7f402c3cb32cec9a058192c1ee2451ceab7d417c
[deliverable/binutils-gdb.git] / bfd / elf.c
1 /* ELF executable support for BFD.
2
3 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
4 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
5
6 This file is part of BFD, the Binary File Descriptor library.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
21
22 /* SECTION
23
24 ELF backends
25
26 BFD support for ELF formats is being worked on.
27 Currently, the best supported back ends are for sparc and i386
28 (running svr4 or Solaris 2).
29
30 Documentation of the internals of the support code still needs
31 to be written. The code is changing quickly enough that we
32 haven't bothered yet. */
33
34 /* For sparc64-cross-sparc32. */
35 #define _SYSCALL32
36 #include "bfd.h"
37 #include "sysdep.h"
38 #include "bfdlink.h"
39 #include "libbfd.h"
40 #define ARCH_SIZE 0
41 #include "elf-bfd.h"
42 #include "libiberty.h"
43
44 static int elf_sort_sections (const void *, const void *);
45 static bfd_boolean assign_file_positions_except_relocs (bfd *, struct bfd_link_info *);
46 static bfd_boolean prep_headers (bfd *);
47 static bfd_boolean swap_out_syms (bfd *, struct bfd_strtab_hash **, int) ;
48 static bfd_boolean elfcore_read_notes (bfd *, file_ptr, bfd_size_type) ;
49
50 /* Swap version information in and out. The version information is
51 currently size independent. If that ever changes, this code will
52 need to move into elfcode.h. */
53
54 /* Swap in a Verdef structure. */
55
56 void
57 _bfd_elf_swap_verdef_in (bfd *abfd,
58 const Elf_External_Verdef *src,
59 Elf_Internal_Verdef *dst)
60 {
61 dst->vd_version = H_GET_16 (abfd, src->vd_version);
62 dst->vd_flags = H_GET_16 (abfd, src->vd_flags);
63 dst->vd_ndx = H_GET_16 (abfd, src->vd_ndx);
64 dst->vd_cnt = H_GET_16 (abfd, src->vd_cnt);
65 dst->vd_hash = H_GET_32 (abfd, src->vd_hash);
66 dst->vd_aux = H_GET_32 (abfd, src->vd_aux);
67 dst->vd_next = H_GET_32 (abfd, src->vd_next);
68 }
69
70 /* Swap out a Verdef structure. */
71
72 void
73 _bfd_elf_swap_verdef_out (bfd *abfd,
74 const Elf_Internal_Verdef *src,
75 Elf_External_Verdef *dst)
76 {
77 H_PUT_16 (abfd, src->vd_version, dst->vd_version);
78 H_PUT_16 (abfd, src->vd_flags, dst->vd_flags);
79 H_PUT_16 (abfd, src->vd_ndx, dst->vd_ndx);
80 H_PUT_16 (abfd, src->vd_cnt, dst->vd_cnt);
81 H_PUT_32 (abfd, src->vd_hash, dst->vd_hash);
82 H_PUT_32 (abfd, src->vd_aux, dst->vd_aux);
83 H_PUT_32 (abfd, src->vd_next, dst->vd_next);
84 }
85
86 /* Swap in a Verdaux structure. */
87
88 void
89 _bfd_elf_swap_verdaux_in (bfd *abfd,
90 const Elf_External_Verdaux *src,
91 Elf_Internal_Verdaux *dst)
92 {
93 dst->vda_name = H_GET_32 (abfd, src->vda_name);
94 dst->vda_next = H_GET_32 (abfd, src->vda_next);
95 }
96
97 /* Swap out a Verdaux structure. */
98
99 void
100 _bfd_elf_swap_verdaux_out (bfd *abfd,
101 const Elf_Internal_Verdaux *src,
102 Elf_External_Verdaux *dst)
103 {
104 H_PUT_32 (abfd, src->vda_name, dst->vda_name);
105 H_PUT_32 (abfd, src->vda_next, dst->vda_next);
106 }
107
108 /* Swap in a Verneed structure. */
109
110 void
111 _bfd_elf_swap_verneed_in (bfd *abfd,
112 const Elf_External_Verneed *src,
113 Elf_Internal_Verneed *dst)
114 {
115 dst->vn_version = H_GET_16 (abfd, src->vn_version);
116 dst->vn_cnt = H_GET_16 (abfd, src->vn_cnt);
117 dst->vn_file = H_GET_32 (abfd, src->vn_file);
118 dst->vn_aux = H_GET_32 (abfd, src->vn_aux);
119 dst->vn_next = H_GET_32 (abfd, src->vn_next);
120 }
121
122 /* Swap out a Verneed structure. */
123
124 void
125 _bfd_elf_swap_verneed_out (bfd *abfd,
126 const Elf_Internal_Verneed *src,
127 Elf_External_Verneed *dst)
128 {
129 H_PUT_16 (abfd, src->vn_version, dst->vn_version);
130 H_PUT_16 (abfd, src->vn_cnt, dst->vn_cnt);
131 H_PUT_32 (abfd, src->vn_file, dst->vn_file);
132 H_PUT_32 (abfd, src->vn_aux, dst->vn_aux);
133 H_PUT_32 (abfd, src->vn_next, dst->vn_next);
134 }
135
136 /* Swap in a Vernaux structure. */
137
138 void
139 _bfd_elf_swap_vernaux_in (bfd *abfd,
140 const Elf_External_Vernaux *src,
141 Elf_Internal_Vernaux *dst)
142 {
143 dst->vna_hash = H_GET_32 (abfd, src->vna_hash);
144 dst->vna_flags = H_GET_16 (abfd, src->vna_flags);
145 dst->vna_other = H_GET_16 (abfd, src->vna_other);
146 dst->vna_name = H_GET_32 (abfd, src->vna_name);
147 dst->vna_next = H_GET_32 (abfd, src->vna_next);
148 }
149
150 /* Swap out a Vernaux structure. */
151
152 void
153 _bfd_elf_swap_vernaux_out (bfd *abfd,
154 const Elf_Internal_Vernaux *src,
155 Elf_External_Vernaux *dst)
156 {
157 H_PUT_32 (abfd, src->vna_hash, dst->vna_hash);
158 H_PUT_16 (abfd, src->vna_flags, dst->vna_flags);
159 H_PUT_16 (abfd, src->vna_other, dst->vna_other);
160 H_PUT_32 (abfd, src->vna_name, dst->vna_name);
161 H_PUT_32 (abfd, src->vna_next, dst->vna_next);
162 }
163
164 /* Swap in a Versym structure. */
165
166 void
167 _bfd_elf_swap_versym_in (bfd *abfd,
168 const Elf_External_Versym *src,
169 Elf_Internal_Versym *dst)
170 {
171 dst->vs_vers = H_GET_16 (abfd, src->vs_vers);
172 }
173
174 /* Swap out a Versym structure. */
175
176 void
177 _bfd_elf_swap_versym_out (bfd *abfd,
178 const Elf_Internal_Versym *src,
179 Elf_External_Versym *dst)
180 {
181 H_PUT_16 (abfd, src->vs_vers, dst->vs_vers);
182 }
183
184 /* Standard ELF hash function. Do not change this function; you will
185 cause invalid hash tables to be generated. */
186
187 unsigned long
188 bfd_elf_hash (const char *namearg)
189 {
190 const unsigned char *name = (const unsigned char *) namearg;
191 unsigned long h = 0;
192 unsigned long g;
193 int ch;
194
195 while ((ch = *name++) != '\0')
196 {
197 h = (h << 4) + ch;
198 if ((g = (h & 0xf0000000)) != 0)
199 {
200 h ^= g >> 24;
201 /* The ELF ABI says `h &= ~g', but this is equivalent in
202 this case and on some machines one insn instead of two. */
203 h ^= g;
204 }
205 }
206 return h & 0xffffffff;
207 }
208
209 /* Read a specified number of bytes at a specified offset in an ELF
210 file, into a newly allocated buffer, and return a pointer to the
211 buffer. */
212
213 static bfd_byte *
214 elf_read (bfd *abfd, file_ptr offset, bfd_size_type size)
215 {
216 bfd_byte *buf;
217
218 if ((buf = bfd_alloc (abfd, size)) == NULL)
219 return NULL;
220 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
221 return NULL;
222 if (bfd_bread (buf, size, abfd) != size)
223 {
224 if (bfd_get_error () != bfd_error_system_call)
225 bfd_set_error (bfd_error_file_truncated);
226 return NULL;
227 }
228 return buf;
229 }
230
231 bfd_boolean
232 bfd_elf_mkobject (bfd *abfd)
233 {
234 /* This just does initialization. */
235 /* coff_mkobject zalloc's space for tdata.coff_obj_data ... */
236 elf_tdata (abfd) = bfd_zalloc (abfd, sizeof (struct elf_obj_tdata));
237 if (elf_tdata (abfd) == 0)
238 return FALSE;
239 /* Since everything is done at close time, do we need any
240 initialization? */
241
242 return TRUE;
243 }
244
245 bfd_boolean
246 bfd_elf_mkcorefile (bfd *abfd)
247 {
248 /* I think this can be done just like an object file. */
249 return bfd_elf_mkobject (abfd);
250 }
251
252 char *
253 bfd_elf_get_str_section (bfd *abfd, unsigned int shindex)
254 {
255 Elf_Internal_Shdr **i_shdrp;
256 bfd_byte *shstrtab = NULL;
257 file_ptr offset;
258 bfd_size_type shstrtabsize;
259
260 i_shdrp = elf_elfsections (abfd);
261 if (i_shdrp == 0 || i_shdrp[shindex] == 0)
262 return NULL;
263
264 shstrtab = i_shdrp[shindex]->contents;
265 if (shstrtab == NULL)
266 {
267 /* No cached one, attempt to read, and cache what we read. */
268 offset = i_shdrp[shindex]->sh_offset;
269 shstrtabsize = i_shdrp[shindex]->sh_size;
270 shstrtab = elf_read (abfd, offset, shstrtabsize);
271 i_shdrp[shindex]->contents = shstrtab;
272 }
273 return (char *) shstrtab;
274 }
275
276 char *
277 bfd_elf_string_from_elf_section (bfd *abfd,
278 unsigned int shindex,
279 unsigned int strindex)
280 {
281 Elf_Internal_Shdr *hdr;
282
283 if (strindex == 0)
284 return "";
285
286 hdr = elf_elfsections (abfd)[shindex];
287
288 if (hdr->contents == NULL
289 && bfd_elf_get_str_section (abfd, shindex) == NULL)
290 return NULL;
291
292 if (strindex >= hdr->sh_size)
293 {
294 unsigned int shstrndx = elf_elfheader(abfd)->e_shstrndx;
295 (*_bfd_error_handler)
296 (_("%B: invalid string offset %u >= %lu for section `%s'"),
297 abfd, strindex, (unsigned long) hdr->sh_size,
298 (shindex == shstrndx && strindex == hdr->sh_name
299 ? ".shstrtab"
300 : bfd_elf_string_from_elf_section (abfd, shstrndx, hdr->sh_name)));
301 return "";
302 }
303
304 return ((char *) hdr->contents) + strindex;
305 }
306
307 /* Read and convert symbols to internal format.
308 SYMCOUNT specifies the number of symbols to read, starting from
309 symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF
310 are non-NULL, they are used to store the internal symbols, external
311 symbols, and symbol section index extensions, respectively. */
312
313 Elf_Internal_Sym *
314 bfd_elf_get_elf_syms (bfd *ibfd,
315 Elf_Internal_Shdr *symtab_hdr,
316 size_t symcount,
317 size_t symoffset,
318 Elf_Internal_Sym *intsym_buf,
319 void *extsym_buf,
320 Elf_External_Sym_Shndx *extshndx_buf)
321 {
322 Elf_Internal_Shdr *shndx_hdr;
323 void *alloc_ext;
324 const bfd_byte *esym;
325 Elf_External_Sym_Shndx *alloc_extshndx;
326 Elf_External_Sym_Shndx *shndx;
327 Elf_Internal_Sym *isym;
328 Elf_Internal_Sym *isymend;
329 const struct elf_backend_data *bed;
330 size_t extsym_size;
331 bfd_size_type amt;
332 file_ptr pos;
333
334 if (symcount == 0)
335 return intsym_buf;
336
337 /* Normal syms might have section extension entries. */
338 shndx_hdr = NULL;
339 if (symtab_hdr == &elf_tdata (ibfd)->symtab_hdr)
340 shndx_hdr = &elf_tdata (ibfd)->symtab_shndx_hdr;
341
342 /* Read the symbols. */
343 alloc_ext = NULL;
344 alloc_extshndx = NULL;
345 bed = get_elf_backend_data (ibfd);
346 extsym_size = bed->s->sizeof_sym;
347 amt = symcount * extsym_size;
348 pos = symtab_hdr->sh_offset + symoffset * extsym_size;
349 if (extsym_buf == NULL)
350 {
351 alloc_ext = bfd_malloc (amt);
352 extsym_buf = alloc_ext;
353 }
354 if (extsym_buf == NULL
355 || bfd_seek (ibfd, pos, SEEK_SET) != 0
356 || bfd_bread (extsym_buf, amt, ibfd) != amt)
357 {
358 intsym_buf = NULL;
359 goto out;
360 }
361
362 if (shndx_hdr == NULL || shndx_hdr->sh_size == 0)
363 extshndx_buf = NULL;
364 else
365 {
366 amt = symcount * sizeof (Elf_External_Sym_Shndx);
367 pos = shndx_hdr->sh_offset + symoffset * sizeof (Elf_External_Sym_Shndx);
368 if (extshndx_buf == NULL)
369 {
370 alloc_extshndx = bfd_malloc (amt);
371 extshndx_buf = alloc_extshndx;
372 }
373 if (extshndx_buf == NULL
374 || bfd_seek (ibfd, pos, SEEK_SET) != 0
375 || bfd_bread (extshndx_buf, amt, ibfd) != amt)
376 {
377 intsym_buf = NULL;
378 goto out;
379 }
380 }
381
382 if (intsym_buf == NULL)
383 {
384 bfd_size_type amt = symcount * sizeof (Elf_Internal_Sym);
385 intsym_buf = bfd_malloc (amt);
386 if (intsym_buf == NULL)
387 goto out;
388 }
389
390 /* Convert the symbols to internal form. */
391 isymend = intsym_buf + symcount;
392 for (esym = extsym_buf, isym = intsym_buf, shndx = extshndx_buf;
393 isym < isymend;
394 esym += extsym_size, isym++, shndx = shndx != NULL ? shndx + 1 : NULL)
395 (*bed->s->swap_symbol_in) (ibfd, esym, shndx, isym);
396
397 out:
398 if (alloc_ext != NULL)
399 free (alloc_ext);
400 if (alloc_extshndx != NULL)
401 free (alloc_extshndx);
402
403 return intsym_buf;
404 }
405
406 /* Look up a symbol name. */
407 const char *
408 bfd_elf_sym_name (bfd *abfd,
409 Elf_Internal_Shdr *symtab_hdr,
410 Elf_Internal_Sym *isym,
411 asection *sym_sec)
412 {
413 const char *name;
414 unsigned int iname = isym->st_name;
415 unsigned int shindex = symtab_hdr->sh_link;
416
417 if (iname == 0 && ELF_ST_TYPE (isym->st_info) == STT_SECTION
418 /* Check for a bogus st_shndx to avoid crashing. */
419 && isym->st_shndx < elf_numsections (abfd)
420 && !(isym->st_shndx >= SHN_LORESERVE && isym->st_shndx <= SHN_HIRESERVE))
421 {
422 iname = elf_elfsections (abfd)[isym->st_shndx]->sh_name;
423 shindex = elf_elfheader (abfd)->e_shstrndx;
424 }
425
426 name = bfd_elf_string_from_elf_section (abfd, shindex, iname);
427 if (name == NULL)
428 name = "(null)";
429 else if (sym_sec && *name == '\0')
430 name = bfd_section_name (abfd, sym_sec);
431
432 return name;
433 }
434
435 /* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
436 sections. The first element is the flags, the rest are section
437 pointers. */
438
439 typedef union elf_internal_group {
440 Elf_Internal_Shdr *shdr;
441 unsigned int flags;
442 } Elf_Internal_Group;
443
444 /* Return the name of the group signature symbol. Why isn't the
445 signature just a string? */
446
447 static const char *
448 group_signature (bfd *abfd, Elf_Internal_Shdr *ghdr)
449 {
450 Elf_Internal_Shdr *hdr;
451 unsigned char esym[sizeof (Elf64_External_Sym)];
452 Elf_External_Sym_Shndx eshndx;
453 Elf_Internal_Sym isym;
454
455 /* First we need to ensure the symbol table is available. */
456 if (! bfd_section_from_shdr (abfd, ghdr->sh_link))
457 return NULL;
458
459 /* Go read the symbol. */
460 hdr = &elf_tdata (abfd)->symtab_hdr;
461 if (bfd_elf_get_elf_syms (abfd, hdr, 1, ghdr->sh_info,
462 &isym, esym, &eshndx) == NULL)
463 return NULL;
464
465 return bfd_elf_sym_name (abfd, hdr, &isym, NULL);
466 }
467
468 /* Set next_in_group list pointer, and group name for NEWSECT. */
469
470 static bfd_boolean
471 setup_group (bfd *abfd, Elf_Internal_Shdr *hdr, asection *newsect)
472 {
473 unsigned int num_group = elf_tdata (abfd)->num_group;
474
475 /* If num_group is zero, read in all SHT_GROUP sections. The count
476 is set to -1 if there are no SHT_GROUP sections. */
477 if (num_group == 0)
478 {
479 unsigned int i, shnum;
480
481 /* First count the number of groups. If we have a SHT_GROUP
482 section with just a flag word (ie. sh_size is 4), ignore it. */
483 shnum = elf_numsections (abfd);
484 num_group = 0;
485 for (i = 0; i < shnum; i++)
486 {
487 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
488 if (shdr->sh_type == SHT_GROUP && shdr->sh_size >= 8)
489 num_group += 1;
490 }
491
492 if (num_group == 0)
493 {
494 num_group = (unsigned) -1;
495 elf_tdata (abfd)->num_group = num_group;
496 }
497 else
498 {
499 /* We keep a list of elf section headers for group sections,
500 so we can find them quickly. */
501 bfd_size_type amt;
502
503 elf_tdata (abfd)->num_group = num_group;
504 amt = num_group * sizeof (Elf_Internal_Shdr *);
505 elf_tdata (abfd)->group_sect_ptr = bfd_alloc (abfd, amt);
506 if (elf_tdata (abfd)->group_sect_ptr == NULL)
507 return FALSE;
508
509 num_group = 0;
510 for (i = 0; i < shnum; i++)
511 {
512 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
513 if (shdr->sh_type == SHT_GROUP && shdr->sh_size >= 8)
514 {
515 unsigned char *src;
516 Elf_Internal_Group *dest;
517
518 /* Add to list of sections. */
519 elf_tdata (abfd)->group_sect_ptr[num_group] = shdr;
520 num_group += 1;
521
522 /* Read the raw contents. */
523 BFD_ASSERT (sizeof (*dest) >= 4);
524 amt = shdr->sh_size * sizeof (*dest) / 4;
525 shdr->contents = bfd_alloc (abfd, amt);
526 if (shdr->contents == NULL
527 || bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0
528 || (bfd_bread (shdr->contents, shdr->sh_size, abfd)
529 != shdr->sh_size))
530 return FALSE;
531
532 /* Translate raw contents, a flag word followed by an
533 array of elf section indices all in target byte order,
534 to the flag word followed by an array of elf section
535 pointers. */
536 src = shdr->contents + shdr->sh_size;
537 dest = (Elf_Internal_Group *) (shdr->contents + amt);
538 while (1)
539 {
540 unsigned int idx;
541
542 src -= 4;
543 --dest;
544 idx = H_GET_32 (abfd, src);
545 if (src == shdr->contents)
546 {
547 dest->flags = idx;
548 if (shdr->bfd_section != NULL && (idx & GRP_COMDAT))
549 shdr->bfd_section->flags
550 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
551 break;
552 }
553 if (idx >= shnum)
554 {
555 ((*_bfd_error_handler)
556 (_("%B: invalid SHT_GROUP entry"), abfd));
557 idx = 0;
558 }
559 dest->shdr = elf_elfsections (abfd)[idx];
560 }
561 }
562 }
563 }
564 }
565
566 if (num_group != (unsigned) -1)
567 {
568 unsigned int i;
569
570 for (i = 0; i < num_group; i++)
571 {
572 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
573 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
574 unsigned int n_elt = shdr->sh_size / 4;
575
576 /* Look through this group's sections to see if current
577 section is a member. */
578 while (--n_elt != 0)
579 if ((++idx)->shdr == hdr)
580 {
581 asection *s = NULL;
582
583 /* We are a member of this group. Go looking through
584 other members to see if any others are linked via
585 next_in_group. */
586 idx = (Elf_Internal_Group *) shdr->contents;
587 n_elt = shdr->sh_size / 4;
588 while (--n_elt != 0)
589 if ((s = (++idx)->shdr->bfd_section) != NULL
590 && elf_next_in_group (s) != NULL)
591 break;
592 if (n_elt != 0)
593 {
594 /* Snarf the group name from other member, and
595 insert current section in circular list. */
596 elf_group_name (newsect) = elf_group_name (s);
597 elf_next_in_group (newsect) = elf_next_in_group (s);
598 elf_next_in_group (s) = newsect;
599 }
600 else
601 {
602 const char *gname;
603
604 gname = group_signature (abfd, shdr);
605 if (gname == NULL)
606 return FALSE;
607 elf_group_name (newsect) = gname;
608
609 /* Start a circular list with one element. */
610 elf_next_in_group (newsect) = newsect;
611 }
612
613 /* If the group section has been created, point to the
614 new member. */
615 if (shdr->bfd_section != NULL)
616 elf_next_in_group (shdr->bfd_section) = newsect;
617
618 i = num_group - 1;
619 break;
620 }
621 }
622 }
623
624 if (elf_group_name (newsect) == NULL)
625 {
626 (*_bfd_error_handler) (_("%B: no group info for section %A"),
627 abfd, newsect);
628 }
629 return TRUE;
630 }
631
632 bfd_boolean
633 _bfd_elf_setup_group_pointers (bfd *abfd)
634 {
635 unsigned int i;
636 unsigned int num_group = elf_tdata (abfd)->num_group;
637 bfd_boolean result = TRUE;
638
639 if (num_group == (unsigned) -1)
640 return result;
641
642 for (i = 0; i < num_group; i++)
643 {
644 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
645 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
646 unsigned int n_elt = shdr->sh_size / 4;
647
648 while (--n_elt != 0)
649 if ((++idx)->shdr->bfd_section)
650 elf_sec_group (idx->shdr->bfd_section) = shdr->bfd_section;
651 else if (idx->shdr->sh_type == SHT_RELA
652 || idx->shdr->sh_type == SHT_REL)
653 /* We won't include relocation sections in section groups in
654 output object files. We adjust the group section size here
655 so that relocatable link will work correctly when
656 relocation sections are in section group in input object
657 files. */
658 shdr->bfd_section->size -= 4;
659 else
660 {
661 /* There are some unknown sections in the group. */
662 (*_bfd_error_handler)
663 (_("%B: unknown [%d] section `%s' in group [%s]"),
664 abfd,
665 (unsigned int) idx->shdr->sh_type,
666 bfd_elf_string_from_elf_section (abfd,
667 (elf_elfheader (abfd)
668 ->e_shstrndx),
669 idx->shdr->sh_name),
670 shdr->bfd_section->name);
671 result = FALSE;
672 }
673 }
674 return result;
675 }
676
677 bfd_boolean
678 bfd_elf_is_group_section (bfd *abfd ATTRIBUTE_UNUSED, const asection *sec)
679 {
680 return elf_next_in_group (sec) != NULL;
681 }
682
683 /* Make a BFD section from an ELF section. We store a pointer to the
684 BFD section in the bfd_section field of the header. */
685
686 bfd_boolean
687 _bfd_elf_make_section_from_shdr (bfd *abfd,
688 Elf_Internal_Shdr *hdr,
689 const char *name,
690 int shindex)
691 {
692 asection *newsect;
693 flagword flags;
694 const struct elf_backend_data *bed;
695
696 if (hdr->bfd_section != NULL)
697 {
698 BFD_ASSERT (strcmp (name,
699 bfd_get_section_name (abfd, hdr->bfd_section)) == 0);
700 return TRUE;
701 }
702
703 newsect = bfd_make_section_anyway (abfd, name);
704 if (newsect == NULL)
705 return FALSE;
706
707 hdr->bfd_section = newsect;
708 elf_section_data (newsect)->this_hdr = *hdr;
709 elf_section_data (newsect)->this_idx = shindex;
710
711 /* Always use the real type/flags. */
712 elf_section_type (newsect) = hdr->sh_type;
713 elf_section_flags (newsect) = hdr->sh_flags;
714
715 newsect->filepos = hdr->sh_offset;
716
717 if (! bfd_set_section_vma (abfd, newsect, hdr->sh_addr)
718 || ! bfd_set_section_size (abfd, newsect, hdr->sh_size)
719 || ! bfd_set_section_alignment (abfd, newsect,
720 bfd_log2 ((bfd_vma) hdr->sh_addralign)))
721 return FALSE;
722
723 flags = SEC_NO_FLAGS;
724 if (hdr->sh_type != SHT_NOBITS)
725 flags |= SEC_HAS_CONTENTS;
726 if (hdr->sh_type == SHT_GROUP)
727 flags |= SEC_GROUP | SEC_EXCLUDE;
728 if ((hdr->sh_flags & SHF_ALLOC) != 0)
729 {
730 flags |= SEC_ALLOC;
731 if (hdr->sh_type != SHT_NOBITS)
732 flags |= SEC_LOAD;
733 }
734 if ((hdr->sh_flags & SHF_WRITE) == 0)
735 flags |= SEC_READONLY;
736 if ((hdr->sh_flags & SHF_EXECINSTR) != 0)
737 flags |= SEC_CODE;
738 else if ((flags & SEC_LOAD) != 0)
739 flags |= SEC_DATA;
740 if ((hdr->sh_flags & SHF_MERGE) != 0)
741 {
742 flags |= SEC_MERGE;
743 newsect->entsize = hdr->sh_entsize;
744 if ((hdr->sh_flags & SHF_STRINGS) != 0)
745 flags |= SEC_STRINGS;
746 }
747 if (hdr->sh_flags & SHF_GROUP)
748 if (!setup_group (abfd, hdr, newsect))
749 return FALSE;
750 if ((hdr->sh_flags & SHF_TLS) != 0)
751 flags |= SEC_THREAD_LOCAL;
752
753 /* The debugging sections appear to be recognized only by name, not
754 any sort of flag. */
755 {
756 static const char *debug_sec_names [] =
757 {
758 ".debug",
759 ".gnu.linkonce.wi.",
760 ".line",
761 ".stab"
762 };
763 int i;
764
765 for (i = ARRAY_SIZE (debug_sec_names); i--;)
766 if (strncmp (name, debug_sec_names[i], strlen (debug_sec_names[i])) == 0)
767 break;
768
769 if (i >= 0)
770 flags |= SEC_DEBUGGING;
771 }
772
773 /* As a GNU extension, if the name begins with .gnu.linkonce, we
774 only link a single copy of the section. This is used to support
775 g++. g++ will emit each template expansion in its own section.
776 The symbols will be defined as weak, so that multiple definitions
777 are permitted. The GNU linker extension is to actually discard
778 all but one of the sections. */
779 if (strncmp (name, ".gnu.linkonce", sizeof ".gnu.linkonce" - 1) == 0
780 && elf_next_in_group (newsect) == NULL)
781 flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
782
783 bed = get_elf_backend_data (abfd);
784 if (bed->elf_backend_section_flags)
785 if (! bed->elf_backend_section_flags (&flags, hdr))
786 return FALSE;
787
788 if (! bfd_set_section_flags (abfd, newsect, flags))
789 return FALSE;
790
791 if ((flags & SEC_ALLOC) != 0)
792 {
793 Elf_Internal_Phdr *phdr;
794 unsigned int i;
795
796 /* Look through the phdrs to see if we need to adjust the lma.
797 If all the p_paddr fields are zero, we ignore them, since
798 some ELF linkers produce such output. */
799 phdr = elf_tdata (abfd)->phdr;
800 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
801 {
802 if (phdr->p_paddr != 0)
803 break;
804 }
805 if (i < elf_elfheader (abfd)->e_phnum)
806 {
807 phdr = elf_tdata (abfd)->phdr;
808 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
809 {
810 /* This section is part of this segment if its file
811 offset plus size lies within the segment's memory
812 span and, if the section is loaded, the extent of the
813 loaded data lies within the extent of the segment.
814
815 Note - we used to check the p_paddr field as well, and
816 refuse to set the LMA if it was 0. This is wrong
817 though, as a perfectly valid initialised segment can
818 have a p_paddr of zero. Some architectures, eg ARM,
819 place special significance on the address 0 and
820 executables need to be able to have a segment which
821 covers this address. */
822 if (phdr->p_type == PT_LOAD
823 && (bfd_vma) hdr->sh_offset >= phdr->p_offset
824 && (hdr->sh_offset + hdr->sh_size
825 <= phdr->p_offset + phdr->p_memsz)
826 && ((flags & SEC_LOAD) == 0
827 || (hdr->sh_offset + hdr->sh_size
828 <= phdr->p_offset + phdr->p_filesz)))
829 {
830 if ((flags & SEC_LOAD) == 0)
831 newsect->lma = (phdr->p_paddr
832 + hdr->sh_addr - phdr->p_vaddr);
833 else
834 /* We used to use the same adjustment for SEC_LOAD
835 sections, but that doesn't work if the segment
836 is packed with code from multiple VMAs.
837 Instead we calculate the section LMA based on
838 the segment LMA. It is assumed that the
839 segment will contain sections with contiguous
840 LMAs, even if the VMAs are not. */
841 newsect->lma = (phdr->p_paddr
842 + hdr->sh_offset - phdr->p_offset);
843
844 /* With contiguous segments, we can't tell from file
845 offsets whether a section with zero size should
846 be placed at the end of one segment or the
847 beginning of the next. Decide based on vaddr. */
848 if (hdr->sh_addr >= phdr->p_vaddr
849 && (hdr->sh_addr + hdr->sh_size
850 <= phdr->p_vaddr + phdr->p_memsz))
851 break;
852 }
853 }
854 }
855 }
856
857 return TRUE;
858 }
859
860 /*
861 INTERNAL_FUNCTION
862 bfd_elf_find_section
863
864 SYNOPSIS
865 struct elf_internal_shdr *bfd_elf_find_section (bfd *abfd, char *name);
866
867 DESCRIPTION
868 Helper functions for GDB to locate the string tables.
869 Since BFD hides string tables from callers, GDB needs to use an
870 internal hook to find them. Sun's .stabstr, in particular,
871 isn't even pointed to by the .stab section, so ordinary
872 mechanisms wouldn't work to find it, even if we had some.
