* bfd-elf.h (elf_backend_name_local_section_symbols): New hook.
[deliverable/binutils-gdb.git] / bfd / elf.c
1 /* ELF executable support for BFD.
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21 /* SECTION
22
23 ELF backends
24
25 BFD support for ELF formats is being worked on.
26 Currently, the best supported back ends are for sparc and i386
27 (running svr4 or Solaris 2).
28
29 Documentation of the internals of the support code still needs
30 to be written. The code is changing quickly enough that we
31 haven't bothered yet. */
32
33 /* For sparc64-cross-sparc32. */
34 #define _SYSCALL32
35 #include "bfd.h"
36 #include "sysdep.h"
37 #include "bfdlink.h"
38 #include "libbfd.h"
39 #define ARCH_SIZE 0
40 #include "elf-bfd.h"
41 #include "libiberty.h"
42
43 static int elf_sort_sections (const void *, const void *);
44 static bfd_boolean assign_file_positions_except_relocs (bfd *, struct bfd_link_info *);
45 static bfd_boolean prep_headers (bfd *);
46 static bfd_boolean swap_out_syms (bfd *, struct bfd_strtab_hash **, int) ;
47 static bfd_boolean elfcore_read_notes (bfd *, file_ptr, bfd_size_type) ;
48
49 /* Swap version information in and out. The version information is
50 currently size independent. If that ever changes, this code will
51 need to move into elfcode.h. */
52
53 /* Swap in a Verdef structure. */
54
55 void
56 _bfd_elf_swap_verdef_in (bfd *abfd,
57 const Elf_External_Verdef *src,
58 Elf_Internal_Verdef *dst)
59 {
60 dst->vd_version = H_GET_16 (abfd, src->vd_version);
61 dst->vd_flags = H_GET_16 (abfd, src->vd_flags);
62 dst->vd_ndx = H_GET_16 (abfd, src->vd_ndx);
63 dst->vd_cnt = H_GET_16 (abfd, src->vd_cnt);
64 dst->vd_hash = H_GET_32 (abfd, src->vd_hash);
65 dst->vd_aux = H_GET_32 (abfd, src->vd_aux);
66 dst->vd_next = H_GET_32 (abfd, src->vd_next);
67 }
68
69 /* Swap out a Verdef structure. */
70
71 void
72 _bfd_elf_swap_verdef_out (bfd *abfd,
73 const Elf_Internal_Verdef *src,
74 Elf_External_Verdef *dst)
75 {
76 H_PUT_16 (abfd, src->vd_version, dst->vd_version);
77 H_PUT_16 (abfd, src->vd_flags, dst->vd_flags);
78 H_PUT_16 (abfd, src->vd_ndx, dst->vd_ndx);
79 H_PUT_16 (abfd, src->vd_cnt, dst->vd_cnt);
80 H_PUT_32 (abfd, src->vd_hash, dst->vd_hash);
81 H_PUT_32 (abfd, src->vd_aux, dst->vd_aux);
82 H_PUT_32 (abfd, src->vd_next, dst->vd_next);
83 }
84
85 /* Swap in a Verdaux structure. */
86
87 void
88 _bfd_elf_swap_verdaux_in (bfd *abfd,
89 const Elf_External_Verdaux *src,
90 Elf_Internal_Verdaux *dst)
91 {
92 dst->vda_name = H_GET_32 (abfd, src->vda_name);
93 dst->vda_next = H_GET_32 (abfd, src->vda_next);
94 }
95
96 /* Swap out a Verdaux structure. */
97
98 void
99 _bfd_elf_swap_verdaux_out (bfd *abfd,
100 const Elf_Internal_Verdaux *src,
101 Elf_External_Verdaux *dst)
102 {
103 H_PUT_32 (abfd, src->vda_name, dst->vda_name);
104 H_PUT_32 (abfd, src->vda_next, dst->vda_next);
105 }
106
107 /* Swap in a Verneed structure. */
108
109 void
110 _bfd_elf_swap_verneed_in (bfd *abfd,
111 const Elf_External_Verneed *src,
112 Elf_Internal_Verneed *dst)
113 {
114 dst->vn_version = H_GET_16 (abfd, src->vn_version);
115 dst->vn_cnt = H_GET_16 (abfd, src->vn_cnt);
116 dst->vn_file = H_GET_32 (abfd, src->vn_file);
117 dst->vn_aux = H_GET_32 (abfd, src->vn_aux);
118 dst->vn_next = H_GET_32 (abfd, src->vn_next);
119 }
120
121 /* Swap out a Verneed structure. */
122
123 void
124 _bfd_elf_swap_verneed_out (bfd *abfd,
125 const Elf_Internal_Verneed *src,
126 Elf_External_Verneed *dst)
127 {
128 H_PUT_16 (abfd, src->vn_version, dst->vn_version);
129 H_PUT_16 (abfd, src->vn_cnt, dst->vn_cnt);
130 H_PUT_32 (abfd, src->vn_file, dst->vn_file);
131 H_PUT_32 (abfd, src->vn_aux, dst->vn_aux);
132 H_PUT_32 (abfd, src->vn_next, dst->vn_next);
133 }
134
135 /* Swap in a Vernaux structure. */
136
137 void
138 _bfd_elf_swap_vernaux_in (bfd *abfd,
139 const Elf_External_Vernaux *src,
140 Elf_Internal_Vernaux *dst)
141 {
142 dst->vna_hash = H_GET_32 (abfd, src->vna_hash);
143 dst->vna_flags = H_GET_16 (abfd, src->vna_flags);
144 dst->vna_other = H_GET_16 (abfd, src->vna_other);
145 dst->vna_name = H_GET_32 (abfd, src->vna_name);
146 dst->vna_next = H_GET_32 (abfd, src->vna_next);
147 }
148
149 /* Swap out a Vernaux structure. */
150
151 void
152 _bfd_elf_swap_vernaux_out (bfd *abfd,
153 const Elf_Internal_Vernaux *src,
154 Elf_External_Vernaux *dst)
155 {
156 H_PUT_32 (abfd, src->vna_hash, dst->vna_hash);
157 H_PUT_16 (abfd, src->vna_flags, dst->vna_flags);
158 H_PUT_16 (abfd, src->vna_other, dst->vna_other);
159 H_PUT_32 (abfd, src->vna_name, dst->vna_name);
160 H_PUT_32 (abfd, src->vna_next, dst->vna_next);
161 }
162
163 /* Swap in a Versym structure. */
164
165 void
166 _bfd_elf_swap_versym_in (bfd *abfd,
167 const Elf_External_Versym *src,
168 Elf_Internal_Versym *dst)
169 {
170 dst->vs_vers = H_GET_16 (abfd, src->vs_vers);
171 }
172
173 /* Swap out a Versym structure. */
174
175 void
176 _bfd_elf_swap_versym_out (bfd *abfd,
177 const Elf_Internal_Versym *src,
178 Elf_External_Versym *dst)
179 {
180 H_PUT_16 (abfd, src->vs_vers, dst->vs_vers);
181 }
182
183 /* Standard ELF hash function. Do not change this function; you will
184 cause invalid hash tables to be generated. */
185
186 unsigned long
187 bfd_elf_hash (const char *namearg)
188 {
189 const unsigned char *name = (const unsigned char *) namearg;
190 unsigned long h = 0;
191 unsigned long g;
192 int ch;
193
194 while ((ch = *name++) != '\0')
195 {
196 h = (h << 4) + ch;
197 if ((g = (h & 0xf0000000)) != 0)
198 {
199 h ^= g >> 24;
200 /* The ELF ABI says `h &= ~g', but this is equivalent in
201 this case and on some machines one insn instead of two. */
202 h ^= g;
203 }
204 }
205 return h & 0xffffffff;
206 }
207
208 /* Read a specified number of bytes at a specified offset in an ELF
209 file, into a newly allocated buffer, and return a pointer to the
210 buffer. */
211
212 static char *
213 elf_read (bfd *abfd, file_ptr offset, bfd_size_type size)
214 {
215 char *buf;
216
217 if ((buf = bfd_alloc (abfd, size)) == NULL)
218 return NULL;
219 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
220 return NULL;
221 if (bfd_bread (buf, size, abfd) != size)
222 {
223 if (bfd_get_error () != bfd_error_system_call)
224 bfd_set_error (bfd_error_file_truncated);
225 return NULL;
226 }
227 return buf;
228 }
229
230 bfd_boolean
231 bfd_elf_mkobject (bfd *abfd)
232 {
233 /* This just does initialization. */
234 /* coff_mkobject zalloc's space for tdata.coff_obj_data ... */
235 elf_tdata (abfd) = bfd_zalloc (abfd, sizeof (struct elf_obj_tdata));
236 if (elf_tdata (abfd) == 0)
237 return FALSE;
238 /* Since everything is done at close time, do we need any
239 initialization? */
240
241 return TRUE;
242 }
243
244 bfd_boolean
245 bfd_elf_mkcorefile (bfd *abfd)
246 {
247 /* I think this can be done just like an object file. */
248 return bfd_elf_mkobject (abfd);
249 }
250
251 char *
252 bfd_elf_get_str_section (bfd *abfd, unsigned int shindex)
253 {
254 Elf_Internal_Shdr **i_shdrp;
255 char *shstrtab = NULL;
256 file_ptr offset;
257 bfd_size_type shstrtabsize;
258
259 i_shdrp = elf_elfsections (abfd);
260 if (i_shdrp == 0 || i_shdrp[shindex] == 0)
261 return 0;
262
263 shstrtab = (char *) i_shdrp[shindex]->contents;
264 if (shstrtab == NULL)
265 {
266 /* No cached one, attempt to read, and cache what we read. */
267 offset = i_shdrp[shindex]->sh_offset;
268 shstrtabsize = i_shdrp[shindex]->sh_size;
269 shstrtab = elf_read (abfd, offset, shstrtabsize);
270 i_shdrp[shindex]->contents = shstrtab;
271 }
272 return shstrtab;
273 }
274
275 char *
276 bfd_elf_string_from_elf_section (bfd *abfd,
277 unsigned int shindex,
278 unsigned int strindex)
279 {
280 Elf_Internal_Shdr *hdr;
281
282 if (strindex == 0)
283 return "";
284
285 hdr = elf_elfsections (abfd)[shindex];
286
287 if (hdr->contents == NULL
288 && bfd_elf_get_str_section (abfd, shindex) == NULL)
289 return NULL;
290
291 if (strindex >= hdr->sh_size)
292 {
293 (*_bfd_error_handler)
294 (_("%s: invalid string offset %u >= %lu for section `%s'"),
295 bfd_archive_filename (abfd), strindex, (unsigned long) hdr->sh_size,
296 ((shindex == elf_elfheader(abfd)->e_shstrndx
297 && strindex == hdr->sh_name)
298 ? ".shstrtab"
299 : elf_string_from_elf_strtab (abfd, hdr->sh_name)));
300 return "";
301 }
302
303 return ((char *) hdr->contents) + strindex;
304 }
305
306 /* Read and convert symbols to internal format.
307 SYMCOUNT specifies the number of symbols to read, starting from
308 symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF
309 are non-NULL, they are used to store the internal symbols, external
310 symbols, and symbol section index extensions, respectively. */
311
312 Elf_Internal_Sym *
313 bfd_elf_get_elf_syms (bfd *ibfd,
314 Elf_Internal_Shdr *symtab_hdr,
315 size_t symcount,
316 size_t symoffset,
317 Elf_Internal_Sym *intsym_buf,
318 void *extsym_buf,
319 Elf_External_Sym_Shndx *extshndx_buf)
320 {
321 Elf_Internal_Shdr *shndx_hdr;
322 void *alloc_ext;
323 const bfd_byte *esym;
324 Elf_External_Sym_Shndx *alloc_extshndx;
325 Elf_External_Sym_Shndx *shndx;
326 Elf_Internal_Sym *isym;
327 Elf_Internal_Sym *isymend;
328 const struct elf_backend_data *bed;
329 size_t extsym_size;
330 bfd_size_type amt;
331 file_ptr pos;
332
333 if (symcount == 0)
334 return intsym_buf;
335
336 /* Normal syms might have section extension entries. */
337 shndx_hdr = NULL;
338 if (symtab_hdr == &elf_tdata (ibfd)->symtab_hdr)
339 shndx_hdr = &elf_tdata (ibfd)->symtab_shndx_hdr;
340
341 /* Read the symbols. */
342 alloc_ext = NULL;
343 alloc_extshndx = NULL;
344 bed = get_elf_backend_data (ibfd);
345 extsym_size = bed->s->sizeof_sym;
346 amt = symcount * extsym_size;
347 pos = symtab_hdr->sh_offset + symoffset * extsym_size;
348 if (extsym_buf == NULL)
349 {
350 alloc_ext = bfd_malloc (amt);
351 extsym_buf = alloc_ext;
352 }
353 if (extsym_buf == NULL
354 || bfd_seek (ibfd, pos, SEEK_SET) != 0
355 || bfd_bread (extsym_buf, amt, ibfd) != amt)
356 {
357 intsym_buf = NULL;
358 goto out;
359 }
360
361 if (shndx_hdr == NULL || shndx_hdr->sh_size == 0)
362 extshndx_buf = NULL;
363 else
364 {
365 amt = symcount * sizeof (Elf_External_Sym_Shndx);
366 pos = shndx_hdr->sh_offset + symoffset * sizeof (Elf_External_Sym_Shndx);
367 if (extshndx_buf == NULL)
368 {
369 alloc_extshndx = bfd_malloc (amt);
370 extshndx_buf = alloc_extshndx;
371 }
372 if (extshndx_buf == NULL
373 || bfd_seek (ibfd, pos, SEEK_SET) != 0
374 || bfd_bread (extshndx_buf, amt, ibfd) != amt)
375 {
376 intsym_buf = NULL;
377 goto out;
378 }
379 }
380
381 if (intsym_buf == NULL)
382 {
383 bfd_size_type amt = symcount * sizeof (Elf_Internal_Sym);
384 intsym_buf = bfd_malloc (amt);
385 if (intsym_buf == NULL)
386 goto out;
387 }
388
389 /* Convert the symbols to internal form. */
390 isymend = intsym_buf + symcount;
391 for (esym = extsym_buf, isym = intsym_buf, shndx = extshndx_buf;
392 isym < isymend;
393 esym += extsym_size, isym++, shndx = shndx != NULL ? shndx + 1 : NULL)
394 (*bed->s->swap_symbol_in) (ibfd, esym, shndx, isym);
395
396 out:
397 if (alloc_ext != NULL)
398 free (alloc_ext);
399 if (alloc_extshndx != NULL)
400 free (alloc_extshndx);
401
402 return intsym_buf;
403 }
404
405 /* Look up a symbol name. */
406 const char *
407 bfd_elf_local_sym_name (bfd *abfd, Elf_Internal_Sym *isym)
408 {
409 unsigned int iname = isym->st_name;
410 unsigned int shindex = elf_tdata (abfd)->symtab_hdr.sh_link;
411 if (iname == 0 && ELF_ST_TYPE (isym->st_info) == STT_SECTION)
412 {
413 iname = elf_elfsections (abfd)[isym->st_shndx]->sh_name;
414 shindex = elf_elfheader (abfd)->e_shstrndx;
415 }
416
417 return bfd_elf_string_from_elf_section (abfd, shindex, iname);
418 }
419
420 /* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
421 sections. The first element is the flags, the rest are section
422 pointers. */
423
424 typedef union elf_internal_group {
425 Elf_Internal_Shdr *shdr;
426 unsigned int flags;
427 } Elf_Internal_Group;
428
429 /* Return the name of the group signature symbol. Why isn't the
430 signature just a string? */
431
432 static const char *
433 group_signature (bfd *abfd, Elf_Internal_Shdr *ghdr)
434 {
435 Elf_Internal_Shdr *hdr;
436 unsigned char esym[sizeof (Elf64_External_Sym)];
437 Elf_External_Sym_Shndx eshndx;
438 Elf_Internal_Sym isym;
439
440 /* First we need to ensure the symbol table is available. */
441 if (! bfd_section_from_shdr (abfd, ghdr->sh_link))
442 return NULL;
443
444 /* Go read the symbol. */
445 hdr = &elf_tdata (abfd)->symtab_hdr;
446 if (bfd_elf_get_elf_syms (abfd, hdr, 1, ghdr->sh_info,
447 &isym, esym, &eshndx) == NULL)
448 return NULL;
449
450 return bfd_elf_local_sym_name (abfd, &isym);
451 }
452
453 /* Set next_in_group list pointer, and group name for NEWSECT. */
454
455 static bfd_boolean
456 setup_group (bfd *abfd, Elf_Internal_Shdr *hdr, asection *newsect)
457 {
458 unsigned int num_group = elf_tdata (abfd)->num_group;
459
460 /* If num_group is zero, read in all SHT_GROUP sections. The count
461 is set to -1 if there are no SHT_GROUP sections. */
462 if (num_group == 0)
463 {
464 unsigned int i, shnum;
465
466 /* First count the number of groups. If we have a SHT_GROUP
467 section with just a flag word (ie. sh_size is 4), ignore it. */
468 shnum = elf_numsections (abfd);
469 num_group = 0;
470 for (i = 0; i < shnum; i++)
471 {
472 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
473 if (shdr->sh_type == SHT_GROUP && shdr->sh_size >= 8)
474 num_group += 1;
475 }
476
477 if (num_group == 0)
478 num_group = (unsigned) -1;
479 elf_tdata (abfd)->num_group = num_group;
480
481 if (num_group > 0)
482 {
483 /* We keep a list of elf section headers for group sections,
484 so we can find them quickly. */
485 bfd_size_type amt = num_group * sizeof (Elf_Internal_Shdr *);
486 elf_tdata (abfd)->group_sect_ptr = bfd_alloc (abfd, amt);
487 if (elf_tdata (abfd)->group_sect_ptr == NULL)
488 return FALSE;
489
490 num_group = 0;
491 for (i = 0; i < shnum; i++)
492 {
493 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
494 if (shdr->sh_type == SHT_GROUP && shdr->sh_size >= 8)
495 {
496 unsigned char *src;
497 Elf_Internal_Group *dest;
498
499 /* Add to list of sections. */
500 elf_tdata (abfd)->group_sect_ptr[num_group] = shdr;
501 num_group += 1;
502
503 /* Read the raw contents. */
504 BFD_ASSERT (sizeof (*dest) >= 4);
505 amt = shdr->sh_size * sizeof (*dest) / 4;
506 shdr->contents = bfd_alloc (abfd, amt);
507 if (shdr->contents == NULL
508 || bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0
509 || (bfd_bread (shdr->contents, shdr->sh_size, abfd)
510 != shdr->sh_size))
511 return FALSE;
512
513 /* Translate raw contents, a flag word followed by an
514 array of elf section indices all in target byte order,
515 to the flag word followed by an array of elf section
516 pointers. */
517 src = shdr->contents + shdr->sh_size;
518 dest = (Elf_Internal_Group *) (shdr->contents + amt);
519 while (1)
520 {
521 unsigned int idx;
522
523 src -= 4;
524 --dest;
525 idx = H_GET_32 (abfd, src);
526 if (src == shdr->contents)
527 {
528 dest->flags = idx;
529 if (shdr->bfd_section != NULL && (idx & GRP_COMDAT))
530 shdr->bfd_section->flags
531 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
532 break;
533 }
534 if (idx >= shnum)
535 {
536 ((*_bfd_error_handler)
537 (_("%s: invalid SHT_GROUP entry"),
538 bfd_archive_filename (abfd)));
539 idx = 0;
540 }
541 dest->shdr = elf_elfsections (abfd)[idx];
542 }
543 }
544 }
545 }
546 }
547
548 if (num_group != (unsigned) -1)
549 {
550 unsigned int i;
551
552 for (i = 0; i < num_group; i++)
553 {
554 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
555 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
556 unsigned int n_elt = shdr->sh_size / 4;
557
558 /* Look through this group's sections to see if current
559 section is a member. */
560 while (--n_elt != 0)
561 if ((++idx)->shdr == hdr)
562 {
563 asection *s = NULL;
564
565 /* We are a member of this group. Go looking through
566 other members to see if any others are linked via
567 next_in_group. */
568 idx = (Elf_Internal_Group *) shdr->contents;
569 n_elt = shdr->sh_size / 4;
570 while (--n_elt != 0)
571 if ((s = (++idx)->shdr->bfd_section) != NULL
572 && elf_next_in_group (s) != NULL)
573 break;
574 if (n_elt != 0)
575 {
576 /* Snarf the group name from other member, and
577 insert current section in circular list. */
578 elf_group_name (newsect) = elf_group_name (s);
579 elf_next_in_group (newsect) = elf_next_in_group (s);
580 elf_next_in_group (s) = newsect;
581 }
582 else
583 {
584 const char *gname;
585
586 gname = group_signature (abfd, shdr);
587 if (gname == NULL)
588 return FALSE;
589 elf_group_name (newsect) = gname;
590
591 /* Start a circular list with one element. */
592 elf_next_in_group (newsect) = newsect;
593 }
594
595 /* If the group section has been created, point to the
596 new member. */
597 if (shdr->bfd_section != NULL)
598 elf_next_in_group (shdr->bfd_section) = newsect;
599
600 i = num_group - 1;
601 break;
602 }
603 }
604 }
605
606 if (elf_group_name (newsect) == NULL)
607 {
608 (*_bfd_error_handler) (_("%s: no group info for section %s"),
609 bfd_archive_filename (abfd), newsect->name);
610 }
611 return TRUE;
612 }
613
614 bfd_boolean
615 bfd_elf_discard_group (bfd *abfd ATTRIBUTE_UNUSED, asection *group)
616 {
617 asection *first = elf_next_in_group (group);
618 asection *s = first;
619
620 while (s != NULL)
621 {
622 s->output_section = bfd_abs_section_ptr;
623 s = elf_next_in_group (s);
624 /* These lists are circular. */
625 if (s == first)
626 break;
627 }
628 return TRUE;
629 }
630
631 /* Make a BFD section from an ELF section. We store a pointer to the
632 BFD section in the bfd_section field of the header. */
633
634 bfd_boolean
635 _bfd_elf_make_section_from_shdr (bfd *abfd,
636 Elf_Internal_Shdr *hdr,
637 const char *name)
638 {
639 asection *newsect;
640 flagword flags;
641 const struct elf_backend_data *bed;
642
643 if (hdr->bfd_section != NULL)
644 {
645 BFD_ASSERT (strcmp (name,
646 bfd_get_section_name (abfd, hdr->bfd_section)) == 0);
647 return TRUE;
648 }
649
650 newsect = bfd_make_section_anyway (abfd, name);
651 if (newsect == NULL)
652 return FALSE;
653
654 /* Always use the real type/flags. */
655 elf_section_type (newsect) = hdr->sh_type;
656 elf_section_flags (newsect) = hdr->sh_flags;
657
658 newsect->filepos = hdr->sh_offset;
659
660 if (! bfd_set_section_vma (abfd, newsect, hdr->sh_addr)
661 || ! bfd_set_section_size (abfd, newsect, hdr->sh_size)
662 || ! bfd_set_section_alignment (abfd, newsect,
663 bfd_log2 ((bfd_vma) hdr->sh_addralign)))
664 return FALSE;
665
666 flags = SEC_NO_FLAGS;
667 if (hdr->sh_type != SHT_NOBITS)
668 flags |= SEC_HAS_CONTENTS;
669 if (hdr->sh_type == SHT_GROUP)
670 flags |= SEC_GROUP | SEC_EXCLUDE;
671 if ((hdr->sh_flags & SHF_ALLOC) != 0)
672 {
673 flags |= SEC_ALLOC;
674 if (hdr->sh_type != SHT_NOBITS)
675 flags |= SEC_LOAD;
676 }
677 if ((hdr->sh_flags & SHF_WRITE) == 0)
678 flags |= SEC_READONLY;
679 if ((hdr->sh_flags & SHF_EXECINSTR) != 0)
680 flags |= SEC_CODE;
681 else if ((flags & SEC_LOAD) != 0)
682 flags |= SEC_DATA;
683 if ((hdr->sh_flags & SHF_MERGE) != 0)
684 {
685 flags |= SEC_MERGE;
686 newsect->entsize = hdr->sh_entsize;
687 if ((hdr->sh_flags & SHF_STRINGS) != 0)
688 flags |= SEC_STRINGS;
689 }
690 if (hdr->sh_flags & SHF_GROUP)
691 if (!setup_group (abfd, hdr, newsect))
692 return FALSE;
693 if ((hdr->sh_flags & SHF_TLS) != 0)
694 flags |= SEC_THREAD_LOCAL;
695
696 /* The debugging sections appear to be recognized only by name, not
697 any sort of flag. */
698 {
699 static const char *debug_sec_names [] =
700 {
701 ".debug",
702 ".gnu.linkonce.wi.",
703 ".line",
704 ".stab"
705 };
706 int i;
707
708 for (i = ARRAY_SIZE (debug_sec_names); i--;)
709 if (strncmp (name, debug_sec_names[i], strlen (debug_sec_names[i])) == 0)
710 break;
711
712 if (i >= 0)
713 flags |= SEC_DEBUGGING;
714 }
715
716 /* As a GNU extension, if the name begins with .gnu.linkonce, we
717 only link a single copy of the section. This is used to support
718 g++. g++ will emit each template expansion in its own section.
719 The symbols will be defined as weak, so that multiple definitions
720 are permitted. The GNU linker extension is to actually discard
721 all but one of the sections. */
722 if (strncmp (name, ".gnu.linkonce", sizeof ".gnu.linkonce" - 1) == 0
723 && elf_next_in_group (newsect) == NULL)
724 flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
725
726 bed = get_elf_backend_data (abfd);
727 if (bed->elf_backend_section_flags)
728 if (! bed->elf_backend_section_flags (&flags, hdr))
729 return FALSE;
730
731 if (! bfd_set_section_flags (abfd, newsect, flags))
732 return FALSE;
733
734 if ((flags & SEC_ALLOC) != 0)
735 {
736 Elf_Internal_Phdr *phdr;
737 unsigned int i;
738
739 /* Look through the phdrs to see if we need to adjust the lma.
740 If all the p_paddr fields are zero, we ignore them, since
741 some ELF linkers produce such output. */
742 phdr = elf_tdata (abfd)->phdr;
743 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
744 {
745 if (phdr->p_paddr != 0)
746 break;
747 }
748 if (i < elf_elfheader (abfd)->e_phnum)
749 {
750 phdr = elf_tdata (abfd)->phdr;
751 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
752 {
753 /* This section is part of this segment if its file
754 offset plus size lies within the segment's memory
755 span and, if the section is loaded, the extent of the
756 loaded data lies within the extent of the segment.
757
758 Note - we used to check the p_paddr field as well, and
759 refuse to set the LMA if it was 0. This is wrong
760 though, as a perfectly valid initialised segment can
761 have a p_paddr of zero. Some architectures, eg ARM,
762 place special significance on the address 0 and
763 executables need to be able to have a segment which
764 covers this address. */
765 if (phdr->p_type == PT_LOAD
766 && (bfd_vma) hdr->sh_offset >= phdr->p_offset
767 && (hdr->sh_offset + hdr->sh_size
768 <= phdr->p_offset + phdr->p_memsz)
769 && ((flags & SEC_LOAD) == 0
770 || (hdr->sh_offset + hdr->sh_size
771 <= phdr->p_offset + phdr->p_filesz)))
772 {
773 if ((flags & SEC_LOAD) == 0)
774 newsect->lma = (phdr->p_paddr
775 + hdr->sh_addr - phdr->p_vaddr);
776 else
777 /* We used to use the same adjustment for SEC_LOAD
778 sections, but that doesn't work if the segment
779 is packed with code from multiple VMAs.
780 Instead we calculate the section LMA based on
781 the segment LMA. It is assumed that the
782 segment will contain sections with contiguous
783 LMAs, even if the VMAs are not. */
784 newsect->lma = (phdr->p_paddr
785 + hdr->sh_offset - phdr->p_offset);
786
787 /* With contiguous segments, we can't tell from file
788 offsets whether a section with zero size should
789 be placed at the end of one segment or the
790 beginning of the next. Decide based on vaddr. */
791 if (hdr->sh_addr >= phdr->p_vaddr
792 && (hdr->sh_addr + hdr->sh_size
793 <= phdr->p_vaddr + phdr->p_memsz))
794 break;
795 }
796 }
797 }
798 }
799
800 hdr->bfd_section = newsect;
801 elf_section_data (newsect)->this_hdr = *hdr;
802
803 return TRUE;
804 }
805
806 /*
807 INTERNAL_FUNCTION
808 bfd_elf_find_section
809
810 SYNOPSIS
811 struct elf_internal_shdr *bfd_elf_find_section (bfd *abfd, char *name);
812
813 DESCRIPTION
814 Helper functions for GDB to locate the string tables.
815 Since BFD hides string tables from callers, GDB needs to use an
816 internal hook to find them. Sun's .stabstr, in particular,
817 isn't even pointed to by the .stab section, so ordinary
818 mechanisms wouldn't work to find it, even if we had some.
