include/
[deliverable/binutils-gdb.git] / bfd / elf.c
1 /* ELF executable support for BFD.
2
3 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
4 2002, 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
5
6 This file is part of BFD, the Binary File Descriptor library.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
21
22 /*
23 SECTION
24 ELF backends
25
26 BFD support for ELF formats is being worked on.
27 Currently, the best supported back ends are for sparc and i386
28 (running svr4 or Solaris 2).
29
30 Documentation of the internals of the support code still needs
31 to be written. The code is changing quickly enough that we
32 haven't bothered yet. */
33
34 /* For sparc64-cross-sparc32. */
35 #define _SYSCALL32
36 #include "bfd.h"
37 #include "sysdep.h"
38 #include "bfdlink.h"
39 #include "libbfd.h"
40 #define ARCH_SIZE 0
41 #include "elf-bfd.h"
42 #include "libiberty.h"
43
44 static int elf_sort_sections (const void *, const void *);
45 static bfd_boolean assign_file_positions_except_relocs (bfd *, struct bfd_link_info *);
46 static bfd_boolean prep_headers (bfd *);
47 static bfd_boolean swap_out_syms (bfd *, struct bfd_strtab_hash **, int) ;
48 static bfd_boolean elfcore_read_notes (bfd *, file_ptr, bfd_size_type) ;
49
50 /* Swap version information in and out. The version information is
51 currently size independent. If that ever changes, this code will
52 need to move into elfcode.h. */
53
54 /* Swap in a Verdef structure. */
55
56 void
57 _bfd_elf_swap_verdef_in (bfd *abfd,
58 const Elf_External_Verdef *src,
59 Elf_Internal_Verdef *dst)
60 {
61 dst->vd_version = H_GET_16 (abfd, src->vd_version);
62 dst->vd_flags = H_GET_16 (abfd, src->vd_flags);
63 dst->vd_ndx = H_GET_16 (abfd, src->vd_ndx);
64 dst->vd_cnt = H_GET_16 (abfd, src->vd_cnt);
65 dst->vd_hash = H_GET_32 (abfd, src->vd_hash);
66 dst->vd_aux = H_GET_32 (abfd, src->vd_aux);
67 dst->vd_next = H_GET_32 (abfd, src->vd_next);
68 }
69
70 /* Swap out a Verdef structure. */
71
72 void
73 _bfd_elf_swap_verdef_out (bfd *abfd,
74 const Elf_Internal_Verdef *src,
75 Elf_External_Verdef *dst)
76 {
77 H_PUT_16 (abfd, src->vd_version, dst->vd_version);
78 H_PUT_16 (abfd, src->vd_flags, dst->vd_flags);
79 H_PUT_16 (abfd, src->vd_ndx, dst->vd_ndx);
80 H_PUT_16 (abfd, src->vd_cnt, dst->vd_cnt);
81 H_PUT_32 (abfd, src->vd_hash, dst->vd_hash);
82 H_PUT_32 (abfd, src->vd_aux, dst->vd_aux);
83 H_PUT_32 (abfd, src->vd_next, dst->vd_next);
84 }
85
86 /* Swap in a Verdaux structure. */
87
88 void
89 _bfd_elf_swap_verdaux_in (bfd *abfd,
90 const Elf_External_Verdaux *src,
91 Elf_Internal_Verdaux *dst)
92 {
93 dst->vda_name = H_GET_32 (abfd, src->vda_name);
94 dst->vda_next = H_GET_32 (abfd, src->vda_next);
95 }
96
97 /* Swap out a Verdaux structure. */
98
99 void
100 _bfd_elf_swap_verdaux_out (bfd *abfd,
101 const Elf_Internal_Verdaux *src,
102 Elf_External_Verdaux *dst)
103 {
104 H_PUT_32 (abfd, src->vda_name, dst->vda_name);
105 H_PUT_32 (abfd, src->vda_next, dst->vda_next);
106 }
107
108 /* Swap in a Verneed structure. */
109
110 void
111 _bfd_elf_swap_verneed_in (bfd *abfd,
112 const Elf_External_Verneed *src,
113 Elf_Internal_Verneed *dst)
114 {
115 dst->vn_version = H_GET_16 (abfd, src->vn_version);
116 dst->vn_cnt = H_GET_16 (abfd, src->vn_cnt);
117 dst->vn_file = H_GET_32 (abfd, src->vn_file);
118 dst->vn_aux = H_GET_32 (abfd, src->vn_aux);
119 dst->vn_next = H_GET_32 (abfd, src->vn_next);
120 }
121
122 /* Swap out a Verneed structure. */
123
124 void
125 _bfd_elf_swap_verneed_out (bfd *abfd,
126 const Elf_Internal_Verneed *src,
127 Elf_External_Verneed *dst)
128 {
129 H_PUT_16 (abfd, src->vn_version, dst->vn_version);
130 H_PUT_16 (abfd, src->vn_cnt, dst->vn_cnt);
131 H_PUT_32 (abfd, src->vn_file, dst->vn_file);
132 H_PUT_32 (abfd, src->vn_aux, dst->vn_aux);
133 H_PUT_32 (abfd, src->vn_next, dst->vn_next);
134 }
135
136 /* Swap in a Vernaux structure. */
137
138 void
139 _bfd_elf_swap_vernaux_in (bfd *abfd,
140 const Elf_External_Vernaux *src,
141 Elf_Internal_Vernaux *dst)
142 {
143 dst->vna_hash = H_GET_32 (abfd, src->vna_hash);
144 dst->vna_flags = H_GET_16 (abfd, src->vna_flags);
145 dst->vna_other = H_GET_16 (abfd, src->vna_other);
146 dst->vna_name = H_GET_32 (abfd, src->vna_name);
147 dst->vna_next = H_GET_32 (abfd, src->vna_next);
148 }
149
150 /* Swap out a Vernaux structure. */
151
152 void
153 _bfd_elf_swap_vernaux_out (bfd *abfd,
154 const Elf_Internal_Vernaux *src,
155 Elf_External_Vernaux *dst)
156 {
157 H_PUT_32 (abfd, src->vna_hash, dst->vna_hash);
158 H_PUT_16 (abfd, src->vna_flags, dst->vna_flags);
159 H_PUT_16 (abfd, src->vna_other, dst->vna_other);
160 H_PUT_32 (abfd, src->vna_name, dst->vna_name);
161 H_PUT_32 (abfd, src->vna_next, dst->vna_next);
162 }
163
164 /* Swap in a Versym structure. */
165
166 void
167 _bfd_elf_swap_versym_in (bfd *abfd,
168 const Elf_External_Versym *src,
169 Elf_Internal_Versym *dst)
170 {
171 dst->vs_vers = H_GET_16 (abfd, src->vs_vers);
172 }
173
174 /* Swap out a Versym structure. */
175
176 void
177 _bfd_elf_swap_versym_out (bfd *abfd,
178 const Elf_Internal_Versym *src,
179 Elf_External_Versym *dst)
180 {
181 H_PUT_16 (abfd, src->vs_vers, dst->vs_vers);
182 }
183
184 /* Standard ELF hash function. Do not change this function; you will
185 cause invalid hash tables to be generated. */
186
187 unsigned long
188 bfd_elf_hash (const char *namearg)
189 {
190 const unsigned char *name = (const unsigned char *) namearg;
191 unsigned long h = 0;
192 unsigned long g;
193 int ch;
194
195 while ((ch = *name++) != '\0')
196 {
197 h = (h << 4) + ch;
198 if ((g = (h & 0xf0000000)) != 0)
199 {
200 h ^= g >> 24;
201 /* The ELF ABI says `h &= ~g', but this is equivalent in
202 this case and on some machines one insn instead of two. */
203 h ^= g;
204 }
205 }
206 return h & 0xffffffff;
207 }
208
209 /* DT_GNU_HASH hash function. Do not change this function; you will
210 cause invalid hash tables to be generated. */
211
212 unsigned long
213 bfd_elf_gnu_hash (const char *namearg)
214 {
215 const unsigned char *name = (const unsigned char *) namearg;
216 unsigned long h = 5381;
217 unsigned char ch;
218
219 while ((ch = *name++) != '\0')
220 h = (h << 5) + h + ch;
221 return h & 0xffffffff;
222 }
223
224 bfd_boolean
225 bfd_elf_mkobject (bfd *abfd)
226 {
227 if (abfd->tdata.any == NULL)
228 {
229 abfd->tdata.any = bfd_zalloc (abfd, sizeof (struct elf_obj_tdata));
230 if (abfd->tdata.any == NULL)
231 return FALSE;
232 }
233
234 elf_tdata (abfd)->program_header_size = (bfd_size_type) -1;
235
236 return TRUE;
237 }
238
239 bfd_boolean
240 bfd_elf_mkcorefile (bfd *abfd)
241 {
242 /* I think this can be done just like an object file. */
243 return bfd_elf_mkobject (abfd);
244 }
245
246 char *
247 bfd_elf_get_str_section (bfd *abfd, unsigned int shindex)
248 {
249 Elf_Internal_Shdr **i_shdrp;
250 bfd_byte *shstrtab = NULL;
251 file_ptr offset;
252 bfd_size_type shstrtabsize;
253
254 i_shdrp = elf_elfsections (abfd);
255 if (i_shdrp == 0 || i_shdrp[shindex] == 0)
256 return NULL;
257
258 shstrtab = i_shdrp[shindex]->contents;
259 if (shstrtab == NULL)
260 {
261 /* No cached one, attempt to read, and cache what we read. */
262 offset = i_shdrp[shindex]->sh_offset;
263 shstrtabsize = i_shdrp[shindex]->sh_size;
264
265 /* Allocate and clear an extra byte at the end, to prevent crashes
266 in case the string table is not terminated. */
267 if (shstrtabsize + 1 == 0
268 || (shstrtab = bfd_alloc (abfd, shstrtabsize + 1)) == NULL
269 || bfd_seek (abfd, offset, SEEK_SET) != 0)
270 shstrtab = NULL;
271 else if (bfd_bread (shstrtab, shstrtabsize, abfd) != shstrtabsize)
272 {
273 if (bfd_get_error () != bfd_error_system_call)
274 bfd_set_error (bfd_error_file_truncated);
275 shstrtab = NULL;
276 }
277 else
278 shstrtab[shstrtabsize] = '\0';
279 i_shdrp[shindex]->contents = shstrtab;
280 }
281 return (char *) shstrtab;
282 }
283
284 char *
285 bfd_elf_string_from_elf_section (bfd *abfd,
286 unsigned int shindex,
287 unsigned int strindex)
288 {
289 Elf_Internal_Shdr *hdr;
290
291 if (strindex == 0)
292 return "";
293
294 hdr = elf_elfsections (abfd)[shindex];
295
296 if (hdr->contents == NULL
297 && bfd_elf_get_str_section (abfd, shindex) == NULL)
298 return NULL;
299
300 if (strindex >= hdr->sh_size)
301 {
302 unsigned int shstrndx = elf_elfheader(abfd)->e_shstrndx;
303 (*_bfd_error_handler)
304 (_("%B: invalid string offset %u >= %lu for section `%s'"),
305 abfd, strindex, (unsigned long) hdr->sh_size,
306 (shindex == shstrndx && strindex == hdr->sh_name
307 ? ".shstrtab"
308 : bfd_elf_string_from_elf_section (abfd, shstrndx, hdr->sh_name)));
309 return "";
310 }
311
312 return ((char *) hdr->contents) + strindex;
313 }
314
315 /* Read and convert symbols to internal format.
316 SYMCOUNT specifies the number of symbols to read, starting from
317 symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF
318 are non-NULL, they are used to store the internal symbols, external
319 symbols, and symbol section index extensions, respectively. */
320
321 Elf_Internal_Sym *
322 bfd_elf_get_elf_syms (bfd *ibfd,
323 Elf_Internal_Shdr *symtab_hdr,
324 size_t symcount,
325 size_t symoffset,
326 Elf_Internal_Sym *intsym_buf,
327 void *extsym_buf,
328 Elf_External_Sym_Shndx *extshndx_buf)
329 {
330 Elf_Internal_Shdr *shndx_hdr;
331 void *alloc_ext;
332 const bfd_byte *esym;
333 Elf_External_Sym_Shndx *alloc_extshndx;
334 Elf_External_Sym_Shndx *shndx;
335 Elf_Internal_Sym *isym;
336 Elf_Internal_Sym *isymend;
337 const struct elf_backend_data *bed;
338 size_t extsym_size;
339 bfd_size_type amt;
340 file_ptr pos;
341
342 if (symcount == 0)
343 return intsym_buf;
344
345 /* Normal syms might have section extension entries. */
346 shndx_hdr = NULL;
347 if (symtab_hdr == &elf_tdata (ibfd)->symtab_hdr)
348 shndx_hdr = &elf_tdata (ibfd)->symtab_shndx_hdr;
349
350 /* Read the symbols. */
351 alloc_ext = NULL;
352 alloc_extshndx = NULL;
353 bed = get_elf_backend_data (ibfd);
354 extsym_size = bed->s->sizeof_sym;
355 amt = symcount * extsym_size;
356 pos = symtab_hdr->sh_offset + symoffset * extsym_size;
357 if (extsym_buf == NULL)
358 {
359 alloc_ext = bfd_malloc2 (symcount, extsym_size);
360 extsym_buf = alloc_ext;
361 }
362 if (extsym_buf == NULL
363 || bfd_seek (ibfd, pos, SEEK_SET) != 0
364 || bfd_bread (extsym_buf, amt, ibfd) != amt)
365 {
366 intsym_buf = NULL;
367 goto out;
368 }
369
370 if (shndx_hdr == NULL || shndx_hdr->sh_size == 0)
371 extshndx_buf = NULL;
372 else
373 {
374 amt = symcount * sizeof (Elf_External_Sym_Shndx);
375 pos = shndx_hdr->sh_offset + symoffset * sizeof (Elf_External_Sym_Shndx);
376 if (extshndx_buf == NULL)
377 {
378 alloc_extshndx = bfd_malloc2 (symcount,
379 sizeof (Elf_External_Sym_Shndx));
380 extshndx_buf = alloc_extshndx;
381 }
382 if (extshndx_buf == NULL
383 || bfd_seek (ibfd, pos, SEEK_SET) != 0
384 || bfd_bread (extshndx_buf, amt, ibfd) != amt)
385 {
386 intsym_buf = NULL;
387 goto out;
388 }
389 }
390
391 if (intsym_buf == NULL)
392 {
393 intsym_buf = bfd_malloc2 (symcount, sizeof (Elf_Internal_Sym));
394 if (intsym_buf == NULL)
395 goto out;
396 }
397
398 /* Convert the symbols to internal form. */
399 isymend = intsym_buf + symcount;
400 for (esym = extsym_buf, isym = intsym_buf, shndx = extshndx_buf;
401 isym < isymend;
402 esym += extsym_size, isym++, shndx = shndx != NULL ? shndx + 1 : NULL)
403 (*bed->s->swap_symbol_in) (ibfd, esym, shndx, isym);
404
405 out:
406 if (alloc_ext != NULL)
407 free (alloc_ext);
408 if (alloc_extshndx != NULL)
409 free (alloc_extshndx);
410
411 return intsym_buf;
412 }
413
414 /* Look up a symbol name. */
415 const char *
416 bfd_elf_sym_name (bfd *abfd,
417 Elf_Internal_Shdr *symtab_hdr,
418 Elf_Internal_Sym *isym,
419 asection *sym_sec)
420 {
421 const char *name;
422 unsigned int iname = isym->st_name;
423 unsigned int shindex = symtab_hdr->sh_link;
424
425 if (iname == 0 && ELF_ST_TYPE (isym->st_info) == STT_SECTION
426 /* Check for a bogus st_shndx to avoid crashing. */
427 && isym->st_shndx < elf_numsections (abfd)
428 && !(isym->st_shndx >= SHN_LORESERVE && isym->st_shndx <= SHN_HIRESERVE))
429 {
430 iname = elf_elfsections (abfd)[isym->st_shndx]->sh_name;
431 shindex = elf_elfheader (abfd)->e_shstrndx;
432 }
433
434 name = bfd_elf_string_from_elf_section (abfd, shindex, iname);
435 if (name == NULL)
436 name = "(null)";
437 else if (sym_sec && *name == '\0')
438 name = bfd_section_name (abfd, sym_sec);
439
440 return name;
441 }
442
443 /* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
444 sections. The first element is the flags, the rest are section
445 pointers. */
446
447 typedef union elf_internal_group {
448 Elf_Internal_Shdr *shdr;
449 unsigned int flags;
450 } Elf_Internal_Group;
451
452 /* Return the name of the group signature symbol. Why isn't the
453 signature just a string? */
454
455 static const char *
456 group_signature (bfd *abfd, Elf_Internal_Shdr *ghdr)
457 {
458 Elf_Internal_Shdr *hdr;
459 unsigned char esym[sizeof (Elf64_External_Sym)];
460 Elf_External_Sym_Shndx eshndx;
461 Elf_Internal_Sym isym;
462
463 /* First we need to ensure the symbol table is available. Make sure
464 that it is a symbol table section. */
465 hdr = elf_elfsections (abfd) [ghdr->sh_link];
466 if (hdr->sh_type != SHT_SYMTAB
467 || ! bfd_section_from_shdr (abfd, ghdr->sh_link))
468 return NULL;
469
470 /* Go read the symbol. */
471 hdr = &elf_tdata (abfd)->symtab_hdr;
472 if (bfd_elf_get_elf_syms (abfd, hdr, 1, ghdr->sh_info,
473 &isym, esym, &eshndx) == NULL)
474 return NULL;
475
476 return bfd_elf_sym_name (abfd, hdr, &isym, NULL);
477 }
478
479 /* Set next_in_group list pointer, and group name for NEWSECT. */
480
481 static bfd_boolean
482 setup_group (bfd *abfd, Elf_Internal_Shdr *hdr, asection *newsect)
483 {
484 unsigned int num_group = elf_tdata (abfd)->num_group;
485
486 /* If num_group is zero, read in all SHT_GROUP sections. The count
487 is set to -1 if there are no SHT_GROUP sections. */
488 if (num_group == 0)
489 {
490 unsigned int i, shnum;
491
492 /* First count the number of groups. If we have a SHT_GROUP
493 section with just a flag word (ie. sh_size is 4), ignore it. */
494 shnum = elf_numsections (abfd);
495 num_group = 0;
496 for (i = 0; i < shnum; i++)
497 {
498 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
499 if (shdr->sh_type == SHT_GROUP && shdr->sh_size >= 8)
500 num_group += 1;
501 }
502
503 if (num_group == 0)
504 {
505 num_group = (unsigned) -1;
506 elf_tdata (abfd)->num_group = num_group;
507 }
508 else
509 {
510 /* We keep a list of elf section headers for group sections,
511 so we can find them quickly. */
512 bfd_size_type amt;
513
514 elf_tdata (abfd)->num_group = num_group;
515 elf_tdata (abfd)->group_sect_ptr
516 = bfd_alloc2 (abfd, num_group, sizeof (Elf_Internal_Shdr *));
517 if (elf_tdata (abfd)->group_sect_ptr == NULL)
518 return FALSE;
519
520 num_group = 0;
521 for (i = 0; i < shnum; i++)
522 {
523 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
524 if (shdr->sh_type == SHT_GROUP && shdr->sh_size >= 8)
525 {
526 unsigned char *src;
527 Elf_Internal_Group *dest;
528
529 /* Add to list of sections. */
530 elf_tdata (abfd)->group_sect_ptr[num_group] = shdr;
531 num_group += 1;
532
533 /* Read the raw contents. */
534 BFD_ASSERT (sizeof (*dest) >= 4);
535 amt = shdr->sh_size * sizeof (*dest) / 4;
536 shdr->contents = bfd_alloc2 (abfd, shdr->sh_size,
537 sizeof (*dest) / 4);
538 if (shdr->contents == NULL
539 || bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0
540 || (bfd_bread (shdr->contents, shdr->sh_size, abfd)
541 != shdr->sh_size))
542 return FALSE;
543
544 /* Translate raw contents, a flag word followed by an
545 array of elf section indices all in target byte order,
546 to the flag word followed by an array of elf section
547 pointers. */
548 src = shdr->contents + shdr->sh_size;
549 dest = (Elf_Internal_Group *) (shdr->contents + amt);
550 while (1)
551 {
552 unsigned int idx;
553
554 src -= 4;
555 --dest;
556 idx = H_GET_32 (abfd, src);
557 if (src == shdr->contents)
558 {
559 dest->flags = idx;
560 if (shdr->bfd_section != NULL && (idx & GRP_COMDAT))
561 shdr->bfd_section->flags
562 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
563 break;
564 }
565 if (idx >= shnum)
566 {
567 ((*_bfd_error_handler)
568 (_("%B: invalid SHT_GROUP entry"), abfd));
569 idx = 0;
570 }
571 dest->shdr = elf_elfsections (abfd)[idx];
572 }
573 }
574 }
575 }
576 }
577
578 if (num_group != (unsigned) -1)
579 {
580 unsigned int i;
581
582 for (i = 0; i < num_group; i++)
583 {
584 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
585 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
586 unsigned int n_elt = shdr->sh_size / 4;
587
588 /* Look through this group's sections to see if current
589 section is a member. */
590 while (--n_elt != 0)
591 if ((++idx)->shdr == hdr)
592 {
593 asection *s = NULL;
594
595 /* We are a member of this group. Go looking through
596 other members to see if any others are linked via
597 next_in_group. */
598 idx = (Elf_Internal_Group *) shdr->contents;
599 n_elt = shdr->sh_size / 4;
600 while (--n_elt != 0)
601 if ((s = (++idx)->shdr->bfd_section) != NULL
602 && elf_next_in_group (s) != NULL)
603 break;
604 if (n_elt != 0)
605 {
606 /* Snarf the group name from other member, and
607 insert current section in circular list. */
608 elf_group_name (newsect) = elf_group_name (s);
609 elf_next_in_group (newsect) = elf_next_in_group (s);
610 elf_next_in_group (s) = newsect;
611 }
612 else
613 {
614 const char *gname;
615
616 gname = group_signature (abfd, shdr);
617 if (gname == NULL)
618 return FALSE;
619 elf_group_name (newsect) = gname;
620
621 /* Start a circular list with one element. */
622 elf_next_in_group (newsect) = newsect;
623 }
624
625 /* If the group section has been created, point to the
626 new member. */
627 if (shdr->bfd_section != NULL)
628 elf_next_in_group (shdr->bfd_section) = newsect;
629
630 i = num_group - 1;
631 break;
632 }
633 }
634 }
635
636 if (elf_group_name (newsect) == NULL)
637 {
638 (*_bfd_error_handler) (_("%B: no group info for section %A"),
639 abfd, newsect);
640 }
641 return TRUE;
642 }
643
644 bfd_boolean
645 _bfd_elf_setup_sections (bfd *abfd)
646 {
647 unsigned int i;
648 unsigned int num_group = elf_tdata (abfd)->num_group;
649 bfd_boolean result = TRUE;
650 asection *s;
651
652 /* Process SHF_LINK_ORDER. */
653 for (s = abfd->sections; s != NULL; s = s->next)
654 {
655 Elf_Internal_Shdr *this_hdr = &elf_section_data (s)->this_hdr;
656 if ((this_hdr->sh_flags & SHF_LINK_ORDER) != 0)
657 {
658 unsigned int elfsec = this_hdr->sh_link;
659 /* FIXME: The old Intel compiler and old strip/objcopy may
660 not set the sh_link or sh_info fields. Hence we could
661 get the situation where elfsec is 0. */
662 if (elfsec == 0)
663 {
664 const struct elf_backend_data *bed
665 = get_elf_backend_data (abfd);
666 if (bed->link_order_error_handler)
667 bed->link_order_error_handler
668 (_("%B: warning: sh_link not set for section `%A'"),
669 abfd, s);
670 }
671 else
672 {
673 asection *link;
674
675 this_hdr = elf_elfsections (abfd)[elfsec];
676
677 /* PR 1991, 2008:
678 Some strip/objcopy may leave an incorrect value in
679 sh_link. We don't want to proceed. */
680 link = this_hdr->bfd_section;
681 if (link == NULL)
682 {
683 (*_bfd_error_handler)
684 (_("%B: sh_link [%d] in section `%A' is incorrect"),
685 s->owner, s, elfsec);
686 result = FALSE;
687 }
688
689 elf_linked_to_section (s) = link;
690 }
691 }
692 }
693
694 /* Process section groups. */
695 if (num_group == (unsigned) -1)
696 return result;
697
698 for (i = 0; i < num_group; i++)
699 {
700 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
701 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
702 unsigned int n_elt = shdr->sh_size / 4;
703
704 while (--n_elt != 0)
705 if ((++idx)->shdr->bfd_section)
706 elf_sec_group (idx->shdr->bfd_section) = shdr->bfd_section;
707 else if (idx->shdr->sh_type == SHT_RELA
708 || idx->shdr->sh_type == SHT_REL)
709 /* We won't include relocation sections in section groups in
710 output object files. We adjust the group section size here
711 so that relocatable link will work correctly when
712 relocation sections are in section group in input object
713 files. */
714 shdr->bfd_section->size -= 4;
715 else
716 {
717 /* There are some unknown sections in the group. */
718 (*_bfd_error_handler)
719 (_("%B: unknown [%d] section `%s' in group [%s]"),
720 abfd,
721 (unsigned int) idx->shdr->sh_type,
722 bfd_elf_string_from_elf_section (abfd,
723 (elf_elfheader (abfd)
724 ->e_shstrndx),
725 idx->shdr->sh_name),
726 shdr->bfd_section->name);
727 result = FALSE;
728 }
729 }
730 return result;
731 }
732
733 bfd_boolean
734 bfd_elf_is_group_section (bfd *abfd ATTRIBUTE_UNUSED, const asection *sec)
735 {
736 return elf_next_in_group (sec) != NULL;
737 }
738
739 /* Make a BFD section from an ELF section. We store a pointer to the
740 BFD section in the bfd_section field of the header. */
741
742 bfd_boolean
743 _bfd_elf_make_section_from_shdr (bfd *abfd,
744 Elf_Internal_Shdr *hdr,
745 const char *name,
746 int shindex)
747 {
748 asection *newsect;
749 flagword flags;
750 const struct elf_backend_data *bed;
751
752 if (hdr->bfd_section != NULL)
753 {
754 BFD_ASSERT (strcmp (name,
755 bfd_get_section_name (abfd, hdr->bfd_section)) == 0);
756 return TRUE;
757 }
758
759 newsect = bfd_make_section_anyway (abfd, name);
760 if (newsect == NULL)
761 return FALSE;
762
763 hdr->bfd_section = newsect;
764 elf_section_data (newsect)->this_hdr = *hdr;
765 elf_section_data (newsect)->this_idx = shindex;
766
767 /* Always use the real type/flags. */
768 elf_section_type (newsect) = hdr->sh_type;
769 elf_section_flags (newsect) = hdr->sh_flags;
770
771 newsect->filepos = hdr->sh_offset;
772
773 if (! bfd_set_section_vma (abfd, newsect, hdr->sh_addr)
774 || ! bfd_set_section_size (abfd, newsect, hdr->sh_size)
775 || ! bfd_set_section_alignment (abfd, newsect,
776 bfd_log2 ((bfd_vma) hdr->sh_addralign)))
777 return FALSE;
778
779 flags = SEC_NO_FLAGS;
780 if (hdr->sh_type != SHT_NOBITS)
781 flags |= SEC_HAS_CONTENTS;
782 if (hdr->sh_type == SHT_GROUP)
783 flags |= SEC_GROUP | SEC_EXCLUDE;
784 if ((hdr->sh_flags & SHF_ALLOC) != 0)
785 {
786 flags |= SEC_ALLOC;
787 if (hdr->sh_type != SHT_NOBITS)
788 flags |= SEC_LOAD;
789 }
790 if ((hdr->sh_flags & SHF_WRITE) == 0)
791 flags |= SEC_READONLY;
792 if ((hdr->sh_flags & SHF_EXECINSTR) != 0)
793 flags |= SEC_CODE;
794 else if ((flags & SEC_LOAD) != 0)
795 flags |= SEC_DATA;
796 if ((hdr->sh_flags & SHF_MERGE) != 0)
797 {
798 flags |= SEC_MERGE;
799 newsect->entsize = hdr->sh_entsize;
800 if ((hdr->sh_flags & SHF_STRINGS) != 0)
801 flags |= SEC_STRINGS;
802 }
803 if (hdr->sh_flags & SHF_GROUP)
804 if (!setup_group (abfd, hdr, newsect))
805 return FALSE;
806 if ((hdr->sh_flags & SHF_TLS) != 0)
807 flags |= SEC_THREAD_LOCAL;
808
809 if ((flags & SEC_ALLOC) == 0)
810 {
811 /* The debugging sections appear to be recognized only by name,
812 not any sort of flag. Their SEC_ALLOC bits are cleared. */
813 static const struct
814 {
815 const char *name;
816 int len;
817 } debug_sections [] =
818 {
819 { "debug", 5 }, /* 'd' */
820 { NULL, 0 }, /* 'e' */
821 { NULL, 0 }, /* 'f' */
822 { "gnu.linkonce.wi.", 17 }, /* 'g' */
823 { NULL, 0 }, /* 'h' */
824 { NULL, 0 }, /* 'i' */
825 { NULL, 0 }, /* 'j' */
826 { NULL, 0 }, /* 'k' */
827 { "line", 4 }, /* 'l' */
828 { NULL, 0 }, /* 'm' */
829 { NULL, 0 }, /* 'n' */
830 { NULL, 0 }, /* 'o' */
831 { NULL, 0 }, /* 'p' */
832 { NULL, 0 }, /* 'q' */
833 { NULL, 0 }, /* 'r' */
834 { "stab", 4 } /* 's' */
835 };
836
837 if (name [0] == '.')
838 {
839 int i = name [1] - 'd';
840 if (i >= 0
841 && i < (int) ARRAY_SIZE (debug_sections)
842 && debug_sections [i].name != NULL
843 && strncmp (&name [1], debug_sections [i].name,
844 debug_sections [i].len) == 0)
845 flags |= SEC_DEBUGGING;
846 }
847 }
848
849 /* As a GNU extension, if the name begins with .gnu.linkonce, we
850 only link a single copy of the section. This is used to support
851 g++. g++ will emit each template expansion in its own section.
852 The symbols will be defined as weak, so that multiple definitions
853 are permitted. The GNU linker extension is to actually discard
854 all but one of the sections. */
855 if (strncmp (name, ".gnu.linkonce", sizeof ".gnu.linkonce" - 1) == 0
856 && elf_next_in_group (newsect) == NULL)
857 flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
858
859 bed = get_elf_backend_data (abfd);
860 if (bed->elf_backend_section_flags)
861 if (! bed->elf_backend_section_flags (&flags, hdr))
862 return FALSE;
863
864 if (! bfd_set_section_flags (abfd, newsect, flags))
865 return FALSE;
866
867 if ((flags & SEC_ALLOC) != 0)
868 {
869 Elf_Internal_Phdr *phdr;
870 unsigned int i;
871
872 /* Look through the phdrs to see if we need to adjust the lma.
873 If all the p_paddr fields are zero, we ignore them, since
874 some ELF linkers produce such output. */
875 phdr = elf_tdata (abfd)->phdr;
876 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
877 {
878 if (phdr->p_paddr != 0)
879 break;
880 }
881 if (i < elf_elfheader (abfd)->e_phnum)
882 {
883 phdr = elf_tdata (abfd)->phdr;
884 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
885 {
886 /* This section is part of this segment if its file
887 offset plus size lies within the segment's memory
888 span and, if the section is loaded, the extent of the
889 loaded data lies within the extent of the segment.
890
891 Note - we used to check the p_paddr field as well, and
892 refuse to set the LMA if it was 0. This is wrong
893 though, as a perfectly valid initialised segment can
894 have a p_paddr of zero. Some architectures, eg ARM,
895 place special significance on the address 0 and
896 executables need to be able to have a segment which
897 covers this address. */
898 if (phdr->p_type == PT_LOAD
899 && (bfd_vma) hdr->sh_offset >= phdr->p_offset
900 && (hdr->sh_offset + hdr->sh_size
901 <= phdr->p_offset + phdr->p_memsz)
902 && ((flags & SEC_LOAD) == 0
903 || (hdr->sh_offset + hdr->sh_size
904 <= phdr->p_offset + phdr->p_filesz)))
905 {
906 if ((flags & SEC_LOAD) == 0)
907 newsect->lma = (phdr->p_paddr
908 + hdr->sh_addr - phdr->p_vaddr);
909 else
910 /* We used to use the same adjustment for SEC_LOAD
911 sections, but that doesn't work if the segment
912 is packed with code from multiple VMAs.
913 Instead we calculate the section LMA based on
914 the segment LMA. It is assumed that the
915 segment will contain sections with contiguous
916 LMAs, even if the VMAs are not. */
917 newsect->lma = (phdr->p_paddr
918 + hdr->sh_offset - phdr->p_offset);
919
920 /* With contiguous segments, we can't tell from file
921 offsets whether a section with zero size should
922 be placed at the end of one segment or the
923 beginning of the next. Decide based on vaddr. */
924 if (hdr->sh_addr >= phdr->p_vaddr
925 && (hdr->sh_addr + hdr->sh_size
926 <= phdr->p_vaddr + phdr->p_memsz))
927 break;
928 }
929 }
930 }
931 }
932
933 return TRUE;
934 }
935
936 /*
937 INTERNAL_FUNCTION
938 bfd_elf_find_section
939
940 SYNOPSIS
941 struct elf_internal_shdr *bfd_elf_find_section (bfd *abfd, char *name);
942
943 DESCRIPTION
944 Helper functions for GDB to locate the string tables.
945 Since BFD hides string tables from callers, GDB needs to use an
946 internal hook to find them. Sun's .stabstr, in particular,
947 isn't even pointed to by the .stab section, so ordinary
948 mechanisms wouldn't work to find it, even if we had some.
