* stabs.c (_bfd_link_section_stabs): Use bfd_make_section*_with_flags
[deliverable/binutils-gdb.git] / bfd / elf.c
1 /* ELF executable support for BFD.
2
3 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
4 2002, 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
5
6 This file is part of BFD, the Binary File Descriptor library.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
21
22 /*
23 SECTION
24 ELF backends
25
26 BFD support for ELF formats is being worked on.
27 Currently, the best supported back ends are for sparc and i386
28 (running svr4 or Solaris 2).
29
30 Documentation of the internals of the support code still needs
31 to be written. The code is changing quickly enough that we
32 haven't bothered yet. */
33
34 /* For sparc64-cross-sparc32. */
35 #define _SYSCALL32
36 #include "bfd.h"
37 #include "sysdep.h"
38 #include "bfdlink.h"
39 #include "libbfd.h"
40 #define ARCH_SIZE 0
41 #include "elf-bfd.h"
42 #include "libiberty.h"
43
44 static int elf_sort_sections (const void *, const void *);
45 static bfd_boolean assign_file_positions_except_relocs (bfd *, struct bfd_link_info *);
46 static bfd_boolean prep_headers (bfd *);
47 static bfd_boolean swap_out_syms (bfd *, struct bfd_strtab_hash **, int) ;
48 static bfd_boolean elfcore_read_notes (bfd *, file_ptr, bfd_size_type) ;
49
50 /* Swap version information in and out. The version information is
51 currently size independent. If that ever changes, this code will
52 need to move into elfcode.h. */
53
54 /* Swap in a Verdef structure. */
55
56 void
57 _bfd_elf_swap_verdef_in (bfd *abfd,
58 const Elf_External_Verdef *src,
59 Elf_Internal_Verdef *dst)
60 {
61 dst->vd_version = H_GET_16 (abfd, src->vd_version);
62 dst->vd_flags = H_GET_16 (abfd, src->vd_flags);
63 dst->vd_ndx = H_GET_16 (abfd, src->vd_ndx);
64 dst->vd_cnt = H_GET_16 (abfd, src->vd_cnt);
65 dst->vd_hash = H_GET_32 (abfd, src->vd_hash);
66 dst->vd_aux = H_GET_32 (abfd, src->vd_aux);
67 dst->vd_next = H_GET_32 (abfd, src->vd_next);
68 }
69
70 /* Swap out a Verdef structure. */
71
72 void
73 _bfd_elf_swap_verdef_out (bfd *abfd,
74 const Elf_Internal_Verdef *src,
75 Elf_External_Verdef *dst)
76 {
77 H_PUT_16 (abfd, src->vd_version, dst->vd_version);
78 H_PUT_16 (abfd, src->vd_flags, dst->vd_flags);
79 H_PUT_16 (abfd, src->vd_ndx, dst->vd_ndx);
80 H_PUT_16 (abfd, src->vd_cnt, dst->vd_cnt);
81 H_PUT_32 (abfd, src->vd_hash, dst->vd_hash);
82 H_PUT_32 (abfd, src->vd_aux, dst->vd_aux);
83 H_PUT_32 (abfd, src->vd_next, dst->vd_next);
84 }
85
86 /* Swap in a Verdaux structure. */
87
88 void
89 _bfd_elf_swap_verdaux_in (bfd *abfd,
90 const Elf_External_Verdaux *src,
91 Elf_Internal_Verdaux *dst)
92 {
93 dst->vda_name = H_GET_32 (abfd, src->vda_name);
94 dst->vda_next = H_GET_32 (abfd, src->vda_next);
95 }
96
97 /* Swap out a Verdaux structure. */
98
99 void
100 _bfd_elf_swap_verdaux_out (bfd *abfd,
101 const Elf_Internal_Verdaux *src,
102 Elf_External_Verdaux *dst)
103 {
104 H_PUT_32 (abfd, src->vda_name, dst->vda_name);
105 H_PUT_32 (abfd, src->vda_next, dst->vda_next);
106 }
107
108 /* Swap in a Verneed structure. */
109
110 void
111 _bfd_elf_swap_verneed_in (bfd *abfd,
112 const Elf_External_Verneed *src,
113 Elf_Internal_Verneed *dst)
114 {
115 dst->vn_version = H_GET_16 (abfd, src->vn_version);
116 dst->vn_cnt = H_GET_16 (abfd, src->vn_cnt);
117 dst->vn_file = H_GET_32 (abfd, src->vn_file);
118 dst->vn_aux = H_GET_32 (abfd, src->vn_aux);
119 dst->vn_next = H_GET_32 (abfd, src->vn_next);
120 }
121
122 /* Swap out a Verneed structure. */
123
124 void
125 _bfd_elf_swap_verneed_out (bfd *abfd,
126 const Elf_Internal_Verneed *src,
127 Elf_External_Verneed *dst)
128 {
129 H_PUT_16 (abfd, src->vn_version, dst->vn_version);
130 H_PUT_16 (abfd, src->vn_cnt, dst->vn_cnt);
131 H_PUT_32 (abfd, src->vn_file, dst->vn_file);
132 H_PUT_32 (abfd, src->vn_aux, dst->vn_aux);
133 H_PUT_32 (abfd, src->vn_next, dst->vn_next);
134 }
135
136 /* Swap in a Vernaux structure. */
137
138 void
139 _bfd_elf_swap_vernaux_in (bfd *abfd,
140 const Elf_External_Vernaux *src,
141 Elf_Internal_Vernaux *dst)
142 {
143 dst->vna_hash = H_GET_32 (abfd, src->vna_hash);
144 dst->vna_flags = H_GET_16 (abfd, src->vna_flags);
145 dst->vna_other = H_GET_16 (abfd, src->vna_other);
146 dst->vna_name = H_GET_32 (abfd, src->vna_name);
147 dst->vna_next = H_GET_32 (abfd, src->vna_next);
148 }
149
150 /* Swap out a Vernaux structure. */
151
152 void
153 _bfd_elf_swap_vernaux_out (bfd *abfd,
154 const Elf_Internal_Vernaux *src,
155 Elf_External_Vernaux *dst)
156 {
157 H_PUT_32 (abfd, src->vna_hash, dst->vna_hash);
158 H_PUT_16 (abfd, src->vna_flags, dst->vna_flags);
159 H_PUT_16 (abfd, src->vna_other, dst->vna_other);
160 H_PUT_32 (abfd, src->vna_name, dst->vna_name);
161 H_PUT_32 (abfd, src->vna_next, dst->vna_next);
162 }
163
164 /* Swap in a Versym structure. */
165
166 void
167 _bfd_elf_swap_versym_in (bfd *abfd,
168 const Elf_External_Versym *src,
169 Elf_Internal_Versym *dst)
170 {
171 dst->vs_vers = H_GET_16 (abfd, src->vs_vers);
172 }
173
174 /* Swap out a Versym structure. */
175
176 void
177 _bfd_elf_swap_versym_out (bfd *abfd,
178 const Elf_Internal_Versym *src,
179 Elf_External_Versym *dst)
180 {
181 H_PUT_16 (abfd, src->vs_vers, dst->vs_vers);
182 }
183
184 /* Standard ELF hash function. Do not change this function; you will
185 cause invalid hash tables to be generated. */
186
187 unsigned long
188 bfd_elf_hash (const char *namearg)
189 {
190 const unsigned char *name = (const unsigned char *) namearg;
191 unsigned long h = 0;
192 unsigned long g;
193 int ch;
194
195 while ((ch = *name++) != '\0')
196 {
197 h = (h << 4) + ch;
198 if ((g = (h & 0xf0000000)) != 0)
199 {
200 h ^= g >> 24;
201 /* The ELF ABI says `h &= ~g', but this is equivalent in
202 this case and on some machines one insn instead of two. */
203 h ^= g;
204 }
205 }
206 return h & 0xffffffff;
207 }
208
209 bfd_boolean
210 bfd_elf_mkobject (bfd *abfd)
211 {
212 /* This just does initialization. */
213 /* coff_mkobject zalloc's space for tdata.coff_obj_data ... */
214 elf_tdata (abfd) = bfd_zalloc (abfd, sizeof (struct elf_obj_tdata));
215 if (elf_tdata (abfd) == 0)
216 return FALSE;
217 /* Since everything is done at close time, do we need any
218 initialization? */
219
220 return TRUE;
221 }
222
223 bfd_boolean
224 bfd_elf_mkcorefile (bfd *abfd)
225 {
226 /* I think this can be done just like an object file. */
227 return bfd_elf_mkobject (abfd);
228 }
229
230 char *
231 bfd_elf_get_str_section (bfd *abfd, unsigned int shindex)
232 {
233 Elf_Internal_Shdr **i_shdrp;
234 bfd_byte *shstrtab = NULL;
235 file_ptr offset;
236 bfd_size_type shstrtabsize;
237
238 i_shdrp = elf_elfsections (abfd);
239 if (i_shdrp == 0 || i_shdrp[shindex] == 0)
240 return NULL;
241
242 shstrtab = i_shdrp[shindex]->contents;
243 if (shstrtab == NULL)
244 {
245 /* No cached one, attempt to read, and cache what we read. */
246 offset = i_shdrp[shindex]->sh_offset;
247 shstrtabsize = i_shdrp[shindex]->sh_size;
248
249 /* Allocate and clear an extra byte at the end, to prevent crashes
250 in case the string table is not terminated. */
251 if (shstrtabsize + 1 == 0
252 || (shstrtab = bfd_alloc (abfd, shstrtabsize + 1)) == NULL
253 || bfd_seek (abfd, offset, SEEK_SET) != 0)
254 shstrtab = NULL;
255 else if (bfd_bread (shstrtab, shstrtabsize, abfd) != shstrtabsize)
256 {
257 if (bfd_get_error () != bfd_error_system_call)
258 bfd_set_error (bfd_error_file_truncated);
259 shstrtab = NULL;
260 }
261 else
262 shstrtab[shstrtabsize] = '\0';
263 i_shdrp[shindex]->contents = shstrtab;
264 }
265 return (char *) shstrtab;
266 }
267
268 char *
269 bfd_elf_string_from_elf_section (bfd *abfd,
270 unsigned int shindex,
271 unsigned int strindex)
272 {
273 Elf_Internal_Shdr *hdr;
274
275 if (strindex == 0)
276 return "";
277
278 hdr = elf_elfsections (abfd)[shindex];
279
280 if (hdr->contents == NULL
281 && bfd_elf_get_str_section (abfd, shindex) == NULL)
282 return NULL;
283
284 if (strindex >= hdr->sh_size)
285 {
286 unsigned int shstrndx = elf_elfheader(abfd)->e_shstrndx;
287 (*_bfd_error_handler)
288 (_("%B: invalid string offset %u >= %lu for section `%s'"),
289 abfd, strindex, (unsigned long) hdr->sh_size,
290 (shindex == shstrndx && strindex == hdr->sh_name
291 ? ".shstrtab"
292 : bfd_elf_string_from_elf_section (abfd, shstrndx, hdr->sh_name)));
293 return "";
294 }
295
296 return ((char *) hdr->contents) + strindex;
297 }
298
299 /* Read and convert symbols to internal format.
300 SYMCOUNT specifies the number of symbols to read, starting from
301 symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF
302 are non-NULL, they are used to store the internal symbols, external
303 symbols, and symbol section index extensions, respectively. */
304
305 Elf_Internal_Sym *
306 bfd_elf_get_elf_syms (bfd *ibfd,
307 Elf_Internal_Shdr *symtab_hdr,
308 size_t symcount,
309 size_t symoffset,
310 Elf_Internal_Sym *intsym_buf,
311 void *extsym_buf,
312 Elf_External_Sym_Shndx *extshndx_buf)
313 {
314 Elf_Internal_Shdr *shndx_hdr;
315 void *alloc_ext;
316 const bfd_byte *esym;
317 Elf_External_Sym_Shndx *alloc_extshndx;
318 Elf_External_Sym_Shndx *shndx;
319 Elf_Internal_Sym *isym;
320 Elf_Internal_Sym *isymend;
321 const struct elf_backend_data *bed;
322 size_t extsym_size;
323 bfd_size_type amt;
324 file_ptr pos;
325
326 if (symcount == 0)
327 return intsym_buf;
328
329 /* Normal syms might have section extension entries. */
330 shndx_hdr = NULL;
331 if (symtab_hdr == &elf_tdata (ibfd)->symtab_hdr)
332 shndx_hdr = &elf_tdata (ibfd)->symtab_shndx_hdr;
333
334 /* Read the symbols. */
335 alloc_ext = NULL;
336 alloc_extshndx = NULL;
337 bed = get_elf_backend_data (ibfd);
338 extsym_size = bed->s->sizeof_sym;
339 amt = symcount * extsym_size;
340 pos = symtab_hdr->sh_offset + symoffset * extsym_size;
341 if (extsym_buf == NULL)
342 {
343 alloc_ext = bfd_malloc2 (symcount, extsym_size);
344 extsym_buf = alloc_ext;
345 }
346 if (extsym_buf == NULL
347 || bfd_seek (ibfd, pos, SEEK_SET) != 0
348 || bfd_bread (extsym_buf, amt, ibfd) != amt)
349 {
350 intsym_buf = NULL;
351 goto out;
352 }
353
354 if (shndx_hdr == NULL || shndx_hdr->sh_size == 0)
355 extshndx_buf = NULL;
356 else
357 {
358 amt = symcount * sizeof (Elf_External_Sym_Shndx);
359 pos = shndx_hdr->sh_offset + symoffset * sizeof (Elf_External_Sym_Shndx);
360 if (extshndx_buf == NULL)
361 {
362 alloc_extshndx = bfd_malloc2 (symcount,
363 sizeof (Elf_External_Sym_Shndx));
364 extshndx_buf = alloc_extshndx;
365 }
366 if (extshndx_buf == NULL
367 || bfd_seek (ibfd, pos, SEEK_SET) != 0
368 || bfd_bread (extshndx_buf, amt, ibfd) != amt)
369 {
370 intsym_buf = NULL;
371 goto out;
372 }
373 }
374
375 if (intsym_buf == NULL)
376 {
377 intsym_buf = bfd_malloc2 (symcount, sizeof (Elf_Internal_Sym));
378 if (intsym_buf == NULL)
379 goto out;
380 }
381
382 /* Convert the symbols to internal form. */
383 isymend = intsym_buf + symcount;
384 for (esym = extsym_buf, isym = intsym_buf, shndx = extshndx_buf;
385 isym < isymend;
386 esym += extsym_size, isym++, shndx = shndx != NULL ? shndx + 1 : NULL)
387 (*bed->s->swap_symbol_in) (ibfd, esym, shndx, isym);
388
389 out:
390 if (alloc_ext != NULL)
391 free (alloc_ext);
392 if (alloc_extshndx != NULL)
393 free (alloc_extshndx);
394
395 return intsym_buf;
396 }
397
398 /* Look up a symbol name. */
399 const char *
400 bfd_elf_sym_name (bfd *abfd,
401 Elf_Internal_Shdr *symtab_hdr,
402 Elf_Internal_Sym *isym,
403 asection *sym_sec)
404 {
405 const char *name;
406 unsigned int iname = isym->st_name;
407 unsigned int shindex = symtab_hdr->sh_link;
408
409 if (iname == 0 && ELF_ST_TYPE (isym->st_info) == STT_SECTION
410 /* Check for a bogus st_shndx to avoid crashing. */
411 && isym->st_shndx < elf_numsections (abfd)
412 && !(isym->st_shndx >= SHN_LORESERVE && isym->st_shndx <= SHN_HIRESERVE))
413 {
414 iname = elf_elfsections (abfd)[isym->st_shndx]->sh_name;
415 shindex = elf_elfheader (abfd)->e_shstrndx;
416 }
417
418 name = bfd_elf_string_from_elf_section (abfd, shindex, iname);
419 if (name == NULL)
420 name = "(null)";
421 else if (sym_sec && *name == '\0')
422 name = bfd_section_name (abfd, sym_sec);
423
424 return name;
425 }
426
427 /* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
428 sections. The first element is the flags, the rest are section
429 pointers. */
430
431 typedef union elf_internal_group {
432 Elf_Internal_Shdr *shdr;
433 unsigned int flags;
434 } Elf_Internal_Group;
435
436 /* Return the name of the group signature symbol. Why isn't the
437 signature just a string? */
438
439 static const char *
440 group_signature (bfd *abfd, Elf_Internal_Shdr *ghdr)
441 {
442 Elf_Internal_Shdr *hdr;
443 unsigned char esym[sizeof (Elf64_External_Sym)];
444 Elf_External_Sym_Shndx eshndx;
445 Elf_Internal_Sym isym;
446
447 /* First we need to ensure the symbol table is available. Make sure
448 that it is a symbol table section. */
449 hdr = elf_elfsections (abfd) [ghdr->sh_link];
450 if (hdr->sh_type != SHT_SYMTAB
451 || ! bfd_section_from_shdr (abfd, ghdr->sh_link))
452 return NULL;
453
454 /* Go read the symbol. */
455 hdr = &elf_tdata (abfd)->symtab_hdr;
456 if (bfd_elf_get_elf_syms (abfd, hdr, 1, ghdr->sh_info,
457 &isym, esym, &eshndx) == NULL)
458 return NULL;
459
460 return bfd_elf_sym_name (abfd, hdr, &isym, NULL);
461 }
462
463 /* Set next_in_group list pointer, and group name for NEWSECT. */
464
465 static bfd_boolean
466 setup_group (bfd *abfd, Elf_Internal_Shdr *hdr, asection *newsect)
467 {
468 unsigned int num_group = elf_tdata (abfd)->num_group;
469
470 /* If num_group is zero, read in all SHT_GROUP sections. The count
471 is set to -1 if there are no SHT_GROUP sections. */
472 if (num_group == 0)
473 {
474 unsigned int i, shnum;
475
476 /* First count the number of groups. If we have a SHT_GROUP
477 section with just a flag word (ie. sh_size is 4), ignore it. */
478 shnum = elf_numsections (abfd);
479 num_group = 0;
480 for (i = 0; i < shnum; i++)
481 {
482 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
483 if (shdr->sh_type == SHT_GROUP && shdr->sh_size >= 8)
484 num_group += 1;
485 }
486
487 if (num_group == 0)
488 {
489 num_group = (unsigned) -1;
490 elf_tdata (abfd)->num_group = num_group;
491 }
492 else
493 {
494 /* We keep a list of elf section headers for group sections,
495 so we can find them quickly. */
496 bfd_size_type amt;
497
498 elf_tdata (abfd)->num_group = num_group;
499 elf_tdata (abfd)->group_sect_ptr
500 = bfd_alloc2 (abfd, num_group, sizeof (Elf_Internal_Shdr *));
501 if (elf_tdata (abfd)->group_sect_ptr == NULL)
502 return FALSE;
503
504 num_group = 0;
505 for (i = 0; i < shnum; i++)
506 {
507 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
508 if (shdr->sh_type == SHT_GROUP && shdr->sh_size >= 8)
509 {
510 unsigned char *src;
511 Elf_Internal_Group *dest;
512
513 /* Add to list of sections. */
514 elf_tdata (abfd)->group_sect_ptr[num_group] = shdr;
515 num_group += 1;
516
517 /* Read the raw contents. */
518 BFD_ASSERT (sizeof (*dest) >= 4);
519 amt = shdr->sh_size * sizeof (*dest) / 4;
520 shdr->contents = bfd_alloc2 (abfd, shdr->sh_size,
521 sizeof (*dest) / 4);
522 if (shdr->contents == NULL
523 || bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0
524 || (bfd_bread (shdr->contents, shdr->sh_size, abfd)
525 != shdr->sh_size))
526 return FALSE;
527
528 /* Translate raw contents, a flag word followed by an
529 array of elf section indices all in target byte order,
530 to the flag word followed by an array of elf section
531 pointers. */
532 src = shdr->contents + shdr->sh_size;
533 dest = (Elf_Internal_Group *) (shdr->contents + amt);
534 while (1)
535 {
536 unsigned int idx;
537
538 src -= 4;
539 --dest;
540 idx = H_GET_32 (abfd, src);
541 if (src == shdr->contents)
542 {
543 dest->flags = idx;
544 if (shdr->bfd_section != NULL && (idx & GRP_COMDAT))
545 shdr->bfd_section->flags
546 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
547 break;
548 }
549 if (idx >= shnum)
550 {
551 ((*_bfd_error_handler)
552 (_("%B: invalid SHT_GROUP entry"), abfd));
553 idx = 0;
554 }
555 dest->shdr = elf_elfsections (abfd)[idx];
556 }
557 }
558 }
559 }
560 }
561
562 if (num_group != (unsigned) -1)
563 {
564 unsigned int i;
565
566 for (i = 0; i < num_group; i++)
567 {
568 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
569 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
570 unsigned int n_elt = shdr->sh_size / 4;
571
572 /* Look through this group's sections to see if current
573 section is a member. */
574 while (--n_elt != 0)
575 if ((++idx)->shdr == hdr)
576 {
577 asection *s = NULL;
578
579 /* We are a member of this group. Go looking through
580 other members to see if any others are linked via
581 next_in_group. */
582 idx = (Elf_Internal_Group *) shdr->contents;
583 n_elt = shdr->sh_size / 4;
584 while (--n_elt != 0)
585 if ((s = (++idx)->shdr->bfd_section) != NULL
586 && elf_next_in_group (s) != NULL)
587 break;
588 if (n_elt != 0)
589 {
590 /* Snarf the group name from other member, and
591 insert current section in circular list. */
592 elf_group_name (newsect) = elf_group_name (s);
593 elf_next_in_group (newsect) = elf_next_in_group (s);
594 elf_next_in_group (s) = newsect;
595 }
596 else
597 {
598 const char *gname;
599
600 gname = group_signature (abfd, shdr);
601 if (gname == NULL)
602 return FALSE;
603 elf_group_name (newsect) = gname;
604
605 /* Start a circular list with one element. */
606 elf_next_in_group (newsect) = newsect;
607 }
608
609 /* If the group section has been created, point to the
610 new member. */
611 if (shdr->bfd_section != NULL)
612 elf_next_in_group (shdr->bfd_section) = newsect;
613
614 i = num_group - 1;
615 break;
616 }
617 }
618 }
619
620 if (elf_group_name (newsect) == NULL)
621 {
622 (*_bfd_error_handler) (_("%B: no group info for section %A"),
623 abfd, newsect);
624 }
625 return TRUE;
626 }
627
628 bfd_boolean
629 _bfd_elf_setup_sections (bfd *abfd)
630 {
631 unsigned int i;
632 unsigned int num_group = elf_tdata (abfd)->num_group;
633 bfd_boolean result = TRUE;
634 asection *s;
635
636 /* Process SHF_LINK_ORDER. */
637 for (s = abfd->sections; s != NULL; s = s->next)
638 {
639 Elf_Internal_Shdr *this_hdr = &elf_section_data (s)->this_hdr;
640 if ((this_hdr->sh_flags & SHF_LINK_ORDER) != 0)
641 {
642 unsigned int elfsec = this_hdr->sh_link;
643 /* FIXME: The old Intel compiler and old strip/objcopy may
644 not set the sh_link or sh_info fields. Hence we could
645 get the situation where elfsec is 0. */
646 if (elfsec == 0)
647 {
648 const struct elf_backend_data *bed
649 = get_elf_backend_data (abfd);
650 if (bed->link_order_error_handler)
651 bed->link_order_error_handler
652 (_("%B: warning: sh_link not set for section `%A'"),
653 abfd, s);
654 }
655 else
656 {
657 asection *link;
658
659 this_hdr = elf_elfsections (abfd)[elfsec];
660
661 /* PR 1991, 2008:
662 Some strip/objcopy may leave an incorrect value in
663 sh_link. We don't want to proceed. */
664 link = this_hdr->bfd_section;
665 if (link == NULL)
666 {
667 (*_bfd_error_handler)
668 (_("%B: sh_link [%d] in section `%A' is incorrect"),
669 s->owner, s, elfsec);
670 result = FALSE;
671 }
672
673 elf_linked_to_section (s) = link;
674 }
675 }
676 }
677
678 /* Process section groups. */
679 if (num_group == (unsigned) -1)
680 return result;
681
682 for (i = 0; i < num_group; i++)
683 {
684 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
685 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
686 unsigned int n_elt = shdr->sh_size / 4;
687
688 while (--n_elt != 0)
689 if ((++idx)->shdr->bfd_section)
690 elf_sec_group (idx->shdr->bfd_section) = shdr->bfd_section;
691 else if (idx->shdr->sh_type == SHT_RELA
692 || idx->shdr->sh_type == SHT_REL)
693 /* We won't include relocation sections in section groups in
694 output object files. We adjust the group section size here
695 so that relocatable link will work correctly when
696 relocation sections are in section group in input object
697 files. */
698 shdr->bfd_section->size -= 4;
699 else
700 {
701 /* There are some unknown sections in the group. */
702 (*_bfd_error_handler)
703 (_("%B: unknown [%d] section `%s' in group [%s]"),
704 abfd,
705 (unsigned int) idx->shdr->sh_type,
706 bfd_elf_string_from_elf_section (abfd,
707 (elf_elfheader (abfd)
708 ->e_shstrndx),
709 idx->shdr->sh_name),
710 shdr->bfd_section->name);
711 result = FALSE;
712 }
713 }
714 return result;
715 }
716
717 bfd_boolean
718 bfd_elf_is_group_section (bfd *abfd ATTRIBUTE_UNUSED, const asection *sec)
719 {
720 return elf_next_in_group (sec) != NULL;
721 }
722
723 /* Make a BFD section from an ELF section. We store a pointer to the
724 BFD section in the bfd_section field of the header. */
725
726 bfd_boolean
727 _bfd_elf_make_section_from_shdr (bfd *abfd,
728 Elf_Internal_Shdr *hdr,
729 const char *name,
730 int shindex)
731 {
732 asection *newsect;
733 flagword flags;
734 const struct elf_backend_data *bed;
735
736 if (hdr->bfd_section != NULL)
737 {
738 BFD_ASSERT (strcmp (name,
739 bfd_get_section_name (abfd, hdr->bfd_section)) == 0);
740 return TRUE;
741 }
742
743 newsect = bfd_make_section_anyway (abfd, name);
744 if (newsect == NULL)
745 return FALSE;
746
747 hdr->bfd_section = newsect;
748 elf_section_data (newsect)->this_hdr = *hdr;
749 elf_section_data (newsect)->this_idx = shindex;
750
751 /* Always use the real type/flags. */
752 elf_section_type (newsect) = hdr->sh_type;
753 elf_section_flags (newsect) = hdr->sh_flags;
754
755 newsect->filepos = hdr->sh_offset;
756
757 if (! bfd_set_section_vma (abfd, newsect, hdr->sh_addr)
758 || ! bfd_set_section_size (abfd, newsect, hdr->sh_size)
759 || ! bfd_set_section_alignment (abfd, newsect,
760 bfd_log2 ((bfd_vma) hdr->sh_addralign)))
761 return FALSE;
762
763 flags = SEC_NO_FLAGS;
764 if (hdr->sh_type != SHT_NOBITS)
765 flags |= SEC_HAS_CONTENTS;
766 if (hdr->sh_type == SHT_GROUP)
767 flags |= SEC_GROUP | SEC_EXCLUDE;
768 if ((hdr->sh_flags & SHF_ALLOC) != 0)
769 {
770 flags |= SEC_ALLOC;
771 if (hdr->sh_type != SHT_NOBITS)
772 flags |= SEC_LOAD;
773 }
774 if ((hdr->sh_flags & SHF_WRITE) == 0)
775 flags |= SEC_READONLY;
776 if ((hdr->sh_flags & SHF_EXECINSTR) != 0)
777 flags |= SEC_CODE;
778 else if ((flags & SEC_LOAD) != 0)
779 flags |= SEC_DATA;
780 if ((hdr->sh_flags & SHF_MERGE) != 0)
781 {
782 flags |= SEC_MERGE;
783 newsect->entsize = hdr->sh_entsize;
784 if ((hdr->sh_flags & SHF_STRINGS) != 0)
785 flags |= SEC_STRINGS;
786 }
787 if (hdr->sh_flags & SHF_GROUP)
788 if (!setup_group (abfd, hdr, newsect))
789 return FALSE;
790 if ((hdr->sh_flags & SHF_TLS) != 0)
791 flags |= SEC_THREAD_LOCAL;
792
793 if ((flags & SEC_ALLOC) == 0)
794 {
795 /* The debugging sections appear to be recognized only by name,
796 not any sort of flag. Their SEC_ALLOC bits are cleared. */
797 static const struct
798 {
799 const char *name;
800 int len;
801 } debug_sections [] =
802 {
803 { "debug", 5 }, /* 'd' */
804 { NULL, 0 }, /* 'e' */
805 { NULL, 0 }, /* 'f' */
806 { "gnu.linkonce.wi.", 17 }, /* 'g' */
807 { NULL, 0 }, /* 'h' */
808 { NULL, 0 }, /* 'i' */
809 { NULL, 0 }, /* 'j' */
810 { NULL, 0 }, /* 'k' */
811 { "line", 4 }, /* 'l' */
812 { NULL, 0 }, /* 'm' */
813 { NULL, 0 }, /* 'n' */
814 { NULL, 0 }, /* 'o' */
815 { NULL, 0 }, /* 'p' */
816 { NULL, 0 }, /* 'q' */
817 { NULL, 0 }, /* 'r' */
818 { "stab", 4 } /* 's' */
819 };
820
821 if (name [0] == '.')
822 {
823 int i = name [1] - 'd';
824 if (i >= 0
825 && i < (int) ARRAY_SIZE (debug_sections)
826 && debug_sections [i].name != NULL
827 && strncmp (&name [1], debug_sections [i].name,
828 debug_sections [i].len) == 0)
829 flags |= SEC_DEBUGGING;
830 }
831 }
832
833 /* As a GNU extension, if the name begins with .gnu.linkonce, we
834 only link a single copy of the section. This is used to support
835 g++. g++ will emit each template expansion in its own section.
836 The symbols will be defined as weak, so that multiple definitions
837 are permitted. The GNU linker extension is to actually discard
838 all but one of the sections. */
839 if (strncmp (name, ".gnu.linkonce", sizeof ".gnu.linkonce" - 1) == 0
840 && elf_next_in_group (newsect) == NULL)
841 flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
842
843 bed = get_elf_backend_data (abfd);
844 if (bed->elf_backend_section_flags)
845 if (! bed->elf_backend_section_flags (&flags, hdr))
846 return FALSE;
847
848 if (! bfd_set_section_flags (abfd, newsect, flags))
849 return FALSE;
850
851 if ((flags & SEC_ALLOC) != 0)
852 {
853 Elf_Internal_Phdr *phdr;
854 unsigned int i;
855
856 /* Look through the phdrs to see if we need to adjust the lma.
857 If all the p_paddr fields are zero, we ignore them, since
858 some ELF linkers produce such output. */
859 phdr = elf_tdata (abfd)->phdr;
860 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
861 {
862 if (phdr->p_paddr != 0)
863 break;
864 }
865 if (i < elf_elfheader (abfd)->e_phnum)
866 {
867 phdr = elf_tdata (abfd)->phdr;
868 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
869 {
870 /* This section is part of this segment if its file
871 offset plus size lies within the segment's memory
872 span and, if the section is loaded, the extent of the
873 loaded data lies within the extent of the segment.
874
875 Note - we used to check the p_paddr field as well, and
876 refuse to set the LMA if it was 0. This is wrong
877 though, as a perfectly valid initialised segment can
878 have a p_paddr of zero. Some architectures, eg ARM,
879 place special significance on the address 0 and
880 executables need to be able to have a segment which
881 covers this address. */
882 if (phdr->p_type == PT_LOAD
883 && (bfd_vma) hdr->sh_offset >= phdr->p_offset
884 && (hdr->sh_offset + hdr->sh_size
885 <= phdr->p_offset + phdr->p_memsz)
886 && ((flags & SEC_LOAD) == 0
887 || (hdr->sh_offset + hdr->sh_size
888 <= phdr->p_offset + phdr->p_filesz)))
889 {
890 if ((flags & SEC_LOAD) == 0)
891 newsect->lma = (phdr->p_paddr
892 + hdr->sh_addr - phdr->p_vaddr);
893 else
894 /* We used to use the same adjustment for SEC_LOAD
895 sections, but that doesn't work if the segment
896 is packed with code from multiple VMAs.
897 Instead we calculate the section LMA based on
898 the segment LMA. It is assumed that the
899 segment will contain sections with contiguous
900 LMAs, even if the VMAs are not. */
901 newsect->lma = (phdr->p_paddr
902 + hdr->sh_offset - phdr->p_offset);
903
904 /* With contiguous segments, we can't tell from file
905 offsets whether a section with zero size should
906 be placed at the end of one segment or the
907 beginning of the next. Decide based on vaddr. */
908 if (hdr->sh_addr >= phdr->p_vaddr
909 && (hdr->sh_addr + hdr->sh_size
910 <= phdr->p_vaddr + phdr->p_memsz))
911 break;
912 }
913 }
914 }
915 }
916
917 return TRUE;
918 }
919
920 /*
921 INTERNAL_FUNCTION
922 bfd_elf_find_section
923
924 SYNOPSIS
925 struct elf_internal_shdr *bfd_elf_find_section (bfd *abfd, char *name);
926
927 DESCRIPTION
928 Helper functions for GDB to locate the string tables.
929 Since BFD hides string tables from callers, GDB needs to use an
930 internal hook to find them. Sun's .stabstr, in particular,
931 isn't even pointed to by the .stab section, so ordinary
932 mechanisms wouldn't work to find it, even if we had some.