819 */
820
821 struct elf_internal_shdr *
822 bfd_elf_find_section (bfd *abfd, char *name)
823 {
824 Elf_Internal_Shdr **i_shdrp;
825 char *shstrtab;
826 unsigned int max;
827 unsigned int i;
828
829 i_shdrp = elf_elfsections (abfd);
830 if (i_shdrp != NULL)
831 {
832 shstrtab = bfd_elf_get_str_section (abfd,
833 elf_elfheader (abfd)->e_shstrndx);
834 if (shstrtab != NULL)
835 {
836 max = elf_numsections (abfd);
837 for (i = 1; i < max; i++)
838 if (!strcmp (&shstrtab[i_shdrp[i]->sh_name], name))
839 return i_shdrp[i];
840 }
841 }
842 return 0;
843 }
844
845 const char *const bfd_elf_section_type_names[] = {
846 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
847 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
848 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
849 };
850
851 /* ELF relocs are against symbols. If we are producing relocatable
852 output, and the reloc is against an external symbol, and nothing
853 has given us any additional addend, the resulting reloc will also
854 be against the same symbol. In such a case, we don't want to
855 change anything about the way the reloc is handled, since it will
856 all be done at final link time. Rather than put special case code
857 into bfd_perform_relocation, all the reloc types use this howto
858 function. It just short circuits the reloc if producing
859 relocatable output against an external symbol. */
860
861 bfd_reloc_status_type
862 bfd_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED,
863 arelent *reloc_entry,
864 asymbol *symbol,
865 void *data ATTRIBUTE_UNUSED,
866 asection *input_section,
867 bfd *output_bfd,
868 char **error_message ATTRIBUTE_UNUSED)
869 {
870 if (output_bfd != NULL
871 && (symbol->flags & BSF_SECTION_SYM) == 0
872 && (! reloc_entry->howto->partial_inplace
873 || reloc_entry->addend == 0))
874 {
875 reloc_entry->address += input_section->output_offset;
876 return bfd_reloc_ok;
877 }
878
879 return bfd_reloc_continue;
880 }
881 \f
882 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
883
884 static void
885 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
886 asection *sec)
887 {
888 BFD_ASSERT (sec->sec_info_type == ELF_INFO_TYPE_MERGE);
889 sec->sec_info_type = ELF_INFO_TYPE_NONE;
890 }
891
892 /* Finish SHF_MERGE section merging. */
893
894 bfd_boolean
895 _bfd_elf_merge_sections (bfd *abfd, struct bfd_link_info *info)
896 {
897 if (!is_elf_hash_table (info->hash))
898 return FALSE;
899 if (elf_hash_table (info)->merge_info)
900 _bfd_merge_sections (abfd, elf_hash_table (info)->merge_info,
901 merge_sections_remove_hook);
902 return TRUE;
903 }
904
905 void
906 _bfd_elf_link_just_syms (asection *sec, struct bfd_link_info *info)
907 {
908 sec->output_section = bfd_abs_section_ptr;
909 sec->output_offset = sec->vma;
910 if (!is_elf_hash_table (info->hash))
911 return;
912
913 sec->sec_info_type = ELF_INFO_TYPE_JUST_SYMS;
914 }
915 \f
916 /* Copy the program header and other data from one object module to
917 another. */
918
919 bfd_boolean
920 _bfd_elf_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
921 {
922 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
923 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
924 return TRUE;
925
926 BFD_ASSERT (!elf_flags_init (obfd)
927 || (elf_elfheader (obfd)->e_flags
928 == elf_elfheader (ibfd)->e_flags));
929
930 elf_gp (obfd) = elf_gp (ibfd);
931 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
932 elf_flags_init (obfd) = TRUE;
933 return TRUE;
934 }
935
936 /* Print out the program headers. */
937
938 bfd_boolean
939 _bfd_elf_print_private_bfd_data (bfd *abfd, void *farg)
940 {
941 FILE *f = farg;
942 Elf_Internal_Phdr *p;
943 asection *s;
944 bfd_byte *dynbuf = NULL;
945
946 p = elf_tdata (abfd)->phdr;
947 if (p != NULL)
948 {
949 unsigned int i, c;
950
951 fprintf (f, _("\nProgram Header:\n"));
952 c = elf_elfheader (abfd)->e_phnum;
953 for (i = 0; i < c; i++, p++)
954 {
955 const char *pt;
956 char buf[20];
957
958 switch (p->p_type)
959 {
960 case PT_NULL: pt = "NULL"; break;
961 case PT_LOAD: pt = "LOAD"; break;
962 case PT_DYNAMIC: pt = "DYNAMIC"; break;
963 case PT_INTERP: pt = "INTERP"; break;
964 case PT_NOTE: pt = "NOTE"; break;
965 case PT_SHLIB: pt = "SHLIB"; break;
966 case PT_PHDR: pt = "PHDR"; break;
967 case PT_TLS: pt = "TLS"; break;
968 case PT_GNU_EH_FRAME: pt = "EH_FRAME"; break;
969 case PT_GNU_STACK: pt = "STACK"; break;
970 default: sprintf (buf, "0x%lx", p->p_type); pt = buf; break;
971 }
972 fprintf (f, "%8s off 0x", pt);
973 bfd_fprintf_vma (abfd, f, p->p_offset);
974 fprintf (f, " vaddr 0x");
975 bfd_fprintf_vma (abfd, f, p->p_vaddr);
976 fprintf (f, " paddr 0x");
977 bfd_fprintf_vma (abfd, f, p->p_paddr);
978 fprintf (f, " align 2**%u\n", bfd_log2 (p->p_align));
979 fprintf (f, " filesz 0x");
980 bfd_fprintf_vma (abfd, f, p->p_filesz);
981 fprintf (f, " memsz 0x");
982 bfd_fprintf_vma (abfd, f, p->p_memsz);
983 fprintf (f, " flags %c%c%c",
984 (p->p_flags & PF_R) != 0 ? 'r' : '-',
985 (p->p_flags & PF_W) != 0 ? 'w' : '-',
986 (p->p_flags & PF_X) != 0 ? 'x' : '-');
987 if ((p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X)) != 0)
988 fprintf (f, " %lx", p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X));
989 fprintf (f, "\n");
990 }
991 }
992
993 s = bfd_get_section_by_name (abfd, ".dynamic");
994 if (s != NULL)
995 {
996 int elfsec;
997 unsigned long shlink;
998 bfd_byte *extdyn, *extdynend;
999 size_t extdynsize;
1000 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1001
1002 fprintf (f, _("\nDynamic Section:\n"));
1003
1004 dynbuf = bfd_malloc (s->_raw_size);
1005 if (dynbuf == NULL)
1006 goto error_return;
1007 if (! bfd_get_section_contents (abfd, s, dynbuf, 0, s->_raw_size))
1008 goto error_return;
1009
1010 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1011 if (elfsec == -1)
1012 goto error_return;
1013 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1014
1015 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1016 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1017
1018 extdyn = dynbuf;
1019 extdynend = extdyn + s->_raw_size;
1020 for (; extdyn < extdynend; extdyn += extdynsize)
1021 {
1022 Elf_Internal_Dyn dyn;
1023 const char *name;
1024 char ab[20];
1025 bfd_boolean stringp;
1026
1027 (*swap_dyn_in) (abfd, extdyn, &dyn);
1028
1029 if (dyn.d_tag == DT_NULL)
1030 break;
1031
1032 stringp = FALSE;
1033 switch (dyn.d_tag)
1034 {
1035 default:
1036 sprintf (ab, "0x%lx", (unsigned long) dyn.d_tag);
1037 name = ab;
1038 break;
1039
1040 case DT_NEEDED: name = "NEEDED"; stringp = TRUE; break;
1041 case DT_PLTRELSZ: name = "PLTRELSZ"; break;
1042 case DT_PLTGOT: name = "PLTGOT"; break;
1043 case DT_HASH: name = "HASH"; break;
1044 case DT_STRTAB: name = "STRTAB"; break;
1045 case DT_SYMTAB: name = "SYMTAB"; break;
1046 case DT_RELA: name = "RELA"; break;
1047 case DT_RELASZ: name = "RELASZ"; break;
1048 case DT_RELAENT: name = "RELAENT"; break;
1049 case DT_STRSZ: name = "STRSZ"; break;
1050 case DT_SYMENT: name = "SYMENT"; break;
1051 case DT_INIT: name = "INIT"; break;
1052 case DT_FINI: name = "FINI"; break;
1053 case DT_SONAME: name = "SONAME"; stringp = TRUE; break;
1054 case DT_RPATH: name = "RPATH"; stringp = TRUE; break;
1055 case DT_SYMBOLIC: name = "SYMBOLIC"; break;
1056 case DT_REL: name = "REL"; break;
1057 case DT_RELSZ: name = "RELSZ"; break;
1058 case DT_RELENT: name = "RELENT"; break;
1059 case DT_PLTREL: name = "PLTREL"; break;
1060 case DT_DEBUG: name = "DEBUG"; break;
1061 case DT_TEXTREL: name = "TEXTREL"; break;
1062 case DT_JMPREL: name = "JMPREL"; break;
1063 case DT_BIND_NOW: name = "BIND_NOW"; break;
1064 case DT_INIT_ARRAY: name = "INIT_ARRAY"; break;
1065 case DT_FINI_ARRAY: name = "FINI_ARRAY"; break;
1066 case DT_INIT_ARRAYSZ: name = "INIT_ARRAYSZ"; break;
1067 case DT_FINI_ARRAYSZ: name = "FINI_ARRAYSZ"; break;
1068 case DT_RUNPATH: name = "RUNPATH"; stringp = TRUE; break;
1069 case DT_FLAGS: name = "FLAGS"; break;
1070 case DT_PREINIT_ARRAY: name = "PREINIT_ARRAY"; break;
1071 case DT_PREINIT_ARRAYSZ: name = "PREINIT_ARRAYSZ"; break;
1072 case DT_CHECKSUM: name = "CHECKSUM"; break;
1073 case DT_PLTPADSZ: name = "PLTPADSZ"; break;
1074 case DT_MOVEENT: name = "MOVEENT"; break;
1075 case DT_MOVESZ: name = "MOVESZ"; break;
1076 case DT_FEATURE: name = "FEATURE"; break;
1077 case DT_POSFLAG_1: name = "POSFLAG_1"; break;
1078 case DT_SYMINSZ: name = "SYMINSZ"; break;
1079 case DT_SYMINENT: name = "SYMINENT"; break;
1080 case DT_CONFIG: name = "CONFIG"; stringp = TRUE; break;
1081 case DT_DEPAUDIT: name = "DEPAUDIT"; stringp = TRUE; break;
1082 case DT_AUDIT: name = "AUDIT"; stringp = TRUE; break;
1083 case DT_PLTPAD: name = "PLTPAD"; break;
1084 case DT_MOVETAB: name = "MOVETAB"; break;
1085 case DT_SYMINFO: name = "SYMINFO"; break;
1086 case DT_RELACOUNT: name = "RELACOUNT"; break;
1087 case DT_RELCOUNT: name = "RELCOUNT"; break;
1088 case DT_FLAGS_1: name = "FLAGS_1"; break;
1089 case DT_VERSYM: name = "VERSYM"; break;
1090 case DT_VERDEF: name = "VERDEF"; break;
1091 case DT_VERDEFNUM: name = "VERDEFNUM"; break;
1092 case DT_VERNEED: name = "VERNEED"; break;
1093 case DT_VERNEEDNUM: name = "VERNEEDNUM"; break;
1094 case DT_AUXILIARY: name = "AUXILIARY"; stringp = TRUE; break;
1095 case DT_USED: name = "USED"; break;
1096 case DT_FILTER: name = "FILTER"; stringp = TRUE; break;
1097 }
1098
1099 fprintf (f, " %-11s ", name);
1100 if (! stringp)
1101 fprintf (f, "0x%lx", (unsigned long) dyn.d_un.d_val);
1102 else
1103 {
1104 const char *string;
1105 unsigned int tagv = dyn.d_un.d_val;
1106
1107 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1108 if (string == NULL)
1109 goto error_return;
1110 fprintf (f, "%s", string);
1111 }
1112 fprintf (f, "\n");
1113 }
1114
1115 free (dynbuf);
1116 dynbuf = NULL;
1117 }
1118
1119 if ((elf_dynverdef (abfd) != 0 && elf_tdata (abfd)->verdef == NULL)
1120 || (elf_dynverref (abfd) != 0 && elf_tdata (abfd)->verref == NULL))
1121 {
1122 if (! _bfd_elf_slurp_version_tables (abfd))
1123 return FALSE;
1124 }
1125
1126 if (elf_dynverdef (abfd) != 0)
1127 {
1128 Elf_Internal_Verdef *t;
1129
1130 fprintf (f, _("\nVersion definitions:\n"));
1131 for (t = elf_tdata (abfd)->verdef; t != NULL; t = t->vd_nextdef)
1132 {
1133 fprintf (f, "%d 0x%2.2x 0x%8.8lx %s\n", t->vd_ndx,
1134 t->vd_flags, t->vd_hash, t->vd_nodename);
1135 if (t->vd_auxptr->vda_nextptr != NULL)
1136 {
1137 Elf_Internal_Verdaux *a;
1138
1139 fprintf (f, "\t");
1140 for (a = t->vd_auxptr->vda_nextptr;
1141 a != NULL;
1142 a = a->vda_nextptr)
1143 fprintf (f, "%s ", a->vda_nodename);
1144 fprintf (f, "\n");
1145 }
1146 }
1147 }
1148
1149 if (elf_dynverref (abfd) != 0)
1150 {
1151 Elf_Internal_Verneed *t;
1152
1153 fprintf (f, _("\nVersion References:\n"));
1154 for (t = elf_tdata (abfd)->verref; t != NULL; t = t->vn_nextref)
1155 {
1156 Elf_Internal_Vernaux *a;
1157
1158 fprintf (f, _(" required from %s:\n"), t->vn_filename);
1159 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1160 fprintf (f, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a->vna_hash,
1161 a->vna_flags, a->vna_other, a->vna_nodename);
1162 }
1163 }
1164
1165 return TRUE;
1166
1167 error_return:
1168 if (dynbuf != NULL)
1169 free (dynbuf);
1170 return FALSE;
1171 }
1172
1173 /* Display ELF-specific fields of a symbol. */
1174
1175 void
1176 bfd_elf_print_symbol (bfd *abfd,
1177 void *filep,
1178 asymbol *symbol,
1179 bfd_print_symbol_type how)
1180 {
1181 FILE *file = filep;
1182 switch (how)
1183 {
1184 case bfd_print_symbol_name:
1185 fprintf (file, "%s", symbol->name);
1186 break;
1187 case bfd_print_symbol_more:
1188 fprintf (file, "elf ");
1189 bfd_fprintf_vma (abfd, file, symbol->value);
1190 fprintf (file, " %lx", (long) symbol->flags);
1191 break;
1192 case bfd_print_symbol_all:
1193 {
1194 const char *section_name;
1195 const char *name = NULL;
1196 const struct elf_backend_data *bed;
1197 unsigned char st_other;
1198 bfd_vma val;
1199
1200 section_name = symbol->section ? symbol->section->name : "(*none*)";
1201
1202 bed = get_elf_backend_data (abfd);
1203 if (bed->elf_backend_print_symbol_all)
1204 name = (*bed->elf_backend_print_symbol_all) (abfd, filep, symbol);
1205
1206 if (name == NULL)
1207 {
1208 name = symbol->name;
1209 bfd_print_symbol_vandf (abfd, file, symbol);
1210 }
1211
1212 fprintf (file, " %s\t", section_name);
1213 /* Print the "other" value for a symbol. For common symbols,
1214 we've already printed the size; now print the alignment.
1215 For other symbols, we have no specified alignment, and
1216 we've printed the address; now print the size. */
1217 if (bfd_is_com_section (symbol->section))
1218 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
1219 else
1220 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_size;
1221 bfd_fprintf_vma (abfd, file, val);
1222
1223 /* If we have version information, print it. */
1224 if (elf_tdata (abfd)->dynversym_section != 0
1225 && (elf_tdata (abfd)->dynverdef_section != 0
1226 || elf_tdata (abfd)->dynverref_section != 0))
1227 {
1228 unsigned int vernum;
1229 const char *version_string;
1230
1231 vernum = ((elf_symbol_type *) symbol)->version & VERSYM_VERSION;
1232
1233 if (vernum == 0)
1234 version_string = "";
1235 else if (vernum == 1)
1236 version_string = "Base";
1237 else if (vernum <= elf_tdata (abfd)->cverdefs)
1238 version_string =
1239 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1240 else
1241 {
1242 Elf_Internal_Verneed *t;
1243
1244 version_string = "";
1245 for (t = elf_tdata (abfd)->verref;
1246 t != NULL;
1247 t = t->vn_nextref)
1248 {
1249 Elf_Internal_Vernaux *a;
1250
1251 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1252 {
1253 if (a->vna_other == vernum)
1254 {
1255 version_string = a->vna_nodename;
1256 break;
1257 }
1258 }
1259 }
1260 }
1261
1262 if ((((elf_symbol_type *) symbol)->version & VERSYM_HIDDEN) == 0)
1263 fprintf (file, " %-11s", version_string);
1264 else
1265 {
1266 int i;
1267
1268 fprintf (file, " (%s)", version_string);
1269 for (i = 10 - strlen (version_string); i > 0; --i)
1270 putc (' ', file);
1271 }
1272 }
1273
1274 /* If the st_other field is not zero, print it. */
1275 st_other = ((elf_symbol_type *) symbol)->internal_elf_sym.st_other;
1276
1277 switch (st_other)
1278 {
1279 case 0: break;
1280 case STV_INTERNAL: fprintf (file, " .internal"); break;
1281 case STV_HIDDEN: fprintf (file, " .hidden"); break;
1282 case STV_PROTECTED: fprintf (file, " .protected"); break;
1283 default:
1284 /* Some other non-defined flags are also present, so print
1285 everything hex. */
1286 fprintf (file, " 0x%02x", (unsigned int) st_other);
1287 }
1288
1289 fprintf (file, " %s", name);
1290 }
1291 break;
1292 }
1293 }
1294 \f
1295 /* Create an entry in an ELF linker hash table. */
1296
1297 struct bfd_hash_entry *
1298 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
1299 struct bfd_hash_table *table,
1300 const char *string)
1301 {
1302 /* Allocate the structure if it has not already been allocated by a
1303 subclass. */
1304 if (entry == NULL)
1305 {
1306 entry = bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
1307 if (entry == NULL)
1308 return entry;
1309 }
1310
1311 /* Call the allocation method of the superclass. */
1312 entry = _bfd_link_hash_newfunc (entry, table, string);
1313 if (entry != NULL)
1314 {
1315 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
1316 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
1317
1318 /* Set local fields. */
1319 ret->indx = -1;
1320 ret->dynindx = -1;
1321 ret->dynstr_index = 0;
1322 ret->elf_hash_value = 0;
1323 ret->weakdef = NULL;
1324 ret->verinfo.verdef = NULL;
1325 ret->vtable_entries_size = 0;
1326 ret->vtable_entries_used = NULL;
1327 ret->vtable_parent = NULL;
1328 ret->got = htab->init_refcount;
1329 ret->plt = htab->init_refcount;
1330 ret->size = 0;
1331 ret->type = STT_NOTYPE;
1332 ret->other = 0;
1333 /* Assume that we have been called by a non-ELF symbol reader.
1334 This flag is then reset by the code which reads an ELF input
1335 file. This ensures that a symbol created by a non-ELF symbol
1336 reader will have the flag set correctly. */
1337 ret->elf_link_hash_flags = ELF_LINK_NON_ELF;
1338 }
1339
1340 return entry;
1341 }
1342
1343 /* Copy data from an indirect symbol to its direct symbol, hiding the
1344 old indirect symbol. Also used for copying flags to a weakdef. */
1345
1346 void
1347 _bfd_elf_link_hash_copy_indirect (const struct elf_backend_data *bed,
1348 struct elf_link_hash_entry *dir,
1349 struct elf_link_hash_entry *ind)
1350 {
1351 bfd_signed_vma tmp;
1352 bfd_signed_vma lowest_valid = bed->can_refcount;
1353
1354 /* Copy down any references that we may have already seen to the
1355 symbol which just became indirect. */
1356
1357 dir->elf_link_hash_flags
1358 |= ind->elf_link_hash_flags & (ELF_LINK_HASH_REF_DYNAMIC
1359 | ELF_LINK_HASH_REF_REGULAR
1360 | ELF_LINK_HASH_REF_REGULAR_NONWEAK
1361 | ELF_LINK_NON_GOT_REF
1362 | ELF_LINK_HASH_NEEDS_PLT
1363 | ELF_LINK_POINTER_EQUALITY_NEEDED);
1364
1365 if (ind->root.type != bfd_link_hash_indirect)
1366 return;
1367
1368 /* Copy over the global and procedure linkage table refcount entries.
1369 These may have been already set up by a check_relocs routine. */
1370 tmp = dir->got.refcount;
1371 if (tmp < lowest_valid)
1372 {
1373 dir->got.refcount = ind->got.refcount;
1374 ind->got.refcount = tmp;
1375 }
1376 else
1377 BFD_ASSERT (ind->got.refcount < lowest_valid);
1378
1379 tmp = dir->plt.refcount;
1380 if (tmp < lowest_valid)
1381 {
1382 dir->plt.refcount = ind->plt.refcount;
1383 ind->plt.refcount = tmp;
1384 }
1385 else
1386 BFD_ASSERT (ind->plt.refcount < lowest_valid);
1387
1388 if (dir->dynindx == -1)
1389 {
1390 dir->dynindx = ind->dynindx;
1391 dir->dynstr_index = ind->dynstr_index;
1392 ind->dynindx = -1;
1393 ind->dynstr_index = 0;
1394 }
1395 else
1396 BFD_ASSERT (ind->dynindx == -1);
1397 }
1398
1399 void
1400 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
1401 struct elf_link_hash_entry *h,
1402 bfd_boolean force_local)
1403 {
1404 h->plt = elf_hash_table (info)->init_offset;
1405 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
1406 if (force_local)
1407 {
1408 h->elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL;
1409 if (h->dynindx != -1)
1410 {
1411 h->dynindx = -1;
1412 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1413 h->dynstr_index);
1414 }
1415 }
1416 }
1417
1418 /* Initialize an ELF linker hash table. */
1419
1420 bfd_boolean
1421 _bfd_elf_link_hash_table_init
1422 (struct elf_link_hash_table *table,
1423 bfd *abfd,
1424 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
1425 struct bfd_hash_table *,
1426 const char *))
1427 {
1428 bfd_boolean ret;
1429
1430 table->dynamic_sections_created = FALSE;
1431 table->dynobj = NULL;
1432 /* Make sure can_refcount is extended to the width and signedness of
1433 init_refcount before we subtract one from it. */
1434 table->init_refcount.refcount = get_elf_backend_data (abfd)->can_refcount;
1435 table->init_refcount.refcount -= 1;
1436 table->init_offset.offset = -(bfd_vma) 1;
1437 /* The first dynamic symbol is a dummy. */
1438 table->dynsymcount = 1;
1439 table->dynstr = NULL;
1440 table->bucketcount = 0;
1441 table->needed = NULL;
1442 table->hgot = NULL;
1443 table->stab_info = NULL;
1444 table->merge_info = NULL;
1445 memset (&table->eh_info, 0, sizeof (table->eh_info));
1446 table->dynlocal = NULL;
1447 table->runpath = NULL;
1448 table->tls_sec = NULL;
1449 table->tls_size = 0;
1450 table->loaded = NULL;
1451
1452 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc);
1453 table->root.type = bfd_link_elf_hash_table;
1454
1455 return ret;
1456 }
1457
1458 /* Create an ELF linker hash table. */
1459
1460 struct bfd_link_hash_table *
1461 _bfd_elf_link_hash_table_create (bfd *abfd)
1462 {
1463 struct elf_link_hash_table *ret;
1464 bfd_size_type amt = sizeof (struct elf_link_hash_table);
1465
1466 ret = bfd_malloc (amt);
1467 if (ret == NULL)
1468 return NULL;
1469
1470 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc))
1471 {
1472 free (ret);
1473 return NULL;
1474 }
1475
1476 return &ret->root;
1477 }
1478
1479 /* This is a hook for the ELF emulation code in the generic linker to
1480 tell the backend linker what file name to use for the DT_NEEDED
1481 entry for a dynamic object. The generic linker passes name as an
1482 empty string to indicate that no DT_NEEDED entry should be made. */
1483
1484 void
1485 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
1486 {
1487 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1488 && bfd_get_format (abfd) == bfd_object)
1489 elf_dt_name (abfd) = name;
1490 }
1491
1492 void
1493 bfd_elf_set_dt_needed_soname (bfd *abfd, const char *name)
1494 {
1495 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1496 && bfd_get_format (abfd) == bfd_object)
1497 elf_dt_soname (abfd) = name;
1498 }
1499
1500 /* Get the list of DT_NEEDED entries for a link. This is a hook for
1501 the linker ELF emulation code. */
1502
1503 struct bfd_link_needed_list *
1504 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
1505 struct bfd_link_info *info)
1506 {
1507 if (! is_elf_hash_table (info->hash))
1508 return NULL;
1509 return elf_hash_table (info)->needed;
1510 }
1511
1512 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
1513 hook for the linker ELF emulation code. */
1514
1515 struct bfd_link_needed_list *
1516 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
1517 struct bfd_link_info *info)
1518 {
1519 if (! is_elf_hash_table (info->hash))
1520 return NULL;
1521 return elf_hash_table (info)->runpath;
1522 }
1523
1524 /* Get the name actually used for a dynamic object for a link. This
1525 is the SONAME entry if there is one. Otherwise, it is the string
1526 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
1527
1528 const char *
1529 bfd_elf_get_dt_soname (bfd *abfd)
1530 {
1531 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1532 && bfd_get_format (abfd) == bfd_object)
1533 return elf_dt_name (abfd);
1534 return NULL;
1535 }
1536
1537 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
1538 the ELF linker emulation code. */
1539
1540 bfd_boolean
1541 bfd_elf_get_bfd_needed_list (bfd *abfd,
1542 struct bfd_link_needed_list **pneeded)
1543 {
1544 asection *s;
1545 bfd_byte *dynbuf = NULL;
1546 int elfsec;
1547 unsigned long shlink;
1548 bfd_byte *extdyn, *extdynend;
1549 size_t extdynsize;
1550 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1551
1552 *pneeded = NULL;
1553
1554 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
1555 || bfd_get_format (abfd) != bfd_object)
1556 return TRUE;
1557
1558 s = bfd_get_section_by_name (abfd, ".dynamic");
1559 if (s == NULL || s->_raw_size == 0)
1560 return TRUE;
1561
1562 dynbuf = bfd_malloc (s->_raw_size);
1563 if (dynbuf == NULL)
1564 goto error_return;
1565
1566 if (! bfd_get_section_contents (abfd, s, dynbuf, 0, s->_raw_size))
1567 goto error_return;
1568
1569 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1570 if (elfsec == -1)
1571 goto error_return;
1572
1573 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1574
1575 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1576 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1577
1578 extdyn = dynbuf;
1579 extdynend = extdyn + s->_raw_size;
1580 for (; extdyn < extdynend; extdyn += extdynsize)
1581 {
1582 Elf_Internal_Dyn dyn;
1583
1584 (*swap_dyn_in) (abfd, extdyn, &dyn);
1585
1586 if (dyn.d_tag == DT_NULL)
1587 break;
1588
1589 if (dyn.d_tag == DT_NEEDED)
1590 {
1591 const char *string;
1592 struct bfd_link_needed_list *l;
1593 unsigned int tagv = dyn.d_un.d_val;
1594 bfd_size_type amt;
1595
1596 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1597 if (string == NULL)
1598 goto error_return;
1599
1600 amt = sizeof *l;
1601 l = bfd_alloc (abfd, amt);
1602 if (l == NULL)
1603 goto error_return;
1604
1605 l->by = abfd;
1606 l->name = string;
1607 l->next = *pneeded;
1608 *pneeded = l;
1609 }
1610 }
1611
1612 free (dynbuf);
1613
1614 return TRUE;
1615
1616 error_return:
1617 if (dynbuf != NULL)
1618 free (dynbuf);
1619 return FALSE;
1620 }
1621 \f
1622 /* Allocate an ELF string table--force the first byte to be zero. */
1623
1624 struct bfd_strtab_hash *
1625 _bfd_elf_stringtab_init (void)
1626 {
1627 struct bfd_strtab_hash *ret;
1628
1629 ret = _bfd_stringtab_init ();
1630 if (ret != NULL)
1631 {
1632 bfd_size_type loc;
1633
1634 loc = _bfd_stringtab_add (ret, "", TRUE, FALSE);
1635 BFD_ASSERT (loc == 0 || loc == (bfd_size_type) -1);
1636 if (loc == (bfd_size_type) -1)
1637 {
1638 _bfd_stringtab_free (ret);
1639 ret = NULL;
1640 }
1641 }
1642 return ret;
1643 }
1644 \f
1645 /* ELF .o/exec file reading */
1646
1647 /* Create a new bfd section from an ELF section header. */
1648
1649 bfd_boolean
1650 bfd_section_from_shdr (bfd *abfd, unsigned int shindex)
1651 {
1652 Elf_Internal_Shdr *hdr = elf_elfsections (abfd)[shindex];
1653 Elf_Internal_Ehdr *ehdr = elf_elfheader (abfd);
1654 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1655 const char *name;
1656
1657 name = elf_string_from_elf_strtab (abfd, hdr->sh_name);
1658
1659 switch (hdr->sh_type)
1660 {
1661 case SHT_NULL:
1662 /* Inactive section. Throw it away. */
1663 return TRUE;
1664
1665 case SHT_PROGBITS: /* Normal section with contents. */
1666 case SHT_NOBITS: /* .bss section. */
1667 case SHT_HASH: /* .hash section. */
1668 case SHT_NOTE: /* .note section. */
1669 case SHT_INIT_ARRAY: /* .init_array section. */
1670 case SHT_FINI_ARRAY: /* .fini_array section. */
1671 case SHT_PREINIT_ARRAY: /* .preinit_array section. */
1672 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
1673
1674 case SHT_DYNAMIC: /* Dynamic linking information. */
1675 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name))
1676 return FALSE;
1677 if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_STRTAB)
1678 {
1679 Elf_Internal_Shdr *dynsymhdr;
1680
1681 /* The shared libraries distributed with hpux11 have a bogus
1682 sh_link field for the ".dynamic" section. Find the
1683 string table for the ".dynsym" section instead. */
1684 if (elf_dynsymtab (abfd) != 0)
1685 {
1686 dynsymhdr = elf_elfsections (abfd)[elf_dynsymtab (abfd)];
1687 hdr->sh_link = dynsymhdr->sh_link;
1688 }
1689 else
1690 {
1691 unsigned int i, num_sec;
1692
1693 num_sec = elf_numsections (abfd);
1694 for (i = 1; i < num_sec; i++)
1695 {
1696 dynsymhdr = elf_elfsections (abfd)[i];
1697 if (dynsymhdr->sh_type == SHT_DYNSYM)
1698 {
1699 hdr->sh_link = dynsymhdr->sh_link;
1700 break;
1701 }
1702 }
1703 }
1704 }
1705 break;
1706
1707 case SHT_SYMTAB: /* A symbol table */
1708 if (elf_onesymtab (abfd) == shindex)
1709 return TRUE;
1710
1711 BFD_ASSERT (hdr->sh_entsize == bed->s->sizeof_sym);
1712 BFD_ASSERT (elf_onesymtab (abfd) == 0);
1713 elf_onesymtab (abfd) = shindex;
1714 elf_tdata (abfd)->symtab_hdr = *hdr;
1715 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->symtab_hdr;
1716 abfd->flags |= HAS_SYMS;
1717
1718 /* Sometimes a shared object will map in the symbol table. If
1719 SHF_ALLOC is set, and this is a shared object, then we also
1720 treat this section as a BFD section. We can not base the
1721 decision purely on SHF_ALLOC, because that flag is sometimes
1722 set in a relocatable object file, which would confuse the
1723 linker. */
1724 if ((hdr->sh_flags & SHF_ALLOC) != 0
1725 && (abfd->flags & DYNAMIC) != 0
1726 && ! _bfd_elf_make_section_from_shdr (abfd, hdr, name))
1727 return FALSE;
1728
1729 return TRUE;
1730
1731 case SHT_DYNSYM: /* A dynamic symbol table */
1732 if (elf_dynsymtab (abfd) == shindex)
1733 return TRUE;
1734
1735 BFD_ASSERT (hdr->sh_entsize == bed->s->sizeof_sym);
1736 BFD_ASSERT (elf_dynsymtab (abfd) == 0);
1737 elf_dynsymtab (abfd) = shindex;
1738 elf_tdata (abfd)->dynsymtab_hdr = *hdr;
1739 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->dynsymtab_hdr;
1740 abfd->flags |= HAS_SYMS;
1741
1742 /* Besides being a symbol table, we also treat this as a regular
1743 section, so that objcopy can handle it. */
1744 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
1745
1746 case SHT_SYMTAB_SHNDX: /* Symbol section indices when >64k sections */
1747 if (elf_symtab_shndx (abfd) == shindex)
1748 return TRUE;
1749
1750 /* Get the associated symbol table. */
1751 if (! bfd_section_from_shdr (abfd, hdr->sh_link)
1752 || hdr->sh_link != elf_onesymtab (abfd))
1753 return FALSE;
1754
1755 elf_symtab_shndx (abfd) = shindex;
1756 elf_tdata (abfd)->symtab_shndx_hdr = *hdr;
1757 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->symtab_shndx_hdr;
1758 return TRUE;
1759
1760 case SHT_STRTAB: /* A string table */
1761 if (hdr->bfd_section != NULL)
1762 return TRUE;
1763 if (ehdr->e_shstrndx == shindex)
1764 {
1765 elf_tdata (abfd)->shstrtab_hdr = *hdr;
1766 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->shstrtab_hdr;
1767 return TRUE;
1768 }
1769 {
1770 unsigned int i, num_sec;
1771
1772 num_sec = elf_numsections (abfd);
1773 for (i = 1; i < num_sec; i++)
1774 {
1775 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1776 if (hdr2->sh_link == shindex)
1777 {
1778 if (! bfd_section_from_shdr (abfd, i))
1779 return FALSE;
1780 if (elf_onesymtab (abfd) == i)
1781 {
1782 elf_tdata (abfd)->strtab_hdr = *hdr;
1783 elf_elfsections (abfd)[shindex] =
1784 &elf_tdata (abfd)->strtab_hdr;
1785 return TRUE;
1786 }
1787 if (elf_dynsymtab (abfd) == i)
1788 {
1789 elf_tdata (abfd)->dynstrtab_hdr = *hdr;
1790 elf_elfsections (abfd)[shindex] = hdr =
1791 &elf_tdata (abfd)->dynstrtab_hdr;
1792 /* We also treat this as a regular section, so
1793 that objcopy can handle it. */
1794 break;
1795 }
1796 #if 0 /* Not handling other string tables specially right now. */
1797 hdr2 = elf_elfsections (abfd)[i]; /* in case it moved */
1798 /* We have a strtab for some random other section. */
1799 newsect = (asection *) hdr2->bfd_section;
1800 if (!newsect)
1801 break;
1802 hdr->bfd_section = newsect;
1803 hdr2 = &elf_section_data (newsect)->str_hdr;
1804 *hdr2 = *hdr;
1805 elf_elfsections (abfd)[shindex] = hdr2;
1806 #endif
1807 }
1808 }
1809 }
1810
1811 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
1812
1813 case SHT_REL:
1814 case SHT_RELA:
1815 /* *These* do a lot of work -- but build no sections! */
1816 {
1817 asection *target_sect;
1818 Elf_Internal_Shdr *hdr2;
1819 unsigned int num_sec = elf_numsections (abfd);
1820
1821 /* Check for a bogus link to avoid crashing. */
1822 if ((hdr->sh_link >= SHN_LORESERVE && hdr->sh_link <= SHN_HIRESERVE)
1823 || hdr->sh_link >= num_sec)
1824 {
1825 ((*_bfd_error_handler)
1826 (_("%s: invalid link %lu for reloc section %s (index %u)"),
1827 bfd_archive_filename (abfd), hdr->sh_link, name, shindex));
1828 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
1829 }
1830
1831 /* For some incomprehensible reason Oracle distributes
1832 libraries for Solaris in which some of the objects have
1833 bogus sh_link fields. It would be nice if we could just
1834 reject them, but, unfortunately, some people need to use
1835 them. We scan through the section headers; if we find only
1836 one suitable symbol table, we clobber the sh_link to point
1837 to it. I hope this doesn't break anything. */
1838 if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_SYMTAB
1839 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_DYNSYM)
1840 {
1841 unsigned int scan;
1842 int found;
1843
1844 found = 0;
1845 for (scan = 1; scan < num_sec; scan++)
1846 {
1847 if (elf_elfsections (abfd)[scan]->sh_type == SHT_SYMTAB
1848 || elf_elfsections (abfd)[scan]->sh_type == SHT_DYNSYM)
1849 {
1850 if (found != 0)
1851 {
1852 found = 0;
1853 break;
1854 }
1855 found = scan;
1856 }
1857 }
1858 if (found != 0)
1859 hdr->sh_link = found;
1860 }
1861
1862 /* Get the symbol table. */
1863 if (elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_SYMTAB
1864 && ! bfd_section_from_shdr (abfd, hdr->sh_link))
1865 return FALSE;
1866
1867 /* If this reloc section does not use the main symbol table we
1868 don't treat it as a reloc section. BFD can't adequately
1869 represent such a section, so at least for now, we don't
1870 try. We just present it as a normal section. We also
1871 can't use it as a reloc section if it points to the null
1872 section. */
1873 if (hdr->sh_link != elf_onesymtab (abfd) || hdr->sh_info == SHN_UNDEF)
1874 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
1875
1876 if (! bfd_section_from_shdr (abfd, hdr->sh_info))
1877 return FALSE;
1878 target_sect = bfd_section_from_elf_index (abfd, hdr->sh_info);
1879 if (target_sect == NULL)
1880 return FALSE;
1881
1882 if ((target_sect->flags & SEC_RELOC) == 0
1883 || target_sect->reloc_count == 0)
1884 hdr2 = &elf_section_data (target_sect)->rel_hdr;
1885 else
1886 {
1887 bfd_size_type amt;
1888 BFD_ASSERT (elf_section_data (target_sect)->rel_hdr2 == NULL);
1889 amt = sizeof (*hdr2);
1890 hdr2 = bfd_alloc (abfd, amt);
1891 elf_section_data (target_sect)->rel_hdr2 = hdr2;
1892 }
1893 *hdr2 = *hdr;
1894 elf_elfsections (abfd)[shindex] = hdr2;
1895 target_sect->reloc_count += NUM_SHDR_ENTRIES (hdr);
1896 target_sect->flags |= SEC_RELOC;
1897 target_sect->relocation = NULL;
1898 target_sect->rel_filepos = hdr->sh_offset;
1899 /* In the section to which the relocations apply, mark whether
1900 its relocations are of the REL or RELA variety. */
1901 if (hdr->sh_size != 0)
1902 target_sect->use_rela_p = hdr->sh_type == SHT_RELA;
1903 abfd->flags |= HAS_RELOC;
1904 return TRUE;
1905 }
1906 break;
1907
1908 case SHT_GNU_verdef:
1909 elf_dynverdef (abfd) = shindex;
1910 elf_tdata (abfd)->dynverdef_hdr = *hdr;
1911 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
1912 break;
1913
1914 case SHT_GNU_versym:
1915 elf_dynversym (abfd) = shindex;
1916 elf_tdata (abfd)->dynversym_hdr = *hdr;
1917 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
1918 break;
1919
1920 case SHT_GNU_verneed:
1921 elf_dynverref (abfd) = shindex;
1922 elf_tdata (abfd)->dynverref_hdr = *hdr;
1923 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
1924 break;
1925
1926 case SHT_SHLIB:
1927 return TRUE;
1928
1929 case SHT_GROUP:
1930 /* We need a BFD section for objcopy and relocatable linking,
1931 and it's handy to have the signature available as the section
1932 name. */
1933 name = group_signature (abfd, hdr);
1934 if (name == NULL)
1935 return FALSE;
1936 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name))
1937 return FALSE;
1938 if (hdr->contents != NULL)
1939 {
1940 Elf_Internal_Group *idx = (Elf_Internal_Group *) hdr->contents;
1941 unsigned int n_elt = hdr->sh_size / 4;
1942 asection *s;
1943
1944 if (idx->flags & GRP_COMDAT)
1945 hdr->bfd_section->flags
1946 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
1947
1948 while (--n_elt != 0)
1949 if ((s = (++idx)->shdr->bfd_section) != NULL
1950 && elf_next_in_group (s) != NULL)
1951 {
1952 elf_next_in_group (hdr->bfd_section) = s;
1953 break;
1954 }
1955 }
1956 break;
1957
1958 default:
1959 /* Check for any processor-specific section types. */
1960 {
1961 if (bed->elf_backend_section_from_shdr)
1962 (*bed->elf_backend_section_from_shdr) (abfd, hdr, name);
1963 }
1964 break;
1965 }
1966
1967 return TRUE;
1968 }
1969
1970 /* Return the section for the local symbol specified by ABFD, R_SYMNDX.