949 */
950
951 struct elf_internal_shdr *
952 bfd_elf_find_section (bfd *abfd, char *name)
953 {
954 Elf_Internal_Shdr **i_shdrp;
955 char *shstrtab;
956 unsigned int max;
957 unsigned int i;
958
959 i_shdrp = elf_elfsections (abfd);
960 if (i_shdrp != NULL)
961 {
962 shstrtab = bfd_elf_get_str_section (abfd,
963 elf_elfheader (abfd)->e_shstrndx);
964 if (shstrtab != NULL)
965 {
966 max = elf_numsections (abfd);
967 for (i = 1; i < max; i++)
968 if (!strcmp (&shstrtab[i_shdrp[i]->sh_name], name))
969 return i_shdrp[i];
970 }
971 }
972 return 0;
973 }
974
975 const char *const bfd_elf_section_type_names[] = {
976 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
977 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
978 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
979 };
980
981 /* ELF relocs are against symbols. If we are producing relocatable
982 output, and the reloc is against an external symbol, and nothing
983 has given us any additional addend, the resulting reloc will also
984 be against the same symbol. In such a case, we don't want to
985 change anything about the way the reloc is handled, since it will
986 all be done at final link time. Rather than put special case code
987 into bfd_perform_relocation, all the reloc types use this howto
988 function. It just short circuits the reloc if producing
989 relocatable output against an external symbol. */
990
991 bfd_reloc_status_type
992 bfd_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED,
993 arelent *reloc_entry,
994 asymbol *symbol,
995 void *data ATTRIBUTE_UNUSED,
996 asection *input_section,
997 bfd *output_bfd,
998 char **error_message ATTRIBUTE_UNUSED)
999 {
1000 if (output_bfd != NULL
1001 && (symbol->flags & BSF_SECTION_SYM) == 0
1002 && (! reloc_entry->howto->partial_inplace
1003 || reloc_entry->addend == 0))
1004 {
1005 reloc_entry->address += input_section->output_offset;
1006 return bfd_reloc_ok;
1007 }
1008
1009 return bfd_reloc_continue;
1010 }
1011 \f
1012 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
1013
1014 static void
1015 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
1016 asection *sec)
1017 {
1018 BFD_ASSERT (sec->sec_info_type == ELF_INFO_TYPE_MERGE);
1019 sec->sec_info_type = ELF_INFO_TYPE_NONE;
1020 }
1021
1022 /* Finish SHF_MERGE section merging. */
1023
1024 bfd_boolean
1025 _bfd_elf_merge_sections (bfd *abfd, struct bfd_link_info *info)
1026 {
1027 bfd *ibfd;
1028 asection *sec;
1029
1030 if (!is_elf_hash_table (info->hash))
1031 return FALSE;
1032
1033 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
1034 if ((ibfd->flags & DYNAMIC) == 0)
1035 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
1036 if ((sec->flags & SEC_MERGE) != 0
1037 && !bfd_is_abs_section (sec->output_section))
1038 {
1039 struct bfd_elf_section_data *secdata;
1040
1041 secdata = elf_section_data (sec);
1042 if (! _bfd_add_merge_section (abfd,
1043 &elf_hash_table (info)->merge_info,
1044 sec, &secdata->sec_info))
1045 return FALSE;
1046 else if (secdata->sec_info)
1047 sec->sec_info_type = ELF_INFO_TYPE_MERGE;
1048 }
1049
1050 if (elf_hash_table (info)->merge_info != NULL)
1051 _bfd_merge_sections (abfd, info, elf_hash_table (info)->merge_info,
1052 merge_sections_remove_hook);
1053 return TRUE;
1054 }
1055
1056 void
1057 _bfd_elf_link_just_syms (asection *sec, struct bfd_link_info *info)
1058 {
1059 sec->output_section = bfd_abs_section_ptr;
1060 sec->output_offset = sec->vma;
1061 if (!is_elf_hash_table (info->hash))
1062 return;
1063
1064 sec->sec_info_type = ELF_INFO_TYPE_JUST_SYMS;
1065 }
1066 \f
1067 /* Copy the program header and other data from one object module to
1068 another. */
1069
1070 bfd_boolean
1071 _bfd_elf_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
1072 {
1073 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
1074 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
1075 return TRUE;
1076
1077 BFD_ASSERT (!elf_flags_init (obfd)
1078 || (elf_elfheader (obfd)->e_flags
1079 == elf_elfheader (ibfd)->e_flags));
1080
1081 elf_gp (obfd) = elf_gp (ibfd);
1082 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
1083 elf_flags_init (obfd) = TRUE;
1084 return TRUE;
1085 }
1086
1087 static const char *
1088 get_segment_type (unsigned int p_type)
1089 {
1090 const char *pt;
1091 switch (p_type)
1092 {
1093 case PT_NULL: pt = "NULL"; break;
1094 case PT_LOAD: pt = "LOAD"; break;
1095 case PT_DYNAMIC: pt = "DYNAMIC"; break;
1096 case PT_INTERP: pt = "INTERP"; break;
1097 case PT_NOTE: pt = "NOTE"; break;
1098 case PT_SHLIB: pt = "SHLIB"; break;
1099 case PT_PHDR: pt = "PHDR"; break;
1100 case PT_TLS: pt = "TLS"; break;
1101 case PT_GNU_EH_FRAME: pt = "EH_FRAME"; break;
1102 case PT_GNU_STACK: pt = "STACK"; break;
1103 case PT_GNU_RELRO: pt = "RELRO"; break;
1104 default: pt = NULL; break;
1105 }
1106 return pt;
1107 }
1108
1109 /* Print out the program headers. */
1110
1111 bfd_boolean
1112 _bfd_elf_print_private_bfd_data (bfd *abfd, void *farg)
1113 {
1114 FILE *f = farg;
1115 Elf_Internal_Phdr *p;
1116 asection *s;
1117 bfd_byte *dynbuf = NULL;
1118
1119 p = elf_tdata (abfd)->phdr;
1120 if (p != NULL)
1121 {
1122 unsigned int i, c;
1123
1124 fprintf (f, _("\nProgram Header:\n"));
1125 c = elf_elfheader (abfd)->e_phnum;
1126 for (i = 0; i < c; i++, p++)
1127 {
1128 const char *pt = get_segment_type (p->p_type);
1129 char buf[20];
1130
1131 if (pt == NULL)
1132 {
1133 sprintf (buf, "0x%lx", p->p_type);
1134 pt = buf;
1135 }
1136 fprintf (f, "%8s off 0x", pt);
1137 bfd_fprintf_vma (abfd, f, p->p_offset);
1138 fprintf (f, " vaddr 0x");
1139 bfd_fprintf_vma (abfd, f, p->p_vaddr);
1140 fprintf (f, " paddr 0x");
1141 bfd_fprintf_vma (abfd, f, p->p_paddr);
1142 fprintf (f, " align 2**%u\n", bfd_log2 (p->p_align));
1143 fprintf (f, " filesz 0x");
1144 bfd_fprintf_vma (abfd, f, p->p_filesz);
1145 fprintf (f, " memsz 0x");
1146 bfd_fprintf_vma (abfd, f, p->p_memsz);
1147 fprintf (f, " flags %c%c%c",
1148 (p->p_flags & PF_R) != 0 ? 'r' : '-',
1149 (p->p_flags & PF_W) != 0 ? 'w' : '-',
1150 (p->p_flags & PF_X) != 0 ? 'x' : '-');
1151 if ((p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X)) != 0)
1152 fprintf (f, " %lx", p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X));
1153 fprintf (f, "\n");
1154 }
1155 }
1156
1157 s = bfd_get_section_by_name (abfd, ".dynamic");
1158 if (s != NULL)
1159 {
1160 int elfsec;
1161 unsigned long shlink;
1162 bfd_byte *extdyn, *extdynend;
1163 size_t extdynsize;
1164 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1165
1166 fprintf (f, _("\nDynamic Section:\n"));
1167
1168 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
1169 goto error_return;
1170
1171 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1172 if (elfsec == -1)
1173 goto error_return;
1174 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1175
1176 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1177 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1178
1179 extdyn = dynbuf;
1180 extdynend = extdyn + s->size;
1181 for (; extdyn < extdynend; extdyn += extdynsize)
1182 {
1183 Elf_Internal_Dyn dyn;
1184 const char *name;
1185 char ab[20];
1186 bfd_boolean stringp;
1187
1188 (*swap_dyn_in) (abfd, extdyn, &dyn);
1189
1190 if (dyn.d_tag == DT_NULL)
1191 break;
1192
1193 stringp = FALSE;
1194 switch (dyn.d_tag)
1195 {
1196 default:
1197 sprintf (ab, "0x%lx", (unsigned long) dyn.d_tag);
1198 name = ab;
1199 break;
1200
1201 case DT_NEEDED: name = "NEEDED"; stringp = TRUE; break;
1202 case DT_PLTRELSZ: name = "PLTRELSZ"; break;
1203 case DT_PLTGOT: name = "PLTGOT"; break;
1204 case DT_HASH: name = "HASH"; break;
1205 case DT_STRTAB: name = "STRTAB"; break;
1206 case DT_SYMTAB: name = "SYMTAB"; break;
1207 case DT_RELA: name = "RELA"; break;
1208 case DT_RELASZ: name = "RELASZ"; break;
1209 case DT_RELAENT: name = "RELAENT"; break;
1210 case DT_STRSZ: name = "STRSZ"; break;
1211 case DT_SYMENT: name = "SYMENT"; break;
1212 case DT_INIT: name = "INIT"; break;
1213 case DT_FINI: name = "FINI"; break;
1214 case DT_SONAME: name = "SONAME"; stringp = TRUE; break;
1215 case DT_RPATH: name = "RPATH"; stringp = TRUE; break;
1216 case DT_SYMBOLIC: name = "SYMBOLIC"; break;
1217 case DT_REL: name = "REL"; break;
1218 case DT_RELSZ: name = "RELSZ"; break;
1219 case DT_RELENT: name = "RELENT"; break;
1220 case DT_PLTREL: name = "PLTREL"; break;
1221 case DT_DEBUG: name = "DEBUG"; break;
1222 case DT_TEXTREL: name = "TEXTREL"; break;
1223 case DT_JMPREL: name = "JMPREL"; break;
1224 case DT_BIND_NOW: name = "BIND_NOW"; break;
1225 case DT_INIT_ARRAY: name = "INIT_ARRAY"; break;
1226 case DT_FINI_ARRAY: name = "FINI_ARRAY"; break;
1227 case DT_INIT_ARRAYSZ: name = "INIT_ARRAYSZ"; break;
1228 case DT_FINI_ARRAYSZ: name = "FINI_ARRAYSZ"; break;
1229 case DT_RUNPATH: name = "RUNPATH"; stringp = TRUE; break;
1230 case DT_FLAGS: name = "FLAGS"; break;
1231 case DT_PREINIT_ARRAY: name = "PREINIT_ARRAY"; break;
1232 case DT_PREINIT_ARRAYSZ: name = "PREINIT_ARRAYSZ"; break;
1233 case DT_CHECKSUM: name = "CHECKSUM"; break;
1234 case DT_PLTPADSZ: name = "PLTPADSZ"; break;
1235 case DT_MOVEENT: name = "MOVEENT"; break;
1236 case DT_MOVESZ: name = "MOVESZ"; break;
1237 case DT_FEATURE: name = "FEATURE"; break;
1238 case DT_POSFLAG_1: name = "POSFLAG_1"; break;
1239 case DT_SYMINSZ: name = "SYMINSZ"; break;
1240 case DT_SYMINENT: name = "SYMINENT"; break;
1241 case DT_CONFIG: name = "CONFIG"; stringp = TRUE; break;
1242 case DT_DEPAUDIT: name = "DEPAUDIT"; stringp = TRUE; break;
1243 case DT_AUDIT: name = "AUDIT"; stringp = TRUE; break;
1244 case DT_PLTPAD: name = "PLTPAD"; break;
1245 case DT_MOVETAB: name = "MOVETAB"; break;
1246 case DT_SYMINFO: name = "SYMINFO"; break;
1247 case DT_RELACOUNT: name = "RELACOUNT"; break;
1248 case DT_RELCOUNT: name = "RELCOUNT"; break;
1249 case DT_FLAGS_1: name = "FLAGS_1"; break;
1250 case DT_VERSYM: name = "VERSYM"; break;
1251 case DT_VERDEF: name = "VERDEF"; break;
1252 case DT_VERDEFNUM: name = "VERDEFNUM"; break;
1253 case DT_VERNEED: name = "VERNEED"; break;
1254 case DT_VERNEEDNUM: name = "VERNEEDNUM"; break;
1255 case DT_AUXILIARY: name = "AUXILIARY"; stringp = TRUE; break;
1256 case DT_USED: name = "USED"; break;
1257 case DT_FILTER: name = "FILTER"; stringp = TRUE; break;
1258 case DT_GNU_HASH: name = "GNU_HASH"; break;
1259 }
1260
1261 fprintf (f, " %-11s ", name);
1262 if (! stringp)
1263 fprintf (f, "0x%lx", (unsigned long) dyn.d_un.d_val);
1264 else
1265 {
1266 const char *string;
1267 unsigned int tagv = dyn.d_un.d_val;
1268
1269 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1270 if (string == NULL)
1271 goto error_return;
1272 fprintf (f, "%s", string);
1273 }
1274 fprintf (f, "\n");
1275 }
1276
1277 free (dynbuf);
1278 dynbuf = NULL;
1279 }
1280
1281 if ((elf_dynverdef (abfd) != 0 && elf_tdata (abfd)->verdef == NULL)
1282 || (elf_dynverref (abfd) != 0 && elf_tdata (abfd)->verref == NULL))
1283 {
1284 if (! _bfd_elf_slurp_version_tables (abfd, FALSE))
1285 return FALSE;
1286 }
1287
1288 if (elf_dynverdef (abfd) != 0)
1289 {
1290 Elf_Internal_Verdef *t;
1291
1292 fprintf (f, _("\nVersion definitions:\n"));
1293 for (t = elf_tdata (abfd)->verdef; t != NULL; t = t->vd_nextdef)
1294 {
1295 fprintf (f, "%d 0x%2.2x 0x%8.8lx %s\n", t->vd_ndx,
1296 t->vd_flags, t->vd_hash,
1297 t->vd_nodename ? t->vd_nodename : "<corrupt>");
1298 if (t->vd_auxptr != NULL && t->vd_auxptr->vda_nextptr != NULL)
1299 {
1300 Elf_Internal_Verdaux *a;
1301
1302 fprintf (f, "\t");
1303 for (a = t->vd_auxptr->vda_nextptr;
1304 a != NULL;
1305 a = a->vda_nextptr)
1306 fprintf (f, "%s ",
1307 a->vda_nodename ? a->vda_nodename : "<corrupt>");
1308 fprintf (f, "\n");
1309 }
1310 }
1311 }
1312
1313 if (elf_dynverref (abfd) != 0)
1314 {
1315 Elf_Internal_Verneed *t;
1316
1317 fprintf (f, _("\nVersion References:\n"));
1318 for (t = elf_tdata (abfd)->verref; t != NULL; t = t->vn_nextref)
1319 {
1320 Elf_Internal_Vernaux *a;
1321
1322 fprintf (f, _(" required from %s:\n"),
1323 t->vn_filename ? t->vn_filename : "<corrupt>");
1324 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1325 fprintf (f, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a->vna_hash,
1326 a->vna_flags, a->vna_other,
1327 a->vna_nodename ? a->vna_nodename : "<corrupt>");
1328 }
1329 }
1330
1331 return TRUE;
1332
1333 error_return:
1334 if (dynbuf != NULL)
1335 free (dynbuf);
1336 return FALSE;
1337 }
1338
1339 /* Display ELF-specific fields of a symbol. */
1340
1341 void
1342 bfd_elf_print_symbol (bfd *abfd,
1343 void *filep,
1344 asymbol *symbol,
1345 bfd_print_symbol_type how)
1346 {
1347 FILE *file = filep;
1348 switch (how)
1349 {
1350 case bfd_print_symbol_name:
1351 fprintf (file, "%s", symbol->name);
1352 break;
1353 case bfd_print_symbol_more:
1354 fprintf (file, "elf ");
1355 bfd_fprintf_vma (abfd, file, symbol->value);
1356 fprintf (file, " %lx", (long) symbol->flags);
1357 break;
1358 case bfd_print_symbol_all:
1359 {
1360 const char *section_name;
1361 const char *name = NULL;
1362 const struct elf_backend_data *bed;
1363 unsigned char st_other;
1364 bfd_vma val;
1365
1366 section_name = symbol->section ? symbol->section->name : "(*none*)";
1367
1368 bed = get_elf_backend_data (abfd);
1369 if (bed->elf_backend_print_symbol_all)
1370 name = (*bed->elf_backend_print_symbol_all) (abfd, filep, symbol);
1371
1372 if (name == NULL)
1373 {
1374 name = symbol->name;
1375 bfd_print_symbol_vandf (abfd, file, symbol);
1376 }
1377
1378 fprintf (file, " %s\t", section_name);
1379 /* Print the "other" value for a symbol. For common symbols,
1380 we've already printed the size; now print the alignment.
1381 For other symbols, we have no specified alignment, and
1382 we've printed the address; now print the size. */
1383 if (bfd_is_com_section (symbol->section))
1384 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
1385 else
1386 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_size;
1387 bfd_fprintf_vma (abfd, file, val);
1388
1389 /* If we have version information, print it. */
1390 if (elf_tdata (abfd)->dynversym_section != 0
1391 && (elf_tdata (abfd)->dynverdef_section != 0
1392 || elf_tdata (abfd)->dynverref_section != 0))
1393 {
1394 unsigned int vernum;
1395 const char *version_string;
1396
1397 vernum = ((elf_symbol_type *) symbol)->version & VERSYM_VERSION;
1398
1399 if (vernum == 0)
1400 version_string = "";
1401 else if (vernum == 1)
1402 version_string = "Base";
1403 else if (vernum <= elf_tdata (abfd)->cverdefs)
1404 version_string =
1405 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1406 else
1407 {
1408 Elf_Internal_Verneed *t;
1409
1410 version_string = "";
1411 for (t = elf_tdata (abfd)->verref;
1412 t != NULL;
1413 t = t->vn_nextref)
1414 {
1415 Elf_Internal_Vernaux *a;
1416
1417 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1418 {
1419 if (a->vna_other == vernum)
1420 {
1421 version_string = a->vna_nodename;
1422 break;
1423 }
1424 }
1425 }
1426 }
1427
1428 if ((((elf_symbol_type *) symbol)->version & VERSYM_HIDDEN) == 0)
1429 fprintf (file, " %-11s", version_string);
1430 else
1431 {
1432 int i;
1433
1434 fprintf (file, " (%s)", version_string);
1435 for (i = 10 - strlen (version_string); i > 0; --i)
1436 putc (' ', file);
1437 }
1438 }
1439
1440 /* If the st_other field is not zero, print it. */
1441 st_other = ((elf_symbol_type *) symbol)->internal_elf_sym.st_other;
1442
1443 switch (st_other)
1444 {
1445 case 0: break;
1446 case STV_INTERNAL: fprintf (file, " .internal"); break;
1447 case STV_HIDDEN: fprintf (file, " .hidden"); break;
1448 case STV_PROTECTED: fprintf (file, " .protected"); break;
1449 default:
1450 /* Some other non-defined flags are also present, so print
1451 everything hex. */
1452 fprintf (file, " 0x%02x", (unsigned int) st_other);
1453 }
1454
1455 fprintf (file, " %s", name);
1456 }
1457 break;
1458 }
1459 }
1460 \f
1461 /* Create an entry in an ELF linker hash table. */
1462
1463 struct bfd_hash_entry *
1464 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
1465 struct bfd_hash_table *table,
1466 const char *string)
1467 {
1468 /* Allocate the structure if it has not already been allocated by a
1469 subclass. */
1470 if (entry == NULL)
1471 {
1472 entry = bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
1473 if (entry == NULL)
1474 return entry;
1475 }
1476
1477 /* Call the allocation method of the superclass. */
1478 entry = _bfd_link_hash_newfunc (entry, table, string);
1479 if (entry != NULL)
1480 {
1481 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
1482 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
1483
1484 /* Set local fields. */
1485 ret->indx = -1;
1486 ret->dynindx = -1;
1487 ret->got = htab->init_got_refcount;
1488 ret->plt = htab->init_plt_refcount;
1489 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
1490 - offsetof (struct elf_link_hash_entry, size)));
1491 /* Assume that we have been called by a non-ELF symbol reader.
1492 This flag is then reset by the code which reads an ELF input
1493 file. This ensures that a symbol created by a non-ELF symbol
1494 reader will have the flag set correctly. */
1495 ret->non_elf = 1;
1496 }
1497
1498 return entry;
1499 }
1500
1501 /* Copy data from an indirect symbol to its direct symbol, hiding the
1502 old indirect symbol. Also used for copying flags to a weakdef. */
1503
1504 void
1505 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
1506 struct elf_link_hash_entry *dir,
1507 struct elf_link_hash_entry *ind)
1508 {
1509 struct elf_link_hash_table *htab;
1510
1511 /* Copy down any references that we may have already seen to the
1512 symbol which just became indirect. */
1513
1514 dir->ref_dynamic |= ind->ref_dynamic;
1515 dir->ref_regular |= ind->ref_regular;
1516 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
1517 dir->non_got_ref |= ind->non_got_ref;
1518 dir->needs_plt |= ind->needs_plt;
1519 dir->pointer_equality_needed |= ind->pointer_equality_needed;
1520
1521 if (ind->root.type != bfd_link_hash_indirect)
1522 return;
1523
1524 /* Copy over the global and procedure linkage table refcount entries.
1525 These may have been already set up by a check_relocs routine. */
1526 htab = elf_hash_table (info);
1527 if (ind->got.refcount > htab->init_got_refcount.refcount)
1528 {
1529 if (dir->got.refcount < 0)
1530 dir->got.refcount = 0;
1531 dir->got.refcount += ind->got.refcount;
1532 ind->got.refcount = htab->init_got_refcount.refcount;
1533 }
1534
1535 if (ind->plt.refcount > htab->init_plt_refcount.refcount)
1536 {
1537 if (dir->plt.refcount < 0)
1538 dir->plt.refcount = 0;
1539 dir->plt.refcount += ind->plt.refcount;
1540 ind->plt.refcount = htab->init_plt_refcount.refcount;
1541 }
1542
1543 if (ind->dynindx != -1)
1544 {
1545 if (dir->dynindx != -1)
1546 _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
1547 dir->dynindx = ind->dynindx;
1548 dir->dynstr_index = ind->dynstr_index;
1549 ind->dynindx = -1;
1550 ind->dynstr_index = 0;
1551 }
1552 }
1553
1554 void
1555 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
1556 struct elf_link_hash_entry *h,
1557 bfd_boolean force_local)
1558 {
1559 h->plt = elf_hash_table (info)->init_plt_offset;
1560 h->needs_plt = 0;
1561 if (force_local)
1562 {
1563 h->forced_local = 1;
1564 if (h->dynindx != -1)
1565 {
1566 h->dynindx = -1;
1567 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1568 h->dynstr_index);
1569 }
1570 }
1571 }
1572
1573 /* Initialize an ELF linker hash table. */
1574
1575 bfd_boolean
1576 _bfd_elf_link_hash_table_init
1577 (struct elf_link_hash_table *table,
1578 bfd *abfd,
1579 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
1580 struct bfd_hash_table *,
1581 const char *),
1582 unsigned int entsize)
1583 {
1584 bfd_boolean ret;
1585 int can_refcount = get_elf_backend_data (abfd)->can_refcount;
1586
1587 table->dynamic_sections_created = FALSE;
1588 table->dynobj = NULL;
1589 table->init_got_refcount.refcount = can_refcount - 1;
1590 table->init_plt_refcount.refcount = can_refcount - 1;
1591 table->init_got_offset.offset = -(bfd_vma) 1;
1592 table->init_plt_offset.offset = -(bfd_vma) 1;
1593 /* The first dynamic symbol is a dummy. */
1594 table->dynsymcount = 1;
1595 table->dynstr = NULL;
1596 table->bucketcount = 0;
1597 table->needed = NULL;
1598 table->hgot = NULL;
1599 table->hplt = NULL;
1600 table->merge_info = NULL;
1601 memset (&table->stab_info, 0, sizeof (table->stab_info));
1602 memset (&table->eh_info, 0, sizeof (table->eh_info));
1603 table->dynlocal = NULL;
1604 table->runpath = NULL;
1605 table->tls_sec = NULL;
1606 table->tls_size = 0;
1607 table->loaded = NULL;
1608 table->is_relocatable_executable = FALSE;
1609
1610 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
1611 table->root.type = bfd_link_elf_hash_table;
1612
1613 return ret;
1614 }
1615
1616 /* Create an ELF linker hash table. */
1617
1618 struct bfd_link_hash_table *
1619 _bfd_elf_link_hash_table_create (bfd *abfd)
1620 {
1621 struct elf_link_hash_table *ret;
1622 bfd_size_type amt = sizeof (struct elf_link_hash_table);
1623
1624 ret = bfd_malloc (amt);
1625 if (ret == NULL)
1626 return NULL;
1627
1628 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
1629 sizeof (struct elf_link_hash_entry)))
1630 {
1631 free (ret);
1632 return NULL;
1633 }
1634
1635 return &ret->root;
1636 }
1637
1638 /* This is a hook for the ELF emulation code in the generic linker to
1639 tell the backend linker what file name to use for the DT_NEEDED
1640 entry for a dynamic object. */
1641
1642 void
1643 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
1644 {
1645 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1646 && bfd_get_format (abfd) == bfd_object)
1647 elf_dt_name (abfd) = name;
1648 }
1649
1650 int
1651 bfd_elf_get_dyn_lib_class (bfd *abfd)
1652 {
1653 int lib_class;
1654 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1655 && bfd_get_format (abfd) == bfd_object)
1656 lib_class = elf_dyn_lib_class (abfd);
1657 else
1658 lib_class = 0;
1659 return lib_class;
1660 }
1661
1662 void
1663 bfd_elf_set_dyn_lib_class (bfd *abfd, int lib_class)
1664 {
1665 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1666 && bfd_get_format (abfd) == bfd_object)
1667 elf_dyn_lib_class (abfd) = lib_class;
1668 }
1669
1670 /* Get the list of DT_NEEDED entries for a link. This is a hook for
1671 the linker ELF emulation code. */
1672
1673 struct bfd_link_needed_list *
1674 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
1675 struct bfd_link_info *info)
1676 {
1677 if (! is_elf_hash_table (info->hash))
1678 return NULL;
1679 return elf_hash_table (info)->needed;
1680 }
1681
1682 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
1683 hook for the linker ELF emulation code. */
1684
1685 struct bfd_link_needed_list *
1686 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
1687 struct bfd_link_info *info)
1688 {
1689 if (! is_elf_hash_table (info->hash))
1690 return NULL;
1691 return elf_hash_table (info)->runpath;
1692 }
1693
1694 /* Get the name actually used for a dynamic object for a link. This
1695 is the SONAME entry if there is one. Otherwise, it is the string
1696 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
1697
1698 const char *
1699 bfd_elf_get_dt_soname (bfd *abfd)
1700 {
1701 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1702 && bfd_get_format (abfd) == bfd_object)
1703 return elf_dt_name (abfd);
1704 return NULL;
1705 }
1706
1707 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
1708 the ELF linker emulation code. */
1709
1710 bfd_boolean
1711 bfd_elf_get_bfd_needed_list (bfd *abfd,
1712 struct bfd_link_needed_list **pneeded)
1713 {
1714 asection *s;
1715 bfd_byte *dynbuf = NULL;
1716 int elfsec;
1717 unsigned long shlink;
1718 bfd_byte *extdyn, *extdynend;
1719 size_t extdynsize;
1720 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1721
1722 *pneeded = NULL;
1723
1724 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
1725 || bfd_get_format (abfd) != bfd_object)
1726 return TRUE;
1727
1728 s = bfd_get_section_by_name (abfd, ".dynamic");
1729 if (s == NULL || s->size == 0)
1730 return TRUE;
1731
1732 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
1733 goto error_return;
1734
1735 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1736 if (elfsec == -1)
1737 goto error_return;
1738
1739 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1740
1741 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1742 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1743
1744 extdyn = dynbuf;
1745 extdynend = extdyn + s->size;
1746 for (; extdyn < extdynend; extdyn += extdynsize)
1747 {
1748 Elf_Internal_Dyn dyn;
1749
1750 (*swap_dyn_in) (abfd, extdyn, &dyn);
1751
1752 if (dyn.d_tag == DT_NULL)
1753 break;
1754
1755 if (dyn.d_tag == DT_NEEDED)
1756 {
1757 const char *string;
1758 struct bfd_link_needed_list *l;
1759 unsigned int tagv = dyn.d_un.d_val;
1760 bfd_size_type amt;
1761
1762 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1763 if (string == NULL)
1764 goto error_return;
1765
1766 amt = sizeof *l;
1767 l = bfd_alloc (abfd, amt);
1768 if (l == NULL)
1769 goto error_return;
1770
1771 l->by = abfd;
1772 l->name = string;
1773 l->next = *pneeded;
1774 *pneeded = l;
1775 }
1776 }
1777
1778 free (dynbuf);
1779
1780 return TRUE;
1781
1782 error_return:
1783 if (dynbuf != NULL)
1784 free (dynbuf);
1785 return FALSE;
1786 }
1787 \f
1788 /* Allocate an ELF string table--force the first byte to be zero. */
1789
1790 struct bfd_strtab_hash *
1791 _bfd_elf_stringtab_init (void)
1792 {
1793 struct bfd_strtab_hash *ret;
1794
1795 ret = _bfd_stringtab_init ();
1796 if (ret != NULL)
1797 {
1798 bfd_size_type loc;
1799
1800 loc = _bfd_stringtab_add (ret, "", TRUE, FALSE);
1801 BFD_ASSERT (loc == 0 || loc == (bfd_size_type) -1);
1802 if (loc == (bfd_size_type) -1)
1803 {
1804 _bfd_stringtab_free (ret);
1805 ret = NULL;
1806 }
1807 }
1808 return ret;
1809 }
1810 \f
1811 /* ELF .o/exec file reading */
1812
1813 /* Create a new bfd section from an ELF section header. */
1814
1815 bfd_boolean
1816 bfd_section_from_shdr (bfd *abfd, unsigned int shindex)
1817 {
1818 Elf_Internal_Shdr *hdr = elf_elfsections (abfd)[shindex];
1819 Elf_Internal_Ehdr *ehdr = elf_elfheader (abfd);
1820 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1821 const char *name;
1822
1823 name = bfd_elf_string_from_elf_section (abfd,
1824 elf_elfheader (abfd)->e_shstrndx,
1825 hdr->sh_name);
1826 if (name == NULL)
1827 return FALSE;
1828
1829 switch (hdr->sh_type)
1830 {
1831 case SHT_NULL:
1832 /* Inactive section. Throw it away. */
1833 return TRUE;
1834
1835 case SHT_PROGBITS: /* Normal section with contents. */
1836 case SHT_NOBITS: /* .bss section. */
1837 case SHT_HASH: /* .hash section. */
1838 case SHT_NOTE: /* .note section. */
1839 case SHT_INIT_ARRAY: /* .init_array section. */
1840 case SHT_FINI_ARRAY: /* .fini_array section. */
1841 case SHT_PREINIT_ARRAY: /* .preinit_array section. */
1842 case SHT_GNU_LIBLIST: /* .gnu.liblist section. */
1843 case SHT_GNU_HASH: /* .gnu.hash section. */
1844 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1845
1846 case SHT_DYNAMIC: /* Dynamic linking information. */
1847 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1848 return FALSE;
1849 if (hdr->sh_link > elf_numsections (abfd)
1850 || elf_elfsections (abfd)[hdr->sh_link] == NULL)
1851 return FALSE;
1852 if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_STRTAB)
1853 {
1854 Elf_Internal_Shdr *dynsymhdr;
1855
1856 /* The shared libraries distributed with hpux11 have a bogus
1857 sh_link field for the ".dynamic" section. Find the
1858 string table for the ".dynsym" section instead. */
1859 if (elf_dynsymtab (abfd) != 0)
1860 {
1861 dynsymhdr = elf_elfsections (abfd)[elf_dynsymtab (abfd)];
1862 hdr->sh_link = dynsymhdr->sh_link;
1863 }
1864 else
1865 {
1866 unsigned int i, num_sec;
1867
1868 num_sec = elf_numsections (abfd);
1869 for (i = 1; i < num_sec; i++)
1870 {
1871 dynsymhdr = elf_elfsections (abfd)[i];
1872 if (dynsymhdr->sh_type == SHT_DYNSYM)
1873 {
1874 hdr->sh_link = dynsymhdr->sh_link;
1875 break;
1876 }
1877 }
1878 }
1879 }
1880 break;
1881
1882 case SHT_SYMTAB: /* A symbol table */
1883 if (elf_onesymtab (abfd) == shindex)
1884 return TRUE;
1885
1886 if (hdr->sh_entsize != bed->s->sizeof_sym)
1887 return FALSE;
1888 BFD_ASSERT (elf_onesymtab (abfd) == 0);
1889 elf_onesymtab (abfd) = shindex;
1890 elf_tdata (abfd)->symtab_hdr = *hdr;
1891 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->symtab_hdr;
1892 abfd->flags |= HAS_SYMS;
1893
1894 /* Sometimes a shared object will map in the symbol table. If
1895 SHF_ALLOC is set, and this is a shared object, then we also
1896 treat this section as a BFD section. We can not base the
1897 decision purely on SHF_ALLOC, because that flag is sometimes
1898 set in a relocatable object file, which would confuse the
1899 linker. */
1900 if ((hdr->sh_flags & SHF_ALLOC) != 0
1901 && (abfd->flags & DYNAMIC) != 0
1902 && ! _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1903 shindex))
1904 return FALSE;
1905
1906 /* Go looking for SHT_SYMTAB_SHNDX too, since if there is one we
1907 can't read symbols without that section loaded as well. It
1908 is most likely specified by the next section header. */
1909 if (elf_elfsections (abfd)[elf_symtab_shndx (abfd)]->sh_link != shindex)
1910 {
1911 unsigned int i, num_sec;
1912
1913 num_sec = elf_numsections (abfd);
1914 for (i = shindex + 1; i < num_sec; i++)
1915 {
1916 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1917 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
1918 && hdr2->sh_link == shindex)
1919 break;
1920 }
1921 if (i == num_sec)
1922 for (i = 1; i < shindex; i++)
1923 {
1924 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1925 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
1926 && hdr2->sh_link == shindex)
1927 break;
1928 }
1929 if (i != shindex)
1930 return bfd_section_from_shdr (abfd, i);
1931 }
1932 return TRUE;
1933
1934 case SHT_DYNSYM: /* A dynamic symbol table */
1935 if (elf_dynsymtab (abfd) == shindex)
1936 return TRUE;
1937
1938 if (hdr->sh_entsize != bed->s->sizeof_sym)
1939 return FALSE;
1940 BFD_ASSERT (elf_dynsymtab (abfd) == 0);
1941 elf_dynsymtab (abfd) = shindex;
1942 elf_tdata (abfd)->dynsymtab_hdr = *hdr;
1943 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->dynsymtab_hdr;
1944 abfd->flags |= HAS_SYMS;
1945
1946 /* Besides being a symbol table, we also treat this as a regular
1947 section, so that objcopy can handle it. */
1948 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1949
1950 case SHT_SYMTAB_SHNDX: /* Symbol section indices when >64k sections */
1951 if (elf_symtab_shndx (abfd) == shindex)
1952 return TRUE;
1953
1954 BFD_ASSERT (elf_symtab_shndx (abfd) == 0);
1955 elf_symtab_shndx (abfd) = shindex;
1956 elf_tdata (abfd)->symtab_shndx_hdr = *hdr;
1957 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->symtab_shndx_hdr;
1958 return TRUE;
1959
1960 case SHT_STRTAB: /* A string table */
1961 if (hdr->bfd_section != NULL)
1962 return TRUE;
1963 if (ehdr->e_shstrndx == shindex)
1964 {
1965 elf_tdata (abfd)->shstrtab_hdr = *hdr;
1966 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->shstrtab_hdr;
1967 return TRUE;
1968 }
1969 if (elf_elfsections (abfd)[elf_onesymtab (abfd)]->sh_link == shindex)
1970 {
1971 symtab_strtab:
1972 elf_tdata (abfd)->strtab_hdr = *hdr;
1973 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->strtab_hdr;
1974 return TRUE;
1975 }
1976 if (elf_elfsections (abfd)[elf_dynsymtab (abfd)]->sh_link == shindex)
1977 {
1978 dynsymtab_strtab:
1979 elf_tdata (abfd)->dynstrtab_hdr = *hdr;
1980 hdr = &elf_tdata (abfd)->dynstrtab_hdr;
1981 elf_elfsections (abfd)[shindex] = hdr;
1982 /* We also treat this as a regular section, so that objcopy
1983 can handle it. */
1984 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1985 shindex);
1986 }
1987
1988 /* If the string table isn't one of the above, then treat it as a
1989 regular section. We need to scan all the headers to be sure,
1990 just in case this strtab section appeared before the above. */
1991 if (elf_onesymtab (abfd) == 0 || elf_dynsymtab (abfd) == 0)
1992 {
1993 unsigned int i, num_sec;
1994
1995 num_sec = elf_numsections (abfd);
1996 for (i = 1; i < num_sec; i++)
1997 {
1998 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1999 if (hdr2->sh_link == shindex)
2000 {
2001 /* Prevent endless recursion on broken objects. */
2002 if (i == shindex)
2003 return FALSE;
2004 if (! bfd_section_from_shdr (abfd, i))
2005 return FALSE;
2006 if (elf_onesymtab (abfd) == i)
2007 goto symtab_strtab;
2008 if (elf_dynsymtab (abfd) == i)
2009 goto dynsymtab_strtab;
2010 }
2011 }
2012 }
2013 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2014
2015 case SHT_REL:
2016 case SHT_RELA:
2017 /* *These* do a lot of work -- but build no sections! */
2018 {
2019 asection *target_sect;
2020 Elf_Internal_Shdr *hdr2;
2021 unsigned int num_sec = elf_numsections (abfd);
2022
2023 if (hdr->sh_entsize
2024 != (bfd_size_type) (hdr->sh_type == SHT_REL
2025 ? bed->s->sizeof_rel : bed->s->sizeof_rela))
2026 return FALSE;
2027
2028 /* Check for a bogus link to avoid crashing. */
2029 if ((hdr->sh_link >= SHN_LORESERVE && hdr->sh_link <= SHN_HIRESERVE)
2030 || hdr->sh_link >= num_sec)
2031 {
2032 ((*_bfd_error_handler)
2033 (_("%B: invalid link %lu for reloc section %s (index %u)"),
2034 abfd, hdr->sh_link, name, shindex));
2035 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2036 shindex);
2037 }
2038
2039 /* For some incomprehensible reason Oracle distributes
2040 libraries for Solaris in which some of the objects have
2041 bogus sh_link fields. It would be nice if we could just
2042 reject them, but, unfortunately, some people need to use
2043 them. We scan through the section headers; if we find only
2044 one suitable symbol table, we clobber the sh_link to point
2045 to it. I hope this doesn't break anything. */
2046 if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_SYMTAB
2047 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_DYNSYM)
2048 {
2049 unsigned int scan;
2050 int found;
2051
2052 found = 0;
2053 for (scan = 1; scan < num_sec; scan++)
2054 {
2055 if (elf_elfsections (abfd)[scan]->sh_type == SHT_SYMTAB
2056 || elf_elfsections (abfd)[scan]->sh_type == SHT_DYNSYM)
2057 {
2058 if (found != 0)
2059 {
2060 found = 0;
2061 break;
2062 }
2063 found = scan;
2064 }
2065 }
2066 if (found != 0)
2067 hdr->sh_link = found;
2068 }
2069
2070 /* Get the symbol table. */
2071 if ((elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_SYMTAB
2072 || elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_DYNSYM)
2073 && ! bfd_section_from_shdr (abfd, hdr->sh_link))
2074 return FALSE;
2075
2076 /* If this reloc section does not use the main symbol table we
2077 don't treat it as a reloc section. BFD can't adequately
2078 represent such a section, so at least for now, we don't
2079 try. We just present it as a normal section. We also
2080 can't use it as a reloc section if it points to the null
2081 section, an invalid section, or another reloc section. */
2082 if (hdr->sh_link != elf_onesymtab (abfd)
2083 || hdr->sh_info == SHN_UNDEF
2084 || (hdr->sh_info >= SHN_LORESERVE && hdr->sh_info <= SHN_HIRESERVE)
2085 || hdr->sh_info >= num_sec
2086 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_REL
2087 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_RELA)
2088 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2089 shindex);
2090
2091 if (! bfd_section_from_shdr (abfd, hdr->sh_info))
2092 return FALSE;
2093 target_sect = bfd_section_from_elf_index (abfd, hdr->sh_info);
2094 if (target_sect == NULL)
2095 return FALSE;
2096
2097 if ((target_sect->flags & SEC_RELOC) == 0
2098 || target_sect->reloc_count == 0)
2099 hdr2 = &elf_section_data (target_sect)->rel_hdr;
2100 else
2101 {
2102 bfd_size_type amt;
2103 BFD_ASSERT (elf_section_data (target_sect)->rel_hdr2 == NULL);
2104 amt = sizeof (*hdr2);
2105 hdr2 = bfd_alloc (abfd, amt);
2106 elf_section_data (target_sect)->rel_hdr2 = hdr2;
2107 }
2108 *hdr2 = *hdr;
2109 elf_elfsections (abfd)[shindex] = hdr2;
2110 target_sect->reloc_count += NUM_SHDR_ENTRIES (hdr);
2111 target_sect->flags |= SEC_RELOC;
2112 target_sect->relocation = NULL;
2113 target_sect->rel_filepos = hdr->sh_offset;
2114 /* In the section to which the relocations apply, mark whether
2115 its relocations are of the REL or RELA variety. */
2116 if (hdr->sh_size != 0)
2117 target_sect->use_rela_p = hdr->sh_type == SHT_RELA;
2118 abfd->flags |= HAS_RELOC;
2119 return TRUE;
2120 }
2121 break;
2122
2123 case SHT_GNU_verdef:
2124 elf_dynverdef (abfd) = shindex;
2125 elf_tdata (abfd)->dynverdef_hdr = *hdr;
2126 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2127 break;
2128
2129 case SHT_GNU_versym:
2130 if (hdr->sh_entsize != sizeof (Elf_External_Versym))
2131 return FALSE;
2132 elf_dynversym (abfd) = shindex;
2133 elf_tdata (abfd)->dynversym_hdr = *hdr;
2134 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2135
2136 case SHT_GNU_verneed:
2137 elf_dynverref (abfd) = shindex;
2138 elf_tdata (abfd)->dynverref_hdr = *hdr;
2139 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2140
2141 case SHT_SHLIB:
2142 return TRUE;
2143
2144 case SHT_GROUP:
2145 /* We need a BFD section for objcopy and relocatable linking,
2146 and it's handy to have the signature available as the section
2147 name. */
2148 if (hdr->sh_entsize != GRP_ENTRY_SIZE)
2149 return FALSE;
2150 name = group_signature (abfd, hdr);
2151 if (name == NULL)
2152 return FALSE;
2153 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2154 return FALSE;
2155 if (hdr->contents != NULL)
2156 {
2157 Elf_Internal_Group *idx = (Elf_Internal_Group *) hdr->contents;
2158 unsigned int n_elt = hdr->sh_size / 4;
2159 asection *s;
2160
2161 if (idx->flags & GRP_COMDAT)
2162 hdr->bfd_section->flags
2163 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
2164
2165 /* We try to keep the same section order as it comes in. */
2166 idx += n_elt;
2167 while (--n_elt != 0)
2168 if ((s = (--idx)->shdr->bfd_section) != NULL
2169 && elf_next_in_group (s) != NULL)
2170 {
2171 elf_next_in_group (hdr->bfd_section) = s;
2172 break;
2173 }
2174 }
2175 break;
2176
2177 default:
2178 /* Check for any processor-specific section types. */
2179 if (bed->elf_backend_section_from_shdr (abfd, hdr, name, shindex))
2180 return TRUE;
2181
2182 if (hdr->sh_type >= SHT_LOUSER && hdr->sh_type <= SHT_HIUSER)
2183 {
2184 if ((hdr->sh_flags & SHF_ALLOC) != 0)
2185 /* FIXME: How to properly handle allocated section reserved
2186 for applications? */
2187 (*_bfd_error_handler)
2188 (_("%B: don't know how to handle allocated, application "
2189 "specific section `%s' [0x%8x]"),
2190 abfd, name, hdr->sh_type);
2191 else
2192 /* Allow sections reserved for applications. */
2193 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2194 shindex);
2195 }
2196 else if (hdr->sh_type >= SHT_LOPROC
2197 && hdr->sh_type <= SHT_HIPROC)
2198 /* FIXME: We should handle this section. */
2199 (*_bfd_error_handler)
2200 (_("%B: don't know how to handle processor specific section "
2201 "`%s' [0x%8x]"),
2202 abfd, name, hdr->sh_type);
2203 else if (hdr->sh_type >= SHT_LOOS && hdr->sh_type <= SHT_HIOS)
2204 /* FIXME: We should handle this section. */
2205 (*_bfd_error_handler)
2206 (_("%B: don't know how to handle OS specific section "
2207 "`%s' [0x%8x]"),
2208 abfd, name, hdr->sh_type);
2209 else
2210 /* FIXME: We should handle this section. */
2211 (*_bfd_error_handler)
2212 (_("%B: don't know how to handle section `%s' [0x%8x]"),
2213 abfd, name, hdr->sh_type);
2214
2215 return FALSE;
2216 }
2217
2218 return TRUE;
2219 }
2220
2221 /* Return the section for the local symbol specified by ABFD, R_SYMNDX.
