700d5730964c67b7f5c845378137e446ab28c4ee
[deliverable/binutils-gdb.git] / bfd / elf.c
1 /* ELF executable support for BFD.
2
3 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
4 2002, 2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
5
6 This file is part of BFD, the Binary File Descriptor library.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 MA 02110-1301, USA. */
22
23
24 /*
25 SECTION
26 ELF backends
27
28 BFD support for ELF formats is being worked on.
29 Currently, the best supported back ends are for sparc and i386
30 (running svr4 or Solaris 2).
31
32 Documentation of the internals of the support code still needs
33 to be written. The code is changing quickly enough that we
34 haven't bothered yet. */
35
36 /* For sparc64-cross-sparc32. */
37 #define _SYSCALL32
38 #include "sysdep.h"
39 #include "bfd.h"
40 #include "bfdlink.h"
41 #include "libbfd.h"
42 #define ARCH_SIZE 0
43 #include "elf-bfd.h"
44 #include "libiberty.h"
45 #include "safe-ctype.h"
46
47 static int elf_sort_sections (const void *, const void *);
48 static bfd_boolean assign_file_positions_except_relocs (bfd *, struct bfd_link_info *);
49 static bfd_boolean prep_headers (bfd *);
50 static bfd_boolean swap_out_syms (bfd *, struct bfd_strtab_hash **, int) ;
51 static bfd_boolean elf_read_notes (bfd *, file_ptr, bfd_size_type) ;
52 static bfd_boolean elf_parse_notes (bfd *abfd, char *buf, size_t size,
53 file_ptr offset);
54
55 /* Swap version information in and out. The version information is
56 currently size independent. If that ever changes, this code will
57 need to move into elfcode.h. */
58
59 /* Swap in a Verdef structure. */
60
61 void
62 _bfd_elf_swap_verdef_in (bfd *abfd,
63 const Elf_External_Verdef *src,
64 Elf_Internal_Verdef *dst)
65 {
66 dst->vd_version = H_GET_16 (abfd, src->vd_version);
67 dst->vd_flags = H_GET_16 (abfd, src->vd_flags);
68 dst->vd_ndx = H_GET_16 (abfd, src->vd_ndx);
69 dst->vd_cnt = H_GET_16 (abfd, src->vd_cnt);
70 dst->vd_hash = H_GET_32 (abfd, src->vd_hash);
71 dst->vd_aux = H_GET_32 (abfd, src->vd_aux);
72 dst->vd_next = H_GET_32 (abfd, src->vd_next);
73 }
74
75 /* Swap out a Verdef structure. */
76
77 void
78 _bfd_elf_swap_verdef_out (bfd *abfd,
79 const Elf_Internal_Verdef *src,
80 Elf_External_Verdef *dst)
81 {
82 H_PUT_16 (abfd, src->vd_version, dst->vd_version);
83 H_PUT_16 (abfd, src->vd_flags, dst->vd_flags);
84 H_PUT_16 (abfd, src->vd_ndx, dst->vd_ndx);
85 H_PUT_16 (abfd, src->vd_cnt, dst->vd_cnt);
86 H_PUT_32 (abfd, src->vd_hash, dst->vd_hash);
87 H_PUT_32 (abfd, src->vd_aux, dst->vd_aux);
88 H_PUT_32 (abfd, src->vd_next, dst->vd_next);
89 }
90
91 /* Swap in a Verdaux structure. */
92
93 void
94 _bfd_elf_swap_verdaux_in (bfd *abfd,
95 const Elf_External_Verdaux *src,
96 Elf_Internal_Verdaux *dst)
97 {
98 dst->vda_name = H_GET_32 (abfd, src->vda_name);
99 dst->vda_next = H_GET_32 (abfd, src->vda_next);
100 }
101
102 /* Swap out a Verdaux structure. */
103
104 void
105 _bfd_elf_swap_verdaux_out (bfd *abfd,
106 const Elf_Internal_Verdaux *src,
107 Elf_External_Verdaux *dst)
108 {
109 H_PUT_32 (abfd, src->vda_name, dst->vda_name);
110 H_PUT_32 (abfd, src->vda_next, dst->vda_next);
111 }
112
113 /* Swap in a Verneed structure. */
114
115 void
116 _bfd_elf_swap_verneed_in (bfd *abfd,
117 const Elf_External_Verneed *src,
118 Elf_Internal_Verneed *dst)
119 {
120 dst->vn_version = H_GET_16 (abfd, src->vn_version);
121 dst->vn_cnt = H_GET_16 (abfd, src->vn_cnt);
122 dst->vn_file = H_GET_32 (abfd, src->vn_file);
123 dst->vn_aux = H_GET_32 (abfd, src->vn_aux);
124 dst->vn_next = H_GET_32 (abfd, src->vn_next);
125 }
126
127 /* Swap out a Verneed structure. */
128
129 void
130 _bfd_elf_swap_verneed_out (bfd *abfd,
131 const Elf_Internal_Verneed *src,
132 Elf_External_Verneed *dst)
133 {
134 H_PUT_16 (abfd, src->vn_version, dst->vn_version);
135 H_PUT_16 (abfd, src->vn_cnt, dst->vn_cnt);
136 H_PUT_32 (abfd, src->vn_file, dst->vn_file);
137 H_PUT_32 (abfd, src->vn_aux, dst->vn_aux);
138 H_PUT_32 (abfd, src->vn_next, dst->vn_next);
139 }
140
141 /* Swap in a Vernaux structure. */
142
143 void
144 _bfd_elf_swap_vernaux_in (bfd *abfd,
145 const Elf_External_Vernaux *src,
146 Elf_Internal_Vernaux *dst)
147 {
148 dst->vna_hash = H_GET_32 (abfd, src->vna_hash);
149 dst->vna_flags = H_GET_16 (abfd, src->vna_flags);
150 dst->vna_other = H_GET_16 (abfd, src->vna_other);
151 dst->vna_name = H_GET_32 (abfd, src->vna_name);
152 dst->vna_next = H_GET_32 (abfd, src->vna_next);
153 }
154
155 /* Swap out a Vernaux structure. */
156
157 void
158 _bfd_elf_swap_vernaux_out (bfd *abfd,
159 const Elf_Internal_Vernaux *src,
160 Elf_External_Vernaux *dst)
161 {
162 H_PUT_32 (abfd, src->vna_hash, dst->vna_hash);
163 H_PUT_16 (abfd, src->vna_flags, dst->vna_flags);
164 H_PUT_16 (abfd, src->vna_other, dst->vna_other);
165 H_PUT_32 (abfd, src->vna_name, dst->vna_name);
166 H_PUT_32 (abfd, src->vna_next, dst->vna_next);
167 }
168
169 /* Swap in a Versym structure. */
170
171 void
172 _bfd_elf_swap_versym_in (bfd *abfd,
173 const Elf_External_Versym *src,
174 Elf_Internal_Versym *dst)
175 {
176 dst->vs_vers = H_GET_16 (abfd, src->vs_vers);
177 }
178
179 /* Swap out a Versym structure. */
180
181 void
182 _bfd_elf_swap_versym_out (bfd *abfd,
183 const Elf_Internal_Versym *src,
184 Elf_External_Versym *dst)
185 {
186 H_PUT_16 (abfd, src->vs_vers, dst->vs_vers);
187 }
188
189 /* Standard ELF hash function. Do not change this function; you will
190 cause invalid hash tables to be generated. */
191
192 unsigned long
193 bfd_elf_hash (const char *namearg)
194 {
195 const unsigned char *name = (const unsigned char *) namearg;
196 unsigned long h = 0;
197 unsigned long g;
198 int ch;
199
200 while ((ch = *name++) != '\0')
201 {
202 h = (h << 4) + ch;
203 if ((g = (h & 0xf0000000)) != 0)
204 {
205 h ^= g >> 24;
206 /* The ELF ABI says `h &= ~g', but this is equivalent in
207 this case and on some machines one insn instead of two. */
208 h ^= g;
209 }
210 }
211 return h & 0xffffffff;
212 }
213
214 /* DT_GNU_HASH hash function. Do not change this function; you will
215 cause invalid hash tables to be generated. */
216
217 unsigned long
218 bfd_elf_gnu_hash (const char *namearg)
219 {
220 const unsigned char *name = (const unsigned char *) namearg;
221 unsigned long h = 5381;
222 unsigned char ch;
223
224 while ((ch = *name++) != '\0')
225 h = (h << 5) + h + ch;
226 return h & 0xffffffff;
227 }
228
229 bfd_boolean
230 bfd_elf_mkobject (bfd *abfd)
231 {
232 if (abfd->tdata.any == NULL)
233 {
234 abfd->tdata.any = bfd_zalloc (abfd, sizeof (struct elf_obj_tdata));
235 if (abfd->tdata.any == NULL)
236 return FALSE;
237 }
238
239 elf_tdata (abfd)->program_header_size = (bfd_size_type) -1;
240
241 return TRUE;
242 }
243
244 bfd_boolean
245 bfd_elf_mkcorefile (bfd *abfd)
246 {
247 /* I think this can be done just like an object file. */
248 return bfd_elf_mkobject (abfd);
249 }
250
251 char *
252 bfd_elf_get_str_section (bfd *abfd, unsigned int shindex)
253 {
254 Elf_Internal_Shdr **i_shdrp;
255 bfd_byte *shstrtab = NULL;
256 file_ptr offset;
257 bfd_size_type shstrtabsize;
258
259 i_shdrp = elf_elfsections (abfd);
260 if (i_shdrp == 0
261 || shindex >= elf_numsections (abfd)
262 || i_shdrp[shindex] == 0)
263 return NULL;
264
265 shstrtab = i_shdrp[shindex]->contents;
266 if (shstrtab == NULL)
267 {
268 /* No cached one, attempt to read, and cache what we read. */
269 offset = i_shdrp[shindex]->sh_offset;
270 shstrtabsize = i_shdrp[shindex]->sh_size;
271
272 /* Allocate and clear an extra byte at the end, to prevent crashes
273 in case the string table is not terminated. */
274 if (shstrtabsize + 1 == 0
275 || (shstrtab = bfd_alloc (abfd, shstrtabsize + 1)) == NULL
276 || bfd_seek (abfd, offset, SEEK_SET) != 0)
277 shstrtab = NULL;
278 else if (bfd_bread (shstrtab, shstrtabsize, abfd) != shstrtabsize)
279 {
280 if (bfd_get_error () != bfd_error_system_call)
281 bfd_set_error (bfd_error_file_truncated);
282 shstrtab = NULL;
283 }
284 else
285 shstrtab[shstrtabsize] = '\0';
286 i_shdrp[shindex]->contents = shstrtab;
287 }
288 return (char *) shstrtab;
289 }
290
291 char *
292 bfd_elf_string_from_elf_section (bfd *abfd,
293 unsigned int shindex,
294 unsigned int strindex)
295 {
296 Elf_Internal_Shdr *hdr;
297
298 if (strindex == 0)
299 return "";
300
301 if (elf_elfsections (abfd) == NULL || shindex >= elf_numsections (abfd))
302 return NULL;
303
304 hdr = elf_elfsections (abfd)[shindex];
305
306 if (hdr->contents == NULL
307 && bfd_elf_get_str_section (abfd, shindex) == NULL)
308 return NULL;
309
310 if (strindex >= hdr->sh_size)
311 {
312 unsigned int shstrndx = elf_elfheader(abfd)->e_shstrndx;
313 (*_bfd_error_handler)
314 (_("%B: invalid string offset %u >= %lu for section `%s'"),
315 abfd, strindex, (unsigned long) hdr->sh_size,
316 (shindex == shstrndx && strindex == hdr->sh_name
317 ? ".shstrtab"
318 : bfd_elf_string_from_elf_section (abfd, shstrndx, hdr->sh_name)));
319 return "";
320 }
321
322 return ((char *) hdr->contents) + strindex;
323 }
324
325 /* Read and convert symbols to internal format.
326 SYMCOUNT specifies the number of symbols to read, starting from
327 symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF
328 are non-NULL, they are used to store the internal symbols, external
329 symbols, and symbol section index extensions, respectively. */
330
331 Elf_Internal_Sym *
332 bfd_elf_get_elf_syms (bfd *ibfd,
333 Elf_Internal_Shdr *symtab_hdr,
334 size_t symcount,
335 size_t symoffset,
336 Elf_Internal_Sym *intsym_buf,
337 void *extsym_buf,
338 Elf_External_Sym_Shndx *extshndx_buf)
339 {
340 Elf_Internal_Shdr *shndx_hdr;
341 void *alloc_ext;
342 const bfd_byte *esym;
343 Elf_External_Sym_Shndx *alloc_extshndx;
344 Elf_External_Sym_Shndx *shndx;
345 Elf_Internal_Sym *isym;
346 Elf_Internal_Sym *isymend;
347 const struct elf_backend_data *bed;
348 size_t extsym_size;
349 bfd_size_type amt;
350 file_ptr pos;
351
352 if (symcount == 0)
353 return intsym_buf;
354
355 /* Normal syms might have section extension entries. */
356 shndx_hdr = NULL;
357 if (symtab_hdr == &elf_tdata (ibfd)->symtab_hdr)
358 shndx_hdr = &elf_tdata (ibfd)->symtab_shndx_hdr;
359
360 /* Read the symbols. */
361 alloc_ext = NULL;
362 alloc_extshndx = NULL;
363 bed = get_elf_backend_data (ibfd);
364 extsym_size = bed->s->sizeof_sym;
365 amt = symcount * extsym_size;
366 pos = symtab_hdr->sh_offset + symoffset * extsym_size;
367 if (extsym_buf == NULL)
368 {
369 alloc_ext = bfd_malloc2 (symcount, extsym_size);
370 extsym_buf = alloc_ext;
371 }
372 if (extsym_buf == NULL
373 || bfd_seek (ibfd, pos, SEEK_SET) != 0
374 || bfd_bread (extsym_buf, amt, ibfd) != amt)
375 {
376 intsym_buf = NULL;
377 goto out;
378 }
379
380 if (shndx_hdr == NULL || shndx_hdr->sh_size == 0)
381 extshndx_buf = NULL;
382 else
383 {
384 amt = symcount * sizeof (Elf_External_Sym_Shndx);
385 pos = shndx_hdr->sh_offset + symoffset * sizeof (Elf_External_Sym_Shndx);
386 if (extshndx_buf == NULL)
387 {
388 alloc_extshndx = bfd_malloc2 (symcount,
389 sizeof (Elf_External_Sym_Shndx));
390 extshndx_buf = alloc_extshndx;
391 }
392 if (extshndx_buf == NULL
393 || bfd_seek (ibfd, pos, SEEK_SET) != 0
394 || bfd_bread (extshndx_buf, amt, ibfd) != amt)
395 {
396 intsym_buf = NULL;
397 goto out;
398 }
399 }
400
401 if (intsym_buf == NULL)
402 {
403 intsym_buf = bfd_malloc2 (symcount, sizeof (Elf_Internal_Sym));
404 if (intsym_buf == NULL)
405 goto out;
406 }
407
408 /* Convert the symbols to internal form. */
409 isymend = intsym_buf + symcount;
410 for (esym = extsym_buf, isym = intsym_buf, shndx = extshndx_buf;
411 isym < isymend;
412 esym += extsym_size, isym++, shndx = shndx != NULL ? shndx + 1 : NULL)
413 if (!(*bed->s->swap_symbol_in) (ibfd, esym, shndx, isym))
414 {
415 symoffset += (esym - (bfd_byte *) extsym_buf) / extsym_size;
416 (*_bfd_error_handler) (_("%B symbol number %lu references "
417 "nonexistent SHT_SYMTAB_SHNDX section"),
418 ibfd, (unsigned long) symoffset);
419 intsym_buf = NULL;
420 goto out;
421 }
422
423 out:
424 if (alloc_ext != NULL)
425 free (alloc_ext);
426 if (alloc_extshndx != NULL)
427 free (alloc_extshndx);
428
429 return intsym_buf;
430 }
431
432 /* Look up a symbol name. */
433 const char *
434 bfd_elf_sym_name (bfd *abfd,
435 Elf_Internal_Shdr *symtab_hdr,
436 Elf_Internal_Sym *isym,
437 asection *sym_sec)
438 {
439 const char *name;
440 unsigned int iname = isym->st_name;
441 unsigned int shindex = symtab_hdr->sh_link;
442
443 if (iname == 0 && ELF_ST_TYPE (isym->st_info) == STT_SECTION
444 /* Check for a bogus st_shndx to avoid crashing. */
445 && isym->st_shndx < elf_numsections (abfd)
446 && !(isym->st_shndx >= SHN_LORESERVE && isym->st_shndx <= SHN_HIRESERVE))
447 {
448 iname = elf_elfsections (abfd)[isym->st_shndx]->sh_name;
449 shindex = elf_elfheader (abfd)->e_shstrndx;
450 }
451
452 name = bfd_elf_string_from_elf_section (abfd, shindex, iname);
453 if (name == NULL)
454 name = "(null)";
455 else if (sym_sec && *name == '\0')
456 name = bfd_section_name (abfd, sym_sec);
457
458 return name;
459 }
460
461 /* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
462 sections. The first element is the flags, the rest are section
463 pointers. */
464
465 typedef union elf_internal_group {
466 Elf_Internal_Shdr *shdr;
467 unsigned int flags;
468 } Elf_Internal_Group;
469
470 /* Return the name of the group signature symbol. Why isn't the
471 signature just a string? */
472
473 static const char *
474 group_signature (bfd *abfd, Elf_Internal_Shdr *ghdr)
475 {
476 Elf_Internal_Shdr *hdr;
477 unsigned char esym[sizeof (Elf64_External_Sym)];
478 Elf_External_Sym_Shndx eshndx;
479 Elf_Internal_Sym isym;
480
481 /* First we need to ensure the symbol table is available. Make sure
482 that it is a symbol table section. */
483 hdr = elf_elfsections (abfd) [ghdr->sh_link];
484 if (hdr->sh_type != SHT_SYMTAB
485 || ! bfd_section_from_shdr (abfd, ghdr->sh_link))
486 return NULL;
487
488 /* Go read the symbol. */
489 hdr = &elf_tdata (abfd)->symtab_hdr;
490 if (bfd_elf_get_elf_syms (abfd, hdr, 1, ghdr->sh_info,
491 &isym, esym, &eshndx) == NULL)
492 return NULL;
493
494 return bfd_elf_sym_name (abfd, hdr, &isym, NULL);
495 }
496
497 /* Set next_in_group list pointer, and group name for NEWSECT. */
498
499 static bfd_boolean
500 setup_group (bfd *abfd, Elf_Internal_Shdr *hdr, asection *newsect)
501 {
502 unsigned int num_group = elf_tdata (abfd)->num_group;
503
504 /* If num_group is zero, read in all SHT_GROUP sections. The count
505 is set to -1 if there are no SHT_GROUP sections. */
506 if (num_group == 0)
507 {
508 unsigned int i, shnum;
509
510 /* First count the number of groups. If we have a SHT_GROUP
511 section with just a flag word (ie. sh_size is 4), ignore it. */
512 shnum = elf_numsections (abfd);
513 num_group = 0;
514
515 #define IS_VALID_GROUP_SECTION_HEADER(shdr) \
516 ( (shdr)->sh_type == SHT_GROUP \
517 && (shdr)->sh_size >= (2 * GRP_ENTRY_SIZE) \
518 && (shdr)->sh_entsize == GRP_ENTRY_SIZE \
519 && ((shdr)->sh_size % GRP_ENTRY_SIZE) == 0)
520
521 for (i = 0; i < shnum; i++)
522 {
523 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
524
525 if (IS_VALID_GROUP_SECTION_HEADER (shdr))
526 num_group += 1;
527 }
528
529 if (num_group == 0)
530 {
531 num_group = (unsigned) -1;
532 elf_tdata (abfd)->num_group = num_group;
533 }
534 else
535 {
536 /* We keep a list of elf section headers for group sections,
537 so we can find them quickly. */
538 bfd_size_type amt;
539
540 elf_tdata (abfd)->num_group = num_group;
541 elf_tdata (abfd)->group_sect_ptr
542 = bfd_alloc2 (abfd, num_group, sizeof (Elf_Internal_Shdr *));
543 if (elf_tdata (abfd)->group_sect_ptr == NULL)
544 return FALSE;
545
546 num_group = 0;
547 for (i = 0; i < shnum; i++)
548 {
549 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
550
551 if (IS_VALID_GROUP_SECTION_HEADER (shdr))
552 {
553 unsigned char *src;
554 Elf_Internal_Group *dest;
555
556 /* Add to list of sections. */
557 elf_tdata (abfd)->group_sect_ptr[num_group] = shdr;
558 num_group += 1;
559
560 /* Read the raw contents. */
561 BFD_ASSERT (sizeof (*dest) >= 4);
562 amt = shdr->sh_size * sizeof (*dest) / 4;
563 shdr->contents = bfd_alloc2 (abfd, shdr->sh_size,
564 sizeof (*dest) / 4);
565 /* PR binutils/4110: Handle corrupt group headers. */
566 if (shdr->contents == NULL)
567 {
568 _bfd_error_handler
569 (_("%B: Corrupt size field in group section header: 0x%lx"), abfd, shdr->sh_size);
570 bfd_set_error (bfd_error_bad_value);
571 return FALSE;
572 }
573
574 memset (shdr->contents, 0, amt);
575
576 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0
577 || (bfd_bread (shdr->contents, shdr->sh_size, abfd)
578 != shdr->sh_size))
579 return FALSE;
580
581 /* Translate raw contents, a flag word followed by an
582 array of elf section indices all in target byte order,
583 to the flag word followed by an array of elf section
584 pointers. */
585 src = shdr->contents + shdr->sh_size;
586 dest = (Elf_Internal_Group *) (shdr->contents + amt);
587 while (1)
588 {
589 unsigned int idx;
590
591 src -= 4;
592 --dest;
593 idx = H_GET_32 (abfd, src);
594 if (src == shdr->contents)
595 {
596 dest->flags = idx;
597 if (shdr->bfd_section != NULL && (idx & GRP_COMDAT))
598 shdr->bfd_section->flags
599 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
600 break;
601 }
602 if (idx >= shnum)
603 {
604 ((*_bfd_error_handler)
605 (_("%B: invalid SHT_GROUP entry"), abfd));
606 idx = 0;
607 }
608 dest->shdr = elf_elfsections (abfd)[idx];
609 }
610 }
611 }
612 }
613 }
614
615 if (num_group != (unsigned) -1)
616 {
617 unsigned int i;
618
619 for (i = 0; i < num_group; i++)
620 {
621 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
622 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
623 unsigned int n_elt = shdr->sh_size / 4;
624
625 /* Look through this group's sections to see if current
626 section is a member. */
627 while (--n_elt != 0)
628 if ((++idx)->shdr == hdr)
629 {
630 asection *s = NULL;
631
632 /* We are a member of this group. Go looking through
633 other members to see if any others are linked via
634 next_in_group. */
635 idx = (Elf_Internal_Group *) shdr->contents;
636 n_elt = shdr->sh_size / 4;
637 while (--n_elt != 0)
638 if ((s = (++idx)->shdr->bfd_section) != NULL
639 && elf_next_in_group (s) != NULL)
640 break;
641 if (n_elt != 0)
642 {
643 /* Snarf the group name from other member, and
644 insert current section in circular list. */
645 elf_group_name (newsect) = elf_group_name (s);
646 elf_next_in_group (newsect) = elf_next_in_group (s);
647 elf_next_in_group (s) = newsect;
648 }
649 else
650 {
651 const char *gname;
652
653 gname = group_signature (abfd, shdr);
654 if (gname == NULL)
655 return FALSE;
656 elf_group_name (newsect) = gname;
657
658 /* Start a circular list with one element. */
659 elf_next_in_group (newsect) = newsect;
660 }
661
662 /* If the group section has been created, point to the
663 new member. */
664 if (shdr->bfd_section != NULL)
665 elf_next_in_group (shdr->bfd_section) = newsect;
666
667 i = num_group - 1;
668 break;
669 }
670 }
671 }
672
673 if (elf_group_name (newsect) == NULL)
674 {
675 (*_bfd_error_handler) (_("%B: no group info for section %A"),
676 abfd, newsect);
677 }
678 return TRUE;
679 }
680
681 bfd_boolean
682 _bfd_elf_setup_sections (bfd *abfd)
683 {
684 unsigned int i;
685 unsigned int num_group = elf_tdata (abfd)->num_group;
686 bfd_boolean result = TRUE;
687 asection *s;
688
689 /* Process SHF_LINK_ORDER. */
690 for (s = abfd->sections; s != NULL; s = s->next)
691 {
692 Elf_Internal_Shdr *this_hdr = &elf_section_data (s)->this_hdr;
693 if ((this_hdr->sh_flags & SHF_LINK_ORDER) != 0)
694 {
695 unsigned int elfsec = this_hdr->sh_link;
696 /* FIXME: The old Intel compiler and old strip/objcopy may
697 not set the sh_link or sh_info fields. Hence we could
698 get the situation where elfsec is 0. */
699 if (elfsec == 0)
700 {
701 const struct elf_backend_data *bed
702 = get_elf_backend_data (abfd);
703 if (bed->link_order_error_handler)
704 bed->link_order_error_handler
705 (_("%B: warning: sh_link not set for section `%A'"),
706 abfd, s);
707 }
708 else
709 {
710 asection *link;
711
712 this_hdr = elf_elfsections (abfd)[elfsec];
713
714 /* PR 1991, 2008:
715 Some strip/objcopy may leave an incorrect value in
716 sh_link. We don't want to proceed. */
717 link = this_hdr->bfd_section;
718 if (link == NULL)
719 {
720 (*_bfd_error_handler)
721 (_("%B: sh_link [%d] in section `%A' is incorrect"),
722 s->owner, s, elfsec);
723 result = FALSE;
724 }
725
726 elf_linked_to_section (s) = link;
727 }
728 }
729 }
730
731 /* Process section groups. */
732 if (num_group == (unsigned) -1)
733 return result;
734
735 for (i = 0; i < num_group; i++)
736 {
737 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
738 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
739 unsigned int n_elt = shdr->sh_size / 4;
740
741 while (--n_elt != 0)
742 if ((++idx)->shdr->bfd_section)
743 elf_sec_group (idx->shdr->bfd_section) = shdr->bfd_section;
744 else if (idx->shdr->sh_type == SHT_RELA
745 || idx->shdr->sh_type == SHT_REL)
746 /* We won't include relocation sections in section groups in
747 output object files. We adjust the group section size here
748 so that relocatable link will work correctly when
749 relocation sections are in section group in input object
750 files. */
751 shdr->bfd_section->size -= 4;
752 else
753 {
754 /* There are some unknown sections in the group. */
755 (*_bfd_error_handler)
756 (_("%B: unknown [%d] section `%s' in group [%s]"),
757 abfd,
758 (unsigned int) idx->shdr->sh_type,
759 bfd_elf_string_from_elf_section (abfd,
760 (elf_elfheader (abfd)
761 ->e_shstrndx),
762 idx->shdr->sh_name),
763 shdr->bfd_section->name);
764 result = FALSE;
765 }
766 }
767 return result;
768 }
769
770 bfd_boolean
771 bfd_elf_is_group_section (bfd *abfd ATTRIBUTE_UNUSED, const asection *sec)
772 {
773 return elf_next_in_group (sec) != NULL;
774 }
775
776 /* Make a BFD section from an ELF section. We store a pointer to the
777 BFD section in the bfd_section field of the header. */
778
779 bfd_boolean
780 _bfd_elf_make_section_from_shdr (bfd *abfd,
781 Elf_Internal_Shdr *hdr,
782 const char *name,
783 int shindex)
784 {
785 asection *newsect;
786 flagword flags;
787 const struct elf_backend_data *bed;
788
789 if (hdr->bfd_section != NULL)
790 {
791 BFD_ASSERT (strcmp (name,
792 bfd_get_section_name (abfd, hdr->bfd_section)) == 0);
793 return TRUE;
794 }
795
796 newsect = bfd_make_section_anyway (abfd, name);
797 if (newsect == NULL)
798 return FALSE;
799
800 hdr->bfd_section = newsect;
801 elf_section_data (newsect)->this_hdr = *hdr;
802 elf_section_data (newsect)->this_idx = shindex;
803
804 /* Always use the real type/flags. */
805 elf_section_type (newsect) = hdr->sh_type;
806 elf_section_flags (newsect) = hdr->sh_flags;
807
808 newsect->filepos = hdr->sh_offset;
809
810 if (! bfd_set_section_vma (abfd, newsect, hdr->sh_addr)
811 || ! bfd_set_section_size (abfd, newsect, hdr->sh_size)
812 || ! bfd_set_section_alignment (abfd, newsect,
813 bfd_log2 ((bfd_vma) hdr->sh_addralign)))
814 return FALSE;
815
816 flags = SEC_NO_FLAGS;
817 if (hdr->sh_type != SHT_NOBITS)
818 flags |= SEC_HAS_CONTENTS;
819 if (hdr->sh_type == SHT_GROUP)
820 flags |= SEC_GROUP | SEC_EXCLUDE;
821 if ((hdr->sh_flags & SHF_ALLOC) != 0)
822 {
823 flags |= SEC_ALLOC;
824 if (hdr->sh_type != SHT_NOBITS)
825 flags |= SEC_LOAD;
826 }
827 if ((hdr->sh_flags & SHF_WRITE) == 0)
828 flags |= SEC_READONLY;
829 if ((hdr->sh_flags & SHF_EXECINSTR) != 0)
830 flags |= SEC_CODE;
831 else if ((flags & SEC_LOAD) != 0)
832 flags |= SEC_DATA;
833 if ((hdr->sh_flags & SHF_MERGE) != 0)
834 {
835 flags |= SEC_MERGE;
836 newsect->entsize = hdr->sh_entsize;
837 if ((hdr->sh_flags & SHF_STRINGS) != 0)
838 flags |= SEC_STRINGS;
839 }
840 if (hdr->sh_flags & SHF_GROUP)
841 if (!setup_group (abfd, hdr, newsect))
842 return FALSE;
843 if ((hdr->sh_flags & SHF_TLS) != 0)
844 flags |= SEC_THREAD_LOCAL;
845
846 if ((flags & SEC_ALLOC) == 0)
847 {
848 /* The debugging sections appear to be recognized only by name,
849 not any sort of flag. Their SEC_ALLOC bits are cleared. */
850 static const struct
851 {
852 const char *name;
853 int len;
854 } debug_sections [] =
855 {
856 { STRING_COMMA_LEN ("debug") }, /* 'd' */
857 { NULL, 0 }, /* 'e' */
858 { NULL, 0 }, /* 'f' */
859 { STRING_COMMA_LEN ("gnu.linkonce.wi.") }, /* 'g' */
860 { NULL, 0 }, /* 'h' */
861 { NULL, 0 }, /* 'i' */
862 { NULL, 0 }, /* 'j' */
863 { NULL, 0 }, /* 'k' */
864 { STRING_COMMA_LEN ("line") }, /* 'l' */
865 { NULL, 0 }, /* 'm' */
866 { NULL, 0 }, /* 'n' */
867 { NULL, 0 }, /* 'o' */
868 { NULL, 0 }, /* 'p' */
869 { NULL, 0 }, /* 'q' */
870 { NULL, 0 }, /* 'r' */
871 { STRING_COMMA_LEN ("stab") } /* 's' */
872 };
873
874 if (name [0] == '.')
875 {
876 int i = name [1] - 'd';
877 if (i >= 0
878 && i < (int) ARRAY_SIZE (debug_sections)
879 && debug_sections [i].name != NULL
880 && strncmp (&name [1], debug_sections [i].name,
881 debug_sections [i].len) == 0)
882 flags |= SEC_DEBUGGING;
883 }
884 }
885
886 /* As a GNU extension, if the name begins with .gnu.linkonce, we
887 only link a single copy of the section. This is used to support
888 g++. g++ will emit each template expansion in its own section.
889 The symbols will be defined as weak, so that multiple definitions
890 are permitted. The GNU linker extension is to actually discard
891 all but one of the sections. */
892 if (CONST_STRNEQ (name, ".gnu.linkonce")
893 && elf_next_in_group (newsect) == NULL)
894 flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
895
896 bed = get_elf_backend_data (abfd);
897 if (bed->elf_backend_section_flags)
898 if (! bed->elf_backend_section_flags (&flags, hdr))
899 return FALSE;
900
901 if (! bfd_set_section_flags (abfd, newsect, flags))
902 return FALSE;
903
904 /* We do not parse the PT_NOTE segments as we are interested even in the
905 separate debug info files which may have the segments offsets corrupted.
906 PT_NOTEs from the core files are currently not parsed using BFD. */
907 if (hdr->sh_type == SHT_NOTE)
908 {
909 char *contents;
910
911 contents = bfd_malloc (hdr->sh_size);
912 if (!contents)
913 return FALSE;
914
915 if (!bfd_get_section_contents (abfd, hdr->bfd_section, contents, 0,
916 hdr->sh_size)
917 || !elf_parse_notes (abfd, contents, hdr->sh_size, -1))
918 {
919 free (contents);
920 return FALSE;
921 }
922
923 free (contents);
924 }
925
926 if ((flags & SEC_ALLOC) != 0)
927 {
928 Elf_Internal_Phdr *phdr;
929 unsigned int i;
930
931 /* Look through the phdrs to see if we need to adjust the lma.
932 If all the p_paddr fields are zero, we ignore them, since
933 some ELF linkers produce such output. */
934 phdr = elf_tdata (abfd)->phdr;
935 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
936 {
937 if (phdr->p_paddr != 0)
938 break;
939 }
940 if (i < elf_elfheader (abfd)->e_phnum)
941 {
942 phdr = elf_tdata (abfd)->phdr;
943 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
944 {
945 /* This section is part of this segment if its file
946 offset plus size lies within the segment's memory
947 span and, if the section is loaded, the extent of the
948 loaded data lies within the extent of the segment.
949
950 Note - we used to check the p_paddr field as well, and
951 refuse to set the LMA if it was 0. This is wrong
952 though, as a perfectly valid initialised segment can
953 have a p_paddr of zero. Some architectures, eg ARM,
954 place special significance on the address 0 and
955 executables need to be able to have a segment which
956 covers this address. */
957 if (phdr->p_type == PT_LOAD
958 && (bfd_vma) hdr->sh_offset >= phdr->p_offset
959 && (hdr->sh_offset + hdr->sh_size
960 <= phdr->p_offset + phdr->p_memsz)
961 && ((flags & SEC_LOAD) == 0
962 || (hdr->sh_offset + hdr->sh_size
963 <= phdr->p_offset + phdr->p_filesz)))
964 {
965 if ((flags & SEC_LOAD) == 0)
966 newsect->lma = (phdr->p_paddr
967 + hdr->sh_addr - phdr->p_vaddr);
968 else
969 /* We used to use the same adjustment for SEC_LOAD
970 sections, but that doesn't work if the segment
971 is packed with code from multiple VMAs.
972 Instead we calculate the section LMA based on
973 the segment LMA. It is assumed that the
974 segment will contain sections with contiguous
975 LMAs, even if the VMAs are not. */
976 newsect->lma = (phdr->p_paddr
977 + hdr->sh_offset - phdr->p_offset);
978
979 /* With contiguous segments, we can't tell from file
980 offsets whether a section with zero size should
981 be placed at the end of one segment or the
982 beginning of the next. Decide based on vaddr. */
983 if (hdr->sh_addr >= phdr->p_vaddr
984 && (hdr->sh_addr + hdr->sh_size
985 <= phdr->p_vaddr + phdr->p_memsz))
986 break;
987 }
988 }
989 }
990 }
991
992 return TRUE;
993 }
994
995 /*
996 INTERNAL_FUNCTION
997 bfd_elf_find_section
998
999 SYNOPSIS
1000 struct elf_internal_shdr *bfd_elf_find_section (bfd *abfd, char *name);
1001
1002 DESCRIPTION
1003 Helper functions for GDB to locate the string tables.
1004 Since BFD hides string tables from callers, GDB needs to use an
1005 internal hook to find them. Sun's .stabstr, in particular,
1006 isn't even pointed to by the .stab section, so ordinary
1007 mechanisms wouldn't work to find it, even if we had some.
