY:
2524 case SHT_FINI_ARRAY:
2525 case SHT_PREINIT_ARRAY:
2526 case SHT_NOTE:
2527 case SHT_NOBITS:
2528 case SHT_PROGBITS:
2529 break;
2530
2531 case SHT_HASH:
2532 this_hdr->sh_entsize = bed->s->sizeof_hash_entry;
2533 break;
2534
2535 case SHT_DYNSYM:
2536 this_hdr->sh_entsize = bed->s->sizeof_sym;
2537 break;
2538
2539 case SHT_DYNAMIC:
2540 this_hdr->sh_entsize = bed->s->sizeof_dyn;
2541 break;
2542
2543 case SHT_RELA:
2544 if (get_elf_backend_data (abfd)->may_use_rela_p)
2545 this_hdr->sh_entsize = bed->s->sizeof_rela;
2546 break;
2547
2548 case SHT_REL:
2549 if (get_elf_backend_data (abfd)->may_use_rel_p)
2550 this_hdr->sh_entsize = bed->s->sizeof_rel;
2551 break;
2552
2553 case SHT_GNU_versym:
2554 this_hdr->sh_entsize = sizeof (Elf_External_Versym);
2555 break;
2556
2557 case SHT_GNU_verdef:
2558 this_hdr->sh_entsize = 0;
2559 /* objcopy or strip will copy over sh_info, but may not set
2560 cverdefs. The linker will set cverdefs, but sh_info will be
2561 zero. */
2562 if (this_hdr->sh_info == 0)
2563 this_hdr->sh_info = elf_tdata (abfd)->cverdefs;
2564 else
2565 BFD_ASSERT (elf_tdata (abfd)->cverdefs == 0
2566 || this_hdr->sh_info == elf_tdata (abfd)->cverdefs);
2567 break;
2568
2569 case SHT_GNU_verneed:
2570 this_hdr->sh_entsize = 0;
2571 /* objcopy or strip will copy over sh_info, but may not set
2572 cverrefs. The linker will set cverrefs, but sh_info will be
2573 zero. */
2574 if (this_hdr->sh_info == 0)
2575 this_hdr->sh_info = elf_tdata (abfd)->cverrefs;
2576 else
2577 BFD_ASSERT (elf_tdata (abfd)->cverrefs == 0
2578 || this_hdr->sh_info == elf_tdata (abfd)->cverrefs);
2579 break;
2580
2581 case SHT_GROUP:
2582 this_hdr->sh_entsize = GRP_ENTRY_SIZE;
2583 break;
2584
2585 case SHT_GNU_HASH:
2586 this_hdr->sh_entsize = bed->s->arch_size == 64 ? 0 : 4;
2587 break;
2588 }
2589
2590 if ((asect->flags & SEC_ALLOC) != 0)
2591 this_hdr->sh_flags |= SHF_ALLOC;
2592 if ((asect->flags & SEC_READONLY) == 0)
2593 this_hdr->sh_flags |= SHF_WRITE;
2594 if ((asect->flags & SEC_CODE) != 0)
2595 this_hdr->sh_flags |= SHF_EXECINSTR;
2596 if ((asect->flags & SEC_MERGE) != 0)
2597 {
2598 this_hdr->sh_flags |= SHF_MERGE;
2599 this_hdr->sh_entsize = asect->entsize;
2600 if ((asect->flags & SEC_STRINGS) != 0)
2601 this_hdr->sh_flags |= SHF_STRINGS;
2602 }
2603 if ((asect->flags & SEC_GROUP) == 0 && elf_group_name (asect) != NULL)
2604 this_hdr->sh_flags |= SHF_GROUP;
2605 if ((asect->flags & SEC_THREAD_LOCAL) != 0)
2606 {
2607 this_hdr->sh_flags |= SHF_TLS;
2608 if (asect->size == 0
2609 && (asect->flags & SEC_HAS_CONTENTS) == 0)
2610 {
2611 struct bfd_link_order *o = asect->map_tail.link_order;
2612
2613 this_hdr->sh_size = 0;
2614 if (o != NULL)
2615 {
2616 this_hdr->sh_size = o->offset + o->size;
2617 if (this_hdr->sh_size != 0)
2618 this_hdr->sh_type = SHT_NOBITS;
2619 }
2620 }
2621 }
2622
2623 /* Check for processor-specific section types. */
2624 sh_type = this_hdr->sh_type;
2625 if (bed->elf_backend_fake_sections
2626 && !(*bed->elf_backend_fake_sections) (abfd, this_hdr, asect))
2627 *failedptr = TRUE;
2628
2629 if (sh_type == SHT_NOBITS && asect->size != 0)
2630 {
2631 /* Don't change the header type from NOBITS if we are being
2632 called for objcopy --only-keep-debug. */
2633 this_hdr->sh_type = sh_type;
2634 }
2635
2636 /* If the section has relocs, set up a section header for the
2637 SHT_REL[A] section. If two relocation sections are required for
2638 this section, it is up to the processor-specific back-end to
2639 create the other. */
2640 if ((asect->flags & SEC_RELOC) != 0
2641 && !_bfd_elf_init_reloc_shdr (abfd,
2642 &elf_section_data (asect)->rel_hdr,
2643 asect,
2644 asect->use_rela_p))
2645 *failedptr = TRUE;
2646 }
2647
2648 /* Fill in the contents of a SHT_GROUP section. Called from
2649 _bfd_elf_compute_section_file_positions for gas, objcopy, and
2650 when ELF targets use the generic linker, ld. Called for ld -r
2651 from bfd_elf_final_link. */
2652
2653 void
2654 bfd_elf_set_group_contents (bfd *abfd, asection *sec, void *failedptrarg)
2655 {
2656 bfd_boolean *failedptr = failedptrarg;
2657 asection *elt, *first;
2658 unsigned char *loc;
2659 bfd_boolean gas;
2660
2661 /* Ignore linker created group section. See elfNN_ia64_object_p in
2662 elfxx-ia64.c. */
2663 if (((sec->flags & (SEC_GROUP | SEC_LINKER_CREATED)) != SEC_GROUP)
2664 || *failedptr)
2665 return;
2666
2667 if (elf_section_data (sec)->this_hdr.sh_info == 0)
2668 {
2669 unsigned long symindx = 0;
2670
2671 /* elf_group_id will have been set up by objcopy and the
2672 generic linker. */
2673 if (elf_group_id (sec) != NULL)
2674 symindx = elf_group_id (sec)->udata.i;
2675
2676 if (symindx == 0)
2677 {
2678 /* If called from the assembler, swap_out_syms will have set up
2679 elf_section_syms. */
2680 BFD_ASSERT (elf_section_syms (abfd) != NULL);
2681 symindx = elf_section_syms (abfd)[sec->index]->udata.i;
2682 }
2683 elf_section_data (sec)->this_hdr.sh_info = symindx;
2684 }
2685 else if (elf_section_data (sec)->this_hdr.sh_info == (unsigned int) -2)
2686 {
2687 /* The ELF backend linker sets sh_info to -2 when the group
2688 signature symbol is global, and thus the index can't be
2689 set until all local symbols are output. */
2690 asection *igroup = elf_sec_group (elf_next_in_group (sec));
2691 struct bfd_elf_section_data *sec_data = elf_section_data (igroup);
2692 unsigned long symndx = sec_data->this_hdr.sh_info;
2693 unsigned long extsymoff = 0;
2694 struct elf_link_hash_entry *h;
2695
2696 if (!elf_bad_symtab (igroup->owner))
2697 {
2698 Elf_Internal_Shdr *symtab_hdr;
2699
2700 symtab_hdr = &elf_tdata (igroup->owner)->symtab_hdr;
2701 extsymoff = symtab_hdr->sh_info;
2702 }
2703 h = elf_sym_hashes (igroup->owner)[symndx - extsymoff];
2704 while (h->root.type == bfd_link_hash_indirect
2705 || h->root.type == bfd_link_hash_warning)
2706 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2707
2708 elf_section_data (sec)->this_hdr.sh_info = h->indx;
2709 }
2710
2711 /* The contents won't be allocated for "ld -r" or objcopy. */
2712 gas = TRUE;
2713 if (sec->contents == NULL)
2714 {
2715 gas = FALSE;
2716 sec->contents = bfd_alloc (abfd, sec->size);
2717
2718 /* Arrange for the section to be written out. */
2719 elf_section_data (sec)->this_hdr.contents = sec->contents;
2720 if (sec->contents == NULL)
2721 {
2722 *failedptr = TRUE;
2723 return;
2724 }
2725 }
2726
2727 loc = sec->contents + sec->size;
2728
2729 /* Get the pointer to the first section in the group that gas
2730 squirreled away here. objcopy arranges for this to be set to the
2731 start of the input section group. */
2732 first = elt = elf_next_in_group (sec);
2733
2734 /* First element is a flag word. Rest of section is elf section
2735 indices for all the sections of the group. Write them backwards
2736 just to keep the group in the same order as given in .section
2737 directives, not that it matters. */
2738 while (elt != NULL)
2739 {
2740 asection *s;
2741 unsigned int idx;
2742
2743 s = elt;
2744 if (! elf_discarded_section (s))
2745 {
2746 loc -= 4;
2747 if (!gas)
2748 s = s->output_section;
2749 idx = 0;
2750 if (s != NULL)
2751 idx = elf_section_data (s)->this_idx;
2752 H_PUT_32 (abfd, idx, loc);
2753 }
2754 elt = elf_next_in_group (elt);
2755 if (elt == first)
2756 break;
2757 }
2758
2759 if ((loc -= 4) != sec->contents)
2760 abort ();
2761
2762 H_PUT_32 (abfd, sec->flags & SEC_LINK_ONCE ? GRP_COMDAT : 0, loc);
2763 }
2764
2765 /* Assign all ELF section numbers. The dummy first section is handled here
2766 too. The link/info pointers for the standard section types are filled
2767 in here too, while we're at it. */
2768
2769 static bfd_boolean
2770 assign_section_numbers (bfd *abfd, struct bfd_link_info *link_info)
2771 {
2772 struct elf_obj_tdata *t = elf_tdata (abfd);
2773 asection *sec;
2774 unsigned int section_number, secn;
2775 Elf_Internal_Shdr **i_shdrp;
2776 struct bfd_elf_section_data *d;
2777 bfd_boolean need_symtab;
2778
2779 section_number = 1;
2780
2781 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd));
2782
2783 /* SHT_GROUP sections are in relocatable files only. */
2784 if (link_info == NULL || link_info->relocatable)
2785 {
2786 /* Put SHT_GROUP sections first. */
2787 for (sec = abfd->sections; sec != NULL; sec = sec->next)
2788 {
2789 d = elf_section_data (sec);
2790
2791 if (d->this_hdr.sh_type == SHT_GROUP)
2792 {
2793 if (sec->flags & SEC_LINKER_CREATED)
2794 {
2795 /* Remove the linker created SHT_GROUP sections. */
2796 bfd_section_list_remove (abfd, sec);
2797 abfd->section_count--;
2798 }
2799 else
2800 d->this_idx = section_number++;
2801 }
2802 }
2803 }
2804
2805 for (sec = abfd->sections; sec; sec = sec->next)
2806 {
2807 d = elf_section_data (sec);
2808
2809 if (d->this_hdr.sh_type != SHT_GROUP)
2810 d->this_idx = section_number++;
2811 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->this_hdr.sh_name);
2812 if ((sec->flags & SEC_RELOC) == 0)
2813 d->rel_idx = 0;
2814 else
2815 {
2816 d->rel_idx = section_number++;
2817 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel_hdr.sh_name);
2818 }
2819
2820 if (d->rel_hdr2)
2821 {
2822 d->rel_idx2 = section_number++;
2823 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel_hdr2->sh_name);
2824 }
2825 else
2826 d->rel_idx2 = 0;
2827 }
2828
2829 t->shstrtab_section = section_number++;
2830 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->shstrtab_hdr.sh_name);
2831 elf_elfheader (abfd)->e_shstrndx = t->shstrtab_section;
2832
2833 need_symtab = (bfd_get_symcount (abfd) > 0
2834 || (link_info == NULL
2835 && ((abfd->flags & (EXEC_P | DYNAMIC | HAS_RELOC))
2836 == HAS_RELOC)));
2837 if (need_symtab)
2838 {
2839 t->symtab_section = section_number++;
2840 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->symtab_hdr.sh_name);
2841 if (section_number > ((SHN_LORESERVE - 2) & 0xFFFF))
2842 {
2843 t->symtab_shndx_section = section_number++;
2844 t->symtab_shndx_hdr.sh_name
2845 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
2846 ".symtab_shndx", FALSE);
2847 if (t->symtab_shndx_hdr.sh_name == (unsigned int) -1)
2848 return FALSE;
2849 }
2850 t->strtab_section = section_number++;
2851 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->strtab_hdr.sh_name);
2852 }
2853
2854 _bfd_elf_strtab_finalize (elf_shstrtab (abfd));
2855 t->shstrtab_hdr.sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
2856
2857 elf_numsections (abfd) = section_number;
2858 elf_elfheader (abfd)->e_shnum = section_number;
2859
2860 /* Set up the list of section header pointers, in agreement with the
2861 indices. */
2862 i_shdrp = bfd_zalloc2 (abfd, section_number, sizeof (Elf_Internal_Shdr *));
2863 if (i_shdrp == NULL)
2864 return FALSE;
2865
2866 i_shdrp[0] = bfd_zalloc (abfd, sizeof (Elf_Internal_Shdr));
2867 if (i_shdrp[0] == NULL)
2868 {
2869 bfd_release (abfd, i_shdrp);
2870 return FALSE;
2871 }
2872
2873 elf_elfsections (abfd) = i_shdrp;
2874
2875 i_shdrp[t->shstrtab_section] = &t->shstrtab_hdr;
2876 if (need_symtab)
2877 {
2878 i_shdrp[t->symtab_section] = &t->symtab_hdr;
2879 if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
2880 {
2881 i_shdrp[t->symtab_shndx_section] = &t->symtab_shndx_hdr;
2882 t->symtab_shndx_hdr.sh_link = t->symtab_section;
2883 }
2884 i_shdrp[t->strtab_section] = &t->strtab_hdr;
2885 t->symtab_hdr.sh_link = t->strtab_section;
2886 }
2887
2888 for (sec = abfd->sections; sec; sec = sec->next)
2889 {
2890 struct bfd_elf_section_data *d = elf_section_data (sec);
2891 asection *s;
2892 const char *name;
2893
2894 i_shdrp[d->this_idx] = &d->this_hdr;
2895 if (d->rel_idx != 0)
2896 i_shdrp[d->rel_idx] = &d->rel_hdr;
2897 if (d->rel_idx2 != 0)
2898 i_shdrp[d->rel_idx2] = d->rel_hdr2;
2899
2900 /* Fill in the sh_link and sh_info fields while we're at it. */
2901
2902 /* sh_link of a reloc section is the section index of the symbol
2903 table. sh_info is the section index of the section to which
2904 the relocation entries apply. */
2905 if (d->rel_idx != 0)
2906 {
2907 d->rel_hdr.sh_link = t->symtab_section;
2908 d->rel_hdr.sh_info = d->this_idx;
2909 }
2910 if (d->rel_idx2 != 0)
2911 {
2912 d->rel_hdr2->sh_link = t->symtab_section;
2913 d->rel_hdr2->sh_info = d->this_idx;
2914 }
2915
2916 /* We need to set up sh_link for SHF_LINK_ORDER. */
2917 if ((d->this_hdr.sh_flags & SHF_LINK_ORDER) != 0)
2918 {
2919 s = elf_linked_to_section (sec);
2920 if (s)
2921 {
2922 /* elf_linked_to_section points to the input section. */
2923 if (link_info != NULL)
2924 {
2925 /* Check discarded linkonce section. */
2926 if (elf_discarded_section (s))
2927 {
2928 asection *kept;
2929 (*_bfd_error_handler)
2930 (_("%B: sh_link of section `%A' points to discarded section `%A' of `%B'"),
2931 abfd, d->this_hdr.bfd_section,
2932 s, s->owner);
2933 /* Point to the kept section if it has the same
2934 size as the discarded one. */
2935 kept = _bfd_elf_check_kept_section (s, link_info);
2936 if (kept == NULL)
2937 {
2938 bfd_set_error (bfd_error_bad_value);
2939 return FALSE;
2940 }
2941 s = kept;
2942 }
2943
2944 s = s->output_section;
2945 BFD_ASSERT (s != NULL);
2946 }
2947 else
2948 {
2949 /* Handle objcopy. */
2950 if (s->output_section == NULL)
2951 {
2952 (*_bfd_error_handler)
2953 (_("%B: sh_link of section `%A' points to removed section `%A' of `%B'"),
2954 abfd, d->this_hdr.bfd_section, s, s->owner);
2955 bfd_set_error (bfd_error_bad_value);
2956 return FALSE;
2957 }
2958 s = s->output_section;
2959 }
2960 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
2961 }
2962 else
2963 {
2964 /* PR 290:
2965 The Intel C compiler generates SHT_IA_64_UNWIND with
2966 SHF_LINK_ORDER. But it doesn't set the sh_link or
2967 sh_info fields. Hence we could get the situation
2968 where s is NULL. */
2969 const struct elf_backend_data *bed
2970 = get_elf_backend_data (abfd);
2971 if (bed->link_order_error_handler)
2972 bed->link_order_error_handler
2973 (_("%B: warning: sh_link not set for section `%A'"),
2974 abfd, sec);
2975 }
2976 }
2977
2978 switch (d->this_hdr.sh_type)
2979 {
2980 case SHT_REL:
2981 case SHT_RELA:
2982 /* A reloc section which we are treating as a normal BFD
2983 section. sh_link is the section index of the symbol
2984 table. sh_info is the section index of the section to
2985 which the relocation entries apply. We assume that an
2986 allocated reloc section uses the dynamic symbol table.
2987 FIXME: How can we be sure? */
2988 s = bfd_get_section_by_name (abfd, ".dynsym");
2989 if (s != NULL)
2990 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
2991
2992 /* We look up the section the relocs apply to by name. */
2993 name = sec->name;
2994 if (d->this_hdr.sh_type == SHT_REL)
2995 name += 4;
2996 else
2997 name += 5;
2998 s = bfd_get_section_by_name (abfd, name);
2999 if (s != NULL)
3000 d->this_hdr.sh_info = elf_section_data (s)->this_idx;
3001 break;
3002
3003 case SHT_STRTAB:
3004 /* We assume that a section named .stab*str is a stabs
3005 string section. We look for a section with the same name
3006 but without the trailing ``str'', and set its sh_link
3007 field to point to this section. */
3008 if (CONST_STRNEQ (sec->name, ".stab")
3009 && strcmp (sec->name + strlen (sec->name) - 3, "str") == 0)
3010 {
3011 size_t len;
3012 char *alc;
3013
3014 len = strlen (sec->name);
3015 alc = bfd_malloc (len - 2);
3016 if (alc == NULL)
3017 return FALSE;
3018 memcpy (alc, sec->name, len - 3);
3019 alc[len - 3] = '\0';
3020 s = bfd_get_section_by_name (abfd, alc);
3021 free (alc);
3022 if (s != NULL)
3023 {
3024 elf_section_data (s)->this_hdr.sh_link = d->this_idx;
3025
3026 /* This is a .stab section. */
3027 if (elf_section_data (s)->this_hdr.sh_entsize == 0)
3028 elf_section_data (s)->this_hdr.sh_entsize
3029 = 4 + 2 * bfd_get_arch_size (abfd) / 8;
3030 }
3031 }
3032 break;
3033
3034 case SHT_DYNAMIC:
3035 case SHT_DYNSYM:
3036 case SHT_GNU_verneed:
3037 case SHT_GNU_verdef:
3038 /* sh_link is the section header index of the string table
3039 used for the dynamic entries, or the symbol table, or the
3040 version strings. */
3041 s = bfd_get_section_by_name (abfd, ".dynstr");
3042 if (s != NULL)
3043 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3044 break;
3045
3046 case SHT_GNU_LIBLIST:
3047 /* sh_link is the section header index of the prelink library
3048 list used for the dynamic entries, or the symbol table, or
3049 the version strings. */
3050 s = bfd_get_section_by_name (abfd, (sec->flags & SEC_ALLOC)
3051 ? ".dynstr" : ".gnu.libstr");
3052 if (s != NULL)
3053 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3054 break;
3055
3056 case SHT_HASH:
3057 case SHT_GNU_HASH:
3058 case SHT_GNU_versym:
3059 /* sh_link is the section header index of the symbol table
3060 this hash table or version table is for. */
3061 s = bfd_get_section_by_name (abfd, ".dynsym");
3062 if (s != NULL)
3063 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3064 break;
3065
3066 case SHT_GROUP:
3067 d->this_hdr.sh_link = t->symtab_section;
3068 }
3069 }
3070
3071 for (secn = 1; secn < section_number; ++secn)
3072 if (i_shdrp[secn] == NULL)
3073 i_shdrp[secn] = i_shdrp[0];
3074 else
3075 i_shdrp[secn]->sh_name = _bfd_elf_strtab_offset (elf_shstrtab (abfd),
3076 i_shdrp[secn]->sh_name);
3077 return TRUE;
3078 }
3079
3080 /* Map symbol from it's internal number to the external number, moving
3081 all local symbols to be at the head of the list. */
3082
3083 static bfd_boolean
3084 sym_is_global (bfd *abfd, asymbol *sym)
3085 {
3086 /* If the backend has a special mapping, use it. */
3087 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3088 if (bed->elf_backend_sym_is_global)
3089 return (*bed->elf_backend_sym_is_global) (abfd, sym);
3090
3091 return ((sym->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
3092 || bfd_is_und_section (bfd_get_section (sym))
3093 || bfd_is_com_section (bfd_get_section (sym)));
3094 }
3095
3096 /* Don't output section symbols for sections that are not going to be
3097 output. */
3098
3099 static bfd_boolean
3100 ignore_section_sym (bfd *abfd, asymbol *sym)
3101 {
3102 return ((sym->flags & BSF_SECTION_SYM) != 0
3103 && !(sym->section->owner == abfd
3104 || (sym->section->output_section->owner == abfd
3105 && sym->section->output_offset == 0)));
3106 }
3107
3108 static bfd_boolean
3109 elf_map_symbols (bfd *abfd)
3110 {
3111 unsigned int symcount = bfd_get_symcount (abfd);
3112 asymbol **syms = bfd_get_outsymbols (abfd);
3113 asymbol **sect_syms;
3114 unsigned int num_locals = 0;
3115 unsigned int num_globals = 0;
3116 unsigned int num_locals2 = 0;
3117 unsigned int num_globals2 = 0;
3118 int max_index = 0;
3119 unsigned int idx;
3120 asection *asect;
3121 asymbol **new_syms;
3122
3123 #ifdef DEBUG
3124 fprintf (stderr, "elf_map_symbols\n");
3125 fflush (stderr);
3126 #endif
3127
3128 for (asect = abfd->sections; asect; asect = asect->next)
3129 {
3130 if (max_index < asect->index)
3131 max_index = asect->index;
3132 }
3133
3134 max_index++;
3135 sect_syms = bfd_zalloc2 (abfd, max_index, sizeof (asymbol *));
3136 if (sect_syms == NULL)
3137 return FALSE;
3138 elf_section_syms (abfd) = sect_syms;
3139 elf_num_section_syms (abfd) = max_index;
3140
3141 /* Init sect_syms entries for any section symbols we have already
3142 decided to output. */
3143 for (idx = 0; idx < symcount; idx++)
3144 {
3145 asymbol *sym = syms[idx];
3146
3147 if ((sym->flags & BSF_SECTION_SYM) != 0
3148 && sym->value == 0
3149 && !ignore_section_sym (abfd, sym))
3150 {
3151 asection *sec = sym->section;
3152
3153 if (sec->owner != abfd)
3154 sec = sec->output_section;
3155
3156 sect_syms[sec->index] = syms[idx];
3157 }
3158 }
3159
3160 /* Classify all of the symbols. */
3161 for (idx = 0; idx < symcount; idx++)
3162 {
3163 if (ignore_section_sym (abfd, syms[idx]))
3164 continue;
3165 if (!sym_is_global (abfd, syms[idx]))
3166 num_locals++;
3167 else
3168 num_globals++;
3169 }
3170
3171 /* We will be adding a section symbol for each normal BFD section. Most
3172 sections will already have a section symbol in outsymbols, but
3173 eg. SHT_GROUP sections will not, and we need the section symbol mapped
3174 at least in that case. */
3175 for (asect = abfd->sections; asect; asect = asect->next)
3176 {
3177 if (sect_syms[asect->index] == NULL)
3178 {
3179 if (!sym_is_global (abfd, asect->symbol))
3180 num_locals++;
3181 else
3182 num_globals++;
3183 }
3184 }
3185
3186 /* Now sort the symbols so the local symbols are first. */
3187 new_syms = bfd_alloc2 (abfd, num_locals + num_globals, sizeof (asymbol *));
3188
3189 if (new_syms == NULL)
3190 return FALSE;
3191
3192 for (idx = 0; idx < symcount; idx++)
3193 {
3194 asymbol *sym = syms[idx];
3195 unsigned int i;
3196
3197 if (ignore_section_sym (abfd, sym))
3198 continue;
3199 if (!sym_is_global (abfd, sym))
3200 i = num_locals2++;
3201 else
3202 i = num_locals + num_globals2++;
3203 new_syms[i] = sym;
3204 sym->udata.i = i + 1;
3205 }
3206 for (asect = abfd->sections; asect; asect = asect->next)
3207 {
3208 if (sect_syms[asect->index] == NULL)
3209 {
3210 asymbol *sym = asect->symbol;
3211 unsigned int i;
3212
3213 sect_syms[asect->index] = sym;
3214 if (!sym_is_global (abfd, sym))
3215 i = num_locals2++;
3216 else
3217 i = num_locals + num_globals2++;
3218 new_syms[i] = sym;
3219 sym->udata.i = i + 1;
3220 }
3221 }
3222
3223 bfd_set_symtab (abfd, new_syms, num_locals + num_globals);
3224
3225 elf_num_locals (abfd) = num_locals;
3226 elf_num_globals (abfd) = num_globals;
3227 return TRUE;
3228 }
3229
3230 /* Align to the maximum file alignment that could be required for any
3231 ELF data structure. */
3232
3233 static inline file_ptr
3234 align_file_position (file_ptr off, int align)
3235 {
3236 return (off + align - 1) & ~(align - 1);
3237 }
3238
3239 /* Assign a file position to a section, optionally aligning to the
3240 required section alignment. */
3241
3242 file_ptr
3243 _bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr *i_shdrp,
3244 file_ptr offset,
3245 bfd_boolean align)
3246 {
3247 if (align && i_shdrp->sh_addralign > 1)
3248 offset = BFD_ALIGN (offset, i_shdrp->sh_addralign);
3249 i_shdrp->sh_offset = offset;
3250 if (i_shdrp->bfd_section != NULL)
3251 i_shdrp->bfd_section->filepos = offset;
3252 if (i_shdrp->sh_type != SHT_NOBITS)
3253 offset += i_shdrp->sh_size;
3254 return offset;
3255 }
3256
3257 /* Compute the file positions we are going to put the sections at, and
3258 otherwise prepare to begin writing out the ELF file. If LINK_INFO
3259 is not NULL, this is being called by the ELF backend linker. */
3260
3261 bfd_boolean
3262 _bfd_elf_compute_section_file_positions (bfd *abfd,
3263 struct bfd_link_info *link_info)
3264 {
3265 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3266 bfd_boolean failed;
3267 struct bfd_strtab_hash *strtab = NULL;
3268 Elf_Internal_Shdr *shstrtab_hdr;
3269 bfd_boolean need_symtab;
3270
3271 if (abfd->output_has_begun)
3272 return TRUE;
3273
3274 /* Do any elf backend specific processing first. */
3275 if (bed->elf_backend_begin_write_processing)
3276 (*bed->elf_backend_begin_write_processing) (abfd, link_info);
3277
3278 if (! prep_headers (abfd))
3279 return FALSE;
3280
3281 /* Post process the headers if necessary. */
3282 if (bed->elf_backend_post_process_headers)
3283 (*bed->elf_backend_post_process_headers) (abfd, link_info);
3284
3285 failed = FALSE;
3286 bfd_map_over_sections (abfd, elf_fake_sections, &failed);
3287 if (failed)
3288 return FALSE;
3289
3290 if (!assign_section_numbers (abfd, link_info))
3291 return FALSE;
3292
3293 /* The backend linker builds symbol table information itself. */
3294 need_symtab = (link_info == NULL
3295 && (bfd_get_symcount (abfd) > 0
3296 || ((abfd->flags & (EXEC_P | DYNAMIC | HAS_RELOC))
3297 == HAS_RELOC)));
3298 if (need_symtab)
3299 {
3300 /* Non-zero if doing a relocatable link. */
3301 int relocatable_p = ! (abfd->flags & (EXEC_P | DYNAMIC));
3302
3303 if (! swap_out_syms (abfd, &strtab, relocatable_p))
3304 return FALSE;
3305 }
3306
3307 if (link_info == NULL)
3308 {
3309 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
3310 if (failed)
3311 return FALSE;
3312 }
3313
3314 shstrtab_hdr = &elf_tdata (abfd)->shstrtab_hdr;
3315 /* sh_name was set in prep_headers. */
3316 shstrtab_hdr->sh_type = SHT_STRTAB;
3317 shstrtab_hdr->sh_flags = 0;
3318 shstrtab_hdr->sh_addr = 0;
3319 shstrtab_hdr->sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
3320 shstrtab_hdr->sh_entsize = 0;
3321 shstrtab_hdr->sh_link = 0;
3322 shstrtab_hdr->sh_info = 0;
3323 /* sh_offset is set in assign_file_positions_except_relocs. */
3324 shstrtab_hdr->sh_addralign = 1;
3325
3326 if (!assign_file_positions_except_relocs (abfd, link_info))
3327 return FALSE;
3328
3329 if (need_symtab)
3330 {
3331 file_ptr off;
3332 Elf_Internal_Shdr *hdr;
3333
3334 off = elf_tdata (abfd)->next_file_pos;
3335
3336 hdr = &elf_tdata (abfd)->symtab_hdr;
3337 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3338
3339 hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
3340 if (hdr->sh_size != 0)
3341 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3342
3343 hdr = &elf_tdata (abfd)->strtab_hdr;
3344 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3345
3346 elf_tdata (abfd)->next_file_pos = off;
3347
3348 /* Now that we know where the .strtab section goes, write it
3349 out. */
3350 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
3351 || ! _bfd_stringtab_emit (abfd, strtab))
3352 return FALSE;
3353 _bfd_stringtab_free (strtab);
3354 }
3355
3356 abfd->output_has_begun = TRUE;
3357
3358 return TRUE;
3359 }
3360
3361 /* Make an initial estimate of the size of the program header. If we
3362 get the number wrong here, we'll redo section placement. */
3363
3364 static bfd_size_type
3365 get_program_header_size (bfd *abfd, struct bfd_link_info *info)
3366 {
3367 size_t segs;
3368 asection *s;
3369 const struct elf_backend_data *bed;
3370
3371 /* Assume we will need exactly two PT_LOAD segments: one for text
3372 and one for data. */
3373 segs = 2;
3374
3375 s = bfd_get_section_by_name (abfd, ".interp");
3376 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3377 {
3378 /* If we have a loadable interpreter section, we need a
3379 PT_INTERP segment. In this case, assume we also need a
3380 PT_PHDR segment, although that may not be true for all
3381 targets. */
3382 segs += 2;
3383 }
3384
3385 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
3386 {
3387 /* We need a PT_DYNAMIC segment. */
3388 ++segs;
3389 }
3390
3391 if (info != NULL && info->relro)
3392 {
3393 /* We need a PT_GNU_RELRO segment. */
3394 ++segs;
3395 }
3396
3397 if (elf_tdata (abfd)->eh_frame_hdr)
3398 {
3399 /* We need a PT_GNU_EH_FRAME segment. */
3400 ++segs;
3401 }
3402
3403 if (elf_tdata (abfd)->stack_flags)
3404 {
3405 /* We need a PT_GNU_STACK segment. */
3406 ++segs;
3407 }
3408
3409 for (s = abfd->sections; s != NULL; s = s->next)
3410 {
3411 if ((s->flags & SEC_LOAD) != 0
3412 && CONST_STRNEQ (s->name, ".note"))
3413 {
3414 /* We need a PT_NOTE segment. */
3415 ++segs;
3416 /* Try to create just one PT_NOTE segment
3417 for all adjacent loadable .note* sections.