1971 Return SEC for sections that have no elf section, and NULL on error. */
1972
1973 asection *
1974 bfd_section_from_r_symndx (bfd *abfd,
1975 struct sym_sec_cache *cache,
1976 asection *sec,
1977 unsigned long r_symndx)
1978 {
1979 Elf_Internal_Shdr *symtab_hdr;
1980 unsigned char esym[sizeof (Elf64_External_Sym)];
1981 Elf_External_Sym_Shndx eshndx;
1982 Elf_Internal_Sym isym;
1983 unsigned int ent = r_symndx % LOCAL_SYM_CACHE_SIZE;
1984
1985 if (cache->abfd == abfd && cache->indx[ent] == r_symndx)
1986 return cache->sec[ent];
1987
1988 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1989 if (bfd_elf_get_elf_syms (abfd, symtab_hdr, 1, r_symndx,
1990 &isym, esym, &eshndx) == NULL)
1991 return NULL;
1992
1993 if (cache->abfd != abfd)
1994 {
1995 memset (cache->indx, -1, sizeof (cache->indx));
1996 cache->abfd = abfd;
1997 }
1998 cache->indx[ent] = r_symndx;
1999 cache->sec[ent] = sec;
2000 if ((isym.st_shndx != SHN_UNDEF && isym.st_shndx < SHN_LORESERVE)
2001 || isym.st_shndx > SHN_HIRESERVE)
2002 {
2003 asection *s;
2004 s = bfd_section_from_elf_index (abfd, isym.st_shndx);
2005 if (s != NULL)
2006 cache->sec[ent] = s;
2007 }
2008 return cache->sec[ent];
2009 }
2010
2011 /* Given an ELF section number, retrieve the corresponding BFD
2012 section. */
2013
2014 asection *
2015 bfd_section_from_elf_index (bfd *abfd, unsigned int index)
2016 {
2017 if (index >= elf_numsections (abfd))
2018 return NULL;
2019 return elf_elfsections (abfd)[index]->bfd_section;
2020 }
2021
2022 static struct bfd_elf_special_section const special_sections[] =
2023 {
2024 { ".bss", 4, -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2025 { ".comment", 8, 0, SHT_PROGBITS, 0 },
2026 { ".data", 5, -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2027 { ".data1", 6, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2028 { ".debug", 6, 0, SHT_PROGBITS, 0 },
2029 { ".fini", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2030 { ".init", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2031 { ".line", 5, 0, SHT_PROGBITS, 0 },
2032 { ".rodata", 7, -2, SHT_PROGBITS, SHF_ALLOC },
2033 { ".rodata1", 8, 0, SHT_PROGBITS, SHF_ALLOC },
2034 { ".tbss", 5, -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2035 { ".tdata", 6, -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2036 { ".text", 5, -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2037 { ".init_array", 11, 0, SHT_INIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2038 { ".fini_array", 11, 0, SHT_FINI_ARRAY, SHF_ALLOC + SHF_WRITE },
2039 { ".preinit_array", 14, 0, SHT_PREINIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2040 { ".debug_line", 11, 0, SHT_PROGBITS, 0 },
2041 { ".debug_info", 11, 0, SHT_PROGBITS, 0 },
2042 { ".debug_abbrev", 13, 0, SHT_PROGBITS, 0 },
2043 { ".debug_aranges", 14, 0, SHT_PROGBITS, 0 },
2044 { ".dynamic", 8, 0, SHT_DYNAMIC, SHF_ALLOC },
2045 { ".dynstr", 7, 0, SHT_STRTAB, SHF_ALLOC },
2046 { ".dynsym", 7, 0, SHT_DYNSYM, SHF_ALLOC },
2047 { ".got", 4, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2048 { ".hash", 5, 0, SHT_HASH, SHF_ALLOC },
2049 { ".interp", 7, 0, SHT_PROGBITS, 0 },
2050 { ".plt", 4, 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2051 { ".shstrtab", 9, 0, SHT_STRTAB, 0 },
2052 { ".strtab", 7, 0, SHT_STRTAB, 0 },
2053 { ".symtab", 7, 0, SHT_SYMTAB, 0 },
2054 { ".gnu.version", 12, 0, SHT_GNU_versym, 0 },
2055 { ".gnu.version_d", 14, 0, SHT_GNU_verdef, 0 },
2056 { ".gnu.version_r", 14, 0, SHT_GNU_verneed, 0 },
2057 { ".note", 5, -1, SHT_NOTE, 0 },
2058 { ".rela", 5, -1, SHT_RELA, 0 },
2059 { ".rel", 4, -1, SHT_REL, 0 },
2060 { ".stabstr", 5, 3, SHT_STRTAB, 0 },
2061 { NULL, 0, 0, 0, 0 }
2062 };
2063
2064 static const struct bfd_elf_special_section *
2065 get_special_section (const char *name,
2066 const struct bfd_elf_special_section *special_sections,
2067 unsigned int rela)
2068 {
2069 int i;
2070 int len = strlen (name);
2071
2072 for (i = 0; special_sections[i].prefix != NULL; i++)
2073 {
2074 int suffix_len;
2075 int prefix_len = special_sections[i].prefix_length;
2076
2077 if (len < prefix_len)
2078 continue;
2079 if (memcmp (name, special_sections[i].prefix, prefix_len) != 0)
2080 continue;
2081
2082 suffix_len = special_sections[i].suffix_length;
2083 if (suffix_len <= 0)
2084 {
2085 if (name[prefix_len] != 0)
2086 {
2087 if (suffix_len == 0)
2088 continue;
2089 if (name[prefix_len] != '.'
2090 && (suffix_len == -2
2091 || (rela && special_sections[i].type == SHT_REL)))
2092 continue;
2093 }
2094 }
2095 else
2096 {
2097 if (len < prefix_len + suffix_len)
2098 continue;
2099 if (memcmp (name + len - suffix_len,
2100 special_sections[i].prefix + prefix_len,
2101 suffix_len) != 0)
2102 continue;
2103 }
2104 return &special_sections[i];
2105 }
2106
2107 return NULL;
2108 }
2109
2110 const struct bfd_elf_special_section *
2111 _bfd_elf_get_sec_type_attr (bfd *abfd, const char *name)
2112 {
2113 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2114 const struct bfd_elf_special_section *ssect = NULL;
2115
2116 /* See if this is one of the special sections. */
2117 if (name)
2118 {
2119 unsigned int rela = bed->default_use_rela_p;
2120
2121 if (bed->special_sections)
2122 ssect = get_special_section (name, bed->special_sections, rela);
2123
2124 if (! ssect)
2125 ssect = get_special_section (name, special_sections, rela);
2126 }
2127
2128 return ssect;
2129 }
2130
2131 bfd_boolean
2132 _bfd_elf_new_section_hook (bfd *abfd, asection *sec)
2133 {
2134 struct bfd_elf_section_data *sdata;
2135 const struct bfd_elf_special_section *ssect;
2136
2137 sdata = (struct bfd_elf_section_data *) sec->used_by_bfd;
2138 if (sdata == NULL)
2139 {
2140 sdata = bfd_zalloc (abfd, sizeof (*sdata));
2141 if (sdata == NULL)
2142 return FALSE;
2143 sec->used_by_bfd = sdata;
2144 }
2145
2146 elf_section_type (sec) = SHT_NULL;
2147 ssect = _bfd_elf_get_sec_type_attr (abfd, sec->name);
2148 if (ssect != NULL)
2149 {
2150 elf_section_type (sec) = ssect->type;
2151 elf_section_flags (sec) = ssect->attr;
2152 }
2153
2154 /* Indicate whether or not this section should use RELA relocations. */
2155 sec->use_rela_p = get_elf_backend_data (abfd)->default_use_rela_p;
2156
2157 return TRUE;
2158 }
2159
2160 /* Create a new bfd section from an ELF program header.
2161
2162 Since program segments have no names, we generate a synthetic name
2163 of the form segment<NUM>, where NUM is generally the index in the
2164 program header table. For segments that are split (see below) we
2165 generate the names segment<NUM>a and segment<NUM>b.
2166
2167 Note that some program segments may have a file size that is different than
2168 (less than) the memory size. All this means is that at execution the
2169 system must allocate the amount of memory specified by the memory size,
2170 but only initialize it with the first "file size" bytes read from the
2171 file. This would occur for example, with program segments consisting
2172 of combined data+bss.
2173
2174 To handle the above situation, this routine generates TWO bfd sections
2175 for the single program segment. The first has the length specified by
2176 the file size of the segment, and the second has the length specified
2177 by the difference between the two sizes. In effect, the segment is split
2178 into it's initialized and uninitialized parts.
2179
2180 */
2181
2182 bfd_boolean
2183 _bfd_elf_make_section_from_phdr (bfd *abfd,
2184 Elf_Internal_Phdr *hdr,
2185 int index,
2186 const char *typename)
2187 {
2188 asection *newsect;
2189 char *name;
2190 char namebuf[64];
2191 size_t len;
2192 int split;
2193
2194 split = ((hdr->p_memsz > 0)
2195 && (hdr->p_filesz > 0)
2196 && (hdr->p_memsz > hdr->p_filesz));
2197 sprintf (namebuf, "%s%d%s", typename, index, split ? "a" : "");
2198 len = strlen (namebuf) + 1;
2199 name = bfd_alloc (abfd, len);
2200 if (!name)
2201 return FALSE;
2202 memcpy (name, namebuf, len);
2203 newsect = bfd_make_section (abfd, name);
2204 if (newsect == NULL)
2205 return FALSE;
2206 newsect->vma = hdr->p_vaddr;
2207 newsect->lma = hdr->p_paddr;
2208 newsect->_raw_size = hdr->p_filesz;
2209 newsect->filepos = hdr->p_offset;
2210 newsect->flags |= SEC_HAS_CONTENTS;
2211 newsect->alignment_power = bfd_log2 (hdr->p_align);
2212 if (hdr->p_type == PT_LOAD)
2213 {
2214 newsect->flags |= SEC_ALLOC;
2215 newsect->flags |= SEC_LOAD;
2216 if (hdr->p_flags & PF_X)
2217 {
2218 /* FIXME: all we known is that it has execute PERMISSION,
2219 may be data. */
2220 newsect->flags |= SEC_CODE;
2221 }
2222 }
2223 if (!(hdr->p_flags & PF_W))
2224 {
2225 newsect->flags |= SEC_READONLY;
2226 }
2227
2228 if (split)
2229 {
2230 sprintf (namebuf, "%s%db", typename, index);
2231 len = strlen (namebuf) + 1;
2232 name = bfd_alloc (abfd, len);
2233 if (!name)
2234 return FALSE;
2235 memcpy (name, namebuf, len);
2236 newsect = bfd_make_section (abfd, name);
2237 if (newsect == NULL)
2238 return FALSE;
2239 newsect->vma = hdr->p_vaddr + hdr->p_filesz;
2240 newsect->lma = hdr->p_paddr + hdr->p_filesz;
2241 newsect->_raw_size = hdr->p_memsz - hdr->p_filesz;
2242 if (hdr->p_type == PT_LOAD)
2243 {
2244 newsect->flags |= SEC_ALLOC;
2245 if (hdr->p_flags & PF_X)
2246 newsect->flags |= SEC_CODE;
2247 }
2248 if (!(hdr->p_flags & PF_W))
2249 newsect->flags |= SEC_READONLY;
2250 }
2251
2252 return TRUE;
2253 }
2254
2255 bfd_boolean
2256 bfd_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int index)
2257 {
2258 const struct elf_backend_data *bed;
2259
2260 switch (hdr->p_type)
2261 {
2262 case PT_NULL:
2263 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "null");
2264
2265 case PT_LOAD:
2266 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "load");
2267
2268 case PT_DYNAMIC:
2269 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "dynamic");
2270
2271 case PT_INTERP:
2272 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "interp");
2273
2274 case PT_NOTE:
2275 if (! _bfd_elf_make_section_from_phdr (abfd, hdr, index, "note"))
2276 return FALSE;
2277 if (! elfcore_read_notes (abfd, hdr->p_offset, hdr->p_filesz))
2278 return FALSE;
2279 return TRUE;
2280
2281 case PT_SHLIB:
2282 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "shlib");
2283
2284 case PT_PHDR:
2285 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "phdr");
2286
2287 case PT_GNU_EH_FRAME:
2288 return _bfd_elf_make_section_from_phdr (abfd, hdr, index,
2289 "eh_frame_hdr");
2290
2291 case PT_GNU_STACK:
2292 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "stack");
2293
2294 default:
2295 /* Check for any processor-specific program segment types.
2296 If no handler for them, default to making "segment" sections. */
2297 bed = get_elf_backend_data (abfd);
2298 if (bed->elf_backend_section_from_phdr)
2299 return (*bed->elf_backend_section_from_phdr) (abfd, hdr, index);
2300 else
2301 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "segment");
2302 }
2303 }
2304
2305 /* Initialize REL_HDR, the section-header for new section, containing
2306 relocations against ASECT. If USE_RELA_P is TRUE, we use RELA
2307 relocations; otherwise, we use REL relocations. */
2308
2309 bfd_boolean
2310 _bfd_elf_init_reloc_shdr (bfd *abfd,
2311 Elf_Internal_Shdr *rel_hdr,
2312 asection *asect,
2313 bfd_boolean use_rela_p)
2314 {
2315 char *name;
2316 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2317 bfd_size_type amt = sizeof ".rela" + strlen (asect->name);
2318
2319 name = bfd_alloc (abfd, amt);
2320 if (name == NULL)
2321 return FALSE;
2322 sprintf (name, "%s%s", use_rela_p ? ".rela" : ".rel", asect->name);
2323 rel_hdr->sh_name =
2324 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd), name,
2325 FALSE);
2326 if (rel_hdr->sh_name == (unsigned int) -1)
2327 return FALSE;
2328 rel_hdr->sh_type = use_rela_p ? SHT_RELA : SHT_REL;
2329 rel_hdr->sh_entsize = (use_rela_p
2330 ? bed->s->sizeof_rela
2331 : bed->s->sizeof_rel);
2332 rel_hdr->sh_addralign = 1 << bed->s->log_file_align;
2333 rel_hdr->sh_flags = 0;
2334 rel_hdr->sh_addr = 0;
2335 rel_hdr->sh_size = 0;
2336 rel_hdr->sh_offset = 0;
2337
2338 return TRUE;
2339 }
2340
2341 /* Set up an ELF internal section header for a section. */
2342
2343 static void
2344 elf_fake_sections (bfd *abfd, asection *asect, void *failedptrarg)
2345 {
2346 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2347 bfd_boolean *failedptr = failedptrarg;
2348 Elf_Internal_Shdr *this_hdr;
2349
2350 if (*failedptr)
2351 {
2352 /* We already failed; just get out of the bfd_map_over_sections
2353 loop. */
2354 return;
2355 }
2356
2357 this_hdr = &elf_section_data (asect)->this_hdr;
2358
2359 this_hdr->sh_name = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
2360 asect->name, FALSE);
2361 if (this_hdr->sh_name == (unsigned int) -1)
2362 {
2363 *failedptr = TRUE;
2364 return;
2365 }
2366
2367 this_hdr->sh_flags = 0;
2368
2369 if ((asect->flags & SEC_ALLOC) != 0
2370 || asect->user_set_vma)
2371 this_hdr->sh_addr = asect->vma;
2372 else
2373 this_hdr->sh_addr = 0;
2374
2375 this_hdr->sh_offset = 0;
2376 this_hdr->sh_size = asect->_raw_size;
2377 this_hdr->sh_link = 0;
2378 this_hdr->sh_addralign = 1 << asect->alignment_power;
2379 /* The sh_entsize and sh_info fields may have been set already by
2380 copy_private_section_data. */
2381
2382 this_hdr->bfd_section = asect;
2383 this_hdr->contents = NULL;
2384
2385 /* If the section type is unspecified, we set it based on
2386 asect->flags. */
2387 if (this_hdr->sh_type == SHT_NULL)
2388 {
2389 if ((asect->flags & SEC_ALLOC) != 0
2390 && (((asect->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
2391 || (asect->flags & SEC_NEVER_LOAD) != 0))
2392 this_hdr->sh_type = SHT_NOBITS;
2393 else
2394 this_hdr->sh_type = SHT_PROGBITS;
2395 }
2396
2397 switch (this_hdr->sh_type)
2398 {
2399 default:
2400 break;
2401
2402 case SHT_STRTAB:
2403 case SHT_INIT_ARRAY:
2404 case SHT_FINI_ARRAY:
2405 case SHT_PREINIT_ARRAY:
2406 case SHT_NOTE:
2407 case SHT_NOBITS:
2408 case SHT_PROGBITS:
2409 break;
2410
2411 case SHT_HASH:
2412 this_hdr->sh_entsize = bed->s->sizeof_hash_entry;
2413 break;
2414
2415 case SHT_DYNSYM:
2416 this_hdr->sh_entsize = bed->s->sizeof_sym;
2417 break;
2418
2419 case SHT_DYNAMIC:
2420 this_hdr->sh_entsize = bed->s->sizeof_dyn;
2421 break;
2422
2423 case SHT_RELA:
2424 if (get_elf_backend_data (abfd)->may_use_rela_p)
2425 this_hdr->sh_entsize = bed->s->sizeof_rela;
2426 break;
2427
2428 case SHT_REL:
2429 if (get_elf_backend_data (abfd)->may_use_rel_p)
2430 this_hdr->sh_entsize = bed->s->sizeof_rel;
2431 break;
2432
2433 case SHT_GNU_versym:
2434 this_hdr->sh_entsize = sizeof (Elf_External_Versym);
2435 break;
2436
2437 case SHT_GNU_verdef:
2438 this_hdr->sh_entsize = 0;
2439 /* objcopy or strip will copy over sh_info, but may not set
2440 cverdefs. The linker will set cverdefs, but sh_info will be
2441 zero. */
2442 if (this_hdr->sh_info == 0)
2443 this_hdr->sh_info = elf_tdata (abfd)->cverdefs;
2444 else
2445 BFD_ASSERT (elf_tdata (abfd)->cverdefs == 0
2446 || this_hdr->sh_info == elf_tdata (abfd)->cverdefs);
2447 break;
2448
2449 case SHT_GNU_verneed:
2450 this_hdr->sh_entsize = 0;
2451 /* objcopy or strip will copy over sh_info, but may not set
2452 cverrefs. The linker will set cverrefs, but sh_info will be
2453 zero. */
2454 if (this_hdr->sh_info == 0)
2455 this_hdr->sh_info = elf_tdata (abfd)->cverrefs;
2456 else
2457 BFD_ASSERT (elf_tdata (abfd)->cverrefs == 0
2458 || this_hdr->sh_info == elf_tdata (abfd)->cverrefs);
2459 break;
2460
2461 case SHT_GROUP:
2462 this_hdr->sh_entsize = 4;
2463 break;
2464 }
2465
2466 if ((asect->flags & SEC_ALLOC) != 0)
2467 this_hdr->sh_flags |= SHF_ALLOC;
2468 if ((asect->flags & SEC_READONLY) == 0)
2469 this_hdr->sh_flags |= SHF_WRITE;
2470 if ((asect->flags & SEC_CODE) != 0)
2471 this_hdr->sh_flags |= SHF_EXECINSTR;
2472 if ((asect->flags & SEC_MERGE) != 0)
2473 {
2474 this_hdr->sh_flags |= SHF_MERGE;
2475 this_hdr->sh_entsize = asect->entsize;
2476 if ((asect->flags & SEC_STRINGS) != 0)
2477 this_hdr->sh_flags |= SHF_STRINGS;
2478 }
2479 if ((asect->flags & SEC_GROUP) == 0 && elf_group_name (asect) != NULL)
2480 this_hdr->sh_flags |= SHF_GROUP;
2481 if ((asect->flags & SEC_THREAD_LOCAL) != 0)
2482 {
2483 this_hdr->sh_flags |= SHF_TLS;
2484 if (asect->_raw_size == 0 && (asect->flags & SEC_HAS_CONTENTS) == 0)
2485 {
2486 struct bfd_link_order *o;
2487
2488 this_hdr->sh_size = 0;
2489 for (o = asect->link_order_head; o != NULL; o = o->next)
2490 if (this_hdr->sh_size < o->offset + o->size)
2491 this_hdr->sh_size = o->offset + o->size;
2492 if (this_hdr->sh_size)
2493 this_hdr->sh_type = SHT_NOBITS;
2494 }
2495 }
2496
2497 /* Check for processor-specific section types. */
2498 if (bed->elf_backend_fake_sections
2499 && !(*bed->elf_backend_fake_sections) (abfd, this_hdr, asect))
2500 *failedptr = TRUE;
2501
2502 /* If the section has relocs, set up a section header for the
2503 SHT_REL[A] section. If two relocation sections are required for
2504 this section, it is up to the processor-specific back-end to
2505 create the other. */
2506 if ((asect->flags & SEC_RELOC) != 0
2507 && !_bfd_elf_init_reloc_shdr (abfd,
2508 &elf_section_data (asect)->rel_hdr,
2509 asect,
2510 asect->use_rela_p))
2511 *failedptr = TRUE;
2512 }
2513
2514 /* Fill in the contents of a SHT_GROUP section. */
2515
2516 void
2517 bfd_elf_set_group_contents (bfd *abfd, asection *sec, void *failedptrarg)
2518 {
2519 bfd_boolean *failedptr = failedptrarg;
2520 unsigned long symindx;
2521 asection *elt, *first;
2522 unsigned char *loc;
2523 struct bfd_link_order *l;
2524 bfd_boolean gas;
2525
2526 if (elf_section_data (sec)->this_hdr.sh_type != SHT_GROUP
2527 || *failedptr)
2528 return;
2529
2530 symindx = 0;
2531 if (elf_group_id (sec) != NULL)
2532 symindx = elf_group_id (sec)->udata.i;
2533
2534 if (symindx == 0)
2535 {
2536 /* If called from the assembler, swap_out_syms will have set up
2537 elf_section_syms; If called for "ld -r", use target_index. */
2538 if (elf_section_syms (abfd) != NULL)
2539 symindx = elf_section_syms (abfd)[sec->index]->udata.i;
2540 else
2541 symindx = sec->target_index;
2542 }
2543 elf_section_data (sec)->this_hdr.sh_info = symindx;
2544
2545 /* The contents won't be allocated for "ld -r" or objcopy. */
2546 gas = TRUE;
2547 if (sec->contents == NULL)
2548 {
2549 gas = FALSE;
2550 sec->contents = bfd_alloc (abfd, sec->_raw_size);
2551
2552 /* Arrange for the section to be written out. */
2553 elf_section_data (sec)->this_hdr.contents = sec->contents;
2554 if (sec->contents == NULL)
2555 {
2556 *failedptr = TRUE;
2557 return;
2558 }
2559 }
2560
2561 loc = sec->contents + sec->_raw_size;
2562
2563 /* Get the pointer to the first section in the group that gas
2564 squirreled away here. objcopy arranges for this to be set to the
2565 start of the input section group. */
2566 first = elt = elf_next_in_group (sec);
2567
2568 /* First element is a flag word. Rest of section is elf section
2569 indices for all the sections of the group. Write them backwards
2570 just to keep the group in the same order as given in .section
2571 directives, not that it matters. */
2572 while (elt != NULL)
2573 {
2574 asection *s;
2575 unsigned int idx;
2576
2577 loc -= 4;
2578 s = elt;
2579 if (!gas)
2580 s = s->output_section;
2581 idx = 0;
2582 if (s != NULL)
2583 idx = elf_section_data (s)->this_idx;
2584 H_PUT_32 (abfd, idx, loc);
2585 elt = elf_next_in_group (elt);
2586 if (elt == first)
2587 break;
2588 }
2589
2590 /* If this is a relocatable link, then the above did nothing because
2591 SEC is the output section. Look through the input sections
2592 instead. */
2593 for (l = sec->link_order_head; l != NULL; l = l->next)
2594 if (l->type == bfd_indirect_link_order
2595 && (elt = elf_next_in_group (l->u.indirect.section)) != NULL)
2596 do
2597 {
2598 loc -= 4;
2599 H_PUT_32 (abfd,
2600 elf_section_data (elt->output_section)->this_idx, loc);
2601 elt = elf_next_in_group (elt);
2602 /* During a relocatable link, the lists are circular. */
2603 }
2604 while (elt != elf_next_in_group (l->u.indirect.section));
2605
2606 /* With ld -r, merging SHT_GROUP sections results in wasted space
2607 due to allowing for the flag word on each input. We may well
2608 duplicate entries too. */
2609 while ((loc -= 4) > sec->contents)
2610 H_PUT_32 (abfd, 0, loc);
2611
2612 if (loc != sec->contents)
2613 abort ();
2614
2615 H_PUT_32 (abfd, sec->flags & SEC_LINK_ONCE ? GRP_COMDAT : 0, loc);
2616 }
2617
2618 /* Assign all ELF section numbers. The dummy first section is handled here
2619 too. The link/info pointers for the standard section types are filled
2620 in here too, while we're at it. */
2621
2622 static bfd_boolean
2623 assign_section_numbers (bfd *abfd)
2624 {
2625 struct elf_obj_tdata *t = elf_tdata (abfd);
2626 asection *sec;
2627 unsigned int section_number, secn;
2628 Elf_Internal_Shdr **i_shdrp;
2629 bfd_size_type amt;
2630
2631 section_number = 1;
2632
2633 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd));
2634
2635 for (sec = abfd->sections; sec; sec = sec->next)
2636 {
2637 struct bfd_elf_section_data *d = elf_section_data (sec);
2638
2639 if (section_number == SHN_LORESERVE)
2640 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2641 d->this_idx = section_number++;
2642 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->this_hdr.sh_name);
2643 if ((sec->flags & SEC_RELOC) == 0)
2644 d->rel_idx = 0;
2645 else
2646 {
2647 if (section_number == SHN_LORESERVE)
2648 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2649 d->rel_idx = section_number++;
2650 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel_hdr.sh_name);
2651 }
2652
2653 if (d->rel_hdr2)
2654 {
2655 if (section_number == SHN_LORESERVE)
2656 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2657 d->rel_idx2 = section_number++;
2658 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel_hdr2->sh_name);
2659 }
2660 else
2661 d->rel_idx2 = 0;
2662 }
2663
2664 if (section_number == SHN_LORESERVE)
2665 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2666 t->shstrtab_section = section_number++;
2667 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->shstrtab_hdr.sh_name);
2668 elf_elfheader (abfd)->e_shstrndx = t->shstrtab_section;
2669
2670 if (bfd_get_symcount (abfd) > 0)
2671 {
2672 if (section_number == SHN_LORESERVE)
2673 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2674 t->symtab_section = section_number++;
2675 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->symtab_hdr.sh_name);
2676 if (section_number > SHN_LORESERVE - 2)
2677 {
2678 if (section_number == SHN_LORESERVE)
2679 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2680 t->symtab_shndx_section = section_number++;
2681 t->symtab_shndx_hdr.sh_name
2682 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
2683 ".symtab_shndx", FALSE);
2684 if (t->symtab_shndx_hdr.sh_name == (unsigned int) -1)
2685 return FALSE;
2686 }
2687 if (section_number == SHN_LORESERVE)
2688 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2689 t->strtab_section = section_number++;
2690 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->strtab_hdr.sh_name);
2691 }
2692
2693 _bfd_elf_strtab_finalize (elf_shstrtab (abfd));
2694 t->shstrtab_hdr.sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
2695
2696 elf_numsections (abfd) = section_number;
2697 elf_elfheader (abfd)->e_shnum = section_number;
2698 if (section_number > SHN_LORESERVE)
2699 elf_elfheader (abfd)->e_shnum -= SHN_HIRESERVE + 1 - SHN_LORESERVE;
2700
2701 /* Set up the list of section header pointers, in agreement with the
2702 indices. */
2703 amt = section_number * sizeof (Elf_Internal_Shdr *);
2704 i_shdrp = bfd_zalloc (abfd, amt);
2705 if (i_shdrp == NULL)
2706 return FALSE;
2707
2708 amt = sizeof (Elf_Internal_Shdr);
2709 i_shdrp[0] = bfd_zalloc (abfd, amt);
2710 if (i_shdrp[0] == NULL)
2711 {
2712 bfd_release (abfd, i_shdrp);
2713 return FALSE;
2714 }
2715
2716 elf_elfsections (abfd) = i_shdrp;
2717
2718 i_shdrp[t->shstrtab_section] = &t->shstrtab_hdr;
2719 if (bfd_get_symcount (abfd) > 0)
2720 {
2721 i_shdrp[t->symtab_section] = &t->symtab_hdr;
2722 if (elf_numsections (abfd) > SHN_LORESERVE)
2723 {
2724 i_shdrp[t->symtab_shndx_section] = &t->symtab_shndx_hdr;
2725 t->symtab_shndx_hdr.sh_link = t->symtab_section;
2726 }
2727 i_shdrp[t->strtab_section] = &t->strtab_hdr;
2728 t->symtab_hdr.sh_link = t->strtab_section;
2729 }
2730 for (sec = abfd->sections; sec; sec = sec->next)
2731 {
2732 struct bfd_elf_section_data *d = elf_section_data (sec);
2733 asection *s;
2734 const char *name;
2735
2736 i_shdrp[d->this_idx] = &d->this_hdr;
2737 if (d->rel_idx != 0)
2738 i_shdrp[d->rel_idx] = &d->rel_hdr;
2739 if (d->rel_idx2 != 0)
2740 i_shdrp[d->rel_idx2] = d->rel_hdr2;
2741
2742 /* Fill in the sh_link and sh_info fields while we're at it. */
2743
2744 /* sh_link of a reloc section is the section index of the symbol
2745 table. sh_info is the section index of the section to which
2746 the relocation entries apply. */
2747 if (d->rel_idx != 0)
2748 {
2749 d->rel_hdr.sh_link = t->symtab_section;
2750 d->rel_hdr.sh_info = d->this_idx;
2751 }
2752 if (d->rel_idx2 != 0)
2753 {
2754 d->rel_hdr2->sh_link = t->symtab_section;
2755 d->rel_hdr2->sh_info = d->this_idx;
2756 }
2757
2758 switch (d->this_hdr.sh_type)
2759 {
2760 case SHT_REL:
2761 case SHT_RELA:
2762 /* A reloc section which we are treating as a normal BFD
2763 section. sh_link is the section index of the symbol
2764 table. sh_info is the section index of the section to
2765 which the relocation entries apply. We assume that an
2766 allocated reloc section uses the dynamic symbol table.