1008 */
1009
1010 struct elf_internal_shdr *
1011 bfd_elf_find_section (bfd *abfd, char *name)
1012 {
1013 Elf_Internal_Shdr **i_shdrp;
1014 char *shstrtab;
1015 unsigned int max;
1016 unsigned int i;
1017
1018 i_shdrp = elf_elfsections (abfd);
1019 if (i_shdrp != NULL)
1020 {
1021 shstrtab = bfd_elf_get_str_section (abfd,
1022 elf_elfheader (abfd)->e_shstrndx);
1023 if (shstrtab != NULL)
1024 {
1025 max = elf_numsections (abfd);
1026 for (i = 1; i < max; i++)
1027 if (!strcmp (&shstrtab[i_shdrp[i]->sh_name], name))
1028 return i_shdrp[i];
1029 }
1030 }
1031 return 0;
1032 }
1033
1034 const char *const bfd_elf_section_type_names[] = {
1035 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
1036 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
1037 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
1038 };
1039
1040 /* ELF relocs are against symbols. If we are producing relocatable
1041 output, and the reloc is against an external symbol, and nothing
1042 has given us any additional addend, the resulting reloc will also
1043 be against the same symbol. In such a case, we don't want to
1044 change anything about the way the reloc is handled, since it will
1045 all be done at final link time. Rather than put special case code
1046 into bfd_perform_relocation, all the reloc types use this howto
1047 function. It just short circuits the reloc if producing
1048 relocatable output against an external symbol. */
1049
1050 bfd_reloc_status_type
1051 bfd_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED,
1052 arelent *reloc_entry,
1053 asymbol *symbol,
1054 void *data ATTRIBUTE_UNUSED,
1055 asection *input_section,
1056 bfd *output_bfd,
1057 char **error_message ATTRIBUTE_UNUSED)
1058 {
1059 if (output_bfd != NULL
1060 && (symbol->flags & BSF_SECTION_SYM) == 0
1061 && (! reloc_entry->howto->partial_inplace
1062 || reloc_entry->addend == 0))
1063 {
1064 reloc_entry->address += input_section->output_offset;
1065 return bfd_reloc_ok;
1066 }
1067
1068 return bfd_reloc_continue;
1069 }
1070 \f
1071 /* Copy the program header and other data from one object module to
1072 another. */
1073
1074 bfd_boolean
1075 _bfd_elf_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
1076 {
1077 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
1078 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
1079 return TRUE;
1080
1081 BFD_ASSERT (!elf_flags_init (obfd)
1082 || (elf_elfheader (obfd)->e_flags
1083 == elf_elfheader (ibfd)->e_flags));
1084
1085 elf_gp (obfd) = elf_gp (ibfd);
1086 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
1087 elf_flags_init (obfd) = TRUE;
1088
1089 /* Copy object attributes. */
1090 _bfd_elf_copy_obj_attributes (ibfd, obfd);
1091
1092 return TRUE;
1093 }
1094
1095 static const char *
1096 get_segment_type (unsigned int p_type)
1097 {
1098 const char *pt;
1099 switch (p_type)
1100 {
1101 case PT_NULL: pt = "NULL"; break;
1102 case PT_LOAD: pt = "LOAD"; break;
1103 case PT_DYNAMIC: pt = "DYNAMIC"; break;
1104 case PT_INTERP: pt = "INTERP"; break;
1105 case PT_NOTE: pt = "NOTE"; break;
1106 case PT_SHLIB: pt = "SHLIB"; break;
1107 case PT_PHDR: pt = "PHDR"; break;
1108 case PT_TLS: pt = "TLS"; break;
1109 case PT_GNU_EH_FRAME: pt = "EH_FRAME"; break;
1110 case PT_GNU_STACK: pt = "STACK"; break;
1111 case PT_GNU_RELRO: pt = "RELRO"; break;
1112 default: pt = NULL; break;
1113 }
1114 return pt;
1115 }
1116
1117 /* Print out the program headers. */
1118
1119 bfd_boolean
1120 _bfd_elf_print_private_bfd_data (bfd *abfd, void *farg)
1121 {
1122 FILE *f = farg;
1123 Elf_Internal_Phdr *p;
1124 asection *s;
1125 bfd_byte *dynbuf = NULL;
1126
1127 p = elf_tdata (abfd)->phdr;
1128 if (p != NULL)
1129 {
1130 unsigned int i, c;
1131
1132 fprintf (f, _("\nProgram Header:\n"));
1133 c = elf_elfheader (abfd)->e_phnum;
1134 for (i = 0; i < c; i++, p++)
1135 {
1136 const char *pt = get_segment_type (p->p_type);
1137 char buf[20];
1138
1139 if (pt == NULL)
1140 {
1141 sprintf (buf, "0x%lx", p->p_type);
1142 pt = buf;
1143 }
1144 fprintf (f, "%8s off 0x", pt);
1145 bfd_fprintf_vma (abfd, f, p->p_offset);
1146 fprintf (f, " vaddr 0x");
1147 bfd_fprintf_vma (abfd, f, p->p_vaddr);
1148 fprintf (f, " paddr 0x");
1149 bfd_fprintf_vma (abfd, f, p->p_paddr);
1150 fprintf (f, " align 2**%u\n", bfd_log2 (p->p_align));
1151 fprintf (f, " filesz 0x");
1152 bfd_fprintf_vma (abfd, f, p->p_filesz);
1153 fprintf (f, " memsz 0x");
1154 bfd_fprintf_vma (abfd, f, p->p_memsz);
1155 fprintf (f, " flags %c%c%c",
1156 (p->p_flags & PF_R) != 0 ? 'r' : '-',
1157 (p->p_flags & PF_W) != 0 ? 'w' : '-',
1158 (p->p_flags & PF_X) != 0 ? 'x' : '-');
1159 if ((p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X)) != 0)
1160 fprintf (f, " %lx", p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X));
1161 fprintf (f, "\n");
1162 }
1163 }
1164
1165 s = bfd_get_section_by_name (abfd, ".dynamic");
1166 if (s != NULL)
1167 {
1168 int elfsec;
1169 unsigned long shlink;
1170 bfd_byte *extdyn, *extdynend;
1171 size_t extdynsize;
1172 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1173
1174 fprintf (f, _("\nDynamic Section:\n"));
1175
1176 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
1177 goto error_return;
1178
1179 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1180 if (elfsec == -1)
1181 goto error_return;
1182 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1183
1184 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1185 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1186
1187 extdyn = dynbuf;
1188 extdynend = extdyn + s->size;
1189 for (; extdyn < extdynend; extdyn += extdynsize)
1190 {
1191 Elf_Internal_Dyn dyn;
1192 const char *name;
1193 char ab[20];
1194 bfd_boolean stringp;
1195
1196 (*swap_dyn_in) (abfd, extdyn, &dyn);
1197
1198 if (dyn.d_tag == DT_NULL)
1199 break;
1200
1201 stringp = FALSE;
1202 switch (dyn.d_tag)
1203 {
1204 default:
1205 sprintf (ab, "0x%lx", (unsigned long) dyn.d_tag);
1206 name = ab;
1207 break;
1208
1209 case DT_NEEDED: name = "NEEDED"; stringp = TRUE; break;
1210 case DT_PLTRELSZ: name = "PLTRELSZ"; break;
1211 case DT_PLTGOT: name = "PLTGOT"; break;
1212 case DT_HASH: name = "HASH"; break;
1213 case DT_STRTAB: name = "STRTAB"; break;
1214 case DT_SYMTAB: name = "SYMTAB"; break;
1215 case DT_RELA: name = "RELA"; break;
1216 case DT_RELASZ: name = "RELASZ"; break;
1217 case DT_RELAENT: name = "RELAENT"; break;
1218 case DT_STRSZ: name = "STRSZ"; break;
1219 case DT_SYMENT: name = "SYMENT"; break;
1220 case DT_INIT: name = "INIT"; break;
1221 case DT_FINI: name = "FINI"; break;
1222 case DT_SONAME: name = "SONAME"; stringp = TRUE; break;
1223 case DT_RPATH: name = "RPATH"; stringp = TRUE; break;
1224 case DT_SYMBOLIC: name = "SYMBOLIC"; break;
1225 case DT_REL: name = "REL"; break;
1226 case DT_RELSZ: name = "RELSZ"; break;
1227 case DT_RELENT: name = "RELENT"; break;
1228 case DT_PLTREL: name = "PLTREL"; break;
1229 case DT_DEBUG: name = "DEBUG"; break;
1230 case DT_TEXTREL: name = "TEXTREL"; break;
1231 case DT_JMPREL: name = "JMPREL"; break;
1232 case DT_BIND_NOW: name = "BIND_NOW"; break;
1233 case DT_INIT_ARRAY: name = "INIT_ARRAY"; break;
1234 case DT_FINI_ARRAY: name = "FINI_ARRAY"; break;
1235 case DT_INIT_ARRAYSZ: name = "INIT_ARRAYSZ"; break;
1236 case DT_FINI_ARRAYSZ: name = "FINI_ARRAYSZ"; break;
1237 case DT_RUNPATH: name = "RUNPATH"; stringp = TRUE; break;
1238 case DT_FLAGS: name = "FLAGS"; break;
1239 case DT_PREINIT_ARRAY: name = "PREINIT_ARRAY"; break;
1240 case DT_PREINIT_ARRAYSZ: name = "PREINIT_ARRAYSZ"; break;
1241 case DT_CHECKSUM: name = "CHECKSUM"; break;
1242 case DT_PLTPADSZ: name = "PLTPADSZ"; break;
1243 case DT_MOVEENT: name = "MOVEENT"; break;
1244 case DT_MOVESZ: name = "MOVESZ"; break;
1245 case DT_FEATURE: name = "FEATURE"; break;
1246 case DT_POSFLAG_1: name = "POSFLAG_1"; break;
1247 case DT_SYMINSZ: name = "SYMINSZ"; break;
1248 case DT_SYMINENT: name = "SYMINENT"; break;
1249 case DT_CONFIG: name = "CONFIG"; stringp = TRUE; break;
1250 case DT_DEPAUDIT: name = "DEPAUDIT"; stringp = TRUE; break;
1251 case DT_AUDIT: name = "AUDIT"; stringp = TRUE; break;
1252 case DT_PLTPAD: name = "PLTPAD"; break;
1253 case DT_MOVETAB: name = "MOVETAB"; break;
1254 case DT_SYMINFO: name = "SYMINFO"; break;
1255 case DT_RELACOUNT: name = "RELACOUNT"; break;
1256 case DT_RELCOUNT: name = "RELCOUNT"; break;
1257 case DT_FLAGS_1: name = "FLAGS_1"; break;
1258 case DT_VERSYM: name = "VERSYM"; break;
1259 case DT_VERDEF: name = "VERDEF"; break;
1260 case DT_VERDEFNUM: name = "VERDEFNUM"; break;
1261 case DT_VERNEED: name = "VERNEED"; break;
1262 case DT_VERNEEDNUM: name = "VERNEEDNUM"; break;
1263 case DT_AUXILIARY: name = "AUXILIARY"; stringp = TRUE; break;
1264 case DT_USED: name = "USED"; break;
1265 case DT_FILTER: name = "FILTER"; stringp = TRUE; break;
1266 case DT_GNU_HASH: name = "GNU_HASH"; break;
1267 }
1268
1269 fprintf (f, " %-11s ", name);
1270 if (! stringp)
1271 fprintf (f, "0x%lx", (unsigned long) dyn.d_un.d_val);
1272 else
1273 {
1274 const char *string;
1275 unsigned int tagv = dyn.d_un.d_val;
1276
1277 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1278 if (string == NULL)
1279 goto error_return;
1280 fprintf (f, "%s", string);
1281 }
1282 fprintf (f, "\n");
1283 }
1284
1285 free (dynbuf);
1286 dynbuf = NULL;
1287 }
1288
1289 if ((elf_dynverdef (abfd) != 0 && elf_tdata (abfd)->verdef == NULL)
1290 || (elf_dynverref (abfd) != 0 && elf_tdata (abfd)->verref == NULL))
1291 {
1292 if (! _bfd_elf_slurp_version_tables (abfd, FALSE))
1293 return FALSE;
1294 }
1295
1296 if (elf_dynverdef (abfd) != 0)
1297 {
1298 Elf_Internal_Verdef *t;
1299
1300 fprintf (f, _("\nVersion definitions:\n"));
1301 for (t = elf_tdata (abfd)->verdef; t != NULL; t = t->vd_nextdef)
1302 {
1303 fprintf (f, "%d 0x%2.2x 0x%8.8lx %s\n", t->vd_ndx,
1304 t->vd_flags, t->vd_hash,
1305 t->vd_nodename ? t->vd_nodename : "<corrupt>");
1306 if (t->vd_auxptr != NULL && t->vd_auxptr->vda_nextptr != NULL)
1307 {
1308 Elf_Internal_Verdaux *a;
1309
1310 fprintf (f, "\t");
1311 for (a = t->vd_auxptr->vda_nextptr;
1312 a != NULL;
1313 a = a->vda_nextptr)
1314 fprintf (f, "%s ",
1315 a->vda_nodename ? a->vda_nodename : "<corrupt>");
1316 fprintf (f, "\n");
1317 }
1318 }
1319 }
1320
1321 if (elf_dynverref (abfd) != 0)
1322 {
1323 Elf_Internal_Verneed *t;
1324
1325 fprintf (f, _("\nVersion References:\n"));
1326 for (t = elf_tdata (abfd)->verref; t != NULL; t = t->vn_nextref)
1327 {
1328 Elf_Internal_Vernaux *a;
1329
1330 fprintf (f, _(" required from %s:\n"),
1331 t->vn_filename ? t->vn_filename : "<corrupt>");
1332 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1333 fprintf (f, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a->vna_hash,
1334 a->vna_flags, a->vna_other,
1335 a->vna_nodename ? a->vna_nodename : "<corrupt>");
1336 }
1337 }
1338
1339 return TRUE;
1340
1341 error_return:
1342 if (dynbuf != NULL)
1343 free (dynbuf);
1344 return FALSE;
1345 }
1346
1347 /* Display ELF-specific fields of a symbol. */
1348
1349 void
1350 bfd_elf_print_symbol (bfd *abfd,
1351 void *filep,
1352 asymbol *symbol,
1353 bfd_print_symbol_type how)
1354 {
1355 FILE *file = filep;
1356 switch (how)
1357 {
1358 case bfd_print_symbol_name:
1359 fprintf (file, "%s", symbol->name);
1360 break;
1361 case bfd_print_symbol_more:
1362 fprintf (file, "elf ");
1363 bfd_fprintf_vma (abfd, file, symbol->value);
1364 fprintf (file, " %lx", (long) symbol->flags);
1365 break;
1366 case bfd_print_symbol_all:
1367 {
1368 const char *section_name;
1369 const char *name = NULL;
1370 const struct elf_backend_data *bed;
1371 unsigned char st_other;
1372 bfd_vma val;
1373
1374 section_name = symbol->section ? symbol->section->name : "(*none*)";
1375
1376 bed = get_elf_backend_data (abfd);
1377 if (bed->elf_backend_print_symbol_all)
1378 name = (*bed->elf_backend_print_symbol_all) (abfd, filep, symbol);
1379
1380 if (name == NULL)
1381 {
1382 name = symbol->name;
1383 bfd_print_symbol_vandf (abfd, file, symbol);
1384 }
1385
1386 fprintf (file, " %s\t", section_name);
1387 /* Print the "other" value for a symbol. For common symbols,
1388 we've already printed the size; now print the alignment.
1389 For other symbols, we have no specified alignment, and
1390 we've printed the address; now print the size. */
1391 if (symbol->section && bfd_is_com_section (symbol->section))
1392 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
1393 else
1394 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_size;
1395 bfd_fprintf_vma (abfd, file, val);
1396
1397 /* If we have version information, print it. */
1398 if (elf_tdata (abfd)->dynversym_section != 0
1399 && (elf_tdata (abfd)->dynverdef_section != 0
1400 || elf_tdata (abfd)->dynverref_section != 0))
1401 {
1402 unsigned int vernum;
1403 const char *version_string;
1404
1405 vernum = ((elf_symbol_type *) symbol)->version & VERSYM_VERSION;
1406
1407 if (vernum == 0)
1408 version_string = "";
1409 else if (vernum == 1)
1410 version_string = "Base";
1411 else if (vernum <= elf_tdata (abfd)->cverdefs)
1412 version_string =
1413 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1414 else
1415 {
1416 Elf_Internal_Verneed *t;
1417
1418 version_string = "";
1419 for (t = elf_tdata (abfd)->verref;
1420 t != NULL;
1421 t = t->vn_nextref)
1422 {
1423 Elf_Internal_Vernaux *a;
1424
1425 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1426 {
1427 if (a->vna_other == vernum)
1428 {
1429 version_string = a->vna_nodename;
1430 break;
1431 }
1432 }
1433 }
1434 }
1435
1436 if ((((elf_symbol_type *) symbol)->version & VERSYM_HIDDEN) == 0)
1437 fprintf (file, " %-11s", version_string);
1438 else
1439 {
1440 int i;
1441
1442 fprintf (file, " (%s)", version_string);
1443 for (i = 10 - strlen (version_string); i > 0; --i)
1444 putc (' ', file);
1445 }
1446 }
1447
1448 /* If the st_other field is not zero, print it. */
1449 st_other = ((elf_symbol_type *) symbol)->internal_elf_sym.st_other;
1450
1451 switch (st_other)
1452 {
1453 case 0: break;
1454 case STV_INTERNAL: fprintf (file, " .internal"); break;
1455 case STV_HIDDEN: fprintf (file, " .hidden"); break;
1456 case STV_PROTECTED: fprintf (file, " .protected"); break;
1457 default:
1458 /* Some other non-defined flags are also present, so print
1459 everything hex. */
1460 fprintf (file, " 0x%02x", (unsigned int) st_other);
1461 }
1462
1463 fprintf (file, " %s", name);
1464 }
1465 break;
1466 }
1467 }
1468
1469 /* Allocate an ELF string table--force the first byte to be zero. */
1470
1471 struct bfd_strtab_hash *
1472 _bfd_elf_stringtab_init (void)
1473 {
1474 struct bfd_strtab_hash *ret;
1475
1476 ret = _bfd_stringtab_init ();
1477 if (ret != NULL)
1478 {
1479 bfd_size_type loc;
1480
1481 loc = _bfd_stringtab_add (ret, "", TRUE, FALSE);
1482 BFD_ASSERT (loc == 0 || loc == (bfd_size_type) -1);
1483 if (loc == (bfd_size_type) -1)
1484 {
1485 _bfd_stringtab_free (ret);
1486 ret = NULL;
1487 }
1488 }
1489 return ret;
1490 }
1491 \f
1492 /* ELF .o/exec file reading */
1493
1494 /* Create a new bfd section from an ELF section header. */
1495
1496 bfd_boolean
1497 bfd_section_from_shdr (bfd *abfd, unsigned int shindex)
1498 {
1499 Elf_Internal_Shdr *hdr = elf_elfsections (abfd)[shindex];
1500 Elf_Internal_Ehdr *ehdr = elf_elfheader (abfd);
1501 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1502 const char *name;
1503
1504 name = bfd_elf_string_from_elf_section (abfd,
1505 elf_elfheader (abfd)->e_shstrndx,
1506 hdr->sh_name);
1507 if (name == NULL)
1508 return FALSE;
1509
1510 switch (hdr->sh_type)
1511 {
1512 case SHT_NULL:
1513 /* Inactive section. Throw it away. */
1514 return TRUE;
1515
1516 case SHT_PROGBITS: /* Normal section with contents. */
1517 case SHT_NOBITS: /* .bss section. */
1518 case SHT_HASH: /* .hash section. */
1519 case SHT_NOTE: /* .note section. */
1520 case SHT_INIT_ARRAY: /* .init_array section. */
1521 case SHT_FINI_ARRAY: /* .fini_array section. */
1522 case SHT_PREINIT_ARRAY: /* .preinit_array section. */
1523 case SHT_GNU_LIBLIST: /* .gnu.liblist section. */
1524 case SHT_GNU_HASH: /* .gnu.hash section. */
1525 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1526
1527 case SHT_DYNAMIC: /* Dynamic linking information. */
1528 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1529 return FALSE;
1530 if (hdr->sh_link > elf_numsections (abfd)
1531 || elf_elfsections (abfd)[hdr->sh_link] == NULL)
1532 return FALSE;
1533 if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_STRTAB)
1534 {
1535 Elf_Internal_Shdr *dynsymhdr;
1536
1537 /* The shared libraries distributed with hpux11 have a bogus
1538 sh_link field for the ".dynamic" section. Find the
1539 string table for the ".dynsym" section instead. */
1540 if (elf_dynsymtab (abfd) != 0)
1541 {
1542 dynsymhdr = elf_elfsections (abfd)[elf_dynsymtab (abfd)];
1543 hdr->sh_link = dynsymhdr->sh_link;
1544 }
1545 else
1546 {
1547 unsigned int i, num_sec;
1548
1549 num_sec = elf_numsections (abfd);
1550 for (i = 1; i < num_sec; i++)
1551 {
1552 dynsymhdr = elf_elfsections (abfd)[i];
1553 if (dynsymhdr->sh_type == SHT_DYNSYM)
1554 {
1555 hdr->sh_link = dynsymhdr->sh_link;
1556 break;
1557 }
1558 }
1559 }
1560 }
1561 break;
1562
1563 case SHT_SYMTAB: /* A symbol table */
1564 if (elf_onesymtab (abfd) == shindex)
1565 return TRUE;
1566
1567 if (hdr->sh_entsize != bed->s->sizeof_sym)
1568 return FALSE;
1569 BFD_ASSERT (elf_onesymtab (abfd) == 0);
1570 elf_onesymtab (abfd) = shindex;
1571 elf_tdata (abfd)->symtab_hdr = *hdr;
1572 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->symtab_hdr;
1573 abfd->flags |= HAS_SYMS;
1574
1575 /* Sometimes a shared object will map in the symbol table. If
1576 SHF_ALLOC is set, and this is a shared object, then we also
1577 treat this section as a BFD section. We can not base the
1578 decision purely on SHF_ALLOC, because that flag is sometimes
1579 set in a relocatable object file, which would confuse the
1580 linker. */
1581 if ((hdr->sh_flags & SHF_ALLOC) != 0
1582 && (abfd->flags & DYNAMIC) != 0
1583 && ! _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1584 shindex))
1585 return FALSE;
1586
1587 /* Go looking for SHT_SYMTAB_SHNDX too, since if there is one we
1588 can't read symbols without that section loaded as well. It
1589 is most likely specified by the next section header. */
1590 if (elf_elfsections (abfd)[elf_symtab_shndx (abfd)]->sh_link != shindex)
1591 {
1592 unsigned int i, num_sec;
1593
1594 num_sec = elf_numsections (abfd);
1595 for (i = shindex + 1; i < num_sec; i++)
1596 {
1597 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1598 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
1599 && hdr2->sh_link == shindex)
1600 break;
1601 }
1602 if (i == num_sec)
1603 for (i = 1; i < shindex; i++)
1604 {
1605 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1606 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
1607 && hdr2->sh_link == shindex)
1608 break;
1609 }
1610 if (i != shindex)
1611 return bfd_section_from_shdr (abfd, i);
1612 }
1613 return TRUE;
1614
1615 case SHT_DYNSYM: /* A dynamic symbol table */
1616 if (elf_dynsymtab (abfd) == shindex)
1617 return TRUE;
1618
1619 if (hdr->sh_entsize != bed->s->sizeof_sym)
1620 return FALSE;
1621 BFD_ASSERT (elf_dynsymtab (abfd) == 0);
1622 elf_dynsymtab (abfd) = shindex;
1623 elf_tdata (abfd)->dynsymtab_hdr = *hdr;
1624 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->dynsymtab_hdr;
1625 abfd->flags |= HAS_SYMS;
1626
1627 /* Besides being a symbol table, we also treat this as a regular
1628 section, so that objcopy can handle it. */
1629 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1630
1631 case SHT_SYMTAB_SHNDX: /* Symbol section indices when >64k sections */
1632 if (elf_symtab_shndx (abfd) == shindex)
1633 return TRUE;
1634
1635 BFD_ASSERT (elf_symtab_shndx (abfd) == 0);
1636 elf_symtab_shndx (abfd) = shindex;
1637 elf_tdata (abfd)->symtab_shndx_hdr = *hdr;
1638 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->symtab_shndx_hdr;
1639 return TRUE;
1640
1641 case SHT_STRTAB: /* A string table */
1642 if (hdr->bfd_section != NULL)
1643 return TRUE;
1644 if (ehdr->e_shstrndx == shindex)
1645 {
1646 elf_tdata (abfd)->shstrtab_hdr = *hdr;
1647 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->shstrtab_hdr;
1648 return TRUE;
1649 }
1650 if (elf_elfsections (abfd)[elf_onesymtab (abfd)]->sh_link == shindex)
1651 {
1652 symtab_strtab:
1653 elf_tdata (abfd)->strtab_hdr = *hdr;
1654 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->strtab_hdr;
1655 return TRUE;
1656 }
1657 if (elf_elfsections (abfd)[elf_dynsymtab (abfd)]->sh_link == shindex)
1658 {
1659 dynsymtab_strtab:
1660 elf_tdata (abfd)->dynstrtab_hdr = *hdr;
1661 hdr = &elf_tdata (abfd)->dynstrtab_hdr;
1662 elf_elfsections (abfd)[shindex] = hdr;
1663 /* We also treat this as a regular section, so that objcopy
1664 can handle it. */
1665 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1666 shindex);
1667 }
1668
1669 /* If the string table isn't one of the above, then treat it as a
1670 regular section. We need to scan all the headers to be sure,
1671 just in case this strtab section appeared before the above. */
1672 if (elf_onesymtab (abfd) == 0 || elf_dynsymtab (abfd) == 0)
1673 {
1674 unsigned int i, num_sec;
1675
1676 num_sec = elf_numsections (abfd);
1677 for (i = 1; i < num_sec; i++)
1678 {
1679 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1680 if (hdr2->sh_link == shindex)
1681 {
1682 /* Prevent endless recursion on broken objects. */
1683 if (i == shindex)
1684 return FALSE;
1685 if (! bfd_section_from_shdr (abfd, i))
1686 return FALSE;
1687 if (elf_onesymtab (abfd) == i)
1688 goto symtab_strtab;
1689 if (elf_dynsymtab (abfd) == i)
1690 goto dynsymtab_strtab;
1691 }
1692 }
1693 }
1694 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1695
1696 case SHT_REL:
1697 case SHT_RELA:
1698 /* *These* do a lot of work -- but build no sections! */
1699 {
1700 asection *target_sect;
1701 Elf_Internal_Shdr *hdr2;
1702 unsigned int num_sec = elf_numsections (abfd);
1703
1704 if (hdr->sh_entsize
1705 != (bfd_size_type) (hdr->sh_type == SHT_REL
1706 ? bed->s->sizeof_rel : bed->s->sizeof_rela))
1707 return FALSE;
1708
1709 /* Check for a bogus link to avoid crashing. */
1710 if ((hdr->sh_link >= SHN_LORESERVE && hdr->sh_link <= SHN_HIRESERVE)
1711 || hdr->sh_link >= num_sec)
1712 {
1713 ((*_bfd_error_handler)
1714 (_("%B: invalid link %lu for reloc section %s (index %u)"),
1715 abfd, hdr->sh_link, name, shindex));
1716 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1717 shindex);
1718 }
1719
1720 /* For some incomprehensible reason Oracle distributes
1721 libraries for Solaris in which some of the objects have
1722 bogus sh_link fields. It would be nice if we could just
1723 reject them, but, unfortunately, some people need to use
1724 them. We scan through the section headers; if we find only
1725 one suitable symbol table, we clobber the sh_link to point
1726 to it. I hope this doesn't break anything. */
1727 if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_SYMTAB
1728 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_DYNSYM)
1729 {
1730 unsigned int scan;
1731 int found;
1732
1733 found = 0;
1734 for (scan = 1; scan < num_sec; scan++)
1735 {
1736 if (elf_elfsections (abfd)[scan]->sh_type == SHT_SYMTAB
1737 || elf_elfsections (abfd)[scan]->sh_type == SHT_DYNSYM)
1738 {
1739 if (found != 0)
1740 {
1741 found = 0;
1742 break;
1743 }
1744 found = scan;
1745 }
1746 }
1747 if (found != 0)
1748 hdr->sh_link = found;
1749 }
1750
1751 /* Get the symbol table. */
1752 if ((elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_SYMTAB
1753 || elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_DYNSYM)
1754 && ! bfd_section_from_shdr (abfd, hdr->sh_link))
1755 return FALSE;
1756
1757 /* If this reloc section does not use the main symbol table we
1758 don't treat it as a reloc section. BFD can't adequately
1759 represent such a section, so at least for now, we don't
1760 try. We just present it as a normal section. We also
1761 can't use it as a reloc section if it points to the null
1762 section, an invalid section, or another reloc section. */
1763 if (hdr->sh_link != elf_onesymtab (abfd)
1764 || hdr->sh_info == SHN_UNDEF
1765 || (hdr->sh_info >= SHN_LORESERVE && hdr->sh_info <= SHN_HIRESERVE)
1766 || hdr->sh_info >= num_sec
1767 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_REL
1768 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_RELA)
1769 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1770 shindex);
1771
1772 if (! bfd_section_from_shdr (abfd, hdr->sh_info))
1773 return FALSE;
1774 target_sect = bfd_section_from_elf_index (abfd, hdr->sh_info);
1775 if (target_sect == NULL)
1776 return FALSE;
1777
1778 if ((target_sect->flags & SEC_RELOC) == 0
1779 || target_sect->reloc_count == 0)
1780 hdr2 = &elf_section_data (target_sect)->rel_hdr;
1781 else
1782 {
1783 bfd_size_type amt;
1784 BFD_ASSERT (elf_section_data (target_sect)->rel_hdr2 == NULL);
1785 amt = sizeof (*hdr2);
1786 hdr2 = bfd_alloc (abfd, amt);
1787 elf_section_data (target_sect)->rel_hdr2 = hdr2;
1788 }
1789 *hdr2 = *hdr;
1790 elf_elfsections (abfd)[shindex] = hdr2;
1791 target_sect->reloc_count += NUM_SHDR_ENTRIES (hdr);
1792 target_sect->flags |= SEC_RELOC;
1793 target_sect->relocation = NULL;
1794 target_sect->rel_filepos = hdr->sh_offset;
1795 /* In the section to which the relocations apply, mark whether
1796 its relocations are of the REL or RELA variety. */
1797 if (hdr->sh_size != 0)
1798 target_sect->use_rela_p = hdr->sh_type == SHT_RELA;
1799 abfd->flags |= HAS_RELOC;
1800 return TRUE;
1801 }
1802
1803 case SHT_GNU_verdef:
1804 elf_dynverdef (abfd) = shindex;
1805 elf_tdata (abfd)->dynverdef_hdr = *hdr;
1806 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1807
1808 case SHT_GNU_versym:
1809 if (hdr->sh_entsize != sizeof (Elf_External_Versym))
1810 return FALSE;
1811 elf_dynversym (abfd) = shindex;
1812 elf_tdata (abfd)->dynversym_hdr = *hdr;
1813 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1814
1815 case SHT_GNU_verneed:
1816 elf_dynverref (abfd) = shindex;
1817 elf_tdata (abfd)->dynverref_hdr = *hdr;
1818 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1819
1820 case SHT_SHLIB:
1821 return TRUE;
1822
1823 case SHT_GROUP:
1824 /* We need a BFD section for objcopy and relocatable linking,
1825 and it's handy to have the signature available as the section
1826 name. */
1827 if (! IS_VALID_GROUP_SECTION_HEADER (hdr))
1828 return FALSE;
1829 name = group_signature (abfd, hdr);
1830 if (name == NULL)
1831 return FALSE;
1832 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1833 return FALSE;
1834 if (hdr->contents != NULL)
1835 {
1836 Elf_Internal_Group *idx = (Elf_Internal_Group *) hdr->contents;
1837 unsigned int n_elt = hdr->sh_size / GRP_ENTRY_SIZE;
1838 asection *s;
1839
1840 if (idx->flags & GRP_COMDAT)
1841 hdr->bfd_section->flags
1842 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
1843
1844 /* We try to keep the same section order as it comes in. */
1845 idx += n_elt;
1846 while (--n_elt != 0)
1847 {
1848 --idx;
1849
1850 if (idx->shdr != NULL
1851 && (s = idx->shdr->bfd_section) != NULL
1852 && elf_next_in_group (s) != NULL)
1853 {
1854 elf_next_in_group (hdr->bfd_section) = s;
1855 break;
1856 }
1857 }
1858 }
1859 break;
1860
1861 default:
1862 /* Possibly an attributes section. */
1863 if (hdr->sh_type == SHT_GNU_ATTRIBUTES
1864 || hdr->sh_type == bed->obj_attrs_section_type)
1865 {
1866 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1867 return FALSE;
1868 _bfd_elf_parse_attributes (abfd, hdr);
1869 return TRUE;
1870 }
1871
1872 /* Check for any processor-specific section types. */
1873 if (bed->elf_backend_section_from_shdr (abfd, hdr, name, shindex))
1874 return TRUE;
1875
1876 if (hdr->sh_type >= SHT_LOUSER && hdr->sh_type <= SHT_HIUSER)
1877 {
1878 if ((hdr->sh_flags & SHF_ALLOC) != 0)
1879 /* FIXME: How to properly handle allocated section reserved
1880 for applications? */
1881 (*_bfd_error_handler)
1882 (_("%B: don't know how to handle allocated, application "
1883 "specific section `%s' [0x%8x]"),
1884 abfd, name, hdr->sh_type);
1885 else
1886 /* Allow sections reserved for applications. */
1887 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1888 shindex);
1889 }
1890 else if (hdr->sh_type >= SHT_LOPROC
1891 && hdr->sh_type <= SHT_HIPROC)
1892 /* FIXME: We should handle this section. */
1893 (*_bfd_error_handler)
1894 (_("%B: don't know how to handle processor specific section "
1895 "`%s' [0x%8x]"),
1896 abfd, name, hdr->sh_type);
1897 else if (hdr->sh_type >= SHT_LOOS && hdr->sh_type <= SHT_HIOS)
1898 {
1899 /* Unrecognised OS-specific sections. */
1900 if ((hdr->sh_flags & SHF_OS_NONCONFORMING) != 0)
1901 /* SHF_OS_NONCONFORMING indicates that special knowledge is
1902 required to correctly process the section and the file should
1903 be rejected with an error message. */
1904 (*_bfd_error_handler)
1905 (_("%B: don't know how to handle OS specific section "
1906 "`%s' [0x%8x]"),
1907 abfd, name, hdr->sh_type);
1908 else
1909 /* Otherwise it should be processed. */
1910 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1911 }
1912 else
1913 /* FIXME: We should handle this section. */
1914 (*_bfd_error_handler)
1915 (_("%B: don't know how to handle section `%s' [0x%8x]"),
1916 abfd, name, hdr->sh_type);
1917
1918 return FALSE;
1919 }
1920
1921 return TRUE;
1922 }
1923
1924 /* Return the section for the local symbol specified by ABFD, R_SYMNDX.
1925 Return SEC for sections that have no elf section, and NULL on error. */
1926
1927 asection *
1928 bfd_section_from_r_symndx (bfd *abfd,
1929 struct sym_sec_cache *cache,
1930 asection *sec,
1931 unsigned long r_symndx)
1932 {
1933 unsigned int ent = r_symndx % LOCAL_SYM_CACHE_SIZE;
1934 asection *s;
1935
1936 if (cache->abfd != abfd || cache->indx[ent] != r_symndx)
1937 {
1938 Elf_Internal_Shdr *symtab_hdr;
1939 unsigned char esym[sizeof (Elf64_External_Sym)];
1940 Elf_External_Sym_Shndx eshndx;
1941 Elf_Internal_Sym isym;
1942
1943 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1944 if (bfd_elf_get_elf_syms (abfd, symtab_hdr, 1, r_symndx,
1945 &isym, esym, &eshndx) == NULL)
1946 return NULL;
1947
1948 if (cache->abfd != abfd)
1949 {
1950 memset (cache->indx, -1, sizeof (cache->indx));
1951 cache->abfd = abfd;
1952 }
1953 cache->indx[ent] = r_symndx;
1954 cache->shndx[ent] = isym.st_shndx;
1955 }
1956
1957 s = bfd_section_from_elf_index (abfd, cache->shndx[ent]);
1958 if (s != NULL)
1959 return s;
1960
1961 return sec;
1962 }
1963
1964 /* Given an ELF section number, retrieve the corresponding BFD
1965 section. */
1966
1967 asection *
1968 bfd_section_from_elf_index (bfd *abfd, unsigned int index)
1969 {
1970 if (index >= elf_numsections (abfd))
1971 return NULL;
1972 return elf_elfsections (abfd)[index]->bfd_section;
1973 }
1974
1975 static const struct bfd_elf_special_section special_sections_b[] =
1976 {
1977 { STRING_COMMA_LEN (".bss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
1978 { NULL, 0, 0, 0, 0 }
1979 };
1980
1981 static const struct bfd_elf_special_section special_sections_c[] =
1982 {
1983 { STRING_COMMA_LEN (".comment"), 0, SHT_PROGBITS, 0 },
1984 { NULL, 0, 0, 0, 0 }
1985 };
1986
1987 static const struct bfd_elf_special_section special_sections_d[] =
1988 {
1989 { STRING_COMMA_LEN (".data"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
1990 { STRING_COMMA_LEN (".data1"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
1991 { STRING_COMMA_LEN (".debug"), 0, SHT_PROGBITS, 0 },
1992 { STRING_COMMA_LEN (".debug_line"), 0, SHT_PROGBITS, 0 },
1993 { STRING_COMMA_LEN (".debug_info"), 0, SHT_PROGBITS, 0 },
1994 { STRING_COMMA_LEN (".debug_abbrev"), 0, SHT_PROGBITS, 0 },
1995 { STRING_COMMA_LEN (".debug_aranges"), 0, SHT_PROGBITS, 0 },
1996 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC, SHF_ALLOC },
1997 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB, SHF_ALLOC },
1998 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM, SHF_ALLOC },
1999 { NULL, 0, 0, 0, 0 }
2000 };
2001
2002 static const struct bfd_elf_special_section special_sections_f[] =
2003 {
2004 { STRING_COMMA_LEN (".fini"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2005 { STRING_COMMA_LEN (".fini_array"), 0, SHT_FINI_ARRAY, SHF_ALLOC + SHF_WRITE },
2006 { NULL, 0, 0, 0, 0 }
2007 };
2008
2009 static const struct bfd_elf_special_section special_sections_g[] =
2010 {
2011 { STRING_COMMA_LEN (".gnu.linkonce.b"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2012 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2013 { STRING_COMMA_LEN (".gnu.version"), 0, SHT_GNU_versym, 0 },
2014 { STRING_COMMA_LEN (".gnu.version_d"), 0, SHT_GNU_verdef, 0 },
2015 { STRING_COMMA_LEN (".gnu.version_r"), 0, SHT_GNU_verneed, 0 },
2016 { STRING_COMMA_LEN (".gnu.liblist"), 0, SHT_GNU_LIBLIST, SHF_ALLOC },
2017 { STRING_COMMA_LEN (".gnu.conflict"), 0, SHT_RELA, SHF_ALLOC },
2018 { STRING_COMMA_LEN (".gnu.hash"), 0, SHT_GNU_HASH, SHF_ALLOC },
2019 { NULL, 0, 0, 0, 0 }
2020 };
2021
2022 static const struct bfd_elf_special_section special_sections_h[] =
2023 {
2024 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH, SHF_ALLOC },
2025 { NULL, 0, 0, 0, 0 }
2026 };
2027
2028 static const struct bfd_elf_special_section special_sections_i[] =
2029 {
2030 { STRING_COMMA_LEN (".init"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2031 { STRING_COMMA_LEN (".init_array"), 0, SHT_INIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2032 { STRING_COMMA_LEN (".interp"), 0, SHT_PROGBITS, 0 },
2033 { NULL, 0, 0, 0, 0 }
2034 };
2035
2036 static const struct bfd_elf_special_section special_sections_l[] =
2037 {
2038 { STRING_COMMA_LEN (".line"), 0, SHT_PROGBITS, 0 },
2039 { NULL, 0, 0, 0, 0 }
2040 };
2041
2042 static const struct bfd_elf_special_section special_sections_n[] =
2043 {
2044 { STRING_COMMA_LEN (".note.GNU-stack"), 0, SHT_PROGBITS, 0 },
2045 { STRING_COMMA_LEN (".note"), -1, SHT_NOTE, 0 },
2046 { NULL, 0, 0, 0, 0 }
2047 };
2048
2049 static const struct bfd_elf_special_section special_sections_p[] =
2050 {
2051 { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2052 { STRING_COMMA_LEN (".plt"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2053 { NULL, 0, 0, 0, 0 }
2054 };
2055
2056 static const struct bfd_elf_special_section special_sections_r[] =
2057 {
2058 { STRING_COMMA_LEN (".rodata"), -2, SHT_PROGBITS, SHF_ALLOC },
2059 { STRING_COMMA_LEN (".rodata1"), 0, SHT_PROGBITS, SHF_ALLOC },
2060 { STRING_COMMA_LEN (".rela"), -1, SHT_RELA, 0 },
2061 { STRING_COMMA_LEN (".rel"), -1, SHT_REL, 0 },
2062 { NULL, 0, 0, 0, 0 }
2063 };
2064
2065 static const struct bfd_elf_special_section special_sections_s[] =
2066 {
2067 { STRING_COMMA_LEN (".shstrtab"), 0, SHT_STRTAB, 0 },
2068 { STRING_COMMA_LEN (".strtab"), 0, SHT_STRTAB, 0 },
2069 { STRING_COMMA_LEN (".symtab"), 0, SHT_SYMTAB, 0 },
2070 /* See struct bfd_elf_special_section declaration for the semantics of
2071 this special case where .prefix_length != strlen (.prefix). */
2072 { ".stabstr", 5, 3, SHT_STRTAB, 0 },
2073 { NULL, 0, 0, 0, 0 }
2074 };
2075
2076 static const struct bfd_elf_special_section special_sections_t[] =
2077 {
2078 { STRING_COMMA_LEN (".text"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2079 { STRING_COMMA_LEN (".tbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2080 { STRING_COMMA_LEN (".tdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2081 { NULL, 0, 0, 0, 0 }
2082 };
2083
2084 static const struct bfd_elf_special_section *special_sections[] =
2085 {
2086 special_sections_b, /* 'b' */
2087 special_sections_c, /* 'c' */
2088 special_sections_d, /* 'd' */
2089 NULL, /* 'e' */
2090 special_sections_f, /* 'f' */
2091 special_sections_g, /* 'g' */
2092 special_sections_h, /* 'h' */
2093 special_sections_i, /* 'i' */
2094 NULL, /* 'j' */
2095 NULL, /* 'k' */
2096 special_sections_l, /* 'l' */
2097 NULL, /* 'm' */
2098 special_sections_n, /* 'n' */
2099 NULL, /* 'o' */
2100 special_sections_p, /* 'p' */
2101 NULL, /* 'q' */
2102 special_sections_r, /* 'r' */
2103 special_sections_s, /* 's' */
2104 special_sections_t, /* 't' */
2105 };
2106
2107 const struct bfd_elf_special_section *
2108 _bfd_elf_get_special_section (const char *name,
2109 const struct bfd_elf_special_section *spec,
2110 unsigned int rela)
2111 {
2112 int i;
2113 int len;
2114
2115 len = strlen (name);
2116
2117 for (i = 0; spec[i].prefix != NULL; i++)
2118 {
2119 int suffix_len;
2120 int prefix_len = spec[i].prefix_length;
2121
2122 if (len < prefix_len)
2123 continue;
2124 if (memcmp (name, spec[i].prefix, prefix_len) != 0)
2125 continue;
2126
2127 suffix_len = spec[i].suffix_length;
2128 if (suffix_len <= 0)
2129 {
2130 if (name[prefix_len] != 0)
2131 {
2132 if (suffix_len == 0)
2133 continue;
2134 if (name[prefix_len] != '.'