933 */
934
935 struct elf_internal_shdr *
936 bfd_elf_find_section (bfd *abfd, char *name)
937 {
938 Elf_Internal_Shdr **i_shdrp;
939 char *shstrtab;
940 unsigned int max;
941 unsigned int i;
942
943 i_shdrp = elf_elfsections (abfd);
944 if (i_shdrp != NULL)
945 {
946 shstrtab = bfd_elf_get_str_section (abfd,
947 elf_elfheader (abfd)->e_shstrndx);
948 if (shstrtab != NULL)
949 {
950 max = elf_numsections (abfd);
951 for (i = 1; i < max; i++)
952 if (!strcmp (&shstrtab[i_shdrp[i]->sh_name], name))
953 return i_shdrp[i];
954 }
955 }
956 return 0;
957 }
958
959 const char *const bfd_elf_section_type_names[] = {
960 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
961 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
962 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
963 };
964
965 /* ELF relocs are against symbols. If we are producing relocatable
966 output, and the reloc is against an external symbol, and nothing
967 has given us any additional addend, the resulting reloc will also
968 be against the same symbol. In such a case, we don't want to
969 change anything about the way the reloc is handled, since it will
970 all be done at final link time. Rather than put special case code
971 into bfd_perform_relocation, all the reloc types use this howto
972 function. It just short circuits the reloc if producing
973 relocatable output against an external symbol. */
974
975 bfd_reloc_status_type
976 bfd_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED,
977 arelent *reloc_entry,
978 asymbol *symbol,
979 void *data ATTRIBUTE_UNUSED,
980 asection *input_section,
981 bfd *output_bfd,
982 char **error_message ATTRIBUTE_UNUSED)
983 {
984 if (output_bfd != NULL
985 && (symbol->flags & BSF_SECTION_SYM) == 0
986 && (! reloc_entry->howto->partial_inplace
987 || reloc_entry->addend == 0))
988 {
989 reloc_entry->address += input_section->output_offset;
990 return bfd_reloc_ok;
991 }
992
993 return bfd_reloc_continue;
994 }
995 \f
996 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
997
998 static void
999 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
1000 asection *sec)
1001 {
1002 BFD_ASSERT (sec->sec_info_type == ELF_INFO_TYPE_MERGE);
1003 sec->sec_info_type = ELF_INFO_TYPE_NONE;
1004 }
1005
1006 /* Finish SHF_MERGE section merging. */
1007
1008 bfd_boolean
1009 _bfd_elf_merge_sections (bfd *abfd, struct bfd_link_info *info)
1010 {
1011 bfd *ibfd;
1012 asection *sec;
1013
1014 if (!is_elf_hash_table (info->hash))
1015 return FALSE;
1016
1017 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
1018 if ((ibfd->flags & DYNAMIC) == 0)
1019 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
1020 if ((sec->flags & SEC_MERGE) != 0
1021 && !bfd_is_abs_section (sec->output_section))
1022 {
1023 struct bfd_elf_section_data *secdata;
1024
1025 secdata = elf_section_data (sec);
1026 if (! _bfd_add_merge_section (abfd,
1027 &elf_hash_table (info)->merge_info,
1028 sec, &secdata->sec_info))
1029 return FALSE;
1030 else if (secdata->sec_info)
1031 sec->sec_info_type = ELF_INFO_TYPE_MERGE;
1032 }
1033
1034 if (elf_hash_table (info)->merge_info != NULL)
1035 _bfd_merge_sections (abfd, info, elf_hash_table (info)->merge_info,
1036 merge_sections_remove_hook);
1037 return TRUE;
1038 }
1039
1040 void
1041 _bfd_elf_link_just_syms (asection *sec, struct bfd_link_info *info)
1042 {
1043 sec->output_section = bfd_abs_section_ptr;
1044 sec->output_offset = sec->vma;
1045 if (!is_elf_hash_table (info->hash))
1046 return;
1047
1048 sec->sec_info_type = ELF_INFO_TYPE_JUST_SYMS;
1049 }
1050 \f
1051 /* Copy the program header and other data from one object module to
1052 another. */
1053
1054 bfd_boolean
1055 _bfd_elf_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
1056 {
1057 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
1058 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
1059 return TRUE;
1060
1061 BFD_ASSERT (!elf_flags_init (obfd)
1062 || (elf_elfheader (obfd)->e_flags
1063 == elf_elfheader (ibfd)->e_flags));
1064
1065 elf_gp (obfd) = elf_gp (ibfd);
1066 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
1067 elf_flags_init (obfd) = TRUE;
1068 return TRUE;
1069 }
1070
1071 static const char *
1072 get_segment_type (unsigned int p_type)
1073 {
1074 const char *pt;
1075 switch (p_type)
1076 {
1077 case PT_NULL: pt = "NULL"; break;
1078 case PT_LOAD: pt = "LOAD"; break;
1079 case PT_DYNAMIC: pt = "DYNAMIC"; break;
1080 case PT_INTERP: pt = "INTERP"; break;
1081 case PT_NOTE: pt = "NOTE"; break;
1082 case PT_SHLIB: pt = "SHLIB"; break;
1083 case PT_PHDR: pt = "PHDR"; break;
1084 case PT_TLS: pt = "TLS"; break;
1085 case PT_GNU_EH_FRAME: pt = "EH_FRAME"; break;
1086 case PT_GNU_STACK: pt = "STACK"; break;
1087 case PT_GNU_RELRO: pt = "RELRO"; break;
1088 default: pt = NULL; break;
1089 }
1090 return pt;
1091 }
1092
1093 /* Print out the program headers. */
1094
1095 bfd_boolean
1096 _bfd_elf_print_private_bfd_data (bfd *abfd, void *farg)
1097 {
1098 FILE *f = farg;
1099 Elf_Internal_Phdr *p;
1100 asection *s;
1101 bfd_byte *dynbuf = NULL;
1102
1103 p = elf_tdata (abfd)->phdr;
1104 if (p != NULL)
1105 {
1106 unsigned int i, c;
1107
1108 fprintf (f, _("\nProgram Header:\n"));
1109 c = elf_elfheader (abfd)->e_phnum;
1110 for (i = 0; i < c; i++, p++)
1111 {
1112 const char *pt = get_segment_type (p->p_type);
1113 char buf[20];
1114
1115 if (pt == NULL)
1116 {
1117 sprintf (buf, "0x%lx", p->p_type);
1118 pt = buf;
1119 }
1120 fprintf (f, "%8s off 0x", pt);
1121 bfd_fprintf_vma (abfd, f, p->p_offset);
1122 fprintf (f, " vaddr 0x");
1123 bfd_fprintf_vma (abfd, f, p->p_vaddr);
1124 fprintf (f, " paddr 0x");
1125 bfd_fprintf_vma (abfd, f, p->p_paddr);
1126 fprintf (f, " align 2**%u\n", bfd_log2 (p->p_align));
1127 fprintf (f, " filesz 0x");
1128 bfd_fprintf_vma (abfd, f, p->p_filesz);
1129 fprintf (f, " memsz 0x");
1130 bfd_fprintf_vma (abfd, f, p->p_memsz);
1131 fprintf (f, " flags %c%c%c",
1132 (p->p_flags & PF_R) != 0 ? 'r' : '-',
1133 (p->p_flags & PF_W) != 0 ? 'w' : '-',
1134 (p->p_flags & PF_X) != 0 ? 'x' : '-');
1135 if ((p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X)) != 0)
1136 fprintf (f, " %lx", p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X));
1137 fprintf (f, "\n");
1138 }
1139 }
1140
1141 s = bfd_get_section_by_name (abfd, ".dynamic");
1142 if (s != NULL)
1143 {
1144 int elfsec;
1145 unsigned long shlink;
1146 bfd_byte *extdyn, *extdynend;
1147 size_t extdynsize;
1148 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1149
1150 fprintf (f, _("\nDynamic Section:\n"));
1151
1152 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
1153 goto error_return;
1154
1155 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1156 if (elfsec == -1)
1157 goto error_return;
1158 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1159
1160 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1161 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1162
1163 extdyn = dynbuf;
1164 extdynend = extdyn + s->size;
1165 for (; extdyn < extdynend; extdyn += extdynsize)
1166 {
1167 Elf_Internal_Dyn dyn;
1168 const char *name;
1169 char ab[20];
1170 bfd_boolean stringp;
1171
1172 (*swap_dyn_in) (abfd, extdyn, &dyn);
1173
1174 if (dyn.d_tag == DT_NULL)
1175 break;
1176
1177 stringp = FALSE;
1178 switch (dyn.d_tag)
1179 {
1180 default:
1181 sprintf (ab, "0x%lx", (unsigned long) dyn.d_tag);
1182 name = ab;
1183 break;
1184
1185 case DT_NEEDED: name = "NEEDED"; stringp = TRUE; break;
1186 case DT_PLTRELSZ: name = "PLTRELSZ"; break;
1187 case DT_PLTGOT: name = "PLTGOT"; break;
1188 case DT_HASH: name = "HASH"; break;
1189 case DT_STRTAB: name = "STRTAB"; break;
1190 case DT_SYMTAB: name = "SYMTAB"; break;
1191 case DT_RELA: name = "RELA"; break;
1192 case DT_RELASZ: name = "RELASZ"; break;
1193 case DT_RELAENT: name = "RELAENT"; break;
1194 case DT_STRSZ: name = "STRSZ"; break;
1195 case DT_SYMENT: name = "SYMENT"; break;
1196 case DT_INIT: name = "INIT"; break;
1197 case DT_FINI: name = "FINI"; break;
1198 case DT_SONAME: name = "SONAME"; stringp = TRUE; break;
1199 case DT_RPATH: name = "RPATH"; stringp = TRUE; break;
1200 case DT_SYMBOLIC: name = "SYMBOLIC"; break;
1201 case DT_REL: name = "REL"; break;
1202 case DT_RELSZ: name = "RELSZ"; break;
1203 case DT_RELENT: name = "RELENT"; break;
1204 case DT_PLTREL: name = "PLTREL"; break;
1205 case DT_DEBUG: name = "DEBUG"; break;
1206 case DT_TEXTREL: name = "TEXTREL"; break;
1207 case DT_JMPREL: name = "JMPREL"; break;
1208 case DT_BIND_NOW: name = "BIND_NOW"; break;
1209 case DT_INIT_ARRAY: name = "INIT_ARRAY"; break;
1210 case DT_FINI_ARRAY: name = "FINI_ARRAY"; break;
1211 case DT_INIT_ARRAYSZ: name = "INIT_ARRAYSZ"; break;
1212 case DT_FINI_ARRAYSZ: name = "FINI_ARRAYSZ"; break;
1213 case DT_RUNPATH: name = "RUNPATH"; stringp = TRUE; break;
1214 case DT_FLAGS: name = "FLAGS"; break;
1215 case DT_PREINIT_ARRAY: name = "PREINIT_ARRAY"; break;
1216 case DT_PREINIT_ARRAYSZ: name = "PREINIT_ARRAYSZ"; break;
1217 case DT_CHECKSUM: name = "CHECKSUM"; break;
1218 case DT_PLTPADSZ: name = "PLTPADSZ"; break;
1219 case DT_MOVEENT: name = "MOVEENT"; break;
1220 case DT_MOVESZ: name = "MOVESZ"; break;
1221 case DT_FEATURE: name = "FEATURE"; break;
1222 case DT_POSFLAG_1: name = "POSFLAG_1"; break;
1223 case DT_SYMINSZ: name = "SYMINSZ"; break;
1224 case DT_SYMINENT: name = "SYMINENT"; break;
1225 case DT_CONFIG: name = "CONFIG"; stringp = TRUE; break;
1226 case DT_DEPAUDIT: name = "DEPAUDIT"; stringp = TRUE; break;
1227 case DT_AUDIT: name = "AUDIT"; stringp = TRUE; break;
1228 case DT_PLTPAD: name = "PLTPAD"; break;
1229 case DT_MOVETAB: name = "MOVETAB"; break;
1230 case DT_SYMINFO: name = "SYMINFO"; break;
1231 case DT_RELACOUNT: name = "RELACOUNT"; break;
1232 case DT_RELCOUNT: name = "RELCOUNT"; break;
1233 case DT_FLAGS_1: name = "FLAGS_1"; break;
1234 case DT_VERSYM: name = "VERSYM"; break;
1235 case DT_VERDEF: name = "VERDEF"; break;
1236 case DT_VERDEFNUM: name = "VERDEFNUM"; break;
1237 case DT_VERNEED: name = "VERNEED"; break;
1238 case DT_VERNEEDNUM: name = "VERNEEDNUM"; break;
1239 case DT_AUXILIARY: name = "AUXILIARY"; stringp = TRUE; break;
1240 case DT_USED: name = "USED"; break;
1241 case DT_FILTER: name = "FILTER"; stringp = TRUE; break;
1242 }
1243
1244 fprintf (f, " %-11s ", name);
1245 if (! stringp)
1246 fprintf (f, "0x%lx", (unsigned long) dyn.d_un.d_val);
1247 else
1248 {
1249 const char *string;
1250 unsigned int tagv = dyn.d_un.d_val;
1251
1252 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1253 if (string == NULL)
1254 goto error_return;
1255 fprintf (f, "%s", string);
1256 }
1257 fprintf (f, "\n");
1258 }
1259
1260 free (dynbuf);
1261 dynbuf = NULL;
1262 }
1263
1264 if ((elf_dynverdef (abfd) != 0 && elf_tdata (abfd)->verdef == NULL)
1265 || (elf_dynverref (abfd) != 0 && elf_tdata (abfd)->verref == NULL))
1266 {
1267 if (! _bfd_elf_slurp_version_tables (abfd, FALSE))
1268 return FALSE;
1269 }
1270
1271 if (elf_dynverdef (abfd) != 0)
1272 {
1273 Elf_Internal_Verdef *t;
1274
1275 fprintf (f, _("\nVersion definitions:\n"));
1276 for (t = elf_tdata (abfd)->verdef; t != NULL; t = t->vd_nextdef)
1277 {
1278 fprintf (f, "%d 0x%2.2x 0x%8.8lx %s\n", t->vd_ndx,
1279 t->vd_flags, t->vd_hash,
1280 t->vd_nodename ? t->vd_nodename : "<corrupt>");
1281 if (t->vd_auxptr != NULL && t->vd_auxptr->vda_nextptr != NULL)
1282 {
1283 Elf_Internal_Verdaux *a;
1284
1285 fprintf (f, "\t");
1286 for (a = t->vd_auxptr->vda_nextptr;
1287 a != NULL;
1288 a = a->vda_nextptr)
1289 fprintf (f, "%s ",
1290 a->vda_nodename ? a->vda_nodename : "<corrupt>");
1291 fprintf (f, "\n");
1292 }
1293 }
1294 }
1295
1296 if (elf_dynverref (abfd) != 0)
1297 {
1298 Elf_Internal_Verneed *t;
1299
1300 fprintf (f, _("\nVersion References:\n"));
1301 for (t = elf_tdata (abfd)->verref; t != NULL; t = t->vn_nextref)
1302 {
1303 Elf_Internal_Vernaux *a;
1304
1305 fprintf (f, _(" required from %s:\n"),
1306 t->vn_filename ? t->vn_filename : "<corrupt>");
1307 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1308 fprintf (f, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a->vna_hash,
1309 a->vna_flags, a->vna_other,
1310 a->vna_nodename ? a->vna_nodename : "<corrupt>");
1311 }
1312 }
1313
1314 return TRUE;
1315
1316 error_return:
1317 if (dynbuf != NULL)
1318 free (dynbuf);
1319 return FALSE;
1320 }
1321
1322 /* Display ELF-specific fields of a symbol. */
1323
1324 void
1325 bfd_elf_print_symbol (bfd *abfd,
1326 void *filep,
1327 asymbol *symbol,
1328 bfd_print_symbol_type how)
1329 {
1330 FILE *file = filep;
1331 switch (how)
1332 {
1333 case bfd_print_symbol_name:
1334 fprintf (file, "%s", symbol->name);
1335 break;
1336 case bfd_print_symbol_more:
1337 fprintf (file, "elf ");
1338 bfd_fprintf_vma (abfd, file, symbol->value);
1339 fprintf (file, " %lx", (long) symbol->flags);
1340 break;
1341 case bfd_print_symbol_all:
1342 {
1343 const char *section_name;
1344 const char *name = NULL;
1345 const struct elf_backend_data *bed;
1346 unsigned char st_other;
1347 bfd_vma val;
1348
1349 section_name = symbol->section ? symbol->section->name : "(*none*)";
1350
1351 bed = get_elf_backend_data (abfd);
1352 if (bed->elf_backend_print_symbol_all)
1353 name = (*bed->elf_backend_print_symbol_all) (abfd, filep, symbol);
1354
1355 if (name == NULL)
1356 {
1357 name = symbol->name;
1358 bfd_print_symbol_vandf (abfd, file, symbol);
1359 }
1360
1361 fprintf (file, " %s\t", section_name);
1362 /* Print the "other" value for a symbol. For common symbols,
1363 we've already printed the size; now print the alignment.
1364 For other symbols, we have no specified alignment, and
1365 we've printed the address; now print the size. */
1366 if (bfd_is_com_section (symbol->section))
1367 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
1368 else
1369 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_size;
1370 bfd_fprintf_vma (abfd, file, val);
1371
1372 /* If we have version information, print it. */
1373 if (elf_tdata (abfd)->dynversym_section != 0
1374 && (elf_tdata (abfd)->dynverdef_section != 0
1375 || elf_tdata (abfd)->dynverref_section != 0))
1376 {
1377 unsigned int vernum;
1378 const char *version_string;
1379
1380 vernum = ((elf_symbol_type *) symbol)->version & VERSYM_VERSION;
1381
1382 if (vernum == 0)
1383 version_string = "";
1384 else if (vernum == 1)
1385 version_string = "Base";
1386 else if (vernum <= elf_tdata (abfd)->cverdefs)
1387 version_string =
1388 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1389 else
1390 {
1391 Elf_Internal_Verneed *t;
1392
1393 version_string = "";
1394 for (t = elf_tdata (abfd)->verref;
1395 t != NULL;
1396 t = t->vn_nextref)
1397 {
1398 Elf_Internal_Vernaux *a;
1399
1400 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1401 {
1402 if (a->vna_other == vernum)
1403 {
1404 version_string = a->vna_nodename;
1405 break;
1406 }
1407 }
1408 }
1409 }
1410
1411 if ((((elf_symbol_type *) symbol)->version & VERSYM_HIDDEN) == 0)
1412 fprintf (file, " %-11s", version_string);
1413 else
1414 {
1415 int i;
1416
1417 fprintf (file, " (%s)", version_string);
1418 for (i = 10 - strlen (version_string); i > 0; --i)
1419 putc (' ', file);
1420 }
1421 }
1422
1423 /* If the st_other field is not zero, print it. */
1424 st_other = ((elf_symbol_type *) symbol)->internal_elf_sym.st_other;
1425
1426 switch (st_other)
1427 {
1428 case 0: break;
1429 case STV_INTERNAL: fprintf (file, " .internal"); break;
1430 case STV_HIDDEN: fprintf (file, " .hidden"); break;
1431 case STV_PROTECTED: fprintf (file, " .protected"); break;
1432 default:
1433 /* Some other non-defined flags are also present, so print
1434 everything hex. */
1435 fprintf (file, " 0x%02x", (unsigned int) st_other);
1436 }
1437
1438 fprintf (file, " %s", name);
1439 }
1440 break;
1441 }
1442 }
1443 \f
1444 /* Create an entry in an ELF linker hash table. */
1445
1446 struct bfd_hash_entry *
1447 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
1448 struct bfd_hash_table *table,
1449 const char *string)
1450 {
1451 /* Allocate the structure if it has not already been allocated by a
1452 subclass. */
1453 if (entry == NULL)
1454 {
1455 entry = bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
1456 if (entry == NULL)
1457 return entry;
1458 }
1459
1460 /* Call the allocation method of the superclass. */
1461 entry = _bfd_link_hash_newfunc (entry, table, string);
1462 if (entry != NULL)
1463 {
1464 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
1465 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
1466
1467 /* Set local fields. */
1468 ret->indx = -1;
1469 ret->dynindx = -1;
1470 ret->got = htab->init_got_refcount;
1471 ret->plt = htab->init_plt_refcount;
1472 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
1473 - offsetof (struct elf_link_hash_entry, size)));
1474 /* Assume that we have been called by a non-ELF symbol reader.
1475 This flag is then reset by the code which reads an ELF input
1476 file. This ensures that a symbol created by a non-ELF symbol
1477 reader will have the flag set correctly. */
1478 ret->non_elf = 1;
1479 }
1480
1481 return entry;
1482 }
1483
1484 /* Copy data from an indirect symbol to its direct symbol, hiding the
1485 old indirect symbol. Also used for copying flags to a weakdef. */
1486
1487 void
1488 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
1489 struct elf_link_hash_entry *dir,
1490 struct elf_link_hash_entry *ind)
1491 {
1492 struct elf_link_hash_table *htab;
1493
1494 /* Copy down any references that we may have already seen to the
1495 symbol which just became indirect. */
1496
1497 dir->ref_dynamic |= ind->ref_dynamic;
1498 dir->ref_regular |= ind->ref_regular;
1499 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
1500 dir->non_got_ref |= ind->non_got_ref;
1501 dir->needs_plt |= ind->needs_plt;
1502 dir->pointer_equality_needed |= ind->pointer_equality_needed;
1503
1504 if (ind->root.type != bfd_link_hash_indirect)
1505 return;
1506
1507 /* Copy over the global and procedure linkage table refcount entries.
1508 These may have been already set up by a check_relocs routine. */
1509 htab = elf_hash_table (info);
1510 if (ind->got.refcount > htab->init_got_refcount.refcount)
1511 {
1512 if (dir->got.refcount < 0)
1513 dir->got.refcount = 0;
1514 dir->got.refcount += ind->got.refcount;
1515 ind->got.refcount = htab->init_got_refcount.refcount;
1516 }
1517
1518 if (ind->plt.refcount > htab->init_plt_refcount.refcount)
1519 {
1520 if (dir->plt.refcount < 0)
1521 dir->plt.refcount = 0;
1522 dir->plt.refcount += ind->plt.refcount;
1523 ind->plt.refcount = htab->init_plt_refcount.refcount;
1524 }
1525
1526 if (ind->dynindx != -1)
1527 {
1528 if (dir->dynindx != -1)
1529 _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
1530 dir->dynindx = ind->dynindx;
1531 dir->dynstr_index = ind->dynstr_index;
1532 ind->dynindx = -1;
1533 ind->dynstr_index = 0;
1534 }
1535 }
1536
1537 void
1538 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
1539 struct elf_link_hash_entry *h,
1540 bfd_boolean force_local)
1541 {
1542 h->plt = elf_hash_table (info)->init_plt_offset;
1543 h->needs_plt = 0;
1544 if (force_local)
1545 {
1546 h->forced_local = 1;
1547 if (h->dynindx != -1)
1548 {
1549 h->dynindx = -1;
1550 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1551 h->dynstr_index);
1552 }
1553 }
1554 }
1555
1556 /* Initialize an ELF linker hash table. */
1557
1558 bfd_boolean
1559 _bfd_elf_link_hash_table_init
1560 (struct elf_link_hash_table *table,
1561 bfd *abfd,
1562 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
1563 struct bfd_hash_table *,
1564 const char *),
1565 unsigned int entsize)
1566 {
1567 bfd_boolean ret;
1568 int can_refcount = get_elf_backend_data (abfd)->can_refcount;
1569
1570 table->dynamic_sections_created = FALSE;
1571 table->dynobj = NULL;
1572 table->init_got_refcount.refcount = can_refcount - 1;
1573 table->init_plt_refcount.refcount = can_refcount - 1;
1574 table->init_got_offset.offset = -(bfd_vma) 1;
1575 table->init_plt_offset.offset = -(bfd_vma) 1;
1576 /* The first dynamic symbol is a dummy. */
1577 table->dynsymcount = 1;
1578 table->dynstr = NULL;
1579 table->bucketcount = 0;
1580 table->needed = NULL;
1581 table->hgot = NULL;
1582 table->merge_info = NULL;
1583 memset (&table->stab_info, 0, sizeof (table->stab_info));
1584 memset (&table->eh_info, 0, sizeof (table->eh_info));
1585 table->dynlocal = NULL;
1586 table->runpath = NULL;
1587 table->tls_sec = NULL;
1588 table->tls_size = 0;
1589 table->loaded = NULL;
1590 table->is_relocatable_executable = FALSE;
1591
1592 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
1593 table->root.type = bfd_link_elf_hash_table;
1594
1595 return ret;
1596 }
1597
1598 /* Create an ELF linker hash table. */
1599
1600 struct bfd_link_hash_table *
1601 _bfd_elf_link_hash_table_create (bfd *abfd)
1602 {
1603 struct elf_link_hash_table *ret;
1604 bfd_size_type amt = sizeof (struct elf_link_hash_table);
1605
1606 ret = bfd_malloc (amt);
1607 if (ret == NULL)
1608 return NULL;
1609
1610 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
1611 sizeof (struct elf_link_hash_entry)))
1612 {
1613 free (ret);
1614 return NULL;
1615 }
1616
1617 return &ret->root;
1618 }
1619
1620 /* This is a hook for the ELF emulation code in the generic linker to
1621 tell the backend linker what file name to use for the DT_NEEDED
1622 entry for a dynamic object. */
1623
1624 void
1625 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
1626 {
1627 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1628 && bfd_get_format (abfd) == bfd_object)
1629 elf_dt_name (abfd) = name;
1630 }
1631
1632 int
1633 bfd_elf_get_dyn_lib_class (bfd *abfd)
1634 {
1635 int lib_class;
1636 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1637 && bfd_get_format (abfd) == bfd_object)
1638 lib_class = elf_dyn_lib_class (abfd);
1639 else
1640 lib_class = 0;
1641 return lib_class;
1642 }
1643
1644 void
1645 bfd_elf_set_dyn_lib_class (bfd *abfd, int lib_class)
1646 {
1647 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1648 && bfd_get_format (abfd) == bfd_object)
1649 elf_dyn_lib_class (abfd) = lib_class;
1650 }
1651
1652 /* Get the list of DT_NEEDED entries for a link. This is a hook for
1653 the linker ELF emulation code. */
1654
1655 struct bfd_link_needed_list *
1656 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
1657 struct bfd_link_info *info)
1658 {
1659 if (! is_elf_hash_table (info->hash))
1660 return NULL;
1661 return elf_hash_table (info)->needed;
1662 }
1663
1664 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
1665 hook for the linker ELF emulation code. */
1666
1667 struct bfd_link_needed_list *
1668 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
1669 struct bfd_link_info *info)
1670 {
1671 if (! is_elf_hash_table (info->hash))
1672 return NULL;
1673 return elf_hash_table (info)->runpath;
1674 }
1675
1676 /* Get the name actually used for a dynamic object for a link. This
1677 is the SONAME entry if there is one. Otherwise, it is the string
1678 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
1679
1680 const char *
1681 bfd_elf_get_dt_soname (bfd *abfd)
1682 {
1683 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1684 && bfd_get_format (abfd) == bfd_object)
1685 return elf_dt_name (abfd);
1686 return NULL;
1687 }
1688
1689 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
1690 the ELF linker emulation code. */
1691
1692 bfd_boolean
1693 bfd_elf_get_bfd_needed_list (bfd *abfd,
1694 struct bfd_link_needed_list **pneeded)
1695 {
1696 asection *s;
1697 bfd_byte *dynbuf = NULL;
1698 int elfsec;
1699 unsigned long shlink;
1700 bfd_byte *extdyn, *extdynend;
1701 size_t extdynsize;
1702 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1703
1704 *pneeded = NULL;
1705
1706 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
1707 || bfd_get_format (abfd) != bfd_object)
1708 return TRUE;
1709
1710 s = bfd_get_section_by_name (abfd, ".dynamic");
1711 if (s == NULL || s->size == 0)
1712 return TRUE;
1713
1714 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
1715 goto error_return;
1716
1717 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1718 if (elfsec == -1)
1719 goto error_return;
1720
1721 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1722
1723 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1724 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1725
1726 extdyn = dynbuf;
1727 extdynend = extdyn + s->size;
1728 for (; extdyn < extdynend; extdyn += extdynsize)
1729 {
1730 Elf_Internal_Dyn dyn;
1731
1732 (*swap_dyn_in) (abfd, extdyn, &dyn);
1733
1734 if (dyn.d_tag == DT_NULL)
1735 break;
1736
1737 if (dyn.d_tag == DT_NEEDED)
1738 {
1739 const char *string;
1740 struct bfd_link_needed_list *l;
1741 unsigned int tagv = dyn.d_un.d_val;
1742 bfd_size_type amt;
1743
1744 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1745 if (string == NULL)
1746 goto error_return;
1747
1748 amt = sizeof *l;
1749 l = bfd_alloc (abfd, amt);
1750 if (l == NULL)
1751 goto error_return;
1752
1753 l->by = abfd;
1754 l->name = string;
1755 l->next = *pneeded;
1756 *pneeded = l;
1757 }
1758 }
1759
1760 free (dynbuf);
1761
1762 return TRUE;
1763
1764 error_return:
1765 if (dynbuf != NULL)
1766 free (dynbuf);
1767 return FALSE;
1768 }
1769 \f
1770 /* Allocate an ELF string table--force the first byte to be zero. */
1771
1772 struct bfd_strtab_hash *
1773 _bfd_elf_stringtab_init (void)
1774 {
1775 struct bfd_strtab_hash *ret;
1776
1777 ret = _bfd_stringtab_init ();
1778 if (ret != NULL)
1779 {
1780 bfd_size_type loc;
1781
1782 loc = _bfd_stringtab_add (ret, "", TRUE, FALSE);
1783 BFD_ASSERT (loc == 0 || loc == (bfd_size_type) -1);
1784 if (loc == (bfd_size_type) -1)
1785 {
1786 _bfd_stringtab_free (ret);
1787 ret = NULL;
1788 }
1789 }
1790 return ret;
1791 }
1792 \f
1793 /* ELF .o/exec file reading */
1794
1795 /* Create a new bfd section from an ELF section header. */
1796
1797 bfd_boolean
1798 bfd_section_from_shdr (bfd *abfd, unsigned int shindex)
1799 {
1800 Elf_Internal_Shdr *hdr = elf_elfsections (abfd)[shindex];
1801 Elf_Internal_Ehdr *ehdr = elf_elfheader (abfd);
1802 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1803 const char *name;
1804
1805 name = bfd_elf_string_from_elf_section (abfd,
1806 elf_elfheader (abfd)->e_shstrndx,
1807 hdr->sh_name);
1808 if (name == NULL)
1809 return FALSE;
1810
1811 switch (hdr->sh_type)
1812 {
1813 case SHT_NULL:
1814 /* Inactive section. Throw it away. */
1815 return TRUE;
1816
1817 case SHT_PROGBITS: /* Normal section with contents. */
1818 case SHT_NOBITS: /* .bss section. */
1819 case SHT_HASH: /* .hash section. */
1820 case SHT_NOTE: /* .note section. */
1821 case SHT_INIT_ARRAY: /* .init_array section. */
1822 case SHT_FINI_ARRAY: /* .fini_array section. */
1823 case SHT_PREINIT_ARRAY: /* .preinit_array section. */
1824 case SHT_GNU_LIBLIST: /* .gnu.liblist section. */
1825 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1826
1827 case SHT_DYNAMIC: /* Dynamic linking information. */
1828 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1829 return FALSE;
1830 if (hdr->sh_link > elf_numsections (abfd)
1831 || elf_elfsections (abfd)[hdr->sh_link] == NULL)
1832 return FALSE;
1833 if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_STRTAB)
1834 {
1835 Elf_Internal_Shdr *dynsymhdr;
1836
1837 /* The shared libraries distributed with hpux11 have a bogus
1838 sh_link field for the ".dynamic" section. Find the
1839 string table for the ".dynsym" section instead. */
1840 if (elf_dynsymtab (abfd) != 0)
1841 {
1842 dynsymhdr = elf_elfsections (abfd)[elf_dynsymtab (abfd)];
1843 hdr->sh_link = dynsymhdr->sh_link;
1844 }
1845 else
1846 {
1847 unsigned int i, num_sec;
1848
1849 num_sec = elf_numsections (abfd);
1850 for (i = 1; i < num_sec; i++)
1851 {
1852 dynsymhdr = elf_elfsections (abfd)[i];
1853 if (dynsymhdr->sh_type == SHT_DYNSYM)
1854 {
1855 hdr->sh_link = dynsymhdr->sh_link;
1856 break;
1857 }
1858 }
1859 }
1860 }
1861 break;
1862
1863 case SHT_SYMTAB: /* A symbol table */
1864 if (elf_onesymtab (abfd) == shindex)
1865 return TRUE;
1866
1867 if (hdr->sh_entsize != bed->s->sizeof_sym)
1868 return FALSE;
1869 BFD_ASSERT (elf_onesymtab (abfd) == 0);
1870 elf_onesymtab (abfd) = shindex;
1871 elf_tdata (abfd)->symtab_hdr = *hdr;
1872 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->symtab_hdr;
1873 abfd->flags |= HAS_SYMS;
1874
1875 /* Sometimes a shared object will map in the symbol table. If
1876 SHF_ALLOC is set, and this is a shared object, then we also
1877 treat this section as a BFD section. We can not base the
1878 decision purely on SHF_ALLOC, because that flag is sometimes
1879 set in a relocatable object file, which would confuse the
1880 linker. */
1881 if ((hdr->sh_flags & SHF_ALLOC) != 0
1882 && (abfd->flags & DYNAMIC) != 0
1883 && ! _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1884 shindex))
1885 return FALSE;
1886
1887 /* Go looking for SHT_SYMTAB_SHNDX too, since if there is one we
1888 can't read symbols without that section loaded as well. It
1889 is most likely specified by the next section header. */
1890 if (elf_elfsections (abfd)[elf_symtab_shndx (abfd)]->sh_link != shindex)
1891 {
1892 unsigned int i, num_sec;
1893
1894 num_sec = elf_numsections (abfd);
1895 for (i = shindex + 1; i < num_sec; i++)
1896 {
1897 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1898 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
1899 && hdr2->sh_link == shindex)
1900 break;
1901 }
1902 if (i == num_sec)
1903 for (i = 1; i < shindex; i++)
1904 {
1905 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1906 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
1907 && hdr2->sh_link == shindex)
1908 break;
1909 }
1910 if (i != shindex)
1911 return bfd_section_from_shdr (abfd, i);
1912 }
1913 return TRUE;
1914
1915 case SHT_DYNSYM: /* A dynamic symbol table */
1916 if (elf_dynsymtab (abfd) == shindex)
1917 return TRUE;
1918
1919 if (hdr->sh_entsize != bed->s->sizeof_sym)
1920 return FALSE;
1921 BFD_ASSERT (elf_dynsymtab (abfd) == 0);
1922 elf_dynsymtab (abfd) = shindex;
1923 elf_tdata (abfd)->dynsymtab_hdr = *hdr;
1924 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->dynsymtab_hdr;
1925 abfd->flags |= HAS_SYMS;
1926
1927 /* Besides being a symbol table, we also treat this as a regular
1928 section, so that objcopy can handle it. */
1929 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1930
1931 case SHT_SYMTAB_SHNDX: /* Symbol section indices when >64k sections */
1932 if (elf_symtab_shndx (abfd) == shindex)
1933 return TRUE;
1934
1935 BFD_ASSERT (elf_symtab_shndx (abfd) == 0);
1936 elf_symtab_shndx (abfd) = shindex;
1937 elf_tdata (abfd)->symtab_shndx_hdr = *hdr;
1938 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->symtab_shndx_hdr;
1939 return TRUE;
1940
1941 case SHT_STRTAB: /* A string table */
1942 if (hdr->bfd_section != NULL)
1943 return TRUE;
1944 if (ehdr->e_shstrndx == shindex)
1945 {
1946 elf_tdata (abfd)->shstrtab_hdr = *hdr;
1947 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->shstrtab_hdr;
1948 return TRUE;
1949 }
1950 if (elf_elfsections (abfd)[elf_onesymtab (abfd)]->sh_link == shindex)
1951 {
1952 symtab_strtab:
1953 elf_tdata (abfd)->strtab_hdr = *hdr;
1954 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->strtab_hdr;
1955 return TRUE;
1956 }
1957 if (elf_elfsections (abfd)[elf_dynsymtab (abfd)]->sh_link == shindex)
1958 {
1959 dynsymtab_strtab:
1960 elf_tdata (abfd)->dynstrtab_hdr = *hdr;
1961 hdr = &elf_tdata (abfd)->dynstrtab_hdr;
1962 elf_elfsections (abfd)[shindex] = hdr;
1963 /* We also treat this as a regular section, so that objcopy
1964 can handle it. */
1965 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1966 shindex);
1967 }
1968
1969 /* If the string table isn't one of the above, then treat it as a
1970 regular section. We need to scan all the headers to be sure,
1971 just in case this strtab section appeared before the above. */
1972 if (elf_onesymtab (abfd) == 0 || elf_dynsymtab (abfd) == 0)
1973 {
1974 unsigned int i, num_sec;
1975
1976 num_sec = elf_numsections (abfd);
1977 for (i = 1; i < num_sec; i++)
1978 {
1979 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1980 if (hdr2->sh_link == shindex)
1981 {
1982 /* Prevent endless recursion on broken objects. */
1983 if (i == shindex)
1984 return FALSE;
1985 if (! bfd_section_from_shdr (abfd, i))
1986 return FALSE;
1987 if (elf_onesymtab (abfd) == i)
1988 goto symtab_strtab;
1989 if (elf_dynsymtab (abfd) == i)
1990 goto dynsymtab_strtab;
1991 }
1992 }
1993 }
1994 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1995
1996 case SHT_REL:
1997 case SHT_RELA:
1998 /* *These* do a lot of work -- but build no sections! */
1999 {
2000 asection *target_sect;
2001 Elf_Internal_Shdr *hdr2;
2002 unsigned int num_sec = elf_numsections (abfd);
2003
2004 if (hdr->sh_entsize
2005 != (bfd_size_type) (hdr->sh_type == SHT_REL
2006 ? bed->s->sizeof_rel : bed->s->sizeof_rela))
2007 return FALSE;
2008
2009 /* Check for a bogus link to avoid crashing. */
2010 if ((hdr->sh_link >= SHN_LORESERVE && hdr->sh_link <= SHN_HIRESERVE)
2011 || hdr->sh_link >= num_sec)
2012 {
2013 ((*_bfd_error_handler)
2014 (_("%B: invalid link %lu for reloc section %s (index %u)"),
2015 abfd, hdr->sh_link, name, shindex));
2016 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2017 shindex);
2018 }
2019
2020 /* For some incomprehensible reason Oracle distributes
2021 libraries for Solaris in which some of the objects have
2022 bogus sh_link fields. It would be nice if we could just
2023 reject them, but, unfortunately, some people need to use
2024 them. We scan through the section headers; if we find only
2025 one suitable symbol table, we clobber the sh_link to point
2026 to it. I hope this doesn't break anything. */
2027 if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_SYMTAB
2028 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_DYNSYM)
2029 {
2030 unsigned int scan;
2031 int found;
2032
2033 found = 0;
2034 for (scan = 1; scan < num_sec; scan++)
2035 {
2036 if (elf_elfsections (abfd)[scan]->sh_type == SHT_SYMTAB
2037 || elf_elfsections (abfd)[scan]->sh_type == SHT_DYNSYM)
2038 {
2039 if (found != 0)
2040 {
2041 found = 0;
2042 break;
2043 }
2044 found = scan;
2045 }
2046 }
2047 if (found != 0)
2048 hdr->sh_link = found;
2049 }
2050
2051 /* Get the symbol table. */
2052 if ((elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_SYMTAB
2053 || elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_DYNSYM)
2054 && ! bfd_section_from_shdr (abfd, hdr->sh_link))
2055 return FALSE;
2056
2057 /* If this reloc section does not use the main symbol table we
2058 don't treat it as a reloc section. BFD can't adequately
2059 represent such a section, so at least for now, we don't
2060 try. We just present it as a normal section. We also
2061 can't use it as a reloc section if it points to the null
2062 section, an invalid section, or another reloc section. */
2063 if (hdr->sh_link != elf_onesymtab (abfd)
2064 || hdr->sh_info == SHN_UNDEF
2065 || (hdr->sh_info >= SHN_LORESERVE && hdr->sh_info <= SHN_HIRESERVE)
2066 || hdr->sh_info >= num_sec
2067 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_REL
2068 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_RELA)
2069 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2070 shindex);
2071
2072 if (! bfd_section_from_shdr (abfd, hdr->sh_info))
2073 return FALSE;
2074 target_sect = bfd_section_from_elf_index (abfd, hdr->sh_info);
2075 if (target_sect == NULL)
2076 return FALSE;
2077
2078 if ((target_sect->flags & SEC_RELOC) == 0
2079 || target_sect->reloc_count == 0)
2080 hdr2 = &elf_section_data (target_sect)->rel_hdr;
2081 else
2082 {
2083 bfd_size_type amt;
2084 BFD_ASSERT (elf_section_data (target_sect)->rel_hdr2 == NULL);
2085 amt = sizeof (*hdr2);
2086 hdr2 = bfd_alloc (abfd, amt);
2087 elf_section_data (target_sect)->rel_hdr2 = hdr2;
2088 }
2089 *hdr2 = *hdr;
2090 elf_elfsections (abfd)[shindex] = hdr2;
2091 target_sect->reloc_count += NUM_SHDR_ENTRIES (hdr);
2092 target_sect->flags |= SEC_RELOC;
2093 target_sect->relocation = NULL;
2094 target_sect->rel_filepos = hdr->sh_offset;
2095 /* In the section to which the relocations apply, mark whether
2096 its relocations are of the REL or RELA variety. */
2097 if (hdr->sh_size != 0)
2098 target_sect->use_rela_p = hdr->sh_type == SHT_RELA;
2099 abfd->flags |= HAS_RELOC;
2100 return TRUE;
2101 }
2102 break;
2103
2104 case SHT_GNU_verdef:
2105 elf_dynverdef (abfd) = shindex;
2106 elf_tdata (abfd)->dynverdef_hdr = *hdr;
2107 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2108 break;
2109
2110 case SHT_GNU_versym:
2111 if (hdr->sh_entsize != sizeof (Elf_External_Versym))
2112 return FALSE;
2113 elf_dynversym (abfd) = shindex;
2114 elf_tdata (abfd)->dynversym_hdr = *hdr;
2115 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2116
2117 case SHT_GNU_verneed:
2118 elf_dynverref (abfd) = shindex;
2119 elf_tdata (abfd)->dynverref_hdr = *hdr;
2120 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2121
2122 case SHT_SHLIB:
2123 return TRUE;
2124
2125 case SHT_GROUP:
2126 /* We need a BFD section for objcopy and relocatable linking,
2127 and it's handy to have the signature available as the section
2128 name. */
2129 if (hdr->sh_entsize != GRP_ENTRY_SIZE)
2130 return FALSE;
2131 name = group_signature (abfd, hdr);
2132 if (name == NULL)
2133 return FALSE;
2134 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2135 return FALSE;
2136 if (hdr->contents != NULL)
2137 {
2138 Elf_Internal_Group *idx = (Elf_Internal_Group *) hdr->contents;
2139 unsigned int n_elt = hdr->sh_size / 4;
2140 asection *s;
2141
2142 if (idx->flags & GRP_COMDAT)
2143 hdr->bfd_section->flags
2144 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
2145
2146 /* We try to keep the same section order as it comes in. */
2147 idx += n_elt;
2148 while (--n_elt != 0)
2149 if ((s = (--idx)->shdr->bfd_section) != NULL
2150 && elf_next_in_group (s) != NULL)
2151 {
2152 elf_next_in_group (hdr->bfd_section) = s;
2153 break;
2154 }
2155 }
2156 break;
2157
2158 default:
2159 /* Check for any processor-specific section types. */
2160 if (bed->elf_backend_section_from_shdr (abfd, hdr, name, shindex))
2161 return TRUE;
2162
2163 if (hdr->sh_type >= SHT_LOUSER && hdr->sh_type <= SHT_HIUSER)
2164 {
2165 if ((hdr->sh_flags & SHF_ALLOC) != 0)
2166 /* FIXME: How to properly handle allocated section reserved
2167 for applications? */
2168 (*_bfd_error_handler)
2169 (_("%B: don't know how to handle allocated, application "
2170 "specific section `%s' [0x%8x]"),
2171 abfd, name, hdr->sh_type);
2172 else
2173 /* Allow sections reserved for applications. */
2174 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2175 shindex);
2176 }
2177 else if (hdr->sh_type >= SHT_LOPROC
2178 && hdr->sh_type <= SHT_HIPROC)
2179 /* FIXME: We should handle this section. */
2180 (*_bfd_error_handler)
2181 (_("%B: don't know how to handle processor specific section "
2182 "`%s' [0x%8x]"),
2183 abfd, name, hdr->sh_type);
2184 else if (hdr->sh_type >= SHT_LOOS && hdr->sh_type <= SHT_HIOS)
2185 /* FIXME: We should handle this section. */
2186 (*_bfd_error_handler)
2187 (_("%B: don't know how to handle OS specific section "
2188 "`%s' [0x%8x]"),
2189 abfd, name, hdr->sh_type);
2190 else
2191 /* FIXME: We should handle this section. */
2192 (*_bfd_error_handler)
2193 (_("%B: don't know how to handle section `%s' [0x%8x]"),
2194 abfd, name, hdr->sh_type);
2195
2196 return FALSE;
2197 }
2198
2199 return TRUE;
2200 }
2201
2202 /* Return the section for the local symbol specified by ABFD, R_SYMNDX.