2767 FIXME: How can we be sure? */
2768 s = bfd_get_section_by_name (abfd, ".dynsym");
2769 if (s != NULL)
2770 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
2771
2772 /* We look up the section the relocs apply to by name. */
2773 name = sec->name;
2774 if (d->this_hdr.sh_type == SHT_REL)
2775 name += 4;
2776 else
2777 name += 5;
2778 s = bfd_get_section_by_name (abfd, name);
2779 if (s != NULL)
2780 d->this_hdr.sh_info = elf_section_data (s)->this_idx;
2781 break;
2782
2783 case SHT_STRTAB:
2784 /* We assume that a section named .stab*str is a stabs
2785 string section. We look for a section with the same name
2786 but without the trailing ``str'', and set its sh_link
2787 field to point to this section. */
2788 if (strncmp (sec->name, ".stab", sizeof ".stab" - 1) == 0
2789 && strcmp (sec->name + strlen (sec->name) - 3, "str") == 0)
2790 {
2791 size_t len;
2792 char *alc;
2793
2794 len = strlen (sec->name);
2795 alc = bfd_malloc (len - 2);
2796 if (alc == NULL)
2797 return FALSE;
2798 memcpy (alc, sec->name, len - 3);
2799 alc[len - 3] = '\0';
2800 s = bfd_get_section_by_name (abfd, alc);
2801 free (alc);
2802 if (s != NULL)
2803 {
2804 elf_section_data (s)->this_hdr.sh_link = d->this_idx;
2805
2806 /* This is a .stab section. */
2807 if (elf_section_data (s)->this_hdr.sh_entsize == 0)
2808 elf_section_data (s)->this_hdr.sh_entsize
2809 = 4 + 2 * bfd_get_arch_size (abfd) / 8;
2810 }
2811 }
2812 break;
2813
2814 case SHT_DYNAMIC:
2815 case SHT_DYNSYM:
2816 case SHT_GNU_verneed:
2817 case SHT_GNU_verdef:
2818 /* sh_link is the section header index of the string table
2819 used for the dynamic entries, or the symbol table, or the
2820 version strings. */
2821 s = bfd_get_section_by_name (abfd, ".dynstr");
2822 if (s != NULL)
2823 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
2824 break;
2825
2826 case SHT_HASH:
2827 case SHT_GNU_versym:
2828 /* sh_link is the section header index of the symbol table
2829 this hash table or version table is for. */
2830 s = bfd_get_section_by_name (abfd, ".dynsym");
2831 if (s != NULL)
2832 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
2833 break;
2834
2835 case SHT_GROUP:
2836 d->this_hdr.sh_link = t->symtab_section;
2837 }
2838 }
2839
2840 for (secn = 1; secn < section_number; ++secn)
2841 if (i_shdrp[secn] == NULL)
2842 i_shdrp[secn] = i_shdrp[0];
2843 else
2844 i_shdrp[secn]->sh_name = _bfd_elf_strtab_offset (elf_shstrtab (abfd),
2845 i_shdrp[secn]->sh_name);
2846 return TRUE;
2847 }
2848
2849 /* Map symbol from it's internal number to the external number, moving
2850 all local symbols to be at the head of the list. */
2851
2852 static int
2853 sym_is_global (bfd *abfd, asymbol *sym)
2854 {
2855 /* If the backend has a special mapping, use it. */
2856 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2857 if (bed->elf_backend_sym_is_global)
2858 return (*bed->elf_backend_sym_is_global) (abfd, sym);
2859
2860 return ((sym->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
2861 || bfd_is_und_section (bfd_get_section (sym))
2862 || bfd_is_com_section (bfd_get_section (sym)));
2863 }
2864
2865 static bfd_boolean
2866 elf_map_symbols (bfd *abfd)
2867 {
2868 unsigned int symcount = bfd_get_symcount (abfd);
2869 asymbol **syms = bfd_get_outsymbols (abfd);
2870 asymbol **sect_syms;
2871 unsigned int num_locals = 0;
2872 unsigned int num_globals = 0;
2873 unsigned int num_locals2 = 0;
2874 unsigned int num_globals2 = 0;
2875 int max_index = 0;
2876 unsigned int idx;
2877 asection *asect;
2878 asymbol **new_syms;
2879 bfd_size_type amt;
2880
2881 #ifdef DEBUG
2882 fprintf (stderr, "elf_map_symbols\n");
2883 fflush (stderr);
2884 #endif
2885
2886 for (asect = abfd->sections; asect; asect = asect->next)
2887 {
2888 if (max_index < asect->index)
2889 max_index = asect->index;
2890 }
2891
2892 max_index++;
2893 amt = max_index * sizeof (asymbol *);
2894 sect_syms = bfd_zalloc (abfd, amt);
2895 if (sect_syms == NULL)
2896 return FALSE;
2897 elf_section_syms (abfd) = sect_syms;
2898 elf_num_section_syms (abfd) = max_index;
2899
2900 /* Init sect_syms entries for any section symbols we have already
2901 decided to output. */
2902 for (idx = 0; idx < symcount; idx++)
2903 {
2904 asymbol *sym = syms[idx];
2905
2906 if ((sym->flags & BSF_SECTION_SYM) != 0
2907 && sym->value == 0)
2908 {
2909 asection *sec;
2910
2911 sec = sym->section;
2912
2913 if (sec->owner != NULL)
2914 {
2915 if (sec->owner != abfd)
2916 {
2917 if (sec->output_offset != 0)
2918 continue;
2919
2920 sec = sec->output_section;
2921
2922 /* Empty sections in the input files may have had a
2923 section symbol created for them. (See the comment
2924 near the end of _bfd_generic_link_output_symbols in
2925 linker.c). If the linker script discards such
2926 sections then we will reach this point. Since we know
2927 that we cannot avoid this case, we detect it and skip
2928 the abort and the assignment to the sect_syms array.
2929 To reproduce this particular case try running the
2930 linker testsuite test ld-scripts/weak.exp for an ELF
2931 port that uses the generic linker. */
2932 if (sec->owner == NULL)
2933 continue;
2934
2935 BFD_ASSERT (sec->owner == abfd);
2936 }
2937 sect_syms[sec->index] = syms[idx];
2938 }
2939 }
2940 }
2941
2942 /* Classify all of the symbols. */
2943 for (idx = 0; idx < symcount; idx++)
2944 {
2945 if (!sym_is_global (abfd, syms[idx]))
2946 num_locals++;
2947 else
2948 num_globals++;
2949 }
2950
2951 /* We will be adding a section symbol for each BFD section. Most normal
2952 sections will already have a section symbol in outsymbols, but
2953 eg. SHT_GROUP sections will not, and we need the section symbol mapped
2954 at least in that case. */
2955 for (asect = abfd->sections; asect; asect = asect->next)
2956 {
2957 if (sect_syms[asect->index] == NULL)
2958 {
2959 if (!sym_is_global (abfd, asect->symbol))
2960 num_locals++;
2961 else
2962 num_globals++;
2963 }
2964 }
2965
2966 /* Now sort the symbols so the local symbols are first. */
2967 amt = (num_locals + num_globals) * sizeof (asymbol *);
2968 new_syms = bfd_alloc (abfd, amt);
2969
2970 if (new_syms == NULL)
2971 return FALSE;
2972
2973 for (idx = 0; idx < symcount; idx++)
2974 {
2975 asymbol *sym = syms[idx];
2976 unsigned int i;
2977
2978 if (!sym_is_global (abfd, sym))
2979 i = num_locals2++;
2980 else
2981 i = num_locals + num_globals2++;
2982 new_syms[i] = sym;
2983 sym->udata.i = i + 1;
2984 }
2985 for (asect = abfd->sections; asect; asect = asect->next)
2986 {
2987 if (sect_syms[asect->index] == NULL)
2988 {
2989 asymbol *sym = asect->symbol;
2990 unsigned int i;
2991
2992 sect_syms[asect->index] = sym;
2993 if (!sym_is_global (abfd, sym))
2994 i = num_locals2++;
2995 else
2996 i = num_locals + num_globals2++;
2997 new_syms[i] = sym;
2998 sym->udata.i = i + 1;
2999 }
3000 }
3001
3002 bfd_set_symtab (abfd, new_syms, num_locals + num_globals);
3003
3004 elf_num_locals (abfd) = num_locals;
3005 elf_num_globals (abfd) = num_globals;
3006 return TRUE;
3007 }
3008
3009 /* Align to the maximum file alignment that could be required for any
3010 ELF data structure. */
3011
3012 static inline file_ptr
3013 align_file_position (file_ptr off, int align)
3014 {
3015 return (off + align - 1) & ~(align - 1);
3016 }
3017
3018 /* Assign a file position to a section, optionally aligning to the
3019 required section alignment. */
3020
3021 file_ptr
3022 _bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr *i_shdrp,
3023 file_ptr offset,
3024 bfd_boolean align)
3025 {
3026 if (align)
3027 {
3028 unsigned int al;
3029
3030 al = i_shdrp->sh_addralign;
3031 if (al > 1)
3032 offset = BFD_ALIGN (offset, al);
3033 }
3034 i_shdrp->sh_offset = offset;
3035 if (i_shdrp->bfd_section != NULL)
3036 i_shdrp->bfd_section->filepos = offset;
3037 if (i_shdrp->sh_type != SHT_NOBITS)
3038 offset += i_shdrp->sh_size;
3039 return offset;
3040 }
3041
3042 /* Compute the file positions we are going to put the sections at, and
3043 otherwise prepare to begin writing out the ELF file. If LINK_INFO
3044 is not NULL, this is being called by the ELF backend linker. */
3045
3046 bfd_boolean
3047 _bfd_elf_compute_section_file_positions (bfd *abfd,
3048 struct bfd_link_info *link_info)
3049 {
3050 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3051 bfd_boolean failed;
3052 struct bfd_strtab_hash *strtab;
3053 Elf_Internal_Shdr *shstrtab_hdr;
3054
3055 if (abfd->output_has_begun)
3056 return TRUE;
3057
3058 /* Do any elf backend specific processing first. */
3059 if (bed->elf_backend_begin_write_processing)
3060 (*bed->elf_backend_begin_write_processing) (abfd, link_info);
3061
3062 if (! prep_headers (abfd))
3063 return FALSE;
3064
3065 /* Post process the headers if necessary. */
3066 if (bed->elf_backend_post_process_headers)
3067 (*bed->elf_backend_post_process_headers) (abfd, link_info);
3068
3069 failed = FALSE;
3070 bfd_map_over_sections (abfd, elf_fake_sections, &failed);
3071 if (failed)
3072 return FALSE;
3073
3074 if (!assign_section_numbers (abfd))
3075 return FALSE;
3076
3077 /* The backend linker builds symbol table information itself. */
3078 if (link_info == NULL && bfd_get_symcount (abfd) > 0)
3079 {
3080 /* Non-zero if doing a relocatable link. */
3081 int relocatable_p = ! (abfd->flags & (EXEC_P | DYNAMIC));
3082
3083 if (! swap_out_syms (abfd, &strtab, relocatable_p))
3084 return FALSE;
3085 }
3086
3087 if (link_info == NULL)
3088 {
3089 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
3090 if (failed)
3091 return FALSE;
3092 }
3093
3094 shstrtab_hdr = &elf_tdata (abfd)->shstrtab_hdr;
3095 /* sh_name was set in prep_headers. */
3096 shstrtab_hdr->sh_type = SHT_STRTAB;
3097 shstrtab_hdr->sh_flags = 0;
3098 shstrtab_hdr->sh_addr = 0;
3099 shstrtab_hdr->sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
3100 shstrtab_hdr->sh_entsize = 0;
3101 shstrtab_hdr->sh_link = 0;
3102 shstrtab_hdr->sh_info = 0;
3103 /* sh_offset is set in assign_file_positions_except_relocs. */
3104 shstrtab_hdr->sh_addralign = 1;
3105
3106 if (!assign_file_positions_except_relocs (abfd, link_info))
3107 return FALSE;
3108
3109 if (link_info == NULL && bfd_get_symcount (abfd) > 0)
3110 {
3111 file_ptr off;
3112 Elf_Internal_Shdr *hdr;
3113
3114 off = elf_tdata (abfd)->next_file_pos;
3115
3116 hdr = &elf_tdata (abfd)->symtab_hdr;
3117 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3118
3119 hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
3120 if (hdr->sh_size != 0)
3121 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3122
3123 hdr = &elf_tdata (abfd)->strtab_hdr;
3124 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3125
3126 elf_tdata (abfd)->next_file_pos = off;
3127
3128 /* Now that we know where the .strtab section goes, write it
3129 out. */
3130 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
3131 || ! _bfd_stringtab_emit (abfd, strtab))
3132 return FALSE;
3133 _bfd_stringtab_free (strtab);
3134 }
3135
3136 abfd->output_has_begun = TRUE;
3137
3138 return TRUE;
3139 }
3140
3141 /* Create a mapping from a set of sections to a program segment. */
3142
3143 static struct elf_segment_map *
3144 make_mapping (bfd *abfd,
3145 asection **sections,
3146 unsigned int from,
3147 unsigned int to,
3148 bfd_boolean phdr)
3149 {
3150 struct elf_segment_map *m;
3151 unsigned int i;
3152 asection **hdrpp;
3153 bfd_size_type amt;
3154
3155 amt = sizeof (struct elf_segment_map);
3156 amt += (to - from - 1) * sizeof (asection *);
3157 m = bfd_zalloc (abfd, amt);
3158 if (m == NULL)
3159 return NULL;
3160 m->next = NULL;
3161 m->p_type = PT_LOAD;
3162 for (i = from, hdrpp = sections + from; i < to; i++, hdrpp++)
3163 m->sections[i - from] = *hdrpp;
3164 m->count = to - from;
3165
3166 if (from == 0 && phdr)
3167 {
3168 /* Include the headers in the first PT_LOAD segment. */
3169 m->includes_filehdr = 1;
3170 m->includes_phdrs = 1;
3171 }
3172
3173 return m;
3174 }
3175
3176 /* Set up a mapping from BFD sections to program segments. */
3177
3178 static bfd_boolean
3179 map_sections_to_segments (bfd *abfd)
3180 {
3181 asection **sections = NULL;
3182 asection *s;
3183 unsigned int i;
3184 unsigned int count;
3185 struct elf_segment_map *mfirst;
3186 struct elf_segment_map **pm;
3187 struct elf_segment_map *m;
3188 asection *last_hdr;
3189 unsigned int phdr_index;
3190 bfd_vma maxpagesize;
3191 asection **hdrpp;
3192 bfd_boolean phdr_in_segment = TRUE;
3193 bfd_boolean writable;
3194 int tls_count = 0;
3195 asection *first_tls = NULL;
3196 asection *dynsec, *eh_frame_hdr;
3197 bfd_size_type amt;
3198
3199 if (elf_tdata (abfd)->segment_map != NULL)
3200 return TRUE;
3201
3202 if (bfd_count_sections (abfd) == 0)
3203 return TRUE;
3204
3205 /* Select the allocated sections, and sort them. */
3206
3207 amt = bfd_count_sections (abfd) * sizeof (asection *);
3208 sections = bfd_malloc (amt);
3209 if (sections == NULL)
3210 goto error_return;
3211
3212 i = 0;
3213 for (s = abfd->sections; s != NULL; s = s->next)
3214 {
3215 if ((s->flags & SEC_ALLOC) != 0)
3216 {
3217 sections[i] = s;
3218 ++i;
3219 }
3220 }
3221 BFD_ASSERT (i <= bfd_count_sections (abfd));
3222 count = i;
3223
3224 qsort (sections, (size_t) count, sizeof (asection *), elf_sort_sections);
3225
3226 /* Build the mapping. */
3227
3228 mfirst = NULL;
3229 pm = &mfirst;
3230
3231 /* If we have a .interp section, then create a PT_PHDR segment for
3232 the program headers and a PT_INTERP segment for the .interp
3233 section. */
3234 s = bfd_get_section_by_name (abfd, ".interp");
3235 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3236 {
3237 amt = sizeof (struct elf_segment_map);
3238 m = bfd_zalloc (abfd, amt);
3239 if (m == NULL)
3240 goto error_return;
3241 m->next = NULL;
3242 m->p_type = PT_PHDR;
3243 /* FIXME: UnixWare and Solaris set PF_X, Irix 5 does not. */
3244 m->p_flags = PF_R | PF_X;
3245 m->p_flags_valid = 1;
3246 m->includes_phdrs = 1;
3247
3248 *pm = m;
3249 pm = &m->next;
3250
3251 amt = sizeof (struct elf_segment_map);
3252 m = bfd_zalloc (abfd, amt);
3253 if (m == NULL)
3254 goto error_return;
3255 m->next = NULL;
3256 m->p_type = PT_INTERP;
3257 m->count = 1;
3258 m->sections[0] = s;
3259
3260 *pm = m;
3261 pm = &m->next;
3262 }
3263
3264 /* Look through the sections. We put sections in the same program
3265 segment when the start of the second section can be placed within
3266 a few bytes of the end of the first section. */
3267 last_hdr = NULL;
3268 phdr_index = 0;
3269 maxpagesize = get_elf_backend_data (abfd)->maxpagesize;
3270 writable = FALSE;
3271 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
3272 if (dynsec != NULL
3273 && (dynsec->flags & SEC_LOAD) == 0)
3274 dynsec = NULL;
3275
3276 /* Deal with -Ttext or something similar such that the first section
3277 is not adjacent to the program headers. This is an
3278 approximation, since at this point we don't know exactly how many
3279 program headers we will need. */
3280 if (count > 0)
3281 {
3282 bfd_size_type phdr_size;
3283
3284 phdr_size = elf_tdata (abfd)->program_header_size;
3285 if (phdr_size == 0)
3286 phdr_size = get_elf_backend_data (abfd)->s->sizeof_phdr;
3287 if ((abfd->flags & D_PAGED) == 0
3288 || sections[0]->lma < phdr_size
3289 || sections[0]->lma % maxpagesize < phdr_size % maxpagesize)
3290 phdr_in_segment = FALSE;
3291 }
3292
3293 for (i = 0, hdrpp = sections; i < count; i++, hdrpp++)
3294 {
3295 asection *hdr;
3296 bfd_boolean new_segment;
3297
3298 hdr = *hdrpp;
3299
3300 /* See if this section and the last one will fit in the same
3301 segment. */
3302
3303 if (last_hdr == NULL)
3304 {
3305 /* If we don't have a segment yet, then we don't need a new
3306 one (we build the last one after this loop). */
3307 new_segment = FALSE;
3308 }
3309 else if (last_hdr->lma - last_hdr->vma != hdr->lma - hdr->vma)
3310 {
3311 /* If this section has a different relation between the
3312 virtual address and the load address, then we need a new
3313 segment. */
3314 new_segment = TRUE;
3315 }
3316 else if (BFD_ALIGN (last_hdr->lma + last_hdr->_raw_size, maxpagesize)
3317 < BFD_ALIGN (hdr->lma, maxpagesize))
3318 {
3319 /* If putting this section in this segment would force us to
3320 skip a page in the segment, then we need a new segment. */
3321 new_segment = TRUE;
3322 }
3323 else if ((last_hdr->flags & SEC_LOAD) == 0
3324 && (hdr->flags & SEC_LOAD) != 0)
3325 {
3326 /* We don't want to put a loadable section after a
3327 nonloadable section in the same segment. */
3328 new_segment = TRUE;
3329 }
3330 else if ((abfd->flags & D_PAGED) == 0)
3331 {
3332 /* If the file is not demand paged, which means that we
3333 don't require the sections to be correctly aligned in the
3334 file, then there is no other reason for a new segment. */
3335 new_segment = FALSE;
3336 }
3337 else if (! writable
3338 && (hdr->flags & SEC_READONLY) == 0
3339 && (((last_hdr->lma + last_hdr->_raw_size - 1)
3340 & ~(maxpagesize - 1))
3341 != (hdr->lma & ~(maxpagesize - 1))))
3342 {
3343 /* We don't want to put a writable section in a read only
3344 segment, unless they are on the same page in memory
3345 anyhow. We already know that the last section does not
3346 bring us past the current section on the page, so the
3347 only case in which the new section is not on the same
3348 page as the previous section is when the previous section
3349 ends precisely on a page boundary. */
3350 new_segment = TRUE;
3351 }
3352 else
3353 {
3354 /* Otherwise, we can use the same segment. */
3355 new_segment = FALSE;
3356 }
3357
3358 if (! new_segment)
3359 {
3360 if ((hdr->flags & SEC_READONLY) == 0)
3361 writable = TRUE;
3362 last_hdr = hdr;
3363 continue;
3364 }
3365
3366 /* We need a new program segment. We must create a new program
3367 header holding all the sections from phdr_index until hdr. */
3368
3369 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
3370 if (m == NULL)
3371 goto error_return;
3372
3373 *pm = m;
3374 pm = &m->next;
3375
3376 if ((hdr->flags & SEC_READONLY) == 0)
3377 writable = TRUE;
3378 else
3379 writable = FALSE;
3380
3381 last_hdr = hdr;
3382 phdr_index = i;
3383 phdr_in_segment = FALSE;
3384 }
3385
3386 /* Create a final PT_LOAD program segment. */
3387 if (last_hdr != NULL)
3388 {
3389 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
3390 if (m == NULL)
3391 goto error_return;
3392
3393 *pm = m;
3394 pm = &m->next;
3395 }
3396
3397 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
3398 if (dynsec != NULL)
3399 {
3400 amt = sizeof (struct elf_segment_map);
3401 m = bfd_zalloc (abfd, amt);
3402 if (m == NULL)
3403 goto error_return;
3404 m->next = NULL;
3405 m->p_type = PT_DYNAMIC;
3406 m->count = 1;
3407 m->sections[0] = dynsec;
3408
3409 *pm = m;
3410 pm = &m->next;
3411 }
3412
3413 /* For each loadable .note section, add a PT_NOTE segment. We don't
3414 use bfd_get_section_by_name, because if we link together
3415 nonloadable .note sections and loadable .note sections, we will
3416 generate two .note sections in the output file. FIXME: Using
3417 names for section types is bogus anyhow. */
3418 for (s = abfd->sections; s != NULL; s = s->next)
3419 {
3420 if ((s->flags & SEC_LOAD) != 0
3421 && strncmp (s->name, ".note", 5) == 0)
3422 {
3423 amt = sizeof (struct elf_segment_map);
3424 m = bfd_zalloc (abfd, amt);
3425 if (m == NULL)
3426 goto error_return;
3427 m->next = NULL;
3428 m->p_type = PT_NOTE;
3429 m->count = 1;
3430 m->sections[0] = s;
3431
3432 *pm = m;
3433 pm = &m->next;
3434 }
3435 if (s->flags & SEC_THREAD_LOCAL)
3436 {
3437 if (! tls_count)
3438 first_tls = s;
3439 tls_count++;
3440 }
3441 }
3442
3443 /* If there are any SHF_TLS output sections, add PT_TLS segment. */
3444 if (tls_count > 0)
3445 {
3446 int i;
3447
3448 amt = sizeof (struct elf_segment_map);
3449 amt += (tls_count - 1) * sizeof (asection *);
3450 m = bfd_zalloc (abfd, amt);
3451 if (m == NULL)
3452 goto error_return;
3453 m->next = NULL;
3454 m->p_type = PT_TLS;
3455 m->count = tls_count;
3456 /* Mandated PF_R. */
3457 m->p_flags = PF_R;
3458 m->p_flags_valid = 1;
3459 for (i = 0; i < tls_count; ++i)
3460 {
3461 BFD_ASSERT (first_tls->flags & SEC_THREAD_LOCAL);
3462 m->sections[i] = first_tls;
3463 first_tls = first_tls->next;
3464 }
3465
3466 *pm = m;
3467 pm = &m->next;
3468 }
3469
3470 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
3471 segment. */
3472 eh_frame_hdr = elf_tdata (abfd)->eh_frame_hdr;
3473 if (eh_frame_hdr != NULL
3474 && (eh_frame_hdr->output_section->flags & SEC_LOAD) != 0)
3475 {
3476 amt = sizeof (struct elf_segment_map);
3477 m = bfd_zalloc (abfd, amt);
3478 if (m == NULL)
3479 goto error_return;
3480 m->next = NULL;
3481 m->p_type = PT_GNU_EH_FRAME;
3482 m->count = 1;
3483 m->sections[0] = eh_frame_hdr->output_section;
3484
3485 *pm = m;
3486 pm = &m->next;
3487 }
3488
3489 if (elf_tdata (abfd)->stack_flags)
3490 {
3491 amt = sizeof (struct elf_segment_map);
3492 m = bfd_zalloc (abfd, amt);
3493 if (m == NULL)
3494 goto error_return;
3495 m->next = NULL;
3496 m->p_type = PT_GNU_STACK;
3497 m->p_flags = elf_tdata (abfd)->stack_flags;
3498 m->p_flags_valid = 1;
3499
3500 *pm = m;
3501 pm = &m->next;
3502 }
3503
3504 free (sections);
3505 sections = NULL;
3506
3507 elf_tdata (abfd)->segment_map = mfirst;
3508 return TRUE;
3509
3510 error_return:
3511 if (sections != NULL)
3512 free (sections);
3513 return FALSE;
3514 }
3515
3516 /* Sort sections by address. */
3517
3518 static int
3519 elf_sort_sections (const void *arg1, const void *arg2)
3520 {
3521 const asection *sec1 = *(const asection **) arg1;
3522 const asection *sec2 = *(const asection **) arg2;
3523 bfd_size_type size1, size2;
3524
3525 /* Sort by LMA first, since this is the address used to
3526 place the section into a segment. */
3527 if (sec1->lma < sec2->lma)
3528 return -1;
3529 else if (sec1->lma > sec2->lma)
3530 return 1;
3531
3532 /* Then sort by VMA. Normally the LMA and the VMA will be
3533 the same, and this will do nothing. */
3534 if (sec1->vma < sec2->vma)
3535 return -1;
3536 else if (sec1->vma > sec2->vma)
3537 return 1;
3538
3539 /* Put !SEC_LOAD sections after SEC_LOAD ones. */
3540
3541 #define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0)
3542
3543 if (TOEND (sec1))
3544 {
3545 if (TOEND (sec2))
3546 {
3547 /* If the indicies are the same, do not return 0
3548 here, but continue to try the next comparison. */
3549 if (sec1->target_index - sec2->target_index != 0)
3550 return sec1->target_index - sec2->target_index;
3551 }
3552 else
3553 return 1;
3554 }
3555 else if (TOEND (sec2))
3556 return -1;
3557
3558 #undef TOEND
3559
3560 /* Sort by size, to put zero sized sections
3561 before others at the same address. */
3562
3563 size1 = (sec1->flags & SEC_LOAD) ? sec1->_raw_size : 0;
3564 size2 = (sec2->flags & SEC_LOAD) ? sec2->_raw_size : 0;
3565
3566 if (size1 < size2)
3567 return -1;
3568 if (size1 > size2)
3569 return 1;
3570
3571 return sec1->target_index - sec2->target_index;
3572 }
3573
3574 /* Assign file positions to the sections based on the mapping from
3575 sections to segments. This function also sets up some fields in
3576 the file header, and writes out the program headers. */
3577
3578 static bfd_boolean
3579 assign_file_positions_for_segments (bfd *abfd, struct bfd_link_info *link_info)
3580 {
3581 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3582 unsigned int count;
3583 struct elf_segment_map *m;
3584 unsigned int alloc;
3585 Elf_Internal_Phdr *phdrs;
3586 file_ptr off, voff;
3587 bfd_vma filehdr_vaddr, filehdr_paddr;
3588 bfd_vma phdrs_vaddr, phdrs_paddr;
3589 Elf_Internal_Phdr *p;
3590 bfd_size_type amt;
3591
3592 if (elf_tdata (abfd)->segment_map == NULL)
3593 {
3594 if (! map_sections_to_segments (abfd))
3595 return FALSE;
3596 }
3597 else
3598 {
3599 /* The placement algorithm assumes that non allocated sections are
3600 not in PT_LOAD segments. We ensure this here by removing such
3601 sections from the segment map. */
3602 for (m = elf_tdata (abfd)->segment_map;
3603 m != NULL;
3604 m = m->next)
3605 {
3606 unsigned int new_count;
3607 unsigned int i;
3608
3609 if (m->p_type != PT_LOAD)
3610 continue;
3611
3612 new_count = 0;
3613 for (i = 0; i < m->count; i ++)
3614 {
3615 if ((m->sections[i]->flags & SEC_ALLOC) != 0)
3616 {
3617 if (i != new_count)
3618 m->sections[new_count] = m->sections[i];
3619
3620 new_count ++;
3621 }
3622 }
3623
3624 if (new_count != m->count)
3625 m->count = new_count;
3626 }
3627 }
3628
3629 if (bed->elf_backend_modify_segment_map)
3630 {
3631 if (! (*bed->elf_backend_modify_segment_map) (abfd, link_info))
3632 return FALSE;
3633 }
3634
3635 count = 0;
3636 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
3637 ++count;
3638
3639 elf_elfheader (abfd)->e_phoff = bed->s->sizeof_ehdr;
3640 elf_elfheader (abfd)->e_phentsize = bed->s->sizeof_phdr;
3641 elf_elfheader (abfd)->e_phnum = count;
3642
3643 if (count == 0)
3644 return TRUE;
3645
3646 /* If we already counted the number of program segments, make sure
3647 that we allocated enough space. This happens when SIZEOF_HEADERS
3648 is used in a linker script. */
3649 alloc = elf_tdata (abfd)->program_header_size / bed->s->sizeof_phdr;
3650 if (alloc != 0 && count > alloc)
3651 {
3652 ((*_bfd_error_handler)
3653 (_("%s: Not enough room for program headers (allocated %u, need %u)"),
3654 bfd_get_filename (abfd), alloc, count));
3655 bfd_set_error (bfd_error_bad_value);
3656 return FALSE;
3657 }
3658
3659 if (alloc == 0)
3660 alloc = count;
3661
3662 amt = alloc * sizeof (Elf_Internal_Phdr);
3663 phdrs = bfd_alloc (abfd, amt);
3664 if (phdrs == NULL)
3665 return FALSE;
3666
3667 off = bed->s->sizeof_ehdr;
3668 off += alloc * bed->s->sizeof_phdr;
3669
3670 filehdr_vaddr = 0;
3671 filehdr_paddr = 0;
3672 phdrs_vaddr = 0;
3673 phdrs_paddr = 0;
3674
3675 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
3676 m != NULL;
3677 m = m->next, p++)
3678 {
3679 unsigned int i;
3680 asection **secpp;
3681
3682 /* If elf_segment_map is not from map_sections_to_segments, the
3683 sections may not be correctly ordered. NOTE: sorting should
3684 not be done to the PT_NOTE section of a corefile, which may
3685 contain several pseudo-sections artificially created by bfd.