2135 && (suffix_len == -2
2136 || (rela && spec[i].type == SHT_REL)))
2137 continue;
2138 }
2139 }
2140 else
2141 {
2142 if (len < prefix_len + suffix_len)
2143 continue;
2144 if (memcmp (name + len - suffix_len,
2145 spec[i].prefix + prefix_len,
2146 suffix_len) != 0)
2147 continue;
2148 }
2149 return &spec[i];
2150 }
2151
2152 return NULL;
2153 }
2154
2155 const struct bfd_elf_special_section *
2156 _bfd_elf_get_sec_type_attr (bfd *abfd, asection *sec)
2157 {
2158 int i;
2159 const struct bfd_elf_special_section *spec;
2160 const struct elf_backend_data *bed;
2161
2162 /* See if this is one of the special sections. */
2163 if (sec->name == NULL)
2164 return NULL;
2165
2166 bed = get_elf_backend_data (abfd);
2167 spec = bed->special_sections;
2168 if (spec)
2169 {
2170 spec = _bfd_elf_get_special_section (sec->name,
2171 bed->special_sections,
2172 sec->use_rela_p);
2173 if (spec != NULL)
2174 return spec;
2175 }
2176
2177 if (sec->name[0] != '.')
2178 return NULL;
2179
2180 i = sec->name[1] - 'b';
2181 if (i < 0 || i > 't' - 'b')
2182 return NULL;
2183
2184 spec = special_sections[i];
2185
2186 if (spec == NULL)
2187 return NULL;
2188
2189 return _bfd_elf_get_special_section (sec->name, spec, sec->use_rela_p);
2190 }
2191
2192 bfd_boolean
2193 _bfd_elf_new_section_hook (bfd *abfd, asection *sec)
2194 {
2195 struct bfd_elf_section_data *sdata;
2196 const struct elf_backend_data *bed;
2197 const struct bfd_elf_special_section *ssect;
2198
2199 sdata = (struct bfd_elf_section_data *) sec->used_by_bfd;
2200 if (sdata == NULL)
2201 {
2202 sdata = bfd_zalloc (abfd, sizeof (*sdata));
2203 if (sdata == NULL)
2204 return FALSE;
2205 sec->used_by_bfd = sdata;
2206 }
2207
2208 /* Indicate whether or not this section should use RELA relocations. */
2209 bed = get_elf_backend_data (abfd);
2210 sec->use_rela_p = bed->default_use_rela_p;
2211
2212 /* When we read a file, we don't need to set ELF section type and
2213 flags. They will be overridden in _bfd_elf_make_section_from_shdr
2214 anyway. We will set ELF section type and flags for all linker
2215 created sections. If user specifies BFD section flags, we will
2216 set ELF section type and flags based on BFD section flags in
2217 elf_fake_sections. */
2218 if ((!sec->flags && abfd->direction != read_direction)
2219 || (sec->flags & SEC_LINKER_CREATED) != 0)
2220 {
2221 ssect = (*bed->get_sec_type_attr) (abfd, sec);
2222 if (ssect != NULL)
2223 {
2224 elf_section_type (sec) = ssect->type;
2225 elf_section_flags (sec) = ssect->attr;
2226 }
2227 }
2228
2229 return _bfd_generic_new_section_hook (abfd, sec);
2230 }
2231
2232 /* Create a new bfd section from an ELF program header.
2233
2234 Since program segments have no names, we generate a synthetic name
2235 of the form segment<NUM>, where NUM is generally the index in the
2236 program header table. For segments that are split (see below) we
2237 generate the names segment<NUM>a and segment<NUM>b.
2238
2239 Note that some program segments may have a file size that is different than
2240 (less than) the memory size. All this means is that at execution the
2241 system must allocate the amount of memory specified by the memory size,
2242 but only initialize it with the first "file size" bytes read from the
2243 file. This would occur for example, with program segments consisting
2244 of combined data+bss.
2245
2246 To handle the above situation, this routine generates TWO bfd sections
2247 for the single program segment. The first has the length specified by
2248 the file size of the segment, and the second has the length specified
2249 by the difference between the two sizes. In effect, the segment is split
2250 into its initialized and uninitialized parts.
2251
2252 */
2253
2254 bfd_boolean
2255 _bfd_elf_make_section_from_phdr (bfd *abfd,
2256 Elf_Internal_Phdr *hdr,
2257 int index,
2258 const char *typename)
2259 {
2260 asection *newsect;
2261 char *name;
2262 char namebuf[64];
2263 size_t len;
2264 int split;
2265
2266 split = ((hdr->p_memsz > 0)
2267 && (hdr->p_filesz > 0)
2268 && (hdr->p_memsz > hdr->p_filesz));
2269
2270 if (hdr->p_filesz > 0)
2271 {
2272 sprintf (namebuf, "%s%d%s", typename, index, split ? "a" : "");
2273 len = strlen (namebuf) + 1;
2274 name = bfd_alloc (abfd, len);
2275 if (!name)
2276 return FALSE;
2277 memcpy (name, namebuf, len);
2278 newsect = bfd_make_section (abfd, name);
2279 if (newsect == NULL)
2280 return FALSE;
2281 newsect->vma = hdr->p_vaddr;
2282 newsect->lma = hdr->p_paddr;
2283 newsect->size = hdr->p_filesz;
2284 newsect->filepos = hdr->p_offset;
2285 newsect->flags |= SEC_HAS_CONTENTS;
2286 newsect->alignment_power = bfd_log2 (hdr->p_align);
2287 if (hdr->p_type == PT_LOAD)
2288 {
2289 newsect->flags |= SEC_ALLOC;
2290 newsect->flags |= SEC_LOAD;
2291 if (hdr->p_flags & PF_X)
2292 {
2293 /* FIXME: all we known is that it has execute PERMISSION,
2294 may be data. */
2295 newsect->flags |= SEC_CODE;
2296 }
2297 }
2298 if (!(hdr->p_flags & PF_W))
2299 {
2300 newsect->flags |= SEC_READONLY;
2301 }
2302 }
2303
2304 if (hdr->p_memsz > hdr->p_filesz)
2305 {
2306 bfd_vma align;
2307
2308 sprintf (namebuf, "%s%d%s", typename, index, split ? "b" : "");
2309 len = strlen (namebuf) + 1;
2310 name = bfd_alloc (abfd, len);
2311 if (!name)
2312 return FALSE;
2313 memcpy (name, namebuf, len);
2314 newsect = bfd_make_section (abfd, name);
2315 if (newsect == NULL)
2316 return FALSE;
2317 newsect->vma = hdr->p_vaddr + hdr->p_filesz;
2318 newsect->lma = hdr->p_paddr + hdr->p_filesz;
2319 newsect->size = hdr->p_memsz - hdr->p_filesz;
2320 newsect->filepos = hdr->p_offset + hdr->p_filesz;
2321 align = newsect->vma & -newsect->vma;
2322 if (align == 0 || align > hdr->p_align)
2323 align = hdr->p_align;
2324 newsect->alignment_power = bfd_log2 (align);
2325 if (hdr->p_type == PT_LOAD)
2326 {
2327 /* Hack for gdb. Segments that have not been modified do
2328 not have their contents written to a core file, on the
2329 assumption that a debugger can find the contents in the
2330 executable. We flag this case by setting the fake
2331 section size to zero. Note that "real" bss sections will
2332 always have their contents dumped to the core file. */
2333 if (bfd_get_format (abfd) == bfd_core)
2334 newsect->size = 0;
2335 newsect->flags |= SEC_ALLOC;
2336 if (hdr->p_flags & PF_X)
2337 newsect->flags |= SEC_CODE;
2338 }
2339 if (!(hdr->p_flags & PF_W))
2340 newsect->flags |= SEC_READONLY;
2341 }
2342
2343 return TRUE;
2344 }
2345
2346 bfd_boolean
2347 bfd_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int index)
2348 {
2349 const struct elf_backend_data *bed;
2350
2351 switch (hdr->p_type)
2352 {
2353 case PT_NULL:
2354 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "null");
2355
2356 case PT_LOAD:
2357 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "load");
2358
2359 case PT_DYNAMIC:
2360 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "dynamic");
2361
2362 case PT_INTERP:
2363 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "interp");
2364
2365 case PT_NOTE:
2366 if (! _bfd_elf_make_section_from_phdr (abfd, hdr, index, "note"))
2367 return FALSE;
2368 if (! elf_read_notes (abfd, hdr->p_offset, hdr->p_filesz))
2369 return FALSE;
2370 return TRUE;
2371
2372 case PT_SHLIB:
2373 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "shlib");
2374
2375 case PT_PHDR:
2376 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "phdr");
2377
2378 case PT_GNU_EH_FRAME:
2379 return _bfd_elf_make_section_from_phdr (abfd, hdr, index,
2380 "eh_frame_hdr");
2381
2382 case PT_GNU_STACK:
2383 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "stack");
2384
2385 case PT_GNU_RELRO:
2386 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "relro");
2387
2388 default:
2389 /* Check for any processor-specific program segment types. */
2390 bed = get_elf_backend_data (abfd);
2391 return bed->elf_backend_section_from_phdr (abfd, hdr, index, "proc");
2392 }
2393 }
2394
2395 /* Initialize REL_HDR, the section-header for new section, containing
2396 relocations against ASECT. If USE_RELA_P is TRUE, we use RELA
2397 relocations; otherwise, we use REL relocations. */
2398
2399 bfd_boolean
2400 _bfd_elf_init_reloc_shdr (bfd *abfd,
2401 Elf_Internal_Shdr *rel_hdr,
2402 asection *asect,
2403 bfd_boolean use_rela_p)
2404 {
2405 char *name;
2406 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2407 bfd_size_type amt = sizeof ".rela" + strlen (asect->name);
2408
2409 name = bfd_alloc (abfd, amt);
2410 if (name == NULL)
2411 return FALSE;
2412 sprintf (name, "%s%s", use_rela_p ? ".rela" : ".rel", asect->name);
2413 rel_hdr->sh_name =
2414 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd), name,
2415 FALSE);
2416 if (rel_hdr->sh_name == (unsigned int) -1)
2417 return FALSE;
2418 rel_hdr->sh_type = use_rela_p ? SHT_RELA : SHT_REL;
2419 rel_hdr->sh_entsize = (use_rela_p
2420 ? bed->s->sizeof_rela
2421 : bed->s->sizeof_rel);
2422 rel_hdr->sh_addralign = 1 << bed->s->log_file_align;
2423 rel_hdr->sh_flags = 0;
2424 rel_hdr->sh_addr = 0;
2425 rel_hdr->sh_size = 0;
2426 rel_hdr->sh_offset = 0;
2427
2428 return TRUE;
2429 }
2430
2431 /* Set up an ELF internal section header for a section. */
2432
2433 static void
2434 elf_fake_sections (bfd *abfd, asection *asect, void *failedptrarg)
2435 {
2436 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2437 bfd_boolean *failedptr = failedptrarg;
2438 Elf_Internal_Shdr *this_hdr;
2439 unsigned int sh_type;
2440
2441 if (*failedptr)
2442 {
2443 /* We already failed; just get out of the bfd_map_over_sections
2444 loop. */
2445 return;
2446 }
2447
2448 this_hdr = &elf_section_data (asect)->this_hdr;
2449
2450 this_hdr->sh_name = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
2451 asect->name, FALSE);
2452 if (this_hdr->sh_name == (unsigned int) -1)
2453 {
2454 *failedptr = TRUE;
2455 return;
2456 }
2457
2458 /* Don't clear sh_flags. Assembler may set additional bits. */
2459
2460 if ((asect->flags & SEC_ALLOC) != 0
2461 || asect->user_set_vma)
2462 this_hdr->sh_addr = asect->vma;
2463 else
2464 this_hdr->sh_addr = 0;
2465
2466 this_hdr->sh_offset = 0;
2467 this_hdr->sh_size = asect->size;
2468 this_hdr->sh_link = 0;
2469 this_hdr->sh_addralign = 1 << asect->alignment_power;
2470 /* The sh_entsize and sh_info fields may have been set already by
2471 copy_private_section_data. */
2472
2473 this_hdr->bfd_section = asect;
2474 this_hdr->contents = NULL;
2475
2476 /* If the section type is unspecified, we set it based on
2477 asect->flags. */
2478 if ((asect->flags & SEC_GROUP) != 0)
2479 sh_type = SHT_GROUP;
2480 else if ((asect->flags & SEC_ALLOC) != 0
2481 && (((asect->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
2482 || (asect->flags & SEC_NEVER_LOAD) != 0))
2483 sh_type = SHT_NOBITS;
2484 else
2485 sh_type = SHT_PROGBITS;
2486
2487 if (this_hdr->sh_type == SHT_NULL)
2488 this_hdr->sh_type = sh_type;
2489 else if (this_hdr->sh_type == SHT_NOBITS
2490 && sh_type == SHT_PROGBITS
2491 && (asect->flags & SEC_ALLOC) != 0)
2492 {
2493 /* Warn if we are changing a NOBITS section to PROGBITS, but
2494 allow the link to proceed. This can happen when users link
2495 non-bss input sections to bss output sections, or emit data
2496 to a bss output section via a linker script. */
2497 (*_bfd_error_handler)
2498 (_("section `%A' type changed to PROGBITS"), asect);
2499 this_hdr->sh_type = sh_type;
2500 }
2501
2502 switch (this_hdr->sh_type)
2503 {
2504 default:
2505 break;
2506
2507 case SHT_STRTAB:
2508 case SHT_INIT_ARRAY:
2509 case SHT_FINI_ARRAY:
2510 case SHT_PREINIT_ARRAY:
2511 case SHT_NOTE:
2512 case SHT_NOBITS:
2513 case SHT_PROGBITS:
2514 break;
2515
2516 case SHT_HASH:
2517 this_hdr->sh_entsize = bed->s->sizeof_hash_entry;
2518 break;
2519
2520 case SHT_DYNSYM:
2521 this_hdr->sh_entsize = bed->s->sizeof_sym;
2522 break;
2523
2524 case SHT_DYNAMIC:
2525 this_hdr->sh_entsize = bed->s->sizeof_dyn;
2526 break;
2527
2528 case SHT_RELA:
2529 if (get_elf_backend_data (abfd)->may_use_rela_p)
2530 this_hdr->sh_entsize = bed->s->sizeof_rela;
2531 break;
2532
2533 case SHT_REL:
2534 if (get_elf_backend_data (abfd)->may_use_rel_p)
2535 this_hdr->sh_entsize = bed->s->sizeof_rel;
2536 break;
2537
2538 case SHT_GNU_versym:
2539 this_hdr->sh_entsize = sizeof (Elf_External_Versym);
2540 break;
2541
2542 case SHT_GNU_verdef:
2543 this_hdr->sh_entsize = 0;
2544 /* objcopy or strip will copy over sh_info, but may not set
2545 cverdefs. The linker will set cverdefs, but sh_info will be
2546 zero. */
2547 if (this_hdr->sh_info == 0)
2548 this_hdr->sh_info = elf_tdata (abfd)->cverdefs;
2549 else
2550 BFD_ASSERT (elf_tdata (abfd)->cverdefs == 0
2551 || this_hdr->sh_info == elf_tdata (abfd)->cverdefs);
2552 break;
2553
2554 case SHT_GNU_verneed:
2555 this_hdr->sh_entsize = 0;
2556 /* objcopy or strip will copy over sh_info, but may not set
2557 cverrefs. The linker will set cverrefs, but sh_info will be
2558 zero. */
2559 if (this_hdr->sh_info == 0)
2560 this_hdr->sh_info = elf_tdata (abfd)->cverrefs;
2561 else
2562 BFD_ASSERT (elf_tdata (abfd)->cverrefs == 0
2563 || this_hdr->sh_info == elf_tdata (abfd)->cverrefs);
2564 break;
2565
2566 case SHT_GROUP:
2567 this_hdr->sh_entsize = GRP_ENTRY_SIZE;
2568 break;
2569
2570 case SHT_GNU_HASH:
2571 this_hdr->sh_entsize = bed->s->arch_size == 64 ? 0 : 4;
2572 break;
2573 }
2574
2575 if ((asect->flags & SEC_ALLOC) != 0)
2576 this_hdr->sh_flags |= SHF_ALLOC;
2577 if ((asect->flags & SEC_READONLY) == 0)
2578 this_hdr->sh_flags |= SHF_WRITE;
2579 if ((asect->flags & SEC_CODE) != 0)
2580 this_hdr->sh_flags |= SHF_EXECINSTR;
2581 if ((asect->flags & SEC_MERGE) != 0)
2582 {
2583 this_hdr->sh_flags |= SHF_MERGE;
2584 this_hdr->sh_entsize = asect->entsize;
2585 if ((asect->flags & SEC_STRINGS) != 0)
2586 this_hdr->sh_flags |= SHF_STRINGS;
2587 }
2588 if ((asect->flags & SEC_GROUP) == 0 && elf_group_name (asect) != NULL)
2589 this_hdr->sh_flags |= SHF_GROUP;
2590 if ((asect->flags & SEC_THREAD_LOCAL) != 0)
2591 {
2592 this_hdr->sh_flags |= SHF_TLS;
2593 if (asect->size == 0
2594 && (asect->flags & SEC_HAS_CONTENTS) == 0)
2595 {
2596 struct bfd_link_order *o = asect->map_tail.link_order;
2597
2598 this_hdr->sh_size = 0;
2599 if (o != NULL)
2600 {
2601 this_hdr->sh_size = o->offset + o->size;
2602 if (this_hdr->sh_size != 0)
2603 this_hdr->sh_type = SHT_NOBITS;
2604 }
2605 }
2606 }
2607
2608 /* Check for processor-specific section types. */
2609 sh_type = this_hdr->sh_type;
2610 if (bed->elf_backend_fake_sections
2611 && !(*bed->elf_backend_fake_sections) (abfd, this_hdr, asect))
2612 *failedptr = TRUE;
2613
2614 if (sh_type == SHT_NOBITS && asect->size != 0)
2615 {
2616 /* Don't change the header type from NOBITS if we are being
2617 called for objcopy --only-keep-debug. */
2618 this_hdr->sh_type = sh_type;
2619 }
2620
2621 /* If the section has relocs, set up a section header for the
2622 SHT_REL[A] section. If two relocation sections are required for
2623 this section, it is up to the processor-specific back-end to
2624 create the other. */
2625 if ((asect->flags & SEC_RELOC) != 0
2626 && !_bfd_elf_init_reloc_shdr (abfd,
2627 &elf_section_data (asect)->rel_hdr,
2628 asect,
2629 asect->use_rela_p))
2630 *failedptr = TRUE;
2631 }
2632
2633 /* Fill in the contents of a SHT_GROUP section. */
2634
2635 void
2636 bfd_elf_set_group_contents (bfd *abfd, asection *sec, void *failedptrarg)
2637 {
2638 bfd_boolean *failedptr = failedptrarg;
2639 unsigned long symindx;
2640 asection *elt, *first;
2641 unsigned char *loc;
2642 bfd_boolean gas;
2643
2644 /* Ignore linker created group section. See elfNN_ia64_object_p in
2645 elfxx-ia64.c. */
2646 if (((sec->flags & (SEC_GROUP | SEC_LINKER_CREATED)) != SEC_GROUP)
2647 || *failedptr)
2648 return;
2649
2650 symindx = 0;
2651 if (elf_group_id (sec) != NULL)
2652 symindx = elf_group_id (sec)->udata.i;
2653
2654 if (symindx == 0)
2655 {
2656 /* If called from the assembler, swap_out_syms will have set up
2657 elf_section_syms; If called for "ld -r", use target_index. */
2658 if (elf_section_syms (abfd) != NULL)
2659 symindx = elf_section_syms (abfd)[sec->index]->udata.i;
2660 else
2661 symindx = sec->target_index;
2662 }
2663 elf_section_data (sec)->this_hdr.sh_info = symindx;
2664
2665 /* The contents won't be allocated for "ld -r" or objcopy. */
2666 gas = TRUE;
2667 if (sec->contents == NULL)
2668 {
2669 gas = FALSE;
2670 sec->contents = bfd_alloc (abfd, sec->size);
2671
2672 /* Arrange for the section to be written out. */
2673 elf_section_data (sec)->this_hdr.contents = sec->contents;
2674 if (sec->contents == NULL)
2675 {
2676 *failedptr = TRUE;
2677 return;
2678 }
2679 }
2680
2681 loc = sec->contents + sec->size;
2682
2683 /* Get the pointer to the first section in the group that gas
2684 squirreled away here. objcopy arranges for this to be set to the
2685 start of the input section group. */
2686 first = elt = elf_next_in_group (sec);
2687
2688 /* First element is a flag word. Rest of section is elf section
2689 indices for all the sections of the group. Write them backwards
2690 just to keep the group in the same order as given in .section
2691 directives, not that it matters. */
2692 while (elt != NULL)
2693 {
2694 asection *s;
2695 unsigned int idx;
2696
2697 loc -= 4;
2698 s = elt;
2699 if (!gas)
2700 s = s->output_section;
2701 idx = 0;
2702 if (s != NULL)
2703 idx = elf_section_data (s)->this_idx;
2704 H_PUT_32 (abfd, idx, loc);
2705 elt = elf_next_in_group (elt);
2706 if (elt == first)
2707 break;
2708 }
2709
2710 if ((loc -= 4) != sec->contents)
2711 abort ();
2712
2713 H_PUT_32 (abfd, sec->flags & SEC_LINK_ONCE ? GRP_COMDAT : 0, loc);
2714 }
2715
2716 /* Assign all ELF section numbers. The dummy first section is handled here
2717 too. The link/info pointers for the standard section types are filled
2718 in here too, while we're at it. */
2719
2720 static bfd_boolean
2721 assign_section_numbers (bfd *abfd, struct bfd_link_info *link_info)
2722 {
2723 struct elf_obj_tdata *t = elf_tdata (abfd);
2724 asection *sec;
2725 unsigned int section_number, secn;
2726 Elf_Internal_Shdr **i_shdrp;
2727 struct bfd_elf_section_data *d;
2728
2729 section_number = 1;
2730
2731 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd));
2732
2733 /* SHT_GROUP sections are in relocatable files only. */
2734 if (link_info == NULL || link_info->relocatable)
2735 {
2736 /* Put SHT_GROUP sections first. */
2737 for (sec = abfd->sections; sec != NULL; sec = sec->next)
2738 {
2739 d = elf_section_data (sec);
2740
2741 if (d->this_hdr.sh_type == SHT_GROUP)
2742 {
2743 if (sec->flags & SEC_LINKER_CREATED)
2744 {
2745 /* Remove the linker created SHT_GROUP sections. */
2746 bfd_section_list_remove (abfd, sec);
2747 abfd->section_count--;
2748 }
2749 else
2750 {
2751 if (section_number == SHN_LORESERVE)
2752 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2753 d->this_idx = section_number++;
2754 }
2755 }
2756 }
2757 }
2758
2759 for (sec = abfd->sections; sec; sec = sec->next)
2760 {
2761 d = elf_section_data (sec);
2762
2763 if (d->this_hdr.sh_type != SHT_GROUP)
2764 {
2765 if (section_number == SHN_LORESERVE)
2766 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2767 d->this_idx = section_number++;
2768 }
2769 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->this_hdr.sh_name);
2770 if ((sec->flags & SEC_RELOC) == 0)
2771 d->rel_idx = 0;
2772 else
2773 {
2774 if (section_number == SHN_LORESERVE)
2775 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2776 d->rel_idx = section_number++;
2777 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel_hdr.sh_name);
2778 }
2779
2780 if (d->rel_hdr2)
2781 {
2782 if (section_number == SHN_LORESERVE)
2783 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2784 d->rel_idx2 = section_number++;
2785 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel_hdr2->sh_name);
2786 }
2787 else
2788 d->rel_idx2 = 0;
2789 }
2790
2791 if (section_number == SHN_LORESERVE)
2792 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2793 t->shstrtab_section = section_number++;
2794 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->shstrtab_hdr.sh_name);
2795 elf_elfheader (abfd)->e_shstrndx = t->shstrtab_section;
2796
2797 if (bfd_get_symcount (abfd) > 0)
2798 {
2799 if (section_number == SHN_LORESERVE)
2800 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2801 t->symtab_section = section_number++;
2802 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->symtab_hdr.sh_name);
2803 if (section_number > SHN_LORESERVE - 2)
2804 {
2805 if (section_number == SHN_LORESERVE)
2806 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2807 t->symtab_shndx_section = section_number++;
2808 t->symtab_shndx_hdr.sh_name
2809 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
2810 ".symtab_shndx", FALSE);
2811 if (t->symtab_shndx_hdr.sh_name == (unsigned int) -1)
2812 return FALSE;
2813 }
2814 if (section_number == SHN_LORESERVE)
2815 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2816 t->strtab_section = section_number++;
2817 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->strtab_hdr.sh_name);
2818 }
2819
2820 _bfd_elf_strtab_finalize (elf_shstrtab (abfd));
2821 t->shstrtab_hdr.sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
2822
2823 elf_numsections (abfd) = section_number;
2824 elf_elfheader (abfd)->e_shnum = section_number;
2825 if (section_number > SHN_LORESERVE)
2826 elf_elfheader (abfd)->e_shnum -= SHN_HIRESERVE + 1 - SHN_LORESERVE;
2827
2828 /* Set up the list of section header pointers, in agreement with the
2829 indices. */
2830 i_shdrp = bfd_zalloc2 (abfd, section_number, sizeof (Elf_Internal_Shdr *));
2831 if (i_shdrp == NULL)
2832 return FALSE;
2833
2834 i_shdrp[0] = bfd_zalloc (abfd, sizeof (Elf_Internal_Shdr));
2835 if (i_shdrp[0] == NULL)
2836 {
2837 bfd_release (abfd, i_shdrp);
2838 return FALSE;
2839 }
2840
2841 elf_elfsections (abfd) = i_shdrp;
2842
2843 i_shdrp[t->shstrtab_section] = &t->shstrtab_hdr;
2844 if (bfd_get_symcount (abfd) > 0)
2845 {
2846 i_shdrp[t->symtab_section] = &t->symtab_hdr;
2847 if (elf_numsections (abfd) > SHN_LORESERVE)
2848 {
2849 i_shdrp[t->symtab_shndx_section] = &t->symtab_shndx_hdr;
2850 t->symtab_shndx_hdr.sh_link = t->symtab_section;
2851 }
2852 i_shdrp[t->strtab_section] = &t->strtab_hdr;
2853 t->symtab_hdr.sh_link = t->strtab_section;
2854 }
2855
2856 for (sec = abfd->sections; sec; sec = sec->next)
2857 {
2858 struct bfd_elf_section_data *d = elf_section_data (sec);
2859 asection *s;
2860 const char *name;
2861
2862 i_shdrp[d->this_idx] = &d->this_hdr;
2863 if (d->rel_idx != 0)
2864 i_shdrp[d->rel_idx] = &d->rel_hdr;
2865 if (d->rel_idx2 != 0)
2866 i_shdrp[d->rel_idx2] = d->rel_hdr2;
2867
2868 /* Fill in the sh_link and sh_info fields while we're at it. */
2869
2870 /* sh_link of a reloc section is the section index of the symbol
2871 table. sh_info is the section index of the section to which
2872 the relocation entries apply. */
2873 if (d->rel_idx != 0)
2874 {
2875 d->rel_hdr.sh_link = t->symtab_section;
2876 d->rel_hdr.sh_info = d->this_idx;
2877 }
2878 if (d->rel_idx2 != 0)
2879 {
2880 d->rel_hdr2->sh_link = t->symtab_section;
2881 d->rel_hdr2->sh_info = d->this_idx;
2882 }
2883
2884 /* We need to set up sh_link for SHF_LINK_ORDER. */
2885 if ((d->this_hdr.sh_flags & SHF_LINK_ORDER) != 0)
2886 {
2887 s = elf_linked_to_section (sec);
2888 if (s)
2889 {
2890 /* elf_linked_to_section points to the input section. */
2891 if (link_info != NULL)
2892 {
2893 /* Check discarded linkonce section. */
2894 if (elf_discarded_section (s))
2895 {
2896 asection *kept;
2897 (*_bfd_error_handler)
2898 (_("%B: sh_link of section `%A' points to discarded section `%A' of `%B'"),
2899 abfd, d->this_hdr.bfd_section,
2900 s, s->owner);
2901 /* Point to the kept section if it has the same
2902 size as the discarded one. */
2903 kept = _bfd_elf_check_kept_section (s, link_info);
2904 if (kept == NULL)
2905 {
2906 bfd_set_error (bfd_error_bad_value);
2907 return FALSE;
2908 }
2909 s = kept;
2910 }
2911
2912 s = s->output_section;
2913 BFD_ASSERT (s != NULL);
2914 }
2915 else
2916 {
2917 /* Handle objcopy. */
2918 if (s->output_section == NULL)
2919 {
2920 (*_bfd_error_handler)
2921 (_("%B: sh_link of section `%A' points to removed section `%A' of `%B'"),
2922 abfd, d->this_hdr.bfd_section, s, s->owner);
2923 bfd_set_error (bfd_error_bad_value);
2924 return FALSE;
2925 }
2926 s = s->output_section;
2927 }
2928 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
2929 }
2930 else
2931 {
2932 /* PR 290:
2933 The Intel C compiler generates SHT_IA_64_UNWIND with
2934 SHF_LINK_ORDER. But it doesn't set the sh_link or
2935 sh_info fields. Hence we could get the situation
2936 where s is NULL. */
2937 const struct elf_backend_data *bed
2938 = get_elf_backend_data (abfd);
2939 if (bed->link_order_error_handler)
2940 bed->link_order_error_handler
2941 (_("%B: warning: sh_link not set for section `%A'"),
2942 abfd, sec);
2943 }
2944 }
2945
2946 switch (d->this_hdr.sh_type)
2947 {
2948 case SHT_REL:
2949 case SHT_RELA:
2950 /* A reloc section which we are treating as a normal BFD
2951 section. sh_link is the section index of the symbol
2952 table. sh_info is the section index of the section to
2953 which the relocation entries apply. We assume that an
2954 allocated reloc section uses the dynamic symbol table.