2222 Return SEC for sections that have no elf section, and NULL on error. */
2223
2224 asection *
2225 bfd_section_from_r_symndx (bfd *abfd,
2226 struct sym_sec_cache *cache,
2227 asection *sec,
2228 unsigned long r_symndx)
2229 {
2230 Elf_Internal_Shdr *symtab_hdr;
2231 unsigned char esym[sizeof (Elf64_External_Sym)];
2232 Elf_External_Sym_Shndx eshndx;
2233 Elf_Internal_Sym isym;
2234 unsigned int ent = r_symndx % LOCAL_SYM_CACHE_SIZE;
2235
2236 if (cache->abfd == abfd && cache->indx[ent] == r_symndx)
2237 return cache->sec[ent];
2238
2239 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2240 if (bfd_elf_get_elf_syms (abfd, symtab_hdr, 1, r_symndx,
2241 &isym, esym, &eshndx) == NULL)
2242 return NULL;
2243
2244 if (cache->abfd != abfd)
2245 {
2246 memset (cache->indx, -1, sizeof (cache->indx));
2247 cache->abfd = abfd;
2248 }
2249 cache->indx[ent] = r_symndx;
2250 cache->sec[ent] = sec;
2251 if ((isym.st_shndx != SHN_UNDEF && isym.st_shndx < SHN_LORESERVE)
2252 || isym.st_shndx > SHN_HIRESERVE)
2253 {
2254 asection *s;
2255 s = bfd_section_from_elf_index (abfd, isym.st_shndx);
2256 if (s != NULL)
2257 cache->sec[ent] = s;
2258 }
2259 return cache->sec[ent];
2260 }
2261
2262 /* Given an ELF section number, retrieve the corresponding BFD
2263 section. */
2264
2265 asection *
2266 bfd_section_from_elf_index (bfd *abfd, unsigned int index)
2267 {
2268 if (index >= elf_numsections (abfd))
2269 return NULL;
2270 return elf_elfsections (abfd)[index]->bfd_section;
2271 }
2272
2273 static const struct bfd_elf_special_section special_sections_b[] =
2274 {
2275 { ".bss", 4, -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2276 { NULL, 0, 0, 0, 0 }
2277 };
2278
2279 static const struct bfd_elf_special_section special_sections_c[] =
2280 {
2281 { ".comment", 8, 0, SHT_PROGBITS, 0 },
2282 { NULL, 0, 0, 0, 0 }
2283 };
2284
2285 static const struct bfd_elf_special_section special_sections_d[] =
2286 {
2287 { ".data", 5, -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2288 { ".data1", 6, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2289 { ".debug", 6, 0, SHT_PROGBITS, 0 },
2290 { ".debug_line", 11, 0, SHT_PROGBITS, 0 },
2291 { ".debug_info", 11, 0, SHT_PROGBITS, 0 },
2292 { ".debug_abbrev", 13, 0, SHT_PROGBITS, 0 },
2293 { ".debug_aranges", 14, 0, SHT_PROGBITS, 0 },
2294 { ".dynamic", 8, 0, SHT_DYNAMIC, SHF_ALLOC },
2295 { ".dynstr", 7, 0, SHT_STRTAB, SHF_ALLOC },
2296 { ".dynsym", 7, 0, SHT_DYNSYM, SHF_ALLOC },
2297 { NULL, 0, 0, 0, 0 }
2298 };
2299
2300 static const struct bfd_elf_special_section special_sections_f[] =
2301 {
2302 { ".fini", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2303 { ".fini_array", 11, 0, SHT_FINI_ARRAY, SHF_ALLOC + SHF_WRITE },
2304 { NULL, 0, 0, 0, 0 }
2305 };
2306
2307 static const struct bfd_elf_special_section special_sections_g[] =
2308 {
2309 { ".gnu.linkonce.b",15, -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2310 { ".got", 4, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2311 { ".gnu.version", 12, 0, SHT_GNU_versym, 0 },
2312 { ".gnu.version_d", 14, 0, SHT_GNU_verdef, 0 },
2313 { ".gnu.version_r", 14, 0, SHT_GNU_verneed, 0 },
2314 { ".gnu.liblist", 12, 0, SHT_GNU_LIBLIST, SHF_ALLOC },
2315 { ".gnu.conflict", 13, 0, SHT_RELA, SHF_ALLOC },
2316 { ".gnu.hash", 9, 0, SHT_GNU_HASH, SHF_ALLOC },
2317 { NULL, 0, 0, 0, 0 }
2318 };
2319
2320 static const struct bfd_elf_special_section special_sections_h[] =
2321 {
2322 { ".hash", 5, 0, SHT_HASH, SHF_ALLOC },
2323 { NULL, 0, 0, 0, 0 }
2324 };
2325
2326 static const struct bfd_elf_special_section special_sections_i[] =
2327 {
2328 { ".init", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2329 { ".init_array", 11, 0, SHT_INIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2330 { ".interp", 7, 0, SHT_PROGBITS, 0 },
2331 { NULL, 0, 0, 0, 0 }
2332 };
2333
2334 static const struct bfd_elf_special_section special_sections_l[] =
2335 {
2336 { ".line", 5, 0, SHT_PROGBITS, 0 },
2337 { NULL, 0, 0, 0, 0 }
2338 };
2339
2340 static const struct bfd_elf_special_section special_sections_n[] =
2341 {
2342 { ".note.GNU-stack",15, 0, SHT_PROGBITS, 0 },
2343 { ".note", 5, -1, SHT_NOTE, 0 },
2344 { NULL, 0, 0, 0, 0 }
2345 };
2346
2347 static const struct bfd_elf_special_section special_sections_p[] =
2348 {
2349 { ".preinit_array", 14, 0, SHT_PREINIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2350 { ".plt", 4, 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2351 { NULL, 0, 0, 0, 0 }
2352 };
2353
2354 static const struct bfd_elf_special_section special_sections_r[] =
2355 {
2356 { ".rodata", 7, -2, SHT_PROGBITS, SHF_ALLOC },
2357 { ".rodata1", 8, 0, SHT_PROGBITS, SHF_ALLOC },
2358 { ".rela", 5, -1, SHT_RELA, 0 },
2359 { ".rel", 4, -1, SHT_REL, 0 },
2360 { NULL, 0, 0, 0, 0 }
2361 };
2362
2363 static const struct bfd_elf_special_section special_sections_s[] =
2364 {
2365 { ".shstrtab", 9, 0, SHT_STRTAB, 0 },
2366 { ".strtab", 7, 0, SHT_STRTAB, 0 },
2367 { ".symtab", 7, 0, SHT_SYMTAB, 0 },
2368 { ".stabstr", 5, 3, SHT_STRTAB, 0 },
2369 { NULL, 0, 0, 0, 0 }
2370 };
2371
2372 static const struct bfd_elf_special_section special_sections_t[] =
2373 {
2374 { ".text", 5, -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2375 { ".tbss", 5, -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2376 { ".tdata", 6, -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2377 { NULL, 0, 0, 0, 0 }
2378 };
2379
2380 static const struct bfd_elf_special_section *special_sections[] =
2381 {
2382 special_sections_b, /* 'b' */
2383 special_sections_c, /* 'b' */
2384 special_sections_d, /* 'd' */
2385 NULL, /* 'e' */
2386 special_sections_f, /* 'f' */
2387 special_sections_g, /* 'g' */
2388 special_sections_h, /* 'h' */
2389 special_sections_i, /* 'i' */
2390 NULL, /* 'j' */
2391 NULL, /* 'k' */
2392 special_sections_l, /* 'l' */
2393 NULL, /* 'm' */
2394 special_sections_n, /* 'n' */
2395 NULL, /* 'o' */
2396 special_sections_p, /* 'p' */
2397 NULL, /* 'q' */
2398 special_sections_r, /* 'r' */
2399 special_sections_s, /* 's' */
2400 special_sections_t, /* 't' */
2401 };
2402
2403 const struct bfd_elf_special_section *
2404 _bfd_elf_get_special_section (const char *name,
2405 const struct bfd_elf_special_section *spec,
2406 unsigned int rela)
2407 {
2408 int i;
2409 int len;
2410
2411 len = strlen (name);
2412
2413 for (i = 0; spec[i].prefix != NULL; i++)
2414 {
2415 int suffix_len;
2416 int prefix_len = spec[i].prefix_length;
2417
2418 if (len < prefix_len)
2419 continue;
2420 if (memcmp (name, spec[i].prefix, prefix_len) != 0)
2421 continue;
2422
2423 suffix_len = spec[i].suffix_length;
2424 if (suffix_len <= 0)
2425 {
2426 if (name[prefix_len] != 0)
2427 {
2428 if (suffix_len == 0)
2429 continue;
2430 if (name[prefix_len] != '.'
2431 && (suffix_len == -2
2432 || (rela && spec[i].type == SHT_REL)))
2433 continue;
2434 }
2435 }
2436 else
2437 {
2438 if (len < prefix_len + suffix_len)
2439 continue;
2440 if (memcmp (name + len - suffix_len,
2441 spec[i].prefix + prefix_len,
2442 suffix_len) != 0)
2443 continue;
2444 }
2445 return &spec[i];
2446 }
2447
2448 return NULL;
2449 }
2450
2451 const struct bfd_elf_special_section *
2452 _bfd_elf_get_sec_type_attr (bfd *abfd, asection *sec)
2453 {
2454 int i;
2455 const struct bfd_elf_special_section *spec;
2456 const struct elf_backend_data *bed;
2457
2458 /* See if this is one of the special sections. */
2459 if (sec->name == NULL)
2460 return NULL;
2461
2462 bed = get_elf_backend_data (abfd);
2463 spec = bed->special_sections;
2464 if (spec)
2465 {
2466 spec = _bfd_elf_get_special_section (sec->name,
2467 bed->special_sections,
2468 sec->use_rela_p);
2469 if (spec != NULL)
2470 return spec;
2471 }
2472
2473 if (sec->name[0] != '.')
2474 return NULL;
2475
2476 i = sec->name[1] - 'b';
2477 if (i < 0 || i > 't' - 'b')
2478 return NULL;
2479
2480 spec = special_sections[i];
2481
2482 if (spec == NULL)
2483 return NULL;
2484
2485 return _bfd_elf_get_special_section (sec->name, spec, sec->use_rela_p);
2486 }
2487
2488 bfd_boolean
2489 _bfd_elf_new_section_hook (bfd *abfd, asection *sec)
2490 {
2491 struct bfd_elf_section_data *sdata;
2492 const struct elf_backend_data *bed;
2493 const struct bfd_elf_special_section *ssect;
2494
2495 sdata = (struct bfd_elf_section_data *) sec->used_by_bfd;
2496 if (sdata == NULL)
2497 {
2498 sdata = bfd_zalloc (abfd, sizeof (*sdata));
2499 if (sdata == NULL)
2500 return FALSE;
2501 sec->used_by_bfd = sdata;
2502 }
2503
2504 /* Indicate whether or not this section should use RELA relocations. */
2505 bed = get_elf_backend_data (abfd);
2506 sec->use_rela_p = bed->default_use_rela_p;
2507
2508 /* When we read a file, we don't need to set ELF section type and
2509 flags. They will be overridden in _bfd_elf_make_section_from_shdr
2510 anyway. We will set ELF section type and flags for all linker
2511 created sections. If user specifies BFD section flags, we will
2512 set ELF section type and flags based on BFD section flags in
2513 elf_fake_sections. */
2514 if ((!sec->flags && abfd->direction != read_direction)
2515 || (sec->flags & SEC_LINKER_CREATED) != 0)
2516 {
2517 ssect = (*bed->get_sec_type_attr) (abfd, sec);
2518 if (ssect != NULL)
2519 {
2520 elf_section_type (sec) = ssect->type;
2521 elf_section_flags (sec) = ssect->attr;
2522 }
2523 }
2524
2525 return _bfd_generic_new_section_hook (abfd, sec);
2526 }
2527
2528 /* Create a new bfd section from an ELF program header.
2529
2530 Since program segments have no names, we generate a synthetic name
2531 of the form segment<NUM>, where NUM is generally the index in the
2532 program header table. For segments that are split (see below) we
2533 generate the names segment<NUM>a and segment<NUM>b.
2534
2535 Note that some program segments may have a file size that is different than
2536 (less than) the memory size. All this means is that at execution the
2537 system must allocate the amount of memory specified by the memory size,
2538 but only initialize it with the first "file size" bytes read from the
2539 file. This would occur for example, with program segments consisting
2540 of combined data+bss.
2541
2542 To handle the above situation, this routine generates TWO bfd sections
2543 for the single program segment. The first has the length specified by
2544 the file size of the segment, and the second has the length specified
2545 by the difference between the two sizes. In effect, the segment is split
2546 into it's initialized and uninitialized parts.
2547
2548 */
2549
2550 bfd_boolean
2551 _bfd_elf_make_section_from_phdr (bfd *abfd,
2552 Elf_Internal_Phdr *hdr,
2553 int index,
2554 const char *typename)
2555 {
2556 asection *newsect;
2557 char *name;
2558 char namebuf[64];
2559 size_t len;
2560 int split;
2561
2562 split = ((hdr->p_memsz > 0)
2563 && (hdr->p_filesz > 0)
2564 && (hdr->p_memsz > hdr->p_filesz));
2565 sprintf (namebuf, "%s%d%s", typename, index, split ? "a" : "");
2566 len = strlen (namebuf) + 1;
2567 name = bfd_alloc (abfd, len);
2568 if (!name)
2569 return FALSE;
2570 memcpy (name, namebuf, len);
2571 newsect = bfd_make_section (abfd, name);
2572 if (newsect == NULL)
2573 return FALSE;
2574 newsect->vma = hdr->p_vaddr;
2575 newsect->lma = hdr->p_paddr;
2576 newsect->size = hdr->p_filesz;
2577 newsect->filepos = hdr->p_offset;
2578 newsect->flags |= SEC_HAS_CONTENTS;
2579 newsect->alignment_power = bfd_log2 (hdr->p_align);
2580 if (hdr->p_type == PT_LOAD)
2581 {
2582 newsect->flags |= SEC_ALLOC;
2583 newsect->flags |= SEC_LOAD;
2584 if (hdr->p_flags & PF_X)
2585 {
2586 /* FIXME: all we known is that it has execute PERMISSION,
2587 may be data. */
2588 newsect->flags |= SEC_CODE;
2589 }
2590 }
2591 if (!(hdr->p_flags & PF_W))
2592 {
2593 newsect->flags |= SEC_READONLY;
2594 }
2595
2596 if (split)
2597 {
2598 sprintf (namebuf, "%s%db", typename, index);
2599 len = strlen (namebuf) + 1;
2600 name = bfd_alloc (abfd, len);
2601 if (!name)
2602 return FALSE;
2603 memcpy (name, namebuf, len);
2604 newsect = bfd_make_section (abfd, name);
2605 if (newsect == NULL)
2606 return FALSE;
2607 newsect->vma = hdr->p_vaddr + hdr->p_filesz;
2608 newsect->lma = hdr->p_paddr + hdr->p_filesz;
2609 newsect->size = hdr->p_memsz - hdr->p_filesz;
2610 if (hdr->p_type == PT_LOAD)
2611 {
2612 newsect->flags |= SEC_ALLOC;
2613 if (hdr->p_flags & PF_X)
2614 newsect->flags |= SEC_CODE;
2615 }
2616 if (!(hdr->p_flags & PF_W))
2617 newsect->flags |= SEC_READONLY;
2618 }
2619
2620 return TRUE;
2621 }
2622
2623 bfd_boolean
2624 bfd_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int index)
2625 {
2626 const struct elf_backend_data *bed;
2627
2628 switch (hdr->p_type)
2629 {
2630 case PT_NULL:
2631 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "null");
2632
2633 case PT_LOAD:
2634 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "load");
2635
2636 case PT_DYNAMIC:
2637 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "dynamic");
2638
2639 case PT_INTERP:
2640 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "interp");
2641
2642 case PT_NOTE:
2643 if (! _bfd_elf_make_section_from_phdr (abfd, hdr, index, "note"))
2644 return FALSE;
2645 if (! elfcore_read_notes (abfd, hdr->p_offset, hdr->p_filesz))
2646 return FALSE;
2647 return TRUE;
2648
2649 case PT_SHLIB:
2650 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "shlib");
2651
2652 case PT_PHDR:
2653 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "phdr");
2654
2655 case PT_GNU_EH_FRAME:
2656 return _bfd_elf_make_section_from_phdr (abfd, hdr, index,
2657 "eh_frame_hdr");
2658
2659 case PT_GNU_STACK:
2660 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "stack");
2661
2662 case PT_GNU_RELRO:
2663 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "relro");
2664
2665 default:
2666 /* Check for any processor-specific program segment types. */
2667 bed = get_elf_backend_data (abfd);
2668 return bed->elf_backend_section_from_phdr (abfd, hdr, index, "proc");
2669 }
2670 }
2671
2672 /* Initialize REL_HDR, the section-header for new section, containing
2673 relocations against ASECT. If USE_RELA_P is TRUE, we use RELA
2674 relocations; otherwise, we use REL relocations. */
2675
2676 bfd_boolean
2677 _bfd_elf_init_reloc_shdr (bfd *abfd,
2678 Elf_Internal_Shdr *rel_hdr,
2679 asection *asect,
2680 bfd_boolean use_rela_p)
2681 {
2682 char *name;
2683 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2684 bfd_size_type amt = sizeof ".rela" + strlen (asect->name);
2685
2686 name = bfd_alloc (abfd, amt);
2687 if (name == NULL)
2688 return FALSE;
2689 sprintf (name, "%s%s", use_rela_p ? ".rela" : ".rel", asect->name);
2690 rel_hdr->sh_name =
2691 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd), name,
2692 FALSE);
2693 if (rel_hdr->sh_name == (unsigned int) -1)
2694 return FALSE;
2695 rel_hdr->sh_type = use_rela_p ? SHT_RELA : SHT_REL;
2696 rel_hdr->sh_entsize = (use_rela_p
2697 ? bed->s->sizeof_rela
2698 : bed->s->sizeof_rel);
2699 rel_hdr->sh_addralign = 1 << bed->s->log_file_align;
2700 rel_hdr->sh_flags = 0;
2701 rel_hdr->sh_addr = 0;
2702 rel_hdr->sh_size = 0;
2703 rel_hdr->sh_offset = 0;
2704
2705 return TRUE;
2706 }
2707
2708 /* Set up an ELF internal section header for a section. */
2709
2710 static void
2711 elf_fake_sections (bfd *abfd, asection *asect, void *failedptrarg)
2712 {
2713 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2714 bfd_boolean *failedptr = failedptrarg;
2715 Elf_Internal_Shdr *this_hdr;
2716
2717 if (*failedptr)
2718 {
2719 /* We already failed; just get out of the bfd_map_over_sections
2720 loop. */
2721 return;
2722 }
2723
2724 this_hdr = &elf_section_data (asect)->this_hdr;
2725
2726 this_hdr->sh_name = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
2727 asect->name, FALSE);
2728 if (this_hdr->sh_name == (unsigned int) -1)
2729 {
2730 *failedptr = TRUE;
2731 return;
2732 }
2733
2734 /* Don't clear sh_flags. Assembler may set additional bits. */
2735
2736 if ((asect->flags & SEC_ALLOC) != 0
2737 || asect->user_set_vma)
2738 this_hdr->sh_addr = asect->vma;
2739 else
2740 this_hdr->sh_addr = 0;
2741
2742 this_hdr->sh_offset = 0;
2743 this_hdr->sh_size = asect->size;
2744 this_hdr->sh_link = 0;
2745 this_hdr->sh_addralign = 1 << asect->alignment_power;
2746 /* The sh_entsize and sh_info fields may have been set already by
2747 copy_private_section_data. */
2748
2749 this_hdr->bfd_section = asect;
2750 this_hdr->contents = NULL;
2751
2752 /* If the section type is unspecified, we set it based on
2753 asect->flags. */
2754 if (this_hdr->sh_type == SHT_NULL)
2755 {
2756 if ((asect->flags & SEC_GROUP) != 0)
2757 this_hdr->sh_type = SHT_GROUP;
2758 else if ((asect->flags & SEC_ALLOC) != 0
2759 && (((asect->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
2760 || (asect->flags & SEC_NEVER_LOAD) != 0))
2761 this_hdr->sh_type = SHT_NOBITS;
2762 else
2763 this_hdr->sh_type = SHT_PROGBITS;
2764 }
2765
2766 switch (this_hdr->sh_type)
2767 {
2768 default:
2769 break;
2770
2771 case SHT_STRTAB:
2772 case SHT_INIT_ARRAY:
2773 case SHT_FINI_ARRAY:
2774 case SHT_PREINIT_ARRAY:
2775 case SHT_NOTE:
2776 case SHT_NOBITS:
2777 case SHT_PROGBITS:
2778 break;
2779
2780 case SHT_HASH:
2781 this_hdr->sh_entsize = bed->s->sizeof_hash_entry;
2782 break;
2783
2784 case SHT_DYNSYM:
2785 this_hdr->sh_entsize = bed->s->sizeof_sym;
2786 break;
2787
2788 case SHT_DYNAMIC:
2789 this_hdr->sh_entsize = bed->s->sizeof_dyn;
2790 break;
2791
2792 case SHT_RELA:
2793 if (get_elf_backend_data (abfd)->may_use_rela_p)
2794 this_hdr->sh_entsize = bed->s->sizeof_rela;
2795 break;
2796
2797 case SHT_REL:
2798 if (get_elf_backend_data (abfd)->may_use_rel_p)
2799 this_hdr->sh_entsize = bed->s->sizeof_rel;
2800 break;
2801
2802 case SHT_GNU_versym:
2803 this_hdr->sh_entsize = sizeof (Elf_External_Versym);
2804 break;
2805
2806 case SHT_GNU_verdef:
2807 this_hdr->sh_entsize = 0;
2808 /* objcopy or strip will copy over sh_info, but may not set
2809 cverdefs. The linker will set cverdefs, but sh_info will be
2810 zero. */
2811 if (this_hdr->sh_info == 0)
2812 this_hdr->sh_info = elf_tdata (abfd)->cverdefs;
2813 else
2814 BFD_ASSERT (elf_tdata (abfd)->cverdefs == 0
2815 || this_hdr->sh_info == elf_tdata (abfd)->cverdefs);
2816 break;
2817
2818 case SHT_GNU_verneed:
2819 this_hdr->sh_entsize = 0;
2820 /* objcopy or strip will copy over sh_info, but may not set
2821 cverrefs. The linker will set cverrefs, but sh_info will be
2822 zero. */
2823 if (this_hdr->sh_info == 0)
2824 this_hdr->sh_info = elf_tdata (abfd)->cverrefs;
2825 else
2826 BFD_ASSERT (elf_tdata (abfd)->cverrefs == 0
2827 || this_hdr->sh_info == elf_tdata (abfd)->cverrefs);
2828 break;
2829
2830 case SHT_GROUP:
2831 this_hdr->sh_entsize = 4;
2832 break;
2833
2834 case SHT_GNU_HASH:
2835 this_hdr->sh_entsize = bed->s->arch_size == 64 ? 0 : 4;
2836 break;
2837 }
2838
2839 if ((asect->flags & SEC_ALLOC) != 0)
2840 this_hdr->sh_flags |= SHF_ALLOC;
2841 if ((asect->flags & SEC_READONLY) == 0)
2842 this_hdr->sh_flags |= SHF_WRITE;
2843 if ((asect->flags & SEC_CODE) != 0)
2844 this_hdr->sh_flags |= SHF_EXECINSTR;
2845 if ((asect->flags & SEC_MERGE) != 0)
2846 {
2847 this_hdr->sh_flags |= SHF_MERGE;
2848 this_hdr->sh_entsize = asect->entsize;
2849 if ((asect->flags & SEC_STRINGS) != 0)
2850 this_hdr->sh_flags |= SHF_STRINGS;
2851 }
2852 if ((asect->flags & SEC_GROUP) == 0 && elf_group_name (asect) != NULL)
2853 this_hdr->sh_flags |= SHF_GROUP;
2854 if ((asect->flags & SEC_THREAD_LOCAL) != 0)
2855 {
2856 this_hdr->sh_flags |= SHF_TLS;
2857 if (asect->size == 0
2858 && (asect->flags & SEC_HAS_CONTENTS) == 0)
2859 {
2860 struct bfd_link_order *o = asect->map_tail.link_order;
2861
2862 this_hdr->sh_size = 0;
2863 if (o != NULL)
2864 {
2865 this_hdr->sh_size = o->offset + o->size;
2866 if (this_hdr->sh_size != 0)
2867 this_hdr->sh_type = SHT_NOBITS;
2868 }
2869 }
2870 }
2871
2872 /* Check for processor-specific section types. */
2873 if (bed->elf_backend_fake_sections
2874 && !(*bed->elf_backend_fake_sections) (abfd, this_hdr, asect))
2875 *failedptr = TRUE;
2876
2877 /* If the section has relocs, set up a section header for the
2878 SHT_REL[A] section. If two relocation sections are required for
2879 this section, it is up to the processor-specific back-end to
2880 create the other. */
2881 if ((asect->flags & SEC_RELOC) != 0
2882 && !_bfd_elf_init_reloc_shdr (abfd,
2883 &elf_section_data (asect)->rel_hdr,
2884 asect,
2885 asect->use_rela_p))
2886 *failedptr = TRUE;
2887 }
2888
2889 /* Fill in the contents of a SHT_GROUP section. */
2890
2891 void
2892 bfd_elf_set_group_contents (bfd *abfd, asection *sec, void *failedptrarg)
2893 {
2894 bfd_boolean *failedptr = failedptrarg;
2895 unsigned long symindx;
2896 asection *elt, *first;
2897 unsigned char *loc;
2898 bfd_boolean gas;
2899
2900 /* Ignore linker created group section. See elfNN_ia64_object_p in
2901 elfxx-ia64.c. */
2902 if (((sec->flags & (SEC_GROUP | SEC_LINKER_CREATED)) != SEC_GROUP)
2903 || *failedptr)
2904 return;
2905
2906 symindx = 0;
2907 if (elf_group_id (sec) != NULL)
2908 symindx = elf_group_id (sec)->udata.i;
2909
2910 if (symindx == 0)
2911 {
2912 /* If called from the assembler, swap_out_syms will have set up
2913 elf_section_syms; If called for "ld -r", use target_index. */
2914 if (elf_section_syms (abfd) != NULL)
2915 symindx = elf_section_syms (abfd)[sec->index]->udata.i;
2916 else
2917 symindx = sec->target_index;
2918 }
2919 elf_section_data (sec)->this_hdr.sh_info = symindx;
2920
2921 /* The contents won't be allocated for "ld -r" or objcopy. */
2922 gas = TRUE;
2923 if (sec->contents == NULL)
2924 {
2925 gas = FALSE;
2926 sec->contents = bfd_alloc (abfd, sec->size);
2927
2928 /* Arrange for the section to be written out. */
2929 elf_section_data (sec)->this_hdr.contents = sec->contents;
2930 if (sec->contents == NULL)
2931 {
2932 *failedptr = TRUE;
2933 return;
2934 }
2935 }
2936
2937 loc = sec->contents + sec->size;
2938
2939 /* Get the pointer to the first section in the group that gas
2940 squirreled away here. objcopy arranges for this to be set to the
2941 start of the input section group. */
2942 first = elt = elf_next_in_group (sec);
2943
2944 /* First element is a flag word. Rest of section is elf section
2945 indices for all the sections of the group. Write them backwards
2946 just to keep the group in the same order as given in .section
2947 directives, not that it matters. */
2948 while (elt != NULL)
2949 {
2950 asection *s;
2951 unsigned int idx;
2952
2953 loc -= 4;
2954 s = elt;
2955 if (!gas)
2956 s = s->output_section;
2957 idx = 0;
2958 if (s != NULL)
2959 idx = elf_section_data (s)->this_idx;
2960 H_PUT_32 (abfd, idx, loc);
2961 elt = elf_next_in_group (elt);
2962 if (elt == first)
2963 break;
2964 }
2965
2966 if ((loc -= 4) != sec->contents)
2967 abort ();
2968
2969 H_PUT_32 (abfd, sec->flags & SEC_LINK_ONCE ? GRP_COMDAT : 0, loc);
2970 }
2971
2972 /* Assign all ELF section numbers. The dummy first section is handled here
2973 too. The link/info pointers for the standard section types are filled
2974 in here too, while we're at it. */
2975
2976 static bfd_boolean
2977 assign_section_numbers (bfd *abfd, struct bfd_link_info *link_info)
2978 {
2979 struct elf_obj_tdata *t = elf_tdata (abfd);
2980 asection *sec;
2981 unsigned int section_number, secn;
2982 Elf_Internal_Shdr **i_shdrp;
2983 struct bfd_elf_section_data *d;
2984
2985 section_number = 1;
2986
2987 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd));
2988
2989 /* SHT_GROUP sections are in relocatable files only. */
2990 if (link_info == NULL || link_info->relocatable)
2991 {
2992 /* Put SHT_GROUP sections first. */
2993 for (sec = abfd->sections; sec != NULL; sec = sec->next)
2994 {
2995 d = elf_section_data (sec);
2996
2997 if (d->this_hdr.sh_type == SHT_GROUP)
2998 {
2999 if (sec->flags & SEC_LINKER_CREATED)
3000 {
3001 /* Remove the linker created SHT_GROUP sections. */
3002 bfd_section_list_remove (abfd, sec);
3003 abfd->section_count--;
3004 }
3005 else
3006 {
3007 if (section_number == SHN_LORESERVE)
3008 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
3009 d->this_idx = section_number++;
3010 }
3011 }
3012 }
3013 }
3014
3015 for (sec = abfd->sections; sec; sec = sec->next)
3016 {
3017 d = elf_section_data (sec);
3018
3019 if (d->this_hdr.sh_type != SHT_GROUP)
3020 {
3021 if (section_number == SHN_LORESERVE)
3022 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
3023 d->this_idx = section_number++;
3024 }
3025 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->this_hdr.sh_name);
3026 if ((sec->flags & SEC_RELOC) == 0)
3027 d->rel_idx = 0;
3028 else
3029 {
3030 if (section_number == SHN_LORESERVE)
3031 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
3032 d->rel_idx = section_number++;
3033 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel_hdr.sh_name);
3034 }
3035
3036 if (d->rel_hdr2)
3037 {
3038 if (section_number == SHN_LORESERVE)
3039 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
3040 d->rel_idx2 = section_number++;
3041 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel_hdr2->sh_name);
3042 }
3043 else
3044 d->rel_idx2 = 0;
3045 }
3046
3047 if (section_number == SHN_LORESERVE)
3048 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
3049 t->shstrtab_section = section_number++;
3050 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->shstrtab_hdr.sh_name);
3051 elf_elfheader (abfd)->e_shstrndx = t->shstrtab_section;
3052
3053 if (bfd_get_symcount (abfd) > 0)
3054 {
3055 if (section_number == SHN_LORESERVE)
3056 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
3057 t->symtab_section = section_number++;
3058 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->symtab_hdr.sh_name);
3059 if (section_number > SHN_LORESERVE - 2)
3060 {
3061 if (section_number == SHN_LORESERVE)
3062 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
3063 t->symtab_shndx_section = section_number++;
3064 t->symtab_shndx_hdr.sh_name
3065 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
3066 ".symtab_shndx", FALSE);
3067 if (t->symtab_shndx_hdr.sh_name == (unsigned int) -1)
3068 return FALSE;
3069 }
3070 if (section_number == SHN_LORESERVE)
3071 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
3072 t->strtab_section = section_number++;
3073 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->strtab_hdr.sh_name);
3074 }
3075
3076 _bfd_elf_strtab_finalize (elf_shstrtab (abfd));
3077 t->shstrtab_hdr.sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
3078
3079 elf_numsections (abfd) = section_number;
3080 elf_elfheader (abfd)->e_shnum = section_number;
3081 if (section_number > SHN_LORESERVE)
3082 elf_elfheader (abfd)->e_shnum -= SHN_HIRESERVE + 1 - SHN_LORESERVE;
3083
3084 /* Set up the list of section header pointers, in agreement with the
3085 indices. */
3086 i_shdrp = bfd_zalloc2 (abfd, section_number, sizeof (Elf_Internal_Shdr *));
3087 if (i_shdrp == NULL)
3088 return FALSE;
3089
3090 i_shdrp[0] = bfd_zalloc (abfd, sizeof (Elf_Internal_Shdr));
3091 if (i_shdrp[0] == NULL)
3092 {
3093 bfd_release (abfd, i_shdrp);
3094 return FALSE;
3095 }
3096
3097 elf_elfsections (abfd) = i_shdrp;
3098
3099 i_shdrp[t->shstrtab_section] = &t->shstrtab_hdr;
3100 if (bfd_get_symcount (abfd) > 0)
3101 {
3102 i_shdrp[t->symtab_section] = &t->symtab_hdr;
3103 if (elf_numsections (abfd) > SHN_LORESERVE)
3104 {
3105 i_shdrp[t->symtab_shndx_section] = &t->symtab_shndx_hdr;
3106 t->symtab_shndx_hdr.sh_link = t->symtab_section;
3107 }
3108 i_shdrp[t->strtab_section] = &t->strtab_hdr;
3109 t->symtab_hdr.sh_link = t->strtab_section;
3110 }
3111
3112 for (sec = abfd->sections; sec; sec = sec->next)
3113 {
3114 struct bfd_elf_section_data *d = elf_section_data (sec);
3115 asection *s;
3116 const char *name;
3117
3118 i_shdrp[d->this_idx] = &d->this_hdr;
3119 if (d->rel_idx != 0)
3120 i_shdrp[d->rel_idx] = &d->rel_hdr;
3121 if (d->rel_idx2 != 0)
3122 i_shdrp[d->rel_idx2] = d->rel_hdr2;
3123
3124 /* Fill in the sh_link and sh_info fields while we're at it. */
3125
3126 /* sh_link of a reloc section is the section index of the symbol
3127 table. sh_info is the section index of the section to which
3128 the relocation entries apply. */
3129 if (d->rel_idx != 0)
3130 {
3131 d->rel_hdr.sh_link = t->symtab_section;
3132 d->rel_hdr.sh_info = d->this_idx;
3133 }
3134 if (d->rel_idx2 != 0)
3135 {
3136 d->rel_hdr2->sh_link = t->symtab_section;
3137 d->rel_hdr2->sh_info = d->this_idx;
3138 }
3139
3140 /* We need to set up sh_link for SHF_LINK_ORDER. */
3141 if ((d->this_hdr.sh_flags & SHF_LINK_ORDER) != 0)
3142 {
3143 s = elf_linked_to_section (sec);
3144 if (s)
3145 {
3146 /* elf_linked_to_section points to the input section. */
3147 if (link_info != NULL)
3148 {
3149 /* Check discarded linkonce section. */
3150 if (elf_discarded_section (s))
3151 {
3152 asection *kept;
3153 (*_bfd_error_handler)
3154 (_("%B: sh_link of section `%A' points to discarded section `%A' of `%B'"),
3155 abfd, d->this_hdr.bfd_section,
3156 s, s->owner);
3157 /* Point to the kept section if it has the same
3158 size as the discarded one. */
3159 kept = _bfd_elf_check_kept_section (s);
3160 if (kept == NULL)
3161 {
3162 bfd_set_error (bfd_error_bad_value);
3163 return FALSE;
3164 }
3165 s = kept;
3166 }
3167
3168 s = s->output_section;
3169 BFD_ASSERT (s != NULL);
3170 }
3171 else
3172 {
3173 /* Handle objcopy. */
3174 if (s->output_section == NULL)
3175 {
3176 (*_bfd_error_handler)
3177 (_("%B: sh_link of section `%A' points to removed section `%A' of `%B'"),
3178 abfd, d->this_hdr.bfd_section, s, s->owner);
3179 bfd_set_error (bfd_error_bad_value);
3180 return FALSE;
3181 }
3182 s = s->output_section;
3183 }
3184 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3185 }
3186 else
3187 {
3188 /* PR 290:
3189 The Intel C compiler generates SHT_IA_64_UNWIND with
3190 SHF_LINK_ORDER. But it doesn't set the sh_link or
3191 sh_info fields. Hence we could get the situation
3192 where s is NULL. */
3193 const struct elf_backend_data *bed
3194 = get_elf_backend_data (abfd);
3195 if (bed->link_order_error_handler)
3196 bed->link_order_error_handler
3197 (_("%B: warning: sh_link not set for section `%A'"),
3198 abfd, sec);
3199 }
3200 }
3201
3202 switch (d->this_hdr.sh_type)
3203 {
3204 case SHT_REL:
3205 case SHT_RELA:
3206 /* A reloc section which we are treating as a normal BFD
3207 section. sh_link is the section index of the symbol
3208 table. sh_info is the section index of the section to
3209 which the relocation entries apply. We assume that an
3210 allocated reloc section uses the dynamic symbol table.