3686 Sorting these pseudo-sections breaks things badly. */
3687 if (m->count > 1
3688 && !(elf_elfheader (abfd)->e_type == ET_CORE
3689 && m->p_type == PT_NOTE))
3690 qsort (m->sections, (size_t) m->count, sizeof (asection *),
3691 elf_sort_sections);
3692
3693 p->p_type = m->p_type;
3694 p->p_flags = m->p_flags;
3695
3696 if (p->p_type == PT_LOAD
3697 && m->count > 0
3698 && (m->sections[0]->flags & SEC_ALLOC) != 0)
3699 {
3700 if ((abfd->flags & D_PAGED) != 0)
3701 off += (m->sections[0]->vma - off) % bed->maxpagesize;
3702 else
3703 {
3704 bfd_size_type align;
3705
3706 align = 0;
3707 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
3708 {
3709 bfd_size_type secalign;
3710
3711 secalign = bfd_get_section_alignment (abfd, *secpp);
3712 if (secalign > align)
3713 align = secalign;
3714 }
3715
3716 off += (m->sections[0]->vma - off) % (1 << align);
3717 }
3718 }
3719
3720 if (m->count == 0)
3721 p->p_vaddr = 0;
3722 else
3723 p->p_vaddr = m->sections[0]->vma;
3724
3725 if (m->p_paddr_valid)
3726 p->p_paddr = m->p_paddr;
3727 else if (m->count == 0)
3728 p->p_paddr = 0;
3729 else
3730 p->p_paddr = m->sections[0]->lma;
3731
3732 if (p->p_type == PT_LOAD
3733 && (abfd->flags & D_PAGED) != 0)
3734 p->p_align = bed->maxpagesize;
3735 else if (m->count == 0)
3736 p->p_align = 1 << bed->s->log_file_align;
3737 else
3738 p->p_align = 0;
3739
3740 p->p_offset = 0;
3741 p->p_filesz = 0;
3742 p->p_memsz = 0;
3743
3744 if (m->includes_filehdr)
3745 {
3746 if (! m->p_flags_valid)
3747 p->p_flags |= PF_R;
3748 p->p_offset = 0;
3749 p->p_filesz = bed->s->sizeof_ehdr;
3750 p->p_memsz = bed->s->sizeof_ehdr;
3751 if (m->count > 0)
3752 {
3753 BFD_ASSERT (p->p_type == PT_LOAD);
3754
3755 if (p->p_vaddr < (bfd_vma) off)
3756 {
3757 (*_bfd_error_handler)
3758 (_("%s: Not enough room for program headers, try linking with -N"),
3759 bfd_get_filename (abfd));
3760 bfd_set_error (bfd_error_bad_value);
3761 return FALSE;
3762 }
3763
3764 p->p_vaddr -= off;
3765 if (! m->p_paddr_valid)
3766 p->p_paddr -= off;
3767 }
3768 if (p->p_type == PT_LOAD)
3769 {
3770 filehdr_vaddr = p->p_vaddr;
3771 filehdr_paddr = p->p_paddr;
3772 }
3773 }
3774
3775 if (m->includes_phdrs)
3776 {
3777 if (! m->p_flags_valid)
3778 p->p_flags |= PF_R;
3779
3780 if (m->includes_filehdr)
3781 {
3782 if (p->p_type == PT_LOAD)
3783 {
3784 phdrs_vaddr = p->p_vaddr + bed->s->sizeof_ehdr;
3785 phdrs_paddr = p->p_paddr + bed->s->sizeof_ehdr;
3786 }
3787 }
3788 else
3789 {
3790 p->p_offset = bed->s->sizeof_ehdr;
3791
3792 if (m->count > 0)
3793 {
3794 BFD_ASSERT (p->p_type == PT_LOAD);
3795 p->p_vaddr -= off - p->p_offset;
3796 if (! m->p_paddr_valid)
3797 p->p_paddr -= off - p->p_offset;
3798 }
3799
3800 if (p->p_type == PT_LOAD)
3801 {
3802 phdrs_vaddr = p->p_vaddr;
3803 phdrs_paddr = p->p_paddr;
3804 }
3805 else
3806 phdrs_vaddr = bed->maxpagesize + bed->s->sizeof_ehdr;
3807 }
3808
3809 p->p_filesz += alloc * bed->s->sizeof_phdr;
3810 p->p_memsz += alloc * bed->s->sizeof_phdr;
3811 }
3812
3813 if (p->p_type == PT_LOAD
3814 || (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core))
3815 {
3816 if (! m->includes_filehdr && ! m->includes_phdrs)
3817 p->p_offset = off;
3818 else
3819 {
3820 file_ptr adjust;
3821
3822 adjust = off - (p->p_offset + p->p_filesz);
3823 p->p_filesz += adjust;
3824 p->p_memsz += adjust;
3825 }
3826 }
3827
3828 voff = off;
3829
3830 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
3831 {
3832 asection *sec;
3833 flagword flags;
3834 bfd_size_type align;
3835
3836 sec = *secpp;
3837 flags = sec->flags;
3838 align = 1 << bfd_get_section_alignment (abfd, sec);
3839
3840 /* The section may have artificial alignment forced by a
3841 link script. Notice this case by the gap between the
3842 cumulative phdr lma and the section's lma. */
3843 if (p->p_paddr + p->p_memsz < sec->lma)
3844 {
3845 bfd_vma adjust = sec->lma - (p->p_paddr + p->p_memsz);
3846
3847 p->p_memsz += adjust;
3848 if (p->p_type == PT_LOAD
3849 || (p->p_type == PT_NOTE
3850 && bfd_get_format (abfd) == bfd_core))
3851 {
3852 off += adjust;
3853 voff += adjust;
3854 }
3855 if ((flags & SEC_LOAD) != 0
3856 || (flags & SEC_THREAD_LOCAL) != 0)
3857 p->p_filesz += adjust;
3858 }
3859
3860 if (p->p_type == PT_LOAD)
3861 {
3862 bfd_signed_vma adjust;
3863
3864 if ((flags & SEC_LOAD) != 0)
3865 {
3866 adjust = sec->lma - (p->p_paddr + p->p_memsz);
3867 if (adjust < 0)
3868 adjust = 0;
3869 }
3870 else if ((flags & SEC_ALLOC) != 0)
3871 {
3872 /* The section VMA must equal the file position
3873 modulo the page size. FIXME: I'm not sure if
3874 this adjustment is really necessary. We used to
3875 not have the SEC_LOAD case just above, and then
3876 this was necessary, but now I'm not sure. */
3877 if ((abfd->flags & D_PAGED) != 0)
3878 adjust = (sec->vma - voff) % bed->maxpagesize;
3879 else
3880 adjust = (sec->vma - voff) % align;
3881 }
3882 else
3883 adjust = 0;
3884
3885 if (adjust != 0)
3886 {
3887 if (i == 0)
3888 {
3889 (* _bfd_error_handler) (_("\
3890 Error: First section in segment (%s) starts at 0x%x whereas the segment starts at 0x%x"),
3891 bfd_section_name (abfd, sec),
3892 sec->lma,
3893 p->p_paddr);
3894 return FALSE;
3895 }
3896 p->p_memsz += adjust;
3897 off += adjust;
3898 voff += adjust;
3899 if ((flags & SEC_LOAD) != 0)
3900 p->p_filesz += adjust;
3901 }
3902
3903 sec->filepos = off;
3904
3905 /* We check SEC_HAS_CONTENTS here because if NOLOAD is
3906 used in a linker script we may have a section with
3907 SEC_LOAD clear but which is supposed to have
3908 contents. */
3909 if ((flags & SEC_LOAD) != 0
3910 || (flags & SEC_HAS_CONTENTS) != 0)
3911 off += sec->_raw_size;
3912
3913 if ((flags & SEC_ALLOC) != 0
3914 && ((flags & SEC_LOAD) != 0
3915 || (flags & SEC_THREAD_LOCAL) == 0))
3916 voff += sec->_raw_size;
3917 }
3918
3919 if (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core)
3920 {
3921 /* The actual "note" segment has i == 0.
3922 This is the one that actually contains everything. */
3923 if (i == 0)
3924 {
3925 sec->filepos = off;
3926 p->p_filesz = sec->_raw_size;
3927 off += sec->_raw_size;
3928 voff = off;
3929 }
3930 else
3931 {
3932 /* Fake sections -- don't need to be written. */
3933 sec->filepos = 0;
3934 sec->_raw_size = 0;
3935 flags = sec->flags = 0;
3936 }
3937 p->p_memsz = 0;
3938 p->p_align = 1;
3939 }
3940 else
3941 {
3942 if ((sec->flags & SEC_LOAD) != 0
3943 || (sec->flags & SEC_THREAD_LOCAL) == 0
3944 || p->p_type == PT_TLS)
3945 p->p_memsz += sec->_raw_size;
3946
3947 if ((flags & SEC_LOAD) != 0)
3948 p->p_filesz += sec->_raw_size;
3949
3950 if (p->p_type == PT_TLS
3951 && sec->_raw_size == 0
3952 && (sec->flags & SEC_HAS_CONTENTS) == 0)
3953 {
3954 struct bfd_link_order *o;
3955 bfd_vma tbss_size = 0;
3956
3957 for (o = sec->link_order_head; o != NULL; o = o->next)
3958 if (tbss_size < o->offset + o->size)
3959 tbss_size = o->offset + o->size;
3960
3961 p->p_memsz += tbss_size;
3962 }
3963
3964 if (align > p->p_align
3965 && (p->p_type != PT_LOAD || (abfd->flags & D_PAGED) == 0))
3966 p->p_align = align;
3967 }
3968
3969 if (! m->p_flags_valid)
3970 {
3971 p->p_flags |= PF_R;
3972 if ((flags & SEC_CODE) != 0)
3973 p->p_flags |= PF_X;
3974 if ((flags & SEC_READONLY) == 0)
3975 p->p_flags |= PF_W;
3976 }
3977 }
3978 }
3979
3980 /* Now that we have set the section file positions, we can set up
3981 the file positions for the non PT_LOAD segments. */
3982 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
3983 m != NULL;
3984 m = m->next, p++)
3985 {
3986 if (p->p_type != PT_LOAD && m->count > 0)
3987 {
3988 BFD_ASSERT (! m->includes_filehdr && ! m->includes_phdrs);
3989 p->p_offset = m->sections[0]->filepos;
3990 }
3991 if (m->count == 0)
3992 {
3993 if (m->includes_filehdr)
3994 {
3995 p->p_vaddr = filehdr_vaddr;
3996 if (! m->p_paddr_valid)
3997 p->p_paddr = filehdr_paddr;
3998 }
3999 else if (m->includes_phdrs)
4000 {
4001 p->p_vaddr = phdrs_vaddr;
4002 if (! m->p_paddr_valid)
4003 p->p_paddr = phdrs_paddr;
4004 }
4005 }
4006 }
4007
4008 /* Clear out any program headers we allocated but did not use. */
4009 for (; count < alloc; count++, p++)
4010 {
4011 memset (p, 0, sizeof *p);
4012 p->p_type = PT_NULL;
4013 }
4014
4015 elf_tdata (abfd)->phdr = phdrs;
4016
4017 elf_tdata (abfd)->next_file_pos = off;
4018
4019 /* Write out the program headers. */
4020 if (bfd_seek (abfd, (bfd_signed_vma) bed->s->sizeof_ehdr, SEEK_SET) != 0
4021 || bed->s->write_out_phdrs (abfd, phdrs, alloc) != 0)
4022 return FALSE;
4023
4024 return TRUE;
4025 }
4026
4027 /* Get the size of the program header.
4028
4029 If this is called by the linker before any of the section VMA's are set, it
4030 can't calculate the correct value for a strange memory layout. This only
4031 happens when SIZEOF_HEADERS is used in a linker script. In this case,
4032 SORTED_HDRS is NULL and we assume the normal scenario of one text and one
4033 data segment (exclusive of .interp and .dynamic).
4034
4035 ??? User written scripts must either not use SIZEOF_HEADERS, or assume there
4036 will be two segments. */
4037
4038 static bfd_size_type
4039 get_program_header_size (bfd *abfd)
4040 {
4041 size_t segs;
4042 asection *s;
4043 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4044
4045 /* We can't return a different result each time we're called. */
4046 if (elf_tdata (abfd)->program_header_size != 0)
4047 return elf_tdata (abfd)->program_header_size;
4048
4049 if (elf_tdata (abfd)->segment_map != NULL)
4050 {
4051 struct elf_segment_map *m;
4052
4053 segs = 0;
4054 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
4055 ++segs;
4056 elf_tdata (abfd)->program_header_size = segs * bed->s->sizeof_phdr;
4057 return elf_tdata (abfd)->program_header_size;
4058 }
4059
4060 /* Assume we will need exactly two PT_LOAD segments: one for text
4061 and one for data. */
4062 segs = 2;
4063
4064 s = bfd_get_section_by_name (abfd, ".interp");
4065 if (s != NULL && (s->flags & SEC_LOAD) != 0)
4066 {
4067 /* If we have a loadable interpreter section, we need a
4068 PT_INTERP segment. In this case, assume we also need a
4069 PT_PHDR segment, although that may not be true for all
4070 targets. */
4071 segs += 2;
4072 }
4073
4074 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
4075 {
4076 /* We need a PT_DYNAMIC segment. */
4077 ++segs;
4078 }
4079
4080 if (elf_tdata (abfd)->eh_frame_hdr)
4081 {
4082 /* We need a PT_GNU_EH_FRAME segment. */
4083 ++segs;
4084 }
4085
4086 if (elf_tdata (abfd)->stack_flags)
4087 {
4088 /* We need a PT_GNU_STACK segment. */
4089 ++segs;
4090 }
4091
4092 for (s = abfd->sections; s != NULL; s = s->next)
4093 {
4094 if ((s->flags & SEC_LOAD) != 0
4095 && strncmp (s->name, ".note", 5) == 0)
4096 {
4097 /* We need a PT_NOTE segment. */
4098 ++segs;
4099 }
4100 }
4101
4102 for (s = abfd->sections; s != NULL; s = s->next)
4103 {
4104 if (s->flags & SEC_THREAD_LOCAL)
4105 {
4106 /* We need a PT_TLS segment. */
4107 ++segs;
4108 break;
4109 }
4110 }
4111
4112 /* Let the backend count up any program headers it might need. */
4113 if (bed->elf_backend_additional_program_headers)
4114 {
4115 int a;
4116
4117 a = (*bed->elf_backend_additional_program_headers) (abfd);
4118 if (a == -1)
4119 abort ();
4120 segs += a;
4121 }
4122
4123 elf_tdata (abfd)->program_header_size = segs * bed->s->sizeof_phdr;
4124 return elf_tdata (abfd)->program_header_size;
4125 }
4126
4127 /* Work out the file positions of all the sections. This is called by
4128 _bfd_elf_compute_section_file_positions. All the section sizes and
4129 VMAs must be known before this is called.
4130
4131 We do not consider reloc sections at this point, unless they form
4132 part of the loadable image. Reloc sections are assigned file
4133 positions in assign_file_positions_for_relocs, which is called by
4134 write_object_contents and final_link.
4135
4136 We also don't set the positions of the .symtab and .strtab here. */
4137
4138 static bfd_boolean
4139 assign_file_positions_except_relocs (bfd *abfd,
4140 struct bfd_link_info *link_info)
4141 {
4142 struct elf_obj_tdata * const tdata = elf_tdata (abfd);
4143 Elf_Internal_Ehdr * const i_ehdrp = elf_elfheader (abfd);
4144 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
4145 unsigned int num_sec = elf_numsections (abfd);
4146 file_ptr off;
4147 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4148
4149 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
4150 && bfd_get_format (abfd) != bfd_core)
4151 {
4152 Elf_Internal_Shdr **hdrpp;
4153 unsigned int i;
4154
4155 /* Start after the ELF header. */
4156 off = i_ehdrp->e_ehsize;
4157
4158 /* We are not creating an executable, which means that we are
4159 not creating a program header, and that the actual order of
4160 the sections in the file is unimportant. */
4161 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
4162 {
4163 Elf_Internal_Shdr *hdr;
4164
4165 hdr = *hdrpp;
4166 if (hdr->sh_type == SHT_REL
4167 || hdr->sh_type == SHT_RELA
4168 || i == tdata->symtab_section
4169 || i == tdata->symtab_shndx_section
4170 || i == tdata->strtab_section)
4171 {
4172 hdr->sh_offset = -1;
4173 }
4174 else
4175 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4176
4177 if (i == SHN_LORESERVE - 1)
4178 {
4179 i += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4180 hdrpp += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4181 }
4182 }
4183 }
4184 else
4185 {
4186 unsigned int i;
4187 Elf_Internal_Shdr **hdrpp;
4188
4189 /* Assign file positions for the loaded sections based on the
4190 assignment of sections to segments. */
4191 if (! assign_file_positions_for_segments (abfd, link_info))
4192 return FALSE;
4193
4194 /* Assign file positions for the other sections. */
4195
4196 off = elf_tdata (abfd)->next_file_pos;
4197 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
4198 {
4199 Elf_Internal_Shdr *hdr;
4200
4201 hdr = *hdrpp;
4202 if (hdr->bfd_section != NULL
4203 && hdr->bfd_section->filepos != 0)
4204 hdr->sh_offset = hdr->bfd_section->filepos;
4205 else if ((hdr->sh_flags & SHF_ALLOC) != 0)
4206 {
4207 ((*_bfd_error_handler)
4208 (_("%s: warning: allocated section `%s' not in segment"),
4209 bfd_get_filename (abfd),
4210 (hdr->bfd_section == NULL
4211 ? "*unknown*"
4212 : hdr->bfd_section->name)));
4213 if ((abfd->flags & D_PAGED) != 0)
4214 off += (hdr->sh_addr - off) % bed->maxpagesize;
4215 else
4216 off += (hdr->sh_addr - off) % hdr->sh_addralign;
4217 off = _bfd_elf_assign_file_position_for_section (hdr, off,
4218 FALSE);
4219 }
4220 else if (hdr->sh_type == SHT_REL
4221 || hdr->sh_type == SHT_RELA
4222 || hdr == i_shdrpp[tdata->symtab_section]
4223 || hdr == i_shdrpp[tdata->symtab_shndx_section]
4224 || hdr == i_shdrpp[tdata->strtab_section])
4225 hdr->sh_offset = -1;
4226 else
4227 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4228
4229 if (i == SHN_LORESERVE - 1)
4230 {
4231 i += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4232 hdrpp += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4233 }
4234 }
4235 }
4236
4237 /* Place the section headers. */
4238 off = align_file_position (off, 1 << bed->s->log_file_align);
4239 i_ehdrp->e_shoff = off;
4240 off += i_ehdrp->e_shnum * i_ehdrp->e_shentsize;
4241
4242 elf_tdata (abfd)->next_file_pos = off;
4243
4244 return TRUE;
4245 }
4246
4247 static bfd_boolean
4248 prep_headers (bfd *abfd)
4249 {
4250 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
4251 Elf_Internal_Phdr *i_phdrp = 0; /* Program header table, internal form */
4252 Elf_Internal_Shdr **i_shdrp; /* Section header table, internal form */
4253 struct elf_strtab_hash *shstrtab;
4254 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4255
4256 i_ehdrp = elf_elfheader (abfd);
4257 i_shdrp = elf_elfsections (abfd);
4258
4259 shstrtab = _bfd_elf_strtab_init ();
4260 if (shstrtab == NULL)
4261 return FALSE;
4262
4263 elf_shstrtab (abfd) = shstrtab;
4264
4265 i_ehdrp->e_ident[EI_MAG0] = ELFMAG0;
4266 i_ehdrp->e_ident[EI_MAG1] = ELFMAG1;
4267 i_ehdrp->e_ident[EI_MAG2] = ELFMAG2;
4268 i_ehdrp->e_ident[EI_MAG3] = ELFMAG3;
4269
4270 i_ehdrp->e_ident[EI_CLASS] = bed->s->elfclass;
4271 i_ehdrp->e_ident[EI_DATA] =
4272 bfd_big_endian (abfd) ? ELFDATA2MSB : ELFDATA2LSB;
4273 i_ehdrp->e_ident[EI_VERSION] = bed->s->ev_current;
4274
4275 if ((abfd->flags & DYNAMIC) != 0)
4276 i_ehdrp->e_type = ET_DYN;
4277 else if ((abfd->flags & EXEC_P) != 0)
4278 i_ehdrp->e_type = ET_EXEC;
4279 else if (bfd_get_format (abfd) == bfd_core)
4280 i_ehdrp->e_type = ET_CORE;
4281 else
4282 i_ehdrp->e_type = ET_REL;
4283
4284 switch (bfd_get_arch (abfd))
4285 {
4286 case bfd_arch_unknown:
4287 i_ehdrp->e_machine = EM_NONE;
4288 break;
4289
4290 /* There used to be a long list of cases here, each one setting
4291 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
4292 in the corresponding bfd definition. To avoid duplication,
4293 the switch was removed. Machines that need special handling
4294 can generally do it in elf_backend_final_write_processing(),
4295 unless they need the information earlier than the final write.
4296 Such need can generally be supplied by replacing the tests for
4297 e_machine with the conditions used to determine it. */
4298 default:
4299 i_ehdrp->e_machine = bed->elf_machine_code;
4300 }
4301
4302 i_ehdrp->e_version = bed->s->ev_current;
4303 i_ehdrp->e_ehsize = bed->s->sizeof_ehdr;
4304
4305 /* No program header, for now. */
4306 i_ehdrp->e_phoff = 0;
4307 i_ehdrp->e_phentsize = 0;
4308 i_ehdrp->e_phnum = 0;
4309
4310 /* Each bfd section is section header entry. */
4311 i_ehdrp->e_entry = bfd_get_start_address (abfd);
4312 i_ehdrp->e_shentsize = bed->s->sizeof_shdr;
4313
4314 /* If we're building an executable, we'll need a program header table. */
4315 if (abfd->flags & EXEC_P)
4316 {
4317 /* It all happens later. */
4318 #if 0
4319 i_ehdrp->e_phentsize = sizeof (Elf_External_Phdr);
4320
4321 /* elf_build_phdrs() returns a (NULL-terminated) array of
4322 Elf_Internal_Phdrs. */
4323 i_phdrp = elf_build_phdrs (abfd, i_ehdrp, i_shdrp, &i_ehdrp->e_phnum);
4324 i_ehdrp->e_phoff = outbase;
4325 outbase += i_ehdrp->e_phentsize * i_ehdrp->e_phnum;
4326 #endif
4327 }
4328 else
4329 {
4330 i_ehdrp->e_phentsize = 0;
4331 i_phdrp = 0;
4332 i_ehdrp->e_phoff = 0;
4333 }
4334
4335 elf_tdata (abfd)->symtab_hdr.sh_name =
4336 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".symtab", FALSE);
4337 elf_tdata (abfd)->strtab_hdr.sh_name =
4338 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".strtab", FALSE);
4339 elf_tdata (abfd)->shstrtab_hdr.sh_name =
4340 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".shstrtab", FALSE);
4341 if (elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
4342 || elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
4343 || elf_tdata (abfd)->shstrtab_hdr.sh_name == (unsigned int) -1)
4344 return FALSE;
4345
4346 return TRUE;
4347 }
4348
4349 /* Assign file positions for all the reloc sections which are not part
4350 of the loadable file image. */
4351
4352 void
4353 _bfd_elf_assign_file_positions_for_relocs (bfd *abfd)
4354 {
4355 file_ptr off;
4356 unsigned int i, num_sec;
4357 Elf_Internal_Shdr **shdrpp;
4358
4359 off = elf_tdata (abfd)->next_file_pos;
4360
4361 num_sec = elf_numsections (abfd);
4362 for (i = 1, shdrpp = elf_elfsections (abfd) + 1; i < num_sec; i++, shdrpp++)
4363 {
4364 Elf_Internal_Shdr *shdrp;
4365
4366 shdrp = *shdrpp;
4367 if ((shdrp->sh_type == SHT_REL || shdrp->sh_type == SHT_RELA)
4368 && shdrp->sh_offset == -1)
4369 off = _bfd_elf_assign_file_position_for_section (shdrp, off, TRUE);
4370 }
4371
4372 elf_tdata (abfd)->next_file_pos = off;
4373 }
4374
4375 bfd_boolean
4376 _bfd_elf_write_object_contents (bfd *abfd)
4377 {
4378 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4379 Elf_Internal_Ehdr *i_ehdrp;
4380 Elf_Internal_Shdr **i_shdrp;
4381 bfd_boolean failed;
4382 unsigned int count, num_sec;
4383
4384 if (! abfd->output_has_begun
4385 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
4386 return FALSE;
4387
4388 i_shdrp = elf_elfsections (abfd);
4389 i_ehdrp = elf_elfheader (abfd);
4390
4391 failed = FALSE;
4392 bfd_map_over_sections (abfd, bed->s->write_relocs, &failed);
4393 if (failed)
4394 return FALSE;
4395
4396 _bfd_elf_assign_file_positions_for_relocs (abfd);
4397
4398 /* After writing the headers, we need to write the sections too... */
4399 num_sec = elf_numsections (abfd);
4400 for (count = 1; count < num_sec; count++)
4401 {
4402 if (bed->elf_backend_section_processing)
4403 (*bed->elf_backend_section_processing) (abfd, i_shdrp[count]);
4404 if (i_shdrp[count]->contents)
4405 {
4406 bfd_size_type amt = i_shdrp[count]->sh_size;
4407
4408 if (bfd_seek (abfd, i_shdrp[count]->sh_offset, SEEK_SET) != 0
4409 || bfd_bwrite (i_shdrp[count]->contents, amt, abfd) != amt)
4410 return FALSE;
4411 }
4412 if (count == SHN_LORESERVE - 1)
4413 count += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4414 }
4415
4416 /* Write out the section header names. */
4417 if (bfd_seek (abfd, elf_tdata (abfd)->shstrtab_hdr.sh_offset, SEEK_SET) != 0
4418 || ! _bfd_elf_strtab_emit (abfd, elf_shstrtab (abfd)))
4419 return FALSE;
4420
4421 if (bed->elf_backend_final_write_processing)
4422 (*bed->elf_backend_final_write_processing) (abfd,
4423 elf_tdata (abfd)->linker);
4424
4425 return bed->s->write_shdrs_and_ehdr (abfd);
4426 }
4427
4428 bfd_boolean
4429 _bfd_elf_write_corefile_contents (bfd *abfd)
4430 {
4431 /* Hopefully this can be done just like an object file. */
4432 return _bfd_elf_write_object_contents (abfd);
4433 }
4434
4435 /* Given a section, search the header to find them. */
4436
4437 int
4438 _bfd_elf_section_from_bfd_section (bfd *abfd, struct bfd_section *asect)
4439 {
4440 const struct elf_backend_data *bed;
4441 int index;
4442
4443 if (elf_section_data (asect) != NULL
4444 && elf_section_data (asect)->this_idx != 0)
4445 return elf_section_data (asect)->this_idx;
4446
4447 if (bfd_is_abs_section (asect))
4448 index = SHN_ABS;
4449 else if (bfd_is_com_section (asect))
4450 index = SHN_COMMON;
4451 else if (bfd_is_und_section (asect))
4452 index = SHN_UNDEF;
4453 else
4454 {
4455 Elf_Internal_Shdr **i_shdrp = elf_elfsections (abfd);
4456 int maxindex = elf_numsections (abfd);
4457
4458 for (index = 1; index < maxindex; index++)
4459 {
4460 Elf_Internal_Shdr *hdr = i_shdrp[index];
4461
4462 if (hdr != NULL && hdr->bfd_section == asect)
4463 return index;
4464 }
4465 index = -1;
4466 }
4467
4468 bed = get_elf_backend_data (abfd);
4469 if (bed->elf_backend_section_from_bfd_section)
4470 {
4471 int retval = index;
4472
4473 if ((*bed->elf_backend_section_from_bfd_section) (abfd, asect, &retval))
4474 return retval;
4475 }
4476
4477 if (index == -1)
4478 bfd_set_error (bfd_error_nonrepresentable_section);
4479
4480 return index;
4481 }
4482
4483 /* Given a BFD symbol, return the index in the ELF symbol table, or -1
4484 on error. */
4485
4486 int
4487 _bfd_elf_symbol_from_bfd_symbol (bfd *abfd, asymbol **asym_ptr_ptr)
4488 {
4489 asymbol *asym_ptr = *asym_ptr_ptr;
4490 int idx;
4491 flagword flags = asym_ptr->flags;
4492
4493 /* When gas creates relocations against local labels, it creates its
4494 own symbol for the section, but does put the symbol into the
4495 symbol chain, so udata is 0. When the linker is generating
4496 relocatable output, this section symbol may be for one of the
4497 input sections rather than the output section. */
4498 if (asym_ptr->udata.i == 0
4499 && (flags & BSF_SECTION_SYM)
4500 && asym_ptr->section)
4501 {
4502 int indx;
4503
4504 if (asym_ptr->section->output_section != NULL)
4505 indx = asym_ptr->section->output_section->index;
4506 else
4507 indx = asym_ptr->section->index;
4508 if (indx < elf_num_section_syms (abfd)
4509 && elf_section_syms (abfd)[indx] != NULL)
4510 asym_ptr->udata.i = elf_section_syms (abfd)[indx]->udata.i;
4511 }
4512
4513 idx = asym_ptr->udata.i;
4514
4515 if (idx == 0)
4516 {
4517 /* This case can occur when using --strip-symbol on a symbol
4518 which is used in a relocation entry. */
4519 (*_bfd_error_handler)
4520 (_("%s: symbol `%s' required but not present"),
4521 bfd_archive_filename (abfd), bfd_asymbol_name (asym_ptr));
4522 bfd_set_error (bfd_error_no_symbols);
4523 return -1;
4524 }
4525
4526 #if DEBUG & 4
4527 {
4528 fprintf (stderr,
4529 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8lx%s\n",
4530 (long) asym_ptr, asym_ptr->name, idx, flags,
4531 elf_symbol_flags (flags));
4532 fflush (stderr);
4533 }
4534 #endif
4535
4536 return idx;
4537 }
4538
4539 /* Copy private BFD data. This copies any program header information. */
4540
4541 static bfd_boolean
4542 copy_private_bfd_data (bfd *ibfd, bfd *obfd)
4543 {
4544 Elf_Internal_Ehdr *iehdr;
4545 struct elf_segment_map *map;
4546 struct elf_segment_map *map_first;
4547 struct elf_segment_map **pointer_to_map;
4548 Elf_Internal_Phdr *segment;
4549 asection *section;
4550 unsigned int i;
4551 unsigned int num_segments;
4552 bfd_boolean phdr_included = FALSE;
4553 bfd_vma maxpagesize;
4554 struct elf_segment_map *phdr_adjust_seg = NULL;
4555 unsigned int phdr_adjust_num = 0;
4556 const struct elf_backend_data *bed;
4557
4558 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
4559 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
4560 return TRUE;
4561
4562 if (elf_tdata (ibfd)->phdr == NULL)
4563 return TRUE;
4564
4565 bed = get_elf_backend_data (ibfd);
4566 iehdr = elf_elfheader (ibfd);
4567
4568 map_first = NULL;
4569 pointer_to_map = &map_first;
4570
4571 num_segments = elf_elfheader (ibfd)->e_phnum;
4572 maxpagesize = get_elf_backend_data (obfd)->maxpagesize;
4573
4574 /* Returns the end address of the segment + 1. */
4575 #define SEGMENT_END(segment, start) \
4576 (start + (segment->p_memsz > segment->p_filesz \
4577 ? segment->p_memsz : segment->p_filesz))
4578
4579 #define SECTION_SIZE(section, segment) \
4580 (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL)) \
4581 != SEC_THREAD_LOCAL || segment->p_type == PT_TLS) \
4582 ? section->_raw_size : 0)
4583
4584 /* Returns TRUE if the given section is contained within
4585 the given segment. VMA addresses are compared. */
4586 #define IS_CONTAINED_BY_VMA(section, segment) \
4587 (section->vma >= segment->p_vaddr \
4588 && (section->vma + SECTION_SIZE (section, segment) \
4589 <= (SEGMENT_END (segment, segment->p_vaddr))))
4590
4591 /* Returns TRUE if the given section is contained within
4592 the given segment. LMA addresses are compared. */
4593 #define IS_CONTAINED_BY_LMA(section, segment, base) \
4594 (section->lma >= base \
4595 && (section->lma + SECTION_SIZE (section, segment) \
4596 <= SEGMENT_END (segment, base)))
4597
4598 /* Special case: corefile "NOTE" section containing regs, prpsinfo etc. */
4599 #define IS_COREFILE_NOTE(p, s) \
4600 (p->p_type == PT_NOTE \
4601 && bfd_get_format (ibfd) == bfd_core \
4602 && s->vma == 0 && s->lma == 0 \
4603 && (bfd_vma) s->filepos >= p->p_offset \
4604 && ((bfd_vma) s->filepos + s->_raw_size \
4605 <= p->p_offset + p->p_filesz))
4606
4607 /* The complicated case when p_vaddr is 0 is to handle the Solaris
4608 linker, which generates a PT_INTERP section with p_vaddr and
4609 p_memsz set to 0. */
4610 #define IS_SOLARIS_PT_INTERP(p, s) \
4611 (p->p_vaddr == 0 \
4612 && p->p_paddr == 0 \
4613 && p->p_memsz == 0 \
4614 && p->p_filesz > 0 \
4615 && (s->flags & SEC_HAS_CONTENTS) != 0 \
4616 && s->_raw_size > 0 \
4617 && (bfd_vma) s->filepos >= p->p_offset \
4618 && ((bfd_vma) s->filepos + s->_raw_size \
4619 <= p->p_offset + p->p_filesz))
4620
4621 /* Decide if the given section should be included in the given segment.