2955 FIXME: How can we be sure? */
2956 s = bfd_get_section_by_name (abfd, ".dynsym");
2957 if (s != NULL)
2958 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
2959
2960 /* We look up the section the relocs apply to by name. */
2961 name = sec->name;
2962 if (d->this_hdr.sh_type == SHT_REL)
2963 name += 4;
2964 else
2965 name += 5;
2966 s = bfd_get_section_by_name (abfd, name);
2967 if (s != NULL)
2968 d->this_hdr.sh_info = elf_section_data (s)->this_idx;
2969 break;
2970
2971 case SHT_STRTAB:
2972 /* We assume that a section named .stab*str is a stabs
2973 string section. We look for a section with the same name
2974 but without the trailing ``str'', and set its sh_link
2975 field to point to this section. */
2976 if (CONST_STRNEQ (sec->name, ".stab")
2977 && strcmp (sec->name + strlen (sec->name) - 3, "str") == 0)
2978 {
2979 size_t len;
2980 char *alc;
2981
2982 len = strlen (sec->name);
2983 alc = bfd_malloc (len - 2);
2984 if (alc == NULL)
2985 return FALSE;
2986 memcpy (alc, sec->name, len - 3);
2987 alc[len - 3] = '\0';
2988 s = bfd_get_section_by_name (abfd, alc);
2989 free (alc);
2990 if (s != NULL)
2991 {
2992 elf_section_data (s)->this_hdr.sh_link = d->this_idx;
2993
2994 /* This is a .stab section. */
2995 if (elf_section_data (s)->this_hdr.sh_entsize == 0)
2996 elf_section_data (s)->this_hdr.sh_entsize
2997 = 4 + 2 * bfd_get_arch_size (abfd) / 8;
2998 }
2999 }
3000 break;
3001
3002 case SHT_DYNAMIC:
3003 case SHT_DYNSYM:
3004 case SHT_GNU_verneed:
3005 case SHT_GNU_verdef:
3006 /* sh_link is the section header index of the string table
3007 used for the dynamic entries, or the symbol table, or the
3008 version strings. */
3009 s = bfd_get_section_by_name (abfd, ".dynstr");
3010 if (s != NULL)
3011 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3012 break;
3013
3014 case SHT_GNU_LIBLIST:
3015 /* sh_link is the section header index of the prelink library
3016 list used for the dynamic entries, or the symbol table, or
3017 the version strings. */
3018 s = bfd_get_section_by_name (abfd, (sec->flags & SEC_ALLOC)
3019 ? ".dynstr" : ".gnu.libstr");
3020 if (s != NULL)
3021 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3022 break;
3023
3024 case SHT_HASH:
3025 case SHT_GNU_HASH:
3026 case SHT_GNU_versym:
3027 /* sh_link is the section header index of the symbol table
3028 this hash table or version table is for. */
3029 s = bfd_get_section_by_name (abfd, ".dynsym");
3030 if (s != NULL)
3031 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3032 break;
3033
3034 case SHT_GROUP:
3035 d->this_hdr.sh_link = t->symtab_section;
3036 }
3037 }
3038
3039 for (secn = 1; secn < section_number; ++secn)
3040 if (i_shdrp[secn] == NULL)
3041 i_shdrp[secn] = i_shdrp[0];
3042 else
3043 i_shdrp[secn]->sh_name = _bfd_elf_strtab_offset (elf_shstrtab (abfd),
3044 i_shdrp[secn]->sh_name);
3045 return TRUE;
3046 }
3047
3048 /* Map symbol from it's internal number to the external number, moving
3049 all local symbols to be at the head of the list. */
3050
3051 static bfd_boolean
3052 sym_is_global (bfd *abfd, asymbol *sym)
3053 {
3054 /* If the backend has a special mapping, use it. */
3055 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3056 if (bed->elf_backend_sym_is_global)
3057 return (*bed->elf_backend_sym_is_global) (abfd, sym);
3058
3059 return ((sym->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
3060 || bfd_is_und_section (bfd_get_section (sym))
3061 || bfd_is_com_section (bfd_get_section (sym)));
3062 }
3063
3064 /* Don't output section symbols for sections that are not going to be
3065 output. Also, don't output section symbols for reloc and other
3066 special sections. */
3067
3068 static bfd_boolean
3069 ignore_section_sym (bfd *abfd, asymbol *sym)
3070 {
3071 return ((sym->flags & BSF_SECTION_SYM) != 0
3072 && (sym->value != 0
3073 || (sym->section->owner != abfd
3074 && (sym->section->output_section->owner != abfd
3075 || sym->section->output_offset != 0))));
3076 }
3077
3078 static bfd_boolean
3079 elf_map_symbols (bfd *abfd)
3080 {
3081 unsigned int symcount = bfd_get_symcount (abfd);
3082 asymbol **syms = bfd_get_outsymbols (abfd);
3083 asymbol **sect_syms;
3084 unsigned int num_locals = 0;
3085 unsigned int num_globals = 0;
3086 unsigned int num_locals2 = 0;
3087 unsigned int num_globals2 = 0;
3088 int max_index = 0;
3089 unsigned int idx;
3090 asection *asect;
3091 asymbol **new_syms;
3092
3093 #ifdef DEBUG
3094 fprintf (stderr, "elf_map_symbols\n");
3095 fflush (stderr);
3096 #endif
3097
3098 for (asect = abfd->sections; asect; asect = asect->next)
3099 {
3100 if (max_index < asect->index)
3101 max_index = asect->index;
3102 }
3103
3104 max_index++;
3105 sect_syms = bfd_zalloc2 (abfd, max_index, sizeof (asymbol *));
3106 if (sect_syms == NULL)
3107 return FALSE;
3108 elf_section_syms (abfd) = sect_syms;
3109 elf_num_section_syms (abfd) = max_index;
3110
3111 /* Init sect_syms entries for any section symbols we have already
3112 decided to output. */
3113 for (idx = 0; idx < symcount; idx++)
3114 {
3115 asymbol *sym = syms[idx];
3116
3117 if ((sym->flags & BSF_SECTION_SYM) != 0
3118 && !ignore_section_sym (abfd, sym))
3119 {
3120 asection *sec = sym->section;
3121
3122 if (sec->owner != abfd)
3123 sec = sec->output_section;
3124
3125 sect_syms[sec->index] = syms[idx];
3126 }
3127 }
3128
3129 /* Classify all of the symbols. */
3130 for (idx = 0; idx < symcount; idx++)
3131 {
3132 if (ignore_section_sym (abfd, syms[idx]))
3133 continue;
3134 if (!sym_is_global (abfd, syms[idx]))
3135 num_locals++;
3136 else
3137 num_globals++;
3138 }
3139
3140 /* We will be adding a section symbol for each normal BFD section. Most
3141 sections will already have a section symbol in outsymbols, but
3142 eg. SHT_GROUP sections will not, and we need the section symbol mapped
3143 at least in that case. */
3144 for (asect = abfd->sections; asect; asect = asect->next)
3145 {
3146 if (sect_syms[asect->index] == NULL)
3147 {
3148 if (!sym_is_global (abfd, asect->symbol))
3149 num_locals++;
3150 else
3151 num_globals++;
3152 }
3153 }
3154
3155 /* Now sort the symbols so the local symbols are first. */
3156 new_syms = bfd_alloc2 (abfd, num_locals + num_globals, sizeof (asymbol *));
3157
3158 if (new_syms == NULL)
3159 return FALSE;
3160
3161 for (idx = 0; idx < symcount; idx++)
3162 {
3163 asymbol *sym = syms[idx];
3164 unsigned int i;
3165
3166 if (ignore_section_sym (abfd, sym))
3167 continue;
3168 if (!sym_is_global (abfd, sym))
3169 i = num_locals2++;
3170 else
3171 i = num_locals + num_globals2++;
3172 new_syms[i] = sym;
3173 sym->udata.i = i + 1;
3174 }
3175 for (asect = abfd->sections; asect; asect = asect->next)
3176 {
3177 if (sect_syms[asect->index] == NULL)
3178 {
3179 asymbol *sym = asect->symbol;
3180 unsigned int i;
3181
3182 sect_syms[asect->index] = sym;
3183 if (!sym_is_global (abfd, sym))
3184 i = num_locals2++;
3185 else
3186 i = num_locals + num_globals2++;
3187 new_syms[i] = sym;
3188 sym->udata.i = i + 1;
3189 }
3190 }
3191
3192 bfd_set_symtab (abfd, new_syms, num_locals + num_globals);
3193
3194 elf_num_locals (abfd) = num_locals;
3195 elf_num_globals (abfd) = num_globals;
3196 return TRUE;
3197 }
3198
3199 /* Align to the maximum file alignment that could be required for any
3200 ELF data structure. */
3201
3202 static inline file_ptr
3203 align_file_position (file_ptr off, int align)
3204 {
3205 return (off + align - 1) & ~(align - 1);
3206 }
3207
3208 /* Assign a file position to a section, optionally aligning to the
3209 required section alignment. */
3210
3211 file_ptr
3212 _bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr *i_shdrp,
3213 file_ptr offset,
3214 bfd_boolean align)
3215 {
3216 if (align)
3217 {
3218 unsigned int al;
3219
3220 al = i_shdrp->sh_addralign;
3221 if (al > 1)
3222 offset = BFD_ALIGN (offset, al);
3223 }
3224 i_shdrp->sh_offset = offset;
3225 if (i_shdrp->bfd_section != NULL)
3226 i_shdrp->bfd_section->filepos = offset;
3227 if (i_shdrp->sh_type != SHT_NOBITS)
3228 offset += i_shdrp->sh_size;
3229 return offset;
3230 }
3231
3232 /* Compute the file positions we are going to put the sections at, and
3233 otherwise prepare to begin writing out the ELF file. If LINK_INFO
3234 is not NULL, this is being called by the ELF backend linker. */
3235
3236 bfd_boolean
3237 _bfd_elf_compute_section_file_positions (bfd *abfd,
3238 struct bfd_link_info *link_info)
3239 {
3240 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3241 bfd_boolean failed;
3242 struct bfd_strtab_hash *strtab = NULL;
3243 Elf_Internal_Shdr *shstrtab_hdr;
3244
3245 if (abfd->output_has_begun)
3246 return TRUE;
3247
3248 /* Do any elf backend specific processing first. */
3249 if (bed->elf_backend_begin_write_processing)
3250 (*bed->elf_backend_begin_write_processing) (abfd, link_info);
3251
3252 if (! prep_headers (abfd))
3253 return FALSE;
3254
3255 /* Post process the headers if necessary. */
3256 if (bed->elf_backend_post_process_headers)
3257 (*bed->elf_backend_post_process_headers) (abfd, link_info);
3258
3259 failed = FALSE;
3260 bfd_map_over_sections (abfd, elf_fake_sections, &failed);
3261 if (failed)
3262 return FALSE;
3263
3264 if (!assign_section_numbers (abfd, link_info))
3265 return FALSE;
3266
3267 /* The backend linker builds symbol table information itself. */
3268 if (link_info == NULL && bfd_get_symcount (abfd) > 0)
3269 {
3270 /* Non-zero if doing a relocatable link. */
3271 int relocatable_p = ! (abfd->flags & (EXEC_P | DYNAMIC));
3272
3273 if (! swap_out_syms (abfd, &strtab, relocatable_p))
3274 return FALSE;
3275 }
3276
3277 if (link_info == NULL)
3278 {
3279 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
3280 if (failed)
3281 return FALSE;
3282 }
3283
3284 shstrtab_hdr = &elf_tdata (abfd)->shstrtab_hdr;
3285 /* sh_name was set in prep_headers. */
3286 shstrtab_hdr->sh_type = SHT_STRTAB;
3287 shstrtab_hdr->sh_flags = 0;
3288 shstrtab_hdr->sh_addr = 0;
3289 shstrtab_hdr->sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
3290 shstrtab_hdr->sh_entsize = 0;
3291 shstrtab_hdr->sh_link = 0;
3292 shstrtab_hdr->sh_info = 0;
3293 /* sh_offset is set in assign_file_positions_except_relocs. */
3294 shstrtab_hdr->sh_addralign = 1;
3295
3296 if (!assign_file_positions_except_relocs (abfd, link_info))
3297 return FALSE;
3298
3299 if (link_info == NULL && bfd_get_symcount (abfd) > 0)
3300 {
3301 file_ptr off;
3302 Elf_Internal_Shdr *hdr;
3303
3304 off = elf_tdata (abfd)->next_file_pos;
3305
3306 hdr = &elf_tdata (abfd)->symtab_hdr;
3307 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3308
3309 hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
3310 if (hdr->sh_size != 0)
3311 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3312
3313 hdr = &elf_tdata (abfd)->strtab_hdr;
3314 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3315
3316 elf_tdata (abfd)->next_file_pos = off;
3317
3318 /* Now that we know where the .strtab section goes, write it
3319 out. */
3320 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
3321 || ! _bfd_stringtab_emit (abfd, strtab))
3322 return FALSE;
3323 _bfd_stringtab_free (strtab);
3324 }
3325
3326 abfd->output_has_begun = TRUE;
3327
3328 return TRUE;
3329 }
3330
3331 /* Make an initial estimate of the size of the program header. If we
3332 get the number wrong here, we'll redo section placement. */
3333
3334 static bfd_size_type
3335 get_program_header_size (bfd *abfd, struct bfd_link_info *info)
3336 {
3337 size_t segs;
3338 asection *s;
3339 const struct elf_backend_data *bed;
3340
3341 /* Assume we will need exactly two PT_LOAD segments: one for text
3342 and one for data. */
3343 segs = 2;
3344
3345 s = bfd_get_section_by_name (abfd, ".interp");
3346 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3347 {
3348 /* If we have a loadable interpreter section, we need a
3349 PT_INTERP segment. In this case, assume we also need a
3350 PT_PHDR segment, although that may not be true for all
3351 targets. */
3352 segs += 2;
3353 }
3354
3355 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
3356 {
3357 /* We need a PT_DYNAMIC segment. */
3358 ++segs;
3359
3360 if (info->relro)
3361 {
3362 /* We need a PT_GNU_RELRO segment only when there is a
3363 PT_DYNAMIC segment. */
3364 ++segs;
3365 }
3366 }
3367
3368 if (elf_tdata (abfd)->eh_frame_hdr)
3369 {
3370 /* We need a PT_GNU_EH_FRAME segment. */
3371 ++segs;
3372 }
3373
3374 if (elf_tdata (abfd)->stack_flags)
3375 {
3376 /* We need a PT_GNU_STACK segment. */
3377 ++segs;
3378 }
3379
3380 for (s = abfd->sections; s != NULL; s = s->next)
3381 {
3382 if ((s->flags & SEC_LOAD) != 0
3383 && CONST_STRNEQ (s->name, ".note"))
3384 {
3385 /* We need a PT_NOTE segment. */
3386 ++segs;
3387 /* Try to create just one PT_NOTE segment
3388 for all adjacent loadable .note* sections.
3389 gABI requires that within a PT_NOTE segment
3390 (and also inside of each SHT_NOTE section)
3391 each note is padded to a multiple of 4 size,
3392 so we check whether the sections are correctly
3393 aligned. */
3394 if (s->alignment_power == 2)
3395 while (s->next != NULL
3396 && s->next->alignment_power == 2
3397 && (s->next->flags & SEC_LOAD) != 0
3398 && CONST_STRNEQ (s->next->name, ".note"))
3399 s = s->next;
3400 }
3401 }
3402
3403 for (s = abfd->sections; s != NULL; s = s->next)
3404 {
3405 if (s->flags & SEC_THREAD_LOCAL)
3406 {
3407 /* We need a PT_TLS segment. */
3408 ++segs;
3409 break;
3410 }
3411 }
3412
3413 /* Let the backend count up any program headers it might need. */
3414 bed = get_elf_backend_data (abfd);
3415 if (bed->elf_backend_additional_program_headers)
3416 {
3417 int a;
3418
3419 a = (*bed->elf_backend_additional_program_headers) (abfd, info);
3420 if (a == -1)
3421 abort ();
3422 segs += a;
3423 }
3424
3425 return segs * bed->s->sizeof_phdr;
3426 }
3427
3428 /* Create a mapping from a set of sections to a program segment. */
3429
3430 static struct elf_segment_map *
3431 make_mapping (bfd *abfd,
3432 asection **sections,
3433 unsigned int from,
3434 unsigned int to,
3435 bfd_boolean phdr)
3436 {
3437 struct elf_segment_map *m;
3438 unsigned int i;
3439 asection **hdrpp;
3440 bfd_size_type amt;
3441
3442 amt = sizeof (struct elf_segment_map);
3443 amt += (to - from - 1) * sizeof (asection *);
3444 m = bfd_zalloc (abfd, amt);
3445 if (m == NULL)
3446 return NULL;
3447 m->next = NULL;
3448 m->p_type = PT_LOAD;
3449 for (i = from, hdrpp = sections + from; i < to; i++, hdrpp++)
3450 m->sections[i - from] = *hdrpp;
3451 m->count = to - from;
3452
3453 if (from == 0 && phdr)
3454 {
3455 /* Include the headers in the first PT_LOAD segment. */
3456 m->includes_filehdr = 1;
3457 m->includes_phdrs = 1;
3458 }
3459
3460 return m;
3461 }
3462
3463 /* Create the PT_DYNAMIC segment, which includes DYNSEC. Returns NULL
3464 on failure. */
3465
3466 struct elf_segment_map *
3467 _bfd_elf_make_dynamic_segment (bfd *abfd, asection *dynsec)
3468 {
3469 struct elf_segment_map *m;
3470
3471 m = bfd_zalloc (abfd, sizeof (struct elf_segment_map));
3472 if (m == NULL)
3473 return NULL;
3474 m->next = NULL;
3475 m->p_type = PT_DYNAMIC;
3476 m->count = 1;
3477 m->sections[0] = dynsec;
3478
3479 return m;
3480 }
3481
3482 /* Possibly add or remove segments from the segment map. */
3483
3484 static bfd_boolean
3485 elf_modify_segment_map (bfd *abfd,
3486 struct bfd_link_info *info,
3487 bfd_boolean remove_empty_load)
3488 {
3489 struct elf_segment_map **m;
3490 const struct elf_backend_data *bed;
3491
3492 /* The placement algorithm assumes that non allocated sections are
3493 not in PT_LOAD segments. We ensure this here by removing such
3494 sections from the segment map. We also remove excluded
3495 sections. Finally, any PT_LOAD segment without sections is
3496 removed. */
3497 m = &elf_tdata (abfd)->segment_map;
3498 while (*m)
3499 {
3500 unsigned int i, new_count;
3501
3502 for (new_count = 0, i = 0; i < (*m)->count; i++)
3503 {
3504 if (((*m)->sections[i]->flags & SEC_EXCLUDE) == 0
3505 && (((*m)->sections[i]->flags & SEC_ALLOC) != 0
3506 || (*m)->p_type != PT_LOAD))
3507 {
3508 (*m)->sections[new_count] = (*m)->sections[i];
3509 new_count++;
3510 }
3511 }
3512 (*m)->count = new_count;
3513
3514 if (remove_empty_load && (*m)->p_type == PT_LOAD && (*m)->count == 0)
3515 *m = (*m)->next;
3516 else
3517 m = &(*m)->next;
3518 }
3519
3520 bed = get_elf_backend_data (abfd);
3521 if (bed->elf_backend_modify_segment_map != NULL)
3522 {
3523 if (!(*bed->elf_backend_modify_segment_map) (abfd, info))
3524 return FALSE;
3525 }
3526
3527 return TRUE;
3528 }
3529
3530 /* Set up a mapping from BFD sections to program segments. */
3531
3532 bfd_boolean
3533 _bfd_elf_map_sections_to_segments (bfd *abfd, struct bfd_link_info *info)
3534 {
3535 unsigned int count;
3536 struct elf_segment_map *m;
3537 asection **sections = NULL;
3538 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3539 bfd_boolean no_user_phdrs;
3540
3541 no_user_phdrs = elf_tdata (abfd)->segment_map == NULL;
3542 if (no_user_phdrs && bfd_count_sections (abfd) != 0)
3543 {
3544 asection *s;
3545 unsigned int i;
3546 struct elf_segment_map *mfirst;
3547 struct elf_segment_map **pm;
3548 asection *last_hdr;
3549 bfd_vma last_size;
3550 unsigned int phdr_index;
3551 bfd_vma maxpagesize;
3552 asection **hdrpp;
3553 bfd_boolean phdr_in_segment = TRUE;
3554 bfd_boolean writable;
3555 int tls_count = 0;
3556 asection *first_tls = NULL;
3557 asection *dynsec, *eh_frame_hdr;
3558 bfd_size_type amt;
3559
3560 /* Select the allocated sections, and sort them. */
3561
3562 sections = bfd_malloc2 (bfd_count_sections (abfd), sizeof (asection *));
3563 if (sections == NULL)
3564 goto error_return;
3565
3566 i = 0;
3567 for (s = abfd->sections; s != NULL; s = s->next)
3568 {
3569 if ((s->flags & SEC_ALLOC) != 0)
3570 {
3571 sections[i] = s;
3572 ++i;
3573 }
3574 }
3575 BFD_ASSERT (i <= bfd_count_sections (abfd));
3576 count = i;
3577
3578 qsort (sections, (size_t) count, sizeof (asection *), elf_sort_sections);
3579
3580 /* Build the mapping. */
3581
3582 mfirst = NULL;
3583 pm = &mfirst;
3584
3585 /* If we have a .interp section, then create a PT_PHDR segment for
3586 the program headers and a PT_INTERP segment for the .interp
3587 section. */
3588 s = bfd_get_section_by_name (abfd, ".interp");
3589 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3590 {
3591 amt = sizeof (struct elf_segment_map);
3592 m = bfd_zalloc (abfd, amt);
3593 if (m == NULL)
3594 goto error_return;
3595 m->next = NULL;
3596 m->p_type = PT_PHDR;
3597 /* FIXME: UnixWare and Solaris set PF_X, Irix 5 does not. */
3598 m->p_flags = PF_R | PF_X;
3599 m->p_flags_valid = 1;
3600 m->includes_phdrs = 1;
3601
3602 *pm = m;
3603 pm = &m->next;
3604
3605 amt = sizeof (struct elf_segment_map);
3606 m = bfd_zalloc (abfd, amt);
3607 if (m == NULL)
3608 goto error_return;
3609 m->next = NULL;
3610 m->p_type = PT_INTERP;
3611 m->count = 1;
3612 m->sections[0] = s;
3613
3614 *pm = m;
3615 pm = &m->next;
3616 }
3617
3618 /* Look through the sections. We put sections in the same program
3619 segment when the start of the second section can be placed within
3620 a few bytes of the end of the first section. */
3621 last_hdr = NULL;
3622 last_size = 0;
3623 phdr_index = 0;
3624 maxpagesize = bed->maxpagesize;
3625 writable = FALSE;
3626 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
3627 if (dynsec != NULL
3628 && (dynsec->flags & SEC_LOAD) == 0)
3629 dynsec = NULL;
3630
3631 /* Deal with -Ttext or something similar such that the first section
3632 is not adjacent to the program headers. This is an
3633 approximation, since at this point we don't know exactly how many
3634 program headers we will need. */
3635 if (count > 0)
3636 {
3637 bfd_size_type phdr_size = elf_tdata (abfd)->program_header_size;
3638
3639 if (phdr_size == (bfd_size_type) -1)
3640 phdr_size = get_program_header_size (abfd, info);
3641 if ((abfd->flags & D_PAGED) == 0
3642 || sections[0]->lma < phdr_size
3643 || sections[0]->lma % maxpagesize < phdr_size % maxpagesize)
3644 phdr_in_segment = FALSE;
3645 }
3646
3647 for (i = 0, hdrpp = sections; i < count; i++, hdrpp++)
3648 {
3649 asection *hdr;
3650 bfd_boolean new_segment;
3651
3652 hdr = *hdrpp;
3653
3654 /* See if this section and the last one will fit in the same
3655 segment. */
3656
3657 if (last_hdr == NULL)
3658 {
3659 /* If we don't have a segment yet, then we don't need a new
3660 one (we build the last one after this loop). */
3661 new_segment = FALSE;
3662 }
3663 else if (last_hdr->lma - last_hdr->vma != hdr->lma - hdr->vma)
3664 {
3665 /* If this section has a different relation between the
3666 virtual address and the load address, then we need a new
3667 segment. */
3668 new_segment = TRUE;
3669 }
3670 else if (BFD_ALIGN (last_hdr->lma + last_size, maxpagesize)
3671 < BFD_ALIGN (hdr->lma, maxpagesize))
3672 {
3673 /* If putting this section in this segment would force us to
3674 skip a page in the segment, then we need a new segment. */
3675 new_segment = TRUE;
3676 }
3677 else if ((last_hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0
3678 && (hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) != 0)
3679 {
3680 /* We don't want to put a loadable section after a
3681 nonloadable section in the same segment.
3682 Consider .tbss sections as loadable for this purpose. */
3683 new_segment = TRUE;
3684 }
3685 else if ((abfd->flags & D_PAGED) == 0)
3686 {
3687 /* If the file is not demand paged, which means that we
3688 don't require the sections to be correctly aligned in the
3689 file, then there is no other reason for a new segment. */
3690 new_segment = FALSE;
3691 }
3692 else if (! writable
3693 && (hdr->flags & SEC_READONLY) == 0
3694 && (((last_hdr->lma + last_size - 1)
3695 & ~(maxpagesize - 1))
3696 != (hdr->lma & ~(maxpagesize - 1))))
3697 {
3698 /* We don't want to put a writable section in a read only
3699 segment, unless they are on the same page in memory
3700 anyhow. We already know that the last section does not
3701 bring us past the current section on the page, so the
3702 only case in which the new section is not on the same
3703 page as the previous section is when the previous section
3704 ends precisely on a page boundary. */
3705 new_segment = TRUE;
3706 }
3707 else
3708 {
3709 /* Otherwise, we can use the same segment. */
3710 new_segment = FALSE;
3711 }
3712
3713 /* Allow interested parties a chance to override our decision. */
3714 if (last_hdr && info->callbacks->override_segment_assignment)
3715 new_segment = info->callbacks->override_segment_assignment (info, abfd, hdr, last_hdr, new_segment);
3716
3717 if (! new_segment)
3718 {
3719 if ((hdr->flags & SEC_READONLY) == 0)
3720 writable = TRUE;
3721 last_hdr = hdr;
3722 /* .tbss sections effectively have zero size. */
3723 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD))
3724 != SEC_THREAD_LOCAL)
3725 last_size = hdr->size;
3726 else
3727 last_size = 0;
3728 continue;
3729 }
3730
3731 /* We need a new program segment. We must create a new program
3732 header holding all the sections from phdr_index until hdr. */
3733
3734 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
3735 if (m == NULL)
3736 goto error_return;
3737
3738 *pm = m;
3739 pm = &m->next;
3740
3741 if ((hdr->flags & SEC_READONLY) == 0)
3742 writable = TRUE;
3743 else
3744 writable = FALSE;
3745
3746 last_hdr = hdr;
3747 /* .tbss sections effectively have zero size. */
3748 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) != SEC_THREAD_LOCAL)
3749 last_size = hdr->size;
3750 else
3751 last_size = 0;
3752 phdr_index = i;
3753 phdr_in_segment = FALSE;
3754 }
3755
3756 /* Create a final PT_LOAD program segment. */
3757 if (last_hdr != NULL)
3758 {
3759 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
3760 if (m == NULL)
3761 goto error_return;
3762
3763 *pm = m;
3764 pm = &m->next;
3765 }
3766
3767 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
3768 if (dynsec != NULL)
3769 {
3770 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
3771 if (m == NULL)
3772 goto error_return;
3773 *pm = m;
3774 pm = &m->next;
3775 }
3776
3777 /* For each batch of consecutive loadable .note sections,
3778 add a PT_NOTE segment. We don't use bfd_get_section_by_name,
3779 because if we link together nonloadable .note sections and
3780 loadable .note sections, we will generate two .note sections
3781 in the output file. FIXME: Using names for section types is
3782 bogus anyhow. */
3783 for (s = abfd->sections; s != NULL; s = s->next)
3784 {
3785 if ((s->flags & SEC_LOAD) != 0
3786 && CONST_STRNEQ (s->name, ".note"))
3787 {
3788 asection *s2;
3789 unsigned count = 1;
3790 amt = sizeof (struct elf_segment_map);
3791 if (s->alignment_power == 2)
3792 for (s2 = s; s2->next != NULL; s2 = s2->next)
3793 {
3794 if (s2->next->alignment_power == 2
3795 && (s2->next->flags & SEC_LOAD) != 0
3796 && CONST_STRNEQ (s2->next->name, ".note")
3797 && align_power (s2->vma + s2->size, 2)
3798 == s2->next->vma)
3799 count++;
3800 else
3801 break;
3802 }
3803 amt += (count - 1) * sizeof (asection *);
3804 m = bfd_zalloc (abfd, amt);
3805 if (m == NULL)
3806 goto error_return;
3807 m->next = NULL;
3808 m->p_type = PT_NOTE;
3809 m->count = count;
3810 while (count > 1)
3811 {
3812 m->sections[m->count - count--] = s;
3813 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
3814 s = s->next;
3815 }
3816 m->sections[m->count - 1] = s;
3817 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
3818 *pm = m;
3819 pm = &m->next;
3820 }
3821 if (s->flags & SEC_THREAD_LOCAL)
3822 {
3823 if (! tls_count)
3824 first_tls = s;
3825 tls_count++;
3826 }
3827 }
3828
3829 /* If there are any SHF_TLS output sections, add PT_TLS segment. */
3830 if (tls_count > 0)
3831 {
3832 int i;
3833
3834 amt = sizeof (struct elf_segment_map);
3835 amt += (tls_count - 1) * sizeof (asection *);
3836 m = bfd_zalloc (abfd, amt);
3837 if (m == NULL)
3838 goto error_return;
3839 m->next = NULL;
3840 m->p_type = PT_TLS;
3841 m->count = tls_count;
3842 /* Mandated PF_R. */
3843 m->p_flags = PF_R;
3844 m->p_flags_valid = 1;
3845 for (i = 0; i < tls_count; ++i)
3846 {
3847 BFD_ASSERT (first_tls->flags & SEC_THREAD_LOCAL);
3848 m->sections[i] = first_tls;
3849 first_tls = first_tls->next;
3850 }
3851
3852 *pm = m;
3853 pm = &m->next;
3854 }
3855
3856 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
3857 segment. */
3858 eh_frame_hdr = elf_tdata (abfd)->eh_frame_hdr;
3859 if (eh_frame_hdr != NULL
3860 && (eh_frame_hdr->output_section->flags & SEC_LOAD) != 0)
3861 {
3862 amt = sizeof (struct elf_segment_map);
3863 m = bfd_zalloc (abfd, amt);
3864 if (m == NULL)
3865 goto error_return;
3866 m->next = NULL;
3867 m->p_type = PT_GNU_EH_FRAME;
3868 m->count = 1;
3869 m->sections[0] = eh_frame_hdr->output_section;
3870
3871 *pm = m;
3872 pm = &m->next;
3873 }
3874
3875 if (elf_tdata (abfd)->stack_flags)
3876 {
3877 amt = sizeof (struct elf_segment_map);
3878 m = bfd_zalloc (abfd, amt);
3879 if (m == NULL)
3880 goto error_return;
3881 m->next = NULL;
3882 m->p_type = PT_GNU_STACK;
3883 m->p_flags = elf_tdata (abfd)->stack_flags;
3884 m->p_flags_valid = 1;
3885
3886 *pm = m;
3887 pm = &m->next;
3888 }
3889
3890 if (dynsec != NULL && info->relro)
3891 {
3892 /* We make a PT_GNU_RELRO segment only when there is a
3893 PT_DYNAMIC segment. */
3894 amt = sizeof (struct elf_segment_map);
3895 m = bfd_zalloc (abfd, amt);
3896 if (m == NULL)
3897 goto error_return;
3898 m->next = NULL;
3899 m->p_type = PT_GNU_RELRO;
3900 m->p_flags = PF_R;
3901 m->p_flags_valid = 1;
3902
3903 *pm = m;
3904 pm = &m->next;
3905 }
3906
3907 free (sections);
3908 elf_tdata (abfd)->segment_map = mfirst;
3909 }
3910
3911 if (!elf_modify_segment_map (abfd, info, no_user_phdrs))
3912 return FALSE;
3913
3914 for (count = 0, m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
3915 ++count;
3916 elf_tdata (abfd)->program_header_size = count * bed->s->sizeof_phdr;
3917
3918 return TRUE;
3919
3920 error_return:
3921 if (sections != NULL)
3922 free (sections);
3923 return FALSE;
3924 }
3925
3926 /* Sort sections by address. */
3927
3928 static int
3929 elf_sort_sections (const void *arg1, const void *arg2)
3930 {
3931 const asection *sec1 = *(const asection **) arg1;
3932 const asection *sec2 = *(const asection **) arg2;
3933 bfd_size_type size1, size2;
3934
3935 /* Sort by LMA first, since this is the address used to
3936 place the section into a segment. */
3937 if (sec1->lma < sec2->lma)
3938 return -1;
3939 else if (sec1->lma > sec2->lma)
3940 return 1;
3941
3942 /* Then sort by VMA. Normally the LMA and the VMA will be
3943 the same, and this will do nothing. */
3944 if (sec1->vma < sec2->vma)
3945 return -1;
3946 else if (sec1->vma > sec2->vma)
3947 return 1;
3948
3949 /* Put !SEC_LOAD sections after SEC_LOAD ones. */
3950
3951 #define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0)
3952
3953 if (TOEND (sec1))
3954 {
3955 if (TOEND (sec2))
3956 {
3957 /* If the indicies are the same, do not return 0
3958 here, but continue to try the next comparison. */
3959 if (sec1->target_index - sec2->target_index != 0)
3960 return sec1->target_index - sec2->target_index;
3961 }
3962 else
3963 return 1;
3964 }
3965 else if (TOEND (sec2))
3966 return -1;
3967
3968 #undef TOEND
3969
3970 /* Sort by size, to put zero sized sections
3971 before others at the same address. */
3972
3973 size1 = (sec1->flags & SEC_LOAD) ? sec1->size : 0;
3974 size2 = (sec2->flags & SEC_LOAD) ? sec2->size : 0;
3975
3976 if (size1 < size2)
3977 return -1;
3978 if (size1 > size2)
3979 return 1;
3980
3981 return sec1->target_index - sec2->target_index;
3982 }
3983
3984 /* Ian Lance Taylor writes:
3985
3986 We shouldn't be using % with a negative signed number. That's just
3987 not good. We have to make sure either that the number is not
3988 negative, or that the number has an unsigned type. When the types
3989 are all the same size they wind up as unsigned. When file_ptr is a
3990 larger signed type, the arithmetic winds up as signed long long,
3991 which is wrong.
3992
3993 What we're trying to say here is something like ``increase OFF by
3994 the least amount that will cause it to be equal to the VMA modulo
3995 the page size.'' */
3996 /* In other words, something like:
3997
3998 vma_offset = m->sections[0]->vma % bed->maxpagesize;
3999 off_offset = off % bed->maxpagesize;
4000 if (vma_offset < off_offset)
4001 adjustment = vma_offset + bed->maxpagesize - off_offset;
4002 else
4003 adjustment = vma_offset - off_offset;
4004
4005 which can can be collapsed into the expression below. */
4006
4007 static file_ptr
4008 vma_page_aligned_bias (bfd_vma vma, ufile_ptr off, bfd_vma maxpagesize)
4009 {
4010 return ((vma - off) % maxpagesize);
4011 }
4012
4013 static void
4014 print_segment_map (const struct elf_segment_map *m)
4015 {
4016 unsigned int j;
4017 const char *pt = get_segment_type (m->p_type);
4018 char buf[32];
4019
4020 if (pt == NULL)
4021 {
4022 if (m->p_type >= PT_LOPROC && m->p_type <= PT_HIPROC)
4023 sprintf (buf, "LOPROC+%7.7x",
4024 (unsigned int) (m->p_type - PT_LOPROC));
4025 else if (m->p_type >= PT_LOOS && m->p_type <= PT_HIOS)
4026 sprintf (buf, "LOOS+%7.7x",
4027 (unsigned int) (m->p_type - PT_LOOS));
4028 else
4029 snprintf (buf, sizeof (buf), "%8.8x",
4030 (unsigned int) m->p_type);
4031 pt = buf;
4032 }
4033 fprintf (stderr, "%s:", pt);
4034 for (j = 0; j < m->count; j++)
4035 fprintf (stderr, " %s", m->sections [j]->name);
4036 putc ('\n',stderr);
4037 }
4038
4039 /* Assign file positions to the sections based on the mapping from
4040 sections to segments. This function also sets up some fields in
4041 the file header. */
4042
4043 static bfd_boolean
4044 assign_file_positions_for_load_sections (bfd *abfd,
4045 struct bfd_link_info *link_info)
4046 {
4047 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4048 struct elf_segment_map *m;
4049 Elf_Internal_Phdr *phdrs;
4050 Elf_Internal_Phdr *p;
4051 file_ptr off;
4052 bfd_size_type maxpagesize;
4053 unsigned int alloc;
4054 unsigned int i, j;
4055
4056 if (link_info == NULL
4057 && !elf_modify_segment_map (abfd, link_info, FALSE))
4058 return FALSE;
4059
4060 alloc = 0;
4061 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
4062 ++alloc;
4063
4064 elf_elfheader (abfd)->e_phoff = bed->s->sizeof_ehdr;
4065 elf_elfheader (abfd)->e_phentsize = bed->s->sizeof_phdr;
4066 elf_elfheader (abfd)->e_phnum = alloc;
4067
4068 if (elf_tdata (abfd)->program_header_size == (bfd_size_type) -1)
4069 elf_tdata (abfd)->program_header_size = alloc * bed->s->sizeof_phdr;
4070 else
4071 BFD_ASSERT (elf_tdata (abfd)->program_header_size
4072 >= alloc * bed->s->sizeof_phdr);
4073
4074 if (alloc == 0)
4075 {
4076 elf_tdata (abfd)->next_file_pos = bed->s->sizeof_ehdr;
4077 return TRUE;
4078 }
4079
4080 phdrs = bfd_alloc2 (abfd, alloc, sizeof (Elf_Internal_Phdr));
4081 elf_tdata (abfd)->phdr = phdrs;
4082 if (phdrs == NULL)
4083 return FALSE;
4084
4085 maxpagesize = 1;
4086 if ((abfd->flags & D_PAGED) != 0)
4087 maxpagesize = bed->maxpagesize;
4088
4089 off = bed->s->sizeof_ehdr;
4090 off += alloc * bed->s->sizeof_phdr;
4091
4092 for (m = elf_tdata (abfd)->segment_map, p = phdrs, j = 0;
4093 m != NULL;
4094 m = m->next, p++, j++)
4095 {
4096 asection **secpp;
4097 bfd_vma off_adjust;
4098 bfd_boolean no_contents;
4099
4100 /* If elf_segment_map is not from map_sections_to_segments, the
4101 sections may not be correctly ordered. NOTE: sorting should
4102 not be done to the PT_NOTE section of a corefile, which may
4103 contain several pseudo-sections artificially created by bfd.
4104 Sorting these pseudo-sections breaks things badly. */
4105 if (m->count > 1
4106 && !(elf_elfheader (abfd)->e_type == ET_CORE
4107 && m->p_type == PT_NOTE))
4108 qsort (m->sections, (size_t) m->count, sizeof (asection *),
4109 elf_sort_sections);
4110
4111 /* An ELF segment (described by Elf_Internal_Phdr) may contain a
4112 number of sections with contents contributing to both p_filesz
4113 and p_memsz, followed by a number of sections with no contents
4114 that just contribute to p_memsz. In this loop, OFF tracks next
4115 available file offset for PT_LOAD and PT_NOTE segments. */
4116 p->p_type = m->p_type;
4117 p->p_flags = m->p_flags;
4118
4119 if (m->count == 0)
4120 p->p_vaddr = 0;
4121 else
4122 p->p_vaddr = m->sections[0]->vma - m->p_vaddr_offset;
4123
4124 if (m->p_paddr_valid)
4125 p->p_paddr = m->p_paddr;
4126 else if (m->count == 0)
4127 p->p_paddr = 0;
4128 else
4129 p->p_paddr = m->sections[0]->lma - m->p_vaddr_offset;
4130
4131 if (p->p_type == PT_LOAD
4132 && (abfd->flags & D_PAGED) != 0)
4133 {
4134 /* p_align in demand paged PT_LOAD segments effectively stores
4135 the maximum page size. When copying an executable with
4136 objcopy, we set m->p_align from the input file. Use this
4137 value for maxpagesize rather than bed->maxpagesize, which
4138 may be different. Note that we use maxpagesize for PT_TLS
4139 segment alignment later in this function, so we are relying
4140 on at least one PT_LOAD segment appearing before a PT_TLS
4141 segment. */
4142 if (m->p_align_valid)
4143 maxpagesize = m->p_align;
4144
4145 p->p_align = maxpagesize;
4146 }
4147 else if (m->count == 0)
4148 p->p_align = 1 << bed->s->log_file_align;
4149 else if (m->p_align_valid)
4150 p->p_align = m->p_align;
4151 else
4152 p->p_align = 0;
4153
4154 no_contents = FALSE;
4155 off_adjust = 0;
4156 if (p->p_type == PT_LOAD
4157 && m->count > 0)
4158 {
4159 bfd_size_type align;
4160 unsigned int align_power = 0;
4161
4162 if (m->p_align_valid)
4163 align = p->p_align;
4164 else
4165 {
4166 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4167 {
4168 unsigned int secalign;
4169
4170 secalign = bfd_get_section_alignment (abfd, *secpp);
4171 if (secalign > align_power)
4172 align_power = secalign;
4173 }
4174 align = (bfd_size_type) 1 << align_power;
4175 if (align < maxpagesize)
4176 align = maxpagesize;
4177 }
4178
4179 for (i = 0; i < m->count; i++)
4180 if ((m->sections[i]->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
4181 /* If we aren't making room for this section, then
4182 it must be SHT_NOBITS regardless of what we've
4183 set via struct bfd_elf_special_section. */
4184 elf_section_type (m->sections[i]) = SHT_NOBITS;
4185
4186 /* Find out whether this segment contains any loadable
4187 sections. If the first section isn't loadable, the same
4188 holds for any other sections. */
4189 i = 0;
4190 while (elf_section_type (m->sections[i]) == SHT_NOBITS)
4191 {
4192 /* If a segment starts with .tbss, we need to look
4193 at the next section to decide whether the segment
4194 has any loadable sections. */
4195 if ((elf_section_flags (m->sections[i]) & SHF_TLS) == 0
4196 || ++i >= m->count)
4197 {
4198 no_contents = TRUE;
4199 break;
4200 }
4201 }
4202
4203 off_adjust = vma_page_aligned_bias (m->sections[0]->vma, off, align);
4204 off += off_adjust;
4205 if (no_contents)
4206 {
4207 /* We shouldn't need to align the segment on disk since
4208 the segment doesn't need file space, but the gABI
4209 arguably requires the alignment and glibc ld.so
4210 checks it. So to comply with the alignment
4211 requirement but not waste file space, we adjust
4212 p_offset for just this segment. (OFF_ADJUST is
4213 subtracted from OFF later.) This may put p_offset
4214 past the end of file, but that shouldn't matter. */
4215 }
4216 else
4217 off_adjust = 0;
4218 }
4219 /* Make sure the .dynamic section is the first section in the
4220 PT_DYNAMIC segment. */
4221 else if (p->p_type == PT_DYNAMIC
4222 && m->count > 1
4223 && strcmp (m->sections[0]->name, ".dynamic") != 0)
4224 {
4225 _bfd_error_handler
4226 (_("%B: The first section in the PT_DYNAMIC segment is not the .dynamic section"),
4227 abfd);
4228 bfd_set_error (bfd_error_bad_value);
4229 return FALSE;
4230 }
4231
4232 p->p_offset = 0;
4233 p->p_filesz = 0;
4234 p->p_memsz = 0;
4235
4236 if (m->includes_filehdr)
4237 {
4238 if (!m->p_flags_valid)
4239 p->p_flags |= PF_R;
4240 p->p_filesz = bed->s->sizeof_ehdr;
4241 p->p_memsz = bed->s->sizeof_ehdr;
4242 if (m->count > 0)
4243 {
4244 BFD_ASSERT (p->p_type == PT_LOAD);
4245
4246 if (p->p_vaddr < (bfd_vma) off)
4247 {
4248 (*_bfd_error_handler)
4249 (_("%B: Not enough room for program headers, try linking with -N"),
4250 abfd);
4251 bfd_set_error (bfd_error_bad_value);
4252 return FALSE;
4253 }
4254
4255 p->p_vaddr -= off;
4256 if (!m->p_paddr_valid)
4257 p->p_paddr -= off;
4258 }
4259 }
4260
4261 if (m->includes_phdrs)
4262 {
4263 if (!m->p_flags_valid)
4264 p->p_flags |= PF_R;
4265
4266 if (!m->includes_filehdr)
4267 {
4268 p->p_offset = bed->s->sizeof_ehdr;
4269
4270 if (m->count > 0)
4271 {
4272 BFD_ASSERT (p->p_type == PT_LOAD);
4273 p->p_vaddr -= off - p->p_offset;
4274 if (!m->p_paddr_valid)
4275 p->p_paddr -= off - p->p_offset;
4276 }
4277 }
4278
4279 p->p_filesz += alloc * bed->s->sizeof_phdr;
4280 p->p_memsz += alloc * bed->s->sizeof_phdr;
4281 }
4282
4283 if (p->p_type == PT_LOAD
4284 || (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core))
4285 {
4286 if (!m->includes_filehdr && !m->includes_phdrs)
4287 p->p_offset = off;
4288 else
4289 {
4290 file_ptr adjust;
4291
4292 adjust = off - (p->p_offset + p->p_filesz);
4293 if (!no_contents)
4294 p->p_filesz += adjust;
4295 p->p_memsz += adjust;
4296 }
4297 }
4298
4299 /* Set up p_filesz, p_memsz, p_align and p_flags from the section
4300 maps. Set filepos for sections in PT_LOAD segments, and in
4301 core files, for sections in PT_NOTE segments.