2203 Return SEC for sections that have no elf section, and NULL on error. */
2204
2205 asection *
2206 bfd_section_from_r_symndx (bfd *abfd,
2207 struct sym_sec_cache *cache,
2208 asection *sec,
2209 unsigned long r_symndx)
2210 {
2211 Elf_Internal_Shdr *symtab_hdr;
2212 unsigned char esym[sizeof (Elf64_External_Sym)];
2213 Elf_External_Sym_Shndx eshndx;
2214 Elf_Internal_Sym isym;
2215 unsigned int ent = r_symndx % LOCAL_SYM_CACHE_SIZE;
2216
2217 if (cache->abfd == abfd && cache->indx[ent] == r_symndx)
2218 return cache->sec[ent];
2219
2220 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2221 if (bfd_elf_get_elf_syms (abfd, symtab_hdr, 1, r_symndx,
2222 &isym, esym, &eshndx) == NULL)
2223 return NULL;
2224
2225 if (cache->abfd != abfd)
2226 {
2227 memset (cache->indx, -1, sizeof (cache->indx));
2228 cache->abfd = abfd;
2229 }
2230 cache->indx[ent] = r_symndx;
2231 cache->sec[ent] = sec;
2232 if ((isym.st_shndx != SHN_UNDEF && isym.st_shndx < SHN_LORESERVE)
2233 || isym.st_shndx > SHN_HIRESERVE)
2234 {
2235 asection *s;
2236 s = bfd_section_from_elf_index (abfd, isym.st_shndx);
2237 if (s != NULL)
2238 cache->sec[ent] = s;
2239 }
2240 return cache->sec[ent];
2241 }
2242
2243 /* Given an ELF section number, retrieve the corresponding BFD
2244 section. */
2245
2246 asection *
2247 bfd_section_from_elf_index (bfd *abfd, unsigned int index)
2248 {
2249 if (index >= elf_numsections (abfd))
2250 return NULL;
2251 return elf_elfsections (abfd)[index]->bfd_section;
2252 }
2253
2254 static const struct bfd_elf_special_section special_sections_b[] =
2255 {
2256 { ".bss", 4, -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2257 { NULL, 0, 0, 0, 0 }
2258 };
2259
2260 static const struct bfd_elf_special_section special_sections_c[] =
2261 {
2262 { ".comment", 8, 0, SHT_PROGBITS, 0 },
2263 { NULL, 0, 0, 0, 0 }
2264 };
2265
2266 static const struct bfd_elf_special_section special_sections_d[] =
2267 {
2268 { ".data", 5, -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2269 { ".data1", 6, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2270 { ".debug", 6, 0, SHT_PROGBITS, 0 },
2271 { ".debug_line", 11, 0, SHT_PROGBITS, 0 },
2272 { ".debug_info", 11, 0, SHT_PROGBITS, 0 },
2273 { ".debug_abbrev", 13, 0, SHT_PROGBITS, 0 },
2274 { ".debug_aranges", 14, 0, SHT_PROGBITS, 0 },
2275 { ".dynamic", 8, 0, SHT_DYNAMIC, SHF_ALLOC },
2276 { ".dynstr", 7, 0, SHT_STRTAB, SHF_ALLOC },
2277 { ".dynsym", 7, 0, SHT_DYNSYM, SHF_ALLOC },
2278 { NULL, 0, 0, 0, 0 }
2279 };
2280
2281 static const struct bfd_elf_special_section special_sections_f[] =
2282 {
2283 { ".fini", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2284 { ".fini_array", 11, 0, SHT_FINI_ARRAY, SHF_ALLOC + SHF_WRITE },
2285 { NULL, 0, 0, 0, 0 }
2286 };
2287
2288 static const struct bfd_elf_special_section special_sections_g[] =
2289 {
2290 { ".gnu.linkonce.b",15, -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2291 { ".got", 4, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2292 { ".gnu.version", 12, 0, SHT_GNU_versym, 0 },
2293 { ".gnu.version_d", 14, 0, SHT_GNU_verdef, 0 },
2294 { ".gnu.version_r", 14, 0, SHT_GNU_verneed, 0 },
2295 { ".gnu.liblist", 12, 0, SHT_GNU_LIBLIST, SHF_ALLOC },
2296 { ".gnu.conflict", 13, 0, SHT_RELA, SHF_ALLOC },
2297 { NULL, 0, 0, 0, 0 }
2298 };
2299
2300 static const struct bfd_elf_special_section special_sections_h[] =
2301 {
2302 { ".hash", 5, 0, SHT_HASH, SHF_ALLOC },
2303 { NULL, 0, 0, 0, 0 }
2304 };
2305
2306 static const struct bfd_elf_special_section special_sections_i[] =
2307 {
2308 { ".init", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2309 { ".init_array", 11, 0, SHT_INIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2310 { ".interp", 7, 0, SHT_PROGBITS, 0 },
2311 { NULL, 0, 0, 0, 0 }
2312 };
2313
2314 static const struct bfd_elf_special_section special_sections_l[] =
2315 {
2316 { ".line", 5, 0, SHT_PROGBITS, 0 },
2317 { NULL, 0, 0, 0, 0 }
2318 };
2319
2320 static const struct bfd_elf_special_section special_sections_n[] =
2321 {
2322 { ".note.GNU-stack",15, 0, SHT_PROGBITS, 0 },
2323 { ".note", 5, -1, SHT_NOTE, 0 },
2324 { NULL, 0, 0, 0, 0 }
2325 };
2326
2327 static const struct bfd_elf_special_section special_sections_p[] =
2328 {
2329 { ".preinit_array", 14, 0, SHT_PREINIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2330 { ".plt", 4, 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2331 { NULL, 0, 0, 0, 0 }
2332 };
2333
2334 static const struct bfd_elf_special_section special_sections_r[] =
2335 {
2336 { ".rodata", 7, -2, SHT_PROGBITS, SHF_ALLOC },
2337 { ".rodata1", 8, 0, SHT_PROGBITS, SHF_ALLOC },
2338 { ".rela", 5, -1, SHT_RELA, 0 },
2339 { ".rel", 4, -1, SHT_REL, 0 },
2340 { NULL, 0, 0, 0, 0 }
2341 };
2342
2343 static const struct bfd_elf_special_section special_sections_s[] =
2344 {
2345 { ".shstrtab", 9, 0, SHT_STRTAB, 0 },
2346 { ".strtab", 7, 0, SHT_STRTAB, 0 },
2347 { ".symtab", 7, 0, SHT_SYMTAB, 0 },
2348 { ".stabstr", 5, 3, SHT_STRTAB, 0 },
2349 { NULL, 0, 0, 0, 0 }
2350 };
2351
2352 static const struct bfd_elf_special_section special_sections_t[] =
2353 {
2354 { ".text", 5, -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2355 { ".tbss", 5, -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2356 { ".tdata", 6, -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2357 { NULL, 0, 0, 0, 0 }
2358 };
2359
2360 static const struct bfd_elf_special_section *special_sections[] =
2361 {
2362 special_sections_b, /* 'b' */
2363 special_sections_c, /* 'b' */
2364 special_sections_d, /* 'd' */
2365 NULL, /* 'e' */
2366 special_sections_f, /* 'f' */
2367 special_sections_g, /* 'g' */
2368 special_sections_h, /* 'h' */
2369 special_sections_i, /* 'i' */
2370 NULL, /* 'j' */
2371 NULL, /* 'k' */
2372 special_sections_l, /* 'l' */
2373 NULL, /* 'm' */
2374 special_sections_n, /* 'n' */
2375 NULL, /* 'o' */
2376 special_sections_p, /* 'p' */
2377 NULL, /* 'q' */
2378 special_sections_r, /* 'r' */
2379 special_sections_s, /* 's' */
2380 special_sections_t, /* 't' */
2381 };
2382
2383 const struct bfd_elf_special_section *
2384 _bfd_elf_get_special_section (const char *name,
2385 const struct bfd_elf_special_section *spec,
2386 unsigned int rela)
2387 {
2388 int i;
2389 int len;
2390
2391 len = strlen (name);
2392
2393 for (i = 0; spec[i].prefix != NULL; i++)
2394 {
2395 int suffix_len;
2396 int prefix_len = spec[i].prefix_length;
2397
2398 if (len < prefix_len)
2399 continue;
2400 if (memcmp (name, spec[i].prefix, prefix_len) != 0)
2401 continue;
2402
2403 suffix_len = spec[i].suffix_length;
2404 if (suffix_len <= 0)
2405 {
2406 if (name[prefix_len] != 0)
2407 {
2408 if (suffix_len == 0)
2409 continue;
2410 if (name[prefix_len] != '.'
2411 && (suffix_len == -2
2412 || (rela && spec[i].type == SHT_REL)))
2413 continue;
2414 }
2415 }
2416 else
2417 {
2418 if (len < prefix_len + suffix_len)
2419 continue;
2420 if (memcmp (name + len - suffix_len,
2421 spec[i].prefix + prefix_len,
2422 suffix_len) != 0)
2423 continue;
2424 }
2425 return &spec[i];
2426 }
2427
2428 return NULL;
2429 }
2430
2431 const struct bfd_elf_special_section *
2432 _bfd_elf_get_sec_type_attr (bfd *abfd, asection *sec)
2433 {
2434 int i;
2435 const struct bfd_elf_special_section *spec;
2436 const struct elf_backend_data *bed;
2437
2438 /* See if this is one of the special sections. */
2439 if (sec->name == NULL)
2440 return NULL;
2441
2442 bed = get_elf_backend_data (abfd);
2443 spec = bed->special_sections;
2444 if (spec)
2445 {
2446 spec = _bfd_elf_get_special_section (sec->name,
2447 bed->special_sections,
2448 sec->use_rela_p);
2449 if (spec != NULL)
2450 return spec;
2451 }
2452
2453 if (sec->name[0] != '.')
2454 return NULL;
2455
2456 i = sec->name[1] - 'b';
2457 if (i < 0 || i > 't' - 'b')
2458 return NULL;
2459
2460 spec = special_sections[i];
2461
2462 if (spec == NULL)
2463 return NULL;
2464
2465 return _bfd_elf_get_special_section (sec->name, spec, sec->use_rela_p);
2466 }
2467
2468 bfd_boolean
2469 _bfd_elf_new_section_hook (bfd *abfd, asection *sec)
2470 {
2471 struct bfd_elf_section_data *sdata;
2472 const struct elf_backend_data *bed;
2473 const struct bfd_elf_special_section *ssect;
2474
2475 sdata = (struct bfd_elf_section_data *) sec->used_by_bfd;
2476 if (sdata == NULL)
2477 {
2478 sdata = bfd_zalloc (abfd, sizeof (*sdata));
2479 if (sdata == NULL)
2480 return FALSE;
2481 sec->used_by_bfd = sdata;
2482 }
2483
2484 /* Indicate whether or not this section should use RELA relocations. */
2485 bed = get_elf_backend_data (abfd);
2486 sec->use_rela_p = bed->default_use_rela_p;
2487
2488 /* When we read a file, we don't need to set ELF section type and
2489 flags. They will be overridden in _bfd_elf_make_section_from_shdr
2490 anyway. We will set ELF section type and flags for all linker
2491 created sections. If user specifies BFD section flags, we will
2492 set ELF section type and flags based on BFD section flags in
2493 elf_fake_sections. */
2494 if ((!sec->flags && abfd->direction != read_direction)
2495 || (sec->flags & SEC_LINKER_CREATED) != 0)
2496 {
2497 ssect = (*bed->get_sec_type_attr) (abfd, sec);
2498 if (ssect != NULL)
2499 {
2500 elf_section_type (sec) = ssect->type;
2501 elf_section_flags (sec) = ssect->attr;
2502 }
2503 }
2504
2505 return _bfd_generic_new_section_hook (abfd, sec);
2506 }
2507
2508 /* Create a new bfd section from an ELF program header.
2509
2510 Since program segments have no names, we generate a synthetic name
2511 of the form segment<NUM>, where NUM is generally the index in the
2512 program header table. For segments that are split (see below) we
2513 generate the names segment<NUM>a and segment<NUM>b.
2514
2515 Note that some program segments may have a file size that is different than
2516 (less than) the memory size. All this means is that at execution the
2517 system must allocate the amount of memory specified by the memory size,
2518 but only initialize it with the first "file size" bytes read from the
2519 file. This would occur for example, with program segments consisting
2520 of combined data+bss.
2521
2522 To handle the above situation, this routine generates TWO bfd sections
2523 for the single program segment. The first has the length specified by
2524 the file size of the segment, and the second has the length specified
2525 by the difference between the two sizes. In effect, the segment is split
2526 into it's initialized and uninitialized parts.
2527
2528 */
2529
2530 bfd_boolean
2531 _bfd_elf_make_section_from_phdr (bfd *abfd,
2532 Elf_Internal_Phdr *hdr,
2533 int index,
2534 const char *typename)
2535 {
2536 asection *newsect;
2537 char *name;
2538 char namebuf[64];
2539 size_t len;
2540 int split;
2541
2542 split = ((hdr->p_memsz > 0)
2543 && (hdr->p_filesz > 0)
2544 && (hdr->p_memsz > hdr->p_filesz));
2545 sprintf (namebuf, "%s%d%s", typename, index, split ? "a" : "");
2546 len = strlen (namebuf) + 1;
2547 name = bfd_alloc (abfd, len);
2548 if (!name)
2549 return FALSE;
2550 memcpy (name, namebuf, len);
2551 newsect = bfd_make_section (abfd, name);
2552 if (newsect == NULL)
2553 return FALSE;
2554 newsect->vma = hdr->p_vaddr;
2555 newsect->lma = hdr->p_paddr;
2556 newsect->size = hdr->p_filesz;
2557 newsect->filepos = hdr->p_offset;
2558 newsect->flags |= SEC_HAS_CONTENTS;
2559 newsect->alignment_power = bfd_log2 (hdr->p_align);
2560 if (hdr->p_type == PT_LOAD)
2561 {
2562 newsect->flags |= SEC_ALLOC;
2563 newsect->flags |= SEC_LOAD;
2564 if (hdr->p_flags & PF_X)
2565 {
2566 /* FIXME: all we known is that it has execute PERMISSION,
2567 may be data. */
2568 newsect->flags |= SEC_CODE;
2569 }
2570 }
2571 if (!(hdr->p_flags & PF_W))
2572 {
2573 newsect->flags |= SEC_READONLY;
2574 }
2575
2576 if (split)
2577 {
2578 sprintf (namebuf, "%s%db", typename, index);
2579 len = strlen (namebuf) + 1;
2580 name = bfd_alloc (abfd, len);
2581 if (!name)
2582 return FALSE;
2583 memcpy (name, namebuf, len);
2584 newsect = bfd_make_section (abfd, name);
2585 if (newsect == NULL)
2586 return FALSE;
2587 newsect->vma = hdr->p_vaddr + hdr->p_filesz;
2588 newsect->lma = hdr->p_paddr + hdr->p_filesz;
2589 newsect->size = hdr->p_memsz - hdr->p_filesz;
2590 if (hdr->p_type == PT_LOAD)
2591 {
2592 newsect->flags |= SEC_ALLOC;
2593 if (hdr->p_flags & PF_X)
2594 newsect->flags |= SEC_CODE;
2595 }
2596 if (!(hdr->p_flags & PF_W))
2597 newsect->flags |= SEC_READONLY;
2598 }
2599
2600 return TRUE;
2601 }
2602
2603 bfd_boolean
2604 bfd_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int index)
2605 {
2606 const struct elf_backend_data *bed;
2607
2608 switch (hdr->p_type)
2609 {
2610 case PT_NULL:
2611 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "null");
2612
2613 case PT_LOAD:
2614 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "load");
2615
2616 case PT_DYNAMIC:
2617 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "dynamic");
2618
2619 case PT_INTERP:
2620 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "interp");
2621
2622 case PT_NOTE:
2623 if (! _bfd_elf_make_section_from_phdr (abfd, hdr, index, "note"))
2624 return FALSE;
2625 if (! elfcore_read_notes (abfd, hdr->p_offset, hdr->p_filesz))
2626 return FALSE;
2627 return TRUE;
2628
2629 case PT_SHLIB:
2630 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "shlib");
2631
2632 case PT_PHDR:
2633 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "phdr");
2634
2635 case PT_GNU_EH_FRAME:
2636 return _bfd_elf_make_section_from_phdr (abfd, hdr, index,
2637 "eh_frame_hdr");
2638
2639 case PT_GNU_STACK:
2640 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "stack");
2641
2642 case PT_GNU_RELRO:
2643 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "relro");
2644
2645 default:
2646 /* Check for any processor-specific program segment types. */
2647 bed = get_elf_backend_data (abfd);
2648 return bed->elf_backend_section_from_phdr (abfd, hdr, index, "proc");
2649 }
2650 }
2651
2652 /* Initialize REL_HDR, the section-header for new section, containing
2653 relocations against ASECT. If USE_RELA_P is TRUE, we use RELA
2654 relocations; otherwise, we use REL relocations. */
2655
2656 bfd_boolean
2657 _bfd_elf_init_reloc_shdr (bfd *abfd,
2658 Elf_Internal_Shdr *rel_hdr,
2659 asection *asect,
2660 bfd_boolean use_rela_p)
2661 {
2662 char *name;
2663 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2664 bfd_size_type amt = sizeof ".rela" + strlen (asect->name);
2665
2666 name = bfd_alloc (abfd, amt);
2667 if (name == NULL)
2668 return FALSE;
2669 sprintf (name, "%s%s", use_rela_p ? ".rela" : ".rel", asect->name);
2670 rel_hdr->sh_name =
2671 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd), name,
2672 FALSE);
2673 if (rel_hdr->sh_name == (unsigned int) -1)
2674 return FALSE;
2675 rel_hdr->sh_type = use_rela_p ? SHT_RELA : SHT_REL;
2676 rel_hdr->sh_entsize = (use_rela_p
2677 ? bed->s->sizeof_rela
2678 : bed->s->sizeof_rel);
2679 rel_hdr->sh_addralign = 1 << bed->s->log_file_align;
2680 rel_hdr->sh_flags = 0;
2681 rel_hdr->sh_addr = 0;
2682 rel_hdr->sh_size = 0;
2683 rel_hdr->sh_offset = 0;
2684
2685 return TRUE;
2686 }
2687
2688 /* Set up an ELF internal section header for a section. */
2689
2690 static void
2691 elf_fake_sections (bfd *abfd, asection *asect, void *failedptrarg)
2692 {
2693 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2694 bfd_boolean *failedptr = failedptrarg;
2695 Elf_Internal_Shdr *this_hdr;
2696
2697 if (*failedptr)
2698 {
2699 /* We already failed; just get out of the bfd_map_over_sections
2700 loop. */
2701 return;
2702 }
2703
2704 this_hdr = &elf_section_data (asect)->this_hdr;
2705
2706 this_hdr->sh_name = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
2707 asect->name, FALSE);
2708 if (this_hdr->sh_name == (unsigned int) -1)
2709 {
2710 *failedptr = TRUE;
2711 return;
2712 }
2713
2714 /* Don't clear sh_flags. Assembler may set additional bits. */
2715
2716 if ((asect->flags & SEC_ALLOC) != 0
2717 || asect->user_set_vma)
2718 this_hdr->sh_addr = asect->vma;
2719 else
2720 this_hdr->sh_addr = 0;
2721
2722 this_hdr->sh_offset = 0;
2723 this_hdr->sh_size = asect->size;
2724 this_hdr->sh_link = 0;
2725 this_hdr->sh_addralign = 1 << asect->alignment_power;
2726 /* The sh_entsize and sh_info fields may have been set already by
2727 copy_private_section_data. */
2728
2729 this_hdr->bfd_section = asect;
2730 this_hdr->contents = NULL;
2731
2732 /* If the section type is unspecified, we set it based on
2733 asect->flags. */
2734 if (this_hdr->sh_type == SHT_NULL)
2735 {
2736 if ((asect->flags & SEC_GROUP) != 0)
2737 this_hdr->sh_type = SHT_GROUP;
2738 else if ((asect->flags & SEC_ALLOC) != 0
2739 && (((asect->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
2740 || (asect->flags & SEC_NEVER_LOAD) != 0))
2741 this_hdr->sh_type = SHT_NOBITS;
2742 else
2743 this_hdr->sh_type = SHT_PROGBITS;
2744 }
2745
2746 switch (this_hdr->sh_type)
2747 {
2748 default:
2749 break;
2750
2751 case SHT_STRTAB:
2752 case SHT_INIT_ARRAY:
2753 case SHT_FINI_ARRAY:
2754 case SHT_PREINIT_ARRAY:
2755 case SHT_NOTE:
2756 case SHT_NOBITS:
2757 case SHT_PROGBITS:
2758 break;
2759
2760 case SHT_HASH:
2761 this_hdr->sh_entsize = bed->s->sizeof_hash_entry;
2762 break;
2763
2764 case SHT_DYNSYM:
2765 this_hdr->sh_entsize = bed->s->sizeof_sym;
2766 break;
2767
2768 case SHT_DYNAMIC:
2769 this_hdr->sh_entsize = bed->s->sizeof_dyn;
2770 break;
2771
2772 case SHT_RELA:
2773 if (get_elf_backend_data (abfd)->may_use_rela_p)
2774 this_hdr->sh_entsize = bed->s->sizeof_rela;
2775 break;
2776
2777 case SHT_REL:
2778 if (get_elf_backend_data (abfd)->may_use_rel_p)
2779 this_hdr->sh_entsize = bed->s->sizeof_rel;
2780 break;
2781
2782 case SHT_GNU_versym:
2783 this_hdr->sh_entsize = sizeof (Elf_External_Versym);
2784 break;
2785
2786 case SHT_GNU_verdef:
2787 this_hdr->sh_entsize = 0;
2788 /* objcopy or strip will copy over sh_info, but may not set
2789 cverdefs. The linker will set cverdefs, but sh_info will be
2790 zero. */
2791 if (this_hdr->sh_info == 0)
2792 this_hdr->sh_info = elf_tdata (abfd)->cverdefs;
2793 else
2794 BFD_ASSERT (elf_tdata (abfd)->cverdefs == 0
2795 || this_hdr->sh_info == elf_tdata (abfd)->cverdefs);
2796 break;
2797
2798 case SHT_GNU_verneed:
2799 this_hdr->sh_entsize = 0;
2800 /* objcopy or strip will copy over sh_info, but may not set
2801 cverrefs. The linker will set cverrefs, but sh_info will be
2802 zero. */
2803 if (this_hdr->sh_info == 0)
2804 this_hdr->sh_info = elf_tdata (abfd)->cverrefs;
2805 else
2806 BFD_ASSERT (elf_tdata (abfd)->cverrefs == 0
2807 || this_hdr->sh_info == elf_tdata (abfd)->cverrefs);
2808 break;
2809
2810 case SHT_GROUP:
2811 this_hdr->sh_entsize = 4;
2812 break;
2813 }
2814
2815 if ((asect->flags & SEC_ALLOC) != 0)
2816 this_hdr->sh_flags |= SHF_ALLOC;
2817 if ((asect->flags & SEC_READONLY) == 0)
2818 this_hdr->sh_flags |= SHF_WRITE;
2819 if ((asect->flags & SEC_CODE) != 0)
2820 this_hdr->sh_flags |= SHF_EXECINSTR;
2821 if ((asect->flags & SEC_MERGE) != 0)
2822 {
2823 this_hdr->sh_flags |= SHF_MERGE;
2824 this_hdr->sh_entsize = asect->entsize;
2825 if ((asect->flags & SEC_STRINGS) != 0)
2826 this_hdr->sh_flags |= SHF_STRINGS;
2827 }
2828 if ((asect->flags & SEC_GROUP) == 0 && elf_group_name (asect) != NULL)
2829 this_hdr->sh_flags |= SHF_GROUP;
2830 if ((asect->flags & SEC_THREAD_LOCAL) != 0)
2831 {
2832 this_hdr->sh_flags |= SHF_TLS;
2833 if (asect->size == 0
2834 && (asect->flags & SEC_HAS_CONTENTS) == 0)
2835 {
2836 struct bfd_link_order *o = asect->map_tail.link_order;
2837
2838 this_hdr->sh_size = 0;
2839 if (o != NULL)
2840 {
2841 this_hdr->sh_size = o->offset + o->size;
2842 if (this_hdr->sh_size != 0)
2843 this_hdr->sh_type = SHT_NOBITS;
2844 }
2845 }
2846 }
2847
2848 /* Check for processor-specific section types. */
2849 if (bed->elf_backend_fake_sections
2850 && !(*bed->elf_backend_fake_sections) (abfd, this_hdr, asect))
2851 *failedptr = TRUE;
2852
2853 /* If the section has relocs, set up a section header for the
2854 SHT_REL[A] section. If two relocation sections are required for
2855 this section, it is up to the processor-specific back-end to
2856 create the other. */
2857 if ((asect->flags & SEC_RELOC) != 0
2858 && !_bfd_elf_init_reloc_shdr (abfd,
2859 &elf_section_data (asect)->rel_hdr,
2860 asect,
2861 asect->use_rela_p))
2862 *failedptr = TRUE;
2863 }
2864
2865 /* Fill in the contents of a SHT_GROUP section. */
2866
2867 void
2868 bfd_elf_set_group_contents (bfd *abfd, asection *sec, void *failedptrarg)
2869 {
2870 bfd_boolean *failedptr = failedptrarg;
2871 unsigned long symindx;
2872 asection *elt, *first;
2873 unsigned char *loc;
2874 bfd_boolean gas;
2875
2876 /* Ignore linker created group section. See elfNN_ia64_object_p in
2877 elfxx-ia64.c. */
2878 if (((sec->flags & (SEC_GROUP | SEC_LINKER_CREATED)) != SEC_GROUP)
2879 || *failedptr)
2880 return;
2881
2882 symindx = 0;
2883 if (elf_group_id (sec) != NULL)
2884 symindx = elf_group_id (sec)->udata.i;
2885
2886 if (symindx == 0)
2887 {
2888 /* If called from the assembler, swap_out_syms will have set up
2889 elf_section_syms; If called for "ld -r", use target_index. */
2890 if (elf_section_syms (abfd) != NULL)
2891 symindx = elf_section_syms (abfd)[sec->index]->udata.i;
2892 else
2893 symindx = sec->target_index;
2894 }
2895 elf_section_data (sec)->this_hdr.sh_info = symindx;
2896
2897 /* The contents won't be allocated for "ld -r" or objcopy. */
2898 gas = TRUE;
2899 if (sec->contents == NULL)
2900 {
2901 gas = FALSE;
2902 sec->contents = bfd_alloc (abfd, sec->size);
2903
2904 /* Arrange for the section to be written out. */
2905 elf_section_data (sec)->this_hdr.contents = sec->contents;
2906 if (sec->contents == NULL)
2907 {
2908 *failedptr = TRUE;
2909 return;
2910 }
2911 }
2912
2913 loc = sec->contents + sec->size;
2914
2915 /* Get the pointer to the first section in the group that gas
2916 squirreled away here. objcopy arranges for this to be set to the
2917 start of the input section group. */
2918 first = elt = elf_next_in_group (sec);
2919
2920 /* First element is a flag word. Rest of section is elf section
2921 indices for all the sections of the group. Write them backwards
2922 just to keep the group in the same order as given in .section
2923 directives, not that it matters. */
2924 while (elt != NULL)
2925 {
2926 asection *s;
2927 unsigned int idx;
2928
2929 loc -= 4;
2930 s = elt;
2931 if (!gas)
2932 s = s->output_section;
2933 idx = 0;
2934 if (s != NULL)
2935 idx = elf_section_data (s)->this_idx;
2936 H_PUT_32 (abfd, idx, loc);
2937 elt = elf_next_in_group (elt);
2938 if (elt == first)
2939 break;
2940 }
2941
2942 if ((loc -= 4) != sec->contents)
2943 abort ();
2944
2945 H_PUT_32 (abfd, sec->flags & SEC_LINK_ONCE ? GRP_COMDAT : 0, loc);
2946 }
2947
2948 /* Assign all ELF section numbers. The dummy first section is handled here
2949 too. The link/info pointers for the standard section types are filled
2950 in here too, while we're at it. */
2951
2952 static bfd_boolean
2953 assign_section_numbers (bfd *abfd, struct bfd_link_info *link_info)
2954 {
2955 struct elf_obj_tdata *t = elf_tdata (abfd);
2956 asection *sec;
2957 unsigned int section_number, secn;
2958 Elf_Internal_Shdr **i_shdrp;
2959 struct bfd_elf_section_data *d;
2960
2961 section_number = 1;
2962
2963 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd));
2964
2965 /* SHT_GROUP sections are in relocatable files only. */
2966 if (link_info == NULL || link_info->relocatable)
2967 {
2968 /* Put SHT_GROUP sections first. */
2969 for (sec = abfd->sections; sec != NULL; sec = sec->next)
2970 {
2971 d = elf_section_data (sec);
2972
2973 if (d->this_hdr.sh_type == SHT_GROUP)
2974 {
2975 if (sec->flags & SEC_LINKER_CREATED)
2976 {
2977 /* Remove the linker created SHT_GROUP sections. */
2978 bfd_section_list_remove (abfd, sec);
2979 abfd->section_count--;
2980 }
2981 else
2982 {
2983 if (section_number == SHN_LORESERVE)
2984 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2985 d->this_idx = section_number++;
2986 }
2987 }
2988 }
2989 }
2990
2991 for (sec = abfd->sections; sec; sec = sec->next)
2992 {
2993 d = elf_section_data (sec);
2994
2995 if (d->this_hdr.sh_type != SHT_GROUP)
2996 {
2997 if (section_number == SHN_LORESERVE)
2998 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2999 d->this_idx = section_number++;
3000 }
3001 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->this_hdr.sh_name);
3002 if ((sec->flags & SEC_RELOC) == 0)
3003 d->rel_idx = 0;
3004 else
3005 {
3006 if (section_number == SHN_LORESERVE)
3007 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
3008 d->rel_idx = section_number++;
3009 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel_hdr.sh_name);
3010 }
3011
3012 if (d->rel_hdr2)
3013 {
3014 if (section_number == SHN_LORESERVE)
3015 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
3016 d->rel_idx2 = section_number++;
3017 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel_hdr2->sh_name);
3018 }
3019 else
3020 d->rel_idx2 = 0;
3021 }
3022
3023 if (section_number == SHN_LORESERVE)
3024 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
3025 t->shstrtab_section = section_number++;
3026 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->shstrtab_hdr.sh_name);
3027 elf_elfheader (abfd)->e_shstrndx = t->shstrtab_section;
3028
3029 if (bfd_get_symcount (abfd) > 0)
3030 {
3031 if (section_number == SHN_LORESERVE)
3032 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
3033 t->symtab_section = section_number++;
3034 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->symtab_hdr.sh_name);
3035 if (section_number > SHN_LORESERVE - 2)
3036 {
3037 if (section_number == SHN_LORESERVE)
3038 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
3039 t->symtab_shndx_section = section_number++;
3040 t->symtab_shndx_hdr.sh_name
3041 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
3042 ".symtab_shndx", FALSE);
3043 if (t->symtab_shndx_hdr.sh_name == (unsigned int) -1)
3044 return FALSE;
3045 }
3046 if (section_number == SHN_LORESERVE)
3047 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
3048 t->strtab_section = section_number++;
3049 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->strtab_hdr.sh_name);
3050 }
3051
3052 _bfd_elf_strtab_finalize (elf_shstrtab (abfd));
3053 t->shstrtab_hdr.sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
3054
3055 elf_numsections (abfd) = section_number;
3056 elf_elfheader (abfd)->e_shnum = section_number;
3057 if (section_number > SHN_LORESERVE)
3058 elf_elfheader (abfd)->e_shnum -= SHN_HIRESERVE + 1 - SHN_LORESERVE;
3059
3060 /* Set up the list of section header pointers, in agreement with the
3061 indices. */
3062 i_shdrp = bfd_zalloc2 (abfd, section_number, sizeof (Elf_Internal_Shdr *));
3063 if (i_shdrp == NULL)
3064 return FALSE;
3065
3066 i_shdrp[0] = bfd_zalloc (abfd, sizeof (Elf_Internal_Shdr));
3067 if (i_shdrp[0] == NULL)
3068 {
3069 bfd_release (abfd, i_shdrp);
3070 return FALSE;
3071 }
3072
3073 elf_elfsections (abfd) = i_shdrp;
3074
3075 i_shdrp[t->shstrtab_section] = &t->shstrtab_hdr;
3076 if (bfd_get_symcount (abfd) > 0)
3077 {
3078 i_shdrp[t->symtab_section] = &t->symtab_hdr;
3079 if (elf_numsections (abfd) > SHN_LORESERVE)
3080 {
3081 i_shdrp[t->symtab_shndx_section] = &t->symtab_shndx_hdr;
3082 t->symtab_shndx_hdr.sh_link = t->symtab_section;
3083 }
3084 i_shdrp[t->strtab_section] = &t->strtab_hdr;
3085 t->symtab_hdr.sh_link = t->strtab_section;
3086 }
3087
3088 for (sec = abfd->sections; sec; sec = sec->next)
3089 {
3090 struct bfd_elf_section_data *d = elf_section_data (sec);
3091 asection *s;
3092 const char *name;
3093
3094 i_shdrp[d->this_idx] = &d->this_hdr;
3095 if (d->rel_idx != 0)
3096 i_shdrp[d->rel_idx] = &d->rel_hdr;
3097 if (d->rel_idx2 != 0)
3098 i_shdrp[d->rel_idx2] = d->rel_hdr2;
3099
3100 /* Fill in the sh_link and sh_info fields while we're at it. */
3101
3102 /* sh_link of a reloc section is the section index of the symbol
3103 table. sh_info is the section index of the section to which
3104 the relocation entries apply. */
3105 if (d->rel_idx != 0)
3106 {
3107 d->rel_hdr.sh_link = t->symtab_section;
3108 d->rel_hdr.sh_info = d->this_idx;
3109 }
3110 if (d->rel_idx2 != 0)
3111 {
3112 d->rel_hdr2->sh_link = t->symtab_section;
3113 d->rel_hdr2->sh_info = d->this_idx;
3114 }
3115
3116 /* We need to set up sh_link for SHF_LINK_ORDER. */
3117 if ((d->this_hdr.sh_flags & SHF_LINK_ORDER) != 0)
3118 {
3119 s = elf_linked_to_section (sec);
3120 if (s)
3121 {
3122 /* elf_linked_to_section points to the input section. */
3123 if (link_info != NULL)
3124 {
3125 /* Check discarded linkonce section. */
3126 if (elf_discarded_section (s))
3127 {
3128 asection *kept;
3129 (*_bfd_error_handler)
3130 (_("%B: sh_link of section `%A' points to discarded section `%A' of `%B'"),
3131 abfd, d->this_hdr.bfd_section,
3132 s, s->owner);
3133 /* Point to the kept section if it has the same
3134 size as the discarded one. */
3135 kept = _bfd_elf_check_kept_section (s);
3136 if (kept == NULL)
3137 {
3138 bfd_set_error (bfd_error_bad_value);
3139 return FALSE;
3140 }
3141 s = kept;
3142 }
3143
3144 s = s->output_section;
3145 BFD_ASSERT (s != NULL);
3146 }
3147 else
3148 {
3149 /* Handle objcopy. */
3150 if (s->output_section == NULL)
3151 {
3152 (*_bfd_error_handler)
3153 (_("%B: sh_link of section `%A' points to removed section `%A' of `%B'"),
3154 abfd, d->this_hdr.bfd_section, s, s->owner);
3155 bfd_set_error (bfd_error_bad_value);
3156 return FALSE;
3157 }
3158 s = s->output_section;
3159 }
3160 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3161 }
3162 else
3163 {
3164 /* PR 290:
3165 The Intel C compiler generates SHT_IA_64_UNWIND with
3166 SHF_LINK_ORDER. But it doesn't set the sh_link or
3167 sh_info fields. Hence we could get the situation
3168 where s is NULL. */
3169 const struct elf_backend_data *bed
3170 = get_elf_backend_data (abfd);
3171 if (bed->link_order_error_handler)
3172 bed->link_order_error_handler
3173 (_("%B: warning: sh_link not set for section `%A'"),
3174 abfd, sec);
3175 }
3176 }
3177
3178 switch (d->this_hdr.sh_type)
3179 {
3180 case SHT_REL:
3181 case SHT_RELA:
3182 /* A reloc section which we are treating as a normal BFD
3183 section. sh_link is the section index of the symbol
3184 table. sh_info is the section index of the section to
3185 which the relocation entries apply. We assume that an
3186 allocated reloc section uses the dynamic symbol table.