3418 gABI requires that within a PT_NOTE segment
3419 (and also inside of each SHT_NOTE section)
3420 each note is padded to a multiple of 4 size,
3421 so we check whether the sections are correctly
3422 aligned. */
3423 if (s->alignment_power == 2)
3424 while (s->next != NULL
3425 && s->next->alignment_power == 2
3426 && (s->next->flags & SEC_LOAD) != 0
3427 && CONST_STRNEQ (s->next->name, ".note"))
3428 s = s->next;
3429 }
3430 }
3431
3432 for (s = abfd->sections; s != NULL; s = s->next)
3433 {
3434 if (s->flags & SEC_THREAD_LOCAL)
3435 {
3436 /* We need a PT_TLS segment. */
3437 ++segs;
3438 break;
3439 }
3440 }
3441
3442 /* Let the backend count up any program headers it might need. */
3443 bed = get_elf_backend_data (abfd);
3444 if (bed->elf_backend_additional_program_headers)
3445 {
3446 int a;
3447
3448 a = (*bed->elf_backend_additional_program_headers) (abfd, info);
3449 if (a == -1)
3450 abort ();
3451 segs += a;
3452 }
3453
3454 return segs * bed->s->sizeof_phdr;
3455 }
3456
3457 /* Find the segment that contains the output_section of section. */
3458
3459 Elf_Internal_Phdr *
3460 _bfd_elf_find_segment_containing_section (bfd * abfd, asection * section)
3461 {
3462 struct elf_segment_map *m;
3463 Elf_Internal_Phdr *p;
3464
3465 for (m = elf_tdata (abfd)->segment_map,
3466 p = elf_tdata (abfd)->phdr;
3467 m != NULL;
3468 m = m->next, p++)
3469 {
3470 int i;
3471
3472 for (i = m->count - 1; i >= 0; i--)
3473 if (m->sections[i] == section)
3474 return p;
3475 }
3476
3477 return NULL;
3478 }
3479
3480 /* Create a mapping from a set of sections to a program segment. */
3481
3482 static struct elf_segment_map *
3483 make_mapping (bfd *abfd,
3484 asection **sections,
3485 unsigned int from,
3486 unsigned int to,
3487 bfd_boolean phdr)
3488 {
3489 struct elf_segment_map *m;
3490 unsigned int i;
3491 asection **hdrpp;
3492 bfd_size_type amt;
3493
3494 amt = sizeof (struct elf_segment_map);
3495 amt += (to - from - 1) * sizeof (asection *);
3496 m = bfd_zalloc (abfd, amt);
3497 if (m == NULL)
3498 return NULL;
3499 m->next = NULL;
3500 m->p_type = PT_LOAD;
3501 for (i = from, hdrpp = sections + from; i < to; i++, hdrpp++)
3502 m->sections[i - from] = *hdrpp;
3503 m->count = to - from;
3504
3505 if (from == 0 && phdr)
3506 {
3507 /* Include the headers in the first PT_LOAD segment. */
3508 m->includes_filehdr = 1;
3509 m->includes_phdrs = 1;
3510 }
3511
3512 return m;
3513 }
3514
3515 /* Create the PT_DYNAMIC segment, which includes DYNSEC. Returns NULL
3516 on failure. */
3517
3518 struct elf_segment_map *
3519 _bfd_elf_make_dynamic_segment (bfd *abfd, asection *dynsec)
3520 {
3521 struct elf_segment_map *m;
3522
3523 m = bfd_zalloc (abfd, sizeof (struct elf_segment_map));
3524 if (m == NULL)
3525 return NULL;
3526 m->next = NULL;
3527 m->p_type = PT_DYNAMIC;
3528 m->count = 1;
3529 m->sections[0] = dynsec;
3530
3531 return m;
3532 }
3533
3534 /* Possibly add or remove segments from the segment map. */
3535
3536 static bfd_boolean
3537 elf_modify_segment_map (bfd *abfd,
3538 struct bfd_link_info *info,
3539 bfd_boolean remove_empty_load)
3540 {
3541 struct elf_segment_map **m;
3542 const struct elf_backend_data *bed;
3543
3544 /* The placement algorithm assumes that non allocated sections are
3545 not in PT_LOAD segments. We ensure this here by removing such
3546 sections from the segment map. We also remove excluded
3547 sections. Finally, any PT_LOAD segment without sections is
3548 removed. */
3549 m = &elf_tdata (abfd)->segment_map;
3550 while (*m)
3551 {
3552 unsigned int i, new_count;
3553
3554 for (new_count = 0, i = 0; i < (*m)->count; i++)
3555 {
3556 if (((*m)->sections[i]->flags & SEC_EXCLUDE) == 0
3557 && (((*m)->sections[i]->flags & SEC_ALLOC) != 0
3558 || (*m)->p_type != PT_LOAD))
3559 {
3560 (*m)->sections[new_count] = (*m)->sections[i];
3561 new_count++;
3562 }
3563 }
3564 (*m)->count = new_count;
3565
3566 if (remove_empty_load && (*m)->p_type == PT_LOAD && (*m)->count == 0)
3567 *m = (*m)->next;
3568 else
3569 m = &(*m)->next;
3570 }
3571
3572 bed = get_elf_backend_data (abfd);
3573 if (bed->elf_backend_modify_segment_map != NULL)
3574 {
3575 if (!(*bed->elf_backend_modify_segment_map) (abfd, info))
3576 return FALSE;
3577 }
3578
3579 return TRUE;
3580 }
3581
3582 /* Set up a mapping from BFD sections to program segments. */
3583
3584 bfd_boolean
3585 _bfd_elf_map_sections_to_segments (bfd *abfd, struct bfd_link_info *info)
3586 {
3587 unsigned int count;
3588 struct elf_segment_map *m;
3589 asection **sections = NULL;
3590 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3591 bfd_boolean no_user_phdrs;
3592
3593 no_user_phdrs = elf_tdata (abfd)->segment_map == NULL;
3594 if (no_user_phdrs && bfd_count_sections (abfd) != 0)
3595 {
3596 asection *s;
3597 unsigned int i;
3598 struct elf_segment_map *mfirst;
3599 struct elf_segment_map **pm;
3600 asection *last_hdr;
3601 bfd_vma last_size;
3602 unsigned int phdr_index;
3603 bfd_vma maxpagesize;
3604 asection **hdrpp;
3605 bfd_boolean phdr_in_segment = TRUE;
3606 bfd_boolean writable;
3607 int tls_count = 0;
3608 asection *first_tls = NULL;
3609 asection *dynsec, *eh_frame_hdr;
3610 bfd_size_type amt;
3611
3612 /* Select the allocated sections, and sort them. */
3613
3614 sections = bfd_malloc2 (bfd_count_sections (abfd), sizeof (asection *));
3615 if (sections == NULL)
3616 goto error_return;
3617
3618 i = 0;
3619 for (s = abfd->sections; s != NULL; s = s->next)
3620 {
3621 if ((s->flags & SEC_ALLOC) != 0)
3622 {
3623 sections[i] = s;
3624 ++i;
3625 }
3626 }
3627 BFD_ASSERT (i <= bfd_count_sections (abfd));
3628 count = i;
3629
3630 qsort (sections, (size_t) count, sizeof (asection *), elf_sort_sections);
3631
3632 /* Build the mapping. */
3633
3634 mfirst = NULL;
3635 pm = &mfirst;
3636
3637 /* If we have a .interp section, then create a PT_PHDR segment for
3638 the program headers and a PT_INTERP segment for the .interp
3639 section. */
3640 s = bfd_get_section_by_name (abfd, ".interp");
3641 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3642 {
3643 amt = sizeof (struct elf_segment_map);
3644 m = bfd_zalloc (abfd, amt);
3645 if (m == NULL)
3646 goto error_return;
3647 m->next = NULL;
3648 m->p_type = PT_PHDR;
3649 /* FIXME: UnixWare and Solaris set PF_X, Irix 5 does not. */
3650 m->p_flags = PF_R | PF_X;
3651 m->p_flags_valid = 1;
3652 m->includes_phdrs = 1;
3653
3654 *pm = m;
3655 pm = &m->next;
3656
3657 amt = sizeof (struct elf_segment_map);
3658 m = bfd_zalloc (abfd, amt);
3659 if (m == NULL)
3660 goto error_return;
3661 m->next = NULL;
3662 m->p_type = PT_INTERP;
3663 m->count = 1;
3664 m->sections[0] = s;
3665
3666 *pm = m;
3667 pm = &m->next;
3668 }
3669
3670 /* Look through the sections. We put sections in the same program
3671 segment when the start of the second section can be placed within
3672 a few bytes of the end of the first section. */
3673 last_hdr = NULL;
3674 last_size = 0;
3675 phdr_index = 0;
3676 maxpagesize = bed->maxpagesize;
3677 writable = FALSE;
3678 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
3679 if (dynsec != NULL
3680 && (dynsec->flags & SEC_LOAD) == 0)
3681 dynsec = NULL;
3682
3683 /* Deal with -Ttext or something similar such that the first section
3684 is not adjacent to the program headers. This is an
3685 approximation, since at this point we don't know exactly how many
3686 program headers we will need. */
3687 if (count > 0)
3688 {
3689 bfd_size_type phdr_size = elf_tdata (abfd)->program_header_size;
3690
3691 if (phdr_size == (bfd_size_type) -1)
3692 phdr_size = get_program_header_size (abfd, info);
3693 if ((abfd->flags & D_PAGED) == 0
3694 || sections[0]->lma < phdr_size
3695 || sections[0]->lma % maxpagesize < phdr_size % maxpagesize)
3696 phdr_in_segment = FALSE;
3697 }
3698
3699 for (i = 0, hdrpp = sections; i < count; i++, hdrpp++)
3700 {
3701 asection *hdr;
3702 bfd_boolean new_segment;
3703
3704 hdr = *hdrpp;
3705
3706 /* See if this section and the last one will fit in the same
3707 segment. */
3708
3709 if (last_hdr == NULL)
3710 {
3711 /* If we don't have a segment yet, then we don't need a new
3712 one (we build the last one after this loop). */
3713 new_segment = FALSE;
3714 }
3715 else if (last_hdr->lma - last_hdr->vma != hdr->lma - hdr->vma)
3716 {
3717 /* If this section has a different relation between the
3718 virtual address and the load address, then we need a new
3719 segment. */
3720 new_segment = TRUE;
3721 }
3722 /* In the next test we have to be careful when last_hdr->lma is close
3723 to the end of the address space. If the aligned address wraps
3724 around to the start of the address space, then there are no more
3725 pages left in memory and it is OK to assume that the current
3726 section can be included in the current segment. */
3727 else if ((BFD_ALIGN (last_hdr->lma + last_size, maxpagesize) + maxpagesize
3728 > last_hdr->lma)
3729 && (BFD_ALIGN (last_hdr->lma + last_size, maxpagesize) + maxpagesize
3730 <= hdr->lma))
3731 {
3732 /* If putting this section in this segment would force us to
3733 skip a page in the segment, then we need a new segment. */
3734 new_segment = TRUE;
3735 }
3736 else if ((last_hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0
3737 && (hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) != 0)
3738 {
3739 /* We don't want to put a loadable section after a
3740 nonloadable section in the same segment.
3741 Consider .tbss sections as loadable for this purpose. */
3742 new_segment = TRUE;
3743 }
3744 else if ((abfd->flags & D_PAGED) == 0)
3745 {
3746 /* If the file is not demand paged, which means that we
3747 don't require the sections to be correctly aligned in the
3748 file, then there is no other reason for a new segment. */
3749 new_segment = FALSE;
3750 }
3751 else if (! writable
3752 && (hdr->flags & SEC_READONLY) == 0
3753 && (((last_hdr->lma + last_size - 1)
3754 & ~(maxpagesize - 1))
3755 != (hdr->lma & ~(maxpagesize - 1))))
3756 {
3757 /* We don't want to put a writable section in a read only
3758 segment, unless they are on the same page in memory
3759 anyhow. We already know that the last section does not
3760 bring us past the current section on the page, so the
3761 only case in which the new section is not on the same
3762 page as the previous section is when the previous section
3763 ends precisely on a page boundary. */
3764 new_segment = TRUE;
3765 }
3766 else
3767 {
3768 /* Otherwise, we can use the same segment. */
3769 new_segment = FALSE;
3770 }
3771
3772 /* Allow interested parties a chance to override our decision. */
3773 if (last_hdr != NULL
3774 && info != NULL
3775 && info->callbacks->override_segment_assignment != NULL)
3776 new_segment
3777 = info->callbacks->override_segment_assignment (info, abfd, hdr,
3778 last_hdr,
3779 new_segment);
3780
3781 if (! new_segment)
3782 {
3783 if ((hdr->flags & SEC_READONLY) == 0)
3784 writable = TRUE;
3785 last_hdr = hdr;
3786 /* .tbss sections effectively have zero size. */
3787 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD))
3788 != SEC_THREAD_LOCAL)
3789 last_size = hdr->size;
3790 else
3791 last_size = 0;
3792 continue;
3793 }
3794
3795 /* We need a new program segment. We must create a new program
3796 header holding all the sections from phdr_index until hdr. */
3797
3798 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
3799 if (m == NULL)
3800 goto error_return;
3801
3802 *pm = m;
3803 pm = &m->next;
3804
3805 if ((hdr->flags & SEC_READONLY) == 0)
3806 writable = TRUE;
3807 else
3808 writable = FALSE;
3809
3810 last_hdr = hdr;
3811 /* .tbss sections effectively have zero size. */
3812 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) != SEC_THREAD_LOCAL)
3813 last_size = hdr->size;
3814 else
3815 last_size = 0;
3816 phdr_index = i;
3817 phdr_in_segment = FALSE;
3818 }
3819
3820 /* Create a final PT_LOAD program segment. */
3821 if (last_hdr != NULL)
3822 {
3823 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
3824 if (m == NULL)
3825 goto error_return;
3826
3827 *pm = m;
3828 pm = &m->next;
3829 }
3830
3831 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
3832 if (dynsec != NULL)
3833 {
3834 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
3835 if (m == NULL)
3836 goto error_return;
3837 *pm = m;
3838 pm = &m->next;
3839 }
3840
3841 /* For each batch of consecutive loadable .note sections,
3842 add a PT_NOTE segment. We don't use bfd_get_section_by_name,
3843 because if we link together nonloadable .note sections and
3844 loadable .note sections, we will generate two .note sections
3845 in the output file. FIXME: Using names for section types is
3846 bogus anyhow. */
3847 for (s = abfd->sections; s != NULL; s = s->next)
3848 {
3849 if ((s->flags & SEC_LOAD) != 0
3850 && CONST_STRNEQ (s->name, ".note"))
3851 {
3852 asection *s2;
3853 unsigned count = 1;
3854 amt = sizeof (struct elf_segment_map);
3855 if (s->alignment_power == 2)
3856 for (s2 = s; s2->next != NULL; s2 = s2->next)
3857 {
3858 if (s2->next->alignment_power == 2
3859 && (s2->next->flags & SEC_LOAD) != 0
3860 && CONST_STRNEQ (s2->next->name, ".note")
3861 && align_power (s2->vma + s2->size, 2)
3862 == s2->next->vma)
3863 count++;
3864 else
3865 break;
3866 }
3867 amt += (count - 1) * sizeof (asection *);
3868 m = bfd_zalloc (abfd, amt);
3869 if (m == NULL)
3870 goto error_return;
3871 m->next = NULL;
3872 m->p_type = PT_NOTE;
3873 m->count = count;
3874 while (count > 1)
3875 {
3876 m->sections[m->count - count--] = s;
3877 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
3878 s = s->next;
3879 }
3880 m->sections[m->count - 1] = s;
3881 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
3882 *pm = m;
3883 pm = &m->next;
3884 }
3885 if (s->flags & SEC_THREAD_LOCAL)
3886 {
3887 if (! tls_count)
3888 first_tls = s;
3889 tls_count++;
3890 }
3891 }
3892
3893 /* If there are any SHF_TLS output sections, add PT_TLS segment. */
3894 if (tls_count > 0)
3895 {
3896 int i;
3897
3898 amt = sizeof (struct elf_segment_map);
3899 amt += (tls_count - 1) * sizeof (asection *);
3900 m = bfd_zalloc (abfd, amt);
3901 if (m == NULL)
3902 goto error_return;
3903 m->next = NULL;
3904 m->p_type = PT_TLS;
3905 m->count = tls_count;
3906 /* Mandated PF_R. */
3907 m->p_flags = PF_R;
3908 m->p_flags_valid = 1;
3909 for (i = 0; i < tls_count; ++i)
3910 {
3911 BFD_ASSERT (first_tls->flags & SEC_THREAD_LOCAL);
3912 m->sections[i] = first_tls;
3913 first_tls = first_tls->next;
3914 }
3915
3916 *pm = m;
3917 pm = &m->next;
3918 }
3919
3920 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
3921 segment. */
3922 eh_frame_hdr = elf_tdata (abfd)->eh_frame_hdr;
3923 if (eh_frame_hdr != NULL
3924 && (eh_frame_hdr->output_section->flags & SEC_LOAD) != 0)
3925 {
3926 amt = sizeof (struct elf_segment_map);
3927 m = bfd_zalloc (abfd, amt);
3928 if (m == NULL)
3929 goto error_return;
3930 m->next = NULL;
3931 m->p_type = PT_GNU_EH_FRAME;
3932 m->count = 1;
3933 m->sections[0] = eh_frame_hdr->output_section;
3934
3935 *pm = m;
3936 pm = &m->next;
3937 }
3938
3939 if (elf_tdata (abfd)->stack_flags)
3940 {
3941 amt = sizeof (struct elf_segment_map);
3942 m = bfd_zalloc (abfd, amt);
3943 if (m == NULL)
3944 goto error_return;
3945 m->next = NULL;
3946 m->p_type = PT_GNU_STACK;
3947 m->p_flags = elf_tdata (abfd)->stack_flags;
3948 m->p_flags_valid = 1;
3949
3950 *pm = m;
3951 pm = &m->next;
3952 }
3953
3954 if (info != NULL && info->relro)
3955 {
3956 for (m = mfirst; m != NULL; m = m->next)
3957 {
3958 if (m->p_type == PT_LOAD)
3959 {
3960 asection *last = m->sections[m->count - 1];
3961 bfd_vma vaddr = m->sections[0]->vma;
3962 bfd_vma filesz = last->vma - vaddr + last->size;
3963
3964 if (vaddr < info->relro_end
3965 && vaddr >= info->relro_start
3966 && (vaddr + filesz) >= info->relro_end)
3967 break;
3968 }
3969 }
3970
3971 /* Make a PT_GNU_RELRO segment only when it isn't empty. */
3972 if (m != NULL)
3973 {
3974 amt = sizeof (struct elf_segment_map);
3975 m = bfd_zalloc (abfd, amt);
3976 if (m == NULL)
3977 goto error_return;
3978 m->next = NULL;
3979 m->p_type = PT_GNU_RELRO;
3980 m->p_flags = PF_R;
3981 m->p_flags_valid = 1;
3982
3983 *pm = m;
3984 pm = &m->next;
3985 }
3986 }
3987
3988 free (sections);
3989 elf_tdata (abfd)->segment_map = mfirst;
3990 }
3991
3992 if (!elf_modify_segment_map (abfd, info, no_user_phdrs))
3993 return FALSE;
3994
3995 for (count = 0, m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
3996 ++count;
3997 elf_tdata (abfd)->program_header_size = count * bed->s->sizeof_phdr;
3998
3999 return TRUE;
4000
4001 error_return:
4002 if (sections != NULL)
4003 free (sections);
4004 return FALSE;
4005 }
4006
4007 /* Sort sections by address. */
4008
4009 static int
4010 elf_sort_sections (const void *arg1, const void *arg2)
4011 {
4012 const asection *sec1 = *(const asection **) arg1;
4013 const asection *sec2 = *(const asection **) arg2;
4014 bfd_size_type size1, size2;
4015
4016 /* Sort by LMA first, since this is the address used to
4017 place the section into a segment. */
4018 if (sec1->lma < sec2->lma)
4019 return -1;
4020 else if (sec1->lma > sec2->lma)
4021 return 1;
4022
4023 /* Then sort by VMA. Normally the LMA and the VMA will be
4024 the same, and this will do nothing. */
4025 if (sec1->vma < sec2->vma)
4026 return -1;
4027 else if (sec1->vma > sec2->vma)
4028 return 1;
4029
4030 /* Put !SEC_LOAD sections after SEC_LOAD ones. */
4031
4032 #define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0)
4033
4034 if (TOEND (sec1))
4035 {
4036 if (TOEND (sec2))
4037 {
4038 /* If the indicies are the same, do not return 0
4039 here, but continue to try the next comparison. */
4040 if (sec1->target_index - sec2->target_index != 0)
4041 return sec1->target_index - sec2->target_index;
4042 }
4043 else
4044 return 1;
4045 }
4046 else if (TOEND (sec2))
4047 return -1;
4048
4049 #undef TOEND
4050
4051 /* Sort by size, to put zero sized sections
4052 before others at the same address. */
4053
4054 size1 = (sec1->flags & SEC_LOAD) ? sec1->size : 0;
4055 size2 = (sec2->flags & SEC_LOAD) ? sec2->size : 0;
4056
4057 if (size1 < size2)
4058 return -1;
4059 if (size1 > size2)
4060 return 1;
4061
4062 return sec1->target_index - sec2->target_index;
4063 }
4064
4065 /* Ian Lance Taylor writes:
4066
4067 We shouldn't be using % with a negative signed number. That's just
4068 not good. We have to make sure either that the number is not
4069 negative, or that the number has an unsigned type. When the types
4070 are all the same size they wind up as unsigned. When file_ptr is a
4071 larger signed type, the arithmetic winds up as signed long long,
4072 which is wrong.
4073
4074 What we're trying to say here is something like ``increase OFF by
4075 the least amount that will cause it to be equal to the VMA modulo
4076 the page size.'' */
4077 /* In other words, something like:
4078
4079 vma_offset = m->sections[0]->vma % bed->maxpagesize;
4080 off_offset = off % bed->maxpagesize;
4081 if (vma_offset < off_offset)
4082 adjustment = vma_offset + bed->maxpagesize - off_offset;
4083 else
4084 adjustment = vma_offset - off_offset;
4085
4086 which can can be collapsed into the expression below. */
4087
4088 static file_ptr
4089 vma_page_aligned_bias (bfd_vma vma, ufile_ptr off, bfd_vma maxpagesize)
4090 {
4091 return ((vma - off) % maxpagesize);
4092 }
4093
4094 static void
4095 print_segment_map (const struct elf_segment_map *m)
4096 {
4097 unsigned int j;
4098 const char *pt = get_segment_type (m->p_type);
4099 char buf[32];
4100
4101 if (pt == NULL)
4102 {
4103 if (m->p_type >= PT_LOPROC && m->p_type <= PT_HIPROC)
4104 sprintf (buf, "LOPROC+%7.7x",
4105 (unsigned int) (m->p_type - PT_LOPROC));
4106 else if (m->p_type >= PT_LOOS && m->p_type <= PT_HIOS)
4107 sprintf (buf, "LOOS+%7.7x",
4108 (unsigned int) (m->p_type - PT_LOOS));
4109 else
4110 snprintf (buf, sizeof (buf), "%8.8x",
4111 (unsigned int) m->p_type);
4112 pt = buf;
4113 }
4114 fprintf (stderr, "%s:", pt);
4115 for (j = 0; j < m->count; j++)
4116 fprintf (stderr, " %s", m->sections [j]->name);
4117 putc ('\n',stderr);
4118 }
4119
4120 /* Assign file positions to the sections based on the mapping from
4121 sections to segments. This function also sets up some fields in
4122 the file header. */
4123
4124 static bfd_boolean
4125 assign_file_positions_for_load_sections (bfd *abfd,
4126 struct bfd_link_info *link_info)
4127 {
4128 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4129 struct elf_segment_map *m;
4130 Elf_Internal_Phdr *phdrs;
4131 Elf_Internal_Phdr *p;
4132 file_ptr off;
4133 bfd_size_type maxpagesize;
4134 unsigned int alloc;
4135 unsigned int i, j;
4136 bfd_vma header_pad = 0;
4137
4138 if (link_info == NULL
4139 && !_bfd_elf_map_sections_to_segments (abfd, link_info))
4140 return FALSE;
4141
4142 alloc = 0;
4143 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
4144 {
4145 ++alloc;
4146 if (m->header_size)
4147 header_pad = m->header_size;
4148 }
4149
4150 elf_elfheader (abfd)->e_phoff = bed->s->sizeof_ehdr;
4151 elf_elfheader (abfd)->e_phentsize = bed->s->sizeof_phdr;
4152 elf_elfheader (abfd)->e_phnum = alloc;
4153
4154 if (elf_tdata (abfd)->program_header_size == (bfd_size_type) -1)
4155 elf_tdata (abfd)->program_header_size = alloc * bed->s->sizeof_phdr;
4156 else
4157 BFD_ASSERT (elf_tdata (abfd)->program_header_size
4158 >= alloc * bed->s->sizeof_phdr);
4159
4160 if (alloc == 0)
4161 {
4162 elf_tdata (abfd)->next_file_pos = bed->s->sizeof_ehdr;
4163 return TRUE;
4164 }
4165
4166 /* We're writing the size in elf_tdata (abfd)->program_header_size,
4167 see assign_file_positions_except_relocs, so make sure we have
4168 that amount allocated, with trailing space cleared.