873 */
874
875 struct elf_internal_shdr *
876 bfd_elf_find_section (bfd *abfd, char *name)
877 {
878 Elf_Internal_Shdr **i_shdrp;
879 char *shstrtab;
880 unsigned int max;
881 unsigned int i;
882
883 i_shdrp = elf_elfsections (abfd);
884 if (i_shdrp != NULL)
885 {
886 shstrtab = bfd_elf_get_str_section (abfd,
887 elf_elfheader (abfd)->e_shstrndx);
888 if (shstrtab != NULL)
889 {
890 max = elf_numsections (abfd);
891 for (i = 1; i < max; i++)
892 if (!strcmp (&shstrtab[i_shdrp[i]->sh_name], name))
893 return i_shdrp[i];
894 }
895 }
896 return 0;
897 }
898
899 const char *const bfd_elf_section_type_names[] = {
900 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
901 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
902 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
903 };
904
905 /* ELF relocs are against symbols. If we are producing relocatable
906 output, and the reloc is against an external symbol, and nothing
907 has given us any additional addend, the resulting reloc will also
908 be against the same symbol. In such a case, we don't want to
909 change anything about the way the reloc is handled, since it will
910 all be done at final link time. Rather than put special case code
911 into bfd_perform_relocation, all the reloc types use this howto
912 function. It just short circuits the reloc if producing
913 relocatable output against an external symbol. */
914
915 bfd_reloc_status_type
916 bfd_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED,
917 arelent *reloc_entry,
918 asymbol *symbol,
919 void *data ATTRIBUTE_UNUSED,
920 asection *input_section,
921 bfd *output_bfd,
922 char **error_message ATTRIBUTE_UNUSED)
923 {
924 if (output_bfd != NULL
925 && (symbol->flags & BSF_SECTION_SYM) == 0
926 && (! reloc_entry->howto->partial_inplace
927 || reloc_entry->addend == 0))
928 {
929 reloc_entry->address += input_section->output_offset;
930 return bfd_reloc_ok;
931 }
932
933 return bfd_reloc_continue;
934 }
935 \f
936 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
937
938 static void
939 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
940 asection *sec)
941 {
942 BFD_ASSERT (sec->sec_info_type == ELF_INFO_TYPE_MERGE);
943 sec->sec_info_type = ELF_INFO_TYPE_NONE;
944 }
945
946 /* Finish SHF_MERGE section merging. */
947
948 bfd_boolean
949 _bfd_elf_merge_sections (bfd *abfd, struct bfd_link_info *info)
950 {
951 bfd *ibfd;
952 asection *sec;
953
954 if (!is_elf_hash_table (info->hash))
955 return FALSE;
956
957 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
958 if ((ibfd->flags & DYNAMIC) == 0)
959 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
960 if ((sec->flags & SEC_MERGE) != 0
961 && !bfd_is_abs_section (sec->output_section))
962 {
963 struct bfd_elf_section_data *secdata;
964
965 secdata = elf_section_data (sec);
966 if (! _bfd_add_merge_section (abfd,
967 &elf_hash_table (info)->merge_info,
968 sec, &secdata->sec_info))
969 return FALSE;
970 else if (secdata->sec_info)
971 sec->sec_info_type = ELF_INFO_TYPE_MERGE;
972 }
973
974 if (elf_hash_table (info)->merge_info != NULL)
975 _bfd_merge_sections (abfd, info, elf_hash_table (info)->merge_info,
976 merge_sections_remove_hook);
977 return TRUE;
978 }
979
980 void
981 _bfd_elf_link_just_syms (asection *sec, struct bfd_link_info *info)
982 {
983 sec->output_section = bfd_abs_section_ptr;
984 sec->output_offset = sec->vma;
985 if (!is_elf_hash_table (info->hash))
986 return;
987
988 sec->sec_info_type = ELF_INFO_TYPE_JUST_SYMS;
989 }
990 \f
991 /* Copy the program header and other data from one object module to
992 another. */
993
994 bfd_boolean
995 _bfd_elf_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
996 {
997 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
998 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
999 return TRUE;
1000
1001 BFD_ASSERT (!elf_flags_init (obfd)
1002 || (elf_elfheader (obfd)->e_flags
1003 == elf_elfheader (ibfd)->e_flags));
1004
1005 elf_gp (obfd) = elf_gp (ibfd);
1006 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
1007 elf_flags_init (obfd) = TRUE;
1008 return TRUE;
1009 }
1010
1011 /* Print out the program headers. */
1012
1013 bfd_boolean
1014 _bfd_elf_print_private_bfd_data (bfd *abfd, void *farg)
1015 {
1016 FILE *f = farg;
1017 Elf_Internal_Phdr *p;
1018 asection *s;
1019 bfd_byte *dynbuf = NULL;
1020
1021 p = elf_tdata (abfd)->phdr;
1022 if (p != NULL)
1023 {
1024 unsigned int i, c;
1025
1026 fprintf (f, _("\nProgram Header:\n"));
1027 c = elf_elfheader (abfd)->e_phnum;
1028 for (i = 0; i < c; i++, p++)
1029 {
1030 const char *pt;
1031 char buf[20];
1032
1033 switch (p->p_type)
1034 {
1035 case PT_NULL: pt = "NULL"; break;
1036 case PT_LOAD: pt = "LOAD"; break;
1037 case PT_DYNAMIC: pt = "DYNAMIC"; break;
1038 case PT_INTERP: pt = "INTERP"; break;
1039 case PT_NOTE: pt = "NOTE"; break;
1040 case PT_SHLIB: pt = "SHLIB"; break;
1041 case PT_PHDR: pt = "PHDR"; break;
1042 case PT_TLS: pt = "TLS"; break;
1043 case PT_GNU_EH_FRAME: pt = "EH_FRAME"; break;
1044 case PT_GNU_STACK: pt = "STACK"; break;
1045 case PT_GNU_RELRO: pt = "RELRO"; break;
1046 default: sprintf (buf, "0x%lx", p->p_type); pt = buf; break;
1047 }
1048 fprintf (f, "%8s off 0x", pt);
1049 bfd_fprintf_vma (abfd, f, p->p_offset);
1050 fprintf (f, " vaddr 0x");
1051 bfd_fprintf_vma (abfd, f, p->p_vaddr);
1052 fprintf (f, " paddr 0x");
1053 bfd_fprintf_vma (abfd, f, p->p_paddr);
1054 fprintf (f, " align 2**%u\n", bfd_log2 (p->p_align));
1055 fprintf (f, " filesz 0x");
1056 bfd_fprintf_vma (abfd, f, p->p_filesz);
1057 fprintf (f, " memsz 0x");
1058 bfd_fprintf_vma (abfd, f, p->p_memsz);
1059 fprintf (f, " flags %c%c%c",
1060 (p->p_flags & PF_R) != 0 ? 'r' : '-',
1061 (p->p_flags & PF_W) != 0 ? 'w' : '-',
1062 (p->p_flags & PF_X) != 0 ? 'x' : '-');
1063 if ((p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X)) != 0)
1064 fprintf (f, " %lx", p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X));
1065 fprintf (f, "\n");
1066 }
1067 }
1068
1069 s = bfd_get_section_by_name (abfd, ".dynamic");
1070 if (s != NULL)
1071 {
1072 int elfsec;
1073 unsigned long shlink;
1074 bfd_byte *extdyn, *extdynend;
1075 size_t extdynsize;
1076 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1077
1078 fprintf (f, _("\nDynamic Section:\n"));
1079
1080 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
1081 goto error_return;
1082
1083 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1084 if (elfsec == -1)
1085 goto error_return;
1086 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1087
1088 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1089 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1090
1091 extdyn = dynbuf;
1092 extdynend = extdyn + s->size;
1093 for (; extdyn < extdynend; extdyn += extdynsize)
1094 {
1095 Elf_Internal_Dyn dyn;
1096 const char *name;
1097 char ab[20];
1098 bfd_boolean stringp;
1099
1100 (*swap_dyn_in) (abfd, extdyn, &dyn);
1101
1102 if (dyn.d_tag == DT_NULL)
1103 break;
1104
1105 stringp = FALSE;
1106 switch (dyn.d_tag)
1107 {
1108 default:
1109 sprintf (ab, "0x%lx", (unsigned long) dyn.d_tag);
1110 name = ab;
1111 break;
1112
1113 case DT_NEEDED: name = "NEEDED"; stringp = TRUE; break;
1114 case DT_PLTRELSZ: name = "PLTRELSZ"; break;
1115 case DT_PLTGOT: name = "PLTGOT"; break;
1116 case DT_HASH: name = "HASH"; break;
1117 case DT_STRTAB: name = "STRTAB"; break;
1118 case DT_SYMTAB: name = "SYMTAB"; break;
1119 case DT_RELA: name = "RELA"; break;
1120 case DT_RELASZ: name = "RELASZ"; break;
1121 case DT_RELAENT: name = "RELAENT"; break;
1122 case DT_STRSZ: name = "STRSZ"; break;
1123 case DT_SYMENT: name = "SYMENT"; break;
1124 case DT_INIT: name = "INIT"; break;
1125 case DT_FINI: name = "FINI"; break;
1126 case DT_SONAME: name = "SONAME"; stringp = TRUE; break;
1127 case DT_RPATH: name = "RPATH"; stringp = TRUE; break;
1128 case DT_SYMBOLIC: name = "SYMBOLIC"; break;
1129 case DT_REL: name = "REL"; break;
1130 case DT_RELSZ: name = "RELSZ"; break;
1131 case DT_RELENT: name = "RELENT"; break;
1132 case DT_PLTREL: name = "PLTREL"; break;
1133 case DT_DEBUG: name = "DEBUG"; break;
1134 case DT_TEXTREL: name = "TEXTREL"; break;
1135 case DT_JMPREL: name = "JMPREL"; break;
1136 case DT_BIND_NOW: name = "BIND_NOW"; break;
1137 case DT_INIT_ARRAY: name = "INIT_ARRAY"; break;
1138 case DT_FINI_ARRAY: name = "FINI_ARRAY"; break;
1139 case DT_INIT_ARRAYSZ: name = "INIT_ARRAYSZ"; break;
1140 case DT_FINI_ARRAYSZ: name = "FINI_ARRAYSZ"; break;
1141 case DT_RUNPATH: name = "RUNPATH"; stringp = TRUE; break;
1142 case DT_FLAGS: name = "FLAGS"; break;
1143 case DT_PREINIT_ARRAY: name = "PREINIT_ARRAY"; break;
1144 case DT_PREINIT_ARRAYSZ: name = "PREINIT_ARRAYSZ"; break;
1145 case DT_CHECKSUM: name = "CHECKSUM"; break;
1146 case DT_PLTPADSZ: name = "PLTPADSZ"; break;
1147 case DT_MOVEENT: name = "MOVEENT"; break;
1148 case DT_MOVESZ: name = "MOVESZ"; break;
1149 case DT_FEATURE: name = "FEATURE"; break;
1150 case DT_POSFLAG_1: name = "POSFLAG_1"; break;
1151 case DT_SYMINSZ: name = "SYMINSZ"; break;
1152 case DT_SYMINENT: name = "SYMINENT"; break;
1153 case DT_CONFIG: name = "CONFIG"; stringp = TRUE; break;
1154 case DT_DEPAUDIT: name = "DEPAUDIT"; stringp = TRUE; break;
1155 case DT_AUDIT: name = "AUDIT"; stringp = TRUE; break;
1156 case DT_PLTPAD: name = "PLTPAD"; break;
1157 case DT_MOVETAB: name = "MOVETAB"; break;
1158 case DT_SYMINFO: name = "SYMINFO"; break;
1159 case DT_RELACOUNT: name = "RELACOUNT"; break;
1160 case DT_RELCOUNT: name = "RELCOUNT"; break;
1161 case DT_FLAGS_1: name = "FLAGS_1"; break;
1162 case DT_VERSYM: name = "VERSYM"; break;
1163 case DT_VERDEF: name = "VERDEF"; break;
1164 case DT_VERDEFNUM: name = "VERDEFNUM"; break;
1165 case DT_VERNEED: name = "VERNEED"; break;
1166 case DT_VERNEEDNUM: name = "VERNEEDNUM"; break;
1167 case DT_AUXILIARY: name = "AUXILIARY"; stringp = TRUE; break;
1168 case DT_USED: name = "USED"; break;
1169 case DT_FILTER: name = "FILTER"; stringp = TRUE; break;
1170 }
1171
1172 fprintf (f, " %-11s ", name);
1173 if (! stringp)
1174 fprintf (f, "0x%lx", (unsigned long) dyn.d_un.d_val);
1175 else
1176 {
1177 const char *string;
1178 unsigned int tagv = dyn.d_un.d_val;
1179
1180 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1181 if (string == NULL)
1182 goto error_return;
1183 fprintf (f, "%s", string);
1184 }
1185 fprintf (f, "\n");
1186 }
1187
1188 free (dynbuf);
1189 dynbuf = NULL;
1190 }
1191
1192 if ((elf_dynverdef (abfd) != 0 && elf_tdata (abfd)->verdef == NULL)
1193 || (elf_dynverref (abfd) != 0 && elf_tdata (abfd)->verref == NULL))
1194 {
1195 if (! _bfd_elf_slurp_version_tables (abfd, FALSE))
1196 return FALSE;
1197 }
1198
1199 if (elf_dynverdef (abfd) != 0)
1200 {
1201 Elf_Internal_Verdef *t;
1202
1203 fprintf (f, _("\nVersion definitions:\n"));
1204 for (t = elf_tdata (abfd)->verdef; t != NULL; t = t->vd_nextdef)
1205 {
1206 fprintf (f, "%d 0x%2.2x 0x%8.8lx %s\n", t->vd_ndx,
1207 t->vd_flags, t->vd_hash, t->vd_nodename);
1208 if (t->vd_auxptr->vda_nextptr != NULL)
1209 {
1210 Elf_Internal_Verdaux *a;
1211
1212 fprintf (f, "\t");
1213 for (a = t->vd_auxptr->vda_nextptr;
1214 a != NULL;
1215 a = a->vda_nextptr)
1216 fprintf (f, "%s ", a->vda_nodename);
1217 fprintf (f, "\n");
1218 }
1219 }
1220 }
1221
1222 if (elf_dynverref (abfd) != 0)
1223 {
1224 Elf_Internal_Verneed *t;
1225
1226 fprintf (f, _("\nVersion References:\n"));
1227 for (t = elf_tdata (abfd)->verref; t != NULL; t = t->vn_nextref)
1228 {
1229 Elf_Internal_Vernaux *a;
1230
1231 fprintf (f, _(" required from %s:\n"), t->vn_filename);
1232 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1233 fprintf (f, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a->vna_hash,
1234 a->vna_flags, a->vna_other, a->vna_nodename);
1235 }
1236 }
1237
1238 return TRUE;
1239
1240 error_return:
1241 if (dynbuf != NULL)
1242 free (dynbuf);
1243 return FALSE;
1244 }
1245
1246 /* Display ELF-specific fields of a symbol. */
1247
1248 void
1249 bfd_elf_print_symbol (bfd *abfd,
1250 void *filep,
1251 asymbol *symbol,
1252 bfd_print_symbol_type how)
1253 {
1254 FILE *file = filep;
1255 switch (how)
1256 {
1257 case bfd_print_symbol_name:
1258 fprintf (file, "%s", symbol->name);
1259 break;
1260 case bfd_print_symbol_more:
1261 fprintf (file, "elf ");
1262 bfd_fprintf_vma (abfd, file, symbol->value);
1263 fprintf (file, " %lx", (long) symbol->flags);
1264 break;
1265 case bfd_print_symbol_all:
1266 {
1267 const char *section_name;
1268 const char *name = NULL;
1269 const struct elf_backend_data *bed;
1270 unsigned char st_other;
1271 bfd_vma val;
1272
1273 section_name = symbol->section ? symbol->section->name : "(*none*)";
1274
1275 bed = get_elf_backend_data (abfd);
1276 if (bed->elf_backend_print_symbol_all)
1277 name = (*bed->elf_backend_print_symbol_all) (abfd, filep, symbol);
1278
1279 if (name == NULL)
1280 {
1281 name = symbol->name;
1282 bfd_print_symbol_vandf (abfd, file, symbol);
1283 }
1284
1285 fprintf (file, " %s\t", section_name);
1286 /* Print the "other" value for a symbol. For common symbols,
1287 we've already printed the size; now print the alignment.
1288 For other symbols, we have no specified alignment, and
1289 we've printed the address; now print the size. */
1290 if (bfd_is_com_section (symbol->section))
1291 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
1292 else
1293 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_size;
1294 bfd_fprintf_vma (abfd, file, val);
1295
1296 /* If we have version information, print it. */
1297 if (elf_tdata (abfd)->dynversym_section != 0
1298 && (elf_tdata (abfd)->dynverdef_section != 0
1299 || elf_tdata (abfd)->dynverref_section != 0))
1300 {
1301 unsigned int vernum;
1302 const char *version_string;
1303
1304 vernum = ((elf_symbol_type *) symbol)->version & VERSYM_VERSION;
1305
1306 if (vernum == 0)
1307 version_string = "";
1308 else if (vernum == 1)
1309 version_string = "Base";
1310 else if (vernum <= elf_tdata (abfd)->cverdefs)
1311 version_string =
1312 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1313 else
1314 {
1315 Elf_Internal_Verneed *t;
1316
1317 version_string = "";
1318 for (t = elf_tdata (abfd)->verref;
1319 t != NULL;
1320 t = t->vn_nextref)
1321 {
1322 Elf_Internal_Vernaux *a;
1323
1324 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1325 {
1326 if (a->vna_other == vernum)
1327 {
1328 version_string = a->vna_nodename;
1329 break;
1330 }
1331 }
1332 }
1333 }
1334
1335 if ((((elf_symbol_type *) symbol)->version & VERSYM_HIDDEN) == 0)
1336 fprintf (file, " %-11s", version_string);
1337 else
1338 {
1339 int i;
1340
1341 fprintf (file, " (%s)", version_string);
1342 for (i = 10 - strlen (version_string); i > 0; --i)
1343 putc (' ', file);
1344 }
1345 }
1346
1347 /* If the st_other field is not zero, print it. */
1348 st_other = ((elf_symbol_type *) symbol)->internal_elf_sym.st_other;
1349
1350 switch (st_other)
1351 {
1352 case 0: break;
1353 case STV_INTERNAL: fprintf (file, " .internal"); break;
1354 case STV_HIDDEN: fprintf (file, " .hidden"); break;
1355 case STV_PROTECTED: fprintf (file, " .protected"); break;
1356 default:
1357 /* Some other non-defined flags are also present, so print
1358 everything hex. */
1359 fprintf (file, " 0x%02x", (unsigned int) st_other);
1360 }
1361
1362 fprintf (file, " %s", name);
1363 }
1364 break;
1365 }
1366 }
1367 \f
1368 /* Create an entry in an ELF linker hash table. */
1369
1370 struct bfd_hash_entry *
1371 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
1372 struct bfd_hash_table *table,
1373 const char *string)
1374 {
1375 /* Allocate the structure if it has not already been allocated by a
1376 subclass. */
1377 if (entry == NULL)
1378 {
1379 entry = bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
1380 if (entry == NULL)
1381 return entry;
1382 }
1383
1384 /* Call the allocation method of the superclass. */
1385 entry = _bfd_link_hash_newfunc (entry, table, string);
1386 if (entry != NULL)
1387 {
1388 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
1389 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
1390
1391 /* Set local fields. */
1392 ret->indx = -1;
1393 ret->dynindx = -1;
1394 ret->got = ret->plt = htab->init_refcount;
1395 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
1396 - offsetof (struct elf_link_hash_entry, size)));
1397 /* Assume that we have been called by a non-ELF symbol reader.
1398 This flag is then reset by the code which reads an ELF input
1399 file. This ensures that a symbol created by a non-ELF symbol
1400 reader will have the flag set correctly. */
1401 ret->non_elf = 1;
1402 }
1403
1404 return entry;
1405 }
1406
1407 /* Copy data from an indirect symbol to its direct symbol, hiding the
1408 old indirect symbol. Also used for copying flags to a weakdef. */
1409
1410 void
1411 _bfd_elf_link_hash_copy_indirect (const struct elf_backend_data *bed,
1412 struct elf_link_hash_entry *dir,
1413 struct elf_link_hash_entry *ind)
1414 {
1415 bfd_signed_vma tmp;
1416 bfd_signed_vma lowest_valid = bed->can_refcount;
1417
1418 /* Copy down any references that we may have already seen to the
1419 symbol which just became indirect. */
1420
1421 dir->ref_dynamic |= ind->ref_dynamic;
1422 dir->ref_regular |= ind->ref_regular;
1423 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
1424 dir->non_got_ref |= ind->non_got_ref;
1425 dir->needs_plt |= ind->needs_plt;
1426 dir->pointer_equality_needed |= ind->pointer_equality_needed;
1427
1428 if (ind->root.type != bfd_link_hash_indirect)
1429 return;
1430
1431 /* Copy over the global and procedure linkage table refcount entries.
1432 These may have been already set up by a check_relocs routine. */
1433 tmp = dir->got.refcount;
1434 if (tmp < lowest_valid)
1435 {
1436 dir->got.refcount = ind->got.refcount;
1437 ind->got.refcount = tmp;
1438 }
1439 else
1440 BFD_ASSERT (ind->got.refcount < lowest_valid);
1441
1442 tmp = dir->plt.refcount;
1443 if (tmp < lowest_valid)
1444 {
1445 dir->plt.refcount = ind->plt.refcount;
1446 ind->plt.refcount = tmp;
1447 }
1448 else
1449 BFD_ASSERT (ind->plt.refcount < lowest_valid);
1450
1451 if (dir->dynindx == -1)
1452 {
1453 dir->dynindx = ind->dynindx;
1454 dir->dynstr_index = ind->dynstr_index;
1455 ind->dynindx = -1;
1456 ind->dynstr_index = 0;
1457 }
1458 else
1459 BFD_ASSERT (ind->dynindx == -1);
1460 }
1461
1462 void
1463 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
1464 struct elf_link_hash_entry *h,
1465 bfd_boolean force_local)
1466 {
1467 h->plt = elf_hash_table (info)->init_offset;
1468 h->needs_plt = 0;
1469 if (force_local)
1470 {
1471 h->forced_local = 1;
1472 if (h->dynindx != -1)
1473 {
1474 h->dynindx = -1;
1475 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1476 h->dynstr_index);
1477 }
1478 }
1479 }
1480
1481 /* Initialize an ELF linker hash table. */
1482
1483 bfd_boolean
1484 _bfd_elf_link_hash_table_init
1485 (struct elf_link_hash_table *table,
1486 bfd *abfd,
1487 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
1488 struct bfd_hash_table *,
1489 const char *))
1490 {
1491 bfd_boolean ret;
1492
1493 table->dynamic_sections_created = FALSE;
1494 table->dynobj = NULL;
1495 /* Make sure can_refcount is extended to the width and signedness of
1496 init_refcount before we subtract one from it. */
1497 table->init_refcount.refcount = get_elf_backend_data (abfd)->can_refcount;
1498 table->init_refcount.refcount -= 1;
1499 table->init_offset.offset = -(bfd_vma) 1;
1500 /* The first dynamic symbol is a dummy. */
1501 table->dynsymcount = 1;
1502 table->dynstr = NULL;
1503 table->bucketcount = 0;
1504 table->needed = NULL;
1505 table->hgot = NULL;
1506 table->merge_info = NULL;
1507 memset (&table->stab_info, 0, sizeof (table->stab_info));
1508 memset (&table->eh_info, 0, sizeof (table->eh_info));
1509 table->dynlocal = NULL;
1510 table->runpath = NULL;
1511 table->tls_sec = NULL;
1512 table->tls_size = 0;
1513 table->loaded = NULL;
1514 table->is_relocatable_executable = FALSE;
1515
1516 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc);
1517 table->root.type = bfd_link_elf_hash_table;
1518
1519 return ret;
1520 }
1521
1522 /* Create an ELF linker hash table. */
1523
1524 struct bfd_link_hash_table *
1525 _bfd_elf_link_hash_table_create (bfd *abfd)
1526 {
1527 struct elf_link_hash_table *ret;
1528 bfd_size_type amt = sizeof (struct elf_link_hash_table);
1529
1530 ret = bfd_malloc (amt);
1531 if (ret == NULL)
1532 return NULL;
1533
1534 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc))
1535 {
1536 free (ret);
1537 return NULL;
1538 }
1539
1540 return &ret->root;
1541 }
1542
1543 /* This is a hook for the ELF emulation code in the generic linker to
1544 tell the backend linker what file name to use for the DT_NEEDED
1545 entry for a dynamic object. */
1546
1547 void
1548 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
1549 {
1550 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1551 && bfd_get_format (abfd) == bfd_object)
1552 elf_dt_name (abfd) = name;
1553 }
1554
1555 int
1556 bfd_elf_get_dyn_lib_class (bfd *abfd)
1557 {
1558 int lib_class;
1559 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1560 && bfd_get_format (abfd) == bfd_object)
1561 lib_class = elf_dyn_lib_class (abfd);
1562 else
1563 lib_class = 0;
1564 return lib_class;
1565 }
1566
1567 void
1568 bfd_elf_set_dyn_lib_class (bfd *abfd, int lib_class)
1569 {
1570 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1571 && bfd_get_format (abfd) == bfd_object)
1572 elf_dyn_lib_class (abfd) = lib_class;
1573 }
1574
1575 /* Get the list of DT_NEEDED entries for a link. This is a hook for
1576 the linker ELF emulation code. */
1577
1578 struct bfd_link_needed_list *
1579 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
1580 struct bfd_link_info *info)
1581 {
1582 if (! is_elf_hash_table (info->hash))
1583 return NULL;
1584 return elf_hash_table (info)->needed;
1585 }
1586
1587 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
1588 hook for the linker ELF emulation code. */
1589
1590 struct bfd_link_needed_list *
1591 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
1592 struct bfd_link_info *info)
1593 {
1594 if (! is_elf_hash_table (info->hash))
1595 return NULL;
1596 return elf_hash_table (info)->runpath;
1597 }
1598
1599 /* Get the name actually used for a dynamic object for a link. This
1600 is the SONAME entry if there is one. Otherwise, it is the string
1601 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
1602
1603 const char *
1604 bfd_elf_get_dt_soname (bfd *abfd)
1605 {
1606 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1607 && bfd_get_format (abfd) == bfd_object)
1608 return elf_dt_name (abfd);
1609 return NULL;
1610 }
1611
1612 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
1613 the ELF linker emulation code. */
1614
1615 bfd_boolean
1616 bfd_elf_get_bfd_needed_list (bfd *abfd,
1617 struct bfd_link_needed_list **pneeded)
1618 {
1619 asection *s;
1620 bfd_byte *dynbuf = NULL;
1621 int elfsec;
1622 unsigned long shlink;
1623 bfd_byte *extdyn, *extdynend;
1624 size_t extdynsize;
1625 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1626
1627 *pneeded = NULL;
1628
1629 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
1630 || bfd_get_format (abfd) != bfd_object)
1631 return TRUE;
1632
1633 s = bfd_get_section_by_name (abfd, ".dynamic");
1634 if (s == NULL || s->size == 0)
1635 return TRUE;
1636
1637 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
1638 goto error_return;
1639
1640 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1641 if (elfsec == -1)
1642 goto error_return;
1643
1644 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1645
1646 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1647 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1648
1649 extdyn = dynbuf;
1650 extdynend = extdyn + s->size;
1651 for (; extdyn < extdynend; extdyn += extdynsize)
1652 {
1653 Elf_Internal_Dyn dyn;
1654
1655 (*swap_dyn_in) (abfd, extdyn, &dyn);
1656
1657 if (dyn.d_tag == DT_NULL)
1658 break;
1659
1660 if (dyn.d_tag == DT_NEEDED)
1661 {
1662 const char *string;
1663 struct bfd_link_needed_list *l;
1664 unsigned int tagv = dyn.d_un.d_val;
1665 bfd_size_type amt;
1666
1667 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1668 if (string == NULL)
1669 goto error_return;
1670
1671 amt = sizeof *l;
1672 l = bfd_alloc (abfd, amt);
1673 if (l == NULL)
1674 goto error_return;
1675
1676 l->by = abfd;
1677 l->name = string;
1678 l->next = *pneeded;
1679 *pneeded = l;
1680 }
1681 }
1682
1683 free (dynbuf);
1684
1685 return TRUE;
1686
1687 error_return:
1688 if (dynbuf != NULL)
1689 free (dynbuf);
1690 return FALSE;
1691 }
1692 \f
1693 /* Allocate an ELF string table--force the first byte to be zero. */
1694
1695 struct bfd_strtab_hash *
1696 _bfd_elf_stringtab_init (void)
1697 {
1698 struct bfd_strtab_hash *ret;
1699
1700 ret = _bfd_stringtab_init ();
1701 if (ret != NULL)
1702 {
1703 bfd_size_type loc;
1704
1705 loc = _bfd_stringtab_add (ret, "", TRUE, FALSE);
1706 BFD_ASSERT (loc == 0 || loc == (bfd_size_type) -1);
1707 if (loc == (bfd_size_type) -1)
1708 {
1709 _bfd_stringtab_free (ret);
1710 ret = NULL;
1711 }
1712 }
1713 return ret;
1714 }
1715 \f
1716 /* ELF .o/exec file reading */
1717
1718 /* Create a new bfd section from an ELF section header. */
1719
1720 bfd_boolean
1721 bfd_section_from_shdr (bfd *abfd, unsigned int shindex)
1722 {
1723 Elf_Internal_Shdr *hdr = elf_elfsections (abfd)[shindex];
1724 Elf_Internal_Ehdr *ehdr = elf_elfheader (abfd);
1725 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1726 const char *name;
1727
1728 name = bfd_elf_string_from_elf_section (abfd,
1729 elf_elfheader (abfd)->e_shstrndx,
1730 hdr->sh_name);
1731
1732 switch (hdr->sh_type)
1733 {
1734 case SHT_NULL:
1735 /* Inactive section. Throw it away. */
1736 return TRUE;
1737
1738 case SHT_PROGBITS: /* Normal section with contents. */
1739 case SHT_NOBITS: /* .bss section. */
1740 case SHT_HASH: /* .hash section. */
1741 case SHT_NOTE: /* .note section. */
1742 case SHT_INIT_ARRAY: /* .init_array section. */
1743 case SHT_FINI_ARRAY: /* .fini_array section. */
1744 case SHT_PREINIT_ARRAY: /* .preinit_array section. */
1745 case SHT_GNU_LIBLIST: /* .gnu.liblist section. */
1746 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1747
1748 case SHT_DYNAMIC: /* Dynamic linking information. */
1749 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1750 return FALSE;
1751 if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_STRTAB)
1752 {
1753 Elf_Internal_Shdr *dynsymhdr;
1754
1755 /* The shared libraries distributed with hpux11 have a bogus
1756 sh_link field for the ".dynamic" section. Find the
1757 string table for the ".dynsym" section instead. */
1758 if (elf_dynsymtab (abfd) != 0)
1759 {
1760 dynsymhdr = elf_elfsections (abfd)[elf_dynsymtab (abfd)];
1761 hdr->sh_link = dynsymhdr->sh_link;
1762 }
1763 else
1764 {
1765 unsigned int i, num_sec;
1766
1767 num_sec = elf_numsections (abfd);
1768 for (i = 1; i < num_sec; i++)
1769 {
1770 dynsymhdr = elf_elfsections (abfd)[i];
1771 if (dynsymhdr->sh_type == SHT_DYNSYM)
1772 {
1773 hdr->sh_link = dynsymhdr->sh_link;
1774 break;
1775 }
1776 }
1777 }
1778 }
1779 break;
1780
1781 case SHT_SYMTAB: /* A symbol table */
1782 if (elf_onesymtab (abfd) == shindex)
1783 return TRUE;
1784
1785 BFD_ASSERT (hdr->sh_entsize == bed->s->sizeof_sym);
1786 BFD_ASSERT (elf_onesymtab (abfd) == 0);
1787 elf_onesymtab (abfd) = shindex;
1788 elf_tdata (abfd)->symtab_hdr = *hdr;
1789 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->symtab_hdr;
1790 abfd->flags |= HAS_SYMS;
1791
1792 /* Sometimes a shared object will map in the symbol table. If
1793 SHF_ALLOC is set, and this is a shared object, then we also
1794 treat this section as a BFD section. We can not base the
1795 decision purely on SHF_ALLOC, because that flag is sometimes
1796 set in a relocatable object file, which would confuse the
1797 linker. */
1798 if ((hdr->sh_flags & SHF_ALLOC) != 0
1799 && (abfd->flags & DYNAMIC) != 0
1800 && ! _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1801 shindex))
1802 return FALSE;
1803
1804 /* Go looking for SHT_SYMTAB_SHNDX too, since if there is one we
1805 can't read symbols without that section loaded as well. It
1806 is most likely specified by the next section header. */
1807 if (elf_elfsections (abfd)[elf_symtab_shndx (abfd)]->sh_link != shindex)
1808 {
1809 unsigned int i, num_sec;
1810
1811 num_sec = elf_numsections (abfd);
1812 for (i = shindex + 1; i < num_sec; i++)
1813 {
1814 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1815 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
1816 && hdr2->sh_link == shindex)
1817 break;
1818 }
1819 if (i == num_sec)
1820 for (i = 1; i < shindex; i++)
1821 {
1822 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1823 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
1824 && hdr2->sh_link == shindex)
1825 break;
1826 }
1827 if (i != shindex)
1828 return bfd_section_from_shdr (abfd, i);
1829 }
1830 return TRUE;
1831
1832 case SHT_DYNSYM: /* A dynamic symbol table */
1833 if (elf_dynsymtab (abfd) == shindex)
1834 return TRUE;
1835
1836 BFD_ASSERT (hdr->sh_entsize == bed->s->sizeof_sym);
1837 BFD_ASSERT (elf_dynsymtab (abfd) == 0);
1838 elf_dynsymtab (abfd) = shindex;
1839 elf_tdata (abfd)->dynsymtab_hdr = *hdr;
1840 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->dynsymtab_hdr;
1841 abfd->flags |= HAS_SYMS;
1842
1843 /* Besides being a symbol table, we also treat this as a regular
1844 section, so that objcopy can handle it. */
1845 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1846
1847 case SHT_SYMTAB_SHNDX: /* Symbol section indices when >64k sections */
1848 if (elf_symtab_shndx (abfd) == shindex)
1849 return TRUE;
1850
1851 BFD_ASSERT (elf_symtab_shndx (abfd) == 0);
1852 elf_symtab_shndx (abfd) = shindex;
1853 elf_tdata (abfd)->symtab_shndx_hdr = *hdr;
1854 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->symtab_shndx_hdr;
1855 return TRUE;
1856
1857 case SHT_STRTAB: /* A string table */
1858 if (hdr->bfd_section != NULL)
1859 return TRUE;
1860 if (ehdr->e_shstrndx == shindex)
1861 {
1862 elf_tdata (abfd)->shstrtab_hdr = *hdr;
1863 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->shstrtab_hdr;
1864 return TRUE;
1865 }
1866 if (elf_elfsections (abfd)[elf_onesymtab (abfd)]->sh_link == shindex)
1867 {
1868 symtab_strtab:
1869 elf_tdata (abfd)->strtab_hdr = *hdr;
1870 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->strtab_hdr;
1871 return TRUE;
1872 }
1873 if (elf_elfsections (abfd)[elf_dynsymtab (abfd)]->sh_link == shindex)
1874 {
1875 dynsymtab_strtab:
1876 elf_tdata (abfd)->dynstrtab_hdr = *hdr;
1877 hdr = &elf_tdata (abfd)->dynstrtab_hdr;
1878 elf_elfsections (abfd)[shindex] = hdr;
1879 /* We also treat this as a regular section, so that objcopy
1880 can handle it. */
1881 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1882 shindex);
1883 }
1884
1885 /* If the string table isn't one of the above, then treat it as a
1886 regular section. We need to scan all the headers to be sure,
1887 just in case this strtab section appeared before the above. */
1888 if (elf_onesymtab (abfd) == 0 || elf_dynsymtab (abfd) == 0)
1889 {
1890 unsigned int i, num_sec;
1891
1892 num_sec = elf_numsections (abfd);
1893 for (i = 1; i < num_sec; i++)
1894 {
1895 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1896 if (hdr2->sh_link == shindex)
1897 {
1898 if (! bfd_section_from_shdr (abfd, i))
1899 return FALSE;
1900 if (elf_onesymtab (abfd) == i)
1901 goto symtab_strtab;
1902 if (elf_dynsymtab (abfd) == i)
1903 goto dynsymtab_strtab;
1904 }
1905 }
1906 }
1907 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1908
1909 case SHT_REL:
1910 case SHT_RELA:
1911 /* *These* do a lot of work -- but build no sections! */
1912 {
1913 asection *target_sect;
1914 Elf_Internal_Shdr *hdr2;
1915 unsigned int num_sec = elf_numsections (abfd);
1916
1917 /* Check for a bogus link to avoid crashing. */
1918 if ((hdr->sh_link >= SHN_LORESERVE && hdr->sh_link <= SHN_HIRESERVE)
1919 || hdr->sh_link >= num_sec)
1920 {
1921 ((*_bfd_error_handler)
1922 (_("%B: invalid link %lu for reloc section %s (index %u)"),
1923 abfd, hdr->sh_link, name, shindex));
1924 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1925 shindex);
1926 }
1927
1928 /* For some incomprehensible reason Oracle distributes
1929 libraries for Solaris in which some of the objects have
1930 bogus sh_link fields. It would be nice if we could just
1931 reject them, but, unfortunately, some people need to use
1932 them. We scan through the section headers; if we find only
1933 one suitable symbol table, we clobber the sh_link to point
1934 to it. I hope this doesn't break anything. */
1935 if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_SYMTAB
1936 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_DYNSYM)
1937 {
1938 unsigned int scan;
1939 int found;
1940
1941 found = 0;
1942 for (scan = 1; scan < num_sec; scan++)
1943 {
1944 if (elf_elfsections (abfd)[scan]->sh_type == SHT_SYMTAB
1945 || elf_elfsections (abfd)[scan]->sh_type == SHT_DYNSYM)
1946 {
1947 if (found != 0)
1948 {
1949 found = 0;
1950 break;
1951 }
1952 found = scan;
1953 }
1954 }
1955 if (found != 0)
1956 hdr->sh_link = found;
1957 }
1958
1959 /* Get the symbol table. */
1960 if ((elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_SYMTAB
1961 || elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_DYNSYM)
1962 && ! bfd_section_from_shdr (abfd, hdr->sh_link))
1963 return FALSE;
1964
1965 /* If this reloc section does not use the main symbol table we
1966 don't treat it as a reloc section. BFD can't adequately
1967 represent such a section, so at least for now, we don't
1968 try. We just present it as a normal section. We also
1969 can't use it as a reloc section if it points to the null
1970 section. */
1971 if (hdr->sh_link != elf_onesymtab (abfd) || hdr->sh_info == SHN_UNDEF)
1972 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1973 shindex);
1974
1975 if (! bfd_section_from_shdr (abfd, hdr->sh_info))
1976 return FALSE;
1977 target_sect = bfd_section_from_elf_index (abfd, hdr->sh_info);
1978 if (target_sect == NULL)
1979 return FALSE;
1980
1981 if ((target_sect->flags & SEC_RELOC) == 0
1982 || target_sect->reloc_count == 0)
1983 hdr2 = &elf_section_data (target_sect)->rel_hdr;
1984 else
1985 {
1986 bfd_size_type amt;
1987 BFD_ASSERT (elf_section_data (target_sect)->rel_hdr2 == NULL);
1988 amt = sizeof (*hdr2);
1989 hdr2 = bfd_alloc (abfd, amt);
1990 elf_section_data (target_sect)->rel_hdr2 = hdr2;
1991 }
1992 *hdr2 = *hdr;
1993 elf_elfsections (abfd)[shindex] = hdr2;
1994 target_sect->reloc_count += NUM_SHDR_ENTRIES (hdr);
1995 target_sect->flags |= SEC_RELOC;
1996 target_sect->relocation = NULL;
1997 target_sect->rel_filepos = hdr->sh_offset;
1998 /* In the section to which the relocations apply, mark whether
1999 its relocations are of the REL or RELA variety. */
2000 if (hdr->sh_size != 0)
2001 target_sect->use_rela_p = hdr->sh_type == SHT_RELA;
2002 abfd->flags |= HAS_RELOC;
2003 return TRUE;
2004 }
2005 break;
2006
2007 case SHT_GNU_verdef:
2008 elf_dynverdef (abfd) = shindex;
2009 elf_tdata (abfd)->dynverdef_hdr = *hdr;
2010 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2011 break;
2012
2013 case SHT_GNU_versym:
2014 elf_dynversym (abfd) = shindex;
2015 elf_tdata (abfd)->dynversym_hdr = *hdr;
2016 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2017 break;
2018
2019 case SHT_GNU_verneed:
2020 elf_dynverref (abfd) = shindex;
2021 elf_tdata (abfd)->dynverref_hdr = *hdr;
2022 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2023 break;
2024
2025 case SHT_SHLIB:
2026 return TRUE;
2027
2028 case SHT_GROUP:
2029 /* We need a BFD section for objcopy and relocatable linking,
2030 and it's handy to have the signature available as the section
2031 name. */
2032 name = group_signature (abfd, hdr);
2033 if (name == NULL)
2034 return FALSE;
2035 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2036 return FALSE;
2037 if (hdr->contents != NULL)
2038 {
2039 Elf_Internal_Group *idx = (Elf_Internal_Group *) hdr->contents;
2040 unsigned int n_elt = hdr->sh_size / 4;
2041 asection *s;
2042
2043 if (idx->flags & GRP_COMDAT)
2044 hdr->bfd_section->flags
2045 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
2046
2047 /* We try to keep the same section order as it comes in. */
2048 idx += n_elt;
2049 while (--n_elt != 0)
2050 if ((s = (--idx)->shdr->bfd_section) != NULL
2051 && elf_next_in_group (s) != NULL)
2052 {
2053 elf_next_in_group (hdr->bfd_section) = s;
2054 break;
2055 }
2056 }
2057 break;
2058
2059 default:
2060 /* Check for any processor-specific section types. */
2061 return bed->elf_backend_section_from_shdr (abfd, hdr, name,
2062 shindex);
2063 }
2064
2065 return TRUE;
2066 }
2067
2068 /* Return the section for the local symbol specified by ABFD, R_SYMNDX.