3187 FIXME: How can we be sure? */
3188 s = bfd_get_section_by_name (abfd, ".dynsym");
3189 if (s != NULL)
3190 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3191
3192 /* We look up the section the relocs apply to by name. */
3193 name = sec->name;
3194 if (d->this_hdr.sh_type == SHT_REL)
3195 name += 4;
3196 else
3197 name += 5;
3198 s = bfd_get_section_by_name (abfd, name);
3199 if (s != NULL)
3200 d->this_hdr.sh_info = elf_section_data (s)->this_idx;
3201 break;
3202
3203 case SHT_STRTAB:
3204 /* We assume that a section named .stab*str is a stabs
3205 string section. We look for a section with the same name
3206 but without the trailing ``str'', and set its sh_link
3207 field to point to this section. */
3208 if (strncmp (sec->name, ".stab", sizeof ".stab" - 1) == 0
3209 && strcmp (sec->name + strlen (sec->name) - 3, "str") == 0)
3210 {
3211 size_t len;
3212 char *alc;
3213
3214 len = strlen (sec->name);
3215 alc = bfd_malloc (len - 2);
3216 if (alc == NULL)
3217 return FALSE;
3218 memcpy (alc, sec->name, len - 3);
3219 alc[len - 3] = '\0';
3220 s = bfd_get_section_by_name (abfd, alc);
3221 free (alc);
3222 if (s != NULL)
3223 {
3224 elf_section_data (s)->this_hdr.sh_link = d->this_idx;
3225
3226 /* This is a .stab section. */
3227 if (elf_section_data (s)->this_hdr.sh_entsize == 0)
3228 elf_section_data (s)->this_hdr.sh_entsize
3229 = 4 + 2 * bfd_get_arch_size (abfd) / 8;
3230 }
3231 }
3232 break;
3233
3234 case SHT_DYNAMIC:
3235 case SHT_DYNSYM:
3236 case SHT_GNU_verneed:
3237 case SHT_GNU_verdef:
3238 /* sh_link is the section header index of the string table
3239 used for the dynamic entries, or the symbol table, or the
3240 version strings. */
3241 s = bfd_get_section_by_name (abfd, ".dynstr");
3242 if (s != NULL)
3243 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3244 break;
3245
3246 case SHT_GNU_LIBLIST:
3247 /* sh_link is the section header index of the prelink library
3248 list
3249 used for the dynamic entries, or the symbol table, or the
3250 version strings. */
3251 s = bfd_get_section_by_name (abfd, (sec->flags & SEC_ALLOC)
3252 ? ".dynstr" : ".gnu.libstr");
3253 if (s != NULL)
3254 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3255 break;
3256
3257 case SHT_HASH:
3258 case SHT_GNU_versym:
3259 /* sh_link is the section header index of the symbol table
3260 this hash table or version table is for. */
3261 s = bfd_get_section_by_name (abfd, ".dynsym");
3262 if (s != NULL)
3263 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3264 break;
3265
3266 case SHT_GROUP:
3267 d->this_hdr.sh_link = t->symtab_section;
3268 }
3269 }
3270
3271 for (secn = 1; secn < section_number; ++secn)
3272 if (i_shdrp[secn] == NULL)
3273 i_shdrp[secn] = i_shdrp[0];
3274 else
3275 i_shdrp[secn]->sh_name = _bfd_elf_strtab_offset (elf_shstrtab (abfd),
3276 i_shdrp[secn]->sh_name);
3277 return TRUE;
3278 }
3279
3280 /* Map symbol from it's internal number to the external number, moving
3281 all local symbols to be at the head of the list. */
3282
3283 static bfd_boolean
3284 sym_is_global (bfd *abfd, asymbol *sym)
3285 {
3286 /* If the backend has a special mapping, use it. */
3287 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3288 if (bed->elf_backend_sym_is_global)
3289 return (*bed->elf_backend_sym_is_global) (abfd, sym);
3290
3291 return ((sym->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
3292 || bfd_is_und_section (bfd_get_section (sym))
3293 || bfd_is_com_section (bfd_get_section (sym)));
3294 }
3295
3296 /* Don't output section symbols for sections that are not going to be
3297 output. Also, don't output section symbols for reloc and other
3298 special sections. */
3299
3300 static bfd_boolean
3301 ignore_section_sym (bfd *abfd, asymbol *sym)
3302 {
3303 return ((sym->flags & BSF_SECTION_SYM) != 0
3304 && (sym->value != 0
3305 || (sym->section->owner != abfd
3306 && (sym->section->output_section->owner != abfd
3307 || sym->section->output_offset != 0))));
3308 }
3309
3310 static bfd_boolean
3311 elf_map_symbols (bfd *abfd)
3312 {
3313 unsigned int symcount = bfd_get_symcount (abfd);
3314 asymbol **syms = bfd_get_outsymbols (abfd);
3315 asymbol **sect_syms;
3316 unsigned int num_locals = 0;
3317 unsigned int num_globals = 0;
3318 unsigned int num_locals2 = 0;
3319 unsigned int num_globals2 = 0;
3320 int max_index = 0;
3321 unsigned int idx;
3322 asection *asect;
3323 asymbol **new_syms;
3324
3325 #ifdef DEBUG
3326 fprintf (stderr, "elf_map_symbols\n");
3327 fflush (stderr);
3328 #endif
3329
3330 for (asect = abfd->sections; asect; asect = asect->next)
3331 {
3332 if (max_index < asect->index)
3333 max_index = asect->index;
3334 }
3335
3336 max_index++;
3337 sect_syms = bfd_zalloc2 (abfd, max_index, sizeof (asymbol *));
3338 if (sect_syms == NULL)
3339 return FALSE;
3340 elf_section_syms (abfd) = sect_syms;
3341 elf_num_section_syms (abfd) = max_index;
3342
3343 /* Init sect_syms entries for any section symbols we have already
3344 decided to output. */
3345 for (idx = 0; idx < symcount; idx++)
3346 {
3347 asymbol *sym = syms[idx];
3348
3349 if ((sym->flags & BSF_SECTION_SYM) != 0
3350 && !ignore_section_sym (abfd, sym))
3351 {
3352 asection *sec = sym->section;
3353
3354 if (sec->owner != abfd)
3355 sec = sec->output_section;
3356
3357 sect_syms[sec->index] = syms[idx];
3358 }
3359 }
3360
3361 /* Classify all of the symbols. */
3362 for (idx = 0; idx < symcount; idx++)
3363 {
3364 if (ignore_section_sym (abfd, syms[idx]))
3365 continue;
3366 if (!sym_is_global (abfd, syms[idx]))
3367 num_locals++;
3368 else
3369 num_globals++;
3370 }
3371
3372 /* We will be adding a section symbol for each normal BFD section. Most
3373 sections will already have a section symbol in outsymbols, but
3374 eg. SHT_GROUP sections will not, and we need the section symbol mapped
3375 at least in that case. */
3376 for (asect = abfd->sections; asect; asect = asect->next)
3377 {
3378 if (sect_syms[asect->index] == NULL)
3379 {
3380 if (!sym_is_global (abfd, asect->symbol))
3381 num_locals++;
3382 else
3383 num_globals++;
3384 }
3385 }
3386
3387 /* Now sort the symbols so the local symbols are first. */
3388 new_syms = bfd_alloc2 (abfd, num_locals + num_globals, sizeof (asymbol *));
3389
3390 if (new_syms == NULL)
3391 return FALSE;
3392
3393 for (idx = 0; idx < symcount; idx++)
3394 {
3395 asymbol *sym = syms[idx];
3396 unsigned int i;
3397
3398 if (ignore_section_sym (abfd, sym))
3399 continue;
3400 if (!sym_is_global (abfd, sym))
3401 i = num_locals2++;
3402 else
3403 i = num_locals + num_globals2++;
3404 new_syms[i] = sym;
3405 sym->udata.i = i + 1;
3406 }
3407 for (asect = abfd->sections; asect; asect = asect->next)
3408 {
3409 if (sect_syms[asect->index] == NULL)
3410 {
3411 asymbol *sym = asect->symbol;
3412 unsigned int i;
3413
3414 sect_syms[asect->index] = sym;
3415 if (!sym_is_global (abfd, sym))
3416 i = num_locals2++;
3417 else
3418 i = num_locals + num_globals2++;
3419 new_syms[i] = sym;
3420 sym->udata.i = i + 1;
3421 }
3422 }
3423
3424 bfd_set_symtab (abfd, new_syms, num_locals + num_globals);
3425
3426 elf_num_locals (abfd) = num_locals;
3427 elf_num_globals (abfd) = num_globals;
3428 return TRUE;
3429 }
3430
3431 /* Align to the maximum file alignment that could be required for any
3432 ELF data structure. */
3433
3434 static inline file_ptr
3435 align_file_position (file_ptr off, int align)
3436 {
3437 return (off + align - 1) & ~(align - 1);
3438 }
3439
3440 /* Assign a file position to a section, optionally aligning to the
3441 required section alignment. */
3442
3443 file_ptr
3444 _bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr *i_shdrp,
3445 file_ptr offset,
3446 bfd_boolean align)
3447 {
3448 if (align)
3449 {
3450 unsigned int al;
3451
3452 al = i_shdrp->sh_addralign;
3453 if (al > 1)
3454 offset = BFD_ALIGN (offset, al);
3455 }
3456 i_shdrp->sh_offset = offset;
3457 if (i_shdrp->bfd_section != NULL)
3458 i_shdrp->bfd_section->filepos = offset;
3459 if (i_shdrp->sh_type != SHT_NOBITS)
3460 offset += i_shdrp->sh_size;
3461 return offset;
3462 }
3463
3464 /* Compute the file positions we are going to put the sections at, and
3465 otherwise prepare to begin writing out the ELF file. If LINK_INFO
3466 is not NULL, this is being called by the ELF backend linker. */
3467
3468 bfd_boolean
3469 _bfd_elf_compute_section_file_positions (bfd *abfd,
3470 struct bfd_link_info *link_info)
3471 {
3472 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3473 bfd_boolean failed;
3474 struct bfd_strtab_hash *strtab = NULL;
3475 Elf_Internal_Shdr *shstrtab_hdr;
3476
3477 if (abfd->output_has_begun)
3478 return TRUE;
3479
3480 /* Do any elf backend specific processing first. */
3481 if (bed->elf_backend_begin_write_processing)
3482 (*bed->elf_backend_begin_write_processing) (abfd, link_info);
3483
3484 if (! prep_headers (abfd))
3485 return FALSE;
3486
3487 /* Post process the headers if necessary. */
3488 if (bed->elf_backend_post_process_headers)
3489 (*bed->elf_backend_post_process_headers) (abfd, link_info);
3490
3491 failed = FALSE;
3492 bfd_map_over_sections (abfd, elf_fake_sections, &failed);
3493 if (failed)
3494 return FALSE;
3495
3496 if (!assign_section_numbers (abfd, link_info))
3497 return FALSE;
3498
3499 /* The backend linker builds symbol table information itself. */
3500 if (link_info == NULL && bfd_get_symcount (abfd) > 0)
3501 {
3502 /* Non-zero if doing a relocatable link. */
3503 int relocatable_p = ! (abfd->flags & (EXEC_P | DYNAMIC));
3504
3505 if (! swap_out_syms (abfd, &strtab, relocatable_p))
3506 return FALSE;
3507 }
3508
3509 if (link_info == NULL)
3510 {
3511 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
3512 if (failed)
3513 return FALSE;
3514 }
3515
3516 shstrtab_hdr = &elf_tdata (abfd)->shstrtab_hdr;
3517 /* sh_name was set in prep_headers. */
3518 shstrtab_hdr->sh_type = SHT_STRTAB;
3519 shstrtab_hdr->sh_flags = 0;
3520 shstrtab_hdr->sh_addr = 0;
3521 shstrtab_hdr->sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
3522 shstrtab_hdr->sh_entsize = 0;
3523 shstrtab_hdr->sh_link = 0;
3524 shstrtab_hdr->sh_info = 0;
3525 /* sh_offset is set in assign_file_positions_except_relocs. */
3526 shstrtab_hdr->sh_addralign = 1;
3527
3528 if (!assign_file_positions_except_relocs (abfd, link_info))
3529 return FALSE;
3530
3531 if (link_info == NULL && bfd_get_symcount (abfd) > 0)
3532 {
3533 file_ptr off;
3534 Elf_Internal_Shdr *hdr;
3535
3536 off = elf_tdata (abfd)->next_file_pos;
3537
3538 hdr = &elf_tdata (abfd)->symtab_hdr;
3539 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3540
3541 hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
3542 if (hdr->sh_size != 0)
3543 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3544
3545 hdr = &elf_tdata (abfd)->strtab_hdr;
3546 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3547
3548 elf_tdata (abfd)->next_file_pos = off;
3549
3550 /* Now that we know where the .strtab section goes, write it
3551 out. */
3552 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
3553 || ! _bfd_stringtab_emit (abfd, strtab))
3554 return FALSE;
3555 _bfd_stringtab_free (strtab);
3556 }
3557
3558 abfd->output_has_begun = TRUE;
3559
3560 return TRUE;
3561 }
3562
3563 /* Create a mapping from a set of sections to a program segment. */
3564
3565 static struct elf_segment_map *
3566 make_mapping (bfd *abfd,
3567 asection **sections,
3568 unsigned int from,
3569 unsigned int to,
3570 bfd_boolean phdr)
3571 {
3572 struct elf_segment_map *m;
3573 unsigned int i;
3574 asection **hdrpp;
3575 bfd_size_type amt;
3576
3577 amt = sizeof (struct elf_segment_map);
3578 amt += (to - from - 1) * sizeof (asection *);
3579 m = bfd_zalloc (abfd, amt);
3580 if (m == NULL)
3581 return NULL;
3582 m->next = NULL;
3583 m->p_type = PT_LOAD;
3584 for (i = from, hdrpp = sections + from; i < to; i++, hdrpp++)
3585 m->sections[i - from] = *hdrpp;
3586 m->count = to - from;
3587
3588 if (from == 0 && phdr)
3589 {
3590 /* Include the headers in the first PT_LOAD segment. */
3591 m->includes_filehdr = 1;
3592 m->includes_phdrs = 1;
3593 }
3594
3595 return m;
3596 }
3597
3598 /* Create the PT_DYNAMIC segment, which includes DYNSEC. Returns NULL
3599 on failure. */
3600
3601 struct elf_segment_map *
3602 _bfd_elf_make_dynamic_segment (bfd *abfd, asection *dynsec)
3603 {
3604 struct elf_segment_map *m;
3605
3606 m = bfd_zalloc (abfd, sizeof (struct elf_segment_map));
3607 if (m == NULL)
3608 return NULL;
3609 m->next = NULL;
3610 m->p_type = PT_DYNAMIC;
3611 m->count = 1;
3612 m->sections[0] = dynsec;
3613
3614 return m;
3615 }
3616
3617 /* Set up a mapping from BFD sections to program segments. */
3618
3619 static bfd_boolean
3620 map_sections_to_segments (bfd *abfd)
3621 {
3622 asection **sections = NULL;
3623 asection *s;
3624 unsigned int i;
3625 unsigned int count;
3626 struct elf_segment_map *mfirst;
3627 struct elf_segment_map **pm;
3628 struct elf_segment_map *m;
3629 asection *last_hdr;
3630 bfd_vma last_size;
3631 unsigned int phdr_index;
3632 bfd_vma maxpagesize;
3633 asection **hdrpp;
3634 bfd_boolean phdr_in_segment = TRUE;
3635 bfd_boolean writable;
3636 int tls_count = 0;
3637 asection *first_tls = NULL;
3638 asection *dynsec, *eh_frame_hdr;
3639 bfd_size_type amt;
3640
3641 if (elf_tdata (abfd)->segment_map != NULL)
3642 return TRUE;
3643
3644 if (bfd_count_sections (abfd) == 0)
3645 return TRUE;
3646
3647 /* Select the allocated sections, and sort them. */
3648
3649 sections = bfd_malloc2 (bfd_count_sections (abfd), sizeof (asection *));
3650 if (sections == NULL)
3651 goto error_return;
3652
3653 i = 0;
3654 for (s = abfd->sections; s != NULL; s = s->next)
3655 {
3656 if ((s->flags & SEC_ALLOC) != 0)
3657 {
3658 sections[i] = s;
3659 ++i;
3660 }
3661 }
3662 BFD_ASSERT (i <= bfd_count_sections (abfd));
3663 count = i;
3664
3665 qsort (sections, (size_t) count, sizeof (asection *), elf_sort_sections);
3666
3667 /* Build the mapping. */
3668
3669 mfirst = NULL;
3670 pm = &mfirst;
3671
3672 /* If we have a .interp section, then create a PT_PHDR segment for
3673 the program headers and a PT_INTERP segment for the .interp
3674 section. */
3675 s = bfd_get_section_by_name (abfd, ".interp");
3676 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3677 {
3678 amt = sizeof (struct elf_segment_map);
3679 m = bfd_zalloc (abfd, amt);
3680 if (m == NULL)
3681 goto error_return;
3682 m->next = NULL;
3683 m->p_type = PT_PHDR;
3684 /* FIXME: UnixWare and Solaris set PF_X, Irix 5 does not. */
3685 m->p_flags = PF_R | PF_X;
3686 m->p_flags_valid = 1;
3687 m->includes_phdrs = 1;
3688
3689 *pm = m;
3690 pm = &m->next;
3691
3692 amt = sizeof (struct elf_segment_map);
3693 m = bfd_zalloc (abfd, amt);
3694 if (m == NULL)
3695 goto error_return;
3696 m->next = NULL;
3697 m->p_type = PT_INTERP;
3698 m->count = 1;
3699 m->sections[0] = s;
3700
3701 *pm = m;
3702 pm = &m->next;
3703 }
3704
3705 /* Look through the sections. We put sections in the same program
3706 segment when the start of the second section can be placed within
3707 a few bytes of the end of the first section. */
3708 last_hdr = NULL;
3709 last_size = 0;
3710 phdr_index = 0;
3711 maxpagesize = get_elf_backend_data (abfd)->maxpagesize;
3712 writable = FALSE;
3713 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
3714 if (dynsec != NULL
3715 && (dynsec->flags & SEC_LOAD) == 0)
3716 dynsec = NULL;
3717
3718 /* Deal with -Ttext or something similar such that the first section
3719 is not adjacent to the program headers. This is an
3720 approximation, since at this point we don't know exactly how many
3721 program headers we will need. */
3722 if (count > 0)
3723 {
3724 bfd_size_type phdr_size;
3725
3726 phdr_size = elf_tdata (abfd)->program_header_size;
3727 if (phdr_size == 0)
3728 phdr_size = get_elf_backend_data (abfd)->s->sizeof_phdr;
3729 if ((abfd->flags & D_PAGED) == 0
3730 || sections[0]->lma < phdr_size
3731 || sections[0]->lma % maxpagesize < phdr_size % maxpagesize)
3732 phdr_in_segment = FALSE;
3733 }
3734
3735 for (i = 0, hdrpp = sections; i < count; i++, hdrpp++)
3736 {
3737 asection *hdr;
3738 bfd_boolean new_segment;
3739
3740 hdr = *hdrpp;
3741
3742 /* See if this section and the last one will fit in the same
3743 segment. */
3744
3745 if (last_hdr == NULL)
3746 {
3747 /* If we don't have a segment yet, then we don't need a new
3748 one (we build the last one after this loop). */
3749 new_segment = FALSE;
3750 }
3751 else if (last_hdr->lma - last_hdr->vma != hdr->lma - hdr->vma)
3752 {
3753 /* If this section has a different relation between the
3754 virtual address and the load address, then we need a new
3755 segment. */
3756 new_segment = TRUE;
3757 }
3758 else if (BFD_ALIGN (last_hdr->lma + last_size, maxpagesize)
3759 < BFD_ALIGN (hdr->lma, maxpagesize))
3760 {
3761 /* If putting this section in this segment would force us to
3762 skip a page in the segment, then we need a new segment. */
3763 new_segment = TRUE;
3764 }
3765 else if ((last_hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0
3766 && (hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) != 0)
3767 {
3768 /* We don't want to put a loadable section after a
3769 nonloadable section in the same segment.
3770 Consider .tbss sections as loadable for this purpose. */
3771 new_segment = TRUE;
3772 }
3773 else if ((abfd->flags & D_PAGED) == 0)
3774 {
3775 /* If the file is not demand paged, which means that we
3776 don't require the sections to be correctly aligned in the
3777 file, then there is no other reason for a new segment. */
3778 new_segment = FALSE;
3779 }
3780 else if (! writable
3781 && (hdr->flags & SEC_READONLY) == 0
3782 && (((last_hdr->lma + last_size - 1)
3783 & ~(maxpagesize - 1))
3784 != (hdr->lma & ~(maxpagesize - 1))))
3785 {
3786 /* We don't want to put a writable section in a read only
3787 segment, unless they are on the same page in memory
3788 anyhow. We already know that the last section does not
3789 bring us past the current section on the page, so the
3790 only case in which the new section is not on the same
3791 page as the previous section is when the previous section
3792 ends precisely on a page boundary. */
3793 new_segment = TRUE;
3794 }
3795 else
3796 {
3797 /* Otherwise, we can use the same segment. */
3798 new_segment = FALSE;
3799 }
3800
3801 if (! new_segment)
3802 {
3803 if ((hdr->flags & SEC_READONLY) == 0)
3804 writable = TRUE;
3805 last_hdr = hdr;
3806 /* .tbss sections effectively have zero size. */
3807 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) != SEC_THREAD_LOCAL)
3808 last_size = hdr->size;
3809 else
3810 last_size = 0;
3811 continue;
3812 }
3813
3814 /* We need a new program segment. We must create a new program
3815 header holding all the sections from phdr_index until hdr. */
3816
3817 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
3818 if (m == NULL)
3819 goto error_return;
3820
3821 *pm = m;
3822 pm = &m->next;
3823
3824 if ((hdr->flags & SEC_READONLY) == 0)
3825 writable = TRUE;
3826 else
3827 writable = FALSE;
3828
3829 last_hdr = hdr;
3830 /* .tbss sections effectively have zero size. */
3831 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) != SEC_THREAD_LOCAL)
3832 last_size = hdr->size;
3833 else
3834 last_size = 0;
3835 phdr_index = i;
3836 phdr_in_segment = FALSE;
3837 }
3838
3839 /* Create a final PT_LOAD program segment. */
3840 if (last_hdr != NULL)
3841 {
3842 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
3843 if (m == NULL)
3844 goto error_return;
3845
3846 *pm = m;
3847 pm = &m->next;
3848 }
3849
3850 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
3851 if (dynsec != NULL)
3852 {
3853 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
3854 if (m == NULL)
3855 goto error_return;
3856 *pm = m;
3857 pm = &m->next;
3858 }
3859
3860 /* For each loadable .note section, add a PT_NOTE segment. We don't
3861 use bfd_get_section_by_name, because if we link together
3862 nonloadable .note sections and loadable .note sections, we will
3863 generate two .note sections in the output file. FIXME: Using
3864 names for section types is bogus anyhow. */
3865 for (s = abfd->sections; s != NULL; s = s->next)
3866 {
3867 if ((s->flags & SEC_LOAD) != 0
3868 && strncmp (s->name, ".note", 5) == 0)
3869 {
3870 amt = sizeof (struct elf_segment_map);
3871 m = bfd_zalloc (abfd, amt);
3872 if (m == NULL)
3873 goto error_return;
3874 m->next = NULL;
3875 m->p_type = PT_NOTE;
3876 m->count = 1;
3877 m->sections[0] = s;
3878
3879 *pm = m;
3880 pm = &m->next;
3881 }
3882 if (s->flags & SEC_THREAD_LOCAL)
3883 {
3884 if (! tls_count)
3885 first_tls = s;
3886 tls_count++;
3887 }
3888 }
3889
3890 /* If there are any SHF_TLS output sections, add PT_TLS segment. */
3891 if (tls_count > 0)
3892 {
3893 int i;
3894
3895 amt = sizeof (struct elf_segment_map);
3896 amt += (tls_count - 1) * sizeof (asection *);
3897 m = bfd_zalloc (abfd, amt);
3898 if (m == NULL)
3899 goto error_return;
3900 m->next = NULL;
3901 m->p_type = PT_TLS;
3902 m->count = tls_count;
3903 /* Mandated PF_R. */
3904 m->p_flags = PF_R;
3905 m->p_flags_valid = 1;
3906 for (i = 0; i < tls_count; ++i)
3907 {
3908 BFD_ASSERT (first_tls->flags & SEC_THREAD_LOCAL);
3909 m->sections[i] = first_tls;
3910 first_tls = first_tls->next;
3911 }
3912
3913 *pm = m;
3914 pm = &m->next;
3915 }
3916
3917 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
3918 segment. */
3919 eh_frame_hdr = elf_tdata (abfd)->eh_frame_hdr;
3920 if (eh_frame_hdr != NULL
3921 && (eh_frame_hdr->output_section->flags & SEC_LOAD) != 0)
3922 {
3923 amt = sizeof (struct elf_segment_map);
3924 m = bfd_zalloc (abfd, amt);
3925 if (m == NULL)
3926 goto error_return;
3927 m->next = NULL;
3928 m->p_type = PT_GNU_EH_FRAME;
3929 m->count = 1;
3930 m->sections[0] = eh_frame_hdr->output_section;
3931
3932 *pm = m;
3933 pm = &m->next;
3934 }
3935
3936 if (elf_tdata (abfd)->stack_flags)
3937 {
3938 amt = sizeof (struct elf_segment_map);
3939 m = bfd_zalloc (abfd, amt);
3940 if (m == NULL)
3941 goto error_return;
3942 m->next = NULL;
3943 m->p_type = PT_GNU_STACK;
3944 m->p_flags = elf_tdata (abfd)->stack_flags;
3945 m->p_flags_valid = 1;
3946
3947 *pm = m;
3948 pm = &m->next;
3949 }
3950
3951 if (elf_tdata (abfd)->relro)
3952 {
3953 amt = sizeof (struct elf_segment_map);
3954 m = bfd_zalloc (abfd, amt);
3955 if (m == NULL)
3956 goto error_return;
3957 m->next = NULL;
3958 m->p_type = PT_GNU_RELRO;
3959 m->p_flags = PF_R;
3960 m->p_flags_valid = 1;
3961
3962 *pm = m;
3963 pm = &m->next;
3964 }
3965
3966 free (sections);
3967 sections = NULL;
3968
3969 elf_tdata (abfd)->segment_map = mfirst;
3970 return TRUE;
3971
3972 error_return:
3973 if (sections != NULL)
3974 free (sections);
3975 return FALSE;
3976 }
3977
3978 /* Sort sections by address. */
3979
3980 static int
3981 elf_sort_sections (const void *arg1, const void *arg2)
3982 {
3983 const asection *sec1 = *(const asection **) arg1;
3984 const asection *sec2 = *(const asection **) arg2;
3985 bfd_size_type size1, size2;
3986
3987 /* Sort by LMA first, since this is the address used to
3988 place the section into a segment. */
3989 if (sec1->lma < sec2->lma)
3990 return -1;
3991 else if (sec1->lma > sec2->lma)
3992 return 1;
3993
3994 /* Then sort by VMA. Normally the LMA and the VMA will be
3995 the same, and this will do nothing. */
3996 if (sec1->vma < sec2->vma)
3997 return -1;
3998 else if (sec1->vma > sec2->vma)
3999 return 1;
4000
4001 /* Put !SEC_LOAD sections after SEC_LOAD ones. */
4002
4003 #define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0)
4004
4005 if (TOEND (sec1))
4006 {
4007 if (TOEND (sec2))
4008 {
4009 /* If the indicies are the same, do not return 0
4010 here, but continue to try the next comparison. */
4011 if (sec1->target_index - sec2->target_index != 0)
4012 return sec1->target_index - sec2->target_index;
4013 }
4014 else
4015 return 1;
4016 }
4017 else if (TOEND (sec2))
4018 return -1;
4019
4020 #undef TOEND
4021
4022 /* Sort by size, to put zero sized sections
4023 before others at the same address. */
4024
4025 size1 = (sec1->flags & SEC_LOAD) ? sec1->size : 0;
4026 size2 = (sec2->flags & SEC_LOAD) ? sec2->size : 0;
4027
4028 if (size1 < size2)
4029 return -1;
4030 if (size1 > size2)
4031 return 1;
4032
4033 return sec1->target_index - sec2->target_index;
4034 }
4035
4036 /* Ian Lance Taylor writes:
4037
4038 We shouldn't be using % with a negative signed number. That's just
4039 not good. We have to make sure either that the number is not
4040 negative, or that the number has an unsigned type. When the types
4041 are all the same size they wind up as unsigned. When file_ptr is a
4042 larger signed type, the arithmetic winds up as signed long long,
4043 which is wrong.
4044
4045 What we're trying to say here is something like ``increase OFF by
4046 the least amount that will cause it to be equal to the VMA modulo
4047 the page size.'' */
4048 /* In other words, something like:
4049
4050 vma_offset = m->sections[0]->vma % bed->maxpagesize;
4051 off_offset = off % bed->maxpagesize;
4052 if (vma_offset < off_offset)
4053 adjustment = vma_offset + bed->maxpagesize - off_offset;
4054 else
4055 adjustment = vma_offset - off_offset;
4056
4057 which can can be collapsed into the expression below. */
4058
4059 static file_ptr
4060 vma_page_aligned_bias (bfd_vma vma, ufile_ptr off, bfd_vma maxpagesize)
4061 {
4062 return ((vma - off) % maxpagesize);
4063 }
4064
4065 static void
4066 print_segment_map (bfd *abfd)
4067 {
4068 struct elf_segment_map *m;
4069 unsigned int i, j;
4070
4071 fprintf (stderr, _(" Section to Segment mapping:\n"));
4072 fprintf (stderr, _(" Segment Sections...\n"));
4073
4074 for (i= 0, m = elf_tdata (abfd)->segment_map;
4075 m != NULL;
4076 i++, m = m->next)
4077 {
4078 const char *pt = get_segment_type (m->p_type);
4079 char buf[32];
4080
4081 if (pt == NULL)
4082 {
4083 if (m->p_type >= PT_LOPROC && m->p_type <= PT_HIPROC)
4084 sprintf (buf, "LOPROC+%7.7x",
4085 (unsigned int) (m->p_type - PT_LOPROC));
4086 else if (m->p_type >= PT_LOOS && m->p_type <= PT_HIOS)
4087 sprintf (buf, "LOOS+%7.7x",
4088 (unsigned int) (m->p_type - PT_LOOS));
4089 else
4090 snprintf (buf, sizeof (buf), "%8.8x",
4091 (unsigned int) m->p_type);
4092 pt = buf;
4093 }
4094 fprintf (stderr, " %2.2d: %14.14s: ", i, pt);
4095 for (j = 0; j < m->count; j++)
4096 fprintf (stderr, "%s ", m->sections [j]->name);
4097 putc ('\n',stderr);
4098 }
4099 }
4100
4101 /* Assign file positions to the sections based on the mapping from
4102 sections to segments. This function also sets up some fields in
4103 the file header. */
4104
4105 static bfd_boolean
4106 assign_file_positions_for_load_sections (bfd *abfd,
4107 struct bfd_link_info *link_info)
4108 {
4109 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4110 struct elf_segment_map *m;
4111 Elf_Internal_Phdr *phdrs;
4112 Elf_Internal_Phdr *p;
4113 file_ptr off, voff;
4114 bfd_size_type maxpagesize;
4115 unsigned int count;
4116 unsigned int alloc;
4117 unsigned int i;
4118
4119 if (elf_tdata (abfd)->segment_map == NULL)
4120 {
4121 if (! map_sections_to_segments (abfd))
4122 return FALSE;
4123 }
4124 else
4125 {
4126 /* The placement algorithm assumes that non allocated sections are
4127 not in PT_LOAD segments. We ensure this here by removing such
4128 sections from the segment map. We also remove excluded
4129 sections. */
4130 for (m = elf_tdata (abfd)->segment_map;
4131 m != NULL;
4132 m = m->next)
4133 {
4134 unsigned int new_count;
4135
4136 new_count = 0;
4137 for (i = 0; i < m->count; i ++)
4138 {
4139 if ((m->sections[i]->flags & SEC_EXCLUDE) == 0
4140 && ((m->sections[i]->flags & SEC_ALLOC) != 0
4141 || m->p_type != PT_LOAD))
4142 {
4143 if (i != new_count)
4144 m->sections[new_count] = m->sections[i];
4145
4146 new_count ++;
4147 }
4148 }
4149
4150 if (new_count != m->count)
4151 m->count = new_count;
4152 }
4153 }
4154
4155 if (bed->elf_backend_modify_segment_map)
4156 {
4157 if (! (*bed->elf_backend_modify_segment_map) (abfd, link_info))
4158 return FALSE;
4159 }
4160
4161 count = 0;
4162 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
4163 ++count;
4164
4165 elf_elfheader (abfd)->e_phoff = bed->s->sizeof_ehdr;
4166 elf_elfheader (abfd)->e_phentsize = bed->s->sizeof_phdr;
4167 elf_elfheader (abfd)->e_phnum = count;
4168
4169 if (count == 0)
4170 {
4171 elf_tdata (abfd)->next_file_pos = bed->s->sizeof_ehdr;
4172 return TRUE;
4173 }
4174
4175 /* If we already counted the number of program segments, make sure
4176 that we allocated enough space. This happens when SIZEOF_HEADERS
4177 is used in a linker script. */
4178 alloc = elf_tdata (abfd)->program_header_size / bed->s->sizeof_phdr;
4179 if (alloc != 0 && count > alloc)
4180 {
4181 ((*_bfd_error_handler)
4182 (_("%B: Not enough room for program headers (allocated %u, need %u)"),
4183 abfd, alloc, count));
4184 print_segment_map (abfd);
4185 bfd_set_error (bfd_error_bad_value);
4186 return FALSE;
4187 }
4188
4189 if (alloc == 0)
4190 {
4191 alloc = count;
4192 elf_tdata (abfd)->program_header_size = alloc * bed->s->sizeof_phdr;
4193 }
4194
4195 phdrs = bfd_alloc2 (abfd, alloc, sizeof (Elf_Internal_Phdr));
4196 elf_tdata (abfd)->phdr = phdrs;
4197 if (phdrs == NULL)
4198 return FALSE;
4199
4200 maxpagesize = 1;
4201 if ((abfd->flags & D_PAGED) != 0)
4202 maxpagesize = bed->maxpagesize;
4203
4204 off = bed->s->sizeof_ehdr;
4205 off += alloc * bed->s->sizeof_phdr;
4206
4207 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
4208 m != NULL;
4209 m = m->next, p++)
4210 {
4211 asection **secpp;
4212
4213 /* If elf_segment_map is not from map_sections_to_segments, the
4214 sections may not be correctly ordered. NOTE: sorting should
4215 not be done to the PT_NOTE section of a corefile, which may
4216 contain several pseudo-sections artificially created by bfd.
4217 Sorting these pseudo-sections breaks things badly. */
4218 if (m->count > 1
4219 && !(elf_elfheader (abfd)->e_type == ET_CORE
4220 && m->p_type == PT_NOTE))
4221 qsort (m->sections, (size_t) m->count, sizeof (asection *),
4222 elf_sort_sections);
4223
4224 /* An ELF segment (described by Elf_Internal_Phdr) may contain a
4225 number of sections with contents contributing to both p_filesz
4226 and p_memsz, followed by a number of sections with no contents
4227 that just contribute to p_memsz. In this loop, OFF tracks next
4228 available file offset for PT_LOAD and PT_NOTE segments. VOFF is
4229 an adjustment we use for segments that have no file contents
4230 but need zero filled memory allocation. */
4231 voff = 0;
4232 p->p_type = m->p_type;
4233 p->p_flags = m->p_flags;
4234
4235 if (m->count == 0)
4236 p->p_vaddr = 0;
4237 else
4238 p->p_vaddr = m->sections[0]->vma;
4239
4240 if (m->p_paddr_valid)
4241 p->p_paddr = m->p_paddr;
4242 else if (m->count == 0)
4243 p->p_paddr = 0;
4244 else
4245 p->p_paddr = m->sections[0]->lma;
4246
4247 if (p->p_type == PT_LOAD
4248 && (abfd->flags & D_PAGED) != 0)
4249 {
4250 /* p_align in demand paged PT_LOAD segments effectively stores
4251 the maximum page size. When copying an executable with
4252 objcopy, we set m->p_align from the input file. Use this
4253 value for maxpagesize rather than bed->maxpagesize, which
4254 may be different. Note that we use maxpagesize for PT_TLS
4255 segment alignment later in this function, so we are relying
4256 on at least one PT_LOAD segment appearing before a PT_TLS
4257 segment. */
4258 if (m->p_align_valid)
4259 maxpagesize = m->p_align;
4260
4261 p->p_align = maxpagesize;
4262 }
4263 else if (m->count == 0)
4264 p->p_align = 1 << bed->s->log_file_align;
4265 else
4266 p->p_align = 0;
4267
4268 if (p->p_type == PT_LOAD
4269 && m->count > 0)
4270 {
4271 bfd_size_type align;
4272 bfd_vma adjust;
4273 unsigned int align_power = 0;
4274
4275 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4276 {
4277 unsigned int secalign;
4278
4279 secalign = bfd_get_section_alignment (abfd, *secpp);
4280 if (secalign > align_power)
4281 align_power = secalign;
4282 }
4283 align = (bfd_size_type) 1 << align_power;
4284
4285 if (align < maxpagesize)
4286 align = maxpagesize;
4287
4288 adjust = vma_page_aligned_bias (m->sections[0]->vma, off, align);
4289 off += adjust;
4290 if (adjust != 0
4291 && !m->includes_filehdr
4292 && !m->includes_phdrs
4293 && (ufile_ptr) off >= align)
4294 {
4295 /* If the first section isn't loadable, the same holds for
4296 any other sections. Since the segment won't need file
4297 space, we can make p_offset overlap some prior segment.