3211 FIXME: How can we be sure? */
3212 s = bfd_get_section_by_name (abfd, ".dynsym");
3213 if (s != NULL)
3214 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3215
3216 /* We look up the section the relocs apply to by name. */
3217 name = sec->name;
3218 if (d->this_hdr.sh_type == SHT_REL)
3219 name += 4;
3220 else
3221 name += 5;
3222 s = bfd_get_section_by_name (abfd, name);
3223 if (s != NULL)
3224 d->this_hdr.sh_info = elf_section_data (s)->this_idx;
3225 break;
3226
3227 case SHT_STRTAB:
3228 /* We assume that a section named .stab*str is a stabs
3229 string section. We look for a section with the same name
3230 but without the trailing ``str'', and set its sh_link
3231 field to point to this section. */
3232 if (strncmp (sec->name, ".stab", sizeof ".stab" - 1) == 0
3233 && strcmp (sec->name + strlen (sec->name) - 3, "str") == 0)
3234 {
3235 size_t len;
3236 char *alc;
3237
3238 len = strlen (sec->name);
3239 alc = bfd_malloc (len - 2);
3240 if (alc == NULL)
3241 return FALSE;
3242 memcpy (alc, sec->name, len - 3);
3243 alc[len - 3] = '\0';
3244 s = bfd_get_section_by_name (abfd, alc);
3245 free (alc);
3246 if (s != NULL)
3247 {
3248 elf_section_data (s)->this_hdr.sh_link = d->this_idx;
3249
3250 /* This is a .stab section. */
3251 if (elf_section_data (s)->this_hdr.sh_entsize == 0)
3252 elf_section_data (s)->this_hdr.sh_entsize
3253 = 4 + 2 * bfd_get_arch_size (abfd) / 8;
3254 }
3255 }
3256 break;
3257
3258 case SHT_DYNAMIC:
3259 case SHT_DYNSYM:
3260 case SHT_GNU_verneed:
3261 case SHT_GNU_verdef:
3262 /* sh_link is the section header index of the string table
3263 used for the dynamic entries, or the symbol table, or the
3264 version strings. */
3265 s = bfd_get_section_by_name (abfd, ".dynstr");
3266 if (s != NULL)
3267 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3268 break;
3269
3270 case SHT_GNU_LIBLIST:
3271 /* sh_link is the section header index of the prelink library
3272 list
3273 used for the dynamic entries, or the symbol table, or the
3274 version strings. */
3275 s = bfd_get_section_by_name (abfd, (sec->flags & SEC_ALLOC)
3276 ? ".dynstr" : ".gnu.libstr");
3277 if (s != NULL)
3278 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3279 break;
3280
3281 case SHT_HASH:
3282 case SHT_GNU_HASH:
3283 case SHT_GNU_versym:
3284 /* sh_link is the section header index of the symbol table
3285 this hash table or version table is for. */
3286 s = bfd_get_section_by_name (abfd, ".dynsym");
3287 if (s != NULL)
3288 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3289 break;
3290
3291 case SHT_GROUP:
3292 d->this_hdr.sh_link = t->symtab_section;
3293 }
3294 }
3295
3296 for (secn = 1; secn < section_number; ++secn)
3297 if (i_shdrp[secn] == NULL)
3298 i_shdrp[secn] = i_shdrp[0];
3299 else
3300 i_shdrp[secn]->sh_name = _bfd_elf_strtab_offset (elf_shstrtab (abfd),
3301 i_shdrp[secn]->sh_name);
3302 return TRUE;
3303 }
3304
3305 /* Map symbol from it's internal number to the external number, moving
3306 all local symbols to be at the head of the list. */
3307
3308 static bfd_boolean
3309 sym_is_global (bfd *abfd, asymbol *sym)
3310 {
3311 /* If the backend has a special mapping, use it. */
3312 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3313 if (bed->elf_backend_sym_is_global)
3314 return (*bed->elf_backend_sym_is_global) (abfd, sym);
3315
3316 return ((sym->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
3317 || bfd_is_und_section (bfd_get_section (sym))
3318 || bfd_is_com_section (bfd_get_section (sym)));
3319 }
3320
3321 /* Don't output section symbols for sections that are not going to be
3322 output. Also, don't output section symbols for reloc and other
3323 special sections. */
3324
3325 static bfd_boolean
3326 ignore_section_sym (bfd *abfd, asymbol *sym)
3327 {
3328 return ((sym->flags & BSF_SECTION_SYM) != 0
3329 && (sym->value != 0
3330 || (sym->section->owner != abfd
3331 && (sym->section->output_section->owner != abfd
3332 || sym->section->output_offset != 0))));
3333 }
3334
3335 static bfd_boolean
3336 elf_map_symbols (bfd *abfd)
3337 {
3338 unsigned int symcount = bfd_get_symcount (abfd);
3339 asymbol **syms = bfd_get_outsymbols (abfd);
3340 asymbol **sect_syms;
3341 unsigned int num_locals = 0;
3342 unsigned int num_globals = 0;
3343 unsigned int num_locals2 = 0;
3344 unsigned int num_globals2 = 0;
3345 int max_index = 0;
3346 unsigned int idx;
3347 asection *asect;
3348 asymbol **new_syms;
3349
3350 #ifdef DEBUG
3351 fprintf (stderr, "elf_map_symbols\n");
3352 fflush (stderr);
3353 #endif
3354
3355 for (asect = abfd->sections; asect; asect = asect->next)
3356 {
3357 if (max_index < asect->index)
3358 max_index = asect->index;
3359 }
3360
3361 max_index++;
3362 sect_syms = bfd_zalloc2 (abfd, max_index, sizeof (asymbol *));
3363 if (sect_syms == NULL)
3364 return FALSE;
3365 elf_section_syms (abfd) = sect_syms;
3366 elf_num_section_syms (abfd) = max_index;
3367
3368 /* Init sect_syms entries for any section symbols we have already
3369 decided to output. */
3370 for (idx = 0; idx < symcount; idx++)
3371 {
3372 asymbol *sym = syms[idx];
3373
3374 if ((sym->flags & BSF_SECTION_SYM) != 0
3375 && !ignore_section_sym (abfd, sym))
3376 {
3377 asection *sec = sym->section;
3378
3379 if (sec->owner != abfd)
3380 sec = sec->output_section;
3381
3382 sect_syms[sec->index] = syms[idx];
3383 }
3384 }
3385
3386 /* Classify all of the symbols. */
3387 for (idx = 0; idx < symcount; idx++)
3388 {
3389 if (ignore_section_sym (abfd, syms[idx]))
3390 continue;
3391 if (!sym_is_global (abfd, syms[idx]))
3392 num_locals++;
3393 else
3394 num_globals++;
3395 }
3396
3397 /* We will be adding a section symbol for each normal BFD section. Most
3398 sections will already have a section symbol in outsymbols, but
3399 eg. SHT_GROUP sections will not, and we need the section symbol mapped
3400 at least in that case. */
3401 for (asect = abfd->sections; asect; asect = asect->next)
3402 {
3403 if (sect_syms[asect->index] == NULL)
3404 {
3405 if (!sym_is_global (abfd, asect->symbol))
3406 num_locals++;
3407 else
3408 num_globals++;
3409 }
3410 }
3411
3412 /* Now sort the symbols so the local symbols are first. */
3413 new_syms = bfd_alloc2 (abfd, num_locals + num_globals, sizeof (asymbol *));
3414
3415 if (new_syms == NULL)
3416 return FALSE;
3417
3418 for (idx = 0; idx < symcount; idx++)
3419 {
3420 asymbol *sym = syms[idx];
3421 unsigned int i;
3422
3423 if (ignore_section_sym (abfd, sym))
3424 continue;
3425 if (!sym_is_global (abfd, sym))
3426 i = num_locals2++;
3427 else
3428 i = num_locals + num_globals2++;
3429 new_syms[i] = sym;
3430 sym->udata.i = i + 1;
3431 }
3432 for (asect = abfd->sections; asect; asect = asect->next)
3433 {
3434 if (sect_syms[asect->index] == NULL)
3435 {
3436 asymbol *sym = asect->symbol;
3437 unsigned int i;
3438
3439 sect_syms[asect->index] = sym;
3440 if (!sym_is_global (abfd, sym))
3441 i = num_locals2++;
3442 else
3443 i = num_locals + num_globals2++;
3444 new_syms[i] = sym;
3445 sym->udata.i = i + 1;
3446 }
3447 }
3448
3449 bfd_set_symtab (abfd, new_syms, num_locals + num_globals);
3450
3451 elf_num_locals (abfd) = num_locals;
3452 elf_num_globals (abfd) = num_globals;
3453 return TRUE;
3454 }
3455
3456 /* Align to the maximum file alignment that could be required for any
3457 ELF data structure. */
3458
3459 static inline file_ptr
3460 align_file_position (file_ptr off, int align)
3461 {
3462 return (off + align - 1) & ~(align - 1);
3463 }
3464
3465 /* Assign a file position to a section, optionally aligning to the
3466 required section alignment. */
3467
3468 file_ptr
3469 _bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr *i_shdrp,
3470 file_ptr offset,
3471 bfd_boolean align)
3472 {
3473 if (align)
3474 {
3475 unsigned int al;
3476
3477 al = i_shdrp->sh_addralign;
3478 if (al > 1)
3479 offset = BFD_ALIGN (offset, al);
3480 }
3481 i_shdrp->sh_offset = offset;
3482 if (i_shdrp->bfd_section != NULL)
3483 i_shdrp->bfd_section->filepos = offset;
3484 if (i_shdrp->sh_type != SHT_NOBITS)
3485 offset += i_shdrp->sh_size;
3486 return offset;
3487 }
3488
3489 /* Compute the file positions we are going to put the sections at, and
3490 otherwise prepare to begin writing out the ELF file. If LINK_INFO
3491 is not NULL, this is being called by the ELF backend linker. */
3492
3493 bfd_boolean
3494 _bfd_elf_compute_section_file_positions (bfd *abfd,
3495 struct bfd_link_info *link_info)
3496 {
3497 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3498 bfd_boolean failed;
3499 struct bfd_strtab_hash *strtab = NULL;
3500 Elf_Internal_Shdr *shstrtab_hdr;
3501
3502 if (abfd->output_has_begun)
3503 return TRUE;
3504
3505 /* Do any elf backend specific processing first. */
3506 if (bed->elf_backend_begin_write_processing)
3507 (*bed->elf_backend_begin_write_processing) (abfd, link_info);
3508
3509 if (! prep_headers (abfd))
3510 return FALSE;
3511
3512 /* Post process the headers if necessary. */
3513 if (bed->elf_backend_post_process_headers)
3514 (*bed->elf_backend_post_process_headers) (abfd, link_info);
3515
3516 failed = FALSE;
3517 bfd_map_over_sections (abfd, elf_fake_sections, &failed);
3518 if (failed)
3519 return FALSE;
3520
3521 if (!assign_section_numbers (abfd, link_info))
3522 return FALSE;
3523
3524 /* The backend linker builds symbol table information itself. */
3525 if (link_info == NULL && bfd_get_symcount (abfd) > 0)
3526 {
3527 /* Non-zero if doing a relocatable link. */
3528 int relocatable_p = ! (abfd->flags & (EXEC_P | DYNAMIC));
3529
3530 if (! swap_out_syms (abfd, &strtab, relocatable_p))
3531 return FALSE;
3532 }
3533
3534 if (link_info == NULL)
3535 {
3536 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
3537 if (failed)
3538 return FALSE;
3539 }
3540
3541 shstrtab_hdr = &elf_tdata (abfd)->shstrtab_hdr;
3542 /* sh_name was set in prep_headers. */
3543 shstrtab_hdr->sh_type = SHT_STRTAB;
3544 shstrtab_hdr->sh_flags = 0;
3545 shstrtab_hdr->sh_addr = 0;
3546 shstrtab_hdr->sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
3547 shstrtab_hdr->sh_entsize = 0;
3548 shstrtab_hdr->sh_link = 0;
3549 shstrtab_hdr->sh_info = 0;
3550 /* sh_offset is set in assign_file_positions_except_relocs. */
3551 shstrtab_hdr->sh_addralign = 1;
3552
3553 if (!assign_file_positions_except_relocs (abfd, link_info))
3554 return FALSE;
3555
3556 if (link_info == NULL && bfd_get_symcount (abfd) > 0)
3557 {
3558 file_ptr off;
3559 Elf_Internal_Shdr *hdr;
3560
3561 off = elf_tdata (abfd)->next_file_pos;
3562
3563 hdr = &elf_tdata (abfd)->symtab_hdr;
3564 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3565
3566 hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
3567 if (hdr->sh_size != 0)
3568 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3569
3570 hdr = &elf_tdata (abfd)->strtab_hdr;
3571 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3572
3573 elf_tdata (abfd)->next_file_pos = off;
3574
3575 /* Now that we know where the .strtab section goes, write it
3576 out. */
3577 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
3578 || ! _bfd_stringtab_emit (abfd, strtab))
3579 return FALSE;
3580 _bfd_stringtab_free (strtab);
3581 }
3582
3583 abfd->output_has_begun = TRUE;
3584
3585 return TRUE;
3586 }
3587
3588 /* Make an initial estimate of the size of the program header. If we
3589 get the number wrong here, we'll redo section placement. */
3590
3591 static bfd_size_type
3592 get_program_header_size (bfd *abfd, struct bfd_link_info *info)
3593 {
3594 size_t segs;
3595 asection *s;
3596 const struct elf_backend_data *bed;
3597
3598 /* Assume we will need exactly two PT_LOAD segments: one for text
3599 and one for data. */
3600 segs = 2;
3601
3602 s = bfd_get_section_by_name (abfd, ".interp");
3603 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3604 {
3605 /* If we have a loadable interpreter section, we need a
3606 PT_INTERP segment. In this case, assume we also need a
3607 PT_PHDR segment, although that may not be true for all
3608 targets. */
3609 segs += 2;
3610 }
3611
3612 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
3613 {
3614 /* We need a PT_DYNAMIC segment. */
3615 ++segs;
3616 }
3617
3618 if (elf_tdata (abfd)->eh_frame_hdr)
3619 {
3620 /* We need a PT_GNU_EH_FRAME segment. */
3621 ++segs;
3622 }
3623
3624 if (elf_tdata (abfd)->stack_flags)
3625 {
3626 /* We need a PT_GNU_STACK segment. */
3627 ++segs;
3628 }
3629
3630 if (elf_tdata (abfd)->relro)
3631 {
3632 /* We need a PT_GNU_RELRO segment. */
3633 ++segs;
3634 }
3635
3636 for (s = abfd->sections; s != NULL; s = s->next)
3637 {
3638 if ((s->flags & SEC_LOAD) != 0
3639 && strncmp (s->name, ".note", 5) == 0)
3640 {
3641 /* We need a PT_NOTE segment. */
3642 ++segs;
3643 }
3644 }
3645
3646 for (s = abfd->sections; s != NULL; s = s->next)
3647 {
3648 if (s->flags & SEC_THREAD_LOCAL)
3649 {
3650 /* We need a PT_TLS segment. */
3651 ++segs;
3652 break;
3653 }
3654 }
3655
3656 /* Let the backend count up any program headers it might need. */
3657 bed = get_elf_backend_data (abfd);
3658 if (bed->elf_backend_additional_program_headers)
3659 {
3660 int a;
3661
3662 a = (*bed->elf_backend_additional_program_headers) (abfd, info);
3663 if (a == -1)
3664 abort ();
3665 segs += a;
3666 }
3667
3668 return segs * bed->s->sizeof_phdr;
3669 }
3670
3671 /* Create a mapping from a set of sections to a program segment. */
3672
3673 static struct elf_segment_map *
3674 make_mapping (bfd *abfd,
3675 asection **sections,
3676 unsigned int from,
3677 unsigned int to,
3678 bfd_boolean phdr)
3679 {
3680 struct elf_segment_map *m;
3681 unsigned int i;
3682 asection **hdrpp;
3683 bfd_size_type amt;
3684
3685 amt = sizeof (struct elf_segment_map);
3686 amt += (to - from - 1) * sizeof (asection *);
3687 m = bfd_zalloc (abfd, amt);
3688 if (m == NULL)
3689 return NULL;
3690 m->next = NULL;
3691 m->p_type = PT_LOAD;
3692 for (i = from, hdrpp = sections + from; i < to; i++, hdrpp++)
3693 m->sections[i - from] = *hdrpp;
3694 m->count = to - from;
3695
3696 if (from == 0 && phdr)
3697 {
3698 /* Include the headers in the first PT_LOAD segment. */
3699 m->includes_filehdr = 1;
3700 m->includes_phdrs = 1;
3701 }
3702
3703 return m;
3704 }
3705
3706 /* Create the PT_DYNAMIC segment, which includes DYNSEC. Returns NULL
3707 on failure. */
3708
3709 struct elf_segment_map *
3710 _bfd_elf_make_dynamic_segment (bfd *abfd, asection *dynsec)
3711 {
3712 struct elf_segment_map *m;
3713
3714 m = bfd_zalloc (abfd, sizeof (struct elf_segment_map));
3715 if (m == NULL)
3716 return NULL;
3717 m->next = NULL;
3718 m->p_type = PT_DYNAMIC;
3719 m->count = 1;
3720 m->sections[0] = dynsec;
3721
3722 return m;
3723 }
3724
3725 /* Possibly add or remove segments from the segment map. */
3726
3727 static bfd_boolean
3728 elf_modify_segment_map (bfd *abfd, struct bfd_link_info *info)
3729 {
3730 struct elf_segment_map *m;
3731 const struct elf_backend_data *bed;
3732
3733 /* The placement algorithm assumes that non allocated sections are
3734 not in PT_LOAD segments. We ensure this here by removing such
3735 sections from the segment map. We also remove excluded
3736 sections. */
3737 for (m = elf_tdata (abfd)->segment_map;
3738 m != NULL;
3739 m = m->next)
3740 {
3741 unsigned int i, new_count;
3742
3743 new_count = 0;
3744 for (i = 0; i < m->count; i ++)
3745 {
3746 if ((m->sections[i]->flags & SEC_EXCLUDE) == 0
3747 && ((m->sections[i]->flags & SEC_ALLOC) != 0
3748 || m->p_type != PT_LOAD))
3749 {
3750 if (i != new_count)
3751 m->sections[new_count] = m->sections[i];
3752
3753 new_count ++;
3754 }
3755 }
3756
3757 if (new_count != m->count)
3758 m->count = new_count;
3759 }
3760
3761 bed = get_elf_backend_data (abfd);
3762 if (bed->elf_backend_modify_segment_map != NULL)
3763 {
3764 if (! (*bed->elf_backend_modify_segment_map) (abfd, info))
3765 return FALSE;
3766 }
3767
3768 return TRUE;
3769 }
3770
3771 /* Set up a mapping from BFD sections to program segments. */
3772
3773 bfd_boolean
3774 _bfd_elf_map_sections_to_segments (bfd *abfd, struct bfd_link_info *info)
3775 {
3776 unsigned int count;
3777 struct elf_segment_map *m;
3778 asection **sections = NULL;
3779 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3780
3781 if (elf_tdata (abfd)->segment_map == NULL
3782 && bfd_count_sections (abfd) != 0)
3783 {
3784 asection *s;
3785 unsigned int i;
3786 struct elf_segment_map *mfirst;
3787 struct elf_segment_map **pm;
3788 asection *last_hdr;
3789 bfd_vma last_size;
3790 unsigned int phdr_index;
3791 bfd_vma maxpagesize;
3792 asection **hdrpp;
3793 bfd_boolean phdr_in_segment = TRUE;
3794 bfd_boolean writable;
3795 int tls_count = 0;
3796 asection *first_tls = NULL;
3797 asection *dynsec, *eh_frame_hdr;
3798 bfd_size_type amt;
3799
3800 /* Select the allocated sections, and sort them. */
3801
3802 sections = bfd_malloc2 (bfd_count_sections (abfd), sizeof (asection *));
3803 if (sections == NULL)
3804 goto error_return;
3805
3806 i = 0;
3807 for (s = abfd->sections; s != NULL; s = s->next)
3808 {
3809 if ((s->flags & SEC_ALLOC) != 0)
3810 {
3811 sections[i] = s;
3812 ++i;
3813 }
3814 }
3815 BFD_ASSERT (i <= bfd_count_sections (abfd));
3816 count = i;
3817
3818 qsort (sections, (size_t) count, sizeof (asection *), elf_sort_sections);
3819
3820 /* Build the mapping. */
3821
3822 mfirst = NULL;
3823 pm = &mfirst;
3824
3825 /* If we have a .interp section, then create a PT_PHDR segment for
3826 the program headers and a PT_INTERP segment for the .interp
3827 section. */
3828 s = bfd_get_section_by_name (abfd, ".interp");
3829 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3830 {
3831 amt = sizeof (struct elf_segment_map);
3832 m = bfd_zalloc (abfd, amt);
3833 if (m == NULL)
3834 goto error_return;
3835 m->next = NULL;
3836 m->p_type = PT_PHDR;
3837 /* FIXME: UnixWare and Solaris set PF_X, Irix 5 does not. */
3838 m->p_flags = PF_R | PF_X;
3839 m->p_flags_valid = 1;
3840 m->includes_phdrs = 1;
3841
3842 *pm = m;
3843 pm = &m->next;
3844
3845 amt = sizeof (struct elf_segment_map);
3846 m = bfd_zalloc (abfd, amt);
3847 if (m == NULL)
3848 goto error_return;
3849 m->next = NULL;
3850 m->p_type = PT_INTERP;
3851 m->count = 1;
3852 m->sections[0] = s;
3853
3854 *pm = m;
3855 pm = &m->next;
3856 }
3857
3858 /* Look through the sections. We put sections in the same program
3859 segment when the start of the second section can be placed within
3860 a few bytes of the end of the first section. */
3861 last_hdr = NULL;
3862 last_size = 0;
3863 phdr_index = 0;
3864 maxpagesize = bed->maxpagesize;
3865 writable = FALSE;
3866 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
3867 if (dynsec != NULL
3868 && (dynsec->flags & SEC_LOAD) == 0)
3869 dynsec = NULL;
3870
3871 /* Deal with -Ttext or something similar such that the first section
3872 is not adjacent to the program headers. This is an
3873 approximation, since at this point we don't know exactly how many
3874 program headers we will need. */
3875 if (count > 0)
3876 {
3877 bfd_size_type phdr_size = elf_tdata (abfd)->program_header_size;
3878
3879 if (phdr_size == (bfd_size_type) -1)
3880 phdr_size = get_program_header_size (abfd, info);
3881 if ((abfd->flags & D_PAGED) == 0
3882 || sections[0]->lma < phdr_size
3883 || sections[0]->lma % maxpagesize < phdr_size % maxpagesize)
3884 phdr_in_segment = FALSE;
3885 }
3886
3887 for (i = 0, hdrpp = sections; i < count; i++, hdrpp++)
3888 {
3889 asection *hdr;
3890 bfd_boolean new_segment;
3891
3892 hdr = *hdrpp;
3893
3894 /* See if this section and the last one will fit in the same
3895 segment. */
3896
3897 if (last_hdr == NULL)
3898 {
3899 /* If we don't have a segment yet, then we don't need a new
3900 one (we build the last one after this loop). */
3901 new_segment = FALSE;
3902 }
3903 else if (last_hdr->lma - last_hdr->vma != hdr->lma - hdr->vma)
3904 {
3905 /* If this section has a different relation between the
3906 virtual address and the load address, then we need a new
3907 segment. */
3908 new_segment = TRUE;
3909 }
3910 else if (BFD_ALIGN (last_hdr->lma + last_size, maxpagesize)
3911 < BFD_ALIGN (hdr->lma, maxpagesize))
3912 {
3913 /* If putting this section in this segment would force us to
3914 skip a page in the segment, then we need a new segment. */
3915 new_segment = TRUE;
3916 }
3917 else if ((last_hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0
3918 && (hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) != 0)
3919 {
3920 /* We don't want to put a loadable section after a
3921 nonloadable section in the same segment.
3922 Consider .tbss sections as loadable for this purpose. */
3923 new_segment = TRUE;
3924 }
3925 else if ((abfd->flags & D_PAGED) == 0)
3926 {
3927 /* If the file is not demand paged, which means that we
3928 don't require the sections to be correctly aligned in the
3929 file, then there is no other reason for a new segment. */
3930 new_segment = FALSE;
3931 }
3932 else if (! writable
3933 && (hdr->flags & SEC_READONLY) == 0
3934 && (((last_hdr->lma + last_size - 1)
3935 & ~(maxpagesize - 1))
3936 != (hdr->lma & ~(maxpagesize - 1))))
3937 {
3938 /* We don't want to put a writable section in a read only
3939 segment, unless they are on the same page in memory
3940 anyhow. We already know that the last section does not
3941 bring us past the current section on the page, so the
3942 only case in which the new section is not on the same
3943 page as the previous section is when the previous section
3944 ends precisely on a page boundary. */
3945 new_segment = TRUE;
3946 }
3947 else
3948 {
3949 /* Otherwise, we can use the same segment. */
3950 new_segment = FALSE;
3951 }
3952
3953 if (! new_segment)
3954 {
3955 if ((hdr->flags & SEC_READONLY) == 0)
3956 writable = TRUE;
3957 last_hdr = hdr;
3958 /* .tbss sections effectively have zero size. */
3959 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD))
3960 != SEC_THREAD_LOCAL)
3961 last_size = hdr->size;
3962 else
3963 last_size = 0;
3964 continue;
3965 }
3966
3967 /* We need a new program segment. We must create a new program
3968 header holding all the sections from phdr_index until hdr. */
3969
3970 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
3971 if (m == NULL)
3972 goto error_return;
3973
3974 *pm = m;
3975 pm = &m->next;
3976
3977 if ((hdr->flags & SEC_READONLY) == 0)
3978 writable = TRUE;
3979 else
3980 writable = FALSE;
3981
3982 last_hdr = hdr;
3983 /* .tbss sections effectively have zero size. */
3984 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) != SEC_THREAD_LOCAL)
3985 last_size = hdr->size;
3986 else
3987 last_size = 0;
3988 phdr_index = i;
3989 phdr_in_segment = FALSE;
3990 }
3991
3992 /* Create a final PT_LOAD program segment. */
3993 if (last_hdr != NULL)
3994 {
3995 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
3996 if (m == NULL)
3997 goto error_return;
3998
3999 *pm = m;
4000 pm = &m->next;
4001 }
4002
4003 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
4004 if (dynsec != NULL)
4005 {
4006 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
4007 if (m == NULL)
4008 goto error_return;
4009 *pm = m;
4010 pm = &m->next;
4011 }
4012
4013 /* For each loadable .note section, add a PT_NOTE segment. We don't
4014 use bfd_get_section_by_name, because if we link together
4015 nonloadable .note sections and loadable .note sections, we will
4016 generate two .note sections in the output file. FIXME: Using
4017 names for section types is bogus anyhow. */
4018 for (s = abfd->sections; s != NULL; s = s->next)
4019 {
4020 if ((s->flags & SEC_LOAD) != 0
4021 && strncmp (s->name, ".note", 5) == 0)
4022 {
4023 amt = sizeof (struct elf_segment_map);
4024 m = bfd_zalloc (abfd, amt);
4025 if (m == NULL)
4026 goto error_return;
4027 m->next = NULL;
4028 m->p_type = PT_NOTE;
4029 m->count = 1;
4030 m->sections[0] = s;
4031
4032 *pm = m;
4033 pm = &m->next;
4034 }
4035 if (s->flags & SEC_THREAD_LOCAL)
4036 {
4037 if (! tls_count)
4038 first_tls = s;
4039 tls_count++;
4040 }
4041 }
4042
4043 /* If there are any SHF_TLS output sections, add PT_TLS segment. */
4044 if (tls_count > 0)
4045 {
4046 int i;
4047
4048 amt = sizeof (struct elf_segment_map);
4049 amt += (tls_count - 1) * sizeof (asection *);
4050 m = bfd_zalloc (abfd, amt);
4051 if (m == NULL)
4052 goto error_return;
4053 m->next = NULL;
4054 m->p_type = PT_TLS;
4055 m->count = tls_count;
4056 /* Mandated PF_R. */
4057 m->p_flags = PF_R;
4058 m->p_flags_valid = 1;
4059 for (i = 0; i < tls_count; ++i)
4060 {
4061 BFD_ASSERT (first_tls->flags & SEC_THREAD_LOCAL);
4062 m->sections[i] = first_tls;
4063 first_tls = first_tls->next;
4064 }
4065
4066 *pm = m;
4067 pm = &m->next;
4068 }
4069
4070 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
4071 segment. */
4072 eh_frame_hdr = elf_tdata (abfd)->eh_frame_hdr;
4073 if (eh_frame_hdr != NULL
4074 && (eh_frame_hdr->output_section->flags & SEC_LOAD) != 0)
4075 {
4076 amt = sizeof (struct elf_segment_map);
4077 m = bfd_zalloc (abfd, amt);
4078 if (m == NULL)
4079 goto error_return;
4080 m->next = NULL;
4081 m->p_type = PT_GNU_EH_FRAME;
4082 m->count = 1;
4083 m->sections[0] = eh_frame_hdr->output_section;
4084
4085 *pm = m;
4086 pm = &m->next;
4087 }
4088
4089 if (elf_tdata (abfd)->stack_flags)
4090 {
4091 amt = sizeof (struct elf_segment_map);
4092 m = bfd_zalloc (abfd, amt);
4093 if (m == NULL)
4094 goto error_return;
4095 m->next = NULL;
4096 m->p_type = PT_GNU_STACK;
4097 m->p_flags = elf_tdata (abfd)->stack_flags;
4098 m->p_flags_valid = 1;
4099
4100 *pm = m;
4101 pm = &m->next;
4102 }
4103
4104 if (elf_tdata (abfd)->relro)
4105 {
4106 amt = sizeof (struct elf_segment_map);
4107 m = bfd_zalloc (abfd, amt);
4108 if (m == NULL)
4109 goto error_return;
4110 m->next = NULL;
4111 m->p_type = PT_GNU_RELRO;
4112 m->p_flags = PF_R;
4113 m->p_flags_valid = 1;
4114
4115 *pm = m;
4116 pm = &m->next;
4117 }
4118
4119 free (sections);
4120 elf_tdata (abfd)->segment_map = mfirst;
4121 }
4122
4123 if (!elf_modify_segment_map (abfd, info))
4124 return FALSE;
4125
4126 for (count = 0, m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
4127 ++count;
4128 elf_tdata (abfd)->program_header_size = count * bed->s->sizeof_phdr;
4129
4130 return TRUE;
4131
4132 error_return:
4133 if (sections != NULL)
4134 free (sections);
4135 return FALSE;
4136 }
4137
4138 /* Sort sections by address. */
4139
4140 static int
4141 elf_sort_sections (const void *arg1, const void *arg2)
4142 {
4143 const asection *sec1 = *(const asection **) arg1;
4144 const asection *sec2 = *(const asection **) arg2;
4145 bfd_size_type size1, size2;
4146
4147 /* Sort by LMA first, since this is the address used to
4148 place the section into a segment. */
4149 if (sec1->lma < sec2->lma)
4150 return -1;
4151 else if (sec1->lma > sec2->lma)
4152 return 1;
4153
4154 /* Then sort by VMA. Normally the LMA and the VMA will be
4155 the same, and this will do nothing. */
4156 if (sec1->vma < sec2->vma)
4157 return -1;
4158 else if (sec1->vma > sec2->vma)
4159 return 1;
4160
4161 /* Put !SEC_LOAD sections after SEC_LOAD ones. */
4162
4163 #define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0)
4164
4165 if (TOEND (sec1))
4166 {
4167 if (TOEND (sec2))
4168 {
4169 /* If the indicies are the same, do not return 0
4170 here, but continue to try the next comparison. */
4171 if (sec1->target_index - sec2->target_index != 0)
4172 return sec1->target_index - sec2->target_index;
4173 }
4174 else
4175 return 1;
4176 }
4177 else if (TOEND (sec2))
4178 return -1;
4179
4180 #undef TOEND
4181
4182 /* Sort by size, to put zero sized sections
4183 before others at the same address. */
4184
4185 size1 = (sec1->flags & SEC_LOAD) ? sec1->size : 0;
4186 size2 = (sec2->flags & SEC_LOAD) ? sec2->size : 0;
4187
4188 if (size1 < size2)
4189 return -1;
4190 if (size1 > size2)
4191 return 1;
4192
4193 return sec1->target_index - sec2->target_index;
4194 }
4195
4196 /* Ian Lance Taylor writes:
4197
4198 We shouldn't be using % with a negative signed number. That's just
4199 not good. We have to make sure either that the number is not
4200 negative, or that the number has an unsigned type. When the types
4201 are all the same size they wind up as unsigned. When file_ptr is a
4202 larger signed type, the arithmetic winds up as signed long long,
4203 which is wrong.
4204
4205 What we're trying to say here is something like ``increase OFF by
4206 the least amount that will cause it to be equal to the VMA modulo
4207 the page size.'' */
4208 /* In other words, something like:
4209
4210 vma_offset = m->sections[0]->vma % bed->maxpagesize;
4211 off_offset = off % bed->maxpagesize;
4212 if (vma_offset < off_offset)
4213 adjustment = vma_offset + bed->maxpagesize - off_offset;
4214 else
4215 adjustment = vma_offset - off_offset;
4216
4217 which can can be collapsed into the expression below. */
4218
4219 static file_ptr
4220 vma_page_aligned_bias (bfd_vma vma, ufile_ptr off, bfd_vma maxpagesize)
4221 {
4222 return ((vma - off) % maxpagesize);
4223 }
4224
4225 /* Assign file positions to the sections based on the mapping from
4226 sections to segments. This function also sets up some fields in
4227 the file header. */
4228
4229 static bfd_boolean
4230 assign_file_positions_for_load_sections (bfd *abfd,
4231 struct bfd_link_info *link_info)
4232 {
4233 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4234 struct elf_segment_map *m;
4235 Elf_Internal_Phdr *phdrs;
4236 Elf_Internal_Phdr *p;
4237 file_ptr off, voff;
4238 bfd_size_type maxpagesize;
4239 unsigned int alloc;
4240 unsigned int i;
4241
4242 if (link_info == NULL
4243 && !elf_modify_segment_map (abfd, link_info))
4244 return FALSE;
4245
4246 alloc = 0;
4247 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
4248 ++alloc;
4249
4250 elf_elfheader (abfd)->e_phoff = bed->s->sizeof_ehdr;
4251 elf_elfheader (abfd)->e_phentsize = bed->s->sizeof_phdr;
4252 elf_elfheader (abfd)->e_phnum = alloc;
4253
4254 if (elf_tdata (abfd)->program_header_size == (bfd_size_type) -1)
4255 elf_tdata (abfd)->program_header_size = alloc * bed->s->sizeof_phdr;
4256 else
4257 BFD_ASSERT (elf_tdata (abfd)->program_header_size
4258 == alloc * bed->s->sizeof_phdr);
4259
4260 if (alloc == 0)
4261 {
4262 elf_tdata (abfd)->next_file_pos = bed->s->sizeof_ehdr;
4263 return TRUE;
4264 }
4265
4266 phdrs = bfd_alloc2 (abfd, alloc, sizeof (Elf_Internal_Phdr));
4267 elf_tdata (abfd)->phdr = phdrs;
4268 if (phdrs == NULL)
4269 return FALSE;
4270
4271 maxpagesize = 1;
4272 if ((abfd->flags & D_PAGED) != 0)
4273 maxpagesize = bed->maxpagesize;
4274
4275 off = bed->s->sizeof_ehdr;
4276 off += alloc * bed->s->sizeof_phdr;
4277
4278 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
4279 m != NULL;
4280 m = m->next, p++)
4281 {
4282 asection **secpp;
4283
4284 /* If elf_segment_map is not from map_sections_to_segments, the
4285 sections may not be correctly ordered. NOTE: sorting should
4286 not be done to the PT_NOTE section of a corefile, which may
4287 contain several pseudo-sections artificially created by bfd.
4288 Sorting these pseudo-sections breaks things badly. */
4289 if (m->count > 1
4290 && !(elf_elfheader (abfd)->e_type == ET_CORE
4291 && m->p_type == PT_NOTE))
4292 qsort (m->sections, (size_t) m->count, sizeof (asection *),
4293 elf_sort_sections);
4294
4295 /* An ELF segment (described by Elf_Internal_Phdr) may contain a
4296 number of sections with contents contributing to both p_filesz
4297 and p_memsz, followed by a number of sections with no contents
4298 that just contribute to p_memsz. In this loop, OFF tracks next
4299 available file offset for PT_LOAD and PT_NOTE segments. VOFF is
4300 an adjustment we use for segments that have no file contents
4301 but need zero filled memory allocation. */
4302 voff = 0;
4303 p->p_type = m->p_type;
4304 p->p_flags = m->p_flags;
4305
4306 if (m->count == 0)
4307 p->p_vaddr = 0;
4308 else
4309 p->p_vaddr = m->sections[0]->vma;
4310
4311 if (m->p_paddr_valid)
4312 p->p_paddr = m->p_paddr;
4313 else if (m->count == 0)
4314 p->p_paddr = 0;
4315 else
4316 p->p_paddr = m->sections[0]->lma;
4317
4318 if (p->p_type == PT_LOAD
4319 && (abfd->flags & D_PAGED) != 0)
4320 {
4321 /* p_align in demand paged PT_LOAD segments effectively stores
4322 the maximum page size. When copying an executable with
4323 objcopy, we set m->p_align from the input file. Use this
4324 value for maxpagesize rather than bed->maxpagesize, which
4325 may be different. Note that we use maxpagesize for PT_TLS
4326 segment alignment later in this function, so we are relying
4327 on at least one PT_LOAD segment appearing before a PT_TLS
4328 segment. */
4329 if (m->p_align_valid)
4330 maxpagesize = m->p_align;
4331
4332 p->p_align = maxpagesize;
4333 }
4334 else if (m->count == 0)
4335 p->p_align = 1 << bed->s->log_file_align;
4336 else
4337 p->p_align = 0;
4338
4339 if (p->p_type == PT_LOAD
4340 && m->count > 0)
4341 {
4342 bfd_size_type align;
4343 bfd_vma adjust;
4344 unsigned int align_power = 0;
4345
4346 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4347 {
4348 unsigned int secalign;
4349
4350 secalign = bfd_get_section_alignment (abfd, *secpp);
4351 if (secalign > align_power)
4352 align_power = secalign;
4353 }
4354 align = (bfd_size_type) 1 << align_power;
4355
4356 if (align < maxpagesize)
4357 align = maxpagesize;
4358
4359 adjust = vma_page_aligned_bias (m->sections[0]->vma, off, align);
4360 off += adjust;
4361 if (adjust != 0
4362 && !m->includes_filehdr
4363 && !m->includes_phdrs
4364 && (ufile_ptr) off >= align)
4365 {
4366 /* If the first section isn't loadable, the same holds for
4367 any other sections. Since the segment won't need file
4368 space, we can make p_offset overlap some prior segment.