2069 Return SEC for sections that have no elf section, and NULL on error. */
2070
2071 asection *
2072 bfd_section_from_r_symndx (bfd *abfd,
2073 struct sym_sec_cache *cache,
2074 asection *sec,
2075 unsigned long r_symndx)
2076 {
2077 Elf_Internal_Shdr *symtab_hdr;
2078 unsigned char esym[sizeof (Elf64_External_Sym)];
2079 Elf_External_Sym_Shndx eshndx;
2080 Elf_Internal_Sym isym;
2081 unsigned int ent = r_symndx % LOCAL_SYM_CACHE_SIZE;
2082
2083 if (cache->abfd == abfd && cache->indx[ent] == r_symndx)
2084 return cache->sec[ent];
2085
2086 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2087 if (bfd_elf_get_elf_syms (abfd, symtab_hdr, 1, r_symndx,
2088 &isym, esym, &eshndx) == NULL)
2089 return NULL;
2090
2091 if (cache->abfd != abfd)
2092 {
2093 memset (cache->indx, -1, sizeof (cache->indx));
2094 cache->abfd = abfd;
2095 }
2096 cache->indx[ent] = r_symndx;
2097 cache->sec[ent] = sec;
2098 if ((isym.st_shndx != SHN_UNDEF && isym.st_shndx < SHN_LORESERVE)
2099 || isym.st_shndx > SHN_HIRESERVE)
2100 {
2101 asection *s;
2102 s = bfd_section_from_elf_index (abfd, isym.st_shndx);
2103 if (s != NULL)
2104 cache->sec[ent] = s;
2105 }
2106 return cache->sec[ent];
2107 }
2108
2109 /* Given an ELF section number, retrieve the corresponding BFD
2110 section. */
2111
2112 asection *
2113 bfd_section_from_elf_index (bfd *abfd, unsigned int index)
2114 {
2115 if (index >= elf_numsections (abfd))
2116 return NULL;
2117 return elf_elfsections (abfd)[index]->bfd_section;
2118 }
2119
2120 static struct bfd_elf_special_section const special_sections[] =
2121 {
2122 { ".bss", 4, -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2123 { ".gnu.linkonce.b",15, -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2124 { ".comment", 8, 0, SHT_PROGBITS, 0 },
2125 { ".data", 5, -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2126 { ".data1", 6, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2127 { ".debug", 6, 0, SHT_PROGBITS, 0 },
2128 { ".fini", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2129 { ".init", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2130 { ".line", 5, 0, SHT_PROGBITS, 0 },
2131 { ".rodata", 7, -2, SHT_PROGBITS, SHF_ALLOC },
2132 { ".rodata1", 8, 0, SHT_PROGBITS, SHF_ALLOC },
2133 { ".tbss", 5, -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2134 { ".tdata", 6, -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2135 { ".text", 5, -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2136 { ".init_array", 11, 0, SHT_INIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2137 { ".fini_array", 11, 0, SHT_FINI_ARRAY, SHF_ALLOC + SHF_WRITE },
2138 { ".preinit_array", 14, 0, SHT_PREINIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2139 { ".debug_line", 11, 0, SHT_PROGBITS, 0 },
2140 { ".debug_info", 11, 0, SHT_PROGBITS, 0 },
2141 { ".debug_abbrev", 13, 0, SHT_PROGBITS, 0 },
2142 { ".debug_aranges", 14, 0, SHT_PROGBITS, 0 },
2143 { ".dynamic", 8, 0, SHT_DYNAMIC, SHF_ALLOC },
2144 { ".dynstr", 7, 0, SHT_STRTAB, SHF_ALLOC },
2145 { ".dynsym", 7, 0, SHT_DYNSYM, SHF_ALLOC },
2146 { ".got", 4, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2147 { ".hash", 5, 0, SHT_HASH, SHF_ALLOC },
2148 { ".interp", 7, 0, SHT_PROGBITS, 0 },
2149 { ".plt", 4, 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2150 { ".shstrtab", 9, 0, SHT_STRTAB, 0 },
2151 { ".strtab", 7, 0, SHT_STRTAB, 0 },
2152 { ".symtab", 7, 0, SHT_SYMTAB, 0 },
2153 { ".gnu.version", 12, 0, SHT_GNU_versym, 0 },
2154 { ".gnu.version_d", 14, 0, SHT_GNU_verdef, 0 },
2155 { ".gnu.version_r", 14, 0, SHT_GNU_verneed, 0 },
2156 { ".note.GNU-stack",15, 0, SHT_PROGBITS, 0 },
2157 { ".note", 5, -1, SHT_NOTE, 0 },
2158 { ".rela", 5, -1, SHT_RELA, 0 },
2159 { ".rel", 4, -1, SHT_REL, 0 },
2160 { ".stabstr", 5, 3, SHT_STRTAB, 0 },
2161 { ".gnu.liblist", 12, 0, SHT_GNU_LIBLIST, SHF_ALLOC },
2162 { ".gnu.conflict", 13, 0, SHT_RELA, SHF_ALLOC },
2163 { NULL, 0, 0, 0, 0 }
2164 };
2165
2166 static const struct bfd_elf_special_section *
2167 get_special_section (const char *name,
2168 const struct bfd_elf_special_section *special_sections,
2169 unsigned int rela)
2170 {
2171 int i;
2172 int len = strlen (name);
2173
2174 for (i = 0; special_sections[i].prefix != NULL; i++)
2175 {
2176 int suffix_len;
2177 int prefix_len = special_sections[i].prefix_length;
2178
2179 if (len < prefix_len)
2180 continue;
2181 if (memcmp (name, special_sections[i].prefix, prefix_len) != 0)
2182 continue;
2183
2184 suffix_len = special_sections[i].suffix_length;
2185 if (suffix_len <= 0)
2186 {
2187 if (name[prefix_len] != 0)
2188 {
2189 if (suffix_len == 0)
2190 continue;
2191 if (name[prefix_len] != '.'
2192 && (suffix_len == -2
2193 || (rela && special_sections[i].type == SHT_REL)))
2194 continue;
2195 }
2196 }
2197 else
2198 {
2199 if (len < prefix_len + suffix_len)
2200 continue;
2201 if (memcmp (name + len - suffix_len,
2202 special_sections[i].prefix + prefix_len,
2203 suffix_len) != 0)
2204 continue;
2205 }
2206 return &special_sections[i];
2207 }
2208
2209 return NULL;
2210 }
2211
2212 const struct bfd_elf_special_section *
2213 _bfd_elf_get_sec_type_attr (bfd *abfd, const char *name)
2214 {
2215 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2216 const struct bfd_elf_special_section *ssect = NULL;
2217
2218 /* See if this is one of the special sections. */
2219 if (name)
2220 {
2221 unsigned int rela = bed->default_use_rela_p;
2222
2223 if (bed->special_sections)
2224 ssect = get_special_section (name, bed->special_sections, rela);
2225
2226 if (! ssect)
2227 ssect = get_special_section (name, special_sections, rela);
2228 }
2229
2230 return ssect;
2231 }
2232
2233 bfd_boolean
2234 _bfd_elf_new_section_hook (bfd *abfd, asection *sec)
2235 {
2236 struct bfd_elf_section_data *sdata;
2237 const struct bfd_elf_special_section *ssect;
2238
2239 sdata = (struct bfd_elf_section_data *) sec->used_by_bfd;
2240 if (sdata == NULL)
2241 {
2242 sdata = bfd_zalloc (abfd, sizeof (*sdata));
2243 if (sdata == NULL)
2244 return FALSE;
2245 sec->used_by_bfd = sdata;
2246 }
2247
2248 /* When we read a file, we don't need section type and flags unless
2249 it is a linker created section. They will be overridden in
2250 _bfd_elf_make_section_from_shdr anyway. */
2251 if (abfd->direction != read_direction
2252 || (sec->flags & SEC_LINKER_CREATED) != 0)
2253 {
2254 ssect = _bfd_elf_get_sec_type_attr (abfd, sec->name);
2255 if (ssect != NULL)
2256 {
2257 elf_section_type (sec) = ssect->type;
2258 elf_section_flags (sec) = ssect->attr;
2259 }
2260 }
2261
2262 /* Indicate whether or not this section should use RELA relocations. */
2263 sec->use_rela_p = get_elf_backend_data (abfd)->default_use_rela_p;
2264
2265 return TRUE;
2266 }
2267
2268 /* Create a new bfd section from an ELF program header.
2269
2270 Since program segments have no names, we generate a synthetic name
2271 of the form segment<NUM>, where NUM is generally the index in the
2272 program header table. For segments that are split (see below) we
2273 generate the names segment<NUM>a and segment<NUM>b.
2274
2275 Note that some program segments may have a file size that is different than
2276 (less than) the memory size. All this means is that at execution the
2277 system must allocate the amount of memory specified by the memory size,
2278 but only initialize it with the first "file size" bytes read from the
2279 file. This would occur for example, with program segments consisting
2280 of combined data+bss.
2281
2282 To handle the above situation, this routine generates TWO bfd sections
2283 for the single program segment. The first has the length specified by
2284 the file size of the segment, and the second has the length specified
2285 by the difference between the two sizes. In effect, the segment is split
2286 into it's initialized and uninitialized parts.
2287
2288 */
2289
2290 bfd_boolean
2291 _bfd_elf_make_section_from_phdr (bfd *abfd,
2292 Elf_Internal_Phdr *hdr,
2293 int index,
2294 const char *typename)
2295 {
2296 asection *newsect;
2297 char *name;
2298 char namebuf[64];
2299 size_t len;
2300 int split;
2301
2302 split = ((hdr->p_memsz > 0)
2303 && (hdr->p_filesz > 0)
2304 && (hdr->p_memsz > hdr->p_filesz));
2305 sprintf (namebuf, "%s%d%s", typename, index, split ? "a" : "");
2306 len = strlen (namebuf) + 1;
2307 name = bfd_alloc (abfd, len);
2308 if (!name)
2309 return FALSE;
2310 memcpy (name, namebuf, len);
2311 newsect = bfd_make_section (abfd, name);
2312 if (newsect == NULL)
2313 return FALSE;
2314 newsect->vma = hdr->p_vaddr;
2315 newsect->lma = hdr->p_paddr;
2316 newsect->size = hdr->p_filesz;
2317 newsect->filepos = hdr->p_offset;
2318 newsect->flags |= SEC_HAS_CONTENTS;
2319 newsect->alignment_power = bfd_log2 (hdr->p_align);
2320 if (hdr->p_type == PT_LOAD)
2321 {
2322 newsect->flags |= SEC_ALLOC;
2323 newsect->flags |= SEC_LOAD;
2324 if (hdr->p_flags & PF_X)
2325 {
2326 /* FIXME: all we known is that it has execute PERMISSION,
2327 may be data. */
2328 newsect->flags |= SEC_CODE;
2329 }
2330 }
2331 if (!(hdr->p_flags & PF_W))
2332 {
2333 newsect->flags |= SEC_READONLY;
2334 }
2335
2336 if (split)
2337 {
2338 sprintf (namebuf, "%s%db", typename, index);
2339 len = strlen (namebuf) + 1;
2340 name = bfd_alloc (abfd, len);
2341 if (!name)
2342 return FALSE;
2343 memcpy (name, namebuf, len);
2344 newsect = bfd_make_section (abfd, name);
2345 if (newsect == NULL)
2346 return FALSE;
2347 newsect->vma = hdr->p_vaddr + hdr->p_filesz;
2348 newsect->lma = hdr->p_paddr + hdr->p_filesz;
2349 newsect->size = hdr->p_memsz - hdr->p_filesz;
2350 if (hdr->p_type == PT_LOAD)
2351 {
2352 newsect->flags |= SEC_ALLOC;
2353 if (hdr->p_flags & PF_X)
2354 newsect->flags |= SEC_CODE;
2355 }
2356 if (!(hdr->p_flags & PF_W))
2357 newsect->flags |= SEC_READONLY;
2358 }
2359
2360 return TRUE;
2361 }
2362
2363 bfd_boolean
2364 bfd_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int index)
2365 {
2366 const struct elf_backend_data *bed;
2367
2368 switch (hdr->p_type)
2369 {
2370 case PT_NULL:
2371 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "null");
2372
2373 case PT_LOAD:
2374 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "load");
2375
2376 case PT_DYNAMIC:
2377 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "dynamic");
2378
2379 case PT_INTERP:
2380 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "interp");
2381
2382 case PT_NOTE:
2383 if (! _bfd_elf_make_section_from_phdr (abfd, hdr, index, "note"))
2384 return FALSE;
2385 if (! elfcore_read_notes (abfd, hdr->p_offset, hdr->p_filesz))
2386 return FALSE;
2387 return TRUE;
2388
2389 case PT_SHLIB:
2390 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "shlib");
2391
2392 case PT_PHDR:
2393 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "phdr");
2394
2395 case PT_GNU_EH_FRAME:
2396 return _bfd_elf_make_section_from_phdr (abfd, hdr, index,
2397 "eh_frame_hdr");
2398
2399 case PT_GNU_STACK:
2400 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "stack");
2401
2402 case PT_GNU_RELRO:
2403 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "relro");
2404
2405 default:
2406 /* Check for any processor-specific program segment types. */
2407 bed = get_elf_backend_data (abfd);
2408 return bed->elf_backend_section_from_phdr (abfd, hdr, index, "proc");
2409 }
2410 }
2411
2412 /* Initialize REL_HDR, the section-header for new section, containing
2413 relocations against ASECT. If USE_RELA_P is TRUE, we use RELA
2414 relocations; otherwise, we use REL relocations. */
2415
2416 bfd_boolean
2417 _bfd_elf_init_reloc_shdr (bfd *abfd,
2418 Elf_Internal_Shdr *rel_hdr,
2419 asection *asect,
2420 bfd_boolean use_rela_p)
2421 {
2422 char *name;
2423 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2424 bfd_size_type amt = sizeof ".rela" + strlen (asect->name);
2425
2426 name = bfd_alloc (abfd, amt);
2427 if (name == NULL)
2428 return FALSE;
2429 sprintf (name, "%s%s", use_rela_p ? ".rela" : ".rel", asect->name);
2430 rel_hdr->sh_name =
2431 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd), name,
2432 FALSE);
2433 if (rel_hdr->sh_name == (unsigned int) -1)
2434 return FALSE;
2435 rel_hdr->sh_type = use_rela_p ? SHT_RELA : SHT_REL;
2436 rel_hdr->sh_entsize = (use_rela_p
2437 ? bed->s->sizeof_rela
2438 : bed->s->sizeof_rel);
2439 rel_hdr->sh_addralign = 1 << bed->s->log_file_align;
2440 rel_hdr->sh_flags = 0;
2441 rel_hdr->sh_addr = 0;
2442 rel_hdr->sh_size = 0;
2443 rel_hdr->sh_offset = 0;
2444
2445 return TRUE;
2446 }
2447
2448 /* Set up an ELF internal section header for a section. */
2449
2450 static void
2451 elf_fake_sections (bfd *abfd, asection *asect, void *failedptrarg)
2452 {
2453 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2454 bfd_boolean *failedptr = failedptrarg;
2455 Elf_Internal_Shdr *this_hdr;
2456
2457 if (*failedptr)
2458 {
2459 /* We already failed; just get out of the bfd_map_over_sections
2460 loop. */
2461 return;
2462 }
2463
2464 this_hdr = &elf_section_data (asect)->this_hdr;
2465
2466 this_hdr->sh_name = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
2467 asect->name, FALSE);
2468 if (this_hdr->sh_name == (unsigned int) -1)
2469 {
2470 *failedptr = TRUE;
2471 return;
2472 }
2473
2474 this_hdr->sh_flags = 0;
2475
2476 if ((asect->flags & SEC_ALLOC) != 0
2477 || asect->user_set_vma)
2478 this_hdr->sh_addr = asect->vma;
2479 else
2480 this_hdr->sh_addr = 0;
2481
2482 this_hdr->sh_offset = 0;
2483 this_hdr->sh_size = asect->size;
2484 this_hdr->sh_link = 0;
2485 this_hdr->sh_addralign = 1 << asect->alignment_power;
2486 /* The sh_entsize and sh_info fields may have been set already by
2487 copy_private_section_data. */
2488
2489 this_hdr->bfd_section = asect;
2490 this_hdr->contents = NULL;
2491
2492 /* If the section type is unspecified, we set it based on
2493 asect->flags. */
2494 if (this_hdr->sh_type == SHT_NULL)
2495 {
2496 if ((asect->flags & SEC_GROUP) != 0)
2497 {
2498 /* We also need to mark SHF_GROUP here for relocatable
2499 link. */
2500 struct bfd_link_order *l;
2501 asection *elt;
2502
2503 for (l = asect->map_head.link_order; l != NULL; l = l->next)
2504 if (l->type == bfd_indirect_link_order
2505 && (elt = elf_next_in_group (l->u.indirect.section)) != NULL)
2506 do
2507 {
2508 /* The name is not important. Anything will do. */
2509 elf_group_name (elt->output_section) = "G";
2510 elf_section_flags (elt->output_section) |= SHF_GROUP;
2511
2512 elt = elf_next_in_group (elt);
2513 /* During a relocatable link, the lists are
2514 circular. */
2515 }
2516 while (elt != elf_next_in_group (l->u.indirect.section));
2517
2518 this_hdr->sh_type = SHT_GROUP;
2519 }
2520 else if ((asect->flags & SEC_ALLOC) != 0
2521 && (((asect->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
2522 || (asect->flags & SEC_NEVER_LOAD) != 0))
2523 this_hdr->sh_type = SHT_NOBITS;
2524 else
2525 this_hdr->sh_type = SHT_PROGBITS;
2526 }
2527
2528 switch (this_hdr->sh_type)
2529 {
2530 default:
2531 break;
2532
2533 case SHT_STRTAB:
2534 case SHT_INIT_ARRAY:
2535 case SHT_FINI_ARRAY:
2536 case SHT_PREINIT_ARRAY:
2537 case SHT_NOTE:
2538 case SHT_NOBITS:
2539 case SHT_PROGBITS:
2540 break;
2541
2542 case SHT_HASH:
2543 this_hdr->sh_entsize = bed->s->sizeof_hash_entry;
2544 break;
2545
2546 case SHT_DYNSYM:
2547 this_hdr->sh_entsize = bed->s->sizeof_sym;
2548 break;
2549
2550 case SHT_DYNAMIC:
2551 this_hdr->sh_entsize = bed->s->sizeof_dyn;
2552 break;
2553
2554 case SHT_RELA:
2555 if (get_elf_backend_data (abfd)->may_use_rela_p)
2556 this_hdr->sh_entsize = bed->s->sizeof_rela;
2557 break;
2558
2559 case SHT_REL:
2560 if (get_elf_backend_data (abfd)->may_use_rel_p)
2561 this_hdr->sh_entsize = bed->s->sizeof_rel;
2562 break;
2563
2564 case SHT_GNU_versym:
2565 this_hdr->sh_entsize = sizeof (Elf_External_Versym);
2566 break;
2567
2568 case SHT_GNU_verdef:
2569 this_hdr->sh_entsize = 0;
2570 /* objcopy or strip will copy over sh_info, but may not set
2571 cverdefs. The linker will set cverdefs, but sh_info will be
2572 zero. */
2573 if (this_hdr->sh_info == 0)
2574 this_hdr->sh_info = elf_tdata (abfd)->cverdefs;
2575 else
2576 BFD_ASSERT (elf_tdata (abfd)->cverdefs == 0
2577 || this_hdr->sh_info == elf_tdata (abfd)->cverdefs);
2578 break;
2579
2580 case SHT_GNU_verneed:
2581 this_hdr->sh_entsize = 0;
2582 /* objcopy or strip will copy over sh_info, but may not set
2583 cverrefs. The linker will set cverrefs, but sh_info will be
2584 zero. */
2585 if (this_hdr->sh_info == 0)
2586 this_hdr->sh_info = elf_tdata (abfd)->cverrefs;
2587 else
2588 BFD_ASSERT (elf_tdata (abfd)->cverrefs == 0
2589 || this_hdr->sh_info == elf_tdata (abfd)->cverrefs);
2590 break;
2591
2592 case SHT_GROUP:
2593 this_hdr->sh_entsize = 4;
2594 break;
2595 }
2596
2597 if ((asect->flags & SEC_ALLOC) != 0)
2598 this_hdr->sh_flags |= SHF_ALLOC;
2599 if ((asect->flags & SEC_READONLY) == 0)
2600 this_hdr->sh_flags |= SHF_WRITE;
2601 if ((asect->flags & SEC_CODE) != 0)
2602 this_hdr->sh_flags |= SHF_EXECINSTR;
2603 if ((asect->flags & SEC_MERGE) != 0)
2604 {
2605 this_hdr->sh_flags |= SHF_MERGE;
2606 this_hdr->sh_entsize = asect->entsize;
2607 if ((asect->flags & SEC_STRINGS) != 0)
2608 this_hdr->sh_flags |= SHF_STRINGS;
2609 }
2610 if ((asect->flags & SEC_GROUP) == 0 && elf_group_name (asect) != NULL)
2611 this_hdr->sh_flags |= SHF_GROUP;
2612 if ((asect->flags & SEC_THREAD_LOCAL) != 0)
2613 {
2614 this_hdr->sh_flags |= SHF_TLS;
2615 if (asect->size == 0 && (asect->flags & SEC_HAS_CONTENTS) == 0)
2616 {
2617 struct bfd_link_order *o;
2618
2619 this_hdr->sh_size = 0;
2620 for (o = asect->map_head.link_order; o != NULL; o = o->next)
2621 if (this_hdr->sh_size < o->offset + o->size)
2622 this_hdr->sh_size = o->offset + o->size;
2623 if (this_hdr->sh_size)
2624 this_hdr->sh_type = SHT_NOBITS;
2625 }
2626 }
2627
2628 /* Check for processor-specific section types. */
2629 if (bed->elf_backend_fake_sections
2630 && !(*bed->elf_backend_fake_sections) (abfd, this_hdr, asect))
2631 *failedptr = TRUE;
2632
2633 /* If the section has relocs, set up a section header for the
2634 SHT_REL[A] section. If two relocation sections are required for
2635 this section, it is up to the processor-specific back-end to
2636 create the other. */
2637 if ((asect->flags & SEC_RELOC) != 0
2638 && !_bfd_elf_init_reloc_shdr (abfd,
2639 &elf_section_data (asect)->rel_hdr,
2640 asect,
2641 asect->use_rela_p))
2642 *failedptr = TRUE;
2643 }
2644
2645 /* Fill in the contents of a SHT_GROUP section. */
2646
2647 void
2648 bfd_elf_set_group_contents (bfd *abfd, asection *sec, void *failedptrarg)
2649 {
2650 bfd_boolean *failedptr = failedptrarg;
2651 unsigned long symindx;
2652 asection *elt, *first;
2653 unsigned char *loc;
2654 struct bfd_link_order *l;
2655 bfd_boolean gas;
2656
2657 /* Ignore linker created group section. See elfNN_ia64_object_p in
2658 elfxx-ia64.c. */
2659 if (((sec->flags & (SEC_GROUP | SEC_LINKER_CREATED)) != SEC_GROUP)
2660 || *failedptr)
2661 return;
2662
2663 symindx = 0;
2664 if (elf_group_id (sec) != NULL)
2665 symindx = elf_group_id (sec)->udata.i;
2666
2667 if (symindx == 0)
2668 {
2669 /* If called from the assembler, swap_out_syms will have set up
2670 elf_section_syms; If called for "ld -r", use target_index. */
2671 if (elf_section_syms (abfd) != NULL)
2672 symindx = elf_section_syms (abfd)[sec->index]->udata.i;
2673 else
2674 symindx = sec->target_index;
2675 }
2676 elf_section_data (sec)->this_hdr.sh_info = symindx;
2677
2678 /* The contents won't be allocated for "ld -r" or objcopy. */
2679 gas = TRUE;
2680 if (sec->contents == NULL)
2681 {
2682 gas = FALSE;
2683 sec->contents = bfd_alloc (abfd, sec->size);
2684
2685 /* Arrange for the section to be written out. */
2686 elf_section_data (sec)->this_hdr.contents = sec->contents;
2687 if (sec->contents == NULL)
2688 {
2689 *failedptr = TRUE;
2690 return;
2691 }
2692 }
2693
2694 loc = sec->contents + sec->size;
2695
2696 /* Get the pointer to the first section in the group that gas
2697 squirreled away here. objcopy arranges for this to be set to the
2698 start of the input section group. */
2699 first = elt = elf_next_in_group (sec);
2700
2701 /* First element is a flag word. Rest of section is elf section
2702 indices for all the sections of the group. Write them backwards
2703 just to keep the group in the same order as given in .section
2704 directives, not that it matters. */
2705 while (elt != NULL)
2706 {
2707 asection *s;
2708 unsigned int idx;
2709
2710 loc -= 4;
2711 s = elt;
2712 if (!gas)
2713 s = s->output_section;
2714 idx = 0;
2715 if (s != NULL)
2716 idx = elf_section_data (s)->this_idx;
2717 H_PUT_32 (abfd, idx, loc);
2718 elt = elf_next_in_group (elt);
2719 if (elt == first)
2720 break;
2721 }
2722
2723 /* If this is a relocatable link, then the above did nothing because
2724 SEC is the output section. Look through the input sections
2725 instead. */
2726 for (l = sec->map_head.link_order; l != NULL; l = l->next)
2727 if (l->type == bfd_indirect_link_order
2728 && (elt = elf_next_in_group (l->u.indirect.section)) != NULL)
2729 do
2730 {
2731 loc -= 4;
2732 H_PUT_32 (abfd,
2733 elf_section_data (elt->output_section)->this_idx, loc);
2734 elt = elf_next_in_group (elt);
2735 /* During a relocatable link, the lists are circular. */
2736 }
2737 while (elt != elf_next_in_group (l->u.indirect.section));
2738
2739 if ((loc -= 4) != sec->contents)
2740 abort ();
2741
2742 H_PUT_32 (abfd, sec->flags & SEC_LINK_ONCE ? GRP_COMDAT : 0, loc);
2743 }
2744
2745 /* Assign all ELF section numbers. The dummy first section is handled here
2746 too. The link/info pointers for the standard section types are filled
2747 in here too, while we're at it. */
2748
2749 static bfd_boolean
2750 assign_section_numbers (bfd *abfd, struct bfd_link_info *link_info)
2751 {
2752 struct elf_obj_tdata *t = elf_tdata (abfd);
2753 asection *sec;
2754 unsigned int section_number, secn;
2755 Elf_Internal_Shdr **i_shdrp;
2756 bfd_size_type amt;
2757 struct bfd_elf_section_data *d;
2758
2759 section_number = 1;
2760
2761 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd));
2762
2763 /* SHT_GROUP sections are in relocatable files only. */
2764 if (link_info == NULL || link_info->relocatable)
2765 {
2766 /* Put SHT_GROUP sections first. */
2767 for (sec = abfd->sections; sec != NULL; sec = sec->next)
2768 {
2769 d = elf_section_data (sec);
2770
2771 if (d->this_hdr.sh_type == SHT_GROUP)
2772 {
2773 if (sec->flags & SEC_LINKER_CREATED)
2774 {
2775 /* Remove the linker created SHT_GROUP sections. */
2776 bfd_section_list_remove (abfd, sec);
2777 abfd->section_count--;
2778 }
2779 else
2780 {
2781 if (section_number == SHN_LORESERVE)
2782 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2783 d->this_idx = section_number++;
2784 }
2785 }
2786 }
2787 }
2788
2789 for (sec = abfd->sections; sec; sec = sec->next)
2790 {
2791 d = elf_section_data (sec);
2792
2793 if (d->this_hdr.sh_type != SHT_GROUP)
2794 {
2795 if (section_number == SHN_LORESERVE)
2796 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2797 d->this_idx = section_number++;
2798 }
2799 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->this_hdr.sh_name);
2800 if ((sec->flags & SEC_RELOC) == 0)
2801 d->rel_idx = 0;
2802 else
2803 {
2804 if (section_number == SHN_LORESERVE)
2805 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2806 d->rel_idx = section_number++;
2807 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel_hdr.sh_name);
2808 }
2809
2810 if (d->rel_hdr2)
2811 {
2812 if (section_number == SHN_LORESERVE)
2813 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2814 d->rel_idx2 = section_number++;
2815 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel_hdr2->sh_name);
2816 }
2817 else
2818 d->rel_idx2 = 0;
2819 }
2820
2821 if (section_number == SHN_LORESERVE)
2822 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2823 t->shstrtab_section = section_number++;
2824 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->shstrtab_hdr.sh_name);
2825 elf_elfheader (abfd)->e_shstrndx = t->shstrtab_section;
2826
2827 if (bfd_get_symcount (abfd) > 0)
2828 {
2829 if (section_number == SHN_LORESERVE)
2830 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2831 t->symtab_section = section_number++;
2832 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->symtab_hdr.sh_name);
2833 if (section_number > SHN_LORESERVE - 2)
2834 {
2835 if (section_number == SHN_LORESERVE)
2836 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2837 t->symtab_shndx_section = section_number++;
2838 t->symtab_shndx_hdr.sh_name
2839 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
2840 ".symtab_shndx", FALSE);
2841 if (t->symtab_shndx_hdr.sh_name == (unsigned int) -1)
2842 return FALSE;
2843 }
2844 if (section_number == SHN_LORESERVE)
2845 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2846 t->strtab_section = section_number++;
2847 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->strtab_hdr.sh_name);
2848 }
2849
2850 _bfd_elf_strtab_finalize (elf_shstrtab (abfd));
2851 t->shstrtab_hdr.sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
2852
2853 elf_numsections (abfd) = section_number;
2854 elf_elfheader (abfd)->e_shnum = section_number;
2855 if (section_number > SHN_LORESERVE)
2856 elf_elfheader (abfd)->e_shnum -= SHN_HIRESERVE + 1 - SHN_LORESERVE;
2857
2858 /* Set up the list of section header pointers, in agreement with the
2859 indices. */
2860 amt = section_number * sizeof (Elf_Internal_Shdr *);
2861 i_shdrp = bfd_zalloc (abfd, amt);
2862 if (i_shdrp == NULL)
2863 return FALSE;
2864
2865 amt = sizeof (Elf_Internal_Shdr);
2866 i_shdrp[0] = bfd_zalloc (abfd, amt);
2867 if (i_shdrp[0] == NULL)
2868 {
2869 bfd_release (abfd, i_shdrp);
2870 return FALSE;
2871 }
2872
2873 elf_elfsections (abfd) = i_shdrp;
2874
2875 i_shdrp[t->shstrtab_section] = &t->shstrtab_hdr;
2876 if (bfd_get_symcount (abfd) > 0)
2877 {
2878 i_shdrp[t->symtab_section] = &t->symtab_hdr;
2879 if (elf_numsections (abfd) > SHN_LORESERVE)
2880 {
2881 i_shdrp[t->symtab_shndx_section] = &t->symtab_shndx_hdr;
2882 t->symtab_shndx_hdr.sh_link = t->symtab_section;
2883 }
2884 i_shdrp[t->strtab_section] = &t->strtab_hdr;
2885 t->symtab_hdr.sh_link = t->strtab_section;
2886 }
2887
2888 for (sec = abfd->sections; sec; sec = sec->next)
2889 {
2890 struct bfd_elf_section_data *d = elf_section_data (sec);
2891 asection *s;
2892 const char *name;
2893
2894 i_shdrp[d->this_idx] = &d->this_hdr;
2895 if (d->rel_idx != 0)
2896 i_shdrp[d->rel_idx] = &d->rel_hdr;
2897 if (d->rel_idx2 != 0)
2898 i_shdrp[d->rel_idx2] = d->rel_hdr2;
2899
2900 /* Fill in the sh_link and sh_info fields while we're at it. */
2901
2902 /* sh_link of a reloc section is the section index of the symbol
2903 table. sh_info is the section index of the section to which
2904 the relocation entries apply. */
2905 if (d->rel_idx != 0)
2906 {
2907 d->rel_hdr.sh_link = t->symtab_section;
2908 d->rel_hdr.sh_info = d->this_idx;
2909 }
2910 if (d->rel_idx2 != 0)
2911 {
2912 d->rel_hdr2->sh_link = t->symtab_section;
2913 d->rel_hdr2->sh_info = d->this_idx;
2914 }
2915
2916 /* We need to set up sh_link for SHF_LINK_ORDER. */
2917 if ((d->this_hdr.sh_flags & SHF_LINK_ORDER) != 0)
2918 {
2919 s = elf_linked_to_section (sec);
2920 if (s)
2921 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
2922 else
2923 {
2924 struct bfd_link_order *p;
2925
2926 /* Find out what the corresponding section in output
2927 is. */
2928 for (p = sec->map_head.link_order; p != NULL; p = p->next)
2929 {
2930 s = p->u.indirect.section;
2931 if (p->type == bfd_indirect_link_order
2932 && (bfd_get_flavour (s->owner)
2933 == bfd_target_elf_flavour))
2934 {
2935 Elf_Internal_Shdr ** const elf_shdrp
2936 = elf_elfsections (s->owner);
2937 int elfsec
2938 = _bfd_elf_section_from_bfd_section (s->owner, s);
2939 elfsec = elf_shdrp[elfsec]->sh_link;
2940 /* PR 290:
2941 The Intel C compiler generates SHT_IA_64_UNWIND with
2942 SHF_LINK_ORDER. But it doesn't set the sh_link or
2943 sh_info fields. Hence we could get the situation
2944 where elfsec is 0. */
2945 if (elfsec == 0)
2946 {
2947 const struct elf_backend_data *bed
2948 = get_elf_backend_data (abfd);
2949 if (bed->link_order_error_handler)
2950 bed->link_order_error_handler
2951 (_("%B: warning: sh_link not set for section `%A'"),
2952 abfd, s);
2953 }
2954 else
2955 {
2956 s = elf_shdrp[elfsec]->bfd_section;
2957 if (elf_discarded_section (s))
2958 {
2959 asection *kept;
2960 (*_bfd_error_handler)
2961 (_("%B: sh_link of section `%A' points to discarded section `%A' of `%B'"),
2962 abfd, d->this_hdr.bfd_section,
2963 s, s->owner);
2964 /* Point to the kept section if it has
2965 the same size as the discarded
2966 one. */
2967 kept = _bfd_elf_check_kept_section (s);
2968 if (kept == NULL)
2969 {
2970 bfd_set_error (bfd_error_bad_value);
2971 return FALSE;
2972 }
2973 s = kept;
2974 }
2975 s = s->output_section;
2976 BFD_ASSERT (s != NULL);
2977 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
2978 }
2979 break;
2980 }
2981 }
2982 }
2983 }
2984
2985 switch (d->this_hdr.sh_type)
2986 {
2987 case SHT_REL:
2988 case SHT_RELA:
2989 /* A reloc section which we are treating as a normal BFD
2990 section. sh_link is the section index of the symbol
2991 table. sh_info is the section index of the section to
2992 which the relocation entries apply. We assume that an
2993 allocated reloc section uses the dynamic symbol table.