4169 The variable alloc contains the computed need, while elf_tdata
4170 (abfd)->program_header_size contains the size used for the
4171 layout.
4172 See ld/emultempl/elf-generic.em:gld${EMULATION_NAME}_map_segments
4173 where the layout is forced to according to a larger size in the
4174 last iterations for the testcase ld-elf/header. */
4175 BFD_ASSERT (elf_tdata (abfd)->program_header_size % bed->s->sizeof_phdr
4176 == 0);
4177 phdrs = bfd_zalloc2 (abfd,
4178 (elf_tdata (abfd)->program_header_size
4179 / bed->s->sizeof_phdr),
4180 sizeof (Elf_Internal_Phdr));
4181 elf_tdata (abfd)->phdr = phdrs;
4182 if (phdrs == NULL)
4183 return FALSE;
4184
4185 maxpagesize = 1;
4186 if ((abfd->flags & D_PAGED) != 0)
4187 maxpagesize = bed->maxpagesize;
4188
4189 off = bed->s->sizeof_ehdr;
4190 off += alloc * bed->s->sizeof_phdr;
4191 if (header_pad < (bfd_vma) off)
4192 header_pad = 0;
4193 else
4194 header_pad -= off;
4195 off += header_pad;
4196
4197 for (m = elf_tdata (abfd)->segment_map, p = phdrs, j = 0;
4198 m != NULL;
4199 m = m->next, p++, j++)
4200 {
4201 asection **secpp;
4202 bfd_vma off_adjust;
4203 bfd_boolean no_contents;
4204
4205 /* If elf_segment_map is not from map_sections_to_segments, the
4206 sections may not be correctly ordered. NOTE: sorting should
4207 not be done to the PT_NOTE section of a corefile, which may
4208 contain several pseudo-sections artificially created by bfd.
4209 Sorting these pseudo-sections breaks things badly. */
4210 if (m->count > 1
4211 && !(elf_elfheader (abfd)->e_type == ET_CORE
4212 && m->p_type == PT_NOTE))
4213 qsort (m->sections, (size_t) m->count, sizeof (asection *),
4214 elf_sort_sections);
4215
4216 /* An ELF segment (described by Elf_Internal_Phdr) may contain a
4217 number of sections with contents contributing to both p_filesz
4218 and p_memsz, followed by a number of sections with no contents
4219 that just contribute to p_memsz. In this loop, OFF tracks next
4220 available file offset for PT_LOAD and PT_NOTE segments. */
4221 p->p_type = m->p_type;
4222 p->p_flags = m->p_flags;
4223
4224 if (m->count == 0)
4225 p->p_vaddr = 0;
4226 else
4227 p->p_vaddr = m->sections[0]->vma - m->p_vaddr_offset;
4228
4229 if (m->p_paddr_valid)
4230 p->p_paddr = m->p_paddr;
4231 else if (m->count == 0)
4232 p->p_paddr = 0;
4233 else
4234 p->p_paddr = m->sections[0]->lma - m->p_vaddr_offset;
4235
4236 if (p->p_type == PT_LOAD
4237 && (abfd->flags & D_PAGED) != 0)
4238 {
4239 /* p_align in demand paged PT_LOAD segments effectively stores
4240 the maximum page size. When copying an executable with
4241 objcopy, we set m->p_align from the input file. Use this
4242 value for maxpagesize rather than bed->maxpagesize, which
4243 may be different. Note that we use maxpagesize for PT_TLS
4244 segment alignment later in this function, so we are relying
4245 on at least one PT_LOAD segment appearing before a PT_TLS
4246 segment. */
4247 if (m->p_align_valid)
4248 maxpagesize = m->p_align;
4249
4250 p->p_align = maxpagesize;
4251 }
4252 else if (m->p_align_valid)
4253 p->p_align = m->p_align;
4254 else if (m->count == 0)
4255 p->p_align = 1 << bed->s->log_file_align;
4256 else
4257 p->p_align = 0;
4258
4259 no_contents = FALSE;
4260 off_adjust = 0;
4261 if (p->p_type == PT_LOAD
4262 && m->count > 0)
4263 {
4264 bfd_size_type align;
4265 unsigned int align_power = 0;
4266
4267 if (m->p_align_valid)
4268 align = p->p_align;
4269 else
4270 {
4271 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4272 {
4273 unsigned int secalign;
4274
4275 secalign = bfd_get_section_alignment (abfd, *secpp);
4276 if (secalign > align_power)
4277 align_power = secalign;
4278 }
4279 align = (bfd_size_type) 1 << align_power;
4280 if (align < maxpagesize)
4281 align = maxpagesize;
4282 }
4283
4284 for (i = 0; i < m->count; i++)
4285 if ((m->sections[i]->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
4286 /* If we aren't making room for this section, then
4287 it must be SHT_NOBITS regardless of what we've
4288 set via struct bfd_elf_special_section. */
4289 elf_section_type (m->sections[i]) = SHT_NOBITS;
4290
4291 /* Find out whether this segment contains any loadable
4292 sections. */
4293 no_contents = TRUE;
4294 for (i = 0; i < m->count; i++)
4295 if (elf_section_type (m->sections[i]) != SHT_NOBITS)
4296 {
4297 no_contents = FALSE;
4298 break;
4299 }
4300
4301 off_adjust = vma_page_aligned_bias (m->sections[0]->vma, off, align);
4302 off += off_adjust;
4303 if (no_contents)
4304 {
4305 /* We shouldn't need to align the segment on disk since
4306 the segment doesn't need file space, but the gABI
4307 arguably requires the alignment and glibc ld.so
4308 checks it. So to comply with the alignment
4309 requirement but not waste file space, we adjust
4310 p_offset for just this segment. (OFF_ADJUST is
4311 subtracted from OFF later.) This may put p_offset
4312 past the end of file, but that shouldn't matter. */
4313 }
4314 else
4315 off_adjust = 0;
4316 }
4317 /* Make sure the .dynamic section is the first section in the
4318 PT_DYNAMIC segment. */
4319 else if (p->p_type == PT_DYNAMIC
4320 && m->count > 1
4321 && strcmp (m->sections[0]->name, ".dynamic") != 0)
4322 {
4323 _bfd_error_handler
4324 (_("%B: The first section in the PT_DYNAMIC segment is not the .dynamic section"),
4325 abfd);
4326 bfd_set_error (bfd_error_bad_value);
4327 return FALSE;
4328 }
4329 /* Set the note section type to SHT_NOTE. */
4330 else if (p->p_type == PT_NOTE)
4331 for (i = 0; i < m->count; i++)
4332 elf_section_type (m->sections[i]) = SHT_NOTE;
4333
4334 p->p_offset = 0;
4335 p->p_filesz = 0;
4336 p->p_memsz = 0;
4337
4338 if (m->includes_filehdr)
4339 {
4340 if (!m->p_flags_valid)
4341 p->p_flags |= PF_R;
4342 p->p_filesz = bed->s->sizeof_ehdr;
4343 p->p_memsz = bed->s->sizeof_ehdr;
4344 if (m->count > 0)
4345 {
4346 BFD_ASSERT (p->p_type == PT_LOAD);
4347
4348 if (p->p_vaddr < (bfd_vma) off)
4349 {
4350 (*_bfd_error_handler)
4351 (_("%B: Not enough room for program headers, try linking with -N"),
4352 abfd);
4353 bfd_set_error (bfd_error_bad_value);
4354 return FALSE;
4355 }
4356
4357 p->p_vaddr -= off;
4358 if (!m->p_paddr_valid)
4359 p->p_paddr -= off;
4360 }
4361 }
4362
4363 if (m->includes_phdrs)
4364 {
4365 if (!m->p_flags_valid)
4366 p->p_flags |= PF_R;
4367
4368 if (!m->includes_filehdr)
4369 {
4370 p->p_offset = bed->s->sizeof_ehdr;
4371
4372 if (m->count > 0)
4373 {
4374 BFD_ASSERT (p->p_type == PT_LOAD);
4375 p->p_vaddr -= off - p->p_offset;
4376 if (!m->p_paddr_valid)
4377 p->p_paddr -= off - p->p_offset;
4378 }
4379 }
4380
4381 p->p_filesz += alloc * bed->s->sizeof_phdr;
4382 p->p_memsz += alloc * bed->s->sizeof_phdr;
4383 if (m->count)
4384 {
4385 p->p_filesz += header_pad;
4386 p->p_memsz += header_pad;
4387 }
4388 }
4389
4390 if (p->p_type == PT_LOAD
4391 || (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core))
4392 {
4393 if (!m->includes_filehdr && !m->includes_phdrs)
4394 p->p_offset = off;
4395 else
4396 {
4397 file_ptr adjust;
4398
4399 adjust = off - (p->p_offset + p->p_filesz);
4400 if (!no_contents)
4401 p->p_filesz += adjust;
4402 p->p_memsz += adjust;
4403 }
4404 }
4405
4406 /* Set up p_filesz, p_memsz, p_align and p_flags from the section
4407 maps. Set filepos for sections in PT_LOAD segments, and in
4408 core files, for sections in PT_NOTE segments.
4409 assign_file_positions_for_non_load_sections will set filepos
4410 for other sections and update p_filesz for other segments. */
4411 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4412 {
4413 asection *sec;
4414 bfd_size_type align;
4415 Elf_Internal_Shdr *this_hdr;
4416
4417 sec = *secpp;
4418 this_hdr = &elf_section_data (sec)->this_hdr;
4419 align = (bfd_size_type) 1 << bfd_get_section_alignment (abfd, sec);
4420
4421 if ((p->p_type == PT_LOAD
4422 || p->p_type == PT_TLS)
4423 && (this_hdr->sh_type != SHT_NOBITS
4424 || ((this_hdr->sh_flags & SHF_ALLOC) != 0
4425 && ((this_hdr->sh_flags & SHF_TLS) == 0
4426 || p->p_type == PT_TLS))))
4427 {
4428 bfd_signed_vma adjust = sec->vma - (p->p_vaddr + p->p_memsz);
4429
4430 if (adjust < 0)
4431 {
4432 (*_bfd_error_handler)
4433 (_("%B: section %A vma 0x%lx overlaps previous sections"),
4434 abfd, sec, (unsigned long) sec->vma);
4435 adjust = 0;
4436 }
4437 p->p_memsz += adjust;
4438
4439 if (this_hdr->sh_type != SHT_NOBITS)
4440 {
4441 off += adjust;
4442 p->p_filesz += adjust;
4443 }
4444 }
4445
4446 if (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core)
4447 {
4448 /* The section at i == 0 is the one that actually contains
4449 everything. */
4450 if (i == 0)
4451 {
4452 this_hdr->sh_offset = sec->filepos = off;
4453 off += this_hdr->sh_size;
4454 p->p_filesz = this_hdr->sh_size;
4455 p->p_memsz = 0;
4456 p->p_align = 1;
4457 }
4458 else
4459 {
4460 /* The rest are fake sections that shouldn't be written. */
4461 sec->filepos = 0;
4462 sec->size = 0;
4463 sec->flags = 0;
4464 continue;
4465 }
4466 }
4467 else
4468 {
4469 if (p->p_type == PT_LOAD)
4470 {
4471 this_hdr->sh_offset = sec->filepos = off;
4472 if (this_hdr->sh_type != SHT_NOBITS)
4473 off += this_hdr->sh_size;
4474 }
4475
4476 if (this_hdr->sh_type != SHT_NOBITS)
4477 {
4478 p->p_filesz += this_hdr->sh_size;
4479 /* A load section without SHF_ALLOC is something like
4480 a note section in a PT_NOTE segment. These take
4481 file space but are not loaded into memory. */
4482 if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
4483 p->p_memsz += this_hdr->sh_size;
4484 }
4485 else if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
4486 {
4487 if (p->p_type == PT_TLS)
4488 p->p_memsz += this_hdr->sh_size;
4489
4490 /* .tbss is special. It doesn't contribute to p_memsz of
4491 normal segments. */
4492 else if ((this_hdr->sh_flags & SHF_TLS) == 0)
4493 p->p_memsz += this_hdr->sh_size;
4494 }
4495
4496 if (align > p->p_align
4497 && !m->p_align_valid
4498 && (p->p_type != PT_LOAD
4499 || (abfd->flags & D_PAGED) == 0))
4500 p->p_align = align;
4501 }
4502
4503 if (!m->p_flags_valid)
4504 {
4505 p->p_flags |= PF_R;
4506 if ((this_hdr->sh_flags & SHF_EXECINSTR) != 0)
4507 p->p_flags |= PF_X;
4508 if ((this_hdr->sh_flags & SHF_WRITE) != 0)
4509 p->p_flags |= PF_W;
4510 }
4511 }
4512 off -= off_adjust;
4513
4514 /* Check that all sections are in a PT_LOAD segment.
4515 Don't check funky gdb generated core files. */
4516 if (p->p_type == PT_LOAD && bfd_get_format (abfd) != bfd_core)
4517 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4518 {
4519 Elf_Internal_Shdr *this_hdr;
4520 asection *sec;
4521
4522 sec = *secpp;
4523 this_hdr = &(elf_section_data(sec)->this_hdr);
4524 if (this_hdr->sh_size != 0
4525 && !ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr, p))
4526 {
4527 (*_bfd_error_handler)
4528 (_("%B: section `%A' can't be allocated in segment %d"),
4529 abfd, sec, j);
4530 print_segment_map (m);
4531 bfd_set_error (bfd_error_bad_value);
4532 return FALSE;
4533 }
4534 }
4535 }
4536
4537 elf_tdata (abfd)->next_file_pos = off;
4538 return TRUE;
4539 }
4540
4541 /* Assign file positions for the other sections. */
4542
4543 static bfd_boolean
4544 assign_file_positions_for_non_load_sections (bfd *abfd,
4545 struct bfd_link_info *link_info)
4546 {
4547 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4548 Elf_Internal_Shdr **i_shdrpp;
4549 Elf_Internal_Shdr **hdrpp;
4550 Elf_Internal_Phdr *phdrs;
4551 Elf_Internal_Phdr *p;
4552 struct elf_segment_map *m;
4553 bfd_vma filehdr_vaddr, filehdr_paddr;
4554 bfd_vma phdrs_vaddr, phdrs_paddr;
4555 file_ptr off;
4556 unsigned int num_sec;
4557 unsigned int i;
4558 unsigned int count;
4559
4560 i_shdrpp = elf_elfsections (abfd);
4561 num_sec = elf_numsections (abfd);
4562 off = elf_tdata (abfd)->next_file_pos;
4563 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
4564 {
4565 struct elf_obj_tdata *tdata = elf_tdata (abfd);
4566 Elf_Internal_Shdr *hdr;
4567
4568 hdr = *hdrpp;
4569 if (hdr->bfd_section != NULL
4570 && (hdr->bfd_section->filepos != 0
4571 || (hdr->sh_type == SHT_NOBITS
4572 && hdr->contents == NULL)))
4573 BFD_ASSERT (hdr->sh_offset == hdr->bfd_section->filepos);
4574 else if ((hdr->sh_flags & SHF_ALLOC) != 0)
4575 {
4576 if (hdr->sh_size != 0)
4577 ((*_bfd_error_handler)
4578 (_("%B: warning: allocated section `%s' not in segment"),
4579 abfd,
4580 (hdr->bfd_section == NULL
4581 ? "*unknown*"
4582 : hdr->bfd_section->name)));
4583 /* We don't need to page align empty sections. */
4584 if ((abfd->flags & D_PAGED) != 0 && hdr->sh_size != 0)
4585 off += vma_page_aligned_bias (hdr->sh_addr, off,
4586 bed->maxpagesize);
4587 else
4588 off += vma_page_aligned_bias (hdr->sh_addr, off,
4589 hdr->sh_addralign);
4590 off = _bfd_elf_assign_file_position_for_section (hdr, off,
4591 FALSE);
4592 }
4593 else if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
4594 && hdr->bfd_section == NULL)
4595 || hdr == i_shdrpp[tdata->symtab_section]
4596 || hdr == i_shdrpp[tdata->symtab_shndx_section]
4597 || hdr == i_shdrpp[tdata->strtab_section])
4598 hdr->sh_offset = -1;
4599 else
4600 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4601 }
4602
4603 /* Now that we have set the section file positions, we can set up
4604 the file positions for the non PT_LOAD segments. */
4605 count = 0;
4606 filehdr_vaddr = 0;
4607 filehdr_paddr = 0;
4608 phdrs_vaddr = bed->maxpagesize + bed->s->sizeof_ehdr;
4609 phdrs_paddr = 0;
4610 phdrs = elf_tdata (abfd)->phdr;
4611 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
4612 m != NULL;
4613 m = m->next, p++)
4614 {
4615 ++count;
4616 if (p->p_type != PT_LOAD)
4617 continue;
4618
4619 if (m->includes_filehdr)
4620 {
4621 filehdr_vaddr = p->p_vaddr;
4622 filehdr_paddr = p->p_paddr;
4623 }
4624 if (m->includes_phdrs)
4625 {
4626 phdrs_vaddr = p->p_vaddr;
4627 phdrs_paddr = p->p_paddr;
4628 if (m->includes_filehdr)
4629 {
4630 phdrs_vaddr += bed->s->sizeof_ehdr;
4631 phdrs_paddr += bed->s->sizeof_ehdr;
4632 }
4633 }
4634 }
4635
4636 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
4637 m != NULL;
4638 m = m->next, p++)
4639 {
4640 if (p->p_type == PT_GNU_RELRO)
4641 {
4642 const Elf_Internal_Phdr *lp;
4643
4644 BFD_ASSERT (!m->includes_filehdr && !m->includes_phdrs);
4645
4646 if (link_info != NULL)
4647 {
4648 /* During linking the range of the RELRO segment is passed
4649 in link_info. */
4650 for (lp = phdrs; lp < phdrs + count; ++lp)
4651 {
4652 if (lp->p_type == PT_LOAD
4653 && lp->p_vaddr >= link_info->relro_start
4654 && lp->p_vaddr < link_info->relro_end
4655 && lp->p_vaddr + lp->p_filesz >= link_info->relro_end)
4656 break;
4657 }
4658 }
4659 else
4660 {
4661 /* Otherwise we are copying an executable or shared
4662 library, but we need to use the same linker logic. */
4663 for (lp = phdrs; lp < phdrs + count; ++lp)
4664 {
4665 if (lp->p_type == PT_LOAD
4666 && lp->p_paddr == p->p_paddr)
4667 break;
4668 }
4669 }
4670
4671 if (lp < phdrs + count)
4672 {
4673 p->p_vaddr = lp->p_vaddr;
4674 p->p_paddr = lp->p_paddr;
4675 p->p_offset = lp->p_offset;
4676 if (link_info != NULL)
4677 p->p_filesz = link_info->relro_end - lp->p_vaddr;
4678 else if (m->p_size_valid)
4679 p->p_filesz = m->p_size;
4680 else
4681 abort ();
4682 p->p_memsz = p->p_filesz;
4683 p->p_align = 1;
4684 p->p_flags = (lp->p_flags & ~PF_W);
4685 }
4686 else if (link_info != NULL)
4687 {
4688 memset (p, 0, sizeof *p);
4689 p->p_type = PT_NULL;
4690 }
4691 else
4692 abort ();
4693 }
4694 else if (m->count != 0)
4695 {
4696 if (p->p_type != PT_LOAD
4697 && (p->p_type != PT_NOTE
4698 || bfd_get_format (abfd) != bfd_core))
4699 {
4700 Elf_Internal_Shdr *hdr;
4701 asection *sect;
4702
4703 BFD_ASSERT (!m->includes_filehdr && !m->includes_phdrs);
4704
4705 sect = m->sections[m->count - 1];
4706 hdr = &elf_section_data (sect)->this_hdr;
4707 p->p_filesz = sect->filepos - m->sections[0]->filepos;
4708 if (hdr->sh_type != SHT_NOBITS)
4709 p->p_filesz += hdr->sh_size;
4710 p->p_offset = m->sections[0]->filepos;
4711 }
4712 }
4713 else if (m->includes_filehdr)
4714 {
4715 p->p_vaddr = filehdr_vaddr;
4716 if (! m->p_paddr_valid)
4717 p->p_paddr = filehdr_paddr;
4718 }
4719 else if (m->includes_phdrs)
4720 {
4721 p->p_vaddr = phdrs_vaddr;
4722 if (! m->p_paddr_valid)
4723 p->p_paddr = phdrs_paddr;
4724 }
4725 }
4726
4727 elf_tdata (abfd)->next_file_pos = off;
4728
4729 return TRUE;
4730 }
4731
4732 /* Work out the file positions of all the sections. This is called by
4733 _bfd_elf_compute_section_file_positions. All the section sizes and
4734 VMAs must be known before this is called.
4735
4736 Reloc sections come in two flavours: Those processed specially as
4737 "side-channel" data attached to a section to which they apply, and
4738 those that bfd doesn't process as relocations. The latter sort are
4739 stored in a normal bfd section by bfd_section_from_shdr. We don't
4740 consider the former sort here, unless they form part of the loadable
4741 image. Reloc sections not assigned here will be handled later by
4742 assign_file_positions_for_relocs.
4743
4744 We also don't set the positions of the .symtab and .strtab here. */
4745
4746 static bfd_boolean
4747 assign_file_positions_except_relocs (bfd *abfd,
4748 struct bfd_link_info *link_info)
4749 {
4750 struct elf_obj_tdata *tdata = elf_tdata (abfd);
4751 Elf_Internal_Ehdr *i_ehdrp = elf_elfheader (abfd);
4752 file_ptr off;
4753 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4754
4755 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
4756 && bfd_get_format (abfd) != bfd_core)
4757 {
4758 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
4759 unsigned int num_sec = elf_numsections (abfd);
4760 Elf_Internal_Shdr **hdrpp;
4761 unsigned int i;
4762
4763 /* Start after the ELF header. */
4764 off = i_ehdrp->e_ehsize;
4765
4766 /* We are not creating an executable, which means that we are
4767 not creating a program header, and that the actual order of
4768 the sections in the file is unimportant. */
4769 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
4770 {
4771 Elf_Internal_Shdr *hdr;
4772
4773 hdr = *hdrpp;
4774 if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
4775 && hdr->bfd_section == NULL)
4776 || i == tdata->symtab_section
4777 || i == tdata->symtab_shndx_section
4778 || i == tdata->strtab_section)
4779 {
4780 hdr->sh_offset = -1;
4781 }
4782 else
4783 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4784 }
4785 }
4786 else
4787 {
4788 unsigned int alloc;
4789
4790 /* Assign file positions for the loaded sections based on the
4791 assignment of sections to segments. */
4792 if (!assign_file_positions_for_load_sections (abfd, link_info))
4793 return FALSE;
4794
4795 /* And for non-load sections. */
4796 if (!assign_file_positions_for_non_load_sections (abfd, link_info))
4797 return FALSE;
4798
4799 if (bed->elf_backend_modify_program_headers != NULL)
4800 {
4801 if (!(*bed->elf_backend_modify_program_headers) (abfd, link_info))
4802 return FALSE;
4803 }
4804
4805 /* Write out the program headers. */
4806 alloc = tdata->program_header_size / bed->s->sizeof_phdr;
4807 if (bfd_seek (abfd, (bfd_signed_vma) bed->s->sizeof_ehdr, SEEK_SET) != 0
4808 || bed->s->write_out_phdrs (abfd, tdata->phdr, alloc) != 0)
4809 return FALSE;
4810
4811 off = tdata->next_file_pos;
4812 }
4813
4814 /* Place the section headers. */
4815 off = align_file_position (off, 1 << bed->s->log_file_align);
4816 i_ehdrp->e_shoff = off;
4817 off += i_ehdrp->e_shnum * i_ehdrp->e_shentsize;
4818
4819 tdata->next_file_pos = off;
4820
4821 return TRUE;
4822 }
4823
4824 static bfd_boolean
4825 prep_headers (bfd *abfd)
4826 {
4827 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
4828 Elf_Internal_Phdr *i_phdrp = 0; /* Program header table, internal form */
4829 struct elf_strtab_hash *shstrtab;
4830 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4831
4832 i_ehdrp = elf_elfheader (abfd);
4833
4834 shstrtab = _bfd_elf_strtab_init ();
4835 if (shstrtab == NULL)
4836 return FALSE;
4837
4838 elf_shstrtab (abfd) = shstrtab;
4839
4840 i_ehdrp->e_ident[EI_MAG0] = ELFMAG0;
4841 i_ehdrp->e_ident[EI_MAG1] = ELFMAG1;
4842 i_ehdrp->e_ident[EI_MAG2] = ELFMAG2;
4843 i_ehdrp->e_ident[EI_MAG3] = ELFMAG3;
4844
4845 i_ehdrp->e_ident[EI_CLASS] = bed->s->elfclass;
4846 i_ehdrp->e_ident[EI_DATA] =
4847 bfd_big_endian (abfd) ? ELFDATA2MSB : ELFDATA2LSB;
4848 i_ehdrp->e_ident[EI_VERSION] = bed->s->ev_current;
4849
4850 if ((abfd->flags & DYNAMIC) != 0)
4851 i_ehdrp->e_type = ET_DYN;
4852 else if ((abfd->flags & EXEC_P) != 0)
4853 i_ehdrp->e_type = ET_EXEC;
4854 else if (bfd_get_format (abfd) == bfd_core)
4855 i_ehdrp->e_type = ET_CORE;
4856 else
4857 i_ehdrp->e_type = ET_REL;
4858
4859 switch (bfd_get_arch (abfd))
4860 {
4861 case bfd_arch_unknown:
4862 i_ehdrp->e_machine = EM_NONE;
4863 break;
4864
4865 /* There used to be a long list of cases here, each one setting
4866 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
4867 in the corresponding bfd definition. To avoid duplication,
4868 the switch was removed. Machines that need special handling
4869 can generally do it in elf_backend_final_write_processing(),
4870 unless they need the information earlier than the final write.