4298 However, .tbss is special. If a segment starts with
4299 .tbss, we need to look at the next section to decide
4300 whether the segment has any loadable sections. */
4301 i = 0;
4302 while ((m->sections[i]->flags & SEC_LOAD) == 0)
4303 {
4304 if ((m->sections[i]->flags & SEC_THREAD_LOCAL) == 0
4305 || ++i >= m->count)
4306 {
4307 off -= adjust;
4308 voff = adjust - align;
4309 break;
4310 }
4311 }
4312 }
4313 }
4314 /* Make sure the .dynamic section is the first section in the
4315 PT_DYNAMIC segment. */
4316 else if (p->p_type == PT_DYNAMIC
4317 && m->count > 1
4318 && strcmp (m->sections[0]->name, ".dynamic") != 0)
4319 {
4320 _bfd_error_handler
4321 (_("%B: The first section in the PT_DYNAMIC segment is not the .dynamic section"),
4322 abfd);
4323 bfd_set_error (bfd_error_bad_value);
4324 return FALSE;
4325 }
4326
4327 p->p_offset = 0;
4328 p->p_filesz = 0;
4329 p->p_memsz = 0;
4330
4331 if (m->includes_filehdr)
4332 {
4333 if (! m->p_flags_valid)
4334 p->p_flags |= PF_R;
4335 p->p_offset = 0;
4336 p->p_filesz = bed->s->sizeof_ehdr;
4337 p->p_memsz = bed->s->sizeof_ehdr;
4338 if (m->count > 0)
4339 {
4340 BFD_ASSERT (p->p_type == PT_LOAD);
4341
4342 if (p->p_vaddr < (bfd_vma) off)
4343 {
4344 (*_bfd_error_handler)
4345 (_("%B: Not enough room for program headers, try linking with -N"),
4346 abfd);
4347 bfd_set_error (bfd_error_bad_value);
4348 return FALSE;
4349 }
4350
4351 p->p_vaddr -= off;
4352 if (! m->p_paddr_valid)
4353 p->p_paddr -= off;
4354 }
4355 }
4356
4357 if (m->includes_phdrs)
4358 {
4359 if (! m->p_flags_valid)
4360 p->p_flags |= PF_R;
4361
4362 if (!m->includes_filehdr)
4363 {
4364 p->p_offset = bed->s->sizeof_ehdr;
4365
4366 if (m->count > 0)
4367 {
4368 BFD_ASSERT (p->p_type == PT_LOAD);
4369 p->p_vaddr -= off - p->p_offset;
4370 if (! m->p_paddr_valid)
4371 p->p_paddr -= off - p->p_offset;
4372 }
4373 }
4374
4375 p->p_filesz += alloc * bed->s->sizeof_phdr;
4376 p->p_memsz += alloc * bed->s->sizeof_phdr;
4377 }
4378
4379 if (p->p_type == PT_LOAD
4380 || (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core))
4381 {
4382 if (! m->includes_filehdr && ! m->includes_phdrs)
4383 p->p_offset = off + voff;
4384 else
4385 {
4386 file_ptr adjust;
4387
4388 adjust = off - (p->p_offset + p->p_filesz);
4389 p->p_filesz += adjust;
4390 p->p_memsz += adjust;
4391 }
4392 }
4393
4394 /* Set up p_filesz, p_memsz, p_align and p_flags from the section
4395 maps. Set filepos for sections in PT_LOAD segments, and in
4396 core files, for sections in PT_NOTE segments.
4397 assign_file_positions_for_non_load_sections will set filepos
4398 for other sections and update p_filesz for other segments. */
4399 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4400 {
4401 asection *sec;
4402 flagword flags;
4403 bfd_size_type align;
4404
4405 sec = *secpp;
4406 flags = sec->flags;
4407 align = (bfd_size_type) 1 << bfd_get_section_alignment (abfd, sec);
4408
4409 if (p->p_type == PT_LOAD
4410 || p->p_type == PT_TLS)
4411 {
4412 bfd_signed_vma adjust;
4413
4414 if ((flags & SEC_LOAD) != 0)
4415 {
4416 adjust = sec->lma - (p->p_paddr + p->p_filesz);
4417 if (adjust < 0)
4418 {
4419 (*_bfd_error_handler)
4420 (_("%B: section %A lma 0x%lx overlaps previous sections"),
4421 abfd, sec, (unsigned long) sec->lma);
4422 adjust = 0;
4423 }
4424 off += adjust;
4425 p->p_filesz += adjust;
4426 p->p_memsz += adjust;
4427 }
4428 /* .tbss is special. It doesn't contribute to p_memsz of
4429 normal segments. */
4430 else if ((flags & SEC_ALLOC) != 0
4431 && ((flags & SEC_THREAD_LOCAL) == 0
4432 || p->p_type == PT_TLS))
4433 {
4434 /* The section VMA must equal the file position
4435 modulo the page size. */
4436 bfd_size_type page = align;
4437 if (page < maxpagesize)
4438 page = maxpagesize;
4439 adjust = vma_page_aligned_bias (sec->vma,
4440 p->p_vaddr + p->p_memsz,
4441 page);
4442 p->p_memsz += adjust;
4443 }
4444 }
4445
4446 if (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core)
4447 {
4448 /* The section at i == 0 is the one that actually contains
4449 everything. */
4450 if (i == 0)
4451 {
4452 sec->filepos = off;
4453 off += sec->size;
4454 p->p_filesz = sec->size;
4455 p->p_memsz = 0;
4456 p->p_align = 1;
4457 }
4458 else
4459 {
4460 /* The rest are fake sections that shouldn't be written. */
4461 sec->filepos = 0;
4462 sec->size = 0;
4463 sec->flags = 0;
4464 continue;
4465 }
4466 }
4467 else
4468 {
4469 if (p->p_type == PT_LOAD)
4470 {
4471 sec->filepos = off;
4472 /* FIXME: The SEC_HAS_CONTENTS test here dates back to
4473 1997, and the exact reason for it isn't clear. One
4474 plausible explanation is that it is to work around
4475 a problem we have with linker scripts using data
4476 statements in NOLOAD sections. I don't think it
4477 makes a great deal of sense to have such a section
4478 assigned to a PT_LOAD segment, but apparently
4479 people do this. The data statement results in a
4480 bfd_data_link_order being built, and these need
4481 section contents to write into. Eventually, we get
4482 to _bfd_elf_write_object_contents which writes any
4483 section with contents to the output. Make room
4484 here for the write, so that following segments are
4485 not trashed. */
4486 if ((flags & SEC_LOAD) != 0
4487 || (flags & SEC_HAS_CONTENTS) != 0)
4488 off += sec->size;
4489 }
4490
4491 if ((flags & SEC_LOAD) != 0)
4492 {
4493 p->p_filesz += sec->size;
4494 p->p_memsz += sec->size;
4495 }
4496
4497 /* .tbss is special. It doesn't contribute to p_memsz of
4498 normal segments. */
4499 else if ((flags & SEC_ALLOC) != 0
4500 && ((flags & SEC_THREAD_LOCAL) == 0
4501 || p->p_type == PT_TLS))
4502 p->p_memsz += sec->size;
4503
4504 if (p->p_type == PT_TLS
4505 && sec->size == 0
4506 && (sec->flags & SEC_HAS_CONTENTS) == 0)
4507 {
4508 struct bfd_link_order *o = sec->map_tail.link_order;
4509 if (o != NULL)
4510 p->p_memsz += o->offset + o->size;
4511 }
4512
4513 if (align > p->p_align
4514 && (p->p_type != PT_LOAD
4515 || (abfd->flags & D_PAGED) == 0))
4516 p->p_align = align;
4517 }
4518
4519 if (! m->p_flags_valid)
4520 {
4521 p->p_flags |= PF_R;
4522 if ((flags & SEC_CODE) != 0)
4523 p->p_flags |= PF_X;
4524 if ((flags & SEC_READONLY) == 0)
4525 p->p_flags |= PF_W;
4526 }
4527 }
4528 }
4529
4530 /* Clear out any program headers we allocated but did not use. */
4531 for (; count < alloc; count++, p++)
4532 {
4533 memset (p, 0, sizeof *p);
4534 p->p_type = PT_NULL;
4535 }
4536
4537 elf_tdata (abfd)->next_file_pos = off;
4538 return TRUE;
4539 }
4540
4541 /* Assign file positions for the other sections. */
4542
4543 static bfd_boolean
4544 assign_file_positions_for_non_load_sections (bfd *abfd,
4545 struct bfd_link_info *link_info)
4546 {
4547 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4548 Elf_Internal_Shdr **i_shdrpp;
4549 Elf_Internal_Shdr **hdrpp;
4550 Elf_Internal_Phdr *phdrs;
4551 Elf_Internal_Phdr *p;
4552 struct elf_segment_map *m;
4553 bfd_vma filehdr_vaddr, filehdr_paddr;
4554 bfd_vma phdrs_vaddr, phdrs_paddr;
4555 file_ptr off;
4556 unsigned int num_sec;
4557 unsigned int i;
4558 unsigned int count;
4559
4560 i_shdrpp = elf_elfsections (abfd);
4561 num_sec = elf_numsections (abfd);
4562 off = elf_tdata (abfd)->next_file_pos;
4563 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
4564 {
4565 struct elf_obj_tdata *tdata = elf_tdata (abfd);
4566 Elf_Internal_Shdr *hdr;
4567
4568 hdr = *hdrpp;
4569 if (hdr->bfd_section != NULL
4570 && hdr->bfd_section->filepos != 0)
4571 hdr->sh_offset = hdr->bfd_section->filepos;
4572 else if ((hdr->sh_flags & SHF_ALLOC) != 0)
4573 {
4574 ((*_bfd_error_handler)
4575 (_("%B: warning: allocated section `%s' not in segment"),
4576 abfd,
4577 (hdr->bfd_section == NULL
4578 ? "*unknown*"
4579 : hdr->bfd_section->name)));
4580 if ((abfd->flags & D_PAGED) != 0)
4581 off += vma_page_aligned_bias (hdr->sh_addr, off,
4582 bed->maxpagesize);
4583 else
4584 off += vma_page_aligned_bias (hdr->sh_addr, off,
4585 hdr->sh_addralign);
4586 off = _bfd_elf_assign_file_position_for_section (hdr, off,
4587 FALSE);
4588 }
4589 else if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
4590 && hdr->bfd_section == NULL)
4591 || hdr == i_shdrpp[tdata->symtab_section]
4592 || hdr == i_shdrpp[tdata->symtab_shndx_section]
4593 || hdr == i_shdrpp[tdata->strtab_section])
4594 hdr->sh_offset = -1;
4595 else
4596 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4597
4598 if (i == SHN_LORESERVE - 1)
4599 {
4600 i += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4601 hdrpp += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4602 }
4603 }
4604
4605 /* Now that we have set the section file positions, we can set up
4606 the file positions for the non PT_LOAD segments. */
4607 count = 0;
4608 filehdr_vaddr = 0;
4609 filehdr_paddr = 0;
4610 phdrs_vaddr = bed->maxpagesize + bed->s->sizeof_ehdr;
4611 phdrs_paddr = 0;
4612 phdrs = elf_tdata (abfd)->phdr;
4613 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
4614 m != NULL;
4615 m = m->next, p++)
4616 {
4617 ++count;
4618 if (p->p_type != PT_LOAD)
4619 continue;
4620
4621 if (m->includes_filehdr)
4622 {
4623 filehdr_vaddr = p->p_vaddr;
4624 filehdr_paddr = p->p_paddr;
4625 }
4626 if (m->includes_phdrs)
4627 {
4628 phdrs_vaddr = p->p_vaddr;
4629 phdrs_paddr = p->p_paddr;
4630 if (m->includes_filehdr)
4631 {
4632 phdrs_vaddr += bed->s->sizeof_ehdr;
4633 phdrs_paddr += bed->s->sizeof_ehdr;
4634 }
4635 }
4636 }
4637
4638 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
4639 m != NULL;
4640 m = m->next, p++)
4641 {
4642 if (m->count != 0)
4643 {
4644 if (p->p_type != PT_LOAD
4645 && (p->p_type != PT_NOTE || bfd_get_format (abfd) != bfd_core))
4646 {
4647 Elf_Internal_Shdr *hdr;
4648 BFD_ASSERT (!m->includes_filehdr && !m->includes_phdrs);
4649
4650 hdr = &elf_section_data (m->sections[m->count - 1])->this_hdr;
4651 p->p_filesz = (m->sections[m->count - 1]->filepos
4652 - m->sections[0]->filepos);
4653 if (hdr->sh_type != SHT_NOBITS)
4654 p->p_filesz += hdr->sh_size;
4655
4656 p->p_offset = m->sections[0]->filepos;
4657 }
4658 }
4659 else
4660 {
4661 if (m->includes_filehdr)
4662 {
4663 p->p_vaddr = filehdr_vaddr;
4664 if (! m->p_paddr_valid)
4665 p->p_paddr = filehdr_paddr;
4666 }
4667 else if (m->includes_phdrs)
4668 {
4669 p->p_vaddr = phdrs_vaddr;
4670 if (! m->p_paddr_valid)
4671 p->p_paddr = phdrs_paddr;
4672 }
4673 else if (p->p_type == PT_GNU_RELRO)
4674 {
4675 Elf_Internal_Phdr *lp;
4676
4677 for (lp = phdrs; lp < phdrs + count; ++lp)
4678 {
4679 if (lp->p_type == PT_LOAD
4680 && lp->p_vaddr <= link_info->relro_end
4681 && lp->p_vaddr >= link_info->relro_start
4682 && lp->p_vaddr + lp->p_filesz
4683 >= link_info->relro_end)
4684 break;
4685 }
4686
4687 if (lp < phdrs + count
4688 && link_info->relro_end > lp->p_vaddr)
4689 {
4690 p->p_vaddr = lp->p_vaddr;
4691 p->p_paddr = lp->p_paddr;
4692 p->p_offset = lp->p_offset;
4693 p->p_filesz = link_info->relro_end - lp->p_vaddr;
4694 p->p_memsz = p->p_filesz;
4695 p->p_align = 1;
4696 p->p_flags = (lp->p_flags & ~PF_W);
4697 }
4698 else
4699 {
4700 memset (p, 0, sizeof *p);
4701 p->p_type = PT_NULL;
4702 }
4703 }
4704 }
4705 }
4706
4707 elf_tdata (abfd)->next_file_pos = off;
4708
4709 return TRUE;
4710 }
4711
4712 /* Get the size of the program header.
4713
4714 If this is called by the linker before any of the section VMA's are set, it
4715 can't calculate the correct value for a strange memory layout. This only
4716 happens when SIZEOF_HEADERS is used in a linker script. In this case,
4717 SORTED_HDRS is NULL and we assume the normal scenario of one text and one
4718 data segment (exclusive of .interp and .dynamic).
4719
4720 ??? User written scripts must either not use SIZEOF_HEADERS, or assume there
4721 will be two segments. */
4722
4723 static bfd_size_type
4724 get_program_header_size (bfd *abfd)
4725 {
4726 size_t segs;
4727 asection *s;
4728 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4729
4730 /* We can't return a different result each time we're called. */
4731 if (elf_tdata (abfd)->program_header_size != 0)
4732 return elf_tdata (abfd)->program_header_size;
4733
4734 if (elf_tdata (abfd)->segment_map != NULL)
4735 {
4736 struct elf_segment_map *m;
4737
4738 segs = 0;
4739 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
4740 ++segs;
4741 elf_tdata (abfd)->program_header_size = segs * bed->s->sizeof_phdr;
4742 return elf_tdata (abfd)->program_header_size;
4743 }
4744
4745 /* Assume we will need exactly two PT_LOAD segments: one for text
4746 and one for data. */
4747 segs = 2;
4748
4749 s = bfd_get_section_by_name (abfd, ".interp");
4750 if (s != NULL && (s->flags & SEC_LOAD) != 0)
4751 {
4752 /* If we have a loadable interpreter section, we need a
4753 PT_INTERP segment. In this case, assume we also need a
4754 PT_PHDR segment, although that may not be true for all
4755 targets. */
4756 segs += 2;
4757 }
4758
4759 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
4760 {
4761 /* We need a PT_DYNAMIC segment. */
4762 ++segs;
4763 }
4764
4765 if (elf_tdata (abfd)->eh_frame_hdr)
4766 {
4767 /* We need a PT_GNU_EH_FRAME segment. */
4768 ++segs;
4769 }
4770
4771 if (elf_tdata (abfd)->stack_flags)
4772 {
4773 /* We need a PT_GNU_STACK segment. */
4774 ++segs;
4775 }
4776
4777 if (elf_tdata (abfd)->relro)
4778 {
4779 /* We need a PT_GNU_RELRO segment. */
4780 ++segs;
4781 }
4782
4783 for (s = abfd->sections; s != NULL; s = s->next)
4784 {
4785 if ((s->flags & SEC_LOAD) != 0
4786 && strncmp (s->name, ".note", 5) == 0)
4787 {
4788 /* We need a PT_NOTE segment. */
4789 ++segs;
4790 }
4791 }
4792
4793 for (s = abfd->sections; s != NULL; s = s->next)
4794 {
4795 if (s->flags & SEC_THREAD_LOCAL)
4796 {
4797 /* We need a PT_TLS segment. */
4798 ++segs;
4799 break;
4800 }
4801 }
4802
4803 /* Let the backend count up any program headers it might need. */
4804 if (bed->elf_backend_additional_program_headers)
4805 {
4806 int a;
4807
4808 a = (*bed->elf_backend_additional_program_headers) (abfd);
4809 if (a == -1)
4810 abort ();
4811 segs += a;
4812 }
4813
4814 elf_tdata (abfd)->program_header_size = segs * bed->s->sizeof_phdr;
4815 return elf_tdata (abfd)->program_header_size;
4816 }
4817
4818 /* Work out the file positions of all the sections. This is called by
4819 _bfd_elf_compute_section_file_positions. All the section sizes and
4820 VMAs must be known before this is called.
4821
4822 Reloc sections come in two flavours: Those processed specially as
4823 "side-channel" data attached to a section to which they apply, and
4824 those that bfd doesn't process as relocations. The latter sort are
4825 stored in a normal bfd section by bfd_section_from_shdr. We don't
4826 consider the former sort here, unless they form part of the loadable
4827 image. Reloc sections not assigned here will be handled later by
4828 assign_file_positions_for_relocs.
4829
4830 We also don't set the positions of the .symtab and .strtab here. */
4831
4832 static bfd_boolean
4833 assign_file_positions_except_relocs (bfd *abfd,
4834 struct bfd_link_info *link_info)
4835 {
4836 struct elf_obj_tdata *tdata = elf_tdata (abfd);
4837 Elf_Internal_Ehdr *i_ehdrp = elf_elfheader (abfd);
4838 file_ptr off;
4839 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4840
4841 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
4842 && bfd_get_format (abfd) != bfd_core)
4843 {
4844 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
4845 unsigned int num_sec = elf_numsections (abfd);
4846 Elf_Internal_Shdr **hdrpp;
4847 unsigned int i;
4848
4849 /* Start after the ELF header. */
4850 off = i_ehdrp->e_ehsize;
4851
4852 /* We are not creating an executable, which means that we are
4853 not creating a program header, and that the actual order of
4854 the sections in the file is unimportant. */
4855 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
4856 {
4857 Elf_Internal_Shdr *hdr;
4858
4859 hdr = *hdrpp;
4860 if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
4861 && hdr->bfd_section == NULL)
4862 || i == tdata->symtab_section
4863 || i == tdata->symtab_shndx_section
4864 || i == tdata->strtab_section)
4865 {
4866 hdr->sh_offset = -1;
4867 }
4868 else
4869 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4870
4871 if (i == SHN_LORESERVE - 1)
4872 {
4873 i += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4874 hdrpp += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4875 }
4876 }
4877 }
4878 else
4879 {
4880 unsigned int alloc;
4881
4882 /* Assign file positions for the loaded sections based on the
4883 assignment of sections to segments. */
4884 if (!assign_file_positions_for_load_sections (abfd, link_info))
4885 return FALSE;
4886
4887 /* And for non-load sections. */
4888 if (!assign_file_positions_for_non_load_sections (abfd, link_info))
4889 return FALSE;
4890
4891 /* Write out the program headers. */
4892 alloc = tdata->program_header_size / bed->s->sizeof_phdr;
4893 if (bfd_seek (abfd, (bfd_signed_vma) bed->s->sizeof_ehdr, SEEK_SET) != 0
4894 || bed->s->write_out_phdrs (abfd, tdata->phdr, alloc) != 0)
4895 return FALSE;
4896
4897 off = tdata->next_file_pos;
4898 }
4899
4900 /* Place the section headers. */
4901 off = align_file_position (off, 1 << bed->s->log_file_align);
4902 i_ehdrp->e_shoff = off;
4903 off += i_ehdrp->e_shnum * i_ehdrp->e_shentsize;
4904
4905 tdata->next_file_pos = off;
4906
4907 return TRUE;
4908 }
4909
4910 static bfd_boolean
4911 prep_headers (bfd *abfd)
4912 {
4913 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
4914 Elf_Internal_Phdr *i_phdrp = 0; /* Program header table, internal form */
4915 Elf_Internal_Shdr **i_shdrp; /* Section header table, internal form */
4916 struct elf_strtab_hash *shstrtab;
4917 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4918
4919 i_ehdrp = elf_elfheader (abfd);
4920 i_shdrp = elf_elfsections (abfd);
4921
4922 shstrtab = _bfd_elf_strtab_init ();
4923 if (shstrtab == NULL)
4924 return FALSE;
4925
4926 elf_shstrtab (abfd) = shstrtab;
4927
4928 i_ehdrp->e_ident[EI_MAG0] = ELFMAG0;
4929 i_ehdrp->e_ident[EI_MAG1] = ELFMAG1;
4930 i_ehdrp->e_ident[EI_MAG2] = ELFMAG2;
4931 i_ehdrp->e_ident[EI_MAG3] = ELFMAG3;
4932
4933 i_ehdrp->e_ident[EI_CLASS] = bed->s->elfclass;
4934 i_ehdrp->e_ident[EI_DATA] =
4935 bfd_big_endian (abfd) ? ELFDATA2MSB : ELFDATA2LSB;
4936 i_ehdrp->e_ident[EI_VERSION] = bed->s->ev_current;
4937
4938 if ((abfd->flags & DYNAMIC) != 0)
4939 i_ehdrp->e_type = ET_DYN;
4940 else if ((abfd->flags & EXEC_P) != 0)
4941 i_ehdrp->e_type = ET_EXEC;
4942 else if (bfd_get_format (abfd) == bfd_core)
4943 i_ehdrp->e_type = ET_CORE;
4944 else
4945 i_ehdrp->e_type = ET_REL;
4946
4947 switch (bfd_get_arch (abfd))
4948 {
4949 case bfd_arch_unknown:
4950 i_ehdrp->e_machine = EM_NONE;
4951 break;
4952
4953 /* There used to be a long list of cases here, each one setting
4954 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
4955 in the corresponding bfd definition. To avoid duplication,
4956 the switch was removed. Machines that need special handling
4957 can generally do it in elf_backend_final_write_processing(),
4958 unless they need the information earlier than the final write.
4959 Such need can generally be supplied by replacing the tests for
4960 e_machine with the conditions used to determine it. */
4961 default:
4962 i_ehdrp->e_machine = bed->elf_machine_code;
4963 }
4964
4965 i_ehdrp->e_version = bed->s->ev_current;
4966 i_ehdrp->e_ehsize = bed->s->sizeof_ehdr;
4967
4968 /* No program header, for now. */
4969 i_ehdrp->e_phoff = 0;
4970 i_ehdrp->e_phentsize = 0;
4971 i_ehdrp->e_phnum = 0;
4972
4973 /* Each bfd section is section header entry. */
4974 i_ehdrp->e_entry = bfd_get_start_address (abfd);
4975 i_ehdrp->e_shentsize = bed->s->sizeof_shdr;
4976
4977 /* If we're building an executable, we'll need a program header table. */
4978 if (abfd->flags & EXEC_P)
4979 /* It all happens later. */
4980 ;
4981 else
4982 {
4983 i_ehdrp->e_phentsize = 0;
4984 i_phdrp = 0;
4985 i_ehdrp->e_phoff = 0;
4986 }
4987
4988 elf_tdata (abfd)->symtab_hdr.sh_name =
4989 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".symtab", FALSE);
4990 elf_tdata (abfd)->strtab_hdr.sh_name =
4991 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".strtab", FALSE);
4992 elf_tdata (abfd)->shstrtab_hdr.sh_name =
4993 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".shstrtab", FALSE);
4994 if (elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
4995 || elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
4996 || elf_tdata (abfd)->shstrtab_hdr.sh_name == (unsigned int) -1)
4997 return FALSE;
4998
4999 return TRUE;
5000 }
5001
5002 /* Assign file positions for all the reloc sections which are not part
5003 of the loadable file image. */
5004
5005 void
5006 _bfd_elf_assign_file_positions_for_relocs (bfd *abfd)
5007 {
5008 file_ptr off;
5009 unsigned int i, num_sec;
5010 Elf_Internal_Shdr **shdrpp;
5011
5012 off = elf_tdata (abfd)->next_file_pos;
5013
5014 num_sec = elf_numsections (abfd);
5015 for (i = 1, shdrpp = elf_elfsections (abfd) + 1; i < num_sec; i++, shdrpp++)
5016 {
5017 Elf_Internal_Shdr *shdrp;
5018
5019 shdrp = *shdrpp;
5020 if ((shdrp->sh_type == SHT_REL || shdrp->sh_type == SHT_RELA)
5021 && shdrp->sh_offset == -1)
5022 off = _bfd_elf_assign_file_position_for_section (shdrp, off, TRUE);
5023 }
5024
5025 elf_tdata (abfd)->next_file_pos = off;
5026 }
5027
5028 bfd_boolean
5029 _bfd_elf_write_object_contents (bfd *abfd)
5030 {
5031 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5032 Elf_Internal_Ehdr *i_ehdrp;
5033 Elf_Internal_Shdr **i_shdrp;
5034 bfd_boolean failed;
5035 unsigned int count, num_sec;
5036
5037 if (! abfd->output_has_begun
5038 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
5039 return FALSE;
5040
5041 i_shdrp = elf_elfsections (abfd);
5042 i_ehdrp = elf_elfheader (abfd);
5043
5044 failed = FALSE;
5045 bfd_map_over_sections (abfd, bed->s->write_relocs, &failed);
5046 if (failed)
5047 return FALSE;
5048
5049 _bfd_elf_assign_file_positions_for_relocs (abfd);
5050
5051 /* After writing the headers, we need to write the sections too... */
5052 num_sec = elf_numsections (abfd);
5053 for (count = 1; count < num_sec; count++)
5054 {
5055 if (bed->elf_backend_section_processing)
5056 (*bed->elf_backend_section_processing) (abfd, i_shdrp[count]);
5057 if (i_shdrp[count]->contents)
5058 {
5059 bfd_size_type amt = i_shdrp[count]->sh_size;
5060
5061 if (bfd_seek (abfd, i_shdrp[count]->sh_offset, SEEK_SET) != 0
5062 || bfd_bwrite (i_shdrp[count]->contents, amt, abfd) != amt)
5063 return FALSE;
5064 }
5065 if (count == SHN_LORESERVE - 1)
5066 count += SHN_HIRESERVE + 1 - SHN_LORESERVE;
5067 }
5068
5069 /* Write out the section header names. */
5070 if (elf_shstrtab (abfd) != NULL
5071 && (bfd_seek (abfd, elf_tdata (abfd)->shstrtab_hdr.sh_offset, SEEK_SET) != 0
5072 || ! _bfd_elf_strtab_emit (abfd, elf_shstrtab (abfd))))
5073 return FALSE;
5074
5075 if (bed->elf_backend_final_write_processing)
5076 (*bed->elf_backend_final_write_processing) (abfd,
5077 elf_tdata (abfd)->linker);
5078
5079 return bed->s->write_shdrs_and_ehdr (abfd);
5080 }
5081
5082 bfd_boolean
5083 _bfd_elf_write_corefile_contents (bfd *abfd)
5084 {
5085 /* Hopefully this can be done just like an object file. */
5086 return _bfd_elf_write_object_contents (abfd);
5087 }
5088
5089 /* Given a section, search the header to find them. */
5090
5091 int
5092 _bfd_elf_section_from_bfd_section (bfd *abfd, struct bfd_section *asect)
5093 {
5094 const struct elf_backend_data *bed;
5095 int index;
5096
5097 if (elf_section_data (asect) != NULL
5098 && elf_section_data (asect)->this_idx != 0)
5099 return elf_section_data (asect)->this_idx;
5100
5101 if (bfd_is_abs_section (asect))
5102 index = SHN_ABS;
5103 else if (bfd_is_com_section (asect))
5104 index = SHN_COMMON;
5105 else if (bfd_is_und_section (asect))
5106 index = SHN_UNDEF;
5107 else
5108 index = -1;
5109
5110 bed = get_elf_backend_data (abfd);
5111 if (bed->elf_backend_section_from_bfd_section)
5112 {
5113 int retval = index;
5114
5115 if ((*bed->elf_backend_section_from_bfd_section) (abfd, asect, &retval))
5116 return retval;
5117 }
5118
5119 if (index == -1)
5120 bfd_set_error (bfd_error_nonrepresentable_section);
5121
5122 return index;
5123 }
5124
5125 /* Given a BFD symbol, return the index in the ELF symbol table, or -1
5126 on error. */
5127
5128 int
5129 _bfd_elf_symbol_from_bfd_symbol (bfd *abfd, asymbol **asym_ptr_ptr)
5130 {
5131 asymbol *asym_ptr = *asym_ptr_ptr;
5132 int idx;
5133 flagword flags = asym_ptr->flags;
5134
5135 /* When gas creates relocations against local labels, it creates its
5136 own symbol for the section, but does put the symbol into the
5137 symbol chain, so udata is 0. When the linker is generating
5138 relocatable output, this section symbol may be for one of the
5139 input sections rather than the output section. */
5140 if (asym_ptr->udata.i == 0
5141 && (flags & BSF_SECTION_SYM)
5142 && asym_ptr->section)
5143 {
5144 asection *sec;
5145 int indx;
5146
5147 sec = asym_ptr->section;
5148 if (sec->owner != abfd && sec->output_section != NULL)
5149 sec = sec->output_section;
5150 if (sec->owner == abfd
5151 && (indx = sec->index) < elf_num_section_syms (abfd)
5152 && elf_section_syms (abfd)[indx] != NULL)
5153 asym_ptr->udata.i = elf_section_syms (abfd)[indx]->udata.i;
5154 }
5155
5156 idx = asym_ptr->udata.i;
5157
5158 if (idx == 0)
5159 {
5160 /* This case can occur when using --strip-symbol on a symbol
5161 which is used in a relocation entry. */
5162 (*_bfd_error_handler)
5163 (_("%B: symbol `%s' required but not present"),
5164 abfd, bfd_asymbol_name (asym_ptr));
5165 bfd_set_error (bfd_error_no_symbols);
5166 return -1;
5167 }
5168
5169 #if DEBUG & 4
5170 {
5171 fprintf (stderr,
5172 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8lx%s\n",
5173 (long) asym_ptr, asym_ptr->name, idx, flags,
5174 elf_symbol_flags (flags));
5175 fflush (stderr);
5176 }
5177 #endif
5178
5179 return idx;
5180 }
5181
5182 /* Rewrite program header information. */
5183
5184 static bfd_boolean
5185 rewrite_elf_program_header (bfd *ibfd, bfd *obfd)
5186 {
5187 Elf_Internal_Ehdr *iehdr;
5188 struct elf_segment_map *map;
5189 struct elf_segment_map *map_first;
5190 struct elf_segment_map **pointer_to_map;
5191 Elf_Internal_Phdr *segment;
5192 asection *section;
5193 unsigned int i;
5194 unsigned int num_segments;
5195 bfd_boolean phdr_included = FALSE;
5196 bfd_vma maxpagesize;
5197 struct elf_segment_map *phdr_adjust_seg = NULL;
5198 unsigned int phdr_adjust_num = 0;
5199 const struct elf_backend_data *bed;
5200
5201 bed = get_elf_backend_data (ibfd);
5202 iehdr = elf_elfheader (ibfd);
5203
5204 map_first = NULL;
5205 pointer_to_map = &map_first;
5206
5207 num_segments = elf_elfheader (ibfd)->e_phnum;
5208 maxpagesize = get_elf_backend_data (obfd)->maxpagesize;
5209
5210 /* Returns the end address of the segment + 1. */
5211 #define SEGMENT_END(segment, start) \
5212 (start + (segment->p_memsz > segment->p_filesz \
5213 ? segment->p_memsz : segment->p_filesz))
5214
5215 #define SECTION_SIZE(section, segment) \
5216 (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL)) \
5217 != SEC_THREAD_LOCAL || segment->p_type == PT_TLS) \
5218 ? section->size : 0)
5219
5220 /* Returns TRUE if the given section is contained within
5221 the given segment. VMA addresses are compared. */
5222 #define IS_CONTAINED_BY_VMA(section, segment) \
5223 (section->vma >= segment->p_vaddr \
5224 && (section->vma + SECTION_SIZE (section, segment) \
5225 <= (SEGMENT_END (segment, segment->p_vaddr))))
5226
5227 /* Returns TRUE if the given section is contained within
5228 the given segment. LMA addresses are compared. */
5229 #define IS_CONTAINED_BY_LMA(section, segment, base) \
5230 (section->lma >= base \
5231 && (section->lma + SECTION_SIZE (section, segment) \
5232 <= SEGMENT_END (segment, base)))
5233
5234 /* Special case: corefile "NOTE" section containing regs, prpsinfo etc. */
5235 #define IS_COREFILE_NOTE(p, s) \
5236 (p->p_type == PT_NOTE \
5237 && bfd_get_format (ibfd) == bfd_core \
5238 && s->vma == 0 && s->lma == 0 \
5239 && (bfd_vma) s->filepos >= p->p_offset \
5240 && ((bfd_vma) s->filepos + s->size \
5241 <= p->p_offset + p->p_filesz))
5242
5243 /* The complicated case when p_vaddr is 0 is to handle the Solaris
5244 linker, which generates a PT_INTERP section with p_vaddr and
5245 p_memsz set to 0. */
5246 #define IS_SOLARIS_PT_INTERP(p, s) \
5247 (p->p_vaddr == 0 \
5248 && p->p_paddr == 0 \
5249 && p->p_memsz == 0 \
5250 && p->p_filesz > 0 \
5251 && (s->flags & SEC_HAS_CONTENTS) != 0 \
5252 && s->size > 0 \
5253 && (bfd_vma) s->filepos >= p->p_offset \
5254 && ((bfd_vma) s->filepos + s->size \
5255 <= p->p_offset + p->p_filesz))
5256
5257 /* Decide if the given section should be included in the given segment.
5258 A section will be included if:
5259 1. It is within the address space of the segment -- we use the LMA
5260 if that is set for the segment and the VMA otherwise,
5261 2. It is an allocated segment,
5262 3. There is an output section associated with it,
5263 4. The section has not already been allocated to a previous segment.
5264 5. PT_GNU_STACK segments do not include any sections.
5265 6. PT_TLS segment includes only SHF_TLS sections.
5266 7. SHF_TLS sections are only in PT_TLS or PT_LOAD segments.
5267 8. PT_DYNAMIC should not contain empty sections at the beginning
5268 (with the possible exception of .dynamic). */
5269 #define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed) \
5270 ((((segment->p_paddr \
5271 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr) \
5272 : IS_CONTAINED_BY_VMA (section, segment)) \
5273 && (section->flags & SEC_ALLOC) != 0) \
5274 || IS_COREFILE_NOTE (segment, section)) \
5275 && section->output_section != NULL \
5276 && segment->p_type != PT_GNU_STACK \
5277 && (segment->p_type != PT_TLS \
5278 || (section->flags & SEC_THREAD_LOCAL)) \
5279 && (segment->p_type == PT_LOAD \
5280 || segment->p_type == PT_TLS \
5281 || (section->flags & SEC_THREAD_LOCAL) == 0) \
5282 && (segment->p_type != PT_DYNAMIC \
5283 || SECTION_SIZE (section, segment) > 0 \
5284 || (segment->p_paddr \
5285 ? segment->p_paddr != section->lma \
5286 : segment->p_vaddr != section->vma) \
5287 || (strcmp (bfd_get_section_name (ibfd, section), ".dynamic") \
5288 == 0)) \
5289 && ! section->segment_mark)
5290
5291 /* Returns TRUE iff seg1 starts after the end of seg2. */
5292 #define SEGMENT_AFTER_SEGMENT(seg1, seg2, field) \
5293 (seg1->field >= SEGMENT_END (seg2, seg2->field))
5294
5295 /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both
5296 their VMA address ranges and their LMA address ranges overlap.
5297 It is possible to have overlapping VMA ranges without overlapping LMA
5298 ranges. RedBoot images for example can have both .data and .bss mapped
5299 to the same VMA range, but with the .data section mapped to a different
5300 LMA. */
5301 #define SEGMENT_OVERLAPS(seg1, seg2) \
5302 ( !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr) \
5303 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr)) \
5304 && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr) \
5305 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr)))
5306
5307 /* Initialise the segment mark field. */
5308 for (section = ibfd->sections; section != NULL; section = section->next)
5309 section->segment_mark = FALSE;
5310
5311 /* Scan through the segments specified in the program header
5312 of the input BFD. For this first scan we look for overlaps
5313 in the loadable segments. These can be created by weird
5314 parameters to objcopy. Also, fix some solaris weirdness. */
5315 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5316 i < num_segments;
5317 i++, segment++)
5318 {
5319 unsigned int j;
5320 Elf_Internal_Phdr *segment2;
5321
5322 if (segment->p_type == PT_INTERP)
5323 for (section = ibfd->sections; section; section = section->next)
5324 if (IS_SOLARIS_PT_INTERP (segment, section))
5325 {
5326 /* Mininal change so that the normal section to segment
5327 assignment code will work. */
5328 segment->p_vaddr = section->vma;
5329 break;
5330 }
5331
5332 if (segment->p_type != PT_LOAD)
5333 continue;
5334
5335 /* Determine if this segment overlaps any previous segments. */
5336 for (j = 0, segment2 = elf_tdata (ibfd)->phdr; j < i; j++, segment2 ++)
5337 {
5338 bfd_signed_vma extra_length;
5339
5340 if (segment2->p_type != PT_LOAD
5341 || ! SEGMENT_OVERLAPS (segment, segment2))
5342 continue;
5343
5344 /* Merge the two segments together. */
5345 if (segment2->p_vaddr < segment->p_vaddr)
5346 {
5347 /* Extend SEGMENT2 to include SEGMENT and then delete
5348 SEGMENT. */
5349 extra_length =
5350 SEGMENT_END (segment, segment->p_vaddr)
5351 - SEGMENT_END (segment2, segment2->p_vaddr);
5352
5353 if (extra_length > 0)
5354 {
5355 segment2->p_memsz += extra_length;
5356 segment2->p_filesz += extra_length;
5357 }
5358
5359 segment->p_type = PT_NULL;
5360
5361 /* Since we have deleted P we must restart the outer loop. */
5362 i = 0;
5363 segment = elf_tdata (ibfd)->phdr;
5364 break;
5365 }
5366 else
5367 {
5368 /* Extend SEGMENT to include SEGMENT2 and then delete
5369 SEGMENT2. */
5370 extra_length =
5371 SEGMENT_END (segment2, segment2->p_vaddr)
5372 - SEGMENT_END (segment, segment->p_vaddr);
5373
5374 if (extra_length > 0)
5375 {
5376 segment->p_memsz += extra_length;
5377 segment->p_filesz += extra_length;
5378 }
5379
5380 segment2->p_type = PT_NULL;
5381 }
5382 }
5383 }
5384
5385 /* The second scan attempts to assign sections to segments. */
5386 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5387 i < num_segments;
5388 i ++, segment ++)
5389 {
5390 unsigned int section_count;
5391 asection ** sections;
5392 asection * output_section;
5393 unsigned int isec;
5394 bfd_vma matching_lma;
5395 bfd_vma suggested_lma;
5396 unsigned int j;
5397 bfd_size_type amt;
5398
5399 if (segment->p_type == PT_NULL)
5400 continue;
5401
5402 /* Compute how many sections might be placed into this segment. */
5403 for (section = ibfd->sections, section_count = 0;
5404 section != NULL;
5405 section = section->next)
5406 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
5407 ++section_count;
5408
5409 /* Allocate a segment map big enough to contain
5410 all of the sections we have selected. */
5411 amt = sizeof (struct elf_segment_map);
5412 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5413 map = bfd_alloc (obfd, amt);
5414 if (map == NULL)
5415 return FALSE;
5416
5417 /* Initialise the fields of the segment map. Default to
5418 using the physical address of the segment in the input BFD. */
5419 map->next = NULL;
5420 map->p_type = segment->p_type;
5421 map->p_flags = segment->p_flags;
5422 map->p_flags_valid = 1;
5423 map->p_paddr = segment->p_paddr;
5424 map->p_paddr_valid = 1;
5425
5426 /* Determine if this segment contains the ELF file header
5427 and if it contains the program headers themselves. */
5428 map->includes_filehdr = (segment->p_offset == 0
5429 && segment->p_filesz >= iehdr->e_ehsize);
5430
5431 map->includes_phdrs = 0;
5432
5433 if (! phdr_included || segment->p_type != PT_LOAD)
5434 {
5435 map->includes_phdrs =
5436 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
5437 && (segment->p_offset + segment->p_filesz
5438 >= ((bfd_vma) iehdr->e_phoff
5439 + iehdr->e_phnum * iehdr->e_phentsize)));
5440
5441 if (segment->p_type == PT_LOAD && map->includes_phdrs)
5442 phdr_included = TRUE;
5443 }
5444
5445 if (section_count == 0)
5446 {
5447 /* Special segments, such as the PT_PHDR segment, may contain
5448 no sections, but ordinary, loadable segments should contain
5449 something. They are allowed by the ELF spec however, so only
5450 a warning is produced. */
5451 if (segment->p_type == PT_LOAD)
5452 (*_bfd_error_handler)
5453 (_("%B: warning: Empty loadable segment detected, is this intentional ?\n"),
5454 ibfd);
5455
5456 map->count = 0;
5457 *pointer_to_map = map;
5458 pointer_to_map = &map->next;
5459
5460 continue;
5461 }
5462
5463 /* Now scan the sections in the input BFD again and attempt
5464 to add their corresponding output sections to the segment map.