2994 FIXME: How can we be sure? */
2995 s = bfd_get_section_by_name (abfd, ".dynsym");
2996 if (s != NULL)
2997 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
2998
2999 /* We look up the section the relocs apply to by name. */
3000 name = sec->name;
3001 if (d->this_hdr.sh_type == SHT_REL)
3002 name += 4;
3003 else
3004 name += 5;
3005 s = bfd_get_section_by_name (abfd, name);
3006 if (s != NULL)
3007 d->this_hdr.sh_info = elf_section_data (s)->this_idx;
3008 break;
3009
3010 case SHT_STRTAB:
3011 /* We assume that a section named .stab*str is a stabs
3012 string section. We look for a section with the same name
3013 but without the trailing ``str'', and set its sh_link
3014 field to point to this section. */
3015 if (strncmp (sec->name, ".stab", sizeof ".stab" - 1) == 0
3016 && strcmp (sec->name + strlen (sec->name) - 3, "str") == 0)
3017 {
3018 size_t len;
3019 char *alc;
3020
3021 len = strlen (sec->name);
3022 alc = bfd_malloc (len - 2);
3023 if (alc == NULL)
3024 return FALSE;
3025 memcpy (alc, sec->name, len - 3);
3026 alc[len - 3] = '\0';
3027 s = bfd_get_section_by_name (abfd, alc);
3028 free (alc);
3029 if (s != NULL)
3030 {
3031 elf_section_data (s)->this_hdr.sh_link = d->this_idx;
3032
3033 /* This is a .stab section. */
3034 if (elf_section_data (s)->this_hdr.sh_entsize == 0)
3035 elf_section_data (s)->this_hdr.sh_entsize
3036 = 4 + 2 * bfd_get_arch_size (abfd) / 8;
3037 }
3038 }
3039 break;
3040
3041 case SHT_DYNAMIC:
3042 case SHT_DYNSYM:
3043 case SHT_GNU_verneed:
3044 case SHT_GNU_verdef:
3045 /* sh_link is the section header index of the string table
3046 used for the dynamic entries, or the symbol table, or the
3047 version strings. */
3048 s = bfd_get_section_by_name (abfd, ".dynstr");
3049 if (s != NULL)
3050 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3051 break;
3052
3053 case SHT_GNU_LIBLIST:
3054 /* sh_link is the section header index of the prelink library
3055 list
3056 used for the dynamic entries, or the symbol table, or the
3057 version strings. */
3058 s = bfd_get_section_by_name (abfd, (sec->flags & SEC_ALLOC)
3059 ? ".dynstr" : ".gnu.libstr");
3060 if (s != NULL)
3061 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3062 break;
3063
3064 case SHT_HASH:
3065 case SHT_GNU_versym:
3066 /* sh_link is the section header index of the symbol table
3067 this hash table or version table is for. */
3068 s = bfd_get_section_by_name (abfd, ".dynsym");
3069 if (s != NULL)
3070 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3071 break;
3072
3073 case SHT_GROUP:
3074 d->this_hdr.sh_link = t->symtab_section;
3075 }
3076 }
3077
3078 for (secn = 1; secn < section_number; ++secn)
3079 if (i_shdrp[secn] == NULL)
3080 i_shdrp[secn] = i_shdrp[0];
3081 else
3082 i_shdrp[secn]->sh_name = _bfd_elf_strtab_offset (elf_shstrtab (abfd),
3083 i_shdrp[secn]->sh_name);
3084 return TRUE;
3085 }
3086
3087 /* Map symbol from it's internal number to the external number, moving
3088 all local symbols to be at the head of the list. */
3089
3090 static int
3091 sym_is_global (bfd *abfd, asymbol *sym)
3092 {
3093 /* If the backend has a special mapping, use it. */
3094 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3095 if (bed->elf_backend_sym_is_global)
3096 return (*bed->elf_backend_sym_is_global) (abfd, sym);
3097
3098 return ((sym->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
3099 || bfd_is_und_section (bfd_get_section (sym))
3100 || bfd_is_com_section (bfd_get_section (sym)));
3101 }
3102
3103 static bfd_boolean
3104 elf_map_symbols (bfd *abfd)
3105 {
3106 unsigned int symcount = bfd_get_symcount (abfd);
3107 asymbol **syms = bfd_get_outsymbols (abfd);
3108 asymbol **sect_syms;
3109 unsigned int num_locals = 0;
3110 unsigned int num_globals = 0;
3111 unsigned int num_locals2 = 0;
3112 unsigned int num_globals2 = 0;
3113 int max_index = 0;
3114 unsigned int idx;
3115 asection *asect;
3116 asymbol **new_syms;
3117 bfd_size_type amt;
3118
3119 #ifdef DEBUG
3120 fprintf (stderr, "elf_map_symbols\n");
3121 fflush (stderr);
3122 #endif
3123
3124 for (asect = abfd->sections; asect; asect = asect->next)
3125 {
3126 if (max_index < asect->index)
3127 max_index = asect->index;
3128 }
3129
3130 max_index++;
3131 amt = max_index * sizeof (asymbol *);
3132 sect_syms = bfd_zalloc (abfd, amt);
3133 if (sect_syms == NULL)
3134 return FALSE;
3135 elf_section_syms (abfd) = sect_syms;
3136 elf_num_section_syms (abfd) = max_index;
3137
3138 /* Init sect_syms entries for any section symbols we have already
3139 decided to output. */
3140 for (idx = 0; idx < symcount; idx++)
3141 {
3142 asymbol *sym = syms[idx];
3143
3144 if ((sym->flags & BSF_SECTION_SYM) != 0
3145 && sym->value == 0)
3146 {
3147 asection *sec;
3148
3149 sec = sym->section;
3150
3151 if (sec->owner != NULL)
3152 {
3153 if (sec->owner != abfd)
3154 {
3155 if (sec->output_offset != 0)
3156 continue;
3157
3158 sec = sec->output_section;
3159
3160 /* Empty sections in the input files may have had a
3161 section symbol created for them. (See the comment
3162 near the end of _bfd_generic_link_output_symbols in
3163 linker.c). If the linker script discards such
3164 sections then we will reach this point. Since we know
3165 that we cannot avoid this case, we detect it and skip
3166 the abort and the assignment to the sect_syms array.
3167 To reproduce this particular case try running the
3168 linker testsuite test ld-scripts/weak.exp for an ELF
3169 port that uses the generic linker. */
3170 if (sec->owner == NULL)
3171 continue;
3172
3173 BFD_ASSERT (sec->owner == abfd);
3174 }
3175 sect_syms[sec->index] = syms[idx];
3176 }
3177 }
3178 }
3179
3180 /* Classify all of the symbols. */
3181 for (idx = 0; idx < symcount; idx++)
3182 {
3183 if (!sym_is_global (abfd, syms[idx]))
3184 num_locals++;
3185 else
3186 num_globals++;
3187 }
3188
3189 /* We will be adding a section symbol for each BFD section. Most normal
3190 sections will already have a section symbol in outsymbols, but
3191 eg. SHT_GROUP sections will not, and we need the section symbol mapped
3192 at least in that case. */
3193 for (asect = abfd->sections; asect; asect = asect->next)
3194 {
3195 if (sect_syms[asect->index] == NULL)
3196 {
3197 if (!sym_is_global (abfd, asect->symbol))
3198 num_locals++;
3199 else
3200 num_globals++;
3201 }
3202 }
3203
3204 /* Now sort the symbols so the local symbols are first. */
3205 amt = (num_locals + num_globals) * sizeof (asymbol *);
3206 new_syms = bfd_alloc (abfd, amt);
3207
3208 if (new_syms == NULL)
3209 return FALSE;
3210
3211 for (idx = 0; idx < symcount; idx++)
3212 {
3213 asymbol *sym = syms[idx];
3214 unsigned int i;
3215
3216 if (!sym_is_global (abfd, sym))
3217 i = num_locals2++;
3218 else
3219 i = num_locals + num_globals2++;
3220 new_syms[i] = sym;
3221 sym->udata.i = i + 1;
3222 }
3223 for (asect = abfd->sections; asect; asect = asect->next)
3224 {
3225 if (sect_syms[asect->index] == NULL)
3226 {
3227 asymbol *sym = asect->symbol;
3228 unsigned int i;
3229
3230 sect_syms[asect->index] = sym;
3231 if (!sym_is_global (abfd, sym))
3232 i = num_locals2++;
3233 else
3234 i = num_locals + num_globals2++;
3235 new_syms[i] = sym;
3236 sym->udata.i = i + 1;
3237 }
3238 }
3239
3240 bfd_set_symtab (abfd, new_syms, num_locals + num_globals);
3241
3242 elf_num_locals (abfd) = num_locals;
3243 elf_num_globals (abfd) = num_globals;
3244 return TRUE;
3245 }
3246
3247 /* Align to the maximum file alignment that could be required for any
3248 ELF data structure. */
3249
3250 static inline file_ptr
3251 align_file_position (file_ptr off, int align)
3252 {
3253 return (off + align - 1) & ~(align - 1);
3254 }
3255
3256 /* Assign a file position to a section, optionally aligning to the
3257 required section alignment. */
3258
3259 file_ptr
3260 _bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr *i_shdrp,
3261 file_ptr offset,
3262 bfd_boolean align)
3263 {
3264 if (align)
3265 {
3266 unsigned int al;
3267
3268 al = i_shdrp->sh_addralign;
3269 if (al > 1)
3270 offset = BFD_ALIGN (offset, al);
3271 }
3272 i_shdrp->sh_offset = offset;
3273 if (i_shdrp->bfd_section != NULL)
3274 i_shdrp->bfd_section->filepos = offset;
3275 if (i_shdrp->sh_type != SHT_NOBITS)
3276 offset += i_shdrp->sh_size;
3277 return offset;
3278 }
3279
3280 /* Compute the file positions we are going to put the sections at, and
3281 otherwise prepare to begin writing out the ELF file. If LINK_INFO
3282 is not NULL, this is being called by the ELF backend linker. */
3283
3284 bfd_boolean
3285 _bfd_elf_compute_section_file_positions (bfd *abfd,
3286 struct bfd_link_info *link_info)
3287 {
3288 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3289 bfd_boolean failed;
3290 struct bfd_strtab_hash *strtab = NULL;
3291 Elf_Internal_Shdr *shstrtab_hdr;
3292
3293 if (abfd->output_has_begun)
3294 return TRUE;
3295
3296 /* Do any elf backend specific processing first. */
3297 if (bed->elf_backend_begin_write_processing)
3298 (*bed->elf_backend_begin_write_processing) (abfd, link_info);
3299
3300 if (! prep_headers (abfd))
3301 return FALSE;
3302
3303 /* Post process the headers if necessary. */
3304 if (bed->elf_backend_post_process_headers)
3305 (*bed->elf_backend_post_process_headers) (abfd, link_info);
3306
3307 failed = FALSE;
3308 bfd_map_over_sections (abfd, elf_fake_sections, &failed);
3309 if (failed)
3310 return FALSE;
3311
3312 if (!assign_section_numbers (abfd, link_info))
3313 return FALSE;
3314
3315 /* The backend linker builds symbol table information itself. */
3316 if (link_info == NULL && bfd_get_symcount (abfd) > 0)
3317 {
3318 /* Non-zero if doing a relocatable link. */
3319 int relocatable_p = ! (abfd->flags & (EXEC_P | DYNAMIC));
3320
3321 if (! swap_out_syms (abfd, &strtab, relocatable_p))
3322 return FALSE;
3323 }
3324
3325 if (link_info == NULL)
3326 {
3327 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
3328 if (failed)
3329 return FALSE;
3330 }
3331
3332 shstrtab_hdr = &elf_tdata (abfd)->shstrtab_hdr;
3333 /* sh_name was set in prep_headers. */
3334 shstrtab_hdr->sh_type = SHT_STRTAB;
3335 shstrtab_hdr->sh_flags = 0;
3336 shstrtab_hdr->sh_addr = 0;
3337 shstrtab_hdr->sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
3338 shstrtab_hdr->sh_entsize = 0;
3339 shstrtab_hdr->sh_link = 0;
3340 shstrtab_hdr->sh_info = 0;
3341 /* sh_offset is set in assign_file_positions_except_relocs. */
3342 shstrtab_hdr->sh_addralign = 1;
3343
3344 if (!assign_file_positions_except_relocs (abfd, link_info))
3345 return FALSE;
3346
3347 if (link_info == NULL && bfd_get_symcount (abfd) > 0)
3348 {
3349 file_ptr off;
3350 Elf_Internal_Shdr *hdr;
3351
3352 off = elf_tdata (abfd)->next_file_pos;
3353
3354 hdr = &elf_tdata (abfd)->symtab_hdr;
3355 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3356
3357 hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
3358 if (hdr->sh_size != 0)
3359 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3360
3361 hdr = &elf_tdata (abfd)->strtab_hdr;
3362 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3363
3364 elf_tdata (abfd)->next_file_pos = off;
3365
3366 /* Now that we know where the .strtab section goes, write it
3367 out. */
3368 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
3369 || ! _bfd_stringtab_emit (abfd, strtab))
3370 return FALSE;
3371 _bfd_stringtab_free (strtab);
3372 }
3373
3374 abfd->output_has_begun = TRUE;
3375
3376 return TRUE;
3377 }
3378
3379 /* Create a mapping from a set of sections to a program segment. */
3380
3381 static struct elf_segment_map *
3382 make_mapping (bfd *abfd,
3383 asection **sections,
3384 unsigned int from,
3385 unsigned int to,
3386 bfd_boolean phdr)
3387 {
3388 struct elf_segment_map *m;
3389 unsigned int i;
3390 asection **hdrpp;
3391 bfd_size_type amt;
3392
3393 amt = sizeof (struct elf_segment_map);
3394 amt += (to - from - 1) * sizeof (asection *);
3395 m = bfd_zalloc (abfd, amt);
3396 if (m == NULL)
3397 return NULL;
3398 m->next = NULL;
3399 m->p_type = PT_LOAD;
3400 for (i = from, hdrpp = sections + from; i < to; i++, hdrpp++)
3401 m->sections[i - from] = *hdrpp;
3402 m->count = to - from;
3403
3404 if (from == 0 && phdr)
3405 {
3406 /* Include the headers in the first PT_LOAD segment. */
3407 m->includes_filehdr = 1;
3408 m->includes_phdrs = 1;
3409 }
3410
3411 return m;
3412 }
3413
3414 /* Create the PT_DYNAMIC segment, which includes DYNSEC. Returns NULL
3415 on failure. */
3416
3417 struct elf_segment_map *
3418 _bfd_elf_make_dynamic_segment (bfd *abfd, asection *dynsec)
3419 {
3420 struct elf_segment_map *m;
3421
3422 m = bfd_zalloc (abfd, sizeof (struct elf_segment_map));
3423 if (m == NULL)
3424 return NULL;
3425 m->next = NULL;
3426 m->p_type = PT_DYNAMIC;
3427 m->count = 1;
3428 m->sections[0] = dynsec;
3429
3430 return m;
3431 }
3432
3433 /* Set up a mapping from BFD sections to program segments. */
3434
3435 static bfd_boolean
3436 map_sections_to_segments (bfd *abfd)
3437 {
3438 asection **sections = NULL;
3439 asection *s;
3440 unsigned int i;
3441 unsigned int count;
3442 struct elf_segment_map *mfirst;
3443 struct elf_segment_map **pm;
3444 struct elf_segment_map *m;
3445 asection *last_hdr;
3446 bfd_vma last_size;
3447 unsigned int phdr_index;
3448 bfd_vma maxpagesize;
3449 asection **hdrpp;
3450 bfd_boolean phdr_in_segment = TRUE;
3451 bfd_boolean writable;
3452 int tls_count = 0;
3453 asection *first_tls = NULL;
3454 asection *dynsec, *eh_frame_hdr;
3455 bfd_size_type amt;
3456
3457 if (elf_tdata (abfd)->segment_map != NULL)
3458 return TRUE;
3459
3460 if (bfd_count_sections (abfd) == 0)
3461 return TRUE;
3462
3463 /* Select the allocated sections, and sort them. */
3464
3465 amt = bfd_count_sections (abfd) * sizeof (asection *);
3466 sections = bfd_malloc (amt);
3467 if (sections == NULL)
3468 goto error_return;
3469
3470 i = 0;
3471 for (s = abfd->sections; s != NULL; s = s->next)
3472 {
3473 if ((s->flags & SEC_ALLOC) != 0)
3474 {
3475 sections[i] = s;
3476 ++i;
3477 }
3478 }
3479 BFD_ASSERT (i <= bfd_count_sections (abfd));
3480 count = i;
3481
3482 qsort (sections, (size_t) count, sizeof (asection *), elf_sort_sections);
3483
3484 /* Build the mapping. */
3485
3486 mfirst = NULL;
3487 pm = &mfirst;
3488
3489 /* If we have a .interp section, then create a PT_PHDR segment for
3490 the program headers and a PT_INTERP segment for the .interp
3491 section. */
3492 s = bfd_get_section_by_name (abfd, ".interp");
3493 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3494 {
3495 amt = sizeof (struct elf_segment_map);
3496 m = bfd_zalloc (abfd, amt);
3497 if (m == NULL)
3498 goto error_return;
3499 m->next = NULL;
3500 m->p_type = PT_PHDR;
3501 /* FIXME: UnixWare and Solaris set PF_X, Irix 5 does not. */
3502 m->p_flags = PF_R | PF_X;
3503 m->p_flags_valid = 1;
3504 m->includes_phdrs = 1;
3505
3506 *pm = m;
3507 pm = &m->next;
3508
3509 amt = sizeof (struct elf_segment_map);
3510 m = bfd_zalloc (abfd, amt);
3511 if (m == NULL)
3512 goto error_return;
3513 m->next = NULL;
3514 m->p_type = PT_INTERP;
3515 m->count = 1;
3516 m->sections[0] = s;
3517
3518 *pm = m;
3519 pm = &m->next;
3520 }
3521
3522 /* Look through the sections. We put sections in the same program
3523 segment when the start of the second section can be placed within
3524 a few bytes of the end of the first section. */
3525 last_hdr = NULL;
3526 last_size = 0;
3527 phdr_index = 0;
3528 maxpagesize = get_elf_backend_data (abfd)->maxpagesize;
3529 writable = FALSE;
3530 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
3531 if (dynsec != NULL
3532 && (dynsec->flags & SEC_LOAD) == 0)
3533 dynsec = NULL;
3534
3535 /* Deal with -Ttext or something similar such that the first section
3536 is not adjacent to the program headers. This is an
3537 approximation, since at this point we don't know exactly how many
3538 program headers we will need. */
3539 if (count > 0)
3540 {
3541 bfd_size_type phdr_size;
3542
3543 phdr_size = elf_tdata (abfd)->program_header_size;
3544 if (phdr_size == 0)
3545 phdr_size = get_elf_backend_data (abfd)->s->sizeof_phdr;
3546 if ((abfd->flags & D_PAGED) == 0
3547 || sections[0]->lma < phdr_size
3548 || sections[0]->lma % maxpagesize < phdr_size % maxpagesize)
3549 phdr_in_segment = FALSE;
3550 }
3551
3552 for (i = 0, hdrpp = sections; i < count; i++, hdrpp++)
3553 {
3554 asection *hdr;
3555 bfd_boolean new_segment;
3556
3557 hdr = *hdrpp;
3558
3559 /* See if this section and the last one will fit in the same
3560 segment. */
3561
3562 if (last_hdr == NULL)
3563 {
3564 /* If we don't have a segment yet, then we don't need a new
3565 one (we build the last one after this loop). */
3566 new_segment = FALSE;
3567 }
3568 else if (last_hdr->lma - last_hdr->vma != hdr->lma - hdr->vma)
3569 {
3570 /* If this section has a different relation between the
3571 virtual address and the load address, then we need a new
3572 segment. */
3573 new_segment = TRUE;
3574 }
3575 else if (BFD_ALIGN (last_hdr->lma + last_size, maxpagesize)
3576 < BFD_ALIGN (hdr->lma, maxpagesize))
3577 {
3578 /* If putting this section in this segment would force us to
3579 skip a page in the segment, then we need a new segment. */
3580 new_segment = TRUE;
3581 }
3582 else if ((last_hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0
3583 && (hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) != 0)
3584 {
3585 /* We don't want to put a loadable section after a
3586 nonloadable section in the same segment.
3587 Consider .tbss sections as loadable for this purpose. */
3588 new_segment = TRUE;
3589 }
3590 else if ((abfd->flags & D_PAGED) == 0)
3591 {
3592 /* If the file is not demand paged, which means that we
3593 don't require the sections to be correctly aligned in the
3594 file, then there is no other reason for a new segment. */
3595 new_segment = FALSE;
3596 }
3597 else if (! writable
3598 && (hdr->flags & SEC_READONLY) == 0
3599 && (((last_hdr->lma + last_size - 1)
3600 & ~(maxpagesize - 1))
3601 != (hdr->lma & ~(maxpagesize - 1))))
3602 {
3603 /* We don't want to put a writable section in a read only
3604 segment, unless they are on the same page in memory
3605 anyhow. We already know that the last section does not
3606 bring us past the current section on the page, so the
3607 only case in which the new section is not on the same
3608 page as the previous section is when the previous section
3609 ends precisely on a page boundary. */
3610 new_segment = TRUE;
3611 }
3612 else
3613 {
3614 /* Otherwise, we can use the same segment. */
3615 new_segment = FALSE;
3616 }
3617
3618 if (! new_segment)
3619 {
3620 if ((hdr->flags & SEC_READONLY) == 0)
3621 writable = TRUE;
3622 last_hdr = hdr;
3623 /* .tbss sections effectively have zero size. */
3624 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) != SEC_THREAD_LOCAL)
3625 last_size = hdr->size;
3626 else
3627 last_size = 0;
3628 continue;
3629 }
3630
3631 /* We need a new program segment. We must create a new program
3632 header holding all the sections from phdr_index until hdr. */
3633
3634 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
3635 if (m == NULL)
3636 goto error_return;
3637
3638 *pm = m;
3639 pm = &m->next;
3640
3641 if ((hdr->flags & SEC_READONLY) == 0)
3642 writable = TRUE;
3643 else
3644 writable = FALSE;
3645
3646 last_hdr = hdr;
3647 /* .tbss sections effectively have zero size. */
3648 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) != SEC_THREAD_LOCAL)
3649 last_size = hdr->size;
3650 else
3651 last_size = 0;
3652 phdr_index = i;
3653 phdr_in_segment = FALSE;
3654 }
3655
3656 /* Create a final PT_LOAD program segment. */
3657 if (last_hdr != NULL)
3658 {
3659 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
3660 if (m == NULL)
3661 goto error_return;
3662
3663 *pm = m;
3664 pm = &m->next;
3665 }
3666
3667 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
3668 if (dynsec != NULL)
3669 {
3670 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
3671 if (m == NULL)
3672 goto error_return;
3673 *pm = m;
3674 pm = &m->next;
3675 }
3676
3677 /* For each loadable .note section, add a PT_NOTE segment. We don't
3678 use bfd_get_section_by_name, because if we link together
3679 nonloadable .note sections and loadable .note sections, we will
3680 generate two .note sections in the output file. FIXME: Using
3681 names for section types is bogus anyhow. */
3682 for (s = abfd->sections; s != NULL; s = s->next)
3683 {
3684 if ((s->flags & SEC_LOAD) != 0
3685 && strncmp (s->name, ".note", 5) == 0)
3686 {
3687 amt = sizeof (struct elf_segment_map);
3688 m = bfd_zalloc (abfd, amt);
3689 if (m == NULL)
3690 goto error_return;
3691 m->next = NULL;
3692 m->p_type = PT_NOTE;
3693 m->count = 1;
3694 m->sections[0] = s;
3695
3696 *pm = m;
3697 pm = &m->next;
3698 }
3699 if (s->flags & SEC_THREAD_LOCAL)
3700 {
3701 if (! tls_count)
3702 first_tls = s;
3703 tls_count++;
3704 }
3705 }
3706
3707 /* If there are any SHF_TLS output sections, add PT_TLS segment. */
3708 if (tls_count > 0)
3709 {
3710 int i;
3711
3712 amt = sizeof (struct elf_segment_map);
3713 amt += (tls_count - 1) * sizeof (asection *);
3714 m = bfd_zalloc (abfd, amt);
3715 if (m == NULL)
3716 goto error_return;
3717 m->next = NULL;
3718 m->p_type = PT_TLS;
3719 m->count = tls_count;
3720 /* Mandated PF_R. */
3721 m->p_flags = PF_R;
3722 m->p_flags_valid = 1;
3723 for (i = 0; i < tls_count; ++i)
3724 {
3725 BFD_ASSERT (first_tls->flags & SEC_THREAD_LOCAL);
3726 m->sections[i] = first_tls;
3727 first_tls = first_tls->next;
3728 }
3729
3730 *pm = m;
3731 pm = &m->next;
3732 }
3733
3734 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
3735 segment. */
3736 eh_frame_hdr = elf_tdata (abfd)->eh_frame_hdr;
3737 if (eh_frame_hdr != NULL
3738 && (eh_frame_hdr->output_section->flags & SEC_LOAD) != 0)
3739 {
3740 amt = sizeof (struct elf_segment_map);
3741 m = bfd_zalloc (abfd, amt);
3742 if (m == NULL)
3743 goto error_return;
3744 m->next = NULL;
3745 m->p_type = PT_GNU_EH_FRAME;
3746 m->count = 1;
3747 m->sections[0] = eh_frame_hdr->output_section;
3748
3749 *pm = m;
3750 pm = &m->next;
3751 }
3752
3753 if (elf_tdata (abfd)->stack_flags)
3754 {
3755 amt = sizeof (struct elf_segment_map);
3756 m = bfd_zalloc (abfd, amt);
3757 if (m == NULL)
3758 goto error_return;
3759 m->next = NULL;
3760 m->p_type = PT_GNU_STACK;
3761 m->p_flags = elf_tdata (abfd)->stack_flags;
3762 m->p_flags_valid = 1;
3763
3764 *pm = m;
3765 pm = &m->next;
3766 }
3767
3768 if (elf_tdata (abfd)->relro)
3769 {
3770 amt = sizeof (struct elf_segment_map);
3771 m = bfd_zalloc (abfd, amt);
3772 if (m == NULL)
3773 goto error_return;
3774 m->next = NULL;
3775 m->p_type = PT_GNU_RELRO;
3776 m->p_flags = PF_R;
3777 m->p_flags_valid = 1;
3778
3779 *pm = m;
3780 pm = &m->next;
3781 }
3782
3783 free (sections);
3784 sections = NULL;
3785
3786 elf_tdata (abfd)->segment_map = mfirst;
3787 return TRUE;
3788
3789 error_return:
3790 if (sections != NULL)
3791 free (sections);
3792 return FALSE;
3793 }
3794
3795 /* Sort sections by address. */
3796
3797 static int
3798 elf_sort_sections (const void *arg1, const void *arg2)
3799 {
3800 const asection *sec1 = *(const asection **) arg1;
3801 const asection *sec2 = *(const asection **) arg2;
3802 bfd_size_type size1, size2;
3803
3804 /* Sort by LMA first, since this is the address used to
3805 place the section into a segment. */
3806 if (sec1->lma < sec2->lma)
3807 return -1;
3808 else if (sec1->lma > sec2->lma)
3809 return 1;
3810
3811 /* Then sort by VMA. Normally the LMA and the VMA will be
3812 the same, and this will do nothing. */
3813 if (sec1->vma < sec2->vma)
3814 return -1;
3815 else if (sec1->vma > sec2->vma)
3816 return 1;
3817
3818 /* Put !SEC_LOAD sections after SEC_LOAD ones. */
3819
3820 #define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0)
3821
3822 if (TOEND (sec1))
3823 {
3824 if (TOEND (sec2))
3825 {
3826 /* If the indicies are the same, do not return 0
3827 here, but continue to try the next comparison. */
3828 if (sec1->target_index - sec2->target_index != 0)
3829 return sec1->target_index - sec2->target_index;
3830 }
3831 else
3832 return 1;
3833 }
3834 else if (TOEND (sec2))
3835 return -1;
3836
3837 #undef TOEND
3838
3839 /* Sort by size, to put zero sized sections
3840 before others at the same address. */
3841
3842 size1 = (sec1->flags & SEC_LOAD) ? sec1->size : 0;
3843 size2 = (sec2->flags & SEC_LOAD) ? sec2->size : 0;
3844
3845 if (size1 < size2)
3846 return -1;
3847 if (size1 > size2)
3848 return 1;
3849
3850 return sec1->target_index - sec2->target_index;
3851 }
3852
3853 /* Ian Lance Taylor writes:
3854
3855 We shouldn't be using % with a negative signed number. That's just
3856 not good. We have to make sure either that the number is not
3857 negative, or that the number has an unsigned type. When the types
3858 are all the same size they wind up as unsigned. When file_ptr is a
3859 larger signed type, the arithmetic winds up as signed long long,
3860 which is wrong.
3861
3862 What we're trying to say here is something like ``increase OFF by
3863 the least amount that will cause it to be equal to the VMA modulo
3864 the page size.'' */
3865 /* In other words, something like:
3866
3867 vma_offset = m->sections[0]->vma % bed->maxpagesize;
3868 off_offset = off % bed->maxpagesize;
3869 if (vma_offset < off_offset)
3870 adjustment = vma_offset + bed->maxpagesize - off_offset;
3871 else
3872 adjustment = vma_offset - off_offset;
3873
3874 which can can be collapsed into the expression below. */
3875
3876 static file_ptr
3877 vma_page_aligned_bias (bfd_vma vma, ufile_ptr off, bfd_vma maxpagesize)
3878 {
3879 return ((vma - off) % maxpagesize);
3880 }
3881
3882 /* Assign file positions to the sections based on the mapping from
3883 sections to segments. This function also sets up some fields in
3884 the file header, and writes out the program headers. */
3885
3886 static bfd_boolean
3887 assign_file_positions_for_segments (bfd *abfd, struct bfd_link_info *link_info)
3888 {
3889 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3890 unsigned int count;
3891 struct elf_segment_map *m;
3892 unsigned int alloc;
3893 Elf_Internal_Phdr *phdrs;
3894 file_ptr off, voff;
3895 bfd_vma filehdr_vaddr, filehdr_paddr;
3896 bfd_vma phdrs_vaddr, phdrs_paddr;
3897 Elf_Internal_Phdr *p;
3898 bfd_size_type amt;
3899
3900 if (elf_tdata (abfd)->segment_map == NULL)
3901 {
3902 if (! map_sections_to_segments (abfd))
3903 return FALSE;
3904 }
3905 else
3906 {
3907 /* The placement algorithm assumes that non allocated sections are
3908 not in PT_LOAD segments. We ensure this here by removing such
3909 sections from the segment map. */
3910 for (m = elf_tdata (abfd)->segment_map;
3911 m != NULL;
3912 m = m->next)
3913 {
3914 unsigned int new_count;
3915 unsigned int i;
3916
3917 if (m->p_type != PT_LOAD)
3918 continue;
3919
3920 new_count = 0;
3921 for (i = 0; i < m->count; i ++)
3922 {
3923 if ((m->sections[i]->flags & SEC_ALLOC) != 0)
3924 {
3925 if (i != new_count)
3926 m->sections[new_count] = m->sections[i];
3927
3928 new_count ++;
3929 }
3930 }
3931
3932 if (new_count != m->count)
3933 m->count = new_count;
3934 }
3935 }
3936
3937 if (bed->elf_backend_modify_segment_map)
3938 {
3939 if (! (*bed->elf_backend_modify_segment_map) (abfd, link_info))
3940 return FALSE;
3941 }
3942
3943 count = 0;
3944 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
3945 ++count;
3946
3947 elf_elfheader (abfd)->e_phoff = bed->s->sizeof_ehdr;
3948 elf_elfheader (abfd)->e_phentsize = bed->s->sizeof_phdr;
3949 elf_elfheader (abfd)->e_phnum = count;
3950
3951 if (count == 0)
3952 {
3953 elf_tdata (abfd)->next_file_pos = bed->s->sizeof_ehdr;
3954 return TRUE;
3955 }
3956
3957 /* If we already counted the number of program segments, make sure
3958 that we allocated enough space. This happens when SIZEOF_HEADERS
3959 is used in a linker script. */
3960 alloc = elf_tdata (abfd)->program_header_size / bed->s->sizeof_phdr;
3961 if (alloc != 0 && count > alloc)
3962 {
3963 ((*_bfd_error_handler)
3964 (_("%B: Not enough room for program headers (allocated %u, need %u)"),
3965 abfd, alloc, count));
3966 bfd_set_error (bfd_error_bad_value);
3967 return FALSE;
3968 }
3969
3970 if (alloc == 0)
3971 alloc = count;
3972
3973 amt = alloc * sizeof (Elf_Internal_Phdr);
3974 phdrs = bfd_alloc (abfd, amt);
3975 if (phdrs == NULL)
3976 return FALSE;
3977
3978 off = bed->s->sizeof_ehdr;
3979 off += alloc * bed->s->sizeof_phdr;
3980
3981 filehdr_vaddr = 0;
3982 filehdr_paddr = 0;
3983 phdrs_vaddr = 0;
3984 phdrs_paddr = 0;
3985
3986 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
3987 m != NULL;
3988 m = m->next, p++)
3989 {
3990 unsigned int i;
3991 asection **secpp;
3992
3993 /* If elf_segment_map is not from map_sections_to_segments, the
3994 sections may not be correctly ordered. NOTE: sorting should
3995 not be done to the PT_NOTE section of a corefile, which may
3996 contain several pseudo-sections artificially created by bfd.
3997 Sorting these pseudo-sections breaks things badly. */
3998 if (m->count > 1
3999 && !(elf_elfheader (abfd)->e_type == ET_CORE
4000 && m->p_type == PT_NOTE))
4001 qsort (m->sections, (size_t) m->count, sizeof (asection *),
4002 elf_sort_sections);
4003
4004 /* An ELF segment (described by Elf_Internal_Phdr) may contain a
4005 number of sections with contents contributing to both p_filesz
4006 and p_memsz, followed by a number of sections with no contents
4007 that just contribute to p_memsz. In this loop, OFF tracks next
4008 available file offset for PT_LOAD and PT_NOTE segments. VOFF is
4009 an adjustment we use for segments that have no file contents
4010 but need zero filled memory allocation. */
4011 voff = 0;
4012 p->p_type = m->p_type;
4013 p->p_flags = m->p_flags;
4014
4015 if (p->p_type == PT_LOAD
4016 && m->count > 0)
4017 {
4018 bfd_size_type align;
4019 bfd_vma adjust;
4020
4021 if ((abfd->flags & D_PAGED) != 0)
4022 align = bed->maxpagesize;
4023 else
4024 {
4025 unsigned int align_power = 0;
4026 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4027 {
4028 unsigned int secalign;
4029
4030 secalign = bfd_get_section_alignment (abfd, *secpp);
4031 if (secalign > align_power)
4032 align_power = secalign;
4033 }
4034 align = (bfd_size_type) 1 << align_power;
4035 }
4036
4037 adjust = vma_page_aligned_bias (m->sections[0]->vma, off, align);
4038 off += adjust;
4039 if (adjust != 0
4040 && !m->includes_filehdr
4041 && !m->includes_phdrs
4042 && (ufile_ptr) off >= align)
4043 {
4044 /* If the first section isn't loadable, the same holds for
4045 any other sections. Since the segment won't need file
4046 space, we can make p_offset overlap some prior segment.