4369 However, .tbss is special. If a segment starts with
4370 .tbss, we need to look at the next section to decide
4371 whether the segment has any loadable sections. */
4372 i = 0;
4373 while ((m->sections[i]->flags & SEC_LOAD) == 0)
4374 {
4375 if ((m->sections[i]->flags & SEC_THREAD_LOCAL) == 0
4376 || ++i >= m->count)
4377 {
4378 off -= adjust;
4379 voff = adjust - align;
4380 break;
4381 }
4382 }
4383 }
4384 }
4385 /* Make sure the .dynamic section is the first section in the
4386 PT_DYNAMIC segment. */
4387 else if (p->p_type == PT_DYNAMIC
4388 && m->count > 1
4389 && strcmp (m->sections[0]->name, ".dynamic") != 0)
4390 {
4391 _bfd_error_handler
4392 (_("%B: The first section in the PT_DYNAMIC segment is not the .dynamic section"),
4393 abfd);
4394 bfd_set_error (bfd_error_bad_value);
4395 return FALSE;
4396 }
4397
4398 p->p_offset = 0;
4399 p->p_filesz = 0;
4400 p->p_memsz = 0;
4401
4402 if (m->includes_filehdr)
4403 {
4404 if (! m->p_flags_valid)
4405 p->p_flags |= PF_R;
4406 p->p_offset = 0;
4407 p->p_filesz = bed->s->sizeof_ehdr;
4408 p->p_memsz = bed->s->sizeof_ehdr;
4409 if (m->count > 0)
4410 {
4411 BFD_ASSERT (p->p_type == PT_LOAD);
4412
4413 if (p->p_vaddr < (bfd_vma) off)
4414 {
4415 (*_bfd_error_handler)
4416 (_("%B: Not enough room for program headers, try linking with -N"),
4417 abfd);
4418 bfd_set_error (bfd_error_bad_value);
4419 return FALSE;
4420 }
4421
4422 p->p_vaddr -= off;
4423 if (! m->p_paddr_valid)
4424 p->p_paddr -= off;
4425 }
4426 }
4427
4428 if (m->includes_phdrs)
4429 {
4430 if (! m->p_flags_valid)
4431 p->p_flags |= PF_R;
4432
4433 if (!m->includes_filehdr)
4434 {
4435 p->p_offset = bed->s->sizeof_ehdr;
4436
4437 if (m->count > 0)
4438 {
4439 BFD_ASSERT (p->p_type == PT_LOAD);
4440 p->p_vaddr -= off - p->p_offset;
4441 if (! m->p_paddr_valid)
4442 p->p_paddr -= off - p->p_offset;
4443 }
4444 }
4445
4446 p->p_filesz += alloc * bed->s->sizeof_phdr;
4447 p->p_memsz += alloc * bed->s->sizeof_phdr;
4448 }
4449
4450 if (p->p_type == PT_LOAD
4451 || (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core))
4452 {
4453 if (! m->includes_filehdr && ! m->includes_phdrs)
4454 p->p_offset = off + voff;
4455 else
4456 {
4457 file_ptr adjust;
4458
4459 adjust = off - (p->p_offset + p->p_filesz);
4460 p->p_filesz += adjust;
4461 p->p_memsz += adjust;
4462 }
4463 }
4464
4465 /* Set up p_filesz, p_memsz, p_align and p_flags from the section
4466 maps. Set filepos for sections in PT_LOAD segments, and in
4467 core files, for sections in PT_NOTE segments.
4468 assign_file_positions_for_non_load_sections will set filepos
4469 for other sections and update p_filesz for other segments. */
4470 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4471 {
4472 asection *sec;
4473 flagword flags;
4474 bfd_size_type align;
4475
4476 sec = *secpp;
4477 flags = sec->flags;
4478 align = (bfd_size_type) 1 << bfd_get_section_alignment (abfd, sec);
4479
4480 if (p->p_type == PT_LOAD
4481 || p->p_type == PT_TLS)
4482 {
4483 bfd_signed_vma adjust;
4484
4485 if ((flags & SEC_LOAD) != 0)
4486 {
4487 adjust = sec->lma - (p->p_paddr + p->p_filesz);
4488 if (adjust < 0)
4489 {
4490 (*_bfd_error_handler)
4491 (_("%B: section %A lma 0x%lx overlaps previous sections"),
4492 abfd, sec, (unsigned long) sec->lma);
4493 adjust = 0;
4494 }
4495 off += adjust;
4496 p->p_filesz += adjust;
4497 p->p_memsz += adjust;
4498 }
4499 /* .tbss is special. It doesn't contribute to p_memsz of
4500 normal segments. */
4501 else if ((flags & SEC_ALLOC) != 0
4502 && ((flags & SEC_THREAD_LOCAL) == 0
4503 || p->p_type == PT_TLS))
4504 {
4505 /* The section VMA must equal the file position
4506 modulo the page size. */
4507 bfd_size_type page = align;
4508 if (page < maxpagesize)
4509 page = maxpagesize;
4510 adjust = vma_page_aligned_bias (sec->vma,
4511 p->p_vaddr + p->p_memsz,
4512 page);
4513 p->p_memsz += adjust;
4514 }
4515 }
4516
4517 if (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core)
4518 {
4519 /* The section at i == 0 is the one that actually contains
4520 everything. */
4521 if (i == 0)
4522 {
4523 sec->filepos = off;
4524 off += sec->size;
4525 p->p_filesz = sec->size;
4526 p->p_memsz = 0;
4527 p->p_align = 1;
4528 }
4529 else
4530 {
4531 /* The rest are fake sections that shouldn't be written. */
4532 sec->filepos = 0;
4533 sec->size = 0;
4534 sec->flags = 0;
4535 continue;
4536 }
4537 }
4538 else
4539 {
4540 if (p->p_type == PT_LOAD)
4541 {
4542 sec->filepos = off;
4543 /* FIXME: The SEC_HAS_CONTENTS test here dates back to
4544 1997, and the exact reason for it isn't clear. One
4545 plausible explanation is that it is to work around
4546 a problem we have with linker scripts using data
4547 statements in NOLOAD sections. I don't think it
4548 makes a great deal of sense to have such a section
4549 assigned to a PT_LOAD segment, but apparently
4550 people do this. The data statement results in a
4551 bfd_data_link_order being built, and these need
4552 section contents to write into. Eventually, we get
4553 to _bfd_elf_write_object_contents which writes any
4554 section with contents to the output. Make room
4555 here for the write, so that following segments are
4556 not trashed. */
4557 if ((flags & SEC_LOAD) != 0
4558 || (flags & SEC_HAS_CONTENTS) != 0)
4559 off += sec->size;
4560 }
4561
4562 if ((flags & SEC_LOAD) != 0)
4563 {
4564 p->p_filesz += sec->size;
4565 p->p_memsz += sec->size;
4566 }
4567
4568 /* .tbss is special. It doesn't contribute to p_memsz of
4569 normal segments. */
4570 else if ((flags & SEC_ALLOC) != 0
4571 && ((flags & SEC_THREAD_LOCAL) == 0
4572 || p->p_type == PT_TLS))
4573 p->p_memsz += sec->size;
4574
4575 if (p->p_type == PT_TLS
4576 && sec->size == 0
4577 && (sec->flags & SEC_HAS_CONTENTS) == 0)
4578 {
4579 struct bfd_link_order *o = sec->map_tail.link_order;
4580 if (o != NULL)
4581 p->p_memsz += o->offset + o->size;
4582 }
4583
4584 if (align > p->p_align
4585 && (p->p_type != PT_LOAD
4586 || (abfd->flags & D_PAGED) == 0))
4587 p->p_align = align;
4588 }
4589
4590 if (! m->p_flags_valid)
4591 {
4592 p->p_flags |= PF_R;
4593 if ((flags & SEC_CODE) != 0)
4594 p->p_flags |= PF_X;
4595 if ((flags & SEC_READONLY) == 0)
4596 p->p_flags |= PF_W;
4597 }
4598 }
4599 }
4600
4601 elf_tdata (abfd)->next_file_pos = off;
4602 return TRUE;
4603 }
4604
4605 /* Assign file positions for the other sections. */
4606
4607 static bfd_boolean
4608 assign_file_positions_for_non_load_sections (bfd *abfd,
4609 struct bfd_link_info *link_info)
4610 {
4611 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4612 Elf_Internal_Shdr **i_shdrpp;
4613 Elf_Internal_Shdr **hdrpp;
4614 Elf_Internal_Phdr *phdrs;
4615 Elf_Internal_Phdr *p;
4616 struct elf_segment_map *m;
4617 bfd_vma filehdr_vaddr, filehdr_paddr;
4618 bfd_vma phdrs_vaddr, phdrs_paddr;
4619 file_ptr off;
4620 unsigned int num_sec;
4621 unsigned int i;
4622 unsigned int count;
4623
4624 i_shdrpp = elf_elfsections (abfd);
4625 num_sec = elf_numsections (abfd);
4626 off = elf_tdata (abfd)->next_file_pos;
4627 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
4628 {
4629 struct elf_obj_tdata *tdata = elf_tdata (abfd);
4630 Elf_Internal_Shdr *hdr;
4631
4632 hdr = *hdrpp;
4633 if (hdr->bfd_section != NULL
4634 && hdr->bfd_section->filepos != 0)
4635 hdr->sh_offset = hdr->bfd_section->filepos;
4636 else if ((hdr->sh_flags & SHF_ALLOC) != 0)
4637 {
4638 ((*_bfd_error_handler)
4639 (_("%B: warning: allocated section `%s' not in segment"),
4640 abfd,
4641 (hdr->bfd_section == NULL
4642 ? "*unknown*"
4643 : hdr->bfd_section->name)));
4644 if ((abfd->flags & D_PAGED) != 0)
4645 off += vma_page_aligned_bias (hdr->sh_addr, off,
4646 bed->maxpagesize);
4647 else
4648 off += vma_page_aligned_bias (hdr->sh_addr, off,
4649 hdr->sh_addralign);
4650 off = _bfd_elf_assign_file_position_for_section (hdr, off,
4651 FALSE);
4652 }
4653 else if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
4654 && hdr->bfd_section == NULL)
4655 || hdr == i_shdrpp[tdata->symtab_section]
4656 || hdr == i_shdrpp[tdata->symtab_shndx_section]
4657 || hdr == i_shdrpp[tdata->strtab_section])
4658 hdr->sh_offset = -1;
4659 else
4660 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4661
4662 if (i == SHN_LORESERVE - 1)
4663 {
4664 i += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4665 hdrpp += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4666 }
4667 }
4668
4669 /* Now that we have set the section file positions, we can set up
4670 the file positions for the non PT_LOAD segments. */
4671 count = 0;
4672 filehdr_vaddr = 0;
4673 filehdr_paddr = 0;
4674 phdrs_vaddr = bed->maxpagesize + bed->s->sizeof_ehdr;
4675 phdrs_paddr = 0;
4676 phdrs = elf_tdata (abfd)->phdr;
4677 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
4678 m != NULL;
4679 m = m->next, p++)
4680 {
4681 ++count;
4682 if (p->p_type != PT_LOAD)
4683 continue;
4684
4685 if (m->includes_filehdr)
4686 {
4687 filehdr_vaddr = p->p_vaddr;
4688 filehdr_paddr = p->p_paddr;
4689 }
4690 if (m->includes_phdrs)
4691 {
4692 phdrs_vaddr = p->p_vaddr;
4693 phdrs_paddr = p->p_paddr;
4694 if (m->includes_filehdr)
4695 {
4696 phdrs_vaddr += bed->s->sizeof_ehdr;
4697 phdrs_paddr += bed->s->sizeof_ehdr;
4698 }
4699 }
4700 }
4701
4702 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
4703 m != NULL;
4704 m = m->next, p++)
4705 {
4706 if (m->count != 0)
4707 {
4708 if (p->p_type != PT_LOAD
4709 && (p->p_type != PT_NOTE || bfd_get_format (abfd) != bfd_core))
4710 {
4711 Elf_Internal_Shdr *hdr;
4712 BFD_ASSERT (!m->includes_filehdr && !m->includes_phdrs);
4713
4714 hdr = &elf_section_data (m->sections[m->count - 1])->this_hdr;
4715 p->p_filesz = (m->sections[m->count - 1]->filepos
4716 - m->sections[0]->filepos);
4717 if (hdr->sh_type != SHT_NOBITS)
4718 p->p_filesz += hdr->sh_size;
4719
4720 p->p_offset = m->sections[0]->filepos;
4721 }
4722 }
4723 else
4724 {
4725 if (m->includes_filehdr)
4726 {
4727 p->p_vaddr = filehdr_vaddr;
4728 if (! m->p_paddr_valid)
4729 p->p_paddr = filehdr_paddr;
4730 }
4731 else if (m->includes_phdrs)
4732 {
4733 p->p_vaddr = phdrs_vaddr;
4734 if (! m->p_paddr_valid)
4735 p->p_paddr = phdrs_paddr;
4736 }
4737 else if (p->p_type == PT_GNU_RELRO)
4738 {
4739 Elf_Internal_Phdr *lp;
4740
4741 for (lp = phdrs; lp < phdrs + count; ++lp)
4742 {
4743 if (lp->p_type == PT_LOAD
4744 && lp->p_vaddr <= link_info->relro_end
4745 && lp->p_vaddr >= link_info->relro_start
4746 && (lp->p_vaddr + lp->p_filesz
4747 >= link_info->relro_end))
4748 break;
4749 }
4750
4751 if (lp < phdrs + count
4752 && link_info->relro_end > lp->p_vaddr)
4753 {
4754 p->p_vaddr = lp->p_vaddr;
4755 p->p_paddr = lp->p_paddr;
4756 p->p_offset = lp->p_offset;
4757 p->p_filesz = link_info->relro_end - lp->p_vaddr;
4758 p->p_memsz = p->p_filesz;
4759 p->p_align = 1;
4760 p->p_flags = (lp->p_flags & ~PF_W);
4761 }
4762 else
4763 {
4764 memset (p, 0, sizeof *p);
4765 p->p_type = PT_NULL;
4766 }
4767 }
4768 }
4769 }
4770
4771 elf_tdata (abfd)->next_file_pos = off;
4772
4773 return TRUE;
4774 }
4775
4776 /* Work out the file positions of all the sections. This is called by
4777 _bfd_elf_compute_section_file_positions. All the section sizes and
4778 VMAs must be known before this is called.
4779
4780 Reloc sections come in two flavours: Those processed specially as
4781 "side-channel" data attached to a section to which they apply, and
4782 those that bfd doesn't process as relocations. The latter sort are
4783 stored in a normal bfd section by bfd_section_from_shdr. We don't
4784 consider the former sort here, unless they form part of the loadable
4785 image. Reloc sections not assigned here will be handled later by
4786 assign_file_positions_for_relocs.
4787
4788 We also don't set the positions of the .symtab and .strtab here. */
4789
4790 static bfd_boolean
4791 assign_file_positions_except_relocs (bfd *abfd,
4792 struct bfd_link_info *link_info)
4793 {
4794 struct elf_obj_tdata *tdata = elf_tdata (abfd);
4795 Elf_Internal_Ehdr *i_ehdrp = elf_elfheader (abfd);
4796 file_ptr off;
4797 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4798
4799 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
4800 && bfd_get_format (abfd) != bfd_core)
4801 {
4802 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
4803 unsigned int num_sec = elf_numsections (abfd);
4804 Elf_Internal_Shdr **hdrpp;
4805 unsigned int i;
4806
4807 /* Start after the ELF header. */
4808 off = i_ehdrp->e_ehsize;
4809
4810 /* We are not creating an executable, which means that we are
4811 not creating a program header, and that the actual order of
4812 the sections in the file is unimportant. */
4813 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
4814 {
4815 Elf_Internal_Shdr *hdr;
4816
4817 hdr = *hdrpp;
4818 if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
4819 && hdr->bfd_section == NULL)
4820 || i == tdata->symtab_section
4821 || i == tdata->symtab_shndx_section
4822 || i == tdata->strtab_section)
4823 {
4824 hdr->sh_offset = -1;
4825 }
4826 else
4827 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4828
4829 if (i == SHN_LORESERVE - 1)
4830 {
4831 i += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4832 hdrpp += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4833 }
4834 }
4835 }
4836 else
4837 {
4838 unsigned int alloc;
4839
4840 /* Assign file positions for the loaded sections based on the
4841 assignment of sections to segments. */
4842 if (!assign_file_positions_for_load_sections (abfd, link_info))
4843 return FALSE;
4844
4845 /* And for non-load sections. */
4846 if (!assign_file_positions_for_non_load_sections (abfd, link_info))
4847 return FALSE;
4848
4849 if (bed->elf_backend_modify_program_headers != NULL)
4850 {
4851 if (!(*bed->elf_backend_modify_program_headers) (abfd, link_info))
4852 return FALSE;
4853 }
4854
4855 /* Write out the program headers. */
4856 alloc = tdata->program_header_size / bed->s->sizeof_phdr;
4857 if (bfd_seek (abfd, (bfd_signed_vma) bed->s->sizeof_ehdr, SEEK_SET) != 0
4858 || bed->s->write_out_phdrs (abfd, tdata->phdr, alloc) != 0)
4859 return FALSE;
4860
4861 off = tdata->next_file_pos;
4862 }
4863
4864 /* Place the section headers. */
4865 off = align_file_position (off, 1 << bed->s->log_file_align);
4866 i_ehdrp->e_shoff = off;
4867 off += i_ehdrp->e_shnum * i_ehdrp->e_shentsize;
4868
4869 tdata->next_file_pos = off;
4870
4871 return TRUE;
4872 }
4873
4874 static bfd_boolean
4875 prep_headers (bfd *abfd)
4876 {
4877 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
4878 Elf_Internal_Phdr *i_phdrp = 0; /* Program header table, internal form */
4879 Elf_Internal_Shdr **i_shdrp; /* Section header table, internal form */
4880 struct elf_strtab_hash *shstrtab;
4881 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4882
4883 i_ehdrp = elf_elfheader (abfd);
4884 i_shdrp = elf_elfsections (abfd);
4885
4886 shstrtab = _bfd_elf_strtab_init ();
4887 if (shstrtab == NULL)
4888 return FALSE;
4889
4890 elf_shstrtab (abfd) = shstrtab;
4891
4892 i_ehdrp->e_ident[EI_MAG0] = ELFMAG0;
4893 i_ehdrp->e_ident[EI_MAG1] = ELFMAG1;
4894 i_ehdrp->e_ident[EI_MAG2] = ELFMAG2;
4895 i_ehdrp->e_ident[EI_MAG3] = ELFMAG3;
4896
4897 i_ehdrp->e_ident[EI_CLASS] = bed->s->elfclass;
4898 i_ehdrp->e_ident[EI_DATA] =
4899 bfd_big_endian (abfd) ? ELFDATA2MSB : ELFDATA2LSB;
4900 i_ehdrp->e_ident[EI_VERSION] = bed->s->ev_current;
4901
4902 if ((abfd->flags & DYNAMIC) != 0)
4903 i_ehdrp->e_type = ET_DYN;
4904 else if ((abfd->flags & EXEC_P) != 0)
4905 i_ehdrp->e_type = ET_EXEC;
4906 else if (bfd_get_format (abfd) == bfd_core)
4907 i_ehdrp->e_type = ET_CORE;
4908 else
4909 i_ehdrp->e_type = ET_REL;
4910
4911 switch (bfd_get_arch (abfd))
4912 {
4913 case bfd_arch_unknown:
4914 i_ehdrp->e_machine = EM_NONE;
4915 break;
4916
4917 /* There used to be a long list of cases here, each one setting
4918 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
4919 in the corresponding bfd definition. To avoid duplication,
4920 the switch was removed. Machines that need special handling
4921 can generally do it in elf_backend_final_write_processing(),
4922 unless they need the information earlier than the final write.
4923 Such need can generally be supplied by replacing the tests for
4924 e_machine with the conditions used to determine it. */
4925 default:
4926 i_ehdrp->e_machine = bed->elf_machine_code;
4927 }
4928
4929 i_ehdrp->e_version = bed->s->ev_current;
4930 i_ehdrp->e_ehsize = bed->s->sizeof_ehdr;
4931
4932 /* No program header, for now. */
4933 i_ehdrp->e_phoff = 0;
4934 i_ehdrp->e_phentsize = 0;
4935 i_ehdrp->e_phnum = 0;
4936
4937 /* Each bfd section is section header entry. */
4938 i_ehdrp->e_entry = bfd_get_start_address (abfd);
4939 i_ehdrp->e_shentsize = bed->s->sizeof_shdr;
4940
4941 /* If we're building an executable, we'll need a program header table. */
4942 if (abfd->flags & EXEC_P)
4943 /* It all happens later. */
4944 ;
4945 else
4946 {
4947 i_ehdrp->e_phentsize = 0;
4948 i_phdrp = 0;
4949 i_ehdrp->e_phoff = 0;
4950 }
4951
4952 elf_tdata (abfd)->symtab_hdr.sh_name =
4953 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".symtab", FALSE);
4954 elf_tdata (abfd)->strtab_hdr.sh_name =
4955 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".strtab", FALSE);
4956 elf_tdata (abfd)->shstrtab_hdr.sh_name =
4957 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".shstrtab", FALSE);
4958 if (elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
4959 || elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
4960 || elf_tdata (abfd)->shstrtab_hdr.sh_name == (unsigned int) -1)
4961 return FALSE;
4962
4963 return TRUE;
4964 }
4965
4966 /* Assign file positions for all the reloc sections which are not part
4967 of the loadable file image. */
4968
4969 void
4970 _bfd_elf_assign_file_positions_for_relocs (bfd *abfd)
4971 {
4972 file_ptr off;
4973 unsigned int i, num_sec;
4974 Elf_Internal_Shdr **shdrpp;
4975
4976 off = elf_tdata (abfd)->next_file_pos;
4977
4978 num_sec = elf_numsections (abfd);
4979 for (i = 1, shdrpp = elf_elfsections (abfd) + 1; i < num_sec; i++, shdrpp++)
4980 {
4981 Elf_Internal_Shdr *shdrp;
4982
4983 shdrp = *shdrpp;
4984 if ((shdrp->sh_type == SHT_REL || shdrp->sh_type == SHT_RELA)
4985 && shdrp->sh_offset == -1)
4986 off = _bfd_elf_assign_file_position_for_section (shdrp, off, TRUE);
4987 }
4988
4989 elf_tdata (abfd)->next_file_pos = off;
4990 }
4991
4992 bfd_boolean
4993 _bfd_elf_write_object_contents (bfd *abfd)
4994 {
4995 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4996 Elf_Internal_Ehdr *i_ehdrp;
4997 Elf_Internal_Shdr **i_shdrp;
4998 bfd_boolean failed;
4999 unsigned int count, num_sec;
5000
5001 if (! abfd->output_has_begun
5002 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
5003 return FALSE;
5004
5005 i_shdrp = elf_elfsections (abfd);
5006 i_ehdrp = elf_elfheader (abfd);
5007
5008 failed = FALSE;
5009 bfd_map_over_sections (abfd, bed->s->write_relocs, &failed);
5010 if (failed)
5011 return FALSE;
5012
5013 _bfd_elf_assign_file_positions_for_relocs (abfd);
5014
5015 /* After writing the headers, we need to write the sections too... */
5016 num_sec = elf_numsections (abfd);
5017 for (count = 1; count < num_sec; count++)
5018 {
5019 if (bed->elf_backend_section_processing)
5020 (*bed->elf_backend_section_processing) (abfd, i_shdrp[count]);
5021 if (i_shdrp[count]->contents)
5022 {
5023 bfd_size_type amt = i_shdrp[count]->sh_size;
5024
5025 if (bfd_seek (abfd, i_shdrp[count]->sh_offset, SEEK_SET) != 0
5026 || bfd_bwrite (i_shdrp[count]->contents, amt, abfd) != amt)
5027 return FALSE;
5028 }
5029 if (count == SHN_LORESERVE - 1)
5030 count += SHN_HIRESERVE + 1 - SHN_LORESERVE;
5031 }
5032
5033 /* Write out the section header names. */
5034 if (elf_shstrtab (abfd) != NULL
5035 && (bfd_seek (abfd, elf_tdata (abfd)->shstrtab_hdr.sh_offset, SEEK_SET) != 0
5036 || ! _bfd_elf_strtab_emit (abfd, elf_shstrtab (abfd))))
5037 return FALSE;
5038
5039 if (bed->elf_backend_final_write_processing)
5040 (*bed->elf_backend_final_write_processing) (abfd,
5041 elf_tdata (abfd)->linker);
5042
5043 return bed->s->write_shdrs_and_ehdr (abfd);
5044 }
5045
5046 bfd_boolean
5047 _bfd_elf_write_corefile_contents (bfd *abfd)
5048 {
5049 /* Hopefully this can be done just like an object file. */
5050 return _bfd_elf_write_object_contents (abfd);
5051 }
5052
5053 /* Given a section, search the header to find them. */
5054
5055 int
5056 _bfd_elf_section_from_bfd_section (bfd *abfd, struct bfd_section *asect)
5057 {
5058 const struct elf_backend_data *bed;
5059 int index;
5060
5061 if (elf_section_data (asect) != NULL
5062 && elf_section_data (asect)->this_idx != 0)
5063 return elf_section_data (asect)->this_idx;
5064
5065 if (bfd_is_abs_section (asect))
5066 index = SHN_ABS;
5067 else if (bfd_is_com_section (asect))
5068 index = SHN_COMMON;
5069 else if (bfd_is_und_section (asect))
5070 index = SHN_UNDEF;
5071 else
5072 index = -1;
5073
5074 bed = get_elf_backend_data (abfd);
5075 if (bed->elf_backend_section_from_bfd_section)
5076 {
5077 int retval = index;
5078
5079 if ((*bed->elf_backend_section_from_bfd_section) (abfd, asect, &retval))
5080 return retval;
5081 }
5082
5083 if (index == -1)
5084 bfd_set_error (bfd_error_nonrepresentable_section);
5085
5086 return index;
5087 }
5088
5089 /* Given a BFD symbol, return the index in the ELF symbol table, or -1
5090 on error. */
5091
5092 int
5093 _bfd_elf_symbol_from_bfd_symbol (bfd *abfd, asymbol **asym_ptr_ptr)
5094 {
5095 asymbol *asym_ptr = *asym_ptr_ptr;
5096 int idx;
5097 flagword flags = asym_ptr->flags;
5098
5099 /* When gas creates relocations against local labels, it creates its
5100 own symbol for the section, but does put the symbol into the
5101 symbol chain, so udata is 0. When the linker is generating
5102 relocatable output, this section symbol may be for one of the
5103 input sections rather than the output section. */
5104 if (asym_ptr->udata.i == 0
5105 && (flags & BSF_SECTION_SYM)
5106 && asym_ptr->section)
5107 {
5108 asection *sec;
5109 int indx;
5110
5111 sec = asym_ptr->section;
5112 if (sec->owner != abfd && sec->output_section != NULL)
5113 sec = sec->output_section;
5114 if (sec->owner == abfd
5115 && (indx = sec->index) < elf_num_section_syms (abfd)
5116 && elf_section_syms (abfd)[indx] != NULL)
5117 asym_ptr->udata.i = elf_section_syms (abfd)[indx]->udata.i;
5118 }
5119
5120 idx = asym_ptr->udata.i;
5121
5122 if (idx == 0)
5123 {
5124 /* This case can occur when using --strip-symbol on a symbol
5125 which is used in a relocation entry. */
5126 (*_bfd_error_handler)
5127 (_("%B: symbol `%s' required but not present"),
5128 abfd, bfd_asymbol_name (asym_ptr));
5129 bfd_set_error (bfd_error_no_symbols);
5130 return -1;
5131 }
5132
5133 #if DEBUG & 4
5134 {
5135 fprintf (stderr,
5136 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8lx%s\n",
5137 (long) asym_ptr, asym_ptr->name, idx, flags,
5138 elf_symbol_flags (flags));
5139 fflush (stderr);
5140 }
5141 #endif
5142
5143 return idx;
5144 }
5145
5146 /* Rewrite program header information. */
5147
5148 static bfd_boolean
5149 rewrite_elf_program_header (bfd *ibfd, bfd *obfd)
5150 {
5151 Elf_Internal_Ehdr *iehdr;
5152 struct elf_segment_map *map;
5153 struct elf_segment_map *map_first;
5154 struct elf_segment_map **pointer_to_map;
5155 Elf_Internal_Phdr *segment;
5156 asection *section;
5157 unsigned int i;
5158 unsigned int num_segments;
5159 bfd_boolean phdr_included = FALSE;
5160 bfd_vma maxpagesize;
5161 struct elf_segment_map *phdr_adjust_seg = NULL;
5162 unsigned int phdr_adjust_num = 0;
5163 const struct elf_backend_data *bed;
5164
5165 bed = get_elf_backend_data (ibfd);
5166 iehdr = elf_elfheader (ibfd);
5167
5168 map_first = NULL;
5169 pointer_to_map = &map_first;
5170
5171 num_segments = elf_elfheader (ibfd)->e_phnum;
5172 maxpagesize = get_elf_backend_data (obfd)->maxpagesize;
5173
5174 /* Returns the end address of the segment + 1. */
5175 #define SEGMENT_END(segment, start) \
5176 (start + (segment->p_memsz > segment->p_filesz \
5177 ? segment->p_memsz : segment->p_filesz))
5178
5179 #define SECTION_SIZE(section, segment) \
5180 (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL)) \
5181 != SEC_THREAD_LOCAL || segment->p_type == PT_TLS) \
5182 ? section->size : 0)
5183
5184 /* Returns TRUE if the given section is contained within
5185 the given segment. VMA addresses are compared. */
5186 #define IS_CONTAINED_BY_VMA(section, segment) \
5187 (section->vma >= segment->p_vaddr \
5188 && (section->vma + SECTION_SIZE (section, segment) \
5189 <= (SEGMENT_END (segment, segment->p_vaddr))))
5190
5191 /* Returns TRUE if the given section is contained within
5192 the given segment. LMA addresses are compared. */
5193 #define IS_CONTAINED_BY_LMA(section, segment, base) \
5194 (section->lma >= base \
5195 && (section->lma + SECTION_SIZE (section, segment) \
5196 <= SEGMENT_END (segment, base)))
5197
5198 /* Special case: corefile "NOTE" section containing regs, prpsinfo etc. */
5199 #define IS_COREFILE_NOTE(p, s) \
5200 (p->p_type == PT_NOTE \
5201 && bfd_get_format (ibfd) == bfd_core \
5202 && s->vma == 0 && s->lma == 0 \
5203 && (bfd_vma) s->filepos >= p->p_offset \
5204 && ((bfd_vma) s->filepos + s->size \
5205 <= p->p_offset + p->p_filesz))
5206
5207 /* The complicated case when p_vaddr is 0 is to handle the Solaris
5208 linker, which generates a PT_INTERP section with p_vaddr and
5209 p_memsz set to 0. */
5210 #define IS_SOLARIS_PT_INTERP(p, s) \
5211 (p->p_vaddr == 0 \
5212 && p->p_paddr == 0 \
5213 && p->p_memsz == 0 \
5214 && p->p_filesz > 0 \
5215 && (s->flags & SEC_HAS_CONTENTS) != 0 \
5216 && s->size > 0 \
5217 && (bfd_vma) s->filepos >= p->p_offset \
5218 && ((bfd_vma) s->filepos + s->size \
5219 <= p->p_offset + p->p_filesz))
5220
5221 /* Decide if the given section should be included in the given segment.
5222 A section will be included if:
5223 1. It is within the address space of the segment -- we use the LMA
5224 if that is set for the segment and the VMA otherwise,
5225 2. It is an allocated segment,
5226 3. There is an output section associated with it,
5227 4. The section has not already been allocated to a previous segment.
5228 5. PT_GNU_STACK segments do not include any sections.
5229 6. PT_TLS segment includes only SHF_TLS sections.
5230 7. SHF_TLS sections are only in PT_TLS or PT_LOAD segments.
5231 8. PT_DYNAMIC should not contain empty sections at the beginning
5232 (with the possible exception of .dynamic). */
5233 #define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed) \
5234 ((((segment->p_paddr \
5235 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr) \
5236 : IS_CONTAINED_BY_VMA (section, segment)) \
5237 && (section->flags & SEC_ALLOC) != 0) \
5238 || IS_COREFILE_NOTE (segment, section)) \
5239 && section->output_section != NULL \
5240 && segment->p_type != PT_GNU_STACK \
5241 && (segment->p_type != PT_TLS \
5242 || (section->flags & SEC_THREAD_LOCAL)) \
5243 && (segment->p_type == PT_LOAD \
5244 || segment->p_type == PT_TLS \
5245 || (section->flags & SEC_THREAD_LOCAL) == 0) \
5246 && (segment->p_type != PT_DYNAMIC \
5247 || SECTION_SIZE (section, segment) > 0 \
5248 || (segment->p_paddr \
5249 ? segment->p_paddr != section->lma \
5250 : segment->p_vaddr != section->vma) \
5251 || (strcmp (bfd_get_section_name (ibfd, section), ".dynamic") \
5252 == 0)) \
5253 && ! section->segment_mark)
5254
5255 /* Returns TRUE iff seg1 starts after the end of seg2. */
5256 #define SEGMENT_AFTER_SEGMENT(seg1, seg2, field) \
5257 (seg1->field >= SEGMENT_END (seg2, seg2->field))
5258
5259 /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both
5260 their VMA address ranges and their LMA address ranges overlap.
5261 It is possible to have overlapping VMA ranges without overlapping LMA
5262 ranges. RedBoot images for example can have both .data and .bss mapped
5263 to the same VMA range, but with the .data section mapped to a different
5264 LMA. */
5265 #define SEGMENT_OVERLAPS(seg1, seg2) \
5266 ( !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr) \
5267 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr)) \
5268 && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr) \
5269 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr)))
5270
5271 /* Initialise the segment mark field. */
5272 for (section = ibfd->sections; section != NULL; section = section->next)
5273 section->segment_mark = FALSE;
5274
5275 /* Scan through the segments specified in the program header
5276 of the input BFD. For this first scan we look for overlaps
5277 in the loadable segments. These can be created by weird
5278 parameters to objcopy. Also, fix some solaris weirdness. */
5279 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5280 i < num_segments;
5281 i++, segment++)
5282 {
5283 unsigned int j;
5284 Elf_Internal_Phdr *segment2;
5285
5286 if (segment->p_type == PT_INTERP)
5287 for (section = ibfd->sections; section; section = section->next)
5288 if (IS_SOLARIS_PT_INTERP (segment, section))
5289 {
5290 /* Mininal change so that the normal section to segment
5291 assignment code will work. */
5292 segment->p_vaddr = section->vma;
5293 break;
5294 }
5295
5296 if (segment->p_type != PT_LOAD)
5297 continue;
5298
5299 /* Determine if this segment overlaps any previous segments. */
5300 for (j = 0, segment2 = elf_tdata (ibfd)->phdr; j < i; j++, segment2 ++)
5301 {
5302 bfd_signed_vma extra_length;
5303
5304 if (segment2->p_type != PT_LOAD
5305 || ! SEGMENT_OVERLAPS (segment, segment2))
5306 continue;
5307
5308 /* Merge the two segments together. */
5309 if (segment2->p_vaddr < segment->p_vaddr)
5310 {
5311 /* Extend SEGMENT2 to include SEGMENT and then delete
5312 SEGMENT. */
5313 extra_length =
5314 SEGMENT_END (segment, segment->p_vaddr)
5315 - SEGMENT_END (segment2, segment2->p_vaddr);
5316
5317 if (extra_length > 0)
5318 {
5319 segment2->p_memsz += extra_length;
5320 segment2->p_filesz += extra_length;
5321 }
5322
5323 segment->p_type = PT_NULL;
5324
5325 /* Since we have deleted P we must restart the outer loop. */
5326 i = 0;
5327 segment = elf_tdata (ibfd)->phdr;
5328 break;
5329 }
5330 else
5331 {
5332 /* Extend SEGMENT to include SEGMENT2 and then delete
5333 SEGMENT2. */
5334 extra_length =
5335 SEGMENT_END (segment2, segment2->p_vaddr)
5336 - SEGMENT_END (segment, segment->p_vaddr);
5337
5338 if (extra_length > 0)
5339 {
5340 segment->p_memsz += extra_length;
5341 segment->p_filesz += extra_length;
5342 }
5343
5344 segment2->p_type = PT_NULL;
5345 }
5346 }
5347 }
5348
5349 /* The second scan attempts to assign sections to segments. */
5350 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5351 i < num_segments;
5352 i ++, segment ++)
5353 {
5354 unsigned int section_count;
5355 asection ** sections;
5356 asection * output_section;
5357 unsigned int isec;
5358 bfd_vma matching_lma;
5359 bfd_vma suggested_lma;
5360 unsigned int j;
5361 bfd_size_type amt;
5362
5363 if (segment->p_type == PT_NULL)
5364 continue;
5365
5366 /* Compute how many sections might be placed into this segment. */
5367 for (section = ibfd->sections, section_count = 0;
5368 section != NULL;
5369 section = section->next)
5370 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
5371 ++section_count;
5372
5373 /* Allocate a segment map big enough to contain
5374 all of the sections we have selected. */
5375 amt = sizeof (struct elf_segment_map);
5376 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5377 map = bfd_alloc (obfd, amt);
5378 if (map == NULL)
5379 return FALSE;
5380
5381 /* Initialise the fields of the segment map. Default to
5382 using the physical address of the segment in the input BFD. */
5383 map->next = NULL;
5384 map->p_type = segment->p_type;
5385 map->p_flags = segment->p_flags;
5386 map->p_flags_valid = 1;
5387 map->p_paddr = segment->p_paddr;
5388 map->p_paddr_valid = 1;
5389
5390 /* Determine if this segment contains the ELF file header
5391 and if it contains the program headers themselves. */
5392 map->includes_filehdr = (segment->p_offset == 0
5393 && segment->p_filesz >= iehdr->e_ehsize);
5394
5395 map->includes_phdrs = 0;
5396
5397 if (! phdr_included || segment->p_type != PT_LOAD)
5398 {
5399 map->includes_phdrs =
5400 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
5401 && (segment->p_offset + segment->p_filesz
5402 >= ((bfd_vma) iehdr->e_phoff
5403 + iehdr->e_phnum * iehdr->e_phentsize)));
5404
5405 if (segment->p_type == PT_LOAD && map->includes_phdrs)
5406 phdr_included = TRUE;
5407 }
5408
5409 if (section_count == 0)
5410 {
5411 /* Special segments, such as the PT_PHDR segment, may contain
5412 no sections, but ordinary, loadable segments should contain
5413 something. They are allowed by the ELF spec however, so only
5414 a warning is produced. */
5415 if (segment->p_type == PT_LOAD)
5416 (*_bfd_error_handler)
5417 (_("%B: warning: Empty loadable segment detected, is this intentional ?\n"),
5418 ibfd);
5419
5420 map->count = 0;
5421 *pointer_to_map = map;
5422 pointer_to_map = &map->next;
5423
5424 continue;
5425 }
5426
5427 /* Now scan the sections in the input BFD again and attempt
5428 to add their corresponding output sections to the segment map.