5465 The problem here is how to handle an output section which has
5466 been moved (ie had its LMA changed). There are four possibilities:
5467
5468 1. None of the sections have been moved.
5469 In this case we can continue to use the segment LMA from the
5470 input BFD.
5471
5472 2. All of the sections have been moved by the same amount.
5473 In this case we can change the segment's LMA to match the LMA
5474 of the first section.
5475
5476 3. Some of the sections have been moved, others have not.
5477 In this case those sections which have not been moved can be
5478 placed in the current segment which will have to have its size,
5479 and possibly its LMA changed, and a new segment or segments will
5480 have to be created to contain the other sections.
5481
5482 4. The sections have been moved, but not by the same amount.
5483 In this case we can change the segment's LMA to match the LMA
5484 of the first section and we will have to create a new segment
5485 or segments to contain the other sections.
5486
5487 In order to save time, we allocate an array to hold the section
5488 pointers that we are interested in. As these sections get assigned
5489 to a segment, they are removed from this array. */
5490
5491 /* Gcc 2.96 miscompiles this code on mips. Don't do casting here
5492 to work around this long long bug. */
5493 sections = bfd_malloc2 (section_count, sizeof (asection *));
5494 if (sections == NULL)
5495 return FALSE;
5496
5497 /* Step One: Scan for segment vs section LMA conflicts.
5498 Also add the sections to the section array allocated above.
5499 Also add the sections to the current segment. In the common
5500 case, where the sections have not been moved, this means that
5501 we have completely filled the segment, and there is nothing
5502 more to do. */
5503 isec = 0;
5504 matching_lma = 0;
5505 suggested_lma = 0;
5506
5507 for (j = 0, section = ibfd->sections;
5508 section != NULL;
5509 section = section->next)
5510 {
5511 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
5512 {
5513 output_section = section->output_section;
5514
5515 sections[j ++] = section;
5516
5517 /* The Solaris native linker always sets p_paddr to 0.
5518 We try to catch that case here, and set it to the
5519 correct value. Note - some backends require that
5520 p_paddr be left as zero. */
5521 if (segment->p_paddr == 0
5522 && segment->p_vaddr != 0
5523 && (! bed->want_p_paddr_set_to_zero)
5524 && isec == 0
5525 && output_section->lma != 0
5526 && (output_section->vma == (segment->p_vaddr
5527 + (map->includes_filehdr
5528 ? iehdr->e_ehsize
5529 : 0)
5530 + (map->includes_phdrs
5531 ? (iehdr->e_phnum
5532 * iehdr->e_phentsize)
5533 : 0))))
5534 map->p_paddr = segment->p_vaddr;
5535
5536 /* Match up the physical address of the segment with the
5537 LMA address of the output section. */
5538 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
5539 || IS_COREFILE_NOTE (segment, section)
5540 || (bed->want_p_paddr_set_to_zero &&
5541 IS_CONTAINED_BY_VMA (output_section, segment))
5542 )
5543 {
5544 if (matching_lma == 0)
5545 matching_lma = output_section->lma;
5546
5547 /* We assume that if the section fits within the segment
5548 then it does not overlap any other section within that
5549 segment. */
5550 map->sections[isec ++] = output_section;
5551 }
5552 else if (suggested_lma == 0)
5553 suggested_lma = output_section->lma;
5554 }
5555 }
5556
5557 BFD_ASSERT (j == section_count);
5558
5559 /* Step Two: Adjust the physical address of the current segment,
5560 if necessary. */
5561 if (isec == section_count)
5562 {
5563 /* All of the sections fitted within the segment as currently
5564 specified. This is the default case. Add the segment to
5565 the list of built segments and carry on to process the next
5566 program header in the input BFD. */
5567 map->count = section_count;
5568 *pointer_to_map = map;
5569 pointer_to_map = &map->next;
5570
5571 free (sections);
5572 continue;
5573 }
5574 else
5575 {
5576 if (matching_lma != 0)
5577 {
5578 /* At least one section fits inside the current segment.
5579 Keep it, but modify its physical address to match the
5580 LMA of the first section that fitted. */
5581 map->p_paddr = matching_lma;
5582 }
5583 else
5584 {
5585 /* None of the sections fitted inside the current segment.
5586 Change the current segment's physical address to match
5587 the LMA of the first section. */
5588 map->p_paddr = suggested_lma;
5589 }
5590
5591 /* Offset the segment physical address from the lma
5592 to allow for space taken up by elf headers. */
5593 if (map->includes_filehdr)
5594 map->p_paddr -= iehdr->e_ehsize;
5595
5596 if (map->includes_phdrs)
5597 {
5598 map->p_paddr -= iehdr->e_phnum * iehdr->e_phentsize;
5599
5600 /* iehdr->e_phnum is just an estimate of the number
5601 of program headers that we will need. Make a note
5602 here of the number we used and the segment we chose
5603 to hold these headers, so that we can adjust the
5604 offset when we know the correct value. */
5605 phdr_adjust_num = iehdr->e_phnum;
5606 phdr_adjust_seg = map;
5607 }
5608 }
5609
5610 /* Step Three: Loop over the sections again, this time assigning
5611 those that fit to the current segment and removing them from the
5612 sections array; but making sure not to leave large gaps. Once all
5613 possible sections have been assigned to the current segment it is
5614 added to the list of built segments and if sections still remain
5615 to be assigned, a new segment is constructed before repeating
5616 the loop. */
5617 isec = 0;
5618 do
5619 {
5620 map->count = 0;
5621 suggested_lma = 0;
5622
5623 /* Fill the current segment with sections that fit. */
5624 for (j = 0; j < section_count; j++)
5625 {
5626 section = sections[j];
5627
5628 if (section == NULL)
5629 continue;
5630
5631 output_section = section->output_section;
5632
5633 BFD_ASSERT (output_section != NULL);
5634
5635 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
5636 || IS_COREFILE_NOTE (segment, section))
5637 {
5638 if (map->count == 0)
5639 {
5640 /* If the first section in a segment does not start at
5641 the beginning of the segment, then something is
5642 wrong. */
5643 if (output_section->lma !=
5644 (map->p_paddr
5645 + (map->includes_filehdr ? iehdr->e_ehsize : 0)
5646 + (map->includes_phdrs
5647 ? iehdr->e_phnum * iehdr->e_phentsize
5648 : 0)))
5649 abort ();
5650 }
5651 else
5652 {
5653 asection * prev_sec;
5654
5655 prev_sec = map->sections[map->count - 1];
5656
5657 /* If the gap between the end of the previous section
5658 and the start of this section is more than
5659 maxpagesize then we need to start a new segment. */
5660 if ((BFD_ALIGN (prev_sec->lma + prev_sec->size,
5661 maxpagesize)
5662 < BFD_ALIGN (output_section->lma, maxpagesize))
5663 || ((prev_sec->lma + prev_sec->size)
5664 > output_section->lma))
5665 {
5666 if (suggested_lma == 0)
5667 suggested_lma = output_section->lma;
5668
5669 continue;
5670 }
5671 }
5672
5673 map->sections[map->count++] = output_section;
5674 ++isec;
5675 sections[j] = NULL;
5676 section->segment_mark = TRUE;
5677 }
5678 else if (suggested_lma == 0)
5679 suggested_lma = output_section->lma;
5680 }
5681
5682 BFD_ASSERT (map->count > 0);
5683
5684 /* Add the current segment to the list of built segments. */
5685 *pointer_to_map = map;
5686 pointer_to_map = &map->next;
5687
5688 if (isec < section_count)
5689 {
5690 /* We still have not allocated all of the sections to
5691 segments. Create a new segment here, initialise it
5692 and carry on looping. */
5693 amt = sizeof (struct elf_segment_map);
5694 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5695 map = bfd_alloc (obfd, amt);
5696 if (map == NULL)
5697 {
5698 free (sections);
5699 return FALSE;
5700 }
5701
5702 /* Initialise the fields of the segment map. Set the physical
5703 physical address to the LMA of the first section that has
5704 not yet been assigned. */
5705 map->next = NULL;
5706 map->p_type = segment->p_type;
5707 map->p_flags = segment->p_flags;
5708 map->p_flags_valid = 1;
5709 map->p_paddr = suggested_lma;
5710 map->p_paddr_valid = 1;
5711 map->includes_filehdr = 0;
5712 map->includes_phdrs = 0;
5713 }
5714 }
5715 while (isec < section_count);
5716
5717 free (sections);
5718 }
5719
5720 /* The Solaris linker creates program headers in which all the
5721 p_paddr fields are zero. When we try to objcopy or strip such a
5722 file, we get confused. Check for this case, and if we find it
5723 reset the p_paddr_valid fields. */
5724 for (map = map_first; map != NULL; map = map->next)
5725 if (map->p_paddr != 0)
5726 break;
5727 if (map == NULL)
5728 for (map = map_first; map != NULL; map = map->next)
5729 map->p_paddr_valid = 0;
5730
5731 elf_tdata (obfd)->segment_map = map_first;
5732
5733 /* If we had to estimate the number of program headers that were
5734 going to be needed, then check our estimate now and adjust
5735 the offset if necessary. */
5736 if (phdr_adjust_seg != NULL)
5737 {
5738 unsigned int count;
5739
5740 for (count = 0, map = map_first; map != NULL; map = map->next)
5741 count++;
5742
5743 if (count > phdr_adjust_num)
5744 phdr_adjust_seg->p_paddr
5745 -= (count - phdr_adjust_num) * iehdr->e_phentsize;
5746 }
5747
5748 #undef SEGMENT_END
5749 #undef SECTION_SIZE
5750 #undef IS_CONTAINED_BY_VMA
5751 #undef IS_CONTAINED_BY_LMA
5752 #undef IS_COREFILE_NOTE
5753 #undef IS_SOLARIS_PT_INTERP
5754 #undef INCLUDE_SECTION_IN_SEGMENT
5755 #undef SEGMENT_AFTER_SEGMENT
5756 #undef SEGMENT_OVERLAPS
5757 return TRUE;
5758 }
5759
5760 /* Copy ELF program header information. */
5761
5762 static bfd_boolean
5763 copy_elf_program_header (bfd *ibfd, bfd *obfd)
5764 {
5765 Elf_Internal_Ehdr *iehdr;
5766 struct elf_segment_map *map;
5767 struct elf_segment_map *map_first;
5768 struct elf_segment_map **pointer_to_map;
5769 Elf_Internal_Phdr *segment;
5770 unsigned int i;
5771 unsigned int num_segments;
5772 bfd_boolean phdr_included = FALSE;
5773
5774 iehdr = elf_elfheader (ibfd);
5775
5776 map_first = NULL;
5777 pointer_to_map = &map_first;
5778
5779 num_segments = elf_elfheader (ibfd)->e_phnum;
5780 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5781 i < num_segments;
5782 i++, segment++)
5783 {
5784 asection *section;
5785 unsigned int section_count;
5786 bfd_size_type amt;
5787 Elf_Internal_Shdr *this_hdr;
5788
5789 /* FIXME: Do we need to copy PT_NULL segment? */
5790 if (segment->p_type == PT_NULL)
5791 continue;
5792
5793 /* Compute how many sections are in this segment. */
5794 for (section = ibfd->sections, section_count = 0;
5795 section != NULL;
5796 section = section->next)
5797 {
5798 this_hdr = &(elf_section_data(section)->this_hdr);
5799 if (ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr, segment))
5800 section_count++;
5801 }
5802
5803 /* Allocate a segment map big enough to contain
5804 all of the sections we have selected. */
5805 amt = sizeof (struct elf_segment_map);
5806 if (section_count != 0)
5807 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5808 map = bfd_alloc (obfd, amt);
5809 if (map == NULL)
5810 return FALSE;
5811
5812 /* Initialize the fields of the output segment map with the
5813 input segment. */
5814 map->next = NULL;
5815 map->p_type = segment->p_type;
5816 map->p_flags = segment->p_flags;
5817 map->p_flags_valid = 1;
5818 map->p_paddr = segment->p_paddr;
5819 map->p_paddr_valid = 1;
5820 map->p_align = segment->p_align;
5821 map->p_align_valid = 1;
5822
5823 /* Determine if this segment contains the ELF file header
5824 and if it contains the program headers themselves. */
5825 map->includes_filehdr = (segment->p_offset == 0
5826 && segment->p_filesz >= iehdr->e_ehsize);
5827
5828 map->includes_phdrs = 0;
5829 if (! phdr_included || segment->p_type != PT_LOAD)
5830 {
5831 map->includes_phdrs =
5832 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
5833 && (segment->p_offset + segment->p_filesz
5834 >= ((bfd_vma) iehdr->e_phoff
5835 + iehdr->e_phnum * iehdr->e_phentsize)));
5836
5837 if (segment->p_type == PT_LOAD && map->includes_phdrs)
5838 phdr_included = TRUE;
5839 }
5840
5841 if (section_count != 0)
5842 {
5843 unsigned int isec = 0;
5844
5845 for (section = ibfd->sections;
5846 section != NULL;
5847 section = section->next)
5848 {
5849 this_hdr = &(elf_section_data(section)->this_hdr);
5850 if (ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr, segment))
5851 map->sections[isec++] = section->output_section;
5852 }
5853 }
5854
5855 map->count = section_count;
5856 *pointer_to_map = map;
5857 pointer_to_map = &map->next;
5858 }
5859
5860 elf_tdata (obfd)->segment_map = map_first;
5861 return TRUE;
5862 }
5863
5864 /* Copy private BFD data. This copies or rewrites ELF program header
5865 information. */
5866
5867 static bfd_boolean
5868 copy_private_bfd_data (bfd *ibfd, bfd *obfd)
5869 {
5870 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
5871 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
5872 return TRUE;
5873
5874 if (elf_tdata (ibfd)->phdr == NULL)
5875 return TRUE;
5876
5877 if (ibfd->xvec == obfd->xvec)
5878 {
5879 /* Check if any sections in the input BFD covered by ELF program
5880 header are changed. */
5881 Elf_Internal_Phdr *segment;
5882 asection *section, *osec;
5883 unsigned int i, num_segments;
5884 Elf_Internal_Shdr *this_hdr;
5885
5886 /* Initialize the segment mark field. */
5887 for (section = obfd->sections; section != NULL;
5888 section = section->next)
5889 section->segment_mark = FALSE;
5890
5891 num_segments = elf_elfheader (ibfd)->e_phnum;
5892 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5893 i < num_segments;
5894 i++, segment++)
5895 {
5896 for (section = ibfd->sections;
5897 section != NULL; section = section->next)
5898 {
5899 /* We mark the output section so that we know it comes
5900 from the input BFD. */
5901 osec = section->output_section;
5902 if (osec)
5903 osec->segment_mark = TRUE;
5904
5905 /* Check if this section is covered by the segment. */
5906 this_hdr = &(elf_section_data(section)->this_hdr);
5907 if (ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr, segment))
5908 {
5909 /* FIXME: Check if its output section is changed or
5910 removed. What else do we need to check? */
5911 if (osec == NULL
5912 || section->flags != osec->flags
5913 || section->lma != osec->lma
5914 || section->vma != osec->vma
5915 || section->size != osec->size
5916 || section->rawsize != osec->rawsize
5917 || section->alignment_power != osec->alignment_power)
5918 goto rewrite;
5919 }
5920 }
5921 }
5922
5923 /* Check to see if any output section doesn't come from the
5924 input BFD. */
5925 for (section = obfd->sections; section != NULL;
5926 section = section->next)
5927 {
5928 if (section->segment_mark == FALSE)
5929 goto rewrite;
5930 else
5931 section->segment_mark = FALSE;
5932 }
5933
5934 return copy_elf_program_header (ibfd, obfd);
5935 }
5936
5937 rewrite:
5938 return rewrite_elf_program_header (ibfd, obfd);
5939 }
5940
5941 /* Initialize private output section information from input section. */
5942
5943 bfd_boolean
5944 _bfd_elf_init_private_section_data (bfd *ibfd,
5945 asection *isec,
5946 bfd *obfd,
5947 asection *osec,
5948 struct bfd_link_info *link_info)
5949
5950 {
5951 Elf_Internal_Shdr *ihdr, *ohdr;
5952 bfd_boolean need_group = link_info == NULL || link_info->relocatable;
5953
5954 if (ibfd->xvec->flavour != bfd_target_elf_flavour
5955 || obfd->xvec->flavour != bfd_target_elf_flavour)
5956 return TRUE;
5957
5958 /* Don't copy the output ELF section type from input if the
5959 output BFD section flags has been set to something different.
5960 elf_fake_sections will set ELF section type based on BFD
5961 section flags. */
5962 if (osec->flags == isec->flags
5963 || (osec->flags == 0 && elf_section_type (osec) == SHT_NULL))
5964 elf_section_type (osec) = elf_section_type (isec);
5965
5966 /* Set things up for objcopy and relocatable link. The output
5967 SHT_GROUP section will have its elf_next_in_group pointing back
5968 to the input group members. Ignore linker created group section.
5969 See elfNN_ia64_object_p in elfxx-ia64.c. */
5970
5971 if (need_group)
5972 {
5973 if (elf_sec_group (isec) == NULL
5974 || (elf_sec_group (isec)->flags & SEC_LINKER_CREATED) == 0)
5975 {
5976 if (elf_section_flags (isec) & SHF_GROUP)
5977 elf_section_flags (osec) |= SHF_GROUP;
5978 elf_next_in_group (osec) = elf_next_in_group (isec);
5979 elf_group_name (osec) = elf_group_name (isec);
5980 }
5981 }
5982
5983 ihdr = &elf_section_data (isec)->this_hdr;
5984
5985 /* We need to handle elf_linked_to_section for SHF_LINK_ORDER. We
5986 don't use the output section of the linked-to section since it
5987 may be NULL at this point. */
5988 if ((ihdr->sh_flags & SHF_LINK_ORDER) != 0)
5989 {
5990 ohdr = &elf_section_data (osec)->this_hdr;
5991 ohdr->sh_flags |= SHF_LINK_ORDER;
5992 elf_linked_to_section (osec) = elf_linked_to_section (isec);
5993 }
5994
5995 osec->use_rela_p = isec->use_rela_p;
5996
5997 return TRUE;
5998 }
5999
6000 /* Copy private section information. This copies over the entsize
6001 field, and sometimes the info field. */
6002
6003 bfd_boolean
6004 _bfd_elf_copy_private_section_data (bfd *ibfd,
6005 asection *isec,
6006 bfd *obfd,
6007 asection *osec)
6008 {
6009 Elf_Internal_Shdr *ihdr, *ohdr;
6010
6011 if (ibfd->xvec->flavour != bfd_target_elf_flavour
6012 || obfd->xvec->flavour != bfd_target_elf_flavour)
6013 return TRUE;
6014
6015 ihdr = &elf_section_data (isec)->this_hdr;
6016 ohdr = &elf_section_data (osec)->this_hdr;
6017
6018 ohdr->sh_entsize = ihdr->sh_entsize;
6019
6020 if (ihdr->sh_type == SHT_SYMTAB
6021 || ihdr->sh_type == SHT_DYNSYM
6022 || ihdr->sh_type == SHT_GNU_verneed
6023 || ihdr->sh_type == SHT_GNU_verdef)
6024 ohdr->sh_info = ihdr->sh_info;
6025
6026 return _bfd_elf_init_private_section_data (ibfd, isec, obfd, osec,
6027 NULL);
6028 }
6029
6030 /* Copy private header information. */
6031
6032 bfd_boolean
6033 _bfd_elf_copy_private_header_data (bfd *ibfd, bfd *obfd)
6034 {
6035 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
6036 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
6037 return TRUE;
6038
6039 /* Copy over private BFD data if it has not already been copied.
6040 This must be done here, rather than in the copy_private_bfd_data
6041 entry point, because the latter is called after the section
6042 contents have been set, which means that the program headers have
6043 already been worked out. */
6044 if (elf_tdata (obfd)->segment_map == NULL && elf_tdata (ibfd)->phdr != NULL)
6045 {
6046 if (! copy_private_bfd_data (ibfd, obfd))
6047 return FALSE;
6048 }
6049
6050 return TRUE;
6051 }
6052
6053 /* Copy private symbol information. If this symbol is in a section
6054 which we did not map into a BFD section, try to map the section
6055 index correctly. We use special macro definitions for the mapped
6056 section indices; these definitions are interpreted by the
6057 swap_out_syms function. */
6058
6059 #define MAP_ONESYMTAB (SHN_HIOS + 1)
6060 #define MAP_DYNSYMTAB (SHN_HIOS + 2)
6061 #define MAP_STRTAB (SHN_HIOS + 3)
6062 #define MAP_SHSTRTAB (SHN_HIOS + 4)
6063 #define MAP_SYM_SHNDX (SHN_HIOS + 5)
6064
6065 bfd_boolean
6066 _bfd_elf_copy_private_symbol_data (bfd *ibfd,
6067 asymbol *isymarg,
6068 bfd *obfd,
6069 asymbol *osymarg)
6070 {
6071 elf_symbol_type *isym, *osym;
6072
6073 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
6074 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
6075 return TRUE;
6076
6077 isym = elf_symbol_from (ibfd, isymarg);
6078 osym = elf_symbol_from (obfd, osymarg);
6079
6080 if (isym != NULL
6081 && osym != NULL
6082 && bfd_is_abs_section (isym->symbol.section))
6083 {
6084 unsigned int shndx;
6085
6086 shndx = isym->internal_elf_sym.st_shndx;
6087 if (shndx == elf_onesymtab (ibfd))
6088 shndx = MAP_ONESYMTAB;
6089 else if (shndx == elf_dynsymtab (ibfd))
6090 shndx = MAP_DYNSYMTAB;
6091 else if (shndx == elf_tdata (ibfd)->strtab_section)
6092 shndx = MAP_STRTAB;
6093 else if (shndx == elf_tdata (ibfd)->shstrtab_section)
6094 shndx = MAP_SHSTRTAB;
6095 else if (shndx == elf_tdata (ibfd)->symtab_shndx_section)
6096 shndx = MAP_SYM_SHNDX;
6097 osym->internal_elf_sym.st_shndx = shndx;
6098 }
6099
6100 return TRUE;
6101 }
6102
6103 /* Swap out the symbols. */
6104
6105 static bfd_boolean
6106 swap_out_syms (bfd *abfd,
6107 struct bfd_strtab_hash **sttp,
6108 int relocatable_p)
6109 {
6110 const struct elf_backend_data *bed;
6111 int symcount;
6112 asymbol **syms;
6113 struct bfd_strtab_hash *stt;
6114 Elf_Internal_Shdr *symtab_hdr;
6115 Elf_Internal_Shdr *symtab_shndx_hdr;
6116 Elf_Internal_Shdr *symstrtab_hdr;
6117 bfd_byte *outbound_syms;
6118 bfd_byte *outbound_shndx;
6119 int idx;
6120 bfd_size_type amt;
6121 bfd_boolean name_local_sections;
6122
6123 if (!elf_map_symbols (abfd))
6124 return FALSE;
6125
6126 /* Dump out the symtabs. */
6127 stt = _bfd_elf_stringtab_init ();
6128 if (stt == NULL)
6129 return FALSE;
6130
6131 bed = get_elf_backend_data (abfd);
6132 symcount = bfd_get_symcount (abfd);
6133 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
6134 symtab_hdr->sh_type = SHT_SYMTAB;
6135 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
6136 symtab_hdr->sh_size = symtab_hdr->sh_entsize * (symcount + 1);
6137 symtab_hdr->sh_info = elf_num_locals (abfd) + 1;
6138 symtab_hdr->sh_addralign = 1 << bed->s->log_file_align;
6139
6140 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
6141 symstrtab_hdr->sh_type = SHT_STRTAB;
6142
6143 outbound_syms = bfd_alloc2 (abfd, 1 + symcount, bed->s->sizeof_sym);
6144 if (outbound_syms == NULL)
6145 {
6146 _bfd_stringtab_free (stt);
6147 return FALSE;
6148 }
6149 symtab_hdr->contents = outbound_syms;
6150
6151 outbound_shndx = NULL;
6152 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
6153 if (symtab_shndx_hdr->sh_name != 0)
6154 {
6155 amt = (bfd_size_type) (1 + symcount) * sizeof (Elf_External_Sym_Shndx);
6156 outbound_shndx = bfd_zalloc2 (abfd, 1 + symcount,
6157 sizeof (Elf_External_Sym_Shndx));
6158 if (outbound_shndx == NULL)
6159 {
6160 _bfd_stringtab_free (stt);
6161 return FALSE;
6162 }
6163
6164 symtab_shndx_hdr->contents = outbound_shndx;
6165 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
6166 symtab_shndx_hdr->sh_size = amt;
6167 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
6168 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
6169 }
6170
6171 /* Now generate the data (for "contents"). */
6172 {
6173 /* Fill in zeroth symbol and swap it out. */
6174 Elf_Internal_Sym sym;
6175 sym.st_name = 0;
6176 sym.st_value = 0;
6177 sym.st_size = 0;
6178 sym.st_info = 0;
6179 sym.st_other = 0;
6180 sym.st_shndx = SHN_UNDEF;
6181 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
6182 outbound_syms += bed->s->sizeof_sym;
6183 if (outbound_shndx != NULL)
6184 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
6185 }
6186
6187 name_local_sections
6188 = (bed->elf_backend_name_local_section_symbols
6189 && bed->elf_backend_name_local_section_symbols (abfd));
6190
6191 syms = bfd_get_outsymbols (abfd);
6192 for (idx = 0; idx < symcount; idx++)
6193 {
6194 Elf_Internal_Sym sym;
6195 bfd_vma value = syms[idx]->value;
6196 elf_symbol_type *type_ptr;
6197 flagword flags = syms[idx]->flags;
6198 int type;
6199
6200 if (!name_local_sections
6201 && (flags & (BSF_SECTION_SYM | BSF_GLOBAL)) == BSF_SECTION_SYM)
6202 {
6203 /* Local section symbols have no name. */
6204 sym.st_name = 0;
6205 }
6206 else
6207 {
6208 sym.st_name = (unsigned long) _bfd_stringtab_add (stt,
6209 syms[idx]->name,
6210 TRUE, FALSE);
6211 if (sym.st_name == (unsigned long) -1)
6212 {
6213 _bfd_stringtab_free (stt);
6214 return FALSE;
6215 }
6216 }
6217
6218 type_ptr = elf_symbol_from (abfd, syms[idx]);
6219
6220 if ((flags & BSF_SECTION_SYM) == 0
6221 && bfd_is_com_section (syms[idx]->section))
6222 {
6223 /* ELF common symbols put the alignment into the `value' field,
6224 and the size into the `size' field. This is backwards from
6225 how BFD handles it, so reverse it here. */
6226 sym.st_size = value;
6227 if (type_ptr == NULL
6228 || type_ptr->internal_elf_sym.st_value == 0)
6229 sym.st_value = value >= 16 ? 16 : (1 << bfd_log2 (value));
6230 else
6231 sym.st_value = type_ptr->internal_elf_sym.st_value;
6232 sym.st_shndx = _bfd_elf_section_from_bfd_section
6233 (abfd, syms[idx]->section);
6234 }
6235 else
6236 {
6237 asection *sec = syms[idx]->section;
6238 int shndx;
6239
6240 if (sec->output_section)
6241 {
6242 value += sec->output_offset;
6243 sec = sec->output_section;
6244 }
6245
6246 /* Don't add in the section vma for relocatable output. */
6247 if (! relocatable_p)
6248 value += sec->vma;
6249 sym.st_value = value;
6250 sym.st_size = type_ptr ? type_ptr->internal_elf_sym.st_size : 0;
6251
6252 if (bfd_is_abs_section (sec)
6253 && type_ptr != NULL
6254 && type_ptr->internal_elf_sym.st_shndx != 0)
6255 {
6256 /* This symbol is in a real ELF section which we did
6257 not create as a BFD section. Undo the mapping done
6258 by copy_private_symbol_data. */
6259 shndx = type_ptr->internal_elf_sym.st_shndx;
6260 switch (shndx)
6261 {
6262 case MAP_ONESYMTAB:
6263 shndx = elf_onesymtab (abfd);
6264 break;
6265 case MAP_DYNSYMTAB:
6266 shndx = elf_dynsymtab (abfd);
6267 break;
6268 case MAP_STRTAB:
6269 shndx = elf_tdata (abfd)->strtab_section;
6270 break;
6271 case MAP_SHSTRTAB:
6272 shndx = elf_tdata (abfd)->shstrtab_section;
6273 break;
6274 case MAP_SYM_SHNDX:
6275 shndx = elf_tdata (abfd)->symtab_shndx_section;
6276 break;
6277 default:
6278 break;
6279 }
6280 }
6281 else
6282 {
6283 shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
6284
6285 if (shndx == -1)
6286 {
6287 asection *sec2;
6288
6289 /* Writing this would be a hell of a lot easier if
6290 we had some decent documentation on bfd, and
6291 knew what to expect of the library, and what to
6292 demand of applications. For example, it
6293 appears that `objcopy' might not set the
6294 section of a symbol to be a section that is
6295 actually in the output file. */
6296 sec2 = bfd_get_section_by_name (abfd, sec->name);
6297 if (sec2 == NULL)
6298 {
6299 _bfd_error_handler (_("\
6300 Unable to find equivalent output section for symbol '%s' from section '%s'"),
6301 syms[idx]->name ? syms[idx]->name : "<Local sym>",
6302 sec->name);
6303 bfd_set_error (bfd_error_invalid_operation);
6304 _bfd_stringtab_free (stt);
6305 return FALSE;
6306 }
6307
6308 shndx = _bfd_elf_section_from_bfd_section (abfd, sec2);
6309 BFD_ASSERT (shndx != -1);
6310 }
6311 }
6312
6313 sym.st_shndx = shndx;
6314 }
6315
6316 if ((flags & BSF_THREAD_LOCAL) != 0)
6317 type = STT_TLS;
6318 else if ((flags & BSF_FUNCTION) != 0)
6319 type = STT_FUNC;
6320 else if ((flags & BSF_OBJECT) != 0)
6321 type = STT_OBJECT;
6322 else
6323 type = STT_NOTYPE;
6324
6325 if (syms[idx]->section->flags & SEC_THREAD_LOCAL)
6326 type = STT_TLS;
6327
6328 /* Processor-specific types. */
6329 if (type_ptr != NULL
6330 && bed->elf_backend_get_symbol_type)
6331 type = ((*bed->elf_backend_get_symbol_type)
6332 (&type_ptr->internal_elf_sym, type));
6333
6334 if (flags & BSF_SECTION_SYM)
6335 {
6336 if (flags & BSF_GLOBAL)
6337 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6338 else
6339 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
6340 }
6341 else if (bfd_is_com_section (syms[idx]->section))
6342 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
6343 else if (bfd_is_und_section (syms[idx]->section))
6344 sym.st_info = ELF_ST_INFO (((flags & BSF_WEAK)
6345 ? STB_WEAK
6346 : STB_GLOBAL),
6347 type);
6348 else if (flags & BSF_FILE)
6349 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
6350 else
6351 {
6352 int bind = STB_LOCAL;
6353
6354 if (flags & BSF_LOCAL)
6355 bind = STB_LOCAL;
6356 else if (flags & BSF_WEAK)
6357 bind = STB_WEAK;
6358 else if (flags & BSF_GLOBAL)
6359 bind = STB_GLOBAL;
6360
6361 sym.st_info = ELF_ST_INFO (bind, type);
6362 }
6363
6364 if (type_ptr != NULL)
6365 sym.st_other = type_ptr->internal_elf_sym.st_other;
6366 else
6367 sym.st_other = 0;
6368
6369 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
6370 outbound_syms += bed->s->sizeof_sym;
6371 if (outbound_shndx != NULL)
6372 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
6373 }
6374
6375 *sttp = stt;
6376 symstrtab_hdr->sh_size = _bfd_stringtab_size (stt);
6377 symstrtab_hdr->sh_type = SHT_STRTAB;
6378
6379 symstrtab_hdr->sh_flags = 0;
6380 symstrtab_hdr->sh_addr = 0;
6381 symstrtab_hdr->sh_entsize = 0;
6382 symstrtab_hdr->sh_link = 0;
6383 symstrtab_hdr->sh_info = 0;
6384 symstrtab_hdr->sh_addralign = 1;
6385
6386 return TRUE;
6387 }
6388
6389 /* Return the number of bytes required to hold the symtab vector.