4047 However, .tbss is special. If a segment starts with
4048 .tbss, we need to look at the next section to decide
4049 whether the segment has any loadable sections. */
4050 i = 0;
4051 while ((m->sections[i]->flags & SEC_LOAD) == 0)
4052 {
4053 if ((m->sections[i]->flags & SEC_THREAD_LOCAL) == 0
4054 || ++i >= m->count)
4055 {
4056 off -= adjust;
4057 voff = adjust - align;
4058 break;
4059 }
4060 }
4061 }
4062 }
4063 /* Make sure the .dynamic section is the first section in the
4064 PT_DYNAMIC segment. */
4065 else if (p->p_type == PT_DYNAMIC
4066 && m->count > 1
4067 && strcmp (m->sections[0]->name, ".dynamic") != 0)
4068 {
4069 _bfd_error_handler
4070 (_("%B: The first section in the PT_DYNAMIC segment is not the .dynamic section"),
4071 abfd);
4072 bfd_set_error (bfd_error_bad_value);
4073 return FALSE;
4074 }
4075
4076 if (m->count == 0)
4077 p->p_vaddr = 0;
4078 else
4079 p->p_vaddr = m->sections[0]->vma;
4080
4081 if (m->p_paddr_valid)
4082 p->p_paddr = m->p_paddr;
4083 else if (m->count == 0)
4084 p->p_paddr = 0;
4085 else
4086 p->p_paddr = m->sections[0]->lma;
4087
4088 if (p->p_type == PT_LOAD
4089 && (abfd->flags & D_PAGED) != 0)
4090 p->p_align = bed->maxpagesize;
4091 else if (m->count == 0)
4092 p->p_align = 1 << bed->s->log_file_align;
4093 else
4094 p->p_align = 0;
4095
4096 p->p_offset = 0;
4097 p->p_filesz = 0;
4098 p->p_memsz = 0;
4099
4100 if (m->includes_filehdr)
4101 {
4102 if (! m->p_flags_valid)
4103 p->p_flags |= PF_R;
4104 p->p_offset = 0;
4105 p->p_filesz = bed->s->sizeof_ehdr;
4106 p->p_memsz = bed->s->sizeof_ehdr;
4107 if (m->count > 0)
4108 {
4109 BFD_ASSERT (p->p_type == PT_LOAD);
4110
4111 if (p->p_vaddr < (bfd_vma) off)
4112 {
4113 (*_bfd_error_handler)
4114 (_("%B: Not enough room for program headers, try linking with -N"),
4115 abfd);
4116 bfd_set_error (bfd_error_bad_value);
4117 return FALSE;
4118 }
4119
4120 p->p_vaddr -= off;
4121 if (! m->p_paddr_valid)
4122 p->p_paddr -= off;
4123 }
4124 if (p->p_type == PT_LOAD)
4125 {
4126 filehdr_vaddr = p->p_vaddr;
4127 filehdr_paddr = p->p_paddr;
4128 }
4129 }
4130
4131 if (m->includes_phdrs)
4132 {
4133 if (! m->p_flags_valid)
4134 p->p_flags |= PF_R;
4135
4136 if (m->includes_filehdr)
4137 {
4138 if (p->p_type == PT_LOAD)
4139 {
4140 phdrs_vaddr = p->p_vaddr + bed->s->sizeof_ehdr;
4141 phdrs_paddr = p->p_paddr + bed->s->sizeof_ehdr;
4142 }
4143 }
4144 else
4145 {
4146 p->p_offset = bed->s->sizeof_ehdr;
4147
4148 if (m->count > 0)
4149 {
4150 BFD_ASSERT (p->p_type == PT_LOAD);
4151 p->p_vaddr -= off - p->p_offset;
4152 if (! m->p_paddr_valid)
4153 p->p_paddr -= off - p->p_offset;
4154 }
4155
4156 if (p->p_type == PT_LOAD)
4157 {
4158 phdrs_vaddr = p->p_vaddr;
4159 phdrs_paddr = p->p_paddr;
4160 }
4161 else
4162 phdrs_vaddr = bed->maxpagesize + bed->s->sizeof_ehdr;
4163 }
4164
4165 p->p_filesz += alloc * bed->s->sizeof_phdr;
4166 p->p_memsz += alloc * bed->s->sizeof_phdr;
4167 }
4168
4169 if (p->p_type == PT_LOAD
4170 || (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core))
4171 {
4172 if (! m->includes_filehdr && ! m->includes_phdrs)
4173 p->p_offset = off + voff;
4174 else
4175 {
4176 file_ptr adjust;
4177
4178 adjust = off - (p->p_offset + p->p_filesz);
4179 p->p_filesz += adjust;
4180 p->p_memsz += adjust;
4181 }
4182 }
4183
4184 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4185 {
4186 asection *sec;
4187 flagword flags;
4188 bfd_size_type align;
4189
4190 sec = *secpp;
4191 flags = sec->flags;
4192 align = 1 << bfd_get_section_alignment (abfd, sec);
4193
4194 if (p->p_type == PT_LOAD
4195 || p->p_type == PT_TLS)
4196 {
4197 bfd_signed_vma adjust;
4198
4199 if ((flags & SEC_LOAD) != 0)
4200 {
4201 adjust = sec->lma - (p->p_paddr + p->p_filesz);
4202 if (adjust < 0)
4203 {
4204 (*_bfd_error_handler)
4205 (_("%B: section %A lma 0x%lx overlaps previous sections"),
4206 abfd, sec, (unsigned long) sec->lma);
4207 adjust = 0;
4208 }
4209 off += adjust;
4210 p->p_filesz += adjust;
4211 p->p_memsz += adjust;
4212 }
4213 /* .tbss is special. It doesn't contribute to p_memsz of
4214 normal segments. */
4215 else if ((flags & SEC_THREAD_LOCAL) == 0
4216 || p->p_type == PT_TLS)
4217 {
4218 /* The section VMA must equal the file position
4219 modulo the page size. */
4220 bfd_size_type page = align;
4221 if ((abfd->flags & D_PAGED) != 0)
4222 page = bed->maxpagesize;
4223 adjust = vma_page_aligned_bias (sec->vma,
4224 p->p_vaddr + p->p_memsz,
4225 page);
4226 p->p_memsz += adjust;
4227 }
4228 }
4229
4230 if (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core)
4231 {
4232 /* The section at i == 0 is the one that actually contains
4233 everything. */
4234 if (i == 0)
4235 {
4236 sec->filepos = off;
4237 off += sec->size;
4238 p->p_filesz = sec->size;
4239 p->p_memsz = 0;
4240 p->p_align = 1;
4241 }
4242 else
4243 {
4244 /* The rest are fake sections that shouldn't be written. */
4245 sec->filepos = 0;
4246 sec->size = 0;
4247 sec->flags = 0;
4248 continue;
4249 }
4250 }
4251 else
4252 {
4253 if (p->p_type == PT_LOAD)
4254 {
4255 sec->filepos = off;
4256 /* FIXME: The SEC_HAS_CONTENTS test here dates back to
4257 1997, and the exact reason for it isn't clear. One
4258 plausible explanation is that it is to work around
4259 a problem we have with linker scripts using data
4260 statements in NOLOAD sections. I don't think it
4261 makes a great deal of sense to have such a section
4262 assigned to a PT_LOAD segment, but apparently
4263 people do this. The data statement results in a
4264 bfd_data_link_order being built, and these need
4265 section contents to write into. Eventually, we get
4266 to _bfd_elf_write_object_contents which writes any
4267 section with contents to the output. Make room
4268 here for the write, so that following segments are
4269 not trashed. */
4270 if ((flags & SEC_LOAD) != 0
4271 || (flags & SEC_HAS_CONTENTS) != 0)
4272 off += sec->size;
4273 }
4274
4275 if ((flags & SEC_LOAD) != 0)
4276 {
4277 p->p_filesz += sec->size;
4278 p->p_memsz += sec->size;
4279 }
4280 /* PR ld/594: Sections in note segments which are not loaded
4281 contribute to the file size but not the in-memory size. */
4282 else if (p->p_type == PT_NOTE
4283 && (flags & SEC_HAS_CONTENTS) != 0)
4284 p->p_filesz += sec->size;
4285
4286 /* .tbss is special. It doesn't contribute to p_memsz of
4287 normal segments. */
4288 else if ((flags & SEC_THREAD_LOCAL) == 0
4289 || p->p_type == PT_TLS)
4290 p->p_memsz += sec->size;
4291
4292 if (p->p_type == PT_TLS
4293 && sec->size == 0
4294 && (sec->flags & SEC_HAS_CONTENTS) == 0)
4295 {
4296 struct bfd_link_order *o;
4297 bfd_vma tbss_size = 0;
4298
4299 for (o = sec->map_head.link_order; o != NULL; o = o->next)
4300 if (tbss_size < o->offset + o->size)
4301 tbss_size = o->offset + o->size;
4302
4303 p->p_memsz += tbss_size;
4304 }
4305
4306 if (align > p->p_align
4307 && (p->p_type != PT_LOAD || (abfd->flags & D_PAGED) == 0))
4308 p->p_align = align;
4309 }
4310
4311 if (! m->p_flags_valid)
4312 {
4313 p->p_flags |= PF_R;
4314 if ((flags & SEC_CODE) != 0)
4315 p->p_flags |= PF_X;
4316 if ((flags & SEC_READONLY) == 0)
4317 p->p_flags |= PF_W;
4318 }
4319 }
4320 }
4321
4322 /* Now that we have set the section file positions, we can set up
4323 the file positions for the non PT_LOAD segments. */
4324 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
4325 m != NULL;
4326 m = m->next, p++)
4327 {
4328 if (p->p_type != PT_LOAD && m->count > 0)
4329 {
4330 BFD_ASSERT (! m->includes_filehdr && ! m->includes_phdrs);
4331 /* If the section has not yet been assigned a file position,
4332 do so now. The ARM BPABI requires that .dynamic section
4333 not be marked SEC_ALLOC because it is not part of any
4334 PT_LOAD segment, so it will not be processed above. */
4335 if (p->p_type == PT_DYNAMIC && m->sections[0]->filepos == 0)
4336 {
4337 unsigned int i;
4338 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
4339
4340 i = 1;
4341 while (i_shdrpp[i]->bfd_section != m->sections[0])
4342 ++i;
4343 off = (_bfd_elf_assign_file_position_for_section
4344 (i_shdrpp[i], off, TRUE));
4345 p->p_filesz = m->sections[0]->size;
4346 }
4347 p->p_offset = m->sections[0]->filepos;
4348 }
4349 if (m->count == 0)
4350 {
4351 if (m->includes_filehdr)
4352 {
4353 p->p_vaddr = filehdr_vaddr;
4354 if (! m->p_paddr_valid)
4355 p->p_paddr = filehdr_paddr;
4356 }
4357 else if (m->includes_phdrs)
4358 {
4359 p->p_vaddr = phdrs_vaddr;
4360 if (! m->p_paddr_valid)
4361 p->p_paddr = phdrs_paddr;
4362 }
4363 else if (p->p_type == PT_GNU_RELRO)
4364 {
4365 Elf_Internal_Phdr *lp;
4366
4367 for (lp = phdrs; lp < phdrs + count; ++lp)
4368 {
4369 if (lp->p_type == PT_LOAD
4370 && lp->p_vaddr <= link_info->relro_end
4371 && lp->p_vaddr >= link_info->relro_start
4372 && lp->p_vaddr + lp->p_filesz
4373 >= link_info->relro_end)
4374 break;
4375 }
4376
4377 if (lp < phdrs + count
4378 && link_info->relro_end > lp->p_vaddr)
4379 {
4380 p->p_vaddr = lp->p_vaddr;
4381 p->p_paddr = lp->p_paddr;
4382 p->p_offset = lp->p_offset;
4383 p->p_filesz = link_info->relro_end - lp->p_vaddr;
4384 p->p_memsz = p->p_filesz;
4385 p->p_align = 1;
4386 p->p_flags = (lp->p_flags & ~PF_W);
4387 }
4388 else
4389 {
4390 memset (p, 0, sizeof *p);
4391 p->p_type = PT_NULL;
4392 }
4393 }
4394 }
4395 }
4396
4397 /* Clear out any program headers we allocated but did not use. */
4398 for (; count < alloc; count++, p++)
4399 {
4400 memset (p, 0, sizeof *p);
4401 p->p_type = PT_NULL;
4402 }
4403
4404 elf_tdata (abfd)->phdr = phdrs;
4405
4406 elf_tdata (abfd)->next_file_pos = off;
4407
4408 /* Write out the program headers. */
4409 if (bfd_seek (abfd, (bfd_signed_vma) bed->s->sizeof_ehdr, SEEK_SET) != 0
4410 || bed->s->write_out_phdrs (abfd, phdrs, alloc) != 0)
4411 return FALSE;
4412
4413 return TRUE;
4414 }
4415
4416 /* Get the size of the program header.
4417
4418 If this is called by the linker before any of the section VMA's are set, it
4419 can't calculate the correct value for a strange memory layout. This only
4420 happens when SIZEOF_HEADERS is used in a linker script. In this case,
4421 SORTED_HDRS is NULL and we assume the normal scenario of one text and one
4422 data segment (exclusive of .interp and .dynamic).
4423
4424 ??? User written scripts must either not use SIZEOF_HEADERS, or assume there
4425 will be two segments. */
4426
4427 static bfd_size_type
4428 get_program_header_size (bfd *abfd)
4429 {
4430 size_t segs;
4431 asection *s;
4432 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4433
4434 /* We can't return a different result each time we're called. */
4435 if (elf_tdata (abfd)->program_header_size != 0)
4436 return elf_tdata (abfd)->program_header_size;
4437
4438 if (elf_tdata (abfd)->segment_map != NULL)
4439 {
4440 struct elf_segment_map *m;
4441
4442 segs = 0;
4443 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
4444 ++segs;
4445 elf_tdata (abfd)->program_header_size = segs * bed->s->sizeof_phdr;
4446 return elf_tdata (abfd)->program_header_size;
4447 }
4448
4449 /* Assume we will need exactly two PT_LOAD segments: one for text
4450 and one for data. */
4451 segs = 2;
4452
4453 s = bfd_get_section_by_name (abfd, ".interp");
4454 if (s != NULL && (s->flags & SEC_LOAD) != 0)
4455 {
4456 /* If we have a loadable interpreter section, we need a
4457 PT_INTERP segment. In this case, assume we also need a
4458 PT_PHDR segment, although that may not be true for all
4459 targets. */
4460 segs += 2;
4461 }
4462
4463 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
4464 {
4465 /* We need a PT_DYNAMIC segment. */
4466 ++segs;
4467 }
4468
4469 if (elf_tdata (abfd)->eh_frame_hdr)
4470 {
4471 /* We need a PT_GNU_EH_FRAME segment. */
4472 ++segs;
4473 }
4474
4475 if (elf_tdata (abfd)->stack_flags)
4476 {
4477 /* We need a PT_GNU_STACK segment. */
4478 ++segs;
4479 }
4480
4481 if (elf_tdata (abfd)->relro)
4482 {
4483 /* We need a PT_GNU_RELRO segment. */
4484 ++segs;
4485 }
4486
4487 for (s = abfd->sections; s != NULL; s = s->next)
4488 {
4489 if ((s->flags & SEC_LOAD) != 0
4490 && strncmp (s->name, ".note", 5) == 0)
4491 {
4492 /* We need a PT_NOTE segment. */
4493 ++segs;
4494 }
4495 }
4496
4497 for (s = abfd->sections; s != NULL; s = s->next)
4498 {
4499 if (s->flags & SEC_THREAD_LOCAL)
4500 {
4501 /* We need a PT_TLS segment. */
4502 ++segs;
4503 break;
4504 }
4505 }
4506
4507 /* Let the backend count up any program headers it might need. */
4508 if (bed->elf_backend_additional_program_headers)
4509 {
4510 int a;
4511
4512 a = (*bed->elf_backend_additional_program_headers) (abfd);
4513 if (a == -1)
4514 abort ();
4515 segs += a;
4516 }
4517
4518 elf_tdata (abfd)->program_header_size = segs * bed->s->sizeof_phdr;
4519 return elf_tdata (abfd)->program_header_size;
4520 }
4521
4522 /* Work out the file positions of all the sections. This is called by
4523 _bfd_elf_compute_section_file_positions. All the section sizes and
4524 VMAs must be known before this is called.
4525
4526 Reloc sections come in two flavours: Those processed specially as
4527 "side-channel" data attached to a section to which they apply, and
4528 those that bfd doesn't process as relocations. The latter sort are
4529 stored in a normal bfd section by bfd_section_from_shdr. We don't
4530 consider the former sort here, unless they form part of the loadable
4531 image. Reloc sections not assigned here will be handled later by
4532 assign_file_positions_for_relocs.
4533
4534 We also don't set the positions of the .symtab and .strtab here. */
4535
4536 static bfd_boolean
4537 assign_file_positions_except_relocs (bfd *abfd,
4538 struct bfd_link_info *link_info)
4539 {
4540 struct elf_obj_tdata * const tdata = elf_tdata (abfd);
4541 Elf_Internal_Ehdr * const i_ehdrp = elf_elfheader (abfd);
4542 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
4543 unsigned int num_sec = elf_numsections (abfd);
4544 file_ptr off;
4545 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4546
4547 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
4548 && bfd_get_format (abfd) != bfd_core)
4549 {
4550 Elf_Internal_Shdr **hdrpp;
4551 unsigned int i;
4552
4553 /* Start after the ELF header. */
4554 off = i_ehdrp->e_ehsize;
4555
4556 /* We are not creating an executable, which means that we are
4557 not creating a program header, and that the actual order of
4558 the sections in the file is unimportant. */
4559 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
4560 {
4561 Elf_Internal_Shdr *hdr;
4562
4563 hdr = *hdrpp;
4564 if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
4565 && hdr->bfd_section == NULL)
4566 || i == tdata->symtab_section
4567 || i == tdata->symtab_shndx_section
4568 || i == tdata->strtab_section)
4569 {
4570 hdr->sh_offset = -1;
4571 }
4572 else
4573 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4574
4575 if (i == SHN_LORESERVE - 1)
4576 {
4577 i += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4578 hdrpp += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4579 }
4580 }
4581 }
4582 else
4583 {
4584 unsigned int i;
4585 Elf_Internal_Shdr **hdrpp;
4586
4587 /* Assign file positions for the loaded sections based on the
4588 assignment of sections to segments. */
4589 if (! assign_file_positions_for_segments (abfd, link_info))
4590 return FALSE;
4591
4592 /* Assign file positions for the other sections. */
4593
4594 off = elf_tdata (abfd)->next_file_pos;
4595 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
4596 {
4597 Elf_Internal_Shdr *hdr;
4598
4599 hdr = *hdrpp;
4600 if (hdr->bfd_section != NULL
4601 && hdr->bfd_section->filepos != 0)
4602 hdr->sh_offset = hdr->bfd_section->filepos;
4603 else if ((hdr->sh_flags & SHF_ALLOC) != 0)
4604 {
4605 ((*_bfd_error_handler)
4606 (_("%B: warning: allocated section `%s' not in segment"),
4607 abfd,
4608 (hdr->bfd_section == NULL
4609 ? "*unknown*"
4610 : hdr->bfd_section->name)));
4611 if ((abfd->flags & D_PAGED) != 0)
4612 off += vma_page_aligned_bias (hdr->sh_addr, off,
4613 bed->maxpagesize);
4614 else
4615 off += vma_page_aligned_bias (hdr->sh_addr, off,
4616 hdr->sh_addralign);
4617 off = _bfd_elf_assign_file_position_for_section (hdr, off,
4618 FALSE);
4619 }
4620 else if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
4621 && hdr->bfd_section == NULL)
4622 || hdr == i_shdrpp[tdata->symtab_section]
4623 || hdr == i_shdrpp[tdata->symtab_shndx_section]
4624 || hdr == i_shdrpp[tdata->strtab_section])
4625 hdr->sh_offset = -1;
4626 else
4627 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4628
4629 if (i == SHN_LORESERVE - 1)
4630 {
4631 i += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4632 hdrpp += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4633 }
4634 }
4635 }
4636
4637 /* Place the section headers. */
4638 off = align_file_position (off, 1 << bed->s->log_file_align);
4639 i_ehdrp->e_shoff = off;
4640 off += i_ehdrp->e_shnum * i_ehdrp->e_shentsize;
4641
4642 elf_tdata (abfd)->next_file_pos = off;
4643
4644 return TRUE;
4645 }
4646
4647 static bfd_boolean
4648 prep_headers (bfd *abfd)
4649 {
4650 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
4651 Elf_Internal_Phdr *i_phdrp = 0; /* Program header table, internal form */
4652 Elf_Internal_Shdr **i_shdrp; /* Section header table, internal form */
4653 struct elf_strtab_hash *shstrtab;
4654 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4655
4656 i_ehdrp = elf_elfheader (abfd);
4657 i_shdrp = elf_elfsections (abfd);
4658
4659 shstrtab = _bfd_elf_strtab_init ();
4660 if (shstrtab == NULL)
4661 return FALSE;
4662
4663 elf_shstrtab (abfd) = shstrtab;
4664
4665 i_ehdrp->e_ident[EI_MAG0] = ELFMAG0;
4666 i_ehdrp->e_ident[EI_MAG1] = ELFMAG1;
4667 i_ehdrp->e_ident[EI_MAG2] = ELFMAG2;
4668 i_ehdrp->e_ident[EI_MAG3] = ELFMAG3;
4669
4670 i_ehdrp->e_ident[EI_CLASS] = bed->s->elfclass;
4671 i_ehdrp->e_ident[EI_DATA] =
4672 bfd_big_endian (abfd) ? ELFDATA2MSB : ELFDATA2LSB;
4673 i_ehdrp->e_ident[EI_VERSION] = bed->s->ev_current;
4674
4675 if ((abfd->flags & DYNAMIC) != 0)
4676 i_ehdrp->e_type = ET_DYN;
4677 else if ((abfd->flags & EXEC_P) != 0)
4678 i_ehdrp->e_type = ET_EXEC;
4679 else if (bfd_get_format (abfd) == bfd_core)
4680 i_ehdrp->e_type = ET_CORE;
4681 else
4682 i_ehdrp->e_type = ET_REL;
4683
4684 switch (bfd_get_arch (abfd))
4685 {
4686 case bfd_arch_unknown:
4687 i_ehdrp->e_machine = EM_NONE;
4688 break;
4689
4690 /* There used to be a long list of cases here, each one setting
4691 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
4692 in the corresponding bfd definition. To avoid duplication,
4693 the switch was removed. Machines that need special handling
4694 can generally do it in elf_backend_final_write_processing(),
4695 unless they need the information earlier than the final write.
4696 Such need can generally be supplied by replacing the tests for
4697 e_machine with the conditions used to determine it. */
4698 default:
4699 i_ehdrp->e_machine = bed->elf_machine_code;
4700 }
4701
4702 i_ehdrp->e_version = bed->s->ev_current;
4703 i_ehdrp->e_ehsize = bed->s->sizeof_ehdr;
4704
4705 /* No program header, for now. */
4706 i_ehdrp->e_phoff = 0;
4707 i_ehdrp->e_phentsize = 0;
4708 i_ehdrp->e_phnum = 0;
4709
4710 /* Each bfd section is section header entry. */
4711 i_ehdrp->e_entry = bfd_get_start_address (abfd);
4712 i_ehdrp->e_shentsize = bed->s->sizeof_shdr;
4713
4714 /* If we're building an executable, we'll need a program header table. */
4715 if (abfd->flags & EXEC_P)
4716 /* It all happens later. */
4717 ;
4718 else
4719 {
4720 i_ehdrp->e_phentsize = 0;
4721 i_phdrp = 0;
4722 i_ehdrp->e_phoff = 0;
4723 }
4724
4725 elf_tdata (abfd)->symtab_hdr.sh_name =
4726 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".symtab", FALSE);
4727 elf_tdata (abfd)->strtab_hdr.sh_name =
4728 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".strtab", FALSE);
4729 elf_tdata (abfd)->shstrtab_hdr.sh_name =
4730 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".shstrtab", FALSE);
4731 if (elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
4732 || elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
4733 || elf_tdata (abfd)->shstrtab_hdr.sh_name == (unsigned int) -1)
4734 return FALSE;
4735
4736 return TRUE;
4737 }
4738
4739 /* Assign file positions for all the reloc sections which are not part
4740 of the loadable file image. */
4741
4742 void
4743 _bfd_elf_assign_file_positions_for_relocs (bfd *abfd)
4744 {
4745 file_ptr off;
4746 unsigned int i, num_sec;
4747 Elf_Internal_Shdr **shdrpp;
4748
4749 off = elf_tdata (abfd)->next_file_pos;
4750
4751 num_sec = elf_numsections (abfd);
4752 for (i = 1, shdrpp = elf_elfsections (abfd) + 1; i < num_sec; i++, shdrpp++)
4753 {
4754 Elf_Internal_Shdr *shdrp;
4755
4756 shdrp = *shdrpp;
4757 if ((shdrp->sh_type == SHT_REL || shdrp->sh_type == SHT_RELA)
4758 && shdrp->sh_offset == -1)
4759 off = _bfd_elf_assign_file_position_for_section (shdrp, off, TRUE);
4760 }
4761
4762 elf_tdata (abfd)->next_file_pos = off;
4763 }
4764
4765 bfd_boolean
4766 _bfd_elf_write_object_contents (bfd *abfd)
4767 {
4768 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4769 Elf_Internal_Ehdr *i_ehdrp;
4770 Elf_Internal_Shdr **i_shdrp;
4771 bfd_boolean failed;
4772 unsigned int count, num_sec;
4773
4774 if (! abfd->output_has_begun
4775 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
4776 return FALSE;
4777
4778 i_shdrp = elf_elfsections (abfd);
4779 i_ehdrp = elf_elfheader (abfd);
4780
4781 failed = FALSE;
4782 bfd_map_over_sections (abfd, bed->s->write_relocs, &failed);
4783 if (failed)
4784 return FALSE;
4785
4786 _bfd_elf_assign_file_positions_for_relocs (abfd);
4787
4788 /* After writing the headers, we need to write the sections too... */
4789 num_sec = elf_numsections (abfd);
4790 for (count = 1; count < num_sec; count++)
4791 {
4792 if (bed->elf_backend_section_processing)
4793 (*bed->elf_backend_section_processing) (abfd, i_shdrp[count]);
4794 if (i_shdrp[count]->contents)
4795 {
4796 bfd_size_type amt = i_shdrp[count]->sh_size;
4797
4798 if (bfd_seek (abfd, i_shdrp[count]->sh_offset, SEEK_SET) != 0
4799 || bfd_bwrite (i_shdrp[count]->contents, amt, abfd) != amt)
4800 return FALSE;
4801 }
4802 if (count == SHN_LORESERVE - 1)
4803 count += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4804 }
4805
4806 /* Write out the section header names. */
4807 if (bfd_seek (abfd, elf_tdata (abfd)->shstrtab_hdr.sh_offset, SEEK_SET) != 0
4808 || ! _bfd_elf_strtab_emit (abfd, elf_shstrtab (abfd)))
4809 return FALSE;
4810
4811 if (bed->elf_backend_final_write_processing)
4812 (*bed->elf_backend_final_write_processing) (abfd,
4813 elf_tdata (abfd)->linker);
4814
4815 return bed->s->write_shdrs_and_ehdr (abfd);
4816 }
4817
4818 bfd_boolean
4819 _bfd_elf_write_corefile_contents (bfd *abfd)
4820 {
4821 /* Hopefully this can be done just like an object file. */
4822 return _bfd_elf_write_object_contents (abfd);
4823 }
4824
4825 /* Given a section, search the header to find them. */
4826
4827 int
4828 _bfd_elf_section_from_bfd_section (bfd *abfd, struct bfd_section *asect)
4829 {
4830 const struct elf_backend_data *bed;
4831 int index;
4832
4833 if (elf_section_data (asect) != NULL
4834 && elf_section_data (asect)->this_idx != 0)
4835 return elf_section_data (asect)->this_idx;
4836
4837 if (bfd_is_abs_section (asect))
4838 index = SHN_ABS;
4839 else if (bfd_is_com_section (asect))
4840 index = SHN_COMMON;
4841 else if (bfd_is_und_section (asect))
4842 index = SHN_UNDEF;
4843 else
4844 index = -1;
4845
4846 bed = get_elf_backend_data (abfd);
4847 if (bed->elf_backend_section_from_bfd_section)
4848 {
4849 int retval = index;
4850
4851 if ((*bed->elf_backend_section_from_bfd_section) (abfd, asect, &retval))
4852 return retval;
4853 }
4854
4855 if (index == -1)
4856 bfd_set_error (bfd_error_nonrepresentable_section);
4857
4858 return index;
4859 }
4860
4861 /* Given a BFD symbol, return the index in the ELF symbol table, or -1
4862 on error. */
4863
4864 int
4865 _bfd_elf_symbol_from_bfd_symbol (bfd *abfd, asymbol **asym_ptr_ptr)
4866 {
4867 asymbol *asym_ptr = *asym_ptr_ptr;
4868 int idx;
4869 flagword flags = asym_ptr->flags;
4870
4871 /* When gas creates relocations against local labels, it creates its
4872 own symbol for the section, but does put the symbol into the
4873 symbol chain, so udata is 0. When the linker is generating
4874 relocatable output, this section symbol may be for one of the
4875 input sections rather than the output section. */
4876 if (asym_ptr->udata.i == 0
4877 && (flags & BSF_SECTION_SYM)
4878 && asym_ptr->section)
4879 {
4880 int indx;
4881
4882 if (asym_ptr->section->output_section != NULL)
4883 indx = asym_ptr->section->output_section->index;
4884 else
4885 indx = asym_ptr->section->index;
4886 if (indx < elf_num_section_syms (abfd)
4887 && elf_section_syms (abfd)[indx] != NULL)
4888 asym_ptr->udata.i = elf_section_syms (abfd)[indx]->udata.i;
4889 }
4890
4891 idx = asym_ptr->udata.i;
4892
4893 if (idx == 0)
4894 {
4895 /* This case can occur when using --strip-symbol on a symbol
4896 which is used in a relocation entry. */
4897 (*_bfd_error_handler)
4898 (_("%B: symbol `%s' required but not present"),
4899 abfd, bfd_asymbol_name (asym_ptr));
4900 bfd_set_error (bfd_error_no_symbols);
4901 return -1;
4902 }
4903
4904 #if DEBUG & 4
4905 {
4906 fprintf (stderr,
4907 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8lx%s\n",
4908 (long) asym_ptr, asym_ptr->name, idx, flags,
4909 elf_symbol_flags (flags));
4910 fflush (stderr);
4911 }
4912 #endif
4913
4914 return idx;
4915 }
4916
4917 /* Copy private BFD data. This copies any program header information. */
4918
4919 static bfd_boolean
4920 copy_private_bfd_data (bfd *ibfd, bfd *obfd)
4921 {
4922 Elf_Internal_Ehdr *iehdr;
4923 struct elf_segment_map *map;
4924 struct elf_segment_map *map_first;
4925 struct elf_segment_map **pointer_to_map;
4926 Elf_Internal_Phdr *segment;
4927 asection *section;
4928 unsigned int i;
4929 unsigned int num_segments;
4930 bfd_boolean phdr_included = FALSE;
4931 bfd_vma maxpagesize;
4932 struct elf_segment_map *phdr_adjust_seg = NULL;
4933 unsigned int phdr_adjust_num = 0;
4934 const struct elf_backend_data *bed;
4935
4936 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
4937 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
4938 return TRUE;
4939
4940 if (elf_tdata (ibfd)->phdr == NULL)
4941 return TRUE;
4942
4943 bed = get_elf_backend_data (ibfd);
4944 iehdr = elf_elfheader (ibfd);
4945
4946 map_first = NULL;
4947 pointer_to_map = &map_first;
4948
4949 num_segments = elf_elfheader (ibfd)->e_phnum;
4950 maxpagesize = get_elf_backend_data (obfd)->maxpagesize;
4951
4952 /* Returns the end address of the segment + 1. */
4953 #define SEGMENT_END(segment, start) \
4954 (start + (segment->p_memsz > segment->p_filesz \
4955 ? segment->p_memsz : segment->p_filesz))
4956
4957 #define SECTION_SIZE(section, segment) \
4958 (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL)) \
4959 != SEC_THREAD_LOCAL || segment->p_type == PT_TLS) \
4960 ? section->size : 0)
4961
4962 /* Returns TRUE if the given section is contained within
4963 the given segment. VMA addresses are compared. */
4964 #define IS_CONTAINED_BY_VMA(section, segment) \
4965 (section->vma >= segment->p_vaddr \
4966 && (section->vma + SECTION_SIZE (section, segment) \
4967 <= (SEGMENT_END (segment, segment->p_vaddr))))
4968
4969 /* Returns TRUE if the given section is contained within
4970 the given segment. LMA addresses are compared. */
4971 #define IS_CONTAINED_BY_LMA(section, segment, base) \
4972 (section->lma >= base \
4973 && (section->lma + SECTION_SIZE (section, segment) \
4974 <= SEGMENT_END (segment, base)))
4975
4976 /* Special case: corefile "NOTE" section containing regs, prpsinfo etc. */
4977 #define IS_COREFILE_NOTE(p, s) \
4978 (p->p_type == PT_NOTE \
4979 && bfd_get_format (ibfd) == bfd_core \
4980 && s->vma == 0 && s->lma == 0 \
4981 && (bfd_vma) s->filepos >= p->p_offset \
4982 && ((bfd_vma) s->filepos + s->size \
4983 <= p->p_offset + p->p_filesz))
4984
4985 /* The complicated case when p_vaddr is 0 is to handle the Solaris
4986 linker, which generates a PT_INTERP section with p_vaddr and
4987 p_memsz set to 0. */
4988 #define IS_SOLARIS_PT_INTERP(p, s) \
4989 (p->p_vaddr == 0 \
4990 && p->p_paddr == 0 \
4991 && p->p_memsz == 0 \
4992 && p->p_filesz > 0 \
4993 && (s->flags & SEC_HAS_CONTENTS) != 0 \
4994 && s->size > 0 \
4995 && (bfd_vma) s->filepos >= p->p_offset \
4996 && ((bfd_vma) s->filepos + s->size \
4997 <= p->p_offset + p->p_filesz))
4998
4999 /* Decide if the given section should be included in the given segment.
5000 A section will be included if:
5001 1. It is within the address space of the segment -- we use the LMA
5002 if that is set for the segment and the VMA otherwise,
5003 2. It is an allocated segment,
5004 3. There is an output section associated with it,
5005 4. The section has not already been allocated to a previous segment.
5006 5. PT_GNU_STACK segments do not include any sections.
5007 6. PT_TLS segment includes only SHF_TLS sections.
5008 7. SHF_TLS sections are only in PT_TLS or PT_LOAD segments.
5009 8. PT_DYNAMIC should not contain empty sections at the beginning
5010 (with the possible exception of .dynamic). */
5011 #define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed) \
5012 ((((segment->p_paddr \
5013 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr) \
5014 : IS_CONTAINED_BY_VMA (section, segment)) \
5015 && (section->flags & SEC_ALLOC) != 0) \
5016 || IS_COREFILE_NOTE (segment, section)) \
5017 && section->output_section != NULL \
5018 && segment->p_type != PT_GNU_STACK \
5019 && (segment->p_type != PT_TLS \
5020 || (section->flags & SEC_THREAD_LOCAL)) \
5021 && (segment->p_type == PT_LOAD \
5022 || segment->p_type == PT_TLS \
5023 || (section->flags & SEC_THREAD_LOCAL) == 0) \
5024 && (segment->p_type != PT_DYNAMIC \
5025 || SECTION_SIZE (section, segment) > 0 \
5026 || (segment->p_paddr \
5027 ? segment->p_paddr != section->lma \
5028 : segment->p_vaddr != section->vma) \
5029 || (strcmp (bfd_get_section_name (ibfd, section), ".dynamic") \
5030 == 0)) \
5031 && ! section->segment_mark)
5032
5033 /* Returns TRUE iff seg1 starts after the end of seg2. */
5034 #define SEGMENT_AFTER_SEGMENT(seg1, seg2, field) \
5035 (seg1->field >= SEGMENT_END (seg2, seg2->field))
5036
5037 /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both
5038 their VMA address ranges and their LMA address ranges overlap.