4871 Such need can generally be supplied by replacing the tests for
4872 e_machine with the conditions used to determine it. */
4873 default:
4874 i_ehdrp->e_machine = bed->elf_machine_code;
4875 }
4876
4877 i_ehdrp->e_version = bed->s->ev_current;
4878 i_ehdrp->e_ehsize = bed->s->sizeof_ehdr;
4879
4880 /* No program header, for now. */
4881 i_ehdrp->e_phoff = 0;
4882 i_ehdrp->e_phentsize = 0;
4883 i_ehdrp->e_phnum = 0;
4884
4885 /* Each bfd section is section header entry. */
4886 i_ehdrp->e_entry = bfd_get_start_address (abfd);
4887 i_ehdrp->e_shentsize = bed->s->sizeof_shdr;
4888
4889 /* If we're building an executable, we'll need a program header table. */
4890 if (abfd->flags & EXEC_P)
4891 /* It all happens later. */
4892 ;
4893 else
4894 {
4895 i_ehdrp->e_phentsize = 0;
4896 i_phdrp = 0;
4897 i_ehdrp->e_phoff = 0;
4898 }
4899
4900 elf_tdata (abfd)->symtab_hdr.sh_name =
4901 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".symtab", FALSE);
4902 elf_tdata (abfd)->strtab_hdr.sh_name =
4903 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".strtab", FALSE);
4904 elf_tdata (abfd)->shstrtab_hdr.sh_name =
4905 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".shstrtab", FALSE);
4906 if (elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
4907 || elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
4908 || elf_tdata (abfd)->shstrtab_hdr.sh_name == (unsigned int) -1)
4909 return FALSE;
4910
4911 return TRUE;
4912 }
4913
4914 /* Assign file positions for all the reloc sections which are not part
4915 of the loadable file image. */
4916
4917 void
4918 _bfd_elf_assign_file_positions_for_relocs (bfd *abfd)
4919 {
4920 file_ptr off;
4921 unsigned int i, num_sec;
4922 Elf_Internal_Shdr **shdrpp;
4923
4924 off = elf_tdata (abfd)->next_file_pos;
4925
4926 num_sec = elf_numsections (abfd);
4927 for (i = 1, shdrpp = elf_elfsections (abfd) + 1; i < num_sec; i++, shdrpp++)
4928 {
4929 Elf_Internal_Shdr *shdrp;
4930
4931 shdrp = *shdrpp;
4932 if ((shdrp->sh_type == SHT_REL || shdrp->sh_type == SHT_RELA)
4933 && shdrp->sh_offset == -1)
4934 off = _bfd_elf_assign_file_position_for_section (shdrp, off, TRUE);
4935 }
4936
4937 elf_tdata (abfd)->next_file_pos = off;
4938 }
4939
4940 bfd_boolean
4941 _bfd_elf_write_object_contents (bfd *abfd)
4942 {
4943 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4944 Elf_Internal_Ehdr *i_ehdrp;
4945 Elf_Internal_Shdr **i_shdrp;
4946 bfd_boolean failed;
4947 unsigned int count, num_sec;
4948
4949 if (! abfd->output_has_begun
4950 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
4951 return FALSE;
4952
4953 i_shdrp = elf_elfsections (abfd);
4954 i_ehdrp = elf_elfheader (abfd);
4955
4956 failed = FALSE;
4957 bfd_map_over_sections (abfd, bed->s->write_relocs, &failed);
4958 if (failed)
4959 return FALSE;
4960
4961 _bfd_elf_assign_file_positions_for_relocs (abfd);
4962
4963 /* After writing the headers, we need to write the sections too... */
4964 num_sec = elf_numsections (abfd);
4965 for (count = 1; count < num_sec; count++)
4966 {
4967 if (bed->elf_backend_section_processing)
4968 (*bed->elf_backend_section_processing) (abfd, i_shdrp[count]);
4969 if (i_shdrp[count]->contents)
4970 {
4971 bfd_size_type amt = i_shdrp[count]->sh_size;
4972
4973 if (bfd_seek (abfd, i_shdrp[count]->sh_offset, SEEK_SET) != 0
4974 || bfd_bwrite (i_shdrp[count]->contents, amt, abfd) != amt)
4975 return FALSE;
4976 }
4977 }
4978
4979 /* Write out the section header names. */
4980 if (elf_shstrtab (abfd) != NULL
4981 && (bfd_seek (abfd, elf_tdata (abfd)->shstrtab_hdr.sh_offset, SEEK_SET) != 0
4982 || !_bfd_elf_strtab_emit (abfd, elf_shstrtab (abfd))))
4983 return FALSE;
4984
4985 if (bed->elf_backend_final_write_processing)
4986 (*bed->elf_backend_final_write_processing) (abfd,
4987 elf_tdata (abfd)->linker);
4988
4989 if (!bed->s->write_shdrs_and_ehdr (abfd))
4990 return FALSE;
4991
4992 /* This is last since write_shdrs_and_ehdr can touch i_shdrp[0]. */
4993 if (elf_tdata (abfd)->after_write_object_contents)
4994 return (*elf_tdata (abfd)->after_write_object_contents) (abfd);
4995
4996 return TRUE;
4997 }
4998
4999 bfd_boolean
5000 _bfd_elf_write_corefile_contents (bfd *abfd)
5001 {
5002 /* Hopefully this can be done just like an object file. */
5003 return _bfd_elf_write_object_contents (abfd);
5004 }
5005
5006 /* Given a section, search the header to find them. */
5007
5008 unsigned int
5009 _bfd_elf_section_from_bfd_section (bfd *abfd, struct bfd_section *asect)
5010 {
5011 const struct elf_backend_data *bed;
5012 unsigned int index;
5013
5014 if (elf_section_data (asect) != NULL
5015 && elf_section_data (asect)->this_idx != 0)
5016 return elf_section_data (asect)->this_idx;
5017
5018 if (bfd_is_abs_section (asect))
5019 index = SHN_ABS;
5020 else if (bfd_is_com_section (asect))
5021 index = SHN_COMMON;
5022 else if (bfd_is_und_section (asect))
5023 index = SHN_UNDEF;
5024 else
5025 index = SHN_BAD;
5026
5027 bed = get_elf_backend_data (abfd);
5028 if (bed->elf_backend_section_from_bfd_section)
5029 {
5030 int retval = index;
5031
5032 if ((*bed->elf_backend_section_from_bfd_section) (abfd, asect, &retval))
5033 return retval;
5034 }
5035
5036 if (index == SHN_BAD)
5037 bfd_set_error (bfd_error_nonrepresentable_section);
5038
5039 return index;
5040 }
5041
5042 /* Given a BFD symbol, return the index in the ELF symbol table, or -1
5043 on error. */
5044
5045 int
5046 _bfd_elf_symbol_from_bfd_symbol (bfd *abfd, asymbol **asym_ptr_ptr)
5047 {
5048 asymbol *asym_ptr = *asym_ptr_ptr;
5049 int idx;
5050 flagword flags = asym_ptr->flags;
5051
5052 /* When gas creates relocations against local labels, it creates its
5053 own symbol for the section, but does put the symbol into the
5054 symbol chain, so udata is 0. When the linker is generating
5055 relocatable output, this section symbol may be for one of the
5056 input sections rather than the output section. */
5057 if (asym_ptr->udata.i == 0
5058 && (flags & BSF_SECTION_SYM)
5059 && asym_ptr->section)
5060 {
5061 asection *sec;
5062 int indx;
5063
5064 sec = asym_ptr->section;
5065 if (sec->owner != abfd && sec->output_section != NULL)
5066 sec = sec->output_section;
5067 if (sec->owner == abfd
5068 && (indx = sec->index) < elf_num_section_syms (abfd)
5069 && elf_section_syms (abfd)[indx] != NULL)
5070 asym_ptr->udata.i = elf_section_syms (abfd)[indx]->udata.i;
5071 }
5072
5073 idx = asym_ptr->udata.i;
5074
5075 if (idx == 0)
5076 {
5077 /* This case can occur when using --strip-symbol on a symbol
5078 which is used in a relocation entry. */
5079 (*_bfd_error_handler)
5080 (_("%B: symbol `%s' required but not present"),
5081 abfd, bfd_asymbol_name (asym_ptr));
5082 bfd_set_error (bfd_error_no_symbols);
5083 return -1;
5084 }
5085
5086 #if DEBUG & 4
5087 {
5088 fprintf (stderr,
5089 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8lx%s\n",
5090 (long) asym_ptr, asym_ptr->name, idx, flags,
5091 elf_symbol_flags (flags));
5092 fflush (stderr);
5093 }
5094 #endif
5095
5096 return idx;
5097 }
5098
5099 /* Rewrite program header information. */
5100
5101 static bfd_boolean
5102 rewrite_elf_program_header (bfd *ibfd, bfd *obfd)
5103 {
5104 Elf_Internal_Ehdr *iehdr;
5105 struct elf_segment_map *map;
5106 struct elf_segment_map *map_first;
5107 struct elf_segment_map **pointer_to_map;
5108 Elf_Internal_Phdr *segment;
5109 asection *section;
5110 unsigned int i;
5111 unsigned int num_segments;
5112 bfd_boolean phdr_included = FALSE;
5113 bfd_boolean p_paddr_valid;
5114 bfd_vma maxpagesize;
5115 struct elf_segment_map *phdr_adjust_seg = NULL;
5116 unsigned int phdr_adjust_num = 0;
5117 const struct elf_backend_data *bed;
5118
5119 bed = get_elf_backend_data (ibfd);
5120 iehdr = elf_elfheader (ibfd);
5121
5122 map_first = NULL;
5123 pointer_to_map = &map_first;
5124
5125 num_segments = elf_elfheader (ibfd)->e_phnum;
5126 maxpagesize = get_elf_backend_data (obfd)->maxpagesize;
5127
5128 /* Returns the end address of the segment + 1. */
5129 #define SEGMENT_END(segment, start) \
5130 (start + (segment->p_memsz > segment->p_filesz \
5131 ? segment->p_memsz : segment->p_filesz))
5132
5133 #define SECTION_SIZE(section, segment) \
5134 (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL)) \
5135 != SEC_THREAD_LOCAL || segment->p_type == PT_TLS) \
5136 ? section->size : 0)
5137
5138 /* Returns TRUE if the given section is contained within
5139 the given segment. VMA addresses are compared. */
5140 #define IS_CONTAINED_BY_VMA(section, segment) \
5141 (section->vma >= segment->p_vaddr \
5142 && (section->vma + SECTION_SIZE (section, segment) \
5143 <= (SEGMENT_END (segment, segment->p_vaddr))))
5144
5145 /* Returns TRUE if the given section is contained within
5146 the given segment. LMA addresses are compared. */
5147 #define IS_CONTAINED_BY_LMA(section, segment, base) \
5148 (section->lma >= base \
5149 && (section->lma + SECTION_SIZE (section, segment) \
5150 <= SEGMENT_END (segment, base)))
5151
5152 /* Handle PT_NOTE segment. */
5153 #define IS_NOTE(p, s) \
5154 (p->p_type == PT_NOTE \
5155 && elf_section_type (s) == SHT_NOTE \
5156 && (bfd_vma) s->filepos >= p->p_offset \
5157 && ((bfd_vma) s->filepos + s->size \
5158 <= p->p_offset + p->p_filesz))
5159
5160 /* Special case: corefile "NOTE" section containing regs, prpsinfo
5161 etc. */
5162 #define IS_COREFILE_NOTE(p, s) \
5163 (IS_NOTE (p, s) \
5164 && bfd_get_format (ibfd) == bfd_core \
5165 && s->vma == 0 \
5166 && s->lma == 0)
5167
5168 /* The complicated case when p_vaddr is 0 is to handle the Solaris
5169 linker, which generates a PT_INTERP section with p_vaddr and
5170 p_memsz set to 0. */
5171 #define IS_SOLARIS_PT_INTERP(p, s) \
5172 (p->p_vaddr == 0 \
5173 && p->p_paddr == 0 \
5174 && p->p_memsz == 0 \
5175 && p->p_filesz > 0 \
5176 && (s->flags & SEC_HAS_CONTENTS) != 0 \
5177 && s->size > 0 \
5178 && (bfd_vma) s->filepos >= p->p_offset \
5179 && ((bfd_vma) s->filepos + s->size \
5180 <= p->p_offset + p->p_filesz))
5181
5182 /* Decide if the given section should be included in the given segment.
5183 A section will be included if:
5184 1. It is within the address space of the segment -- we use the LMA
5185 if that is set for the segment and the VMA otherwise,
5186 2. It is an allocated section or a NOTE section in a PT_NOTE
5187 segment.
5188 3. There is an output section associated with it,
5189 4. The section has not already been allocated to a previous segment.
5190 5. PT_GNU_STACK segments do not include any sections.
5191 6. PT_TLS segment includes only SHF_TLS sections.
5192 7. SHF_TLS sections are only in PT_TLS or PT_LOAD segments.
5193 8. PT_DYNAMIC should not contain empty sections at the beginning
5194 (with the possible exception of .dynamic). */
5195 #define IS_SECTION_IN_INPUT_SEGMENT(section, segment, bed) \
5196 ((((segment->p_paddr \
5197 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr) \
5198 : IS_CONTAINED_BY_VMA (section, segment)) \
5199 && (section->flags & SEC_ALLOC) != 0) \
5200 || IS_NOTE (segment, section)) \
5201 && segment->p_type != PT_GNU_STACK \
5202 && (segment->p_type != PT_TLS \
5203 || (section->flags & SEC_THREAD_LOCAL)) \
5204 && (segment->p_type == PT_LOAD \
5205 || segment->p_type == PT_TLS \
5206 || (section->flags & SEC_THREAD_LOCAL) == 0) \
5207 && (segment->p_type != PT_DYNAMIC \
5208 || SECTION_SIZE (section, segment) > 0 \
5209 || (segment->p_paddr \
5210 ? segment->p_paddr != section->lma \
5211 : segment->p_vaddr != section->vma) \
5212 || (strcmp (bfd_get_section_name (ibfd, section), ".dynamic") \
5213 == 0)) \
5214 && !section->segment_mark)
5215
5216 /* If the output section of a section in the input segment is NULL,
5217 it is removed from the corresponding output segment. */
5218 #define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed) \
5219 (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed) \
5220 && section->output_section != NULL)
5221
5222 /* Returns TRUE iff seg1 starts after the end of seg2. */
5223 #define SEGMENT_AFTER_SEGMENT(seg1, seg2, field) \
5224 (seg1->field >= SEGMENT_END (seg2, seg2->field))
5225
5226 /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both
5227 their VMA address ranges and their LMA address ranges overlap.
5228 It is possible to have overlapping VMA ranges without overlapping LMA
5229 ranges. RedBoot images for example can have both .data and .bss mapped
5230 to the same VMA range, but with the .data section mapped to a different
5231 LMA. */
5232 #define SEGMENT_OVERLAPS(seg1, seg2) \
5233 ( !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr) \
5234 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr)) \
5235 && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr) \
5236 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr)))
5237
5238 /* Initialise the segment mark field. */
5239 for (section = ibfd->sections; section != NULL; section = section->next)
5240 section->segment_mark = FALSE;
5241
5242 /* The Solaris linker creates program headers in which all the
5243 p_paddr fields are zero. When we try to objcopy or strip such a
5244 file, we get confused. Check for this case, and if we find it
5245 don't set the p_paddr_valid fields. */
5246 p_paddr_valid = FALSE;
5247 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5248 i < num_segments;
5249 i++, segment++)
5250 if (segment->p_paddr != 0)
5251 {
5252 p_paddr_valid = TRUE;
5253 break;
5254 }
5255
5256 /* Scan through the segments specified in the program header
5257 of the input BFD. For this first scan we look for overlaps
5258 in the loadable segments. These can be created by weird
5259 parameters to objcopy. Also, fix some solaris weirdness. */
5260 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5261 i < num_segments;
5262 i++, segment++)
5263 {
5264 unsigned int j;
5265 Elf_Internal_Phdr *segment2;
5266
5267 if (segment->p_type == PT_INTERP)
5268 for (section = ibfd->sections; section; section = section->next)
5269 if (IS_SOLARIS_PT_INTERP (segment, section))
5270 {
5271 /* Mininal change so that the normal section to segment
5272 assignment code will work. */
5273 segment->p_vaddr = section->vma;
5274 break;
5275 }
5276
5277 if (segment->p_type != PT_LOAD)
5278 {
5279 /* Remove PT_GNU_RELRO segment. */
5280 if (segment->p_type == PT_GNU_RELRO)
5281 segment->p_type = PT_NULL;
5282 continue;
5283 }
5284
5285 /* Determine if this segment overlaps any previous segments. */
5286 for (j = 0, segment2 = elf_tdata (ibfd)->phdr; j < i; j++, segment2++)
5287 {
5288 bfd_signed_vma extra_length;
5289
5290 if (segment2->p_type != PT_LOAD
5291 || !SEGMENT_OVERLAPS (segment, segment2))
5292 continue;
5293
5294 /* Merge the two segments together. */
5295 if (segment2->p_vaddr < segment->p_vaddr)
5296 {
5297 /* Extend SEGMENT2 to include SEGMENT and then delete
5298 SEGMENT. */
5299 extra_length = (SEGMENT_END (segment, segment->p_vaddr)
5300 - SEGMENT_END (segment2, segment2->p_vaddr));
5301
5302 if (extra_length > 0)
5303 {
5304 segment2->p_memsz += extra_length;
5305 segment2->p_filesz += extra_length;
5306 }
5307
5308 segment->p_type = PT_NULL;
5309
5310 /* Since we have deleted P we must restart the outer loop. */
5311 i = 0;
5312 segment = elf_tdata (ibfd)->phdr;
5313 break;
5314 }
5315 else
5316 {
5317 /* Extend SEGMENT to include SEGMENT2 and then delete
5318 SEGMENT2. */
5319 extra_length = (SEGMENT_END (segment2, segment2->p_vaddr)
5320 - SEGMENT_END (segment, segment->p_vaddr));
5321
5322 if (extra_length > 0)
5323 {
5324 segment->p_memsz += extra_length;
5325 segment->p_filesz += extra_length;
5326 }
5327
5328 segment2->p_type = PT_NULL;
5329 }
5330 }
5331 }
5332
5333 /* The second scan attempts to assign sections to segments. */
5334 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5335 i < num_segments;
5336 i++, segment++)
5337 {
5338 unsigned int section_count;
5339 asection **sections;
5340 asection *output_section;
5341 unsigned int isec;
5342 bfd_vma matching_lma;
5343 bfd_vma suggested_lma;
5344 unsigned int j;
5345 bfd_size_type amt;
5346 asection *first_section;
5347 bfd_boolean first_matching_lma;
5348 bfd_boolean first_suggested_lma;
5349
5350 if (segment->p_type == PT_NULL)
5351 continue;
5352
5353 first_section = NULL;
5354 /* Compute how many sections might be placed into this segment. */
5355 for (section = ibfd->sections, section_count = 0;
5356 section != NULL;
5357 section = section->next)
5358 {
5359 /* Find the first section in the input segment, which may be
5360 removed from the corresponding output segment. */
5361 if (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed))
5362 {
5363 if (first_section == NULL)
5364 first_section = section;
5365 if (section->output_section != NULL)
5366 ++section_count;
5367 }
5368 }
5369
5370 /* Allocate a segment map big enough to contain
5371 all of the sections we have selected. */
5372 amt = sizeof (struct elf_segment_map);
5373 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5374 map = bfd_zalloc (obfd, amt);
5375 if (map == NULL)
5376 return FALSE;
5377
5378 /* Initialise the fields of the segment map. Default to
5379 using the physical address of the segment in the input BFD. */
5380 map->next = NULL;
5381 map->p_type = segment->p_type;
5382 map->p_flags = segment->p_flags;
5383 map->p_flags_valid = 1;
5384
5385 /* If the first section in the input segment is removed, there is
5386 no need to preserve segment physical address in the corresponding
5387 output segment. */
5388 if (!first_section || first_section->output_section != NULL)
5389 {
5390 map->p_paddr = segment->p_paddr;
5391 map->p_paddr_valid = p_paddr_valid;
5392 }
5393
5394 /* Determine if this segment contains the ELF file header
5395 and if it contains the program headers themselves. */
5396 map->includes_filehdr = (segment->p_offset == 0
5397 && segment->p_filesz >= iehdr->e_ehsize);
5398 map->includes_phdrs = 0;
5399
5400 if (!phdr_included || segment->p_type != PT_LOAD)
5401 {
5402 map->includes_phdrs =
5403 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
5404 && (segment->p_offset + segment->p_filesz
5405 >= ((bfd_vma) iehdr->e_phoff
5406 + iehdr->e_phnum * iehdr->e_phentsize)));
5407
5408 if (segment->p_type == PT_LOAD && map->includes_phdrs)
5409 phdr_included = TRUE;
5410 }
5411
5412 if (section_count == 0)
5413 {
5414 /* Special segments, such as the PT_PHDR segment, may contain
5415 no sections, but ordinary, loadable segments should contain
5416 something. They are allowed by the ELF spec however, so only
5417 a warning is produced. */
5418 if (segment->p_type == PT_LOAD)
5419 (*_bfd_error_handler) (_("%B: warning: Empty loadable segment"
5420 " detected, is this intentional ?\n"),
5421 ibfd);
5422
5423 map->count = 0;
5424 *pointer_to_map = map;
5425 pointer_to_map = &map->next;
5426
5427 continue;
5428 }
5429
5430 /* Now scan the sections in the input BFD again and attempt
5431 to add their corresponding output sections to the segment map.
5432 The problem here is how to handle an output section which has
5433 been moved (ie had its LMA changed). There are four possibilities:
5434
5435 1. None of the sections have been moved.
5436 In this case we can continue to use the segment LMA from the
5437 input BFD.
5438
5439 2. All of the sections have been moved by the same amount.
5440 In this case we can change the segment's LMA to match the LMA
5441 of the first section.
5442
5443 3. Some of the sections have been moved, others have not.
5444 In this case those sections which have not been moved can be
5445 placed in the current segment which will have to have its size,
5446 and possibly its LMA changed, and a new segment or segments will
5447 have to be created to contain the other sections.
5448
5449 4. The sections have been moved, but not by the same amount.
5450 In this case we can change the segment's LMA to match the LMA
5451 of the first section and we will have to create a new segment
5452 or segments to contain the other sections.
5453
5454 In order to save time, we allocate an array to hold the section
5455 pointers that we are interested in. As these sections get assigned
5456 to a segment, they are removed from this array. */
5457
5458 sections = bfd_malloc2 (section_count, sizeof (asection *));
5459 if (sections == NULL)
5460 return FALSE;
5461
5462 /* Step One: Scan for segment vs section LMA conflicts.
5463 Also add the sections to the section array allocated above.
5464 Also add the sections to the current segment. In the common
5465 case, where the sections have not been moved, this means that
5466 we have completely filled the segment, and there is nothing
5467 more to do. */
5468 isec = 0;
5469 matching_lma = 0;
5470 suggested_lma = 0;
5471 first_matching_lma = TRUE;
5472 first_suggested_lma = TRUE;
5473
5474 for (section = ibfd->sections;
5475 section != NULL;
5476 section = section->next)
5477 if (section == first_section)
5478 break;
5479
5480 for (j = 0; section != NULL; section = section->next)
5481 {
5482 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
5483 {
5484 output_section = section->output_section;
5485
5486 sections[j++] = section;
5487
5488 /* The Solaris native linker always sets p_paddr to 0.
5489 We try to catch that case here, and set it to the
5490 correct value. Note - some backends require that
5491 p_paddr be left as zero. */
5492 if (!p_paddr_valid
5493 && segment->p_vaddr != 0
5494 && !bed->want_p_paddr_set_to_zero
5495 && isec == 0
5496 && output_section->lma != 0
5497 && output_section->vma == (segment->p_vaddr
5498 + (map->includes_filehdr
5499 ? iehdr->e_ehsize
5500 : 0)
5501 + (map->includes_phdrs
5502 ? (iehdr->e_phnum
5503 * iehdr->e_phentsize)
5504 : 0)))
5505 map->p_paddr = segment->p_vaddr;
5506
5507 /* Match up the physical address of the segment with the
5508 LMA address of the output section. */
5509 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
5510 || IS_COREFILE_NOTE (segment, section)
5511 || (bed->want_p_paddr_set_to_zero
5512 && IS_CONTAINED_BY_VMA (output_section, segment)))
5513 {
5514 if (first_matching_lma || output_section->lma < matching_lma)
5515 {
5516 matching_lma = output_section->lma;
5517 first_matching_lma = FALSE;
5518 }
5519
5520 /* We assume that if the section fits within the segment
5521 then it does not overlap any other section within that
5522 segment. */
5523 map->sections[isec++] = output_section;
5524 }
5525 else if (first_suggested_lma)
5526 {
5527 suggested_lma = output_section->lma;
5528 first_suggested_lma = FALSE;
5529 }
5530
5531 if (j == section_count)
5532 break;
5533 }
5534 }
5535
5536 BFD_ASSERT (j == section_count);
5537
5538 /* Step Two: Adjust the physical address of the current segment,
5539 if necessary. */
5540 if (isec == section_count)
5541 {
5542 /* All of the sections fitted within the segment as currently
5543 specified. This is the default case. Add the segment to
5544 the list of built segments and carry on to process the next
5545 program header in the input BFD. */
5546 map->count = section_count;
5547 *pointer_to_map = map;
5548 pointer_to_map = &map->next;
5549
5550 if (p_paddr_valid
5551 && !bed->want_p_paddr_set_to_zero
5552 && matching_lma != map->p_paddr
5553 && !map->includes_filehdr
5554 && !map->includes_phdrs)
5555 /* There is some padding before the first section in the
5556 segment. So, we must account for that in the output
5557 segment's vma. */
5558 map->p_vaddr_offset = matching_lma - map->p_paddr;
5559
5560 free (sections);
5561 continue;
5562 }
5563 else
5564 {
5565 if (!first_matching_lma)
5566 {
5567 /* At least one section fits inside the current segment.
5568 Keep it, but modify its physical address to match the
5569 LMA of the first section that fitted. */
5570 map->p_paddr = matching_lma;
5571 }
5572 else
5573 {
5574 /* None of the sections fitted inside the current segment.