6390
6391 Note that we base it on the count plus 1, since we will null terminate
6392 the vector allocated based on this size. However, the ELF symbol table
6393 always has a dummy entry as symbol #0, so it ends up even. */
6394
6395 long
6396 _bfd_elf_get_symtab_upper_bound (bfd *abfd)
6397 {
6398 long symcount;
6399 long symtab_size;
6400 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->symtab_hdr;
6401
6402 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
6403 symtab_size = (symcount + 1) * (sizeof (asymbol *));
6404 if (symcount > 0)
6405 symtab_size -= sizeof (asymbol *);
6406
6407 return symtab_size;
6408 }
6409
6410 long
6411 _bfd_elf_get_dynamic_symtab_upper_bound (bfd *abfd)
6412 {
6413 long symcount;
6414 long symtab_size;
6415 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->dynsymtab_hdr;
6416
6417 if (elf_dynsymtab (abfd) == 0)
6418 {
6419 bfd_set_error (bfd_error_invalid_operation);
6420 return -1;
6421 }
6422
6423 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
6424 symtab_size = (symcount + 1) * (sizeof (asymbol *));
6425 if (symcount > 0)
6426 symtab_size -= sizeof (asymbol *);
6427
6428 return symtab_size;
6429 }
6430
6431 long
6432 _bfd_elf_get_reloc_upper_bound (bfd *abfd ATTRIBUTE_UNUSED,
6433 sec_ptr asect)
6434 {
6435 return (asect->reloc_count + 1) * sizeof (arelent *);
6436 }
6437
6438 /* Canonicalize the relocs. */
6439
6440 long
6441 _bfd_elf_canonicalize_reloc (bfd *abfd,
6442 sec_ptr section,
6443 arelent **relptr,
6444 asymbol **symbols)
6445 {
6446 arelent *tblptr;
6447 unsigned int i;
6448 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6449
6450 if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE))
6451 return -1;
6452
6453 tblptr = section->relocation;
6454 for (i = 0; i < section->reloc_count; i++)
6455 *relptr++ = tblptr++;
6456
6457 *relptr = NULL;
6458
6459 return section->reloc_count;
6460 }
6461
6462 long
6463 _bfd_elf_canonicalize_symtab (bfd *abfd, asymbol **allocation)
6464 {
6465 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6466 long symcount = bed->s->slurp_symbol_table (abfd, allocation, FALSE);
6467
6468 if (symcount >= 0)
6469 bfd_get_symcount (abfd) = symcount;
6470 return symcount;
6471 }
6472
6473 long
6474 _bfd_elf_canonicalize_dynamic_symtab (bfd *abfd,
6475 asymbol **allocation)
6476 {
6477 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6478 long symcount = bed->s->slurp_symbol_table (abfd, allocation, TRUE);
6479
6480 if (symcount >= 0)
6481 bfd_get_dynamic_symcount (abfd) = symcount;
6482 return symcount;
6483 }
6484
6485 /* Return the size required for the dynamic reloc entries. Any loadable
6486 section that was actually installed in the BFD, and has type SHT_REL
6487 or SHT_RELA, and uses the dynamic symbol table, is considered to be a
6488 dynamic reloc section. */
6489
6490 long
6491 _bfd_elf_get_dynamic_reloc_upper_bound (bfd *abfd)
6492 {
6493 long ret;
6494 asection *s;
6495
6496 if (elf_dynsymtab (abfd) == 0)
6497 {
6498 bfd_set_error (bfd_error_invalid_operation);
6499 return -1;
6500 }
6501
6502 ret = sizeof (arelent *);
6503 for (s = abfd->sections; s != NULL; s = s->next)
6504 if ((s->flags & SEC_LOAD) != 0
6505 && elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
6506 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
6507 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
6508 ret += ((s->size / elf_section_data (s)->this_hdr.sh_entsize)
6509 * sizeof (arelent *));
6510
6511 return ret;
6512 }
6513
6514 /* Canonicalize the dynamic relocation entries. Note that we return the
6515 dynamic relocations as a single block, although they are actually
6516 associated with particular sections; the interface, which was
6517 designed for SunOS style shared libraries, expects that there is only
6518 one set of dynamic relocs. Any loadable section that was actually
6519 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses the
6520 dynamic symbol table, is considered to be a dynamic reloc section. */
6521
6522 long
6523 _bfd_elf_canonicalize_dynamic_reloc (bfd *abfd,
6524 arelent **storage,
6525 asymbol **syms)
6526 {
6527 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
6528 asection *s;
6529 long ret;
6530
6531 if (elf_dynsymtab (abfd) == 0)
6532 {
6533 bfd_set_error (bfd_error_invalid_operation);
6534 return -1;
6535 }
6536
6537 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
6538 ret = 0;
6539 for (s = abfd->sections; s != NULL; s = s->next)
6540 {
6541 if ((s->flags & SEC_LOAD) != 0
6542 && elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
6543 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
6544 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
6545 {
6546 arelent *p;
6547 long count, i;
6548
6549 if (! (*slurp_relocs) (abfd, s, syms, TRUE))
6550 return -1;
6551 count = s->size / elf_section_data (s)->this_hdr.sh_entsize;
6552 p = s->relocation;
6553 for (i = 0; i < count; i++)
6554 *storage++ = p++;
6555 ret += count;
6556 }
6557 }
6558
6559 *storage = NULL;
6560
6561 return ret;
6562 }
6563 \f
6564 /* Read in the version information. */
6565
6566 bfd_boolean
6567 _bfd_elf_slurp_version_tables (bfd *abfd, bfd_boolean default_imported_symver)
6568 {
6569 bfd_byte *contents = NULL;
6570 unsigned int freeidx = 0;
6571
6572 if (elf_dynverref (abfd) != 0)
6573 {
6574 Elf_Internal_Shdr *hdr;
6575 Elf_External_Verneed *everneed;
6576 Elf_Internal_Verneed *iverneed;
6577 unsigned int i;
6578 bfd_byte *contents_end;
6579
6580 hdr = &elf_tdata (abfd)->dynverref_hdr;
6581
6582 elf_tdata (abfd)->verref = bfd_zalloc2 (abfd, hdr->sh_info,
6583 sizeof (Elf_Internal_Verneed));
6584 if (elf_tdata (abfd)->verref == NULL)
6585 goto error_return;
6586
6587 elf_tdata (abfd)->cverrefs = hdr->sh_info;
6588
6589 contents = bfd_malloc (hdr->sh_size);
6590 if (contents == NULL)
6591 {
6592 error_return_verref:
6593 elf_tdata (abfd)->verref = NULL;
6594 elf_tdata (abfd)->cverrefs = 0;
6595 goto error_return;
6596 }
6597 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
6598 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
6599 goto error_return_verref;
6600
6601 if (hdr->sh_info && hdr->sh_size < sizeof (Elf_External_Verneed))
6602 goto error_return_verref;
6603
6604 BFD_ASSERT (sizeof (Elf_External_Verneed)
6605 == sizeof (Elf_External_Vernaux));
6606 contents_end = contents + hdr->sh_size - sizeof (Elf_External_Verneed);
6607 everneed = (Elf_External_Verneed *) contents;
6608 iverneed = elf_tdata (abfd)->verref;
6609 for (i = 0; i < hdr->sh_info; i++, iverneed++)
6610 {
6611 Elf_External_Vernaux *evernaux;
6612 Elf_Internal_Vernaux *ivernaux;
6613 unsigned int j;
6614
6615 _bfd_elf_swap_verneed_in (abfd, everneed, iverneed);
6616
6617 iverneed->vn_bfd = abfd;
6618
6619 iverneed->vn_filename =
6620 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
6621 iverneed->vn_file);
6622 if (iverneed->vn_filename == NULL)
6623 goto error_return_verref;
6624
6625 if (iverneed->vn_cnt == 0)
6626 iverneed->vn_auxptr = NULL;
6627 else
6628 {
6629 iverneed->vn_auxptr = bfd_alloc2 (abfd, iverneed->vn_cnt,
6630 sizeof (Elf_Internal_Vernaux));
6631 if (iverneed->vn_auxptr == NULL)
6632 goto error_return_verref;
6633 }
6634
6635 if (iverneed->vn_aux
6636 > (size_t) (contents_end - (bfd_byte *) everneed))
6637 goto error_return_verref;
6638
6639 evernaux = ((Elf_External_Vernaux *)
6640 ((bfd_byte *) everneed + iverneed->vn_aux));
6641 ivernaux = iverneed->vn_auxptr;
6642 for (j = 0; j < iverneed->vn_cnt; j++, ivernaux++)
6643 {
6644 _bfd_elf_swap_vernaux_in (abfd, evernaux, ivernaux);
6645
6646 ivernaux->vna_nodename =
6647 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
6648 ivernaux->vna_name);
6649 if (ivernaux->vna_nodename == NULL)
6650 goto error_return_verref;
6651
6652 if (j + 1 < iverneed->vn_cnt)
6653 ivernaux->vna_nextptr = ivernaux + 1;
6654 else
6655 ivernaux->vna_nextptr = NULL;
6656
6657 if (ivernaux->vna_next
6658 > (size_t) (contents_end - (bfd_byte *) evernaux))
6659 goto error_return_verref;
6660
6661 evernaux = ((Elf_External_Vernaux *)
6662 ((bfd_byte *) evernaux + ivernaux->vna_next));
6663
6664 if (ivernaux->vna_other > freeidx)
6665 freeidx = ivernaux->vna_other;
6666 }
6667
6668 if (i + 1 < hdr->sh_info)
6669 iverneed->vn_nextref = iverneed + 1;
6670 else
6671 iverneed->vn_nextref = NULL;
6672
6673 if (iverneed->vn_next
6674 > (size_t) (contents_end - (bfd_byte *) everneed))
6675 goto error_return_verref;
6676
6677 everneed = ((Elf_External_Verneed *)
6678 ((bfd_byte *) everneed + iverneed->vn_next));
6679 }
6680
6681 free (contents);
6682 contents = NULL;
6683 }
6684
6685 if (elf_dynverdef (abfd) != 0)
6686 {
6687 Elf_Internal_Shdr *hdr;
6688 Elf_External_Verdef *everdef;
6689 Elf_Internal_Verdef *iverdef;
6690 Elf_Internal_Verdef *iverdefarr;
6691 Elf_Internal_Verdef iverdefmem;
6692 unsigned int i;
6693 unsigned int maxidx;
6694 bfd_byte *contents_end_def, *contents_end_aux;
6695
6696 hdr = &elf_tdata (abfd)->dynverdef_hdr;
6697
6698 contents = bfd_malloc (hdr->sh_size);
6699 if (contents == NULL)
6700 goto error_return;
6701 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
6702 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
6703 goto error_return;
6704
6705 if (hdr->sh_info && hdr->sh_size < sizeof (Elf_External_Verdef))
6706 goto error_return;
6707
6708 BFD_ASSERT (sizeof (Elf_External_Verdef)
6709 >= sizeof (Elf_External_Verdaux));
6710 contents_end_def = contents + hdr->sh_size
6711 - sizeof (Elf_External_Verdef);
6712 contents_end_aux = contents + hdr->sh_size
6713 - sizeof (Elf_External_Verdaux);
6714
6715 /* We know the number of entries in the section but not the maximum
6716 index. Therefore we have to run through all entries and find
6717 the maximum. */
6718 everdef = (Elf_External_Verdef *) contents;
6719 maxidx = 0;
6720 for (i = 0; i < hdr->sh_info; ++i)
6721 {
6722 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
6723
6724 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) > maxidx)
6725 maxidx = iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION);
6726
6727 if (iverdefmem.vd_next
6728 > (size_t) (contents_end_def - (bfd_byte *) everdef))
6729 goto error_return;
6730
6731 everdef = ((Elf_External_Verdef *)
6732 ((bfd_byte *) everdef + iverdefmem.vd_next));
6733 }
6734
6735 if (default_imported_symver)
6736 {
6737 if (freeidx > maxidx)
6738 maxidx = ++freeidx;
6739 else
6740 freeidx = ++maxidx;
6741 }
6742 elf_tdata (abfd)->verdef = bfd_zalloc2 (abfd, maxidx,
6743 sizeof (Elf_Internal_Verdef));
6744 if (elf_tdata (abfd)->verdef == NULL)
6745 goto error_return;
6746
6747 elf_tdata (abfd)->cverdefs = maxidx;
6748
6749 everdef = (Elf_External_Verdef *) contents;
6750 iverdefarr = elf_tdata (abfd)->verdef;
6751 for (i = 0; i < hdr->sh_info; i++)
6752 {
6753 Elf_External_Verdaux *everdaux;
6754 Elf_Internal_Verdaux *iverdaux;
6755 unsigned int j;
6756
6757 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
6758
6759 if ((iverdefmem.vd_ndx & VERSYM_VERSION) == 0)
6760 {
6761 error_return_verdef:
6762 elf_tdata (abfd)->verdef = NULL;
6763 elf_tdata (abfd)->cverdefs = 0;
6764 goto error_return;
6765 }
6766
6767 iverdef = &iverdefarr[(iverdefmem.vd_ndx & VERSYM_VERSION) - 1];
6768 memcpy (iverdef, &iverdefmem, sizeof (Elf_Internal_Verdef));
6769
6770 iverdef->vd_bfd = abfd;
6771
6772 if (iverdef->vd_cnt == 0)
6773 iverdef->vd_auxptr = NULL;
6774 else
6775 {
6776 iverdef->vd_auxptr = bfd_alloc2 (abfd, iverdef->vd_cnt,
6777 sizeof (Elf_Internal_Verdaux));
6778 if (iverdef->vd_auxptr == NULL)
6779 goto error_return_verdef;
6780 }
6781
6782 if (iverdef->vd_aux
6783 > (size_t) (contents_end_aux - (bfd_byte *) everdef))
6784 goto error_return_verdef;
6785
6786 everdaux = ((Elf_External_Verdaux *)
6787 ((bfd_byte *) everdef + iverdef->vd_aux));
6788 iverdaux = iverdef->vd_auxptr;
6789 for (j = 0; j < iverdef->vd_cnt; j++, iverdaux++)
6790 {
6791 _bfd_elf_swap_verdaux_in (abfd, everdaux, iverdaux);
6792
6793 iverdaux->vda_nodename =
6794 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
6795 iverdaux->vda_name);
6796 if (iverdaux->vda_nodename == NULL)
6797 goto error_return_verdef;
6798
6799 if (j + 1 < iverdef->vd_cnt)
6800 iverdaux->vda_nextptr = iverdaux + 1;
6801 else
6802 iverdaux->vda_nextptr = NULL;
6803
6804 if (iverdaux->vda_next
6805 > (size_t) (contents_end_aux - (bfd_byte *) everdaux))
6806 goto error_return_verdef;
6807
6808 everdaux = ((Elf_External_Verdaux *)
6809 ((bfd_byte *) everdaux + iverdaux->vda_next));
6810 }
6811
6812 if (iverdef->vd_cnt)
6813 iverdef->vd_nodename = iverdef->vd_auxptr->vda_nodename;
6814
6815 if ((size_t) (iverdef - iverdefarr) + 1 < maxidx)
6816 iverdef->vd_nextdef = iverdef + 1;
6817 else
6818 iverdef->vd_nextdef = NULL;
6819
6820 everdef = ((Elf_External_Verdef *)
6821 ((bfd_byte *) everdef + iverdef->vd_next));
6822 }
6823
6824 free (contents);
6825 contents = NULL;
6826 }
6827 else if (default_imported_symver)
6828 {
6829 if (freeidx < 3)
6830 freeidx = 3;
6831 else
6832 freeidx++;
6833
6834 elf_tdata (abfd)->verdef = bfd_zalloc2 (abfd, freeidx,
6835 sizeof (Elf_Internal_Verdef));
6836 if (elf_tdata (abfd)->verdef == NULL)
6837 goto error_return;
6838
6839 elf_tdata (abfd)->cverdefs = freeidx;
6840 }
6841
6842 /* Create a default version based on the soname. */
6843 if (default_imported_symver)
6844 {
6845 Elf_Internal_Verdef *iverdef;
6846 Elf_Internal_Verdaux *iverdaux;
6847
6848 iverdef = &elf_tdata (abfd)->verdef[freeidx - 1];;
6849
6850 iverdef->vd_version = VER_DEF_CURRENT;
6851 iverdef->vd_flags = 0;
6852 iverdef->vd_ndx = freeidx;
6853 iverdef->vd_cnt = 1;
6854
6855 iverdef->vd_bfd = abfd;
6856
6857 iverdef->vd_nodename = bfd_elf_get_dt_soname (abfd);
6858 if (iverdef->vd_nodename == NULL)
6859 goto error_return_verdef;
6860 iverdef->vd_nextdef = NULL;
6861 iverdef->vd_auxptr = bfd_alloc (abfd, sizeof (Elf_Internal_Verdaux));
6862 if (iverdef->vd_auxptr == NULL)
6863 goto error_return_verdef;
6864
6865 iverdaux = iverdef->vd_auxptr;
6866 iverdaux->vda_nodename = iverdef->vd_nodename;
6867 iverdaux->vda_nextptr = NULL;
6868 }
6869
6870 return TRUE;
6871
6872 error_return:
6873 if (contents != NULL)
6874 free (contents);
6875 return FALSE;
6876 }
6877 \f
6878 asymbol *
6879 _bfd_elf_make_empty_symbol (bfd *abfd)
6880 {
6881 elf_symbol_type *newsym;
6882 bfd_size_type amt = sizeof (elf_symbol_type);
6883
6884 newsym = bfd_zalloc (abfd, amt);
6885 if (!newsym)
6886 return NULL;
6887 else
6888 {
6889 newsym->symbol.the_bfd = abfd;
6890 return &newsym->symbol;
6891 }
6892 }
6893
6894 void
6895 _bfd_elf_get_symbol_info (bfd *abfd ATTRIBUTE_UNUSED,
6896 asymbol *symbol,
6897 symbol_info *ret)
6898 {
6899 bfd_symbol_info (symbol, ret);
6900 }
6901
6902 /* Return whether a symbol name implies a local symbol. Most targets
6903 use this function for the is_local_label_name entry point, but some
6904 override it. */
6905
6906 bfd_boolean
6907 _bfd_elf_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED,
6908 const char *name)
6909 {
6910 /* Normal local symbols start with ``.L''. */
6911 if (name[0] == '.' && name[1] == 'L')
6912 return TRUE;
6913
6914 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
6915 DWARF debugging symbols starting with ``..''. */
6916 if (name[0] == '.' && name[1] == '.')
6917 return TRUE;
6918
6919 /* gcc will sometimes generate symbols beginning with ``_.L_'' when
6920 emitting DWARF debugging output. I suspect this is actually a
6921 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
6922 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
6923 underscore to be emitted on some ELF targets). For ease of use,
6924 we treat such symbols as local. */
6925 if (name[0] == '_' && name[1] == '.' && name[2] == 'L' && name[3] == '_')
6926 return TRUE;
6927
6928 return FALSE;
6929 }
6930
6931 alent *
6932 _bfd_elf_get_lineno (bfd *abfd ATTRIBUTE_UNUSED,
6933 asymbol *symbol ATTRIBUTE_UNUSED)
6934 {
6935 abort ();
6936 return NULL;
6937 }
6938
6939 bfd_boolean
6940 _bfd_elf_set_arch_mach (bfd *abfd,
6941 enum bfd_architecture arch,
6942 unsigned long machine)
6943 {
6944 /* If this isn't the right architecture for this backend, and this
6945 isn't the generic backend, fail. */
6946 if (arch != get_elf_backend_data (abfd)->arch
6947 && arch != bfd_arch_unknown
6948 && get_elf_backend_data (abfd)->arch != bfd_arch_unknown)
6949 return FALSE;
6950
6951 return bfd_default_set_arch_mach (abfd, arch, machine);
6952 }
6953
6954 /* Find the function to a particular section and offset,
6955 for error reporting. */
6956
6957 static bfd_boolean
6958 elf_find_function (bfd *abfd ATTRIBUTE_UNUSED,
6959 asection *section,
6960 asymbol **symbols,
6961 bfd_vma offset,
6962 const char **filename_ptr,
6963 const char **functionname_ptr)
6964 {
6965 const char *filename;
6966 asymbol *func, *file;
6967 bfd_vma low_func;
6968 asymbol **p;
6969 /* ??? Given multiple file symbols, it is impossible to reliably
6970 choose the right file name for global symbols. File symbols are
6971 local symbols, and thus all file symbols must sort before any
6972 global symbols. The ELF spec may be interpreted to say that a
6973 file symbol must sort before other local symbols, but currently
6974 ld -r doesn't do this. So, for ld -r output, it is possible to
6975 make a better choice of file name for local symbols by ignoring
6976 file symbols appearing after a given local symbol. */
6977 enum { nothing_seen, symbol_seen, file_after_symbol_seen } state;
6978
6979 filename = NULL;
6980 func = NULL;
6981 file = NULL;
6982 low_func = 0;
6983 state = nothing_seen;
6984
6985 for (p = symbols; *p != NULL; p++)
6986 {
6987 elf_symbol_type *q;
6988
6989 q = (elf_symbol_type *) *p;
6990
6991 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
6992 {
6993 default:
6994 break;
6995 case STT_FILE:
6996 file = &q->symbol;
6997 if (state == symbol_seen)
6998 state = file_after_symbol_seen;
6999 continue;
7000 case STT_NOTYPE:
7001 case STT_FUNC:
7002 if (bfd_get_section (&q->symbol) == section
7003 && q->symbol.value >= low_func
7004 && q->symbol.value <= offset)
7005 {
7006 func = (asymbol *) q;
7007 low_func = q->symbol.value;
7008 filename = NULL;
7009 if (file != NULL
7010 && (ELF_ST_BIND (q->internal_elf_sym.st_info) == STB_LOCAL
7011 || state != file_after_symbol_seen))
7012 filename = bfd_asymbol_name (file);
7013 }
7014 break;
7015 }
7016 if (state == nothing_seen)
7017 state = symbol_seen;
7018 }
7019
7020 if (func == NULL)
7021 return FALSE;
7022
7023 if (filename_ptr)
7024 *filename_ptr = filename;
7025 if (functionname_ptr)
7026 *functionname_ptr = bfd_asymbol_name (func);
7027
7028 return TRUE;
7029 }
7030
7031 /* Find the nearest line to a particular section and offset,
7032 for error reporting. */
7033
7034 bfd_boolean
7035 _bfd_elf_find_nearest_line (bfd *abfd,
7036 asection *section,
7037 asymbol **symbols,
7038 bfd_vma offset,
7039 const char **filename_ptr,
7040 const char **functionname_ptr,
7041 unsigned int *line_ptr)
7042 {
7043 bfd_boolean found;
7044
7045 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
7046 filename_ptr, functionname_ptr,
7047 line_ptr))
7048 {
7049 if (!*functionname_ptr)
7050 elf_find_function (abfd, section, symbols, offset,
7051 *filename_ptr ? NULL : filename_ptr,
7052 functionname_ptr);
7053
7054 return TRUE;
7055 }
7056
7057 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
7058 filename_ptr, functionname_ptr,
7059 line_ptr, 0,
7060 &elf_tdata (abfd)->dwarf2_find_line_info))
7061 {
7062 if (!*functionname_ptr)
7063 elf_find_function (abfd, section, symbols, offset,
7064 *filename_ptr ? NULL : filename_ptr,
7065 functionname_ptr);
7066
7067 return TRUE;
7068 }
7069
7070 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
7071 &found, filename_ptr,
7072 functionname_ptr, line_ptr,
7073 &elf_tdata (abfd)->line_info))
7074 return FALSE;
7075 if (found && (*functionname_ptr || *line_ptr))
7076 return TRUE;
7077
7078 if (symbols == NULL)
7079 return FALSE;
7080
7081 if (! elf_find_function (abfd, section, symbols, offset,
7082 filename_ptr, functionname_ptr))
7083 return FALSE;
7084
7085 *line_ptr = 0;
7086 return TRUE;
7087 }
7088
7089 /* Find the line for a symbol. */
7090
7091 bfd_boolean
7092 _bfd_elf_find_line (bfd *abfd, asymbol **symbols, asymbol *symbol,
7093 const char **filename_ptr, unsigned int *line_ptr)
7094 {
7095 return _bfd_dwarf2_find_line (abfd, symbols, symbol,
7096 filename_ptr, line_ptr, 0,
7097 &elf_tdata (abfd)->dwarf2_find_line_info);
7098 }
7099
7100 /* After a call to bfd_find_nearest_line, successive calls to
7101 bfd_find_inliner_info can be used to get source information about
7102 each level of function inlining that terminated at the address
7103 passed to bfd_find_nearest_line. Currently this is only supported
7104 for DWARF2 with appropriate DWARF3 extensions. */
7105
7106 bfd_boolean
7107 _bfd_elf_find_inliner_info (bfd *abfd,
7108 const char **filename_ptr,
7109 const char **functionname_ptr,
7110 unsigned int *line_ptr)
7111 {
7112 bfd_boolean found;
7113 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
7114 functionname_ptr, line_ptr,
7115 & elf_tdata (abfd)->dwarf2_find_line_info);
7116 return found;
7117 }
7118
7119 int
7120 _bfd_elf_sizeof_headers (bfd *abfd, bfd_boolean reloc)
7121 {
7122 int ret;
7123
7124 ret = get_elf_backend_data (abfd)->s->sizeof_ehdr;
7125 if (! reloc)
7126 ret += get_program_header_size (abfd);
7127 return ret;
7128 }
7129
7130 bfd_boolean
7131 _bfd_elf_set_section_contents (bfd *abfd,
7132 sec_ptr section,
7133 const void *location,
7134 file_ptr offset,
7135 bfd_size_type count)
7136 {
7137 Elf_Internal_Shdr *hdr;
7138 bfd_signed_vma pos;
7139
7140 if (! abfd->output_has_begun
7141 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
7142 return FALSE;
7143
7144 hdr = &elf_section_data (section)->this_hdr;
7145 pos = hdr->sh_offset + offset;
7146 if (bfd_seek (abfd, pos, SEEK_SET) != 0
7147 || bfd_bwrite (location, count, abfd) != count)
7148 return FALSE;
7149
7150 return TRUE;
7151 }
7152
7153 void
7154 _bfd_elf_no_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED,
7155 arelent *cache_ptr ATTRIBUTE_UNUSED,
7156 Elf_Internal_Rela *dst ATTRIBUTE_UNUSED)
7157 {
7158 abort ();
7159 }
7160
7161 /* Try to convert a non-ELF reloc into an ELF one. */
7162
7163 bfd_boolean
7164 _bfd_elf_validate_reloc (bfd *abfd, arelent *areloc)
7165 {
7166 /* Check whether we really have an ELF howto. */
7167
7168 if ((*areloc->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec)
7169 {
7170 bfd_reloc_code_real_type code;
7171 reloc_howto_type *howto;
7172
7173 /* Alien reloc: Try to determine its type to replace it with an
7174 equivalent ELF reloc. */
7175
7176 if (areloc->howto->pc_relative)
7177 {
7178 switch (areloc->howto->bitsize)
7179 {
7180 case 8:
7181 code = BFD_RELOC_8_PCREL;
7182 break;
7183 case 12:
7184 code = BFD_RELOC_12_PCREL;
7185 break;
7186 case 16:
7187 code = BFD_RELOC_16_PCREL;
7188 break;
7189 case 24:
7190 code = BFD_RELOC_24_PCREL;
7191 break;
7192 case 32:
7193 code = BFD_RELOC_32_PCREL;
7194 break;
7195 case 64:
7196 code = BFD_RELOC_64_PCREL;
7197 break;
7198 default:
7199 goto fail;
7200 }
7201
7202 howto = bfd_reloc_type_lookup (abfd, code);
7203
7204 if (areloc->howto->pcrel_offset != howto->pcrel_offset)
7205 {
7206 if (howto->pcrel_offset)
7207 areloc->addend += areloc->address;
7208 else
7209 areloc->addend -= areloc->address; /* addend is unsigned!! */
7210 }
7211 }
7212 else
7213 {
7214 switch (areloc->howto->bitsize)
7215 {
7216 case 8:
7217 code = BFD_RELOC_8;
7218 break;
7219 case 14:
7220 code = BFD_RELOC_14;
7221 break;
7222 case 16:
7223 code = BFD_RELOC_16;
7224 break;
7225 case 26:
7226 code = BFD_RELOC_26;
7227 break;
7228 case 32:
7229 code = BFD_RELOC_32;
7230 break;
7231 case 64:
7232 code = BFD_RELOC_64;
7233 break;
7234 default:
7235 goto fail;
7236 }
7237
7238 howto = bfd_reloc_type_lookup (abfd, code);
7239 }
7240
7241 if (howto)
7242 areloc->howto = howto;
7243 else
7244 goto fail;
7245 }
7246
7247 return TRUE;
7248
7249 fail:
7250 (*_bfd_error_handler)
7251 (_("%B: unsupported relocation type %s"),
7252 abfd, areloc->howto->name);
7253 bfd_set_error (bfd_error_bad_value);
7254 return FALSE;
7255 }
7256
7257 bfd_boolean
7258 _bfd_elf_close_and_cleanup (bfd *abfd)
7259 {
7260 if (bfd_get_format (abfd) == bfd_object)
7261 {
7262 if (elf_tdata (abfd) != NULL && elf_shstrtab (abfd) != NULL)
7263 _bfd_elf_strtab_free (elf_shstrtab (abfd));
7264 _bfd_dwarf2_cleanup_debug_info (abfd);
7265 }
7266
7267 return _bfd_generic_close_and_cleanup (abfd);
7268 }
7269
7270 /* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
7271 in the relocation's offset. Thus we cannot allow any sort of sanity
7272 range-checking to interfere. There is nothing else to do in processing
7273 this reloc. */
7274
7275 bfd_reloc_status_type
7276 _bfd_elf_rel_vtable_reloc_fn
7277 (bfd *abfd ATTRIBUTE_UNUSED, arelent *re ATTRIBUTE_UNUSED,
7278 struct bfd_symbol *symbol ATTRIBUTE_UNUSED,
7279 void *data ATTRIBUTE_UNUSED, asection *is ATTRIBUTE_UNUSED,
7280 bfd *obfd ATTRIBUTE_UNUSED, char **errmsg ATTRIBUTE_UNUSED)
7281 {
7282 return bfd_reloc_ok;
7283 }
7284 \f
7285 /* Elf core file support. Much of this only works on native
7286 toolchains, since we rely on knowing the
7287 machine-dependent procfs structure in order to pick
7288 out details about the corefile. */
7289
7290 #ifdef HAVE_SYS_PROCFS_H
7291 # include <sys/procfs.h>
7292 #endif
7293
7294 /* FIXME: this is kinda wrong, but it's what gdb wants. */
7295
7296 static int
7297 elfcore_make_pid (bfd *abfd)
7298 {
7299 return ((elf_tdata (abfd)->core_lwpid << 16)
7300 + (elf_tdata (abfd)->core_pid));
7301 }
7302
7303 /* If there isn't a section called NAME, make one, using
7304 data from SECT. Note, this function will generate a
7305 reference to NAME, so you shouldn't deallocate or
7306 overwrite it. */
7307
7308 static bfd_boolean
7309 elfcore_maybe_make_sect (bfd *abfd, char *name, asection *sect)
7310 {
7311 asection *sect2;
7312
7313 if (bfd_get_section_by_name (abfd, name) != NULL)
7314 return TRUE;
7315
7316 sect2 = bfd_make_section_with_flags (abfd, name, sect->flags);
7317 if (sect2 == NULL)
7318 return FALSE;
7319
7320 sect2->size = sect->size;
7321 sect2->filepos = sect->filepos;
7322 sect2->alignment_power = sect->alignment_power;
7323 return TRUE;
7324 }
7325
7326 /* Create a pseudosection containing SIZE bytes at FILEPOS. This
7327 actually creates up to two pseudosections:
7328 - For the single-threaded case, a section named NAME, unless
7329 such a section already exists.
7330 - For the multi-threaded case, a section named "NAME/PID", where
7331 PID is elfcore_make_pid (abfd).
7332 Both pseudosections have identical contents. */
7333 bfd_boolean
7334 _bfd_elfcore_make_pseudosection (bfd *abfd,
7335 char *name,
7336 size_t size,
7337 ufile_ptr filepos)
7338 {
7339 char buf[100];
7340 char *threaded_name;
7341 size_t len;
7342 asection *sect;
7343
7344 /* Build the section name. */
7345
7346 sprintf (buf, "%s/%d", name, elfcore_make_pid (abfd));
7347 len = strlen (buf) + 1;
7348 threaded_name = bfd_alloc (abfd, len);
7349 if (threaded_name == NULL)
7350 return FALSE;
7351 memcpy (threaded_name, buf, len);
7352
7353 sect = bfd_make_section_anyway_with_flags (abfd, threaded_name,
7354 SEC_HAS_CONTENTS);
7355 if (sect == NULL)
7356 return FALSE;
7357 sect->size = size;
7358 sect->filepos = filepos;
7359 sect->alignment_power = 2;
7360
7361 return elfcore_maybe_make_sect (abfd, name, sect);
7362 }
7363
7364 /* prstatus_t exists on:
7365 solaris 2.5+
7366 linux 2.[01] + glibc
7367 unixware 4.2
7368 */
7369
7370 #if defined (HAVE_PRSTATUS_T)
7371
7372 static bfd_boolean
7373 elfcore_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
7374 {
7375 size_t size;
7376 int offset;
7377
7378 if (note->descsz == sizeof (prstatus_t))
7379 {
7380 prstatus_t prstat;
7381
7382 size = sizeof (prstat.pr_reg);
7383 offset = offsetof (prstatus_t, pr_reg);
7384 memcpy (&prstat, note->descdata, sizeof (prstat));
7385
7386 /* Do not overwrite the core signal if it
7387 has already been set by another thread. */
7388 if (elf_tdata (abfd)->core_signal == 0)
7389 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
7390 elf_tdata (abfd)->core_pid = prstat.pr_pid;
7391
7392 /* pr_who exists on:
7393 solaris 2.5+
7394 unixware 4.2
7395 pr_who doesn't exist on:
7396 linux 2.[01]
7397 */
7398 #if defined (HAVE_PRSTATUS_T_PR_WHO)
7399 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
7400 #endif
7401 }
7402 #if defined (HAVE_PRSTATUS32_T)
7403 else if (note->descsz == sizeof (prstatus32_t))
7404 {
7405 /* 64-bit host, 32-bit corefile */
7406 prstatus32_t prstat;
7407
7408 size = sizeof (prstat.pr_reg);
7409 offset = offsetof (prstatus32_t, pr_reg);
7410 memcpy (&prstat, note->descdata, sizeof (prstat));
7411
7412 /* Do not overwrite the core signal if it
7413 has already been set by another thread. */
7414 if (elf_tdata (abfd)->core_signal == 0)
7415 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
7416 elf_tdata (abfd)->core_pid = prstat.pr_pid;
7417
7418 /* pr_who exists on:
7419 solaris 2.5+
7420 unixware 4.2
7421 pr_who doesn't exist on:
7422 linux 2.[01]
7423 */
7424 #if defined (HAVE_PRSTATUS32_T_PR_WHO)
7425 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
7426 #endif
7427 }
7428 #endif /* HAVE_PRSTATUS32_T */
7429 else
7430 {
7431 /* Fail - we don't know how to handle any other
7432 note size (ie. data object type). */
7433 return TRUE;
7434 }
7435
7436 /* Make a ".reg/999" section and a ".reg" section. */
7437 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
7438 size, note->descpos + offset);
7439 }
7440 #endif /* defined (HAVE_PRSTATUS_T) */
7441
7442 /* Create a pseudosection containing the exact contents of NOTE. */
7443 static bfd_boolean
7444 elfcore_make_note_pseudosection (bfd *abfd,
7445 char *name,
7446 Elf_Internal_Note *note)
7447 {
7448 return _bfd_elfcore_make_pseudosection (abfd, name,
7449 note->descsz, note->descpos);
7450 }
7451
7452 /* There isn't a consistent prfpregset_t across platforms,
7453 but it doesn't matter, because we don't have to pick this
7454 data structure apart. */
7455
7456 static bfd_boolean
7457 elfcore_grok_prfpreg (bfd *abfd, Elf_Internal_Note *note)
7458 {
7459 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
7460 }
7461
7462 /* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
7463 type of 5 (NT_PRXFPREG). Just include the whole note's contents
7464 literally. */
7465
7466 static bfd_boolean
7467 elfcore_grok_prxfpreg (bfd *abfd, Elf_Internal_Note *note)
7468 {
7469 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
7470 }
7471
7472 #if defined (HAVE_PRPSINFO_T)
7473 typedef prpsinfo_t elfcore_psinfo_t;
7474 #if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
7475 typedef prpsinfo32_t elfcore_psinfo32_t;
7476 #endif
7477 #endif
7478
7479 #if defined (HAVE_PSINFO_T)
7480 typedef psinfo_t elfcore_psinfo_t;
7481 #if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
7482 typedef psinfo32_t elfcore_psinfo32_t;
7483 #endif
7484 #endif
7485
7486 /* return a malloc'ed copy of a string at START which is at
7487 most MAX bytes long, possibly without a terminating '\0'.