5039 It is possible to have overlapping VMA ranges without overlapping LMA
5040 ranges. RedBoot images for example can have both .data and .bss mapped
5041 to the same VMA range, but with the .data section mapped to a different
5042 LMA. */
5043 #define SEGMENT_OVERLAPS(seg1, seg2) \
5044 ( !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr) \
5045 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr)) \
5046 && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr) \
5047 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr)))
5048
5049 /* Initialise the segment mark field. */
5050 for (section = ibfd->sections; section != NULL; section = section->next)
5051 section->segment_mark = FALSE;
5052
5053 /* Scan through the segments specified in the program header
5054 of the input BFD. For this first scan we look for overlaps
5055 in the loadable segments. These can be created by weird
5056 parameters to objcopy. Also, fix some solaris weirdness. */
5057 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5058 i < num_segments;
5059 i++, segment++)
5060 {
5061 unsigned int j;
5062 Elf_Internal_Phdr *segment2;
5063
5064 if (segment->p_type == PT_INTERP)
5065 for (section = ibfd->sections; section; section = section->next)
5066 if (IS_SOLARIS_PT_INTERP (segment, section))
5067 {
5068 /* Mininal change so that the normal section to segment
5069 assignment code will work. */
5070 segment->p_vaddr = section->vma;
5071 break;
5072 }
5073
5074 if (segment->p_type != PT_LOAD)
5075 continue;
5076
5077 /* Determine if this segment overlaps any previous segments. */
5078 for (j = 0, segment2 = elf_tdata (ibfd)->phdr; j < i; j++, segment2 ++)
5079 {
5080 bfd_signed_vma extra_length;
5081
5082 if (segment2->p_type != PT_LOAD
5083 || ! SEGMENT_OVERLAPS (segment, segment2))
5084 continue;
5085
5086 /* Merge the two segments together. */
5087 if (segment2->p_vaddr < segment->p_vaddr)
5088 {
5089 /* Extend SEGMENT2 to include SEGMENT and then delete
5090 SEGMENT. */
5091 extra_length =
5092 SEGMENT_END (segment, segment->p_vaddr)
5093 - SEGMENT_END (segment2, segment2->p_vaddr);
5094
5095 if (extra_length > 0)
5096 {
5097 segment2->p_memsz += extra_length;
5098 segment2->p_filesz += extra_length;
5099 }
5100
5101 segment->p_type = PT_NULL;
5102
5103 /* Since we have deleted P we must restart the outer loop. */
5104 i = 0;
5105 segment = elf_tdata (ibfd)->phdr;
5106 break;
5107 }
5108 else
5109 {
5110 /* Extend SEGMENT to include SEGMENT2 and then delete
5111 SEGMENT2. */
5112 extra_length =
5113 SEGMENT_END (segment2, segment2->p_vaddr)
5114 - SEGMENT_END (segment, segment->p_vaddr);
5115
5116 if (extra_length > 0)
5117 {
5118 segment->p_memsz += extra_length;
5119 segment->p_filesz += extra_length;
5120 }
5121
5122 segment2->p_type = PT_NULL;
5123 }
5124 }
5125 }
5126
5127 /* The second scan attempts to assign sections to segments. */
5128 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5129 i < num_segments;
5130 i ++, segment ++)
5131 {
5132 unsigned int section_count;
5133 asection ** sections;
5134 asection * output_section;
5135 unsigned int isec;
5136 bfd_vma matching_lma;
5137 bfd_vma suggested_lma;
5138 unsigned int j;
5139 bfd_size_type amt;
5140
5141 if (segment->p_type == PT_NULL)
5142 continue;
5143
5144 /* Compute how many sections might be placed into this segment. */
5145 for (section = ibfd->sections, section_count = 0;
5146 section != NULL;
5147 section = section->next)
5148 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
5149 ++section_count;
5150
5151 /* Allocate a segment map big enough to contain
5152 all of the sections we have selected. */
5153 amt = sizeof (struct elf_segment_map);
5154 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5155 map = bfd_alloc (obfd, amt);
5156 if (map == NULL)
5157 return FALSE;
5158
5159 /* Initialise the fields of the segment map. Default to
5160 using the physical address of the segment in the input BFD. */
5161 map->next = NULL;
5162 map->p_type = segment->p_type;
5163 map->p_flags = segment->p_flags;
5164 map->p_flags_valid = 1;
5165 map->p_paddr = segment->p_paddr;
5166 map->p_paddr_valid = 1;
5167
5168 /* Determine if this segment contains the ELF file header
5169 and if it contains the program headers themselves. */
5170 map->includes_filehdr = (segment->p_offset == 0
5171 && segment->p_filesz >= iehdr->e_ehsize);
5172
5173 map->includes_phdrs = 0;
5174
5175 if (! phdr_included || segment->p_type != PT_LOAD)
5176 {
5177 map->includes_phdrs =
5178 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
5179 && (segment->p_offset + segment->p_filesz
5180 >= ((bfd_vma) iehdr->e_phoff
5181 + iehdr->e_phnum * iehdr->e_phentsize)));
5182
5183 if (segment->p_type == PT_LOAD && map->includes_phdrs)
5184 phdr_included = TRUE;
5185 }
5186
5187 if (section_count == 0)
5188 {
5189 /* Special segments, such as the PT_PHDR segment, may contain
5190 no sections, but ordinary, loadable segments should contain
5191 something. They are allowed by the ELF spec however, so only
5192 a warning is produced. */
5193 if (segment->p_type == PT_LOAD)
5194 (*_bfd_error_handler)
5195 (_("%B: warning: Empty loadable segment detected, is this intentional ?\n"),
5196 ibfd);
5197
5198 map->count = 0;
5199 *pointer_to_map = map;
5200 pointer_to_map = &map->next;
5201
5202 continue;
5203 }
5204
5205 /* Now scan the sections in the input BFD again and attempt
5206 to add their corresponding output sections to the segment map.
5207 The problem here is how to handle an output section which has
5208 been moved (ie had its LMA changed). There are four possibilities:
5209
5210 1. None of the sections have been moved.
5211 In this case we can continue to use the segment LMA from the
5212 input BFD.
5213
5214 2. All of the sections have been moved by the same amount.
5215 In this case we can change the segment's LMA to match the LMA
5216 of the first section.
5217
5218 3. Some of the sections have been moved, others have not.
5219 In this case those sections which have not been moved can be
5220 placed in the current segment which will have to have its size,
5221 and possibly its LMA changed, and a new segment or segments will
5222 have to be created to contain the other sections.
5223
5224 4. The sections have been moved, but not by the same amount.
5225 In this case we can change the segment's LMA to match the LMA
5226 of the first section and we will have to create a new segment
5227 or segments to contain the other sections.
5228
5229 In order to save time, we allocate an array to hold the section
5230 pointers that we are interested in. As these sections get assigned
5231 to a segment, they are removed from this array. */
5232
5233 /* Gcc 2.96 miscompiles this code on mips. Don't do casting here
5234 to work around this long long bug. */
5235 amt = section_count * sizeof (asection *);
5236 sections = bfd_malloc (amt);
5237 if (sections == NULL)
5238 return FALSE;
5239
5240 /* Step One: Scan for segment vs section LMA conflicts.
5241 Also add the sections to the section array allocated above.
5242 Also add the sections to the current segment. In the common
5243 case, where the sections have not been moved, this means that
5244 we have completely filled the segment, and there is nothing
5245 more to do. */
5246 isec = 0;
5247 matching_lma = 0;
5248 suggested_lma = 0;
5249
5250 for (j = 0, section = ibfd->sections;
5251 section != NULL;
5252 section = section->next)
5253 {
5254 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
5255 {
5256 output_section = section->output_section;
5257
5258 sections[j ++] = section;
5259
5260 /* The Solaris native linker always sets p_paddr to 0.
5261 We try to catch that case here, and set it to the
5262 correct value. Note - some backends require that
5263 p_paddr be left as zero. */
5264 if (segment->p_paddr == 0
5265 && segment->p_vaddr != 0
5266 && (! bed->want_p_paddr_set_to_zero)
5267 && isec == 0
5268 && output_section->lma != 0
5269 && (output_section->vma == (segment->p_vaddr
5270 + (map->includes_filehdr
5271 ? iehdr->e_ehsize
5272 : 0)
5273 + (map->includes_phdrs
5274 ? (iehdr->e_phnum
5275 * iehdr->e_phentsize)
5276 : 0))))
5277 map->p_paddr = segment->p_vaddr;
5278
5279 /* Match up the physical address of the segment with the
5280 LMA address of the output section. */
5281 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
5282 || IS_COREFILE_NOTE (segment, section)
5283 || (bed->want_p_paddr_set_to_zero &&
5284 IS_CONTAINED_BY_VMA (output_section, segment))
5285 )
5286 {
5287 if (matching_lma == 0)
5288 matching_lma = output_section->lma;
5289
5290 /* We assume that if the section fits within the segment
5291 then it does not overlap any other section within that
5292 segment. */
5293 map->sections[isec ++] = output_section;
5294 }
5295 else if (suggested_lma == 0)
5296 suggested_lma = output_section->lma;
5297 }
5298 }
5299
5300 BFD_ASSERT (j == section_count);
5301
5302 /* Step Two: Adjust the physical address of the current segment,
5303 if necessary. */
5304 if (isec == section_count)
5305 {
5306 /* All of the sections fitted within the segment as currently
5307 specified. This is the default case. Add the segment to
5308 the list of built segments and carry on to process the next
5309 program header in the input BFD. */
5310 map->count = section_count;
5311 *pointer_to_map = map;
5312 pointer_to_map = &map->next;
5313
5314 free (sections);
5315 continue;
5316 }
5317 else
5318 {
5319 if (matching_lma != 0)
5320 {
5321 /* At least one section fits inside the current segment.
5322 Keep it, but modify its physical address to match the
5323 LMA of the first section that fitted. */
5324 map->p_paddr = matching_lma;
5325 }
5326 else
5327 {
5328 /* None of the sections fitted inside the current segment.
5329 Change the current segment's physical address to match
5330 the LMA of the first section. */
5331 map->p_paddr = suggested_lma;
5332 }
5333
5334 /* Offset the segment physical address from the lma
5335 to allow for space taken up by elf headers. */
5336 if (map->includes_filehdr)
5337 map->p_paddr -= iehdr->e_ehsize;
5338
5339 if (map->includes_phdrs)
5340 {
5341 map->p_paddr -= iehdr->e_phnum * iehdr->e_phentsize;
5342
5343 /* iehdr->e_phnum is just an estimate of the number
5344 of program headers that we will need. Make a note
5345 here of the number we used and the segment we chose
5346 to hold these headers, so that we can adjust the
5347 offset when we know the correct value. */
5348 phdr_adjust_num = iehdr->e_phnum;
5349 phdr_adjust_seg = map;
5350 }
5351 }
5352
5353 /* Step Three: Loop over the sections again, this time assigning
5354 those that fit to the current segment and removing them from the
5355 sections array; but making sure not to leave large gaps. Once all
5356 possible sections have been assigned to the current segment it is
5357 added to the list of built segments and if sections still remain
5358 to be assigned, a new segment is constructed before repeating
5359 the loop. */
5360 isec = 0;
5361 do
5362 {
5363 map->count = 0;
5364 suggested_lma = 0;
5365
5366 /* Fill the current segment with sections that fit. */
5367 for (j = 0; j < section_count; j++)
5368 {
5369 section = sections[j];
5370
5371 if (section == NULL)
5372 continue;
5373
5374 output_section = section->output_section;
5375
5376 BFD_ASSERT (output_section != NULL);
5377
5378 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
5379 || IS_COREFILE_NOTE (segment, section))
5380 {
5381 if (map->count == 0)
5382 {
5383 /* If the first section in a segment does not start at
5384 the beginning of the segment, then something is
5385 wrong. */
5386 if (output_section->lma !=
5387 (map->p_paddr
5388 + (map->includes_filehdr ? iehdr->e_ehsize : 0)
5389 + (map->includes_phdrs
5390 ? iehdr->e_phnum * iehdr->e_phentsize
5391 : 0)))
5392 abort ();
5393 }
5394 else
5395 {
5396 asection * prev_sec;
5397
5398 prev_sec = map->sections[map->count - 1];
5399
5400 /* If the gap between the end of the previous section
5401 and the start of this section is more than
5402 maxpagesize then we need to start a new segment. */
5403 if ((BFD_ALIGN (prev_sec->lma + prev_sec->size,
5404 maxpagesize)
5405 < BFD_ALIGN (output_section->lma, maxpagesize))
5406 || ((prev_sec->lma + prev_sec->size)
5407 > output_section->lma))
5408 {
5409 if (suggested_lma == 0)
5410 suggested_lma = output_section->lma;
5411
5412 continue;
5413 }
5414 }
5415
5416 map->sections[map->count++] = output_section;
5417 ++isec;
5418 sections[j] = NULL;
5419 section->segment_mark = TRUE;
5420 }
5421 else if (suggested_lma == 0)
5422 suggested_lma = output_section->lma;
5423 }
5424
5425 BFD_ASSERT (map->count > 0);
5426
5427 /* Add the current segment to the list of built segments. */
5428 *pointer_to_map = map;
5429 pointer_to_map = &map->next;
5430
5431 if (isec < section_count)
5432 {
5433 /* We still have not allocated all of the sections to
5434 segments. Create a new segment here, initialise it
5435 and carry on looping. */
5436 amt = sizeof (struct elf_segment_map);
5437 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5438 map = bfd_alloc (obfd, amt);
5439 if (map == NULL)
5440 {
5441 free (sections);
5442 return FALSE;
5443 }
5444
5445 /* Initialise the fields of the segment map. Set the physical
5446 physical address to the LMA of the first section that has
5447 not yet been assigned. */
5448 map->next = NULL;
5449 map->p_type = segment->p_type;
5450 map->p_flags = segment->p_flags;
5451 map->p_flags_valid = 1;
5452 map->p_paddr = suggested_lma;
5453 map->p_paddr_valid = 1;
5454 map->includes_filehdr = 0;
5455 map->includes_phdrs = 0;
5456 }
5457 }
5458 while (isec < section_count);
5459
5460 free (sections);
5461 }
5462
5463 /* The Solaris linker creates program headers in which all the
5464 p_paddr fields are zero. When we try to objcopy or strip such a
5465 file, we get confused. Check for this case, and if we find it
5466 reset the p_paddr_valid fields. */
5467 for (map = map_first; map != NULL; map = map->next)
5468 if (map->p_paddr != 0)
5469 break;
5470 if (map == NULL)
5471 for (map = map_first; map != NULL; map = map->next)
5472 map->p_paddr_valid = 0;
5473
5474 elf_tdata (obfd)->segment_map = map_first;
5475
5476 /* If we had to estimate the number of program headers that were
5477 going to be needed, then check our estimate now and adjust
5478 the offset if necessary. */
5479 if (phdr_adjust_seg != NULL)
5480 {
5481 unsigned int count;
5482
5483 for (count = 0, map = map_first; map != NULL; map = map->next)
5484 count++;
5485
5486 if (count > phdr_adjust_num)
5487 phdr_adjust_seg->p_paddr
5488 -= (count - phdr_adjust_num) * iehdr->e_phentsize;
5489 }
5490
5491 #undef SEGMENT_END
5492 #undef SECTION_SIZE
5493 #undef IS_CONTAINED_BY_VMA
5494 #undef IS_CONTAINED_BY_LMA
5495 #undef IS_COREFILE_NOTE
5496 #undef IS_SOLARIS_PT_INTERP
5497 #undef INCLUDE_SECTION_IN_SEGMENT
5498 #undef SEGMENT_AFTER_SEGMENT
5499 #undef SEGMENT_OVERLAPS
5500 return TRUE;
5501 }
5502
5503 /* Copy private section information. This copies over the entsize
5504 field, and sometimes the info field. */
5505
5506 bfd_boolean
5507 _bfd_elf_copy_private_section_data (bfd *ibfd,
5508 asection *isec,
5509 bfd *obfd,
5510 asection *osec)
5511 {
5512 Elf_Internal_Shdr *ihdr, *ohdr;
5513
5514 if (ibfd->xvec->flavour != bfd_target_elf_flavour
5515 || obfd->xvec->flavour != bfd_target_elf_flavour)
5516 return TRUE;
5517
5518 ihdr = &elf_section_data (isec)->this_hdr;
5519 ohdr = &elf_section_data (osec)->this_hdr;
5520
5521 ohdr->sh_entsize = ihdr->sh_entsize;
5522
5523 if (ihdr->sh_type == SHT_SYMTAB
5524 || ihdr->sh_type == SHT_DYNSYM
5525 || ihdr->sh_type == SHT_GNU_verneed
5526 || ihdr->sh_type == SHT_GNU_verdef)
5527 ohdr->sh_info = ihdr->sh_info;
5528
5529 /* Set things up for objcopy. The output SHT_GROUP section will
5530 have its elf_next_in_group pointing back to the input group
5531 members. Ignore linker created group section. See
5532 elfNN_ia64_object_p in elfxx-ia64.c. */
5533 if (elf_sec_group (isec) == NULL
5534 || (elf_sec_group (isec)->flags & SEC_LINKER_CREATED) == 0)
5535 {
5536 elf_next_in_group (osec) = elf_next_in_group (isec);
5537 elf_group_name (osec) = elf_group_name (isec);
5538 }
5539
5540 osec->use_rela_p = isec->use_rela_p;
5541
5542 return TRUE;
5543 }
5544
5545 /* Copy private header information. */
5546
5547 bfd_boolean
5548 _bfd_elf_copy_private_header_data (bfd *ibfd, bfd *obfd)
5549 {
5550 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
5551 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
5552 return TRUE;
5553
5554 /* Copy over private BFD data if it has not already been copied.
5555 This must be done here, rather than in the copy_private_bfd_data
5556 entry point, because the latter is called after the section
5557 contents have been set, which means that the program headers have
5558 already been worked out. */
5559 if (elf_tdata (obfd)->segment_map == NULL && elf_tdata (ibfd)->phdr != NULL)
5560 {
5561 if (! copy_private_bfd_data (ibfd, obfd))
5562 return FALSE;
5563 }
5564
5565 return TRUE;
5566 }
5567
5568 /* Copy private symbol information. If this symbol is in a section
5569 which we did not map into a BFD section, try to map the section
5570 index correctly. We use special macro definitions for the mapped
5571 section indices; these definitions are interpreted by the
5572 swap_out_syms function. */
5573
5574 #define MAP_ONESYMTAB (SHN_HIOS + 1)
5575 #define MAP_DYNSYMTAB (SHN_HIOS + 2)
5576 #define MAP_STRTAB (SHN_HIOS + 3)
5577 #define MAP_SHSTRTAB (SHN_HIOS + 4)
5578 #define MAP_SYM_SHNDX (SHN_HIOS + 5)
5579
5580 bfd_boolean
5581 _bfd_elf_copy_private_symbol_data (bfd *ibfd,
5582 asymbol *isymarg,
5583 bfd *obfd,
5584 asymbol *osymarg)
5585 {
5586 elf_symbol_type *isym, *osym;
5587
5588 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
5589 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
5590 return TRUE;
5591
5592 isym = elf_symbol_from (ibfd, isymarg);
5593 osym = elf_symbol_from (obfd, osymarg);
5594
5595 if (isym != NULL
5596 && osym != NULL
5597 && bfd_is_abs_section (isym->symbol.section))
5598 {
5599 unsigned int shndx;
5600
5601 shndx = isym->internal_elf_sym.st_shndx;
5602 if (shndx == elf_onesymtab (ibfd))
5603 shndx = MAP_ONESYMTAB;
5604 else if (shndx == elf_dynsymtab (ibfd))
5605 shndx = MAP_DYNSYMTAB;
5606 else if (shndx == elf_tdata (ibfd)->strtab_section)
5607 shndx = MAP_STRTAB;
5608 else if (shndx == elf_tdata (ibfd)->shstrtab_section)
5609 shndx = MAP_SHSTRTAB;
5610 else if (shndx == elf_tdata (ibfd)->symtab_shndx_section)
5611 shndx = MAP_SYM_SHNDX;
5612 osym->internal_elf_sym.st_shndx = shndx;
5613 }
5614
5615 return TRUE;
5616 }
5617
5618 /* Swap out the symbols. */
5619
5620 static bfd_boolean
5621 swap_out_syms (bfd *abfd,
5622 struct bfd_strtab_hash **sttp,
5623 int relocatable_p)
5624 {
5625 const struct elf_backend_data *bed;
5626 int symcount;
5627 asymbol **syms;
5628 struct bfd_strtab_hash *stt;
5629 Elf_Internal_Shdr *symtab_hdr;
5630 Elf_Internal_Shdr *symtab_shndx_hdr;
5631 Elf_Internal_Shdr *symstrtab_hdr;
5632 bfd_byte *outbound_syms;
5633 bfd_byte *outbound_shndx;
5634 int idx;
5635 bfd_size_type amt;
5636 bfd_boolean name_local_sections;
5637
5638 if (!elf_map_symbols (abfd))
5639 return FALSE;
5640
5641 /* Dump out the symtabs. */
5642 stt = _bfd_elf_stringtab_init ();
5643 if (stt == NULL)
5644 return FALSE;
5645
5646 bed = get_elf_backend_data (abfd);
5647 symcount = bfd_get_symcount (abfd);
5648 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
5649 symtab_hdr->sh_type = SHT_SYMTAB;
5650 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
5651 symtab_hdr->sh_size = symtab_hdr->sh_entsize * (symcount + 1);
5652 symtab_hdr->sh_info = elf_num_locals (abfd) + 1;
5653 symtab_hdr->sh_addralign = 1 << bed->s->log_file_align;
5654
5655 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
5656 symstrtab_hdr->sh_type = SHT_STRTAB;
5657
5658 amt = (bfd_size_type) (1 + symcount) * bed->s->sizeof_sym;
5659 outbound_syms = bfd_alloc (abfd, amt);
5660 if (outbound_syms == NULL)
5661 {
5662 _bfd_stringtab_free (stt);
5663 return FALSE;
5664 }
5665 symtab_hdr->contents = outbound_syms;
5666
5667 outbound_shndx = NULL;
5668 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
5669 if (symtab_shndx_hdr->sh_name != 0)
5670 {
5671 amt = (bfd_size_type) (1 + symcount) * sizeof (Elf_External_Sym_Shndx);
5672 outbound_shndx = bfd_zalloc (abfd, amt);
5673 if (outbound_shndx == NULL)
5674 {
5675 _bfd_stringtab_free (stt);
5676 return FALSE;
5677 }
5678
5679 symtab_shndx_hdr->contents = outbound_shndx;
5680 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
5681 symtab_shndx_hdr->sh_size = amt;
5682 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
5683 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
5684 }
5685
5686 /* Now generate the data (for "contents"). */
5687 {
5688 /* Fill in zeroth symbol and swap it out. */
5689 Elf_Internal_Sym sym;
5690 sym.st_name = 0;
5691 sym.st_value = 0;
5692 sym.st_size = 0;
5693 sym.st_info = 0;
5694 sym.st_other = 0;
5695 sym.st_shndx = SHN_UNDEF;
5696 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
5697 outbound_syms += bed->s->sizeof_sym;
5698 if (outbound_shndx != NULL)
5699 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
5700 }
5701
5702 name_local_sections
5703 = (bed->elf_backend_name_local_section_symbols
5704 && bed->elf_backend_name_local_section_symbols (abfd));
5705
5706 syms = bfd_get_outsymbols (abfd);
5707 for (idx = 0; idx < symcount; idx++)
5708 {
5709 Elf_Internal_Sym sym;
5710 bfd_vma value = syms[idx]->value;
5711 elf_symbol_type *type_ptr;
5712 flagword flags = syms[idx]->flags;
5713 int type;
5714
5715 if (!name_local_sections
5716 && (flags & (BSF_SECTION_SYM | BSF_GLOBAL)) == BSF_SECTION_SYM)
5717 {
5718 /* Local section symbols have no name. */
5719 sym.st_name = 0;
5720 }
5721 else
5722 {
5723 sym.st_name = (unsigned long) _bfd_stringtab_add (stt,
5724 syms[idx]->name,
5725 TRUE, FALSE);
5726 if (sym.st_name == (unsigned long) -1)
5727 {
5728 _bfd_stringtab_free (stt);
5729 return FALSE;
5730 }
5731 }
5732
5733 type_ptr = elf_symbol_from (abfd, syms[idx]);
5734
5735 if ((flags & BSF_SECTION_SYM) == 0
5736 && bfd_is_com_section (syms[idx]->section))
5737 {
5738 /* ELF common symbols put the alignment into the `value' field,
5739 and the size into the `size' field. This is backwards from
5740 how BFD handles it, so reverse it here. */
5741 sym.st_size = value;
5742 if (type_ptr == NULL
5743 || type_ptr->internal_elf_sym.st_value == 0)
5744 sym.st_value = value >= 16 ? 16 : (1 << bfd_log2 (value));
5745 else
5746 sym.st_value = type_ptr->internal_elf_sym.st_value;
5747 sym.st_shndx = _bfd_elf_section_from_bfd_section
5748 (abfd, syms[idx]->section);
5749 }
5750 else
5751 {
5752 asection *sec = syms[idx]->section;
5753 int shndx;
5754
5755 if (sec->output_section)
5756 {
5757 value += sec->output_offset;
5758 sec = sec->output_section;
5759 }
5760
5761 /* Don't add in the section vma for relocatable output. */
5762 if (! relocatable_p)
5763 value += sec->vma;
5764 sym.st_value = value;
5765 sym.st_size = type_ptr ? type_ptr->internal_elf_sym.st_size : 0;
5766
5767 if (bfd_is_abs_section (sec)
5768 && type_ptr != NULL
5769 && type_ptr->internal_elf_sym.st_shndx != 0)
5770 {
5771 /* This symbol is in a real ELF section which we did
5772 not create as a BFD section. Undo the mapping done
5773 by copy_private_symbol_data. */
5774 shndx = type_ptr->internal_elf_sym.st_shndx;
5775 switch (shndx)
5776 {
5777 case MAP_ONESYMTAB:
5778 shndx = elf_onesymtab (abfd);
5779 break;
5780 case MAP_DYNSYMTAB:
5781 shndx = elf_dynsymtab (abfd);
5782 break;
5783 case MAP_STRTAB:
5784 shndx = elf_tdata (abfd)->strtab_section;
5785 break;
5786 case MAP_SHSTRTAB:
5787 shndx = elf_tdata (abfd)->shstrtab_section;
5788 break;
5789 case MAP_SYM_SHNDX:
5790 shndx = elf_tdata (abfd)->symtab_shndx_section;
5791 break;
5792 default:
5793 break;
5794 }
5795 }
5796 else
5797 {
5798 shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
5799
5800 if (shndx == -1)
5801 {
5802 asection *sec2;
5803
5804 /* Writing this would be a hell of a lot easier if
5805 we had some decent documentation on bfd, and
5806 knew what to expect of the library, and what to
5807 demand of applications. For example, it
5808 appears that `objcopy' might not set the
5809 section of a symbol to be a section that is
5810 actually in the output file. */
5811 sec2 = bfd_get_section_by_name (abfd, sec->name);
5812 if (sec2 == NULL)
5813 {
5814 _bfd_error_handler (_("\
5815 Unable to find equivalent output section for symbol '%s' from section '%s'"),
5816 syms[idx]->name ? syms[idx]->name : "<Local sym>",
5817 sec->name);
5818 bfd_set_error (bfd_error_invalid_operation);
5819 _bfd_stringtab_free (stt);
5820 return FALSE;
5821 }
5822
5823 shndx = _bfd_elf_section_from_bfd_section (abfd, sec2);
5824 BFD_ASSERT (shndx != -1);
5825 }
5826 }
5827
5828 sym.st_shndx = shndx;
5829 }
5830
5831 if ((flags & BSF_THREAD_LOCAL) != 0)
5832 type = STT_TLS;
5833 else if ((flags & BSF_FUNCTION) != 0)
5834 type = STT_FUNC;
5835 else if ((flags & BSF_OBJECT) != 0)
5836 type = STT_OBJECT;
5837 else
5838 type = STT_NOTYPE;
5839
5840 if (syms[idx]->section->flags & SEC_THREAD_LOCAL)
5841 type = STT_TLS;
5842
5843 /* Processor-specific types. */
5844 if (type_ptr != NULL
5845 && bed->elf_backend_get_symbol_type)
5846 type = ((*bed->elf_backend_get_symbol_type)
5847 (&type_ptr->internal_elf_sym, type));
5848
5849 if (flags & BSF_SECTION_SYM)
5850 {
5851 if (flags & BSF_GLOBAL)
5852 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
5853 else
5854 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
5855 }
5856 else if (bfd_is_com_section (syms[idx]->section))
5857 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
5858 else if (bfd_is_und_section (syms[idx]->section))
5859 sym.st_info = ELF_ST_INFO (((flags & BSF_WEAK)
5860 ? STB_WEAK
5861 : STB_GLOBAL),
5862 type);
5863 else if (flags & BSF_FILE)
5864 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
5865 else
5866 {
5867 int bind = STB_LOCAL;
5868
5869 if (flags & BSF_LOCAL)
5870 bind = STB_LOCAL;
5871 else if (flags & BSF_WEAK)
5872 bind = STB_WEAK;
5873 else if (flags & BSF_GLOBAL)
5874 bind = STB_GLOBAL;
5875
5876 sym.st_info = ELF_ST_INFO (bind, type);
5877 }
5878
5879 if (type_ptr != NULL)
5880 sym.st_other = type_ptr->internal_elf_sym.st_other;
5881 else
5882 sym.st_other = 0;
5883
5884 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
5885 outbound_syms += bed->s->sizeof_sym;
5886 if (outbound_shndx != NULL)
5887 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
5888 }
5889
5890 *sttp = stt;
5891 symstrtab_hdr->sh_size = _bfd_stringtab_size (stt);
5892 symstrtab_hdr->sh_type = SHT_STRTAB;
5893
5894 symstrtab_hdr->sh_flags = 0;
5895 symstrtab_hdr->sh_addr = 0;
5896 symstrtab_hdr->sh_entsize = 0;
5897 symstrtab_hdr->sh_link = 0;
5898 symstrtab_hdr->sh_info = 0;
5899 symstrtab_hdr->sh_addralign = 1;
5900
5901 return TRUE;
5902 }
5903
5904 /* Return the number of bytes required to hold the symtab vector.