5575 Change the current segment's physical address to match
5576 the LMA of the first section. */
5577 map->p_paddr = suggested_lma;
5578 }
5579
5580 /* Offset the segment physical address from the lma
5581 to allow for space taken up by elf headers. */
5582 if (map->includes_filehdr)
5583 {
5584 if (map->p_paddr >= iehdr->e_ehsize)
5585 map->p_paddr -= iehdr->e_ehsize;
5586 else
5587 {
5588 map->includes_filehdr = FALSE;
5589 map->includes_phdrs = FALSE;
5590 }
5591 }
5592
5593 if (map->includes_phdrs)
5594 {
5595 if (map->p_paddr >= iehdr->e_phnum * iehdr->e_phentsize)
5596 {
5597 map->p_paddr -= iehdr->e_phnum * iehdr->e_phentsize;
5598
5599 /* iehdr->e_phnum is just an estimate of the number
5600 of program headers that we will need. Make a note
5601 here of the number we used and the segment we chose
5602 to hold these headers, so that we can adjust the
5603 offset when we know the correct value. */
5604 phdr_adjust_num = iehdr->e_phnum;
5605 phdr_adjust_seg = map;
5606 }
5607 else
5608 map->includes_phdrs = FALSE;
5609 }
5610 }
5611
5612 /* Step Three: Loop over the sections again, this time assigning
5613 those that fit to the current segment and removing them from the
5614 sections array; but making sure not to leave large gaps. Once all
5615 possible sections have been assigned to the current segment it is
5616 added to the list of built segments and if sections still remain
5617 to be assigned, a new segment is constructed before repeating
5618 the loop. */
5619 isec = 0;
5620 do
5621 {
5622 map->count = 0;
5623 suggested_lma = 0;
5624 first_suggested_lma = TRUE;
5625
5626 /* Fill the current segment with sections that fit. */
5627 for (j = 0; j < section_count; j++)
5628 {
5629 section = sections[j];
5630
5631 if (section == NULL)
5632 continue;
5633
5634 output_section = section->output_section;
5635
5636 BFD_ASSERT (output_section != NULL);
5637
5638 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
5639 || IS_COREFILE_NOTE (segment, section))
5640 {
5641 if (map->count == 0)
5642 {
5643 /* If the first section in a segment does not start at
5644 the beginning of the segment, then something is
5645 wrong. */
5646 if (output_section->lma
5647 != (map->p_paddr
5648 + (map->includes_filehdr ? iehdr->e_ehsize : 0)
5649 + (map->includes_phdrs
5650 ? iehdr->e_phnum * iehdr->e_phentsize
5651 : 0)))
5652 abort ();
5653 }
5654 else
5655 {
5656 asection *prev_sec;
5657
5658 prev_sec = map->sections[map->count - 1];
5659
5660 /* If the gap between the end of the previous section
5661 and the start of this section is more than
5662 maxpagesize then we need to start a new segment. */
5663 if ((BFD_ALIGN (prev_sec->lma + prev_sec->size,
5664 maxpagesize)
5665 < BFD_ALIGN (output_section->lma, maxpagesize))
5666 || (prev_sec->lma + prev_sec->size
5667 > output_section->lma))
5668 {
5669 if (first_suggested_lma)
5670 {
5671 suggested_lma = output_section->lma;
5672 first_suggested_lma = FALSE;
5673 }
5674
5675 continue;
5676 }
5677 }
5678
5679 map->sections[map->count++] = output_section;
5680 ++isec;
5681 sections[j] = NULL;
5682 section->segment_mark = TRUE;
5683 }
5684 else if (first_suggested_lma)
5685 {
5686 suggested_lma = output_section->lma;
5687 first_suggested_lma = FALSE;
5688 }
5689 }
5690
5691 BFD_ASSERT (map->count > 0);
5692
5693 /* Add the current segment to the list of built segments. */
5694 *pointer_to_map = map;
5695 pointer_to_map = &map->next;
5696
5697 if (isec < section_count)
5698 {
5699 /* We still have not allocated all of the sections to
5700 segments. Create a new segment here, initialise it
5701 and carry on looping. */
5702 amt = sizeof (struct elf_segment_map);
5703 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5704 map = bfd_alloc (obfd, amt);
5705 if (map == NULL)
5706 {
5707 free (sections);
5708 return FALSE;
5709 }
5710
5711 /* Initialise the fields of the segment map. Set the physical
5712 physical address to the LMA of the first section that has
5713 not yet been assigned. */
5714 map->next = NULL;
5715 map->p_type = segment->p_type;
5716 map->p_flags = segment->p_flags;
5717 map->p_flags_valid = 1;
5718 map->p_paddr = suggested_lma;
5719 map->p_paddr_valid = p_paddr_valid;
5720 map->includes_filehdr = 0;
5721 map->includes_phdrs = 0;
5722 }
5723 }
5724 while (isec < section_count);
5725
5726 free (sections);
5727 }
5728
5729 elf_tdata (obfd)->segment_map = map_first;
5730
5731 /* If we had to estimate the number of program headers that were
5732 going to be needed, then check our estimate now and adjust
5733 the offset if necessary. */
5734 if (phdr_adjust_seg != NULL)
5735 {
5736 unsigned int count;
5737
5738 for (count = 0, map = map_first; map != NULL; map = map->next)
5739 count++;
5740
5741 if (count > phdr_adjust_num)
5742 phdr_adjust_seg->p_paddr
5743 -= (count - phdr_adjust_num) * iehdr->e_phentsize;
5744 }
5745
5746 #undef SEGMENT_END
5747 #undef SECTION_SIZE
5748 #undef IS_CONTAINED_BY_VMA
5749 #undef IS_CONTAINED_BY_LMA
5750 #undef IS_NOTE
5751 #undef IS_COREFILE_NOTE
5752 #undef IS_SOLARIS_PT_INTERP
5753 #undef IS_SECTION_IN_INPUT_SEGMENT
5754 #undef INCLUDE_SECTION_IN_SEGMENT
5755 #undef SEGMENT_AFTER_SEGMENT
5756 #undef SEGMENT_OVERLAPS
5757 return TRUE;
5758 }
5759
5760 /* Copy ELF program header information. */
5761
5762 static bfd_boolean
5763 copy_elf_program_header (bfd *ibfd, bfd *obfd)
5764 {
5765 Elf_Internal_Ehdr *iehdr;
5766 struct elf_segment_map *map;
5767 struct elf_segment_map *map_first;
5768 struct elf_segment_map **pointer_to_map;
5769 Elf_Internal_Phdr *segment;
5770 unsigned int i;
5771 unsigned int num_segments;
5772 bfd_boolean phdr_included = FALSE;
5773 bfd_boolean p_paddr_valid;
5774
5775 iehdr = elf_elfheader (ibfd);
5776
5777 map_first = NULL;
5778 pointer_to_map = &map_first;
5779
5780 /* If all the segment p_paddr fields are zero, don't set
5781 map->p_paddr_valid. */
5782 p_paddr_valid = FALSE;
5783 num_segments = elf_elfheader (ibfd)->e_phnum;
5784 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5785 i < num_segments;
5786 i++, segment++)
5787 if (segment->p_paddr != 0)
5788 {
5789 p_paddr_valid = TRUE;
5790 break;
5791 }
5792
5793 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5794 i < num_segments;
5795 i++, segment++)
5796 {
5797 asection *section;
5798 unsigned int section_count;
5799 bfd_size_type amt;
5800 Elf_Internal_Shdr *this_hdr;
5801 asection *first_section = NULL;
5802 asection *lowest_section = NULL;
5803
5804 /* Compute how many sections are in this segment. */
5805 for (section = ibfd->sections, section_count = 0;
5806 section != NULL;
5807 section = section->next)
5808 {
5809 this_hdr = &(elf_section_data(section)->this_hdr);
5810 if (ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr, segment))
5811 {
5812 if (!first_section)
5813 first_section = lowest_section = section;
5814 if (section->lma < lowest_section->lma)
5815 lowest_section = section;
5816 section_count++;
5817 }
5818 }
5819
5820 /* Allocate a segment map big enough to contain
5821 all of the sections we have selected. */
5822 amt = sizeof (struct elf_segment_map);
5823 if (section_count != 0)
5824 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5825 map = bfd_zalloc (obfd, amt);
5826 if (map == NULL)
5827 return FALSE;
5828
5829 /* Initialize the fields of the output segment map with the
5830 input segment. */
5831 map->next = NULL;
5832 map->p_type = segment->p_type;
5833 map->p_flags = segment->p_flags;
5834 map->p_flags_valid = 1;
5835 map->p_paddr = segment->p_paddr;
5836 map->p_paddr_valid = p_paddr_valid;
5837 map->p_align = segment->p_align;
5838 map->p_align_valid = 1;
5839 map->p_vaddr_offset = 0;
5840
5841 if (map->p_type == PT_GNU_RELRO
5842 && segment->p_filesz == segment->p_memsz)
5843 {
5844 /* The PT_GNU_RELRO segment may contain the first a few
5845 bytes in the .got.plt section even if the whole .got.plt
5846 section isn't in the PT_GNU_RELRO segment. We won't
5847 change the size of the PT_GNU_RELRO segment. */
5848 map->p_size = segment->p_filesz;
5849 map->p_size_valid = 1;
5850 }
5851
5852 /* Determine if this segment contains the ELF file header
5853 and if it contains the program headers themselves. */
5854 map->includes_filehdr = (segment->p_offset == 0
5855 && segment->p_filesz >= iehdr->e_ehsize);
5856
5857 map->includes_phdrs = 0;
5858 if (! phdr_included || segment->p_type != PT_LOAD)
5859 {
5860 map->includes_phdrs =
5861 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
5862 && (segment->p_offset + segment->p_filesz
5863 >= ((bfd_vma) iehdr->e_phoff
5864 + iehdr->e_phnum * iehdr->e_phentsize)));
5865
5866 if (segment->p_type == PT_LOAD && map->includes_phdrs)
5867 phdr_included = TRUE;
5868 }
5869
5870 if (map->includes_filehdr && first_section)
5871 /* We need to keep the space used by the headers fixed. */
5872 map->header_size = first_section->vma - segment->p_vaddr;
5873
5874 if (!map->includes_phdrs
5875 && !map->includes_filehdr
5876 && map->p_paddr_valid)
5877 /* There is some other padding before the first section. */
5878 map->p_vaddr_offset = ((lowest_section ? lowest_section->lma : 0)
5879 - segment->p_paddr);
5880
5881 if (section_count != 0)
5882 {
5883 unsigned int isec = 0;
5884
5885 for (section = first_section;
5886 section != NULL;
5887 section = section->next)
5888 {
5889 this_hdr = &(elf_section_data(section)->this_hdr);
5890 if (ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr, segment))
5891 {
5892 map->sections[isec++] = section->output_section;
5893 if (isec == section_count)
5894 break;
5895 }
5896 }
5897 }
5898
5899 map->count = section_count;
5900 *pointer_to_map = map;
5901 pointer_to_map = &map->next;
5902 }
5903
5904 elf_tdata (obfd)->segment_map = map_first;
5905 return TRUE;
5906 }
5907
5908 /* Copy private BFD data. This copies or rewrites ELF program header
5909 information. */
5910
5911 static bfd_boolean
5912 copy_private_bfd_data (bfd *ibfd, bfd *obfd)
5913 {
5914 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
5915 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
5916 return TRUE;
5917
5918 if (elf_tdata (ibfd)->phdr == NULL)
5919 return TRUE;
5920
5921 if (ibfd->xvec == obfd->xvec)
5922 {
5923 /* Check to see if any sections in the input BFD
5924 covered by ELF program header have changed. */
5925 Elf_Internal_Phdr *segment;
5926 asection *section, *osec;
5927 unsigned int i, num_segments;
5928 Elf_Internal_Shdr *this_hdr;
5929 const struct elf_backend_data *bed;
5930
5931 bed = get_elf_backend_data (ibfd);
5932
5933 /* Regenerate the segment map if p_paddr is set to 0. */
5934 if (bed->want_p_paddr_set_to_zero)
5935 goto rewrite;
5936
5937 /* Initialize the segment mark field. */
5938 for (section = obfd->sections; section != NULL;
5939 section = section->next)
5940 section->segment_mark = FALSE;
5941
5942 num_segments = elf_elfheader (ibfd)->e_phnum;
5943 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5944 i < num_segments;
5945 i++, segment++)
5946 {
5947 /* PR binutils/3535. The Solaris linker always sets the p_paddr
5948 and p_memsz fields of special segments (DYNAMIC, INTERP) to 0
5949 which severly confuses things, so always regenerate the segment
5950 map in this case. */
5951 if (segment->p_paddr == 0
5952 && segment->p_memsz == 0
5953 && (segment->p_type == PT_INTERP || segment->p_type == PT_DYNAMIC))
5954 goto rewrite;
5955
5956 for (section = ibfd->sections;
5957 section != NULL; section = section->next)
5958 {
5959 /* We mark the output section so that we know it comes
5960 from the input BFD. */
5961 osec = section->output_section;
5962 if (osec)
5963 osec->segment_mark = TRUE;
5964
5965 /* Check if this section is covered by the segment. */
5966 this_hdr = &(elf_section_data(section)->this_hdr);
5967 if (ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr, segment))
5968 {
5969 /* FIXME: Check if its output section is changed or
5970 removed. What else do we need to check? */
5971 if (osec == NULL
5972 || section->flags != osec->flags
5973 || section->lma != osec->lma
5974 || section->vma != osec->vma
5975 || section->size != osec->size
5976 || section->rawsize != osec->rawsize
5977 || section->alignment_power != osec->alignment_power)
5978 goto rewrite;
5979 }
5980 }
5981 }
5982
5983 /* Check to see if any output section do not come from the
5984 input BFD. */
5985 for (section = obfd->sections; section != NULL;
5986 section = section->next)
5987 {
5988 if (section->segment_mark == FALSE)
5989 goto rewrite;
5990 else
5991 section->segment_mark = FALSE;
5992 }
5993
5994 return copy_elf_program_header (ibfd, obfd);
5995 }
5996
5997 rewrite:
5998 return rewrite_elf_program_header (ibfd, obfd);
5999 }
6000
6001 /* Initialize private output section information from input section. */
6002
6003 bfd_boolean
6004 _bfd_elf_init_private_section_data (bfd *ibfd,
6005 asection *isec,
6006 bfd *obfd,
6007 asection *osec,
6008 struct bfd_link_info *link_info)
6009
6010 {
6011 Elf_Internal_Shdr *ihdr, *ohdr;
6012 bfd_boolean need_group = link_info == NULL || link_info->relocatable;
6013
6014 if (ibfd->xvec->flavour != bfd_target_elf_flavour
6015 || obfd->xvec->flavour != bfd_target_elf_flavour)
6016 return TRUE;
6017
6018 /* Don't copy the output ELF section type from input if the
6019 output BFD section flags have been set to something different.
6020 elf_fake_sections will set ELF section type based on BFD
6021 section flags. */
6022 if (elf_section_type (osec) == SHT_NULL
6023 && (osec->flags == isec->flags || !osec->flags))
6024 elf_section_type (osec) = elf_section_type (isec);
6025
6026 /* FIXME: Is this correct for all OS/PROC specific flags? */
6027 elf_section_flags (osec) |= (elf_section_flags (isec)
6028 & (SHF_MASKOS | SHF_MASKPROC));
6029
6030 /* Set things up for objcopy and relocatable link. The output
6031 SHT_GROUP section will have its elf_next_in_group pointing back
6032 to the input group members. Ignore linker created group section.
6033 See elfNN_ia64_object_p in elfxx-ia64.c. */
6034 if (need_group)
6035 {
6036 if (elf_sec_group (isec) == NULL
6037 || (elf_sec_group (isec)->flags & SEC_LINKER_CREATED) == 0)
6038 {
6039 if (elf_section_flags (isec) & SHF_GROUP)
6040 elf_section_flags (osec) |= SHF_GROUP;
6041 elf_next_in_group (osec) = elf_next_in_group (isec);
6042 elf_section_data (osec)->group = elf_section_data (isec)->group;
6043 }
6044 }
6045
6046 ihdr = &elf_section_data (isec)->this_hdr;
6047
6048 /* We need to handle elf_linked_to_section for SHF_LINK_ORDER. We
6049 don't use the output section of the linked-to section since it
6050 may be NULL at this point. */
6051 if ((ihdr->sh_flags & SHF_LINK_ORDER) != 0)
6052 {
6053 ohdr = &elf_section_data (osec)->this_hdr;
6054 ohdr->sh_flags |= SHF_LINK_ORDER;
6055 elf_linked_to_section (osec) = elf_linked_to_section (isec);
6056 }
6057
6058 osec->use_rela_p = isec->use_rela_p;
6059
6060 return TRUE;
6061 }
6062
6063 /* Copy private section information. This copies over the entsize
6064 field, and sometimes the info field. */
6065
6066 bfd_boolean
6067 _bfd_elf_copy_private_section_data (bfd *ibfd,
6068 asection *isec,
6069 bfd *obfd,
6070 asection *osec)
6071 {
6072 Elf_Internal_Shdr *ihdr, *ohdr;
6073
6074 if (ibfd->xvec->flavour != bfd_target_elf_flavour
6075 || obfd->xvec->flavour != bfd_target_elf_flavour)
6076 return TRUE;
6077
6078 ihdr = &elf_section_data (isec)->this_hdr;
6079 ohdr = &elf_section_data (osec)->this_hdr;
6080
6081 ohdr->sh_entsize = ihdr->sh_entsize;
6082
6083 if (ihdr->sh_type == SHT_SYMTAB
6084 || ihdr->sh_type == SHT_DYNSYM
6085 || ihdr->sh_type == SHT_GNU_verneed
6086 || ihdr->sh_type == SHT_GNU_verdef)
6087 ohdr->sh_info = ihdr->sh_info;
6088
6089 return _bfd_elf_init_private_section_data (ibfd, isec, obfd, osec,
6090 NULL);
6091 }
6092
6093 /* Copy private header information. */
6094
6095 bfd_boolean
6096 _bfd_elf_copy_private_header_data (bfd *ibfd, bfd *obfd)
6097 {
6098 asection *isec;
6099
6100 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
6101 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
6102 return TRUE;
6103
6104 /* Copy over private BFD data if it has not already been copied.
6105 This must be done here, rather than in the copy_private_bfd_data
6106 entry point, because the latter is called after the section
6107 contents have been set, which means that the program headers have
6108 already been worked out. */
6109 if (elf_tdata (obfd)->segment_map == NULL && elf_tdata (ibfd)->phdr != NULL)
6110 {
6111 if (! copy_private_bfd_data (ibfd, obfd))
6112 return FALSE;
6113 }
6114
6115 /* _bfd_elf_copy_private_section_data copied over the SHF_GROUP flag
6116 but this might be wrong if we deleted the group section. */
6117 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
6118 if (elf_section_type (isec) == SHT_GROUP
6119 && isec->output_section == NULL)
6120 {
6121 asection *first = elf_next_in_group (isec);
6122 asection *s = first;
6123 while (s != NULL)
6124 {
6125 if (s->output_section != NULL)
6126 {
6127 elf_section_flags (s->output_section) &= ~SHF_GROUP;
6128 elf_group_name (s->output_section) = NULL;
6129 }
6130 s = elf_next_in_group (s);
6131 if (s == first)
6132 break;
6133 }
6134 }
6135
6136 return TRUE;
6137 }
6138
6139 /* Copy private symbol information. If this symbol is in a section
6140 which we did not map into a BFD section, try to map the section
6141 index correctly. We use special macro definitions for the mapped
6142 section indices; these definitions are interpreted by the
6143 swap_out_syms function. */
6144
6145 #define MAP_ONESYMTAB (SHN_HIOS + 1)
6146 #define MAP_DYNSYMTAB (SHN_HIOS + 2)
6147 #define MAP_STRTAB (SHN_HIOS + 3)
6148 #define MAP_SHSTRTAB (SHN_HIOS + 4)
6149 #define MAP_SYM_SHNDX (SHN_HIOS + 5)
6150
6151 bfd_boolean
6152 _bfd_elf_copy_private_symbol_data (bfd *ibfd,
6153 asymbol *isymarg,
6154 bfd *obfd,
6155 asymbol *osymarg)
6156 {
6157 elf_symbol_type *isym, *osym;
6158
6159 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
6160 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
6161 return TRUE;
6162
6163 isym = elf_symbol_from (ibfd, isymarg);
6164 osym = elf_symbol_from (obfd, osymarg);
6165
6166 if (isym != NULL
6167 && isym->internal_elf_sym.st_shndx != 0
6168 && osym != NULL
6169 && bfd_is_abs_section (isym->symbol.section))
6170 {
6171 unsigned int shndx;
6172
6173 shndx = isym->internal_elf_sym.st_shndx;
6174 if (shndx == elf_onesymtab (ibfd))
6175 shndx = MAP_ONESYMTAB;
6176 else if (shndx == elf_dynsymtab (ibfd))
6177 shndx = MAP_DYNSYMTAB;
6178 else if (shndx == elf_tdata (ibfd)->strtab_section)
6179 shndx = MAP_STRTAB;
6180 else if (shndx == elf_tdata (ibfd)->shstrtab_section)
6181 shndx = MAP_SHSTRTAB;
6182 else if (shndx == elf_tdata (ibfd)->symtab_shndx_section)
6183 shndx = MAP_SYM_SHNDX;
6184 osym->internal_elf_sym.st_shndx = shndx;
6185 }
6186
6187 return TRUE;
6188 }
6189
6190 /* Swap out the symbols. */
6191
6192 static bfd_boolean
6193 swap_out_syms (bfd *abfd,
6194 struct bfd_strtab_hash **sttp,
6195 int relocatable_p)
6196 {
6197 const struct elf_backend_data *bed;
6198 int symcount;
6199 asymbol **syms;
6200 struct bfd_strtab_hash *stt;
6201 Elf_Internal_Shdr *symtab_hdr;
6202 Elf_Internal_Shdr *symtab_shndx_hdr;
6203 Elf_Internal_Shdr *symstrtab_hdr;
6204 bfd_byte *outbound_syms;
6205 bfd_byte *outbound_shndx;
6206 int idx;
6207 bfd_size_type amt;
6208 bfd_boolean name_local_sections;
6209
6210 if (!elf_map_symbols (abfd))
6211 return FALSE;
6212
6213 /* Dump out the symtabs. */
6214 stt = _bfd_elf_stringtab_init ();
6215 if (stt == NULL)
6216 return FALSE;
6217
6218 bed = get_elf_backend_data (abfd);
6219 symcount = bfd_get_symcount (abfd);
6220 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
6221 symtab_hdr->sh_type = SHT_SYMTAB;
6222 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
6223 symtab_hdr->sh_size = symtab_hdr->sh_entsize * (symcount + 1);
6224 symtab_hdr->sh_info = elf_num_locals (abfd) + 1;
6225 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
6226
6227 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
6228 symstrtab_hdr->sh_type = SHT_STRTAB;
6229
6230 outbound_syms = bfd_alloc2 (abfd, 1 + symcount, bed->s->sizeof_sym);
6231 if (outbound_syms == NULL)
6232 {
6233 _bfd_stringtab_free (stt);
6234 return FALSE;
6235 }
6236 symtab_hdr->contents = outbound_syms;
6237
6238 outbound_shndx = NULL;
6239 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
6240 if (symtab_shndx_hdr->sh_name != 0)
6241 {
6242 amt = (bfd_size_type) (1 + symcount) * sizeof (Elf_External_Sym_Shndx);
6243 outbound_shndx = bfd_zalloc2 (abfd, 1 + symcount,
6244 sizeof (Elf_External_Sym_Shndx));
6245 if (outbound_shndx == NULL)
6246 {
6247 _bfd_stringtab_free (stt);
6248 return FALSE;
6249 }
6250
6251 symtab_shndx_hdr->contents = outbound_shndx;
6252 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
6253 symtab_shndx_hdr->sh_size = amt;
6254 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
6255 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
6256 }
6257
6258 /* Now generate the data (for "contents"). */
6259 {
6260 /* Fill in zeroth symbol and swap it out. */
6261 Elf_Internal_Sym sym;
6262 sym.st_name = 0;
6263 sym.st_value = 0;
6264 sym.st_size = 0;
6265 sym.st_info = 0;
6266 sym.st_other = 0;
6267 sym.st_shndx = SHN_UNDEF;
6268 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
6269 outbound_syms += bed->s->sizeof_sym;
6270 if (outbound_shndx != NULL)
6271 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
6272 }
6273
6274 name_local_sections
6275 = (bed->elf_backend_name_local_section_symbols
6276 && bed->elf_backend_name_local_section_symbols (abfd));
6277
6278 syms = bfd_get_outsymbols (abfd);
6279 for (idx = 0; idx < symcount; idx++)
6280 {
6281 Elf_Internal_Sym sym;
6282 bfd_vma value = syms[idx]->value;
6283 elf_symbol_type *type_ptr;
6284 flagword flags = syms[idx]->flags;
6285 int type;
6286
6287 if (!name_local_sections
6288 && (flags & (BSF_SECTION_SYM | BSF_GLOBAL)) == BSF_SECTION_SYM)
6289 {
6290 /* Local section symbols have no name. */
6291 sym.st_name = 0;
6292 }
6293 else
6294 {
6295 sym.st_name = (unsigned long) _bfd_stringtab_add (stt,
6296 syms[idx]->name,
6297 TRUE, FALSE);
6298 if (sym.st_name == (unsigned long) -1)
6299 {
6300 _bfd_stringtab_free (stt);
6301 return FALSE;
6302 }
6303 }
6304
6305 type_ptr = elf_symbol_from (abfd, syms[idx]);
6306
6307 if ((flags & BSF_SECTION_SYM) == 0
6308 && bfd_is_com_section (syms[idx]->section))
6309 {
6310 /* ELF common symbols put the alignment into the `value' field,
6311 and the size into the `size' field. This is backwards from
6312 how BFD handles it, so reverse it here. */
6313 sym.st_size = value;
6314 if (type_ptr == NULL
6315 || type_ptr->internal_elf_sym.st_value == 0)
6316 sym.st_value = value >= 16 ? 16 : (1 << bfd_log2 (value));
6317 else
6318 sym.st_value = type_ptr->internal_elf_sym.st_value;
6319 sym.st_shndx = _bfd_elf_section_from_bfd_section
6320 (abfd, syms[idx]->section);
6321 }
6322 else
6323 {
6324 asection *sec = syms[idx]->section;
6325 unsigned int shndx;
6326
6327 if (sec->output_section)
6328 {
6329 value += sec->output_offset;
6330 sec = sec->output_section;
6331 }
6332
6333 /* Don't add in the section vma for relocatable output. */
6334 if (! relocatable_p)
6335 value += sec->vma;
6336 sym.st_value = value;
6337 sym.st_size = type_ptr ? type_ptr->internal_elf_sym.st_size : 0;
6338
6339 if (bfd_is_abs_section (sec)
6340 && type_ptr != NULL
6341 && type_ptr->internal_elf_sym.st_shndx != 0)
6342 {
6343 /* This symbol is in a real ELF section which we did
6344 not create as a BFD section. Undo the mapping done
6345 by copy_private_symbol_data. */
6346 shndx = type_ptr->internal_elf_sym.st_shndx;
6347 switch (shndx)
6348 {
6349 case MAP_ONESYMTAB:
6350 shndx = elf_onesymtab (abfd);
6351 break;
6352 case MAP_DYNSYMTAB:
6353 shndx = elf_dynsymtab (abfd);
6354 break;
6355 case MAP_STRTAB:
6356 shndx = elf_tdata (abfd)->strtab_section;
6357 break;
6358 case MAP_SHSTRTAB:
6359 shndx = elf_tdata (abfd)->shstrtab_section;
6360 break;
6361 case MAP_SYM_SHNDX:
6362 shndx = elf_tdata (abfd)->symtab_shndx_section;
6363 break;
6364 default:
6365 break;
6366 }
6367 }
6368 else
6369 {
6370 shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
6371
6372 if (shndx == SHN_BAD)
6373 {
6374 asection *sec2;
6375
6376 /* Writing this would be a hell of a lot easier if
6377 we had some decent documentation on bfd, and
6378 knew what to expect of the library, and what to
6379 demand of applications. For example, it
6380 appears that `objcopy' might not set the
6381 section of a symbol to be a section that is
6382 actually in the output file. */
6383 sec2 = bfd_get_section_by_name (abfd, sec->name);
6384 if (sec2 == NULL)
6385 {
6386 _bfd_error_handler (_("\
6387 Unable to find equivalent output section for symbol '%s' from section '%s'"),
6388 syms[idx]->name ? syms[idx]->name : "<Local sym>",
6389 sec->name);
6390 bfd_set_error (bfd_error_invalid_operation);
6391 _bfd_stringtab_free (stt);
6392 return FALSE;
6393 }
6394
6395 shndx = _bfd_elf_section_from_bfd_section (abfd, sec2);
6396 BFD_ASSERT (shndx != SHN_BAD);
6397 }
6398 }
6399
6400 sym.st_shndx = shndx;
6401 }
6402
6403 if ((flags & BSF_THREAD_LOCAL) != 0)
6404 type = STT_TLS;
6405 else if ((flags & BSF_FUNCTION) != 0)
6406 type = STT_FUNC;
6407 else if ((flags & BSF_OBJECT) != 0)
6408 type = STT_OBJECT;
6409 else if ((flags & BSF_RELC) != 0)
6410 type = STT_RELC;
6411 else if ((flags & BSF_SRELC) != 0)
6412 type = STT_SRELC;
6413 else
6414 type = STT_NOTYPE;
6415
6416 if (syms[idx]->section->flags & SEC_THREAD_LOCAL)
6417 type = STT_TLS;
6418
6419 /* Processor-specific types. */
6420 if (type_ptr != NULL
6421 && bed->elf_backend_get_symbol_type)
6422 type = ((*bed->elf_backend_get_symbol_type)
6423 (&type_ptr->internal_elf_sym, type));
6424
6425 if (flags & BSF_SECTION_SYM)
6426 {
6427 if (flags & BSF_GLOBAL)
6428 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6429 else
6430 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
6431 }
6432 else if (bfd_is_com_section (syms[idx]->section))
6433 {
6434 #ifdef USE_STT_COMMON
6435 if (type == STT_OBJECT)
6436 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_COMMON);
6437 else
6438 #endif
6439 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
6440 }
6441 else if (bfd_is_und_section (syms[idx]->section))
6442 sym.st_info = ELF_ST_INFO (((flags & BSF_WEAK)
6443 ? STB_WEAK
6444 : STB_GLOBAL),
6445 type);
6446 else if (flags & BSF_FILE)
6447 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
6448 else
6449 {
6450 int bind = STB_LOCAL;
6451
6452 if (flags & BSF_LOCAL)
6453 bind = STB_LOCAL;
6454 else if (flags & BSF_WEAK)
6455 bind = STB_WEAK;
6456 else if (flags & BSF_GLOBAL)
6457 bind = STB_GLOBAL;
6458
6459 sym.st_info = ELF_ST_INFO (bind, type);
6460 }
6461
6462 if (type_ptr != NULL)
6463 sym.st_other = type_ptr->internal_elf_sym.st_other;
6464 else
6465 sym.st_other = 0;
6466
6467 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
6468 outbound_syms += bed->s->sizeof_sym;
6469 if (outbound_shndx != NULL)
6470 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
6471 }
6472
6473 *sttp = stt;
6474 symstrtab_hdr->sh_size = _bfd_stringtab_size (stt);
6475 symstrtab_hdr->sh_type = SHT_STRTAB;
6476
6477 symstrtab_hdr->sh_flags = 0;
6478 symstrtab_hdr->sh_addr = 0;
6479 symstrtab_hdr->sh_entsize = 0;
6480 symstrtab_hdr->sh_link = 0;
6481 symstrtab_hdr->sh_info = 0;
6482 symstrtab_hdr->sh_addralign = 1;
6483
6484 return TRUE;
6485 }
6486
6487 /* Return the number of bytes required to hold the symtab vector.