4622 A section will be included if:
4623 1. It is within the address space of the segment -- we use the LMA
4624 if that is set for the segment and the VMA otherwise,
4625 2. It is an allocated segment,
4626 3. There is an output section associated with it,
4627 4. The section has not already been allocated to a previous segment.
4628 5. PT_GNU_STACK segments do not include any sections.
4629 6. PT_TLS segment includes only SHF_TLS sections.
4630 7. SHF_TLS sections are only in PT_TLS or PT_LOAD segments. */
4631 #define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed) \
4632 ((((segment->p_paddr \
4633 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr) \
4634 : IS_CONTAINED_BY_VMA (section, segment)) \
4635 && (section->flags & SEC_ALLOC) != 0) \
4636 || IS_COREFILE_NOTE (segment, section)) \
4637 && section->output_section != NULL \
4638 && segment->p_type != PT_GNU_STACK \
4639 && (segment->p_type != PT_TLS \
4640 || (section->flags & SEC_THREAD_LOCAL)) \
4641 && (segment->p_type == PT_LOAD \
4642 || segment->p_type == PT_TLS \
4643 || (section->flags & SEC_THREAD_LOCAL) == 0) \
4644 && ! section->segment_mark)
4645
4646 /* Returns TRUE iff seg1 starts after the end of seg2. */
4647 #define SEGMENT_AFTER_SEGMENT(seg1, seg2, field) \
4648 (seg1->field >= SEGMENT_END (seg2, seg2->field))
4649
4650 /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both
4651 their VMA address ranges and their LMA address ranges overlap.
4652 It is possible to have overlapping VMA ranges without overlapping LMA
4653 ranges. RedBoot images for example can have both .data and .bss mapped
4654 to the same VMA range, but with the .data section mapped to a different
4655 LMA. */
4656 #define SEGMENT_OVERLAPS(seg1, seg2) \
4657 ( !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr) \
4658 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr)) \
4659 && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr) \
4660 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr)))
4661
4662 /* Initialise the segment mark field. */
4663 for (section = ibfd->sections; section != NULL; section = section->next)
4664 section->segment_mark = FALSE;
4665
4666 /* Scan through the segments specified in the program header
4667 of the input BFD. For this first scan we look for overlaps
4668 in the loadable segments. These can be created by weird
4669 parameters to objcopy. Also, fix some solaris weirdness. */
4670 for (i = 0, segment = elf_tdata (ibfd)->phdr;
4671 i < num_segments;
4672 i++, segment++)
4673 {
4674 unsigned int j;
4675 Elf_Internal_Phdr *segment2;
4676
4677 if (segment->p_type == PT_INTERP)
4678 for (section = ibfd->sections; section; section = section->next)
4679 if (IS_SOLARIS_PT_INTERP (segment, section))
4680 {
4681 /* Mininal change so that the normal section to segment
4682 assignment code will work. */
4683 segment->p_vaddr = section->vma;
4684 break;
4685 }
4686
4687 if (segment->p_type != PT_LOAD)
4688 continue;
4689
4690 /* Determine if this segment overlaps any previous segments. */
4691 for (j = 0, segment2 = elf_tdata (ibfd)->phdr; j < i; j++, segment2 ++)
4692 {
4693 bfd_signed_vma extra_length;
4694
4695 if (segment2->p_type != PT_LOAD
4696 || ! SEGMENT_OVERLAPS (segment, segment2))
4697 continue;
4698
4699 /* Merge the two segments together. */
4700 if (segment2->p_vaddr < segment->p_vaddr)
4701 {
4702 /* Extend SEGMENT2 to include SEGMENT and then delete
4703 SEGMENT. */
4704 extra_length =
4705 SEGMENT_END (segment, segment->p_vaddr)
4706 - SEGMENT_END (segment2, segment2->p_vaddr);
4707
4708 if (extra_length > 0)
4709 {
4710 segment2->p_memsz += extra_length;
4711 segment2->p_filesz += extra_length;
4712 }
4713
4714 segment->p_type = PT_NULL;
4715
4716 /* Since we have deleted P we must restart the outer loop. */
4717 i = 0;
4718 segment = elf_tdata (ibfd)->phdr;
4719 break;
4720 }
4721 else
4722 {
4723 /* Extend SEGMENT to include SEGMENT2 and then delete
4724 SEGMENT2. */
4725 extra_length =
4726 SEGMENT_END (segment2, segment2->p_vaddr)
4727 - SEGMENT_END (segment, segment->p_vaddr);
4728
4729 if (extra_length > 0)
4730 {
4731 segment->p_memsz += extra_length;
4732 segment->p_filesz += extra_length;
4733 }
4734
4735 segment2->p_type = PT_NULL;
4736 }
4737 }
4738 }
4739
4740 /* The second scan attempts to assign sections to segments. */
4741 for (i = 0, segment = elf_tdata (ibfd)->phdr;
4742 i < num_segments;
4743 i ++, segment ++)
4744 {
4745 unsigned int section_count;
4746 asection ** sections;
4747 asection * output_section;
4748 unsigned int isec;
4749 bfd_vma matching_lma;
4750 bfd_vma suggested_lma;
4751 unsigned int j;
4752 bfd_size_type amt;
4753
4754 if (segment->p_type == PT_NULL)
4755 continue;
4756
4757 /* Compute how many sections might be placed into this segment. */
4758 for (section = ibfd->sections, section_count = 0;
4759 section != NULL;
4760 section = section->next)
4761 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
4762 ++section_count;
4763
4764 /* Allocate a segment map big enough to contain
4765 all of the sections we have selected. */
4766 amt = sizeof (struct elf_segment_map);
4767 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
4768 map = bfd_alloc (obfd, amt);
4769 if (map == NULL)
4770 return FALSE;
4771
4772 /* Initialise the fields of the segment map. Default to
4773 using the physical address of the segment in the input BFD. */
4774 map->next = NULL;
4775 map->p_type = segment->p_type;
4776 map->p_flags = segment->p_flags;
4777 map->p_flags_valid = 1;
4778 map->p_paddr = segment->p_paddr;
4779 map->p_paddr_valid = 1;
4780
4781 /* Determine if this segment contains the ELF file header
4782 and if it contains the program headers themselves. */
4783 map->includes_filehdr = (segment->p_offset == 0
4784 && segment->p_filesz >= iehdr->e_ehsize);
4785
4786 map->includes_phdrs = 0;
4787
4788 if (! phdr_included || segment->p_type != PT_LOAD)
4789 {
4790 map->includes_phdrs =
4791 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
4792 && (segment->p_offset + segment->p_filesz
4793 >= ((bfd_vma) iehdr->e_phoff
4794 + iehdr->e_phnum * iehdr->e_phentsize)));
4795
4796 if (segment->p_type == PT_LOAD && map->includes_phdrs)
4797 phdr_included = TRUE;
4798 }
4799
4800 if (section_count == 0)
4801 {
4802 /* Special segments, such as the PT_PHDR segment, may contain
4803 no sections, but ordinary, loadable segments should contain
4804 something. They are allowed by the ELF spec however, so only
4805 a warning is produced. */
4806 if (segment->p_type == PT_LOAD)
4807 (*_bfd_error_handler)
4808 (_("%s: warning: Empty loadable segment detected, is this intentional ?\n"),
4809 bfd_archive_filename (ibfd));
4810
4811 map->count = 0;
4812 *pointer_to_map = map;
4813 pointer_to_map = &map->next;
4814
4815 continue;
4816 }
4817
4818 /* Now scan the sections in the input BFD again and attempt
4819 to add their corresponding output sections to the segment map.
4820 The problem here is how to handle an output section which has
4821 been moved (ie had its LMA changed). There are four possibilities:
4822
4823 1. None of the sections have been moved.
4824 In this case we can continue to use the segment LMA from the
4825 input BFD.
4826
4827 2. All of the sections have been moved by the same amount.
4828 In this case we can change the segment's LMA to match the LMA
4829 of the first section.
4830
4831 3. Some of the sections have been moved, others have not.
4832 In this case those sections which have not been moved can be
4833 placed in the current segment which will have to have its size,
4834 and possibly its LMA changed, and a new segment or segments will
4835 have to be created to contain the other sections.
4836
4837 4. The sections have been moved, but not by the same amount.
4838 In this case we can change the segment's LMA to match the LMA
4839 of the first section and we will have to create a new segment
4840 or segments to contain the other sections.
4841
4842 In order to save time, we allocate an array to hold the section
4843 pointers that we are interested in. As these sections get assigned
4844 to a segment, they are removed from this array. */
4845
4846 /* Gcc 2.96 miscompiles this code on mips. Don't do casting here
4847 to work around this long long bug. */
4848 amt = section_count * sizeof (asection *);
4849 sections = bfd_malloc (amt);
4850 if (sections == NULL)
4851 return FALSE;
4852
4853 /* Step One: Scan for segment vs section LMA conflicts.
4854 Also add the sections to the section array allocated above.
4855 Also add the sections to the current segment. In the common
4856 case, where the sections have not been moved, this means that
4857 we have completely filled the segment, and there is nothing
4858 more to do. */
4859 isec = 0;
4860 matching_lma = 0;
4861 suggested_lma = 0;
4862
4863 for (j = 0, section = ibfd->sections;
4864 section != NULL;
4865 section = section->next)
4866 {
4867 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
4868 {
4869 output_section = section->output_section;
4870
4871 sections[j ++] = section;
4872
4873 /* The Solaris native linker always sets p_paddr to 0.
4874 We try to catch that case here, and set it to the
4875 correct value. Note - some backends require that
4876 p_paddr be left as zero. */
4877 if (segment->p_paddr == 0
4878 && segment->p_vaddr != 0
4879 && (! bed->want_p_paddr_set_to_zero)
4880 && isec == 0
4881 && output_section->lma != 0
4882 && (output_section->vma == (segment->p_vaddr
4883 + (map->includes_filehdr
4884 ? iehdr->e_ehsize
4885 : 0)
4886 + (map->includes_phdrs
4887 ? (iehdr->e_phnum
4888 * iehdr->e_phentsize)
4889 : 0))))
4890 map->p_paddr = segment->p_vaddr;
4891
4892 /* Match up the physical address of the segment with the
4893 LMA address of the output section. */
4894 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
4895 || IS_COREFILE_NOTE (segment, section)
4896 || (bed->want_p_paddr_set_to_zero &&
4897 IS_CONTAINED_BY_VMA (output_section, segment))
4898 )
4899 {
4900 if (matching_lma == 0)
4901 matching_lma = output_section->lma;
4902
4903 /* We assume that if the section fits within the segment
4904 then it does not overlap any other section within that
4905 segment. */
4906 map->sections[isec ++] = output_section;
4907 }
4908 else if (suggested_lma == 0)
4909 suggested_lma = output_section->lma;
4910 }
4911 }
4912
4913 BFD_ASSERT (j == section_count);
4914
4915 /* Step Two: Adjust the physical address of the current segment,
4916 if necessary. */
4917 if (isec == section_count)
4918 {
4919 /* All of the sections fitted within the segment as currently
4920 specified. This is the default case. Add the segment to
4921 the list of built segments and carry on to process the next
4922 program header in the input BFD. */
4923 map->count = section_count;
4924 *pointer_to_map = map;
4925 pointer_to_map = &map->next;
4926
4927 free (sections);
4928 continue;
4929 }
4930 else
4931 {
4932 if (matching_lma != 0)
4933 {
4934 /* At least one section fits inside the current segment.
4935 Keep it, but modify its physical address to match the
4936 LMA of the first section that fitted. */
4937 map->p_paddr = matching_lma;
4938 }
4939 else
4940 {
4941 /* None of the sections fitted inside the current segment.
4942 Change the current segment's physical address to match
4943 the LMA of the first section. */
4944 map->p_paddr = suggested_lma;
4945 }
4946
4947 /* Offset the segment physical address from the lma
4948 to allow for space taken up by elf headers. */
4949 if (map->includes_filehdr)
4950 map->p_paddr -= iehdr->e_ehsize;
4951
4952 if (map->includes_phdrs)
4953 {
4954 map->p_paddr -= iehdr->e_phnum * iehdr->e_phentsize;
4955
4956 /* iehdr->e_phnum is just an estimate of the number
4957 of program headers that we will need. Make a note
4958 here of the number we used and the segment we chose
4959 to hold these headers, so that we can adjust the
4960 offset when we know the correct value. */
4961 phdr_adjust_num = iehdr->e_phnum;
4962 phdr_adjust_seg = map;
4963 }
4964 }
4965
4966 /* Step Three: Loop over the sections again, this time assigning
4967 those that fit to the current segment and removing them from the
4968 sections array; but making sure not to leave large gaps. Once all
4969 possible sections have been assigned to the current segment it is
4970 added to the list of built segments and if sections still remain
4971 to be assigned, a new segment is constructed before repeating
4972 the loop. */
4973 isec = 0;
4974 do
4975 {
4976 map->count = 0;
4977 suggested_lma = 0;
4978
4979 /* Fill the current segment with sections that fit. */
4980 for (j = 0; j < section_count; j++)
4981 {
4982 section = sections[j];
4983
4984 if (section == NULL)
4985 continue;
4986
4987 output_section = section->output_section;
4988
4989 BFD_ASSERT (output_section != NULL);
4990
4991 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
4992 || IS_COREFILE_NOTE (segment, section))
4993 {
4994 if (map->count == 0)
4995 {
4996 /* If the first section in a segment does not start at
4997 the beginning of the segment, then something is
4998 wrong. */
4999 if (output_section->lma !=
5000 (map->p_paddr
5001 + (map->includes_filehdr ? iehdr->e_ehsize : 0)
5002 + (map->includes_phdrs
5003 ? iehdr->e_phnum * iehdr->e_phentsize
5004 : 0)))
5005 abort ();
5006 }
5007 else
5008 {
5009 asection * prev_sec;
5010
5011 prev_sec = map->sections[map->count - 1];
5012
5013 /* If the gap between the end of the previous section
5014 and the start of this section is more than
5015 maxpagesize then we need to start a new segment. */
5016 if ((BFD_ALIGN (prev_sec->lma + prev_sec->_raw_size,
5017 maxpagesize)
5018 < BFD_ALIGN (output_section->lma, maxpagesize))
5019 || ((prev_sec->lma + prev_sec->_raw_size)
5020 > output_section->lma))
5021 {
5022 if (suggested_lma == 0)
5023 suggested_lma = output_section->lma;
5024
5025 continue;
5026 }
5027 }
5028
5029 map->sections[map->count++] = output_section;
5030 ++isec;
5031 sections[j] = NULL;
5032 section->segment_mark = TRUE;
5033 }
5034 else if (suggested_lma == 0)
5035 suggested_lma = output_section->lma;
5036 }
5037
5038 BFD_ASSERT (map->count > 0);
5039
5040 /* Add the current segment to the list of built segments. */
5041 *pointer_to_map = map;
5042 pointer_to_map = &map->next;
5043
5044 if (isec < section_count)
5045 {
5046 /* We still have not allocated all of the sections to
5047 segments. Create a new segment here, initialise it
5048 and carry on looping. */
5049 amt = sizeof (struct elf_segment_map);
5050 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5051 map = bfd_alloc (obfd, amt);
5052 if (map == NULL)
5053 {
5054 free (sections);
5055 return FALSE;
5056 }
5057
5058 /* Initialise the fields of the segment map. Set the physical
5059 physical address to the LMA of the first section that has
5060 not yet been assigned. */
5061 map->next = NULL;
5062 map->p_type = segment->p_type;
5063 map->p_flags = segment->p_flags;
5064 map->p_flags_valid = 1;
5065 map->p_paddr = suggested_lma;
5066 map->p_paddr_valid = 1;
5067 map->includes_filehdr = 0;
5068 map->includes_phdrs = 0;
5069 }
5070 }
5071 while (isec < section_count);
5072
5073 free (sections);
5074 }
5075
5076 /* The Solaris linker creates program headers in which all the
5077 p_paddr fields are zero. When we try to objcopy or strip such a
5078 file, we get confused. Check for this case, and if we find it
5079 reset the p_paddr_valid fields. */
5080 for (map = map_first; map != NULL; map = map->next)
5081 if (map->p_paddr != 0)
5082 break;
5083 if (map == NULL)
5084 for (map = map_first; map != NULL; map = map->next)
5085 map->p_paddr_valid = 0;
5086
5087 elf_tdata (obfd)->segment_map = map_first;
5088
5089 /* If we had to estimate the number of program headers that were
5090 going to be needed, then check our estimate now and adjust
5091 the offset if necessary. */
5092 if (phdr_adjust_seg != NULL)
5093 {
5094 unsigned int count;
5095
5096 for (count = 0, map = map_first; map != NULL; map = map->next)
5097 count++;
5098
5099 if (count > phdr_adjust_num)
5100 phdr_adjust_seg->p_paddr
5101 -= (count - phdr_adjust_num) * iehdr->e_phentsize;
5102 }
5103
5104 #if 0
5105 /* Final Step: Sort the segments into ascending order of physical
5106 address. */
5107 if (map_first != NULL)
5108 {
5109 struct elf_segment_map *prev;
5110
5111 prev = map_first;
5112 for (map = map_first->next; map != NULL; prev = map, map = map->next)
5113 {
5114 /* Yes I know - its a bubble sort.... */
5115 if (map->next != NULL && (map->next->p_paddr < map->p_paddr))
5116 {
5117 /* Swap map and map->next. */
5118 prev->next = map->next;
5119 map->next = map->next->next;
5120 prev->next->next = map;
5121
5122 /* Restart loop. */
5123 map = map_first;
5124 }
5125 }
5126 }
5127 #endif
5128
5129 #undef SEGMENT_END
5130 #undef SECTION_SIZE
5131 #undef IS_CONTAINED_BY_VMA
5132 #undef IS_CONTAINED_BY_LMA
5133 #undef IS_COREFILE_NOTE
5134 #undef IS_SOLARIS_PT_INTERP
5135 #undef INCLUDE_SECTION_IN_SEGMENT
5136 #undef SEGMENT_AFTER_SEGMENT
5137 #undef SEGMENT_OVERLAPS
5138 return TRUE;
5139 }
5140
5141 /* Copy private section information. This copies over the entsize
5142 field, and sometimes the info field. */
5143
5144 bfd_boolean
5145 _bfd_elf_copy_private_section_data (bfd *ibfd,
5146 asection *isec,
5147 bfd *obfd,
5148 asection *osec)
5149 {
5150 Elf_Internal_Shdr *ihdr, *ohdr;
5151
5152 if (ibfd->xvec->flavour != bfd_target_elf_flavour
5153 || obfd->xvec->flavour != bfd_target_elf_flavour)
5154 return TRUE;
5155
5156 if (elf_tdata (obfd)->segment_map == NULL && elf_tdata (ibfd)->phdr != NULL)
5157 {
5158 asection *s;
5159
5160 /* Only set up the segments if there are no more SEC_ALLOC
5161 sections. FIXME: This won't do the right thing if objcopy is
5162 used to remove the last SEC_ALLOC section, since objcopy
5163 won't call this routine in that case. */
5164 for (s = isec->next; s != NULL; s = s->next)
5165 if ((s->flags & SEC_ALLOC) != 0)
5166 break;
5167 if (s == NULL)
5168 {
5169 if (! copy_private_bfd_data (ibfd, obfd))
5170 return FALSE;
5171 }
5172 }
5173
5174 ihdr = &elf_section_data (isec)->this_hdr;
5175 ohdr = &elf_section_data (osec)->this_hdr;
5176
5177 ohdr->sh_entsize = ihdr->sh_entsize;
5178
5179 if (ihdr->sh_type == SHT_SYMTAB
5180 || ihdr->sh_type == SHT_DYNSYM
5181 || ihdr->sh_type == SHT_GNU_verneed
5182 || ihdr->sh_type == SHT_GNU_verdef)
5183 ohdr->sh_info = ihdr->sh_info;
5184
5185 /* Set things up for objcopy. The output SHT_GROUP section will
5186 have its elf_next_in_group pointing back to the input group
5187 members. */
5188 elf_next_in_group (osec) = elf_next_in_group (isec);
5189 elf_group_name (osec) = elf_group_name (isec);
5190
5191 osec->use_rela_p = isec->use_rela_p;
5192
5193 return TRUE;
5194 }
5195
5196 /* Copy private symbol information. If this symbol is in a section
5197 which we did not map into a BFD section, try to map the section
5198 index correctly. We use special macro definitions for the mapped
5199 section indices; these definitions are interpreted by the
5200 swap_out_syms function. */
5201
5202 #define MAP_ONESYMTAB (SHN_HIOS + 1)
5203 #define MAP_DYNSYMTAB (SHN_HIOS + 2)
5204 #define MAP_STRTAB (SHN_HIOS + 3)
5205 #define MAP_SHSTRTAB (SHN_HIOS + 4)
5206 #define MAP_SYM_SHNDX (SHN_HIOS + 5)
5207
5208 bfd_boolean
5209 _bfd_elf_copy_private_symbol_data (bfd *ibfd,
5210 asymbol *isymarg,
5211 bfd *obfd,
5212 asymbol *osymarg)
5213 {
5214 elf_symbol_type *isym, *osym;
5215
5216 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
5217 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
5218 return TRUE;
5219
5220 isym = elf_symbol_from (ibfd, isymarg);
5221 osym = elf_symbol_from (obfd, osymarg);
5222
5223 if (isym != NULL
5224 && osym != NULL
5225 && bfd_is_abs_section (isym->symbol.section))
5226 {
5227 unsigned int shndx;
5228
5229 shndx = isym->internal_elf_sym.st_shndx;
5230 if (shndx == elf_onesymtab (ibfd))
5231 shndx = MAP_ONESYMTAB;
5232 else if (shndx == elf_dynsymtab (ibfd))
5233 shndx = MAP_DYNSYMTAB;
5234 else if (shndx == elf_tdata (ibfd)->strtab_section)
5235 shndx = MAP_STRTAB;
5236 else if (shndx == elf_tdata (ibfd)->shstrtab_section)
5237 shndx = MAP_SHSTRTAB;
5238 else if (shndx == elf_tdata (ibfd)->symtab_shndx_section)
5239 shndx = MAP_SYM_SHNDX;
5240 osym->internal_elf_sym.st_shndx = shndx;
5241 }
5242
5243 return TRUE;
5244 }
5245
5246 /* Swap out the symbols. */
5247
5248 static bfd_boolean
5249 swap_out_syms (bfd *abfd,
5250 struct bfd_strtab_hash **sttp,
5251 int relocatable_p)
5252 {
5253 const struct elf_backend_data *bed;
5254 int symcount;
5255 asymbol **syms;
5256 struct bfd_strtab_hash *stt;
5257 Elf_Internal_Shdr *symtab_hdr;
5258 Elf_Internal_Shdr *symtab_shndx_hdr;
5259 Elf_Internal_Shdr *symstrtab_hdr;
5260 char *outbound_syms;
5261 char *outbound_shndx;
5262 int idx;
5263 bfd_size_type amt;
5264 bfd_boolean name_local_sections;
5265
5266 if (!elf_map_symbols (abfd))
5267 return FALSE;
5268
5269 /* Dump out the symtabs. */
5270 stt = _bfd_elf_stringtab_init ();
5271 if (stt == NULL)
5272 return FALSE;
5273
5274 bed = get_elf_backend_data (abfd);
5275 symcount = bfd_get_symcount (abfd);
5276 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
5277 symtab_hdr->sh_type = SHT_SYMTAB;
5278 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
5279 symtab_hdr->sh_size = symtab_hdr->sh_entsize * (symcount + 1);
5280 symtab_hdr->sh_info = elf_num_locals (abfd) + 1;
5281 symtab_hdr->sh_addralign = 1 << bed->s->log_file_align;
5282
5283 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
5284 symstrtab_hdr->sh_type = SHT_STRTAB;
5285
5286 amt = (bfd_size_type) (1 + symcount) * bed->s->sizeof_sym;
5287 outbound_syms = bfd_alloc (abfd, amt);
5288 if (outbound_syms == NULL)
5289 {
5290 _bfd_stringtab_free (stt);
5291 return FALSE;
5292 }
5293 symtab_hdr->contents = outbound_syms;
5294
5295 outbound_shndx = NULL;
5296 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
5297 if (symtab_shndx_hdr->sh_name != 0)
5298 {
5299 amt = (bfd_size_type) (1 + symcount) * sizeof (Elf_External_Sym_Shndx);
5300 outbound_shndx = bfd_zalloc (abfd, amt);
5301 if (outbound_shndx == NULL)
5302 {
5303 _bfd_stringtab_free (stt);
5304 return FALSE;
5305 }
5306
5307 symtab_shndx_hdr->contents = outbound_shndx;
5308 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
5309 symtab_shndx_hdr->sh_size = amt;
5310 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
5311 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
5312 }
5313
5314 /* Now generate the data (for "contents"). */
5315 {
5316 /* Fill in zeroth symbol and swap it out. */
5317 Elf_Internal_Sym sym;
5318 sym.st_name = 0;
5319 sym.st_value = 0;
5320 sym.st_size = 0;
5321 sym.st_info = 0;
5322 sym.st_other = 0;
5323 sym.st_shndx = SHN_UNDEF;
5324 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
5325 outbound_syms += bed->s->sizeof_sym;
5326 if (outbound_shndx != NULL)
5327 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
5328 }
5329
5330 name_local_sections
5331 = (bed->elf_backend_name_local_section_symbols
5332 && bed->elf_backend_name_local_section_symbols (abfd));
5333
5334 syms = bfd_get_outsymbols (abfd);
5335 for (idx = 0; idx < symcount; idx++)
5336 {
5337 Elf_Internal_Sym sym;
5338 bfd_vma value = syms[idx]->value;
5339 elf_symbol_type *type_ptr;
5340 flagword flags = syms[idx]->flags;
5341 int type;
5342
5343 if (!name_local_sections
5344 && (flags & (BSF_SECTION_SYM | BSF_GLOBAL)) == BSF_SECTION_SYM)
5345 {
5346 /* Local section symbols have no name. */
5347 sym.st_name = 0;
5348 }
5349 else
5350 {
5351 sym.st_name = (unsigned long) _bfd_stringtab_add (stt,
5352 syms[idx]->name,
5353 TRUE, FALSE);
5354 if (sym.st_name == (unsigned long) -1)
5355 {
5356 _bfd_stringtab_free (stt);
5357 return FALSE;
5358 }
5359 }
5360
5361 type_ptr = elf_symbol_from (abfd, syms[idx]);
5362
5363 if ((flags & BSF_SECTION_SYM) == 0
5364 && bfd_is_com_section (syms[idx]->section))
5365 {
5366 /* ELF common symbols put the alignment into the `value' field,
5367 and the size into the `size' field. This is backwards from
5368 how BFD handles it, so reverse it here. */
5369 sym.st_size = value;
5370 if (type_ptr == NULL
5371 || type_ptr->internal_elf_sym.st_value == 0)
5372 sym.st_value = value >= 16 ? 16 : (1 << bfd_log2 (value));
5373 else
5374 sym.st_value = type_ptr->internal_elf_sym.st_value;
5375 sym.st_shndx = _bfd_elf_section_from_bfd_section
5376 (abfd, syms[idx]->section);
5377 }
5378 else
5379 {
5380 asection *sec = syms[idx]->section;
5381 int shndx;
5382
5383 if (sec->output_section)
5384 {
5385 value += sec->output_offset;
5386 sec = sec->output_section;
5387 }
5388
5389 /* Don't add in the section vma for relocatable output. */
5390 if (! relocatable_p)
5391 value += sec->vma;
5392 sym.st_value = value;
5393 sym.st_size = type_ptr ? type_ptr->internal_elf_sym.st_size : 0;
5394
5395 if (bfd_is_abs_section (sec)
5396 && type_ptr != NULL
5397 && type_ptr->internal_elf_sym.st_shndx != 0)
5398 {
5399 /* This symbol is in a real ELF section which we did
5400 not create as a BFD section. Undo the mapping done
5401 by copy_private_symbol_data. */
5402 shndx = type_ptr->internal_elf_sym.st_shndx;
5403 switch (shndx)
5404 {
5405 case MAP_ONESYMTAB:
5406 shndx = elf_onesymtab (abfd);
5407 break;
5408 case MAP_DYNSYMTAB:
5409 shndx = elf_dynsymtab (abfd);
5410 break;
5411 case MAP_STRTAB:
5412 shndx = elf_tdata (abfd)->strtab_section;
5413 break;
5414 case MAP_SHSTRTAB:
5415 shndx = elf_tdata (abfd)->shstrtab_section;
5416 break;
5417 case MAP_SYM_SHNDX:
5418 shndx = elf_tdata (abfd)->symtab_shndx_section;
5419 break;
5420 default:
5421 break;
5422 }
5423 }
5424 else
5425 {
5426 shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
5427
5428 if (shndx == -1)
5429 {
5430 asection *sec2;
5431
5432 /* Writing this would be a hell of a lot easier if
5433 we had some decent documentation on bfd, and
5434 knew what to expect of the library, and what to
5435 demand of applications. For example, it
5436 appears that `objcopy' might not set the
5437 section of a symbol to be a section that is
5438 actually in the output file. */
5439 sec2 = bfd_get_section_by_name (abfd, sec->name);
5440 if (sec2 == NULL)
5441 {
5442 _bfd_error_handler (_("\
5443 Unable to find equivalent output section for symbol '%s' from section '%s'"),
5444 syms[idx]->name ? syms[idx]->name : "<Local sym>",
5445 sec->name);
5446 bfd_set_error (bfd_error_invalid_operation);
5447 _bfd_stringtab_free (stt);
5448 return FALSE;
5449 }
5450
5451 shndx = _bfd_elf_section_from_bfd_section (abfd, sec2);
5452 BFD_ASSERT (shndx != -1);
5453 }
5454 }
5455
5456 sym.st_shndx = shndx;
5457 }
5458
5459 if ((flags & BSF_THREAD_LOCAL) != 0)
5460 type = STT_TLS;
5461 else if ((flags & BSF_FUNCTION) != 0)
5462 type = STT_FUNC;
5463 else if ((flags & BSF_OBJECT) != 0)
5464 type = STT_OBJECT;
5465 else
5466 type = STT_NOTYPE;
5467
5468 if (syms[idx]->section->flags & SEC_THREAD_LOCAL)
5469 type = STT_TLS;
5470
5471 /* Processor-specific types. */
5472 if (type_ptr != NULL
5473 && bed->elf_backend_get_symbol_type)
5474 type = ((*bed->elf_backend_get_symbol_type)
5475 (&type_ptr->internal_elf_sym, type));
5476
5477 if (flags & BSF_SECTION_SYM)
5478 {
5479 if (flags & BSF_GLOBAL)
5480 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
5481 else
5482 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
5483 }
5484 else if (bfd_is_com_section (syms[idx]->section))
5485 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
5486 else if (bfd_is_und_section (syms[idx]->section))
5487 sym.st_info = ELF_ST_INFO (((flags & BSF_WEAK)
5488 ? STB_WEAK
5489 : STB_GLOBAL),
5490 type);
5491 else if (flags & BSF_FILE)
5492 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
5493 else
5494 {
5495 int bind = STB_LOCAL;
5496
5497 if (flags & BSF_LOCAL)
5498 bind = STB_LOCAL;
5499 else if (flags & BSF_WEAK)
5500 bind = STB_WEAK;
5501 else if (flags & BSF_GLOBAL)
5502 bind = STB_GLOBAL;
5503
5504 sym.st_info = ELF_ST_INFO (bind, type);
5505 }
5506
5507 if (type_ptr != NULL)
5508 sym.st_other = type_ptr->internal_elf_sym.st_other;
5509 else
5510 sym.st_other = 0;
5511
5512 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
5513 outbound_syms += bed->s->sizeof_sym;
5514 if (outbound_shndx != NULL)
5515 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
5516 }
5517
5518 *sttp = stt;
5519 symstrtab_hdr->sh_size = _bfd_stringtab_size (stt);
5520 symstrtab_hdr->sh_type = SHT_STRTAB;
5521
5522 symstrtab_hdr->sh_flags = 0;
5523 symstrtab_hdr->sh_addr = 0;
5524 symstrtab_hdr->sh_entsize = 0;
5525 symstrtab_hdr->sh_link = 0;
5526 symstrtab_hdr->sh_info = 0;
5527 symstrtab_hdr->sh_addralign = 1;
5528
5529 return TRUE;
5530 }
5531
5532 /* Return the number of bytes required to hold the symtab vector.