5905
5906 Note that we base it on the count plus 1, since we will null terminate
5907 the vector allocated based on this size. However, the ELF symbol table
5908 always has a dummy entry as symbol #0, so it ends up even. */
5909
5910 long
5911 _bfd_elf_get_symtab_upper_bound (bfd *abfd)
5912 {
5913 long symcount;
5914 long symtab_size;
5915 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->symtab_hdr;
5916
5917 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
5918 symtab_size = (symcount + 1) * (sizeof (asymbol *));
5919 if (symcount > 0)
5920 symtab_size -= sizeof (asymbol *);
5921
5922 return symtab_size;
5923 }
5924
5925 long
5926 _bfd_elf_get_dynamic_symtab_upper_bound (bfd *abfd)
5927 {
5928 long symcount;
5929 long symtab_size;
5930 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->dynsymtab_hdr;
5931
5932 if (elf_dynsymtab (abfd) == 0)
5933 {
5934 bfd_set_error (bfd_error_invalid_operation);
5935 return -1;
5936 }
5937
5938 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
5939 symtab_size = (symcount + 1) * (sizeof (asymbol *));
5940 if (symcount > 0)
5941 symtab_size -= sizeof (asymbol *);
5942
5943 return symtab_size;
5944 }
5945
5946 long
5947 _bfd_elf_get_reloc_upper_bound (bfd *abfd ATTRIBUTE_UNUSED,
5948 sec_ptr asect)
5949 {
5950 return (asect->reloc_count + 1) * sizeof (arelent *);
5951 }
5952
5953 /* Canonicalize the relocs. */
5954
5955 long
5956 _bfd_elf_canonicalize_reloc (bfd *abfd,
5957 sec_ptr section,
5958 arelent **relptr,
5959 asymbol **symbols)
5960 {
5961 arelent *tblptr;
5962 unsigned int i;
5963 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5964
5965 if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE))
5966 return -1;
5967
5968 tblptr = section->relocation;
5969 for (i = 0; i < section->reloc_count; i++)
5970 *relptr++ = tblptr++;
5971
5972 *relptr = NULL;
5973
5974 return section->reloc_count;
5975 }
5976
5977 long
5978 _bfd_elf_canonicalize_symtab (bfd *abfd, asymbol **allocation)
5979 {
5980 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5981 long symcount = bed->s->slurp_symbol_table (abfd, allocation, FALSE);
5982
5983 if (symcount >= 0)
5984 bfd_get_symcount (abfd) = symcount;
5985 return symcount;
5986 }
5987
5988 long
5989 _bfd_elf_canonicalize_dynamic_symtab (bfd *abfd,
5990 asymbol **allocation)
5991 {
5992 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5993 long symcount = bed->s->slurp_symbol_table (abfd, allocation, TRUE);
5994
5995 if (symcount >= 0)
5996 bfd_get_dynamic_symcount (abfd) = symcount;
5997 return symcount;
5998 }
5999
6000 /* Return the size required for the dynamic reloc entries. Any loadable
6001 section that was actually installed in the BFD, and has type SHT_REL
6002 or SHT_RELA, and uses the dynamic symbol table, is considered to be a
6003 dynamic reloc section. */
6004
6005 long
6006 _bfd_elf_get_dynamic_reloc_upper_bound (bfd *abfd)
6007 {
6008 long ret;
6009 asection *s;
6010
6011 if (elf_dynsymtab (abfd) == 0)
6012 {
6013 bfd_set_error (bfd_error_invalid_operation);
6014 return -1;
6015 }
6016
6017 ret = sizeof (arelent *);
6018 for (s = abfd->sections; s != NULL; s = s->next)
6019 if ((s->flags & SEC_LOAD) != 0
6020 && elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
6021 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
6022 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
6023 ret += ((s->size / elf_section_data (s)->this_hdr.sh_entsize)
6024 * sizeof (arelent *));
6025
6026 return ret;
6027 }
6028
6029 /* Canonicalize the dynamic relocation entries. Note that we return the
6030 dynamic relocations as a single block, although they are actually
6031 associated with particular sections; the interface, which was
6032 designed for SunOS style shared libraries, expects that there is only
6033 one set of dynamic relocs. Any loadable section that was actually
6034 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses the
6035 dynamic symbol table, is considered to be a dynamic reloc section. */
6036
6037 long
6038 _bfd_elf_canonicalize_dynamic_reloc (bfd *abfd,
6039 arelent **storage,
6040 asymbol **syms)
6041 {
6042 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
6043 asection *s;
6044 long ret;
6045
6046 if (elf_dynsymtab (abfd) == 0)
6047 {
6048 bfd_set_error (bfd_error_invalid_operation);
6049 return -1;
6050 }
6051
6052 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
6053 ret = 0;
6054 for (s = abfd->sections; s != NULL; s = s->next)
6055 {
6056 if ((s->flags & SEC_LOAD) != 0
6057 && elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
6058 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
6059 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
6060 {
6061 arelent *p;
6062 long count, i;
6063
6064 if (! (*slurp_relocs) (abfd, s, syms, TRUE))
6065 return -1;
6066 count = s->size / elf_section_data (s)->this_hdr.sh_entsize;
6067 p = s->relocation;
6068 for (i = 0; i < count; i++)
6069 *storage++ = p++;
6070 ret += count;
6071 }
6072 }
6073
6074 *storage = NULL;
6075
6076 return ret;
6077 }
6078 \f
6079 /* Read in the version information. */
6080
6081 bfd_boolean
6082 _bfd_elf_slurp_version_tables (bfd *abfd, bfd_boolean default_imported_symver)
6083 {
6084 bfd_byte *contents = NULL;
6085 bfd_size_type amt;
6086 unsigned int freeidx = 0;
6087
6088 if (elf_dynverref (abfd) != 0)
6089 {
6090 Elf_Internal_Shdr *hdr;
6091 Elf_External_Verneed *everneed;
6092 Elf_Internal_Verneed *iverneed;
6093 unsigned int i;
6094
6095 hdr = &elf_tdata (abfd)->dynverref_hdr;
6096
6097 amt = (bfd_size_type) hdr->sh_info * sizeof (Elf_Internal_Verneed);
6098 elf_tdata (abfd)->verref = bfd_zalloc (abfd, amt);
6099 if (elf_tdata (abfd)->verref == NULL)
6100 goto error_return;
6101
6102 elf_tdata (abfd)->cverrefs = hdr->sh_info;
6103
6104 contents = bfd_malloc (hdr->sh_size);
6105 if (contents == NULL)
6106 goto error_return;
6107 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
6108 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
6109 goto error_return;
6110
6111 everneed = (Elf_External_Verneed *) contents;
6112 iverneed = elf_tdata (abfd)->verref;
6113 for (i = 0; i < hdr->sh_info; i++, iverneed++)
6114 {
6115 Elf_External_Vernaux *evernaux;
6116 Elf_Internal_Vernaux *ivernaux;
6117 unsigned int j;
6118
6119 _bfd_elf_swap_verneed_in (abfd, everneed, iverneed);
6120
6121 iverneed->vn_bfd = abfd;
6122
6123 iverneed->vn_filename =
6124 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
6125 iverneed->vn_file);
6126 if (iverneed->vn_filename == NULL)
6127 goto error_return;
6128
6129 amt = iverneed->vn_cnt;
6130 amt *= sizeof (Elf_Internal_Vernaux);
6131 iverneed->vn_auxptr = bfd_alloc (abfd, amt);
6132
6133 evernaux = ((Elf_External_Vernaux *)
6134 ((bfd_byte *) everneed + iverneed->vn_aux));
6135 ivernaux = iverneed->vn_auxptr;
6136 for (j = 0; j < iverneed->vn_cnt; j++, ivernaux++)
6137 {
6138 _bfd_elf_swap_vernaux_in (abfd, evernaux, ivernaux);
6139
6140 ivernaux->vna_nodename =
6141 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
6142 ivernaux->vna_name);
6143 if (ivernaux->vna_nodename == NULL)
6144 goto error_return;
6145
6146 if (j + 1 < iverneed->vn_cnt)
6147 ivernaux->vna_nextptr = ivernaux + 1;
6148 else
6149 ivernaux->vna_nextptr = NULL;
6150
6151 evernaux = ((Elf_External_Vernaux *)
6152 ((bfd_byte *) evernaux + ivernaux->vna_next));
6153
6154 if (ivernaux->vna_other > freeidx)
6155 freeidx = ivernaux->vna_other;
6156 }
6157
6158 if (i + 1 < hdr->sh_info)
6159 iverneed->vn_nextref = iverneed + 1;
6160 else
6161 iverneed->vn_nextref = NULL;
6162
6163 everneed = ((Elf_External_Verneed *)
6164 ((bfd_byte *) everneed + iverneed->vn_next));
6165 }
6166
6167 free (contents);
6168 contents = NULL;
6169 }
6170
6171 if (elf_dynverdef (abfd) != 0)
6172 {
6173 Elf_Internal_Shdr *hdr;
6174 Elf_External_Verdef *everdef;
6175 Elf_Internal_Verdef *iverdef;
6176 Elf_Internal_Verdef *iverdefarr;
6177 Elf_Internal_Verdef iverdefmem;
6178 unsigned int i;
6179 unsigned int maxidx;
6180
6181 hdr = &elf_tdata (abfd)->dynverdef_hdr;
6182
6183 contents = bfd_malloc (hdr->sh_size);
6184 if (contents == NULL)
6185 goto error_return;
6186 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
6187 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
6188 goto error_return;
6189
6190 /* We know the number of entries in the section but not the maximum
6191 index. Therefore we have to run through all entries and find
6192 the maximum. */
6193 everdef = (Elf_External_Verdef *) contents;
6194 maxidx = 0;
6195 for (i = 0; i < hdr->sh_info; ++i)
6196 {
6197 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
6198
6199 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) > maxidx)
6200 maxidx = iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION);
6201
6202 everdef = ((Elf_External_Verdef *)
6203 ((bfd_byte *) everdef + iverdefmem.vd_next));
6204 }
6205
6206 if (default_imported_symver)
6207 {
6208 if (freeidx > maxidx)
6209 maxidx = ++freeidx;
6210 else
6211 freeidx = ++maxidx;
6212 }
6213 amt = (bfd_size_type) maxidx * sizeof (Elf_Internal_Verdef);
6214 elf_tdata (abfd)->verdef = bfd_zalloc (abfd, amt);
6215 if (elf_tdata (abfd)->verdef == NULL)
6216 goto error_return;
6217
6218 elf_tdata (abfd)->cverdefs = maxidx;
6219
6220 everdef = (Elf_External_Verdef *) contents;
6221 iverdefarr = elf_tdata (abfd)->verdef;
6222 for (i = 0; i < hdr->sh_info; i++)
6223 {
6224 Elf_External_Verdaux *everdaux;
6225 Elf_Internal_Verdaux *iverdaux;
6226 unsigned int j;
6227
6228 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
6229
6230 iverdef = &iverdefarr[(iverdefmem.vd_ndx & VERSYM_VERSION) - 1];
6231 memcpy (iverdef, &iverdefmem, sizeof (Elf_Internal_Verdef));
6232
6233 iverdef->vd_bfd = abfd;
6234
6235 amt = (bfd_size_type) iverdef->vd_cnt * sizeof (Elf_Internal_Verdaux);
6236 iverdef->vd_auxptr = bfd_alloc (abfd, amt);
6237 if (iverdef->vd_auxptr == NULL)
6238 goto error_return;
6239
6240 everdaux = ((Elf_External_Verdaux *)
6241 ((bfd_byte *) everdef + iverdef->vd_aux));
6242 iverdaux = iverdef->vd_auxptr;
6243 for (j = 0; j < iverdef->vd_cnt; j++, iverdaux++)
6244 {
6245 _bfd_elf_swap_verdaux_in (abfd, everdaux, iverdaux);
6246
6247 iverdaux->vda_nodename =
6248 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
6249 iverdaux->vda_name);
6250 if (iverdaux->vda_nodename == NULL)
6251 goto error_return;
6252
6253 if (j + 1 < iverdef->vd_cnt)
6254 iverdaux->vda_nextptr = iverdaux + 1;
6255 else
6256 iverdaux->vda_nextptr = NULL;
6257
6258 everdaux = ((Elf_External_Verdaux *)
6259 ((bfd_byte *) everdaux + iverdaux->vda_next));
6260 }
6261
6262 iverdef->vd_nodename = iverdef->vd_auxptr->vda_nodename;
6263
6264 if (i + 1 < hdr->sh_info)
6265 iverdef->vd_nextdef = iverdef + 1;
6266 else
6267 iverdef->vd_nextdef = NULL;
6268
6269 everdef = ((Elf_External_Verdef *)
6270 ((bfd_byte *) everdef + iverdef->vd_next));
6271 }
6272
6273 free (contents);
6274 contents = NULL;
6275 }
6276 else if (default_imported_symver)
6277 {
6278 if (freeidx < 3)
6279 freeidx = 3;
6280 else
6281 freeidx++;
6282
6283 amt = (bfd_size_type) freeidx * sizeof (Elf_Internal_Verdef);
6284 elf_tdata (abfd)->verdef = bfd_zalloc (abfd, amt);
6285 if (elf_tdata (abfd)->verdef == NULL)
6286 goto error_return;
6287
6288 elf_tdata (abfd)->cverdefs = freeidx;
6289 }
6290
6291 /* Create a default version based on the soname. */
6292 if (default_imported_symver)
6293 {
6294 Elf_Internal_Verdef *iverdef;
6295 Elf_Internal_Verdaux *iverdaux;
6296
6297 iverdef = &elf_tdata (abfd)->verdef[freeidx - 1];;
6298
6299 iverdef->vd_version = VER_DEF_CURRENT;
6300 iverdef->vd_flags = 0;
6301 iverdef->vd_ndx = freeidx;
6302 iverdef->vd_cnt = 1;
6303
6304 iverdef->vd_bfd = abfd;
6305
6306 iverdef->vd_nodename = bfd_elf_get_dt_soname (abfd);
6307 if (iverdef->vd_nodename == NULL)
6308 goto error_return;
6309 iverdef->vd_nextdef = NULL;
6310 amt = (bfd_size_type) sizeof (Elf_Internal_Verdaux);
6311 iverdef->vd_auxptr = bfd_alloc (abfd, amt);
6312
6313 iverdaux = iverdef->vd_auxptr;
6314 iverdaux->vda_nodename = iverdef->vd_nodename;
6315 iverdaux->vda_nextptr = NULL;
6316 }
6317
6318 return TRUE;
6319
6320 error_return:
6321 if (contents != NULL)
6322 free (contents);
6323 return FALSE;
6324 }
6325 \f
6326 asymbol *
6327 _bfd_elf_make_empty_symbol (bfd *abfd)
6328 {
6329 elf_symbol_type *newsym;
6330 bfd_size_type amt = sizeof (elf_symbol_type);
6331
6332 newsym = bfd_zalloc (abfd, amt);
6333 if (!newsym)
6334 return NULL;
6335 else
6336 {
6337 newsym->symbol.the_bfd = abfd;
6338 return &newsym->symbol;
6339 }
6340 }
6341
6342 void
6343 _bfd_elf_get_symbol_info (bfd *abfd ATTRIBUTE_UNUSED,
6344 asymbol *symbol,
6345 symbol_info *ret)
6346 {
6347 bfd_symbol_info (symbol, ret);
6348 }
6349
6350 /* Return whether a symbol name implies a local symbol. Most targets
6351 use this function for the is_local_label_name entry point, but some
6352 override it. */
6353
6354 bfd_boolean
6355 _bfd_elf_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED,
6356 const char *name)
6357 {
6358 /* Normal local symbols start with ``.L''. */
6359 if (name[0] == '.' && name[1] == 'L')
6360 return TRUE;
6361
6362 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
6363 DWARF debugging symbols starting with ``..''. */
6364 if (name[0] == '.' && name[1] == '.')
6365 return TRUE;
6366
6367 /* gcc will sometimes generate symbols beginning with ``_.L_'' when
6368 emitting DWARF debugging output. I suspect this is actually a
6369 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
6370 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
6371 underscore to be emitted on some ELF targets). For ease of use,
6372 we treat such symbols as local. */
6373 if (name[0] == '_' && name[1] == '.' && name[2] == 'L' && name[3] == '_')
6374 return TRUE;
6375
6376 return FALSE;
6377 }
6378
6379 alent *
6380 _bfd_elf_get_lineno (bfd *abfd ATTRIBUTE_UNUSED,
6381 asymbol *symbol ATTRIBUTE_UNUSED)
6382 {
6383 abort ();
6384 return NULL;
6385 }
6386
6387 bfd_boolean
6388 _bfd_elf_set_arch_mach (bfd *abfd,
6389 enum bfd_architecture arch,
6390 unsigned long machine)
6391 {
6392 /* If this isn't the right architecture for this backend, and this
6393 isn't the generic backend, fail. */
6394 if (arch != get_elf_backend_data (abfd)->arch
6395 && arch != bfd_arch_unknown
6396 && get_elf_backend_data (abfd)->arch != bfd_arch_unknown)
6397 return FALSE;
6398
6399 return bfd_default_set_arch_mach (abfd, arch, machine);
6400 }
6401
6402 /* Find the function to a particular section and offset,
6403 for error reporting. */
6404
6405 static bfd_boolean
6406 elf_find_function (bfd *abfd ATTRIBUTE_UNUSED,
6407 asection *section,
6408 asymbol **symbols,
6409 bfd_vma offset,
6410 const char **filename_ptr,
6411 const char **functionname_ptr)
6412 {
6413 const char *filename;
6414 asymbol *func, *file;
6415 bfd_vma low_func;
6416 asymbol **p;
6417 /* ??? Given multiple file symbols, it is impossible to reliably
6418 choose the right file name for global symbols. File symbols are
6419 local symbols, and thus all file symbols must sort before any
6420 global symbols. The ELF spec may be interpreted to say that a
6421 file symbol must sort before other local symbols, but currently
6422 ld -r doesn't do this. So, for ld -r output, it is possible to
6423 make a better choice of file name for local symbols by ignoring
6424 file symbols appearing after a given local symbol. */
6425 enum { nothing_seen, symbol_seen, file_after_symbol_seen } state;
6426
6427 filename = NULL;
6428 func = NULL;
6429 file = NULL;
6430 low_func = 0;
6431 state = nothing_seen;
6432
6433 for (p = symbols; *p != NULL; p++)
6434 {
6435 elf_symbol_type *q;
6436
6437 q = (elf_symbol_type *) *p;
6438
6439 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
6440 {
6441 default:
6442 break;
6443 case STT_FILE:
6444 file = &q->symbol;
6445 if (state == symbol_seen)
6446 state = file_after_symbol_seen;
6447 continue;
6448 case STT_SECTION:
6449 continue;
6450 case STT_NOTYPE:
6451 case STT_FUNC:
6452 if (bfd_get_section (&q->symbol) == section
6453 && q->symbol.value >= low_func
6454 && q->symbol.value <= offset)
6455 {
6456 func = (asymbol *) q;
6457 low_func = q->symbol.value;
6458 if (file == NULL)
6459 filename = NULL;
6460 else if (ELF_ST_BIND (q->internal_elf_sym.st_info) != STB_LOCAL
6461 && state == file_after_symbol_seen)
6462 filename = NULL;
6463 else
6464 filename = bfd_asymbol_name (file);
6465 }
6466 break;
6467 }
6468 if (state == nothing_seen)
6469 state = symbol_seen;
6470 }
6471
6472 if (func == NULL)
6473 return FALSE;
6474
6475 if (filename_ptr)
6476 *filename_ptr = filename;
6477 if (functionname_ptr)
6478 *functionname_ptr = bfd_asymbol_name (func);
6479
6480 return TRUE;
6481 }
6482
6483 /* Find the nearest line to a particular section and offset,
6484 for error reporting. */
6485
6486 bfd_boolean
6487 _bfd_elf_find_nearest_line (bfd *abfd,
6488 asection *section,
6489 asymbol **symbols,
6490 bfd_vma offset,
6491 const char **filename_ptr,
6492 const char **functionname_ptr,
6493 unsigned int *line_ptr)
6494 {
6495 bfd_boolean found;
6496
6497 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
6498 filename_ptr, functionname_ptr,
6499 line_ptr))
6500 {
6501 if (!*functionname_ptr)
6502 elf_find_function (abfd, section, symbols, offset,
6503 *filename_ptr ? NULL : filename_ptr,
6504 functionname_ptr);
6505
6506 return TRUE;
6507 }
6508
6509 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
6510 filename_ptr, functionname_ptr,
6511 line_ptr, 0,
6512 &elf_tdata (abfd)->dwarf2_find_line_info))
6513 {
6514 if (!*functionname_ptr)
6515 elf_find_function (abfd, section, symbols, offset,
6516 *filename_ptr ? NULL : filename_ptr,
6517 functionname_ptr);
6518
6519 return TRUE;
6520 }
6521
6522 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
6523 &found, filename_ptr,
6524 functionname_ptr, line_ptr,
6525 &elf_tdata (abfd)->line_info))
6526 return FALSE;
6527 if (found && (*functionname_ptr || *line_ptr))
6528 return TRUE;
6529
6530 if (symbols == NULL)
6531 return FALSE;
6532
6533 if (! elf_find_function (abfd, section, symbols, offset,
6534 filename_ptr, functionname_ptr))
6535 return FALSE;
6536
6537 *line_ptr = 0;
6538 return TRUE;
6539 }
6540
6541 int
6542 _bfd_elf_sizeof_headers (bfd *abfd, bfd_boolean reloc)
6543 {
6544 int ret;
6545
6546 ret = get_elf_backend_data (abfd)->s->sizeof_ehdr;
6547 if (! reloc)
6548 ret += get_program_header_size (abfd);
6549 return ret;
6550 }
6551
6552 bfd_boolean
6553 _bfd_elf_set_section_contents (bfd *abfd,
6554 sec_ptr section,
6555 const void *location,
6556 file_ptr offset,
6557 bfd_size_type count)
6558 {
6559 Elf_Internal_Shdr *hdr;
6560 bfd_signed_vma pos;
6561
6562 if (! abfd->output_has_begun
6563 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
6564 return FALSE;
6565
6566 hdr = &elf_section_data (section)->this_hdr;
6567 pos = hdr->sh_offset + offset;
6568 if (bfd_seek (abfd, pos, SEEK_SET) != 0
6569 || bfd_bwrite (location, count, abfd) != count)
6570 return FALSE;
6571
6572 return TRUE;
6573 }
6574
6575 void
6576 _bfd_elf_no_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED,
6577 arelent *cache_ptr ATTRIBUTE_UNUSED,
6578 Elf_Internal_Rela *dst ATTRIBUTE_UNUSED)
6579 {
6580 abort ();
6581 }
6582
6583 /* Try to convert a non-ELF reloc into an ELF one. */
6584
6585 bfd_boolean
6586 _bfd_elf_validate_reloc (bfd *abfd, arelent *areloc)
6587 {
6588 /* Check whether we really have an ELF howto. */
6589
6590 if ((*areloc->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec)
6591 {
6592 bfd_reloc_code_real_type code;
6593 reloc_howto_type *howto;
6594
6595 /* Alien reloc: Try to determine its type to replace it with an
6596 equivalent ELF reloc. */
6597
6598 if (areloc->howto->pc_relative)
6599 {
6600 switch (areloc->howto->bitsize)
6601 {
6602 case 8:
6603 code = BFD_RELOC_8_PCREL;
6604 break;
6605 case 12:
6606 code = BFD_RELOC_12_PCREL;
6607 break;
6608 case 16:
6609 code = BFD_RELOC_16_PCREL;
6610 break;
6611 case 24:
6612 code = BFD_RELOC_24_PCREL;
6613 break;
6614 case 32:
6615 code = BFD_RELOC_32_PCREL;
6616 break;
6617 case 64:
6618 code = BFD_RELOC_64_PCREL;
6619 break;
6620 default:
6621 goto fail;
6622 }
6623
6624 howto = bfd_reloc_type_lookup (abfd, code);
6625
6626 if (areloc->howto->pcrel_offset != howto->pcrel_offset)
6627 {
6628 if (howto->pcrel_offset)
6629 areloc->addend += areloc->address;
6630 else
6631 areloc->addend -= areloc->address; /* addend is unsigned!! */
6632 }
6633 }
6634 else
6635 {
6636 switch (areloc->howto->bitsize)
6637 {
6638 case 8:
6639 code = BFD_RELOC_8;
6640 break;
6641 case 14:
6642 code = BFD_RELOC_14;
6643 break;
6644 case 16:
6645 code = BFD_RELOC_16;
6646 break;
6647 case 26:
6648 code = BFD_RELOC_26;
6649 break;
6650 case 32:
6651 code = BFD_RELOC_32;
6652 break;
6653 case 64:
6654 code = BFD_RELOC_64;
6655 break;
6656 default:
6657 goto fail;
6658 }
6659
6660 howto = bfd_reloc_type_lookup (abfd, code);
6661 }
6662
6663 if (howto)
6664 areloc->howto = howto;
6665 else
6666 goto fail;
6667 }
6668
6669 return TRUE;
6670
6671 fail:
6672 (*_bfd_error_handler)
6673 (_("%B: unsupported relocation type %s"),
6674 abfd, areloc->howto->name);
6675 bfd_set_error (bfd_error_bad_value);
6676 return FALSE;
6677 }
6678
6679 bfd_boolean
6680 _bfd_elf_close_and_cleanup (bfd *abfd)
6681 {
6682 if (bfd_get_format (abfd) == bfd_object)
6683 {
6684 if (elf_shstrtab (abfd) != NULL)
6685 _bfd_elf_strtab_free (elf_shstrtab (abfd));
6686 _bfd_dwarf2_cleanup_debug_info (abfd);
6687 }
6688
6689 return _bfd_generic_close_and_cleanup (abfd);
6690 }
6691
6692 /* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
6693 in the relocation's offset. Thus we cannot allow any sort of sanity
6694 range-checking to interfere. There is nothing else to do in processing
6695 this reloc. */
6696
6697 bfd_reloc_status_type
6698 _bfd_elf_rel_vtable_reloc_fn
6699 (bfd *abfd ATTRIBUTE_UNUSED, arelent *re ATTRIBUTE_UNUSED,
6700 struct bfd_symbol *symbol ATTRIBUTE_UNUSED,
6701 void *data ATTRIBUTE_UNUSED, asection *is ATTRIBUTE_UNUSED,
6702 bfd *obfd ATTRIBUTE_UNUSED, char **errmsg ATTRIBUTE_UNUSED)
6703 {
6704 return bfd_reloc_ok;
6705 }
6706 \f
6707 /* Elf core file support. Much of this only works on native
6708 toolchains, since we rely on knowing the
6709 machine-dependent procfs structure in order to pick
6710 out details about the corefile. */
6711
6712 #ifdef HAVE_SYS_PROCFS_H
6713 # include <sys/procfs.h>
6714 #endif
6715
6716 /* FIXME: this is kinda wrong, but it's what gdb wants. */
6717
6718 static int
6719 elfcore_make_pid (bfd *abfd)
6720 {
6721 return ((elf_tdata (abfd)->core_lwpid << 16)
6722 + (elf_tdata (abfd)->core_pid));
6723 }
6724
6725 /* If there isn't a section called NAME, make one, using
6726 data from SECT. Note, this function will generate a
6727 reference to NAME, so you shouldn't deallocate or
6728 overwrite it. */
6729
6730 static bfd_boolean
6731 elfcore_maybe_make_sect (bfd *abfd, char *name, asection *sect)
6732 {
6733 asection *sect2;
6734
6735 if (bfd_get_section_by_name (abfd, name) != NULL)
6736 return TRUE;
6737
6738 sect2 = bfd_make_section (abfd, name);
6739 if (sect2 == NULL)
6740 return FALSE;
6741
6742 sect2->size = sect->size;
6743 sect2->filepos = sect->filepos;
6744 sect2->flags = sect->flags;
6745 sect2->alignment_power = sect->alignment_power;
6746 return TRUE;
6747 }
6748
6749 /* Create a pseudosection containing SIZE bytes at FILEPOS. This
6750 actually creates up to two pseudosections:
6751 - For the single-threaded case, a section named NAME, unless
6752 such a section already exists.
6753 - For the multi-threaded case, a section named "NAME/PID", where
6754 PID is elfcore_make_pid (abfd).
6755 Both pseudosections have identical contents. */
6756 bfd_boolean
6757 _bfd_elfcore_make_pseudosection (bfd *abfd,
6758 char *name,
6759 size_t size,
6760 ufile_ptr filepos)
6761 {
6762 char buf[100];
6763 char *threaded_name;
6764 size_t len;
6765 asection *sect;
6766
6767 /* Build the section name. */
6768
6769 sprintf (buf, "%s/%d", name, elfcore_make_pid (abfd));
6770 len = strlen (buf) + 1;
6771 threaded_name = bfd_alloc (abfd, len);
6772 if (threaded_name == NULL)
6773 return FALSE;
6774 memcpy (threaded_name, buf, len);
6775
6776 sect = bfd_make_section_anyway (abfd, threaded_name);
6777 if (sect == NULL)
6778 return FALSE;
6779 sect->size = size;
6780 sect->filepos = filepos;
6781 sect->flags = SEC_HAS_CONTENTS;
6782 sect->alignment_power = 2;
6783
6784 return elfcore_maybe_make_sect (abfd, name, sect);
6785 }
6786
6787 /* prstatus_t exists on:
6788 solaris 2.5+
6789 linux 2.[01] + glibc
6790 unixware 4.2
6791 */
6792
6793 #if defined (HAVE_PRSTATUS_T)
6794
6795 static bfd_boolean
6796 elfcore_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
6797 {
6798 size_t size;
6799 int offset;
6800
6801 if (note->descsz == sizeof (prstatus_t))
6802 {
6803 prstatus_t prstat;
6804
6805 size = sizeof (prstat.pr_reg);
6806 offset = offsetof (prstatus_t, pr_reg);
6807 memcpy (&prstat, note->descdata, sizeof (prstat));
6808
6809 /* Do not overwrite the core signal if it
6810 has already been set by another thread. */
6811 if (elf_tdata (abfd)->core_signal == 0)
6812 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
6813 elf_tdata (abfd)->core_pid = prstat.pr_pid;
6814
6815 /* pr_who exists on:
6816 solaris 2.5+
6817 unixware 4.2
6818 pr_who doesn't exist on:
6819 linux 2.[01]
6820 */
6821 #if defined (HAVE_PRSTATUS_T_PR_WHO)
6822 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
6823 #endif
6824 }
6825 #if defined (HAVE_PRSTATUS32_T)
6826 else if (note->descsz == sizeof (prstatus32_t))
6827 {
6828 /* 64-bit host, 32-bit corefile */
6829 prstatus32_t prstat;
6830
6831 size = sizeof (prstat.pr_reg);
6832 offset = offsetof (prstatus32_t, pr_reg);
6833 memcpy (&prstat, note->descdata, sizeof (prstat));
6834
6835 /* Do not overwrite the core signal if it
6836 has already been set by another thread. */
6837 if (elf_tdata (abfd)->core_signal == 0)
6838 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
6839 elf_tdata (abfd)->core_pid = prstat.pr_pid;
6840
6841 /* pr_who exists on:
6842 solaris 2.5+
6843 unixware 4.2
6844 pr_who doesn't exist on:
6845 linux 2.[01]
6846 */
6847 #if defined (HAVE_PRSTATUS32_T_PR_WHO)
6848 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
6849 #endif
6850 }
6851 #endif /* HAVE_PRSTATUS32_T */
6852 else
6853 {
6854 /* Fail - we don't know how to handle any other
6855 note size (ie. data object type). */
6856 return TRUE;
6857 }
6858
6859 /* Make a ".reg/999" section and a ".reg" section. */
6860 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
6861 size, note->descpos + offset);
6862 }
6863 #endif /* defined (HAVE_PRSTATUS_T) */
6864
6865 /* Create a pseudosection containing the exact contents of NOTE. */
6866 static bfd_boolean
6867 elfcore_make_note_pseudosection (bfd *abfd,
6868 char *name,
6869 Elf_Internal_Note *note)
6870 {
6871 return _bfd_elfcore_make_pseudosection (abfd, name,
6872 note->descsz, note->descpos);
6873 }
6874
6875 /* There isn't a consistent prfpregset_t across platforms,
6876 but it doesn't matter, because we don't have to pick this
6877 data structure apart. */
6878
6879 static bfd_boolean
6880 elfcore_grok_prfpreg (bfd *abfd, Elf_Internal_Note *note)
6881 {
6882 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
6883 }
6884
6885 /* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
6886 type of 5 (NT_PRXFPREG). Just include the whole note's contents
6887 literally. */
6888
6889 static bfd_boolean
6890 elfcore_grok_prxfpreg (bfd *abfd, Elf_Internal_Note *note)
6891 {
6892 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
6893 }
6894
6895 #if defined (HAVE_PRPSINFO_T)
6896 typedef prpsinfo_t elfcore_psinfo_t;
6897 #if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
6898 typedef prpsinfo32_t elfcore_psinfo32_t;
6899 #endif
6900 #endif
6901
6902 #if defined (HAVE_PSINFO_T)
6903 typedef psinfo_t elfcore_psinfo_t;
6904 #if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
6905 typedef psinfo32_t elfcore_psinfo32_t;
6906 #endif
6907 #endif
6908
6909 /* return a malloc'ed copy of a string at START which is at
6910 most MAX bytes long, possibly without a terminating '\0'.