6488
6489 Note that we base it on the count plus 1, since we will null terminate
6490 the vector allocated based on this size. However, the ELF symbol table
6491 always has a dummy entry as symbol #0, so it ends up even. */
6492
6493 long
6494 _bfd_elf_get_symtab_upper_bound (bfd *abfd)
6495 {
6496 long symcount;
6497 long symtab_size;
6498 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->symtab_hdr;
6499
6500 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
6501 symtab_size = (symcount + 1) * (sizeof (asymbol *));
6502 if (symcount > 0)
6503 symtab_size -= sizeof (asymbol *);
6504
6505 return symtab_size;
6506 }
6507
6508 long
6509 _bfd_elf_get_dynamic_symtab_upper_bound (bfd *abfd)
6510 {
6511 long symcount;
6512 long symtab_size;
6513 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->dynsymtab_hdr;
6514
6515 if (elf_dynsymtab (abfd) == 0)
6516 {
6517 bfd_set_error (bfd_error_invalid_operation);
6518 return -1;
6519 }
6520
6521 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
6522 symtab_size = (symcount + 1) * (sizeof (asymbol *));
6523 if (symcount > 0)
6524 symtab_size -= sizeof (asymbol *);
6525
6526 return symtab_size;
6527 }
6528
6529 long
6530 _bfd_elf_get_reloc_upper_bound (bfd *abfd ATTRIBUTE_UNUSED,
6531 sec_ptr asect)
6532 {
6533 return (asect->reloc_count + 1) * sizeof (arelent *);
6534 }
6535
6536 /* Canonicalize the relocs. */
6537
6538 long
6539 _bfd_elf_canonicalize_reloc (bfd *abfd,
6540 sec_ptr section,
6541 arelent **relptr,
6542 asymbol **symbols)
6543 {
6544 arelent *tblptr;
6545 unsigned int i;
6546 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6547
6548 if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE))
6549 return -1;
6550
6551 tblptr = section->relocation;
6552 for (i = 0; i < section->reloc_count; i++)
6553 *relptr++ = tblptr++;
6554
6555 *relptr = NULL;
6556
6557 return section->reloc_count;
6558 }
6559
6560 long
6561 _bfd_elf_canonicalize_symtab (bfd *abfd, asymbol **allocation)
6562 {
6563 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6564 long symcount = bed->s->slurp_symbol_table (abfd, allocation, FALSE);
6565
6566 if (symcount >= 0)
6567 bfd_get_symcount (abfd) = symcount;
6568 return symcount;
6569 }
6570
6571 long
6572 _bfd_elf_canonicalize_dynamic_symtab (bfd *abfd,
6573 asymbol **allocation)
6574 {
6575 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6576 long symcount = bed->s->slurp_symbol_table (abfd, allocation, TRUE);
6577
6578 if (symcount >= 0)
6579 bfd_get_dynamic_symcount (abfd) = symcount;
6580 return symcount;
6581 }
6582
6583 /* Return the size required for the dynamic reloc entries. Any loadable
6584 section that was actually installed in the BFD, and has type SHT_REL
6585 or SHT_RELA, and uses the dynamic symbol table, is considered to be a
6586 dynamic reloc section. */
6587
6588 long
6589 _bfd_elf_get_dynamic_reloc_upper_bound (bfd *abfd)
6590 {
6591 long ret;
6592 asection *s;
6593
6594 if (elf_dynsymtab (abfd) == 0)
6595 {
6596 bfd_set_error (bfd_error_invalid_operation);
6597 return -1;
6598 }
6599
6600 ret = sizeof (arelent *);
6601 for (s = abfd->sections; s != NULL; s = s->next)
6602 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
6603 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
6604 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
6605 ret += ((s->size / elf_section_data (s)->this_hdr.sh_entsize)
6606 * sizeof (arelent *));
6607
6608 return ret;
6609 }
6610
6611 /* Canonicalize the dynamic relocation entries. Note that we return the
6612 dynamic relocations as a single block, although they are actually
6613 associated with particular sections; the interface, which was
6614 designed for SunOS style shared libraries, expects that there is only
6615 one set of dynamic relocs. Any loadable section that was actually
6616 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses the
6617 dynamic symbol table, is considered to be a dynamic reloc section. */
6618
6619 long
6620 _bfd_elf_canonicalize_dynamic_reloc (bfd *abfd,
6621 arelent **storage,
6622 asymbol **syms)
6623 {
6624 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
6625 asection *s;
6626 long ret;
6627
6628 if (elf_dynsymtab (abfd) == 0)
6629 {
6630 bfd_set_error (bfd_error_invalid_operation);
6631 return -1;
6632 }
6633
6634 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
6635 ret = 0;
6636 for (s = abfd->sections; s != NULL; s = s->next)
6637 {
6638 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
6639 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
6640 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
6641 {
6642 arelent *p;
6643 long count, i;
6644
6645 if (! (*slurp_relocs) (abfd, s, syms, TRUE))
6646 return -1;
6647 count = s->size / elf_section_data (s)->this_hdr.sh_entsize;
6648 p = s->relocation;
6649 for (i = 0; i < count; i++)
6650 *storage++ = p++;
6651 ret += count;
6652 }
6653 }
6654
6655 *storage = NULL;
6656
6657 return ret;
6658 }
6659 \f
6660 /* Read in the version information. */
6661
6662 bfd_boolean
6663 _bfd_elf_slurp_version_tables (bfd *abfd, bfd_boolean default_imported_symver)
6664 {
6665 bfd_byte *contents = NULL;
6666 unsigned int freeidx = 0;
6667
6668 if (elf_dynverref (abfd) != 0)
6669 {
6670 Elf_Internal_Shdr *hdr;
6671 Elf_External_Verneed *everneed;
6672 Elf_Internal_Verneed *iverneed;
6673 unsigned int i;
6674 bfd_byte *contents_end;
6675
6676 hdr = &elf_tdata (abfd)->dynverref_hdr;
6677
6678 elf_tdata (abfd)->verref = bfd_zalloc2 (abfd, hdr->sh_info,
6679 sizeof (Elf_Internal_Verneed));
6680 if (elf_tdata (abfd)->verref == NULL)
6681 goto error_return;
6682
6683 elf_tdata (abfd)->cverrefs = hdr->sh_info;
6684
6685 contents = bfd_malloc (hdr->sh_size);
6686 if (contents == NULL)
6687 {
6688 error_return_verref:
6689 elf_tdata (abfd)->verref = NULL;
6690 elf_tdata (abfd)->cverrefs = 0;
6691 goto error_return;
6692 }
6693 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
6694 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
6695 goto error_return_verref;
6696
6697 if (hdr->sh_info && hdr->sh_size < sizeof (Elf_External_Verneed))
6698 goto error_return_verref;
6699
6700 BFD_ASSERT (sizeof (Elf_External_Verneed)
6701 == sizeof (Elf_External_Vernaux));
6702 contents_end = contents + hdr->sh_size - sizeof (Elf_External_Verneed);
6703 everneed = (Elf_External_Verneed *) contents;
6704 iverneed = elf_tdata (abfd)->verref;
6705 for (i = 0; i < hdr->sh_info; i++, iverneed++)
6706 {
6707 Elf_External_Vernaux *evernaux;
6708 Elf_Internal_Vernaux *ivernaux;
6709 unsigned int j;
6710
6711 _bfd_elf_swap_verneed_in (abfd, everneed, iverneed);
6712
6713 iverneed->vn_bfd = abfd;
6714
6715 iverneed->vn_filename =
6716 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
6717 iverneed->vn_file);
6718 if (iverneed->vn_filename == NULL)
6719 goto error_return_verref;
6720
6721 if (iverneed->vn_cnt == 0)
6722 iverneed->vn_auxptr = NULL;
6723 else
6724 {
6725 iverneed->vn_auxptr = bfd_alloc2 (abfd, iverneed->vn_cnt,
6726 sizeof (Elf_Internal_Vernaux));
6727 if (iverneed->vn_auxptr == NULL)
6728 goto error_return_verref;
6729 }
6730
6731 if (iverneed->vn_aux
6732 > (size_t) (contents_end - (bfd_byte *) everneed))
6733 goto error_return_verref;
6734
6735 evernaux = ((Elf_External_Vernaux *)
6736 ((bfd_byte *) everneed + iverneed->vn_aux));
6737 ivernaux = iverneed->vn_auxptr;
6738 for (j = 0; j < iverneed->vn_cnt; j++, ivernaux++)
6739 {
6740 _bfd_elf_swap_vernaux_in (abfd, evernaux, ivernaux);
6741
6742 ivernaux->vna_nodename =
6743 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
6744 ivernaux->vna_name);
6745 if (ivernaux->vna_nodename == NULL)
6746 goto error_return_verref;
6747
6748 if (j + 1 < iverneed->vn_cnt)
6749 ivernaux->vna_nextptr = ivernaux + 1;
6750 else
6751 ivernaux->vna_nextptr = NULL;
6752
6753 if (ivernaux->vna_next
6754 > (size_t) (contents_end - (bfd_byte *) evernaux))
6755 goto error_return_verref;
6756
6757 evernaux = ((Elf_External_Vernaux *)
6758 ((bfd_byte *) evernaux + ivernaux->vna_next));
6759
6760 if (ivernaux->vna_other > freeidx)
6761 freeidx = ivernaux->vna_other;
6762 }
6763
6764 if (i + 1 < hdr->sh_info)
6765 iverneed->vn_nextref = iverneed + 1;
6766 else
6767 iverneed->vn_nextref = NULL;
6768
6769 if (iverneed->vn_next
6770 > (size_t) (contents_end - (bfd_byte *) everneed))
6771 goto error_return_verref;
6772
6773 everneed = ((Elf_External_Verneed *)
6774 ((bfd_byte *) everneed + iverneed->vn_next));
6775 }
6776
6777 free (contents);
6778 contents = NULL;
6779 }
6780
6781 if (elf_dynverdef (abfd) != 0)
6782 {
6783 Elf_Internal_Shdr *hdr;
6784 Elf_External_Verdef *everdef;
6785 Elf_Internal_Verdef *iverdef;
6786 Elf_Internal_Verdef *iverdefarr;
6787 Elf_Internal_Verdef iverdefmem;
6788 unsigned int i;
6789 unsigned int maxidx;
6790 bfd_byte *contents_end_def, *contents_end_aux;
6791
6792 hdr = &elf_tdata (abfd)->dynverdef_hdr;
6793
6794 contents = bfd_malloc (hdr->sh_size);
6795 if (contents == NULL)
6796 goto error_return;
6797 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
6798 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
6799 goto error_return;
6800
6801 if (hdr->sh_info && hdr->sh_size < sizeof (Elf_External_Verdef))
6802 goto error_return;
6803
6804 BFD_ASSERT (sizeof (Elf_External_Verdef)
6805 >= sizeof (Elf_External_Verdaux));
6806 contents_end_def = contents + hdr->sh_size
6807 - sizeof (Elf_External_Verdef);
6808 contents_end_aux = contents + hdr->sh_size
6809 - sizeof (Elf_External_Verdaux);
6810
6811 /* We know the number of entries in the section but not the maximum
6812 index. Therefore we have to run through all entries and find
6813 the maximum. */
6814 everdef = (Elf_External_Verdef *) contents;
6815 maxidx = 0;
6816 for (i = 0; i < hdr->sh_info; ++i)
6817 {
6818 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
6819
6820 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) > maxidx)
6821 maxidx = iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION);
6822
6823 if (iverdefmem.vd_next
6824 > (size_t) (contents_end_def - (bfd_byte *) everdef))
6825 goto error_return;
6826
6827 everdef = ((Elf_External_Verdef *)
6828 ((bfd_byte *) everdef + iverdefmem.vd_next));
6829 }
6830
6831 if (default_imported_symver)
6832 {
6833 if (freeidx > maxidx)
6834 maxidx = ++freeidx;
6835 else
6836 freeidx = ++maxidx;
6837 }
6838 elf_tdata (abfd)->verdef = bfd_zalloc2 (abfd, maxidx,
6839 sizeof (Elf_Internal_Verdef));
6840 if (elf_tdata (abfd)->verdef == NULL)
6841 goto error_return;
6842
6843 elf_tdata (abfd)->cverdefs = maxidx;
6844
6845 everdef = (Elf_External_Verdef *) contents;
6846 iverdefarr = elf_tdata (abfd)->verdef;
6847 for (i = 0; i < hdr->sh_info; i++)
6848 {
6849 Elf_External_Verdaux *everdaux;
6850 Elf_Internal_Verdaux *iverdaux;
6851 unsigned int j;
6852
6853 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
6854
6855 if ((iverdefmem.vd_ndx & VERSYM_VERSION) == 0)
6856 {
6857 error_return_verdef:
6858 elf_tdata (abfd)->verdef = NULL;
6859 elf_tdata (abfd)->cverdefs = 0;
6860 goto error_return;
6861 }
6862
6863 iverdef = &iverdefarr[(iverdefmem.vd_ndx & VERSYM_VERSION) - 1];
6864 memcpy (iverdef, &iverdefmem, sizeof (Elf_Internal_Verdef));
6865
6866 iverdef->vd_bfd = abfd;
6867
6868 if (iverdef->vd_cnt == 0)
6869 iverdef->vd_auxptr = NULL;
6870 else
6871 {
6872 iverdef->vd_auxptr = bfd_alloc2 (abfd, iverdef->vd_cnt,
6873 sizeof (Elf_Internal_Verdaux));
6874 if (iverdef->vd_auxptr == NULL)
6875 goto error_return_verdef;
6876 }
6877
6878 if (iverdef->vd_aux
6879 > (size_t) (contents_end_aux - (bfd_byte *) everdef))
6880 goto error_return_verdef;
6881
6882 everdaux = ((Elf_External_Verdaux *)
6883 ((bfd_byte *) everdef + iverdef->vd_aux));
6884 iverdaux = iverdef->vd_auxptr;
6885 for (j = 0; j < iverdef->vd_cnt; j++, iverdaux++)
6886 {
6887 _bfd_elf_swap_verdaux_in (abfd, everdaux, iverdaux);
6888
6889 iverdaux->vda_nodename =
6890 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
6891 iverdaux->vda_name);
6892 if (iverdaux->vda_nodename == NULL)
6893 goto error_return_verdef;
6894
6895 if (j + 1 < iverdef->vd_cnt)
6896 iverdaux->vda_nextptr = iverdaux + 1;
6897 else
6898 iverdaux->vda_nextptr = NULL;
6899
6900 if (iverdaux->vda_next
6901 > (size_t) (contents_end_aux - (bfd_byte *) everdaux))
6902 goto error_return_verdef;
6903
6904 everdaux = ((Elf_External_Verdaux *)
6905 ((bfd_byte *) everdaux + iverdaux->vda_next));
6906 }
6907
6908 if (iverdef->vd_cnt)
6909 iverdef->vd_nodename = iverdef->vd_auxptr->vda_nodename;
6910
6911 if ((size_t) (iverdef - iverdefarr) + 1 < maxidx)
6912 iverdef->vd_nextdef = iverdef + 1;
6913 else
6914 iverdef->vd_nextdef = NULL;
6915
6916 everdef = ((Elf_External_Verdef *)
6917 ((bfd_byte *) everdef + iverdef->vd_next));
6918 }
6919
6920 free (contents);
6921 contents = NULL;
6922 }
6923 else if (default_imported_symver)
6924 {
6925 if (freeidx < 3)
6926 freeidx = 3;
6927 else
6928 freeidx++;
6929
6930 elf_tdata (abfd)->verdef = bfd_zalloc2 (abfd, freeidx,
6931 sizeof (Elf_Internal_Verdef));
6932 if (elf_tdata (abfd)->verdef == NULL)
6933 goto error_return;
6934
6935 elf_tdata (abfd)->cverdefs = freeidx;
6936 }
6937
6938 /* Create a default version based on the soname. */
6939 if (default_imported_symver)
6940 {
6941 Elf_Internal_Verdef *iverdef;
6942 Elf_Internal_Verdaux *iverdaux;
6943
6944 iverdef = &elf_tdata (abfd)->verdef[freeidx - 1];;
6945
6946 iverdef->vd_version = VER_DEF_CURRENT;
6947 iverdef->vd_flags = 0;
6948 iverdef->vd_ndx = freeidx;
6949 iverdef->vd_cnt = 1;
6950
6951 iverdef->vd_bfd = abfd;
6952
6953 iverdef->vd_nodename = bfd_elf_get_dt_soname (abfd);
6954 if (iverdef->vd_nodename == NULL)
6955 goto error_return_verdef;
6956 iverdef->vd_nextdef = NULL;
6957 iverdef->vd_auxptr = bfd_alloc (abfd, sizeof (Elf_Internal_Verdaux));
6958 if (iverdef->vd_auxptr == NULL)
6959 goto error_return_verdef;
6960
6961 iverdaux = iverdef->vd_auxptr;
6962 iverdaux->vda_nodename = iverdef->vd_nodename;
6963 iverdaux->vda_nextptr = NULL;
6964 }
6965
6966 return TRUE;
6967
6968 error_return:
6969 if (contents != NULL)
6970 free (contents);
6971 return FALSE;
6972 }
6973 \f
6974 asymbol *
6975 _bfd_elf_make_empty_symbol (bfd *abfd)
6976 {
6977 elf_symbol_type *newsym;
6978 bfd_size_type amt = sizeof (elf_symbol_type);
6979
6980 newsym = bfd_zalloc (abfd, amt);
6981 if (!newsym)
6982 return NULL;
6983 else
6984 {
6985 newsym->symbol.the_bfd = abfd;
6986 return &newsym->symbol;
6987 }
6988 }
6989
6990 void
6991 _bfd_elf_get_symbol_info (bfd *abfd ATTRIBUTE_UNUSED,
6992 asymbol *symbol,
6993 symbol_info *ret)
6994 {
6995 bfd_symbol_info (symbol, ret);
6996 }
6997
6998 /* Return whether a symbol name implies a local symbol. Most targets
6999 use this function for the is_local_label_name entry point, but some
7000 override it. */
7001
7002 bfd_boolean
7003 _bfd_elf_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED,
7004 const char *name)
7005 {
7006 /* Normal local symbols start with ``.L''. */
7007 if (name[0] == '.' && name[1] == 'L')
7008 return TRUE;
7009
7010 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
7011 DWARF debugging symbols starting with ``..''. */
7012 if (name[0] == '.' && name[1] == '.')
7013 return TRUE;
7014
7015 /* gcc will sometimes generate symbols beginning with ``_.L_'' when
7016 emitting DWARF debugging output. I suspect this is actually a
7017 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
7018 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
7019 underscore to be emitted on some ELF targets). For ease of use,
7020 we treat such symbols as local. */
7021 if (name[0] == '_' && name[1] == '.' && name[2] == 'L' && name[3] == '_')
7022 return TRUE;
7023
7024 return FALSE;
7025 }
7026
7027 alent *
7028 _bfd_elf_get_lineno (bfd *abfd ATTRIBUTE_UNUSED,
7029 asymbol *symbol ATTRIBUTE_UNUSED)
7030 {
7031 abort ();
7032 return NULL;
7033 }
7034
7035 bfd_boolean
7036 _bfd_elf_set_arch_mach (bfd *abfd,
7037 enum bfd_architecture arch,
7038 unsigned long machine)
7039 {
7040 /* If this isn't the right architecture for this backend, and this
7041 isn't the generic backend, fail. */
7042 if (arch != get_elf_backend_data (abfd)->arch
7043 && arch != bfd_arch_unknown
7044 && get_elf_backend_data (abfd)->arch != bfd_arch_unknown)
7045 return FALSE;
7046
7047 return bfd_default_set_arch_mach (abfd, arch, machine);
7048 }
7049
7050 /* Find the function to a particular section and offset,
7051 for error reporting. */
7052
7053 static bfd_boolean
7054 elf_find_function (bfd *abfd,
7055 asection *section,
7056 asymbol **symbols,
7057 bfd_vma offset,
7058 const char **filename_ptr,
7059 const char **functionname_ptr)
7060 {
7061 const char *filename;
7062 asymbol *func, *file;
7063 bfd_vma low_func;
7064 asymbol **p;
7065 /* ??? Given multiple file symbols, it is impossible to reliably
7066 choose the right file name for global symbols. File symbols are
7067 local symbols, and thus all file symbols must sort before any
7068 global symbols. The ELF spec may be interpreted to say that a
7069 file symbol must sort before other local symbols, but currently
7070 ld -r doesn't do this. So, for ld -r output, it is possible to
7071 make a better choice of file name for local symbols by ignoring
7072 file symbols appearing after a given local symbol. */
7073 enum { nothing_seen, symbol_seen, file_after_symbol_seen } state;
7074 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7075
7076 filename = NULL;
7077 func = NULL;
7078 file = NULL;
7079 low_func = 0;
7080 state = nothing_seen;
7081
7082 for (p = symbols; *p != NULL; p++)
7083 {
7084 elf_symbol_type *q;
7085 unsigned int type;
7086
7087 q = (elf_symbol_type *) *p;
7088
7089 type = ELF_ST_TYPE (q->internal_elf_sym.st_info);
7090 switch (type)
7091 {
7092 case STT_FILE:
7093 file = &q->symbol;
7094 if (state == symbol_seen)
7095 state = file_after_symbol_seen;
7096 continue;
7097 default:
7098 if (!bed->is_function_type (type))
7099 break;
7100 case STT_NOTYPE:
7101 if (bfd_get_section (&q->symbol) == section
7102 && q->symbol.value >= low_func
7103 && q->symbol.value <= offset)
7104 {
7105 func = (asymbol *) q;
7106 low_func = q->symbol.value;
7107 filename = NULL;
7108 if (file != NULL
7109 && (ELF_ST_BIND (q->internal_elf_sym.st_info) == STB_LOCAL
7110 || state != file_after_symbol_seen))
7111 filename = bfd_asymbol_name (file);
7112 }
7113 break;
7114 }
7115 if (state == nothing_seen)
7116 state = symbol_seen;
7117 }
7118
7119 if (func == NULL)
7120 return FALSE;
7121
7122 if (filename_ptr)
7123 *filename_ptr = filename;
7124 if (functionname_ptr)
7125 *functionname_ptr = bfd_asymbol_name (func);
7126
7127 return TRUE;
7128 }
7129
7130 /* Find the nearest line to a particular section and offset,
7131 for error reporting. */
7132
7133 bfd_boolean
7134 _bfd_elf_find_nearest_line (bfd *abfd,
7135 asection *section,
7136 asymbol **symbols,
7137 bfd_vma offset,
7138 const char **filename_ptr,
7139 const char **functionname_ptr,
7140 unsigned int *line_ptr)
7141 {
7142 bfd_boolean found;
7143
7144 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
7145 filename_ptr, functionname_ptr,
7146 line_ptr))
7147 {
7148 if (!*functionname_ptr)
7149 elf_find_function (abfd, section, symbols, offset,
7150 *filename_ptr ? NULL : filename_ptr,
7151 functionname_ptr);
7152
7153 return TRUE;
7154 }
7155
7156 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
7157 filename_ptr, functionname_ptr,
7158 line_ptr, 0,
7159 &elf_tdata (abfd)->dwarf2_find_line_info))
7160 {
7161 if (!*functionname_ptr)
7162 elf_find_function (abfd, section, symbols, offset,
7163 *filename_ptr ? NULL : filename_ptr,
7164 functionname_ptr);
7165
7166 return TRUE;
7167 }
7168
7169 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
7170 &found, filename_ptr,
7171 functionname_ptr, line_ptr,
7172 &elf_tdata (abfd)->line_info))
7173 return FALSE;
7174 if (found && (*functionname_ptr || *line_ptr))
7175 return TRUE;
7176
7177 if (symbols == NULL)
7178 return FALSE;
7179
7180 if (! elf_find_function (abfd, section, symbols, offset,
7181 filename_ptr, functionname_ptr))
7182 return FALSE;
7183
7184 *line_ptr = 0;
7185 return TRUE;
7186 }
7187
7188 /* Find the line for a symbol. */
7189
7190 bfd_boolean
7191 _bfd_elf_find_line (bfd *abfd, asymbol **symbols, asymbol *symbol,
7192 const char **filename_ptr, unsigned int *line_ptr)
7193 {
7194 return _bfd_dwarf2_find_line (abfd, symbols, symbol,
7195 filename_ptr, line_ptr, 0,
7196 &elf_tdata (abfd)->dwarf2_find_line_info);
7197 }
7198
7199 /* After a call to bfd_find_nearest_line, successive calls to
7200 bfd_find_inliner_info can be used to get source information about
7201 each level of function inlining that terminated at the address
7202 passed to bfd_find_nearest_line. Currently this is only supported
7203 for DWARF2 with appropriate DWARF3 extensions. */
7204
7205 bfd_boolean
7206 _bfd_elf_find_inliner_info (bfd *abfd,
7207 const char **filename_ptr,
7208 const char **functionname_ptr,
7209 unsigned int *line_ptr)
7210 {
7211 bfd_boolean found;
7212 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
7213 functionname_ptr, line_ptr,
7214 & elf_tdata (abfd)->dwarf2_find_line_info);
7215 return found;
7216 }
7217
7218 int
7219 _bfd_elf_sizeof_headers (bfd *abfd, struct bfd_link_info *info)
7220 {
7221 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7222 int ret = bed->s->sizeof_ehdr;
7223
7224 if (!info->relocatable)
7225 {
7226 bfd_size_type phdr_size = elf_tdata (abfd)->program_header_size;
7227
7228 if (phdr_size == (bfd_size_type) -1)
7229 {
7230 struct elf_segment_map *m;
7231
7232 phdr_size = 0;
7233 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
7234 phdr_size += bed->s->sizeof_phdr;
7235
7236 if (phdr_size == 0)
7237 phdr_size = get_program_header_size (abfd, info);
7238 }
7239
7240 elf_tdata (abfd)->program_header_size = phdr_size;
7241 ret += phdr_size;
7242 }
7243
7244 return ret;
7245 }
7246
7247 bfd_boolean
7248 _bfd_elf_set_section_contents (bfd *abfd,
7249 sec_ptr section,
7250 const void *location,
7251 file_ptr offset,
7252 bfd_size_type count)
7253 {
7254 Elf_Internal_Shdr *hdr;
7255 bfd_signed_vma pos;
7256
7257 if (! abfd->output_has_begun
7258 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
7259 return FALSE;
7260
7261 hdr = &elf_section_data (section)->this_hdr;
7262 pos = hdr->sh_offset + offset;
7263 if (bfd_seek (abfd, pos, SEEK_SET) != 0
7264 || bfd_bwrite (location, count, abfd) != count)
7265 return FALSE;
7266
7267 return TRUE;
7268 }
7269
7270 void
7271 _bfd_elf_no_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED,
7272 arelent *cache_ptr ATTRIBUTE_UNUSED,
7273 Elf_Internal_Rela *dst ATTRIBUTE_UNUSED)
7274 {
7275 abort ();
7276 }
7277
7278 /* Try to convert a non-ELF reloc into an ELF one. */
7279
7280 bfd_boolean
7281 _bfd_elf_validate_reloc (bfd *abfd, arelent *areloc)
7282 {
7283 /* Check whether we really have an ELF howto. */
7284
7285 if ((*areloc->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec)
7286 {
7287 bfd_reloc_code_real_type code;
7288 reloc_howto_type *howto;
7289
7290 /* Alien reloc: Try to determine its type to replace it with an
7291 equivalent ELF reloc. */
7292
7293 if (areloc->howto->pc_relative)
7294 {
7295 switch (areloc->howto->bitsize)
7296 {
7297 case 8:
7298 code = BFD_RELOC_8_PCREL;
7299 break;
7300 case 12:
7301 code = BFD_RELOC_12_PCREL;
7302 break;
7303 case 16:
7304 code = BFD_RELOC_16_PCREL;
7305 break;
7306 case 24:
7307 code = BFD_RELOC_24_PCREL;
7308 break;
7309 case 32:
7310 code = BFD_RELOC_32_PCREL;
7311 break;
7312 case 64:
7313 code = BFD_RELOC_64_PCREL;
7314 break;
7315 default:
7316 goto fail;
7317 }
7318
7319 howto = bfd_reloc_type_lookup (abfd, code);
7320
7321 if (areloc->howto->pcrel_offset != howto->pcrel_offset)
7322 {
7323 if (howto->pcrel_offset)
7324 areloc->addend += areloc->address;
7325 else
7326 areloc->addend -= areloc->address; /* addend is unsigned!! */
7327 }
7328 }
7329 else
7330 {
7331 switch (areloc->howto->bitsize)
7332 {
7333 case 8:
7334 code = BFD_RELOC_8;
7335 break;
7336 case 14:
7337 code = BFD_RELOC_14;
7338 break;
7339 case 16:
7340 code = BFD_RELOC_16;
7341 break;
7342 case 26:
7343 code = BFD_RELOC_26;
7344 break;
7345 case 32:
7346 code = BFD_RELOC_32;
7347 break;
7348 case 64:
7349 code = BFD_RELOC_64;
7350 break;
7351 default:
7352 goto fail;
7353 }
7354
7355 howto = bfd_reloc_type_lookup (abfd, code);
7356 }
7357
7358 if (howto)
7359 areloc->howto = howto;
7360 else
7361 goto fail;
7362 }
7363
7364 return TRUE;
7365
7366 fail:
7367 (*_bfd_error_handler)
7368 (_("%B: unsupported relocation type %s"),
7369 abfd, areloc->howto->name);
7370 bfd_set_error (bfd_error_bad_value);
7371 return FALSE;
7372 }
7373
7374 bfd_boolean
7375 _bfd_elf_close_and_cleanup (bfd *abfd)
7376 {
7377 if (bfd_get_format (abfd) == bfd_object)
7378 {
7379 if (elf_tdata (abfd) != NULL && elf_shstrtab (abfd) != NULL)
7380 _bfd_elf_strtab_free (elf_shstrtab (abfd));
7381 _bfd_dwarf2_cleanup_debug_info (abfd);
7382 }
7383
7384 return _bfd_generic_close_and_cleanup (abfd);
7385 }
7386
7387 /* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
7388 in the relocation's offset. Thus we cannot allow any sort of sanity
7389 range-checking to interfere. There is nothing else to do in processing
7390 this reloc. */
7391
7392 bfd_reloc_status_type
7393 _bfd_elf_rel_vtable_reloc_fn
7394 (bfd *abfd ATTRIBUTE_UNUSED, arelent *re ATTRIBUTE_UNUSED,
7395 struct bfd_symbol *symbol ATTRIBUTE_UNUSED,
7396 void *data ATTRIBUTE_UNUSED, asection *is ATTRIBUTE_UNUSED,
7397 bfd *obfd ATTRIBUTE_UNUSED, char **errmsg ATTRIBUTE_UNUSED)
7398 {
7399 return bfd_reloc_ok;
7400 }
7401 \f
7402 /* Elf core file support. Much of this only works on native
7403 toolchains, since we rely on knowing the
7404 machine-dependent procfs structure in order to pick
7405 out details about the corefile. */
7406
7407 #ifdef HAVE_SYS_PROCFS_H
7408 # include <sys/procfs.h>
7409 #endif
7410
7411 /* FIXME: this is kinda wrong, but it's what gdb wants. */
7412
7413 static int
7414 elfcore_make_pid (bfd *abfd)
7415 {
7416 return ((elf_tdata (abfd)->core_lwpid << 16)
7417 + (elf_tdata (abfd)->core_pid));
7418 }
7419
7420 /* If there isn't a section called NAME, make one, using
7421 data from SECT. Note, this function will generate a
7422 reference to NAME, so you shouldn't deallocate or
7423 overwrite it. */
7424
7425 static bfd_boolean
7426 elfcore_maybe_make_sect (bfd *abfd, char *name, asection *sect)
7427 {
7428 asection *sect2;
7429
7430 if (bfd_get_section_by_name (abfd, name) != NULL)
7431 return TRUE;
7432
7433 sect2 = bfd_make_section_with_flags (abfd, name, sect->flags);
7434 if (sect2 == NULL)
7435 return FALSE;
7436
7437 sect2->size = sect->size;
7438 sect2->filepos = sect->filepos;
7439 sect2->alignment_power = sect->alignment_power;
7440 return TRUE;
7441 }
7442
7443 /* Create a pseudosection containing SIZE bytes at FILEPOS. This
7444 actually creates up to two pseudosections:
7445 - For the single-threaded case, a section named NAME, unless
7446 such a section already exists.