4302 assign_file_positions_for_non_load_sections will set filepos
4303 for other sections and update p_filesz for other segments. */
4304 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4305 {
4306 asection *sec;
4307 bfd_size_type align;
4308 Elf_Internal_Shdr *this_hdr;
4309
4310 sec = *secpp;
4311 this_hdr = &elf_section_data (sec)->this_hdr;
4312 align = (bfd_size_type) 1 << bfd_get_section_alignment (abfd, sec);
4313
4314 if (p->p_type == PT_LOAD
4315 || p->p_type == PT_TLS)
4316 {
4317 bfd_signed_vma adjust = sec->lma - (p->p_paddr + p->p_memsz);
4318
4319 if (this_hdr->sh_type != SHT_NOBITS
4320 || ((this_hdr->sh_flags & SHF_ALLOC) != 0
4321 && ((this_hdr->sh_flags & SHF_TLS) == 0
4322 || p->p_type == PT_TLS)))
4323 {
4324 if (adjust < 0)
4325 {
4326 (*_bfd_error_handler)
4327 (_("%B: section %A lma 0x%lx overlaps previous sections"),
4328 abfd, sec, (unsigned long) sec->lma);
4329 adjust = 0;
4330 }
4331 p->p_memsz += adjust;
4332
4333 if (this_hdr->sh_type != SHT_NOBITS)
4334 {
4335 off += adjust;
4336 p->p_filesz += adjust;
4337 }
4338 }
4339 }
4340
4341 if (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core)
4342 {
4343 /* The section at i == 0 is the one that actually contains
4344 everything. */
4345 if (i == 0)
4346 {
4347 this_hdr->sh_offset = sec->filepos = off;
4348 off += this_hdr->sh_size;
4349 p->p_filesz = this_hdr->sh_size;
4350 p->p_memsz = 0;
4351 p->p_align = 1;
4352 }
4353 else
4354 {
4355 /* The rest are fake sections that shouldn't be written. */
4356 sec->filepos = 0;
4357 sec->size = 0;
4358 sec->flags = 0;
4359 continue;
4360 }
4361 }
4362 else
4363 {
4364 if (p->p_type == PT_LOAD)
4365 {
4366 this_hdr->sh_offset = sec->filepos = off;
4367 if (this_hdr->sh_type != SHT_NOBITS)
4368 off += this_hdr->sh_size;
4369 }
4370
4371 if (this_hdr->sh_type != SHT_NOBITS)
4372 {
4373 p->p_filesz += this_hdr->sh_size;
4374 /* A load section without SHF_ALLOC is something like
4375 a note section in a PT_NOTE segment. These take
4376 file space but are not loaded into memory. */
4377 if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
4378 p->p_memsz += this_hdr->sh_size;
4379 }
4380 else if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
4381 {
4382 if (p->p_type == PT_TLS)
4383 p->p_memsz += this_hdr->sh_size;
4384
4385 /* .tbss is special. It doesn't contribute to p_memsz of
4386 normal segments. */
4387 else if ((this_hdr->sh_flags & SHF_TLS) == 0)
4388 p->p_memsz += this_hdr->sh_size;
4389 }
4390
4391 if (align > p->p_align
4392 && !m->p_align_valid
4393 && (p->p_type != PT_LOAD
4394 || (abfd->flags & D_PAGED) == 0))
4395 p->p_align = align;
4396 }
4397
4398 if (!m->p_flags_valid)
4399 {
4400 p->p_flags |= PF_R;
4401 if ((this_hdr->sh_flags & SHF_EXECINSTR) != 0)
4402 p->p_flags |= PF_X;
4403 if ((this_hdr->sh_flags & SHF_WRITE) != 0)
4404 p->p_flags |= PF_W;
4405 }
4406 }
4407 off -= off_adjust;
4408
4409 /* Check that all sections are in a PT_LOAD segment.
4410 Don't check funky gdb generated core files. */
4411 if (p->p_type == PT_LOAD && bfd_get_format (abfd) != bfd_core)
4412 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4413 {
4414 Elf_Internal_Shdr *this_hdr;
4415 asection *sec;
4416
4417 sec = *secpp;
4418 this_hdr = &(elf_section_data(sec)->this_hdr);
4419 if (this_hdr->sh_size != 0
4420 && !ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr, p))
4421 {
4422 (*_bfd_error_handler)
4423 (_("%B: section `%A' can't be allocated in segment %d"),
4424 abfd, sec, j);
4425 print_segment_map (m);
4426 bfd_set_error (bfd_error_bad_value);
4427 return FALSE;
4428 }
4429 }
4430 }
4431
4432 elf_tdata (abfd)->next_file_pos = off;
4433 return TRUE;
4434 }
4435
4436 /* Assign file positions for the other sections. */
4437
4438 static bfd_boolean
4439 assign_file_positions_for_non_load_sections (bfd *abfd,
4440 struct bfd_link_info *link_info)
4441 {
4442 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4443 Elf_Internal_Shdr **i_shdrpp;
4444 Elf_Internal_Shdr **hdrpp;
4445 Elf_Internal_Phdr *phdrs;
4446 Elf_Internal_Phdr *p;
4447 struct elf_segment_map *m;
4448 bfd_vma filehdr_vaddr, filehdr_paddr;
4449 bfd_vma phdrs_vaddr, phdrs_paddr;
4450 file_ptr off;
4451 unsigned int num_sec;
4452 unsigned int i;
4453 unsigned int count;
4454
4455 i_shdrpp = elf_elfsections (abfd);
4456 num_sec = elf_numsections (abfd);
4457 off = elf_tdata (abfd)->next_file_pos;
4458 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
4459 {
4460 struct elf_obj_tdata *tdata = elf_tdata (abfd);
4461 Elf_Internal_Shdr *hdr;
4462
4463 hdr = *hdrpp;
4464 if (hdr->bfd_section != NULL
4465 && (hdr->bfd_section->filepos != 0
4466 || (hdr->sh_type == SHT_NOBITS
4467 && hdr->contents == NULL)))
4468 BFD_ASSERT (hdr->sh_offset == hdr->bfd_section->filepos);
4469 else if ((hdr->sh_flags & SHF_ALLOC) != 0)
4470 {
4471 if (hdr->sh_size != 0)
4472 ((*_bfd_error_handler)
4473 (_("%B: warning: allocated section `%s' not in segment"),
4474 abfd,
4475 (hdr->bfd_section == NULL
4476 ? "*unknown*"
4477 : hdr->bfd_section->name)));
4478 /* We don't need to page align empty sections. */
4479 if ((abfd->flags & D_PAGED) != 0 && hdr->sh_size != 0)
4480 off += vma_page_aligned_bias (hdr->sh_addr, off,
4481 bed->maxpagesize);
4482 else
4483 off += vma_page_aligned_bias (hdr->sh_addr, off,
4484 hdr->sh_addralign);
4485 off = _bfd_elf_assign_file_position_for_section (hdr, off,
4486 FALSE);
4487 }
4488 else if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
4489 && hdr->bfd_section == NULL)
4490 || hdr == i_shdrpp[tdata->symtab_section]
4491 || hdr == i_shdrpp[tdata->symtab_shndx_section]
4492 || hdr == i_shdrpp[tdata->strtab_section])
4493 hdr->sh_offset = -1;
4494 else
4495 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4496
4497 if (i == SHN_LORESERVE - 1)
4498 {
4499 i += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4500 hdrpp += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4501 }
4502 }
4503
4504 /* Now that we have set the section file positions, we can set up
4505 the file positions for the non PT_LOAD segments. */
4506 count = 0;
4507 filehdr_vaddr = 0;
4508 filehdr_paddr = 0;
4509 phdrs_vaddr = bed->maxpagesize + bed->s->sizeof_ehdr;
4510 phdrs_paddr = 0;
4511 phdrs = elf_tdata (abfd)->phdr;
4512 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
4513 m != NULL;
4514 m = m->next, p++)
4515 {
4516 ++count;
4517 if (p->p_type != PT_LOAD)
4518 continue;
4519
4520 if (m->includes_filehdr)
4521 {
4522 filehdr_vaddr = p->p_vaddr;
4523 filehdr_paddr = p->p_paddr;
4524 }
4525 if (m->includes_phdrs)
4526 {
4527 phdrs_vaddr = p->p_vaddr;
4528 phdrs_paddr = p->p_paddr;
4529 if (m->includes_filehdr)
4530 {
4531 phdrs_vaddr += bed->s->sizeof_ehdr;
4532 phdrs_paddr += bed->s->sizeof_ehdr;
4533 }
4534 }
4535 }
4536
4537 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
4538 m != NULL;
4539 m = m->next, p++)
4540 {
4541 if (m->count != 0)
4542 {
4543 if (p->p_type != PT_LOAD
4544 && (p->p_type != PT_NOTE
4545 || bfd_get_format (abfd) != bfd_core))
4546 {
4547 Elf_Internal_Shdr *hdr;
4548 asection *sect;
4549
4550 BFD_ASSERT (!m->includes_filehdr && !m->includes_phdrs);
4551
4552 sect = m->sections[m->count - 1];
4553 hdr = &elf_section_data (sect)->this_hdr;
4554 p->p_filesz = sect->filepos - m->sections[0]->filepos;
4555 if (hdr->sh_type != SHT_NOBITS)
4556 p->p_filesz += hdr->sh_size;
4557
4558 if (p->p_type == PT_GNU_RELRO)
4559 {
4560 /* When we get here, we are copying executable
4561 or shared library. But we need to use the same
4562 linker logic. */
4563 Elf_Internal_Phdr *lp;
4564
4565 for (lp = phdrs; lp < phdrs + count; ++lp)
4566 {
4567 if (lp->p_type == PT_LOAD
4568 && lp->p_paddr == p->p_paddr)
4569 break;
4570 }
4571
4572 if (lp < phdrs + count)
4573 {
4574 /* We should use p_size if it is valid since it
4575 may contain the first few bytes of the next
4576 SEC_ALLOC section. */
4577 if (m->p_size_valid)
4578 p->p_filesz = m->p_size;
4579 else
4580 abort ();
4581 p->p_vaddr = lp->p_vaddr;
4582 p->p_offset = lp->p_offset;
4583 p->p_memsz = p->p_filesz;
4584 p->p_align = 1;
4585 }
4586 else
4587 abort ();
4588 }
4589 else
4590 p->p_offset = m->sections[0]->filepos;
4591 }
4592 }
4593 else
4594 {
4595 if (m->includes_filehdr)
4596 {
4597 p->p_vaddr = filehdr_vaddr;
4598 if (! m->p_paddr_valid)
4599 p->p_paddr = filehdr_paddr;
4600 }
4601 else if (m->includes_phdrs)
4602 {
4603 p->p_vaddr = phdrs_vaddr;
4604 if (! m->p_paddr_valid)
4605 p->p_paddr = phdrs_paddr;
4606 }
4607 else if (p->p_type == PT_GNU_RELRO)
4608 {
4609 Elf_Internal_Phdr *lp;
4610
4611 for (lp = phdrs; lp < phdrs + count; ++lp)
4612 {
4613 if (lp->p_type == PT_LOAD
4614 && lp->p_vaddr <= link_info->relro_end
4615 && lp->p_vaddr >= link_info->relro_start
4616 && (lp->p_vaddr + lp->p_filesz
4617 >= link_info->relro_end))
4618 break;
4619 }
4620
4621 if (lp < phdrs + count
4622 && link_info->relro_end > lp->p_vaddr)
4623 {
4624 p->p_vaddr = lp->p_vaddr;
4625 p->p_paddr = lp->p_paddr;
4626 p->p_offset = lp->p_offset;
4627 p->p_filesz = link_info->relro_end - lp->p_vaddr;
4628 p->p_memsz = p->p_filesz;
4629 p->p_align = 1;
4630 p->p_flags = (lp->p_flags & ~PF_W);
4631 }
4632 else
4633 {
4634 memset (p, 0, sizeof *p);
4635 p->p_type = PT_NULL;
4636 }
4637 }
4638 }
4639 }
4640
4641 elf_tdata (abfd)->next_file_pos = off;
4642
4643 return TRUE;
4644 }
4645
4646 /* Work out the file positions of all the sections. This is called by
4647 _bfd_elf_compute_section_file_positions. All the section sizes and
4648 VMAs must be known before this is called.
4649
4650 Reloc sections come in two flavours: Those processed specially as
4651 "side-channel" data attached to a section to which they apply, and
4652 those that bfd doesn't process as relocations. The latter sort are
4653 stored in a normal bfd section by bfd_section_from_shdr. We don't
4654 consider the former sort here, unless they form part of the loadable
4655 image. Reloc sections not assigned here will be handled later by
4656 assign_file_positions_for_relocs.
4657
4658 We also don't set the positions of the .symtab and .strtab here. */
4659
4660 static bfd_boolean
4661 assign_file_positions_except_relocs (bfd *abfd,
4662 struct bfd_link_info *link_info)
4663 {
4664 struct elf_obj_tdata *tdata = elf_tdata (abfd);
4665 Elf_Internal_Ehdr *i_ehdrp = elf_elfheader (abfd);
4666 file_ptr off;
4667 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4668
4669 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
4670 && bfd_get_format (abfd) != bfd_core)
4671 {
4672 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
4673 unsigned int num_sec = elf_numsections (abfd);
4674 Elf_Internal_Shdr **hdrpp;
4675 unsigned int i;
4676
4677 /* Start after the ELF header. */
4678 off = i_ehdrp->e_ehsize;
4679
4680 /* We are not creating an executable, which means that we are
4681 not creating a program header, and that the actual order of
4682 the sections in the file is unimportant. */
4683 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
4684 {
4685 Elf_Internal_Shdr *hdr;
4686
4687 hdr = *hdrpp;
4688 if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
4689 && hdr->bfd_section == NULL)
4690 || i == tdata->symtab_section
4691 || i == tdata->symtab_shndx_section
4692 || i == tdata->strtab_section)
4693 {
4694 hdr->sh_offset = -1;
4695 }
4696 else
4697 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4698
4699 if (i == SHN_LORESERVE - 1)
4700 {
4701 i += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4702 hdrpp += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4703 }
4704 }
4705 }
4706 else
4707 {
4708 unsigned int alloc;
4709
4710 /* Assign file positions for the loaded sections based on the
4711 assignment of sections to segments. */
4712 if (!assign_file_positions_for_load_sections (abfd, link_info))
4713 return FALSE;
4714
4715 /* And for non-load sections. */
4716 if (!assign_file_positions_for_non_load_sections (abfd, link_info))
4717 return FALSE;
4718
4719 if (bed->elf_backend_modify_program_headers != NULL)
4720 {
4721 if (!(*bed->elf_backend_modify_program_headers) (abfd, link_info))
4722 return FALSE;
4723 }
4724
4725 /* Write out the program headers. */
4726 alloc = tdata->program_header_size / bed->s->sizeof_phdr;
4727 if (bfd_seek (abfd, (bfd_signed_vma) bed->s->sizeof_ehdr, SEEK_SET) != 0
4728 || bed->s->write_out_phdrs (abfd, tdata->phdr, alloc) != 0)
4729 return FALSE;
4730
4731 off = tdata->next_file_pos;
4732 }
4733
4734 /* Place the section headers. */
4735 off = align_file_position (off, 1 << bed->s->log_file_align);
4736 i_ehdrp->e_shoff = off;
4737 off += i_ehdrp->e_shnum * i_ehdrp->e_shentsize;
4738
4739 tdata->next_file_pos = off;
4740
4741 return TRUE;
4742 }
4743
4744 static bfd_boolean
4745 prep_headers (bfd *abfd)
4746 {
4747 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
4748 Elf_Internal_Phdr *i_phdrp = 0; /* Program header table, internal form */
4749 Elf_Internal_Shdr **i_shdrp; /* Section header table, internal form */
4750 struct elf_strtab_hash *shstrtab;
4751 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4752
4753 i_ehdrp = elf_elfheader (abfd);
4754 i_shdrp = elf_elfsections (abfd);
4755
4756 shstrtab = _bfd_elf_strtab_init ();
4757 if (shstrtab == NULL)
4758 return FALSE;
4759
4760 elf_shstrtab (abfd) = shstrtab;
4761
4762 i_ehdrp->e_ident[EI_MAG0] = ELFMAG0;
4763 i_ehdrp->e_ident[EI_MAG1] = ELFMAG1;
4764 i_ehdrp->e_ident[EI_MAG2] = ELFMAG2;
4765 i_ehdrp->e_ident[EI_MAG3] = ELFMAG3;
4766
4767 i_ehdrp->e_ident[EI_CLASS] = bed->s->elfclass;
4768 i_ehdrp->e_ident[EI_DATA] =
4769 bfd_big_endian (abfd) ? ELFDATA2MSB : ELFDATA2LSB;
4770 i_ehdrp->e_ident[EI_VERSION] = bed->s->ev_current;
4771
4772 if ((abfd->flags & DYNAMIC) != 0)
4773 i_ehdrp->e_type = ET_DYN;
4774 else if ((abfd->flags & EXEC_P) != 0)
4775 i_ehdrp->e_type = ET_EXEC;
4776 else if (bfd_get_format (abfd) == bfd_core)
4777 i_ehdrp->e_type = ET_CORE;
4778 else
4779 i_ehdrp->e_type = ET_REL;
4780
4781 switch (bfd_get_arch (abfd))
4782 {
4783 case bfd_arch_unknown:
4784 i_ehdrp->e_machine = EM_NONE;
4785 break;
4786
4787 /* There used to be a long list of cases here, each one setting
4788 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
4789 in the corresponding bfd definition. To avoid duplication,
4790 the switch was removed. Machines that need special handling
4791 can generally do it in elf_backend_final_write_processing(),
4792 unless they need the information earlier than the final write.
4793 Such need can generally be supplied by replacing the tests for
4794 e_machine with the conditions used to determine it. */
4795 default:
4796 i_ehdrp->e_machine = bed->elf_machine_code;
4797 }
4798
4799 i_ehdrp->e_version = bed->s->ev_current;
4800 i_ehdrp->e_ehsize = bed->s->sizeof_ehdr;
4801
4802 /* No program header, for now. */
4803 i_ehdrp->e_phoff = 0;
4804 i_ehdrp->e_phentsize = 0;
4805 i_ehdrp->e_phnum = 0;
4806
4807 /* Each bfd section is section header entry. */
4808 i_ehdrp->e_entry = bfd_get_start_address (abfd);
4809 i_ehdrp->e_shentsize = bed->s->sizeof_shdr;
4810
4811 /* If we're building an executable, we'll need a program header table. */
4812 if (abfd->flags & EXEC_P)
4813 /* It all happens later. */
4814 ;
4815 else
4816 {
4817 i_ehdrp->e_phentsize = 0;
4818 i_phdrp = 0;
4819 i_ehdrp->e_phoff = 0;
4820 }
4821
4822 elf_tdata (abfd)->symtab_hdr.sh_name =
4823 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".symtab", FALSE);
4824 elf_tdata (abfd)->strtab_hdr.sh_name =
4825 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".strtab", FALSE);
4826 elf_tdata (abfd)->shstrtab_hdr.sh_name =
4827 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".shstrtab", FALSE);
4828 if (elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
4829 || elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
4830 || elf_tdata (abfd)->shstrtab_hdr.sh_name == (unsigned int) -1)
4831 return FALSE;
4832
4833 return TRUE;
4834 }
4835
4836 /* Assign file positions for all the reloc sections which are not part
4837 of the loadable file image. */
4838
4839 void
4840 _bfd_elf_assign_file_positions_for_relocs (bfd *abfd)
4841 {
4842 file_ptr off;
4843 unsigned int i, num_sec;
4844 Elf_Internal_Shdr **shdrpp;
4845
4846 off = elf_tdata (abfd)->next_file_pos;
4847
4848 num_sec = elf_numsections (abfd);
4849 for (i = 1, shdrpp = elf_elfsections (abfd) + 1; i < num_sec; i++, shdrpp++)
4850 {
4851 Elf_Internal_Shdr *shdrp;
4852
4853 shdrp = *shdrpp;
4854 if ((shdrp->sh_type == SHT_REL || shdrp->sh_type == SHT_RELA)
4855 && shdrp->sh_offset == -1)
4856 off = _bfd_elf_assign_file_position_for_section (shdrp, off, TRUE);
4857 }
4858
4859 elf_tdata (abfd)->next_file_pos = off;
4860 }
4861
4862 bfd_boolean
4863 _bfd_elf_write_object_contents (bfd *abfd)
4864 {
4865 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4866 Elf_Internal_Ehdr *i_ehdrp;
4867 Elf_Internal_Shdr **i_shdrp;
4868 bfd_boolean failed;
4869 unsigned int count, num_sec;
4870
4871 if (! abfd->output_has_begun
4872 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
4873 return FALSE;
4874
4875 i_shdrp = elf_elfsections (abfd);
4876 i_ehdrp = elf_elfheader (abfd);
4877
4878 failed = FALSE;
4879 bfd_map_over_sections (abfd, bed->s->write_relocs, &failed);
4880 if (failed)
4881 return FALSE;
4882
4883 _bfd_elf_assign_file_positions_for_relocs (abfd);
4884
4885 /* After writing the headers, we need to write the sections too... */
4886 num_sec = elf_numsections (abfd);
4887 for (count = 1; count < num_sec; count++)
4888 {
4889 if (bed->elf_backend_section_processing)
4890 (*bed->elf_backend_section_processing) (abfd, i_shdrp[count]);
4891 if (i_shdrp[count]->contents)
4892 {
4893 bfd_size_type amt = i_shdrp[count]->sh_size;
4894
4895 if (bfd_seek (abfd, i_shdrp[count]->sh_offset, SEEK_SET) != 0
4896 || bfd_bwrite (i_shdrp[count]->contents, amt, abfd) != amt)
4897 return FALSE;
4898 }
4899 if (count == SHN_LORESERVE - 1)
4900 count += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4901 }
4902
4903 /* Write out the section header names. */
4904 if (elf_shstrtab (abfd) != NULL
4905 && (bfd_seek (abfd, elf_tdata (abfd)->shstrtab_hdr.sh_offset, SEEK_SET) != 0
4906 || !_bfd_elf_strtab_emit (abfd, elf_shstrtab (abfd))))
4907 return FALSE;
4908
4909 if (bed->elf_backend_final_write_processing)
4910 (*bed->elf_backend_final_write_processing) (abfd,
4911 elf_tdata (abfd)->linker);
4912
4913 if (!bed->s->write_shdrs_and_ehdr (abfd))
4914 return FALSE;
4915
4916 /* This is last since write_shdrs_and_ehdr can touch i_shdrp[0]. */
4917 if (elf_tdata (abfd)->after_write_object_contents)
4918 return (*elf_tdata (abfd)->after_write_object_contents) (abfd);
4919
4920 return TRUE;
4921 }
4922
4923 bfd_boolean
4924 _bfd_elf_write_corefile_contents (bfd *abfd)
4925 {
4926 /* Hopefully this can be done just like an object file. */
4927 return _bfd_elf_write_object_contents (abfd);
4928 }
4929
4930 /* Given a section, search the header to find them. */
4931
4932 int
4933 _bfd_elf_section_from_bfd_section (bfd *abfd, struct bfd_section *asect)
4934 {
4935 const struct elf_backend_data *bed;
4936 int index;
4937
4938 if (elf_section_data (asect) != NULL
4939 && elf_section_data (asect)->this_idx != 0)
4940 return elf_section_data (asect)->this_idx;
4941
4942 if (bfd_is_abs_section (asect))
4943 index = SHN_ABS;
4944 else if (bfd_is_com_section (asect))
4945 index = SHN_COMMON;
4946 else if (bfd_is_und_section (asect))
4947 index = SHN_UNDEF;
4948 else
4949 index = -1;
4950
4951 bed = get_elf_backend_data (abfd);
4952 if (bed->elf_backend_section_from_bfd_section)
4953 {
4954 int retval = index;
4955
4956 if ((*bed->elf_backend_section_from_bfd_section) (abfd, asect, &retval))
4957 return retval;
4958 }
4959
4960 if (index == -1)
4961 bfd_set_error (bfd_error_nonrepresentable_section);
4962
4963 return index;
4964 }
4965
4966 /* Given a BFD symbol, return the index in the ELF symbol table, or -1
4967 on error. */
4968
4969 int
4970 _bfd_elf_symbol_from_bfd_symbol (bfd *abfd, asymbol **asym_ptr_ptr)
4971 {
4972 asymbol *asym_ptr = *asym_ptr_ptr;
4973 int idx;
4974 flagword flags = asym_ptr->flags;
4975
4976 /* When gas creates relocations against local labels, it creates its
4977 own symbol for the section, but does put the symbol into the
4978 symbol chain, so udata is 0. When the linker is generating
4979 relocatable output, this section symbol may be for one of the
4980 input sections rather than the output section. */
4981 if (asym_ptr->udata.i == 0
4982 && (flags & BSF_SECTION_SYM)
4983 && asym_ptr->section)
4984 {
4985 asection *sec;
4986 int indx;
4987
4988 sec = asym_ptr->section;
4989 if (sec->owner != abfd && sec->output_section != NULL)
4990 sec = sec->output_section;
4991 if (sec->owner == abfd
4992 && (indx = sec->index) < elf_num_section_syms (abfd)
4993 && elf_section_syms (abfd)[indx] != NULL)
4994 asym_ptr->udata.i = elf_section_syms (abfd)[indx]->udata.i;
4995 }
4996
4997 idx = asym_ptr->udata.i;
4998
4999 if (idx == 0)
5000 {
5001 /* This case can occur when using --strip-symbol on a symbol
5002 which is used in a relocation entry. */
5003 (*_bfd_error_handler)
5004 (_("%B: symbol `%s' required but not present"),
5005 abfd, bfd_asymbol_name (asym_ptr));
5006 bfd_set_error (bfd_error_no_symbols);
5007 return -1;
5008 }
5009
5010 #if DEBUG & 4
5011 {
5012 fprintf (stderr,
5013 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8lx%s\n",
5014 (long) asym_ptr, asym_ptr->name, idx, flags,
5015 elf_symbol_flags (flags));
5016 fflush (stderr);
5017 }
5018 #endif
5019
5020 return idx;
5021 }
5022
5023 /* Rewrite program header information. */
5024
5025 static bfd_boolean
5026 rewrite_elf_program_header (bfd *ibfd, bfd *obfd)
5027 {
5028 Elf_Internal_Ehdr *iehdr;
5029 struct elf_segment_map *map;
5030 struct elf_segment_map *map_first;
5031 struct elf_segment_map **pointer_to_map;
5032 Elf_Internal_Phdr *segment;
5033 asection *section;
5034 unsigned int i;
5035 unsigned int num_segments;
5036 bfd_boolean phdr_included = FALSE;
5037 bfd_vma maxpagesize;
5038 struct elf_segment_map *phdr_adjust_seg = NULL;
5039 unsigned int phdr_adjust_num = 0;
5040 const struct elf_backend_data *bed;
5041
5042 bed = get_elf_backend_data (ibfd);
5043 iehdr = elf_elfheader (ibfd);
5044
5045 map_first = NULL;
5046 pointer_to_map = &map_first;
5047
5048 num_segments = elf_elfheader (ibfd)->e_phnum;
5049 maxpagesize = get_elf_backend_data (obfd)->maxpagesize;
5050
5051 /* Returns the end address of the segment + 1. */
5052 #define SEGMENT_END(segment, start) \
5053 (start + (segment->p_memsz > segment->p_filesz \
5054 ? segment->p_memsz : segment->p_filesz))
5055
5056 #define SECTION_SIZE(section, segment) \
5057 (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL)) \
5058 != SEC_THREAD_LOCAL || segment->p_type == PT_TLS) \
5059 ? section->size : 0)
5060
5061 /* Returns TRUE if the given section is contained within
5062 the given segment. VMA addresses are compared. */
5063 #define IS_CONTAINED_BY_VMA(section, segment) \
5064 (section->vma >= segment->p_vaddr \
5065 && (section->vma + SECTION_SIZE (section, segment) \
5066 <= (SEGMENT_END (segment, segment->p_vaddr))))
5067
5068 /* Returns TRUE if the given section is contained within
5069 the given segment. LMA addresses are compared. */
5070 #define IS_CONTAINED_BY_LMA(section, segment, base) \
5071 (section->lma >= base \
5072 && (section->lma + SECTION_SIZE (section, segment) \
5073 <= SEGMENT_END (segment, base)))
5074
5075 /* Special case: corefile "NOTE" section containing regs, prpsinfo etc. */
5076 #define IS_COREFILE_NOTE(p, s) \
5077 (p->p_type == PT_NOTE \
5078 && bfd_get_format (ibfd) == bfd_core \
5079 && s->vma == 0 && s->lma == 0 \
5080 && (bfd_vma) s->filepos >= p->p_offset \
5081 && ((bfd_vma) s->filepos + s->size \
5082 <= p->p_offset + p->p_filesz))
5083
5084 /* The complicated case when p_vaddr is 0 is to handle the Solaris
5085 linker, which generates a PT_INTERP section with p_vaddr and
5086 p_memsz set to 0. */
5087 #define IS_SOLARIS_PT_INTERP(p, s) \
5088 (p->p_vaddr == 0 \
5089 && p->p_paddr == 0 \
5090 && p->p_memsz == 0 \
5091 && p->p_filesz > 0 \
5092 && (s->flags & SEC_HAS_CONTENTS) != 0 \
5093 && s->size > 0 \
5094 && (bfd_vma) s->filepos >= p->p_offset \
5095 && ((bfd_vma) s->filepos + s->size \
5096 <= p->p_offset + p->p_filesz))
5097
5098 /* Decide if the given section should be included in the given segment.
5099 A section will be included if:
5100 1. It is within the address space of the segment -- we use the LMA
5101 if that is set for the segment and the VMA otherwise,
5102 2. It is an allocated segment,
5103 3. There is an output section associated with it,
5104 4. The section has not already been allocated to a previous segment.
5105 5. PT_GNU_STACK segments do not include any sections.
5106 6. PT_TLS segment includes only SHF_TLS sections.
5107 7. SHF_TLS sections are only in PT_TLS or PT_LOAD segments.
5108 8. PT_DYNAMIC should not contain empty sections at the beginning
5109 (with the possible exception of .dynamic). */
5110 #define IS_SECTION_IN_INPUT_SEGMENT(section, segment, bed) \
5111 ((((segment->p_paddr \
5112 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr) \
5113 : IS_CONTAINED_BY_VMA (section, segment)) \
5114 && (section->flags & SEC_ALLOC) != 0) \
5115 || IS_COREFILE_NOTE (segment, section)) \
5116 && segment->p_type != PT_GNU_STACK \
5117 && (segment->p_type != PT_TLS \
5118 || (section->flags & SEC_THREAD_LOCAL)) \
5119 && (segment->p_type == PT_LOAD \
5120 || segment->p_type == PT_TLS \
5121 || (section->flags & SEC_THREAD_LOCAL) == 0) \
5122 && (segment->p_type != PT_DYNAMIC \
5123 || SECTION_SIZE (section, segment) > 0 \
5124 || (segment->p_paddr \
5125 ? segment->p_paddr != section->lma \
5126 : segment->p_vaddr != section->vma) \
5127 || (strcmp (bfd_get_section_name (ibfd, section), ".dynamic") \
5128 == 0)) \
5129 && ! section->segment_mark)
5130
5131 /* If the output section of a section in the input segment is NULL,
5132 it is removed from the corresponding output segment. */
5133 #define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed) \
5134 (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed) \
5135 && section->output_section != NULL)
5136
5137 /* Returns TRUE iff seg1 starts after the end of seg2. */
5138 #define SEGMENT_AFTER_SEGMENT(seg1, seg2, field) \
5139 (seg1->field >= SEGMENT_END (seg2, seg2->field))
5140
5141 /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both
5142 their VMA address ranges and their LMA address ranges overlap.
5143 It is possible to have overlapping VMA ranges without overlapping LMA
5144 ranges. RedBoot images for example can have both .data and .bss mapped
5145 to the same VMA range, but with the .data section mapped to a different
5146 LMA. */
5147 #define SEGMENT_OVERLAPS(seg1, seg2) \
5148 ( !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr) \
5149 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr)) \
5150 && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr) \
5151 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr)))
5152
5153 /* Initialise the segment mark field. */
5154 for (section = ibfd->sections; section != NULL; section = section->next)
5155 section->segment_mark = FALSE;
5156
5157 /* Scan through the segments specified in the program header
5158 of the input BFD. For this first scan we look for overlaps
5159 in the loadable segments. These can be created by weird
5160 parameters to objcopy. Also, fix some solaris weirdness. */
5161 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5162 i < num_segments;
5163 i++, segment++)
5164 {
5165 unsigned int j;
5166 Elf_Internal_Phdr *segment2;
5167
5168 if (segment->p_type == PT_INTERP)
5169 for (section = ibfd->sections; section; section = section->next)
5170 if (IS_SOLARIS_PT_INTERP (segment, section))
5171 {
5172 /* Mininal change so that the normal section to segment
5173 assignment code will work. */
5174 segment->p_vaddr = section->vma;
5175 break;
5176 }
5177
5178 if (segment->p_type != PT_LOAD)
5179 {
5180 /* Remove PT_GNU_RELRO segment. */
5181 if (segment->p_type == PT_GNU_RELRO)
5182 segment->p_type = PT_NULL;
5183 continue;
5184 }
5185
5186 /* Determine if this segment overlaps any previous segments. */
5187 for (j = 0, segment2 = elf_tdata (ibfd)->phdr; j < i; j++, segment2 ++)
5188 {
5189 bfd_signed_vma extra_length;
5190
5191 if (segment2->p_type != PT_LOAD
5192 || ! SEGMENT_OVERLAPS (segment, segment2))
5193 continue;
5194
5195 /* Merge the two segments together. */
5196 if (segment2->p_vaddr < segment->p_vaddr)
5197 {
5198 /* Extend SEGMENT2 to include SEGMENT and then delete
5199 SEGMENT. */
5200 extra_length =
5201 SEGMENT_END (segment, segment->p_vaddr)
5202 - SEGMENT_END (segment2, segment2->p_vaddr);
5203
5204 if (extra_length > 0)
5205 {
5206 segment2->p_memsz += extra_length;
5207 segment2->p_filesz += extra_length;
5208 }
5209
5210 segment->p_type = PT_NULL;
5211
5212 /* Since we have deleted P we must restart the outer loop. */
5213 i = 0;
5214 segment = elf_tdata (ibfd)->phdr;
5215 break;
5216 }
5217 else
5218 {
5219 /* Extend SEGMENT to include SEGMENT2 and then delete
5220 SEGMENT2. */
5221 extra_length =
5222 SEGMENT_END (segment2, segment2->p_vaddr)
5223 - SEGMENT_END (segment, segment->p_vaddr);
5224
5225 if (extra_length > 0)
5226 {
5227 segment->p_memsz += extra_length;
5228 segment->p_filesz += extra_length;
5229 }
5230
5231 segment2->p_type = PT_NULL;
5232 }
5233 }
5234 }
5235
5236 /* The second scan attempts to assign sections to segments. */
5237 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5238 i < num_segments;
5239 i ++, segment ++)
5240 {
5241 unsigned int section_count;
5242 asection ** sections;
5243 asection * output_section;
5244 unsigned int isec;
5245 bfd_vma matching_lma;
5246 bfd_vma suggested_lma;
5247 unsigned int j;
5248 bfd_size_type amt;
5249 asection * first_section;
5250
5251 if (segment->p_type == PT_NULL)
5252 continue;
5253
5254 first_section = NULL;
5255 /* Compute how many sections might be placed into this segment. */
5256 for (section = ibfd->sections, section_count = 0;
5257 section != NULL;
5258 section = section->next)
5259 {
5260 /* Find the first section in the input segment, which may be
5261 removed from the corresponding output segment. */
5262 if (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed))
5263 {
5264 if (first_section == NULL)
5265 first_section = section;
5266 if (section->output_section != NULL)
5267 ++section_count;
5268 }
5269 }
5270
5271 /* Allocate a segment map big enough to contain
5272 all of the sections we have selected. */
5273 amt = sizeof (struct elf_segment_map);
5274 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5275 map = bfd_zalloc (obfd, amt);
5276 if (map == NULL)
5277 return FALSE;
5278
5279 /* Initialise the fields of the segment map. Default to
5280 using the physical address of the segment in the input BFD. */
5281 map->next = NULL;
5282 map->p_type = segment->p_type;
5283 map->p_flags = segment->p_flags;
5284 map->p_flags_valid = 1;
5285
5286 /* If the first section in the input segment is removed, there is
5287 no need to preserve segment physical address in the corresponding
5288 output segment. */
5289 if (!first_section || first_section->output_section != NULL)
5290 {
5291 map->p_paddr = segment->p_paddr;
5292 map->p_paddr_valid = 1;
5293 }
5294
5295 /* Determine if this segment contains the ELF file header
5296 and if it contains the program headers themselves. */
5297 map->includes_filehdr = (segment->p_offset == 0
5298 && segment->p_filesz >= iehdr->e_ehsize);
5299
5300 map->includes_phdrs = 0;
5301
5302 if (! phdr_included || segment->p_type != PT_LOAD)
5303 {
5304 map->includes_phdrs =
5305 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
5306 && (segment->p_offset + segment->p_filesz
5307 >= ((bfd_vma) iehdr->e_phoff
5308 + iehdr->e_phnum * iehdr->e_phentsize)));
5309
5310 if (segment->p_type == PT_LOAD && map->includes_phdrs)
5311 phdr_included = TRUE;
5312 }
5313
5314 if (section_count == 0)
5315 {
5316 /* Special segments, such as the PT_PHDR segment, may contain
5317 no sections, but ordinary, loadable segments should contain
5318 something. They are allowed by the ELF spec however, so only
5319 a warning is produced. */
5320 if (segment->p_type == PT_LOAD)
5321 (*_bfd_error_handler)
5322 (_("%B: warning: Empty loadable segment detected, is this intentional ?\n"),
5323 ibfd);
5324
5325 map->count = 0;
5326 *pointer_to_map = map;
5327 pointer_to_map = &map->next;
5328
5329 continue;
5330 }
5331
5332 /* Now scan the sections in the input BFD again and attempt
5333 to add their corresponding output sections to the segment map.