5533
5534 Note that we base it on the count plus 1, since we will null terminate
5535 the vector allocated based on this size. However, the ELF symbol table
5536 always has a dummy entry as symbol #0, so it ends up even. */
5537
5538 long
5539 _bfd_elf_get_symtab_upper_bound (bfd *abfd)
5540 {
5541 long symcount;
5542 long symtab_size;
5543 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->symtab_hdr;
5544
5545 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
5546 symtab_size = (symcount + 1) * (sizeof (asymbol *));
5547 if (symcount > 0)
5548 symtab_size -= sizeof (asymbol *);
5549
5550 return symtab_size;
5551 }
5552
5553 long
5554 _bfd_elf_get_dynamic_symtab_upper_bound (bfd *abfd)
5555 {
5556 long symcount;
5557 long symtab_size;
5558 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->dynsymtab_hdr;
5559
5560 if (elf_dynsymtab (abfd) == 0)
5561 {
5562 bfd_set_error (bfd_error_invalid_operation);
5563 return -1;
5564 }
5565
5566 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
5567 symtab_size = (symcount + 1) * (sizeof (asymbol *));
5568 if (symcount > 0)
5569 symtab_size -= sizeof (asymbol *);
5570
5571 return symtab_size;
5572 }
5573
5574 long
5575 _bfd_elf_get_reloc_upper_bound (bfd *abfd ATTRIBUTE_UNUSED,
5576 sec_ptr asect)
5577 {
5578 return (asect->reloc_count + 1) * sizeof (arelent *);
5579 }
5580
5581 /* Canonicalize the relocs. */
5582
5583 long
5584 _bfd_elf_canonicalize_reloc (bfd *abfd,
5585 sec_ptr section,
5586 arelent **relptr,
5587 asymbol **symbols)
5588 {
5589 arelent *tblptr;
5590 unsigned int i;
5591 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5592
5593 if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE))
5594 return -1;
5595
5596 tblptr = section->relocation;
5597 for (i = 0; i < section->reloc_count; i++)
5598 *relptr++ = tblptr++;
5599
5600 *relptr = NULL;
5601
5602 return section->reloc_count;
5603 }
5604
5605 long
5606 _bfd_elf_canonicalize_symtab (bfd *abfd, asymbol **allocation)
5607 {
5608 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5609 long symcount = bed->s->slurp_symbol_table (abfd, allocation, FALSE);
5610
5611 if (symcount >= 0)
5612 bfd_get_symcount (abfd) = symcount;
5613 return symcount;
5614 }
5615
5616 long
5617 _bfd_elf_canonicalize_dynamic_symtab (bfd *abfd,
5618 asymbol **allocation)
5619 {
5620 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5621 long symcount = bed->s->slurp_symbol_table (abfd, allocation, TRUE);
5622
5623 if (symcount >= 0)
5624 bfd_get_dynamic_symcount (abfd) = symcount;
5625 return symcount;
5626 }
5627
5628 /* Return the size required for the dynamic reloc entries. Any
5629 section that was actually installed in the BFD, and has type
5630 SHT_REL or SHT_RELA, and uses the dynamic symbol table, is
5631 considered to be a dynamic reloc section. */
5632
5633 long
5634 _bfd_elf_get_dynamic_reloc_upper_bound (bfd *abfd)
5635 {
5636 long ret;
5637 asection *s;
5638
5639 if (elf_dynsymtab (abfd) == 0)
5640 {
5641 bfd_set_error (bfd_error_invalid_operation);
5642 return -1;
5643 }
5644
5645 ret = sizeof (arelent *);
5646 for (s = abfd->sections; s != NULL; s = s->next)
5647 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
5648 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
5649 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
5650 ret += ((s->_raw_size / elf_section_data (s)->this_hdr.sh_entsize)
5651 * sizeof (arelent *));
5652
5653 return ret;
5654 }
5655
5656 /* Canonicalize the dynamic relocation entries. Note that we return
5657 the dynamic relocations as a single block, although they are
5658 actually associated with particular sections; the interface, which
5659 was designed for SunOS style shared libraries, expects that there
5660 is only one set of dynamic relocs. Any section that was actually
5661 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses
5662 the dynamic symbol table, is considered to be a dynamic reloc
5663 section. */
5664
5665 long
5666 _bfd_elf_canonicalize_dynamic_reloc (bfd *abfd,
5667 arelent **storage,
5668 asymbol **syms)
5669 {
5670 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
5671 asection *s;
5672 long ret;
5673
5674 if (elf_dynsymtab (abfd) == 0)
5675 {
5676 bfd_set_error (bfd_error_invalid_operation);
5677 return -1;
5678 }
5679
5680 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
5681 ret = 0;
5682 for (s = abfd->sections; s != NULL; s = s->next)
5683 {
5684 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
5685 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
5686 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
5687 {
5688 arelent *p;
5689 long count, i;
5690
5691 if (! (*slurp_relocs) (abfd, s, syms, TRUE))
5692 return -1;
5693 count = s->_raw_size / elf_section_data (s)->this_hdr.sh_entsize;
5694 p = s->relocation;
5695 for (i = 0; i < count; i++)
5696 *storage++ = p++;
5697 ret += count;
5698 }
5699 }
5700
5701 *storage = NULL;
5702
5703 return ret;
5704 }
5705 \f
5706 /* Read in the version information. */
5707
5708 bfd_boolean
5709 _bfd_elf_slurp_version_tables (bfd *abfd)
5710 {
5711 bfd_byte *contents = NULL;
5712 bfd_size_type amt;
5713
5714 if (elf_dynverdef (abfd) != 0)
5715 {
5716 Elf_Internal_Shdr *hdr;
5717 Elf_External_Verdef *everdef;
5718 Elf_Internal_Verdef *iverdef;
5719 Elf_Internal_Verdef *iverdefarr;
5720 Elf_Internal_Verdef iverdefmem;
5721 unsigned int i;
5722 unsigned int maxidx;
5723
5724 hdr = &elf_tdata (abfd)->dynverdef_hdr;
5725
5726 contents = bfd_malloc (hdr->sh_size);
5727 if (contents == NULL)
5728 goto error_return;
5729 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
5730 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
5731 goto error_return;
5732
5733 /* We know the number of entries in the section but not the maximum
5734 index. Therefore we have to run through all entries and find
5735 the maximum. */
5736 everdef = (Elf_External_Verdef *) contents;
5737 maxidx = 0;
5738 for (i = 0; i < hdr->sh_info; ++i)
5739 {
5740 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
5741
5742 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) > maxidx)
5743 maxidx = iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION);
5744
5745 everdef = ((Elf_External_Verdef *)
5746 ((bfd_byte *) everdef + iverdefmem.vd_next));
5747 }
5748
5749 amt = (bfd_size_type) maxidx * sizeof (Elf_Internal_Verdef);
5750 elf_tdata (abfd)->verdef = bfd_zalloc (abfd, amt);
5751 if (elf_tdata (abfd)->verdef == NULL)
5752 goto error_return;
5753
5754 elf_tdata (abfd)->cverdefs = maxidx;
5755
5756 everdef = (Elf_External_Verdef *) contents;
5757 iverdefarr = elf_tdata (abfd)->verdef;
5758 for (i = 0; i < hdr->sh_info; i++)
5759 {
5760 Elf_External_Verdaux *everdaux;
5761 Elf_Internal_Verdaux *iverdaux;
5762 unsigned int j;
5763
5764 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
5765
5766 iverdef = &iverdefarr[(iverdefmem.vd_ndx & VERSYM_VERSION) - 1];
5767 memcpy (iverdef, &iverdefmem, sizeof (Elf_Internal_Verdef));
5768
5769 iverdef->vd_bfd = abfd;
5770
5771 amt = (bfd_size_type) iverdef->vd_cnt * sizeof (Elf_Internal_Verdaux);
5772 iverdef->vd_auxptr = bfd_alloc (abfd, amt);
5773 if (iverdef->vd_auxptr == NULL)
5774 goto error_return;
5775
5776 everdaux = ((Elf_External_Verdaux *)
5777 ((bfd_byte *) everdef + iverdef->vd_aux));
5778 iverdaux = iverdef->vd_auxptr;
5779 for (j = 0; j < iverdef->vd_cnt; j++, iverdaux++)
5780 {
5781 _bfd_elf_swap_verdaux_in (abfd, everdaux, iverdaux);
5782
5783 iverdaux->vda_nodename =
5784 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
5785 iverdaux->vda_name);
5786 if (iverdaux->vda_nodename == NULL)
5787 goto error_return;
5788
5789 if (j + 1 < iverdef->vd_cnt)
5790 iverdaux->vda_nextptr = iverdaux + 1;
5791 else
5792 iverdaux->vda_nextptr = NULL;
5793
5794 everdaux = ((Elf_External_Verdaux *)
5795 ((bfd_byte *) everdaux + iverdaux->vda_next));
5796 }
5797
5798 iverdef->vd_nodename = iverdef->vd_auxptr->vda_nodename;
5799
5800 if (i + 1 < hdr->sh_info)
5801 iverdef->vd_nextdef = iverdef + 1;
5802 else
5803 iverdef->vd_nextdef = NULL;
5804
5805 everdef = ((Elf_External_Verdef *)
5806 ((bfd_byte *) everdef + iverdef->vd_next));
5807 }
5808
5809 free (contents);
5810 contents = NULL;
5811 }
5812
5813 if (elf_dynverref (abfd) != 0)
5814 {
5815 Elf_Internal_Shdr *hdr;
5816 Elf_External_Verneed *everneed;
5817 Elf_Internal_Verneed *iverneed;
5818 unsigned int i;
5819
5820 hdr = &elf_tdata (abfd)->dynverref_hdr;
5821
5822 amt = (bfd_size_type) hdr->sh_info * sizeof (Elf_Internal_Verneed);
5823 elf_tdata (abfd)->verref = bfd_zalloc (abfd, amt);
5824 if (elf_tdata (abfd)->verref == NULL)
5825 goto error_return;
5826
5827 elf_tdata (abfd)->cverrefs = hdr->sh_info;
5828
5829 contents = bfd_malloc (hdr->sh_size);
5830 if (contents == NULL)
5831 goto error_return;
5832 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
5833 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
5834 goto error_return;
5835
5836 everneed = (Elf_External_Verneed *) contents;
5837 iverneed = elf_tdata (abfd)->verref;
5838 for (i = 0; i < hdr->sh_info; i++, iverneed++)
5839 {
5840 Elf_External_Vernaux *evernaux;
5841 Elf_Internal_Vernaux *ivernaux;
5842 unsigned int j;
5843
5844 _bfd_elf_swap_verneed_in (abfd, everneed, iverneed);
5845
5846 iverneed->vn_bfd = abfd;
5847
5848 iverneed->vn_filename =
5849 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
5850 iverneed->vn_file);
5851 if (iverneed->vn_filename == NULL)
5852 goto error_return;
5853
5854 amt = iverneed->vn_cnt;
5855 amt *= sizeof (Elf_Internal_Vernaux);
5856 iverneed->vn_auxptr = bfd_alloc (abfd, amt);
5857
5858 evernaux = ((Elf_External_Vernaux *)
5859 ((bfd_byte *) everneed + iverneed->vn_aux));
5860 ivernaux = iverneed->vn_auxptr;
5861 for (j = 0; j < iverneed->vn_cnt; j++, ivernaux++)
5862 {
5863 _bfd_elf_swap_vernaux_in (abfd, evernaux, ivernaux);
5864
5865 ivernaux->vna_nodename =
5866 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
5867 ivernaux->vna_name);
5868 if (ivernaux->vna_nodename == NULL)
5869 goto error_return;
5870
5871 if (j + 1 < iverneed->vn_cnt)
5872 ivernaux->vna_nextptr = ivernaux + 1;
5873 else
5874 ivernaux->vna_nextptr = NULL;
5875
5876 evernaux = ((Elf_External_Vernaux *)
5877 ((bfd_byte *) evernaux + ivernaux->vna_next));
5878 }
5879
5880 if (i + 1 < hdr->sh_info)
5881 iverneed->vn_nextref = iverneed + 1;
5882 else
5883 iverneed->vn_nextref = NULL;
5884
5885 everneed = ((Elf_External_Verneed *)
5886 ((bfd_byte *) everneed + iverneed->vn_next));
5887 }
5888
5889 free (contents);
5890 contents = NULL;
5891 }
5892
5893 return TRUE;
5894
5895 error_return:
5896 if (contents != NULL)
5897 free (contents);
5898 return FALSE;
5899 }
5900 \f
5901 asymbol *
5902 _bfd_elf_make_empty_symbol (bfd *abfd)
5903 {
5904 elf_symbol_type *newsym;
5905 bfd_size_type amt = sizeof (elf_symbol_type);
5906
5907 newsym = bfd_zalloc (abfd, amt);
5908 if (!newsym)
5909 return NULL;
5910 else
5911 {
5912 newsym->symbol.the_bfd = abfd;
5913 return &newsym->symbol;
5914 }
5915 }
5916
5917 void
5918 _bfd_elf_get_symbol_info (bfd *abfd ATTRIBUTE_UNUSED,
5919 asymbol *symbol,
5920 symbol_info *ret)
5921 {
5922 bfd_symbol_info (symbol, ret);
5923 }
5924
5925 /* Return whether a symbol name implies a local symbol. Most targets
5926 use this function for the is_local_label_name entry point, but some
5927 override it. */
5928
5929 bfd_boolean
5930 _bfd_elf_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED,
5931 const char *name)
5932 {
5933 /* Normal local symbols start with ``.L''. */
5934 if (name[0] == '.' && name[1] == 'L')
5935 return TRUE;
5936
5937 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
5938 DWARF debugging symbols starting with ``..''. */
5939 if (name[0] == '.' && name[1] == '.')
5940 return TRUE;
5941
5942 /* gcc will sometimes generate symbols beginning with ``_.L_'' when
5943 emitting DWARF debugging output. I suspect this is actually a
5944 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
5945 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
5946 underscore to be emitted on some ELF targets). For ease of use,
5947 we treat such symbols as local. */
5948 if (name[0] == '_' && name[1] == '.' && name[2] == 'L' && name[3] == '_')
5949 return TRUE;
5950
5951 return FALSE;
5952 }
5953
5954 alent *
5955 _bfd_elf_get_lineno (bfd *abfd ATTRIBUTE_UNUSED,
5956 asymbol *symbol ATTRIBUTE_UNUSED)
5957 {
5958 abort ();
5959 return NULL;
5960 }
5961
5962 bfd_boolean
5963 _bfd_elf_set_arch_mach (bfd *abfd,
5964 enum bfd_architecture arch,
5965 unsigned long machine)
5966 {
5967 /* If this isn't the right architecture for this backend, and this
5968 isn't the generic backend, fail. */
5969 if (arch != get_elf_backend_data (abfd)->arch
5970 && arch != bfd_arch_unknown
5971 && get_elf_backend_data (abfd)->arch != bfd_arch_unknown)
5972 return FALSE;
5973
5974 return bfd_default_set_arch_mach (abfd, arch, machine);
5975 }
5976
5977 /* Find the function to a particular section and offset,
5978 for error reporting. */
5979
5980 static bfd_boolean
5981 elf_find_function (bfd *abfd ATTRIBUTE_UNUSED,
5982 asection *section,
5983 asymbol **symbols,
5984 bfd_vma offset,
5985 const char **filename_ptr,
5986 const char **functionname_ptr)
5987 {
5988 const char *filename;
5989 asymbol *func;
5990 bfd_vma low_func;
5991 asymbol **p;
5992
5993 filename = NULL;
5994 func = NULL;
5995 low_func = 0;
5996
5997 for (p = symbols; *p != NULL; p++)
5998 {
5999 elf_symbol_type *q;
6000
6001 q = (elf_symbol_type *) *p;
6002
6003 if (bfd_get_section (&q->symbol) != section)
6004 continue;
6005
6006 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
6007 {
6008 default:
6009 break;
6010 case STT_FILE:
6011 filename = bfd_asymbol_name (&q->symbol);
6012 break;
6013 case STT_NOTYPE:
6014 case STT_FUNC:
6015 if (q->symbol.section == section
6016 && q->symbol.value >= low_func
6017 && q->symbol.value <= offset)
6018 {
6019 func = (asymbol *) q;
6020 low_func = q->symbol.value;
6021 }
6022 break;
6023 }
6024 }
6025
6026 if (func == NULL)
6027 return FALSE;
6028
6029 if (filename_ptr)
6030 *filename_ptr = filename;
6031 if (functionname_ptr)
6032 *functionname_ptr = bfd_asymbol_name (func);
6033
6034 return TRUE;
6035 }
6036
6037 /* Find the nearest line to a particular section and offset,
6038 for error reporting. */
6039
6040 bfd_boolean
6041 _bfd_elf_find_nearest_line (bfd *abfd,
6042 asection *section,
6043 asymbol **symbols,
6044 bfd_vma offset,
6045 const char **filename_ptr,
6046 const char **functionname_ptr,
6047 unsigned int *line_ptr)
6048 {
6049 bfd_boolean found;
6050
6051 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
6052 filename_ptr, functionname_ptr,
6053 line_ptr))
6054 {
6055 if (!*functionname_ptr)
6056 elf_find_function (abfd, section, symbols, offset,
6057 *filename_ptr ? NULL : filename_ptr,
6058 functionname_ptr);
6059
6060 return TRUE;
6061 }
6062
6063 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
6064 filename_ptr, functionname_ptr,
6065 line_ptr, 0,
6066 &elf_tdata (abfd)->dwarf2_find_line_info))
6067 {
6068 if (!*functionname_ptr)
6069 elf_find_function (abfd, section, symbols, offset,
6070 *filename_ptr ? NULL : filename_ptr,
6071 functionname_ptr);
6072
6073 return TRUE;
6074 }
6075
6076 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
6077 &found, filename_ptr,
6078 functionname_ptr, line_ptr,
6079 &elf_tdata (abfd)->line_info))
6080 return FALSE;
6081 if (found && (*functionname_ptr || *line_ptr))
6082 return TRUE;
6083
6084 if (symbols == NULL)
6085 return FALSE;
6086
6087 if (! elf_find_function (abfd, section, symbols, offset,
6088 filename_ptr, functionname_ptr))
6089 return FALSE;
6090
6091 *line_ptr = 0;
6092 return TRUE;
6093 }
6094
6095 int
6096 _bfd_elf_sizeof_headers (bfd *abfd, bfd_boolean reloc)
6097 {
6098 int ret;
6099
6100 ret = get_elf_backend_data (abfd)->s->sizeof_ehdr;
6101 if (! reloc)
6102 ret += get_program_header_size (abfd);
6103 return ret;
6104 }
6105
6106 bfd_boolean
6107 _bfd_elf_set_section_contents (bfd *abfd,
6108 sec_ptr section,
6109 const void *location,
6110 file_ptr offset,
6111 bfd_size_type count)
6112 {
6113 Elf_Internal_Shdr *hdr;
6114 bfd_signed_vma pos;
6115
6116 if (! abfd->output_has_begun
6117 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
6118 return FALSE;
6119
6120 hdr = &elf_section_data (section)->this_hdr;
6121 pos = hdr->sh_offset + offset;
6122 if (bfd_seek (abfd, pos, SEEK_SET) != 0
6123 || bfd_bwrite (location, count, abfd) != count)
6124 return FALSE;
6125
6126 return TRUE;
6127 }
6128
6129 void
6130 _bfd_elf_no_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED,
6131 arelent *cache_ptr ATTRIBUTE_UNUSED,
6132 Elf_Internal_Rela *dst ATTRIBUTE_UNUSED)
6133 {
6134 abort ();
6135 }
6136
6137 /* Try to convert a non-ELF reloc into an ELF one. */
6138
6139 bfd_boolean
6140 _bfd_elf_validate_reloc (bfd *abfd, arelent *areloc)
6141 {
6142 /* Check whether we really have an ELF howto. */
6143
6144 if ((*areloc->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec)
6145 {
6146 bfd_reloc_code_real_type code;
6147 reloc_howto_type *howto;
6148
6149 /* Alien reloc: Try to determine its type to replace it with an
6150 equivalent ELF reloc. */
6151
6152 if (areloc->howto->pc_relative)
6153 {
6154 switch (areloc->howto->bitsize)
6155 {
6156 case 8:
6157 code = BFD_RELOC_8_PCREL;
6158 break;
6159 case 12:
6160 code = BFD_RELOC_12_PCREL;
6161 break;
6162 case 16:
6163 code = BFD_RELOC_16_PCREL;
6164 break;
6165 case 24:
6166 code = BFD_RELOC_24_PCREL;
6167 break;
6168 case 32:
6169 code = BFD_RELOC_32_PCREL;
6170 break;
6171 case 64:
6172 code = BFD_RELOC_64_PCREL;
6173 break;
6174 default:
6175 goto fail;
6176 }
6177
6178 howto = bfd_reloc_type_lookup (abfd, code);
6179
6180 if (areloc->howto->pcrel_offset != howto->pcrel_offset)
6181 {
6182 if (howto->pcrel_offset)
6183 areloc->addend += areloc->address;
6184 else
6185 areloc->addend -= areloc->address; /* addend is unsigned!! */
6186 }
6187 }
6188 else
6189 {
6190 switch (areloc->howto->bitsize)
6191 {
6192 case 8:
6193 code = BFD_RELOC_8;
6194 break;
6195 case 14:
6196 code = BFD_RELOC_14;
6197 break;
6198 case 16:
6199 code = BFD_RELOC_16;
6200 break;
6201 case 26:
6202 code = BFD_RELOC_26;
6203 break;
6204 case 32:
6205 code = BFD_RELOC_32;
6206 break;
6207 case 64:
6208 code = BFD_RELOC_64;
6209 break;
6210 default:
6211 goto fail;
6212 }
6213
6214 howto = bfd_reloc_type_lookup (abfd, code);
6215 }
6216
6217 if (howto)
6218 areloc->howto = howto;
6219 else
6220 goto fail;
6221 }
6222
6223 return TRUE;
6224
6225 fail:
6226 (*_bfd_error_handler)
6227 (_("%s: unsupported relocation type %s"),
6228 bfd_archive_filename (abfd), areloc->howto->name);
6229 bfd_set_error (bfd_error_bad_value);
6230 return FALSE;
6231 }
6232
6233 bfd_boolean
6234 _bfd_elf_close_and_cleanup (bfd *abfd)
6235 {
6236 if (bfd_get_format (abfd) == bfd_object)
6237 {
6238 if (elf_shstrtab (abfd) != NULL)
6239 _bfd_elf_strtab_free (elf_shstrtab (abfd));
6240 }
6241
6242 return _bfd_generic_close_and_cleanup (abfd);
6243 }
6244
6245 /* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
6246 in the relocation's offset. Thus we cannot allow any sort of sanity
6247 range-checking to interfere. There is nothing else to do in processing
6248 this reloc. */
6249
6250 bfd_reloc_status_type
6251 _bfd_elf_rel_vtable_reloc_fn
6252 (bfd *abfd ATTRIBUTE_UNUSED, arelent *re ATTRIBUTE_UNUSED,
6253 struct bfd_symbol *symbol ATTRIBUTE_UNUSED,
6254 void *data ATTRIBUTE_UNUSED, asection *is ATTRIBUTE_UNUSED,
6255 bfd *obfd ATTRIBUTE_UNUSED, char **errmsg ATTRIBUTE_UNUSED)
6256 {
6257 return bfd_reloc_ok;
6258 }
6259 \f
6260 /* Elf core file support. Much of this only works on native
6261 toolchains, since we rely on knowing the
6262 machine-dependent procfs structure in order to pick
6263 out details about the corefile. */
6264
6265 #ifdef HAVE_SYS_PROCFS_H
6266 # include <sys/procfs.h>
6267 #endif
6268
6269 /* FIXME: this is kinda wrong, but it's what gdb wants. */
6270
6271 static int
6272 elfcore_make_pid (bfd *abfd)
6273 {
6274 return ((elf_tdata (abfd)->core_lwpid << 16)
6275 + (elf_tdata (abfd)->core_pid));
6276 }
6277
6278 /* If there isn't a section called NAME, make one, using
6279 data from SECT. Note, this function will generate a
6280 reference to NAME, so you shouldn't deallocate or
6281 overwrite it. */
6282
6283 static bfd_boolean
6284 elfcore_maybe_make_sect (bfd *abfd, char *name, asection *sect)
6285 {
6286 asection *sect2;
6287
6288 if (bfd_get_section_by_name (abfd, name) != NULL)
6289 return TRUE;
6290
6291 sect2 = bfd_make_section (abfd, name);
6292 if (sect2 == NULL)
6293 return FALSE;
6294
6295 sect2->_raw_size = sect->_raw_size;
6296 sect2->filepos = sect->filepos;
6297 sect2->flags = sect->flags;
6298 sect2->alignment_power = sect->alignment_power;
6299 return TRUE;
6300 }
6301
6302 /* Create a pseudosection containing SIZE bytes at FILEPOS. This
6303 actually creates up to two pseudosections:
6304 - For the single-threaded case, a section named NAME, unless
6305 such a section already exists.
6306 - For the multi-threaded case, a section named "NAME/PID", where
6307 PID is elfcore_make_pid (abfd).
6308 Both pseudosections have identical contents. */
6309 bfd_boolean
6310 _bfd_elfcore_make_pseudosection (bfd *abfd,
6311 char *name,
6312 size_t size,
6313 ufile_ptr filepos)
6314 {
6315 char buf[100];
6316 char *threaded_name;
6317 size_t len;
6318 asection *sect;
6319
6320 /* Build the section name. */
6321
6322 sprintf (buf, "%s/%d", name, elfcore_make_pid (abfd));
6323 len = strlen (buf) + 1;
6324 threaded_name = bfd_alloc (abfd, len);
6325 if (threaded_name == NULL)
6326 return FALSE;
6327 memcpy (threaded_name, buf, len);
6328
6329 sect = bfd_make_section_anyway (abfd, threaded_name);
6330 if (sect == NULL)
6331 return FALSE;
6332 sect->_raw_size = size;
6333 sect->filepos = filepos;
6334 sect->flags = SEC_HAS_CONTENTS;
6335 sect->alignment_power = 2;
6336
6337 return elfcore_maybe_make_sect (abfd, name, sect);
6338 }
6339
6340 /* prstatus_t exists on:
6341 solaris 2.5+
6342 linux 2.[01] + glibc
6343 unixware 4.2
6344 */
6345
6346 #if defined (HAVE_PRSTATUS_T)
6347
6348 static bfd_boolean
6349 elfcore_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
6350 {
6351 size_t raw_size;
6352 int offset;
6353
6354 if (note->descsz == sizeof (prstatus_t))
6355 {
6356 prstatus_t prstat;
6357
6358 raw_size = sizeof (prstat.pr_reg);
6359 offset = offsetof (prstatus_t, pr_reg);
6360 memcpy (&prstat, note->descdata, sizeof (prstat));
6361
6362 /* Do not overwrite the core signal if it
6363 has already been set by another thread. */
6364 if (elf_tdata (abfd)->core_signal == 0)
6365 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
6366 elf_tdata (abfd)->core_pid = prstat.pr_pid;
6367
6368 /* pr_who exists on:
6369 solaris 2.5+
6370 unixware 4.2
6371 pr_who doesn't exist on:
6372 linux 2.[01]
6373 */
6374 #if defined (HAVE_PRSTATUS_T_PR_WHO)
6375 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
6376 #endif
6377 }
6378 #if defined (HAVE_PRSTATUS32_T)
6379 else if (note->descsz == sizeof (prstatus32_t))
6380 {
6381 /* 64-bit host, 32-bit corefile */
6382 prstatus32_t prstat;
6383
6384 raw_size = sizeof (prstat.pr_reg);
6385 offset = offsetof (prstatus32_t, pr_reg);
6386 memcpy (&prstat, note->descdata, sizeof (prstat));
6387
6388 /* Do not overwrite the core signal if it
6389 has already been set by another thread. */
6390 if (elf_tdata (abfd)->core_signal == 0)
6391 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
6392 elf_tdata (abfd)->core_pid = prstat.pr_pid;
6393
6394 /* pr_who exists on:
6395 solaris 2.5+
6396 unixware 4.2
6397 pr_who doesn't exist on:
6398 linux 2.[01]
6399 */
6400 #if defined (HAVE_PRSTATUS32_T_PR_WHO)
6401 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
6402 #endif
6403 }
6404 #endif /* HAVE_PRSTATUS32_T */
6405 else
6406 {
6407 /* Fail - we don't know how to handle any other
6408 note size (ie. data object type). */
6409 return TRUE;
6410 }
6411
6412 /* Make a ".reg/999" section and a ".reg" section. */
6413 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
6414 raw_size, note->descpos + offset);
6415 }
6416 #endif /* defined (HAVE_PRSTATUS_T) */
6417
6418 /* Create a pseudosection containing the exact contents of NOTE. */
6419 static bfd_boolean
6420 elfcore_make_note_pseudosection (bfd *abfd,
6421 char *name,
6422 Elf_Internal_Note *note)
6423 {
6424 return _bfd_elfcore_make_pseudosection (abfd, name,
6425 note->descsz, note->descpos);
6426 }
6427
6428 /* There isn't a consistent prfpregset_t across platforms,
6429 but it doesn't matter, because we don't have to pick this
6430 data structure apart. */
6431
6432 static bfd_boolean
6433 elfcore_grok_prfpreg (bfd *abfd, Elf_Internal_Note *note)
6434 {
6435 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
6436 }
6437
6438 /* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
6439 type of 5 (NT_PRXFPREG). Just include the whole note's contents
6440 literally. */
6441
6442 static bfd_boolean
6443 elfcore_grok_prxfpreg (bfd *abfd, Elf_Internal_Note *note)
6444 {
6445 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
6446 }
6447
6448 #if defined (HAVE_PRPSINFO_T)
6449 typedef prpsinfo_t elfcore_psinfo_t;
6450 #if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
6451 typedef prpsinfo32_t elfcore_psinfo32_t;
6452 #endif
6453 #endif
6454
6455 #if defined (HAVE_PSINFO_T)
6456 typedef psinfo_t elfcore_psinfo_t;
6457 #if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
6458 typedef psinfo32_t elfcore_psinfo32_t;
6459 #endif
6460 #endif
6461
6462 /* return a malloc'ed copy of a string at START which is at
6463 most MAX bytes long, possibly without a terminating '\0'.