5429 The problem here is how to handle an output section which has
5430 been moved (ie had its LMA changed). There are four possibilities:
5431
5432 1. None of the sections have been moved.
5433 In this case we can continue to use the segment LMA from the
5434 input BFD.
5435
5436 2. All of the sections have been moved by the same amount.
5437 In this case we can change the segment's LMA to match the LMA
5438 of the first section.
5439
5440 3. Some of the sections have been moved, others have not.
5441 In this case those sections which have not been moved can be
5442 placed in the current segment which will have to have its size,
5443 and possibly its LMA changed, and a new segment or segments will
5444 have to be created to contain the other sections.
5445
5446 4. The sections have been moved, but not by the same amount.
5447 In this case we can change the segment's LMA to match the LMA
5448 of the first section and we will have to create a new segment
5449 or segments to contain the other sections.
5450
5451 In order to save time, we allocate an array to hold the section
5452 pointers that we are interested in. As these sections get assigned
5453 to a segment, they are removed from this array. */
5454
5455 /* Gcc 2.96 miscompiles this code on mips. Don't do casting here
5456 to work around this long long bug. */
5457 sections = bfd_malloc2 (section_count, sizeof (asection *));
5458 if (sections == NULL)
5459 return FALSE;
5460
5461 /* Step One: Scan for segment vs section LMA conflicts.
5462 Also add the sections to the section array allocated above.
5463 Also add the sections to the current segment. In the common
5464 case, where the sections have not been moved, this means that
5465 we have completely filled the segment, and there is nothing
5466 more to do. */
5467 isec = 0;
5468 matching_lma = 0;
5469 suggested_lma = 0;
5470
5471 for (j = 0, section = ibfd->sections;
5472 section != NULL;
5473 section = section->next)
5474 {
5475 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
5476 {
5477 output_section = section->output_section;
5478
5479 sections[j ++] = section;
5480
5481 /* The Solaris native linker always sets p_paddr to 0.
5482 We try to catch that case here, and set it to the
5483 correct value. Note - some backends require that
5484 p_paddr be left as zero. */
5485 if (segment->p_paddr == 0
5486 && segment->p_vaddr != 0
5487 && (! bed->want_p_paddr_set_to_zero)
5488 && isec == 0
5489 && output_section->lma != 0
5490 && (output_section->vma == (segment->p_vaddr
5491 + (map->includes_filehdr
5492 ? iehdr->e_ehsize
5493 : 0)
5494 + (map->includes_phdrs
5495 ? (iehdr->e_phnum
5496 * iehdr->e_phentsize)
5497 : 0))))
5498 map->p_paddr = segment->p_vaddr;
5499
5500 /* Match up the physical address of the segment with the
5501 LMA address of the output section. */
5502 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
5503 || IS_COREFILE_NOTE (segment, section)
5504 || (bed->want_p_paddr_set_to_zero &&
5505 IS_CONTAINED_BY_VMA (output_section, segment))
5506 )
5507 {
5508 if (matching_lma == 0)
5509 matching_lma = output_section->lma;
5510
5511 /* We assume that if the section fits within the segment
5512 then it does not overlap any other section within that
5513 segment. */
5514 map->sections[isec ++] = output_section;
5515 }
5516 else if (suggested_lma == 0)
5517 suggested_lma = output_section->lma;
5518 }
5519 }
5520
5521 BFD_ASSERT (j == section_count);
5522
5523 /* Step Two: Adjust the physical address of the current segment,
5524 if necessary. */
5525 if (isec == section_count)
5526 {
5527 /* All of the sections fitted within the segment as currently
5528 specified. This is the default case. Add the segment to
5529 the list of built segments and carry on to process the next
5530 program header in the input BFD. */
5531 map->count = section_count;
5532 *pointer_to_map = map;
5533 pointer_to_map = &map->next;
5534
5535 free (sections);
5536 continue;
5537 }
5538 else
5539 {
5540 if (matching_lma != 0)
5541 {
5542 /* At least one section fits inside the current segment.
5543 Keep it, but modify its physical address to match the
5544 LMA of the first section that fitted. */
5545 map->p_paddr = matching_lma;
5546 }
5547 else
5548 {
5549 /* None of the sections fitted inside the current segment.
5550 Change the current segment's physical address to match
5551 the LMA of the first section. */
5552 map->p_paddr = suggested_lma;
5553 }
5554
5555 /* Offset the segment physical address from the lma
5556 to allow for space taken up by elf headers. */
5557 if (map->includes_filehdr)
5558 map->p_paddr -= iehdr->e_ehsize;
5559
5560 if (map->includes_phdrs)
5561 {
5562 map->p_paddr -= iehdr->e_phnum * iehdr->e_phentsize;
5563
5564 /* iehdr->e_phnum is just an estimate of the number
5565 of program headers that we will need. Make a note
5566 here of the number we used and the segment we chose
5567 to hold these headers, so that we can adjust the
5568 offset when we know the correct value. */
5569 phdr_adjust_num = iehdr->e_phnum;
5570 phdr_adjust_seg = map;
5571 }
5572 }
5573
5574 /* Step Three: Loop over the sections again, this time assigning
5575 those that fit to the current segment and removing them from the
5576 sections array; but making sure not to leave large gaps. Once all
5577 possible sections have been assigned to the current segment it is
5578 added to the list of built segments and if sections still remain
5579 to be assigned, a new segment is constructed before repeating
5580 the loop. */
5581 isec = 0;
5582 do
5583 {
5584 map->count = 0;
5585 suggested_lma = 0;
5586
5587 /* Fill the current segment with sections that fit. */
5588 for (j = 0; j < section_count; j++)
5589 {
5590 section = sections[j];
5591
5592 if (section == NULL)
5593 continue;
5594
5595 output_section = section->output_section;
5596
5597 BFD_ASSERT (output_section != NULL);
5598
5599 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
5600 || IS_COREFILE_NOTE (segment, section))
5601 {
5602 if (map->count == 0)
5603 {
5604 /* If the first section in a segment does not start at
5605 the beginning of the segment, then something is
5606 wrong. */
5607 if (output_section->lma !=
5608 (map->p_paddr
5609 + (map->includes_filehdr ? iehdr->e_ehsize : 0)
5610 + (map->includes_phdrs
5611 ? iehdr->e_phnum * iehdr->e_phentsize
5612 : 0)))
5613 abort ();
5614 }
5615 else
5616 {
5617 asection * prev_sec;
5618
5619 prev_sec = map->sections[map->count - 1];
5620
5621 /* If the gap between the end of the previous section
5622 and the start of this section is more than
5623 maxpagesize then we need to start a new segment. */
5624 if ((BFD_ALIGN (prev_sec->lma + prev_sec->size,
5625 maxpagesize)
5626 < BFD_ALIGN (output_section->lma, maxpagesize))
5627 || ((prev_sec->lma + prev_sec->size)
5628 > output_section->lma))
5629 {
5630 if (suggested_lma == 0)
5631 suggested_lma = output_section->lma;
5632
5633 continue;
5634 }
5635 }
5636
5637 map->sections[map->count++] = output_section;
5638 ++isec;
5639 sections[j] = NULL;
5640 section->segment_mark = TRUE;
5641 }
5642 else if (suggested_lma == 0)
5643 suggested_lma = output_section->lma;
5644 }
5645
5646 BFD_ASSERT (map->count > 0);
5647
5648 /* Add the current segment to the list of built segments. */
5649 *pointer_to_map = map;
5650 pointer_to_map = &map->next;
5651
5652 if (isec < section_count)
5653 {
5654 /* We still have not allocated all of the sections to
5655 segments. Create a new segment here, initialise it
5656 and carry on looping. */
5657 amt = sizeof (struct elf_segment_map);
5658 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5659 map = bfd_alloc (obfd, amt);
5660 if (map == NULL)
5661 {
5662 free (sections);
5663 return FALSE;
5664 }
5665
5666 /* Initialise the fields of the segment map. Set the physical
5667 physical address to the LMA of the first section that has
5668 not yet been assigned. */
5669 map->next = NULL;
5670 map->p_type = segment->p_type;
5671 map->p_flags = segment->p_flags;
5672 map->p_flags_valid = 1;
5673 map->p_paddr = suggested_lma;
5674 map->p_paddr_valid = 1;
5675 map->includes_filehdr = 0;
5676 map->includes_phdrs = 0;
5677 }
5678 }
5679 while (isec < section_count);
5680
5681 free (sections);
5682 }
5683
5684 /* The Solaris linker creates program headers in which all the
5685 p_paddr fields are zero. When we try to objcopy or strip such a
5686 file, we get confused. Check for this case, and if we find it
5687 reset the p_paddr_valid fields. */
5688 for (map = map_first; map != NULL; map = map->next)
5689 if (map->p_paddr != 0)
5690 break;
5691 if (map == NULL)
5692 for (map = map_first; map != NULL; map = map->next)
5693 map->p_paddr_valid = 0;
5694
5695 elf_tdata (obfd)->segment_map = map_first;
5696
5697 /* If we had to estimate the number of program headers that were
5698 going to be needed, then check our estimate now and adjust
5699 the offset if necessary. */
5700 if (phdr_adjust_seg != NULL)
5701 {
5702 unsigned int count;
5703
5704 for (count = 0, map = map_first; map != NULL; map = map->next)
5705 count++;
5706
5707 if (count > phdr_adjust_num)
5708 phdr_adjust_seg->p_paddr
5709 -= (count - phdr_adjust_num) * iehdr->e_phentsize;
5710 }
5711
5712 #undef SEGMENT_END
5713 #undef SECTION_SIZE
5714 #undef IS_CONTAINED_BY_VMA
5715 #undef IS_CONTAINED_BY_LMA
5716 #undef IS_COREFILE_NOTE
5717 #undef IS_SOLARIS_PT_INTERP
5718 #undef INCLUDE_SECTION_IN_SEGMENT
5719 #undef SEGMENT_AFTER_SEGMENT
5720 #undef SEGMENT_OVERLAPS
5721 return TRUE;
5722 }
5723
5724 /* Copy ELF program header information. */
5725
5726 static bfd_boolean
5727 copy_elf_program_header (bfd *ibfd, bfd *obfd)
5728 {
5729 Elf_Internal_Ehdr *iehdr;
5730 struct elf_segment_map *map;
5731 struct elf_segment_map *map_first;
5732 struct elf_segment_map **pointer_to_map;
5733 Elf_Internal_Phdr *segment;
5734 unsigned int i;
5735 unsigned int num_segments;
5736 bfd_boolean phdr_included = FALSE;
5737
5738 iehdr = elf_elfheader (ibfd);
5739
5740 map_first = NULL;
5741 pointer_to_map = &map_first;
5742
5743 num_segments = elf_elfheader (ibfd)->e_phnum;
5744 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5745 i < num_segments;
5746 i++, segment++)
5747 {
5748 asection *section;
5749 unsigned int section_count;
5750 bfd_size_type amt;
5751 Elf_Internal_Shdr *this_hdr;
5752
5753 /* FIXME: Do we need to copy PT_NULL segment? */
5754 if (segment->p_type == PT_NULL)
5755 continue;
5756
5757 /* Compute how many sections are in this segment. */
5758 for (section = ibfd->sections, section_count = 0;
5759 section != NULL;
5760 section = section->next)
5761 {
5762 this_hdr = &(elf_section_data(section)->this_hdr);
5763 if (ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr, segment))
5764 section_count++;
5765 }
5766
5767 /* Allocate a segment map big enough to contain
5768 all of the sections we have selected. */
5769 amt = sizeof (struct elf_segment_map);
5770 if (section_count != 0)
5771 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5772 map = bfd_alloc (obfd, amt);
5773 if (map == NULL)
5774 return FALSE;
5775
5776 /* Initialize the fields of the output segment map with the
5777 input segment. */
5778 map->next = NULL;
5779 map->p_type = segment->p_type;
5780 map->p_flags = segment->p_flags;
5781 map->p_flags_valid = 1;
5782 map->p_paddr = segment->p_paddr;
5783 map->p_paddr_valid = 1;
5784 map->p_align = segment->p_align;
5785 map->p_align_valid = 1;
5786
5787 /* Determine if this segment contains the ELF file header
5788 and if it contains the program headers themselves. */
5789 map->includes_filehdr = (segment->p_offset == 0
5790 && segment->p_filesz >= iehdr->e_ehsize);
5791
5792 map->includes_phdrs = 0;
5793 if (! phdr_included || segment->p_type != PT_LOAD)
5794 {
5795 map->includes_phdrs =
5796 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
5797 && (segment->p_offset + segment->p_filesz
5798 >= ((bfd_vma) iehdr->e_phoff
5799 + iehdr->e_phnum * iehdr->e_phentsize)));
5800
5801 if (segment->p_type == PT_LOAD && map->includes_phdrs)
5802 phdr_included = TRUE;
5803 }
5804
5805 if (section_count != 0)
5806 {
5807 unsigned int isec = 0;
5808
5809 for (section = ibfd->sections;
5810 section != NULL;
5811 section = section->next)
5812 {
5813 this_hdr = &(elf_section_data(section)->this_hdr);
5814 if (ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr, segment))
5815 map->sections[isec++] = section->output_section;
5816 }
5817 }
5818
5819 map->count = section_count;
5820 *pointer_to_map = map;
5821 pointer_to_map = &map->next;
5822 }
5823
5824 elf_tdata (obfd)->segment_map = map_first;
5825 return TRUE;
5826 }
5827
5828 /* Copy private BFD data. This copies or rewrites ELF program header
5829 information. */
5830
5831 static bfd_boolean
5832 copy_private_bfd_data (bfd *ibfd, bfd *obfd)
5833 {
5834 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
5835 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
5836 return TRUE;
5837
5838 if (elf_tdata (ibfd)->phdr == NULL)
5839 return TRUE;
5840
5841 if (ibfd->xvec == obfd->xvec)
5842 {
5843 /* Check if any sections in the input BFD covered by ELF program
5844 header are changed. */
5845 Elf_Internal_Phdr *segment;
5846 asection *section, *osec;
5847 unsigned int i, num_segments;
5848 Elf_Internal_Shdr *this_hdr;
5849
5850 /* Initialize the segment mark field. */
5851 for (section = obfd->sections; section != NULL;
5852 section = section->next)
5853 section->segment_mark = FALSE;
5854
5855 num_segments = elf_elfheader (ibfd)->e_phnum;
5856 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5857 i < num_segments;
5858 i++, segment++)
5859 {
5860 for (section = ibfd->sections;
5861 section != NULL; section = section->next)
5862 {
5863 /* We mark the output section so that we know it comes
5864 from the input BFD. */
5865 osec = section->output_section;
5866 if (osec)
5867 osec->segment_mark = TRUE;
5868
5869 /* Check if this section is covered by the segment. */
5870 this_hdr = &(elf_section_data(section)->this_hdr);
5871 if (ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr, segment))
5872 {
5873 /* FIXME: Check if its output section is changed or
5874 removed. What else do we need to check? */
5875 if (osec == NULL
5876 || section->flags != osec->flags
5877 || section->lma != osec->lma
5878 || section->vma != osec->vma
5879 || section->size != osec->size
5880 || section->rawsize != osec->rawsize
5881 || section->alignment_power != osec->alignment_power)
5882 goto rewrite;
5883 }
5884 }
5885 }
5886
5887 /* Check to see if any output section doesn't come from the
5888 input BFD. */
5889 for (section = obfd->sections; section != NULL;
5890 section = section->next)
5891 {
5892 if (section->segment_mark == FALSE)
5893 goto rewrite;
5894 else
5895 section->segment_mark = FALSE;
5896 }
5897
5898 return copy_elf_program_header (ibfd, obfd);
5899 }
5900
5901 rewrite:
5902 return rewrite_elf_program_header (ibfd, obfd);
5903 }
5904
5905 /* Initialize private output section information from input section. */
5906
5907 bfd_boolean
5908 _bfd_elf_init_private_section_data (bfd *ibfd,
5909 asection *isec,
5910 bfd *obfd,
5911 asection *osec,
5912 struct bfd_link_info *link_info)
5913
5914 {
5915 Elf_Internal_Shdr *ihdr, *ohdr;
5916 bfd_boolean need_group = link_info == NULL || link_info->relocatable;
5917
5918 if (ibfd->xvec->flavour != bfd_target_elf_flavour
5919 || obfd->xvec->flavour != bfd_target_elf_flavour)
5920 return TRUE;
5921
5922 /* Don't copy the output ELF section type from input if the
5923 output BFD section flags have been set to something different.
5924 elf_fake_sections will set ELF section type based on BFD
5925 section flags. */
5926 if (osec->flags == isec->flags
5927 || (osec->flags == 0 && elf_section_type (osec) == SHT_NULL))
5928 elf_section_type (osec) = elf_section_type (isec);
5929
5930 /* Set things up for objcopy and relocatable link. The output
5931 SHT_GROUP section will have its elf_next_in_group pointing back
5932 to the input group members. Ignore linker created group section.
5933 See elfNN_ia64_object_p in elfxx-ia64.c. */
5934 if (need_group)
5935 {
5936 if (elf_sec_group (isec) == NULL
5937 || (elf_sec_group (isec)->flags & SEC_LINKER_CREATED) == 0)
5938 {
5939 if (elf_section_flags (isec) & SHF_GROUP)
5940 elf_section_flags (osec) |= SHF_GROUP;
5941 elf_next_in_group (osec) = elf_next_in_group (isec);
5942 elf_group_name (osec) = elf_group_name (isec);
5943 }
5944 }
5945
5946 ihdr = &elf_section_data (isec)->this_hdr;
5947
5948 /* We need to handle elf_linked_to_section for SHF_LINK_ORDER. We
5949 don't use the output section of the linked-to section since it
5950 may be NULL at this point. */
5951 if ((ihdr->sh_flags & SHF_LINK_ORDER) != 0)
5952 {
5953 ohdr = &elf_section_data (osec)->this_hdr;
5954 ohdr->sh_flags |= SHF_LINK_ORDER;
5955 elf_linked_to_section (osec) = elf_linked_to_section (isec);
5956 }
5957
5958 osec->use_rela_p = isec->use_rela_p;
5959
5960 return TRUE;
5961 }
5962
5963 /* Copy private section information. This copies over the entsize
5964 field, and sometimes the info field. */
5965
5966 bfd_boolean
5967 _bfd_elf_copy_private_section_data (bfd *ibfd,
5968 asection *isec,
5969 bfd *obfd,
5970 asection *osec)
5971 {
5972 Elf_Internal_Shdr *ihdr, *ohdr;
5973
5974 if (ibfd->xvec->flavour != bfd_target_elf_flavour
5975 || obfd->xvec->flavour != bfd_target_elf_flavour)
5976 return TRUE;
5977
5978 ihdr = &elf_section_data (isec)->this_hdr;
5979 ohdr = &elf_section_data (osec)->this_hdr;
5980
5981 ohdr->sh_entsize = ihdr->sh_entsize;
5982
5983 if (ihdr->sh_type == SHT_SYMTAB
5984 || ihdr->sh_type == SHT_DYNSYM
5985 || ihdr->sh_type == SHT_GNU_verneed
5986 || ihdr->sh_type == SHT_GNU_verdef)
5987 ohdr->sh_info = ihdr->sh_info;
5988
5989 return _bfd_elf_init_private_section_data (ibfd, isec, obfd, osec,
5990 NULL);
5991 }
5992
5993 /* Copy private header information. */
5994
5995 bfd_boolean
5996 _bfd_elf_copy_private_header_data (bfd *ibfd, bfd *obfd)
5997 {
5998 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
5999 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
6000 return TRUE;
6001
6002 /* Copy over private BFD data if it has not already been copied.
6003 This must be done here, rather than in the copy_private_bfd_data
6004 entry point, because the latter is called after the section
6005 contents have been set, which means that the program headers have
6006 already been worked out. */
6007 if (elf_tdata (obfd)->segment_map == NULL && elf_tdata (ibfd)->phdr != NULL)
6008 {
6009 if (! copy_private_bfd_data (ibfd, obfd))
6010 return FALSE;
6011 }
6012
6013 return TRUE;
6014 }
6015
6016 /* Copy private symbol information. If this symbol is in a section
6017 which we did not map into a BFD section, try to map the section
6018 index correctly. We use special macro definitions for the mapped
6019 section indices; these definitions are interpreted by the
6020 swap_out_syms function. */
6021
6022 #define MAP_ONESYMTAB (SHN_HIOS + 1)
6023 #define MAP_DYNSYMTAB (SHN_HIOS + 2)
6024 #define MAP_STRTAB (SHN_HIOS + 3)
6025 #define MAP_SHSTRTAB (SHN_HIOS + 4)
6026 #define MAP_SYM_SHNDX (SHN_HIOS + 5)
6027
6028 bfd_boolean
6029 _bfd_elf_copy_private_symbol_data (bfd *ibfd,
6030 asymbol *isymarg,
6031 bfd *obfd,
6032 asymbol *osymarg)
6033 {
6034 elf_symbol_type *isym, *osym;
6035
6036 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
6037 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
6038 return TRUE;
6039
6040 isym = elf_symbol_from (ibfd, isymarg);
6041 osym = elf_symbol_from (obfd, osymarg);
6042
6043 if (isym != NULL
6044 && osym != NULL
6045 && bfd_is_abs_section (isym->symbol.section))
6046 {
6047 unsigned int shndx;
6048
6049 shndx = isym->internal_elf_sym.st_shndx;
6050 if (shndx == elf_onesymtab (ibfd))
6051 shndx = MAP_ONESYMTAB;
6052 else if (shndx == elf_dynsymtab (ibfd))
6053 shndx = MAP_DYNSYMTAB;
6054 else if (shndx == elf_tdata (ibfd)->strtab_section)
6055 shndx = MAP_STRTAB;
6056 else if (shndx == elf_tdata (ibfd)->shstrtab_section)
6057 shndx = MAP_SHSTRTAB;
6058 else if (shndx == elf_tdata (ibfd)->symtab_shndx_section)
6059 shndx = MAP_SYM_SHNDX;
6060 osym->internal_elf_sym.st_shndx = shndx;
6061 }
6062
6063 return TRUE;
6064 }
6065
6066 /* Swap out the symbols. */
6067
6068 static bfd_boolean
6069 swap_out_syms (bfd *abfd,
6070 struct bfd_strtab_hash **sttp,
6071 int relocatable_p)
6072 {
6073 const struct elf_backend_data *bed;
6074 int symcount;
6075 asymbol **syms;
6076 struct bfd_strtab_hash *stt;
6077 Elf_Internal_Shdr *symtab_hdr;
6078 Elf_Internal_Shdr *symtab_shndx_hdr;
6079 Elf_Internal_Shdr *symstrtab_hdr;
6080 bfd_byte *outbound_syms;
6081 bfd_byte *outbound_shndx;
6082 int idx;
6083 bfd_size_type amt;
6084 bfd_boolean name_local_sections;
6085
6086 if (!elf_map_symbols (abfd))
6087 return FALSE;
6088
6089 /* Dump out the symtabs. */
6090 stt = _bfd_elf_stringtab_init ();
6091 if (stt == NULL)
6092 return FALSE;
6093
6094 bed = get_elf_backend_data (abfd);
6095 symcount = bfd_get_symcount (abfd);
6096 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
6097 symtab_hdr->sh_type = SHT_SYMTAB;
6098 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
6099 symtab_hdr->sh_size = symtab_hdr->sh_entsize * (symcount + 1);
6100 symtab_hdr->sh_info = elf_num_locals (abfd) + 1;
6101 symtab_hdr->sh_addralign = 1 << bed->s->log_file_align;
6102
6103 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
6104 symstrtab_hdr->sh_type = SHT_STRTAB;
6105
6106 outbound_syms = bfd_alloc2 (abfd, 1 + symcount, bed->s->sizeof_sym);
6107 if (outbound_syms == NULL)
6108 {
6109 _bfd_stringtab_free (stt);
6110 return FALSE;
6111 }
6112 symtab_hdr->contents = outbound_syms;
6113
6114 outbound_shndx = NULL;
6115 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
6116 if (symtab_shndx_hdr->sh_name != 0)
6117 {
6118 amt = (bfd_size_type) (1 + symcount) * sizeof (Elf_External_Sym_Shndx);
6119 outbound_shndx = bfd_zalloc2 (abfd, 1 + symcount,
6120 sizeof (Elf_External_Sym_Shndx));
6121 if (outbound_shndx == NULL)
6122 {
6123 _bfd_stringtab_free (stt);
6124 return FALSE;
6125 }
6126
6127 symtab_shndx_hdr->contents = outbound_shndx;
6128 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
6129 symtab_shndx_hdr->sh_size = amt;
6130 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
6131 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
6132 }
6133
6134 /* Now generate the data (for "contents"). */
6135 {
6136 /* Fill in zeroth symbol and swap it out. */
6137 Elf_Internal_Sym sym;
6138 sym.st_name = 0;
6139 sym.st_value = 0;
6140 sym.st_size = 0;
6141 sym.st_info = 0;
6142 sym.st_other = 0;
6143 sym.st_shndx = SHN_UNDEF;
6144 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
6145 outbound_syms += bed->s->sizeof_sym;
6146 if (outbound_shndx != NULL)
6147 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
6148 }
6149
6150 name_local_sections
6151 = (bed->elf_backend_name_local_section_symbols
6152 && bed->elf_backend_name_local_section_symbols (abfd));
6153
6154 syms = bfd_get_outsymbols (abfd);
6155 for (idx = 0; idx < symcount; idx++)
6156 {
6157 Elf_Internal_Sym sym;
6158 bfd_vma value = syms[idx]->value;
6159 elf_symbol_type *type_ptr;
6160 flagword flags = syms[idx]->flags;
6161 int type;
6162
6163 if (!name_local_sections
6164 && (flags & (BSF_SECTION_SYM | BSF_GLOBAL)) == BSF_SECTION_SYM)
6165 {
6166 /* Local section symbols have no name. */
6167 sym.st_name = 0;
6168 }
6169 else
6170 {
6171 sym.st_name = (unsigned long) _bfd_stringtab_add (stt,
6172 syms[idx]->name,
6173 TRUE, FALSE);
6174 if (sym.st_name == (unsigned long) -1)
6175 {
6176 _bfd_stringtab_free (stt);
6177 return FALSE;
6178 }
6179 }
6180
6181 type_ptr = elf_symbol_from (abfd, syms[idx]);
6182
6183 if ((flags & BSF_SECTION_SYM) == 0
6184 && bfd_is_com_section (syms[idx]->section))
6185 {
6186 /* ELF common symbols put the alignment into the `value' field,
6187 and the size into the `size' field. This is backwards from
6188 how BFD handles it, so reverse it here. */
6189 sym.st_size = value;
6190 if (type_ptr == NULL
6191 || type_ptr->internal_elf_sym.st_value == 0)
6192 sym.st_value = value >= 16 ? 16 : (1 << bfd_log2 (value));
6193 else
6194 sym.st_value = type_ptr->internal_elf_sym.st_value;
6195 sym.st_shndx = _bfd_elf_section_from_bfd_section
6196 (abfd, syms[idx]->section);
6197 }
6198 else
6199 {
6200 asection *sec = syms[idx]->section;
6201 int shndx;
6202
6203 if (sec->output_section)
6204 {
6205 value += sec->output_offset;
6206 sec = sec->output_section;
6207 }
6208
6209 /* Don't add in the section vma for relocatable output. */
6210 if (! relocatable_p)
6211 value += sec->vma;
6212 sym.st_value = value;
6213 sym.st_size = type_ptr ? type_ptr->internal_elf_sym.st_size : 0;
6214
6215 if (bfd_is_abs_section (sec)
6216 && type_ptr != NULL
6217 && type_ptr->internal_elf_sym.st_shndx != 0)
6218 {
6219 /* This symbol is in a real ELF section which we did
6220 not create as a BFD section. Undo the mapping done
6221 by copy_private_symbol_data. */
6222 shndx = type_ptr->internal_elf_sym.st_shndx;
6223 switch (shndx)
6224 {
6225 case MAP_ONESYMTAB:
6226 shndx = elf_onesymtab (abfd);
6227 break;
6228 case MAP_DYNSYMTAB:
6229 shndx = elf_dynsymtab (abfd);
6230 break;
6231 case MAP_STRTAB:
6232 shndx = elf_tdata (abfd)->strtab_section;
6233 break;
6234 case MAP_SHSTRTAB:
6235 shndx = elf_tdata (abfd)->shstrtab_section;
6236 break;
6237 case MAP_SYM_SHNDX:
6238 shndx = elf_tdata (abfd)->symtab_shndx_section;
6239 break;
6240 default:
6241 break;
6242 }
6243 }
6244 else
6245 {
6246 shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
6247
6248 if (shndx == -1)
6249 {
6250 asection *sec2;
6251
6252 /* Writing this would be a hell of a lot easier if
6253 we had some decent documentation on bfd, and
6254 knew what to expect of the library, and what to
6255 demand of applications. For example, it
6256 appears that `objcopy' might not set the
6257 section of a symbol to be a section that is
6258 actually in the output file. */
6259 sec2 = bfd_get_section_by_name (abfd, sec->name);
6260 if (sec2 == NULL)
6261 {
6262 _bfd_error_handler (_("\
6263 Unable to find equivalent output section for symbol '%s' from section '%s'"),
6264 syms[idx]->name ? syms[idx]->name : "<Local sym>",
6265 sec->name);
6266 bfd_set_error (bfd_error_invalid_operation);
6267 _bfd_stringtab_free (stt);
6268 return FALSE;
6269 }
6270
6271 shndx = _bfd_elf_section_from_bfd_section (abfd, sec2);
6272 BFD_ASSERT (shndx != -1);
6273 }
6274 }
6275
6276 sym.st_shndx = shndx;
6277 }
6278
6279 if ((flags & BSF_THREAD_LOCAL) != 0)
6280 type = STT_TLS;
6281 else if ((flags & BSF_FUNCTION) != 0)
6282 type = STT_FUNC;
6283 else if ((flags & BSF_OBJECT) != 0)
6284 type = STT_OBJECT;
6285 else
6286 type = STT_NOTYPE;
6287
6288 if (syms[idx]->section->flags & SEC_THREAD_LOCAL)
6289 type = STT_TLS;
6290
6291 /* Processor-specific types. */
6292 if (type_ptr != NULL
6293 && bed->elf_backend_get_symbol_type)
6294 type = ((*bed->elf_backend_get_symbol_type)
6295 (&type_ptr->internal_elf_sym, type));
6296
6297 if (flags & BSF_SECTION_SYM)
6298 {
6299 if (flags & BSF_GLOBAL)
6300 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6301 else
6302 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
6303 }
6304 else if (bfd_is_com_section (syms[idx]->section))
6305 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
6306 else if (bfd_is_und_section (syms[idx]->section))
6307 sym.st_info = ELF_ST_INFO (((flags & BSF_WEAK)
6308 ? STB_WEAK
6309 : STB_GLOBAL),
6310 type);
6311 else if (flags & BSF_FILE)
6312 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
6313 else
6314 {
6315 int bind = STB_LOCAL;
6316
6317 if (flags & BSF_LOCAL)
6318 bind = STB_LOCAL;
6319 else if (flags & BSF_WEAK)
6320 bind = STB_WEAK;
6321 else if (flags & BSF_GLOBAL)
6322 bind = STB_GLOBAL;
6323
6324 sym.st_info = ELF_ST_INFO (bind, type);
6325 }
6326
6327 if (type_ptr != NULL)
6328 sym.st_other = type_ptr->internal_elf_sym.st_other;
6329 else
6330 sym.st_other = 0;
6331
6332 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
6333 outbound_syms += bed->s->sizeof_sym;
6334 if (outbound_shndx != NULL)
6335 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
6336 }
6337
6338 *sttp = stt;
6339 symstrtab_hdr->sh_size = _bfd_stringtab_size (stt);
6340 symstrtab_hdr->sh_type = SHT_STRTAB;
6341
6342 symstrtab_hdr->sh_flags = 0;
6343 symstrtab_hdr->sh_addr = 0;
6344 symstrtab_hdr->sh_entsize = 0;
6345 symstrtab_hdr->sh_link = 0;
6346 symstrtab_hdr->sh_info = 0;
6347 symstrtab_hdr->sh_addralign = 1;
6348
6349 return TRUE;
6350 }
6351
6352 /* Return the number of bytes required to hold the symtab vector.