5334 The problem here is how to handle an output section which has
5335 been moved (ie had its LMA changed). There are four possibilities:
5336
5337 1. None of the sections have been moved.
5338 In this case we can continue to use the segment LMA from the
5339 input BFD.
5340
5341 2. All of the sections have been moved by the same amount.
5342 In this case we can change the segment's LMA to match the LMA
5343 of the first section.
5344
5345 3. Some of the sections have been moved, others have not.
5346 In this case those sections which have not been moved can be
5347 placed in the current segment which will have to have its size,
5348 and possibly its LMA changed, and a new segment or segments will
5349 have to be created to contain the other sections.
5350
5351 4. The sections have been moved, but not by the same amount.
5352 In this case we can change the segment's LMA to match the LMA
5353 of the first section and we will have to create a new segment
5354 or segments to contain the other sections.
5355
5356 In order to save time, we allocate an array to hold the section
5357 pointers that we are interested in. As these sections get assigned
5358 to a segment, they are removed from this array. */
5359
5360 /* Gcc 2.96 miscompiles this code on mips. Don't do casting here
5361 to work around this long long bug. */
5362 sections = bfd_malloc2 (section_count, sizeof (asection *));
5363 if (sections == NULL)
5364 return FALSE;
5365
5366 /* Step One: Scan for segment vs section LMA conflicts.
5367 Also add the sections to the section array allocated above.
5368 Also add the sections to the current segment. In the common
5369 case, where the sections have not been moved, this means that
5370 we have completely filled the segment, and there is nothing
5371 more to do. */
5372 isec = 0;
5373 matching_lma = 0;
5374 suggested_lma = 0;
5375
5376 for (j = 0, section = ibfd->sections;
5377 section != NULL;
5378 section = section->next)
5379 {
5380 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
5381 {
5382 output_section = section->output_section;
5383
5384 sections[j ++] = section;
5385
5386 /* The Solaris native linker always sets p_paddr to 0.
5387 We try to catch that case here, and set it to the
5388 correct value. Note - some backends require that
5389 p_paddr be left as zero. */
5390 if (segment->p_paddr == 0
5391 && segment->p_vaddr != 0
5392 && (! bed->want_p_paddr_set_to_zero)
5393 && isec == 0
5394 && output_section->lma != 0
5395 && (output_section->vma == (segment->p_vaddr
5396 + (map->includes_filehdr
5397 ? iehdr->e_ehsize
5398 : 0)
5399 + (map->includes_phdrs
5400 ? (iehdr->e_phnum
5401 * iehdr->e_phentsize)
5402 : 0))))
5403 map->p_paddr = segment->p_vaddr;
5404
5405 /* Match up the physical address of the segment with the
5406 LMA address of the output section. */
5407 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
5408 || IS_COREFILE_NOTE (segment, section)
5409 || (bed->want_p_paddr_set_to_zero &&
5410 IS_CONTAINED_BY_VMA (output_section, segment)))
5411 {
5412 if (matching_lma == 0 || output_section->lma < matching_lma)
5413 matching_lma = output_section->lma;
5414
5415 /* We assume that if the section fits within the segment
5416 then it does not overlap any other section within that
5417 segment. */
5418 map->sections[isec ++] = output_section;
5419 }
5420 else if (suggested_lma == 0)
5421 suggested_lma = output_section->lma;
5422 }
5423 }
5424
5425 BFD_ASSERT (j == section_count);
5426
5427 /* Step Two: Adjust the physical address of the current segment,
5428 if necessary. */
5429 if (isec == section_count)
5430 {
5431 /* All of the sections fitted within the segment as currently
5432 specified. This is the default case. Add the segment to
5433 the list of built segments and carry on to process the next
5434 program header in the input BFD. */
5435 map->count = section_count;
5436 *pointer_to_map = map;
5437 pointer_to_map = &map->next;
5438
5439 if (matching_lma != map->p_paddr
5440 && !map->includes_filehdr && !map->includes_phdrs)
5441 /* There is some padding before the first section in the
5442 segment. So, we must account for that in the output
5443 segment's vma. */
5444 map->p_vaddr_offset = matching_lma - map->p_paddr;
5445
5446 free (sections);
5447 continue;
5448 }
5449 else
5450 {
5451 if (matching_lma != 0)
5452 {
5453 /* At least one section fits inside the current segment.
5454 Keep it, but modify its physical address to match the
5455 LMA of the first section that fitted. */
5456 map->p_paddr = matching_lma;
5457 }
5458 else
5459 {
5460 /* None of the sections fitted inside the current segment.
5461 Change the current segment's physical address to match
5462 the LMA of the first section. */
5463 map->p_paddr = suggested_lma;
5464 }
5465
5466 /* Offset the segment physical address from the lma
5467 to allow for space taken up by elf headers. */
5468 if (map->includes_filehdr)
5469 map->p_paddr -= iehdr->e_ehsize;
5470
5471 if (map->includes_phdrs)
5472 {
5473 map->p_paddr -= iehdr->e_phnum * iehdr->e_phentsize;
5474
5475 /* iehdr->e_phnum is just an estimate of the number
5476 of program headers that we will need. Make a note
5477 here of the number we used and the segment we chose
5478 to hold these headers, so that we can adjust the
5479 offset when we know the correct value. */
5480 phdr_adjust_num = iehdr->e_phnum;
5481 phdr_adjust_seg = map;
5482 }
5483 }
5484
5485 /* Step Three: Loop over the sections again, this time assigning
5486 those that fit to the current segment and removing them from the
5487 sections array; but making sure not to leave large gaps. Once all
5488 possible sections have been assigned to the current segment it is
5489 added to the list of built segments and if sections still remain
5490 to be assigned, a new segment is constructed before repeating
5491 the loop. */
5492 isec = 0;
5493 do
5494 {
5495 map->count = 0;
5496 suggested_lma = 0;
5497
5498 /* Fill the current segment with sections that fit. */
5499 for (j = 0; j < section_count; j++)
5500 {
5501 section = sections[j];
5502
5503 if (section == NULL)
5504 continue;
5505
5506 output_section = section->output_section;
5507
5508 BFD_ASSERT (output_section != NULL);
5509
5510 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
5511 || IS_COREFILE_NOTE (segment, section))
5512 {
5513 if (map->count == 0)
5514 {
5515 /* If the first section in a segment does not start at
5516 the beginning of the segment, then something is
5517 wrong. */
5518 if (output_section->lma !=
5519 (map->p_paddr
5520 + (map->includes_filehdr ? iehdr->e_ehsize : 0)
5521 + (map->includes_phdrs
5522 ? iehdr->e_phnum * iehdr->e_phentsize
5523 : 0)))
5524 abort ();
5525 }
5526 else
5527 {
5528 asection * prev_sec;
5529
5530 prev_sec = map->sections[map->count - 1];
5531
5532 /* If the gap between the end of the previous section
5533 and the start of this section is more than
5534 maxpagesize then we need to start a new segment. */
5535 if ((BFD_ALIGN (prev_sec->lma + prev_sec->size,
5536 maxpagesize)
5537 < BFD_ALIGN (output_section->lma, maxpagesize))
5538 || ((prev_sec->lma + prev_sec->size)
5539 > output_section->lma))
5540 {
5541 if (suggested_lma == 0)
5542 suggested_lma = output_section->lma;
5543
5544 continue;
5545 }
5546 }
5547
5548 map->sections[map->count++] = output_section;
5549 ++isec;
5550 sections[j] = NULL;
5551 section->segment_mark = TRUE;
5552 }
5553 else if (suggested_lma == 0)
5554 suggested_lma = output_section->lma;
5555 }
5556
5557 BFD_ASSERT (map->count > 0);
5558
5559 /* Add the current segment to the list of built segments. */
5560 *pointer_to_map = map;
5561 pointer_to_map = &map->next;
5562
5563 if (isec < section_count)
5564 {
5565 /* We still have not allocated all of the sections to
5566 segments. Create a new segment here, initialise it
5567 and carry on looping. */
5568 amt = sizeof (struct elf_segment_map);
5569 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5570 map = bfd_alloc (obfd, amt);
5571 if (map == NULL)
5572 {
5573 free (sections);
5574 return FALSE;
5575 }
5576
5577 /* Initialise the fields of the segment map. Set the physical
5578 physical address to the LMA of the first section that has
5579 not yet been assigned. */
5580 map->next = NULL;
5581 map->p_type = segment->p_type;
5582 map->p_flags = segment->p_flags;
5583 map->p_flags_valid = 1;
5584 map->p_paddr = suggested_lma;
5585 map->p_paddr_valid = 1;
5586 map->includes_filehdr = 0;
5587 map->includes_phdrs = 0;
5588 }
5589 }
5590 while (isec < section_count);
5591
5592 free (sections);
5593 }
5594
5595 /* The Solaris linker creates program headers in which all the
5596 p_paddr fields are zero. When we try to objcopy or strip such a
5597 file, we get confused. Check for this case, and if we find it
5598 reset the p_paddr_valid fields. */
5599 for (map = map_first; map != NULL; map = map->next)
5600 if (map->p_paddr != 0)
5601 break;
5602 if (map == NULL)
5603 for (map = map_first; map != NULL; map = map->next)
5604 map->p_paddr_valid = 0;
5605
5606 elf_tdata (obfd)->segment_map = map_first;
5607
5608 /* If we had to estimate the number of program headers that were
5609 going to be needed, then check our estimate now and adjust
5610 the offset if necessary. */
5611 if (phdr_adjust_seg != NULL)
5612 {
5613 unsigned int count;
5614
5615 for (count = 0, map = map_first; map != NULL; map = map->next)
5616 count++;
5617
5618 if (count > phdr_adjust_num)
5619 phdr_adjust_seg->p_paddr
5620 -= (count - phdr_adjust_num) * iehdr->e_phentsize;
5621 }
5622
5623 #undef SEGMENT_END
5624 #undef SECTION_SIZE
5625 #undef IS_CONTAINED_BY_VMA
5626 #undef IS_CONTAINED_BY_LMA
5627 #undef IS_COREFILE_NOTE
5628 #undef IS_SOLARIS_PT_INTERP
5629 #undef IS_SECTION_IN_INPUT_SEGMENT
5630 #undef INCLUDE_SECTION_IN_SEGMENT
5631 #undef SEGMENT_AFTER_SEGMENT
5632 #undef SEGMENT_OVERLAPS
5633 return TRUE;
5634 }
5635
5636 /* Copy ELF program header information. */
5637
5638 static bfd_boolean
5639 copy_elf_program_header (bfd *ibfd, bfd *obfd)
5640 {
5641 Elf_Internal_Ehdr *iehdr;
5642 struct elf_segment_map *map;
5643 struct elf_segment_map *map_first;
5644 struct elf_segment_map **pointer_to_map;
5645 Elf_Internal_Phdr *segment;
5646 unsigned int i;
5647 unsigned int num_segments;
5648 bfd_boolean phdr_included = FALSE;
5649
5650 iehdr = elf_elfheader (ibfd);
5651
5652 map_first = NULL;
5653 pointer_to_map = &map_first;
5654
5655 num_segments = elf_elfheader (ibfd)->e_phnum;
5656 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5657 i < num_segments;
5658 i++, segment++)
5659 {
5660 asection *section;
5661 unsigned int section_count;
5662 bfd_size_type amt;
5663 Elf_Internal_Shdr *this_hdr;
5664 asection *first_section = NULL;
5665 asection *lowest_section = NULL;
5666
5667 /* FIXME: Do we need to copy PT_NULL segment? */
5668 if (segment->p_type == PT_NULL)
5669 continue;
5670
5671 /* Compute how many sections are in this segment. */
5672 for (section = ibfd->sections, section_count = 0;
5673 section != NULL;
5674 section = section->next)
5675 {
5676 this_hdr = &(elf_section_data(section)->this_hdr);
5677 if (ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr, segment))
5678 {
5679 if (!first_section)
5680 first_section = lowest_section = section;
5681 if (section->lma < lowest_section->lma)
5682 lowest_section = section;
5683 section_count++;
5684 }
5685 }
5686
5687 /* Allocate a segment map big enough to contain
5688 all of the sections we have selected. */
5689 amt = sizeof (struct elf_segment_map);
5690 if (section_count != 0)
5691 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5692 map = bfd_zalloc (obfd, amt);
5693 if (map == NULL)
5694 return FALSE;
5695
5696 /* Initialize the fields of the output segment map with the
5697 input segment. */
5698 map->next = NULL;
5699 map->p_type = segment->p_type;
5700 map->p_flags = segment->p_flags;
5701 map->p_flags_valid = 1;
5702 map->p_paddr = segment->p_paddr;
5703 map->p_paddr_valid = 1;
5704 map->p_align = segment->p_align;
5705 map->p_align_valid = 1;
5706 map->p_vaddr_offset = 0;
5707
5708 if (map->p_type == PT_GNU_RELRO
5709 && segment->p_filesz == segment->p_memsz)
5710 {
5711 /* The PT_GNU_RELRO segment may contain the first a few
5712 bytes in the .got.plt section even if the whole .got.plt
5713 section isn't in the PT_GNU_RELRO segment. We won't
5714 change the size of the PT_GNU_RELRO segment. */
5715 map->p_size = segment->p_filesz;
5716 map->p_size_valid = 1;
5717 }
5718
5719 /* Determine if this segment contains the ELF file header
5720 and if it contains the program headers themselves. */
5721 map->includes_filehdr = (segment->p_offset == 0
5722 && segment->p_filesz >= iehdr->e_ehsize);
5723
5724 map->includes_phdrs = 0;
5725 if (! phdr_included || segment->p_type != PT_LOAD)
5726 {
5727 map->includes_phdrs =
5728 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
5729 && (segment->p_offset + segment->p_filesz
5730 >= ((bfd_vma) iehdr->e_phoff
5731 + iehdr->e_phnum * iehdr->e_phentsize)));
5732
5733 if (segment->p_type == PT_LOAD && map->includes_phdrs)
5734 phdr_included = TRUE;
5735 }
5736
5737 if (!map->includes_phdrs && !map->includes_filehdr)
5738 /* There is some other padding before the first section. */
5739 map->p_vaddr_offset = ((lowest_section ? lowest_section->lma : 0)
5740 - segment->p_paddr);
5741
5742 if (section_count != 0)
5743 {
5744 unsigned int isec = 0;
5745
5746 for (section = first_section;
5747 section != NULL;
5748 section = section->next)
5749 {
5750 this_hdr = &(elf_section_data(section)->this_hdr);
5751 if (ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr, segment))
5752 {
5753 map->sections[isec++] = section->output_section;
5754 if (isec == section_count)
5755 break;
5756 }
5757 }
5758 }
5759
5760 map->count = section_count;
5761 *pointer_to_map = map;
5762 pointer_to_map = &map->next;
5763 }
5764
5765 elf_tdata (obfd)->segment_map = map_first;
5766 return TRUE;
5767 }
5768
5769 /* Copy private BFD data. This copies or rewrites ELF program header
5770 information. */
5771
5772 static bfd_boolean
5773 copy_private_bfd_data (bfd *ibfd, bfd *obfd)
5774 {
5775 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
5776 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
5777 return TRUE;
5778
5779 if (elf_tdata (ibfd)->phdr == NULL)
5780 return TRUE;
5781
5782 if (ibfd->xvec == obfd->xvec)
5783 {
5784 /* Check to see if any sections in the input BFD
5785 covered by ELF program header have changed. */
5786 Elf_Internal_Phdr *segment;
5787 asection *section, *osec;
5788 unsigned int i, num_segments;
5789 Elf_Internal_Shdr *this_hdr;
5790
5791 /* Initialize the segment mark field. */
5792 for (section = obfd->sections; section != NULL;
5793 section = section->next)
5794 section->segment_mark = FALSE;
5795
5796 num_segments = elf_elfheader (ibfd)->e_phnum;
5797 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5798 i < num_segments;
5799 i++, segment++)
5800 {
5801 /* PR binutils/3535. The Solaris linker always sets the p_paddr
5802 and p_memsz fields of special segments (DYNAMIC, INTERP) to 0
5803 which severly confuses things, so always regenerate the segment
5804 map in this case. */
5805 if (segment->p_paddr == 0
5806 && segment->p_memsz == 0
5807 && (segment->p_type == PT_INTERP || segment->p_type == PT_DYNAMIC))
5808 goto rewrite;
5809
5810 for (section = ibfd->sections;
5811 section != NULL; section = section->next)
5812 {
5813 /* We mark the output section so that we know it comes
5814 from the input BFD. */
5815 osec = section->output_section;
5816 if (osec)
5817 osec->segment_mark = TRUE;
5818
5819 /* Check if this section is covered by the segment. */
5820 this_hdr = &(elf_section_data(section)->this_hdr);
5821 if (ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr, segment))
5822 {
5823 /* FIXME: Check if its output section is changed or
5824 removed. What else do we need to check? */
5825 if (osec == NULL
5826 || section->flags != osec->flags
5827 || section->lma != osec->lma
5828 || section->vma != osec->vma
5829 || section->size != osec->size
5830 || section->rawsize != osec->rawsize
5831 || section->alignment_power != osec->alignment_power)
5832 goto rewrite;
5833 }
5834 }
5835 }
5836
5837 /* Check to see if any output section do not come from the
5838 input BFD. */
5839 for (section = obfd->sections; section != NULL;
5840 section = section->next)
5841 {
5842 if (section->segment_mark == FALSE)
5843 goto rewrite;
5844 else
5845 section->segment_mark = FALSE;
5846 }
5847
5848 return copy_elf_program_header (ibfd, obfd);
5849 }
5850
5851 rewrite:
5852 return rewrite_elf_program_header (ibfd, obfd);
5853 }
5854
5855 /* Initialize private output section information from input section. */
5856
5857 bfd_boolean
5858 _bfd_elf_init_private_section_data (bfd *ibfd,
5859 asection *isec,
5860 bfd *obfd,
5861 asection *osec,
5862 struct bfd_link_info *link_info)
5863
5864 {
5865 Elf_Internal_Shdr *ihdr, *ohdr;
5866 bfd_boolean need_group = link_info == NULL || link_info->relocatable;
5867
5868 if (ibfd->xvec->flavour != bfd_target_elf_flavour
5869 || obfd->xvec->flavour != bfd_target_elf_flavour)
5870 return TRUE;
5871
5872 /* Don't copy the output ELF section type from input if the
5873 output BFD section flags have been set to something different.
5874 elf_fake_sections will set ELF section type based on BFD
5875 section flags. */
5876 if (elf_section_type (osec) == SHT_NULL
5877 && (osec->flags == isec->flags || !osec->flags))
5878 elf_section_type (osec) = elf_section_type (isec);
5879
5880 /* FIXME: Is this correct for all OS/PROC specific flags? */
5881 elf_section_flags (osec) |= (elf_section_flags (isec)
5882 & (SHF_MASKOS | SHF_MASKPROC));
5883
5884 /* Set things up for objcopy and relocatable link. The output
5885 SHT_GROUP section will have its elf_next_in_group pointing back
5886 to the input group members. Ignore linker created group section.
5887 See elfNN_ia64_object_p in elfxx-ia64.c. */
5888 if (need_group)
5889 {
5890 if (elf_sec_group (isec) == NULL
5891 || (elf_sec_group (isec)->flags & SEC_LINKER_CREATED) == 0)
5892 {
5893 if (elf_section_flags (isec) & SHF_GROUP)
5894 elf_section_flags (osec) |= SHF_GROUP;
5895 elf_next_in_group (osec) = elf_next_in_group (isec);
5896 elf_group_name (osec) = elf_group_name (isec);
5897 }
5898 }
5899
5900 ihdr = &elf_section_data (isec)->this_hdr;
5901
5902 /* We need to handle elf_linked_to_section for SHF_LINK_ORDER. We
5903 don't use the output section of the linked-to section since it
5904 may be NULL at this point. */
5905 if ((ihdr->sh_flags & SHF_LINK_ORDER) != 0)
5906 {
5907 ohdr = &elf_section_data (osec)->this_hdr;
5908 ohdr->sh_flags |= SHF_LINK_ORDER;
5909 elf_linked_to_section (osec) = elf_linked_to_section (isec);
5910 }
5911
5912 osec->use_rela_p = isec->use_rela_p;
5913
5914 return TRUE;
5915 }
5916
5917 /* Copy private section information. This copies over the entsize
5918 field, and sometimes the info field. */
5919
5920 bfd_boolean
5921 _bfd_elf_copy_private_section_data (bfd *ibfd,
5922 asection *isec,
5923 bfd *obfd,
5924 asection *osec)
5925 {
5926 Elf_Internal_Shdr *ihdr, *ohdr;
5927
5928 if (ibfd->xvec->flavour != bfd_target_elf_flavour
5929 || obfd->xvec->flavour != bfd_target_elf_flavour)
5930 return TRUE;
5931
5932 ihdr = &elf_section_data (isec)->this_hdr;
5933 ohdr = &elf_section_data (osec)->this_hdr;
5934
5935 ohdr->sh_entsize = ihdr->sh_entsize;
5936
5937 if (ihdr->sh_type == SHT_SYMTAB
5938 || ihdr->sh_type == SHT_DYNSYM
5939 || ihdr->sh_type == SHT_GNU_verneed
5940 || ihdr->sh_type == SHT_GNU_verdef)
5941 ohdr->sh_info = ihdr->sh_info;
5942
5943 return _bfd_elf_init_private_section_data (ibfd, isec, obfd, osec,
5944 NULL);
5945 }
5946
5947 /* Copy private header information. */
5948
5949 bfd_boolean
5950 _bfd_elf_copy_private_header_data (bfd *ibfd, bfd *obfd)
5951 {
5952 asection *isec;
5953
5954 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
5955 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
5956 return TRUE;
5957
5958 /* Copy over private BFD data if it has not already been copied.
5959 This must be done here, rather than in the copy_private_bfd_data
5960 entry point, because the latter is called after the section
5961 contents have been set, which means that the program headers have
5962 already been worked out. */
5963 if (elf_tdata (obfd)->segment_map == NULL && elf_tdata (ibfd)->phdr != NULL)
5964 {
5965 if (! copy_private_bfd_data (ibfd, obfd))
5966 return FALSE;
5967 }
5968
5969 /* _bfd_elf_copy_private_section_data copied over the SHF_GROUP flag
5970 but this might be wrong if we deleted the group section. */
5971 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
5972 if (elf_section_type (isec) == SHT_GROUP
5973 && isec->output_section == NULL)
5974 {
5975 asection *first = elf_next_in_group (isec);
5976 asection *s = first;
5977 while (s != NULL)
5978 {
5979 if (s->output_section != NULL)
5980 {
5981 elf_section_flags (s->output_section) &= ~SHF_GROUP;
5982 elf_group_name (s->output_section) = NULL;
5983 }
5984 s = elf_next_in_group (s);
5985 if (s == first)
5986 break;
5987 }
5988 }
5989
5990 return TRUE;
5991 }
5992
5993 /* Copy private symbol information. If this symbol is in a section
5994 which we did not map into a BFD section, try to map the section
5995 index correctly. We use special macro definitions for the mapped
5996 section indices; these definitions are interpreted by the
5997 swap_out_syms function. */
5998
5999 #define MAP_ONESYMTAB (SHN_HIOS + 1)
6000 #define MAP_DYNSYMTAB (SHN_HIOS + 2)
6001 #define MAP_STRTAB (SHN_HIOS + 3)
6002 #define MAP_SHSTRTAB (SHN_HIOS + 4)
6003 #define MAP_SYM_SHNDX (SHN_HIOS + 5)
6004
6005 bfd_boolean
6006 _bfd_elf_copy_private_symbol_data (bfd *ibfd,
6007 asymbol *isymarg,
6008 bfd *obfd,
6009 asymbol *osymarg)
6010 {
6011 elf_symbol_type *isym, *osym;
6012
6013 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
6014 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
6015 return TRUE;
6016
6017 isym = elf_symbol_from (ibfd, isymarg);
6018 osym = elf_symbol_from (obfd, osymarg);
6019
6020 if (isym != NULL
6021 && osym != NULL
6022 && bfd_is_abs_section (isym->symbol.section))
6023 {
6024 unsigned int shndx;
6025
6026 shndx = isym->internal_elf_sym.st_shndx;
6027 if (shndx == elf_onesymtab (ibfd))
6028 shndx = MAP_ONESYMTAB;
6029 else if (shndx == elf_dynsymtab (ibfd))
6030 shndx = MAP_DYNSYMTAB;
6031 else if (shndx == elf_tdata (ibfd)->strtab_section)
6032 shndx = MAP_STRTAB;
6033 else if (shndx == elf_tdata (ibfd)->shstrtab_section)
6034 shndx = MAP_SHSTRTAB;
6035 else if (shndx == elf_tdata (ibfd)->symtab_shndx_section)
6036 shndx = MAP_SYM_SHNDX;
6037 osym->internal_elf_sym.st_shndx = shndx;
6038 }
6039
6040 return TRUE;
6041 }
6042
6043 /* Swap out the symbols. */
6044
6045 static bfd_boolean
6046 swap_out_syms (bfd *abfd,
6047 struct bfd_strtab_hash **sttp,
6048 int relocatable_p)
6049 {
6050 const struct elf_backend_data *bed;
6051 int symcount;
6052 asymbol **syms;
6053 struct bfd_strtab_hash *stt;
6054 Elf_Internal_Shdr *symtab_hdr;
6055 Elf_Internal_Shdr *symtab_shndx_hdr;
6056 Elf_Internal_Shdr *symstrtab_hdr;
6057 bfd_byte *outbound_syms;
6058 bfd_byte *outbound_shndx;
6059 int idx;
6060 bfd_size_type amt;
6061 bfd_boolean name_local_sections;
6062
6063 if (!elf_map_symbols (abfd))
6064 return FALSE;
6065
6066 /* Dump out the symtabs. */
6067 stt = _bfd_elf_stringtab_init ();
6068 if (stt == NULL)
6069 return FALSE;
6070
6071 bed = get_elf_backend_data (abfd);
6072 symcount = bfd_get_symcount (abfd);
6073 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
6074 symtab_hdr->sh_type = SHT_SYMTAB;
6075 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
6076 symtab_hdr->sh_size = symtab_hdr->sh_entsize * (symcount + 1);
6077 symtab_hdr->sh_info = elf_num_locals (abfd) + 1;
6078 symtab_hdr->sh_addralign = 1 << bed->s->log_file_align;
6079
6080 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
6081 symstrtab_hdr->sh_type = SHT_STRTAB;
6082
6083 outbound_syms = bfd_alloc2 (abfd, 1 + symcount, bed->s->sizeof_sym);
6084 if (outbound_syms == NULL)
6085 {
6086 _bfd_stringtab_free (stt);
6087 return FALSE;
6088 }
6089 symtab_hdr->contents = outbound_syms;
6090
6091 outbound_shndx = NULL;
6092 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
6093 if (symtab_shndx_hdr->sh_name != 0)
6094 {
6095 amt = (bfd_size_type) (1 + symcount) * sizeof (Elf_External_Sym_Shndx);
6096 outbound_shndx = bfd_zalloc2 (abfd, 1 + symcount,
6097 sizeof (Elf_External_Sym_Shndx));
6098 if (outbound_shndx == NULL)
6099 {
6100 _bfd_stringtab_free (stt);
6101 return FALSE;
6102 }
6103
6104 symtab_shndx_hdr->contents = outbound_shndx;
6105 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
6106 symtab_shndx_hdr->sh_size = amt;
6107 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
6108 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
6109 }
6110
6111 /* Now generate the data (for "contents"). */
6112 {
6113 /* Fill in zeroth symbol and swap it out. */
6114 Elf_Internal_Sym sym;
6115 sym.st_name = 0;
6116 sym.st_value = 0;
6117 sym.st_size = 0;
6118 sym.st_info = 0;
6119 sym.st_other = 0;
6120 sym.st_shndx = SHN_UNDEF;
6121 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
6122 outbound_syms += bed->s->sizeof_sym;
6123 if (outbound_shndx != NULL)
6124 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
6125 }
6126
6127 name_local_sections
6128 = (bed->elf_backend_name_local_section_symbols
6129 && bed->elf_backend_name_local_section_symbols (abfd));
6130
6131 syms = bfd_get_outsymbols (abfd);
6132 for (idx = 0; idx < symcount; idx++)
6133 {
6134 Elf_Internal_Sym sym;
6135 bfd_vma value = syms[idx]->value;
6136 elf_symbol_type *type_ptr;
6137 flagword flags = syms[idx]->flags;
6138 int type;
6139
6140 if (!name_local_sections
6141 && (flags & (BSF_SECTION_SYM | BSF_GLOBAL)) == BSF_SECTION_SYM)
6142 {
6143 /* Local section symbols have no name. */
6144 sym.st_name = 0;
6145 }
6146 else
6147 {
6148 sym.st_name = (unsigned long) _bfd_stringtab_add (stt,
6149 syms[idx]->name,
6150 TRUE, FALSE);
6151 if (sym.st_name == (unsigned long) -1)
6152 {
6153 _bfd_stringtab_free (stt);
6154 return FALSE;
6155 }
6156 }
6157
6158 type_ptr = elf_symbol_from (abfd, syms[idx]);
6159
6160 if ((flags & BSF_SECTION_SYM) == 0
6161 && bfd_is_com_section (syms[idx]->section))
6162 {
6163 /* ELF common symbols put the alignment into the `value' field,
6164 and the size into the `size' field. This is backwards from
6165 how BFD handles it, so reverse it here. */
6166 sym.st_size = value;
6167 if (type_ptr == NULL
6168 || type_ptr->internal_elf_sym.st_value == 0)
6169 sym.st_value = value >= 16 ? 16 : (1 << bfd_log2 (value));
6170 else
6171 sym.st_value = type_ptr->internal_elf_sym.st_value;
6172 sym.st_shndx = _bfd_elf_section_from_bfd_section
6173 (abfd, syms[idx]->section);
6174 }
6175 else
6176 {
6177 asection *sec = syms[idx]->section;
6178 int shndx;
6179
6180 if (sec->output_section)
6181 {
6182 value += sec->output_offset;
6183 sec = sec->output_section;
6184 }
6185
6186 /* Don't add in the section vma for relocatable output. */
6187 if (! relocatable_p)
6188 value += sec->vma;
6189 sym.st_value = value;
6190 sym.st_size = type_ptr ? type_ptr->internal_elf_sym.st_size : 0;
6191
6192 if (bfd_is_abs_section (sec)
6193 && type_ptr != NULL
6194 && type_ptr->internal_elf_sym.st_shndx != 0)
6195 {
6196 /* This symbol is in a real ELF section which we did
6197 not create as a BFD section. Undo the mapping done
6198 by copy_private_symbol_data. */
6199 shndx = type_ptr->internal_elf_sym.st_shndx;
6200 switch (shndx)
6201 {
6202 case MAP_ONESYMTAB:
6203 shndx = elf_onesymtab (abfd);
6204 break;
6205 case MAP_DYNSYMTAB:
6206 shndx = elf_dynsymtab (abfd);
6207 break;
6208 case MAP_STRTAB:
6209 shndx = elf_tdata (abfd)->strtab_section;
6210 break;
6211 case MAP_SHSTRTAB:
6212 shndx = elf_tdata (abfd)->shstrtab_section;
6213 break;
6214 case MAP_SYM_SHNDX:
6215 shndx = elf_tdata (abfd)->symtab_shndx_section;
6216 break;
6217 default:
6218 break;
6219 }
6220 }
6221 else
6222 {
6223 shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
6224
6225 if (shndx == -1)
6226 {
6227 asection *sec2;
6228
6229 /* Writing this would be a hell of a lot easier if
6230 we had some decent documentation on bfd, and
6231 knew what to expect of the library, and what to
6232 demand of applications. For example, it
6233 appears that `objcopy' might not set the
6234 section of a symbol to be a section that is
6235 actually in the output file. */
6236 sec2 = bfd_get_section_by_name (abfd, sec->name);
6237 if (sec2 == NULL)
6238 {
6239 _bfd_error_handler (_("\
6240 Unable to find equivalent output section for symbol '%s' from section '%s'"),
6241 syms[idx]->name ? syms[idx]->name : "<Local sym>",
6242 sec->name);
6243 bfd_set_error (bfd_error_invalid_operation);
6244 _bfd_stringtab_free (stt);
6245 return FALSE;
6246 }
6247
6248 shndx = _bfd_elf_section_from_bfd_section (abfd, sec2);
6249 BFD_ASSERT (shndx != -1);
6250 }
6251 }
6252
6253 sym.st_shndx = shndx;
6254 }
6255
6256 if ((flags & BSF_THREAD_LOCAL) != 0)
6257 type = STT_TLS;
6258 else if ((flags & BSF_FUNCTION) != 0)
6259 type = STT_FUNC;
6260 else if ((flags & BSF_OBJECT) != 0)
6261 type = STT_OBJECT;
6262 else if ((flags & BSF_RELC) != 0)
6263 type = STT_RELC;
6264 else if ((flags & BSF_SRELC) != 0)
6265 type = STT_SRELC;
6266 else
6267 type = STT_NOTYPE;
6268
6269 if (syms[idx]->section->flags & SEC_THREAD_LOCAL)
6270 type = STT_TLS;
6271
6272 /* Processor-specific types. */
6273 if (type_ptr != NULL
6274 && bed->elf_backend_get_symbol_type)
6275 type = ((*bed->elf_backend_get_symbol_type)
6276 (&type_ptr->internal_elf_sym, type));
6277
6278 if (flags & BSF_SECTION_SYM)
6279 {
6280 if (flags & BSF_GLOBAL)
6281 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6282 else
6283 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
6284 }
6285 else if (bfd_is_com_section (syms[idx]->section))
6286 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
6287 else if (bfd_is_und_section (syms[idx]->section))
6288 sym.st_info = ELF_ST_INFO (((flags & BSF_WEAK)
6289 ? STB_WEAK
6290 : STB_GLOBAL),
6291 type);
6292 else if (flags & BSF_FILE)
6293 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
6294 else
6295 {
6296 int bind = STB_LOCAL;
6297
6298 if (flags & BSF_LOCAL)
6299 bind = STB_LOCAL;
6300 else if (flags & BSF_WEAK)
6301 bind = STB_WEAK;
6302 else if (flags & BSF_GLOBAL)
6303 bind = STB_GLOBAL;
6304
6305 sym.st_info = ELF_ST_INFO (bind, type);
6306 }
6307
6308 if (type_ptr != NULL)
6309 sym.st_other = type_ptr->internal_elf_sym.st_other;
6310 else
6311 sym.st_other = 0;
6312
6313 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
6314 outbound_syms += bed->s->sizeof_sym;
6315 if (outbound_shndx != NULL)
6316 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
6317 }
6318
6319 *sttp = stt;
6320 symstrtab_hdr->sh_size = _bfd_stringtab_size (stt);
6321 symstrtab_hdr->sh_type = SHT_STRTAB;
6322
6323 symstrtab_hdr->sh_flags = 0;
6324 symstrtab_hdr->sh_addr = 0;
6325 symstrtab_hdr->sh_entsize = 0;
6326 symstrtab_hdr->sh_link = 0;
6327 symstrtab_hdr->sh_info = 0;
6328 symstrtab_hdr->sh_addralign = 1;
6329
6330 return TRUE;
6331 }
6332
6333 /* Return the number of bytes required to hold the symtab vector.