6911 the copy will always have a terminating '\0'. */
6912
6913 char *
6914 _bfd_elfcore_strndup (bfd *abfd, char *start, size_t max)
6915 {
6916 char *dups;
6917 char *end = memchr (start, '\0', max);
6918 size_t len;
6919
6920 if (end == NULL)
6921 len = max;
6922 else
6923 len = end - start;
6924
6925 dups = bfd_alloc (abfd, len + 1);
6926 if (dups == NULL)
6927 return NULL;
6928
6929 memcpy (dups, start, len);
6930 dups[len] = '\0';
6931
6932 return dups;
6933 }
6934
6935 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
6936 static bfd_boolean
6937 elfcore_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
6938 {
6939 if (note->descsz == sizeof (elfcore_psinfo_t))
6940 {
6941 elfcore_psinfo_t psinfo;
6942
6943 memcpy (&psinfo, note->descdata, sizeof (psinfo));
6944
6945 elf_tdata (abfd)->core_program
6946 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
6947 sizeof (psinfo.pr_fname));
6948
6949 elf_tdata (abfd)->core_command
6950 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
6951 sizeof (psinfo.pr_psargs));
6952 }
6953 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
6954 else if (note->descsz == sizeof (elfcore_psinfo32_t))
6955 {
6956 /* 64-bit host, 32-bit corefile */
6957 elfcore_psinfo32_t psinfo;
6958
6959 memcpy (&psinfo, note->descdata, sizeof (psinfo));
6960
6961 elf_tdata (abfd)->core_program
6962 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
6963 sizeof (psinfo.pr_fname));
6964
6965 elf_tdata (abfd)->core_command
6966 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
6967 sizeof (psinfo.pr_psargs));
6968 }
6969 #endif
6970
6971 else
6972 {
6973 /* Fail - we don't know how to handle any other
6974 note size (ie. data object type). */
6975 return TRUE;
6976 }
6977
6978 /* Note that for some reason, a spurious space is tacked
6979 onto the end of the args in some (at least one anyway)
6980 implementations, so strip it off if it exists. */
6981
6982 {
6983 char *command = elf_tdata (abfd)->core_command;
6984 int n = strlen (command);
6985
6986 if (0 < n && command[n - 1] == ' ')
6987 command[n - 1] = '\0';
6988 }
6989
6990 return TRUE;
6991 }
6992 #endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
6993
6994 #if defined (HAVE_PSTATUS_T)
6995 static bfd_boolean
6996 elfcore_grok_pstatus (bfd *abfd, Elf_Internal_Note *note)
6997 {
6998 if (note->descsz == sizeof (pstatus_t)
6999 #if defined (HAVE_PXSTATUS_T)
7000 || note->descsz == sizeof (pxstatus_t)
7001 #endif
7002 )
7003 {
7004 pstatus_t pstat;
7005
7006 memcpy (&pstat, note->descdata, sizeof (pstat));
7007
7008 elf_tdata (abfd)->core_pid = pstat.pr_pid;
7009 }
7010 #if defined (HAVE_PSTATUS32_T)
7011 else if (note->descsz == sizeof (pstatus32_t))
7012 {
7013 /* 64-bit host, 32-bit corefile */
7014 pstatus32_t pstat;
7015
7016 memcpy (&pstat, note->descdata, sizeof (pstat));
7017
7018 elf_tdata (abfd)->core_pid = pstat.pr_pid;
7019 }
7020 #endif
7021 /* Could grab some more details from the "representative"
7022 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
7023 NT_LWPSTATUS note, presumably. */
7024
7025 return TRUE;
7026 }
7027 #endif /* defined (HAVE_PSTATUS_T) */
7028
7029 #if defined (HAVE_LWPSTATUS_T)
7030 static bfd_boolean
7031 elfcore_grok_lwpstatus (bfd *abfd, Elf_Internal_Note *note)
7032 {
7033 lwpstatus_t lwpstat;
7034 char buf[100];
7035 char *name;
7036 size_t len;
7037 asection *sect;
7038
7039 if (note->descsz != sizeof (lwpstat)
7040 #if defined (HAVE_LWPXSTATUS_T)
7041 && note->descsz != sizeof (lwpxstatus_t)
7042 #endif
7043 )
7044 return TRUE;
7045
7046 memcpy (&lwpstat, note->descdata, sizeof (lwpstat));
7047
7048 elf_tdata (abfd)->core_lwpid = lwpstat.pr_lwpid;
7049 elf_tdata (abfd)->core_signal = lwpstat.pr_cursig;
7050
7051 /* Make a ".reg/999" section. */
7052
7053 sprintf (buf, ".reg/%d", elfcore_make_pid (abfd));
7054 len = strlen (buf) + 1;
7055 name = bfd_alloc (abfd, len);
7056 if (name == NULL)
7057 return FALSE;
7058 memcpy (name, buf, len);
7059
7060 sect = bfd_make_section_anyway (abfd, name);
7061 if (sect == NULL)
7062 return FALSE;
7063
7064 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7065 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.gregs);
7066 sect->filepos = note->descpos
7067 + offsetof (lwpstatus_t, pr_context.uc_mcontext.gregs);
7068 #endif
7069
7070 #if defined (HAVE_LWPSTATUS_T_PR_REG)
7071 sect->size = sizeof (lwpstat.pr_reg);
7072 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_reg);
7073 #endif
7074
7075 sect->flags = SEC_HAS_CONTENTS;
7076 sect->alignment_power = 2;
7077
7078 if (!elfcore_maybe_make_sect (abfd, ".reg", sect))
7079 return FALSE;
7080
7081 /* Make a ".reg2/999" section */
7082
7083 sprintf (buf, ".reg2/%d", elfcore_make_pid (abfd));
7084 len = strlen (buf) + 1;
7085 name = bfd_alloc (abfd, len);
7086 if (name == NULL)
7087 return FALSE;
7088 memcpy (name, buf, len);
7089
7090 sect = bfd_make_section_anyway (abfd, name);
7091 if (sect == NULL)
7092 return FALSE;
7093
7094 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7095 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.fpregs);
7096 sect->filepos = note->descpos
7097 + offsetof (lwpstatus_t, pr_context.uc_mcontext.fpregs);
7098 #endif
7099
7100 #if defined (HAVE_LWPSTATUS_T_PR_FPREG)
7101 sect->size = sizeof (lwpstat.pr_fpreg);
7102 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_fpreg);
7103 #endif
7104
7105 sect->flags = SEC_HAS_CONTENTS;
7106 sect->alignment_power = 2;
7107
7108 return elfcore_maybe_make_sect (abfd, ".reg2", sect);
7109 }
7110 #endif /* defined (HAVE_LWPSTATUS_T) */
7111
7112 #if defined (HAVE_WIN32_PSTATUS_T)
7113 static bfd_boolean
7114 elfcore_grok_win32pstatus (bfd *abfd, Elf_Internal_Note *note)
7115 {
7116 char buf[30];
7117 char *name;
7118 size_t len;
7119 asection *sect;
7120 win32_pstatus_t pstatus;
7121
7122 if (note->descsz < sizeof (pstatus))
7123 return TRUE;
7124
7125 memcpy (&pstatus, note->descdata, sizeof (pstatus));
7126
7127 switch (pstatus.data_type)
7128 {
7129 case NOTE_INFO_PROCESS:
7130 /* FIXME: need to add ->core_command. */
7131 elf_tdata (abfd)->core_signal = pstatus.data.process_info.signal;
7132 elf_tdata (abfd)->core_pid = pstatus.data.process_info.pid;
7133 break;
7134
7135 case NOTE_INFO_THREAD:
7136 /* Make a ".reg/999" section. */
7137 sprintf (buf, ".reg/%ld", (long) pstatus.data.thread_info.tid);
7138
7139 len = strlen (buf) + 1;
7140 name = bfd_alloc (abfd, len);
7141 if (name == NULL)
7142 return FALSE;
7143
7144 memcpy (name, buf, len);
7145
7146 sect = bfd_make_section_anyway (abfd, name);
7147 if (sect == NULL)
7148 return FALSE;
7149
7150 sect->size = sizeof (pstatus.data.thread_info.thread_context);
7151 sect->filepos = (note->descpos
7152 + offsetof (struct win32_pstatus,
7153 data.thread_info.thread_context));
7154 sect->flags = SEC_HAS_CONTENTS;
7155 sect->alignment_power = 2;
7156
7157 if (pstatus.data.thread_info.is_active_thread)
7158 if (! elfcore_maybe_make_sect (abfd, ".reg", sect))
7159 return FALSE;
7160 break;
7161
7162 case NOTE_INFO_MODULE:
7163 /* Make a ".module/xxxxxxxx" section. */
7164 sprintf (buf, ".module/%08lx",
7165 (long) pstatus.data.module_info.base_address);
7166
7167 len = strlen (buf) + 1;
7168 name = bfd_alloc (abfd, len);
7169 if (name == NULL)
7170 return FALSE;
7171
7172 memcpy (name, buf, len);
7173
7174 sect = bfd_make_section_anyway (abfd, name);
7175
7176 if (sect == NULL)
7177 return FALSE;
7178
7179 sect->size = note->descsz;
7180 sect->filepos = note->descpos;
7181 sect->flags = SEC_HAS_CONTENTS;
7182 sect->alignment_power = 2;
7183 break;
7184
7185 default:
7186 return TRUE;
7187 }
7188
7189 return TRUE;
7190 }
7191 #endif /* HAVE_WIN32_PSTATUS_T */
7192
7193 static bfd_boolean
7194 elfcore_grok_note (bfd *abfd, Elf_Internal_Note *note)
7195 {
7196 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7197
7198 switch (note->type)
7199 {
7200 default:
7201 return TRUE;
7202
7203 case NT_PRSTATUS:
7204 if (bed->elf_backend_grok_prstatus)
7205 if ((*bed->elf_backend_grok_prstatus) (abfd, note))
7206 return TRUE;
7207 #if defined (HAVE_PRSTATUS_T)
7208 return elfcore_grok_prstatus (abfd, note);
7209 #else
7210 return TRUE;
7211 #endif
7212
7213 #if defined (HAVE_PSTATUS_T)
7214 case NT_PSTATUS:
7215 return elfcore_grok_pstatus (abfd, note);
7216 #endif
7217
7218 #if defined (HAVE_LWPSTATUS_T)
7219 case NT_LWPSTATUS:
7220 return elfcore_grok_lwpstatus (abfd, note);
7221 #endif
7222
7223 case NT_FPREGSET: /* FIXME: rename to NT_PRFPREG */
7224 return elfcore_grok_prfpreg (abfd, note);
7225
7226 #if defined (HAVE_WIN32_PSTATUS_T)
7227 case NT_WIN32PSTATUS:
7228 return elfcore_grok_win32pstatus (abfd, note);
7229 #endif
7230
7231 case NT_PRXFPREG: /* Linux SSE extension */
7232 if (note->namesz == 6
7233 && strcmp (note->namedata, "LINUX") == 0)
7234 return elfcore_grok_prxfpreg (abfd, note);
7235 else
7236 return TRUE;
7237
7238 case NT_PRPSINFO:
7239 case NT_PSINFO:
7240 if (bed->elf_backend_grok_psinfo)
7241 if ((*bed->elf_backend_grok_psinfo) (abfd, note))
7242 return TRUE;
7243 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7244 return elfcore_grok_psinfo (abfd, note);
7245 #else
7246 return TRUE;
7247 #endif
7248
7249 case NT_AUXV:
7250 {
7251 asection *sect = bfd_make_section_anyway (abfd, ".auxv");
7252
7253 if (sect == NULL)
7254 return FALSE;
7255 sect->size = note->descsz;
7256 sect->filepos = note->descpos;
7257 sect->flags = SEC_HAS_CONTENTS;
7258 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
7259
7260 return TRUE;
7261 }
7262 }
7263 }
7264
7265 static bfd_boolean
7266 elfcore_netbsd_get_lwpid (Elf_Internal_Note *note, int *lwpidp)
7267 {
7268 char *cp;
7269
7270 cp = strchr (note->namedata, '@');
7271 if (cp != NULL)
7272 {
7273 *lwpidp = atoi(cp + 1);
7274 return TRUE;
7275 }
7276 return FALSE;
7277 }
7278
7279 static bfd_boolean
7280 elfcore_grok_netbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
7281 {
7282
7283 /* Signal number at offset 0x08. */
7284 elf_tdata (abfd)->core_signal
7285 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
7286
7287 /* Process ID at offset 0x50. */
7288 elf_tdata (abfd)->core_pid
7289 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x50);
7290
7291 /* Command name at 0x7c (max 32 bytes, including nul). */
7292 elf_tdata (abfd)->core_command
7293 = _bfd_elfcore_strndup (abfd, note->descdata + 0x7c, 31);
7294
7295 return elfcore_make_note_pseudosection (abfd, ".note.netbsdcore.procinfo",
7296 note);
7297 }
7298
7299 static bfd_boolean
7300 elfcore_grok_netbsd_note (bfd *abfd, Elf_Internal_Note *note)
7301 {
7302 int lwp;
7303
7304 if (elfcore_netbsd_get_lwpid (note, &lwp))
7305 elf_tdata (abfd)->core_lwpid = lwp;
7306
7307 if (note->type == NT_NETBSDCORE_PROCINFO)
7308 {
7309 /* NetBSD-specific core "procinfo". Note that we expect to
7310 find this note before any of the others, which is fine,
7311 since the kernel writes this note out first when it
7312 creates a core file. */
7313
7314 return elfcore_grok_netbsd_procinfo (abfd, note);
7315 }
7316
7317 /* As of Jan 2002 there are no other machine-independent notes
7318 defined for NetBSD core files. If the note type is less
7319 than the start of the machine-dependent note types, we don't
7320 understand it. */
7321
7322 if (note->type < NT_NETBSDCORE_FIRSTMACH)
7323 return TRUE;
7324
7325
7326 switch (bfd_get_arch (abfd))
7327 {
7328 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
7329 PT_GETFPREGS == mach+2. */
7330
7331 case bfd_arch_alpha:
7332 case bfd_arch_sparc:
7333 switch (note->type)
7334 {
7335 case NT_NETBSDCORE_FIRSTMACH+0:
7336 return elfcore_make_note_pseudosection (abfd, ".reg", note);
7337
7338 case NT_NETBSDCORE_FIRSTMACH+2:
7339 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
7340
7341 default:
7342 return TRUE;
7343 }
7344
7345 /* On all other arch's, PT_GETREGS == mach+1 and
7346 PT_GETFPREGS == mach+3. */
7347
7348 default:
7349 switch (note->type)
7350 {
7351 case NT_NETBSDCORE_FIRSTMACH+1:
7352 return elfcore_make_note_pseudosection (abfd, ".reg", note);
7353
7354 case NT_NETBSDCORE_FIRSTMACH+3:
7355 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
7356
7357 default:
7358 return TRUE;
7359 }
7360 }
7361 /* NOTREACHED */
7362 }
7363
7364 static bfd_boolean
7365 elfcore_grok_nto_status (bfd *abfd, Elf_Internal_Note *note, pid_t *tid)
7366 {
7367 void *ddata = note->descdata;
7368 char buf[100];
7369 char *name;
7370 asection *sect;
7371 short sig;
7372 unsigned flags;
7373
7374 /* nto_procfs_status 'pid' field is at offset 0. */
7375 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, (bfd_byte *) ddata);
7376
7377 /* nto_procfs_status 'tid' field is at offset 4. Pass it back. */
7378 *tid = bfd_get_32 (abfd, (bfd_byte *) ddata + 4);
7379
7380 /* nto_procfs_status 'flags' field is at offset 8. */
7381 flags = bfd_get_32 (abfd, (bfd_byte *) ddata + 8);
7382
7383 /* nto_procfs_status 'what' field is at offset 14. */
7384 if ((sig = bfd_get_16 (abfd, (bfd_byte *) ddata + 14)) > 0)
7385 {
7386 elf_tdata (abfd)->core_signal = sig;
7387 elf_tdata (abfd)->core_lwpid = *tid;
7388 }
7389
7390 /* _DEBUG_FLAG_CURTID (current thread) is 0x80. Some cores
7391 do not come from signals so we make sure we set the current
7392 thread just in case. */
7393 if (flags & 0x00000080)
7394 elf_tdata (abfd)->core_lwpid = *tid;
7395
7396 /* Make a ".qnx_core_status/%d" section. */
7397 sprintf (buf, ".qnx_core_status/%ld", (long) *tid);
7398
7399 name = bfd_alloc (abfd, strlen (buf) + 1);
7400 if (name == NULL)
7401 return FALSE;
7402 strcpy (name, buf);
7403
7404 sect = bfd_make_section_anyway (abfd, name);
7405 if (sect == NULL)
7406 return FALSE;
7407
7408 sect->size = note->descsz;
7409 sect->filepos = note->descpos;
7410 sect->flags = SEC_HAS_CONTENTS;
7411 sect->alignment_power = 2;
7412
7413 return (elfcore_maybe_make_sect (abfd, ".qnx_core_status", sect));
7414 }
7415
7416 static bfd_boolean
7417 elfcore_grok_nto_regs (bfd *abfd,
7418 Elf_Internal_Note *note,
7419 pid_t tid,
7420 char *base)
7421 {
7422 char buf[100];
7423 char *name;
7424 asection *sect;
7425
7426 /* Make a "(base)/%d" section. */
7427 sprintf (buf, "%s/%ld", base, (long) tid);
7428
7429 name = bfd_alloc (abfd, strlen (buf) + 1);
7430 if (name == NULL)
7431 return FALSE;
7432 strcpy (name, buf);
7433
7434 sect = bfd_make_section_anyway (abfd, name);
7435 if (sect == NULL)
7436 return FALSE;
7437
7438 sect->size = note->descsz;
7439 sect->filepos = note->descpos;
7440 sect->flags = SEC_HAS_CONTENTS;
7441 sect->alignment_power = 2;
7442
7443 /* This is the current thread. */
7444 if (elf_tdata (abfd)->core_lwpid == tid)
7445 return elfcore_maybe_make_sect (abfd, base, sect);
7446
7447 return TRUE;
7448 }
7449
7450 #define BFD_QNT_CORE_INFO 7
7451 #define BFD_QNT_CORE_STATUS 8
7452 #define BFD_QNT_CORE_GREG 9
7453 #define BFD_QNT_CORE_FPREG 10
7454
7455 static bfd_boolean
7456 elfcore_grok_nto_note (bfd *abfd, Elf_Internal_Note *note)
7457 {
7458 /* Every GREG section has a STATUS section before it. Store the
7459 tid from the previous call to pass down to the next gregs
7460 function. */
7461 static pid_t tid = 1;
7462
7463 switch (note->type)
7464 {
7465 case BFD_QNT_CORE_INFO:
7466 return elfcore_make_note_pseudosection (abfd, ".qnx_core_info", note);
7467 case BFD_QNT_CORE_STATUS:
7468 return elfcore_grok_nto_status (abfd, note, &tid);
7469 case BFD_QNT_CORE_GREG:
7470 return elfcore_grok_nto_regs (abfd, note, tid, ".reg");
7471 case BFD_QNT_CORE_FPREG:
7472 return elfcore_grok_nto_regs (abfd, note, tid, ".reg2");
7473 default:
7474 return TRUE;
7475 }
7476 }
7477
7478 /* Function: elfcore_write_note
7479
7480 Inputs:
7481 buffer to hold note
7482 name of note
7483 type of note
7484 data for note
7485 size of data for note
7486
7487 Return:
7488 End of buffer containing note. */
7489
7490 char *
7491 elfcore_write_note (bfd *abfd,
7492 char *buf,
7493 int *bufsiz,
7494 const char *name,
7495 int type,
7496 const void *input,
7497 int size)
7498 {
7499 Elf_External_Note *xnp;
7500 size_t namesz;
7501 size_t pad;
7502 size_t newspace;
7503 char *p, *dest;
7504
7505 namesz = 0;
7506 pad = 0;
7507 if (name != NULL)
7508 {
7509 const struct elf_backend_data *bed;
7510
7511 namesz = strlen (name) + 1;
7512 bed = get_elf_backend_data (abfd);
7513 pad = -namesz & ((1 << bed->s->log_file_align) - 1);
7514 }
7515
7516 newspace = 12 + namesz + pad + size;
7517
7518 p = realloc (buf, *bufsiz + newspace);
7519 dest = p + *bufsiz;
7520 *bufsiz += newspace;
7521 xnp = (Elf_External_Note *) dest;
7522 H_PUT_32 (abfd, namesz, xnp->namesz);
7523 H_PUT_32 (abfd, size, xnp->descsz);
7524 H_PUT_32 (abfd, type, xnp->type);
7525 dest = xnp->name;
7526 if (name != NULL)
7527 {
7528 memcpy (dest, name, namesz);
7529 dest += namesz;
7530 while (pad != 0)
7531 {
7532 *dest++ = '\0';
7533 --pad;
7534 }
7535 }
7536 memcpy (dest, input, size);
7537 return p;
7538 }
7539
7540 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7541 char *
7542 elfcore_write_prpsinfo (bfd *abfd,
7543 char *buf,
7544 int *bufsiz,
7545 const char *fname,
7546 const char *psargs)
7547 {
7548 int note_type;
7549 char *note_name = "CORE";
7550
7551 #if defined (HAVE_PSINFO_T)
7552 psinfo_t data;
7553 note_type = NT_PSINFO;
7554 #else
7555 prpsinfo_t data;
7556 note_type = NT_PRPSINFO;
7557 #endif
7558
7559 memset (&data, 0, sizeof (data));
7560 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
7561 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
7562 return elfcore_write_note (abfd, buf, bufsiz,
7563 note_name, note_type, &data, sizeof (data));
7564 }
7565 #endif /* PSINFO_T or PRPSINFO_T */
7566
7567 #if defined (HAVE_PRSTATUS_T)
7568 char *
7569 elfcore_write_prstatus (bfd *abfd,
7570 char *buf,
7571 int *bufsiz,
7572 long pid,
7573 int cursig,
7574 const void *gregs)
7575 {
7576 prstatus_t prstat;
7577 char *note_name = "CORE";
7578
7579 memset (&prstat, 0, sizeof (prstat));
7580 prstat.pr_pid = pid;
7581 prstat.pr_cursig = cursig;
7582 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
7583 return elfcore_write_note (abfd, buf, bufsiz,
7584 note_name, NT_PRSTATUS, &prstat, sizeof (prstat));
7585 }
7586 #endif /* HAVE_PRSTATUS_T */
7587
7588 #if defined (HAVE_LWPSTATUS_T)
7589 char *
7590 elfcore_write_lwpstatus (bfd *abfd,
7591 char *buf,
7592 int *bufsiz,
7593 long pid,
7594 int cursig,
7595 const void *gregs)
7596 {
7597 lwpstatus_t lwpstat;
7598 char *note_name = "CORE";
7599
7600 memset (&lwpstat, 0, sizeof (lwpstat));
7601 lwpstat.pr_lwpid = pid >> 16;
7602 lwpstat.pr_cursig = cursig;
7603 #if defined (HAVE_LWPSTATUS_T_PR_REG)
7604 memcpy (lwpstat.pr_reg, gregs, sizeof (lwpstat.pr_reg));
7605 #elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7606 #if !defined(gregs)
7607 memcpy (lwpstat.pr_context.uc_mcontext.gregs,
7608 gregs, sizeof (lwpstat.pr_context.uc_mcontext.gregs));
7609 #else
7610 memcpy (lwpstat.pr_context.uc_mcontext.__gregs,
7611 gregs, sizeof (lwpstat.pr_context.uc_mcontext.__gregs));
7612 #endif
7613 #endif
7614 return elfcore_write_note (abfd, buf, bufsiz, note_name,
7615 NT_LWPSTATUS, &lwpstat, sizeof (lwpstat));
7616 }
7617 #endif /* HAVE_LWPSTATUS_T */
7618
7619 #if defined (HAVE_PSTATUS_T)
7620 char *
7621 elfcore_write_pstatus (bfd *abfd,
7622 char *buf,
7623 int *bufsiz,
7624 long pid,
7625 int cursig,
7626 const void *gregs)
7627 {
7628 pstatus_t pstat;
7629 char *note_name = "CORE";
7630
7631 memset (&pstat, 0, sizeof (pstat));
7632 pstat.pr_pid = pid & 0xffff;
7633 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
7634 NT_PSTATUS, &pstat, sizeof (pstat));
7635 return buf;
7636 }
7637 #endif /* HAVE_PSTATUS_T */
7638
7639 char *
7640 elfcore_write_prfpreg (bfd *abfd,
7641 char *buf,
7642 int *bufsiz,
7643 const void *fpregs,
7644 int size)
7645 {
7646 char *note_name = "CORE";
7647 return elfcore_write_note (abfd, buf, bufsiz,
7648 note_name, NT_FPREGSET, fpregs, size);
7649 }
7650
7651 char *
7652 elfcore_write_prxfpreg (bfd *abfd,
7653 char *buf,
7654 int *bufsiz,
7655 const void *xfpregs,
7656 int size)
7657 {
7658 char *note_name = "LINUX";
7659 return elfcore_write_note (abfd, buf, bufsiz,
7660 note_name, NT_PRXFPREG, xfpregs, size);
7661 }
7662
7663 static bfd_boolean
7664 elfcore_read_notes (bfd *abfd, file_ptr offset, bfd_size_type size)
7665 {
7666 char *buf;
7667 char *p;
7668
7669 if (size <= 0)
7670 return TRUE;
7671
7672 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
7673 return FALSE;
7674
7675 buf = bfd_malloc (size);
7676 if (buf == NULL)
7677 return FALSE;
7678
7679 if (bfd_bread (buf, size, abfd) != size)
7680 {
7681 error:
7682 free (buf);
7683 return FALSE;
7684 }
7685
7686 p = buf;
7687 while (p < buf + size)
7688 {
7689 /* FIXME: bad alignment assumption. */
7690 Elf_External_Note *xnp = (Elf_External_Note *) p;
7691 Elf_Internal_Note in;
7692
7693 in.type = H_GET_32 (abfd, xnp->type);
7694
7695 in.namesz = H_GET_32 (abfd, xnp->namesz);
7696 in.namedata = xnp->name;
7697
7698 in.descsz = H_GET_32 (abfd, xnp->descsz);
7699 in.descdata = in.namedata + BFD_ALIGN (in.namesz, 4);
7700 in.descpos = offset + (in.descdata - buf);
7701
7702 if (strncmp (in.namedata, "NetBSD-CORE", 11) == 0)
7703 {
7704 if (! elfcore_grok_netbsd_note (abfd, &in))
7705 goto error;
7706 }
7707 else if (strncmp (in.namedata, "QNX", 3) == 0)
7708 {
7709 if (! elfcore_grok_nto_note (abfd, &in))
7710 goto error;
7711 }
7712 else
7713 {
7714 if (! elfcore_grok_note (abfd, &in))
7715 goto error;
7716 }
7717
7718 p = in.descdata + BFD_ALIGN (in.descsz, 4);
7719 }
7720
7721 free (buf);
7722 return TRUE;
7723 }
7724 \f
7725 /* Providing external access to the ELF program header table. */
7726
7727 /* Return an upper bound on the number of bytes required to store a
7728 copy of ABFD's program header table entries. Return -1 if an error
7729 occurs; bfd_get_error will return an appropriate code. */
7730
7731 long
7732 bfd_get_elf_phdr_upper_bound (bfd *abfd)
7733 {
7734 if (abfd->xvec->flavour != bfd_target_elf_flavour)
7735 {
7736 bfd_set_error (bfd_error_wrong_format);
7737 return -1;
7738 }
7739
7740 return elf_elfheader (abfd)->e_phnum * sizeof (Elf_Internal_Phdr);
7741 }
7742
7743 /* Copy ABFD's program header table entries to *PHDRS. The entries
7744 will be stored as an array of Elf_Internal_Phdr structures, as
7745 defined in include/elf/internal.h. To find out how large the
7746 buffer needs to be, call bfd_get_elf_phdr_upper_bound.
7747
7748 Return the number of program header table entries read, or -1 if an
7749 error occurs; bfd_get_error will return an appropriate code. */
7750
7751 int
7752 bfd_get_elf_phdrs (bfd *abfd, void *phdrs)
7753 {
7754 int num_phdrs;
7755
7756 if (abfd->xvec->flavour != bfd_target_elf_flavour)
7757 {
7758 bfd_set_error (bfd_error_wrong_format);
7759 return -1;
7760 }
7761
7762 num_phdrs = elf_elfheader (abfd)->e_phnum;
7763 memcpy (phdrs, elf_tdata (abfd)->phdr,
7764 num_phdrs * sizeof (Elf_Internal_Phdr));
7765
7766 return num_phdrs;
7767 }
7768
7769 void
7770 _bfd_elf_sprintf_vma (bfd *abfd ATTRIBUTE_UNUSED, char *buf, bfd_vma value)
7771 {
7772 #ifdef BFD64
7773 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
7774
7775 i_ehdrp = elf_elfheader (abfd);
7776 if (i_ehdrp == NULL)
7777 sprintf_vma (buf, value);
7778 else
7779 {
7780 if (i_ehdrp->e_ident[EI_CLASS] == ELFCLASS64)
7781 {
7782 #if BFD_HOST_64BIT_LONG
7783 sprintf (buf, "%016lx", value);
7784 #else
7785 sprintf (buf, "%08lx%08lx", _bfd_int64_high (value),
7786 _bfd_int64_low (value));
7787 #endif
7788 }
7789 else
7790 sprintf (buf, "%08lx", (unsigned long) (value & 0xffffffff));
7791 }
7792 #else
7793 sprintf_vma (buf, value);
7794 #endif
7795 }
7796
7797 void
7798 _bfd_elf_fprintf_vma (bfd *abfd ATTRIBUTE_UNUSED, void *stream, bfd_vma value)
7799 {
7800 #ifdef BFD64
7801 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
7802
7803 i_ehdrp = elf_elfheader (abfd);
7804 if (i_ehdrp == NULL)
7805 fprintf_vma ((FILE *) stream, value);
7806 else
7807 {
7808 if (i_ehdrp->e_ident[EI_CLASS] == ELFCLASS64)
7809 {
7810 #if BFD_HOST_64BIT_LONG
7811 fprintf ((FILE *) stream, "%016lx", value);
7812 #else
7813 fprintf ((FILE *) stream, "%08lx%08lx",
7814 _bfd_int64_high (value), _bfd_int64_low (value));
7815 #endif
7816 }
7817 else
7818 fprintf ((FILE *) stream, "%08lx",
7819 (unsigned long) (value & 0xffffffff));
7820 }
7821 #else
7822 fprintf_vma ((FILE *) stream, value);
7823 #endif
7824 }
7825
7826 enum elf_reloc_type_class
7827 _bfd_elf_reloc_type_class (const Elf_Internal_Rela *rela ATTRIBUTE_UNUSED)
7828 {
7829 return reloc_class_normal;
7830 }
7831
7832 /* For RELA architectures, return the relocation value for a
7833 relocation against a local symbol. */
7834
7835 bfd_vma
7836 _bfd_elf_rela_local_sym (bfd *abfd,
7837 Elf_Internal_Sym *sym,
7838 asection **psec,
7839 Elf_Internal_Rela *rel)
7840 {
7841 asection *sec = *psec;
7842 bfd_vma relocation;
7843
7844 relocation = (sec->output_section->vma
7845 + sec->output_offset
7846 + sym->st_value);
7847 if ((sec->flags & SEC_MERGE)
7848 && ELF_ST_TYPE (sym->st_info) == STT_SECTION
7849 && sec->sec_info_type == ELF_INFO_TYPE_MERGE)
7850 {
7851 rel->r_addend =
7852 _bfd_merged_section_offset (abfd, psec,
7853 elf_section_data (sec)->sec_info,
7854 sym->st_value + rel->r_addend);
7855 if (sec != *psec)
7856 {
7857 /* If we have changed the section, and our original section is
7858 marked with SEC_EXCLUDE, it means that the original
7859 SEC_MERGE section has been completely subsumed in some
7860 other SEC_MERGE section. In this case, we need to leave
7861 some info around for --emit-relocs. */
7862 if ((sec->flags & SEC_EXCLUDE) != 0)
7863 sec->kept_section = *psec;
7864 sec = *psec;
7865 }
7866 rel->r_addend -= relocation;
7867 rel->r_addend += sec->output_section->vma + sec->output_offset;
7868 }
7869 return relocation;
7870 }
7871
7872 bfd_vma
7873 _bfd_elf_rel_local_sym (bfd *abfd,
7874 Elf_Internal_Sym *sym,
7875 asection **psec,
7876 bfd_vma addend)
7877 {
7878 asection *sec = *psec;
7879
7880 if (sec->sec_info_type != ELF_INFO_TYPE_MERGE)
7881 return sym->st_value + addend;
7882
7883 return _bfd_merged_section_offset (abfd, psec,
7884 elf_section_data (sec)->sec_info,
7885 sym->st_value + addend);
7886 }
7887
7888 bfd_vma
7889 _bfd_elf_section_offset (bfd *abfd,
7890 struct bfd_link_info *info,
7891 asection *sec,
7892 bfd_vma offset)
7893 {
7894 switch (sec->sec_info_type)
7895 {
7896 case ELF_INFO_TYPE_STABS:
7897 return _bfd_stab_section_offset (sec, elf_section_data (sec)->sec_info,
7898 offset);
7899 case ELF_INFO_TYPE_EH_FRAME:
7900 return _bfd_elf_eh_frame_section_offset (abfd, info, sec, offset);
7901 default:
7902 return offset;
7903 }
7904 }
7905 \f
7906 /* Create a new BFD as if by bfd_openr. Rather than opening a file,
7907 reconstruct an ELF file by reading the segments out of remote memory
7908 based on the ELF file header at EHDR_VMA and the ELF program headers it
7909 points to. If not null, *LOADBASEP is filled in with the difference
7910 between the VMAs from which the segments were read, and the VMAs the
7911 file headers (and hence BFD's idea of each section's VMA) put them at.
7912
7913 The function TARGET_READ_MEMORY is called to copy LEN bytes from the
7914 remote memory at target address VMA into the local buffer at MYADDR; it
7915 should return zero on success or an `errno' code on failure. TEMPL must
7916 be a BFD for an ELF target with the word size and byte order found in
7917 the remote memory. */
7918
7919 bfd *
7920 bfd_elf_bfd_from_remote_memory
7921 (bfd *templ,
7922 bfd_vma ehdr_vma,
7923 bfd_vma *loadbasep,
7924 int (*target_read_memory) (bfd_vma, bfd_byte *, int))
7925 {
7926 return (*get_elf_backend_data (templ)->elf_backend_bfd_from_remote_memory)
7927 (templ, ehdr_vma, loadbasep, target_read_memory);
7928 }
7929 \f
7930 long
7931 _bfd_elf_get_synthetic_symtab (bfd *abfd,
7932 long symcount ATTRIBUTE_UNUSED,
7933 asymbol **syms ATTRIBUTE_UNUSED,
7934 long dynsymcount,
7935 asymbol **dynsyms,
7936 asymbol **ret)
7937 {
7938 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7939 asection *relplt;
7940 asymbol *s;
7941 const char *relplt_name;
7942 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
7943 arelent *p;
7944 long count, i, n;
7945 size_t size;
7946 Elf_Internal_Shdr *hdr;
7947 char *names;
7948 asection *plt;
7949
7950 *ret = NULL;
7951
7952 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0)
7953 return 0;
7954
7955 if (dynsymcount <= 0)
7956 return 0;
7957
7958 if (!bed->plt_sym_val)
7959 return 0;
7960
7961 relplt_name = bed->relplt_name;
7962 if (relplt_name == NULL)
7963 relplt_name = bed->default_use_rela_p ? ".rela.plt" : ".rel.plt";
7964 relplt = bfd_get_section_by_name (abfd, relplt_name);
7965 if (relplt == NULL)
7966 return 0;
7967
7968 hdr = &elf_section_data (relplt)->this_hdr;
7969 if (hdr->sh_link != elf_dynsymtab (abfd)
7970 || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA))
7971 return 0;
7972
7973 plt = bfd_get_section_by_name (abfd, ".plt");
7974 if (plt == NULL)
7975 return 0;
7976
7977 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
7978 if (! (*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
7979 return -1;
7980
7981 count = relplt->size / hdr->sh_entsize;
7982 size = count * sizeof (asymbol);
7983 p = relplt->relocation;
7984 for (i = 0; i < count; i++, s++, p++)
7985 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
7986
7987 s = *ret = bfd_malloc (size);
7988 if (s == NULL)
7989 return -1;
7990
7991 names = (char *) (s + count);
7992 p = relplt->relocation;
7993 n = 0;
7994 for (i = 0; i < count; i++, s++, p++)
7995 {
7996 size_t len;
7997 bfd_vma addr;
7998
7999 addr = bed->plt_sym_val (i, plt, p);
8000 if (addr == (bfd_vma) -1)
8001 continue;
8002
8003 *s = **p->sym_ptr_ptr;
8004 s->section = plt;
8005 s->value = addr - plt->vma;
8006 s->name = names;
8007 len = strlen ((*p->sym_ptr_ptr)->name);
8008 memcpy (names, (*p->sym_ptr_ptr)->name, len);
8009 names += len;
8010 memcpy (names, "@plt", sizeof ("@plt"));
8011 names += sizeof ("@plt");
8012 ++n;
8013 }
8014
8015 return n;
8016 }
8017
8018 /* Sort symbol by binding and section. We want to put definitions
8019 sorted by section at the beginning. */
8020
8021 static int
8022 elf_sort_elf_symbol (const void *arg1, const void *arg2)
8023 {
8024 const Elf_Internal_Sym *s1;
8025 const Elf_Internal_Sym *s2;
8026 int shndx;
8027
8028 /* Make sure that undefined symbols are at the end. */
8029 s1 = (const Elf_Internal_Sym *) arg1;
8030 if (s1->st_shndx == SHN_UNDEF)
8031 return 1;
8032 s2 = (const Elf_Internal_Sym *) arg2;
8033 if (s2->st_shndx == SHN_UNDEF)
8034 return -1;
8035
8036 /* Sorted by section index. */
8037 shndx = s1->st_shndx - s2->st_shndx;
8038 if (shndx != 0)
8039 return shndx;
8040
8041 /* Sorted by binding. */
8042 return ELF_ST_BIND (s1->st_info) - ELF_ST_BIND (s2->st_info);
8043 }
8044
8045 struct elf_symbol
8046 {
8047 Elf_Internal_Sym *sym;
8048 const char *name;
8049 };
8050
8051 static int
8052 elf_sym_name_compare (const void *arg1, const void *arg2)
8053 {
8054 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
8055 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
8056 return strcmp (s1->name, s2->name);
8057 }
8058
8059 /* Check if 2 sections define the same set of local and global
8060 symbols. */
8061
8062 bfd_boolean
8063 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2)
8064 {
8065 bfd *bfd1, *bfd2;
8066 const struct elf_backend_data *bed1, *bed2;
8067 Elf_Internal_Shdr *hdr1, *hdr2;
8068 bfd_size_type symcount1, symcount2;
8069 Elf_Internal_Sym *isymbuf1, *isymbuf2;
8070 Elf_Internal_Sym *isymstart1 = NULL, *isymstart2 = NULL, *isym;
8071 Elf_Internal_Sym *isymend;
8072 struct elf_symbol *symp, *symtable1 = NULL, *symtable2 = NULL;
8073 bfd_size_type count1, count2, i;
8074 int shndx1, shndx2;
8075 bfd_boolean result;
8076
8077 bfd1 = sec1->owner;
8078 bfd2 = sec2->owner;
8079
8080 /* If both are .gnu.linkonce sections, they have to have the same
8081 section name. */
8082 if (strncmp (sec1->name, ".gnu.linkonce",
8083 sizeof ".gnu.linkonce" - 1) == 0
8084 && strncmp (sec2->name, ".gnu.linkonce",
8085 sizeof ".gnu.linkonce" - 1) == 0)
8086 return strcmp (sec1->name + sizeof ".gnu.linkonce",
8087 sec2->name + sizeof ".gnu.linkonce") == 0;
8088
8089 /* Both sections have to be in ELF. */
8090 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
8091 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
8092 return FALSE;
8093
8094 if (elf_section_type (sec1) != elf_section_type (sec2))
8095 return FALSE;
8096
8097 if ((elf_section_flags (sec1) & SHF_GROUP) != 0
8098 && (elf_section_flags (sec2) & SHF_GROUP) != 0)
8099 {
8100 /* If both are members of section groups, they have to have the
8101 same group name. */
8102 if (strcmp (elf_group_name (sec1), elf_group_name (sec2)) != 0)
8103 return FALSE;
8104 }
8105
8106 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
8107 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
8108 if (shndx1 == -1 || shndx2 == -1)
8109 return FALSE;
8110
8111 bed1 = get_elf_backend_data (bfd1);
8112 bed2 = get_elf_backend_data (bfd2);
8113 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
8114 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
8115 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
8116 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
8117
8118 if (symcount1 == 0 || symcount2 == 0)
8119 return FALSE;
8120
8121 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
8122 NULL, NULL, NULL);
8123 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
8124 NULL, NULL, NULL);
8125
8126 result = FALSE;
8127 if (isymbuf1 == NULL || isymbuf2 == NULL)
8128 goto done;
8129
8130 /* Sort symbols by binding and section. Global definitions are at
8131 the beginning. */
8132 qsort (isymbuf1, symcount1, sizeof (Elf_Internal_Sym),
8133 elf_sort_elf_symbol);
8134 qsort (isymbuf2, symcount2, sizeof (Elf_Internal_Sym),
8135 elf_sort_elf_symbol);
8136
8137 /* Count definitions in the section. */
8138 count1 = 0;
8139 for (isym = isymbuf1, isymend = isym + symcount1;
8140 isym < isymend; isym++)
8141 {
8142 if (isym->st_shndx == (unsigned int) shndx1)
8143 {
8144 if (count1 == 0)
8145 isymstart1 = isym;
8146 count1++;
8147 }
8148
8149 if (count1 && isym->st_shndx != (unsigned int) shndx1)
8150 break;
8151 }
8152
8153 count2 = 0;
8154 for (isym = isymbuf2, isymend = isym + symcount2;
8155 isym < isymend; isym++)
8156 {
8157 if (isym->st_shndx == (unsigned int) shndx2)
8158 {
8159 if (count2 == 0)
8160 isymstart2 = isym;
8161 count2++;
8162 }
8163
8164 if (count2 && isym->st_shndx != (unsigned int) shndx2)
8165 break;
8166 }
8167
8168 if (count1 == 0 || count2 == 0 || count1 != count2)
8169 goto done;
8170
8171 symtable1 = bfd_malloc (count1 * sizeof (struct elf_symbol));
8172 symtable2 = bfd_malloc (count1 * sizeof (struct elf_symbol));
8173
8174 if (symtable1 == NULL || symtable2 == NULL)
8175 goto done;
8176
8177 symp = symtable1;
8178 for (isym = isymstart1, isymend = isym + count1;
8179 isym < isymend; isym++)
8180 {
8181 symp->sym = isym;
8182 symp->name = bfd_elf_string_from_elf_section (bfd1,
8183 hdr1->sh_link,
8184 isym->st_name);
8185 symp++;
8186 }
8187
8188 symp = symtable2;
8189 for (isym = isymstart2, isymend = isym + count1;
8190 isym < isymend; isym++)
8191 {
8192 symp->sym = isym;
8193 symp->name = bfd_elf_string_from_elf_section (bfd2,
8194 hdr2->sh_link,
8195 isym->st_name);
8196 symp++;
8197 }
8198
8199 /* Sort symbol by name. */
8200 qsort (symtable1, count1, sizeof (struct elf_symbol),
8201 elf_sym_name_compare);
8202 qsort (symtable2, count1, sizeof (struct elf_symbol),
8203 elf_sym_name_compare);
8204
8205 for (i = 0; i < count1; i++)
8206 /* Two symbols must have the same binding, type and name. */
8207 if (symtable1 [i].sym->st_info != symtable2 [i].sym->st_info
8208 || symtable1 [i].sym->st_other != symtable2 [i].sym->st_other
8209 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
8210 goto done;
8211
8212 result = TRUE;
8213
8214 done:
8215 if (symtable1)
8216 free (symtable1);
8217 if (symtable2)
8218 free (symtable2);
8219 if (isymbuf1)
8220 free (isymbuf1);
8221 if (isymbuf2)
8222 free (isymbuf2);
8223
8224 return result;
8225 }
This page took 0.246726 seconds and 4 git commands to generate.