6353
6354 Note that we base it on the count plus 1, since we will null terminate
6355 the vector allocated based on this size. However, the ELF symbol table
6356 always has a dummy entry as symbol #0, so it ends up even. */
6357
6358 long
6359 _bfd_elf_get_symtab_upper_bound (bfd *abfd)
6360 {
6361 long symcount;
6362 long symtab_size;
6363 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->symtab_hdr;
6364
6365 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
6366 symtab_size = (symcount + 1) * (sizeof (asymbol *));
6367 if (symcount > 0)
6368 symtab_size -= sizeof (asymbol *);
6369
6370 return symtab_size;
6371 }
6372
6373 long
6374 _bfd_elf_get_dynamic_symtab_upper_bound (bfd *abfd)
6375 {
6376 long symcount;
6377 long symtab_size;
6378 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->dynsymtab_hdr;
6379
6380 if (elf_dynsymtab (abfd) == 0)
6381 {
6382 bfd_set_error (bfd_error_invalid_operation);
6383 return -1;
6384 }
6385
6386 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
6387 symtab_size = (symcount + 1) * (sizeof (asymbol *));
6388 if (symcount > 0)
6389 symtab_size -= sizeof (asymbol *);
6390
6391 return symtab_size;
6392 }
6393
6394 long
6395 _bfd_elf_get_reloc_upper_bound (bfd *abfd ATTRIBUTE_UNUSED,
6396 sec_ptr asect)
6397 {
6398 return (asect->reloc_count + 1) * sizeof (arelent *);
6399 }
6400
6401 /* Canonicalize the relocs. */
6402
6403 long
6404 _bfd_elf_canonicalize_reloc (bfd *abfd,
6405 sec_ptr section,
6406 arelent **relptr,
6407 asymbol **symbols)
6408 {
6409 arelent *tblptr;
6410 unsigned int i;
6411 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6412
6413 if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE))
6414 return -1;
6415
6416 tblptr = section->relocation;
6417 for (i = 0; i < section->reloc_count; i++)
6418 *relptr++ = tblptr++;
6419
6420 *relptr = NULL;
6421
6422 return section->reloc_count;
6423 }
6424
6425 long
6426 _bfd_elf_canonicalize_symtab (bfd *abfd, asymbol **allocation)
6427 {
6428 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6429 long symcount = bed->s->slurp_symbol_table (abfd, allocation, FALSE);
6430
6431 if (symcount >= 0)
6432 bfd_get_symcount (abfd) = symcount;
6433 return symcount;
6434 }
6435
6436 long
6437 _bfd_elf_canonicalize_dynamic_symtab (bfd *abfd,
6438 asymbol **allocation)
6439 {
6440 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6441 long symcount = bed->s->slurp_symbol_table (abfd, allocation, TRUE);
6442
6443 if (symcount >= 0)
6444 bfd_get_dynamic_symcount (abfd) = symcount;
6445 return symcount;
6446 }
6447
6448 /* Return the size required for the dynamic reloc entries. Any loadable
6449 section that was actually installed in the BFD, and has type SHT_REL
6450 or SHT_RELA, and uses the dynamic symbol table, is considered to be a
6451 dynamic reloc section. */
6452
6453 long
6454 _bfd_elf_get_dynamic_reloc_upper_bound (bfd *abfd)
6455 {
6456 long ret;
6457 asection *s;
6458
6459 if (elf_dynsymtab (abfd) == 0)
6460 {
6461 bfd_set_error (bfd_error_invalid_operation);
6462 return -1;
6463 }
6464
6465 ret = sizeof (arelent *);
6466 for (s = abfd->sections; s != NULL; s = s->next)
6467 if ((s->flags & SEC_LOAD) != 0
6468 && elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
6469 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
6470 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
6471 ret += ((s->size / elf_section_data (s)->this_hdr.sh_entsize)
6472 * sizeof (arelent *));
6473
6474 return ret;
6475 }
6476
6477 /* Canonicalize the dynamic relocation entries. Note that we return the
6478 dynamic relocations as a single block, although they are actually
6479 associated with particular sections; the interface, which was
6480 designed for SunOS style shared libraries, expects that there is only
6481 one set of dynamic relocs. Any loadable section that was actually
6482 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses the
6483 dynamic symbol table, is considered to be a dynamic reloc section. */
6484
6485 long
6486 _bfd_elf_canonicalize_dynamic_reloc (bfd *abfd,
6487 arelent **storage,
6488 asymbol **syms)
6489 {
6490 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
6491 asection *s;
6492 long ret;
6493
6494 if (elf_dynsymtab (abfd) == 0)
6495 {
6496 bfd_set_error (bfd_error_invalid_operation);
6497 return -1;
6498 }
6499
6500 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
6501 ret = 0;
6502 for (s = abfd->sections; s != NULL; s = s->next)
6503 {
6504 if ((s->flags & SEC_LOAD) != 0
6505 && elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
6506 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
6507 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
6508 {
6509 arelent *p;
6510 long count, i;
6511
6512 if (! (*slurp_relocs) (abfd, s, syms, TRUE))
6513 return -1;
6514 count = s->size / elf_section_data (s)->this_hdr.sh_entsize;
6515 p = s->relocation;
6516 for (i = 0; i < count; i++)
6517 *storage++ = p++;
6518 ret += count;
6519 }
6520 }
6521
6522 *storage = NULL;
6523
6524 return ret;
6525 }
6526 \f
6527 /* Read in the version information. */
6528
6529 bfd_boolean
6530 _bfd_elf_slurp_version_tables (bfd *abfd, bfd_boolean default_imported_symver)
6531 {
6532 bfd_byte *contents = NULL;
6533 unsigned int freeidx = 0;
6534
6535 if (elf_dynverref (abfd) != 0)
6536 {
6537 Elf_Internal_Shdr *hdr;
6538 Elf_External_Verneed *everneed;
6539 Elf_Internal_Verneed *iverneed;
6540 unsigned int i;
6541 bfd_byte *contents_end;
6542
6543 hdr = &elf_tdata (abfd)->dynverref_hdr;
6544
6545 elf_tdata (abfd)->verref = bfd_zalloc2 (abfd, hdr->sh_info,
6546 sizeof (Elf_Internal_Verneed));
6547 if (elf_tdata (abfd)->verref == NULL)
6548 goto error_return;
6549
6550 elf_tdata (abfd)->cverrefs = hdr->sh_info;
6551
6552 contents = bfd_malloc (hdr->sh_size);
6553 if (contents == NULL)
6554 {
6555 error_return_verref:
6556 elf_tdata (abfd)->verref = NULL;
6557 elf_tdata (abfd)->cverrefs = 0;
6558 goto error_return;
6559 }
6560 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
6561 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
6562 goto error_return_verref;
6563
6564 if (hdr->sh_info && hdr->sh_size < sizeof (Elf_External_Verneed))
6565 goto error_return_verref;
6566
6567 BFD_ASSERT (sizeof (Elf_External_Verneed)
6568 == sizeof (Elf_External_Vernaux));
6569 contents_end = contents + hdr->sh_size - sizeof (Elf_External_Verneed);
6570 everneed = (Elf_External_Verneed *) contents;
6571 iverneed = elf_tdata (abfd)->verref;
6572 for (i = 0; i < hdr->sh_info; i++, iverneed++)
6573 {
6574 Elf_External_Vernaux *evernaux;
6575 Elf_Internal_Vernaux *ivernaux;
6576 unsigned int j;
6577
6578 _bfd_elf_swap_verneed_in (abfd, everneed, iverneed);
6579
6580 iverneed->vn_bfd = abfd;
6581
6582 iverneed->vn_filename =
6583 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
6584 iverneed->vn_file);
6585 if (iverneed->vn_filename == NULL)
6586 goto error_return_verref;
6587
6588 if (iverneed->vn_cnt == 0)
6589 iverneed->vn_auxptr = NULL;
6590 else
6591 {
6592 iverneed->vn_auxptr = bfd_alloc2 (abfd, iverneed->vn_cnt,
6593 sizeof (Elf_Internal_Vernaux));
6594 if (iverneed->vn_auxptr == NULL)
6595 goto error_return_verref;
6596 }
6597
6598 if (iverneed->vn_aux
6599 > (size_t) (contents_end - (bfd_byte *) everneed))
6600 goto error_return_verref;
6601
6602 evernaux = ((Elf_External_Vernaux *)
6603 ((bfd_byte *) everneed + iverneed->vn_aux));
6604 ivernaux = iverneed->vn_auxptr;
6605 for (j = 0; j < iverneed->vn_cnt; j++, ivernaux++)
6606 {
6607 _bfd_elf_swap_vernaux_in (abfd, evernaux, ivernaux);
6608
6609 ivernaux->vna_nodename =
6610 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
6611 ivernaux->vna_name);
6612 if (ivernaux->vna_nodename == NULL)
6613 goto error_return_verref;
6614
6615 if (j + 1 < iverneed->vn_cnt)
6616 ivernaux->vna_nextptr = ivernaux + 1;
6617 else
6618 ivernaux->vna_nextptr = NULL;
6619
6620 if (ivernaux->vna_next
6621 > (size_t) (contents_end - (bfd_byte *) evernaux))
6622 goto error_return_verref;
6623
6624 evernaux = ((Elf_External_Vernaux *)
6625 ((bfd_byte *) evernaux + ivernaux->vna_next));
6626
6627 if (ivernaux->vna_other > freeidx)
6628 freeidx = ivernaux->vna_other;
6629 }
6630
6631 if (i + 1 < hdr->sh_info)
6632 iverneed->vn_nextref = iverneed + 1;
6633 else
6634 iverneed->vn_nextref = NULL;
6635
6636 if (iverneed->vn_next
6637 > (size_t) (contents_end - (bfd_byte *) everneed))
6638 goto error_return_verref;
6639
6640 everneed = ((Elf_External_Verneed *)
6641 ((bfd_byte *) everneed + iverneed->vn_next));
6642 }
6643
6644 free (contents);
6645 contents = NULL;
6646 }
6647
6648 if (elf_dynverdef (abfd) != 0)
6649 {
6650 Elf_Internal_Shdr *hdr;
6651 Elf_External_Verdef *everdef;
6652 Elf_Internal_Verdef *iverdef;
6653 Elf_Internal_Verdef *iverdefarr;
6654 Elf_Internal_Verdef iverdefmem;
6655 unsigned int i;
6656 unsigned int maxidx;
6657 bfd_byte *contents_end_def, *contents_end_aux;
6658
6659 hdr = &elf_tdata (abfd)->dynverdef_hdr;
6660
6661 contents = bfd_malloc (hdr->sh_size);
6662 if (contents == NULL)
6663 goto error_return;
6664 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
6665 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
6666 goto error_return;
6667
6668 if (hdr->sh_info && hdr->sh_size < sizeof (Elf_External_Verdef))
6669 goto error_return;
6670
6671 BFD_ASSERT (sizeof (Elf_External_Verdef)
6672 >= sizeof (Elf_External_Verdaux));
6673 contents_end_def = contents + hdr->sh_size
6674 - sizeof (Elf_External_Verdef);
6675 contents_end_aux = contents + hdr->sh_size
6676 - sizeof (Elf_External_Verdaux);
6677
6678 /* We know the number of entries in the section but not the maximum
6679 index. Therefore we have to run through all entries and find
6680 the maximum. */
6681 everdef = (Elf_External_Verdef *) contents;
6682 maxidx = 0;
6683 for (i = 0; i < hdr->sh_info; ++i)
6684 {
6685 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
6686
6687 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) > maxidx)
6688 maxidx = iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION);
6689
6690 if (iverdefmem.vd_next
6691 > (size_t) (contents_end_def - (bfd_byte *) everdef))
6692 goto error_return;
6693
6694 everdef = ((Elf_External_Verdef *)
6695 ((bfd_byte *) everdef + iverdefmem.vd_next));
6696 }
6697
6698 if (default_imported_symver)
6699 {
6700 if (freeidx > maxidx)
6701 maxidx = ++freeidx;
6702 else
6703 freeidx = ++maxidx;
6704 }
6705 elf_tdata (abfd)->verdef = bfd_zalloc2 (abfd, maxidx,
6706 sizeof (Elf_Internal_Verdef));
6707 if (elf_tdata (abfd)->verdef == NULL)
6708 goto error_return;
6709
6710 elf_tdata (abfd)->cverdefs = maxidx;
6711
6712 everdef = (Elf_External_Verdef *) contents;
6713 iverdefarr = elf_tdata (abfd)->verdef;
6714 for (i = 0; i < hdr->sh_info; i++)
6715 {
6716 Elf_External_Verdaux *everdaux;
6717 Elf_Internal_Verdaux *iverdaux;
6718 unsigned int j;
6719
6720 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
6721
6722 if ((iverdefmem.vd_ndx & VERSYM_VERSION) == 0)
6723 {
6724 error_return_verdef:
6725 elf_tdata (abfd)->verdef = NULL;
6726 elf_tdata (abfd)->cverdefs = 0;
6727 goto error_return;
6728 }
6729
6730 iverdef = &iverdefarr[(iverdefmem.vd_ndx & VERSYM_VERSION) - 1];
6731 memcpy (iverdef, &iverdefmem, sizeof (Elf_Internal_Verdef));
6732
6733 iverdef->vd_bfd = abfd;
6734
6735 if (iverdef->vd_cnt == 0)
6736 iverdef->vd_auxptr = NULL;
6737 else
6738 {
6739 iverdef->vd_auxptr = bfd_alloc2 (abfd, iverdef->vd_cnt,
6740 sizeof (Elf_Internal_Verdaux));
6741 if (iverdef->vd_auxptr == NULL)
6742 goto error_return_verdef;
6743 }
6744
6745 if (iverdef->vd_aux
6746 > (size_t) (contents_end_aux - (bfd_byte *) everdef))
6747 goto error_return_verdef;
6748
6749 everdaux = ((Elf_External_Verdaux *)
6750 ((bfd_byte *) everdef + iverdef->vd_aux));
6751 iverdaux = iverdef->vd_auxptr;
6752 for (j = 0; j < iverdef->vd_cnt; j++, iverdaux++)
6753 {
6754 _bfd_elf_swap_verdaux_in (abfd, everdaux, iverdaux);
6755
6756 iverdaux->vda_nodename =
6757 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
6758 iverdaux->vda_name);
6759 if (iverdaux->vda_nodename == NULL)
6760 goto error_return_verdef;
6761
6762 if (j + 1 < iverdef->vd_cnt)
6763 iverdaux->vda_nextptr = iverdaux + 1;
6764 else
6765 iverdaux->vda_nextptr = NULL;
6766
6767 if (iverdaux->vda_next
6768 > (size_t) (contents_end_aux - (bfd_byte *) everdaux))
6769 goto error_return_verdef;
6770
6771 everdaux = ((Elf_External_Verdaux *)
6772 ((bfd_byte *) everdaux + iverdaux->vda_next));
6773 }
6774
6775 if (iverdef->vd_cnt)
6776 iverdef->vd_nodename = iverdef->vd_auxptr->vda_nodename;
6777
6778 if ((size_t) (iverdef - iverdefarr) + 1 < maxidx)
6779 iverdef->vd_nextdef = iverdef + 1;
6780 else
6781 iverdef->vd_nextdef = NULL;
6782
6783 everdef = ((Elf_External_Verdef *)
6784 ((bfd_byte *) everdef + iverdef->vd_next));
6785 }
6786
6787 free (contents);
6788 contents = NULL;
6789 }
6790 else if (default_imported_symver)
6791 {
6792 if (freeidx < 3)
6793 freeidx = 3;
6794 else
6795 freeidx++;
6796
6797 elf_tdata (abfd)->verdef = bfd_zalloc2 (abfd, freeidx,
6798 sizeof (Elf_Internal_Verdef));
6799 if (elf_tdata (abfd)->verdef == NULL)
6800 goto error_return;
6801
6802 elf_tdata (abfd)->cverdefs = freeidx;
6803 }
6804
6805 /* Create a default version based on the soname. */
6806 if (default_imported_symver)
6807 {
6808 Elf_Internal_Verdef *iverdef;
6809 Elf_Internal_Verdaux *iverdaux;
6810
6811 iverdef = &elf_tdata (abfd)->verdef[freeidx - 1];;
6812
6813 iverdef->vd_version = VER_DEF_CURRENT;
6814 iverdef->vd_flags = 0;
6815 iverdef->vd_ndx = freeidx;
6816 iverdef->vd_cnt = 1;
6817
6818 iverdef->vd_bfd = abfd;
6819
6820 iverdef->vd_nodename = bfd_elf_get_dt_soname (abfd);
6821 if (iverdef->vd_nodename == NULL)
6822 goto error_return_verdef;
6823 iverdef->vd_nextdef = NULL;
6824 iverdef->vd_auxptr = bfd_alloc (abfd, sizeof (Elf_Internal_Verdaux));
6825 if (iverdef->vd_auxptr == NULL)
6826 goto error_return_verdef;
6827
6828 iverdaux = iverdef->vd_auxptr;
6829 iverdaux->vda_nodename = iverdef->vd_nodename;
6830 iverdaux->vda_nextptr = NULL;
6831 }
6832
6833 return TRUE;
6834
6835 error_return:
6836 if (contents != NULL)
6837 free (contents);
6838 return FALSE;
6839 }
6840 \f
6841 asymbol *
6842 _bfd_elf_make_empty_symbol (bfd *abfd)
6843 {
6844 elf_symbol_type *newsym;
6845 bfd_size_type amt = sizeof (elf_symbol_type);
6846
6847 newsym = bfd_zalloc (abfd, amt);
6848 if (!newsym)
6849 return NULL;
6850 else
6851 {
6852 newsym->symbol.the_bfd = abfd;
6853 return &newsym->symbol;
6854 }
6855 }
6856
6857 void
6858 _bfd_elf_get_symbol_info (bfd *abfd ATTRIBUTE_UNUSED,
6859 asymbol *symbol,
6860 symbol_info *ret)
6861 {
6862 bfd_symbol_info (symbol, ret);
6863 }
6864
6865 /* Return whether a symbol name implies a local symbol. Most targets
6866 use this function for the is_local_label_name entry point, but some
6867 override it. */
6868
6869 bfd_boolean
6870 _bfd_elf_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED,
6871 const char *name)
6872 {
6873 /* Normal local symbols start with ``.L''. */
6874 if (name[0] == '.' && name[1] == 'L')
6875 return TRUE;
6876
6877 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
6878 DWARF debugging symbols starting with ``..''. */
6879 if (name[0] == '.' && name[1] == '.')
6880 return TRUE;
6881
6882 /* gcc will sometimes generate symbols beginning with ``_.L_'' when
6883 emitting DWARF debugging output. I suspect this is actually a
6884 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
6885 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
6886 underscore to be emitted on some ELF targets). For ease of use,
6887 we treat such symbols as local. */
6888 if (name[0] == '_' && name[1] == '.' && name[2] == 'L' && name[3] == '_')
6889 return TRUE;
6890
6891 return FALSE;
6892 }
6893
6894 alent *
6895 _bfd_elf_get_lineno (bfd *abfd ATTRIBUTE_UNUSED,
6896 asymbol *symbol ATTRIBUTE_UNUSED)
6897 {
6898 abort ();
6899 return NULL;
6900 }
6901
6902 bfd_boolean
6903 _bfd_elf_set_arch_mach (bfd *abfd,
6904 enum bfd_architecture arch,
6905 unsigned long machine)
6906 {
6907 /* If this isn't the right architecture for this backend, and this
6908 isn't the generic backend, fail. */
6909 if (arch != get_elf_backend_data (abfd)->arch
6910 && arch != bfd_arch_unknown
6911 && get_elf_backend_data (abfd)->arch != bfd_arch_unknown)
6912 return FALSE;
6913
6914 return bfd_default_set_arch_mach (abfd, arch, machine);
6915 }
6916
6917 /* Find the function to a particular section and offset,
6918 for error reporting. */
6919
6920 static bfd_boolean
6921 elf_find_function (bfd *abfd ATTRIBUTE_UNUSED,
6922 asection *section,
6923 asymbol **symbols,
6924 bfd_vma offset,
6925 const char **filename_ptr,
6926 const char **functionname_ptr)
6927 {
6928 const char *filename;
6929 asymbol *func, *file;
6930 bfd_vma low_func;
6931 asymbol **p;
6932 /* ??? Given multiple file symbols, it is impossible to reliably
6933 choose the right file name for global symbols. File symbols are
6934 local symbols, and thus all file symbols must sort before any
6935 global symbols. The ELF spec may be interpreted to say that a
6936 file symbol must sort before other local symbols, but currently
6937 ld -r doesn't do this. So, for ld -r output, it is possible to
6938 make a better choice of file name for local symbols by ignoring
6939 file symbols appearing after a given local symbol. */
6940 enum { nothing_seen, symbol_seen, file_after_symbol_seen } state;
6941
6942 filename = NULL;
6943 func = NULL;
6944 file = NULL;
6945 low_func = 0;
6946 state = nothing_seen;
6947
6948 for (p = symbols; *p != NULL; p++)
6949 {
6950 elf_symbol_type *q;
6951
6952 q = (elf_symbol_type *) *p;
6953
6954 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
6955 {
6956 default:
6957 break;
6958 case STT_FILE:
6959 file = &q->symbol;
6960 if (state == symbol_seen)
6961 state = file_after_symbol_seen;
6962 continue;
6963 case STT_NOTYPE:
6964 case STT_FUNC:
6965 if (bfd_get_section (&q->symbol) == section
6966 && q->symbol.value >= low_func
6967 && q->symbol.value <= offset)
6968 {
6969 func = (asymbol *) q;
6970 low_func = q->symbol.value;
6971 filename = NULL;
6972 if (file != NULL
6973 && (ELF_ST_BIND (q->internal_elf_sym.st_info) == STB_LOCAL
6974 || state != file_after_symbol_seen))
6975 filename = bfd_asymbol_name (file);
6976 }
6977 break;
6978 }
6979 if (state == nothing_seen)
6980 state = symbol_seen;
6981 }
6982
6983 if (func == NULL)
6984 return FALSE;
6985
6986 if (filename_ptr)
6987 *filename_ptr = filename;
6988 if (functionname_ptr)
6989 *functionname_ptr = bfd_asymbol_name (func);
6990
6991 return TRUE;
6992 }
6993
6994 /* Find the nearest line to a particular section and offset,
6995 for error reporting. */
6996
6997 bfd_boolean
6998 _bfd_elf_find_nearest_line (bfd *abfd,
6999 asection *section,
7000 asymbol **symbols,
7001 bfd_vma offset,
7002 const char **filename_ptr,
7003 const char **functionname_ptr,
7004 unsigned int *line_ptr)
7005 {
7006 bfd_boolean found;
7007
7008 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
7009 filename_ptr, functionname_ptr,
7010 line_ptr))
7011 {
7012 if (!*functionname_ptr)
7013 elf_find_function (abfd, section, symbols, offset,
7014 *filename_ptr ? NULL : filename_ptr,
7015 functionname_ptr);
7016
7017 return TRUE;
7018 }
7019
7020 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
7021 filename_ptr, functionname_ptr,
7022 line_ptr, 0,
7023 &elf_tdata (abfd)->dwarf2_find_line_info))
7024 {
7025 if (!*functionname_ptr)
7026 elf_find_function (abfd, section, symbols, offset,
7027 *filename_ptr ? NULL : filename_ptr,
7028 functionname_ptr);
7029
7030 return TRUE;
7031 }
7032
7033 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
7034 &found, filename_ptr,
7035 functionname_ptr, line_ptr,
7036 &elf_tdata (abfd)->line_info))
7037 return FALSE;
7038 if (found && (*functionname_ptr || *line_ptr))
7039 return TRUE;
7040
7041 if (symbols == NULL)
7042 return FALSE;
7043
7044 if (! elf_find_function (abfd, section, symbols, offset,
7045 filename_ptr, functionname_ptr))
7046 return FALSE;
7047
7048 *line_ptr = 0;
7049 return TRUE;
7050 }
7051
7052 /* Find the line for a symbol. */
7053
7054 bfd_boolean
7055 _bfd_elf_find_line (bfd *abfd, asymbol **symbols, asymbol *symbol,
7056 const char **filename_ptr, unsigned int *line_ptr)
7057 {
7058 return _bfd_dwarf2_find_line (abfd, symbols, symbol,
7059 filename_ptr, line_ptr, 0,
7060 &elf_tdata (abfd)->dwarf2_find_line_info);
7061 }
7062
7063 /* After a call to bfd_find_nearest_line, successive calls to
7064 bfd_find_inliner_info can be used to get source information about
7065 each level of function inlining that terminated at the address
7066 passed to bfd_find_nearest_line. Currently this is only supported
7067 for DWARF2 with appropriate DWARF3 extensions. */
7068
7069 bfd_boolean
7070 _bfd_elf_find_inliner_info (bfd *abfd,
7071 const char **filename_ptr,
7072 const char **functionname_ptr,
7073 unsigned int *line_ptr)
7074 {
7075 bfd_boolean found;
7076 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
7077 functionname_ptr, line_ptr,
7078 & elf_tdata (abfd)->dwarf2_find_line_info);
7079 return found;
7080 }
7081
7082 int
7083 _bfd_elf_sizeof_headers (bfd *abfd, struct bfd_link_info *info)
7084 {
7085 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7086 int ret = bed->s->sizeof_ehdr;
7087
7088 if (!info->relocatable)
7089 {
7090 bfd_size_type phdr_size = elf_tdata (abfd)->program_header_size;
7091
7092 if (phdr_size == (bfd_size_type) -1)
7093 {
7094 struct elf_segment_map *m;
7095
7096 phdr_size = 0;
7097 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
7098 phdr_size += bed->s->sizeof_phdr;
7099
7100 if (phdr_size == 0)
7101 phdr_size = get_program_header_size (abfd, info);
7102 }
7103
7104 elf_tdata (abfd)->program_header_size = phdr_size;
7105 ret += phdr_size;
7106 }
7107
7108 return ret;
7109 }
7110
7111 bfd_boolean
7112 _bfd_elf_set_section_contents (bfd *abfd,
7113 sec_ptr section,
7114 const void *location,
7115 file_ptr offset,
7116 bfd_size_type count)
7117 {
7118 Elf_Internal_Shdr *hdr;
7119 bfd_signed_vma pos;
7120
7121 if (! abfd->output_has_begun
7122 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
7123 return FALSE;
7124
7125 hdr = &elf_section_data (section)->this_hdr;
7126 pos = hdr->sh_offset + offset;
7127 if (bfd_seek (abfd, pos, SEEK_SET) != 0
7128 || bfd_bwrite (location, count, abfd) != count)
7129 return FALSE;
7130
7131 return TRUE;
7132 }
7133
7134 void
7135 _bfd_elf_no_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED,
7136 arelent *cache_ptr ATTRIBUTE_UNUSED,
7137 Elf_Internal_Rela *dst ATTRIBUTE_UNUSED)
7138 {
7139 abort ();
7140 }
7141
7142 /* Try to convert a non-ELF reloc into an ELF one. */
7143
7144 bfd_boolean
7145 _bfd_elf_validate_reloc (bfd *abfd, arelent *areloc)
7146 {
7147 /* Check whether we really have an ELF howto. */
7148
7149 if ((*areloc->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec)
7150 {
7151 bfd_reloc_code_real_type code;
7152 reloc_howto_type *howto;
7153
7154 /* Alien reloc: Try to determine its type to replace it with an
7155 equivalent ELF reloc. */
7156
7157 if (areloc->howto->pc_relative)
7158 {
7159 switch (areloc->howto->bitsize)
7160 {
7161 case 8:
7162 code = BFD_RELOC_8_PCREL;
7163 break;
7164 case 12:
7165 code = BFD_RELOC_12_PCREL;
7166 break;
7167 case 16:
7168 code = BFD_RELOC_16_PCREL;
7169 break;
7170 case 24:
7171 code = BFD_RELOC_24_PCREL;
7172 break;
7173 case 32:
7174 code = BFD_RELOC_32_PCREL;
7175 break;
7176 case 64:
7177 code = BFD_RELOC_64_PCREL;
7178 break;
7179 default:
7180 goto fail;
7181 }
7182
7183 howto = bfd_reloc_type_lookup (abfd, code);
7184
7185 if (areloc->howto->pcrel_offset != howto->pcrel_offset)
7186 {
7187 if (howto->pcrel_offset)
7188 areloc->addend += areloc->address;
7189 else
7190 areloc->addend -= areloc->address; /* addend is unsigned!! */
7191 }
7192 }
7193 else
7194 {
7195 switch (areloc->howto->bitsize)
7196 {
7197 case 8:
7198 code = BFD_RELOC_8;
7199 break;
7200 case 14:
7201 code = BFD_RELOC_14;
7202 break;
7203 case 16:
7204 code = BFD_RELOC_16;
7205 break;
7206 case 26:
7207 code = BFD_RELOC_26;
7208 break;
7209 case 32:
7210 code = BFD_RELOC_32;
7211 break;
7212 case 64:
7213 code = BFD_RELOC_64;
7214 break;
7215 default:
7216 goto fail;
7217 }
7218
7219 howto = bfd_reloc_type_lookup (abfd, code);
7220 }
7221
7222 if (howto)
7223 areloc->howto = howto;
7224 else
7225 goto fail;
7226 }
7227
7228 return TRUE;
7229
7230 fail:
7231 (*_bfd_error_handler)
7232 (_("%B: unsupported relocation type %s"),
7233 abfd, areloc->howto->name);
7234 bfd_set_error (bfd_error_bad_value);
7235 return FALSE;
7236 }
7237
7238 bfd_boolean
7239 _bfd_elf_close_and_cleanup (bfd *abfd)
7240 {
7241 if (bfd_get_format (abfd) == bfd_object)
7242 {
7243 if (elf_tdata (abfd) != NULL && elf_shstrtab (abfd) != NULL)
7244 _bfd_elf_strtab_free (elf_shstrtab (abfd));
7245 _bfd_dwarf2_cleanup_debug_info (abfd);
7246 }
7247
7248 return _bfd_generic_close_and_cleanup (abfd);
7249 }
7250
7251 /* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
7252 in the relocation's offset. Thus we cannot allow any sort of sanity
7253 range-checking to interfere. There is nothing else to do in processing
7254 this reloc. */
7255
7256 bfd_reloc_status_type
7257 _bfd_elf_rel_vtable_reloc_fn
7258 (bfd *abfd ATTRIBUTE_UNUSED, arelent *re ATTRIBUTE_UNUSED,
7259 struct bfd_symbol *symbol ATTRIBUTE_UNUSED,
7260 void *data ATTRIBUTE_UNUSED, asection *is ATTRIBUTE_UNUSED,
7261 bfd *obfd ATTRIBUTE_UNUSED, char **errmsg ATTRIBUTE_UNUSED)
7262 {
7263 return bfd_reloc_ok;
7264 }
7265 \f
7266 /* Elf core file support. Much of this only works on native
7267 toolchains, since we rely on knowing the
7268 machine-dependent procfs structure in order to pick
7269 out details about the corefile. */
7270
7271 #ifdef HAVE_SYS_PROCFS_H
7272 # include <sys/procfs.h>
7273 #endif
7274
7275 /* FIXME: this is kinda wrong, but it's what gdb wants. */
7276
7277 static int
7278 elfcore_make_pid (bfd *abfd)
7279 {
7280 return ((elf_tdata (abfd)->core_lwpid << 16)
7281 + (elf_tdata (abfd)->core_pid));
7282 }
7283
7284 /* If there isn't a section called NAME, make one, using
7285 data from SECT. Note, this function will generate a
7286 reference to NAME, so you shouldn't deallocate or
7287 overwrite it. */
7288
7289 static bfd_boolean
7290 elfcore_maybe_make_sect (bfd *abfd, char *name, asection *sect)
7291 {
7292 asection *sect2;
7293
7294 if (bfd_get_section_by_name (abfd, name) != NULL)
7295 return TRUE;
7296
7297 sect2 = bfd_make_section_with_flags (abfd, name, sect->flags);
7298 if (sect2 == NULL)
7299 return FALSE;
7300
7301 sect2->size = sect->size;
7302 sect2->filepos = sect->filepos;
7303 sect2->alignment_power = sect->alignment_power;
7304 return TRUE;
7305 }
7306
7307 /* Create a pseudosection containing SIZE bytes at FILEPOS. This
7308 actually creates up to two pseudosections:
7309 - For the single-threaded case, a section named NAME, unless
7310 such a section already exists.
7311 - For the multi-threaded case, a section named "NAME/PID", where
7312 PID is elfcore_make_pid (abfd).
7313 Both pseudosections have identical contents. */
7314 bfd_boolean
7315 _bfd_elfcore_make_pseudosection (bfd *abfd,
7316 char *name,
7317 size_t size,
7318 ufile_ptr filepos)
7319 {
7320 char buf[100];
7321 char *threaded_name;
7322 size_t len;
7323 asection *sect;
7324
7325 /* Build the section name. */
7326
7327 sprintf (buf, "%s/%d", name, elfcore_make_pid (abfd));
7328 len = strlen (buf) + 1;
7329 threaded_name = bfd_alloc (abfd, len);
7330 if (threaded_name == NULL)
7331 return FALSE;
7332 memcpy (threaded_name, buf, len);
7333
7334 sect = bfd_make_section_anyway_with_flags (abfd, threaded_name,
7335 SEC_HAS_CONTENTS);
7336 if (sect == NULL)
7337 return FALSE;
7338 sect->size = size;
7339 sect->filepos = filepos;
7340 sect->alignment_power = 2;
7341
7342 return elfcore_maybe_make_sect (abfd, name, sect);
7343 }
7344
7345 /* prstatus_t exists on:
7346 solaris 2.5+
7347 linux 2.[01] + glibc
7348 unixware 4.2
7349 */
7350
7351 #if defined (HAVE_PRSTATUS_T)
7352
7353 static bfd_boolean
7354 elfcore_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
7355 {
7356 size_t size;
7357 int offset;
7358
7359 if (note->descsz == sizeof (prstatus_t))
7360 {
7361 prstatus_t prstat;
7362
7363 size = sizeof (prstat.pr_reg);
7364 offset = offsetof (prstatus_t, pr_reg);
7365 memcpy (&prstat, note->descdata, sizeof (prstat));
7366
7367 /* Do not overwrite the core signal if it
7368 has already been set by another thread. */
7369 if (elf_tdata (abfd)->core_signal == 0)
7370 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
7371 elf_tdata (abfd)->core_pid = prstat.pr_pid;
7372
7373 /* pr_who exists on:
7374 solaris 2.5+
7375 unixware 4.2
7376 pr_who doesn't exist on:
7377 linux 2.[01]
7378 */
7379 #if defined (HAVE_PRSTATUS_T_PR_WHO)
7380 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
7381 #endif
7382 }
7383 #if defined (HAVE_PRSTATUS32_T)
7384 else if (note->descsz == sizeof (prstatus32_t))
7385 {
7386 /* 64-bit host, 32-bit corefile */
7387 prstatus32_t prstat;
7388
7389 size = sizeof (prstat.pr_reg);
7390 offset = offsetof (prstatus32_t, pr_reg);
7391 memcpy (&prstat, note->descdata, sizeof (prstat));
7392
7393 /* Do not overwrite the core signal if it
7394 has already been set by another thread. */
7395 if (elf_tdata (abfd)->core_signal == 0)
7396 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
7397 elf_tdata (abfd)->core_pid = prstat.pr_pid;
7398
7399 /* pr_who exists on:
7400 solaris 2.5+
7401 unixware 4.2
7402 pr_who doesn't exist on:
7403 linux 2.[01]
7404 */
7405 #if defined (HAVE_PRSTATUS32_T_PR_WHO)
7406 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
7407 #endif
7408 }
7409 #endif /* HAVE_PRSTATUS32_T */
7410 else
7411 {
7412 /* Fail - we don't know how to handle any other
7413 note size (ie. data object type). */
7414 return TRUE;
7415 }
7416
7417 /* Make a ".reg/999" section and a ".reg" section. */
7418 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
7419 size, note->descpos + offset);
7420 }
7421 #endif /* defined (HAVE_PRSTATUS_T) */
7422
7423 /* Create a pseudosection containing the exact contents of NOTE. */
7424 static bfd_boolean
7425 elfcore_make_note_pseudosection (bfd *abfd,
7426 char *name,
7427 Elf_Internal_Note *note)
7428 {
7429 return _bfd_elfcore_make_pseudosection (abfd, name,
7430 note->descsz, note->descpos);
7431 }
7432
7433 /* There isn't a consistent prfpregset_t across platforms,
7434 but it doesn't matter, because we don't have to pick this
7435 data structure apart. */
7436
7437 static bfd_boolean
7438 elfcore_grok_prfpreg (bfd *abfd, Elf_Internal_Note *note)
7439 {
7440 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
7441 }
7442
7443 /* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
7444 type of 5 (NT_PRXFPREG). Just include the whole note's contents
7445 literally. */
7446
7447 static bfd_boolean
7448 elfcore_grok_prxfpreg (bfd *abfd, Elf_Internal_Note *note)
7449 {
7450 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
7451 }
7452
7453 #if defined (HAVE_PRPSINFO_T)
7454 typedef prpsinfo_t elfcore_psinfo_t;
7455 #if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
7456 typedef prpsinfo32_t elfcore_psinfo32_t;
7457 #endif
7458 #endif
7459
7460 #if defined (HAVE_PSINFO_T)
7461 typedef psinfo_t elfcore_psinfo_t;
7462 #if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
7463 typedef psinfo32_t elfcore_psinfo32_t;
7464 #endif
7465 #endif
7466
7467 /* return a malloc'ed copy of a string at START which is at
7468 most MAX bytes long, possibly without a terminating '\0'.