6334
6335 Note that we base it on the count plus 1, since we will null terminate
6336 the vector allocated based on this size. However, the ELF symbol table
6337 always has a dummy entry as symbol #0, so it ends up even. */
6338
6339 long
6340 _bfd_elf_get_symtab_upper_bound (bfd *abfd)
6341 {
6342 long symcount;
6343 long symtab_size;
6344 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->symtab_hdr;
6345
6346 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
6347 symtab_size = (symcount + 1) * (sizeof (asymbol *));
6348 if (symcount > 0)
6349 symtab_size -= sizeof (asymbol *);
6350
6351 return symtab_size;
6352 }
6353
6354 long
6355 _bfd_elf_get_dynamic_symtab_upper_bound (bfd *abfd)
6356 {
6357 long symcount;
6358 long symtab_size;
6359 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->dynsymtab_hdr;
6360
6361 if (elf_dynsymtab (abfd) == 0)
6362 {
6363 bfd_set_error (bfd_error_invalid_operation);
6364 return -1;
6365 }
6366
6367 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
6368 symtab_size = (symcount + 1) * (sizeof (asymbol *));
6369 if (symcount > 0)
6370 symtab_size -= sizeof (asymbol *);
6371
6372 return symtab_size;
6373 }
6374
6375 long
6376 _bfd_elf_get_reloc_upper_bound (bfd *abfd ATTRIBUTE_UNUSED,
6377 sec_ptr asect)
6378 {
6379 return (asect->reloc_count + 1) * sizeof (arelent *);
6380 }
6381
6382 /* Canonicalize the relocs. */
6383
6384 long
6385 _bfd_elf_canonicalize_reloc (bfd *abfd,
6386 sec_ptr section,
6387 arelent **relptr,
6388 asymbol **symbols)
6389 {
6390 arelent *tblptr;
6391 unsigned int i;
6392 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6393
6394 if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE))
6395 return -1;
6396
6397 tblptr = section->relocation;
6398 for (i = 0; i < section->reloc_count; i++)
6399 *relptr++ = tblptr++;
6400
6401 *relptr = NULL;
6402
6403 return section->reloc_count;
6404 }
6405
6406 long
6407 _bfd_elf_canonicalize_symtab (bfd *abfd, asymbol **allocation)
6408 {
6409 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6410 long symcount = bed->s->slurp_symbol_table (abfd, allocation, FALSE);
6411
6412 if (symcount >= 0)
6413 bfd_get_symcount (abfd) = symcount;
6414 return symcount;
6415 }
6416
6417 long
6418 _bfd_elf_canonicalize_dynamic_symtab (bfd *abfd,
6419 asymbol **allocation)
6420 {
6421 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6422 long symcount = bed->s->slurp_symbol_table (abfd, allocation, TRUE);
6423
6424 if (symcount >= 0)
6425 bfd_get_dynamic_symcount (abfd) = symcount;
6426 return symcount;
6427 }
6428
6429 /* Return the size required for the dynamic reloc entries. Any loadable
6430 section that was actually installed in the BFD, and has type SHT_REL
6431 or SHT_RELA, and uses the dynamic symbol table, is considered to be a
6432 dynamic reloc section. */
6433
6434 long
6435 _bfd_elf_get_dynamic_reloc_upper_bound (bfd *abfd)
6436 {
6437 long ret;
6438 asection *s;
6439
6440 if (elf_dynsymtab (abfd) == 0)
6441 {
6442 bfd_set_error (bfd_error_invalid_operation);
6443 return -1;
6444 }
6445
6446 ret = sizeof (arelent *);
6447 for (s = abfd->sections; s != NULL; s = s->next)
6448 if ((s->flags & SEC_LOAD) != 0
6449 && elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
6450 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
6451 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
6452 ret += ((s->size / elf_section_data (s)->this_hdr.sh_entsize)
6453 * sizeof (arelent *));
6454
6455 return ret;
6456 }
6457
6458 /* Canonicalize the dynamic relocation entries. Note that we return the
6459 dynamic relocations as a single block, although they are actually
6460 associated with particular sections; the interface, which was
6461 designed for SunOS style shared libraries, expects that there is only
6462 one set of dynamic relocs. Any loadable section that was actually
6463 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses the
6464 dynamic symbol table, is considered to be a dynamic reloc section. */
6465
6466 long
6467 _bfd_elf_canonicalize_dynamic_reloc (bfd *abfd,
6468 arelent **storage,
6469 asymbol **syms)
6470 {
6471 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
6472 asection *s;
6473 long ret;
6474
6475 if (elf_dynsymtab (abfd) == 0)
6476 {
6477 bfd_set_error (bfd_error_invalid_operation);
6478 return -1;
6479 }
6480
6481 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
6482 ret = 0;
6483 for (s = abfd->sections; s != NULL; s = s->next)
6484 {
6485 if ((s->flags & SEC_LOAD) != 0
6486 && elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
6487 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
6488 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
6489 {
6490 arelent *p;
6491 long count, i;
6492
6493 if (! (*slurp_relocs) (abfd, s, syms, TRUE))
6494 return -1;
6495 count = s->size / elf_section_data (s)->this_hdr.sh_entsize;
6496 p = s->relocation;
6497 for (i = 0; i < count; i++)
6498 *storage++ = p++;
6499 ret += count;
6500 }
6501 }
6502
6503 *storage = NULL;
6504
6505 return ret;
6506 }
6507 \f
6508 /* Read in the version information. */
6509
6510 bfd_boolean
6511 _bfd_elf_slurp_version_tables (bfd *abfd, bfd_boolean default_imported_symver)
6512 {
6513 bfd_byte *contents = NULL;
6514 unsigned int freeidx = 0;
6515
6516 if (elf_dynverref (abfd) != 0)
6517 {
6518 Elf_Internal_Shdr *hdr;
6519 Elf_External_Verneed *everneed;
6520 Elf_Internal_Verneed *iverneed;
6521 unsigned int i;
6522 bfd_byte *contents_end;
6523
6524 hdr = &elf_tdata (abfd)->dynverref_hdr;
6525
6526 elf_tdata (abfd)->verref = bfd_zalloc2 (abfd, hdr->sh_info,
6527 sizeof (Elf_Internal_Verneed));
6528 if (elf_tdata (abfd)->verref == NULL)
6529 goto error_return;
6530
6531 elf_tdata (abfd)->cverrefs = hdr->sh_info;
6532
6533 contents = bfd_malloc (hdr->sh_size);
6534 if (contents == NULL)
6535 {
6536 error_return_verref:
6537 elf_tdata (abfd)->verref = NULL;
6538 elf_tdata (abfd)->cverrefs = 0;
6539 goto error_return;
6540 }
6541 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
6542 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
6543 goto error_return_verref;
6544
6545 if (hdr->sh_info && hdr->sh_size < sizeof (Elf_External_Verneed))
6546 goto error_return_verref;
6547
6548 BFD_ASSERT (sizeof (Elf_External_Verneed)
6549 == sizeof (Elf_External_Vernaux));
6550 contents_end = contents + hdr->sh_size - sizeof (Elf_External_Verneed);
6551 everneed = (Elf_External_Verneed *) contents;
6552 iverneed = elf_tdata (abfd)->verref;
6553 for (i = 0; i < hdr->sh_info; i++, iverneed++)
6554 {
6555 Elf_External_Vernaux *evernaux;
6556 Elf_Internal_Vernaux *ivernaux;
6557 unsigned int j;
6558
6559 _bfd_elf_swap_verneed_in (abfd, everneed, iverneed);
6560
6561 iverneed->vn_bfd = abfd;
6562
6563 iverneed->vn_filename =
6564 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
6565 iverneed->vn_file);
6566 if (iverneed->vn_filename == NULL)
6567 goto error_return_verref;
6568
6569 if (iverneed->vn_cnt == 0)
6570 iverneed->vn_auxptr = NULL;
6571 else
6572 {
6573 iverneed->vn_auxptr = bfd_alloc2 (abfd, iverneed->vn_cnt,
6574 sizeof (Elf_Internal_Vernaux));
6575 if (iverneed->vn_auxptr == NULL)
6576 goto error_return_verref;
6577 }
6578
6579 if (iverneed->vn_aux
6580 > (size_t) (contents_end - (bfd_byte *) everneed))
6581 goto error_return_verref;
6582
6583 evernaux = ((Elf_External_Vernaux *)
6584 ((bfd_byte *) everneed + iverneed->vn_aux));
6585 ivernaux = iverneed->vn_auxptr;
6586 for (j = 0; j < iverneed->vn_cnt; j++, ivernaux++)
6587 {
6588 _bfd_elf_swap_vernaux_in (abfd, evernaux, ivernaux);
6589
6590 ivernaux->vna_nodename =
6591 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
6592 ivernaux->vna_name);
6593 if (ivernaux->vna_nodename == NULL)
6594 goto error_return_verref;
6595
6596 if (j + 1 < iverneed->vn_cnt)
6597 ivernaux->vna_nextptr = ivernaux + 1;
6598 else
6599 ivernaux->vna_nextptr = NULL;
6600
6601 if (ivernaux->vna_next
6602 > (size_t) (contents_end - (bfd_byte *) evernaux))
6603 goto error_return_verref;
6604
6605 evernaux = ((Elf_External_Vernaux *)
6606 ((bfd_byte *) evernaux + ivernaux->vna_next));
6607
6608 if (ivernaux->vna_other > freeidx)
6609 freeidx = ivernaux->vna_other;
6610 }
6611
6612 if (i + 1 < hdr->sh_info)
6613 iverneed->vn_nextref = iverneed + 1;
6614 else
6615 iverneed->vn_nextref = NULL;
6616
6617 if (iverneed->vn_next
6618 > (size_t) (contents_end - (bfd_byte *) everneed))
6619 goto error_return_verref;
6620
6621 everneed = ((Elf_External_Verneed *)
6622 ((bfd_byte *) everneed + iverneed->vn_next));
6623 }
6624
6625 free (contents);
6626 contents = NULL;
6627 }
6628
6629 if (elf_dynverdef (abfd) != 0)
6630 {
6631 Elf_Internal_Shdr *hdr;
6632 Elf_External_Verdef *everdef;
6633 Elf_Internal_Verdef *iverdef;
6634 Elf_Internal_Verdef *iverdefarr;
6635 Elf_Internal_Verdef iverdefmem;
6636 unsigned int i;
6637 unsigned int maxidx;
6638 bfd_byte *contents_end_def, *contents_end_aux;
6639
6640 hdr = &elf_tdata (abfd)->dynverdef_hdr;
6641
6642 contents = bfd_malloc (hdr->sh_size);
6643 if (contents == NULL)
6644 goto error_return;
6645 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
6646 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
6647 goto error_return;
6648
6649 if (hdr->sh_info && hdr->sh_size < sizeof (Elf_External_Verdef))
6650 goto error_return;
6651
6652 BFD_ASSERT (sizeof (Elf_External_Verdef)
6653 >= sizeof (Elf_External_Verdaux));
6654 contents_end_def = contents + hdr->sh_size
6655 - sizeof (Elf_External_Verdef);
6656 contents_end_aux = contents + hdr->sh_size
6657 - sizeof (Elf_External_Verdaux);
6658
6659 /* We know the number of entries in the section but not the maximum
6660 index. Therefore we have to run through all entries and find
6661 the maximum. */
6662 everdef = (Elf_External_Verdef *) contents;
6663 maxidx = 0;
6664 for (i = 0; i < hdr->sh_info; ++i)
6665 {
6666 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
6667
6668 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) > maxidx)
6669 maxidx = iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION);
6670
6671 if (iverdefmem.vd_next
6672 > (size_t) (contents_end_def - (bfd_byte *) everdef))
6673 goto error_return;
6674
6675 everdef = ((Elf_External_Verdef *)
6676 ((bfd_byte *) everdef + iverdefmem.vd_next));
6677 }
6678
6679 if (default_imported_symver)
6680 {
6681 if (freeidx > maxidx)
6682 maxidx = ++freeidx;
6683 else
6684 freeidx = ++maxidx;
6685 }
6686 elf_tdata (abfd)->verdef = bfd_zalloc2 (abfd, maxidx,
6687 sizeof (Elf_Internal_Verdef));
6688 if (elf_tdata (abfd)->verdef == NULL)
6689 goto error_return;
6690
6691 elf_tdata (abfd)->cverdefs = maxidx;
6692
6693 everdef = (Elf_External_Verdef *) contents;
6694 iverdefarr = elf_tdata (abfd)->verdef;
6695 for (i = 0; i < hdr->sh_info; i++)
6696 {
6697 Elf_External_Verdaux *everdaux;
6698 Elf_Internal_Verdaux *iverdaux;
6699 unsigned int j;
6700
6701 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
6702
6703 if ((iverdefmem.vd_ndx & VERSYM_VERSION) == 0)
6704 {
6705 error_return_verdef:
6706 elf_tdata (abfd)->verdef = NULL;
6707 elf_tdata (abfd)->cverdefs = 0;
6708 goto error_return;
6709 }
6710
6711 iverdef = &iverdefarr[(iverdefmem.vd_ndx & VERSYM_VERSION) - 1];
6712 memcpy (iverdef, &iverdefmem, sizeof (Elf_Internal_Verdef));
6713
6714 iverdef->vd_bfd = abfd;
6715
6716 if (iverdef->vd_cnt == 0)
6717 iverdef->vd_auxptr = NULL;
6718 else
6719 {
6720 iverdef->vd_auxptr = bfd_alloc2 (abfd, iverdef->vd_cnt,
6721 sizeof (Elf_Internal_Verdaux));
6722 if (iverdef->vd_auxptr == NULL)
6723 goto error_return_verdef;
6724 }
6725
6726 if (iverdef->vd_aux
6727 > (size_t) (contents_end_aux - (bfd_byte *) everdef))
6728 goto error_return_verdef;
6729
6730 everdaux = ((Elf_External_Verdaux *)
6731 ((bfd_byte *) everdef + iverdef->vd_aux));
6732 iverdaux = iverdef->vd_auxptr;
6733 for (j = 0; j < iverdef->vd_cnt; j++, iverdaux++)
6734 {
6735 _bfd_elf_swap_verdaux_in (abfd, everdaux, iverdaux);
6736
6737 iverdaux->vda_nodename =
6738 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
6739 iverdaux->vda_name);
6740 if (iverdaux->vda_nodename == NULL)
6741 goto error_return_verdef;
6742
6743 if (j + 1 < iverdef->vd_cnt)
6744 iverdaux->vda_nextptr = iverdaux + 1;
6745 else
6746 iverdaux->vda_nextptr = NULL;
6747
6748 if (iverdaux->vda_next
6749 > (size_t) (contents_end_aux - (bfd_byte *) everdaux))
6750 goto error_return_verdef;
6751
6752 everdaux = ((Elf_External_Verdaux *)
6753 ((bfd_byte *) everdaux + iverdaux->vda_next));
6754 }
6755
6756 if (iverdef->vd_cnt)
6757 iverdef->vd_nodename = iverdef->vd_auxptr->vda_nodename;
6758
6759 if ((size_t) (iverdef - iverdefarr) + 1 < maxidx)
6760 iverdef->vd_nextdef = iverdef + 1;
6761 else
6762 iverdef->vd_nextdef = NULL;
6763
6764 everdef = ((Elf_External_Verdef *)
6765 ((bfd_byte *) everdef + iverdef->vd_next));
6766 }
6767
6768 free (contents);
6769 contents = NULL;
6770 }
6771 else if (default_imported_symver)
6772 {
6773 if (freeidx < 3)
6774 freeidx = 3;
6775 else
6776 freeidx++;
6777
6778 elf_tdata (abfd)->verdef = bfd_zalloc2 (abfd, freeidx,
6779 sizeof (Elf_Internal_Verdef));
6780 if (elf_tdata (abfd)->verdef == NULL)
6781 goto error_return;
6782
6783 elf_tdata (abfd)->cverdefs = freeidx;
6784 }
6785
6786 /* Create a default version based on the soname. */
6787 if (default_imported_symver)
6788 {
6789 Elf_Internal_Verdef *iverdef;
6790 Elf_Internal_Verdaux *iverdaux;
6791
6792 iverdef = &elf_tdata (abfd)->verdef[freeidx - 1];;
6793
6794 iverdef->vd_version = VER_DEF_CURRENT;
6795 iverdef->vd_flags = 0;
6796 iverdef->vd_ndx = freeidx;
6797 iverdef->vd_cnt = 1;
6798
6799 iverdef->vd_bfd = abfd;
6800
6801 iverdef->vd_nodename = bfd_elf_get_dt_soname (abfd);
6802 if (iverdef->vd_nodename == NULL)
6803 goto error_return_verdef;
6804 iverdef->vd_nextdef = NULL;
6805 iverdef->vd_auxptr = bfd_alloc (abfd, sizeof (Elf_Internal_Verdaux));
6806 if (iverdef->vd_auxptr == NULL)
6807 goto error_return_verdef;
6808
6809 iverdaux = iverdef->vd_auxptr;
6810 iverdaux->vda_nodename = iverdef->vd_nodename;
6811 iverdaux->vda_nextptr = NULL;
6812 }
6813
6814 return TRUE;
6815
6816 error_return:
6817 if (contents != NULL)
6818 free (contents);
6819 return FALSE;
6820 }
6821 \f
6822 asymbol *
6823 _bfd_elf_make_empty_symbol (bfd *abfd)
6824 {
6825 elf_symbol_type *newsym;
6826 bfd_size_type amt = sizeof (elf_symbol_type);
6827
6828 newsym = bfd_zalloc (abfd, amt);
6829 if (!newsym)
6830 return NULL;
6831 else
6832 {
6833 newsym->symbol.the_bfd = abfd;
6834 return &newsym->symbol;
6835 }
6836 }
6837
6838 void
6839 _bfd_elf_get_symbol_info (bfd *abfd ATTRIBUTE_UNUSED,
6840 asymbol *symbol,
6841 symbol_info *ret)
6842 {
6843 bfd_symbol_info (symbol, ret);
6844 }
6845
6846 /* Return whether a symbol name implies a local symbol. Most targets
6847 use this function for the is_local_label_name entry point, but some
6848 override it. */
6849
6850 bfd_boolean
6851 _bfd_elf_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED,
6852 const char *name)
6853 {
6854 /* Normal local symbols start with ``.L''. */
6855 if (name[0] == '.' && name[1] == 'L')
6856 return TRUE;
6857
6858 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
6859 DWARF debugging symbols starting with ``..''. */
6860 if (name[0] == '.' && name[1] == '.')
6861 return TRUE;
6862
6863 /* gcc will sometimes generate symbols beginning with ``_.L_'' when
6864 emitting DWARF debugging output. I suspect this is actually a
6865 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
6866 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
6867 underscore to be emitted on some ELF targets). For ease of use,
6868 we treat such symbols as local. */
6869 if (name[0] == '_' && name[1] == '.' && name[2] == 'L' && name[3] == '_')
6870 return TRUE;
6871
6872 return FALSE;
6873 }
6874
6875 alent *
6876 _bfd_elf_get_lineno (bfd *abfd ATTRIBUTE_UNUSED,
6877 asymbol *symbol ATTRIBUTE_UNUSED)
6878 {
6879 abort ();
6880 return NULL;
6881 }
6882
6883 bfd_boolean
6884 _bfd_elf_set_arch_mach (bfd *abfd,
6885 enum bfd_architecture arch,
6886 unsigned long machine)
6887 {
6888 /* If this isn't the right architecture for this backend, and this
6889 isn't the generic backend, fail. */
6890 if (arch != get_elf_backend_data (abfd)->arch
6891 && arch != bfd_arch_unknown
6892 && get_elf_backend_data (abfd)->arch != bfd_arch_unknown)
6893 return FALSE;
6894
6895 return bfd_default_set_arch_mach (abfd, arch, machine);
6896 }
6897
6898 /* Find the function to a particular section and offset,
6899 for error reporting. */
6900
6901 static bfd_boolean
6902 elf_find_function (bfd *abfd ATTRIBUTE_UNUSED,
6903 asection *section,
6904 asymbol **symbols,
6905 bfd_vma offset,
6906 const char **filename_ptr,
6907 const char **functionname_ptr)
6908 {
6909 const char *filename;
6910 asymbol *func, *file;
6911 bfd_vma low_func;
6912 asymbol **p;
6913 /* ??? Given multiple file symbols, it is impossible to reliably
6914 choose the right file name for global symbols. File symbols are
6915 local symbols, and thus all file symbols must sort before any
6916 global symbols. The ELF spec may be interpreted to say that a
6917 file symbol must sort before other local symbols, but currently
6918 ld -r doesn't do this. So, for ld -r output, it is possible to
6919 make a better choice of file name for local symbols by ignoring
6920 file symbols appearing after a given local symbol. */
6921 enum { nothing_seen, symbol_seen, file_after_symbol_seen } state;
6922
6923 filename = NULL;
6924 func = NULL;
6925 file = NULL;
6926 low_func = 0;
6927 state = nothing_seen;
6928
6929 for (p = symbols; *p != NULL; p++)
6930 {
6931 elf_symbol_type *q;
6932
6933 q = (elf_symbol_type *) *p;
6934
6935 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
6936 {
6937 default:
6938 break;
6939 case STT_FILE:
6940 file = &q->symbol;
6941 if (state == symbol_seen)
6942 state = file_after_symbol_seen;
6943 continue;
6944 case STT_NOTYPE:
6945 case STT_FUNC:
6946 if (bfd_get_section (&q->symbol) == section
6947 && q->symbol.value >= low_func
6948 && q->symbol.value <= offset)
6949 {
6950 func = (asymbol *) q;
6951 low_func = q->symbol.value;
6952 filename = NULL;
6953 if (file != NULL
6954 && (ELF_ST_BIND (q->internal_elf_sym.st_info) == STB_LOCAL
6955 || state != file_after_symbol_seen))
6956 filename = bfd_asymbol_name (file);
6957 }
6958 break;
6959 }
6960 if (state == nothing_seen)
6961 state = symbol_seen;
6962 }
6963
6964 if (func == NULL)
6965 return FALSE;
6966
6967 if (filename_ptr)
6968 *filename_ptr = filename;
6969 if (functionname_ptr)
6970 *functionname_ptr = bfd_asymbol_name (func);
6971
6972 return TRUE;
6973 }
6974
6975 /* Find the nearest line to a particular section and offset,
6976 for error reporting. */
6977
6978 bfd_boolean
6979 _bfd_elf_find_nearest_line (bfd *abfd,
6980 asection *section,
6981 asymbol **symbols,
6982 bfd_vma offset,
6983 const char **filename_ptr,
6984 const char **functionname_ptr,
6985 unsigned int *line_ptr)
6986 {
6987 bfd_boolean found;
6988
6989 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
6990 filename_ptr, functionname_ptr,
6991 line_ptr))
6992 {
6993 if (!*functionname_ptr)
6994 elf_find_function (abfd, section, symbols, offset,
6995 *filename_ptr ? NULL : filename_ptr,
6996 functionname_ptr);
6997
6998 return TRUE;
6999 }
7000
7001 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
7002 filename_ptr, functionname_ptr,
7003 line_ptr, 0,
7004 &elf_tdata (abfd)->dwarf2_find_line_info))
7005 {
7006 if (!*functionname_ptr)
7007 elf_find_function (abfd, section, symbols, offset,
7008 *filename_ptr ? NULL : filename_ptr,
7009 functionname_ptr);
7010
7011 return TRUE;
7012 }
7013
7014 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
7015 &found, filename_ptr,
7016 functionname_ptr, line_ptr,
7017 &elf_tdata (abfd)->line_info))
7018 return FALSE;
7019 if (found && (*functionname_ptr || *line_ptr))
7020 return TRUE;
7021
7022 if (symbols == NULL)
7023 return FALSE;
7024
7025 if (! elf_find_function (abfd, section, symbols, offset,
7026 filename_ptr, functionname_ptr))
7027 return FALSE;
7028
7029 *line_ptr = 0;
7030 return TRUE;
7031 }
7032
7033 /* Find the line for a symbol. */
7034
7035 bfd_boolean
7036 _bfd_elf_find_line (bfd *abfd, asymbol **symbols, asymbol *symbol,
7037 const char **filename_ptr, unsigned int *line_ptr)
7038 {
7039 return _bfd_dwarf2_find_line (abfd, symbols, symbol,
7040 filename_ptr, line_ptr, 0,
7041 &elf_tdata (abfd)->dwarf2_find_line_info);
7042 }
7043
7044 /* After a call to bfd_find_nearest_line, successive calls to
7045 bfd_find_inliner_info can be used to get source information about
7046 each level of function inlining that terminated at the address
7047 passed to bfd_find_nearest_line. Currently this is only supported
7048 for DWARF2 with appropriate DWARF3 extensions. */
7049
7050 bfd_boolean
7051 _bfd_elf_find_inliner_info (bfd *abfd,
7052 const char **filename_ptr,
7053 const char **functionname_ptr,
7054 unsigned int *line_ptr)
7055 {
7056 bfd_boolean found;
7057 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
7058 functionname_ptr, line_ptr,
7059 & elf_tdata (abfd)->dwarf2_find_line_info);
7060 return found;
7061 }
7062
7063 int
7064 _bfd_elf_sizeof_headers (bfd *abfd, struct bfd_link_info *info)
7065 {
7066 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7067 int ret = bed->s->sizeof_ehdr;
7068
7069 if (!info->relocatable)
7070 {
7071 bfd_size_type phdr_size = elf_tdata (abfd)->program_header_size;
7072
7073 if (phdr_size == (bfd_size_type) -1)
7074 {
7075 struct elf_segment_map *m;
7076
7077 phdr_size = 0;
7078 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
7079 phdr_size += bed->s->sizeof_phdr;
7080
7081 if (phdr_size == 0)
7082 phdr_size = get_program_header_size (abfd, info);
7083 }
7084
7085 elf_tdata (abfd)->program_header_size = phdr_size;
7086 ret += phdr_size;
7087 }
7088
7089 return ret;
7090 }
7091
7092 bfd_boolean
7093 _bfd_elf_set_section_contents (bfd *abfd,
7094 sec_ptr section,
7095 const void *location,
7096 file_ptr offset,
7097 bfd_size_type count)
7098 {
7099 Elf_Internal_Shdr *hdr;
7100 bfd_signed_vma pos;
7101
7102 if (! abfd->output_has_begun
7103 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
7104 return FALSE;
7105
7106 hdr = &elf_section_data (section)->this_hdr;
7107 pos = hdr->sh_offset + offset;
7108 if (bfd_seek (abfd, pos, SEEK_SET) != 0
7109 || bfd_bwrite (location, count, abfd) != count)
7110 return FALSE;
7111
7112 return TRUE;
7113 }
7114
7115 void
7116 _bfd_elf_no_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED,
7117 arelent *cache_ptr ATTRIBUTE_UNUSED,
7118 Elf_Internal_Rela *dst ATTRIBUTE_UNUSED)
7119 {
7120 abort ();
7121 }
7122
7123 /* Try to convert a non-ELF reloc into an ELF one. */
7124
7125 bfd_boolean
7126 _bfd_elf_validate_reloc (bfd *abfd, arelent *areloc)
7127 {
7128 /* Check whether we really have an ELF howto. */
7129
7130 if ((*areloc->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec)
7131 {
7132 bfd_reloc_code_real_type code;
7133 reloc_howto_type *howto;
7134
7135 /* Alien reloc: Try to determine its type to replace it with an
7136 equivalent ELF reloc. */
7137
7138 if (areloc->howto->pc_relative)
7139 {
7140 switch (areloc->howto->bitsize)
7141 {
7142 case 8:
7143 code = BFD_RELOC_8_PCREL;
7144 break;
7145 case 12:
7146 code = BFD_RELOC_12_PCREL;
7147 break;
7148 case 16:
7149 code = BFD_RELOC_16_PCREL;
7150 break;
7151 case 24:
7152 code = BFD_RELOC_24_PCREL;
7153 break;
7154 case 32:
7155 code = BFD_RELOC_32_PCREL;
7156 break;
7157 case 64:
7158 code = BFD_RELOC_64_PCREL;
7159 break;
7160 default:
7161 goto fail;
7162 }
7163
7164 howto = bfd_reloc_type_lookup (abfd, code);
7165
7166 if (areloc->howto->pcrel_offset != howto->pcrel_offset)
7167 {
7168 if (howto->pcrel_offset)
7169 areloc->addend += areloc->address;
7170 else
7171 areloc->addend -= areloc->address; /* addend is unsigned!! */
7172 }
7173 }
7174 else
7175 {
7176 switch (areloc->howto->bitsize)
7177 {
7178 case 8:
7179 code = BFD_RELOC_8;
7180 break;
7181 case 14:
7182 code = BFD_RELOC_14;
7183 break;
7184 case 16:
7185 code = BFD_RELOC_16;
7186 break;
7187 case 26:
7188 code = BFD_RELOC_26;
7189 break;
7190 case 32:
7191 code = BFD_RELOC_32;
7192 break;
7193 case 64:
7194 code = BFD_RELOC_64;
7195 break;
7196 default:
7197 goto fail;
7198 }
7199
7200 howto = bfd_reloc_type_lookup (abfd, code);
7201 }
7202
7203 if (howto)
7204 areloc->howto = howto;
7205 else
7206 goto fail;
7207 }
7208
7209 return TRUE;
7210
7211 fail:
7212 (*_bfd_error_handler)
7213 (_("%B: unsupported relocation type %s"),
7214 abfd, areloc->howto->name);
7215 bfd_set_error (bfd_error_bad_value);
7216 return FALSE;
7217 }
7218
7219 bfd_boolean
7220 _bfd_elf_close_and_cleanup (bfd *abfd)
7221 {
7222 if (bfd_get_format (abfd) == bfd_object)
7223 {
7224 if (elf_tdata (abfd) != NULL && elf_shstrtab (abfd) != NULL)
7225 _bfd_elf_strtab_free (elf_shstrtab (abfd));
7226 _bfd_dwarf2_cleanup_debug_info (abfd);
7227 }
7228
7229 return _bfd_generic_close_and_cleanup (abfd);
7230 }
7231
7232 /* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
7233 in the relocation's offset. Thus we cannot allow any sort of sanity
7234 range-checking to interfere. There is nothing else to do in processing
7235 this reloc. */
7236
7237 bfd_reloc_status_type
7238 _bfd_elf_rel_vtable_reloc_fn
7239 (bfd *abfd ATTRIBUTE_UNUSED, arelent *re ATTRIBUTE_UNUSED,
7240 struct bfd_symbol *symbol ATTRIBUTE_UNUSED,
7241 void *data ATTRIBUTE_UNUSED, asection *is ATTRIBUTE_UNUSED,
7242 bfd *obfd ATTRIBUTE_UNUSED, char **errmsg ATTRIBUTE_UNUSED)
7243 {
7244 return bfd_reloc_ok;
7245 }
7246 \f
7247 /* Elf core file support. Much of this only works on native
7248 toolchains, since we rely on knowing the
7249 machine-dependent procfs structure in order to pick
7250 out details about the corefile. */
7251
7252 #ifdef HAVE_SYS_PROCFS_H
7253 # include <sys/procfs.h>
7254 #endif
7255
7256 /* FIXME: this is kinda wrong, but it's what gdb wants. */
7257
7258 static int
7259 elfcore_make_pid (bfd *abfd)
7260 {
7261 return ((elf_tdata (abfd)->core_lwpid << 16)
7262 + (elf_tdata (abfd)->core_pid));
7263 }
7264
7265 /* If there isn't a section called NAME, make one, using
7266 data from SECT. Note, this function will generate a
7267 reference to NAME, so you shouldn't deallocate or
7268 overwrite it. */
7269
7270 static bfd_boolean
7271 elfcore_maybe_make_sect (bfd *abfd, char *name, asection *sect)
7272 {
7273 asection *sect2;
7274
7275 if (bfd_get_section_by_name (abfd, name) != NULL)
7276 return TRUE;
7277
7278 sect2 = bfd_make_section_with_flags (abfd, name, sect->flags);
7279 if (sect2 == NULL)
7280 return FALSE;
7281
7282 sect2->size = sect->size;
7283 sect2->filepos = sect->filepos;
7284 sect2->alignment_power = sect->alignment_power;
7285 return TRUE;
7286 }
7287
7288 /* Create a pseudosection containing SIZE bytes at FILEPOS. This
7289 actually creates up to two pseudosections:
7290 - For the single-threaded case, a section named NAME, unless
7291 such a section already exists.
7292 - For the multi-threaded case, a section named "NAME/PID", where
7293 PID is elfcore_make_pid (abfd).
7294 Both pseudosections have identical contents. */
7295 bfd_boolean
7296 _bfd_elfcore_make_pseudosection (bfd *abfd,
7297 char *name,
7298 size_t size,
7299 ufile_ptr filepos)
7300 {
7301 char buf[100];
7302 char *threaded_name;
7303 size_t len;
7304 asection *sect;
7305
7306 /* Build the section name. */
7307
7308 sprintf (buf, "%s/%d", name, elfcore_make_pid (abfd));
7309 len = strlen (buf) + 1;
7310 threaded_name = bfd_alloc (abfd, len);
7311 if (threaded_name == NULL)
7312 return FALSE;
7313 memcpy (threaded_name, buf, len);
7314
7315 sect = bfd_make_section_anyway_with_flags (abfd, threaded_name,
7316 SEC_HAS_CONTENTS);
7317 if (sect == NULL)
7318 return FALSE;
7319 sect->size = size;
7320 sect->filepos = filepos;
7321 sect->alignment_power = 2;
7322
7323 return elfcore_maybe_make_sect (abfd, name, sect);
7324 }
7325
7326 /* prstatus_t exists on:
7327 solaris 2.5+
7328 linux 2.[01] + glibc
7329 unixware 4.2
7330 */
7331
7332 #if defined (HAVE_PRSTATUS_T)
7333
7334 static bfd_boolean
7335 elfcore_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
7336 {
7337 size_t size;
7338 int offset;
7339
7340 if (note->descsz == sizeof (prstatus_t))
7341 {
7342 prstatus_t prstat;
7343
7344 size = sizeof (prstat.pr_reg);
7345 offset = offsetof (prstatus_t, pr_reg);
7346 memcpy (&prstat, note->descdata, sizeof (prstat));
7347
7348 /* Do not overwrite the core signal if it
7349 has already been set by another thread. */
7350 if (elf_tdata (abfd)->core_signal == 0)
7351 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
7352 elf_tdata (abfd)->core_pid = prstat.pr_pid;
7353
7354 /* pr_who exists on:
7355 solaris 2.5+
7356 unixware 4.2
7357 pr_who doesn't exist on:
7358 linux 2.[01]
7359 */
7360 #if defined (HAVE_PRSTATUS_T_PR_WHO)
7361 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
7362 #endif
7363 }
7364 #if defined (HAVE_PRSTATUS32_T)
7365 else if (note->descsz == sizeof (prstatus32_t))
7366 {
7367 /* 64-bit host, 32-bit corefile */
7368 prstatus32_t prstat;
7369
7370 size = sizeof (prstat.pr_reg);
7371 offset = offsetof (prstatus32_t, pr_reg);
7372 memcpy (&prstat, note->descdata, sizeof (prstat));
7373
7374 /* Do not overwrite the core signal if it
7375 has already been set by another thread. */
7376 if (elf_tdata (abfd)->core_signal == 0)
7377 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
7378 elf_tdata (abfd)->core_pid = prstat.pr_pid;
7379
7380 /* pr_who exists on:
7381 solaris 2.5+
7382 unixware 4.2
7383 pr_who doesn't exist on:
7384 linux 2.[01]
7385 */
7386 #if defined (HAVE_PRSTATUS32_T_PR_WHO)
7387 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
7388 #endif
7389 }
7390 #endif /* HAVE_PRSTATUS32_T */
7391 else
7392 {
7393 /* Fail - we don't know how to handle any other
7394 note size (ie. data object type). */
7395 return TRUE;
7396 }
7397
7398 /* Make a ".reg/999" section and a ".reg" section. */
7399 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
7400 size, note->descpos + offset);
7401 }
7402 #endif /* defined (HAVE_PRSTATUS_T) */
7403
7404 /* Create a pseudosection containing the exact contents of NOTE. */
7405 static bfd_boolean
7406 elfcore_make_note_pseudosection (bfd *abfd,
7407 char *name,
7408 Elf_Internal_Note *note)
7409 {
7410 return _bfd_elfcore_make_pseudosection (abfd, name,
7411 note->descsz, note->descpos);
7412 }
7413
7414 /* There isn't a consistent prfpregset_t across platforms,
7415 but it doesn't matter, because we don't have to pick this
7416 data structure apart. */
7417
7418 static bfd_boolean
7419 elfcore_grok_prfpreg (bfd *abfd, Elf_Internal_Note *note)
7420 {
7421 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
7422 }
7423
7424 /* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
7425 type of 5 (NT_PRXFPREG). Just include the whole note's contents
7426 literally. */
7427
7428 static bfd_boolean
7429 elfcore_grok_prxfpreg (bfd *abfd, Elf_Internal_Note *note)
7430 {
7431 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
7432 }
7433
7434 #if defined (HAVE_PRPSINFO_T)
7435 typedef prpsinfo_t elfcore_psinfo_t;
7436 #if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
7437 typedef prpsinfo32_t elfcore_psinfo32_t;
7438 #endif
7439 #endif
7440
7441 #if defined (HAVE_PSINFO_T)
7442 typedef psinfo_t elfcore_psinfo_t;
7443 #if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
7444 typedef psinfo32_t elfcore_psinfo32_t;
7445 #endif
7446 #endif
7447
7448 /* return a malloc'ed copy of a string at START which is at
7449 most MAX bytes long, possibly without a terminating '\0'.