7488 the copy will always have a terminating '\0'. */
7489
7490 char *
7491 _bfd_elfcore_strndup (bfd *abfd, char *start, size_t max)
7492 {
7493 char *dups;
7494 char *end = memchr (start, '\0', max);
7495 size_t len;
7496
7497 if (end == NULL)
7498 len = max;
7499 else
7500 len = end - start;
7501
7502 dups = bfd_alloc (abfd, len + 1);
7503 if (dups == NULL)
7504 return NULL;
7505
7506 memcpy (dups, start, len);
7507 dups[len] = '\0';
7508
7509 return dups;
7510 }
7511
7512 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7513 static bfd_boolean
7514 elfcore_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
7515 {
7516 if (note->descsz == sizeof (elfcore_psinfo_t))
7517 {
7518 elfcore_psinfo_t psinfo;
7519
7520 memcpy (&psinfo, note->descdata, sizeof (psinfo));
7521
7522 elf_tdata (abfd)->core_program
7523 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
7524 sizeof (psinfo.pr_fname));
7525
7526 elf_tdata (abfd)->core_command
7527 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
7528 sizeof (psinfo.pr_psargs));
7529 }
7530 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
7531 else if (note->descsz == sizeof (elfcore_psinfo32_t))
7532 {
7533 /* 64-bit host, 32-bit corefile */
7534 elfcore_psinfo32_t psinfo;
7535
7536 memcpy (&psinfo, note->descdata, sizeof (psinfo));
7537
7538 elf_tdata (abfd)->core_program
7539 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
7540 sizeof (psinfo.pr_fname));
7541
7542 elf_tdata (abfd)->core_command
7543 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
7544 sizeof (psinfo.pr_psargs));
7545 }
7546 #endif
7547
7548 else
7549 {
7550 /* Fail - we don't know how to handle any other
7551 note size (ie. data object type). */
7552 return TRUE;
7553 }
7554
7555 /* Note that for some reason, a spurious space is tacked
7556 onto the end of the args in some (at least one anyway)
7557 implementations, so strip it off if it exists. */
7558
7559 {
7560 char *command = elf_tdata (abfd)->core_command;
7561 int n = strlen (command);
7562
7563 if (0 < n && command[n - 1] == ' ')
7564 command[n - 1] = '\0';
7565 }
7566
7567 return TRUE;
7568 }
7569 #endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
7570
7571 #if defined (HAVE_PSTATUS_T)
7572 static bfd_boolean
7573 elfcore_grok_pstatus (bfd *abfd, Elf_Internal_Note *note)
7574 {
7575 if (note->descsz == sizeof (pstatus_t)
7576 #if defined (HAVE_PXSTATUS_T)
7577 || note->descsz == sizeof (pxstatus_t)
7578 #endif
7579 )
7580 {
7581 pstatus_t pstat;
7582
7583 memcpy (&pstat, note->descdata, sizeof (pstat));
7584
7585 elf_tdata (abfd)->core_pid = pstat.pr_pid;
7586 }
7587 #if defined (HAVE_PSTATUS32_T)
7588 else if (note->descsz == sizeof (pstatus32_t))
7589 {
7590 /* 64-bit host, 32-bit corefile */
7591 pstatus32_t pstat;
7592
7593 memcpy (&pstat, note->descdata, sizeof (pstat));
7594
7595 elf_tdata (abfd)->core_pid = pstat.pr_pid;
7596 }
7597 #endif
7598 /* Could grab some more details from the "representative"
7599 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
7600 NT_LWPSTATUS note, presumably. */
7601
7602 return TRUE;
7603 }
7604 #endif /* defined (HAVE_PSTATUS_T) */
7605
7606 #if defined (HAVE_LWPSTATUS_T)
7607 static bfd_boolean
7608 elfcore_grok_lwpstatus (bfd *abfd, Elf_Internal_Note *note)
7609 {
7610 lwpstatus_t lwpstat;
7611 char buf[100];
7612 char *name;
7613 size_t len;
7614 asection *sect;
7615
7616 if (note->descsz != sizeof (lwpstat)
7617 #if defined (HAVE_LWPXSTATUS_T)
7618 && note->descsz != sizeof (lwpxstatus_t)
7619 #endif
7620 )
7621 return TRUE;
7622
7623 memcpy (&lwpstat, note->descdata, sizeof (lwpstat));
7624
7625 elf_tdata (abfd)->core_lwpid = lwpstat.pr_lwpid;
7626 elf_tdata (abfd)->core_signal = lwpstat.pr_cursig;
7627
7628 /* Make a ".reg/999" section. */
7629
7630 sprintf (buf, ".reg/%d", elfcore_make_pid (abfd));
7631 len = strlen (buf) + 1;
7632 name = bfd_alloc (abfd, len);
7633 if (name == NULL)
7634 return FALSE;
7635 memcpy (name, buf, len);
7636
7637 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
7638 if (sect == NULL)
7639 return FALSE;
7640
7641 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7642 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.gregs);
7643 sect->filepos = note->descpos
7644 + offsetof (lwpstatus_t, pr_context.uc_mcontext.gregs);
7645 #endif
7646
7647 #if defined (HAVE_LWPSTATUS_T_PR_REG)
7648 sect->size = sizeof (lwpstat.pr_reg);
7649 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_reg);
7650 #endif
7651
7652 sect->alignment_power = 2;
7653
7654 if (!elfcore_maybe_make_sect (abfd, ".reg", sect))
7655 return FALSE;
7656
7657 /* Make a ".reg2/999" section */
7658
7659 sprintf (buf, ".reg2/%d", elfcore_make_pid (abfd));
7660 len = strlen (buf) + 1;
7661 name = bfd_alloc (abfd, len);
7662 if (name == NULL)
7663 return FALSE;
7664 memcpy (name, buf, len);
7665
7666 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
7667 if (sect == NULL)
7668 return FALSE;
7669
7670 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7671 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.fpregs);
7672 sect->filepos = note->descpos
7673 + offsetof (lwpstatus_t, pr_context.uc_mcontext.fpregs);
7674 #endif
7675
7676 #if defined (HAVE_LWPSTATUS_T_PR_FPREG)
7677 sect->size = sizeof (lwpstat.pr_fpreg);
7678 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_fpreg);
7679 #endif
7680
7681 sect->alignment_power = 2;
7682
7683 return elfcore_maybe_make_sect (abfd, ".reg2", sect);
7684 }
7685 #endif /* defined (HAVE_LWPSTATUS_T) */
7686
7687 #if defined (HAVE_WIN32_PSTATUS_T)
7688 static bfd_boolean
7689 elfcore_grok_win32pstatus (bfd *abfd, Elf_Internal_Note *note)
7690 {
7691 char buf[30];
7692 char *name;
7693 size_t len;
7694 asection *sect;
7695 win32_pstatus_t pstatus;
7696
7697 if (note->descsz < sizeof (pstatus))
7698 return TRUE;
7699
7700 memcpy (&pstatus, note->descdata, sizeof (pstatus));
7701
7702 switch (pstatus.data_type)
7703 {
7704 case NOTE_INFO_PROCESS:
7705 /* FIXME: need to add ->core_command. */
7706 elf_tdata (abfd)->core_signal = pstatus.data.process_info.signal;
7707 elf_tdata (abfd)->core_pid = pstatus.data.process_info.pid;
7708 break;
7709
7710 case NOTE_INFO_THREAD:
7711 /* Make a ".reg/999" section. */
7712 sprintf (buf, ".reg/%ld", (long) pstatus.data.thread_info.tid);
7713
7714 len = strlen (buf) + 1;
7715 name = bfd_alloc (abfd, len);
7716 if (name == NULL)
7717 return FALSE;
7718
7719 memcpy (name, buf, len);
7720
7721 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
7722 if (sect == NULL)
7723 return FALSE;
7724
7725 sect->size = sizeof (pstatus.data.thread_info.thread_context);
7726 sect->filepos = (note->descpos
7727 + offsetof (struct win32_pstatus,
7728 data.thread_info.thread_context));
7729 sect->alignment_power = 2;
7730
7731 if (pstatus.data.thread_info.is_active_thread)
7732 if (! elfcore_maybe_make_sect (abfd, ".reg", sect))
7733 return FALSE;
7734 break;
7735
7736 case NOTE_INFO_MODULE:
7737 /* Make a ".module/xxxxxxxx" section. */
7738 sprintf (buf, ".module/%08lx",
7739 (long) pstatus.data.module_info.base_address);
7740
7741 len = strlen (buf) + 1;
7742 name = bfd_alloc (abfd, len);
7743 if (name == NULL)
7744 return FALSE;
7745
7746 memcpy (name, buf, len);
7747
7748 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
7749
7750 if (sect == NULL)
7751 return FALSE;
7752
7753 sect->size = note->descsz;
7754 sect->filepos = note->descpos;
7755 sect->alignment_power = 2;
7756 break;
7757
7758 default:
7759 return TRUE;
7760 }
7761
7762 return TRUE;
7763 }
7764 #endif /* HAVE_WIN32_PSTATUS_T */
7765
7766 static bfd_boolean
7767 elfcore_grok_note (bfd *abfd, Elf_Internal_Note *note)
7768 {
7769 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7770
7771 switch (note->type)
7772 {
7773 default:
7774 return TRUE;
7775
7776 case NT_PRSTATUS:
7777 if (bed->elf_backend_grok_prstatus)
7778 if ((*bed->elf_backend_grok_prstatus) (abfd, note))
7779 return TRUE;
7780 #if defined (HAVE_PRSTATUS_T)
7781 return elfcore_grok_prstatus (abfd, note);
7782 #else
7783 return TRUE;
7784 #endif
7785
7786 #if defined (HAVE_PSTATUS_T)
7787 case NT_PSTATUS:
7788 return elfcore_grok_pstatus (abfd, note);
7789 #endif
7790
7791 #if defined (HAVE_LWPSTATUS_T)
7792 case NT_LWPSTATUS:
7793 return elfcore_grok_lwpstatus (abfd, note);
7794 #endif
7795
7796 case NT_FPREGSET: /* FIXME: rename to NT_PRFPREG */
7797 return elfcore_grok_prfpreg (abfd, note);
7798
7799 #if defined (HAVE_WIN32_PSTATUS_T)
7800 case NT_WIN32PSTATUS:
7801 return elfcore_grok_win32pstatus (abfd, note);
7802 #endif
7803
7804 case NT_PRXFPREG: /* Linux SSE extension */
7805 if (note->namesz == 6
7806 && strcmp (note->namedata, "LINUX") == 0)
7807 return elfcore_grok_prxfpreg (abfd, note);
7808 else
7809 return TRUE;
7810
7811 case NT_PRPSINFO:
7812 case NT_PSINFO:
7813 if (bed->elf_backend_grok_psinfo)
7814 if ((*bed->elf_backend_grok_psinfo) (abfd, note))
7815 return TRUE;
7816 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7817 return elfcore_grok_psinfo (abfd, note);
7818 #else
7819 return TRUE;
7820 #endif
7821
7822 case NT_AUXV:
7823 {
7824 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
7825 SEC_HAS_CONTENTS);
7826
7827 if (sect == NULL)
7828 return FALSE;
7829 sect->size = note->descsz;
7830 sect->filepos = note->descpos;
7831 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
7832
7833 return TRUE;
7834 }
7835 }
7836 }
7837
7838 static bfd_boolean
7839 elfcore_netbsd_get_lwpid (Elf_Internal_Note *note, int *lwpidp)
7840 {
7841 char *cp;
7842
7843 cp = strchr (note->namedata, '@');
7844 if (cp != NULL)
7845 {
7846 *lwpidp = atoi(cp + 1);
7847 return TRUE;
7848 }
7849 return FALSE;
7850 }
7851
7852 static bfd_boolean
7853 elfcore_grok_netbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
7854 {
7855
7856 /* Signal number at offset 0x08. */
7857 elf_tdata (abfd)->core_signal
7858 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
7859
7860 /* Process ID at offset 0x50. */
7861 elf_tdata (abfd)->core_pid
7862 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x50);
7863
7864 /* Command name at 0x7c (max 32 bytes, including nul). */
7865 elf_tdata (abfd)->core_command
7866 = _bfd_elfcore_strndup (abfd, note->descdata + 0x7c, 31);
7867
7868 return elfcore_make_note_pseudosection (abfd, ".note.netbsdcore.procinfo",
7869 note);
7870 }
7871
7872 static bfd_boolean
7873 elfcore_grok_netbsd_note (bfd *abfd, Elf_Internal_Note *note)
7874 {
7875 int lwp;
7876
7877 if (elfcore_netbsd_get_lwpid (note, &lwp))
7878 elf_tdata (abfd)->core_lwpid = lwp;
7879
7880 if (note->type == NT_NETBSDCORE_PROCINFO)
7881 {
7882 /* NetBSD-specific core "procinfo". Note that we expect to
7883 find this note before any of the others, which is fine,
7884 since the kernel writes this note out first when it
7885 creates a core file. */
7886
7887 return elfcore_grok_netbsd_procinfo (abfd, note);
7888 }
7889
7890 /* As of Jan 2002 there are no other machine-independent notes
7891 defined for NetBSD core files. If the note type is less
7892 than the start of the machine-dependent note types, we don't
7893 understand it. */
7894
7895 if (note->type < NT_NETBSDCORE_FIRSTMACH)
7896 return TRUE;
7897
7898
7899 switch (bfd_get_arch (abfd))
7900 {
7901 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
7902 PT_GETFPREGS == mach+2. */
7903
7904 case bfd_arch_alpha:
7905 case bfd_arch_sparc:
7906 switch (note->type)
7907 {
7908 case NT_NETBSDCORE_FIRSTMACH+0:
7909 return elfcore_make_note_pseudosection (abfd, ".reg", note);
7910
7911 case NT_NETBSDCORE_FIRSTMACH+2:
7912 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
7913
7914 default:
7915 return TRUE;
7916 }
7917
7918 /* On all other arch's, PT_GETREGS == mach+1 and
7919 PT_GETFPREGS == mach+3. */
7920
7921 default:
7922 switch (note->type)
7923 {
7924 case NT_NETBSDCORE_FIRSTMACH+1:
7925 return elfcore_make_note_pseudosection (abfd, ".reg", note);
7926
7927 case NT_NETBSDCORE_FIRSTMACH+3:
7928 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
7929
7930 default:
7931 return TRUE;
7932 }
7933 }
7934 /* NOTREACHED */
7935 }
7936
7937 static bfd_boolean
7938 elfcore_grok_nto_status (bfd *abfd, Elf_Internal_Note *note, pid_t *tid)
7939 {
7940 void *ddata = note->descdata;
7941 char buf[100];
7942 char *name;
7943 asection *sect;
7944 short sig;
7945 unsigned flags;
7946
7947 /* nto_procfs_status 'pid' field is at offset 0. */
7948 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, (bfd_byte *) ddata);
7949
7950 /* nto_procfs_status 'tid' field is at offset 4. Pass it back. */
7951 *tid = bfd_get_32 (abfd, (bfd_byte *) ddata + 4);
7952
7953 /* nto_procfs_status 'flags' field is at offset 8. */
7954 flags = bfd_get_32 (abfd, (bfd_byte *) ddata + 8);
7955
7956 /* nto_procfs_status 'what' field is at offset 14. */
7957 if ((sig = bfd_get_16 (abfd, (bfd_byte *) ddata + 14)) > 0)
7958 {
7959 elf_tdata (abfd)->core_signal = sig;
7960 elf_tdata (abfd)->core_lwpid = *tid;
7961 }
7962
7963 /* _DEBUG_FLAG_CURTID (current thread) is 0x80. Some cores
7964 do not come from signals so we make sure we set the current
7965 thread just in case. */
7966 if (flags & 0x00000080)
7967 elf_tdata (abfd)->core_lwpid = *tid;
7968
7969 /* Make a ".qnx_core_status/%d" section. */
7970 sprintf (buf, ".qnx_core_status/%ld", (long) *tid);
7971
7972 name = bfd_alloc (abfd, strlen (buf) + 1);
7973 if (name == NULL)
7974 return FALSE;
7975 strcpy (name, buf);
7976
7977 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
7978 if (sect == NULL)
7979 return FALSE;
7980
7981 sect->size = note->descsz;
7982 sect->filepos = note->descpos;
7983 sect->alignment_power = 2;
7984
7985 return (elfcore_maybe_make_sect (abfd, ".qnx_core_status", sect));
7986 }
7987
7988 static bfd_boolean
7989 elfcore_grok_nto_regs (bfd *abfd,
7990 Elf_Internal_Note *note,
7991 pid_t tid,
7992 char *base)
7993 {
7994 char buf[100];
7995 char *name;
7996 asection *sect;
7997
7998 /* Make a "(base)/%d" section. */
7999 sprintf (buf, "%s/%ld", base, (long) tid);
8000
8001 name = bfd_alloc (abfd, strlen (buf) + 1);
8002 if (name == NULL)
8003 return FALSE;
8004 strcpy (name, buf);
8005
8006 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8007 if (sect == NULL)
8008 return FALSE;
8009
8010 sect->size = note->descsz;
8011 sect->filepos = note->descpos;
8012 sect->alignment_power = 2;
8013
8014 /* This is the current thread. */
8015 if (elf_tdata (abfd)->core_lwpid == tid)
8016 return elfcore_maybe_make_sect (abfd, base, sect);
8017
8018 return TRUE;
8019 }
8020
8021 #define BFD_QNT_CORE_INFO 7
8022 #define BFD_QNT_CORE_STATUS 8
8023 #define BFD_QNT_CORE_GREG 9
8024 #define BFD_QNT_CORE_FPREG 10
8025
8026 static bfd_boolean
8027 elfcore_grok_nto_note (bfd *abfd, Elf_Internal_Note *note)
8028 {
8029 /* Every GREG section has a STATUS section before it. Store the
8030 tid from the previous call to pass down to the next gregs
8031 function. */
8032 static pid_t tid = 1;
8033
8034 switch (note->type)
8035 {
8036 case BFD_QNT_CORE_INFO:
8037 return elfcore_make_note_pseudosection (abfd, ".qnx_core_info", note);
8038 case BFD_QNT_CORE_STATUS:
8039 return elfcore_grok_nto_status (abfd, note, &tid);
8040 case BFD_QNT_CORE_GREG:
8041 return elfcore_grok_nto_regs (abfd, note, tid, ".reg");
8042 case BFD_QNT_CORE_FPREG:
8043 return elfcore_grok_nto_regs (abfd, note, tid, ".reg2");
8044 default:
8045 return TRUE;
8046 }
8047 }
8048
8049 /* Function: elfcore_write_note
8050
8051 Inputs:
8052 buffer to hold note
8053 name of note
8054 type of note
8055 data for note
8056 size of data for note
8057
8058 Return:
8059 End of buffer containing note. */
8060
8061 char *
8062 elfcore_write_note (bfd *abfd,
8063 char *buf,
8064 int *bufsiz,
8065 const char *name,
8066 int type,
8067 const void *input,
8068 int size)
8069 {
8070 Elf_External_Note *xnp;
8071 size_t namesz;
8072 size_t pad;
8073 size_t newspace;
8074 char *p, *dest;
8075
8076 namesz = 0;
8077 pad = 0;
8078 if (name != NULL)
8079 {
8080 const struct elf_backend_data *bed;
8081
8082 namesz = strlen (name) + 1;
8083 bed = get_elf_backend_data (abfd);
8084 pad = -namesz & ((1 << bed->s->log_file_align) - 1);
8085 }
8086
8087 newspace = 12 + namesz + pad + size;
8088
8089 p = realloc (buf, *bufsiz + newspace);
8090 dest = p + *bufsiz;
8091 *bufsiz += newspace;
8092 xnp = (Elf_External_Note *) dest;
8093 H_PUT_32 (abfd, namesz, xnp->namesz);
8094 H_PUT_32 (abfd, size, xnp->descsz);
8095 H_PUT_32 (abfd, type, xnp->type);
8096 dest = xnp->name;
8097 if (name != NULL)
8098 {
8099 memcpy (dest, name, namesz);
8100 dest += namesz;
8101 while (pad != 0)
8102 {
8103 *dest++ = '\0';
8104 --pad;
8105 }
8106 }
8107 memcpy (dest, input, size);
8108 return p;
8109 }
8110
8111 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
8112 char *
8113 elfcore_write_prpsinfo (bfd *abfd,
8114 char *buf,
8115 int *bufsiz,
8116 const char *fname,
8117 const char *psargs)
8118 {
8119 int note_type;
8120 char *note_name = "CORE";
8121
8122 #if defined (HAVE_PSINFO_T)
8123 psinfo_t data;
8124 note_type = NT_PSINFO;
8125 #else
8126 prpsinfo_t data;
8127 note_type = NT_PRPSINFO;
8128 #endif
8129
8130 memset (&data, 0, sizeof (data));
8131 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
8132 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
8133 return elfcore_write_note (abfd, buf, bufsiz,
8134 note_name, note_type, &data, sizeof (data));
8135 }
8136 #endif /* PSINFO_T or PRPSINFO_T */
8137
8138 #if defined (HAVE_PRSTATUS_T)
8139 char *
8140 elfcore_write_prstatus (bfd *abfd,
8141 char *buf,
8142 int *bufsiz,
8143 long pid,
8144 int cursig,
8145 const void *gregs)
8146 {
8147 prstatus_t prstat;
8148 char *note_name = "CORE";
8149
8150 memset (&prstat, 0, sizeof (prstat));
8151 prstat.pr_pid = pid;
8152 prstat.pr_cursig = cursig;
8153 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
8154 return elfcore_write_note (abfd, buf, bufsiz,
8155 note_name, NT_PRSTATUS, &prstat, sizeof (prstat));
8156 }
8157 #endif /* HAVE_PRSTATUS_T */
8158
8159 #if defined (HAVE_LWPSTATUS_T)
8160 char *
8161 elfcore_write_lwpstatus (bfd *abfd,
8162 char *buf,
8163 int *bufsiz,
8164 long pid,
8165 int cursig,
8166 const void *gregs)
8167 {
8168 lwpstatus_t lwpstat;
8169 char *note_name = "CORE";
8170
8171 memset (&lwpstat, 0, sizeof (lwpstat));
8172 lwpstat.pr_lwpid = pid >> 16;
8173 lwpstat.pr_cursig = cursig;
8174 #if defined (HAVE_LWPSTATUS_T_PR_REG)
8175 memcpy (lwpstat.pr_reg, gregs, sizeof (lwpstat.pr_reg));
8176 #elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
8177 #if !defined(gregs)
8178 memcpy (lwpstat.pr_context.uc_mcontext.gregs,
8179 gregs, sizeof (lwpstat.pr_context.uc_mcontext.gregs));
8180 #else
8181 memcpy (lwpstat.pr_context.uc_mcontext.__gregs,
8182 gregs, sizeof (lwpstat.pr_context.uc_mcontext.__gregs));
8183 #endif
8184 #endif
8185 return elfcore_write_note (abfd, buf, bufsiz, note_name,
8186 NT_LWPSTATUS, &lwpstat, sizeof (lwpstat));
8187 }
8188 #endif /* HAVE_LWPSTATUS_T */
8189
8190 #if defined (HAVE_PSTATUS_T)
8191 char *
8192 elfcore_write_pstatus (bfd *abfd,
8193 char *buf,
8194 int *bufsiz,
8195 long pid,
8196 int cursig ATTRIBUTE_UNUSED,
8197 const void *gregs ATTRIBUTE_UNUSED)
8198 {
8199 pstatus_t pstat;
8200 char *note_name = "CORE";
8201
8202 memset (&pstat, 0, sizeof (pstat));
8203 pstat.pr_pid = pid & 0xffff;
8204 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
8205 NT_PSTATUS, &pstat, sizeof (pstat));
8206 return buf;
8207 }
8208 #endif /* HAVE_PSTATUS_T */
8209
8210 char *
8211 elfcore_write_prfpreg (bfd *abfd,
8212 char *buf,
8213 int *bufsiz,
8214 const void *fpregs,
8215 int size)
8216 {
8217 char *note_name = "CORE";
8218 return elfcore_write_note (abfd, buf, bufsiz,
8219 note_name, NT_FPREGSET, fpregs, size);
8220 }
8221
8222 char *
8223 elfcore_write_prxfpreg (bfd *abfd,
8224 char *buf,
8225 int *bufsiz,
8226 const void *xfpregs,
8227 int size)
8228 {
8229 char *note_name = "LINUX";
8230 return elfcore_write_note (abfd, buf, bufsiz,
8231 note_name, NT_PRXFPREG, xfpregs, size);
8232 }
8233
8234 static bfd_boolean
8235 elfcore_read_notes (bfd *abfd, file_ptr offset, bfd_size_type size)
8236 {
8237 char *buf;
8238 char *p;
8239
8240 if (size <= 0)
8241 return TRUE;
8242
8243 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
8244 return FALSE;
8245
8246 buf = bfd_malloc (size);
8247 if (buf == NULL)
8248 return FALSE;
8249
8250 if (bfd_bread (buf, size, abfd) != size)
8251 {
8252 error:
8253 free (buf);
8254 return FALSE;
8255 }
8256
8257 p = buf;
8258 while (p < buf + size)
8259 {
8260 /* FIXME: bad alignment assumption. */
8261 Elf_External_Note *xnp = (Elf_External_Note *) p;
8262 Elf_Internal_Note in;
8263
8264 in.type = H_GET_32 (abfd, xnp->type);
8265
8266 in.namesz = H_GET_32 (abfd, xnp->namesz);
8267 in.namedata = xnp->name;
8268
8269 in.descsz = H_GET_32 (abfd, xnp->descsz);
8270 in.descdata = in.namedata + BFD_ALIGN (in.namesz, 4);
8271 in.descpos = offset + (in.descdata - buf);
8272
8273 if (strncmp (in.namedata, "NetBSD-CORE", 11) == 0)
8274 {
8275 if (! elfcore_grok_netbsd_note (abfd, &in))
8276 goto error;
8277 }
8278 else if (strncmp (in.namedata, "QNX", 3) == 0)
8279 {
8280 if (! elfcore_grok_nto_note (abfd, &in))
8281 goto error;
8282 }
8283 else
8284 {
8285 if (! elfcore_grok_note (abfd, &in))
8286 goto error;
8287 }
8288
8289 p = in.descdata + BFD_ALIGN (in.descsz, 4);
8290 }
8291
8292 free (buf);
8293 return TRUE;
8294 }
8295 \f
8296 /* Providing external access to the ELF program header table. */
8297
8298 /* Return an upper bound on the number of bytes required to store a
8299 copy of ABFD's program header table entries. Return -1 if an error
8300 occurs; bfd_get_error will return an appropriate code. */
8301
8302 long
8303 bfd_get_elf_phdr_upper_bound (bfd *abfd)
8304 {
8305 if (abfd->xvec->flavour != bfd_target_elf_flavour)
8306 {
8307 bfd_set_error (bfd_error_wrong_format);
8308 return -1;
8309 }
8310
8311 return elf_elfheader (abfd)->e_phnum * sizeof (Elf_Internal_Phdr);
8312 }
8313
8314 /* Copy ABFD's program header table entries to *PHDRS. The entries
8315 will be stored as an array of Elf_Internal_Phdr structures, as
8316 defined in include/elf/internal.h. To find out how large the
8317 buffer needs to be, call bfd_get_elf_phdr_upper_bound.
8318
8319 Return the number of program header table entries read, or -1 if an
8320 error occurs; bfd_get_error will return an appropriate code. */
8321
8322 int
8323 bfd_get_elf_phdrs (bfd *abfd, void *phdrs)
8324 {
8325 int num_phdrs;
8326
8327 if (abfd->xvec->flavour != bfd_target_elf_flavour)
8328 {
8329 bfd_set_error (bfd_error_wrong_format);
8330 return -1;
8331 }
8332
8333 num_phdrs = elf_elfheader (abfd)->e_phnum;
8334 memcpy (phdrs, elf_tdata (abfd)->phdr,
8335 num_phdrs * sizeof (Elf_Internal_Phdr));
8336
8337 return num_phdrs;
8338 }
8339
8340 void
8341 _bfd_elf_sprintf_vma (bfd *abfd ATTRIBUTE_UNUSED, char *buf, bfd_vma value)
8342 {
8343 #ifdef BFD64
8344 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
8345
8346 i_ehdrp = elf_elfheader (abfd);
8347 if (i_ehdrp == NULL)
8348 sprintf_vma (buf, value);
8349 else
8350 {
8351 if (i_ehdrp->e_ident[EI_CLASS] == ELFCLASS64)
8352 {
8353 #if BFD_HOST_64BIT_LONG
8354 sprintf (buf, "%016lx", value);
8355 #else
8356 sprintf (buf, "%08lx%08lx", _bfd_int64_high (value),
8357 _bfd_int64_low (value));
8358 #endif
8359 }
8360 else
8361 sprintf (buf, "%08lx", (unsigned long) (value & 0xffffffff));
8362 }
8363 #else
8364 sprintf_vma (buf, value);
8365 #endif
8366 }
8367
8368 void
8369 _bfd_elf_fprintf_vma (bfd *abfd ATTRIBUTE_UNUSED, void *stream, bfd_vma value)
8370 {
8371 #ifdef BFD64
8372 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
8373
8374 i_ehdrp = elf_elfheader (abfd);
8375 if (i_ehdrp == NULL)
8376 fprintf_vma ((FILE *) stream, value);
8377 else
8378 {
8379 if (i_ehdrp->e_ident[EI_CLASS] == ELFCLASS64)
8380 {
8381 #if BFD_HOST_64BIT_LONG
8382 fprintf ((FILE *) stream, "%016lx", value);
8383 #else
8384 fprintf ((FILE *) stream, "%08lx%08lx",
8385 _bfd_int64_high (value), _bfd_int64_low (value));
8386 #endif
8387 }
8388 else
8389 fprintf ((FILE *) stream, "%08lx",
8390 (unsigned long) (value & 0xffffffff));
8391 }
8392 #else
8393 fprintf_vma ((FILE *) stream, value);
8394 #endif
8395 }
8396
8397 enum elf_reloc_type_class
8398 _bfd_elf_reloc_type_class (const Elf_Internal_Rela *rela ATTRIBUTE_UNUSED)
8399 {
8400 return reloc_class_normal;
8401 }
8402
8403 /* For RELA architectures, return the relocation value for a
8404 relocation against a local symbol. */
8405
8406 bfd_vma
8407 _bfd_elf_rela_local_sym (bfd *abfd,
8408 Elf_Internal_Sym *sym,
8409 asection **psec,
8410 Elf_Internal_Rela *rel)
8411 {
8412 asection *sec = *psec;
8413 bfd_vma relocation;
8414
8415 relocation = (sec->output_section->vma
8416 + sec->output_offset
8417 + sym->st_value);
8418 if ((sec->flags & SEC_MERGE)
8419 && ELF_ST_TYPE (sym->st_info) == STT_SECTION
8420 && sec->sec_info_type == ELF_INFO_TYPE_MERGE)
8421 {
8422 rel->r_addend =
8423 _bfd_merged_section_offset (abfd, psec,
8424 elf_section_data (sec)->sec_info,
8425 sym->st_value + rel->r_addend);
8426 if (sec != *psec)
8427 {
8428 /* If we have changed the section, and our original section is
8429 marked with SEC_EXCLUDE, it means that the original
8430 SEC_MERGE section has been completely subsumed in some
8431 other SEC_MERGE section. In this case, we need to leave
8432 some info around for --emit-relocs. */
8433 if ((sec->flags & SEC_EXCLUDE) != 0)
8434 sec->kept_section = *psec;
8435 sec = *psec;
8436 }
8437 rel->r_addend -= relocation;
8438 rel->r_addend += sec->output_section->vma + sec->output_offset;
8439 }
8440 return relocation;
8441 }
8442
8443 bfd_vma
8444 _bfd_elf_rel_local_sym (bfd *abfd,
8445 Elf_Internal_Sym *sym,
8446 asection **psec,
8447 bfd_vma addend)
8448 {
8449 asection *sec = *psec;
8450
8451 if (sec->sec_info_type != ELF_INFO_TYPE_MERGE)
8452 return sym->st_value + addend;
8453
8454 return _bfd_merged_section_offset (abfd, psec,
8455 elf_section_data (sec)->sec_info,
8456 sym->st_value + addend);
8457 }
8458
8459 bfd_vma
8460 _bfd_elf_section_offset (bfd *abfd,
8461 struct bfd_link_info *info,
8462 asection *sec,
8463 bfd_vma offset)
8464 {
8465 switch (sec->sec_info_type)
8466 {
8467 case ELF_INFO_TYPE_STABS:
8468 return _bfd_stab_section_offset (sec, elf_section_data (sec)->sec_info,
8469 offset);
8470 case ELF_INFO_TYPE_EH_FRAME:
8471 return _bfd_elf_eh_frame_section_offset (abfd, info, sec, offset);
8472 default:
8473 return offset;
8474 }
8475 }
8476 \f
8477 /* Create a new BFD as if by bfd_openr. Rather than opening a file,
8478 reconstruct an ELF file by reading the segments out of remote memory
8479 based on the ELF file header at EHDR_VMA and the ELF program headers it
8480 points to. If not null, *LOADBASEP is filled in with the difference
8481 between the VMAs from which the segments were read, and the VMAs the
8482 file headers (and hence BFD's idea of each section's VMA) put them at.
8483
8484 The function TARGET_READ_MEMORY is called to copy LEN bytes from the
8485 remote memory at target address VMA into the local buffer at MYADDR; it
8486 should return zero on success or an `errno' code on failure. TEMPL must
8487 be a BFD for an ELF target with the word size and byte order found in
8488 the remote memory. */
8489
8490 bfd *
8491 bfd_elf_bfd_from_remote_memory
8492 (bfd *templ,
8493 bfd_vma ehdr_vma,
8494 bfd_vma *loadbasep,
8495 int (*target_read_memory) (bfd_vma, bfd_byte *, int))
8496 {
8497 return (*get_elf_backend_data (templ)->elf_backend_bfd_from_remote_memory)
8498 (templ, ehdr_vma, loadbasep, target_read_memory);
8499 }
8500 \f
8501 long
8502 _bfd_elf_get_synthetic_symtab (bfd *abfd,
8503 long symcount ATTRIBUTE_UNUSED,
8504 asymbol **syms ATTRIBUTE_UNUSED,
8505 long dynsymcount,
8506 asymbol **dynsyms,
8507 asymbol **ret)
8508 {
8509 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8510 asection *relplt;
8511 asymbol *s;
8512 const char *relplt_name;
8513 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
8514 arelent *p;
8515 long count, i, n;
8516 size_t size;
8517 Elf_Internal_Shdr *hdr;
8518 char *names;
8519 asection *plt;
8520
8521 *ret = NULL;
8522
8523 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0)
8524 return 0;
8525
8526 if (dynsymcount <= 0)
8527 return 0;
8528
8529 if (!bed->plt_sym_val)
8530 return 0;
8531
8532 relplt_name = bed->relplt_name;
8533 if (relplt_name == NULL)
8534 relplt_name = bed->default_use_rela_p ? ".rela.plt" : ".rel.plt";
8535 relplt = bfd_get_section_by_name (abfd, relplt_name);
8536 if (relplt == NULL)
8537 return 0;
8538
8539 hdr = &elf_section_data (relplt)->this_hdr;
8540 if (hdr->sh_link != elf_dynsymtab (abfd)
8541 || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA))
8542 return 0;
8543
8544 plt = bfd_get_section_by_name (abfd, ".plt");
8545 if (plt == NULL)
8546 return 0;
8547
8548 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
8549 if (! (*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
8550 return -1;
8551
8552 count = relplt->size / hdr->sh_entsize;
8553 size = count * sizeof (asymbol);
8554 p = relplt->relocation;
8555 for (i = 0; i < count; i++, s++, p++)
8556 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
8557
8558 s = *ret = bfd_malloc (size);
8559 if (s == NULL)
8560 return -1;
8561
8562 names = (char *) (s + count);
8563 p = relplt->relocation;
8564 n = 0;
8565 for (i = 0; i < count; i++, s++, p++)
8566 {
8567 size_t len;
8568 bfd_vma addr;
8569
8570 addr = bed->plt_sym_val (i, plt, p);
8571 if (addr == (bfd_vma) -1)
8572 continue;
8573
8574 *s = **p->sym_ptr_ptr;
8575 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
8576 we are defining a symbol, ensure one of them is set. */
8577 if ((s->flags & BSF_LOCAL) == 0)
8578 s->flags |= BSF_GLOBAL;
8579 s->section = plt;
8580 s->value = addr - plt->vma;
8581 s->name = names;
8582 len = strlen ((*p->sym_ptr_ptr)->name);
8583 memcpy (names, (*p->sym_ptr_ptr)->name, len);
8584 names += len;
8585 memcpy (names, "@plt", sizeof ("@plt"));
8586 names += sizeof ("@plt");
8587 ++n;
8588 }
8589
8590 return n;
8591 }
8592
8593 /* Sort symbol by binding and section. We want to put definitions
8594 sorted by section at the beginning. */
8595
8596 static int
8597 elf_sort_elf_symbol (const void *arg1, const void *arg2)
8598 {
8599 const Elf_Internal_Sym *s1;
8600 const Elf_Internal_Sym *s2;
8601 int shndx;
8602
8603 /* Make sure that undefined symbols are at the end. */
8604 s1 = (const Elf_Internal_Sym *) arg1;
8605 if (s1->st_shndx == SHN_UNDEF)
8606 return 1;
8607 s2 = (const Elf_Internal_Sym *) arg2;
8608 if (s2->st_shndx == SHN_UNDEF)
8609 return -1;
8610
8611 /* Sorted by section index. */
8612 shndx = s1->st_shndx - s2->st_shndx;
8613 if (shndx != 0)
8614 return shndx;
8615
8616 /* Sorted by binding. */
8617 return ELF_ST_BIND (s1->st_info) - ELF_ST_BIND (s2->st_info);
8618 }
8619
8620 struct elf_symbol
8621 {
8622 Elf_Internal_Sym *sym;
8623 const char *name;
8624 };
8625
8626 static int
8627 elf_sym_name_compare (const void *arg1, const void *arg2)
8628 {
8629 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
8630 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
8631 return strcmp (s1->name, s2->name);
8632 }
8633
8634 /* Check if 2 sections define the same set of local and global
8635 symbols. */
8636
8637 bfd_boolean
8638 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2)
8639 {
8640 bfd *bfd1, *bfd2;
8641 const struct elf_backend_data *bed1, *bed2;
8642 Elf_Internal_Shdr *hdr1, *hdr2;
8643 bfd_size_type symcount1, symcount2;
8644 Elf_Internal_Sym *isymbuf1, *isymbuf2;
8645 Elf_Internal_Sym *isymstart1 = NULL, *isymstart2 = NULL, *isym;
8646 Elf_Internal_Sym *isymend;
8647 struct elf_symbol *symp, *symtable1 = NULL, *symtable2 = NULL;
8648 bfd_size_type count1, count2, i;
8649 int shndx1, shndx2;
8650 bfd_boolean result;
8651
8652 bfd1 = sec1->owner;
8653 bfd2 = sec2->owner;
8654
8655 /* If both are .gnu.linkonce sections, they have to have the same
8656 section name. */
8657 if (strncmp (sec1->name, ".gnu.linkonce",
8658 sizeof ".gnu.linkonce" - 1) == 0
8659 && strncmp (sec2->name, ".gnu.linkonce",
8660 sizeof ".gnu.linkonce" - 1) == 0)
8661 return strcmp (sec1->name + sizeof ".gnu.linkonce",
8662 sec2->name + sizeof ".gnu.linkonce") == 0;
8663
8664 /* Both sections have to be in ELF. */
8665 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
8666 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
8667 return FALSE;
8668
8669 if (elf_section_type (sec1) != elf_section_type (sec2))
8670 return FALSE;
8671
8672 if ((elf_section_flags (sec1) & SHF_GROUP) != 0
8673 && (elf_section_flags (sec2) & SHF_GROUP) != 0)
8674 {
8675 /* If both are members of section groups, they have to have the
8676 same group name. */
8677 if (strcmp (elf_group_name (sec1), elf_group_name (sec2)) != 0)
8678 return FALSE;
8679 }
8680
8681 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
8682 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
8683 if (shndx1 == -1 || shndx2 == -1)
8684 return FALSE;
8685
8686 bed1 = get_elf_backend_data (bfd1);
8687 bed2 = get_elf_backend_data (bfd2);
8688 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
8689 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
8690 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
8691 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
8692
8693 if (symcount1 == 0 || symcount2 == 0)
8694 return FALSE;
8695
8696 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
8697 NULL, NULL, NULL);
8698 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
8699 NULL, NULL, NULL);
8700
8701 result = FALSE;
8702 if (isymbuf1 == NULL || isymbuf2 == NULL)
8703 goto done;
8704
8705 /* Sort symbols by binding and section. Global definitions are at
8706 the beginning. */
8707 qsort (isymbuf1, symcount1, sizeof (Elf_Internal_Sym),
8708 elf_sort_elf_symbol);
8709 qsort (isymbuf2, symcount2, sizeof (Elf_Internal_Sym),
8710 elf_sort_elf_symbol);
8711
8712 /* Count definitions in the section. */
8713 count1 = 0;
8714 for (isym = isymbuf1, isymend = isym + symcount1;
8715 isym < isymend; isym++)
8716 {
8717 if (isym->st_shndx == (unsigned int) shndx1)
8718 {
8719 if (count1 == 0)
8720 isymstart1 = isym;
8721 count1++;
8722 }
8723
8724 if (count1 && isym->st_shndx != (unsigned int) shndx1)
8725 break;
8726 }
8727
8728 count2 = 0;
8729 for (isym = isymbuf2, isymend = isym + symcount2;
8730 isym < isymend; isym++)
8731 {
8732 if (isym->st_shndx == (unsigned int) shndx2)
8733 {
8734 if (count2 == 0)
8735 isymstart2 = isym;
8736 count2++;
8737 }
8738
8739 if (count2 && isym->st_shndx != (unsigned int) shndx2)
8740 break;
8741 }
8742
8743 if (count1 == 0 || count2 == 0 || count1 != count2)
8744 goto done;
8745
8746 symtable1 = bfd_malloc (count1 * sizeof (struct elf_symbol));
8747 symtable2 = bfd_malloc (count1 * sizeof (struct elf_symbol));
8748
8749 if (symtable1 == NULL || symtable2 == NULL)
8750 goto done;
8751
8752 symp = symtable1;
8753 for (isym = isymstart1, isymend = isym + count1;
8754 isym < isymend; isym++)
8755 {
8756 symp->sym = isym;
8757 symp->name = bfd_elf_string_from_elf_section (bfd1,
8758 hdr1->sh_link,
8759 isym->st_name);
8760 symp++;
8761 }
8762
8763 symp = symtable2;
8764 for (isym = isymstart2, isymend = isym + count1;
8765 isym < isymend; isym++)
8766 {
8767 symp->sym = isym;
8768 symp->name = bfd_elf_string_from_elf_section (bfd2,
8769 hdr2->sh_link,
8770 isym->st_name);
8771 symp++;
8772 }
8773
8774 /* Sort symbol by name. */
8775 qsort (symtable1, count1, sizeof (struct elf_symbol),
8776 elf_sym_name_compare);
8777 qsort (symtable2, count1, sizeof (struct elf_symbol),
8778 elf_sym_name_compare);
8779
8780 for (i = 0; i < count1; i++)
8781 /* Two symbols must have the same binding, type and name. */
8782 if (symtable1 [i].sym->st_info != symtable2 [i].sym->st_info
8783 || symtable1 [i].sym->st_other != symtable2 [i].sym->st_other
8784 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
8785 goto done;
8786
8787 result = TRUE;
8788
8789 done:
8790 if (symtable1)
8791 free (symtable1);
8792 if (symtable2)
8793 free (symtable2);
8794 if (isymbuf1)
8795 free (isymbuf1);
8796 if (isymbuf2)
8797 free (isymbuf2);
8798
8799 return result;
8800 }
8801
8802 /* It is only used by x86-64 so far. */
8803 asection _bfd_elf_large_com_section
8804 = BFD_FAKE_SECTION (_bfd_elf_large_com_section,
8805 SEC_IS_COMMON, NULL, "LARGE_COMMON", 0);
8806
8807 /* Return TRUE if 2 section types are compatible. */
8808
8809 bfd_boolean
8810 _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
8811 bfd *bbfd, const asection *bsec)
8812 {
8813 if (asec == NULL
8814 || bsec == NULL
8815 || abfd->xvec->flavour != bfd_target_elf_flavour
8816 || bbfd->xvec->flavour != bfd_target_elf_flavour)
8817 return TRUE;
8818
8819 return elf_section_type (asec) == elf_section_type (bsec);
8820 }
This page took 0.301412 seconds and 4 git commands to generate.