7447 - For the multi-threaded case, a section named "NAME/PID", where
7448 PID is elfcore_make_pid (abfd).
7449 Both pseudosections have identical contents. */
7450 bfd_boolean
7451 _bfd_elfcore_make_pseudosection (bfd *abfd,
7452 char *name,
7453 size_t size,
7454 ufile_ptr filepos)
7455 {
7456 char buf[100];
7457 char *threaded_name;
7458 size_t len;
7459 asection *sect;
7460
7461 /* Build the section name. */
7462
7463 sprintf (buf, "%s/%d", name, elfcore_make_pid (abfd));
7464 len = strlen (buf) + 1;
7465 threaded_name = bfd_alloc (abfd, len);
7466 if (threaded_name == NULL)
7467 return FALSE;
7468 memcpy (threaded_name, buf, len);
7469
7470 sect = bfd_make_section_anyway_with_flags (abfd, threaded_name,
7471 SEC_HAS_CONTENTS);
7472 if (sect == NULL)
7473 return FALSE;
7474 sect->size = size;
7475 sect->filepos = filepos;
7476 sect->alignment_power = 2;
7477
7478 return elfcore_maybe_make_sect (abfd, name, sect);
7479 }
7480
7481 /* prstatus_t exists on:
7482 solaris 2.5+
7483 linux 2.[01] + glibc
7484 unixware 4.2
7485 */
7486
7487 #if defined (HAVE_PRSTATUS_T)
7488
7489 static bfd_boolean
7490 elfcore_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
7491 {
7492 size_t size;
7493 int offset;
7494
7495 if (note->descsz == sizeof (prstatus_t))
7496 {
7497 prstatus_t prstat;
7498
7499 size = sizeof (prstat.pr_reg);
7500 offset = offsetof (prstatus_t, pr_reg);
7501 memcpy (&prstat, note->descdata, sizeof (prstat));
7502
7503 /* Do not overwrite the core signal if it
7504 has already been set by another thread. */
7505 if (elf_tdata (abfd)->core_signal == 0)
7506 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
7507 elf_tdata (abfd)->core_pid = prstat.pr_pid;
7508
7509 /* pr_who exists on:
7510 solaris 2.5+
7511 unixware 4.2
7512 pr_who doesn't exist on:
7513 linux 2.[01]
7514 */
7515 #if defined (HAVE_PRSTATUS_T_PR_WHO)
7516 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
7517 #endif
7518 }
7519 #if defined (HAVE_PRSTATUS32_T)
7520 else if (note->descsz == sizeof (prstatus32_t))
7521 {
7522 /* 64-bit host, 32-bit corefile */
7523 prstatus32_t prstat;
7524
7525 size = sizeof (prstat.pr_reg);
7526 offset = offsetof (prstatus32_t, pr_reg);
7527 memcpy (&prstat, note->descdata, sizeof (prstat));
7528
7529 /* Do not overwrite the core signal if it
7530 has already been set by another thread. */
7531 if (elf_tdata (abfd)->core_signal == 0)
7532 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
7533 elf_tdata (abfd)->core_pid = prstat.pr_pid;
7534
7535 /* pr_who exists on:
7536 solaris 2.5+
7537 unixware 4.2
7538 pr_who doesn't exist on:
7539 linux 2.[01]
7540 */
7541 #if defined (HAVE_PRSTATUS32_T_PR_WHO)
7542 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
7543 #endif
7544 }
7545 #endif /* HAVE_PRSTATUS32_T */
7546 else
7547 {
7548 /* Fail - we don't know how to handle any other
7549 note size (ie. data object type). */
7550 return TRUE;
7551 }
7552
7553 /* Make a ".reg/999" section and a ".reg" section. */
7554 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
7555 size, note->descpos + offset);
7556 }
7557 #endif /* defined (HAVE_PRSTATUS_T) */
7558
7559 /* Create a pseudosection containing the exact contents of NOTE. */
7560 static bfd_boolean
7561 elfcore_make_note_pseudosection (bfd *abfd,
7562 char *name,
7563 Elf_Internal_Note *note)
7564 {
7565 return _bfd_elfcore_make_pseudosection (abfd, name,
7566 note->descsz, note->descpos);
7567 }
7568
7569 /* There isn't a consistent prfpregset_t across platforms,
7570 but it doesn't matter, because we don't have to pick this
7571 data structure apart. */
7572
7573 static bfd_boolean
7574 elfcore_grok_prfpreg (bfd *abfd, Elf_Internal_Note *note)
7575 {
7576 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
7577 }
7578
7579 /* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
7580 type of NT_PRXFPREG. Just include the whole note's contents
7581 literally. */
7582
7583 static bfd_boolean
7584 elfcore_grok_prxfpreg (bfd *abfd, Elf_Internal_Note *note)
7585 {
7586 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
7587 }
7588
7589 static bfd_boolean
7590 elfcore_grok_ppc_vmx (bfd *abfd, Elf_Internal_Note *note)
7591 {
7592 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vmx", note);
7593 }
7594
7595 static bfd_boolean
7596 elfcore_grok_ppc_vsx (bfd *abfd, Elf_Internal_Note *note)
7597 {
7598 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vsx", note);
7599 }
7600
7601 #if defined (HAVE_PRPSINFO_T)
7602 typedef prpsinfo_t elfcore_psinfo_t;
7603 #if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
7604 typedef prpsinfo32_t elfcore_psinfo32_t;
7605 #endif
7606 #endif
7607
7608 #if defined (HAVE_PSINFO_T)
7609 typedef psinfo_t elfcore_psinfo_t;
7610 #if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
7611 typedef psinfo32_t elfcore_psinfo32_t;
7612 #endif
7613 #endif
7614
7615 /* return a malloc'ed copy of a string at START which is at
7616 most MAX bytes long, possibly without a terminating '\0'.
7617 the copy will always have a terminating '\0'. */
7618
7619 char *
7620 _bfd_elfcore_strndup (bfd *abfd, char *start, size_t max)
7621 {
7622 char *dups;
7623 char *end = memchr (start, '\0', max);
7624 size_t len;
7625
7626 if (end == NULL)
7627 len = max;
7628 else
7629 len = end - start;
7630
7631 dups = bfd_alloc (abfd, len + 1);
7632 if (dups == NULL)
7633 return NULL;
7634
7635 memcpy (dups, start, len);
7636 dups[len] = '\0';
7637
7638 return dups;
7639 }
7640
7641 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7642 static bfd_boolean
7643 elfcore_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
7644 {
7645 if (note->descsz == sizeof (elfcore_psinfo_t))
7646 {
7647 elfcore_psinfo_t psinfo;
7648
7649 memcpy (&psinfo, note->descdata, sizeof (psinfo));
7650
7651 elf_tdata (abfd)->core_program
7652 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
7653 sizeof (psinfo.pr_fname));
7654
7655 elf_tdata (abfd)->core_command
7656 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
7657 sizeof (psinfo.pr_psargs));
7658 }
7659 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
7660 else if (note->descsz == sizeof (elfcore_psinfo32_t))
7661 {
7662 /* 64-bit host, 32-bit corefile */
7663 elfcore_psinfo32_t psinfo;
7664
7665 memcpy (&psinfo, note->descdata, sizeof (psinfo));
7666
7667 elf_tdata (abfd)->core_program
7668 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
7669 sizeof (psinfo.pr_fname));
7670
7671 elf_tdata (abfd)->core_command
7672 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
7673 sizeof (psinfo.pr_psargs));
7674 }
7675 #endif
7676
7677 else
7678 {
7679 /* Fail - we don't know how to handle any other
7680 note size (ie. data object type). */
7681 return TRUE;
7682 }
7683
7684 /* Note that for some reason, a spurious space is tacked
7685 onto the end of the args in some (at least one anyway)
7686 implementations, so strip it off if it exists. */
7687
7688 {
7689 char *command = elf_tdata (abfd)->core_command;
7690 int n = strlen (command);
7691
7692 if (0 < n && command[n - 1] == ' ')
7693 command[n - 1] = '\0';
7694 }
7695
7696 return TRUE;
7697 }
7698 #endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
7699
7700 #if defined (HAVE_PSTATUS_T)
7701 static bfd_boolean
7702 elfcore_grok_pstatus (bfd *abfd, Elf_Internal_Note *note)
7703 {
7704 if (note->descsz == sizeof (pstatus_t)
7705 #if defined (HAVE_PXSTATUS_T)
7706 || note->descsz == sizeof (pxstatus_t)
7707 #endif
7708 )
7709 {
7710 pstatus_t pstat;
7711
7712 memcpy (&pstat, note->descdata, sizeof (pstat));
7713
7714 elf_tdata (abfd)->core_pid = pstat.pr_pid;
7715 }
7716 #if defined (HAVE_PSTATUS32_T)
7717 else if (note->descsz == sizeof (pstatus32_t))
7718 {
7719 /* 64-bit host, 32-bit corefile */
7720 pstatus32_t pstat;
7721
7722 memcpy (&pstat, note->descdata, sizeof (pstat));
7723
7724 elf_tdata (abfd)->core_pid = pstat.pr_pid;
7725 }
7726 #endif
7727 /* Could grab some more details from the "representative"
7728 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
7729 NT_LWPSTATUS note, presumably. */
7730
7731 return TRUE;
7732 }
7733 #endif /* defined (HAVE_PSTATUS_T) */
7734
7735 #if defined (HAVE_LWPSTATUS_T)
7736 static bfd_boolean
7737 elfcore_grok_lwpstatus (bfd *abfd, Elf_Internal_Note *note)
7738 {
7739 lwpstatus_t lwpstat;
7740 char buf[100];
7741 char *name;
7742 size_t len;
7743 asection *sect;
7744
7745 if (note->descsz != sizeof (lwpstat)
7746 #if defined (HAVE_LWPXSTATUS_T)
7747 && note->descsz != sizeof (lwpxstatus_t)
7748 #endif
7749 )
7750 return TRUE;
7751
7752 memcpy (&lwpstat, note->descdata, sizeof (lwpstat));
7753
7754 elf_tdata (abfd)->core_lwpid = lwpstat.pr_lwpid;
7755 elf_tdata (abfd)->core_signal = lwpstat.pr_cursig;
7756
7757 /* Make a ".reg/999" section. */
7758
7759 sprintf (buf, ".reg/%d", elfcore_make_pid (abfd));
7760 len = strlen (buf) + 1;
7761 name = bfd_alloc (abfd, len);
7762 if (name == NULL)
7763 return FALSE;
7764 memcpy (name, buf, len);
7765
7766 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
7767 if (sect == NULL)
7768 return FALSE;
7769
7770 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7771 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.gregs);
7772 sect->filepos = note->descpos
7773 + offsetof (lwpstatus_t, pr_context.uc_mcontext.gregs);
7774 #endif
7775
7776 #if defined (HAVE_LWPSTATUS_T_PR_REG)
7777 sect->size = sizeof (lwpstat.pr_reg);
7778 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_reg);
7779 #endif
7780
7781 sect->alignment_power = 2;
7782
7783 if (!elfcore_maybe_make_sect (abfd, ".reg", sect))
7784 return FALSE;
7785
7786 /* Make a ".reg2/999" section */
7787
7788 sprintf (buf, ".reg2/%d", elfcore_make_pid (abfd));
7789 len = strlen (buf) + 1;
7790 name = bfd_alloc (abfd, len);
7791 if (name == NULL)
7792 return FALSE;
7793 memcpy (name, buf, len);
7794
7795 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
7796 if (sect == NULL)
7797 return FALSE;
7798
7799 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7800 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.fpregs);
7801 sect->filepos = note->descpos
7802 + offsetof (lwpstatus_t, pr_context.uc_mcontext.fpregs);
7803 #endif
7804
7805 #if defined (HAVE_LWPSTATUS_T_PR_FPREG)
7806 sect->size = sizeof (lwpstat.pr_fpreg);
7807 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_fpreg);
7808 #endif
7809
7810 sect->alignment_power = 2;
7811
7812 return elfcore_maybe_make_sect (abfd, ".reg2", sect);
7813 }
7814 #endif /* defined (HAVE_LWPSTATUS_T) */
7815
7816 static bfd_boolean
7817 elfcore_grok_win32pstatus (bfd *abfd, Elf_Internal_Note *note)
7818 {
7819 char buf[30];
7820 char *name;
7821 size_t len;
7822 asection *sect;
7823 int type;
7824 int is_active_thread;
7825 bfd_vma base_addr;
7826
7827 if (note->descsz < 728)
7828 return TRUE;
7829
7830 if (! CONST_STRNEQ (note->namedata, "win32"))
7831 return TRUE;
7832
7833 type = bfd_get_32 (abfd, note->descdata);
7834
7835 switch (type)
7836 {
7837 case 1 /* NOTE_INFO_PROCESS */:
7838 /* FIXME: need to add ->core_command. */
7839 /* process_info.pid */
7840 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 8);
7841 /* process_info.signal */
7842 elf_tdata (abfd)->core_signal = bfd_get_32 (abfd, note->descdata + 12);
7843 break;
7844
7845 case 2 /* NOTE_INFO_THREAD */:
7846 /* Make a ".reg/999" section. */
7847 /* thread_info.tid */
7848 sprintf (buf, ".reg/%ld", (long) bfd_get_32 (abfd, note->descdata + 8));
7849
7850 len = strlen (buf) + 1;
7851 name = bfd_alloc (abfd, len);
7852 if (name == NULL)
7853 return FALSE;
7854
7855 memcpy (name, buf, len);
7856
7857 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
7858 if (sect == NULL)
7859 return FALSE;
7860
7861 /* sizeof (thread_info.thread_context) */
7862 sect->size = 716;
7863 /* offsetof (thread_info.thread_context) */
7864 sect->filepos = note->descpos + 12;
7865 sect->alignment_power = 2;
7866
7867 /* thread_info.is_active_thread */
7868 is_active_thread = bfd_get_32 (abfd, note->descdata + 8);
7869
7870 if (is_active_thread)
7871 if (! elfcore_maybe_make_sect (abfd, ".reg", sect))
7872 return FALSE;
7873 break;
7874
7875 case 3 /* NOTE_INFO_MODULE */:
7876 /* Make a ".module/xxxxxxxx" section. */
7877 /* module_info.base_address */
7878 base_addr = bfd_get_32 (abfd, note->descdata + 4);
7879 sprintf (buf, ".module/%08lx", (unsigned long) base_addr);
7880
7881 len = strlen (buf) + 1;
7882 name = bfd_alloc (abfd, len);
7883 if (name == NULL)
7884 return FALSE;
7885
7886 memcpy (name, buf, len);
7887
7888 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
7889
7890 if (sect == NULL)
7891 return FALSE;
7892
7893 sect->size = note->descsz;
7894 sect->filepos = note->descpos;
7895 sect->alignment_power = 2;
7896 break;
7897
7898 default:
7899 return TRUE;
7900 }
7901
7902 return TRUE;
7903 }
7904
7905 static bfd_boolean
7906 elfcore_grok_note (bfd *abfd, Elf_Internal_Note *note)
7907 {
7908 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7909
7910 switch (note->type)
7911 {
7912 default:
7913 return TRUE;
7914
7915 case NT_PRSTATUS:
7916 if (bed->elf_backend_grok_prstatus)
7917 if ((*bed->elf_backend_grok_prstatus) (abfd, note))
7918 return TRUE;
7919 #if defined (HAVE_PRSTATUS_T)
7920 return elfcore_grok_prstatus (abfd, note);
7921 #else
7922 return TRUE;
7923 #endif
7924
7925 #if defined (HAVE_PSTATUS_T)
7926 case NT_PSTATUS:
7927 return elfcore_grok_pstatus (abfd, note);
7928 #endif
7929
7930 #if defined (HAVE_LWPSTATUS_T)
7931 case NT_LWPSTATUS:
7932 return elfcore_grok_lwpstatus (abfd, note);
7933 #endif
7934
7935 case NT_FPREGSET: /* FIXME: rename to NT_PRFPREG */
7936 return elfcore_grok_prfpreg (abfd, note);
7937
7938 case NT_WIN32PSTATUS:
7939 return elfcore_grok_win32pstatus (abfd, note);
7940
7941 case NT_PRXFPREG: /* Linux SSE extension */
7942 if (note->namesz == 6
7943 && strcmp (note->namedata, "LINUX") == 0)
7944 return elfcore_grok_prxfpreg (abfd, note);
7945 else
7946 return TRUE;
7947
7948 case NT_PPC_VMX:
7949 if (note->namesz == 6
7950 && strcmp (note->namedata, "LINUX") == 0)
7951 return elfcore_grok_ppc_vmx (abfd, note);
7952 else
7953 return TRUE;
7954
7955 case NT_PPC_VSX:
7956 if (note->namesz == 6
7957 && strcmp (note->namedata, "LINUX") == 0)
7958 return elfcore_grok_ppc_vsx (abfd, note);
7959 else
7960 return TRUE;
7961
7962 case NT_PRPSINFO:
7963 case NT_PSINFO:
7964 if (bed->elf_backend_grok_psinfo)
7965 if ((*bed->elf_backend_grok_psinfo) (abfd, note))
7966 return TRUE;
7967 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7968 return elfcore_grok_psinfo (abfd, note);
7969 #else
7970 return TRUE;
7971 #endif
7972
7973 case NT_AUXV:
7974 {
7975 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
7976 SEC_HAS_CONTENTS);
7977
7978 if (sect == NULL)
7979 return FALSE;
7980 sect->size = note->descsz;
7981 sect->filepos = note->descpos;
7982 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
7983
7984 return TRUE;
7985 }
7986 }
7987 }
7988
7989 static bfd_boolean
7990 elfobj_grok_gnu_build_id (bfd *abfd, Elf_Internal_Note *note)
7991 {
7992 elf_tdata (abfd)->build_id_size = note->descsz;
7993 elf_tdata (abfd)->build_id = bfd_alloc (abfd, note->descsz);
7994 if (elf_tdata (abfd)->build_id == NULL)
7995 return FALSE;
7996
7997 memcpy (elf_tdata (abfd)->build_id, note->descdata, note->descsz);
7998
7999 return TRUE;
8000 }
8001
8002 static bfd_boolean
8003 elfobj_grok_gnu_note (bfd *abfd, Elf_Internal_Note *note)
8004 {
8005 switch (note->type)
8006 {
8007 default:
8008 return TRUE;
8009
8010 case NT_GNU_BUILD_ID:
8011 return elfobj_grok_gnu_build_id (abfd, note);
8012 }
8013 }
8014
8015 static bfd_boolean
8016 elfcore_netbsd_get_lwpid (Elf_Internal_Note *note, int *lwpidp)
8017 {
8018 char *cp;
8019
8020 cp = strchr (note->namedata, '@');
8021 if (cp != NULL)
8022 {
8023 *lwpidp = atoi(cp + 1);
8024 return TRUE;
8025 }
8026 return FALSE;
8027 }
8028
8029 static bfd_boolean
8030 elfcore_grok_netbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
8031 {
8032 /* Signal number at offset 0x08. */
8033 elf_tdata (abfd)->core_signal
8034 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
8035
8036 /* Process ID at offset 0x50. */
8037 elf_tdata (abfd)->core_pid
8038 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x50);
8039
8040 /* Command name at 0x7c (max 32 bytes, including nul). */
8041 elf_tdata (abfd)->core_command
8042 = _bfd_elfcore_strndup (abfd, note->descdata + 0x7c, 31);
8043
8044 return elfcore_make_note_pseudosection (abfd, ".note.netbsdcore.procinfo",
8045 note);
8046 }
8047
8048 static bfd_boolean
8049 elfcore_grok_netbsd_note (bfd *abfd, Elf_Internal_Note *note)
8050 {
8051 int lwp;
8052
8053 if (elfcore_netbsd_get_lwpid (note, &lwp))
8054 elf_tdata (abfd)->core_lwpid = lwp;
8055
8056 if (note->type == NT_NETBSDCORE_PROCINFO)
8057 {
8058 /* NetBSD-specific core "procinfo". Note that we expect to
8059 find this note before any of the others, which is fine,
8060 since the kernel writes this note out first when it
8061 creates a core file. */
8062
8063 return elfcore_grok_netbsd_procinfo (abfd, note);
8064 }
8065
8066 /* As of Jan 2002 there are no other machine-independent notes
8067 defined for NetBSD core files. If the note type is less
8068 than the start of the machine-dependent note types, we don't
8069 understand it. */
8070
8071 if (note->type < NT_NETBSDCORE_FIRSTMACH)
8072 return TRUE;
8073
8074
8075 switch (bfd_get_arch (abfd))
8076 {
8077 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
8078 PT_GETFPREGS == mach+2. */
8079
8080 case bfd_arch_alpha:
8081 case bfd_arch_sparc:
8082 switch (note->type)
8083 {
8084 case NT_NETBSDCORE_FIRSTMACH+0:
8085 return elfcore_make_note_pseudosection (abfd, ".reg", note);
8086
8087 case NT_NETBSDCORE_FIRSTMACH+2:
8088 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
8089
8090 default:
8091 return TRUE;
8092 }
8093
8094 /* On all other arch's, PT_GETREGS == mach+1 and
8095 PT_GETFPREGS == mach+3. */
8096
8097 default:
8098 switch (note->type)
8099 {
8100 case NT_NETBSDCORE_FIRSTMACH+1:
8101 return elfcore_make_note_pseudosection (abfd, ".reg", note);
8102
8103 case NT_NETBSDCORE_FIRSTMACH+3:
8104 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
8105
8106 default:
8107 return TRUE;
8108 }
8109 }
8110 /* NOTREACHED */
8111 }
8112
8113 static bfd_boolean
8114 elfcore_grok_openbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
8115 {
8116 /* Signal number at offset 0x08. */
8117 elf_tdata (abfd)->core_signal
8118 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
8119
8120 /* Process ID at offset 0x20. */
8121 elf_tdata (abfd)->core_pid
8122 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x20);
8123
8124 /* Command name at 0x48 (max 32 bytes, including nul). */
8125 elf_tdata (abfd)->core_command
8126 = _bfd_elfcore_strndup (abfd, note->descdata + 0x48, 31);
8127
8128 return TRUE;
8129 }
8130
8131 static bfd_boolean
8132 elfcore_grok_openbsd_note (bfd *abfd, Elf_Internal_Note *note)
8133 {
8134 if (note->type == NT_OPENBSD_PROCINFO)
8135 return elfcore_grok_openbsd_procinfo (abfd, note);
8136
8137 if (note->type == NT_OPENBSD_REGS)
8138 return elfcore_make_note_pseudosection (abfd, ".reg", note);
8139
8140 if (note->type == NT_OPENBSD_FPREGS)
8141 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
8142
8143 if (note->type == NT_OPENBSD_XFPREGS)
8144 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
8145
8146 if (note->type == NT_OPENBSD_AUXV)
8147 {
8148 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
8149 SEC_HAS_CONTENTS);
8150
8151 if (sect == NULL)
8152 return FALSE;
8153 sect->size = note->descsz;
8154 sect->filepos = note->descpos;
8155 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
8156
8157 return TRUE;
8158 }
8159
8160 if (note->type == NT_OPENBSD_WCOOKIE)
8161 {
8162 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".wcookie",
8163 SEC_HAS_CONTENTS);
8164
8165 if (sect == NULL)
8166 return FALSE;
8167 sect->size = note->descsz;
8168 sect->filepos = note->descpos;
8169 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
8170
8171 return TRUE;
8172 }
8173
8174 return TRUE;
8175 }
8176
8177 static bfd_boolean
8178 elfcore_grok_nto_status (bfd *abfd, Elf_Internal_Note *note, long *tid)
8179 {
8180 void *ddata = note->descdata;
8181 char buf[100];
8182 char *name;
8183 asection *sect;
8184 short sig;
8185 unsigned flags;
8186
8187 /* nto_procfs_status 'pid' field is at offset 0. */
8188 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, (bfd_byte *) ddata);
8189
8190 /* nto_procfs_status 'tid' field is at offset 4. Pass it back. */
8191 *tid = bfd_get_32 (abfd, (bfd_byte *) ddata + 4);
8192
8193 /* nto_procfs_status 'flags' field is at offset 8. */
8194 flags = bfd_get_32 (abfd, (bfd_byte *) ddata + 8);
8195
8196 /* nto_procfs_status 'what' field is at offset 14. */
8197 if ((sig = bfd_get_16 (abfd, (bfd_byte *) ddata + 14)) > 0)
8198 {
8199 elf_tdata (abfd)->core_signal = sig;
8200 elf_tdata (abfd)->core_lwpid = *tid;
8201 }
8202
8203 /* _DEBUG_FLAG_CURTID (current thread) is 0x80. Some cores
8204 do not come from signals so we make sure we set the current
8205 thread just in case. */
8206 if (flags & 0x00000080)
8207 elf_tdata (abfd)->core_lwpid = *tid;
8208
8209 /* Make a ".qnx_core_status/%d" section. */
8210 sprintf (buf, ".qnx_core_status/%ld", *tid);
8211
8212 name = bfd_alloc (abfd, strlen (buf) + 1);
8213 if (name == NULL)
8214 return FALSE;
8215 strcpy (name, buf);
8216
8217 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8218 if (sect == NULL)
8219 return FALSE;
8220
8221 sect->size = note->descsz;
8222 sect->filepos = note->descpos;
8223 sect->alignment_power = 2;
8224
8225 return (elfcore_maybe_make_sect (abfd, ".qnx_core_status", sect));
8226 }
8227
8228 static bfd_boolean
8229 elfcore_grok_nto_regs (bfd *abfd,
8230 Elf_Internal_Note *note,
8231 long tid,
8232 char *base)
8233 {
8234 char buf[100];
8235 char *name;
8236 asection *sect;
8237
8238 /* Make a "(base)/%d" section. */
8239 sprintf (buf, "%s/%ld", base, tid);
8240
8241 name = bfd_alloc (abfd, strlen (buf) + 1);
8242 if (name == NULL)
8243 return FALSE;
8244 strcpy (name, buf);
8245
8246 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8247 if (sect == NULL)
8248 return FALSE;
8249
8250 sect->size = note->descsz;
8251 sect->filepos = note->descpos;
8252 sect->alignment_power = 2;
8253
8254 /* This is the current thread. */
8255 if (elf_tdata (abfd)->core_lwpid == tid)
8256 return elfcore_maybe_make_sect (abfd, base, sect);
8257
8258 return TRUE;
8259 }
8260
8261 #define BFD_QNT_CORE_INFO 7
8262 #define BFD_QNT_CORE_STATUS 8
8263 #define BFD_QNT_CORE_GREG 9
8264 #define BFD_QNT_CORE_FPREG 10
8265
8266 static bfd_boolean
8267 elfcore_grok_nto_note (bfd *abfd, Elf_Internal_Note *note)
8268 {
8269 /* Every GREG section has a STATUS section before it. Store the
8270 tid from the previous call to pass down to the next gregs
8271 function. */
8272 static long tid = 1;
8273
8274 switch (note->type)
8275 {
8276 case BFD_QNT_CORE_INFO:
8277 return elfcore_make_note_pseudosection (abfd, ".qnx_core_info", note);
8278 case BFD_QNT_CORE_STATUS:
8279 return elfcore_grok_nto_status (abfd, note, &tid);
8280 case BFD_QNT_CORE_GREG:
8281 return elfcore_grok_nto_regs (abfd, note, tid, ".reg");
8282 case BFD_QNT_CORE_FPREG:
8283 return elfcore_grok_nto_regs (abfd, note, tid, ".reg2");
8284 default:
8285 return TRUE;
8286 }
8287 }
8288
8289 static bfd_boolean
8290 elfcore_grok_spu_note (bfd *abfd, Elf_Internal_Note *note)
8291 {
8292 char *name;
8293 asection *sect;
8294 size_t len;
8295
8296 /* Use note name as section name. */
8297 len = note->namesz;
8298 name = bfd_alloc (abfd, len);
8299 if (name == NULL)
8300 return FALSE;
8301 memcpy (name, note->namedata, len);
8302 name[len - 1] = '\0';
8303
8304 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8305 if (sect == NULL)
8306 return FALSE;
8307
8308 sect->size = note->descsz;
8309 sect->filepos = note->descpos;
8310 sect->alignment_power = 1;
8311
8312 return TRUE;
8313 }
8314
8315 /* Function: elfcore_write_note
8316
8317 Inputs:
8318 buffer to hold note, and current size of buffer
8319 name of note
8320 type of note
8321 data for note
8322 size of data for note
8323
8324 Writes note to end of buffer. ELF64 notes are written exactly as
8325 for ELF32, despite the current (as of 2006) ELF gabi specifying
8326 that they ought to have 8-byte namesz and descsz field, and have
8327 8-byte alignment. Other writers, eg. Linux kernel, do the same.