7469 the copy will always have a terminating '\0'. */
7470
7471 char *
7472 _bfd_elfcore_strndup (bfd *abfd, char *start, size_t max)
7473 {
7474 char *dups;
7475 char *end = memchr (start, '\0', max);
7476 size_t len;
7477
7478 if (end == NULL)
7479 len = max;
7480 else
7481 len = end - start;
7482
7483 dups = bfd_alloc (abfd, len + 1);
7484 if (dups == NULL)
7485 return NULL;
7486
7487 memcpy (dups, start, len);
7488 dups[len] = '\0';
7489
7490 return dups;
7491 }
7492
7493 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7494 static bfd_boolean
7495 elfcore_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
7496 {
7497 if (note->descsz == sizeof (elfcore_psinfo_t))
7498 {
7499 elfcore_psinfo_t psinfo;
7500
7501 memcpy (&psinfo, note->descdata, sizeof (psinfo));
7502
7503 elf_tdata (abfd)->core_program
7504 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
7505 sizeof (psinfo.pr_fname));
7506
7507 elf_tdata (abfd)->core_command
7508 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
7509 sizeof (psinfo.pr_psargs));
7510 }
7511 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
7512 else if (note->descsz == sizeof (elfcore_psinfo32_t))
7513 {
7514 /* 64-bit host, 32-bit corefile */
7515 elfcore_psinfo32_t psinfo;
7516
7517 memcpy (&psinfo, note->descdata, sizeof (psinfo));
7518
7519 elf_tdata (abfd)->core_program
7520 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
7521 sizeof (psinfo.pr_fname));
7522
7523 elf_tdata (abfd)->core_command
7524 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
7525 sizeof (psinfo.pr_psargs));
7526 }
7527 #endif
7528
7529 else
7530 {
7531 /* Fail - we don't know how to handle any other
7532 note size (ie. data object type). */
7533 return TRUE;
7534 }
7535
7536 /* Note that for some reason, a spurious space is tacked
7537 onto the end of the args in some (at least one anyway)
7538 implementations, so strip it off if it exists. */
7539
7540 {
7541 char *command = elf_tdata (abfd)->core_command;
7542 int n = strlen (command);
7543
7544 if (0 < n && command[n - 1] == ' ')
7545 command[n - 1] = '\0';
7546 }
7547
7548 return TRUE;
7549 }
7550 #endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
7551
7552 #if defined (HAVE_PSTATUS_T)
7553 static bfd_boolean
7554 elfcore_grok_pstatus (bfd *abfd, Elf_Internal_Note *note)
7555 {
7556 if (note->descsz == sizeof (pstatus_t)
7557 #if defined (HAVE_PXSTATUS_T)
7558 || note->descsz == sizeof (pxstatus_t)
7559 #endif
7560 )
7561 {
7562 pstatus_t pstat;
7563
7564 memcpy (&pstat, note->descdata, sizeof (pstat));
7565
7566 elf_tdata (abfd)->core_pid = pstat.pr_pid;
7567 }
7568 #if defined (HAVE_PSTATUS32_T)
7569 else if (note->descsz == sizeof (pstatus32_t))
7570 {
7571 /* 64-bit host, 32-bit corefile */
7572 pstatus32_t pstat;
7573
7574 memcpy (&pstat, note->descdata, sizeof (pstat));
7575
7576 elf_tdata (abfd)->core_pid = pstat.pr_pid;
7577 }
7578 #endif
7579 /* Could grab some more details from the "representative"
7580 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
7581 NT_LWPSTATUS note, presumably. */
7582
7583 return TRUE;
7584 }
7585 #endif /* defined (HAVE_PSTATUS_T) */
7586
7587 #if defined (HAVE_LWPSTATUS_T)
7588 static bfd_boolean
7589 elfcore_grok_lwpstatus (bfd *abfd, Elf_Internal_Note *note)
7590 {
7591 lwpstatus_t lwpstat;
7592 char buf[100];
7593 char *name;
7594 size_t len;
7595 asection *sect;
7596
7597 if (note->descsz != sizeof (lwpstat)
7598 #if defined (HAVE_LWPXSTATUS_T)
7599 && note->descsz != sizeof (lwpxstatus_t)
7600 #endif
7601 )
7602 return TRUE;
7603
7604 memcpy (&lwpstat, note->descdata, sizeof (lwpstat));
7605
7606 elf_tdata (abfd)->core_lwpid = lwpstat.pr_lwpid;
7607 elf_tdata (abfd)->core_signal = lwpstat.pr_cursig;
7608
7609 /* Make a ".reg/999" section. */
7610
7611 sprintf (buf, ".reg/%d", elfcore_make_pid (abfd));
7612 len = strlen (buf) + 1;
7613 name = bfd_alloc (abfd, len);
7614 if (name == NULL)
7615 return FALSE;
7616 memcpy (name, buf, len);
7617
7618 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
7619 if (sect == NULL)
7620 return FALSE;
7621
7622 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7623 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.gregs);
7624 sect->filepos = note->descpos
7625 + offsetof (lwpstatus_t, pr_context.uc_mcontext.gregs);
7626 #endif
7627
7628 #if defined (HAVE_LWPSTATUS_T_PR_REG)
7629 sect->size = sizeof (lwpstat.pr_reg);
7630 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_reg);
7631 #endif
7632
7633 sect->alignment_power = 2;
7634
7635 if (!elfcore_maybe_make_sect (abfd, ".reg", sect))
7636 return FALSE;
7637
7638 /* Make a ".reg2/999" section */
7639
7640 sprintf (buf, ".reg2/%d", elfcore_make_pid (abfd));
7641 len = strlen (buf) + 1;
7642 name = bfd_alloc (abfd, len);
7643 if (name == NULL)
7644 return FALSE;
7645 memcpy (name, buf, len);
7646
7647 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
7648 if (sect == NULL)
7649 return FALSE;
7650
7651 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7652 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.fpregs);
7653 sect->filepos = note->descpos
7654 + offsetof (lwpstatus_t, pr_context.uc_mcontext.fpregs);
7655 #endif
7656
7657 #if defined (HAVE_LWPSTATUS_T_PR_FPREG)
7658 sect->size = sizeof (lwpstat.pr_fpreg);
7659 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_fpreg);
7660 #endif
7661
7662 sect->alignment_power = 2;
7663
7664 return elfcore_maybe_make_sect (abfd, ".reg2", sect);
7665 }
7666 #endif /* defined (HAVE_LWPSTATUS_T) */
7667
7668 #if defined (HAVE_WIN32_PSTATUS_T)
7669 static bfd_boolean
7670 elfcore_grok_win32pstatus (bfd *abfd, Elf_Internal_Note *note)
7671 {
7672 char buf[30];
7673 char *name;
7674 size_t len;
7675 asection *sect;
7676 win32_pstatus_t pstatus;
7677
7678 if (note->descsz < sizeof (pstatus))
7679 return TRUE;
7680
7681 memcpy (&pstatus, note->descdata, sizeof (pstatus));
7682
7683 switch (pstatus.data_type)
7684 {
7685 case NOTE_INFO_PROCESS:
7686 /* FIXME: need to add ->core_command. */
7687 elf_tdata (abfd)->core_signal = pstatus.data.process_info.signal;
7688 elf_tdata (abfd)->core_pid = pstatus.data.process_info.pid;
7689 break;
7690
7691 case NOTE_INFO_THREAD:
7692 /* Make a ".reg/999" section. */
7693 sprintf (buf, ".reg/%ld", (long) pstatus.data.thread_info.tid);
7694
7695 len = strlen (buf) + 1;
7696 name = bfd_alloc (abfd, len);
7697 if (name == NULL)
7698 return FALSE;
7699
7700 memcpy (name, buf, len);
7701
7702 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
7703 if (sect == NULL)
7704 return FALSE;
7705
7706 sect->size = sizeof (pstatus.data.thread_info.thread_context);
7707 sect->filepos = (note->descpos
7708 + offsetof (struct win32_pstatus,
7709 data.thread_info.thread_context));
7710 sect->alignment_power = 2;
7711
7712 if (pstatus.data.thread_info.is_active_thread)
7713 if (! elfcore_maybe_make_sect (abfd, ".reg", sect))
7714 return FALSE;
7715 break;
7716
7717 case NOTE_INFO_MODULE:
7718 /* Make a ".module/xxxxxxxx" section. */
7719 sprintf (buf, ".module/%08lx",
7720 (long) pstatus.data.module_info.base_address);
7721
7722 len = strlen (buf) + 1;
7723 name = bfd_alloc (abfd, len);
7724 if (name == NULL)
7725 return FALSE;
7726
7727 memcpy (name, buf, len);
7728
7729 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
7730
7731 if (sect == NULL)
7732 return FALSE;
7733
7734 sect->size = note->descsz;
7735 sect->filepos = note->descpos;
7736 sect->alignment_power = 2;
7737 break;
7738
7739 default:
7740 return TRUE;
7741 }
7742
7743 return TRUE;
7744 }
7745 #endif /* HAVE_WIN32_PSTATUS_T */
7746
7747 static bfd_boolean
7748 elfcore_grok_note (bfd *abfd, Elf_Internal_Note *note)
7749 {
7750 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7751
7752 switch (note->type)
7753 {
7754 default:
7755 return TRUE;
7756
7757 case NT_PRSTATUS:
7758 if (bed->elf_backend_grok_prstatus)
7759 if ((*bed->elf_backend_grok_prstatus) (abfd, note))
7760 return TRUE;
7761 #if defined (HAVE_PRSTATUS_T)
7762 return elfcore_grok_prstatus (abfd, note);
7763 #else
7764 return TRUE;
7765 #endif
7766
7767 #if defined (HAVE_PSTATUS_T)
7768 case NT_PSTATUS:
7769 return elfcore_grok_pstatus (abfd, note);
7770 #endif
7771
7772 #if defined (HAVE_LWPSTATUS_T)
7773 case NT_LWPSTATUS:
7774 return elfcore_grok_lwpstatus (abfd, note);
7775 #endif
7776
7777 case NT_FPREGSET: /* FIXME: rename to NT_PRFPREG */
7778 return elfcore_grok_prfpreg (abfd, note);
7779
7780 #if defined (HAVE_WIN32_PSTATUS_T)
7781 case NT_WIN32PSTATUS:
7782 return elfcore_grok_win32pstatus (abfd, note);
7783 #endif
7784
7785 case NT_PRXFPREG: /* Linux SSE extension */
7786 if (note->namesz == 6
7787 && strcmp (note->namedata, "LINUX") == 0)
7788 return elfcore_grok_prxfpreg (abfd, note);
7789 else
7790 return TRUE;
7791
7792 case NT_PRPSINFO:
7793 case NT_PSINFO:
7794 if (bed->elf_backend_grok_psinfo)
7795 if ((*bed->elf_backend_grok_psinfo) (abfd, note))
7796 return TRUE;
7797 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7798 return elfcore_grok_psinfo (abfd, note);
7799 #else
7800 return TRUE;
7801 #endif
7802
7803 case NT_AUXV:
7804 {
7805 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
7806 SEC_HAS_CONTENTS);
7807
7808 if (sect == NULL)
7809 return FALSE;
7810 sect->size = note->descsz;
7811 sect->filepos = note->descpos;
7812 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
7813
7814 return TRUE;
7815 }
7816 }
7817 }
7818
7819 static bfd_boolean
7820 elfcore_netbsd_get_lwpid (Elf_Internal_Note *note, int *lwpidp)
7821 {
7822 char *cp;
7823
7824 cp = strchr (note->namedata, '@');
7825 if (cp != NULL)
7826 {
7827 *lwpidp = atoi(cp + 1);
7828 return TRUE;
7829 }
7830 return FALSE;
7831 }
7832
7833 static bfd_boolean
7834 elfcore_grok_netbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
7835 {
7836
7837 /* Signal number at offset 0x08. */
7838 elf_tdata (abfd)->core_signal
7839 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
7840
7841 /* Process ID at offset 0x50. */
7842 elf_tdata (abfd)->core_pid
7843 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x50);
7844
7845 /* Command name at 0x7c (max 32 bytes, including nul). */
7846 elf_tdata (abfd)->core_command
7847 = _bfd_elfcore_strndup (abfd, note->descdata + 0x7c, 31);
7848
7849 return elfcore_make_note_pseudosection (abfd, ".note.netbsdcore.procinfo",
7850 note);
7851 }
7852
7853 static bfd_boolean
7854 elfcore_grok_netbsd_note (bfd *abfd, Elf_Internal_Note *note)
7855 {
7856 int lwp;
7857
7858 if (elfcore_netbsd_get_lwpid (note, &lwp))
7859 elf_tdata (abfd)->core_lwpid = lwp;
7860
7861 if (note->type == NT_NETBSDCORE_PROCINFO)
7862 {
7863 /* NetBSD-specific core "procinfo". Note that we expect to
7864 find this note before any of the others, which is fine,
7865 since the kernel writes this note out first when it
7866 creates a core file. */
7867
7868 return elfcore_grok_netbsd_procinfo (abfd, note);
7869 }
7870
7871 /* As of Jan 2002 there are no other machine-independent notes
7872 defined for NetBSD core files. If the note type is less
7873 than the start of the machine-dependent note types, we don't
7874 understand it. */
7875
7876 if (note->type < NT_NETBSDCORE_FIRSTMACH)
7877 return TRUE;
7878
7879
7880 switch (bfd_get_arch (abfd))
7881 {
7882 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
7883 PT_GETFPREGS == mach+2. */
7884
7885 case bfd_arch_alpha:
7886 case bfd_arch_sparc:
7887 switch (note->type)
7888 {
7889 case NT_NETBSDCORE_FIRSTMACH+0:
7890 return elfcore_make_note_pseudosection (abfd, ".reg", note);
7891
7892 case NT_NETBSDCORE_FIRSTMACH+2:
7893 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
7894
7895 default:
7896 return TRUE;
7897 }
7898
7899 /* On all other arch's, PT_GETREGS == mach+1 and
7900 PT_GETFPREGS == mach+3. */
7901
7902 default:
7903 switch (note->type)
7904 {
7905 case NT_NETBSDCORE_FIRSTMACH+1:
7906 return elfcore_make_note_pseudosection (abfd, ".reg", note);
7907
7908 case NT_NETBSDCORE_FIRSTMACH+3:
7909 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
7910
7911 default:
7912 return TRUE;
7913 }
7914 }
7915 /* NOTREACHED */
7916 }
7917
7918 static bfd_boolean
7919 elfcore_grok_nto_status (bfd *abfd, Elf_Internal_Note *note, long *tid)
7920 {
7921 void *ddata = note->descdata;
7922 char buf[100];
7923 char *name;
7924 asection *sect;
7925 short sig;
7926 unsigned flags;
7927
7928 /* nto_procfs_status 'pid' field is at offset 0. */
7929 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, (bfd_byte *) ddata);
7930
7931 /* nto_procfs_status 'tid' field is at offset 4. Pass it back. */
7932 *tid = bfd_get_32 (abfd, (bfd_byte *) ddata + 4);
7933
7934 /* nto_procfs_status 'flags' field is at offset 8. */
7935 flags = bfd_get_32 (abfd, (bfd_byte *) ddata + 8);
7936
7937 /* nto_procfs_status 'what' field is at offset 14. */
7938 if ((sig = bfd_get_16 (abfd, (bfd_byte *) ddata + 14)) > 0)
7939 {
7940 elf_tdata (abfd)->core_signal = sig;
7941 elf_tdata (abfd)->core_lwpid = *tid;
7942 }
7943
7944 /* _DEBUG_FLAG_CURTID (current thread) is 0x80. Some cores
7945 do not come from signals so we make sure we set the current
7946 thread just in case. */
7947 if (flags & 0x00000080)
7948 elf_tdata (abfd)->core_lwpid = *tid;
7949
7950 /* Make a ".qnx_core_status/%d" section. */
7951 sprintf (buf, ".qnx_core_status/%ld", *tid);
7952
7953 name = bfd_alloc (abfd, strlen (buf) + 1);
7954 if (name == NULL)
7955 return FALSE;
7956 strcpy (name, buf);
7957
7958 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
7959 if (sect == NULL)
7960 return FALSE;
7961
7962 sect->size = note->descsz;
7963 sect->filepos = note->descpos;
7964 sect->alignment_power = 2;
7965
7966 return (elfcore_maybe_make_sect (abfd, ".qnx_core_status", sect));
7967 }
7968
7969 static bfd_boolean
7970 elfcore_grok_nto_regs (bfd *abfd,
7971 Elf_Internal_Note *note,
7972 long tid,
7973 char *base)
7974 {
7975 char buf[100];
7976 char *name;
7977 asection *sect;
7978
7979 /* Make a "(base)/%d" section. */
7980 sprintf (buf, "%s/%ld", base, tid);
7981
7982 name = bfd_alloc (abfd, strlen (buf) + 1);
7983 if (name == NULL)
7984 return FALSE;
7985 strcpy (name, buf);
7986
7987 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
7988 if (sect == NULL)
7989 return FALSE;
7990
7991 sect->size = note->descsz;
7992 sect->filepos = note->descpos;
7993 sect->alignment_power = 2;
7994
7995 /* This is the current thread. */
7996 if (elf_tdata (abfd)->core_lwpid == tid)
7997 return elfcore_maybe_make_sect (abfd, base, sect);
7998
7999 return TRUE;
8000 }
8001
8002 #define BFD_QNT_CORE_INFO 7
8003 #define BFD_QNT_CORE_STATUS 8
8004 #define BFD_QNT_CORE_GREG 9
8005 #define BFD_QNT_CORE_FPREG 10
8006
8007 static bfd_boolean
8008 elfcore_grok_nto_note (bfd *abfd, Elf_Internal_Note *note)
8009 {
8010 /* Every GREG section has a STATUS section before it. Store the
8011 tid from the previous call to pass down to the next gregs
8012 function. */
8013 static long tid = 1;
8014
8015 switch (note->type)
8016 {
8017 case BFD_QNT_CORE_INFO:
8018 return elfcore_make_note_pseudosection (abfd, ".qnx_core_info", note);
8019 case BFD_QNT_CORE_STATUS:
8020 return elfcore_grok_nto_status (abfd, note, &tid);
8021 case BFD_QNT_CORE_GREG:
8022 return elfcore_grok_nto_regs (abfd, note, tid, ".reg");
8023 case BFD_QNT_CORE_FPREG:
8024 return elfcore_grok_nto_regs (abfd, note, tid, ".reg2");
8025 default:
8026 return TRUE;
8027 }
8028 }
8029
8030 /* Function: elfcore_write_note
8031
8032 Inputs:
8033 buffer to hold note
8034 name of note
8035 type of note
8036 data for note
8037 size of data for note
8038
8039 Return:
8040 End of buffer containing note. */
8041
8042 char *
8043 elfcore_write_note (bfd *abfd,
8044 char *buf,
8045 int *bufsiz,
8046 const char *name,
8047 int type,
8048 const void *input,
8049 int size)
8050 {
8051 Elf_External_Note *xnp;
8052 size_t namesz;
8053 size_t pad;
8054 size_t newspace;
8055 char *p, *dest;
8056
8057 namesz = 0;
8058 pad = 0;
8059 if (name != NULL)
8060 {
8061 const struct elf_backend_data *bed;
8062
8063 namesz = strlen (name) + 1;
8064 bed = get_elf_backend_data (abfd);
8065 pad = -namesz & ((1 << bed->s->log_file_align) - 1);
8066 }
8067
8068 newspace = 12 + namesz + pad + size;
8069
8070 p = realloc (buf, *bufsiz + newspace);
8071 dest = p + *bufsiz;
8072 *bufsiz += newspace;
8073 xnp = (Elf_External_Note *) dest;
8074 H_PUT_32 (abfd, namesz, xnp->namesz);
8075 H_PUT_32 (abfd, size, xnp->descsz);
8076 H_PUT_32 (abfd, type, xnp->type);
8077 dest = xnp->name;
8078 if (name != NULL)
8079 {
8080 memcpy (dest, name, namesz);
8081 dest += namesz;
8082 while (pad != 0)
8083 {
8084 *dest++ = '\0';
8085 --pad;
8086 }
8087 }
8088 memcpy (dest, input, size);
8089 return p;
8090 }
8091
8092 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
8093 char *
8094 elfcore_write_prpsinfo (bfd *abfd,
8095 char *buf,
8096 int *bufsiz,
8097 const char *fname,
8098 const char *psargs)
8099 {
8100 int note_type;
8101 char *note_name = "CORE";
8102
8103 #if defined (HAVE_PSINFO_T)
8104 psinfo_t data;
8105 note_type = NT_PSINFO;
8106 #else
8107 prpsinfo_t data;
8108 note_type = NT_PRPSINFO;
8109 #endif
8110
8111 memset (&data, 0, sizeof (data));
8112 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
8113 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
8114 return elfcore_write_note (abfd, buf, bufsiz,
8115 note_name, note_type, &data, sizeof (data));
8116 }
8117 #endif /* PSINFO_T or PRPSINFO_T */
8118
8119 #if defined (HAVE_PRSTATUS_T)
8120 char *
8121 elfcore_write_prstatus (bfd *abfd,
8122 char *buf,
8123 int *bufsiz,
8124 long pid,
8125 int cursig,
8126 const void *gregs)
8127 {
8128 prstatus_t prstat;
8129 char *note_name = "CORE";
8130
8131 memset (&prstat, 0, sizeof (prstat));
8132 prstat.pr_pid = pid;
8133 prstat.pr_cursig = cursig;
8134 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
8135 return elfcore_write_note (abfd, buf, bufsiz,
8136 note_name, NT_PRSTATUS, &prstat, sizeof (prstat));
8137 }
8138 #endif /* HAVE_PRSTATUS_T */
8139
8140 #if defined (HAVE_LWPSTATUS_T)
8141 char *
8142 elfcore_write_lwpstatus (bfd *abfd,
8143 char *buf,
8144 int *bufsiz,
8145 long pid,
8146 int cursig,
8147 const void *gregs)
8148 {
8149 lwpstatus_t lwpstat;
8150 char *note_name = "CORE";
8151
8152 memset (&lwpstat, 0, sizeof (lwpstat));
8153 lwpstat.pr_lwpid = pid >> 16;
8154 lwpstat.pr_cursig = cursig;
8155 #if defined (HAVE_LWPSTATUS_T_PR_REG)
8156 memcpy (lwpstat.pr_reg, gregs, sizeof (lwpstat.pr_reg));
8157 #elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
8158 #if !defined(gregs)
8159 memcpy (lwpstat.pr_context.uc_mcontext.gregs,
8160 gregs, sizeof (lwpstat.pr_context.uc_mcontext.gregs));
8161 #else
8162 memcpy (lwpstat.pr_context.uc_mcontext.__gregs,
8163 gregs, sizeof (lwpstat.pr_context.uc_mcontext.__gregs));
8164 #endif
8165 #endif
8166 return elfcore_write_note (abfd, buf, bufsiz, note_name,
8167 NT_LWPSTATUS, &lwpstat, sizeof (lwpstat));
8168 }
8169 #endif /* HAVE_LWPSTATUS_T */
8170
8171 #if defined (HAVE_PSTATUS_T)
8172 char *
8173 elfcore_write_pstatus (bfd *abfd,
8174 char *buf,
8175 int *bufsiz,
8176 long pid,
8177 int cursig ATTRIBUTE_UNUSED,
8178 const void *gregs ATTRIBUTE_UNUSED)
8179 {
8180 pstatus_t pstat;
8181 char *note_name = "CORE";
8182
8183 memset (&pstat, 0, sizeof (pstat));
8184 pstat.pr_pid = pid & 0xffff;
8185 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
8186 NT_PSTATUS, &pstat, sizeof (pstat));
8187 return buf;
8188 }
8189 #endif /* HAVE_PSTATUS_T */
8190
8191 char *
8192 elfcore_write_prfpreg (bfd *abfd,
8193 char *buf,
8194 int *bufsiz,
8195 const void *fpregs,
8196 int size)
8197 {
8198 char *note_name = "CORE";
8199 return elfcore_write_note (abfd, buf, bufsiz,
8200 note_name, NT_FPREGSET, fpregs, size);
8201 }
8202
8203 char *
8204 elfcore_write_prxfpreg (bfd *abfd,
8205 char *buf,
8206 int *bufsiz,
8207 const void *xfpregs,
8208 int size)
8209 {
8210 char *note_name = "LINUX";
8211 return elfcore_write_note (abfd, buf, bufsiz,
8212 note_name, NT_PRXFPREG, xfpregs, size);
8213 }
8214
8215 static bfd_boolean
8216 elfcore_read_notes (bfd *abfd, file_ptr offset, bfd_size_type size)
8217 {
8218 char *buf;
8219 char *p;
8220
8221 if (size <= 0)
8222 return TRUE;
8223
8224 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
8225 return FALSE;
8226
8227 buf = bfd_malloc (size);
8228 if (buf == NULL)
8229 return FALSE;
8230
8231 if (bfd_bread (buf, size, abfd) != size)
8232 {
8233 error:
8234 free (buf);
8235 return FALSE;
8236 }
8237
8238 p = buf;
8239 while (p < buf + size)
8240 {
8241 /* FIXME: bad alignment assumption. */
8242 Elf_External_Note *xnp = (Elf_External_Note *) p;
8243 Elf_Internal_Note in;
8244
8245 in.type = H_GET_32 (abfd, xnp->type);
8246
8247 in.namesz = H_GET_32 (abfd, xnp->namesz);
8248 in.namedata = xnp->name;
8249
8250 in.descsz = H_GET_32 (abfd, xnp->descsz);
8251 in.descdata = in.namedata + BFD_ALIGN (in.namesz, 4);
8252 in.descpos = offset + (in.descdata - buf);
8253
8254 if (strncmp (in.namedata, "NetBSD-CORE", 11) == 0)
8255 {
8256 if (! elfcore_grok_netbsd_note (abfd, &in))
8257 goto error;
8258 }
8259 else if (strncmp (in.namedata, "QNX", 3) == 0)
8260 {
8261 if (! elfcore_grok_nto_note (abfd, &in))
8262 goto error;
8263 }
8264 else
8265 {
8266 if (! elfcore_grok_note (abfd, &in))
8267 goto error;
8268 }
8269
8270 p = in.descdata + BFD_ALIGN (in.descsz, 4);
8271 }
8272
8273 free (buf);
8274 return TRUE;
8275 }
8276 \f
8277 /* Providing external access to the ELF program header table. */
8278
8279 /* Return an upper bound on the number of bytes required to store a
8280 copy of ABFD's program header table entries. Return -1 if an error
8281 occurs; bfd_get_error will return an appropriate code. */
8282
8283 long
8284 bfd_get_elf_phdr_upper_bound (bfd *abfd)
8285 {
8286 if (abfd->xvec->flavour != bfd_target_elf_flavour)
8287 {
8288 bfd_set_error (bfd_error_wrong_format);
8289 return -1;
8290 }
8291
8292 return elf_elfheader (abfd)->e_phnum * sizeof (Elf_Internal_Phdr);
8293 }
8294
8295 /* Copy ABFD's program header table entries to *PHDRS. The entries
8296 will be stored as an array of Elf_Internal_Phdr structures, as
8297 defined in include/elf/internal.h. To find out how large the
8298 buffer needs to be, call bfd_get_elf_phdr_upper_bound.
8299
8300 Return the number of program header table entries read, or -1 if an
8301 error occurs; bfd_get_error will return an appropriate code. */
8302
8303 int
8304 bfd_get_elf_phdrs (bfd *abfd, void *phdrs)
8305 {
8306 int num_phdrs;
8307
8308 if (abfd->xvec->flavour != bfd_target_elf_flavour)
8309 {
8310 bfd_set_error (bfd_error_wrong_format);
8311 return -1;
8312 }
8313
8314 num_phdrs = elf_elfheader (abfd)->e_phnum;
8315 memcpy (phdrs, elf_tdata (abfd)->phdr,
8316 num_phdrs * sizeof (Elf_Internal_Phdr));
8317
8318 return num_phdrs;
8319 }
8320
8321 void
8322 _bfd_elf_sprintf_vma (bfd *abfd ATTRIBUTE_UNUSED, char *buf, bfd_vma value)
8323 {
8324 #ifdef BFD64
8325 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
8326
8327 i_ehdrp = elf_elfheader (abfd);
8328 if (i_ehdrp == NULL)
8329 sprintf_vma (buf, value);
8330 else
8331 {
8332 if (i_ehdrp->e_ident[EI_CLASS] == ELFCLASS64)
8333 {
8334 #if BFD_HOST_64BIT_LONG
8335 sprintf (buf, "%016lx", value);
8336 #else
8337 sprintf (buf, "%08lx%08lx", _bfd_int64_high (value),
8338 _bfd_int64_low (value));
8339 #endif
8340 }
8341 else
8342 sprintf (buf, "%08lx", (unsigned long) (value & 0xffffffff));
8343 }
8344 #else
8345 sprintf_vma (buf, value);
8346 #endif
8347 }
8348
8349 void
8350 _bfd_elf_fprintf_vma (bfd *abfd ATTRIBUTE_UNUSED, void *stream, bfd_vma value)
8351 {
8352 #ifdef BFD64
8353 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
8354
8355 i_ehdrp = elf_elfheader (abfd);
8356 if (i_ehdrp == NULL)
8357 fprintf_vma ((FILE *) stream, value);
8358 else
8359 {
8360 if (i_ehdrp->e_ident[EI_CLASS] == ELFCLASS64)
8361 {
8362 #if BFD_HOST_64BIT_LONG
8363 fprintf ((FILE *) stream, "%016lx", value);
8364 #else
8365 fprintf ((FILE *) stream, "%08lx%08lx",
8366 _bfd_int64_high (value), _bfd_int64_low (value));
8367 #endif
8368 }
8369 else
8370 fprintf ((FILE *) stream, "%08lx",
8371 (unsigned long) (value & 0xffffffff));
8372 }
8373 #else
8374 fprintf_vma ((FILE *) stream, value);
8375 #endif
8376 }
8377
8378 enum elf_reloc_type_class
8379 _bfd_elf_reloc_type_class (const Elf_Internal_Rela *rela ATTRIBUTE_UNUSED)
8380 {
8381 return reloc_class_normal;
8382 }
8383
8384 /* For RELA architectures, return the relocation value for a
8385 relocation against a local symbol. */
8386
8387 bfd_vma
8388 _bfd_elf_rela_local_sym (bfd *abfd,
8389 Elf_Internal_Sym *sym,
8390 asection **psec,
8391 Elf_Internal_Rela *rel)
8392 {
8393 asection *sec = *psec;
8394 bfd_vma relocation;
8395
8396 relocation = (sec->output_section->vma
8397 + sec->output_offset
8398 + sym->st_value);
8399 if ((sec->flags & SEC_MERGE)
8400 && ELF_ST_TYPE (sym->st_info) == STT_SECTION
8401 && sec->sec_info_type == ELF_INFO_TYPE_MERGE)
8402 {
8403 rel->r_addend =
8404 _bfd_merged_section_offset (abfd, psec,
8405 elf_section_data (sec)->sec_info,
8406 sym->st_value + rel->r_addend);
8407 if (sec != *psec)
8408 {
8409 /* If we have changed the section, and our original section is
8410 marked with SEC_EXCLUDE, it means that the original
8411 SEC_MERGE section has been completely subsumed in some
8412 other SEC_MERGE section. In this case, we need to leave
8413 some info around for --emit-relocs. */
8414 if ((sec->flags & SEC_EXCLUDE) != 0)
8415 sec->kept_section = *psec;
8416 sec = *psec;
8417 }
8418 rel->r_addend -= relocation;
8419 rel->r_addend += sec->output_section->vma + sec->output_offset;
8420 }
8421 return relocation;
8422 }
8423
8424 bfd_vma
8425 _bfd_elf_rel_local_sym (bfd *abfd,
8426 Elf_Internal_Sym *sym,
8427 asection **psec,
8428 bfd_vma addend)
8429 {
8430 asection *sec = *psec;
8431
8432 if (sec->sec_info_type != ELF_INFO_TYPE_MERGE)
8433 return sym->st_value + addend;
8434
8435 return _bfd_merged_section_offset (abfd, psec,
8436 elf_section_data (sec)->sec_info,
8437 sym->st_value + addend);
8438 }
8439
8440 bfd_vma
8441 _bfd_elf_section_offset (bfd *abfd,
8442 struct bfd_link_info *info,
8443 asection *sec,
8444 bfd_vma offset)
8445 {
8446 switch (sec->sec_info_type)
8447 {
8448 case ELF_INFO_TYPE_STABS:
8449 return _bfd_stab_section_offset (sec, elf_section_data (sec)->sec_info,
8450 offset);
8451 case ELF_INFO_TYPE_EH_FRAME:
8452 return _bfd_elf_eh_frame_section_offset (abfd, info, sec, offset);
8453 default:
8454 return offset;
8455 }
8456 }
8457 \f
8458 /* Create a new BFD as if by bfd_openr. Rather than opening a file,
8459 reconstruct an ELF file by reading the segments out of remote memory
8460 based on the ELF file header at EHDR_VMA and the ELF program headers it
8461 points to. If not null, *LOADBASEP is filled in with the difference
8462 between the VMAs from which the segments were read, and the VMAs the
8463 file headers (and hence BFD's idea of each section's VMA) put them at.
8464
8465 The function TARGET_READ_MEMORY is called to copy LEN bytes from the
8466 remote memory at target address VMA into the local buffer at MYADDR; it
8467 should return zero on success or an `errno' code on failure. TEMPL must
8468 be a BFD for an ELF target with the word size and byte order found in
8469 the remote memory. */
8470
8471 bfd *
8472 bfd_elf_bfd_from_remote_memory
8473 (bfd *templ,
8474 bfd_vma ehdr_vma,
8475 bfd_vma *loadbasep,
8476 int (*target_read_memory) (bfd_vma, bfd_byte *, int))
8477 {
8478 return (*get_elf_backend_data (templ)->elf_backend_bfd_from_remote_memory)
8479 (templ, ehdr_vma, loadbasep, target_read_memory);
8480 }
8481 \f
8482 long
8483 _bfd_elf_get_synthetic_symtab (bfd *abfd,
8484 long symcount ATTRIBUTE_UNUSED,
8485 asymbol **syms ATTRIBUTE_UNUSED,
8486 long dynsymcount,
8487 asymbol **dynsyms,
8488 asymbol **ret)
8489 {
8490 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8491 asection *relplt;
8492 asymbol *s;
8493 const char *relplt_name;
8494 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
8495 arelent *p;
8496 long count, i, n;
8497 size_t size;
8498 Elf_Internal_Shdr *hdr;
8499 char *names;
8500 asection *plt;
8501
8502 *ret = NULL;
8503
8504 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0)
8505 return 0;
8506
8507 if (dynsymcount <= 0)
8508 return 0;
8509
8510 if (!bed->plt_sym_val)
8511 return 0;
8512
8513 relplt_name = bed->relplt_name;
8514 if (relplt_name == NULL)
8515 relplt_name = bed->default_use_rela_p ? ".rela.plt" : ".rel.plt";
8516 relplt = bfd_get_section_by_name (abfd, relplt_name);
8517 if (relplt == NULL)
8518 return 0;
8519
8520 hdr = &elf_section_data (relplt)->this_hdr;
8521 if (hdr->sh_link != elf_dynsymtab (abfd)
8522 || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA))
8523 return 0;
8524
8525 plt = bfd_get_section_by_name (abfd, ".plt");
8526 if (plt == NULL)
8527 return 0;
8528
8529 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
8530 if (! (*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
8531 return -1;
8532
8533 count = relplt->size / hdr->sh_entsize;
8534 size = count * sizeof (asymbol);
8535 p = relplt->relocation;
8536 for (i = 0; i < count; i++, s++, p++)
8537 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
8538
8539 s = *ret = bfd_malloc (size);
8540 if (s == NULL)
8541 return -1;
8542
8543 names = (char *) (s + count);
8544 p = relplt->relocation;
8545 n = 0;
8546 for (i = 0; i < count; i++, s++, p++)
8547 {
8548 size_t len;
8549 bfd_vma addr;
8550
8551 addr = bed->plt_sym_val (i, plt, p);
8552 if (addr == (bfd_vma) -1)
8553 continue;
8554
8555 *s = **p->sym_ptr_ptr;
8556 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
8557 we are defining a symbol, ensure one of them is set. */
8558 if ((s->flags & BSF_LOCAL) == 0)
8559 s->flags |= BSF_GLOBAL;
8560 s->section = plt;
8561 s->value = addr - plt->vma;
8562 s->name = names;
8563 len = strlen ((*p->sym_ptr_ptr)->name);
8564 memcpy (names, (*p->sym_ptr_ptr)->name, len);
8565 names += len;
8566 memcpy (names, "@plt", sizeof ("@plt"));
8567 names += sizeof ("@plt");
8568 ++n;
8569 }
8570
8571 return n;
8572 }
8573
8574 /* Sort symbol by binding and section. We want to put definitions
8575 sorted by section at the beginning. */
8576
8577 static int
8578 elf_sort_elf_symbol (const void *arg1, const void *arg2)
8579 {
8580 const Elf_Internal_Sym *s1;
8581 const Elf_Internal_Sym *s2;
8582 int shndx;
8583
8584 /* Make sure that undefined symbols are at the end. */
8585 s1 = (const Elf_Internal_Sym *) arg1;
8586 if (s1->st_shndx == SHN_UNDEF)
8587 return 1;
8588 s2 = (const Elf_Internal_Sym *) arg2;
8589 if (s2->st_shndx == SHN_UNDEF)
8590 return -1;
8591
8592 /* Sorted by section index. */
8593 shndx = s1->st_shndx - s2->st_shndx;
8594 if (shndx != 0)
8595 return shndx;
8596
8597 /* Sorted by binding. */
8598 return ELF_ST_BIND (s1->st_info) - ELF_ST_BIND (s2->st_info);
8599 }
8600
8601 struct elf_symbol
8602 {
8603 Elf_Internal_Sym *sym;
8604 const char *name;
8605 };
8606
8607 static int
8608 elf_sym_name_compare (const void *arg1, const void *arg2)
8609 {
8610 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
8611 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
8612 return strcmp (s1->name, s2->name);
8613 }
8614
8615 /* Check if 2 sections define the same set of local and global
8616 symbols. */
8617
8618 bfd_boolean
8619 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2)
8620 {
8621 bfd *bfd1, *bfd2;
8622 const struct elf_backend_data *bed1, *bed2;
8623 Elf_Internal_Shdr *hdr1, *hdr2;
8624 bfd_size_type symcount1, symcount2;
8625 Elf_Internal_Sym *isymbuf1, *isymbuf2;
8626 Elf_Internal_Sym *isymstart1 = NULL, *isymstart2 = NULL, *isym;
8627 Elf_Internal_Sym *isymend;
8628 struct elf_symbol *symp, *symtable1 = NULL, *symtable2 = NULL;
8629 bfd_size_type count1, count2, i;
8630 int shndx1, shndx2;
8631 bfd_boolean result;
8632
8633 bfd1 = sec1->owner;
8634 bfd2 = sec2->owner;
8635
8636 /* If both are .gnu.linkonce sections, they have to have the same
8637 section name. */
8638 if (strncmp (sec1->name, ".gnu.linkonce",
8639 sizeof ".gnu.linkonce" - 1) == 0
8640 && strncmp (sec2->name, ".gnu.linkonce",
8641 sizeof ".gnu.linkonce" - 1) == 0)
8642 return strcmp (sec1->name + sizeof ".gnu.linkonce",
8643 sec2->name + sizeof ".gnu.linkonce") == 0;
8644
8645 /* Both sections have to be in ELF. */
8646 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
8647 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
8648 return FALSE;
8649
8650 if (elf_section_type (sec1) != elf_section_type (sec2))
8651 return FALSE;
8652
8653 if ((elf_section_flags (sec1) & SHF_GROUP) != 0
8654 && (elf_section_flags (sec2) & SHF_GROUP) != 0)
8655 {
8656 /* If both are members of section groups, they have to have the
8657 same group name. */
8658 if (strcmp (elf_group_name (sec1), elf_group_name (sec2)) != 0)
8659 return FALSE;
8660 }
8661
8662 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
8663 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
8664 if (shndx1 == -1 || shndx2 == -1)
8665 return FALSE;
8666
8667 bed1 = get_elf_backend_data (bfd1);
8668 bed2 = get_elf_backend_data (bfd2);
8669 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
8670 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
8671 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
8672 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
8673
8674 if (symcount1 == 0 || symcount2 == 0)
8675 return FALSE;
8676
8677 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
8678 NULL, NULL, NULL);
8679 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
8680 NULL, NULL, NULL);
8681
8682 result = FALSE;
8683 if (isymbuf1 == NULL || isymbuf2 == NULL)
8684 goto done;
8685
8686 /* Sort symbols by binding and section. Global definitions are at
8687 the beginning. */
8688 qsort (isymbuf1, symcount1, sizeof (Elf_Internal_Sym),
8689 elf_sort_elf_symbol);
8690 qsort (isymbuf2, symcount2, sizeof (Elf_Internal_Sym),
8691 elf_sort_elf_symbol);
8692
8693 /* Count definitions in the section. */
8694 count1 = 0;
8695 for (isym = isymbuf1, isymend = isym + symcount1;
8696 isym < isymend; isym++)
8697 {
8698 if (isym->st_shndx == (unsigned int) shndx1)
8699 {
8700 if (count1 == 0)
8701 isymstart1 = isym;
8702 count1++;
8703 }
8704
8705 if (count1 && isym->st_shndx != (unsigned int) shndx1)
8706 break;
8707 }
8708
8709 count2 = 0;
8710 for (isym = isymbuf2, isymend = isym + symcount2;
8711 isym < isymend; isym++)
8712 {
8713 if (isym->st_shndx == (unsigned int) shndx2)
8714 {
8715 if (count2 == 0)
8716 isymstart2 = isym;
8717 count2++;
8718 }
8719
8720 if (count2 && isym->st_shndx != (unsigned int) shndx2)
8721 break;
8722 }
8723
8724 if (count1 == 0 || count2 == 0 || count1 != count2)
8725 goto done;
8726
8727 symtable1 = bfd_malloc (count1 * sizeof (struct elf_symbol));
8728 symtable2 = bfd_malloc (count1 * sizeof (struct elf_symbol));
8729
8730 if (symtable1 == NULL || symtable2 == NULL)
8731 goto done;
8732
8733 symp = symtable1;
8734 for (isym = isymstart1, isymend = isym + count1;
8735 isym < isymend; isym++)
8736 {
8737 symp->sym = isym;
8738 symp->name = bfd_elf_string_from_elf_section (bfd1,
8739 hdr1->sh_link,
8740 isym->st_name);
8741 symp++;
8742 }
8743
8744 symp = symtable2;
8745 for (isym = isymstart2, isymend = isym + count1;
8746 isym < isymend; isym++)
8747 {
8748 symp->sym = isym;
8749 symp->name = bfd_elf_string_from_elf_section (bfd2,
8750 hdr2->sh_link,
8751 isym->st_name);
8752 symp++;
8753 }
8754
8755 /* Sort symbol by name. */
8756 qsort (symtable1, count1, sizeof (struct elf_symbol),
8757 elf_sym_name_compare);
8758 qsort (symtable2, count1, sizeof (struct elf_symbol),
8759 elf_sym_name_compare);
8760
8761 for (i = 0; i < count1; i++)
8762 /* Two symbols must have the same binding, type and name. */
8763 if (symtable1 [i].sym->st_info != symtable2 [i].sym->st_info
8764 || symtable1 [i].sym->st_other != symtable2 [i].sym->st_other
8765 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
8766 goto done;
8767
8768 result = TRUE;
8769
8770 done:
8771 if (symtable1)
8772 free (symtable1);
8773 if (symtable2)
8774 free (symtable2);
8775 if (isymbuf1)
8776 free (isymbuf1);
8777 if (isymbuf2)
8778 free (isymbuf2);
8779
8780 return result;
8781 }
8782
8783 /* It is only used by x86-64 so far. */
8784 asection _bfd_elf_large_com_section
8785 = BFD_FAKE_SECTION (_bfd_elf_large_com_section,
8786 SEC_IS_COMMON, NULL, "LARGE_COMMON", 0);
8787
8788 /* Return TRUE if 2 section types are compatible. */
8789
8790 bfd_boolean
8791 _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
8792 bfd *bbfd, const asection *bsec)
8793 {
8794 if (asec == NULL
8795 || bsec == NULL
8796 || abfd->xvec->flavour != bfd_target_elf_flavour
8797 || bbfd->xvec->flavour != bfd_target_elf_flavour)
8798 return TRUE;
8799
8800 return elf_section_type (asec) == elf_section_type (bsec);
8801 }
This page took 0.232157 seconds and 4 git commands to generate.