6464 the copy will always have a terminating '\0'. */
6465
6466 char *
6467 _bfd_elfcore_strndup (bfd *abfd, char *start, size_t max)
6468 {
6469 char *dups;
6470 char *end = memchr (start, '\0', max);
6471 size_t len;
6472
6473 if (end == NULL)
6474 len = max;
6475 else
6476 len = end - start;
6477
6478 dups = bfd_alloc (abfd, len + 1);
6479 if (dups == NULL)
6480 return NULL;
6481
6482 memcpy (dups, start, len);
6483 dups[len] = '\0';
6484
6485 return dups;
6486 }
6487
6488 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
6489 static bfd_boolean
6490 elfcore_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
6491 {
6492 if (note->descsz == sizeof (elfcore_psinfo_t))
6493 {
6494 elfcore_psinfo_t psinfo;
6495
6496 memcpy (&psinfo, note->descdata, sizeof (psinfo));
6497
6498 elf_tdata (abfd)->core_program
6499 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
6500 sizeof (psinfo.pr_fname));
6501
6502 elf_tdata (abfd)->core_command
6503 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
6504 sizeof (psinfo.pr_psargs));
6505 }
6506 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
6507 else if (note->descsz == sizeof (elfcore_psinfo32_t))
6508 {
6509 /* 64-bit host, 32-bit corefile */
6510 elfcore_psinfo32_t psinfo;
6511
6512 memcpy (&psinfo, note->descdata, sizeof (psinfo));
6513
6514 elf_tdata (abfd)->core_program
6515 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
6516 sizeof (psinfo.pr_fname));
6517
6518 elf_tdata (abfd)->core_command
6519 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
6520 sizeof (psinfo.pr_psargs));
6521 }
6522 #endif
6523
6524 else
6525 {
6526 /* Fail - we don't know how to handle any other
6527 note size (ie. data object type). */
6528 return TRUE;
6529 }
6530
6531 /* Note that for some reason, a spurious space is tacked
6532 onto the end of the args in some (at least one anyway)
6533 implementations, so strip it off if it exists. */
6534
6535 {
6536 char *command = elf_tdata (abfd)->core_command;
6537 int n = strlen (command);
6538
6539 if (0 < n && command[n - 1] == ' ')
6540 command[n - 1] = '\0';
6541 }
6542
6543 return TRUE;
6544 }
6545 #endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
6546
6547 #if defined (HAVE_PSTATUS_T)
6548 static bfd_boolean
6549 elfcore_grok_pstatus (bfd *abfd, Elf_Internal_Note *note)
6550 {
6551 if (note->descsz == sizeof (pstatus_t)
6552 #if defined (HAVE_PXSTATUS_T)
6553 || note->descsz == sizeof (pxstatus_t)
6554 #endif
6555 )
6556 {
6557 pstatus_t pstat;
6558
6559 memcpy (&pstat, note->descdata, sizeof (pstat));
6560
6561 elf_tdata (abfd)->core_pid = pstat.pr_pid;
6562 }
6563 #if defined (HAVE_PSTATUS32_T)
6564 else if (note->descsz == sizeof (pstatus32_t))
6565 {
6566 /* 64-bit host, 32-bit corefile */
6567 pstatus32_t pstat;
6568
6569 memcpy (&pstat, note->descdata, sizeof (pstat));
6570
6571 elf_tdata (abfd)->core_pid = pstat.pr_pid;
6572 }
6573 #endif
6574 /* Could grab some more details from the "representative"
6575 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
6576 NT_LWPSTATUS note, presumably. */
6577
6578 return TRUE;
6579 }
6580 #endif /* defined (HAVE_PSTATUS_T) */
6581
6582 #if defined (HAVE_LWPSTATUS_T)
6583 static bfd_boolean
6584 elfcore_grok_lwpstatus (bfd *abfd, Elf_Internal_Note *note)
6585 {
6586 lwpstatus_t lwpstat;
6587 char buf[100];
6588 char *name;
6589 size_t len;
6590 asection *sect;
6591
6592 if (note->descsz != sizeof (lwpstat)
6593 #if defined (HAVE_LWPXSTATUS_T)
6594 && note->descsz != sizeof (lwpxstatus_t)
6595 #endif
6596 )
6597 return TRUE;
6598
6599 memcpy (&lwpstat, note->descdata, sizeof (lwpstat));
6600
6601 elf_tdata (abfd)->core_lwpid = lwpstat.pr_lwpid;
6602 elf_tdata (abfd)->core_signal = lwpstat.pr_cursig;
6603
6604 /* Make a ".reg/999" section. */
6605
6606 sprintf (buf, ".reg/%d", elfcore_make_pid (abfd));
6607 len = strlen (buf) + 1;
6608 name = bfd_alloc (abfd, len);
6609 if (name == NULL)
6610 return FALSE;
6611 memcpy (name, buf, len);
6612
6613 sect = bfd_make_section_anyway (abfd, name);
6614 if (sect == NULL)
6615 return FALSE;
6616
6617 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
6618 sect->_raw_size = sizeof (lwpstat.pr_context.uc_mcontext.gregs);
6619 sect->filepos = note->descpos
6620 + offsetof (lwpstatus_t, pr_context.uc_mcontext.gregs);
6621 #endif
6622
6623 #if defined (HAVE_LWPSTATUS_T_PR_REG)
6624 sect->_raw_size = sizeof (lwpstat.pr_reg);
6625 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_reg);
6626 #endif
6627
6628 sect->flags = SEC_HAS_CONTENTS;
6629 sect->alignment_power = 2;
6630
6631 if (!elfcore_maybe_make_sect (abfd, ".reg", sect))
6632 return FALSE;
6633
6634 /* Make a ".reg2/999" section */
6635
6636 sprintf (buf, ".reg2/%d", elfcore_make_pid (abfd));
6637 len = strlen (buf) + 1;
6638 name = bfd_alloc (abfd, len);
6639 if (name == NULL)
6640 return FALSE;
6641 memcpy (name, buf, len);
6642
6643 sect = bfd_make_section_anyway (abfd, name);
6644 if (sect == NULL)
6645 return FALSE;
6646
6647 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
6648 sect->_raw_size = sizeof (lwpstat.pr_context.uc_mcontext.fpregs);
6649 sect->filepos = note->descpos
6650 + offsetof (lwpstatus_t, pr_context.uc_mcontext.fpregs);
6651 #endif
6652
6653 #if defined (HAVE_LWPSTATUS_T_PR_FPREG)
6654 sect->_raw_size = sizeof (lwpstat.pr_fpreg);
6655 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_fpreg);
6656 #endif
6657
6658 sect->flags = SEC_HAS_CONTENTS;
6659 sect->alignment_power = 2;
6660
6661 return elfcore_maybe_make_sect (abfd, ".reg2", sect);
6662 }
6663 #endif /* defined (HAVE_LWPSTATUS_T) */
6664
6665 #if defined (HAVE_WIN32_PSTATUS_T)
6666 static bfd_boolean
6667 elfcore_grok_win32pstatus (bfd *abfd, Elf_Internal_Note *note)
6668 {
6669 char buf[30];
6670 char *name;
6671 size_t len;
6672 asection *sect;
6673 win32_pstatus_t pstatus;
6674
6675 if (note->descsz < sizeof (pstatus))
6676 return TRUE;
6677
6678 memcpy (&pstatus, note->descdata, sizeof (pstatus));
6679
6680 switch (pstatus.data_type)
6681 {
6682 case NOTE_INFO_PROCESS:
6683 /* FIXME: need to add ->core_command. */
6684 elf_tdata (abfd)->core_signal = pstatus.data.process_info.signal;
6685 elf_tdata (abfd)->core_pid = pstatus.data.process_info.pid;
6686 break;
6687
6688 case NOTE_INFO_THREAD:
6689 /* Make a ".reg/999" section. */
6690 sprintf (buf, ".reg/%d", pstatus.data.thread_info.tid);
6691
6692 len = strlen (buf) + 1;
6693 name = bfd_alloc (abfd, len);
6694 if (name == NULL)
6695 return FALSE;
6696
6697 memcpy (name, buf, len);
6698
6699 sect = bfd_make_section_anyway (abfd, name);
6700 if (sect == NULL)
6701 return FALSE;
6702
6703 sect->_raw_size = sizeof (pstatus.data.thread_info.thread_context);
6704 sect->filepos = (note->descpos
6705 + offsetof (struct win32_pstatus,
6706 data.thread_info.thread_context));
6707 sect->flags = SEC_HAS_CONTENTS;
6708 sect->alignment_power = 2;
6709
6710 if (pstatus.data.thread_info.is_active_thread)
6711 if (! elfcore_maybe_make_sect (abfd, ".reg", sect))
6712 return FALSE;
6713 break;
6714
6715 case NOTE_INFO_MODULE:
6716 /* Make a ".module/xxxxxxxx" section. */
6717 sprintf (buf, ".module/%08x", pstatus.data.module_info.base_address);
6718
6719 len = strlen (buf) + 1;
6720 name = bfd_alloc (abfd, len);
6721 if (name == NULL)
6722 return FALSE;
6723
6724 memcpy (name, buf, len);
6725
6726 sect = bfd_make_section_anyway (abfd, name);
6727
6728 if (sect == NULL)
6729 return FALSE;
6730
6731 sect->_raw_size = note->descsz;
6732 sect->filepos = note->descpos;
6733 sect->flags = SEC_HAS_CONTENTS;
6734 sect->alignment_power = 2;
6735 break;
6736
6737 default:
6738 return TRUE;
6739 }
6740
6741 return TRUE;
6742 }
6743 #endif /* HAVE_WIN32_PSTATUS_T */
6744
6745 static bfd_boolean
6746 elfcore_grok_note (bfd *abfd, Elf_Internal_Note *note)
6747 {
6748 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6749
6750 switch (note->type)
6751 {
6752 default:
6753 return TRUE;
6754
6755 case NT_PRSTATUS:
6756 if (bed->elf_backend_grok_prstatus)
6757 if ((*bed->elf_backend_grok_prstatus) (abfd, note))
6758 return TRUE;
6759 #if defined (HAVE_PRSTATUS_T)
6760 return elfcore_grok_prstatus (abfd, note);
6761 #else
6762 return TRUE;
6763 #endif
6764
6765 #if defined (HAVE_PSTATUS_T)
6766 case NT_PSTATUS:
6767 return elfcore_grok_pstatus (abfd, note);
6768 #endif
6769
6770 #if defined (HAVE_LWPSTATUS_T)
6771 case NT_LWPSTATUS:
6772 return elfcore_grok_lwpstatus (abfd, note);
6773 #endif
6774
6775 case NT_FPREGSET: /* FIXME: rename to NT_PRFPREG */
6776 return elfcore_grok_prfpreg (abfd, note);
6777
6778 #if defined (HAVE_WIN32_PSTATUS_T)
6779 case NT_WIN32PSTATUS:
6780 return elfcore_grok_win32pstatus (abfd, note);
6781 #endif
6782
6783 case NT_PRXFPREG: /* Linux SSE extension */
6784 if (note->namesz == 6
6785 && strcmp (note->namedata, "LINUX") == 0)
6786 return elfcore_grok_prxfpreg (abfd, note);
6787 else
6788 return TRUE;
6789
6790 case NT_PRPSINFO:
6791 case NT_PSINFO:
6792 if (bed->elf_backend_grok_psinfo)
6793 if ((*bed->elf_backend_grok_psinfo) (abfd, note))
6794 return TRUE;
6795 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
6796 return elfcore_grok_psinfo (abfd, note);
6797 #else
6798 return TRUE;
6799 #endif
6800
6801 case NT_AUXV:
6802 {
6803 asection *sect = bfd_make_section_anyway (abfd, ".auxv");
6804
6805 if (sect == NULL)
6806 return FALSE;
6807 sect->_raw_size = note->descsz;
6808 sect->filepos = note->descpos;
6809 sect->flags = SEC_HAS_CONTENTS;
6810 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
6811
6812 return TRUE;
6813 }
6814 }
6815 }
6816
6817 static bfd_boolean
6818 elfcore_netbsd_get_lwpid (Elf_Internal_Note *note, int *lwpidp)
6819 {
6820 char *cp;
6821
6822 cp = strchr (note->namedata, '@');
6823 if (cp != NULL)
6824 {
6825 *lwpidp = atoi(cp + 1);
6826 return TRUE;
6827 }
6828 return FALSE;
6829 }
6830
6831 static bfd_boolean
6832 elfcore_grok_netbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
6833 {
6834
6835 /* Signal number at offset 0x08. */
6836 elf_tdata (abfd)->core_signal
6837 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
6838
6839 /* Process ID at offset 0x50. */
6840 elf_tdata (abfd)->core_pid
6841 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x50);
6842
6843 /* Command name at 0x7c (max 32 bytes, including nul). */
6844 elf_tdata (abfd)->core_command
6845 = _bfd_elfcore_strndup (abfd, note->descdata + 0x7c, 31);
6846
6847 return elfcore_make_note_pseudosection (abfd, ".note.netbsdcore.procinfo",
6848 note);
6849 }
6850
6851 static bfd_boolean
6852 elfcore_grok_netbsd_note (bfd *abfd, Elf_Internal_Note *note)
6853 {
6854 int lwp;
6855
6856 if (elfcore_netbsd_get_lwpid (note, &lwp))
6857 elf_tdata (abfd)->core_lwpid = lwp;
6858
6859 if (note->type == NT_NETBSDCORE_PROCINFO)
6860 {
6861 /* NetBSD-specific core "procinfo". Note that we expect to
6862 find this note before any of the others, which is fine,
6863 since the kernel writes this note out first when it
6864 creates a core file. */
6865
6866 return elfcore_grok_netbsd_procinfo (abfd, note);
6867 }
6868
6869 /* As of Jan 2002 there are no other machine-independent notes
6870 defined for NetBSD core files. If the note type is less
6871 than the start of the machine-dependent note types, we don't
6872 understand it. */
6873
6874 if (note->type < NT_NETBSDCORE_FIRSTMACH)
6875 return TRUE;
6876
6877
6878 switch (bfd_get_arch (abfd))
6879 {
6880 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
6881 PT_GETFPREGS == mach+2. */
6882
6883 case bfd_arch_alpha:
6884 case bfd_arch_sparc:
6885 switch (note->type)
6886 {
6887 case NT_NETBSDCORE_FIRSTMACH+0:
6888 return elfcore_make_note_pseudosection (abfd, ".reg", note);
6889
6890 case NT_NETBSDCORE_FIRSTMACH+2:
6891 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
6892
6893 default:
6894 return TRUE;
6895 }
6896
6897 /* On all other arch's, PT_GETREGS == mach+1 and
6898 PT_GETFPREGS == mach+3. */
6899
6900 default:
6901 switch (note->type)
6902 {
6903 case NT_NETBSDCORE_FIRSTMACH+1:
6904 return elfcore_make_note_pseudosection (abfd, ".reg", note);
6905
6906 case NT_NETBSDCORE_FIRSTMACH+3:
6907 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
6908
6909 default:
6910 return TRUE;
6911 }
6912 }
6913 /* NOTREACHED */
6914 }
6915
6916 static bfd_boolean
6917 elfcore_grok_nto_status (bfd *abfd, Elf_Internal_Note *note, pid_t *tid)
6918 {
6919 void *ddata = note->descdata;
6920 char buf[100];
6921 char *name;
6922 asection *sect;
6923 short sig;
6924 unsigned flags;
6925
6926 /* nto_procfs_status 'pid' field is at offset 0. */
6927 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, (bfd_byte *) ddata);
6928
6929 /* nto_procfs_status 'tid' field is at offset 4. Pass it back. */
6930 *tid = bfd_get_32 (abfd, (bfd_byte *) ddata + 4);
6931
6932 /* nto_procfs_status 'flags' field is at offset 8. */
6933 flags = bfd_get_32 (abfd, (bfd_byte *) ddata + 8);
6934
6935 /* nto_procfs_status 'what' field is at offset 14. */
6936 if ((sig = bfd_get_16 (abfd, (bfd_byte *) ddata + 14)) > 0)
6937 {
6938 elf_tdata (abfd)->core_signal = sig;
6939 elf_tdata (abfd)->core_lwpid = *tid;
6940 }
6941
6942 /* _DEBUG_FLAG_CURTID (current thread) is 0x80. Some cores
6943 do not come from signals so we make sure we set the current
6944 thread just in case. */
6945 if (flags & 0x00000080)
6946 elf_tdata (abfd)->core_lwpid = *tid;
6947
6948 /* Make a ".qnx_core_status/%d" section. */
6949 sprintf (buf, ".qnx_core_status/%d", *tid);
6950
6951 name = bfd_alloc (abfd, strlen (buf) + 1);
6952 if (name == NULL)
6953 return FALSE;
6954 strcpy (name, buf);
6955
6956 sect = bfd_make_section_anyway (abfd, name);
6957 if (sect == NULL)
6958 return FALSE;
6959
6960 sect->_raw_size = note->descsz;
6961 sect->filepos = note->descpos;
6962 sect->flags = SEC_HAS_CONTENTS;
6963 sect->alignment_power = 2;
6964
6965 return (elfcore_maybe_make_sect (abfd, ".qnx_core_status", sect));
6966 }
6967
6968 static bfd_boolean
6969 elfcore_grok_nto_gregs (bfd *abfd, Elf_Internal_Note *note, pid_t tid)
6970 {
6971 char buf[100];
6972 char *name;
6973 asection *sect;
6974
6975 /* Make a ".reg/%d" section. */
6976 sprintf (buf, ".reg/%d", tid);
6977
6978 name = bfd_alloc (abfd, strlen (buf) + 1);
6979 if (name == NULL)
6980 return FALSE;
6981 strcpy (name, buf);
6982
6983 sect = bfd_make_section_anyway (abfd, name);
6984 if (sect == NULL)
6985 return FALSE;
6986
6987 sect->_raw_size = note->descsz;
6988 sect->filepos = note->descpos;
6989 sect->flags = SEC_HAS_CONTENTS;
6990 sect->alignment_power = 2;
6991
6992 /* This is the current thread. */
6993 if (elf_tdata (abfd)->core_lwpid == tid)
6994 return elfcore_maybe_make_sect (abfd, ".reg", sect);
6995
6996 return TRUE;
6997 }
6998
6999 #define BFD_QNT_CORE_INFO 7
7000 #define BFD_QNT_CORE_STATUS 8
7001 #define BFD_QNT_CORE_GREG 9
7002 #define BFD_QNT_CORE_FPREG 10
7003
7004 static bfd_boolean
7005 elfcore_grok_nto_note (bfd *abfd, Elf_Internal_Note *note)
7006 {
7007 /* Every GREG section has a STATUS section before it. Store the
7008 tid from the previous call to pass down to the next gregs
7009 function. */
7010 static pid_t tid = 1;
7011
7012 switch (note->type)
7013 {
7014 case BFD_QNT_CORE_INFO: return elfcore_make_note_pseudosection (abfd, ".qnx_core_info", note);
7015 case BFD_QNT_CORE_STATUS: return elfcore_grok_nto_status (abfd, note, &tid);
7016 case BFD_QNT_CORE_GREG: return elfcore_grok_nto_gregs (abfd, note, tid);
7017 case BFD_QNT_CORE_FPREG: return elfcore_grok_prfpreg (abfd, note);
7018 default: return TRUE;
7019 }
7020 }
7021
7022 /* Function: elfcore_write_note
7023
7024 Inputs:
7025 buffer to hold note
7026 name of note
7027 type of note
7028 data for note
7029 size of data for note
7030
7031 Return:
7032 End of buffer containing note. */
7033
7034 char *
7035 elfcore_write_note (bfd *abfd,
7036 char *buf,
7037 int *bufsiz,
7038 const char *name,
7039 int type,
7040 const void *input,
7041 int size)
7042 {
7043 Elf_External_Note *xnp;
7044 size_t namesz;
7045 size_t pad;
7046 size_t newspace;
7047 char *p, *dest;
7048
7049 namesz = 0;
7050 pad = 0;
7051 if (name != NULL)
7052 {
7053 const struct elf_backend_data *bed;
7054
7055 namesz = strlen (name) + 1;
7056 bed = get_elf_backend_data (abfd);
7057 pad = -namesz & ((1 << bed->s->log_file_align) - 1);
7058 }
7059
7060 newspace = 12 + namesz + pad + size;
7061
7062 p = realloc (buf, *bufsiz + newspace);
7063 dest = p + *bufsiz;
7064 *bufsiz += newspace;
7065 xnp = (Elf_External_Note *) dest;
7066 H_PUT_32 (abfd, namesz, xnp->namesz);
7067 H_PUT_32 (abfd, size, xnp->descsz);
7068 H_PUT_32 (abfd, type, xnp->type);
7069 dest = xnp->name;
7070 if (name != NULL)
7071 {
7072 memcpy (dest, name, namesz);
7073 dest += namesz;
7074 while (pad != 0)
7075 {
7076 *dest++ = '\0';
7077 --pad;
7078 }
7079 }
7080 memcpy (dest, input, size);
7081 return p;
7082 }
7083
7084 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7085 char *
7086 elfcore_write_prpsinfo (bfd *abfd,
7087 char *buf,
7088 int *bufsiz,
7089 const char *fname,
7090 const char *psargs)
7091 {
7092 int note_type;
7093 char *note_name = "CORE";
7094
7095 #if defined (HAVE_PSINFO_T)
7096 psinfo_t data;
7097 note_type = NT_PSINFO;
7098 #else
7099 prpsinfo_t data;
7100 note_type = NT_PRPSINFO;
7101 #endif
7102
7103 memset (&data, 0, sizeof (data));
7104 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
7105 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
7106 return elfcore_write_note (abfd, buf, bufsiz,
7107 note_name, note_type, &data, sizeof (data));
7108 }
7109 #endif /* PSINFO_T or PRPSINFO_T */
7110
7111 #if defined (HAVE_PRSTATUS_T)
7112 char *
7113 elfcore_write_prstatus (bfd *abfd,
7114 char *buf,
7115 int *bufsiz,
7116 long pid,
7117 int cursig,
7118 const void *gregs)
7119 {
7120 prstatus_t prstat;
7121 char *note_name = "CORE";
7122
7123 memset (&prstat, 0, sizeof (prstat));
7124 prstat.pr_pid = pid;
7125 prstat.pr_cursig = cursig;
7126 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
7127 return elfcore_write_note (abfd, buf, bufsiz,
7128 note_name, NT_PRSTATUS, &prstat, sizeof (prstat));
7129 }
7130 #endif /* HAVE_PRSTATUS_T */
7131
7132 #if defined (HAVE_LWPSTATUS_T)
7133 char *
7134 elfcore_write_lwpstatus (bfd *abfd,
7135 char *buf,
7136 int *bufsiz,
7137 long pid,
7138 int cursig,
7139 const void *gregs)
7140 {
7141 lwpstatus_t lwpstat;
7142 char *note_name = "CORE";
7143
7144 memset (&lwpstat, 0, sizeof (lwpstat));
7145 lwpstat.pr_lwpid = pid >> 16;
7146 lwpstat.pr_cursig = cursig;
7147 #if defined (HAVE_LWPSTATUS_T_PR_REG)
7148 memcpy (lwpstat.pr_reg, gregs, sizeof (lwpstat.pr_reg));
7149 #elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7150 #if !defined(gregs)
7151 memcpy (lwpstat.pr_context.uc_mcontext.gregs,
7152 gregs, sizeof (lwpstat.pr_context.uc_mcontext.gregs));
7153 #else
7154 memcpy (lwpstat.pr_context.uc_mcontext.__gregs,
7155 gregs, sizeof (lwpstat.pr_context.uc_mcontext.__gregs));
7156 #endif
7157 #endif
7158 return elfcore_write_note (abfd, buf, bufsiz, note_name,
7159 NT_LWPSTATUS, &lwpstat, sizeof (lwpstat));
7160 }
7161 #endif /* HAVE_LWPSTATUS_T */
7162
7163 #if defined (HAVE_PSTATUS_T)
7164 char *
7165 elfcore_write_pstatus (bfd *abfd,
7166 char *buf,
7167 int *bufsiz,
7168 long pid,
7169 int cursig,
7170 const void *gregs)
7171 {
7172 pstatus_t pstat;
7173 char *note_name = "CORE";
7174
7175 memset (&pstat, 0, sizeof (pstat));
7176 pstat.pr_pid = pid & 0xffff;
7177 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
7178 NT_PSTATUS, &pstat, sizeof (pstat));
7179 return buf;
7180 }
7181 #endif /* HAVE_PSTATUS_T */
7182
7183 char *
7184 elfcore_write_prfpreg (bfd *abfd,
7185 char *buf,
7186 int *bufsiz,
7187 const void *fpregs,
7188 int size)
7189 {
7190 char *note_name = "CORE";
7191 return elfcore_write_note (abfd, buf, bufsiz,
7192 note_name, NT_FPREGSET, fpregs, size);
7193 }
7194
7195 char *
7196 elfcore_write_prxfpreg (bfd *abfd,
7197 char *buf,
7198 int *bufsiz,
7199 const void *xfpregs,
7200 int size)
7201 {
7202 char *note_name = "LINUX";
7203 return elfcore_write_note (abfd, buf, bufsiz,
7204 note_name, NT_PRXFPREG, xfpregs, size);
7205 }
7206
7207 static bfd_boolean
7208 elfcore_read_notes (bfd *abfd, file_ptr offset, bfd_size_type size)
7209 {
7210 char *buf;
7211 char *p;
7212
7213 if (size <= 0)
7214 return TRUE;
7215
7216 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
7217 return FALSE;
7218
7219 buf = bfd_malloc (size);
7220 if (buf == NULL)
7221 return FALSE;
7222
7223 if (bfd_bread (buf, size, abfd) != size)
7224 {
7225 error:
7226 free (buf);
7227 return FALSE;
7228 }
7229
7230 p = buf;
7231 while (p < buf + size)
7232 {
7233 /* FIXME: bad alignment assumption. */
7234 Elf_External_Note *xnp = (Elf_External_Note *) p;
7235 Elf_Internal_Note in;
7236
7237 in.type = H_GET_32 (abfd, xnp->type);
7238
7239 in.namesz = H_GET_32 (abfd, xnp->namesz);
7240 in.namedata = xnp->name;
7241
7242 in.descsz = H_GET_32 (abfd, xnp->descsz);
7243 in.descdata = in.namedata + BFD_ALIGN (in.namesz, 4);
7244 in.descpos = offset + (in.descdata - buf);
7245
7246 if (strncmp (in.namedata, "NetBSD-CORE", 11) == 0)
7247 {
7248 if (! elfcore_grok_netbsd_note (abfd, &in))
7249 goto error;
7250 }
7251 else if (strncmp (in.namedata, "QNX", 3) == 0)
7252 {
7253 if (! elfcore_grok_nto_note (abfd, &in))
7254 goto error;
7255 }
7256 else
7257 {
7258 if (! elfcore_grok_note (abfd, &in))
7259 goto error;
7260 }
7261
7262 p = in.descdata + BFD_ALIGN (in.descsz, 4);
7263 }
7264
7265 free (buf);
7266 return TRUE;
7267 }
7268 \f
7269 /* Providing external access to the ELF program header table. */
7270
7271 /* Return an upper bound on the number of bytes required to store a
7272 copy of ABFD's program header table entries. Return -1 if an error
7273 occurs; bfd_get_error will return an appropriate code. */
7274
7275 long
7276 bfd_get_elf_phdr_upper_bound (bfd *abfd)
7277 {
7278 if (abfd->xvec->flavour != bfd_target_elf_flavour)
7279 {
7280 bfd_set_error (bfd_error_wrong_format);
7281 return -1;
7282 }
7283
7284 return elf_elfheader (abfd)->e_phnum * sizeof (Elf_Internal_Phdr);
7285 }
7286
7287 /* Copy ABFD's program header table entries to *PHDRS. The entries
7288 will be stored as an array of Elf_Internal_Phdr structures, as
7289 defined in include/elf/internal.h. To find out how large the
7290 buffer needs to be, call bfd_get_elf_phdr_upper_bound.
7291
7292 Return the number of program header table entries read, or -1 if an
7293 error occurs; bfd_get_error will return an appropriate code. */
7294
7295 int
7296 bfd_get_elf_phdrs (bfd *abfd, void *phdrs)
7297 {
7298 int num_phdrs;
7299
7300 if (abfd->xvec->flavour != bfd_target_elf_flavour)
7301 {
7302 bfd_set_error (bfd_error_wrong_format);
7303 return -1;
7304 }
7305
7306 num_phdrs = elf_elfheader (abfd)->e_phnum;
7307 memcpy (phdrs, elf_tdata (abfd)->phdr,
7308 num_phdrs * sizeof (Elf_Internal_Phdr));
7309
7310 return num_phdrs;
7311 }
7312
7313 void
7314 _bfd_elf_sprintf_vma (bfd *abfd ATTRIBUTE_UNUSED, char *buf, bfd_vma value)
7315 {
7316 #ifdef BFD64
7317 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
7318
7319 i_ehdrp = elf_elfheader (abfd);
7320 if (i_ehdrp == NULL)
7321 sprintf_vma (buf, value);
7322 else
7323 {
7324 if (i_ehdrp->e_ident[EI_CLASS] == ELFCLASS64)
7325 {
7326 #if BFD_HOST_64BIT_LONG
7327 sprintf (buf, "%016lx", value);
7328 #else
7329 sprintf (buf, "%08lx%08lx", _bfd_int64_high (value),
7330 _bfd_int64_low (value));
7331 #endif
7332 }
7333 else
7334 sprintf (buf, "%08lx", (unsigned long) (value & 0xffffffff));
7335 }
7336 #else
7337 sprintf_vma (buf, value);
7338 #endif
7339 }
7340
7341 void
7342 _bfd_elf_fprintf_vma (bfd *abfd ATTRIBUTE_UNUSED, void *stream, bfd_vma value)
7343 {
7344 #ifdef BFD64
7345 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
7346
7347 i_ehdrp = elf_elfheader (abfd);
7348 if (i_ehdrp == NULL)
7349 fprintf_vma ((FILE *) stream, value);
7350 else
7351 {
7352 if (i_ehdrp->e_ident[EI_CLASS] == ELFCLASS64)
7353 {
7354 #if BFD_HOST_64BIT_LONG
7355 fprintf ((FILE *) stream, "%016lx", value);
7356 #else
7357 fprintf ((FILE *) stream, "%08lx%08lx",
7358 _bfd_int64_high (value), _bfd_int64_low (value));
7359 #endif
7360 }
7361 else
7362 fprintf ((FILE *) stream, "%08lx",
7363 (unsigned long) (value & 0xffffffff));
7364 }
7365 #else
7366 fprintf_vma ((FILE *) stream, value);
7367 #endif
7368 }
7369
7370 enum elf_reloc_type_class
7371 _bfd_elf_reloc_type_class (const Elf_Internal_Rela *rela ATTRIBUTE_UNUSED)
7372 {
7373 return reloc_class_normal;
7374 }
7375
7376 /* For RELA architectures, return the relocation value for a
7377 relocation against a local symbol. */
7378
7379 bfd_vma
7380 _bfd_elf_rela_local_sym (bfd *abfd,
7381 Elf_Internal_Sym *sym,
7382 asection **psec,
7383 Elf_Internal_Rela *rel)
7384 {
7385 asection *sec = *psec;
7386 bfd_vma relocation;
7387
7388 relocation = (sec->output_section->vma
7389 + sec->output_offset
7390 + sym->st_value);
7391 if ((sec->flags & SEC_MERGE)
7392 && ELF_ST_TYPE (sym->st_info) == STT_SECTION
7393 && sec->sec_info_type == ELF_INFO_TYPE_MERGE)
7394 {
7395 rel->r_addend =
7396 _bfd_merged_section_offset (abfd, psec,
7397 elf_section_data (sec)->sec_info,
7398 sym->st_value + rel->r_addend,
7399 0);
7400 sec = *psec;
7401 rel->r_addend -= relocation;
7402 rel->r_addend += sec->output_section->vma + sec->output_offset;
7403 }
7404 return relocation;
7405 }
7406
7407 bfd_vma
7408 _bfd_elf_rel_local_sym (bfd *abfd,
7409 Elf_Internal_Sym *sym,
7410 asection **psec,
7411 bfd_vma addend)
7412 {
7413 asection *sec = *psec;
7414
7415 if (sec->sec_info_type != ELF_INFO_TYPE_MERGE)
7416 return sym->st_value + addend;
7417
7418 return _bfd_merged_section_offset (abfd, psec,
7419 elf_section_data (sec)->sec_info,
7420 sym->st_value + addend, 0);
7421 }
7422
7423 bfd_vma
7424 _bfd_elf_section_offset (bfd *abfd,
7425 struct bfd_link_info *info,
7426 asection *sec,
7427 bfd_vma offset)
7428 {
7429 struct bfd_elf_section_data *sec_data;
7430
7431 sec_data = elf_section_data (sec);
7432 switch (sec->sec_info_type)
7433 {
7434 case ELF_INFO_TYPE_STABS:
7435 return _bfd_stab_section_offset (abfd,
7436 &elf_hash_table (info)->merge_info,
7437 sec, &sec_data->sec_info, offset);
7438 case ELF_INFO_TYPE_EH_FRAME:
7439 return _bfd_elf_eh_frame_section_offset (abfd, sec, offset);
7440 default:
7441 return offset;
7442 }
7443 }
7444 \f
7445 /* Create a new BFD as if by bfd_openr. Rather than opening a file,
7446 reconstruct an ELF file by reading the segments out of remote memory
7447 based on the ELF file header at EHDR_VMA and the ELF program headers it
7448 points to. If not null, *LOADBASEP is filled in with the difference
7449 between the VMAs from which the segments were read, and the VMAs the
7450 file headers (and hence BFD's idea of each section's VMA) put them at.
7451
7452 The function TARGET_READ_MEMORY is called to copy LEN bytes from the
7453 remote memory at target address VMA into the local buffer at MYADDR; it
7454 should return zero on success or an `errno' code on failure. TEMPL must
7455 be a BFD for an ELF target with the word size and byte order found in
7456 the remote memory. */
7457
7458 bfd *
7459 bfd_elf_bfd_from_remote_memory
7460 (bfd *templ,
7461 bfd_vma ehdr_vma,
7462 bfd_vma *loadbasep,
7463 int (*target_read_memory) (bfd_vma, char *, int))
7464 {
7465 return (*get_elf_backend_data (templ)->elf_backend_bfd_from_remote_memory)
7466 (templ, ehdr_vma, loadbasep, target_read_memory);
7467 }
This page took 0.185792 seconds and 4 git commands to generate.