8328
8329 Return:
8330 Pointer to realloc'd buffer, *BUFSIZ updated. */
8331
8332 char *
8333 elfcore_write_note (bfd *abfd,
8334 char *buf,
8335 int *bufsiz,
8336 const char *name,
8337 int type,
8338 const void *input,
8339 int size)
8340 {
8341 Elf_External_Note *xnp;
8342 size_t namesz;
8343 size_t newspace;
8344 char *dest;
8345
8346 namesz = 0;
8347 if (name != NULL)
8348 namesz = strlen (name) + 1;
8349
8350 newspace = 12 + ((namesz + 3) & -4) + ((size + 3) & -4);
8351
8352 buf = realloc (buf, *bufsiz + newspace);
8353 if (buf == NULL)
8354 return buf;
8355 dest = buf + *bufsiz;
8356 *bufsiz += newspace;
8357 xnp = (Elf_External_Note *) dest;
8358 H_PUT_32 (abfd, namesz, xnp->namesz);
8359 H_PUT_32 (abfd, size, xnp->descsz);
8360 H_PUT_32 (abfd, type, xnp->type);
8361 dest = xnp->name;
8362 if (name != NULL)
8363 {
8364 memcpy (dest, name, namesz);
8365 dest += namesz;
8366 while (namesz & 3)
8367 {
8368 *dest++ = '\0';
8369 ++namesz;
8370 }
8371 }
8372 memcpy (dest, input, size);
8373 dest += size;
8374 while (size & 3)
8375 {
8376 *dest++ = '\0';
8377 ++size;
8378 }
8379 return buf;
8380 }
8381
8382 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
8383 char *
8384 elfcore_write_prpsinfo (bfd *abfd,
8385 char *buf,
8386 int *bufsiz,
8387 const char *fname,
8388 const char *psargs)
8389 {
8390 const char *note_name = "CORE";
8391 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8392
8393 if (bed->elf_backend_write_core_note != NULL)
8394 {
8395 char *ret;
8396 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
8397 NT_PRPSINFO, fname, psargs);
8398 if (ret != NULL)
8399 return ret;
8400 }
8401
8402 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
8403 if (bed->s->elfclass == ELFCLASS32)
8404 {
8405 #if defined (HAVE_PSINFO32_T)
8406 psinfo32_t data;
8407 int note_type = NT_PSINFO;
8408 #else
8409 prpsinfo32_t data;
8410 int note_type = NT_PRPSINFO;
8411 #endif
8412
8413 memset (&data, 0, sizeof (data));
8414 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
8415 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
8416 return elfcore_write_note (abfd, buf, bufsiz,
8417 note_name, note_type, &data, sizeof (data));
8418 }
8419 else
8420 #endif
8421 {
8422 #if defined (HAVE_PSINFO_T)
8423 psinfo_t data;
8424 int note_type = NT_PSINFO;
8425 #else
8426 prpsinfo_t data;
8427 int note_type = NT_PRPSINFO;
8428 #endif
8429
8430 memset (&data, 0, sizeof (data));
8431 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
8432 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
8433 return elfcore_write_note (abfd, buf, bufsiz,
8434 note_name, note_type, &data, sizeof (data));
8435 }
8436 }
8437 #endif /* PSINFO_T or PRPSINFO_T */
8438
8439 #if defined (HAVE_PRSTATUS_T)
8440 char *
8441 elfcore_write_prstatus (bfd *abfd,
8442 char *buf,
8443 int *bufsiz,
8444 long pid,
8445 int cursig,
8446 const void *gregs)
8447 {
8448 const char *note_name = "CORE";
8449 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8450
8451 if (bed->elf_backend_write_core_note != NULL)
8452 {
8453 char *ret;
8454 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
8455 NT_PRSTATUS,
8456 pid, cursig, gregs);
8457 if (ret != NULL)
8458 return ret;
8459 }
8460
8461 #if defined (HAVE_PRSTATUS32_T)
8462 if (bed->s->elfclass == ELFCLASS32)
8463 {
8464 prstatus32_t prstat;
8465
8466 memset (&prstat, 0, sizeof (prstat));
8467 prstat.pr_pid = pid;
8468 prstat.pr_cursig = cursig;
8469 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
8470 return elfcore_write_note (abfd, buf, bufsiz, note_name,
8471 NT_PRSTATUS, &prstat, sizeof (prstat));
8472 }
8473 else
8474 #endif
8475 {
8476 prstatus_t prstat;
8477
8478 memset (&prstat, 0, sizeof (prstat));
8479 prstat.pr_pid = pid;
8480 prstat.pr_cursig = cursig;
8481 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
8482 return elfcore_write_note (abfd, buf, bufsiz, note_name,
8483 NT_PRSTATUS, &prstat, sizeof (prstat));
8484 }
8485 }
8486 #endif /* HAVE_PRSTATUS_T */
8487
8488 #if defined (HAVE_LWPSTATUS_T)
8489 char *
8490 elfcore_write_lwpstatus (bfd *abfd,
8491 char *buf,
8492 int *bufsiz,
8493 long pid,
8494 int cursig,
8495 const void *gregs)
8496 {
8497 lwpstatus_t lwpstat;
8498 const char *note_name = "CORE";
8499
8500 memset (&lwpstat, 0, sizeof (lwpstat));
8501 lwpstat.pr_lwpid = pid >> 16;
8502 lwpstat.pr_cursig = cursig;
8503 #if defined (HAVE_LWPSTATUS_T_PR_REG)
8504 memcpy (lwpstat.pr_reg, gregs, sizeof (lwpstat.pr_reg));
8505 #elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
8506 #if !defined(gregs)
8507 memcpy (lwpstat.pr_context.uc_mcontext.gregs,
8508 gregs, sizeof (lwpstat.pr_context.uc_mcontext.gregs));
8509 #else
8510 memcpy (lwpstat.pr_context.uc_mcontext.__gregs,
8511 gregs, sizeof (lwpstat.pr_context.uc_mcontext.__gregs));
8512 #endif
8513 #endif
8514 return elfcore_write_note (abfd, buf, bufsiz, note_name,
8515 NT_LWPSTATUS, &lwpstat, sizeof (lwpstat));
8516 }
8517 #endif /* HAVE_LWPSTATUS_T */
8518
8519 #if defined (HAVE_PSTATUS_T)
8520 char *
8521 elfcore_write_pstatus (bfd *abfd,
8522 char *buf,
8523 int *bufsiz,
8524 long pid,
8525 int cursig ATTRIBUTE_UNUSED,
8526 const void *gregs ATTRIBUTE_UNUSED)
8527 {
8528 const char *note_name = "CORE";
8529 #if defined (HAVE_PSTATUS32_T)
8530 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8531
8532 if (bed->s->elfclass == ELFCLASS32)
8533 {
8534 pstatus32_t pstat;
8535
8536 memset (&pstat, 0, sizeof (pstat));
8537 pstat.pr_pid = pid & 0xffff;
8538 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
8539 NT_PSTATUS, &pstat, sizeof (pstat));
8540 return buf;
8541 }
8542 else
8543 #endif
8544 {
8545 pstatus_t pstat;
8546
8547 memset (&pstat, 0, sizeof (pstat));
8548 pstat.pr_pid = pid & 0xffff;
8549 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
8550 NT_PSTATUS, &pstat, sizeof (pstat));
8551 return buf;
8552 }
8553 }
8554 #endif /* HAVE_PSTATUS_T */
8555
8556 char *
8557 elfcore_write_prfpreg (bfd *abfd,
8558 char *buf,
8559 int *bufsiz,
8560 const void *fpregs,
8561 int size)
8562 {
8563 const char *note_name = "CORE";
8564 return elfcore_write_note (abfd, buf, bufsiz,
8565 note_name, NT_FPREGSET, fpregs, size);
8566 }
8567
8568 char *
8569 elfcore_write_prxfpreg (bfd *abfd,
8570 char *buf,
8571 int *bufsiz,
8572 const void *xfpregs,
8573 int size)
8574 {
8575 char *note_name = "LINUX";
8576 return elfcore_write_note (abfd, buf, bufsiz,
8577 note_name, NT_PRXFPREG, xfpregs, size);
8578 }
8579
8580 char *
8581 elfcore_write_ppc_vmx (bfd *abfd,
8582 char *buf,
8583 int *bufsiz,
8584 const void *ppc_vmx,
8585 int size)
8586 {
8587 char *note_name = "LINUX";
8588 return elfcore_write_note (abfd, buf, bufsiz,
8589 note_name, NT_PPC_VMX, ppc_vmx, size);
8590 }
8591
8592 char *
8593 elfcore_write_ppc_vsx (bfd *abfd,
8594 char *buf,
8595 int *bufsiz,
8596 const void *ppc_vsx,
8597 int size)
8598 {
8599 char *note_name = "LINUX";
8600 return elfcore_write_note (abfd, buf, bufsiz,
8601 note_name, NT_PPC_VSX, ppc_vsx, size);
8602 }
8603
8604 char *
8605 elfcore_write_register_note (bfd *abfd,
8606 char *buf,
8607 int *bufsiz,
8608 const char *section,
8609 const void *data,
8610 int size)
8611 {
8612 if (strcmp (section, ".reg2") == 0)
8613 return elfcore_write_prfpreg (abfd, buf, bufsiz, data, size);
8614 if (strcmp (section, ".reg-xfp") == 0)
8615 return elfcore_write_prxfpreg (abfd, buf, bufsiz, data, size);
8616 if (strcmp (section, ".reg-ppc-vmx") == 0)
8617 return elfcore_write_ppc_vmx (abfd, buf, bufsiz, data, size);
8618 if (strcmp (section, ".reg-ppc-vsx") == 0)
8619 return elfcore_write_ppc_vsx (abfd, buf, bufsiz, data, size);
8620 return NULL;
8621 }
8622
8623 static bfd_boolean
8624 elf_parse_notes (bfd *abfd, char *buf, size_t size, file_ptr offset)
8625 {
8626 char *p;
8627
8628 p = buf;
8629 while (p < buf + size)
8630 {
8631 /* FIXME: bad alignment assumption. */
8632 Elf_External_Note *xnp = (Elf_External_Note *) p;
8633 Elf_Internal_Note in;
8634
8635 if (offsetof (Elf_External_Note, name) > buf - p + size)
8636 return FALSE;
8637
8638 in.type = H_GET_32 (abfd, xnp->type);
8639
8640 in.namesz = H_GET_32 (abfd, xnp->namesz);
8641 in.namedata = xnp->name;
8642 if (in.namesz > buf - in.namedata + size)
8643 return FALSE;
8644
8645 in.descsz = H_GET_32 (abfd, xnp->descsz);
8646 in.descdata = in.namedata + BFD_ALIGN (in.namesz, 4);
8647 in.descpos = offset + (in.descdata - buf);
8648 if (in.descsz != 0
8649 && (in.descdata >= buf + size
8650 || in.descsz > buf - in.descdata + size))
8651 return FALSE;
8652
8653 switch (bfd_get_format (abfd))
8654 {
8655 default:
8656 return TRUE;
8657
8658 case bfd_core:
8659 if (CONST_STRNEQ (in.namedata, "NetBSD-CORE"))
8660 {
8661 if (! elfcore_grok_netbsd_note (abfd, &in))
8662 return FALSE;
8663 }
8664 else if (CONST_STRNEQ (in.namedata, "OpenBSD"))
8665 {
8666 if (! elfcore_grok_openbsd_note (abfd, &in))
8667 return FALSE;
8668 }
8669 else if (CONST_STRNEQ (in.namedata, "QNX"))
8670 {
8671 if (! elfcore_grok_nto_note (abfd, &in))
8672 return FALSE;
8673 }
8674 else if (CONST_STRNEQ (in.namedata, "SPU/"))
8675 {
8676 if (! elfcore_grok_spu_note (abfd, &in))
8677 return FALSE;
8678 }
8679 else
8680 {
8681 if (! elfcore_grok_note (abfd, &in))
8682 return FALSE;
8683 }
8684 break;
8685
8686 case bfd_object:
8687 if (in.namesz == sizeof "GNU" && strcmp (in.namedata, "GNU") == 0)
8688 {
8689 if (! elfobj_grok_gnu_note (abfd, &in))
8690 return FALSE;
8691 }
8692 break;
8693 }
8694
8695 p = in.descdata + BFD_ALIGN (in.descsz, 4);
8696 }
8697
8698 return TRUE;
8699 }
8700
8701 static bfd_boolean
8702 elf_read_notes (bfd *abfd, file_ptr offset, bfd_size_type size)
8703 {
8704 char *buf;
8705
8706 if (size <= 0)
8707 return TRUE;
8708
8709 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
8710 return FALSE;
8711
8712 buf = bfd_malloc (size);
8713 if (buf == NULL)
8714 return FALSE;
8715
8716 if (bfd_bread (buf, size, abfd) != size
8717 || !elf_parse_notes (abfd, buf, size, offset))
8718 {
8719 free (buf);
8720 return FALSE;
8721 }
8722
8723 free (buf);
8724 return TRUE;
8725 }
8726 \f
8727 /* Providing external access to the ELF program header table. */
8728
8729 /* Return an upper bound on the number of bytes required to store a
8730 copy of ABFD's program header table entries. Return -1 if an error
8731 occurs; bfd_get_error will return an appropriate code. */
8732
8733 long
8734 bfd_get_elf_phdr_upper_bound (bfd *abfd)
8735 {
8736 if (abfd->xvec->flavour != bfd_target_elf_flavour)
8737 {
8738 bfd_set_error (bfd_error_wrong_format);
8739 return -1;
8740 }
8741
8742 return elf_elfheader (abfd)->e_phnum * sizeof (Elf_Internal_Phdr);
8743 }
8744
8745 /* Copy ABFD's program header table entries to *PHDRS. The entries
8746 will be stored as an array of Elf_Internal_Phdr structures, as
8747 defined in include/elf/internal.h. To find out how large the
8748 buffer needs to be, call bfd_get_elf_phdr_upper_bound.
8749
8750 Return the number of program header table entries read, or -1 if an
8751 error occurs; bfd_get_error will return an appropriate code. */
8752
8753 int
8754 bfd_get_elf_phdrs (bfd *abfd, void *phdrs)
8755 {
8756 int num_phdrs;
8757
8758 if (abfd->xvec->flavour != bfd_target_elf_flavour)
8759 {
8760 bfd_set_error (bfd_error_wrong_format);
8761 return -1;
8762 }
8763
8764 num_phdrs = elf_elfheader (abfd)->e_phnum;
8765 memcpy (phdrs, elf_tdata (abfd)->phdr,
8766 num_phdrs * sizeof (Elf_Internal_Phdr));
8767
8768 return num_phdrs;
8769 }
8770
8771 enum elf_reloc_type_class
8772 _bfd_elf_reloc_type_class (const Elf_Internal_Rela *rela ATTRIBUTE_UNUSED)
8773 {
8774 return reloc_class_normal;
8775 }
8776
8777 /* For RELA architectures, return the relocation value for a
8778 relocation against a local symbol. */
8779
8780 bfd_vma
8781 _bfd_elf_rela_local_sym (bfd *abfd,
8782 Elf_Internal_Sym *sym,
8783 asection **psec,
8784 Elf_Internal_Rela *rel)
8785 {
8786 asection *sec = *psec;
8787 bfd_vma relocation;
8788
8789 relocation = (sec->output_section->vma
8790 + sec->output_offset
8791 + sym->st_value);
8792 if ((sec->flags & SEC_MERGE)
8793 && ELF_ST_TYPE (sym->st_info) == STT_SECTION
8794 && sec->sec_info_type == ELF_INFO_TYPE_MERGE)
8795 {
8796 rel->r_addend =
8797 _bfd_merged_section_offset (abfd, psec,
8798 elf_section_data (sec)->sec_info,
8799 sym->st_value + rel->r_addend);
8800 if (sec != *psec)
8801 {
8802 /* If we have changed the section, and our original section is
8803 marked with SEC_EXCLUDE, it means that the original
8804 SEC_MERGE section has been completely subsumed in some
8805 other SEC_MERGE section. In this case, we need to leave
8806 some info around for --emit-relocs. */
8807 if ((sec->flags & SEC_EXCLUDE) != 0)
8808 sec->kept_section = *psec;
8809 sec = *psec;
8810 }
8811 rel->r_addend -= relocation;
8812 rel->r_addend += sec->output_section->vma + sec->output_offset;
8813 }
8814 return relocation;
8815 }
8816
8817 bfd_vma
8818 _bfd_elf_rel_local_sym (bfd *abfd,
8819 Elf_Internal_Sym *sym,
8820 asection **psec,
8821 bfd_vma addend)
8822 {
8823 asection *sec = *psec;
8824
8825 if (sec->sec_info_type != ELF_INFO_TYPE_MERGE)
8826 return sym->st_value + addend;
8827
8828 return _bfd_merged_section_offset (abfd, psec,
8829 elf_section_data (sec)->sec_info,
8830 sym->st_value + addend);
8831 }
8832
8833 bfd_vma
8834 _bfd_elf_section_offset (bfd *abfd,
8835 struct bfd_link_info *info,
8836 asection *sec,
8837 bfd_vma offset)
8838 {
8839 switch (sec->sec_info_type)
8840 {
8841 case ELF_INFO_TYPE_STABS:
8842 return _bfd_stab_section_offset (sec, elf_section_data (sec)->sec_info,
8843 offset);
8844 case ELF_INFO_TYPE_EH_FRAME:
8845 return _bfd_elf_eh_frame_section_offset (abfd, info, sec, offset);
8846 default:
8847 return offset;
8848 }
8849 }
8850 \f
8851 /* Create a new BFD as if by bfd_openr. Rather than opening a file,
8852 reconstruct an ELF file by reading the segments out of remote memory
8853 based on the ELF file header at EHDR_VMA and the ELF program headers it
8854 points to. If not null, *LOADBASEP is filled in with the difference
8855 between the VMAs from which the segments were read, and the VMAs the
8856 file headers (and hence BFD's idea of each section's VMA) put them at.
8857
8858 The function TARGET_READ_MEMORY is called to copy LEN bytes from the
8859 remote memory at target address VMA into the local buffer at MYADDR; it
8860 should return zero on success or an `errno' code on failure. TEMPL must
8861 be a BFD for an ELF target with the word size and byte order found in
8862 the remote memory. */
8863
8864 bfd *
8865 bfd_elf_bfd_from_remote_memory
8866 (bfd *templ,
8867 bfd_vma ehdr_vma,
8868 bfd_vma *loadbasep,
8869 int (*target_read_memory) (bfd_vma, bfd_byte *, int))
8870 {
8871 return (*get_elf_backend_data (templ)->elf_backend_bfd_from_remote_memory)
8872 (templ, ehdr_vma, loadbasep, target_read_memory);
8873 }
8874 \f
8875 long
8876 _bfd_elf_get_synthetic_symtab (bfd *abfd,
8877 long symcount ATTRIBUTE_UNUSED,
8878 asymbol **syms ATTRIBUTE_UNUSED,
8879 long dynsymcount,
8880 asymbol **dynsyms,
8881 asymbol **ret)
8882 {
8883 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8884 asection *relplt;
8885 asymbol *s;
8886 const char *relplt_name;
8887 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
8888 arelent *p;
8889 long count, i, n;
8890 size_t size;
8891 Elf_Internal_Shdr *hdr;
8892 char *names;
8893 asection *plt;
8894
8895 *ret = NULL;
8896
8897 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0)
8898 return 0;
8899
8900 if (dynsymcount <= 0)
8901 return 0;
8902
8903 if (!bed->plt_sym_val)
8904 return 0;
8905
8906 relplt_name = bed->relplt_name;
8907 if (relplt_name == NULL)
8908 relplt_name = bed->rela_plts_and_copies_p ? ".rela.plt" : ".rel.plt";
8909 relplt = bfd_get_section_by_name (abfd, relplt_name);
8910 if (relplt == NULL)
8911 return 0;
8912
8913 hdr = &elf_section_data (relplt)->this_hdr;
8914 if (hdr->sh_link != elf_dynsymtab (abfd)
8915 || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA))
8916 return 0;
8917
8918 plt = bfd_get_section_by_name (abfd, ".plt");
8919 if (plt == NULL)
8920 return 0;
8921
8922 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
8923 if (! (*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
8924 return -1;
8925
8926 count = relplt->size / hdr->sh_entsize;
8927 size = count * sizeof (asymbol);
8928 p = relplt->relocation;
8929 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
8930 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
8931
8932 s = *ret = bfd_malloc (size);
8933 if (s == NULL)
8934 return -1;
8935
8936 names = (char *) (s + count);
8937 p = relplt->relocation;
8938 n = 0;
8939 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
8940 {
8941 size_t len;
8942 bfd_vma addr;
8943
8944 addr = bed->plt_sym_val (i, plt, p);
8945 if (addr == (bfd_vma) -1)
8946 continue;
8947
8948 *s = **p->sym_ptr_ptr;
8949 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
8950 we are defining a symbol, ensure one of them is set. */
8951 if ((s->flags & BSF_LOCAL) == 0)
8952 s->flags |= BSF_GLOBAL;
8953 s->flags |= BSF_SYNTHETIC;
8954 s->section = plt;
8955 s->value = addr - plt->vma;
8956 s->name = names;
8957 s->udata.p = NULL;
8958 len = strlen ((*p->sym_ptr_ptr)->name);
8959 memcpy (names, (*p->sym_ptr_ptr)->name, len);
8960 names += len;
8961 memcpy (names, "@plt", sizeof ("@plt"));
8962 names += sizeof ("@plt");
8963 ++s, ++n;
8964 }
8965
8966 return n;
8967 }
8968
8969 /* It is only used by x86-64 so far. */
8970 asection _bfd_elf_large_com_section
8971 = BFD_FAKE_SECTION (_bfd_elf_large_com_section,
8972 SEC_IS_COMMON, NULL, "LARGE_COMMON", 0);
8973
8974 void
8975 _bfd_elf_set_osabi (bfd * abfd,
8976 struct bfd_link_info * link_info ATTRIBUTE_UNUSED)
8977 {
8978 Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */
8979
8980 i_ehdrp = elf_elfheader (abfd);
8981
8982 i_ehdrp->e_ident[EI_OSABI] = get_elf_backend_data (abfd)->elf_osabi;
8983 }
8984
8985
8986 /* Return TRUE for ELF symbol types that represent functions.
8987 This is the default version of this function, which is sufficient for
8988 most targets. It returns true if TYPE is STT_FUNC. */
8989
8990 bfd_boolean
8991 _bfd_elf_is_function_type (unsigned int type)
8992 {
8993 return (type == STT_FUNC);
8994 }
This page took 0.260955 seconds and 4 git commands to generate.