7450 the copy will always have a terminating '\0'. */
7451
7452 char *
7453 _bfd_elfcore_strndup (bfd *abfd, char *start, size_t max)
7454 {
7455 char *dups;
7456 char *end = memchr (start, '\0', max);
7457 size_t len;
7458
7459 if (end == NULL)
7460 len = max;
7461 else
7462 len = end - start;
7463
7464 dups = bfd_alloc (abfd, len + 1);
7465 if (dups == NULL)
7466 return NULL;
7467
7468 memcpy (dups, start, len);
7469 dups[len] = '\0';
7470
7471 return dups;
7472 }
7473
7474 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7475 static bfd_boolean
7476 elfcore_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
7477 {
7478 if (note->descsz == sizeof (elfcore_psinfo_t))
7479 {
7480 elfcore_psinfo_t psinfo;
7481
7482 memcpy (&psinfo, note->descdata, sizeof (psinfo));
7483
7484 elf_tdata (abfd)->core_program
7485 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
7486 sizeof (psinfo.pr_fname));
7487
7488 elf_tdata (abfd)->core_command
7489 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
7490 sizeof (psinfo.pr_psargs));
7491 }
7492 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
7493 else if (note->descsz == sizeof (elfcore_psinfo32_t))
7494 {
7495 /* 64-bit host, 32-bit corefile */
7496 elfcore_psinfo32_t psinfo;
7497
7498 memcpy (&psinfo, note->descdata, sizeof (psinfo));
7499
7500 elf_tdata (abfd)->core_program
7501 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
7502 sizeof (psinfo.pr_fname));
7503
7504 elf_tdata (abfd)->core_command
7505 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
7506 sizeof (psinfo.pr_psargs));
7507 }
7508 #endif
7509
7510 else
7511 {
7512 /* Fail - we don't know how to handle any other
7513 note size (ie. data object type). */
7514 return TRUE;
7515 }
7516
7517 /* Note that for some reason, a spurious space is tacked
7518 onto the end of the args in some (at least one anyway)
7519 implementations, so strip it off if it exists. */
7520
7521 {
7522 char *command = elf_tdata (abfd)->core_command;
7523 int n = strlen (command);
7524
7525 if (0 < n && command[n - 1] == ' ')
7526 command[n - 1] = '\0';
7527 }
7528
7529 return TRUE;
7530 }
7531 #endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
7532
7533 #if defined (HAVE_PSTATUS_T)
7534 static bfd_boolean
7535 elfcore_grok_pstatus (bfd *abfd, Elf_Internal_Note *note)
7536 {
7537 if (note->descsz == sizeof (pstatus_t)
7538 #if defined (HAVE_PXSTATUS_T)
7539 || note->descsz == sizeof (pxstatus_t)
7540 #endif
7541 )
7542 {
7543 pstatus_t pstat;
7544
7545 memcpy (&pstat, note->descdata, sizeof (pstat));
7546
7547 elf_tdata (abfd)->core_pid = pstat.pr_pid;
7548 }
7549 #if defined (HAVE_PSTATUS32_T)
7550 else if (note->descsz == sizeof (pstatus32_t))
7551 {
7552 /* 64-bit host, 32-bit corefile */
7553 pstatus32_t pstat;
7554
7555 memcpy (&pstat, note->descdata, sizeof (pstat));
7556
7557 elf_tdata (abfd)->core_pid = pstat.pr_pid;
7558 }
7559 #endif
7560 /* Could grab some more details from the "representative"
7561 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
7562 NT_LWPSTATUS note, presumably. */
7563
7564 return TRUE;
7565 }
7566 #endif /* defined (HAVE_PSTATUS_T) */
7567
7568 #if defined (HAVE_LWPSTATUS_T)
7569 static bfd_boolean
7570 elfcore_grok_lwpstatus (bfd *abfd, Elf_Internal_Note *note)
7571 {
7572 lwpstatus_t lwpstat;
7573 char buf[100];
7574 char *name;
7575 size_t len;
7576 asection *sect;
7577
7578 if (note->descsz != sizeof (lwpstat)
7579 #if defined (HAVE_LWPXSTATUS_T)
7580 && note->descsz != sizeof (lwpxstatus_t)
7581 #endif
7582 )
7583 return TRUE;
7584
7585 memcpy (&lwpstat, note->descdata, sizeof (lwpstat));
7586
7587 elf_tdata (abfd)->core_lwpid = lwpstat.pr_lwpid;
7588 elf_tdata (abfd)->core_signal = lwpstat.pr_cursig;
7589
7590 /* Make a ".reg/999" section. */
7591
7592 sprintf (buf, ".reg/%d", elfcore_make_pid (abfd));
7593 len = strlen (buf) + 1;
7594 name = bfd_alloc (abfd, len);
7595 if (name == NULL)
7596 return FALSE;
7597 memcpy (name, buf, len);
7598
7599 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
7600 if (sect == NULL)
7601 return FALSE;
7602
7603 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7604 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.gregs);
7605 sect->filepos = note->descpos
7606 + offsetof (lwpstatus_t, pr_context.uc_mcontext.gregs);
7607 #endif
7608
7609 #if defined (HAVE_LWPSTATUS_T_PR_REG)
7610 sect->size = sizeof (lwpstat.pr_reg);
7611 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_reg);
7612 #endif
7613
7614 sect->alignment_power = 2;
7615
7616 if (!elfcore_maybe_make_sect (abfd, ".reg", sect))
7617 return FALSE;
7618
7619 /* Make a ".reg2/999" section */
7620
7621 sprintf (buf, ".reg2/%d", elfcore_make_pid (abfd));
7622 len = strlen (buf) + 1;
7623 name = bfd_alloc (abfd, len);
7624 if (name == NULL)
7625 return FALSE;
7626 memcpy (name, buf, len);
7627
7628 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
7629 if (sect == NULL)
7630 return FALSE;
7631
7632 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7633 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.fpregs);
7634 sect->filepos = note->descpos
7635 + offsetof (lwpstatus_t, pr_context.uc_mcontext.fpregs);
7636 #endif
7637
7638 #if defined (HAVE_LWPSTATUS_T_PR_FPREG)
7639 sect->size = sizeof (lwpstat.pr_fpreg);
7640 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_fpreg);
7641 #endif
7642
7643 sect->alignment_power = 2;
7644
7645 return elfcore_maybe_make_sect (abfd, ".reg2", sect);
7646 }
7647 #endif /* defined (HAVE_LWPSTATUS_T) */
7648
7649 static bfd_boolean
7650 elfcore_grok_win32pstatus (bfd *abfd, Elf_Internal_Note *note)
7651 {
7652 char buf[30];
7653 char *name;
7654 size_t len;
7655 asection *sect;
7656 int type;
7657 int is_active_thread;
7658 bfd_vma base_addr;
7659
7660 if (note->descsz < 728)
7661 return TRUE;
7662
7663 if (! CONST_STRNEQ (note->namedata, "win32"))
7664 return TRUE;
7665
7666 type = bfd_get_32 (abfd, note->descdata);
7667
7668 switch (type)
7669 {
7670 case 1 /* NOTE_INFO_PROCESS */:
7671 /* FIXME: need to add ->core_command. */
7672 /* process_info.pid */
7673 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 8);
7674 /* process_info.signal */
7675 elf_tdata (abfd)->core_signal = bfd_get_32 (abfd, note->descdata + 12);
7676 break;
7677
7678 case 2 /* NOTE_INFO_THREAD */:
7679 /* Make a ".reg/999" section. */
7680 /* thread_info.tid */
7681 sprintf (buf, ".reg/%ld", (long) bfd_get_32 (abfd, note->descdata + 8));
7682
7683 len = strlen (buf) + 1;
7684 name = bfd_alloc (abfd, len);
7685 if (name == NULL)
7686 return FALSE;
7687
7688 memcpy (name, buf, len);
7689
7690 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
7691 if (sect == NULL)
7692 return FALSE;
7693
7694 /* sizeof (thread_info.thread_context) */
7695 sect->size = 716;
7696 /* offsetof (thread_info.thread_context) */
7697 sect->filepos = note->descpos + 12;
7698 sect->alignment_power = 2;
7699
7700 /* thread_info.is_active_thread */
7701 is_active_thread = bfd_get_32 (abfd, note->descdata + 8);
7702
7703 if (is_active_thread)
7704 if (! elfcore_maybe_make_sect (abfd, ".reg", sect))
7705 return FALSE;
7706 break;
7707
7708 case 3 /* NOTE_INFO_MODULE */:
7709 /* Make a ".module/xxxxxxxx" section. */
7710 /* module_info.base_address */
7711 base_addr = bfd_get_32 (abfd, note->descdata + 4);
7712 sprintf (buf, ".module/%08lx", (long) base_addr);
7713
7714 len = strlen (buf) + 1;
7715 name = bfd_alloc (abfd, len);
7716 if (name == NULL)
7717 return FALSE;
7718
7719 memcpy (name, buf, len);
7720
7721 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
7722
7723 if (sect == NULL)
7724 return FALSE;
7725
7726 sect->size = note->descsz;
7727 sect->filepos = note->descpos;
7728 sect->alignment_power = 2;
7729 break;
7730
7731 default:
7732 return TRUE;
7733 }
7734
7735 return TRUE;
7736 }
7737
7738 static bfd_boolean
7739 elfcore_grok_note (bfd *abfd, Elf_Internal_Note *note)
7740 {
7741 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7742
7743 switch (note->type)
7744 {
7745 default:
7746 return TRUE;
7747
7748 case NT_PRSTATUS:
7749 if (bed->elf_backend_grok_prstatus)
7750 if ((*bed->elf_backend_grok_prstatus) (abfd, note))
7751 return TRUE;
7752 #if defined (HAVE_PRSTATUS_T)
7753 return elfcore_grok_prstatus (abfd, note);
7754 #else
7755 return TRUE;
7756 #endif
7757
7758 #if defined (HAVE_PSTATUS_T)
7759 case NT_PSTATUS:
7760 return elfcore_grok_pstatus (abfd, note);
7761 #endif
7762
7763 #if defined (HAVE_LWPSTATUS_T)
7764 case NT_LWPSTATUS:
7765 return elfcore_grok_lwpstatus (abfd, note);
7766 #endif
7767
7768 case NT_FPREGSET: /* FIXME: rename to NT_PRFPREG */
7769 return elfcore_grok_prfpreg (abfd, note);
7770
7771 case NT_WIN32PSTATUS:
7772 return elfcore_grok_win32pstatus (abfd, note);
7773
7774 case NT_PRXFPREG: /* Linux SSE extension */
7775 if (note->namesz == 6
7776 && strcmp (note->namedata, "LINUX") == 0)
7777 return elfcore_grok_prxfpreg (abfd, note);
7778 else
7779 return TRUE;
7780
7781 case NT_PRPSINFO:
7782 case NT_PSINFO:
7783 if (bed->elf_backend_grok_psinfo)
7784 if ((*bed->elf_backend_grok_psinfo) (abfd, note))
7785 return TRUE;
7786 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7787 return elfcore_grok_psinfo (abfd, note);
7788 #else
7789 return TRUE;
7790 #endif
7791
7792 case NT_AUXV:
7793 {
7794 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
7795 SEC_HAS_CONTENTS);
7796
7797 if (sect == NULL)
7798 return FALSE;
7799 sect->size = note->descsz;
7800 sect->filepos = note->descpos;
7801 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
7802
7803 return TRUE;
7804 }
7805 }
7806 }
7807
7808 static bfd_boolean
7809 elfobj_grok_gnu_build_id (bfd *abfd, Elf_Internal_Note *note)
7810 {
7811 elf_tdata (abfd)->build_id_size = note->descsz;
7812 elf_tdata (abfd)->build_id = bfd_alloc (abfd, note->descsz);
7813 if (elf_tdata (abfd)->build_id == NULL)
7814 return FALSE;
7815
7816 memcpy (elf_tdata (abfd)->build_id, note->descdata, note->descsz);
7817
7818 return TRUE;
7819 }
7820
7821 static bfd_boolean
7822 elfobj_grok_gnu_note (bfd *abfd, Elf_Internal_Note *note)
7823 {
7824 switch (note->type)
7825 {
7826 default:
7827 return TRUE;
7828
7829 case NT_GNU_BUILD_ID:
7830 return elfobj_grok_gnu_build_id (abfd, note);
7831 }
7832 }
7833
7834 static bfd_boolean
7835 elfcore_netbsd_get_lwpid (Elf_Internal_Note *note, int *lwpidp)
7836 {
7837 char *cp;
7838
7839 cp = strchr (note->namedata, '@');
7840 if (cp != NULL)
7841 {
7842 *lwpidp = atoi(cp + 1);
7843 return TRUE;
7844 }
7845 return FALSE;
7846 }
7847
7848 static bfd_boolean
7849 elfcore_grok_netbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
7850 {
7851 /* Signal number at offset 0x08. */
7852 elf_tdata (abfd)->core_signal
7853 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
7854
7855 /* Process ID at offset 0x50. */
7856 elf_tdata (abfd)->core_pid
7857 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x50);
7858
7859 /* Command name at 0x7c (max 32 bytes, including nul). */
7860 elf_tdata (abfd)->core_command
7861 = _bfd_elfcore_strndup (abfd, note->descdata + 0x7c, 31);
7862
7863 return elfcore_make_note_pseudosection (abfd, ".note.netbsdcore.procinfo",
7864 note);
7865 }
7866
7867 static bfd_boolean
7868 elfcore_grok_netbsd_note (bfd *abfd, Elf_Internal_Note *note)
7869 {
7870 int lwp;
7871
7872 if (elfcore_netbsd_get_lwpid (note, &lwp))
7873 elf_tdata (abfd)->core_lwpid = lwp;
7874
7875 if (note->type == NT_NETBSDCORE_PROCINFO)
7876 {
7877 /* NetBSD-specific core "procinfo". Note that we expect to
7878 find this note before any of the others, which is fine,
7879 since the kernel writes this note out first when it
7880 creates a core file. */
7881
7882 return elfcore_grok_netbsd_procinfo (abfd, note);
7883 }
7884
7885 /* As of Jan 2002 there are no other machine-independent notes
7886 defined for NetBSD core files. If the note type is less
7887 than the start of the machine-dependent note types, we don't
7888 understand it. */
7889
7890 if (note->type < NT_NETBSDCORE_FIRSTMACH)
7891 return TRUE;
7892
7893
7894 switch (bfd_get_arch (abfd))
7895 {
7896 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
7897 PT_GETFPREGS == mach+2. */
7898
7899 case bfd_arch_alpha:
7900 case bfd_arch_sparc:
7901 switch (note->type)
7902 {
7903 case NT_NETBSDCORE_FIRSTMACH+0:
7904 return elfcore_make_note_pseudosection (abfd, ".reg", note);
7905
7906 case NT_NETBSDCORE_FIRSTMACH+2:
7907 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
7908
7909 default:
7910 return TRUE;
7911 }
7912
7913 /* On all other arch's, PT_GETREGS == mach+1 and
7914 PT_GETFPREGS == mach+3. */
7915
7916 default:
7917 switch (note->type)
7918 {
7919 case NT_NETBSDCORE_FIRSTMACH+1:
7920 return elfcore_make_note_pseudosection (abfd, ".reg", note);
7921
7922 case NT_NETBSDCORE_FIRSTMACH+3:
7923 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
7924
7925 default:
7926 return TRUE;
7927 }
7928 }
7929 /* NOTREACHED */
7930 }
7931
7932 static bfd_boolean
7933 elfcore_grok_nto_status (bfd *abfd, Elf_Internal_Note *note, long *tid)
7934 {
7935 void *ddata = note->descdata;
7936 char buf[100];
7937 char *name;
7938 asection *sect;
7939 short sig;
7940 unsigned flags;
7941
7942 /* nto_procfs_status 'pid' field is at offset 0. */
7943 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, (bfd_byte *) ddata);
7944
7945 /* nto_procfs_status 'tid' field is at offset 4. Pass it back. */
7946 *tid = bfd_get_32 (abfd, (bfd_byte *) ddata + 4);
7947
7948 /* nto_procfs_status 'flags' field is at offset 8. */
7949 flags = bfd_get_32 (abfd, (bfd_byte *) ddata + 8);
7950
7951 /* nto_procfs_status 'what' field is at offset 14. */
7952 if ((sig = bfd_get_16 (abfd, (bfd_byte *) ddata + 14)) > 0)
7953 {
7954 elf_tdata (abfd)->core_signal = sig;
7955 elf_tdata (abfd)->core_lwpid = *tid;
7956 }
7957
7958 /* _DEBUG_FLAG_CURTID (current thread) is 0x80. Some cores
7959 do not come from signals so we make sure we set the current
7960 thread just in case. */
7961 if (flags & 0x00000080)
7962 elf_tdata (abfd)->core_lwpid = *tid;
7963
7964 /* Make a ".qnx_core_status/%d" section. */
7965 sprintf (buf, ".qnx_core_status/%ld", *tid);
7966
7967 name = bfd_alloc (abfd, strlen (buf) + 1);
7968 if (name == NULL)
7969 return FALSE;
7970 strcpy (name, buf);
7971
7972 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
7973 if (sect == NULL)
7974 return FALSE;
7975
7976 sect->size = note->descsz;
7977 sect->filepos = note->descpos;
7978 sect->alignment_power = 2;
7979
7980 return (elfcore_maybe_make_sect (abfd, ".qnx_core_status", sect));
7981 }
7982
7983 static bfd_boolean
7984 elfcore_grok_nto_regs (bfd *abfd,
7985 Elf_Internal_Note *note,
7986 long tid,
7987 char *base)
7988 {
7989 char buf[100];
7990 char *name;
7991 asection *sect;
7992
7993 /* Make a "(base)/%d" section. */
7994 sprintf (buf, "%s/%ld", base, tid);
7995
7996 name = bfd_alloc (abfd, strlen (buf) + 1);
7997 if (name == NULL)
7998 return FALSE;
7999 strcpy (name, buf);
8000
8001 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8002 if (sect == NULL)
8003 return FALSE;
8004
8005 sect->size = note->descsz;
8006 sect->filepos = note->descpos;
8007 sect->alignment_power = 2;
8008
8009 /* This is the current thread. */
8010 if (elf_tdata (abfd)->core_lwpid == tid)
8011 return elfcore_maybe_make_sect (abfd, base, sect);
8012
8013 return TRUE;
8014 }
8015
8016 #define BFD_QNT_CORE_INFO 7
8017 #define BFD_QNT_CORE_STATUS 8
8018 #define BFD_QNT_CORE_GREG 9
8019 #define BFD_QNT_CORE_FPREG 10
8020
8021 static bfd_boolean
8022 elfcore_grok_nto_note (bfd *abfd, Elf_Internal_Note *note)
8023 {
8024 /* Every GREG section has a STATUS section before it. Store the
8025 tid from the previous call to pass down to the next gregs
8026 function. */
8027 static long tid = 1;
8028
8029 switch (note->type)
8030 {
8031 case BFD_QNT_CORE_INFO:
8032 return elfcore_make_note_pseudosection (abfd, ".qnx_core_info", note);
8033 case BFD_QNT_CORE_STATUS:
8034 return elfcore_grok_nto_status (abfd, note, &tid);
8035 case BFD_QNT_CORE_GREG:
8036 return elfcore_grok_nto_regs (abfd, note, tid, ".reg");
8037 case BFD_QNT_CORE_FPREG:
8038 return elfcore_grok_nto_regs (abfd, note, tid, ".reg2");
8039 default:
8040 return TRUE;
8041 }
8042 }
8043
8044 static bfd_boolean
8045 elfcore_grok_spu_note (bfd *abfd, Elf_Internal_Note *note)
8046 {
8047 char *name;
8048 asection *sect;
8049 size_t len;
8050
8051 /* Use note name as section name. */
8052 len = note->namesz;
8053 name = bfd_alloc (abfd, len);
8054 if (name == NULL)
8055 return FALSE;
8056 memcpy (name, note->namedata, len);
8057 name[len - 1] = '\0';
8058
8059 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8060 if (sect == NULL)
8061 return FALSE;
8062
8063 sect->size = note->descsz;
8064 sect->filepos = note->descpos;
8065 sect->alignment_power = 1;
8066
8067 return TRUE;
8068 }
8069
8070 /* Function: elfcore_write_note
8071
8072 Inputs:
8073 buffer to hold note, and current size of buffer
8074 name of note
8075 type of note
8076 data for note
8077 size of data for note
8078
8079 Writes note to end of buffer. ELF64 notes are written exactly as
8080 for ELF32, despite the current (as of 2006) ELF gabi specifying
8081 that they ought to have 8-byte namesz and descsz field, and have
8082 8-byte alignment. Other writers, eg. Linux kernel, do the same.
8083
8084 Return:
8085 Pointer to realloc'd buffer, *BUFSIZ updated. */
8086
8087 char *
8088 elfcore_write_note (bfd *abfd,
8089 char *buf,
8090 int *bufsiz,
8091 const char *name,
8092 int type,
8093 const void *input,
8094 int size)
8095 {
8096 Elf_External_Note *xnp;
8097 size_t namesz;
8098 size_t newspace;
8099 char *dest;
8100
8101 namesz = 0;
8102 if (name != NULL)
8103 namesz = strlen (name) + 1;
8104
8105 newspace = 12 + ((namesz + 3) & -4) + ((size + 3) & -4);
8106
8107 buf = realloc (buf, *bufsiz + newspace);
8108 dest = buf + *bufsiz;
8109 *bufsiz += newspace;
8110 xnp = (Elf_External_Note *) dest;
8111 H_PUT_32 (abfd, namesz, xnp->namesz);
8112 H_PUT_32 (abfd, size, xnp->descsz);
8113 H_PUT_32 (abfd, type, xnp->type);
8114 dest = xnp->name;
8115 if (name != NULL)
8116 {
8117 memcpy (dest, name, namesz);
8118 dest += namesz;
8119 while (namesz & 3)
8120 {
8121 *dest++ = '\0';
8122 ++namesz;
8123 }
8124 }
8125 memcpy (dest, input, size);
8126 dest += size;
8127 while (size & 3)
8128 {
8129 *dest++ = '\0';
8130 ++size;
8131 }
8132 return buf;
8133 }
8134
8135 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
8136 char *
8137 elfcore_write_prpsinfo (bfd *abfd,
8138 char *buf,
8139 int *bufsiz,
8140 const char *fname,
8141 const char *psargs)
8142 {
8143 const char *note_name = "CORE";
8144 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8145
8146 if (bed->elf_backend_write_core_note != NULL)
8147 {
8148 char *ret;
8149 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
8150 NT_PRPSINFO, fname, psargs);
8151 if (ret != NULL)
8152 return ret;
8153 }
8154
8155 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
8156 if (bed->s->elfclass == ELFCLASS32)
8157 {
8158 #if defined (HAVE_PSINFO32_T)
8159 psinfo32_t data;
8160 int note_type = NT_PSINFO;
8161 #else
8162 prpsinfo32_t data;
8163 int note_type = NT_PRPSINFO;
8164 #endif
8165
8166 memset (&data, 0, sizeof (data));
8167 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
8168 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
8169 return elfcore_write_note (abfd, buf, bufsiz,
8170 note_name, note_type, &data, sizeof (data));
8171 }
8172 else
8173 #endif
8174 {
8175 #if defined (HAVE_PSINFO_T)
8176 psinfo_t data;
8177 int note_type = NT_PSINFO;
8178 #else
8179 prpsinfo_t data;
8180 int note_type = NT_PRPSINFO;
8181 #endif
8182
8183 memset (&data, 0, sizeof (data));
8184 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
8185 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
8186 return elfcore_write_note (abfd, buf, bufsiz,
8187 note_name, note_type, &data, sizeof (data));
8188 }
8189 }
8190 #endif /* PSINFO_T or PRPSINFO_T */
8191
8192 #if defined (HAVE_PRSTATUS_T)
8193 char *
8194 elfcore_write_prstatus (bfd *abfd,
8195 char *buf,
8196 int *bufsiz,
8197 long pid,
8198 int cursig,
8199 const void *gregs)
8200 {
8201 const char *note_name = "CORE";
8202 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8203
8204 if (bed->elf_backend_write_core_note != NULL)
8205 {
8206 char *ret;
8207 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
8208 NT_PRSTATUS,
8209 pid, cursig, gregs);
8210 if (ret != NULL)
8211 return ret;
8212 }
8213
8214 #if defined (HAVE_PRSTATUS32_T)
8215 if (bed->s->elfclass == ELFCLASS32)
8216 {
8217 prstatus32_t prstat;
8218
8219 memset (&prstat, 0, sizeof (prstat));
8220 prstat.pr_pid = pid;
8221 prstat.pr_cursig = cursig;
8222 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
8223 return elfcore_write_note (abfd, buf, bufsiz, note_name,
8224 NT_PRSTATUS, &prstat, sizeof (prstat));
8225 }
8226 else
8227 #endif
8228 {
8229 prstatus_t prstat;
8230
8231 memset (&prstat, 0, sizeof (prstat));
8232 prstat.pr_pid = pid;
8233 prstat.pr_cursig = cursig;
8234 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
8235 return elfcore_write_note (abfd, buf, bufsiz, note_name,
8236 NT_PRSTATUS, &prstat, sizeof (prstat));
8237 }
8238 }
8239 #endif /* HAVE_PRSTATUS_T */
8240
8241 #if defined (HAVE_LWPSTATUS_T)
8242 char *
8243 elfcore_write_lwpstatus (bfd *abfd,
8244 char *buf,
8245 int *bufsiz,
8246 long pid,
8247 int cursig,
8248 const void *gregs)
8249 {
8250 lwpstatus_t lwpstat;
8251 const char *note_name = "CORE";
8252
8253 memset (&lwpstat, 0, sizeof (lwpstat));
8254 lwpstat.pr_lwpid = pid >> 16;
8255 lwpstat.pr_cursig = cursig;
8256 #if defined (HAVE_LWPSTATUS_T_PR_REG)
8257 memcpy (lwpstat.pr_reg, gregs, sizeof (lwpstat.pr_reg));
8258 #elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
8259 #if !defined(gregs)
8260 memcpy (lwpstat.pr_context.uc_mcontext.gregs,
8261 gregs, sizeof (lwpstat.pr_context.uc_mcontext.gregs));
8262 #else
8263 memcpy (lwpstat.pr_context.uc_mcontext.__gregs,
8264 gregs, sizeof (lwpstat.pr_context.uc_mcontext.__gregs));
8265 #endif
8266 #endif
8267 return elfcore_write_note (abfd, buf, bufsiz, note_name,
8268 NT_LWPSTATUS, &lwpstat, sizeof (lwpstat));
8269 }
8270 #endif /* HAVE_LWPSTATUS_T */
8271
8272 #if defined (HAVE_PSTATUS_T)
8273 char *
8274 elfcore_write_pstatus (bfd *abfd,
8275 char *buf,
8276 int *bufsiz,
8277 long pid,
8278 int cursig ATTRIBUTE_UNUSED,
8279 const void *gregs ATTRIBUTE_UNUSED)
8280 {
8281 const char *note_name = "CORE";
8282 #if defined (HAVE_PSTATUS32_T)
8283 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8284
8285 if (bed->s->elfclass == ELFCLASS32)
8286 {
8287 pstatus32_t pstat;
8288
8289 memset (&pstat, 0, sizeof (pstat));
8290 pstat.pr_pid = pid & 0xffff;
8291 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
8292 NT_PSTATUS, &pstat, sizeof (pstat));
8293 return buf;
8294 }
8295 else
8296 #endif
8297 {
8298 pstatus_t pstat;
8299
8300 memset (&pstat, 0, sizeof (pstat));
8301 pstat.pr_pid = pid & 0xffff;
8302 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
8303 NT_PSTATUS, &pstat, sizeof (pstat));
8304 return buf;
8305 }
8306 }
8307 #endif /* HAVE_PSTATUS_T */
8308
8309 char *
8310 elfcore_write_prfpreg (bfd *abfd,
8311 char *buf,
8312 int *bufsiz,
8313 const void *fpregs,
8314 int size)
8315 {
8316 const char *note_name = "CORE";
8317 return elfcore_write_note (abfd, buf, bufsiz,
8318 note_name, NT_FPREGSET, fpregs, size);
8319 }
8320
8321 char *
8322 elfcore_write_prxfpreg (bfd *abfd,
8323 char *buf,
8324 int *bufsiz,
8325 const void *xfpregs,
8326 int size)
8327 {
8328 char *note_name = "LINUX";
8329 return elfcore_write_note (abfd, buf, bufsiz,
8330 note_name, NT_PRXFPREG, xfpregs, size);
8331 }
8332
8333 static bfd_boolean
8334 elf_parse_notes (bfd *abfd, char *buf, size_t size, file_ptr offset)
8335 {
8336 char *p;
8337
8338 p = buf;
8339 while (p < buf + size)
8340 {
8341 /* FIXME: bad alignment assumption. */
8342 Elf_External_Note *xnp = (Elf_External_Note *) p;
8343 Elf_Internal_Note in;
8344
8345 in.type = H_GET_32 (abfd, xnp->type);
8346
8347 in.namesz = H_GET_32 (abfd, xnp->namesz);
8348 in.namedata = xnp->name;
8349
8350 in.descsz = H_GET_32 (abfd, xnp->descsz);
8351 in.descdata = in.namedata + BFD_ALIGN (in.namesz, 4);
8352 in.descpos = offset + (in.descdata - buf);
8353
8354 switch (bfd_get_format (abfd))
8355 {
8356 default:
8357 return TRUE;
8358
8359 case bfd_core:
8360 if (CONST_STRNEQ (in.namedata, "NetBSD-CORE"))
8361 {
8362 if (! elfcore_grok_netbsd_note (abfd, &in))
8363 return FALSE;
8364 }
8365 else if (CONST_STRNEQ (in.namedata, "QNX"))
8366 {
8367 if (! elfcore_grok_nto_note (abfd, &in))
8368 return FALSE;
8369 }
8370 else if (CONST_STRNEQ (in.namedata, "SPU/"))
8371 {
8372 if (! elfcore_grok_spu_note (abfd, &in))
8373 return FALSE;
8374 }
8375 else
8376 {
8377 if (! elfcore_grok_note (abfd, &in))
8378 return FALSE;
8379 }
8380 break;
8381
8382 case bfd_object:
8383 if (in.namesz == sizeof "GNU" && strcmp (in.namedata, "GNU") == 0)
8384 {
8385 if (! elfobj_grok_gnu_note (abfd, &in))
8386 return FALSE;
8387 }
8388 break;
8389 }
8390
8391 p = in.descdata + BFD_ALIGN (in.descsz, 4);
8392 }
8393
8394 return TRUE;
8395 }
8396
8397 static bfd_boolean
8398 elf_read_notes (bfd *abfd, file_ptr offset, bfd_size_type size)
8399 {
8400 char *buf;
8401
8402 if (size <= 0)
8403 return TRUE;
8404
8405 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
8406 return FALSE;
8407
8408 buf = bfd_malloc (size);
8409 if (buf == NULL)
8410 return FALSE;
8411
8412 if (bfd_bread (buf, size, abfd) != size
8413 || !elf_parse_notes (abfd, buf, size, offset))
8414 {
8415 free (buf);
8416 return FALSE;
8417 }
8418
8419 free (buf);
8420 return TRUE;
8421 }
8422 \f
8423 /* Providing external access to the ELF program header table. */
8424
8425 /* Return an upper bound on the number of bytes required to store a
8426 copy of ABFD's program header table entries. Return -1 if an error
8427 occurs; bfd_get_error will return an appropriate code. */
8428
8429 long
8430 bfd_get_elf_phdr_upper_bound (bfd *abfd)
8431 {
8432 if (abfd->xvec->flavour != bfd_target_elf_flavour)
8433 {
8434 bfd_set_error (bfd_error_wrong_format);
8435 return -1;
8436 }
8437
8438 return elf_elfheader (abfd)->e_phnum * sizeof (Elf_Internal_Phdr);
8439 }
8440
8441 /* Copy ABFD's program header table entries to *PHDRS. The entries
8442 will be stored as an array of Elf_Internal_Phdr structures, as
8443 defined in include/elf/internal.h. To find out how large the
8444 buffer needs to be, call bfd_get_elf_phdr_upper_bound.
8445
8446 Return the number of program header table entries read, or -1 if an
8447 error occurs; bfd_get_error will return an appropriate code. */
8448
8449 int
8450 bfd_get_elf_phdrs (bfd *abfd, void *phdrs)
8451 {
8452 int num_phdrs;
8453
8454 if (abfd->xvec->flavour != bfd_target_elf_flavour)
8455 {
8456 bfd_set_error (bfd_error_wrong_format);
8457 return -1;
8458 }
8459
8460 num_phdrs = elf_elfheader (abfd)->e_phnum;
8461 memcpy (phdrs, elf_tdata (abfd)->phdr,
8462 num_phdrs * sizeof (Elf_Internal_Phdr));
8463
8464 return num_phdrs;
8465 }
8466
8467 enum elf_reloc_type_class
8468 _bfd_elf_reloc_type_class (const Elf_Internal_Rela *rela ATTRIBUTE_UNUSED)
8469 {
8470 return reloc_class_normal;
8471 }
8472
8473 /* For RELA architectures, return the relocation value for a
8474 relocation against a local symbol. */
8475
8476 bfd_vma
8477 _bfd_elf_rela_local_sym (bfd *abfd,
8478 Elf_Internal_Sym *sym,
8479 asection **psec,
8480 Elf_Internal_Rela *rel)
8481 {
8482 asection *sec = *psec;
8483 bfd_vma relocation;
8484
8485 relocation = (sec->output_section->vma
8486 + sec->output_offset
8487 + sym->st_value);
8488 if ((sec->flags & SEC_MERGE)
8489 && ELF_ST_TYPE (sym->st_info) == STT_SECTION
8490 && sec->sec_info_type == ELF_INFO_TYPE_MERGE)
8491 {
8492 rel->r_addend =
8493 _bfd_merged_section_offset (abfd, psec,
8494 elf_section_data (sec)->sec_info,
8495 sym->st_value + rel->r_addend);
8496 if (sec != *psec)
8497 {
8498 /* If we have changed the section, and our original section is
8499 marked with SEC_EXCLUDE, it means that the original
8500 SEC_MERGE section has been completely subsumed in some
8501 other SEC_MERGE section. In this case, we need to leave
8502 some info around for --emit-relocs. */
8503 if ((sec->flags & SEC_EXCLUDE) != 0)
8504 sec->kept_section = *psec;
8505 sec = *psec;
8506 }
8507 rel->r_addend -= relocation;
8508 rel->r_addend += sec->output_section->vma + sec->output_offset;
8509 }
8510 return relocation;
8511 }
8512
8513 bfd_vma
8514 _bfd_elf_rel_local_sym (bfd *abfd,
8515 Elf_Internal_Sym *sym,
8516 asection **psec,
8517 bfd_vma addend)
8518 {
8519 asection *sec = *psec;
8520
8521 if (sec->sec_info_type != ELF_INFO_TYPE_MERGE)
8522 return sym->st_value + addend;
8523
8524 return _bfd_merged_section_offset (abfd, psec,
8525 elf_section_data (sec)->sec_info,
8526 sym->st_value + addend);
8527 }
8528
8529 bfd_vma
8530 _bfd_elf_section_offset (bfd *abfd,
8531 struct bfd_link_info *info,
8532 asection *sec,
8533 bfd_vma offset)
8534 {
8535 switch (sec->sec_info_type)
8536 {
8537 case ELF_INFO_TYPE_STABS:
8538 return _bfd_stab_section_offset (sec, elf_section_data (sec)->sec_info,
8539 offset);
8540 case ELF_INFO_TYPE_EH_FRAME:
8541 return _bfd_elf_eh_frame_section_offset (abfd, info, sec, offset);
8542 default:
8543 return offset;
8544 }
8545 }
8546 \f
8547 /* Create a new BFD as if by bfd_openr. Rather than opening a file,
8548 reconstruct an ELF file by reading the segments out of remote memory
8549 based on the ELF file header at EHDR_VMA and the ELF program headers it
8550 points to. If not null, *LOADBASEP is filled in with the difference
8551 between the VMAs from which the segments were read, and the VMAs the
8552 file headers (and hence BFD's idea of each section's VMA) put them at.
8553
8554 The function TARGET_READ_MEMORY is called to copy LEN bytes from the
8555 remote memory at target address VMA into the local buffer at MYADDR; it
8556 should return zero on success or an `errno' code on failure. TEMPL must
8557 be a BFD for an ELF target with the word size and byte order found in
8558 the remote memory. */
8559
8560 bfd *
8561 bfd_elf_bfd_from_remote_memory
8562 (bfd *templ,
8563 bfd_vma ehdr_vma,
8564 bfd_vma *loadbasep,
8565 int (*target_read_memory) (bfd_vma, bfd_byte *, int))
8566 {
8567 return (*get_elf_backend_data (templ)->elf_backend_bfd_from_remote_memory)
8568 (templ, ehdr_vma, loadbasep, target_read_memory);
8569 }
8570 \f
8571 long
8572 _bfd_elf_get_synthetic_symtab (bfd *abfd,
8573 long symcount ATTRIBUTE_UNUSED,
8574 asymbol **syms ATTRIBUTE_UNUSED,
8575 long dynsymcount,
8576 asymbol **dynsyms,
8577 asymbol **ret)
8578 {
8579 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8580 asection *relplt;
8581 asymbol *s;
8582 const char *relplt_name;
8583 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
8584 arelent *p;
8585 long count, i, n;
8586 size_t size;
8587 Elf_Internal_Shdr *hdr;
8588 char *names;
8589 asection *plt;
8590
8591 *ret = NULL;
8592
8593 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0)
8594 return 0;
8595
8596 if (dynsymcount <= 0)
8597 return 0;
8598
8599 if (!bed->plt_sym_val)
8600 return 0;
8601
8602 relplt_name = bed->relplt_name;
8603 if (relplt_name == NULL)
8604 relplt_name = bed->default_use_rela_p ? ".rela.plt" : ".rel.plt";
8605 relplt = bfd_get_section_by_name (abfd, relplt_name);
8606 if (relplt == NULL)
8607 return 0;
8608
8609 hdr = &elf_section_data (relplt)->this_hdr;
8610 if (hdr->sh_link != elf_dynsymtab (abfd)
8611 || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA))
8612 return 0;
8613
8614 plt = bfd_get_section_by_name (abfd, ".plt");
8615 if (plt == NULL)
8616 return 0;
8617
8618 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
8619 if (! (*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
8620 return -1;
8621
8622 count = relplt->size / hdr->sh_entsize;
8623 size = count * sizeof (asymbol);
8624 p = relplt->relocation;
8625 for (i = 0; i < count; i++, p++)
8626 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
8627
8628 s = *ret = bfd_malloc (size);
8629 if (s == NULL)
8630 return -1;
8631
8632 names = (char *) (s + count);
8633 p = relplt->relocation;
8634 n = 0;
8635 for (i = 0; i < count; i++, s++, p++)
8636 {
8637 size_t len;
8638 bfd_vma addr;
8639
8640 addr = bed->plt_sym_val (i, plt, p);
8641 if (addr == (bfd_vma) -1)
8642 continue;
8643
8644 *s = **p->sym_ptr_ptr;
8645 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
8646 we are defining a symbol, ensure one of them is set. */
8647 if ((s->flags & BSF_LOCAL) == 0)
8648 s->flags |= BSF_GLOBAL;
8649 s->section = plt;
8650 s->value = addr - plt->vma;
8651 s->name = names;
8652 len = strlen ((*p->sym_ptr_ptr)->name);
8653 memcpy (names, (*p->sym_ptr_ptr)->name, len);
8654 names += len;
8655 memcpy (names, "@plt", sizeof ("@plt"));
8656 names += sizeof ("@plt");
8657 ++n;
8658 }
8659
8660 return n;
8661 }
8662
8663 /* It is only used by x86-64 so far. */
8664 asection _bfd_elf_large_com_section
8665 = BFD_FAKE_SECTION (_bfd_elf_large_com_section,
8666 SEC_IS_COMMON, NULL, "LARGE_COMMON", 0);
8667
8668 void
8669 _bfd_elf_set_osabi (bfd * abfd,
8670 struct bfd_link_info * link_info ATTRIBUTE_UNUSED)
8671 {
8672 Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */
8673
8674 i_ehdrp = elf_elfheader (abfd);
8675
8676 i_ehdrp->e_ident[EI_OSABI] = get_elf_backend_data (abfd)->elf_osabi;
8677 }
8678
8679
8680 /* Return TRUE for ELF symbol types that represent functions.
8681 This is the default version of this function, which is sufficient for
8682 most targets. It returns true if TYPE is STT_FUNC. */
8683
8684 bfd_boolean
8685 _bfd_elf_is_function_type (unsigned int type)
8686 {
8687 return (type == STT_FUNC);
8688 }
This page took 0.430227 seconds and 4 git commands to generate.